
The Journal of Machine Learning Research 
Volume 14 
Print-Archive Edition 
 
 
Pages 2519–3818 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Microtome Publishing 
Brookline, Massachusetts 
www.mtome.com 





The Journal of Machine Learning Research 
Volume 14 
Print-Archive Edition 
 
 
The Journal of Machine Learning Research (JMLR) is an open 
access journal. All articles published in JMLR are freely available 
via electronic distribution. This Print-Archive Edition is published 
annually as a means of archiving the contents of the journal in 
perpetuity. The contents of this volume are articles published 
electronically in JMLR in 2013. 
 
JMLR is abstracted in ACM Computing Reviews, INSPEC, and 
Psychological Abstracts/PsycINFO. 
 
JMLR is a publication of Journal of Machine Learning Research, 
Inc. For further information regarding JMLR, including open 
access to articles, visit http://www.jmlr.org/. 
 
JMLR Print-Archive Edition is a publication of Microtome 
Publishing under agreement with Journal of Machine Learning 
Research, Inc. For further information regarding the Print-Archive 
Edition, including subscription and distribution information and 
background on open-access print archiving, visit Microtome 
Publishing at http://www.mtome.com/. 
 
Collection copyright © 2013 The Journal of Machine Learning 
Research, Inc. and Microtome Publishing. Copyright of individual 
articles remains with their respective authors.  
 
 
 
 
 
ISSN 1532-4435 (print) 
ISSN 1533-7928 (online)



 



JMLR Editorial Board
Editor-in-Chief
Bernhard Schölkopf, MPI for Intelligent Systems, Germany

Editor-in-Chief
Kevin Murphy, Google Research, USA

Managing Editor
Aron Culotta, Southeastern Louisiana University, USA

Production Editor
Rich Maclin, University of Minnesota, Duluth, USA

JMLR Web Master
Chiyuan Zhang, Massachusetts Institute of Technology, USA

JMLR Action Editors
Peter Auer, University of Leoben, Austria Francis Bach, INRIA, France David Barber, University
College London, UK Mikhail Belkin, Ohio State University, USA Yoshua Bengio, Université de
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Abstract

The task of matching data from two heterogeneous domains naturally arises in various areas such

as web search, collaborative filtering, and drug design. In web search, existing work has designed

relevance models to match queries and documents by exploiting either user clicks or content of

queries and documents. To the best of our knowledge, however, there has been little work on prin-

cipled approaches to leveraging both clicks and content to learn a matching model for search. In

this paper, we propose a framework for learning to match heterogeneous objects. The framework

learns two linear mappings for two objects respectively, and matches them via the dot product of

their images after mapping. Moreover, when different regularizations are enforced, the framework

renders a rich family of matching models. With orthonormal constraints on mapping functions,

the framework subsumes Partial Least Squares (PLS) as a special case. Alternatively, with a ℓ1+ℓ2

regularization, we obtain a new model called Regularized Mapping to Latent Structures (RMLS).

RMLS enjoys many advantages over PLS, including lower time complexity and easy paralleliza-

tion. To further understand the matching framework, we conduct generalization analysis and apply

the result to both PLS and RMLS. We apply the framework to web search and implement both PLS

and RMLS using a click-through bipartite with metadata representing features of queries and doc-

uments. We test the efficacy and scalability of RMLS and PLS on large scale web search problems.

The results show that both PLS and RMLS can significantly outperform baseline methods, while

RMLS substantially speeds up the learning process.

Keywords: web search, partial least squares, regularized mapping to latent structures, generaliza-

tion analysis

1. Introduction

Many tasks in machine learning and data mining can be formalized as matching between objects

from two spaces. One particular example is web search, where the retrieved documents are ordered

according to their relevance to the given query. The relevance is determined by the matching scores

between the query and the documents. It is therefore crucial to accurately calculate the matching

c©2013 Wei Wu, Zhengdong Lu and Hang Li.
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score for any given query-document pair. Similarly, matching between heterogeneous data sources

can be found in collaborative filtering, image annotation, drug design, etc.

Existing models in web search use information from different sources to match queries and

documents. On one hand, conventional relevance models, including Vector Space Model (VSM)

(Salton and McGill, 1986), BM25 (Robertson et al., 1994), and Language Models for Information

Retrieval (LMIR) (Ponte and Croft, 1998; Zhai and Lafferty, 2004), match queries and documents

based on their content. Specifically, queries and documents are represented as feature vectors in a

Euclidean space, and conventional relevance models match them by the dot products of their feature

vectors (Xu et al., 2010; Wu et al., 2011). On the other hand, a click-through bipartite graph, which

represents users’ implicit judgments on query-document relevance, has proven to be a very valuable

resource for matching queries and documents. Many methods have been proposed (Craswell and

Szummer, 2007; Ma et al., 2008), but they rely only on the structure of the bipartite graph. Existing

models rely on either features or the click-through bipartite graph to match queries and documents.

Therefore, there is need for a principled approach to learning to match with both features and the

click-through bipartite graph. The learnt model must maintain efficacy and scalability (due to the

massive scale of web search problems). Moreover, we also would like to understand the generaliza-

tion ability of matching models.

This paper proposes a general framework for learning to match objects from two spaces. Specif-

ically, the framework learns a linear mapping for each object and map the two objects into a common

latent space. After that, the dot product of the images of the two objects is taken as their matching

score. The matching model is linear in terms of both objects, and therefore, we actually learn a bilin-

ear model for matching two objects. The types of linear mapping can be further specified by a set of

constraints. By limiting the mappings to projections,1 we obtain a natural generalization to Partial

Least Squares (PLS), a classic model in statistics for analyzing the correlation between two vari-

ables. More interestingly, when replacing this constraint with regularization constraints based on ℓ1

and ℓ2 norms, we get a new learning to match model, called Regularized Mapping to Latent Struc-

tures (RMLS). This model allows easy parallelization for learning and fast computation in testing

due to the induced sparsity in the mapping matrices. More specifically, RMLS allows pre-computing

intermediate parameters, making optimization independent of training instances. Moreover, the pre-

computation can be easily distributed across different machines, and therefore can further enhance

the efficiency and scalability of RMLS. To further understand this framework, we give a generaliza-

tion analysis under a hierarchical sampling assumption which is natural in the matching problems

encountered in web search. Our results indicate that to obtain a good generalization ability, it is

necessary to use a large number of instances for each type of object.

With the framework, we learn a matching model for search by leveraging both click-through

and features. Specifically, we implement both PLS and RMLS using a click-through bipartite graph

with metadata on the nodes representing features of queries and documents. We take click numbers

as a response and learn linear mappings to matching queries and documents, each represented by

heterogeneous feature vectors consisting of both key words and click numbers. On a small data set,

RMLS and PLS perform comparably well and both of them significantly outperform other baseline

methods. RMLS is more efficient than PLS and the advantage becomes more significant under

parallelization. RMLS also scales well on large data sets. On a data set with millions of queries and

1. In this paper, by projection, we mean a linear mapping specified by a matrix P, with P⊤P = I.
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documents, RMLS can leverage high dimensional features and significantly outperform all other

baseline methods.

Our contributions are three-fold: 1) we propose a framework for learning to match heteroge-

neous data, with PLS and the more scalable RMLS as special cases; 2) generalization analysis of

this framework as well as its application to RMLS and PLS; 3) empirical verification of the efficacy

and scalability of RMLS and PLS on real-world large-scale web search data.

2. Related Work

Matching pairs of objects with a similarity function defined as a dot product has been researched

for quite some time. When the pair of objects are from the same space (i.e., they are homogeneous

data), the similarity function becomes positive semi-definite, and the matching problem is essen-

tially finding a good kernel (Cristianini et al., 2001; Lanckriet et al., 2002; Bach et al., 2004; Ong

et al., 2005; Micchelli and Pontil, 2005; Bach, 2008; Varma and Babu, 2009; Cortes, 2009). Among

existing works, distance metric learning (Jolliffe, 2002; Xing et al., 2003; Schultz and Joachims,

2003; JacobGoldberger and GeoffHinton, 2004; Hertz et al., 2004; Hoi et al., 2006; Yang et al.,

2006; Davis et al., 2007; Sugiyama, 2007; Weinberger and Saul, 2009; Ying et al., 2009) is a rep-

resentative approach of learning similarities (or dissimilarities) for homogeneous data. In distance

metric learning, a linear transformation is learnt for mapping objects from the same space into a la-

tent space. In the space, dot product or Euclidean distance is taken as a means to measure similarity

or dissimilarity. Recently, learning a similarity function for object pairs from two different spaces

has also emerged as a hot research topic (Grangier and Bengio, 2008; Abernethy et al., 2009). Our

model belongs to the latter category, but is tailored for web search and tries to solve problems central

to that, for example, scalability.

Our model, when applied to web search, is also obviously related to the effort on learning to

rank (Herbrich et al., 1999; Crammer and Singer, 2001; Joachims, 2002; Agarwal and Niyogi, 2005;

Rudin et al., 2005; Burges et al., 2006; Cao et al., 2006; Xu and Li, 2007; Cao et al., 2007; Liu, 2009;

Li, 2011). However, we focus on learning to match queries and documents, while learning to rank

has been more concerned with optimizing the ranking model. Clearly the matching score learned

with our method can be integrated as a feature for a particular learning to rank model, and therefore

our model is in a sense feature learning for learning to rank.

In web search, existing work for matching queries and documents can be roughly categorized

into two groups: feature based methods and graph based methods. In the former group, Vector

Space Model (VSM) (Salton and McGill, 1986), BM25 (Robertson et al., 1994), and Language

Models for Information Retrieval (LMIR) (Ponte and Croft, 1998; Zhai and Lafferty, 2004) make

use of features, particularly, n-gram features to calculate query-document matching scores. As

pointed out by Xu et al. (2010) as well as Wu et al. (2011), these models perform matching by

using the dot product between a query vector and a document vector as a query-document similarity

function. In the latter group, graph based methods exploit the structure of a click-through bipartite

graph to match query-document pairs. For example, Latent Semantic Indexing (LSI) (Deerwester

et al., 1990) can be employed, which uses SVD to project queries and documents in a click-through

bipartite graph into a latent space, and calculates query-document matching scores through the dot

product of their images in the latent space. Craswell and Szummer (2007) propose adopting a

backward random walk process on a click-through bipartite graph to propagate similarity through

probabilistic transitions. In this paper, we propose a general framework for matching queries and
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documents. The framework can leverage both features and a click-through bipartite graph to learn a

matching model. In doing so, we actually combine feature based methods and graph based methods

in a principled way.

In information retrieval, some recent work also considers leveraging both user clicks and con-

tent of queries and documents. Bai et al. (2009) propose learning a low rank model for ranking

documents, which is like matching queries and documents. On the other hand, there are also stark

differences between our work and theirs. For example, their work requires a pair-wise input super-

vision and learns a ranking model using hinge loss, while our work employs a point-wise input and

learns a matching model using alignment. Gao et al. (2011) propose combining ideas in semantic

representation and statistical machine translation to learn relevance models for web search. Com-

pared with their work, our method is non-probabilistic and can leverage different regularizations,

such as the ℓ1 regularization, to achieve better performance.

The matching problem is also widely studied in collaborative filtering (CF) whose goal can be

viewed as matching users and items (Hofmann, 2004; Srebro et al., 2005; Abernethy et al., 2009;

Chen et al., 2012). The characteristics of the problems CF attempts to solve, for example, the

sampling assumption and the nature of “ratings”, are different from the matching problem in web

search. We have compared our methods with a state-of-the-art CF model which can handle extra

attributes in two domains. The results indicate that our methods are more effective in web search

than the existing CF model.

In existing statistical models, Partial Least Squares (PLS) (Rosipal and Krämer, 2006; Schreier,

2008) and Canonical Correlation Analysis (CCA) (Hardoon et al., 2004) are classic tools for captur-

ing correlations of two variables via common latent structures. In this paper, we provide a general

matching framework, which subsumes PLS and allows rather scalable implementations.

3. A Framework For Matching Objects From Two Spaces

We first give a general framework for learning to match objects from two heterogeneous spaces.

Suppose that there are two spaces X ⊂ Rdx and Y ⊂ Rdy . For any x ∈ X and y ∈ Y , there is a

response r � r(x,y) > 0 in space R , indicating the actual correlation between object x and object

y. For web search, the objects are queries and documents, and the response can be judgment from

human labelers or the click number from user logs.

We first describe the hierarchical sampling process for generating any sample triple (xi,yi j,ri j).

Assumption 1 First xi is sampled according to P(x). Then yi j is sampled according to P(y|xi).
After that, there is a response ri j = r(xi,yi j) associated with pair (xi,yi j).

We argue that this is an appropriate sampling assumption for web search (Chen et al., 2010), since

the selected yi j (in this case, retrieved document) depends heavily on xi (in this case, query). This

dependence is largely rendered by several factors of a search engine, including the indexed pages

and the ranking algorithms. Under Assumption 1, we have a sample set S = {(xi,yi j,ri j)}, with

1 6 i 6 nx, and for any given i, 1 6 j 6 n
y
i . Here {xi}nx

i=1 are i.i.d. sampled and for a given xi, {yi j}n
y
i

j=1

are i.i.d. samples conditioned on xi. Relying on this sampling assumption, we will give the learning

to match framework, and later carry out the generalization analysis.
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3.1 Model

We intend to find a linear mapping pair (Lx,Ly), so that the corresponding images L⊤x x and L⊤y y

are in the same d-dimensional latent space L (with d≪ min{dx,dy}), and the degree of matching

between x and y can be reduced to the dot product in L :

matchLx,Ly
(x,y) = x⊤LxL⊤y y.

Dot product is a popular form of matching in applications like search. In fact, traditional relevance

models in search such as VSM (Salton and McGill, 1986), BM25 (Robertson et al., 1994), and

LMIR (Ponte and Croft, 1998; Zhai and Lafferty, 2004) are all dot products of a query vector and

a document vector, as pointed out by Xu et al. (2010) as well as Wu et al. (2011). Recently, Bai

et al. (2009) proposed supervised semantic indexing, which also uses dot product as the measure of

query-document similarity. We hope the score defined this way can reflect the actual response. More

specifically, we would like to maximize the following expected alignment between this matching

score and the response

Ex,y{r(x,y) ·matchLx,Ly
(x,y)}= ExEy|x{r(x,y)x⊤LxL⊤y y}, (1)

which is in the same spirit as the technique used by Cristianini et al. (2001) for kernel learning. The

expectation in (1) can be estimated as

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

ri jx
⊤
i LxL⊤y yi j.

The learning problem hence boils down to

argmax
Lx,Ly

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

ri jx
⊤
i LxL⊤y yi j, (2)

s.t. Lx ∈Hx, Ly ∈Hy,

where Hx and Hy are hypothesis spaces for Lx and Ly respectively. Since the final matching model is

linear in terms of both x and y, Framework (2) actually learns a bilinear model for matching objects

from two spaces.

3.2 Special Cases

The matching framework in (2) defines a rather rich family of matching models, with different

choices of Hx and Hy. More specifically, we define Hx = {Lx | L⊤x Lx = Id×d} and Hy = {Ly | L⊤y Ly =
Id×d}. In other words, both Lx and Ly are confined to be matrices with orthonormal columns, then

the program in (2) becomes a natural extension to Partial Least Squares (PLS) (Rosipal and Krämer,

2006; Schreier, 2008). Like the well-known Canonical Correlation Analysis (CCA) (Hardoon et al.,

2004), PLS is also a classic statistical model for capturing the correlation between two variables. In

contrast, in (2) we allow an instance in one domain to be associated with multiple instances in the

other domain, and argument each association with a weight (response). This extension enables us to

model the complex bipartite association relations in matching tasks. To see the connection between
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(1) and traditional PLS, we re-write (2) as

argmax
Lx,Ly

1

nx

nx

∑
i=1

x⊤i LxL⊤y y′i = trace(L⊤y (
1

nx

nx

∑
i=1

y′ix
⊤
i )Lx),

s.t. L⊤x Lx = L⊤y Ly = Id×d,

where y′i = 1/n
y
i ∑

n
y
i

j=1 ri jyi j. The program is exactly the formulation of PLS as formulated by

Schreier (2008) when viewing y′i a variable.2

Interestingly, our framework in (2) also subsumes the Latent Semantic Index (LSI) (Deerwester

et al., 1990) used in information retrieval. Specifically, suppose that X represents document space

and Y represents term space. Response r represents the tf-idf weight of a term y in a document

x. Let x and y be the indicator vectors of a document and a term, that is, there is only non-zero

element one in x and y at the location indexing the corresponding document or term. The objective

function in (2) becomes trace
(

L⊤y (∑
nx

i=1 ∑
n

y
i

j=1 ri jyi jx
⊤
i )Lx

)

after ignoring nx and n
y
i , which is exactly

the objective for the SVD in LSI assuming the same orthonormal Hx and Hy defined for PLS.

The orthonormal constraints in PLS requires SVD of large matrices (Schreier, 2008), rendering

it impractical for web scale applications (e.g., millions of objects with millions of features in basic

settings). In next section we will consider other choices of Hx and Hy for more scalable alternatives.

4. Regularized Mapping to Latent Structures

Heading towards a more scalable matching model, we drop the orthonormal constraints in PLS, and

replace them with ℓ1 norm and ℓ2 norm based constraints on Lx and Ly. More specifically, we define

the following hypothesis spaces

Hx = {Lx| |lxu| 6 λx,‖lxu‖ 6 θx,u = 1, . . . ,dx},
Hy = {Ly| |lyv| 6 λy,‖lyv‖ 6 θy,v = 1, . . . ,dy},

where | · | and ‖ · ‖ are respectively the ℓ1-norm and ℓ2-norm, lxu and lyv are respectively the uth and

vth row of Lx and Ly, {λx,θx,λy,θy} are parameters. Here the ℓ1-norm based constraints will induce

row-wise sparsity in Lx and Ly. The ℓ2-norm on rows, in addition to posing further regularization,

avoids degenerative solutions (see Appendix A for details). The row-wise sparsity in Lx and Ly in

turn yields sparse images in L with sparse x and y. Indeed, for any x = [x(1) . . . x(dx)]⊤, its image

in L is L⊤x x = ∑
dx

u=1 x(u)lxu. When both x and lxu are sparse, L⊤x x is the sum of a few sparse vectors,

and therefore likely to be sparse itself. A similar scenario holds true for y. In web search, it is

usually the case that both x and y are extremely sparse. Sparse mapping matrices and sparse images

in latent structures will mitigate the memory pressure and enhance efficiency in both training and

testing. With Hx and Hy defined above, we have the following program:

argmax
Lx,Ly

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

ri jx
⊤
i LxL⊤y yi j, (3)

s.t. |lxu| 6 λx, ‖lxu‖ 6 θx, |lyv| 6 λy, ‖lyv‖ 6 θy, 1 6 u 6 dx, 1 6 v 6 dy.

The matching model defined in (3) is called Regularized Mapping to Latent Structures (RMLS).

2. We can assume that x and y′ are centered.
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4.1 Optimization

In practice, we instead solve the following penalized variant of (3) for easier optimization

argmin
Lx,Ly

− 1

nx

nx

∑
i=1

n
y
i

∑
j=1

1

n
y
i

ri jx
⊤
i LxL⊤y yi j +β

dx

∑
u=1

|lxu|+ γ
dy

∑
v=1

|lyv|, (4)

s.t. ‖lxu‖ 6 θx,‖lyv‖ 6 θy, 1 6 u 6 dx,1 6 v 6 dy,

where β > 0 and γ > 0 control the trade-off between the objective and the penalty. We employ the

coordinate descent technique to solve problem (4). Since the objective in (4) is not convex, there is

no guarantee for convergence to a global minimum.

Specifically, for a fixed Ly, the objective function of problem (4) can be re-written as

dx

∑
u=1

(

−(
nx

∑
i=1

n
y
i

∑
j=1

1

nxn
y
i

x
(u)
i ri jL

⊤
y yi j)

⊤lxu +β|lxu|
)

.

Representing the d-dimensional ∑nx

i=1 ∑
n

y
i

j=1
1

nxn
y
i

x
(u)
i ri jL

⊤
y yi j as ωu = [ω

(1)
u ,ω

(2)
u , . . . ,ω

(d)
u ]⊤, the opti-

mal lxu is given by

l
(z)
xu

∗
=Cu ·

(

max(|ω(z)
u |−β,0)sign(ω

(z)
u )
)

, 1 6 z 6 d, (5)

where l
(z)
xu represents the zth element of lxu. sign(·) represents the sign function. Cu is a constant that

makes ‖l∗xu‖= θx if there are nonzero elements in l∗xu, otherwise Cu = 0.

Similarly, for a fixed Lx, the objective function of problem (4) can be re-written as

dy

∑
v=1

(

−(
nx

∑
i=1

n
y
i

∑
j=1

1

nxn
y
i

y
(v)
i j ri jL

⊤
x xi)

⊤lyv + γ|lyv|
)

.

Writing ∑nx

i=1 ∑
n

y
i

j=1
1

nxn
y
i

y
(v)
i j ri jL

⊤
x xi as ηv=[η

(1)
v , . . . ,η

(d)
v ]⊤, the optimal lyv is given by

l
(z)
yv

∗
=Cv ·

(

max(|η(z)
v |− γ,0)sign(η

(z)
v )
)

, 1 6 z 6 d, (6)

where l
(z)
yv represents the zth element of lyv. Cv is a constant that makes ||l∗yv|| = θy if there are

nonzero elements in l∗yv, otherwise Cv = 0. Note that ∑nx

i=1 ∑
n

y
i

j=1
1

nxn
y
i

x
(u)
i ri jL

⊤
y yi j = L⊤y wxu, where

wxu = ∑nx

i=1 ∑
n

y
i

j=1
1

nxn
y
i

x(u)ri jyi j does not rely on the update of Lx and Ly and can be pre-calculated to

save time. Similarly we pre-calculate wyv = ∑nx

i=1 ∑
n

y
i

j=1
1

nxn
y
i

y
(v)
i j ri jxi.

The preprocessing is described in Algorithm 1, whose time complexity is O(dxNxñycy+dyNyñxcx),
where Nx stands for the average number of nonzeros in all x samples per dimension, Ny is the av-

erage number of nonzeros in all y samples per dimension, ñx is the average number of related x

samples per y, ñy is the mean of n
y
i , cx is the average number of nonzeros in each x sample, and cy is

the average number of nonzeros in each y sample.
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Algorithm 1 Preprocessing

1: Input: S = {(xi,yi j,ri j)}, 1 6 i 6 nx, and 1 6 j 6 n
y
i .

2: for u = 1 : dx

wxu← 0

for v = 1 : dy

wyv← 0

3: for u = 1 : dx, i = 1 : nx, j = 1 : n
y
i

wxu← wxu +
1

nxn
y
i

x
(u)
i ri jyi j

4: for v = 1 : dy, i = 1 : nx, j = 1 : n
y
i

wyv← wyv +
1

nxn
y
i

y
(v)
i j ri jxi

5: Output: {wxu}dx

u=1, {wyv}dy

v=1.

Algorithm 2 RMLS

1: Input: {wxu}dx

u=1, {wyv}dy

v=1, d, β, γ, θx, θy.

2: Initialization: randomly set Lx and Ly as L0
x and L0

y , t← 0.

3: While not converged and t 6 T

for u = 1 : dx

calculate ωu by Lt
y
⊤

wxu.

calculate lxu
∗ using Equation (5).

update Lt+1
x .

for v = 1 : dy

calculate ηv by Lt+1
x

⊤
wyv.

calculate lyv
∗ using Equation (6).

update Lt+1
y , t← t +1

4: Output: Lt
x and Lt

y.

After preprocessing, we take {wxu}dx

i=1 and {wyv}dy

i=1 as input and iteratively optimize Lx and Ly,

as described in Algorithm 2. Suppose that each wxu has on average Wx nonzeros and each wyv has

on average Wy nonzeros, then the average time complexity of Algorithm 2 is O(dxWxd +dyWyd).

In web search, it is usually the case that queries (x here) and documents (y here) are of high

dimension (e.g., > 106) but extremely sparse. In other words, both cx and cy are small despite large

dx and dy. Moreover, it is quite common that for each x, there are only a few y that have response

with it and vice versa, rendering quite small ñy and ñx. This situation is easy to understand in the

context of web search, since for each query only a small number of documents are retrieved and

viewed, and each document can only be retrieved with a few queries and get viewed. Finally, we

observed that in practice, Nx and Ny are also small. For example, in web search, with the features

extracted from the content of queries and documents, each word only relates to a few queries and

documents. In Algorithm 2, when input vectors are sparse, {wxu}dx

u=1 and {wyv}dy

v=1 are also sparse,

which makes Wx and Wy small. In summary, under sparse input as we often see in web search,

RMLS can be implemented fairly efficiently.
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4.2 Parallelization

The learning process of RMLS is still quite expensive for web scale data due to high dimensionality

of x and y. Parallelization can greatly improve the speed of learning in RMLS, making it scalable

enough for massive data sets.

The key in parallelizing Algorithm 1 and Algorithm 2 is that the calculation of different param-

eters can be executed concurrently. In Algorithm 1 there is no dependency among the calculation of

different wxu and wyv, therefore, they can be calculated by multiple processors or multiple computers

simultaneously. Similar thing can be said in the update of Lx and Ly in Algorithm 2, since differ-

ent rows are updated independently. We implement a multicore version for both Algorithm 1 and

Algorithm 2. Specifically, suppose that we have K processors. we randomly partition {1,2, . . . ,dx}
and {1,2, . . . ,dy} into K subsets. In Algorithm 1, different processors share S and calculate {wxu}
and {wyv} with indices in their own partition simultaneously. In Algorithm 2, when updating Lx,

different processors share the same input and Ly. Rows of Lx with indices in different partitions are

updated simultaneously. The same parallelization strategy is used when updating Ly.

5. Generalization Analysis

We conduct generalization analysis for matching framework (2) in this section. We first give a

generalization bound for the framework, which relies on the complexity of hypothesis spaces Hx

and Hy. After that, we analyze the complexity of Hx and Hy for both RMLS and PLS, and give their

specific bounds. The proofs of the theorems are given in Appendix B.

We formally define D(S) as the gap between the expected objective and the empirical objective

over all Lx and Ly

D(S) � sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

ri jx
⊤
i LxL⊤y yi j−Ex,y

(

r(x,y)x⊤LxL⊤y y
)

|,

and bound it. With this bound, given a solution (L̂x, L̂y), we can estimate its performance on unseen

data (i.e., Ex,y

(

r(x,y)x⊤L̂xL̂⊤y y
)

) based on its performance on observed samples. For notational

simplicity, we define fLx,Ly
(x,y) � r(x,y)x⊤LxL⊤y y, and further assume

‖x‖ 6 1, ‖y‖ 6 1, r(x,y) > 0, supx,y r(x,y) 6 R.

To characterize the sparsity of inputs, we suppose that the numbers of nonzeros in x and y are

bounded by mx and my.

Under Assumption 1, we divide D(S) into two parts:

1. supLx,Ly
| 1

nx ∑nx

i=1

(

1
n

y
i

∑
n

y
i

j=1 fLx,Ly
(xi,yi j)−Ey|{xi} fLx,Ly

(xi,y)
)

|, denoted as D1(S),

2. supLx,Ly
| 1

nx
∑nx

i=1Ey|{xi} fLx,Ly
(xi,y)−Ex,y fLx,Ly

(x,y)|, denoted as D2({xi}nx

i=1).

Clearly D(S) 6 D1(S)+D2({xi}nx

i=1), thus we separately bound D1(S) and D2({xi}nx

i=1), and finally

obtain the bound for D(S).

We first bound D1(S). Suppose supx,y,Lx,Ly
‖L⊤x x‖‖L⊤y y‖ 6 B, and supLx,Ly

‖vec(LxL⊤y )‖ 6 C,

where B and C are constants and vec(·) is the vectorization of a matrix. We have
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Theorem 1 Given an arbitrary small positive number δ, with probability at least 1−δ, the follow-

ing inequality holds:

D1(S) 6
2CR√

nxny
+

RB

√

2log 1
δ√

nxny
,

where ny represents the harmonic mean of {ny
i }nx

i=1.

Using similar techniques we have

Theorem 2 Given an arbitrary small positive number δ, with probability at least 1−δ, the follow-

ing inequality holds:

D2({xi}nx

i=1) 6
2CR√

nx
+

RB

√

2log 1
δ√

nx
.

Combining Theorem 1 and Theorem 2, we are able to bound D(S):

Theorem 3 Given an arbitrary small positive number δ, with probability at least 1− 2δ, the fol-

lowing inequality holds:

D(S) 6 (2CR+RB

√

2log
1

δ
)(

1√
nxny

+
1√
nx
). (7)

Equation (7) gives a general generalization bound for framework (2). Since ny = nx

∑nx

i=1 1/n
y
i

, the bound

tells us that to make the gap between the empirical objective and the expected objective small

enough, we not only need large nx, but also need large n
y
i for each xi, which is consistent with our

intuition. The two constants B and C are dependent on the hypothesis spaces Hx and Hy. Below we

will analyze B and C for PLS and RMLS, and give their specific bounds based on (7).

The following two theorems give B and C for PLS and RMLS, and give their specific bounds:

Theorem 4 Suppose that Hx = {Lx | L⊤x Lx = Id×d} and Hy = {Ly | L⊤y Ly = Id×d}, then B = 1 and

C =
√

d. Thus, the generalization bound for PLS is given by

D(S) 6 (2
√

dR+R

√

2log
1

δ
)(

1√
nxny

+
1√
nx
).

Theorem 5 Suppose that Hx = {Lx | |lxu|6 λx, ||lxu||6 θx,16 u6 dx} and Hy = {Ly | |lyv|6 λy, ||lyv||6
θy,1 6 v 6 dy}. If we suppose that the numbers of nonzero elements in x and y are respectively

bounded by mx and my, then B =
√

mxmy min(dλxλy,θxθy) and C =
√

dxdy min(λxλy,θxθy). Thus,

the generalization bound for RMLS is given by

D(S) 6 (
1√
nxny

+
1√
nx
)× (2

√

dxdy min(λxλy,θxθy)R+
√

mxmy min(dλxλy,θxθy)R

√

2log
1

δ
).
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Figure 1: Click-through bipartite graph with metadata on nodes, representing queries and docu-

ments in feature spaces and their associations.

6. Experiment

We applied both RMLS and PLS to relevance ranking in web search, where matching models are

used to predict relevance. Specifically, we suppose that we have a click-through bipartite with

vertices representing queries and documents. The edges between query vertices and document

vertices are weighted by number of user click. Besides this, we assume that there exists metadata

on the vertices of the graph. The metadata represents features of queries and documents. The

features may stand for the content of queries and documents and the clicks of queries and documents

on the bipartite graph (Baeza-Yates and Tiberi, 2007), as seen below. Queries and documents are

represented as feature vectors in the query space and the document space, respectively. Figure 1

illustrates the relationships.

We implemented the matching framework (2) and its associated RMLS and PLS using the click-

through bipartite with metadata. X and Y are the query space and the document space respectively.

Given a query x and a document y, we treated user click number as the response r. In this case,

we actually leveraged both user clicks and features of queries and documents to perform matching.

We conducted experiments on a small data set and a large data set with millions of queries and

documents.

6.1 Experiment Setup

We collected 1) one week of click-through data and 2) half a year of click-through data from a

commercial web search engine. After filtering out noise, there are 94,022 queries and 111,631

documents in the one week data set, and 6,372,254 queries and 4,599,849 documents in the half

year data set. We extracted features from two sources, namely word and clicks. For the word

feature, we represented queries and documents as tf-idf vectors (Salton and McGill, 1986) in a

word space, where words are extracted from queries, URLs and the titles of documents. There

are 101,904 and 271,561 unique words in one week data and half year data respectively. For

the click feature, we followed (Baeza-Yates and Tiberi, 2007) and took the number of clicks of

documents as a feature of queries, and the number of clicks of queries as a feature of documents.
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Finally, we concatenated the features from the two sources to create long but extremely sparse

feature vectors for both queries and documents. Note that query space and document space have

different dimensions and characteristics, and should be treated as heterogeneous domains. Table 1

gives the statistics on the experiment data. Note that the notations in the table are the same as in

Section 4.

6.1.1 BASELINE METHODS

We employed three different kinds of baseline methods:

• Individual feature based model and graph based model: We employed BM25 (Robert-

son et al., 1994) as a representative of feature based relevance models, and LSI (Deerwester

et al., 1990) and random walk on click-through bipartite graph (Craswell and Szummer, 2007)

(“RW” for short) as representatives of graph based relevance models. Particularly, we imple-

mented two versions of LSI in this paper, one on a document-term matrix, denoted as LSIdt,

the other one on a query-document matrix with each element representing the click number,

denoted as LSIqd.

• Combination of feature based model and graph based model: We used models which lin-

early combine LSIqd and random walk with BM25, denoted as LSIqd+BM25 and RW+BM25,

respectively.

• Other existing models: Besides the heuristic combination models, we also employed the

bilingual topic model (BLTM) proposed by Gao et al. (2011) and supervised semantic index-

ing (SSI) proposed by Bai et al. (2009) as baseline methods. BLTM is the best performing

model in Gao et al. (2011), and it can leverage both the user clicks and the content of queries

and documents. SSI employs a hinge loss function to model pairwise preference between

objects. It learns a large margin perceptron to map queries and documents into a latent space

and measures their similarity in the space. To implement SSI, we additionally collected im-

pression data from the search log. Besides click numbers, the data also contains positions

of documents in ranking lists of search engine. We followed the rules proposed by Joachims

(2002) to generate preference pairs.

• Model proposed for collaborative filtering: Besides the models in information retrieval, we

also employed a state of the art model in collaborative filtering as a baseline method3 (Chen

et al., 2012). The model, named SVDFeature, can leverage the same features as RMLS and

PLS.

We obtained relevance data consisting of judged query-document pairs from the search engine

in a different time period from the click-through data. There are five levels of judgments, including

“Perfect”, “Excellent”, “Good”, “Fair”, and “Bad”. For one week data, we obtained 4,445 judged

queries and each query has on average 11.34 judged documents. For half year data, more judged

data was collected. There are 57,514 judged queries and each query has on average 13.84 judged

documents. We randomly split each judged data set and used half of them for tuning model param-

eters and the other half for model evaluation. In summary, for both data sets, we learned models on

the whole click-through data, tuned model parameters on the validation set of relevance data and

evaluated model performances on the held-out test set.

3. The model won the 1st place in track 1 of KDD-Cup 2012.
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dx dy cx cy ñy ñx Nx Ny

one week 2.1 ·105 2.0 ·105 4.0 5.9 1.74 1.46 1.7 3.4

half year 4.9 ·106 6.6 ·106 5.5 8.6 2.92 4.04 7.2 5.9

Table 1: Statistics on query and document features

To evaluate the performances of different methods, we employed Normalized Discounted Cu-

mulative Gain (NDCG) (Jarvelin and Kekalainen, 2000) at positions of 1, 3, and 5 as evaluation

measures.

6.2 Parameter Setting

We set the parameters for the methods in the following way. In BM25, the default setting was

used. There are two parameters in random walk: the self-transition probability and the number

of transition steps. Following the conclusion from Craswell and Szummer (2007), we fixed the

self-transition probability as 0.9 and chose the number of transition steps from {1, . . . ,10} on the

validation set. We found that random walk reaches a “stable” state with just a few steps. In our

experiments, after five steps we saw no improvement on the validation data in terms of evaluation

measures. Therefore, we set five as the number of transition steps of random walk.

In LSI, SVDFeature, BLTM, SSI, PLS and RMLS, one important parameter is the dimension-

ality of latent space. We set the parameter in the range of {100,200, . . . ,1000}. We found that

the performance of both PLS and RMLS on the validation data improves with dimensionality. On

the other hand, a large dimensionality means more parameters to store in memory (d× (dx + dy))
and more training time for each iteration. Therefore, we finally chose 1000 as the dimensionality

of latent space for PLS and RMLS. For other baseline methods except SSI, a similar phenomenon

was observed. For SSI, we found that its performance on the validation data is not sensitive to the

dimensionality of latent space.

Besides dimensionality of latent space, parameters for regularization items (e.g., θx, θy, β, and γ

in Equation (4), learning rates in SSI and SVDFeature, and number of iterations may also affect the

final performance and therefore need tuning. Again, we tuned these parameters on the validation

data one by one. Particularly, we found that the performance of RMLS is not sensitive to parameters

for ℓ2 norm (i.e., θx, θy). In addition, we observed that RMLS can quickly reach a good performance

after a few iterations (less than 10 loops), and the early stopping also led to good generalization on

the test data.

In LSIqd+BM25 and RW+BM25, the combination weights are also parameters. We tuned the

combination weights within {0.1,0.2, . . . ,0.9} on the validation data.

6.3 Results on One Week Data

We conducted experiments on a workstation with 24 AMD Opteron 6172 processors and 96 GB

RAM. We first compared the performance of different methods, with results summarized in Table

2. We can see that RMLS performs comparably well with PLS, and both of them significantly out-

perform all other baselines (p < 0.05 from t-test). Among the baseline methods, the performance

of SSI is rather poor. We analyzed the data and found that although pairwise preference can allevi-

ate rank bias, it also misses some important information. For example, we observed that 49.1% of

40,676 pairs that have judgments in our labeled data violate the rules proposed by Joachims (2002).
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NDCG@1 NDCG@3 NDCG@5

RMLS 0.686 0.732 0.729

PLS 0.676 0.728 0.736

SVDFeature 0.663 0.720 0.727

BLTM 0.657 0.702 0.701

SSI 0.538 0.621 0.629

RW 0.655 0.704 0.704

RW+BM25 0.671 0.718 0.716

LSIqd 0.588 0.665 0.676

LSIqd+BM25 0.649 0.705 0.706

LSIdt 0.616 0.675 0.680

BM25 0.637 0.690 0.690

Table 2: Relevance ranking result on one week data

Documents ranked higher in these pairs have more click-through rates4 and better or equally good

judgments than documents ranked lower. Those query document associations will be well repre-

sented in either PLS or RMLS.

We then compared RMLS with PLS on efficiency. In PLS, the linear mappings are learned

through SVD. We implemented an SVD solver using power method (Wegelin, 2000) with C++, and

further optimized the data structure for our task. This SVD implementation can handle large data

sets on which state-of-the-art SVD tools like SVDLIBC5 fail. Since the efficiency of algorithms

is influenced by implementation strategies, for example, different numbers of iterations or termi-

nation criteria, to make a fair comparison, we only report the time cost in the learning of the best

performing models. RMLS significantly improves the efficiency of PLS. On a single processor, it

takes RMLS 1,380 seconds to train the model, while the training of PLS needs 945,382 seconds.

The reason is that PLS requires SVD and has a complexity of at least O(dcdxdy + d2 max(dx,dy)),
where c represents the density of the matrix for SVD. Even with a small c, the high dimensionality

of input space (i.e., large dx and dy) and the quadratic growth with respect to d still make SVD quite

expensive. For RMLS, Wx and Wy are quite small with a sparse input (Wx=24.82 Wy= 27.05), and

hence the time complexity is nearly linear to d ·max(dx,dy). Therefore, RMLS is significantly more

efficient than PLS with high dimensional but sparse inputs.

Finally, we examined the time cost of parallelized RMLS on multiple processors, as summarized

by Figure 2. Clearly the running time decreases with the number of threads. With 20 threads, RMLS

only takes 277 seconds to achieve a comparable performance with PLS.

6.4 Results on Half Year Data

We further tested the performance of RMLS and PLS on a half year data set with millions of queries

and documents. On such large scale, SVD-based methods and random walk become infeasible (e.g.,

taking months to run). SSI is also infeasible because of the huge number of pairs. We therefore

implemented RMLS with full features and PLS with only word features, and compared them with

4. Click-through rate = number of clicks / number of impressions.

5. SVDLIBC can be found at http://tedlab.mit.edu/˜dr/SVDLIBC/.
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Figure 2: Time cost trend of RMLS under multiple processors.

NDCG@1 NDCG@3 NDCG@5

RMLS 0.742 0.767 0.776

PLS (word) 0.638 0.666 0.677

SVDFeature 0.742 0.746 0.749

BLTM 0.684 0.708 0.717

BM25 0.643 0.663 0.670

Table 3: Relevance ranking result on half year data

BM25, BLTM, and SVDFeature.6 With only word features (dx = dy = 271,561), PLS is slow but

still feasible.

As shown in Table 3, RMLS outperforms all the baselines (p < 0.01 from t-test). We hypoth-

esize that PLS with full features can perform comparably with RMLS, but the high computation

complexity of PLS prevents us from testing it. For RMLS, it takes 20,523 seconds to achieve the

result using 20 threads. For PLS, although it only uses word features, it takes 1,121,440 seconds

to finish learning. In other words, parallelized RMLS can be used to tackle web search problem of

real-world scale.

6.5 Discussion

In this section, we investigate the effect of matching models as features in a state of the art learning

to rank algorithm and performance of matching models across queries with different numbers of

click.

6.5.1 MATCHING MODELS AS FEATURES IN A LEARNING TO RANK ALGORITHM

Results in Table 2 and Table 3 demonstrate the efficacy of RMLS and PLS as individual relevance

models. In modern web search, relevance models usually act as features in a learning to rank system.

Therefore, a natural question is whether RMLS or PLS can enhance the performance of learn to rank

algorithms as an additional feature. To answer this question, we employed RankLib7 and trained a

gradient boosted tree (MART, Friedman, 2001) with the validation data. We conducted experiments

in the following three steps: first, we trained a ranker with all baseline methods as features. We

denoted it as MART-Baseline. Then, we included PLS and RMLS respectively as an additional

6. SVDFeature is actually not based on SVD implementation.

7. RankLib can be found at http://people.cs.umass.edu/˜vdang/ranklib.html.
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NDCG@1 NDCG@3 NDCG@5

MART-Baseline 0.661 0.737 0.779

MART-PLS 0.683 0.751 0.792

MART-RMLS 0.681 0.750 0.789

MART-All 0.689 0.757 0.797

Table 4: Performance of gradient boosted tree (MART) on one week data

NDCG@1 NDCG@3 NDCG@5

MART-Baseline 0.708 0.760 0.791

MART-PLS 0.706 0.760 0.792

MART-RMLS 0.757 0.799 0.827

MART-All 0.756 0.798 0.826

Table 5: Performance of gradient boosted tree (MART) on half year data

feature and denoted the new rankers as MART-PLS and MART-RMLS, respectively. Finally, we

trained a ranker with all models as features and denoted it as MART-All. Table 4 and Table 5

present the evaluation results.

From Table 4, we conclude that 1) RMLS and PLS significantly improve the performance of

MART with baseline methods as features, which demonstrates the efficacy of the proposed frame-

work in relevance ranking; 2) RMLS can be a good alternative to PLS in practice, because MART-

PLS and MART-RMLS are comparable in ranking performance but RMLS is more efficient and

scalable; 3) There is overlap between the effect of RMLS and PLS in learning to rank, because

when including all models as features, the performance of ranker is only slightly improved. Results

in Table 5 further demonstrate the advantage of RMLS in relevance ranking. PLS is not capable

of leveraging all features of large scale data, and therefore fails to improve the performance of

MART. On the other hand, RMLS successfully leverages both word features and click features, and

significantly improves the ranking performance of MART.

6.5.2 EVALUATION ACROSS QUERIES WITH DIFFERENT NUMBERS OF CLICKS

In Framework (2), response r is treated as a weight for each object pair (x,y). The framework, when

applied to web search, weights each query-document pair with the number of clicks between them.

Usually, number of clicks has a large variance among queries, from a few to tens of thousands.

An interesting question is therefore how different matching models perform across queries with

different numbers of click. To answer this question, we divided queries into different bins based on

the total numbers of clicks associated with them over documents. We took four levels: totalclick 6

10, 10 < totalclick 6 100, 100 < totalclick 6 1000, and totalclick > 1000. We separately evaluated

matching models on each level. Table 6 and Table 7 show the evaluation results, where @1, @3,

and @5 mean NDCG@1, NDCG@3, and NDCG@5, respectively.

From Table 6, we can see that RMLS and PLS beat other baseline methods on queries with

moderate and large number of clicks, but lose to RW and RW+BM25 when queries only have rel-

atively few clicks (less than 100). RMLS and PLS use the absolute click number as a weight for

each query-document pair. Therefore, in training, head queries may overwhelm those tail queries.

We try to mitigate this effect by taking some simple transformations (e.g., logarithm) on click num-
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totalclick 6 10 10 < totalclick 6 100 100 < totalclick 6 1000 totalclick > 1000

# queries = 230 #queries = 772 # queries = 757 #queries = 464

@1 @3 @5 @1 @3 @5 @1 @3 @5 @1 @3 @5

RMLS 0.754 0.795 0.767 0.749 0.791 0.766 0.679 0.744 0.755 0.557 0.612 0.655

PLS 0.704 0.776 0.764 0.706 0.769 0.748 0.650 0.727 0.754 0.655 0.661 0.695

SVDFeature 0.648 0.732 0.707 0.684 0.742 0.727 0.647 0.723 0.750 0.576 0.632 0.669

BLTM 0.758 0.787 0.755 0.750 0.795 0.766 0.636 0.700 0.726 0.485 0.557 0.603

SSI 0.633 0.730 0.700 0.607 0.696 0.673 0.523 0.616 0.657 0.403 0.491 0.540

RW 0.769 0.793 0.760 0.773 0.809 0.780 0.622 0.709 0.740 0.458 0.527 0.582

RW+BM25 0.773 0.786 0.758 0.770 0.815 0.787 0.654 0.726 0.750 0.485 0.554 0.601

LSIqd 0.631 0.717 0.687 0.634 0.709 0.696 0.584 0.676 0.703 0.496 0.573 0.621

LSIqd+BM25 0.696 0.745 0.719 0.726 0.777 0.759 0.646 0.716 0.736 0.500 0.576 0.619

LSIdt 0.685 0.745 0.730 0.688 0.752 0.727 0.608 0.676 0.705 0.473 0.549 0.596

BM25 0.698 0.746 0.724 0.719 0.772 0.748 0.641 0.701 0.722 0.463 0.544 0.592

Table 6: Evaluation on different query bins on one week data

totalclick 6 10 10 < totalclick 6 100 100 < totalclick 6 1000 totalclick > 1000

# queries = 704 # queries = 5260 # queries = 8980 # queries = 13813

@1 @3 @5 @1 @3 @5 @1 @3 @5 @1 @3 @5

RMLS 0.804 0.801 0.792 0.785 0.794 0.796 0.780 0.795 0.797 0.698 0.742 0.760

PLS (word) 0.723 0.720 0.708 0.681 0.697 0.703 0.668 0.691 0.697 0.599 0.642 0.660

SVDFeature 0.728 0.730 0.721 0.738 0.734 0.734 0.766 0.765 0.761 0.728 0.740 0.748

BLTM 0.783 0.775 0.763 0.750 0.757 0.760 0.725 0.745 0.749 0.626 0.669 0.688

BM25 0.747 0.739 0.717 0.710 0.713 0.712 0.690 0.703 0.704 0.582 0.622 0.641

Table 7: Evaluation on different query bins on half year data

bers, but find that simple transformations not only fail to deal with tail query issues but also hurt

the performance of RMLS and PLS on head queries. In contrast, BLTM and SSI perform better on

tail queries than themselves on head queries. The phenomenon reminds us that introducing large

margin into Framework (2) could be a potential approach to solve the problem of RMLS, although

after doing so, scalability may become a more serious issue, which we leave to our future work.

SVDFeature suffers from head query effect more seriously than RMLS and PLS, which may

stem from its directly fitting similarity function with absolute click numbers.

In Table 7, due to the scalability issue, results of some baseline methods are not available. In

spite of this, we can still see that SVDFeature performs consistently with itself on one week data,

and we can also guess that the comparisons of RMLS with RW and RW+BM25 may follow the

same trends as those on one week data.

7. Conclusion

We have proposed a framework for learning to match heterogeneous data via shared latent structures,

and studied its generalization ability under a hierarchical sampling assumption for web search. The

framework subsumes Partial Least Squares (PLS) as a special case, and enables us to devise a more

scalable algorithm called Regularized Mapping to Latent Structures (RMLS) as another special

case. We applied both PLS and RMLS to web search, leveraging a click-through bipartite graph

with metadata representing features of queries and documents to learn relevance models. Results

on a small data set and a large data set with millions of queries and documents show the promising

performance of PLS and RMLS, and particularly demonstrate the advantage of RMLS on scalability.
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Appendix A. Degenerative Solution With ℓ1 Constraints Only

Suppose that all the input vectors have only non-negative elements (which is natural in web search),

we consider the following learning problem:

argmax
Lx,Ly

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

ri jx
⊤
i LxL⊤y yi j, (8)

s.t. |lxu| 6 λx, 1 6 u 6 dx,

|lyv| 6 λy, 1 6 v 6 dy.

We assert that the optimization problem (8) has a global optimum, and the global optimum can be

obtained by letting Lx = λxexl⊤ and Ly = λyeyl⊤, where l is a d dimensional vector satisfying |l|= 1

and ‖l‖ = 1, ex is a dx dimensional vector with all elements ones and ey is a dy dimensional vector

with all elements ones. To demonstrate this, first we prove that the objective function (8) can be

upper bounded under ℓ1 constraints:

Proof The objective of problem (8) can be re-written as

1
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If we define auv = ∑nx

i=1 ∑
n

y
i

j=1

ri j

nxn
y
i

x
(u)
i y

(v)
i j , the objective of problem (8) can be re-written as

dx

∑
u=1

dy

∑
v=1

auvl⊤xulyv.

Since the input vectors are non-negative, auv > 0, ∀u,v. Thus, we have

dx

∑
u=1

dy

∑
v=1

auvl⊤xulyv 6

dx

∑
u=1

dy

∑
v=1

auv

(

d

∑
k=1

|l(k)xu ||l(k)yv |
)

6

dx

∑
u=1
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∑
v=1

auv

(

max
16k6d

(|l(k)xu |)
d

∑
k=1

|l(k)yv |
)

.

Since |lxu| 6 λx and |lyv| 6 λy, we know that max16k6d(|l(k)xu |) 6 λx, and thus we have

dx

∑
u=1

dy

∑
v=1

auv

(

max
16k6d

(|l(k)xu |)
d

∑
k=1

|l(k)yv |
)

6

dx

∑
u=1

dy

∑
v=1

auvλxλy.

With the existence of the upper bound, we can see that if Lx = λxexl⊤ and Ly = λyeyl⊤, the value of

the objective (8) is

dx

∑
u=1

dy

∑
v=1

auvl⊤xulyv =
dx

∑
u=1

dy

∑
v=1

auvλxλy‖l‖2 =
dx

∑
u=1

dy

∑
v=1

auvλxλy.
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Thus, the optimization problem (8) reaches its global optimum when Lx = λxexl⊤ and Ly = λyeyl⊤,

which is an undesired degenerative solution.

Appendix B. Proofs of Theorems

We give the proofs of the theorems in Section 5.

B.1 Proof of Theorem 1

Theorem 1 Given an arbitrary small positive number δ, with probability at least 1−δ, the follow-

ing inequality holds:

D1(S) 6
2CR√

nxny
+

RB

√

2log 1
δ√

nxny
,

where ny represents the harmonic mean of {ny
i }nx

i=1.

To prove this theorem, we need two lemmas:

Lemma 1 Given ε > 0, the following inequality holds:

P
(

D1(S)−E{yi j}|{xi}D1(S) > ε|{xi}
)

6 exp

(

−ε2nxny

2R2B2

)

.

Proof Given {xi}nx

i=1, we re-write D1(S) as D1({yi j}|{xi}). Since supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 B and

r 6 R, ∀ u,v, we have

|D1({yi j}|{xi})−D1

(

({yi j}− yuv)
⋃

y′uv|{xi}
)

| 6 2RB

nxn
y
u

.

Given {xi}nx

i=1, {yi j} are independent. By McDiarmid inequality (Bartlett and Mendelson, 2002),

we know

P
(

D1(S)−E{yi j}|{xi}D1(S) > ε|{xi}
)

6 exp






− 2ε2

∑nx

i=1 ∑
n

y
i

j=1
4R2B2

(nxn
y
i )

2







= exp



− ε2

2R2B2 ∑nx

i=1
1

(nx)2
n

y
i





= exp

(

− ε2 (nx)2

2R2B2 ∑nx

i=1
1
n

y
i

)

= exp

(

−ε2nxny

2R2B2

)

.

Lemma 2

E{yi j}|{xi}D1(S) 6
2CR√

nxny
.
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Proof Define r(x,y)x⊤LxL⊤y y as fLx,Ly
(x,y). We have

E{yi j}|{xi}D1(S) = E{yi j}|{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

fLx,Ly
(xi,yi j)−

1

nx

nx

∑
i=1

Ey|{xi} fLx,Ly
(xi,y)|

= E{yi j}|{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

fLx,Ly
(xi,yi j)−

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

E{y′i j}|{xi} fLx,Ly
(xi,y

′
i j)|,

where {y′i j} are i.i.d. random variables with {yi j}.

E{yi j}|{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

f (xi,yi j)−
1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

E{y′i j}|{xi} f (xi,y
′
i j)|

6 E{yi j},{y′i j}|{xi} sup
Lx,Ly

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

| f (xi,yi j)− f (xi,y
′
i j)|

= E{yi j},{y′i j},{σi j}|{xi} sup
Lx,Ly

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

σi j

(

f (xi,yi j)− f (xi,y
′
i j)
)

,

where given {xi}nx

i=1, {σi j} are i.i.d. random variables with P(σi j = 1) = P(σi j =−1) = 0.5.

E{yi j,y
′
i j,σi j}|{xi} sup

Lx,Ly

nx

∑
i=1

n
y
i

∑
j=1

σi j

(

f (xi,yi j)− f (xi,y
′
i j)
)

nxn
y
i

6 2E{yi j,σi j}|{xi} sup
Lx,Ly

|
nx

∑
i=1

n
y
i

∑
j=1

σi j f (xi,yi j)

nxn
y
i

|.

Note that

σi j f (xi,yi j) = σi jr(xi,yi j)x
⊤
i LxL⊤y yi j = σi j

〈

vec(LxL⊤y ),r(xi,yi j)vec(yi j⊗ xi)
〉

,

where yi j⊗ xi represents the tensor of column vectors yi j and xi, and vec(·) is the vectorization of a

matrix. Thus, we have

sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

σi j f (xi,yi j)|

= sup
Lx,Ly

|〈vec(LxL⊤y ),
1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

σi jr(xi,yi j)vec(yi j⊗ xi)〉|

6 sup
Lx,Ly

||vec(LxL⊤y )||

√

√

√

√

1

(nx)2

nx

∑
i=1

nx

∑
j=1

1

n
y
i n

y
j

n
y
i

∑
u=1

n
y
j

∑
v=1

σiuσ jvr(xi,yiu)r(x j,y jv)〈xi,x j〉〈yiu,y jv〉.
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Since we suppose that sup
Lx,Ly

||vec(LxL⊤y )|| 6C, we have

2E{yi j},{σi j}|{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

σi j f (xi,yi j)|

6 2C

√

√

√

√

1

(nx)2

nx

∑
i=1

nx

∑
j=1

1

n
y
i n

y
j

n
y
i

∑
u=1

n
y
j

∑
v=1

E{yi j},{σi j}|{xi} (σiuσ jvr(xi,yiu)r(x j,y jv)〈xi,x j〉〈yiu,y jv〉)

= 2C

√

√

√

√

1

(nx)2

nx

∑
i=1

1
(

n
y
i

)2

n
y
i

∑
j=1

E{yi j}|{xi} (r
2(xi,yi j)〈xi,xi〉〈yi j,yi j〉)

6 2C

√

√

√

√

1

(nx)2

nx

∑
i=1

1
(

n
y
i

)2
n

y
i R2

6 2CR
1√
nxny

.

We obtain the conclusion of the lemma.

With Lemma 1 and Lemma 2, we can prove Theorem 1:

Proof By the conclusions of Lemma 1 and Lemma 2, we have

P

(

D1(S)−
2CR√

nxny
> ε

)

= E{xi}P

(

D1(S)−
2CR√

nxny
> ε|{xi}

)

6 E{xi}P
(

D1(S)−E{yi j}|{xi}D1(S) > ε|{xi}
)

6 exp

(

−ε2nxny

2R2B2

)

.

Given a small number δ > 0, by letting exp
(

− ε2nxny

2R2B2

)

= δ, we have

− ε2nxny

2R2B2
= logδ

ε2 =
2R2B2 log 1

δ

nxny

ε =
RB

√

2log 1
δ√

nxny
.

Thus, with probability at least 1−δ,

D1(S) 6
2CR√

nxny
+

RB

√

2log 1
δ√

nxny

holds true.
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B.2 Proof of Theorem 2

Theorem 2 Given an arbitrary small positive number δ, with probability at least 1−δ, the follow-

ing inequality holds:

D2({xi}nx

i=1) 6
2CR√

nx
+

RB

√

2log 1
δ√

nx
.

To prove Theorem 2, we also need two lemmas:

Lemma 3 Given ε > 0, the following inequality holds:

P
(

D2({xi}nx

i=1)−E{xi}D2({xi}nx

i=1) > ε
)

6 exp

(

− ε2nx

2R2B2

)

.

Proof Similar to the proof of Lemma 1, since supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 B and r 6 R, ∀ j, we have

|D2({xi}nx

i=1)−D2

(

({xi}nx

i=1− x j)
⋃

x′j
)

| 6 2RB

nx
.

Since {xi}nx

i=1 are i.i.d. random variables, by McDiarmid inequality (Bartlett and Mendelson, 2002),

we know

P
(

D2({xi}nx

i=1)−E{xi}D2({xi}nx

i=1) > ε
)

6 exp



− 2ε2

∑nx

i=1
4R2B2

(nx)2





= exp

(

− ε2nx

2R2B2

)

.

Lemma 4

E{xi}D2({xi}nx

i=1) 6
2CR√

nx
.

Proof Similar to the proof of Lemma 2,

E{xi}D2({xi}nx

i=1) = E{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

Ey|{xi}r(xi,y)x
⊤
i LxL⊤y y−Ex,yr(x,y)x⊤LxL⊤y y|

= E{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

Ey|{xi}r(xi,y)x
⊤
i LxL⊤y y− 1

nx

nx

∑
i=1

E{x′i}Ey|{x′i}r(x
′
i,y)x

′
i
⊤

LxL⊤y y|

6 E{xi},{x′i} sup
Lx,Ly

1

nx

nx

∑
i=1

|Ey|{xi}r(xi,y)x
⊤
i LxL⊤y y−Ey|{x′i}r(x

′
i,y)x

′
i
⊤

LxL⊤y y|

= E{xi},{x′i},{σi} sup
Lx,Ly

1

nx

nx

∑
i=1

σi

(

Ey|{xi}r(xi,y)x
⊤
i LxL⊤y y−Ey|{x′i}r(x

′
i,y)x

′
i
⊤

LxL⊤y y
)

,
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where {x′i} are i.i.d. random variables with {xi}. {σi} are i.i.d. random variables with P(σi = 1) =
P(σi =−1) = 0.5.

E{xi},{x′i},{σi} sup
Lx,Ly

1

nx

nx

∑
i=1

σi

(

Ey|{xi}r(xi,y)x
⊤
i LxL⊤y y−Ey|{x′i}r(x

′
i,y)x

′
i
⊤

LxL⊤y y
)

6 2E{xi},{σi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

σiEy|{xi}r(xi,y)x
⊤
i LxL⊤y y|

= 2E{xi},{σi} sup
Lx,Ly

|Ey|{xi}〈vec(LxL⊤y ),
1

nx

nx

∑
i=1

σir(xi,y)vec(y⊗ xi)〉|

6 2E{xi},{σi}Ey|{xi} sup
Lx,Ly

||vec(LxL⊤y )||

√

√

√

√

1

(nx)2

nx

∑
i=1

nx

∑
j=1

σiσ jr(xi,y)r(x j,y)〈xi,x j〉〈y,y〉.

Since supLx,Ly
||vec(LxL⊤y )|| 6C,

2E{xi},{σi}Ey|{xi} sup
Lx,Ly

||vec(LxL⊤y )||

√

√

√

√

1

(nx)2

nx

∑
i=1

nx

∑
j=1

σiσ jr(xi,y)r(x j,y)〈xi,x j〉〈y,y〉

6 2C

√

√

√

√

1

(nx)2

nx

∑
i=1

nx

∑
j=1

E{xi},{σi},yσiσ jr(xi,y)r(x j,y)〈xi,x j〉〈y,y〉

6 2C

√

1

(nx)2

nx

∑
i=1

E{xi},yr2(xi,y)〈xi,xi〉〈y,y〉

6
2CR√

nx
.

We obtain the conclusion of the lemma.

With Lemma 3 and Lemma 4, we can prove Theorem 2:

Proof Combining the conclusions of Lemma 3 and Lemma 4, we have

P

(

D2({xi}nx

i=1)−
2CR√

nx
> ε

)

6 P
(

D2({xi}nx

i=1)−E{xi}D2({xi}nx

i=1) > ε
)

6 exp

(

− ε2nx

2R2B2

)

.
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Given a small number δ > 0, by letting exp
(

− ε2nx

2R2B2

)

= δ, we have

− ε2nx

2R2B2
= logδ

ε2 =
2R2B2 log 1

δ

nx

ε =
RB

√

2log 1
δ√

nx
.

Thus, with probability at least 1−δ,

D2({xi}nx

i=1) 6
2CR√

nx
+

RB

√

2log 1
δ√

nx

holds true.

B.3 Proof of Theorem 4

Theorem 4 Suppose that Hx = {Lx | L⊤x Lx = Id×d} and Hy = {Ly | L⊤y Ly = Id×d}, then B = 1 and

C =
√

d. Thus, the generalization bound for PLS is given by

D(S) 6 (2
√

dR+R

√

2log
1

δ
)(

1√
nxny

+
1√
nx
).

Proof First, we analyze B. Remember that B is defined by supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 B. Suppose

that Lx =
[

l1
x , l

2
x , . . . , l

d
x

]

and Ly =
[

l1
y , l

2
y , . . . , l

d
y

]

, where {lk
x}d

k=1 and {lk
y}d

k=1 represent the columns

of Lx and Ly respectively. Note that

||L⊤x x||2 =
d

∑
k=1

(

x⊤lk
x

)2

, ||L⊤y y||2 =
d

∑
k=1

(

y⊤lk
y

)2

.

Since L⊤x Lx = Id×d and L⊤y Ly = Id×d , we have

||L⊤x x||2 6 ||x||2, ||L⊤y y||2 6 ||y||2.
Since ||x|| 6 1 and ||y|| 6 1, we have

sup
x,y,Lx,Ly

||L⊤x x||||L⊤y y|| 6 1.

Thus, we can choose B = 1. Next, we analyze C. C is defined by sup
Lx,Ly

||vec(LxL⊤y )|| 6C. It is easy

to see that

||vec(LxL⊤y )||2 = trace(LyL⊤x LxL⊤y ) = trace(Id×d) = d.

Thus,

sup
Lx,Ly

||vec(LxL⊤y )||=
√

d.

We can choose C as
√

d.
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B.4 Proof of Theorem 5

Theorem 5 Suppose that Hx = {Lx | |lxu| 6 λx, ||lxu|| 6 θx,1 6 u 6 dx} and Hy = {Ly | |lyv| 6
λy, ||lyv||6 θy,16 v 6 dy}. If we suppose that the numbers of nonzero elements in x and y are respec-

tively bounded by mx and my, then B =
√

mxmy min(dλxλy,θxθy) and C =
√

dxdy min(λxλy,θxθy).
Thus, the generalization bound for RMLS is given by

D(S) 6

(

2
√

dxdy min(λxλy,θxθy)R+
√

mxmy min(dλxλy,θxθy)R

√

2log
1

δ

)

(

1√
nxny

+
1√
nx

)

.

Proof Remember that B is defined by supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 B. Since

||L⊤x x||2 = ||
dx

∑
u=1

x(u)lxu||2, ||L⊤y y||2 = ||
dy

∑
v=1

y(v)lyv||2,

where x =
[

x(1),x(2), . . . ,x(dx)
]⊤

and y =
[

y(1),y(2), . . . ,y(dy)
]⊤

. {lxu}dx

u=1 and {lyv}dy

v=1 represent

the rows of Lx and Ly respectively. Suppose that ∀u, lxu =
[

l
(1)
xu , l

(2)
xu , . . . , l

(d)
xu

]⊤
and ∀v, lyv =

[

l
(1)
yv , l

(2)
yv , . . . , l

(d)
yv

]⊤
. Since ||x|| 6 1, ||lxu||2 6 θ2

x , and #{x(u) | x(u) , 0} 6 mx, we have

||L⊤x x||2 = ||
dx

∑
u=1

x(u)lxu||2

=
d

∑
k=1

(

dx

∑
u=1

x(u)1[x(u) , 0]l
(k)
xu

)2

6

d

∑
k=1

(

dx

∑
u=1

(x(u))2

)(

dx

∑
u=1

1[x(u) , 0](l
(k)
xu )2

)

=

(

dx

∑
u=1

(x(u))2

)(

d

∑
k=1

dx

∑
u=1

1[x(u) , 0](l
(k)
xu )2

)

= ||x||2
(

dx

∑
u=1

1[x(u) , 0]||lxu||2
)

6 mxθ2
x .
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Similarly, since ||y|| 6 1, ||lyv||2 6 θ2
y , and #{y(v) | y(v) , 0} 6 my we have ||L⊤y y||2 6 myθ2

y . Thus

supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 √mxmyθxθy. On the other hand, it is easy to see that

||L⊤x x||2 = ||
dx

∑
u=1

x(u)lxu||2

=
d

∑
k=1

(

dx

∑
u=1

x(u)1[x(u) , 0]l
(k)
xu

)2

6

d

∑
k=1

(

dx

∑
u=1

|x(u)1[x(u) , 0]l
(k)
xu |
)2

6

d

∑
k=1

(

max
16u6dx

(|l(k)xu |)
dx

∑
u=1

1[x(u) , 0]|x(u)|
)2

.

Since |lxu| = ∑d
k=1 |l

(k)
xu | 6 λx, ∀ 1 6 u 6 dx, thus max16k6d max16u6dx

(|l(k)xu |) 6 λx. Note that ||x|| 6 1

and #{x(u) | x(u) , 0} 6 mx, then we have

d

∑
k=1

(

max
16u6dx

(|l(k)xu |)
dx

∑
u=1

1[x(u) , 0]|x(u)|
)2

6 λ2
x

d

∑
k=1

(

dx

∑
u=1

1[x(u) , 0]|x(u)|
)2

6 λ2
x

d

∑
k=1

(

dx

∑
u=1

(1[x(u) , 0])2

)(

dx

∑
u=1

(x(u))2

)

6 dλ2
xmx.

Similarly, since ||y||6 1, |lyv|6 λy, ∀ 16 v6 dy, and #{y(v) | y(v) , 0}6my, we have ||L⊤y y||2 6 dλ2
ymy.

Thus, supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 √mxmydλxλy.

Therefore, we know supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 √mxmy min(dλxλy,θxθy), and we can choose B

as
√

mxmy min(dλxλy,θxθy).

Next, we analyze C. C is defined by sup
Lx,Ly

||vec(LxL⊤y )|| 6 C. Since ||lxu|| 6 θx and ||lyv|| 6 θy,

∀ 1 6 u 6 dx and 1 6 v 6 dy, we have

||vec(LxL⊤y )||2 = trace(LyL⊤x LxL⊤y )

=
dx

∑
u=1

dy

∑
v=1

(

d

∑
k=1

l
(k)
xu l

(k)
yv

)2

6

dx

∑
u=1

dy

∑
v=1

(

d

∑
k=1

(

l
(k)
xu

)2

)(

d

∑
k=1

(

l
(k)
yv

)2

)

=
dx

∑
u=1

dy

∑
v=1

||lxu||2||lyv||2

6 dxdyθ2
xθ2

y .
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On the other hand, since |lxu| 6 λx and |lyv| 6 λy, ∀ 1 6 u 6 dx and 1 6 v 6 dy, we have

||vec(LxL⊤y )||2 = trace(LyL⊤x LxL⊤y )

=
dx

∑
u=1

dy

∑
v=1

(

d

∑
k=1

l
(k)
xu l

(k)
yv

)2

6

dx

∑
u=1

dy

∑
v=1

(

d

∑
k=1

|l(k)xu l
(k)
yv |
)2

6

dx

∑
u=1

dy

∑
v=1

(

max
16k6d

(|l(k)xu |)
d

∑
k=1

|l(k)yv |
)2

6

dx

∑
u=1

dy

∑
v=1

λ2
x

(

d

∑
k=1

|l(k)yv |
)2

6 dxdyλ2
xλ2

y .

Therefore, we have sup
Lx,Ly

||vec(LxL⊤y )|| 6
√

dxdy min(λxλy,θxθy), and we can choose C as

√

dxdy min(λxλy,θxθy).
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R. Rosipal and N. Krämer. Overview and recent advances in partial least squares. Subspace, Latent

Structure and Feature Selection, pages 34–51, 2006.

C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire. Margin-based ranking meets boosting in the

middle. In COLT’05, pages 63–78, 2005.

G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New

York, NY, USA, 1986.

P.J. Schreier. A unifying discussion of correlation analysis for complex random vectors. Signal

Processing, IEEE Transactions on, 56(4):1327–1336, 2008.

M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. NIPS’03, 2003.

N. Srebro, J.D.M. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. NIPS’05, pages

1329–1336, 2005.

2547



WU, LU AND LI

M. Sugiyama. Dimensionality reduction of multimodal labeled data by local fisher discriminant

analysis. JMLR’07, 8:1027–1061, 2007.

M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In ICML’09, page

134, 2009.

J.A. Wegelin. A survey of partial least squares (pls) methods, with emphasis on the two-block case.

Technical Report, No.371, Seattle: Department of Statistics, Univ. of Wash., 2000.

K.Q. Weinberger and L.K. Saul. Distance metric learning for large margin nearest neighbor classi-

fication. JMLR’09, 10:207–244, 2009.

W. Wu, J. Xu, H. Li, and O. Satoshi. Learning a robust relevance model for search using kernel

methods. JMLR’11, 12:1429–1458, 2011.

E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric learning with application to

clustering with side-information. NIPS’03, pages 521–528, 2003.

J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. In SIGIR’ 07, pages

391–398, 2007.

J. Xu, H. Li, and Z.L. Zhong. Relevance ranking using kernels. In AIRS ’10, 2010.

L. Yang, R. Jin, R. Sukthankar, and Y. Liu. An efficient algorithm for local distance metric learning.

In AAAI’06, page 543, 2006.

Y. Ying, K. Huang, and C. Campbell. Sparse Metric Learning via Smooth Optimization. NIPS’09,

pages 521–528, 2009.

C.X. Zhai and J. Lafferty. A study of smoothing methods for language models applied to information

retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

2548



Journal of Machine Learning Research 14 (2013) 2549-2582 Submitted 1/13; Revised 5/13; Published 9/13

One-shot Learning Gesture Recognition from RGB-D Data Using Bag

of Features

Jun Wan 09112088@BJTU.EDU.CN

Qiuqi Ruan QQRUAN@CENTER.NJTU.EDU.CN

Wei Li 08112050@BJTU.EDU.CN

Institute of Information Science

Beijing Jiaotong University

Beijing, 100044, China

Shuang Deng DAISY SHUANG@HOTMAIL.COM

China machinery TDI international engineering co., Itd

Beijing, 100083, China

Editors: Isabelle Guyon and Vassilis Athitsos

Abstract

For one-shot learning gesture recognition, two important challenges are: how to extract distinctive

features and how to learn a discriminative model from only one training sample per gesture class.

For feature extraction, a new spatio-temporal feature representation called 3D enhanced motion

scale-invariant feature transform (3D EMoSIFT) is proposed, which fuses RGB-D data. Compared

with other features, the new feature set is invariant to scale and rotation, and has more compact

and richer visual representations. For learning a discriminative model, all features extracted from

training samples are clustered with the k-means algorithm to learn a visual codebook. Then, unlike

the traditional bag of feature (BoF) models using vector quantization (VQ) to map each feature into

a certain visual codeword, a sparse coding method named simulation orthogonal matching pursuit

(SOMP) is applied and thus each feature can be represented by some linear combination of a small

number of codewords. Compared with VQ, SOMP leads to a much lower reconstruction error

and achieves better performance. The proposed approach has been evaluated on ChaLearn gesture

database and the result has been ranked amongst the top best performing techniques on ChaLearn

gesture challenge (round 2).

Keywords: gesture recognition, bag of features (BoF) model, one-shot learning, 3D enhanced

motion scale invariant feature transform (3D EMoSIFT), Simulation Orthogonal Matching Pursuit

(SOMP)

1. Introduction

Human gestures frequently provide a natural and intuitive communication modality in daily life,

and the techniques of gesture recognition can be widely applied in many areas, such as human com-

puter interaction (HCI) (Pavlovic et al., 1997; Zhu et al., 2002), robot control (Malima et al., 2006;

Shan et al., 2007), sign language recognition (Gao et al., 2004; T. Starner and Pentland, 1998) and

augmented reality (Reifinger et al., 2007). To model gesture signals and achieve acceptable recog-

nition performance, the most common approaches are to use Hidden Markov Models (HMMs) or its

variants (Kim et al., 2007) which are a powerful model that includes hidden state structure. Yamato
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et al. (1992) used image preprocessing operations (background subtraction, image blurring) to ex-

tract low-level features and used HMM to recognize tennis motions. Brand et al. (1997) suggested

a coupled HMM that combined two HMMs with causal possibly asymmetric links to recognize

gestures. Vogler (2003) presented a parallel HMM algorithm to model gesture components and can

recognize continuous gestures in sentences. Then a more general probabilistic model named dy-

namic Bayesian network (DBN) is proposed. DBN includes HMMs and Kalman filters as special

cases (Suk et al., 2010). Youtian et al. (2006) defined five classes of gestures for HCI and devel-

oped a DBN-based model which used local features (contour, moment, height) and global features

(velocity, orientation, distance) as observations. Suk et al. (2010) proposed a DBN-based system

to control media player or slide presentation. They used local features (location, velocity) by skin

extraction and motion tracking to design the DBN inference.

However, both HMM and DBN models assume that observations given the motion class la-

bels are conditional independent. This restriction makes it difficult or impossible to accommodate

long-range dependencies among observations or multiple overlapping features of the observations

(Sminchisescu et al., 2005). Therefore, Sminchisescu et al. (2005) proposed conditional random

fields (CRF) which can avoid the independence assumption between observations and allow non-

local dependencies between state and observations. Wang et al. (2006) then incorporated hidden

state variables into the CRF model, namely, hidden conditional random field (HCRF). They used

HCRF to recognize gesture recognition and proved that HCRF can get better performance. Later,

the latent-dynamic conditional field (LDCRF) model (Morency et al., 2007) was proposed, which

combines the strengths of CRFs and HCRFs by capturing both extrinsic dynamics and intrinsic

sub-structure. The detailed comparisons are evaluated by Morency et al. (2007).

Another important approach is dynamic time warping (DTW) widely used in gesture recog-

nition. Early DTW-based methods were applied to isolated gesture recognition (Corradini, 2001;

Lichtenauer et al., 2008). Then Ruiduo et al. (2007) proposed an enhanced Level-Building DTW

method. This method can handle the movement epenthesis problem and simultaneously segment

and match signs to continuous sign language sentences. Besides these methods, other approaches

are also widely used for gesture recognition, such as linguistic sub-units (Cooper et al., 2012) and

topology-preserving self-organizing networks (Flórez et al., 2002). Although the mentioned meth-

ods have delivered promising results, most of them assume that the local features (shape, velocity,

orientation, position or trajectory) are detected well. However, the prior successes of hand detection

and tracking are major challenging problems in complex surroundings. Moreover, as shown in Ta-

ble 1, most of the mentioned methods need dozens or hundreds of training samples to achieve high

recognition rates. For example, in Yamato et al. (1992), the authors used at least 50 samples for

each class to train HMM and got the average recognition rate 96%. Besides, Yamato et al. (1992)

suggested that the recognition rate will be unstable if the number of samples is small. When there

is only one training sample per class, those methods are difficult to satisfy the requirement of high

performance application systems.

In recent years, BoF-based methods derived from object categories (Fei-Fei and Perona, 2005)

and action recognition (Wang et al., 2009) have become an important branch for gesture recogni-

tion. Dardas and Georganas (2011) proposed a method for real-time hand gesture recognition based

on standard BoF model, but they first needed to detect and track hands and that would be difficult

in a clutter background. For example, when the hand and face are overlapped or the background

is similar to skin color, hand detection may fail. Shen et al. (2012) extracted maximum stable ex-

tremal regions (MSER) features (Forssen and Lowe, 2007) from the motion divergence fields which
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paper/method Kim et al., Yamato et al., Youtian et al., Suk et al., Sminchisescu et al.,

2007/HMM 1992/HMM 1992/DBN 2010/DBN 2005/CRF

training samples

per class 150 ≥50 15 42 NA

paper/method Wang et al. Morency et al. Corradini Lichtenauer et al. Ruiduo et al.

2006/HCRF 2007/LDCRF 2001/DTW 2008/DTW 2007/DTW

training samples

per class ≥45 ≥269 45 ≥60 NA

Table 1: This tables shows the training samples pre class needed in some traditional methods. ”NA”

means the training samples are not clearly mentioned.

were calculated by optical flow (Lowe, 2004), and learned a codebook using hierarchical k-means

algorithm, then matched the test gesture sequence with the database using a term frequency-inverse

document frequency (tf-idf) weighting scheme. These methods need dozens or hundreds of train-

ing samples. However, in this paper, we explore one-shot learning gesture recognition (Malgireddy

et al., 2012), that is, using one training sample per each class. Some important challenging issues

for one-shot learning gesture recognition are the following:

1. How to extract distinctive features? Different people have different speeds, trajectories and

spatial positions to perform the same gesture. Even when a single person performs the gestures, the

trajectories are not identical. Therefore, the extracted spatio-temporal features should be invariant

to image-plane rotation, scale and spatial position. Simple descriptors, such as motion trajectories

(Yang et al., 2002) and spatio-temporal gradients (Freeman and Roth, 1995), may not meet the

invariant conditions. Therefore, we propose a new spatio-temporal feature which is scale, image-

plane rotation and space invariant and can capture more compact and richer visual representations.

The new feature will be introduced in Section 3.1.

2. How to select a suitable model? Here, we select BoF-based model to recognize gestures

because it reveals promising results for one-shot learning (Hernández-Vela et al., 2012) and has a

number of attractive properties. First, in our BoF representation, we do not need the prior success

of hand detection and tracking. Second, BoF is a modular system with three parts, namely, i)

spatio-temporal feature extraction, ii) codebook learning and descriptor coding, iii) classifier, each

of which can be easily replaced with different methods. For instance, we can apply various methods,

such as Cuboid (Dollár et al., 2005) or Harris3D (Laptev, 2005) for the local spatio-temporal feature

extraction while leaving the rest of the system unchanged.

In this paper, we focus on solving these two challenging issues and propose a new approach

to achieve good performance for one-shot learning gesture recognition. Our experimental results

reveal that our method is competitive to the state-of-the-art methods. The key contributions of the

proposed method are summarized as follows:

• A new framework derived from the BoF model is proposed.

• A new spatio-temporal feature (3D EMoSIFT) is proposed.

• The new feature is invariant to scale and rotation.

• The new feature is not sensitive to slight motion.

• Using SOMP instead of VQ in the coding stage.
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• Obtained high ranking results on ChaLearn gesture challenge.

The rest of paper is organized as follows: Section 2 reviews the background including BoF

model and some local spatio-temporal features. In Section 3, we describe the proposed approach in

detail. Section 4 presents the experimental results. In Section 5, we conclude the paper and discuss

future work.

Figure 1: (a) An overview of the traditional BoF model (the left green rectangle); (b) An overview

of our model (the right blue rectangle).

2. Background

In this section, we first introduce the traditional BoF framework for recognition and then review the

local spatio-temporal features which are widely used in BoF model.

2.1 Traditional Bag of Feature (BoF) Model

Figure 1(a) illustrates the traditional BoF approach for gesture (or action) recognition. In the training

part, after extracting local features from training videos, the visual codebook is learned with the k-

means algorithm. Then each feature is mapped to a certain visual codeword through the clustering

process and the video can be represented by the histogram of visual codewords. The histograms
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representing training videos are treated as input vectors for a support vector machine (SVM) (Chang

and Lin, 2011) to build a classifier. In the testing stage, the features are extracted from a new input

video, and then those features are mapped into a histogram vector by the descriptor coding method

(e.g., VQ) using the pre-trained codebook. Then, the histogram vector is finally fed into an SVM

classifier to get the recognition result.

However, as shown in Figure 1(b), we list at least three differences between our model and the

traditional BoF model. First, there is only one training sample per gesture class, while dozens or

hundreds of training samples per class are provided in the traditional BoF model. Second, we use

SOMP to replace VQ in the coding stage. That is because SOMP can get better performance. Third,

in the recognition stage, we just use the simple nearest neighbor (NN) classifier instead of SVM to

recognize gestures.

2.2 Spatio-Temporal Features

We describe some spatio-temporal features which represent the state-of-the-art techniques on object

recognition tasks. Those features are commonly used to detect salient and stable local batches from

videos.

The Cuboid detector depends on a set of linear filters for computing the response function of a

video clip. The response function has the form of a 2D Gaussian smoothing function (applied in the

spatial domain) and a quadrature pair of 1D Gabor filters (applied in the temporal direction). Then

the keypoints are detected at the local maxima of the response function. The video batches extracted

at each of the keypoints are converted to a descriptor. There are a number of ways to compute

descriptors from video batches as discussed by Dollár et al. (2005). Among those, gradient-based

descriptors such as histograms of oriented gradients (HOG) and concatenated gradient vectors are

the most reliable ones. For more details about the Cuboid feature, please see Dollár et al. (2005).

The Harris3D detector (Laptev, 2005) is an extension of the Harris corner detector (Harris and

Stephens, 1988). The author computes a spatio-temporal second-moment matrix at each video point

using independent spatial and temporal scale values, a separable Gaussian smoothing function, and

space-time gradients. The final locations of space-time interest points are given by the local positive

spatio-temporal maxima. Then, at each keypoint, two types of descriptors are calculated, which are

HOG and histograms of optical flow (HOF) descriptors.

The MoSIFT (Chen and Hauptmann, 2009) is derived from scale invariant feature transform

(SIFT) (Lowe, 2004) and optical flow (Lucas et al., 1981). First, a pair of Gaussian pyramids

are built from two successive frames, respectively. Then, optical flow pyramids are calculated by

each layer of the pair of Gaussian pyramids. Next, a local extreme detected from difference of

Gaussian pyramids (DoG) can only become an interest point if it has sufficient motion in the optical

flow pyramid. Finally, as the process of the SIFT descriptor calculation, the MoSIFT descriptors

are respectively computed from Gaussian pyramid and optical flow pyramid so that each MoSIFT

descriptor now has 256 dimensions.

Ming et al. (2012) propose a new feature called 3D MoSIFT that is derived from MoSIFT.

Compared with MoSIFT, 3D MoSIFT fuses the RGB data and depth information into the feature

descriptors. First, Ming et al. (2012) adopt the same strategy using the RGB data to detect interest

points. Then, for each interest point, 3D gradient space and 3D motion space are constructed by

using RGB data and depth information. In 3D gradient (motion) space, they map 3D space into
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three 2D planes: xy plane, yz plane and xz plane. Next, for each plane, they used SIFT algorithm

to calculate the descriptors. Therefore, each 3D MoSIFT descriptor has 768 dimensions.

Figure 2: Results of interest point detection (marked with the red cross) in two consecutive frames.

(a) 3D MoSIFT; (b) 3D EMoSIFT. We can see that some redundant points are detected

in some slight motion regions (i.e., background regions) which shows 3D MoSIFT is

sensitive to slight movement. However, 3D EMoSIFT can detect interest points from the

regions with large motion (i.e., hand and arm regions), which shows 3D EMoSIFT is not

sensitive to slight motion.

3. The Proposed Approach for One-Shot Learning Gesture Recognition

We propose a new spatio-temporal feature called 3D EMoSIFT. The new feature is invariant to

scale and image-plane rotation. Then we use kmeans algorithm to learn codebook and apply SOMP

algorithm to achieve descriptor coding. Besides, we adopt a methodology based on DTW and

motion energy for temporal segmentation. Below, we describe each stage in detail.

3.1 Spatio-Temporal Feature Extraction: 3D EMoSIFT

The first stage is to extract rich spatio-temporal representations from the video clips. To obtain

such representations, there are many ways to select (Dollár et al., 2005; Laptev, 2005; Chen and

Hauptmann, 2009). However, those approaches only rely on RGB data and do not consider the

depth information, which may lead to acquire insufficient information. Although 3D MoSIFT can

fuse the RGB-D data to calculate descriptors, it still cannot accurately detect interest points. For

instance, as shown in Figure 2(a), 3D MoSIFT capture some redundant interest points when some

slight motion happens (e.g., slight motion in the background), showing that 3D MoSIFT is sensitive

to slight movement. Besides, 3D MoSIFT (Ming et al., 2012) is a little sketchy. To solve the
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mentioned problems, we propose a new spatio-temporal feature and give examples to explain how

to extract the new feature step by step.

3.1.1 FEATURE POINTS DETECTION FROM RGB-D DATA

Although the 3D MoSIFT feature has achieved good results in human activity recognition, it still

cannot eliminate some influences from the slight motion as shown in Figure 2(a). Therefore, we

fuse depth information to detect robust interest points. We know that SIFT algorithm (Lowe, 2004)

uses the Gaussian function as the scale-space kernel to produce a scale space of an input image. The

whole scale space is divided into a sequence of octaves and each octave consists of a sequence of

intervals, where each interval is a scaled image.

Building Gaussian Pyramid. Given a gesture sample including two videos (one for RGB video

and the other for depth video),1 a Gaussian pyramid for every grayscale frame (converted from RGB

frame) and a depth Gaussian pyramid for every depth frame can be built via Equation (1).

LI
i, j(x,y) = G(x,y,k jσ)∗LI

i,0(x,y), 0 ≤ i < n,0 ≤ j < s+3,

LD
i, j(x,y) = G(x,y,k jσ)∗LD

i,0(x,y), 0 ≤ i < n,0 ≤ j < s+3,
(1)

where (x,y) is the coordinate in an image; n is the number of octaves and s is the number of in-

tervals; LI
i, j and LD

i, j denote the blurred image of the ( j+1)th image in the (i+1)th octave; LI
i,0 (or

LD
i,0) denotes the first grayscale (or depth) image in the (i+ 1)th octave; For i = 0, LI

0,0 (or LD
0,0) is

calculated from the original grayscale (depth) frame via bilinear interpolation and the size of LI
0,0 is

twice the size of the original frame; For i > 1, LI
i,0 (or LD

i,0) is down-sampled from LI
i−1,s (or LD

i−1,s)

by taking every second pixel in each row and column. In Figure 3(a), the blue arrow shows that the

first image LI
1,0 in the second octave is down-sampled from the third image LI

0,2 in the first octave.

∗ is the convolution operation; G(x,y,k jσ) = 1
2π(k jσ)2 e−(x2+y2)/(2(k jσ)2) is a Gaussian function with

variable-scale value; σ is the initial smoothing parameter in Gaussian function and k = 21/s (Lowe,

2004). Then, the difference of Gaussian (DoG) images, D f , are calculated from the difference of

two nearby scales in Equation (2).

D fi, j = LI
i, j+1 −LI

i, j, 0 ≤ i < n,0 ≤ j < s+2. (2)

We give an example to intuitively understand the Gaussian pyramid and DoG pyramid. Figure

3 shows two Gaussian pyramids (LIt , LIt+1) built from two consecutive grayscale frames and two

depth Gaussian pyramids (LDt , LDt+1) built from the corresponding depth frames. In this example,

the number of octaves is n = 4 and the number of intervals is s = 2; Therefore, for each frame,

we can build five images for each octave. And we can see that larger k jσ results in a more blurred

image (see the enlarged portion of the red rectangle in Figure 3). Then, we use the Gaussian pyramid

shown in Figure 3(a) to build the DoG pyramid via Equation (2), which is shown in Figure 4.

Building Optical Flow Pyramid. First, we briefly review the Lucas-Kanade method (Lucas

et al., 1981) which is widely used in computer vision. The method assumes that the displacement

of two consecutive frames is small and approximately constant within a neighborhood of the point

ρ. The two consecutive frames are denoted by F1 and F2 at time t and t + 1, respectively. Then

1. The depth values are normalized to [0 255] in depth videos.
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Figure 3: Building Gaussian pyramids and depth Gaussian pyramids for two consecutive frames.

(a) the gaussian pyramid LIt at time t; (b) the gaussian pyramid LIt+1 at time t +1; (c) the

depth gaussian pyramid LDt at time t; (d) the depth gaussian pyramid LDt+1 at time t +1.
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Figure 4: Building the difference of Gaussian pyramid D f It from Figure 3(a) at time t.

the optical flow vector (vρ) of the point ρ can be solved by the least squares principle (Lucas et al.,

1981). Namely, it solves:

Avρ = b,

where A =
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, q1, q2, ...,qn are the

pixels inside the window around the point ρ, F1x(qi) and F1y(qi) calculated by different operators

(e.g., Scharr operator, Sobel operator) are the partial derivatives of the image F1 along the horizontal

and vertical directions, and F1t(qi) = F2(qi)−F1(qi) calculated by two consecutive frames is the

partial derivatives along time. Besides, v
ρ
x (v

ρ
y ) denotes the horizontal (vertical) velocity of the point

ρ. So we can know the optical flow V = [Vx Vy]
T of all the points in the image F1 via Equation (3).

[Vx Vy]
T =

ζ⋃

i=1

[vρi
x vρi

y ]
T , (3)

where ζ is the number of points in the image F1, v
ρi
x (v

ρi
y ) denotes the horizontal (vertical) velocity

of the point ρi, and Vx (Vy) denotes the horizontal (vertical) component of the estimated optical flow

for all the points in an image. In order to facilitate the following description, we rewrite Equation

(3), so as to define OpticalFlowKL(F1,F2), as follow:

[Vx Vy]
T = OpticalFlowKL(F1,F2)

de f
=

ζ⋃

i=1

[vρi
x vρi

y ]
T .

Next, once two Gaussian pyramids (LIt and LIt+1) shown in Figure 3(a) and (b) are obtained at

time t and t + 1, respectively, we can calculate the optical flow at each interval of each octave via

Equation (4). That is say,
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[V It
x,(i, j) V

It
y,(i, j)]

T = OpticalFlowKL(LIt
i, j,L

It+1

i, j ), 0 ≤ i < n,0 ≤ j < s+3, (4)

where L
It
i, j denotes the blurred image of the ( j+1)th interval in the (i+1)th octave at time t, n and

s are defined the same as Equation (1).

So the horizontal and vertical optical flow pyramids at time t are the union sets
⋃

i, j V
It
x,(i, j) and

⋃
i, j V

It
y,(i, j), respectively. For example, we use the Gaussian pyramids in Figure 3(a) and (b) to

compute the optical flow pyramid via Equation (4). And the results are illustrated in Figure 5(a) and

(b) where we can see that the highlighted parts occur around the motion parts.

Local Extrema Detection. Here, we describe three different methods (SIFT, 3D MoSIFT, 3D

EMoSIFT) for interest point detection and show the similarities and differences among these meth-

ods.

(1) Local Extrema Detection: SIFT

In order to detect the local maxima and minima in the DoG pyramid D f
It
i, j, each point is com-

pared to its eight neighbors in the current image and nine neighbors in the above and below images

of each octave, which is illustrated in Figure 6(a). A point is selected only if it is larger than all of

these neighbors or smaller than all of them. In Figure 4, the DoG pyramid D f
It
i, j has four octaves

and each octave has four images at time t. So we can find the local extrema points in the middle of

two images at each octave, namely, D f
It
i, j, ∀i ∈ [0,3], j ∈ [1,2]. For example, in the first octave, we

detect the local extrema points at the second image D f
It
0,1 (via comparing the point to his 8 neighbor

points in the current image D f
It
0,1, 9 neighbor points in the image D f

It
0,0, and 9 neighbor points in the

image D f
It
0,2) and the third image D f

It
0,2 (via comparing the point to his 8 neighbor points in the cur-

rent image D f
It
0,2, 9 neighbor points in the image D f

It
0,1, and 9 neighbor points in the image D f

It
0,3).

So we can detect the local extrema points in other octaves similar to the first octave. The detected

points (marked with red points) are shown in Figure 7(a), which shows that many redundant points

are detected in the background and torso regions.

(2) Local Extrema Detection: 3D MoSIFT2

3D MoSIFT first detect the local extrema like SIFT algorithm. Then those local extrema can

only become interest points when those points have sufficient motion in the optical flow pyramid.

That is say, if a point is treated as an interest point, the velocity of this point should satisfy the

following condition:

vx ≥ β1 ×w,vy ≥ β1 ×h, (5)

where vx (vy) is the horizontal (vertical) velocity of a point from the horizontal (vertical) optical

flow pyramid Vx (Vy); β1 is a pre-defined threshold; w and h are the width and height of the blurred

image in the scale space.

As shown in Figure 5(a) and (b), we can see that only the local extrema located in the highlighted

parts of the optical flow pyramids (V It
x and V It

y ) will become interest points. Because only the points

in the highlighted parts have large motions, which may satisfy the condition in Equation (5). Other

extrema will be eliminated, because they have no sufficient motion in the optical flow pyramids. The

final results (marked with red points) are shown in Figure 7(b).3 Comparing with SIFT algorithm,

we can see that if the points are still, they will be filtered out via the conditions in Equation (5).

2. MoSIFT and 3D MoSIFT have the same strategy to detect interest points.

3. Here, β1 = 0.005 according to the reference (Ming et al., 2012).
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Figure 5: The horizontal and vertical optical flow pyramids are calculated from Figure 3(a) and

(b). (a) The horizontal component of the estimated optical flow pyramid V It
x at time t; (b)

The vertical component of the estimated optical flow pyramid V It
y at time t; (c) The depth

changing component V Dt
z at time t.

However, in Figure 7(b), some useless points (from the background and torso regions) are still

detected, which indicate that 3D MoSIFT is sensitive to the slight motion.

(3) Local Extrema Detection: 3D EMoSIFT

To eliminate the effect of the slight motion, we introduce a new condition to filter out the de-

tected points by the SIFT algorithm. According to the above mentioned description, we have ob-
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Figure 6: (a) The SIFT algorithm for interest points detection. Maxima and minima of the DoG

images are detected by comparing a pixel (marked with a red triangle) to its 26 neighbors

in 3× 3 regions at the current and adjacent scales (marked with black circles); (b) the

point prediction via the optical flow vector.

Figure 7: After interest point detection, the SIFT-based descriptors are calculated by three methods:

SIFT, 3D MoSIFT and 3D EMoSIFT. The detected points are marked with red circles and

the green arrows show the direction of movements. The figure shows that SIFT and 3D

MoSIFT detect many useless points in the background and torso regions while the result

by 3D EMoSIFT is more accurate. (a) SIFT; (b) 3D MoSIFT; (c) 3D EMoSIFT.

tained the pyramids LDt ,LDt+1 ,V It
x ,V

It
y . For a given point p1 from an image in different scale spaces

at time t, we can easily know the horizontal and vertical velocities vx,vy by the corresponding image

of the pyramids V It
x ,V

It
y . Then the predicted point p2 at time t +1 can be calculated by the point p1

at time t according to Figure 6(b). Therefore, we can know the depth changing component at time t

as:

V
Dt

z,(i, j)(p1) = L
Dt+1

i, j (p2)−L
Dt

i, j(p1), 0 ≤ i < n,0 ≤ j < s+3. (6)

Figure 5(c) shows the depth changing pyramid via Equation (6). We can see that the highlighted

parts accurately occur in the gesture motion region. Therefore, the local extrema shown in Figure

7(a) by SIFT algorithm will become interest points when those points not only have sufficient mo-

tion which is satisfied with the condition of 3D MoSIFT in Equation (5) but also have enough depth
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changing which is shown in the highlighted regions of Figure 5(c). That is say, the interest point

detection must simultaneously satisfy the condition in Equation (5) and a new condition defined as:

vz ≥ β2 ×
√

w2 +h2, (7)

where vz is the depth changing value of a point from the depth changing pyramid Vz; β2 is a pre-

defined threshold. The final results is shown in Figure 7(c).4 We can see that 3D EMoSIFT can

filter out the still points and the points with slight motion.

3.1.2 FEATURE DESCRIPTORS

The previous operations assigned an image location and scale to each interest point. That is say

we can use the interest point to select the Gaussian images from different pyramids. Here, we

give an example to illustrate how to compute the feature descriptor vector which is similar to the

process in Ming et al. (2012). We assume that a detected point (marked with green dot) is found

in DoG pyramid D f
It
0,1 at time t in Figure 4, which indicates that the detected point locates at the

second image of the first octave. Then the corresponding points (marked with green dot) in different

pyramids are shown in Figure 3 and Figure 5 at time t. To calculate the feature descriptors, we first

extract the local patches (Γ1 ∼ Γ5) around the detected point in five pyramids (LIt ,LDt ,V It
x ,V

It
y and

V It
z ), where Γ1 is extracted from L

It
0,1, Γ2 from L

Dt

0,1, Γ3 from V
It
x,(0,1), Γ4 from V

It
y,(0,1) and Γ5 from

V
Dt

z,(0,1). These five patches are labeled as green rectangles in Figure 3 and Figure 5. The local

patches Γ1∼Γ5 are of the same size 16×16 pixels and are shown in Figure 8. We first consider the

appearance properties to construct the 3D gradient space via local patches Γ1 and Γ2. Then we use

the rest of local patches (Γ3,Γ4 and Γ5) to construct 3D motion space.

Feature Descriptors in 3D Gradient Space. For a given point p with its coordinate (i, j), we can

simply calculate its horizontal and vertical gradients from RGB-D data (Γ1 and Γ2) as follow:

Ix(i, j) = Γ1(i, j+1)−Γ1(i, j),

Iy(i, j) = Γ1(i+1, j)−Γ1(i, j),

Dx
z(i, j) = Γ2(i, j+1)−Γ2(i, j),

Dy
z(i, j) = Γ2(i+1, j)−Γ2(i, j),

where Ix(i, j) and Iy(i, j) are the horizontal and vertical gradients calculated from Γ1; Dx
z and D

y
z(i, j)

are the horizontal and vertical gradients from Γ2. We can calculate four gradients (Ix, Iy,D
x
z and D

y
z)

for each point. Because the local patches (Γ1 and Γ2) are of size 16× 16, there are 256 points and

each point has four gradient values.

Then, as shown in Figure 8(a), for each point p, the 3D gradient space can be constructed by

Ix(i, j), Iy(i, j),Dx
z(i, j) and D

y
z(i, j). Now we use the xy plane to illustrate how to calculate the feature

descriptor in the 3D gradient space. For each point p with its coordinate (i, j), we compute the gra-

dient magnitude, mag(i, j) =
√

Ix(i, j)2 + Iy(i, j)2, and orientation, ori(i, j) = tan−1(Iy(i, j)/Ix(i, j))
in the xy plane. Then, in xy plane, we can generate a new patch Γxy which is the left image in the

first row of Figure 8(c). The size of Γxy is 16×16. For each point with its coordinate (i, j) from Γxy,

it has two values: the gradient magnitude mag(i, j) and orientation ori(i, j). Γxy can be divided into

4. Here, β1 = β2 = 0.005.
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Figure 8: Computing the feature descriptor in two parts: (a) 3D Gradient Space, (b) 3D Motion

Space, (c) Feature descriptor calculation

16 (4×4) grids. For each grid with 4×4 points, we calculate its orientation histogram with 8 bins,

which means the orientation is grouped into 8 directions which is represented by the right image

in the first row of Figure 8(c). This leads to a descriptor vector with 128 (4×4×8) dimensions in

xy plane. Here, each sample added to the histogram is weighed by its gradient magnitude and by a

Gaussian weighting function (Lowe, 2004). Similarly, we can calculate the descriptors in xz and yz

planes. Therefore, the descriptor vector of the 3D gradient space has 384 (128×3) dimensions.

Feature Descriptors in 3D Motion Space. For a given point p with coordinates (i, j),∀ 0 ≤ i ≤
15, 0 ≤ j ≤ 15, we can easily know the velocities according to the local patches Γ3,Γ4, and Γ5.

That is say, vx(i, j) = Γ3(i, j), vy(i, j) = Γ4(i, j) and vz(i, j) = Γ5(i, j).

Thus, we can construct the 3D motion space as shown in Figure 8(b). Similar to the descriptor

calculation in 3D gradient space, we can compute the magnitude and orientation (using vx,vy,vz)

for the local patch around the detected points in three planes. The only difference is that vz is the

same in both xz and yz planes. Therefore, we obtain the descriptors with 384 dimensions in the 3D

motion space. Finally, we integrate these two descriptor vectors into a long descriptor vector with

768 dimensions.

3.1.3 OVERVIEW THE 3D EMOSIFT FEATURES

In this section, we propose a new spatio-temporal feature called 3D EMoSIFT. Each 3D EMoSIFT

feature descriptor has 768 dimensions. Since the 3D EMoSIFT feature is derived from SIFT algo-

rithm, the features are invariant to scale and rotation. Besides, compared to other similar features

(SIFT, MoSIFT, 3D MoSIFT), the new features can capture more compact motion patterns and are
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not sensitive to the slight motion (see the Figure 7). For a given sample including an RGB video

and a depth video, we can calculate feature descriptors between two consecutive frames. Then the

sample can be represented by the set of all the feature descriptors extracted from the video clips.

Algorithm 1 illustrates how to calculate the proposed features.

Now each sample is denoted by the set of descriptor vectors, and we want to use those vectors

for BoF representation. To do that, we will create histograms counting how many times a descriptor

vector (representing a feature) appears at interest points anywhere in the video clip representing

the gesture. There is a need to first replace the descriptor vectors by codes to limit the number of

features, otherwise there would be too many entries in the histogram and the representation would

be too sparse. So, we will describe the means of creating a codebook in the next Section 3.2.

Algorithm 1 The algorithm for the 3D EMoSIFT feature

Input:

• A sample with two videos: Vr = [I1, I2, ..., IQ] (RGB data), Vd = [D1,D2, ...,DQ] (depth

data)

• Number of frames : Q

Output:

• The set of feature descriptors : X

1: Initialization: X = [ ]
2: for i = 1 to Q−1 do

3: Obtain the frames: Ii and Ii+1 from Vr; Di and Di+1 from Vd

4: Build the Gaussian Pyramids: LIi ,LIi+1 ,LDi and LDi+1 via Equation (1)

5: Build the different of Gaussian (DoG) Pyramid: D f Ii via Equation (2)

6: Build the Optical Flow Pyramids: V Ii
x and V Ii

y via Equation (4)

7: Build the depth changing Pyramid: V Di
z via Equation (6)

8: Find the set of interest points: P = [p1, ..., pm] via Figure 6(a), Equation (5) and (7)

9: for j = 1 to m do

10: Get the information of the interest point from the set P: pi

11: Compute feature descriptor from the local patch around pi: x ∈ ℜ768 via Figure 8

12: X = [X x]
13: end for

14: end for

15: return X

3.2 Codebook Learning and Coding Descriptors

Suppose the matrix X is the set of all descriptor vectors for an entire video clip representing a

gesture, and X = [x1,x2, ...,xN ] ∈ ℜd×N , where xi denotes a description with d dimensions. A

codebook B with M entries is denoted with B = [b1,b2, ...,bM] ∈ ℜd×M. The coding methods map

each descriptor into a M-dimensional code to generate the video representation. We first introduce

how to learn a codebook B, then review VQ and introduce SOMP for code descriptors.
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3.2.1 CODEBOOK LEARNING

Let η denote the number of gesture classes (that means there are η training samples for one-shot

learning), Ω = [X1,X2, ...,Xη], Ω ∈ ℜd×Ltr is the set of all the descriptor vectors extracted from all

the training samples, X i ∈ ℜd×Ni with Ni descriptor vectors is the set extracted from the ith class,

and Ltr = ∑
η
i=1 Ni is the number of features extracted from all the training samples. Then we learn

the codebook B ∈ ℜd×M (M < ∑
η
i=1 Ni) with M entries by applying the k-means algorithm (Wang

et al., 2010) over all the descriptors Ω in our work. However, unlike traditional BoF models, we use

a new parameter γ ∈ (0,1) instead of the codebook size M (The way we select γ will be discussed

in Section 4.). γ is expressed as a fraction of Ltr. Therefore, the codebook size M can be calculated

below:

M = Ltr × γ. (8)

3.2.2 CODING DESCRIPTORS BY VQ

In the traditional VQ method, we can calculate the Euclidean distance between a given descriptor

x ∈ ℜd and every codeword bi ∈ ℜd of the codebook B and find the closest codeword. The VQ

method can be formulated as:

min
C

‖X −BC‖2
F , s.t.‖ci‖0 = 1,‖ci‖1 = 1,ci > 0, ∀ i, (9)

where ‖ · ‖F is the Frobenius norm, C = [c1,c2, ...,cN ] ∈ ℜM×N is the set of codes for X , ‖ · ‖0

is the ℓ0 norm that counts the number of nonzero elements, ‖ · ‖1 is the ℓ1 norm; The conditions

‖ci‖0 = 1,‖ci‖1 = 1,ci > 0, mean that only one element is equal to 1 and the others are zero in each

code ci ∈ ℜM.

This formulation in Equation (9) allows us to compare more easily with sparse coding (see the

Section 3.2.3). In Equation (9), the conditions may be too restrictive, which gives rise to usually a

coarse reconstruction of X . Therefore, we use a sparse coding method instead of VQ.

3.2.3 CODING DESCRIPTORS BY SOMP

Inspired by image classification (Yang et al., 2009) and robust face recognition (Wright et al., 2009)

via sparse coding, we relax the restricted conditions in Equation (9) and suppose X has a sparse

representation C = [c1,c2, ...,cN ], ci ∈ ℜM that means each ci contains k (k ≪ M) or fewer nonzero

elements. Then, the problem can be stated as the following optimization problem:

min
C

‖X −BC‖2
F , s.t.‖ci‖0 ≤ k, ∀ i. (10)

Solving Equation (10) accurately is an NP-hard problem (Wright et al., 2009; Guo et al., 2013).

Nevertheless, approximate solutions are provided by greedy algorithms or convex relaxation, such

as SOMP (Tropp et al., 2006; Rakotomamonjy, 2011). To the best of our knowledge, we are the

first to use SOMP in BoF model for gesture recognition, especially for one-shot learning gesture

recognition.

Then we give a brief introduction about the SOMP algorithm and analyze the computational

complexity. SOMP is a greedy algorithm which is based on the idea of selecting an element of the

codebook and building all signal approximations as the projection of the signal matrix X on the span
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of these selected codewords. This algorithm (Tropp et al., 2006; Rakotomamonjy, 2011) is shown in

Algorithm 2. Regarding the computational complexity, we note that the most demanding part of the

SOMP is the correlation E computation which has the complexity O(dMN). And the complexity

of the linear system to be solved for obtaining C at each iteration is O(|Λ|) . So the complexity for

k iterations is about O(dkMN)+O(k|Λ|). Although the complexity of SOMP is more expensive

than VQ which has O(dMN) (Linde et al., 1980). SOMP has several merits which will be discussed

later.

Algorithm 2 The SOMP algorithm

Input:

• A signal matrix (the feature set): X = [x1,x2, ...,xN ] ∈ ℜd×N

• A learned codebook: B = [b1,b2, ...,bM] ∈ ℜd×M

• the sparsity: k

Output:

• The sparse representation: C

1: Initialization: the residual matrix Rs = X , the index set Λ = [ ];
2: for i = 1 to k do

3: E = BT Rs, where E = ∪p,q[ep,q]
4: Find the index λ = argmaxq ∑p |ep,q|
5: Λ = [Λ λ]
6: C = (BT

ΛBΛ)
−1BT

ΛX

7: Rs = X −BC

8: end for

9: return C

When the codebook B ∈ ℜd×M and a descriptor set X ∈ ℜd×N are given, the set of codes C ∈
ℜM×N can be calculated by the coding methods (VQ or SOMP). Then the mean reconstruction error

(MRE) for X is defined as:

εMRE =
N

∑
i=1

εi/N,

where εi = ‖xi −Bci‖
2
2 is the reconstruction error of the ith descriptor.

To compare the MREs for both the VQ and SOMP methods, a matrix X ∈ ℜ64×2000 is ran-

domly generated based on the standard normal distribution. Then the matrix X is split into two parts

(X1 ∈ ℜ64×1000 and X2 ∈ ℜ64×1000). The matrix X1 is used to build a codebook B by the k-means

algorithm. Then we use X2 to calculate the codes CV Q and CSOMP via Equation (9) and (10), respec-

tively. Finally we calculate the MREs under varied cluster numbers and different sparsity values

k = {5,10,15}. Figure 9 shows the results of both coding methods. We can see that the MREs of

the SOMP method is much lower than the MREs of the VQ method.

Compared with the VQ method, SOMP has several advantages. First, the codebook B is usually

overcomplete (i.e., M > d). Overcomplete codings smoothly interpolate between input vectors

and are robust under input noise (Olshausen et al., 1997). Second, SOMP achieves a much lower

reconstruction error. Although there is no direct relationship between lower reconstruction error

and good recognition results, some authors (Yang et al., 2009; Wan et al., 2012) have shown that

oftentimes better reconstruction leads to better performance. Third, the sparsity prior allows the
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Figure 9: Comparison MREs using both VQ and SOMP methods.

learned representation to capture salient patterns of local descriptors. According to our experimental

results in Section 4, although VQ can produce satisfactory accuracy, SOMP can achieve better

performance.

3.3 Coefficient Histogram Calculation and Classification

The matrix X contains the descriptors obtained from a test sample and C contains their correspond-

ing sparse representations over the learned codebook B. The sparse coefficients of the vector ci ∈C

present the contribution of all the entries in approximating the descriptor xi ∈ X . The sparse co-

efficients associated with all the descriptors of the test sample thus collectively demonstrate the

contribution of the entries toward the representation of that sample. Therefore, we use the coeffi-

cient histogram to denote the representation of each individual sample via Equation (11).

h =
1

N

N

∑
i=1

ci, (11)

where ci ∈ ℜM is the ith descriptor of C ∈ ℜM×N , and N is the total number of descriptors extracted

from a sample and h ∈ ℜM.

Because we have only one sample per class for training, multi-class SVMs are not trivially

applicable because they require in principle a large number of training examples. So we select the

NN classification for gesture recognition.

In the above discussion, we assume that every video has one gesture but this assumption is not

suitable for continuous gesture recognition system. Therefore, we first apply DTW to achieve tem-

poral gesture segmentation, which splits the multiple gestures to be recognized. We use the sample

code about DTW provided in ChaLearn gesture challenge website (http://gesture.chalearn.

org/data/sample-code). The detailed description of how to use DTW in one-shot learning can

be found in Guyon et al. (2013). We briefly introduce the process for temporal gesture segmentation

by DTW so as to make this paper more self-contained.
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3.4 Temporal Gesture Segmentation based on DTW

Let V = [I1, ..., IN ] be a video with N frames, where Ii is the ith frame (grayscale image) in the video.

A video is represented by a set of motion features obtained from difference images as follows. First,

the difference image is computed by subtracting consecutive frames in a video, that is Ei = Ii+1− Ii,

i = 1, ...,N −1. The difference image is shown in Figure 10(b). Then a grid of equally spaced cells

is defined over the difference image. The default size of the grid is 3×3 as shown in Figure 10(c).

For each cell, we calculate the average value in the difference image, so a 3×3 matrix is generated.

Finally, we flatten this matrix into a vector which is called motion feature. Therefore, a video V

with N frames is represented by a matrix (the set of motion features) fV ∈ ℜ9×(N−1).

Figure 10: An example for the calculation of motion feature vector.

The reference sequence with κ training videos is denoted by Ftr = [ fVtr1
, ..., fVtrκ ], fVtr is the

set of motion features of a training video. A test sequence is denoted by Fte = fVte (the set of

motion features for the test video). We calculate the negative Euclidean distance between each

entry (a motion feature) from Ftr and each entry (a motion feature) from Fte. Then we calculate the

DTW distance and apply the Viterbi algorithm (Viterbi, 1967) to find the temporal segmentation (an

optimal warping path). In Figure 11, the left gray image shows the set of motion features (Ftr) as

the reference sequence calculated from training videos. A motion feature (Fte) as the test sequence

is computed from a new input video. The optimal path is shown in the top right corner (the green

line is the optimal path; the short red lines are the boundary of two neighboring gestures). We can

see that the testing video is splitted into five gestures.

3.5 Overview of the Proposed Approach

In this section, we describe the proposed approach based on bag of 3D EMoSIFT features for one-

shot learning gesture recognition in detail. In the recognition stage, it has five steps: temporal

gesture segmentation by DTW, feature descriptor extraction using 3D EMoSIFT, coding descriptor

via SOMP, coefficient histogram calculation and the recognition results via NN classifier. The

overall process is summarized in Algorithm 3.
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Figure 11: Temporal gesture segmentation by DTW.

4. Experimental Results

This section summarizes our results and demonstrates the proposed method is well suitable for one-

shot learning gesture recognition. We first discuss the parameters of the proposed method. We

further extend our method to compare with other state-of-the-art methods. Our experiments reveal

that the proposed method gives superior recognition performance than many existing approaches.

4.1 Database

We evaluate the proposed method on development batches (devel01 ∼ devel20), validation batches

(valid01 ∼ valid20) and final batches ( f inal21 ∼ f inal40) which contain in total 6000 gestures.

The sixty batches are from Chalearn gesture challenge. Each batch is made of 47 gesture videos

and split into a training set and a test set. The training set includes a small set of vocabulary spanning

from 8 to 15 gestures. Every test video contains 1 to 5 gestures. Detailed descriptions of the gesture

data can be found in Guyon et al. (2012). All the samples are recorded with a Microsoft KinectT M

camera which provides both RGB and depth video clips. Some examples are shown in Figure 12

where the first row is RGB images and the corresponding depth images are shown in the second

row.

4.2 Metric of Evaluation

We adopt the metric of evaluation that was used by the challenge organizers (Guyon et al., 2012)

to rank the entries. To evaluate performance, we use Levenshtein distance to calculate the score

between the predicted labels and the truth labels. This distance between two strings is defined as
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Algorithm 3 The proposed approach for one-shot learning gesture recognition

The condition for one-shot learning: given K training samples (RGB-D data) for K class (one sample

per gesture class).

Input:

• Training samples (RGB-D data): Tr = [tr1, ..., trK]
• A learned codebook: B (computed from training stage)

• Coefficient histograms of training samples: Hr = [hr1,hr2, ...,hrK] via Equation (11)

(computed from training stage)

• A test sample (RGB-D data): te
Output:

• The recognition results: class

1: Initialization: class = [ ]
2: Temporal gesture segmentation: [te1

, te2
, ..., teN

] = DTW (Tr, te), N ≥ 1

3: for i = 1 to N do

4: Spatio-temporal feature extraction: Xte = 3D EMoSIFT (tei
)

5: For Xte , calculate its sparse representation C over the pre-trained codebook B

minC ‖Xte −BC‖2
F s.t. ‖c j‖0 ≤ k, ∀ j

6: Calculate the coefficient histogram hte via Equation (11)

7: Recognition: tmp calss = nn classi f y(Hr,hte)
8: class = [class tmp calss]
9: end for

10: return class

Figure 12: Some samples from ChaLearn gesture database.

the minimum number of operations (insertions, substitutions or deletions) needed to transform one

string into the other. In our case, the strings contain the gesture labels detected in each sample.

For all comparisons, we compute the mean Levenshtein distance (MLD) over all video clips and

batches. MLD score is analogous to an error rate (although it can exceed 1).

4.3 Parameters Discussion

This part gives the discussion of the parameters of the proposed method. First, we analysis the

parameters of 3D EMoSIFT. Then, two parameters from the BoF model are discussed.
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4.3.1 PARAMETERS OF 3D EMOSIFT

There are five parameters for constructing 3D EMoSIFT features. Three parameters σ,n and s in

Equation (1) are derived from SIFT algorithm. We set σ = 1.6 and s = 3. Because Lowe (2004)

suggest that when σ = 1.6 and s = 3, they can provide the optimal repeatability according to their

experimental results. Besides, the number of octaves n can be calculated according to the original

image size, such as int(log2(min(width,height))) (Vedaldi and Fulkerson, 2008).

The rest of parameters are β1 in Equation (5) and β2 in Equation (7). β1 and β2 determine

the detection of interest points based on motion and depth change. When β1 and β2 are smaller,

more interest points will be detected. We find that when β1 ∈ [0.003 0.008],β2 ∈ [0.003 0.008],
the performances are very stable as shown in Figure 13 where the results are calculated from two

batches. We can see that MLD scores vary from 0.075 to 0.092 for devel01 batch, from 0.089

to 0.134 for devel02 batch. Therefore, β1 = β2 = 0.005 is used throughout this paper based on

empirical results.

Figure 13: Parameters: σ = 1.6, s = 3, γ = 0.2 and k = 10. The MLD scores are calculated with

different values β1,β2. (a) on devel01 batch (b) on devel02 batch

4.3.2 PARAMETERS OF THE BOF MODEL

There are two parameters in the BoF model: γ in Equation (8) and k in Equation (10) . Unlike

traditional BoF models, we use a new parameter γ∈ (0,1) to replace the codebook size M mentioned

in Section 3.2. We first explain the reasons for choosing γ. Table 2 shows some information on

different batches ( f inal21 ∼ f inal40), such as the number of training samples and the number of

features extracted from training samples. We can see that the number of features varies on different

batches. If a given codebook size M is too large, it may cause over-clustering on some batches

where the number of features is relatively fewer (e.g., f inal25 and f inal36). Therefore, the over-

clustering will effect the final MLD score. For instance, we evaluate seven different codebook sizes:

{800, 1000, 1500, 2000, 2500, 3000, 3500}. The corresponding results are shown in Table 3 where

the best performance is 0.18242. Then we evaluate different values {0.1, 0.2, 0.3} for γ, and the

results are shown in Table 4. We can see that even though γ = 0.1, the corresponding MLD score

is 0.17415 which can easily beat the best performance in Table 3. Additionally, when γ = 0.1, the
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corresponding mean codebook size 1440 is much smaller than the given codebook size 3500 which

is from the best result in Table 3.

The theory of sparse coding and the codebook learning are in a developing stage and the prob-

lems for selecting optimal parameters (e.g., γ, sparsity k) are still open issues (Guha and Ward,

2012). In this paper, we use a simple strategy to decide these two parameters. At first, we keep

k = 10 and set γ with different values (ranging from 0.1 to 0.5), then determine γ by the lowest

MLD score. Figure 14(a) shows the results. It reveals when γ = 0.5, we can get a higher perfor-

mance and the corresponding MLD score is 0.13145. Then we set different values of k with γ = 0.5
and the results are shown in Figure 14(b). We can see that MLD scores remain stable. When γ = 0.5
and k = 12, the proposed method gets the lowest MLD score (the corresponding value is 0.1259).

batch number of train- number of features number of features decrease in

names ing samples:Ntr (3D MoSIFT):L1tr (3D EMoSIFT):L2tr ratio:1− L2tr

L1tr

final21 10 18116 13183 27.23%

final22 11 19034 15957 16.17%

final23 12 11168 7900 29.26%

final24 9 10544 7147 32.22%

final25 11 8547 6180 27.69%

final26 9 9852 7675 22.10%

final27 10 29999 20606 31.31%

final28 11 16156 10947 32.24%

final29 8 30782 22692 26.28%

final30 10 20357 14580 28.38%

final31 12 22149 17091 22.84%

final32 9 12717 10817 14.94%

final33 9 42273 29034 31.32%

final34 8 24099 16011 33.56%

final35 8 39409 27013 31.45%

final36 9 9206 6914 24.90%

final37 8 22142 14181 35.95%

final38 11 26160 18785 28.19%

final39 10 16543 11322 31.56%

final40 12 11800 10128 14.17%

Average 9.85 20052.65 14408.15 28.15%

Table 2: This table shows some information for every batch. The last row reveals the average

number. Although the average number of 3D EMoSIFT features has decreased by 28.15%,

3D EMoSIFT has a higher performance than 3D MoSIFT in our experimental results.

Besides, compared 3D MoSIFT features, the process time of 3D EMoSIFT can be faster

to build the cookbook.

4.4 Comparisons

In order to compare with other methods, we first use the standard BoF model to evaluate different

spatio-temporal features. Then the performances of VQ and SOMP is given. Besides, we evaluate
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codebook size M 800 1000 1500 2000 2500 3000 3500

MLD score 0.21448 0.21504 0.19514 0.18961 0.18684 0.18574 0.18242

Table 3: Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 and k = 10 ( f inal21 ∼ f inal40). MLD scores

with different codebook sizes M.

γ 0.1 0.2 0.3

MLD score 0.17415 0.14753 0.14032

Mean codebook size 1440 2881 4322

Table 4: Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 and k = 10 ( f inal21 ∼ f inal40). MLD scores

with different values for γ.

Figure 14: (a) Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 and k = 10 ( f inal21 ∼ f inal40). MLD

scores with different values of γ; (b) Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 and

γ = 0.5 ( f inal21 ∼ f inal40). MLD scores with different values of sparsity k.

the performances of both the gradient-based and motion-based features. Finally, we compare the

proposed approach with some popular sequence matching methods.

4.4.1 COMPARISON WITH OTHER SPATIO-TEMPORAL FEATURES

In our experiments, we use the standard BoF model to evaluate different spatio-temporal features,

which means VQ is used for coding descriptors. As shown in Figure 14(b), the results are relatively

stable when sparsity k has different values. Therefore, we evaluate different values {0.1, 0.2, 0.3,

0.4, 0.5} for γ and set k = 10. The results are shown in Table 5, where we can draw the following

conclusions.

First, the results of 3D EMoSIFT and 3D MoSIFT consistently exceed traditional features (e.g.,

Cuboid, Harris3D and MoSIFT). More specifically, the least MLD scores (corresponding to the best

recognition rate) for 3D EMoSIFT is 0.13311, compared to 0.14476 for 3D MoSIFT, 0.28064 for

Cuboid, 0.18192 for Harris3D, and 0.335 for MoSIFT.
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P
P
P
P
P

P
P
PP

Methods

γ
0.1 0.2 0.3 0.4 0.5

Cuboid(R) 0.36717 0.36495 0.34332 0.33111 0.31392

Cuboid(R+D) 0.33666 0.31559 0.30948 0.30782 0.28064

Harris3D hog(R) 0.30061 0.26012 0.25014 0.23516 0.23461

Harris3D hog(R+D) 0.24903 0.22795 0.22407 0.22795 0.22684

Harris3D hof(R) 0.34831 0.32668 0.31281 0.29895 0.29063

Harris3D hof(R+D) 0.32169 0.29174 0.28508 0.27898 0.27121

Harris3D hoghof(R) 0.24237 0.21963 0.20022 0.19468 0.18857

Harris3D hoghof(R+D) 0.20965 0.18802 0.18303 0.18747 0.18192

MoSIFT(R) 0.41653 0.39601 0.35885 0.36606 0.33500

MoSIFT(R+D) 0.44426 0.44260 0.43594 0.42318 0.40488

3D MoSIFT(R+D) 0.19135 0.16694 0.16195 0.14476 0.14642

3D EMoSIFT(R+D) 0.16528 0.15419 0.14753 0.13977 0.13311

Table 5: Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 and k = 10 ( f inal21 ∼ f inal40). It shows

MLD scores by different spatio-temporal features with different values of γ, where (R)

means the features are extracted from RGB video, (R+D) means the features are extracted

from the RGB and depth videos. The values shown in bold indicate superior performance,

with MLD scores below 0.16.

Second, from the previous works, we know that traditional features have achieved promising

results (Dollár et al., 2005; Laptev, 2005; Chen and Hauptmann, 2009). However, those features

may be not sufficient to capture the distinctive motion pattern only from RGB data because there is

only one training sample per class.

Third, although 3D MoSIFT and 3D EMoSIFT are derived from the SIFT and MoSIFT features,

MoSIFT still cannot achieve satisfactory outcomes. That is because the descriptors captured by

MoSIFT are simply calculated from RGB data while 3D MoSIFT and 3D EMoSIFT construct 3D

gradient and 3D motion space from the local patch around each interest point by fusing RGB-D

data.

To show the distinctive views for both 3D MoSIFT and 3D EMoSIFT features, we record three

gesture classes: clapping, pointing and waving. The samples are shown in Figure 15, where the

training samples are shown in the first three rows (of the first two columns) and the testing sam-

ples are shown in the last three rows (of the first two columns). We first extract 3D MoSIFT and

3D EMoSIFT features from the six samples. Then we use 3D MoSIFT and 3D EMoSIFT features

extracted from the three training samples to generate a codebook which has 20 visual words, re-

spectively. Each descriptor is mapped into a certain visual word with VQ. The spatial distribution

of visual words for each sample are shown in Figure 15 where different visual words are represented

by different colors. It shows that 3D EMoSIFT is more compact. A more compact feature leads

to a better performance (see Table 5) and can effectively reduce the redundant features (see Table

2). Besides, a compact feature should encourage the signals from the same class to have similar

representations. In other words, the signals from the same class are described by similar histograms

(or visual words). From the Figure 15, we can see that the samples from the same class have sim-

ilar histograms (e.g., clapping gesture) when we use 3D EMoSIFT. However, 3D MoSIFT cannot
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Figure 15: The first two columns are the samples used for training and testing. The third and

fifth columns reveal the spatial distribution of the visual words for the samples, which

show 3D EMoSIFT is more compact. We superimpose the interest points in all frames

into one image. Different visual words are represented by different colors. The fourth

and sixth columns are shown the histograms for each sample. The histogram vector is

ℓ2 normalization. It shows each class has some dominating visual words. A compact

feature encourages gestures from the same class to be described by similar histograms

(or visual words), especially the dominating visual words. The histograms from the

same class learned by 3D EMoSIFT are similar (i.e., clapping gesture).

get good similar histograms. From the above discussions, we see that 3D EMoSIFT is suitable for

one-shot learning gesture recognition. Interestingly, 3D EMoSIFT is also more sparsity than 3D

MoSIFT (see the histograms in Figure 15)
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Figure 16: Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3, k = 10 and γ = 0.3 (devel01 ∼ devel20).

The results with different coding methods (VQ, SOMP).

4.4.2 COMPARISON BETWEEN VQ AND SOMP

We then evaluate different coding methods (VQ, SOMP) on development (devel01 ∼ devel20)

batches. Figure 16 shows the results. The minimum MLD by SOMP is 0.004 (see devel13), while

0.008 (see devel01) for VQ. And most of the performances by SOMP are much better than VQ.

Later, we test 3D MoSIFT and 3D EMoSIFT features on f inal21 ∼ f inal40 batches. MLD scores

are given in Table 6. It can be seen that in most cases, SOMP leads the performance whenever 3D

MoSIFT or 3D EMoSIFT is used. We also provide the results by 3D EMoSIFT for every batch in

Figure 17 which shows that SOMP is better than VQ in most cases. In a word, compared with VQ,

SOMP not only has lower reconstruction errors (see Figure 9) but also achieves better performance.

We note that 3D EMoSIFT does not work well on devel03 batch as shown in Figure 16. That is

because there are static gestures (postures) on devel03 batch, while 3D EMoSIFT can only capture

distinctive features when the gestures are in motion.

P
P
P

P
P
P
P
PP

Methods

γ
0.1 0.2 0.3 0.4 0.5

3D MoSIFT VQ 0.19135 0.16694 0.16195 0.14476 0.14642

3D MoSIFT SOMP 0.18303 0.16251 0.15918 0.15086 0.14088

3D EMoSIFT VQ 0.16528 0.15419 0.14753 0.13977 0.13311

3D EMoSIFT SOMP 0.17415 0.14753 0.14032 0.13478 0.13145

Table 6: Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3 , k = 10, and γ varies from 0.1 to 0.5

( f inal21 ∼ f inal40). MLD scores are calculated by different coding methods.
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Figure 17: Parameters: β1 = β2 = 0.005, σ = 1.6, s = 3, k = 10 and γ = 0.3 ( f inal21 ∼ f inal40).

The results with different coding methods (VQ, SOMP).

4.4.3 COMPARISON BETWEEN GRADIENT-BASED AND MOTION-BASED FEATURES

We know that 3D EMoSIFT feature includes two basic components, namely, gradient-based fea-

tures and motion-based features. And each component is of size 384 dimensions. In this section,

we separately evaluate these two components and determinate which component is more essential

to gesture recognition. The results evaluated on development batches are separately shown in Fig-

ure 18 where the integrated feature consists of the gradient-based and motion-based features. The

average MLD scores are 0.1945 for the integrated feature, 0.216 for the gradient-based features,

and 0.313 for the motion-based features. It can be seen that the performance of the gradient-based

features, which are comparative to the results of the integrated feature, are much better than the per-

formance of the motion-based features. In addition, our method outperforms two published papers

on devel01 ∼ devel20 batches, that is say, our method: 0.1945, Lui (2012): 0.2873, Malgireddy

et al. (2012): 0.2409.

As mentioned in Section 3.1, 3D EMoSIFT is constructed in two stages (interest point detection

and descriptor calculation). So whenever the gradient-based or motion-based features are calculated,

we should first detect the interest points. We randomly select a sample from Chalearn gesture

database and test the average time with c++ programs and OpenCV library (Bradski, 2000) on a

standard personal computer (CPU: 3.3GHz, RAM: 8GB). Table 7 shows that the main processing

time occurs in the stage of interest point detection. The remaining parts for calculating the gradient-

base and motion-based descriptor is small compared with the time for interest point detection. In

our future work, we will focus on how to efficiently detect interest points.

4.4.4 COMPARISON WITH OTHER METHODS

Here, we compare the proposed approach with some popular sequence matching methods such

as HMM, DTW, CRF, HCRF and LDCRF, and also give the final results of top contestants. The

results are reported in Table 8 where the principal motion method (Escalante and Guyon, 2012) is

the baseline method and DTW is an optional method on Chalearn gesture challenge (round 2).
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Figure 18: Results for parameters: β1 = β2 = 0.005, σ = 1.6, s = 3, k = 10, and γ = 0.3 (devel01 ∼

devel20).

interest point detection gradient-based descriptor motion-based descriptor

average time (ms/f) average time (ms/f) average time (ms/f)

887 2.1 1.4

Table 7: The average computation time for different parts in 3D EMoSIFT feature.

method validation set(01 ∼ 20) final set(21 ∼ 40) team name

motion signature analysis 0.0995 0.0710 Alfnie

HMM+HOGHOF 0.2084 0.1098 Turtle Tamers

BoF+3D MoSIFT 0.1824 0.1448 Joewan

principle motion 0.3418 0.3172 –

DTW 0.4616 0.3899 –

CRF 0.6365 0.528 –

HCRF 0.64 0.6 –

LDCRF 0.608 0.5145 –

our method 0.1595 0.1259 –

Table 8: Results of different methods on Chalearn gesture data set.

The top ranking results in the competition are from three teams (Alfine, Turtle Tamers and

Joewan), which are provided in the technical report (Guyon et al., 2013). We use the code provided

by Morency et al. (2007) to train the CRF-based classifiers, because this code was well developed

and can be easily used. Every frame is represented by a vector of motion feature mentioned in

Section 3.4. Those motion features extracted from training videos are used to train CRF-based
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models. For the CRF model, every class has a corresponding label (gesture label). CRF predicts a

label for each frame in a video. During evaluation, the video label is predicted based on the most

frequently occurring label per frame (Morency et al., 2007). For the HCRF (or LDCRF) model, we

train a single HCRF (or LDCRF) model with different number of hidden states (from 2 to 6 states)

and select the lowest MLD scores as the final results which are shown in Table 8. We can see that the

proposed method is competitive to the state-of-the-art methods. Besides, the CRF-based methods

get poor performances. That is because the simple motion features may be indistinguishable to

represent the gesture pattern.

5. Conclusion

In this paper, we propose a unified framework based on bag of features for one-shot learning ges-

ture recognition. The proposed method gives superior recognition performance than many existing

approaches. A new feature, named 3D EMoSIFT, fuses RGB-D data to detect interest points and

constructs 3D gradient and motion space to calculate SIFT descriptors. Compared with existing

features such as Cuboid (Dollár et al., 2005), Harri3D (Laptev, 2005), MoSIFT (Chen and Haupt-

mann, 2009) and 3D MoSIFT (Ming et al., 2012), it gets competitive performance. Additionally,

3D EMoSIFT features are scale and rotation invariant and can capture more compact and richer

video representations even though there is only one training sample for each gesture class. This

paper also introduces SOMP to replace VQ in the descriptor coding stage. Then each feature can

be represented by some linear combination of a small number of visual codewords. Compared with

VQ, SOMP leads to a much lower reconstruction error and achieves better performance.

Although the proposed method has achieved promising results, there are several avenues which

can be explored. At first, most of the existing local spatio-temporal features are extracted from a

static background or a simple dynamic background. In our feature research, we will focus on ex-

tending 3D EMoSIFT to extract features from complex background, especially for one-shot learning

gesture recognition. Next, to speed up processing time, we can achieve fast feature extraction on a

Graphics Processing Unit (GPU) (Chen et al., 2003). Also, we will explore the techniques required

to optimize the parameters, such as the codebook size and sparsity.
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Abstract

We study pool-based active learning of half-spaces. We revisit the aggressive approach for active learning

in the realizable case, and show that it can be made efficient and practical, while also having theoretical

guarantees under reasonable assumptions. We further show, both theoretically and experimentally, that it

can be preferable to mellow approaches. Our efficient aggressive active learner of half-spaces has formal

approximation guarantees that hold when the pool is separable with a margin. While our analysis is focused

on the realizable setting, we show that a simple heuristic allows using the same algorithm successfully for

pools with low error as well. We further compare the aggressive approach to the mellow approach, and prove

that there are cases in which the aggressive approach results in significantly better label complexity compared

to the mellow approach. We demonstrate experimentally that substantial improvements in label complexity

can be achieved using the aggressive approach, for both realizable and low-error settings.

Keywords: active learning, linear classifiers, margin, adaptive sub-modularity

1. Introduction

We consider pool-based active learning (McCallum and Nigam, 1998), in which a learner receives a pool of

unlabeled examples, and can iteratively query a teacher for the labels of examples from the pool. The goal

of the learner is to return a low-error prediction rule for the labels of the examples, using a small number of

queries. The number of queries used by the learner is termed its label complexity. This setting is most useful

when unlabeled data is abundant but labeling is expensive, a common case in many data-laden applications.

A pool-based algorithm can be used to learn a classifier in the standard PAC model, while querying fewer

labels. This can be done by first drawing a random unlabeled sample to be used as the pool, then using

pool-based active learning to identify its labels with few queries, and then using the resulting labeled sample

as input to a regular “passive” PAC-learner.

Most active learning approaches can be loosely described as more ‘aggressive’ or more ‘mellow’. A

more aggressive approach is one in which only highly informative queries are requested (where the meaning

of ‘highly informative’ depends on the particular algorithm) (Tong and Koller, 2002; Balcan et al., 2007;

Dasgupta et al., 2005), while the mellow approach, first proposed in the CAL algorithm (Cohn et al., 1994),

is one in which the learner essentially queries all the labels it has not inferred yet.

In recent years a significant advancement has been made for active learning in the PAC model. In particu-

lar, it has been shown that when the data is realizable (relative to some assumed hypothesis class), the mellow
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approach can guarantee an exponential improvement in label complexity, compared to passive learning (Bal-

can et al., 2006a). This exponential improvement depends on the properties of the distribution, as quantified

by the Disagreement Coefficient proposed in Hanneke (2007). Specifically, when learning half-spaces in

Euclidean space, the disagreement coefficient implies a low label complexity when the data distribution is

uniform or close to uniform. Guarantees have also been shown for the case where the data distribution is a

finite mixture of Gaussians (El-Yaniv and Wiener, 2012).

An advantage of the mellow approach is its ability to obtain label complexity improvements in the agnos-

tic setting, which allows an arbitrary and large labeling error (Balcan et al., 2006a; Dasgupta et al., 2007).

Nonetheless, in the realizable case the mellow approach is not always optimal, even for the uniform dis-

tribution (Balcan et al., 2007). In this work we revisit the aggressive approach for the realizable case, and

in particular for active learning of half-spaces in Euclidean space. We show that it can be made efficient

and practical, while also having theoretical guarantees under reasonable assumptions. We further show, both

theoretically and experimentally, that it can sometimes be preferable to mellow approaches.

In the first part of this work we construct an efficient aggressive active learner for half-spaces in Euclidean

space, which is approximately optimal, that is, achieves near-optimal label complexity, if the pool is separable

with a margin. While our analysis is focused on the realizable setting, we show that a simple heuristic allows

using the same algorithm successfully for pools with low error as well. Our algorithm for halfspaces is based

on a greedy query selection approach as proposed in Tong and Koller (2002) and Dasgupta (2005). We obtain

improved target-dependent approximation guarantees for greedy selection in a general active learning setting.

These guarantees allow us to prove meaningful approximation guarantees for halfspaces based on a margin

assumption.

In the second part of this work we compare the greedy approach to the mellow approach. We prove that

there are cases in which this highly aggressive greedy approach results in significantly better label complexity

compared to the mellow approach. We further demonstrate experimentally that substantial improvements in

label complexity can be achieved compared to mellow approaches, for both realizable and low-error settings.

The first greedy query selection algorithm for learning halfspaces in Euclidean space was proposed by

Tong and Koller (2002). The greedy algorithm is based on the notion of a version space: the set of all

hypotheses in the hypothesis class that are consistent with the labels currently known to the learner. In the

case of halfspaces, each version space is a convex body in Euclidean space. Each possible query thus splits

the current version space into two parts: the version space that would result if the query received a positive

label, and the one resulting from a negative label. Tong and Koller proposed to query the example from

the pool that splits the version space as evenly as possible. To implement this policy, one would need to

calculate the volume of a convex body in Euclidean space, a problem which is known to be computationally

intractable (Brightwell and Winkler, 1991). Tong and Koller thus implemented several heuristics that attempt

to follow their proposed selection principle using an efficient algorithm. For instance, they suggest to choose

the example which is closest to the max-margin solution of the data labeled so far. However, none of their

heuristics provably follow this greedy selection policy.

The label complexity of greedy pool-based active learning algorithms can be analyzed by comparing it to

the best possible label complexity of any pool-based active learner on the same pool. The worst-case label

complexity of an active learner is the maximal number of queries it would make on the given pool, where

the maximum is over all the possible classification rules that can be consistent with the pool according to

the given hypothesis class. The average-case label complexity of an active learner is the average number of

queries it would make on the given pool, where the average is taken with respect to some fixed probability

distribution P over the possible classifiers in the hypothesis class. For each of these definitions, the optimal

label complexity is the lowest label complexity that can be achieved by an active learner on the given pool.

Since implementing the optimal label complexity is usually computationally intractable, an alternative is to

implement an efficient algorithm, and to guarantee a bounded factor of approximation on its label complexity,

compared to the optimal label complexity.

Dasgupta (2005) showed that if a greedy algorithm splits the probability mass of the version space as

evenly as possible, as defined by the fixed probability distribution P over the hypothesis class, then the

approximation factor for its average label complexity, with respect to the same distribution, is bounded by
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O(log(1/pmin)), where pmin is the minimal probability of any possible labeling of the pool, if the classifier is

drawn according to the fixed distribution. Golovin and Krause (2010) extended Dasgupta’s result and showed

that a similar bound holds for an approximate greedy rule. They also showed that the approximation factor

for the worst-case label complexity of an approximate greedy rule is also bounded by O(log(1/pmin)), thus

extending a result of Arkin et al. (1993). Note that in the worst-case analysis, the fixed distribution is only an

analysis tool, and does not represent any assumption on the true probability of the possible labelings.

Returning to greedy selection of halfspaces in Euclidean space, we can see that the fixed distribution over

hypotheses that matches the volume-splitting strategy is the distribution that draws a halfspace uniformly

from the unit ball.1 The analysis presented above thus can result in poor approximation factors, since if there

are instances in the pool that are very close to each other, then pmin might be very small.

We first show that mild conditions suffice to guarantee that pmin is bounded from below. By proving a

variant of a result due to Muroga et al. (1961), we show that if the examples in the pool are stored using

number of a finite accuracy 1/c, then pmin ≥ (c/d)d2
, where d is the dimensionality of the space. It follows

that the approximation factor for the worst-case label complexity of our algorithm is at most O(d2 log(d/c)).
While this result provides us with a uniform lower bound on pmin, in many real-world situations the

probability of the target hypothesis (i.e., one that is consistent with the true labeling) could be much larger

than pmin. A noteworthy example is when the target hypothesis separates the pool with a margin of γ. In this

case, it can be shown that the probability of the target hypothesis is at least γd , which can be significantly

larger than pmin. An immediate question is therefore: can we obtain a target-dependent label complexity

approximation factor that would depend on the probability of the target hypothesis, P(h), instead of the

minimal probability of any labeling?

We prove that such a target dependent bound does not hold for a general approximate-greedy algorithm.

To overcome this, we introduce an algorithmic change to the approximate greedy policy, which allows us

to obtain a label complexity approximation factor of log(1/P(h)). This can be achieved by running the

approximate-greedy procedure, but stopping the procedure early, before reaching a pure version space that

exactly matches the labeling of the pool. Then, an approximate majority vote over the version space, that

is, a random rule which approximates the majority vote with high probability, can be used to determine the

labels of the pool. This result is general and holds for any hypothesis class and distribution. For halfspaces,

it implies an approximation-factor guarantee of O(d log(1/γ)).
We use this result to provide an efficient approximately-optimal active learner for half-spaces, called

ALuMA, which relies on randomized approximation of the volume of the version space (Kannan et al., 1997).

This allows us to prove a margin-dependent approximation factor guarantee for ALuMA. We further show

an additional, more practical implementation of the algorithm, which has similar guarantees under mild

conditions which often hold in practice. The assumption of separation with a margin can be relaxed if a lower

bound on the total hinge-loss of the best separator for the pool can be assumed. We show that under such an

assumption a simple transformation on the data allows running ALuMA as if the data was separable with a

margin. This results in approximately optimal label complexity with respect to the new representation.

We also derive lower bounds, showing that the dependence of our label-complexity guarantee on the

accuracy c, or the margin parameter γ, is indeed necessary and is not an artifact of our analysis. We do

not know if the dependence of our bounds on d is tight. It should be noted that some of the most popular

learning algorithms (e.g., SVM, Perceptron, and AdaBoost) rely on a large-margin assumption to derive

dimension-independent sample complexity guarantees. In contrast, here we use the margin for computational

reasons. Our approximation guarantee depends logarithmically on the margin parameter, while the sample

complexities of SVM, Perceptron, and AdaBoost depend polynomially on the margin. Hence, we require a

much smaller margin than these algorithms do. In a related work, Balcan et al. (2007) proposed an active

learning algorithm with dimension-independent guarantees under a margin assumption. These guarantees

hold for a restricted class of data distributions.

In the second part of this work, we compare the greedy approach to the mellow approach of CAL in the

realizable case, both theoretically and experimentally. Our theoretical results show the following:

1. We discuss the challenges presented by other natural choices of a distribution in Section 2.
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1. In the simple learning setting of thresholds on the line, our margin-based approach is preferable to the

mellow approach when the true margin of the target hypothesis is large.

2. There exists a distribution in Euclidean space such that the mellow approach cannot achieve a signifi-

cant improvement in label complexity over passive learning for halfspaces, while the greedy approach

achieves such an improvement using more unlabeled examples.

3. There exists a pool in Euclidean space such that the mellow approach requires exponentially more

labels than the greedy approach.

We further compare the two approaches experimentally, both on separable data and on data with small er-

ror. The empirical evaluation indicates that our algorithm, which can be implemented in practice, achieves

state-of-the-art results. It further suggests that aggressive approaches can be significantly better than mellow

approaches in some practical settings.

2. On the Challenges in Active Learning for Halfspaces

The approach we employ for active learning does not provide absolute guarantees for the label complexity

of learning, but a relative guarantee instead, in comparison with the optimal label complexity. One might

hope that an absolute guarantee could be achieved using a different algorithm, for instance in the case of

half-spaces. However, the following example from Dasgupta (2005) indicates that no meaningful guarantee

can be provided that holds for all possible pools.

Example 1 Consider a distribution in R
d for any d≥ 3. Suppose that the support of the distribution is a set of

evenly-distributed points on a two-dimensional sphere that does not circumscribe the origin, as illustrated in

the following figure. As can be seen, each point can be separated from the rest of the points with a halfspace.

In this example, to distinguish between the case in which all points have a negative label and the case in

which one of the points has a positive label while the rest have a negative label, any active learning algorithm

will have to query every point at least once. It follows that for any ε > 0, if the number of points is 1/ε,

then the label complexity to achieve an error of at most ε is 1/ε. On the other hand, the sample complexity

of passive learning in this case is order of 1
ε log 1

ε , hence no active learner can be significantly better than a

passive learner on this distribution.

Since we provide margin-dependent guarantees, one may wonder if a margin assumption alone can guar-

antee that few queries suffice to learn the half-space. This is not the case, as evident by the following variation

of Example 1.

Example 2 Let γ ∈ (0, 1
2
) be a margin parameter. Consider a pool of m points in R

d , such that all the points

are on the unit sphere, and for each pair of points x1 and x2, 〈x1,x2〉 ≤ 1− 2γ. It was shown in Shannon

(1959) that for any m≤ O(1/γd), there exists a set of points that satisfy the conditions above. For any point

x in such a pool, there exists a (biased) halfspace that separates x from the rest of the points with a margin

of γ. This can be seen by letting w = x and b = 1− γ. Then 〈w,x〉− b = γ while for any z 6= x in the set,

〈w,z〉−b = 〈x,z〉−1+ γ≤ −γ. By adding a single dimension, this example can be transformed to one with

homogeneous (unbiased) halfspaces. Each point in this pool can be separated from the rest of the points by

a halfspace. Thus, if the correct labeling is all-positive, then all m examples need to be queried to label the

pool correctly.
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These examples show that there are “difficult” pools, where no active learner can do well. The advantage

of the greedy approach is that the optimal label complexity is used as a natural measure of the difficulty of

the pool.

At first glance it might seem that there are simpler ways to implement an efficient greedy strategy for

halfspaces, by using a different distribution over the hypotheses. For instance, if there are m examples in

d dimensions, Sauer’s lemma states that the effective size of the hypothesis class of halfspaces will be at

most md . One can thus use the uniform distribution over this finite class, and greedily reduce the number of

possible hypotheses in the version space, obtaining a d log(m) factor relative to the optimal label complexity.

However, a direct implementation of this method will be exponential in d, and it is not clear whether this

approach has a polynomial implementation.

Another approach is to discretize the version space, by considering only halfspaces that can be represented

as vectors on a d-dimensional grid {−1,−1+c, . . . ,1−c,1}d . This results in a finite hypothesis class of size

(2/c+1)d , and we get an approximation factor of O(d log(1/c)) for the greedy algorithm, compared to an

optimal algorithm on the same finite class. However, it is unknown whether a greedy algorithm for reducing

the number of such vectors in a version space can be implemented efficiently, since even determining whether

a single grid point exists in a given version space is NP-hard (see, e.g., Matoušek, 2002, Section 2.2). In

particular, the volume of the version space cannot be used to estimate this quantity, since the volume of a

body and the number of grid points in this body are not correlated. For example, consider a line in R
2, whose

volume is 0. It can contain zero grid points or many grid points, depending on its alignment with respect

to the grid. Therefore, the discretization approach is not straightforward as one might first assume. In fact,

if this approach is at all computationally feasible, it would probably require the use of some approximation

scheme, similarly to the volume-estimation approach that we describe below.

Yet another possible direction for pool-based active learning is to greedily select a query whose answer

would determine the labels of the largest amount of pool examples. The main challenge in this direction

is how to analyze the label complexity of such an algorithm: it is unclear whether competitiveness with

the optimal label complexity can be guaranteed in this case. Investigating this idea, both theoretically and

experimentally, is an important topic for future work. Note that the CAL algorithm (Cohn et al., 1994), which

we discuss in Section 6, can be seen as implementing a mellow version of this approach, since it decreases

the so-called “disagreement region” in each iteration.

3. Definitions and Preliminaries

In pool-based active learning, the learner receives as input a set of instances, denoted X = {x1, . . . ,xm}. Each

instance xi is associated with a label L(i) ∈ {±1}, which is initially unknown to the learner. The learner

has access to a teacher, represented by the oracle L : [m]→ {−1,1}. An active learning algorithm A obtains

(X ,L,T ) as input, where T is an integer which represents the label budget of A . The goal of the learner is

to find the values L(1), . . . ,L(m) using as few calls to L as possible. We assume that L is determined by a

function h taken from a predefined hypothesis class H . Formally, for an oracle L and a hypothesis h ∈H , we

write L ⇚ h to state that for all i, L(i) = h(xi).
Given S⊆ X and h ∈H , we denote the partial realization of h on S by

h|S = {(x,h(x)) : x ∈ S} .
We denote by V (h|S) the version space consisting of the hypotheses which are consistent with h|S. Formally,

V (h|S) = {h′ ∈H : ∀x ∈ S, h′(x) = h(x) }.
Given X and H , we define, for each h ∈ H , the equivalence class of h over H , [h] = {h′ ∈ H | ∀x ∈

X , h(x)= h′(x)}. We consider a probability distribution P over H such that P([h]) is defined for all h∈H . For

brevity, we denote P(h) = P([h]). Similarly, for a set V ⊆H , P(V ) = P(∪h∈V [h]). Let pmin = minh∈H P(h).
We specifically consider the hypothesis class of homogeneous halfspaces in R

d . In this case, X ⊆ R
d .

The hypothesis class H is defined by W = {x 7→ sgn(〈w,x〉) | w ∈ R
d}, where 〈w,x〉 is the inner product

between the vectors w and x.
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For a given active learning algorithm A , we denote by N(A ,h) the number of calls to L that A makes

before outputting (L(x1), . . . ,L(xm)), under the assumption that L ⇚ h. The worst-case label complexity of

A is defined to be

cwc(A)
def
= max

h∈H

N(A ,h).

We denote the optimal worst-case label complexity for the given pool by OPTmax. Formally, we define

OPTmax = minA cwc(A), where the minimum is taken over all possible active learners for the given pool.

Given a probability distribution P over H , the average-case label complexity of A is defined to be

cavg(A)
def
= Eh∼PN(A ,h).

The optimal average label complexity for the given pool X and probability distribution P is defined as

OPTavg = minA cavg(A).
For a given active learner, we denote by Vt ⊆ H the version space of an active learner after t queries.

Formally, suppose that the active learning queried instances i1, . . . , it in the first t iterations. Then

Vt = {h ∈H | ∀ j ∈ [t],h(xi j
) = L(i j)}.

For a given pool example x ∈ X , denote by V
j

t,x the version spaces that would result if the algorithm now

queried x and received label j. Formally,

V
j

t,x =Vt ∩{h ∈H | h(x) = j}.

A greedy algorithm (with respect to a probability distribution P) is an algorithm A that at each iteration

t = 1, . . . ,T , the pool example x that A decides to query is one that splits the version space as evenly as

possible. Formally, at every iteration t A queries some example in argminx∈X max j∈{±1}P(V
j

t,x). Equivalently,

a greedy algorithm is an algorithm A that at every iteration t queries an example in

argmax
x∈X

P(V−1
t,x ) ·P(V+1

t,x ).

To see the equivalence, note that P(V−1
t,x ) = P(Vt)−P(V+1

t,x ). Therefore,

P(V−1
t,x ) ·P(V+1

t,x ) = (P(Vt)−P(V+1
t,x ))P(V+1

t,x ) = (P(Vt)/2)2− (P(Vt)/2−P(V+1
t,x ))2.

It follows that the expression is monotonic decreasing in |P(Vt)/2−P(V+1
t,x )|.

This equivalent formulation motivates the following definition of an approximately greedy algorithm,

following Golovin and Krause (2010).

Definition 3 An algorithm A is called α-approximately greedy with respect to P, for α≥ 1, if at each itera-

tion t = 1, . . . ,T , the pool example x that A decides to query satisfies

P(V 1
t,x)P(V

−1
t,x )≥ 1

α
max
x̃∈X

P(V 1
t,x̃)P(V

−1
t,x̃ ),

and the output of the algorithm is (h(x1), . . . ,h(xm)) for some h ∈VT .

It is easy to see that by this definition, an algorithm is exactly greedy if it is approximately greedy with α = 1.

By Dasgupta (2005) we have the following guarantee: For any exactly greedy algorithm A with respect

to distribution P,

cavg(A) = O(log(1/pmin) ·OPTavg).

Golovin and Krause (2010) show that for an α approximately greedy algorithm,

cavg(A) = O(α · log(1/pmin) ·OPTavg).

In addition, they show a similar bound for the worst-case label complexity. Formally,

cwc(A) = O(α · log(1/pmin) ·OPTmax). (1)
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4. Results for Greedy Active Learning

The approximation factor guarantees cited above all inversely depend on pmin, the smallest probability of any

hypothesis in the given hypothesis class, according to the given distribution. Thus, if pmin is very small, the

approximation factor is large, regardless of the true target hypothesis. We show that by slightly changing

the policy of an approximately-greedy algorithm, we can achieve a better approximation factor whenever the

true target hypothesis has a larger probability than pmin. This can be done by allowing the algorithm to stop

before it reaches a pure version space, that is before it can be certain of the correct labeling of the pool, and

requiring that in this case, it would output the labeling which is most likely based on the current version space

and the fixed probability distribution P. We say that A outputs an approximate majority vote if whenever VT

is pure enough, the algorithm outputs the majority vote on VT . Formally, we define this as follows.

Definition 4 An algorithm A outputs a β-approximate majority vote for β ∈ ( 1
2
,1) if whenever there exists a

labeling Z : X →{±1} such that Ph∼P[Z ⇚ h | h ∈VT ]≥ β, A outputs Z.

In the following theorem we provide the target-dependent label complexity bound, which holds for any ap-

proximate greedy algorithm that outputs an approximate majority vote. We give here a sketch of the proof

idea, the complete proof can be found in Appendix A.

Theorem 5 Let X = {x1, . . . ,xm}. Let H be a hypothesis class, and let P be a distribution over H . Suppose

that A is α-approximately greedy with respect to P. Further suppose that it outputs a β-approximate majority

vote. If A is executed with input (X ,L,T ) where L ⇚ h ∈H , then for all

T ≥ α(2ln(1/P(h))+ ln(
β

1−β
)) ·OPTmax,

A outputs L(1), . . . ,L(m).

Proof [Sketch] Fix a pool X . For any algorithm alg, denote by Vt(alg,h) the version space induced by the

first n labels it queries if the true labeling of the pool is consistent with h. Denote the average version space

reduction of alg after t queries by

favg(alg, t) = 1−Eh∼P[P(Vt(alg,h))].

Golovin and Krause (2010) prove that since A is α-approximately greedy, for any pool-based algorithm alg,

and for every k, t ∈ N,

favg(A , t)≥ favg(alg,k)(1− exp(−t/αk)). (2)

Let opt be an algorithm that achieves OPTmax. We show (see Appendix A) that for any hypothesis h ∈H and

any active learner alg,

favg(opt,OPTmax)− favg(alg, t)≥ P(h)(P(Vt(alg,h))−P(h)).

Combining this with Equation (2) we conclude that if A is α-approximately greedy then

P(h)

P(Vt(A ,h))
≥ P(h)2

exp(− t
αOPTmax

)+P(h)2
.

This means that if P(h) is large enough and we run an approximate greedy algorithm, then after a suffi-

cient number of iterations, most of the remaining version space induces the correct labeling of the sample.

Specifically, if t ≥ α(2ln(1/P(h))+ ln( β
1−β

)) ·OPTmax, then P(h)/P(Vt(A ,h)) ≥ β. Since A outputs a β-

approximate majority labeling from Vt(A ,h), A returns the correct labeling.

When P(h)≫ pmin, the bound in Theorem 5 is stronger than the guarantee in Equation (1), obtained

by Golovin and Krause (2010). Note, however, that this bound depends on the probability of the target
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hypothesis and thus is not known a-priori, unless additional assumptions are made. The margin assumption,

which we discuss below, is an example for such a plausible assumption. Moreover, our experimental results

indicate that even when such an apriori bound is not known, using a majority vote is preferable to selecting

an arbitrary random hypothesis from an impure version space (see Figure 1 in Section 6.2).

Importantly, such an improved approximation factor cannot be obtained for a general approximate-greedy

algorithm, even in a very simple setting. Thus, we can conclude that some algorithmic change is necessary.

To show this, consider the setting of thresholds on the line. In this setting, the domain of examples is [0,1],
and the hypothesis class includes all the hypotheses defined by a threshold on [0,1]. Formally,

Hline = {hc | c ∈ [0,1],hc(x) = 1⇔ x≥ c}.

Note that this setting is isomorphic to the case of homogeneous halfspaces with examples on a line in any

Euclidean space of two or more dimensions.

Theorem 6 Consider pool-based active learning on Hline, and assume that P on Hline selects hc by drawing

the value c uniformly from [0,1]. For any α > 1 there exists an α-approximately greedy algorithm A such

that for any m > 0 there exists a pool X ⊆ [0,1] of size m, and a threshold c such that P(hc) = 1/2, while the

label-complexity of A for L ⇚ hc is m
⌈log(m)⌉ ·OPTmax.

Proof For the hypothesis class Hline, the possible version spaces after a partial run of an active learner are all

of the form [a,b]⊆ [0,1].
First, it is easy to see that binary search on the pool can identify any hypothesis in [0,1] using ⌈log(m)⌉

example, thus OPTmax = ⌈log(m)⌉. Now, Consider an active learning algorithm that satisfies the following

properties:

• If the current version space is [a,b], it queries the smallest x that would still make the algorithm α-

approximately greedy. Formally, it selects

x = min{x ∈ X | (x−a)(b− x)≥ 1

α
max

x̃∈X∩[a,b]
(x̃−a)(b− x̃)}.

• When the budget of queries is exhausted, if the version space is [a,b], then the algorithm labels the

points above a as positive and the rest as negative.

It is easy to see that this algorithm is α-approximately greedy, since in this problem V 1
t,x ·V−1

t,x = (x−a)(b−x)
for all x ∈ [a,b] = Vt . Now for a given pool size m ≥ 2, consider a pool of examples defined as follows.

First, let x1 = 1, x2 = 1/2 and x3 = 0. Second, for each i ≥ 3, define xi+1 recursively as the solution to

(xi+1− xi)(1− xi+1) =
1
α (x2− xi)(x1− x2). Since α > 1, it is easy to see by induction that for all i ≥ 3,

xi+1 ∈ (xi,x2). Furthermore, suppose the true labeling is induced by h3/4; Thus the only pool example with

a positive label is x1, and P(h3/4) = 1/2. In this case, the algorithm we just defined will query all the pool

examples x4,x5, . . . ,xm in order, and only then will it query x2 and finally x1. If stopped at any time t ≤m−1,

it will label all the points that it has not queried yet as positive, thus if t < m− 1 the output will be an

erroneous labeling. Finally, note that the same holds for the pool x1,x2,x4, . . . ,xm that does not include x3, so

the algorithm must query this entire pool to identify the correct labeling.

Interestingly, this theorem does not hold for α = 1, that is for the exact greedy algorithm. This follows from

Theorem 18, which we state and prove in Section 6.

So far we have considered a general hypothesis class. We now discuss the class of halfspaces in R
d ,

denoted by W above. For simplicity, we will slightly overload notation and sometimes use w to denote

the halfspace it determines. Every hypothesis in W can be described by a vector w ∈ B
d
1 , where B

d
1 is the

Euclidean unit ball, Bd
1 = {w ∈ R

d | ‖w‖ ≤ 1}. We fix the distribution P to be the one that selects a vector

w uniformly from B
d
1 . Our active learning algorithm for halfspaces, which is called ALuMA, is presented in

Section 5. ALuMA receives as input an extra parameter δ ∈ (0,1), which serves as a measure of the desired

confidence level. The following lemma, which we prove in Section 5, shows that ALuMA has the desired

properties described above with high probability.
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Lemma 7 If ALuMA is executed with confidence δ, then with probability 1−δ over its internal randomiza-

tion, ALuMA is 4-approximately greedy and outputs a 2/3-approximate majority vote. Furthermore, ALuMA

is polynomial in the pool size, the dimension, and log(1/δ).

Combining the above lemma with Theorem 5 we immediately obtain that ALuMA’s label complexity is

O(log(1/P(h)) ·OPTmax). We can upper-bound log(1/P(h)) using the familiar notion of margin: For any

hypothesis h ∈W defined by some w ∈ Bd
1 , let γ(h) be the maximal margin of the labeling of X by h, namely

γ(h) = maxv:‖v‖=1 mini∈[m] h(xi)〈v,xi〉/‖xi‖. We have the following lemma, which we prove in Appendix D:

Lemma 8 For all h ∈W , P(h)≥
(

γ(h)
2

)d

.

From Lemma 8 and Lemma 7, we obtain the following corollary, which provides a guarantee for ALuMA

that depends on the margin of the target hypothesis.

Corollary 9 Let X = {x1, . . . ,xm} ⊆ B
d
1 , where B

d
1 is the unit Euclidean ball of Rd . Let δ ∈ (0,1) be a

confidence parameter. Suppose that ALuMA is executed with input (X ,L,T,δ), where L ⇚ h ∈W and T ≥
4(2d ln(2/γ(h))+ ln(2)) ·OPTmax. Then, with probability of at least 1−δ over ALuMA’s own randomization,

it outputs L(1), . . . ,L(m).

Note that ALuMA is allowed to use randomization, and it can fail to output the correct label with prob-

ability δ. In contrast, in the definition of OPTmax we required that the optimal algorithm always succeeds,

in effect making it deterministic. One may suggest that the approximation factor we achieve for ALuMA in

Lemma 7 is due to this seeming advantage for ALuMA. We now show that this is not the case—the same ap-

proximation factor can be achieved when ALuMA and the optimal algorithm are allowed the same probability

of failure. Let m be the size of the pool and let d be the dimension of the examples, and set δ0 =
1

2md . Denote

by Nδ(A ,h) the number of calls to L that A makes before outputting (L(x1), . . . ,L(xm)) with probability at

least 1−δ, for L ⇚ h. Define OPTδ0
= minA maxh Nδ0

(A,h).
First, note that by setting δ = δ0 in ALuMA, we get that Nδ(ALuMA,h) ≤ O(log(1/P(h)) ·OPTmax).

Moreover, ALuMA with δ = δ0 is polynomial in m and d (since it is polynomial in ln(1/δ)). Second,

by Sauer’s lemma there are at most md different possible labelings for the given pool. Thus by the union

bound, there exists a fixed choice of the random bits used by an algorithm that achieves OPTδ0
, that leads

to the correct identification of the labeling for all possible labelings L(1), . . . ,L(m). It follows that OPTδ0
=

OPTmax. Therefore the same factor of approximation can be achieved for ALuMA with δ = δ0, compared to

OPTδ0
.

Our result for ALuMA provides a target-dependent approximation factor guarantee, depending on the

margin of the target hypothesis. We can also consider the minimal possible margin, γ = minh∈W γ(h), and

deduce from Corollary 9, or from the results of Golovin and Krause (2010), a uniform approximation factor

of O(d log(1/γ)). How small can γ be? The following result bounds this minimal margin from below under

the reasonable assumption that the examples are represented by numbers of a finite accuracy.

Lemma 10 Let c > 0 be such that 1/c is an integer and suppose that X ⊂ {−1,−1+ c, . . . ,1− c,1}d . Then,

minh∈W γ(h)≥ (c/
√

d)d+2.

The proof, given in Appendix D, is an adaptation of a classic result due to Muroga et al. (1961). We con-

clude that under this assumption for halfspaces, pmin = Ω((c/d)d2
), and deduce an approximation factor

of d2 log(d/c) for the worst-case label complexity of ALuMA. The exponential dependence of the minimal

margin on d here is necessary; as shown in Håstad (1994), the minimal margin can indeed be exponentially

small, even if the points are taken only from {±1}d .

We also derive a lower bound, showing that the dependence of our bounds on γ or on c is necessary.

Whether the dependence on d is also necessary is an open question for future work.

Theorem 11 For any γ ∈ (0,1/8), there exists a pool X ⊆ B
2
1 ∩{−1,1+ c, . . . ,1− c,1}2 for c = Θ(γ), and

a target hypothesis h∗ ∈W for which γ(h∗) = Ω(γ), such that there exists an exact greedy algorithm that re-

quires Ω(ln(1/γ)) =Ω(ln(1/c)) labels in order to output a correct majority vote, while the optimal algorithm

requires only O(log(log(1/γ))) queries.
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The proof of Theorem 11 is provided in Appendix D. In the next section we describe the ALuMA algorithm

in detail.

5. The ALuMA Algorithm

We now describe our algorithm, listed below as Alg. 1, and explain why Lemma 7 holds. We name the

algorithm Active Learning under a Margin Assumption or ALuMA. Its inputs are the unlabeled sample X ,

the labeling oracle L, the maximal allowed number of label queries T , and the desired confidence δ ∈ (0,1).
It returns the labels of all the examples in X .

As we discussed earlier, in each iteration, we wish to choose among the instances in the pool, the instance

whose label would lead to the maximal (expected) reduction in the version space. Denote by It the set of

indices corresponding to the elements in the pool whose label was not queried yet (I0 = [m]). Then, in round

t, we wish to find

k = argmax
i∈It

P(V 1
t,xi

) ·P(V−1
t,xi

). (3)

Recall we take P to be uniform over W , the class of homogenous half-spaces in R
d . In this case, the

probability of a version space is equivalent to its volume, up to constant factors. Therefore, in order to be able

to solve Equation (3), we need to calculate the volumes of the sets V 1
t,x and V−1

t,x for every element x in the

pool. Both of these sets are convex sets obtained by intersecting the unit ball with halfspaces. The problem

of calculating the volume of such convex sets in R
d is #P-hard if d is not fixed (Brightwell and Winkler,

1991). In many learning applications d is large, therefore, indeed d should not be taken as fixed. Moreover,

deterministically approximating the volume is NP-hard in the general case (Matoušek, 2002). Luckily, it is

possible to approximate this volume using randomization. Specifically, in Kannan et al. (1997) a randomized

algorithm with the following guarantees is provided, where Vol(K) denotes the volume of the set K.

Lemma 12 Let K ⊆ R
d be a convex body with an efficient separation oracle. There exists a randomized

algorithm, such that given ε,δ> 0, with probability at least 1−δ the algorithm returns a non-negative number

Γ such that (1−ε)Γ < Vol(K)< (1+ε)Γ. The running time of the algorithm is polynomial in d,1/ε, ln(1/δ).

We denote an execution of this algorithm on a convex body K by Γ← VolEst(K,ε,δ). The algorithm

is polynomial in d,1/ε, ln(1/δ). ALuMA uses this algorithm to estimate P(V 1
t,x) and P(V−1

t,x ) with sufficient

accuracy. We denote these approximations by v̂x,1 and v̂x,−1 respectively. Using the constants in ALuMA, we

can show the following.

Lemma 13 With probability at least 1−δ/2, Alg. 1 is 4-approximately greedy.

Proof Fix some t ∈ [T ]. Let k ∈ It be the index chosen by ALuMA. Let k∗ be the index corresponding to

the value of Equation (3). Since ALuMA performs at most 2m approximations in each round, we obtain by

Lemma 12 and the union bound that with probability at least 1− δ
2T

, for each i ∈ It and each j ∈ {−1,1},

v̂xi, j ∈
(

2

3
Vol(V

j
t,xi

),
4

3
Vol(V

j
t,xi

)

)

.

In addition, v̂xk,1 · v̂xk,−1 ≥ v̂xk∗ ,1 · v̂xk∗ ,−1. Hence, with probability at least 1− δ
2T

,

16

9
Vol(V−1

t,xk
) ·Vol(V 1

t,xk
)≥ 4

9
Vol(V−1

t,xk∗ ) ·Vol(V 1
t,xk∗ ).

Applying the union bound over T iteration completes our proof.

After T iterations, ALuMA needs to output the majority vote of a version space that has a high enough

purity level. To output an approximate majority vote from the final version space V , we would like to uni-

formly draw several hypotheses from V and label X according to a majority vote over these hypotheses. The
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Algorithm 1 The ALuMA algorithm

1: Input: X = {x1, . . . ,xm}, L : [m]→{−1,1}, T , δ
2: I1← [m], V1← B

d
1

3: for t = 1 to T do

4: ∀i ∈ It , j ∈ {±1}, do v̂xi, j← VolEst(V
j

t,xi
, 1

3
, δ

4mT
)

5: Select it ∈ argmaxi∈It
(v̂xi,1 · v̂xi,−1)

6: It+1← It \{it}
7: Request y = L(it)
8: Vt+1←Vt ∩{w : y〈w,xit 〉> 0}
9: end for

10: M← ⌈72ln(2/δ)⌉.
11: Draw w1, . . . ,wM

1
12

-uniformly from VT+1.

12: For each xi return the label yi = sgn
(

∑M
j=1 sgn(〈w j,xi〉)

)

.

task of uniformly drawing hyphteses from V can be approximated using the hit-and-run algorithm (Lovász,

1999). The hit-and-run algorithm efficiently draws a random sample from a convex body K according to

a distribution which is close in total variation distance to the uniform distribution over K. Formally, The

following definition parametrizes the closeness of a distribution to the uniform distribution:

Definition 14 Let K ⊆ R
d be a convex body with an efficient separation oracle, and let τ be a distribution

over K. τ is λ-uniform if supA |τ(A)−P(A)/P(K)| ≤ λ, where the supremum is over all measurable subsets

of K.

The hit-and-run algorithm draws a sample from a λ-uniform distribution in time Õ(d3/λ2). The next

lemma shows that using the hit-and-run as suggested above indeed produces a majority vote classification.

Lemma 15 ALuMA outputs a 2/3-approximate majority vote with probability at least 1−δ/2.

Proof Assume that there exists a labeling Z : X→{±1} such that Ph∼P[Z ⇚ h | h∈VT+1]≥ 2/3. In step 11 of

ALuMA, M ≥ 72ln(2/δ) hypotheses are drawn 1
12

-uniformly at random from Vt . Therefore each hypothesis

hi ∈VT+1 is consistent with Z with probability at least 7
12

. By Hoeffding’s inequality,

P

[

1

M

M

∑
i=1

I[hi ∈V (h|X )]≤
1

2

]

≤ exp(−M/72) =
δ

2
.

Therefore, with probability at least 1−δ/2, ALuMA outputs a 2/3-approximate majority vote.

We can now prove Lemma 7.

Proof (Of Lemma 7) Lemma 13 and Lemma 15 above prove the first two parts of the lemma. We only have

left to analyze the time complexity of ALuMA. In each iteration, the cost of ALuMA is dominated by the cost

of performing at most 2m volume approximation, each of which costs O(d5 ln(1/δ)). As we discussed above,

implementing the majority vote costs polynomial time in d and ln(1/δ). Overall, the runtime of ALuMA is

polynomial in m (which upper bounds T ), d and log(1/δ).

5.1 A Simpler Implementation of ALuMA

The ALuMA algorithm described in Alg. 1 uses O(T m) volume estimations as a black-box procedure, where

T is the budget of labels and m is the pool size. The complexity of each application of the volume estimation
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procedure is Õ(d5) where d is the dimension. Thus the overall complexity of the algorithm is Õ(T md5). This

complexity can be somewhat improved under some “luckiness” conditions.

The volume estimation procedure uses λ-uniform sampling based on hit-and-run as its core procedure.

Instead, we can use hit-and-run directly as follows: At each iteration of ALuMA, instead of step 4, perform

the following procedure:

Algorithm 2 Estimation Procedure

1: Input: λ ∈ (0, 1
24
),Vt , It

2: k← ln(2Nm/δ)
2λ2

3: Sample h1, . . . ,hk ∈Vt λ-uniformly.

4: ∀i ∈ It , j ∈ {−1,+1}, v̂xi, j← 1
k
|{i | hi(xi) = j}|.

The complexity of ALuMA when using this procedure is Õ(T (d3/λ4 +m/λ2)), which is better than the

complexity of the full Alg. 1 for a constant λ. An additional practical benefit of this alternative estimation pro-

cedure is that when implementing, it is easy to limit the actual computation time used in the implementation

by running the procedure with a smaller number k and a smaller number of hit-and-run mixing iterations.2

This provides a natural trade-off between computation time and labeling costs.

The following theorem shows that under mild conditions, using the estimation procedure listed in Alg. 2

also results in an approximately greedy algorithm, as does the original implementation of ALuMA.

Theorem 16 If for each iteration t of the algorithm, the greedy choice x∗ satisfies

∀ j ∈ {−1,+1}, P[h(x∗) = j | h ∈Vt ]≥ 4
√

λ

then ALuMA with the estimation procedure is a 2-approximate greedy algorithm. Moreover, it is possible to

efficiently verify that this condition holds while running the algorithm.

Proof Fix the iteration t, and denote px,1 = P(V 1
t,x)/P(Vt) and px,−1 = P(V 1

t,x)/P(Vt). Note that px,1+ px,−1 =
1. Since h1, . . . ,hk are sampled λ-uniformly from the version space, we have

∀i ∈ [k], |P[hi ∈V
j

t,x]− px, j| ≤ λ. (4)

In addition, by Hoeffding’s inequality and a union bound over the examples in the pool and the iterations of

the algorithm,

P[∃x, |v̂xi, j−P[hi ∈V
j

t,x]| ≥ λ]≤ 2mexp(−2kλ2). (5)

From Alg. 2 we have k = ln(2m/δ)
2λ2 . Combining this with Equation (4) and Equation (5) we get that

P[∃x, |v̂xi, j− pxi, j]| ≥ 2λ]≤ δ.

The greedy choice for this iteration is

x∗ ∈ argmax
x∈X

∆(h|X ,x) = argmax
x∈X

(px,1 px,−1).

By the assumption in the theorem, px∗, j ≥ 4
√

λ for j ∈ {−1,+1}. Since λ ∈ (0, 1
64
), we have λ≤

√
λ/8.

Therefore px∗, j−2λ≥ 4
√

λ−
√

λ/4≥
√

10λ. Therefore

v̂x∗,1v̂x∗,−1 ≥ (px∗,1−2λ)(px∗,−1−2λ)≥ 10λ. (6)

2. Gilad-Bachrach et al. (2005) report that the actual mixing time of hit-and-run is much faster than the one guaranteed by the theoret-

ical bounds, and we have observed a similar phenomenon in our experiments.
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Let x̃ = argmax(v̂x,−1v̂x,+1) be the query selected by ALuMA using Alg. 2. Then

v̂x∗,−1v̂x∗,+1 ≤ v̂x̃,−1v̂x̃,+1 ≤ (px̃,1 +2λ)(px̃,−1 +2λ)≤ px̃,1 px̃,−1 +4λ.

Where in the last inequality we used the facts that px̃,1 + px̃,−1 = 1 and 4λ2 ≤ 2λ. On the other hand, by

Equation (6)

v̂x∗,−1v̂x∗,+1 ≥ 5λ+
1

2
v̂x∗,−1v̂x∗,+1 ≥ 5λ+

1

2
(px∗,−1−2λ)(px∗,−1−2λ)≥ 4λ+

1

2
px∗,−1 px∗,−1.

Combining the two inequalities for v̂x∗,−1v̂x∗,+1 it follows that px̃,1 px̃,−1 ≥ 1
2

px∗,−1 px∗,−1, thus this is a

2-approximately greedy algorithm.

To verify that the assumption holds at each iteration of the algorithm, note that for all x = xi such that

i ∈ It
px,−1 px,+1 ≥ (v̂x,−1−2λ)(v̂x,+1−2λ)≥ v̂x,−1v̂x,+1−2λ.

therefore it suffices to check that for all x = xi such that i ∈ It v̂x,−1v̂x,+1 ≥ 4
√

λ+2λ.

The condition added in this theorem is that the best example in each iteration should induce a fairly

balanced partition of the current version space. In our experiments we noticed that this is generally the case

in practice. Moreover, the theorem shows that it is possible to verify that the condition holds while running the

algorithm. Thus, the estimation procedure can easily be augmented with an additional verification step at the

beginning of each iteration. On iterations that fail the verification, the algorithm will use the original black-

box volume estimation procedure. We have used this simpler implementation in our experiments, which are

reported below.

5.2 Handling Non-Separable Data and Kernel Representations

If the data pool X is not separable, but a small upper bound on the total hinge-loss of the best separator can

be assumed, then ALuMA can be applied after a preprocessing step, which we describe in detail below. This

preprocessing step maps the points in X to a set of points in a higher dimension, which are separable using the

original labels of X . The dimensionality depends on the margin and on the bound on the total hinge-loss of

the original representation. The preprocessing step also supports kernel representations, so that the original

X can be represented by a kernel matrix as well. Applying ALuMA after this preprocessing steps results

in an approximately optimal label complexity, however OPTmax here is measured with respect to the new

representation.

While some of the transformations we employ in the preprocessing step have been discussed before in

other contexts (see, e.g., Balcan et al., 2006b), we describe and analyze the full procedure here for complete-

ness. The preprocessing step is composed of two simple transformations. In the first transformation each

example xi ∈ X is mapped to an example in dimension d +m, defined by x′i = (axi;
√

1−a2 · ei), where ei is

the i’th vector of the natural basis of Rm and a > 0 is a scalar that will be defined below. Thus the first d coor-

dinates of x′i hold the original vector times a, the rest of the coordinates are zero,except for x′i[d+ i] =
√

1−a2.

This mapping guarantees that the set X ′ = (x′1, . . . ,x
′
m) is separable with the same labels as those of X , and

with a margin that depends on the cumulative squared-hinge-loss of the data.

In the second transformation, a Johnson-Lindenstrauss random projection (Johnson and Lindenstrauss,

1984; Bourgain, 1985) is applied to X ′, thus producing a new set of points X̄ = (x̄1, . . . , x̄m) in a different

dimension R
k, where k depends on the original margin and on the amount of margin error. With high proba-

bility, the new set of points will be separable with a margin that also depends on the original margin and on

the amount of margin error. If the input data is provided not as vectors in R
d but via a kernel matrix, then a

simple decomposition is performed before the preprocessing begins.

The full preprocessing procedure is listed below as Alg. 3. The first input to the algorithm is the data for

preprocessing, given as X ⊆R
d or as a kernel matrix K ∈Rm×m. The other inputs are γ—a margin parameter,

H—an upper bound on the margin error relative to γ, and δ, which is the required confidence.
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Algorithm 3 Preprocessing

1: Input: X = {x1, . . . ,xm} ∈ R
d or K ∈ R

m×m, γ, H, δ
2: if input data is a kernel matrix K then

3: Find U ∈ R
m×m such that K =UUT

4: ∀i ∈ [m],xi← row i of U

5: d← m

6: end if

7: a←
√

1

1+
√

H

8: ∀i ∈ [m],x′i← (axi;
√

1−a2 · ei)

9: k← O
(

(H+1) ln(m/δ)
γ2

)

10: M← a random {±1} matrix of dimension k× (d +m)
11: for i ∈ [m] do

12: x̄i←Mx′i
13: end for

14: Return (x̄1, . . . , x̄m).

After the preprocessing step, X̄ is used as input to ALuMA, which then returns a set of labels for the

examples in X̄ . These are also the labels of the examples in the original X . To retrieve a halfspace for X with

the least margin error, any passive learning algorithm can be applied to the resulting labeled sample. The full

active learning procedure is described in Alg. 4.

Note that if ALuMA returns the correct labels for the sample, the usual generalization bounds for passive

supervised learning can be used to bound the true error of the returned separator w. In particular, we can

apply the support vector machine algorithm (SVM) and rely on generalization bounds for SVM.

Algorithm 4 Active Learning

1: Input: X = {x1, . . . ,xm} or K ∈ R
m×m, L : [m]→{−1,1}, N, γ, H, δ

2: if input has X then

3: Get X̄ by running Alg. 3 with input X ,γ,H,δ/2.

4: else

5: Get X̄ by running Alg. 3 with input K,γ,H,δ/2.

6: end if

7: Get (y1, . . . ,ym) by running ALuMA with input X̄ , L, N, δ/2.

8: Get w ∈ R
d by running SVM on the labeled sample {(x1,y1), . . . ,(xm,ym)}.

9: Return w.

The result of these transformations are summarized in the following theorem.

Theorem 17 Let X = {x1, . . . ,xm} ⊆ B, where B is the unit ball in some Hilbert space. Let H ≥ 0 and γ > 0,

and assume there exists a w∗ ∈ B such that

H ≥
m

∑
i=1

max(0,γ−L(i)〈w∗,xi〉)2.

Let δ ∈ (0,1) be a confidence parameter. There exists an algorithm that receives X as vectors in R
d or as a

kernel matrix K ∈ R
m×m, and input parameters γ and H, and outputs a set X̄ = {x̄1, . . . , x̄m} ⊆ R

k, such that

1. k = O
(

(H+1) ln(m/δ)
γ2

)

,

2. With probability 1−δ, X̄ ⊆ B
k
1 and (X̄ ,L) is separable with a margin

γ

2+2
√

H
.
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3. The run-time of the algorithm is polynomial in d,m,1/γ, ln(1/δ) if xi are represented as vectors in d,

and is polynomial in m,1/γ, ln(1/δ) if xi are represented by a kernel matrix.

The proof of Theorem 17 can be found in Appendix B. In Section 6.2 we demonstrate that in practice, this

procedure provides good label complexity results on real data sets. Investigating the relationship between

OPTmax in the new representation and OPTmax in the original representation is an important question for

future work.

6. Other Approaches: A Theoretical and Empirical Comparison

We now compare the effectiveness of the approach implemented by ALuMA to other active learning strate-

gies. ALuMA can be characterized by two properties: (1) its “objective” is to reduce the volume of the

version space and (2) at each iteration, it aggressively selects an example from the pool so as to (approxi-

mately) minimize its objective as much as possible (in a greedy sense). We discuss the implications of these

properties by comparing to other strategies. Property (1) is contrasted with strategies that focus on increasing

the number of examples whose label is known. Property (2) is contrasted with strategies which are “mellow”,

in that their criterion for querying examples is softer.

Much research has been devoted to the challenge of obtaining a substantial guaranteed improvement of

label complexity over regular “passive” learning for halfspaces in R
d . Examples (for the realizable case)

include the Query By Committee (QBC) algorithm (Seung et al., 1992; Freund et al., 1997), the CAL al-

gorithm (Cohn et al., 1994), and the Active Perceptron (Dasgupta et al., 2005). These algorithms are not

“pool-based” but rather use “selective-sampling”: they sample one example at each iteration, and immedi-

ately decide whether to ask for its label. Out of these algorithms, CAL is the most mellow, since it queries

any example whose label is yet undetermined by the version space. Its “objective” can be described as re-

ducing the number of examples which are labeled incorrectly, since it has been shown to do so in many cases

(Hanneke, 2007, 2011; Friedman, 2009). QBC and the active perceptron are less mellow. Their “objective”

is similar to that of ALuMA since they decide on examples to query based on geometric considerations.

In Section 6.1 we discuss the theoretical advantages and disadvantages of different strategies, by consid-

ering some interesting cases from a theoretical perspective. In Section 6.2 we report an empirical comparison

of several algorithms and discuss our conclusions.

6.1 Theoretical Comparison

The label complexity of the algorithms mentioned above is usually analyzed in the PAC setting, thus we

translate our guarantees into the PAC setting as well for the sake of comparison. We define the (ε,m,D)-label

complexity of an active learning algorithm to be the number of label queries that are required in order to

guarantee that given a sample of m unlabeled examples drawn from D, the error of the learned classifier will

be at most ε (with probability of at least 1− δ over the choice of sample). A a pool-based active learner

can be used to learn a classifier in the PAC model by first sampling a pool of m unlabeled examples from D,

then applying the pool-based active learner to this pool, and finally running a standard passive learner on the

labeled pool to obtain a classifier. For the class of halfspaces, if we sample an unlabeled pool of m = Ω̃(d/ε)
examples, then the learned classifier will have an error of at most ε (with high probability over the choice of

the pool).

To demonstrate the effect of the first property discussed above, consider again the simple case of thresh-

olds on the line defined in Section 4. Compare two greedy pool-based active learners for Hline : The first

follows a binary search procedure, greedily selecting the example that increases the number of known labels

the most. Such an algorithm requires ⌈log(m)⌉ queries to identify the correct labeling of the pool. The second

algorithm queries the example that splits the version space as evenly as possible. Theorem 5 implies a label

complexity of O(log(m) log(1/γ(h))) for such an algorithm, since OPTmax = ⌈log(m)⌉. However, a better

result holds for this simple case:
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Theorem 18 In the problem of thresholds on the line, for any pool with labeling L, the exact greedy algorithm

requires at most O(log(1/γ(h))) labels. This is also the label complexity of any approximate greedy algorithm

that outputs a majority vote.

Proof First, assume that the algorithm is exactly greedy. A version space for Hline is described by a segment

in [a,b]⊆ [0,1], and a query at point α results in a new version space, [a,α] or [α,b], depending on the label.

We now show that for every version space [a,b], at most two greedy queries suffice to either reduce the size

of the version space by a factor of at least 2/3, or to determine the labels of all the points in the pool.

Assume for simplicity that the version space is [0,1], and denote the pool of examples in the version space

by X . Assume w.l.o.g. that the greedy algorithm now queries α≤ 1
2
. If α > 1/3, then any answer to the query

will reduce the version space size to less than 2/3. Thus assume that α ≤ 1/3. If the query answer results

in the version space [0,α) then we are done since this version space is smaller than 2/3. We are left with

the case that the version space after querying α is [α,1]. Since the algorithm is greedy, it follows that for

β = min{x ∈ X | x≥ α}, we have β≥ 1−α: this is because if there was a point β ∈ (α,1−α), it would cut

the version space more evenly than α, in contradiction to the greedy choice of α. Note further that (α,1−α)
is larger than [1−α,1] since α≤ 1/3. Therefore, the most balanced choice for the greedy algorithm is β. If

the query answer for β cuts the version space to (β,1] then we are done, since 1−β ≤ α ≤ 1/3. Otherwise,

the query answer leaves us with the version space (α,β). This version space includes no more pool points,

by the definition of β. Thus in this case the algorithm has determined the labels of all points.

It follows that if the algorithm runs at least t iterations, then the size of the version space after t iterations

is at most (2/3)t/2. If the true labeling has a margin of γ, we conclude that (2/3)t/2 ≥ γ, thus t ≤O(log(1/γ)).
A similar argument can be carried for ALuMA, using a smaller bound on α and more iterations due to

the approximation, and noting that if the correct answer is in (α,1−α) then a majority vote over thresholds

drawn randomly from the version space will label the examples correctly.

Comparing the ⌈log(m)⌉ guarantee of the first algorithm to the log(1/γ(h)) guarantee of the second, we

reach the (unsurprising) conclusion, that the first algorithm is preferable when the true labeling has a small

margin, while the second is preferable when the true labeling has a large margin. This simple example ac-

centuates the implications of selecting the volume of the version space as an objective. A similar implication

can be derived by considering the PAC setting, replacing the binary-search algorithm with CAL, and letting

m = Θ̃(1/ε). On the single-dimensional line, CAL achieves a label-complexity of O(log(1/ε)) = O(log(m)),
similarly to the binary search strategy we described. Thus when ε is large compared to γ(h), CAL is better

than being greedy on the volume, and the opposite holds when the condition is reversed. QBC will behave

similarly to ALuMA in this setting.

To demonstrate the effect of the second property described above—being aggressive versus being mellow,

we consider the following example, adapted slightly from Dasgupta (2006).

Example 19 Consider two circles parallel to the (x,y) plane in R
3, one at the origin and one slightly above

it. For a given ε, fix 2/ε points that are evenly distributed on the top circle, and 2/ε points at the same

angles on the bottom circle (see left illustration below). The distribution Dε is an uneven mix of a uniform

distribution over the points on the top circle and one over the points of the bottom circle: The top circle is

given a much higher probability. All homogeneous separators label half of the bottom circle positively, but

an unknown part of the top circle (see right illustration). The bottom points can be very helpful in finding the

correct separator fast, but their probability is low.

+−
+−

Dasgupta has demonstrated via this example that active learning can gain in label complexity from having

significantly more unlabeled data. The following theorem shows that the aggressive strategy employed by
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ALuMA indeed achieves an exponential improvement when there are more unlabeled samples. In many

applications, unlabeled examples are virtually free to sample, thus it can be worthwhile to allow the active

learner to sample more examples than the passive sample complexity and use an aggressive strategy.3 In

contrast, the mellow strategy of CAL does not significantly improve over passive learning in this case. We

note that these results hold for any selective-sampling method that guarantees an error rate similar to passive

ERM given the same sample size. This falls in line with the observation of Balcan et al. (2007), that in some

cases a more aggressive approach is preferable.

Theorem 20 For all small enough ε ∈ (0,1) the distribution Dε in Example 19 satisfies

1. For m = O(1/ε), the (ε,m,Dε)-label complexity of any active learner is Ω(1/ε).

2. For m = Ω(log2(1/ε)/ε2), the (ε,m,Dε)-label complexity of ALuMA is O(log2(1/ε)).

3. For any value of m, the (ε,m,Dε)-label complexity of CAL is Ω(1/ε).

The proof of Theorem 20 is provided in Appendix C. The example above demonstrated that more unla-

beled examples can help ALuMA use less labels, whereas they do not help CAL. In fact, in some cases the

label complexity of CAL can be significantly worse than that of the optimal algorithm, even when both CAL

and the optimal algorithm have access to all the points in the support of the distribution. This is demonstrated

in the following example. Note that in this example, a passive learner also requires access to all the points in

the support of the distribution, thus CAL, passive learning, and optimal active learning all require the same

size of a random unlabeled pool.

Example 21 Consider a distribution in R
d that is supported by two types of points on an octahedron (see an

illustration for R3 below).

1. Vertices: {e1, . . . ,ed}.

2. Face centers: z/d for z ∈ {−1,+1}d .

Consider the hypothesis class W = {x 7→ sgn(〈x,w〉−1+ 1
d
) | w ∈ {−1,+1}d}. Each hypothesis in W ,

defined by some w ∈ {−1,+1}d , classifies at most d +1 data points as positive: these are the vertices ei for

i such that w[i] = +1, and the face center w/d.

Theorem 22 Consider Example 21 for d ≥ 3, and assume that the pool of examples includes the entire

support of the distribution. There is an efficient algorithm that finds the correct hypothesis from W with at

most d labels. On the other hand, with probability at least 1
e

over the randomization of the sample, CAL uses

at least 2d+d
2d+3

labels to find the correct separator.

3. In the limit of an infinite number of unlabeled examples, if the distribution has a non-zero support on the entire domain, the

pool-based setting becomes identical to the setting of membership queries (Angluin, 1988). In contrast, we are interested in finite

samples.
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Proof First, it is easy to see that if h∗ ∈W is the correct hypothesis, then

w = (h∗(e1), . . . ,h
∗(ed)).

Thus, it suffices to query the d vertices to discover the true w.

We now show that the number of queries CAL asks until finding the correct separator is exponential in d.

CAL inspects the unlabeled examples sequentially, and queries any example whose label cannot be inferred

from previous labels. Consider some run of CAL (determined by the random ordering of the sample). Assume

w.l.o.g. that each data point appears once in the sample. Let S be the set that includes the positive face center

and all the vertices. Note that CAL cannot terminate before either querying all the 2d − 1 negative face

centers, or querying at least one example from S. Moreover, CAL will query all the face centers it encounters

before encountering the first example from S. At each iteration t before encountering an example from S,

there is a probability of d+1
2d+d−t

that the next example is from S. Therefore, the probability that the first

T = 2d+d
2d+3

examples are not from S is

T−1

∏
t=0

(

1− d +1

2d +d− t

)

≥
(

1− d +1

2d +d−T

)T

≥ e
−2T d+1

2d+d−T = e

−2(d+1)

2d+d
T
−1 =

1

e
,

where in the second equality we used 1−a≥ exp(−2a) which holds for all a ∈ [0, 1
2
]. Therefore, with prob-

ability at least 1
e

the number of queries is at least 2d+d
2d+3

.

These examples show that in some cases an aggressive approach is preferable to a mellow approach such

as employed by CAL. At the same time, it should be noted that CAL has a guaranteed label complexity for

cases for which ALuMA currently has none. Its label complexity is bounded by Õ(dθ log(1/ε)), where θ is

the disagreement coefficient, a quantity that depends on the distribution and the target hypothesis (Hanneke,

2007, 2011). Specifically, if D is uniform over a sphere centered at the origin, then for all target hypothe-

ses θ = Θ(
√

d). Thus CAL achieves an exponential improvement over passive learning for this canonical

example. We do not have a similar analysis for ALuMA for the case of a uniform distribution.

6.2 Empirical Comparison

We carried out an empirical comparison between the algorithms discussed above. Our goal is twofold: First,

to evaluate ALuMA in practice, and second, to compare the performance of aggressive strategies compared

to mellow strategies. The aggressive strategies are represented in this evaluation by ALuMA and one of the

heuristics proposed by Tong and Koller (2002). The mellow strategy is represented by CAL. QBC represents

a middle-ground between aggressive and mellow. We also compare to a passive ERM algorithm—one that

uses random labeled examples. We evaluated the algorithms over synthetic and real data sets and compared

their label complexity performance.

Our implementation of ALuMA uses hit-and-run samples instead of full-blown volume estimation, as

described in Section 5.1. QBC is also implemented using hit-and-run, as described in Gilad-Bachrach et al.

(2005). For both ALuMA and QBC, we used a fixed number of mixing iterations for hit-and-run, which

we set to 1000. We also fixed the number of sampled hypotheses at each iteration of ALuMA to 1000, and

used the same set of hypotheses to calculate the majority vote for classification. CAL and QBC examine

the examples sequentially, thus the input provided to them was a random ordering of the example pool. The

algorithm TK is the first heuristic proposed in Tong and Koller (2002), in which the example chosen at each

iteration is the one closest to the max-margin solution of the labeled examples known so far. The graphs

below compare the train and the test errors of the different algorithms.

In each of the algorithms, the classification of the training examples is done using the version space

defined by the queried labels. The theory for CAL and ERM allows selecting an arbitrary predictor out of

the version space. In QBC, the hypothesis should be drawn uniformly at random from the version space. We

have found that all the algorithms show a significant improvement in classification error if they classify using
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Figure 1: QBC (MNIST 4 vs. 7) - Random hypothesis Vs. Majority vote

Figure 2: MNIST 3 vs. 5. Train error (left) and test error (right)

the majority vote classification proposed for ALuMA. This observation is demonstrated in Figure 1, which

shows the rate of error of QBC (on MNIST data which is described below) using a random hypothesis and

a majority vote. Therefore, in all of our experiments below, the results for all the algorithms are based on a

majority vote classification.

Our first data set is MNIST.4 The examples in this data set are gray-scale images of handwritten digits

in dimension 784. Each digit has about 6,000 training examples. We performed binary active learning by

pre-selecting pairs of digits. Figure 2 and Figure 3 depict the error as a function of the label budget for two

pairs of digits: 3 vs. 5 and 4 vs. 7. It is striking to observe that CAL provides no improvement over passive

ERM in the first 1000 examples, while this budget suffices to reach zero training error for ALuMA and TK.

We also tested the algorithms on the PCMAC data set.5 This is a real-world data set, which represents

a two-class categorization of the 20-Newsgroup collection. The examples are web-posts represented using

bag-of-words. The original dimension of examples is 7511. We used the Johnson-Lindenstrauss projection

to reduce the dimension to 300, which kept the data still separable. We used a training set of 1000 examples.

4. The data set is available at http://yann.lecun.com/exdb/mnist/.

5. The data set is available at http://vikas.sindhwani.org/datasets/lskm/matlab/pcmac.mat.
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Figure 3: MNIST 4 vs. 7. Train error (left) and test error (right)

Figure 4: PCMAC. Train error (left) and test error (right)

Figure 4 depicts the results. We were not able to run QBC long enough to use its entire label budget, as it

tends to become slower when the training error becomes small.

The following experiments show that ALuMA and TK outperform CAL and QBC even on a data sampled

from the uniform distribution on a sphere in R
d . Figure 5 and Figure 6 depict the error as a function of the

label budget when learning a random halfspace over the uniform distribution in R
10 and R

100 respectively.

Figure 5: Uniform distribution (d = 10). Train error (left) and test error (right)
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Figure 6: Uniform distribution (d = 100). Train error (up) and test error (down)

The difference between the performance of the different algorithms is less marked for d = 10 than for d = 100

, suggesting that the difference grows with the dimension. This result suggests that ALuMA might have a

better guarantee than the general relative analysis in the case of the uniform distribution. Achieving such an

analysis is an open question which is left for future work.

In the experiments reported so far, TK and ALuMA perform about the same, showing that the TK heuristic

is very successful. However, there are cases where TK performs much worse than ALuMA, as the following

synthetic experiment demonstrates. In this experiment the pool of examples is taken to be the support of the

distribution described in Example 21, with an additional dimension to account for halfspaces with a bias. We

also added the negative vertices −ei to the pool. Similarly to the proof of Theorem 22, it suffices to query the

vertices to reach zero error. Table 1 lists the number of iterations required in practice to achieve zero error

by each of the algorithms. In this experiment, unlike the rest, ALuMA is not only much better than QBC

and CAL, it is also much better than TK, which is worse even than QBC here. This suggests that TK might

not have guarantees similar to those of ALuMA, despite the fact that they both attempt to minimize the same

objective. The number of queries ALuMA requires is indeed close to the number of vertices.

d ALuMA TK QBC CAL ERM

10 29 156 50 308 1008

12 38 735 113 862 3958

15 55 959 150 2401 > 20000

Table 1: Octahedron: number of queries to achieve zero error

To summarize, in all of the experiments above, aggressive algorithms performed better than mellow ones.

These results are not fully explained by current theory. The experiments also show that ALuMA and TK have

comparable success in practice, but also that there are cases where TK is much worse than ALuMA.

6.3 Non-Separable Data

We now turn to evaluate ALuMA on non-separable data, based on the procedure described in Section 5.2.

We compare to IWAL (Beygelzimer et al., 2009), which is a state-of-the-art active learning algorithm for
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the agnostic case. We compared ALuMA and IWAL to the passive soft-SVM, which selects random labeled

examples from the training set as input.

Figure 7: MNIST 4 vs. 7. (non-separable) training error (left) and test error (right)

Figure 8: MNIST 3 vs. 5. (non-separable), training error (left) and test error (right)

In our first experiment, we tested the algorithms on the MNIST data, pairs 3 vs. 5 and 4 vs. 7 again, by first

reducing the dimension. Following the experimental procedure in Beygelzimer et al. (2009), we projected

the 784-dimensional data to a 25-dimensional space using PCA. This renders the two pairs of digits we tested

in Section 6.2 non-separable. Using model selection, we set the regularization parameter of soft-SVM to

λ = 10−3 and the maximal norm of the separator in IWAL to
√

1000. For ALuMA, the noise parameter was

set to H = 0.02 and the dimension after preprocessing was 240. The results are presented in Figures 7 and

8. It can be seen that ALuMA enjoys a faster improvement in error compared to IWAL. This improvement

might be attributed to the fact that we assume an upper bound on the hinge-loss in this case, while IWAL

must be prepared to handle any amount of label error.

Our second experiment is for the W1A data set.6 The original data contains a (sparse representation of)

more than 2000 train instances and more than 47,000 test instances in dimension 300. Our preprocessing

step used H = 10−2 and projected the data to dimension 260. The other parameters were the same as in

the previous experiments. The results are shown in Figure 9. It can be seen that in this data set IWAL and

ALuMA are comparable, both offering improvement over soft SVM. Unlike MNIST, here ALuMA does not

show a consistent improvement over IWAL. We suspect that this is due to the fact that the best achievable

error for this data is larger, thus decreasing ALuMA’s advantage.

6. The data set is available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.
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Figure 9: W1A training error (left) and test error (right)

7. Discussion

In this work we have shown that the aggressive approach for active learning can be implemented efficiently

and successfully for learning halfspaces. Our theoretical results shed light on the relationship between the

margin of the true separator and the number of active queries that the algorithm requires. The experiments

show that this approach is practical to implement, and results in improved performance compared to mellow

approaches.

Many questions remain open. First, while our analysis guarantees an approximation factor of O(d log(m)),
in practice our experiments for the uniform distribution show that in this case the approach performs as well

or better than algorithms which are known to achieve almost optimal rates, such as QBC, even in high di-

mensions. Providing a tight analysis for the label complexity of the aggressive approach for the uniform

distribution is thus an interesting open question. Further, while our guarantees only bound the number of

queries required to achieve zero error, in practice the algorithm performs well compared to other algorithms

even if the goal is only to reach some small non-zero error. Characterizing the behavior of the aggressive ap-

proach in this regime is another important open question. Lastly, our work shows that for low-error settings,

the aggressive approach can be preferable to the mellow approach. On the other hand, the mellow approach

is clearly preferable when error levels are very high. Thus we posit the following open problem for further

research: Characterizing the best active learning algorithm one should choose, given a numerical upper bound

on the amount of error in the given learning problem.

Appendix A. Proof of Theorem 5

In this section we provide the complete proof of Theorem 5. We will follow Golovin and Krause (2010) and

rely on the notion of adaptive sub-modularity.

Denote the product space of partial realizations by LX ,H . Let f : LX ,H → R+ be any utility function

from the set of possible partial labelings of X to the non-negative reals. We define the notions of adaptive

monotonicity and adaptive submodularity of a utility function using the following notation: For an element

x ∈ X , a subset Z ⊆ X and a hypothesis h ∈ H , we define the conditional expected marginal benefit of x,

conditioned on having observed the partial labeling h|Z , by

∆(h|Z ,x) = Eg

[

f (g|Z∪{x})− f (g|Z)
∣

∣g|Z = h|Z
]

.

Put another way, ∆(h|Z ,x) is the expected improvement of f if we add to Z the element x, where expectation

is over a choice of a hypothesis g taken uniformly at random from the set of hypotheses that agree with h on

Z.
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Definition 23 (Adaptive Monotonicity) A utility function f : LX ,H → R+ is adaptive monotone if the con-

ditional expected marginal benefit is always non-negative. That is, if for all h ∈ H ,Z ⊆ X and x ∈ X,

∆(h|Z ,x)≥ 0.

Definition 24 (Adaptive Submodularity) A function f : LX ,H → R+ is adaptive submodular if the condi-

tional expected marginal benefit of a given item does not increase if the partial labeling is extended. That is,

if for all h ∈H , for all Z1 ⊆ Z2 ⊆ X ,and for all x ∈ X,

∆(h|Z1
,x)≥ ∆(h|Z2

,x).

Any (deterministic) pool-based algorithm is associated with a policy function, which we usually denote

by π, which maps each partial realization h|S to an element x of X , namely, the element x queried by the

algorithm after observing h|S. It is natural to consider a greedy algorithm which always selects an item that

maximizes the marginal utility. Since it is often computationally hard to choose the element which maximizes

the marginal utility, we introduce the notion of an approximately-greedy algorithm, following Golovin and

Krause (2010).

Definition 25 (Approximate Greedy) Let α≥ 1. An algorithm which is associated with policy π : LX ,H →X

is α-approximately greedy with respect to a utility function f if for every h and for every Z ⊆ X

∆(h|Z ,π(h|Z))≥
1

α
max
x∈X

∆(h|Z ,x). (7)

If an algorithm A is 1-approximately greedy with respect to a utility function f , we simply say that A is

greedy w.r.t. f .

We denote by S(A ,h,k) the first k pairs of instances along with their labels observed by A , under the

assumption that L ⇚ h. Following this notation, the utility of running A for k steps under the assumption that

L ⇚ h is denoted by f (S(A ,h,k)). The expected utility of running A for k steps is defined by

favg(A ,k) = Eh∼P[ f (S(A ,h,k)].

The central theorem of adaptive submodularity, stated below as Theorem 26, links the expected utility

of the optimal policy for maximizing favg with the expected utility of the associated approximately-greedy

algorithm.

Theorem 26 (Golovin and Krause (2010)) Let f : LX ,H → R+ be a utility function, and let A be a (de-

terministic) active learning algorithm. If f is adaptive monotone and adaptive submodular, and A is α-

approximately greedy, then for any deterministic algorithm A∗ and for all positive integers t,k,

favg(A , t)≥ (1− e−
t

αk ) favg(A
∗,k).

Let P be a distribution over H . For any algorithm alg, denote by Vt(alg,h) the version space induced

by the first t labels it queries if the true labeling of the pool is consistent with h. Denote the version space

reduction of alg after t queries in the case that L⇐ h by

f (alg, t,h) = 1−P(Vt(alg,h)). (8)

The average version space reduction of alg after t queries is

favg(alg, t) = 1−Eh∼P[P(Vt(alg,h))].

In the active learning setting, we define the utility function f as in Equation (8) and have the following

result:
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Lemma 27 (Golovin and Krause (2010)) The function f defined in Equation (8) is adaptive monotone and

adaptive submodular.

Corollary 28 Let X = {x1, . . . ,xm}. Let H be a hypothesis class, and let P be a distribution over H . Suppose

that A is α-approximately greedy with respect to P, and let A∗ be a (deterministic) algorithm that achieves

OPTmax, that is cwc(A
∗) = OPTmax. Then, for all positive integers t,k,

favg(A , t)≥ (1− e−
t

αk ) favg(A
∗,k).

The following lemma will allow us to show that the version space of an α-approximately greedy algorithm

is relatively pure.

Lemma 29 Let A∗ be an algorithm that achieves OPTmax. For any h ∈H , any active learner A , and any t,

favg(A
∗,OPTmax)− favg(A , t)≥ P(V (h|X ))(P(Vt(A ,h))−P(V (h|X ))) .

Proof Since A∗ acheives the optimal worst-case cost, the version space induced by the labels that A∗ queries

within the first OPTmax iterations must be exactly the set of hypotheses which are consistent with the true

labels of the sample. Therefore, for any h ∈H .

P(VOPTmax(A
∗,h)) = P(V (h|X )).

By definition of favg,

favg(A
∗,OPTmax)− favg(A , t) = Eh∼P[P(Vt(A ,h))−P(VOPTmax(A

∗,h))]

= Eh∼P[P(Vt(A ,h))−P(V (h|X ))].

Since S(A ,h, t) does not depend on the value of h outside of X , we can sum over the possible labelings of X

to have

favg(A
∗,OPTmax)− favg(A , t) = ∑

h|X :h∈H

P(V (h|X ))(P(Vt(A ,h))−P(V (h|X ))).

Now, it is easy to see that for any h ∈H , Vt(A ,h)⊇V (h|X ), thus

P(Vt(A ,h))−P(V (h|X ))≥ 0.

It follows that for any h ∈H

favg(A
∗,OPTmax)− favg(A , t)≥ P(V (h|X ))(P(Vt(A ,h))−P(V (h|X ))).

Combining Corollary 28 and Lemma 29, the following corollary is immediate.

Corollary 30 For any α-approximate greedy algorithm A ,

∀h ∈H , P(V (h|X ))(P(Vt(A ,h))−P(V (h|X ))) ≤ e
− t

αOPTmax ,

which yields

∀h ∈H ,
P(V (h|X ))
P(Vt(A ,h))

≥ P(V (h|X ))2

e
− t

αOPTmax +P(V (h|X ))2

. (9)
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Proof (Of Theorem 5) Let A be α-approximately greedy algorithm which outputs a β-approximate majority

vote. Corollary 30 holds for A . Let h be the target hypothesis. Substituting T ≥ α(2ln(1/P(h))+ ln( β
1−β

)) ·
OPTmax into Equation (9) implies that

P(V (h|X ))
P(VT (A ,h))

≥ β .

The proof now follows from the fact that A outputs a β-approximate majority vote.

Appendix B. Handling Non-Separable Data and Kernel Representations

We now prove Theorem 17 by showing that Alg. 3 satisfies the claims of the theorem. It is clear that Alg. 3

is polynomial as required in item (3). In addition, item (1) holds from the definition of Alg. 3. We have left

to prove item (2). We first prove that it holds for the case where the input is represented directly as X ⊆ R
d .

We start by showing that under the assumption of Theorem 17, the set {x′1, . . . ,x′m}, which is generated

in step 8, is separated with a bounded margin by the original labels of xi. Fix γ > 0 and w∗ ∈ B
d
1 . For each

i ∈ [m], define

ℓi = max(0,γ−L(i)〈w∗,xi〉).
Thus, ℓi quantifies the margin violation of example xi by w∗, relative to its true label L(i).

Lemma 31 If H ≥ ∑m
i=1 ℓ

2
i , where H is the input to Alg. 3, then there is a w ∈ B

d+m
1 such that for all i ∈ [m],

L(i)〈w,x′i〉 ≥
γ

1+
√

H
.

Proof By step 8 in Alg. 3, x′i = (a · xi;
√

1−a2 · ei), where a =
√

1

1+
√

H
. Define

w′ = (w∗;
a√

1−a2
(L(1)ℓ1, . . . ,L(m)ℓm)).

Then

L(i)〈w′,x′i〉= aL(i)〈w∗,xi〉+aℓi ≥ a(γ− ℓi)+aℓi = aγ.

Let w = w′
‖w′‖ . Then w ∈ B

d+m
1 , and

L(i)〈w,x′i〉=
L(i)〈w′,x′i〉
‖w′‖ ≥ aγ

√

1+ a2

1−a2 ∑m
i=1 ℓ

2
i

=
γ

√

1
a2 +

1
1−a2 ∑m

i=1 ℓ
2
i

.

Set a2 = 1

1+
√

H
, and assume H ≥ ∑m

i=1 ℓ
2
i . Then

L(i)〈w,x′i〉 ≥
γ

1+
√

H
.

The set {x̄1, . . . , x̄m} returned by Alg. 3 is a Johnson-Lindenstrauss projection of {x′1, . . . ,x′m} on R
k. It is

known (see, e.g., Balcan et al., 2006b) that if a set of m points is separable with margin η and k≥O
(

ln(m/δ)
η2

)

,

then with probability 1−δ, the projected points are separable with margin η/2. Setting η = γ

1+
√

H
, it is easy

to see that step 12 in Alg. 3 indeed maintains the desired margin. This completes the proof of item (2) of

Theorem 17 for the case where the input is X ⊆ R
m.
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We now show that if the input is a kernel matrix K, then the decomposition step 3 preserves the separation

properties of the input data, thus showing that item (2) holds in this case as well. To show that our decom-

position step does not change the properties of the original data, we first use the following lemma, which

indicates that separation properties are conserved under different decompositions of the same kernel matrix.

Lemma 32 (Sabato et al. (2010), Lemma 6.3) Let K ∈ R
m×m be a positive definite matrix and let V ∈

R
m×n,U ∈ R

m×k be matrices such that K = VV T = UUT . For any vector w ∈ R
n there exists a vector

u ∈ R
k such that V w =Uu and ‖u‖ ≤ ‖w‖.

The next lemma extends the above result, showing that the property holds even if K is not invertible.

Lemma 33 Let K ∈ R
m×m be a positive definite matrix and let V ∈ R

m×n,U ∈ R
m×k be matrices such that

K =VV T =UUT . For any vector w ∈ R
n there exists a vector u ∈ R

k such that V w =Uu and ‖u‖ ≤ ‖w‖.

Proof For a matrix A and sets of indexes I,J let A[I] be the sub-matrix of A whose rows are the rows of A

with an index in I. Let A[I, I] be the sub-matrix of A whose rows and columns are those that have index I in

A.

If K is invertible, the claim holds by Lemma 32. Thus, assume K is singular. Let I ⊆ [m] be a maximal

subset such that the matrix K[I; I] is invertible.7 Then by Lemma 32, K[I; I] =V [I](V [I])T =U [I](U [I])T , and

there exists a vector u such that V [I]w =U [I]u, and ‖u‖ ≤ ‖w‖. We will show that for any i /∈ I, V [i]w =U [i]u
as well.

For any i /∈ I, K[I∪{i}; I∪{i}] is singular. Therefore V [I∪{i}] is singular, while V [I] is not. Thus there

is some vector λ ∈ R
|I| such that V [i]T = V [I]T λ. By a similar argument there is some vector η ∈ R

|I| such

that U [i]T =U [I]T η. We have K[I, i] =V [I]V [i]T =V [I]V [I]T λ = K[I, I]λ. Similarly for U , K[I, i] = K[I, I]η.

Therefore K[I, I](λ−η) = 0. Since K[I, I] is invertible, it follows that λ = η. Therefore, U [i]u = ηTU [I]u =
λTV [I]w =V [i]w.

We now use this lemma to show that the decomposition step does not change the upper bound on the

margin loss which is assumed in Theorem 17.

Theorem 34 Let ψ1, . . . ,ψm be a set of vectors in a Hilbert space S, and let K ∈ R
m×m such that for all

i, j ∈ [m], Ki, j = 〈ψi,ψ j〉. suppose there exists a w ∈ S with ‖w‖ ≤ 1 such that

H ≥
m

∑
i=1

max(0,γ− yi〈w,ψi〉)2. (10)

Let U ∈ R
m×k such that K =UUT and let xi be row i of U. Then there exists a u ∈ B

k
1 such that

H ≥
m

∑
i=1

max(0,γ− yi〈u,xi〉)2. (11)

Proof Let α1, . . . ,αn ∈ S be an orthogonal basis for the span of ψ1, . . . ,ψm and w, and let v1, . . . ,vm,vw ∈ R
n

such that ∑n
l=1 vi[l]αl = ψi and ∑n

l=1 vw[l]αl = w. Let V ∈Rm×n be a matrix such that row i of the matrix is vi.

Then K = VV T , and V vw = r, where r[i] = 〈vw,vi〉 = 〈w,ψi〉. By Lemma 33, there exists a u ∈ R
k such that

Uu = r. Then we have 〈u,xi〉 = r[i]. Therefore for all i ∈ [m], 〈w,ψi〉 = 〈u,xi〉, thus Equation (10) implies

Equation (11). In addition, ‖u‖ ≤ ‖vw‖= ‖w‖ ≤ 1, therefore u ∈ B
k
1.

7. If no such subset exists then K,V,U are all zero and the claim is trivial.
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Appendix C. Proof of Theorem 20

Proof [of Theorem 20] Assume that 1/(2ε) is an odd integer and ε < 1/8. Let Da be the uniform distribution

over points on the top circle, defined by

Sa = {an
def
= (

1√
2

cos2πεn,
1√
2

sin2πεn,
1√
2
) : n ∈ {0,1, . . . ,1/ε−1}} .

Let Db be the uniform distribution over points on the bottom circle, defined by

Sb = {bn
def
= (cos2πεn,sin2πεn,0) : n ∈ {0,1, . . . ,1/ε−1}} .

Let Dε/2 be the distribution (1− τ)Da + τDb, where τ = ε
4log(4/ε) . Note that in order to label Dε/2 correctly

with error no more than ε/2, all the labels of points in Sa need to be determined. We prove each of the

theorem statements in order. We consider the label complexity with high probability over the choice of

unlabeled sample, where high probability is 1−δ for some fixed δ ∈ (0,1/2).
First, we prove claim (1). If the unlabeled sample contains only points from Sa, then an active learner has

to query all the points in Sa to distinguish between a hypothesis that labels all of Sa positively and one that

labels positively all but one point in Sa. Since the probability of the entire set Sb is o(ε), an i.i.d. sample of

size O(1/ε), will not contain a point from Sb, thus any active learner will require Ω(1/ε) labels.

More formally, assume that there exists a constant C and ε0 > 0 such that if ε < ε0, then at most C/ε
examples are drawn. Assume from now that ε < ε0 and that C

4log(4/ε) ≤ 1/2. Let A be the event that an i.i.d.

sample of size m(ε)≤C/ε contains any element from Sb. Then, using the union bound, we obtain

P(A)≤ C

ε

ε

4log(4/ε)
≤ 1/2≤ 1−δ .

We now turn to prove claim (2). Assume that the size of the sample is at least
4log(4/ε) log(1/(εδ))

ε2 . It is easy

to check that with probability at least 1− δ, the sample contains all the points in Sa ∪ Sb. More formally,let

δ > 0 be any given confidence parameter. Let B be the event that the sample doesn’t contain all the points of

Db and let A the event that the sample doesn’t contain all the points of Da. For n ∈ {0,1, . . . ,1/ε−1} let Bn

be the event that the sample doesn’t contain the element bn. Then,

P(Bn) =

(

1− ε2

4log(4/ε)

)

4log(4/ε) log(2/(εδ))

ε2

≤ εδ/2 .

Using the union bound, we obtain that

P(B)≤ 1

ε
P(A0)≤ δ/2 .

Obviously, P(A) ≤ P(B). Using the union bound, we obtain that with probability at least 1− δ, both A

and B don’t occur.

Given such a sample as a pool, we now show that OPTmax =O(log(1/ε)), by describing an active learning

algorithm that achieves this label complexity:

1. For all possible separators, the points b0 = (1,0,0) and b1/2ε = (−1,0,0) have different labels. The

algorithm will first query these initial points, and then apply a binary search to find the boundary

between negative and positive labels in Sb. This identifies the labels of all the points in Sb using

O(log(1/ε)) queries.

2. Of the points in Sb, half are labeled positively and half negatively. Moreover, there are n1, n2 and

y ∈ {−1,1} such that bn1
, . . . ,bn2

are all labeled by y, and n2−n1 +1 = |Sb|/2 = 1
2ε (see illustration in

Figure 10). Let n3 =
n2+n1

2
(this is the middle point with label y). n3 is an integer because n2− n1 is

even, thus their sum is also even. Let n4 = mod (n3 + 1/2ε,1/2ε). Query the points an3
and an4

for

their label.
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bn1

bn2

bn3
bn4 +-

an3
an4 +-

Figure 10: Illustration for the proof of Theorem 20.

3. If an3
and an4

each have a different label, apply a binary search starting from these points to find the

boundaries between positive and negative labels in Sa, using O(log(1/ε)) queries. Otherwise, label all

the examples in Sa by the label of an3
.

This algorithm uses O(log(1/ε)) queries to label the sample. If an3
and an4

have different labels, it is clear

that the algorithm labels all the examples correctly. We only have left to prove that if they both have the

same label, then all the examples in Sa also share that label. Let h∗ be the true hypothesis, defined by some

homogeneous separator, and assume w.l.o.g that {bn | h∗(bn) = 1}= {bn ∈ Sb | bn[1]> 0} (note that no point

has bn[1] = 0 since 1/2ε is odd). It follows that n3 = 0 and n4 = 1/2ε, thus an3
= (1/

√
2,0,1/

√
2) and

an4
= (−1/

√
2,0,1/

√
2) (see illustration in Figure 10). We use the following lemma, whose proof can be

found in Appendix D:

Lemma 35 Assume 1/2ε is odd. If {bn ∈ Sb | h∗(bn) = 1} = {bn | bn[1] > 0} and h∗(a0) = h∗(a1/2ε) = y

then ∀an ∈ Sa, h∗(an) = y.

If follows that OPTmax = O(log(1/ε)).
To bound the label complexity of ALuMA, it suffices to bound from below the minimal margin of possible

separators over the given sample. Let h∗ be the correct hypothesis. By the same argument as in the proof of

Lemma 10, there exists some w ∈ R
3 that labels the sample identically to h∗ and attains its maximal margin

on three linearly independent points a,b,c from our sample. Hence, Aw = 1 where A ∈ R
3×3 is the matrix

whose rows are a,b,c ∈ Sa∪Sb. By Cramer’s rule, for every i ∈ [3]

w[i] =
detAi

detA
,

where Ai is the matrix obtained from A by replacing the ith column with the vector 1. Recall that the absolute

value of the determinant of A is the volume of the parallelepiped whose sides are a,b and c. Since a,b,c are

linearly independent, each of Sa and Sb includes at most two of them. Assume that a,b ∈ Sa and c ∈ Sb. In

this case, the surface area of the basis of this parallelepiped, defined by a and b, is at least sin2πε√
2

, and the

height is 1/
√

2. Hence,

|detA| ≥ sin2πε

2
= Ω(ε) .

The case where two of the points are in Sb leads to an even larger lower bound. Since the elements in each Ai

are in [−1,1], we also have that |detAi| ≤ 3! = 6. Thus, for i ∈ [3] we obtain that wi = O(1/ε). All in all, we

get ‖w‖2 = O(1/ε), and thus γ(h∗) = Ω(ε) . Applying Corollary 9, we obtain that ALuMA classifies all the

points correctly using O(log(1/γ(h∗)) ·OPTmax) = O(log2(1/ε)) labels.

Finally, we prove claim (3). CAL examines the examples sequentially at a random order, and queries

the label of any point whose label is not determined by previous examples. Thus, if the true hypothesis is
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all-positive on Sa, and CAL sees all the points in Sa before seeing any point in Sb, it will request Ω(1/ε)
labels. Hence, it suffices to show that there is a large probability that CAL will indeed examine all of Sa

before examining any point from Sb. Let A be the event that the first 1
ε log 4

ε examples of an i.i.d. sample

contain any element from Sb. Then, by the union bound, P(A)≤ 1
ε log( 4

ε ) · ε
4log 4

ε

= 1/4. Assume now that A

does not occur. Let B be the event that the first 1
ε log 1

ε examples do not contain all the elements in Sa. Then,

by the union bound, P(B) ≤ 1
ε (1− ε)

1
ε log 4

ε ≤ 1/4. All in all, with probability at least 1/2, CAL see all the

points in Sa before seeing any point in Sb and thus its label complexity is Ω(1/ε).

Appendix D. Other Proofs

In this section we provide proofs omitted from the text.

Proof [of Lemma 8] Fix h ∈W and let V = {h′ ∈ H : ∀i,h′(xi) = h(xi)}. Assume w.l.o.g. that ‖x‖ = 1 for

all x ∈ X . Denote for brevity γ = γ(h). Choose w ∈ B
d
1 such that ∀x ∈ X , h(x)〈w,x〉 ≥ γ. For a given v ∈ B

d
1 ,

denote by hv ∈ H the mapping x 7→ sgn(〈v,x〉). Note that for all v ∈ B
d
1 such that ‖w− v‖ < γ, hv ∈V . This

is because for all x ∈ X ,

h(x)〈v,x〉= 〈v−w,h(x) · x〉+h(x)〈w,x〉 ≥ −‖w− v‖ · ‖h(x) · x‖+ γ >−γ+ γ = 0,

Since hv(x) = sgn(〈v,x〉) it follows that hv(x) = h(x). We conclude that {v | hv ∈ V} ⊇ B
d
1 ∩B(w,γ), where

B(z,r) denotes the ball of radius r with center at z. Let u = (1− γ/2)w. Then for any z ∈ B(u,γ/2), we have

z ∈ B
d
1 , since

‖z‖= ‖z−u+u‖ ≤ ‖z−u‖+‖u‖ ≤ γ/2+1− γ/2 = 1.

In addition, z ∈ B(w,γ) since

‖z−w‖= ‖z−u+u−w‖ ≤ ‖z−u‖+‖u−w‖ ≤ γ/2+ γ/2 = γ.

Therefore B(u,γ/2)⊆ B
d
1 ∩B(w,γ). We conclude that {v | hv ∈V} ⊇ B(u,γ/2). Thus,

P(h) = P(V )≥ Vol(B(u,γ/2))/Vol(Bd
1)≥

( γ

2

)d

.

Proof (of Lemma 10) Let us multiply all examples in the pool by 1/c. Then, all the elements of all examples

in the pool are integers. Choose a labeling L which is consistent with some w∗. Consider the optimization

problem:

min
w
‖w‖2 s.t. ∀i, L(i)〈w,xi〉 ≥ 1 .

For simplicity assume that the pool of examples span all of Rd . Then, it is easy to show that if w the solution

to the above problem then there exist d linearly independent examples from the pool, denoted w.l.o.g. by

x1, . . . ,xd , such that L(i)〈w,xi〉 = 1 for all i. In other words, w is the solution of the linear system Aw = b

where the rows of A are x1, . . . ,xd and b = (L(1), . . . ,L(m))T .

By Cramer’s rule, wi = det(Ai)/det(A), where Ai is obtained by replacing column i of A by the vector

b. Since all elements of A are integers and A is invertible, we must have that |det(A)| ≥ 1. Therefore,

|wi| ≤ |det(Ai)|. Furthermore, by Hadamard’s inequality, |det(Ai)| is upper bounded by the product of the

norms of the columns of Ai. Since each element of Ai is upper bounded by 1/c, we obtain that the norm

of each column is at most
√

d
c

, hence |det(Ai)| ≤ (
√

d/c)d . It follows that ‖w‖ ≤
√

d (
√

d/c)d . Hence, the

margin is
1

‖w‖maxi ‖xi‖
≥ 1√

d (
√

d/c)d ·
√

d/c
=

1√
d (
√

d/c)d+1
.
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Proof (of Theorem 11) Set m = ⌊ln(1/γ)⌋ such that m is a power of 2. Let x′0 = (1,0) ∈ R
2. For all

i ∈ [m−1], define x′i = (cos(π/2i),sin(π/2i)). Fix c > 0, and define S = B
2
1∩{−1,−1+c, . . . ,1−c,1}2. For

each i ∈ {0,1, . . . ,m−1}, let xi be the nearest neighbor of x′i in S, that is xi = argminx∈S ‖x− x′i‖2. It can be

easily seen that if c = Θ(γ) then ∀i, ‖xi− x′i‖= O(γ).
Consider an exact greedy algorithm that always selects x0 first (this is possible since on the first round of

the algorithm, any query halves the version space). Suppose that the target hypothesis h∗ satisfies

h∗(xi) =

{

−1 i = 0

1 otherwise

By setting a small enough c we get that γ(h∗) = Ω(γ).
If c is small enough compared to γ, then after querying x0 the algorithm will query x1, . . . ,xm−1 in order.

In addition, on every round t < m−1 the majority vote would lead to the wrong labeling, since only a small

fraction of the version space belongs to the correct hypothesis. Thus the algorithm queries all the examples

(except perhaps one) before reaching the correct answer.

Proof [of Lemma 35] We prove the lemma for the case h∗(a1/2ε) = 1. The case h∗(a0) =−1 can be proved

similarly. Let w∗ be any hyperplane which is consistent with h∗. Let n1 =
1
4ε − 1

2
and let n2 = n1 +1. Then

bn1
= (cos(π/2−πε),sin(π/2−πε),0), and

bn2
= (cos(π/2+πε),sin(π/2+πε),0).

By the assumption of the lemma, 〈w∗,bn1
〉 > 0 and 〈w∗,bn2

〉 < 0. It follows that w∗[1]sinπε > w∗[2]cosπε
and −w∗[1]sinπε < w∗[2]cosπε. As a consequence, we obtain that |w∗[2]|< w∗[1] tan(πε).

Now, choose some n ∈ {0, . . . ,1/ε− 1}. We show that the corresponding element in Sa is labeled posi-

tively. First, from the last inequality, we obtain

〈w∗,an〉=
1√
2
〈w∗,(cos2πεn,sin2πεn,1)〉

≥ 1√
2
(w∗1(cos2πεn− tan(πε)sin(2πεn))+w∗3). (12)

We will now show that

∀n ∈ {0,1, . . . ,1/ε−1}, cos2πεn− tan(πε)sin(2πεn)≥−1. (13)

From symmetry, it suffices to prove this for every n ∈ {0,1, . . . ,1/(2ε)− 1}. We divide our range and

conclude for each part separately; since ε < 1/8, we have that tanεπ < 1. Then, cosα− tan(πε)sinα ≥ −1

in the range α ∈ [0,π/2]. For α ∈ [π/2,π− πε], it can be shown that the function cosα− tan(πε)sinα is

monotonically decreasing, thus it suffices to show that the inequality holds for n = 1/(2ε)−1. Indeed,

cos(π−2επ)− tan(επ)sin(π−2επ) =−cos(2πε)−2sin2(πε)

=−cos2(πε)− sin2(πε)

=−1 .

Therefore, we obtain from Equation (12) and Equation (13) that

1√
2
〈w∗,an〉 ≥

1√
2
(−w∗[1]+w∗[3]) = 〈w∗,(−1/

√
2,0,1/

√
2)〉= 〈w∗,a1/2ε〉> 0,

where the last inequality follows from the assumption that h∗(a1/2ε) = 1.

2613



GONEN, SABATO AND SHALEV-SHWARTZ

References

D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

E. M. Arkin, H. Meijer, J.S.B. Mitchell, D. Rappaport, and S.S. Skiena. Decision trees for geometric models.

In Proceedings of the Ninth Annual Symposium on Computational Geometry, pages 369–378. ACM, 1993.

M. F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. In Proceedings of the 23rd Inter-

national Conference on Machine Learning, pages 65–72. ACM, 2006a.

M. F. Balcan, A. Blum, and S. Vempala. Kernels as features: On kernels, margins, and low-dimensional

mappings. Machine Learning, 65(1):79–94, 2006b.

M. F. Balcan, A. Broder, and T. Zhang. Margin based active learning. Learning Theory, pages 35–50, 2007.

A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. In Proceedings of the

26th Annual International Conference on Machine Learning, pages 49–56. ACM, 2009.

J. Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal of Mathematics,

52(1):46–52, 1985.

G. Brightwell and P. Winkler. Counting linear extensions is #p-complete. In Proceedings of the Twenty-third

Annual ACM Symposium on Theory of Computing, STOC ’91, pages 175–181, 1991.

D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15(2):

201–221, 1994.

S. Dasgupta. Analysis of a greedy active learning strategy. Advances in Neural Information Processing

Systems, 17:337–344, 2005.

S. Dasgupta. Coarse sample complexity bounds for active learning. Advances in Neural Information Pro-

cessing Systems, 18:235, 2006.

S. Dasgupta, A. Kalai, and C. Monteleoni. Analysis of perceptron-based active learning. Learning Theory,

pages 889–905, 2005.

S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. Advances in Neural

Information Processing Systems, 20:353–360, 2007.

R. El-Yaniv and Y. Wiener. Active learning via perfect selective classification. The Journal of Machine

Learning Research, 13:255–279, 2012.

Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm.

Machine Learning, 28(2):133–168, 1997.

E. Friedman. Active learning for smooth problems. In Proceedings of the 22nd Conference on Learning

Theory, volume 1, pages 3–2, 2009.

R. Gilad-Bachrach, A. Navot, and N. Tishby. Query by committee made real. Advances in Neural Information

Processing Systems (NIPS), 19, 2005.

D. Golovin and A. Krause. Adaptive submodularity: A new approach to active learning and stochastic

optimization. In Proceedings of International Conference on Learning Theory (COLT), 2010.

S. Hanneke. A bound on the label complexity of agnostic active learning. In The 24th Annual International

Conference on Machine Learning (ICML), 2007.

S. Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):333–361, 2011.

2614



EFFICIENT ACTIVE LEARNING OF HALFSPACES
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Abstract

Sparsity has been showed to be one of the most important properties for visual recognition purposes.

In this paper we show that sparse representation plays a fundamental role in achieving one-shot

learning and real-time recognition of actions. We start off from RGBD images, combine motion

and appearance cues and extract state-of-the-art features in a computationally efficient way. The

proposed method relies on descriptors based on 3D Histograms of Scene Flow (3DHOFs) and

Global Histograms of Oriented Gradient (GHOGs); adaptive sparse coding is applied to capture

high-level patterns from data. We then propose a simultaneous on-line video segmentation and

recognition of actions using linear SVMs. The main contribution of the paper is an effective real-

time system for one-shot action modeling and recognition; the paper highlights the effectiveness of

sparse coding techniques to represent 3D actions. We obtain very good results on three different

data sets: a benchmark data set for one-shot action learning (the ChaLearn Gesture Data Set), an

in-house data set acquired by a Kinect sensor including complex actions and gestures differing by

small details, and a data set created for human-robot interaction purposes. Finally we demonstrate

that our system is effective also in a human-robot interaction setting and propose a memory game,

“All Gestures You Can”, to be played against a humanoid robot.

Keywords: real-time action recognition, sparse representation, one-shot action learning, human

robot interaction

1. Introduction

Action recognition as a general problem is a very fertile research theme due to its strong applicability

in several real world domains, ranging from video-surveillance to content-based video retrieval and

video classification. This paper refers specifically to action recognition in the context of Human-

Machine Interaction (HMI), and therefore it focuses on whole-body actions performed by a human

who is standing at a short distance from the sensor.

Imagine a system capable of understanding when to turn the TV on, or when to switch the

lights off on the basis of a gesture; the main requirement of such a system is an easy and fast learn-

∗. S.R. Fanello and I. Gori contributed equally to this work.

c©2013 Sean Ryan Fanello, Ilaria Gori, Giorgio Metta and Francesca Odone.



FANELLO, GORI, METTA AND ODONE

ing and recognition procedure. Ideally, a single demonstration suffices to teach the system a new

gesture. More importantly, gestures are powerful tools, through which languages can be built. In

this regard, developing a system able to communicate with deaf people, or to understand paralyzed

patients, would represent a great advance, with impact on the quality of life of impaired people.

Nowadays these scenarios are likely as a result of the spread of imaging technologies providing

real-time depth information at consumer’s price (as for example the Kinect (Shotton et al., 2011)

by Microsoft); these depth-based sensors are drastically changing the field of action recognition,

enabling the achievement of high performance using fast algorithms.

Following this recent trend we propose a complete system based on RGBD video sequences,

which models actions from one example only. Our main goal is to recognize actions in real-time

with high accuracy; for this reason we design our system accounting for good performance as

well as low computational complexity. The method we propose can be summarized as follows:

after segmentation of the moving actor, we extract two types of features from each image, namely,

Global Histograms of Oriented Gradient (GHOGs) to model the shape of the silhouette, and 3D

Histograms of Flow (3DHOFs) to describe motion information. We then apply a sparse coding

stage, which allows us to take care of noise and redundant information and produces a compact and

stable representation of the image content. Subsequently, we summarize the action within adjacent

frames by building feature vectors that describe the feature evolution over time. Finally, we train a

Support Vector Machine (SVM) for each action class.

Our framework can segment and recognize actions accurately and in real-time, even though they

are performed in different environments, at different speeds, or combined in sequences of multiple

actions. Furthermore, thanks to the simultaneous appearance and motion description complemented

by the sparse coding stage, the method provides a one-shot learning procedure. These functions are

shown on three different experimental settings: a benchmark data set for one-shot action learn-

ing (the ChaLearn Gesture Data Set), an in-house data set acquired by a Kinect sensor including

complex actions and gestures differing by small details, and an implementation of the method on a

humanoid robot interacting with humans.

In order to demonstrate that our system can be efficiently engaged in real world scenarios, we

developed a real-time memory game against a humanoid robot, called “All Gestures You Can” (Gori

et al., 2012). Our objective in designing this interaction game is to stress the effectiveness of our

gesture recognition system in complex and uncontrolled settings. Nevertheless, our long term goal

is to consider more general contexts, which are beyond the game itself, such as rehabilitation and

human assistance. Our game may be used also with children with memory impairment, for instance

the Attention Deficit/Hyperactivity Disorder (ADHD) (Comoldi et al., 1999). These children cannot

memorize items under different conditions, and have low performances during implicit and explicit

memory tests (Burden and Mitchell, 2005). Interestingly, Comoldi et al. (1999) shows that when

ADHD children were assisted in the use of an appropriate strategy, they performed the memory

task as well as controls. The game proposed in this paper could be therefore used to train memory

skills to children with attention problems, using the robot as main assistant. The interaction with the

robot may increase their motivation to maintain attention and help with the construction of a correct

strategy.

The paper is organized as follows: in Section 2 we briefly review the state of the art. In Sec-

tion 3 sparse representation is presented; Section 4 describes the complete modeling and recognition

pipeline. Section 5 validates the approach in different scenarios; Section 6 shows a real application
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in the context of Human Robot Interaction (HRI). Finally, Section 7, presents future directions and

possible improvements of the current implementation.

2. Related Work

The recent literature is rich of algorithms for gesture, action, and activity recognition—we refer the

reader to Aggarwal and Ryoo (2011) and Poppe (2010) for a complete survey of the topic. Even

though many theoretically sound, good performing and original algorithms have been proposed,

to the best of our knowledge, none of them fulfills at the same time real-time, one-shot learning

and high accuracy requirements, although such requirements are all equally important in real world

application scenarios.

Gesture recognition algorithms differ in many aspects. A first classification may be done with

respect to the overall structure of the adopted framework, that is, how the recognition problem is

modeled. In particular, some approaches are based on machine learning techniques, where each

action is described as a complex structure; in this class we find methods based on Hidden Markov

Models (Malgireddy et al., 2012), Coupled Hidden Semi-Markov models (Natarajan and Nevatia,

2007), action graphs (Li et al., 2010) or Conditional Markov Fields (Chatzis et al., 2013). Other

methods are based on matching: the recognition of actions is carried out through a similarity match

with all the available data, and the most similar datum dictates the estimated class (Seo and Milanfar,

2012; Mahbub et al., 2011).

The two approaches are different in many ways. Machine learning methods tend to be more

robust to intra-class variations, since they distill a model from different instances of the same ges-

ture, while matching methods are more versatile and adapt more easily to one-shot learning, since

they do not require a batch training procedure. From the point of view of data representation, the

first class of methods usually extracts features from each frame, whereas matching-based methods

try to summarize all information extracted from a video in a single feature vector. A recent and

prototypical example of machine learning method can be found in Malgireddy et al. (2012), which

proposes to extract local features (Histograms of Flow and Histograms of Oriented Gradient) on

each frame and apply a bag-of-words step to obtain a global description of the frame. Each action is

then modeled as a multi channel Hidden Markov Model (mcHMM). Although the presented algo-

rithm leads to very good classification performance, it requires a computationally expensive offline

learning phase that cannot be used in real-time for one-shot learning of new actions. Among the

matching-based approaches, Seo and Milanfar (2012) is particularly interesting: the algorithm ex-

tract a new type of features, referred to as 3D LSKs, from space-time regression kernels, particularly

appropriate to identify the spatio-temporal geometric structure of the action; it then adopts the Ma-

trix Cosine Similarity measure (Shneider and Borlund, 2007) to perform a robust matching. Another

recent method following the trend of matching-based action recognition algorithms is Mahbub et al.

(2011); in this work the main features are standard deviation on depth (STD), Motion History Image

(MHI) (Bobick and Davis, 2001) and a 2D Fourier Transformation in order to map all information

in the frequency domain. This procedure shows some benefits, for instance the invariance to camera

shifts. For the matching step, a simple and standard correlation measure is employed. Considering

this taxonomy, the work we propose falls within the machine learning approaches, but addresses

specifically the problem of one-shot learning. To this end we leverage on the richness of the video

signal used as a training example and on a dictionary learning approach to obtain an effective and

distinctive representation of the action.
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An alternative to classifying gesture recognition algorithms is based on the data representation

of gesture models. In this respect there is a predominance of features computed on local areas of

single frames (local features), but also holistic features are often used on the whole image or on

a region of interest. Among the most known methods, it is worth mentioning the spatio-temporal

interesting points (Laptev and Lindeberg, 2003), spatio-temporal Hessian matrices (Willems et al.,

2008), Gabor Filters (Bregonzio et al., 2009), Histograms of Flow (Fanello et al., 2010), Histograms

of Oriented Gradient (Malgireddy et al., 2012), semi-local features (Wang et al., 2012), combination

of multiple features (Laptev et al., 2008), Motion History Image (MHI) (Bobick and Davis, 2001),

Space-Time shapes (Gorelick et al., 2007), Self-Similarity Matrices (Efros et al., 2003). Also,

due to the recent diffusion of real-time 3D vision technology, 3D features have been recently em-

ployed (Gori et al., 2012). For computational reasons as well as the necessity of specific invariance

properties, we adopt global descriptors, computed on a region of interest obtained through motion

segmentation. We do not rely on a single cue but rather combine motion and appearance similarly

to Malgireddy et al. (2012).

The most similar works to this paper are in the field of HMI as for example Lui (2012) and Wu

et al. (2012): they both exploit depth information and aim at one-shot learning trying to achieve

low computational cost. The first method employs a nonlinear regression framework on manifolds:

actions are represented as tensors decomposed via Higher Order Singular Value Decomposition.

The underlying geometry of tensor space is used. The second one extracts Extended-MHI as features

and uses Maximum Correlation Coefficient (Hirschfeld, 1935) as classifier. Features from RBG and

Depth streams are fused via a Multiview Spectral Embedding (MSE). Differently from these works,

our approach aims specifically to obtain an accurate real-time recognition from one video example

only.

We conclude the section with a reference to some works focusing on continuous action or ac-

tivity recognition (Ali and Aggarwal, 2001; Green and Guan, 2004; Liao et al., 2006; Alon et al.,

2009). In this case training and test videos contain many sequential gestures, therefore the temporal

segmentation of videos becomes fundamental. Our work deals with continuous action recognition

as well, indeed the proposed framework comprehends a novel and robust temporal segmentation

algorithm.

3. Visual Recognition with Sparse Data

One-shot learning is a challenging requirement as the small quantity of training data makes the

modeling phase extremely hard. For this reason, in one-shot learning settings a careful choice of

the data representation is very important. In this work we rely on sparse coding to obtain a compact

descriptor with a good discriminative power even if it is derived from very small data sets.

The main concept behind sparse coding is to approximate an input signal as a linear combination

of a few components selected from a dictionary of basic elements, called atoms. We refer to adaptive

sparse coding when the coding is driven by data. In this case, we require a dictionary learning stage,

where the dictionary atoms are learnt (Olshausen and Fieldt, 1997; Yang et al., 2009; Wang et al.,

2010).

The motivations behind the use of image coding arise from biology: there is evidence that sim-

ilar signal coding happens in the neurons of the primary visual cortex (V1), which produces sparse

and overcomplete activations (Olshausen and Fieldt, 1997). From the computational point of view

the objective is to find an overcomplete model of images, unlike methods such as PCA, which

2620



KEEP IT SIMPLE AND SPARSE: REAL-TIME ACTION RECOGNITION

Figure 1: Overview of the recognition system, where video segmentation and classification are per-

formed simultaneously.

aims at finding a number of components that is lower than the data dimensionality. Overcomplete

representation techniques have become very popular in applications such as denoising, inpainting,

super-resolution, segmentation (Elad and Aharon, 2006; Mairal et al., 2008b,a) and object recogni-

tion (Yang et al., 2009). In this work we assess their effectiveness also for gesture recognition. Let

X = [x1, . . . ,xm] ∈ R
n×m be the matrix whose m columns xi ∈ R

n are the feature vectors. The goal

of adaptive sparse coding is to learn a dictionary D (a n×d matrix, with d the dictionary size and n

the feature vector size) and a code U (a d ×m matrix) that minimize the reconstruction error:

min
D,U

‖X−DU‖2
F +λ‖U‖1, (1)

where ‖·‖F is the Frobenius norm. As for the sparsity, it is known that the L1-norm yields to sparse

results while being robust to signals perturbations. Other penalties such as the L0-norm could be

employed, however the problem of finding a solution becomes NP-hard and there is no guarantee

that greedy algorithms reach the optimal solution. Notice that fixing U, the above optimization

reduces to a least square problem, whilst, given D, it is equivalent to linear regression with the

sparsifying norm L1. The latter problem is referred to as a feature selection problem with a known

dictionary (Lee et al., 2007). One of the most efficient algorithms that converges to the optimal

solution of the problem in Equation 1 for a fixed D, is the feature-sign search algorithm (Lee et al.,

2007). This algorithm searches for the sign of the coefficients U; indeed, considering only non-

zero elements the problem is reduced to a standard unconstrained quadratic optimization problem

(QP), which can be solved analytically. Moreover it performs a refinement of the signs if they are

incorrect. For the complete procedure we refer the reader to Lee et al. (2007).

In the context of recognition tasks, it has been proved that a sparsification of the data repre-

sentation improves the overall classification accuracy (see for instance Guyon and Elisseeff, 2003;

Viola and Jones, 2004; Destrero et al., 2009 and references therein). In this case sparse coding is

often cast into a coding-pooling scheme, which finds its root in the Bag of Words paradigm. In

this scheme a coding operator is a function f (xi) = ui that maps xi to a new space ui ∈ R
k; when

k > n the representation is called overcomplete. The action of coding is followed by a pooling stage,

whose purpose is to aggregate multiple local descriptors in a single and global one. Common pool-

ing operators are the max operator, the average operator, or the geometric Lp-norm pooling operator

(Feng et al., 2011). More in general, a pooling operator takes the codes located in S regions—for
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Figure 2: Region of Interest detection. Left: RGB video frames. Center: depth frames. Right: the

detected ROI.

instance cells of the spatial pyramid, as in Yang et al. (2009)—and builds a succinct representation.

We define as Ys the set of locations within the region s. Defining the pooling operator as g, the

resultant feature can be rewritten as: p(s) = g(i∈Ys)(u(i)). After this stage, a region s of the image

is encoded with a single feature vector. The final descriptor of the image is the concatenation of

the descriptors ps among all the regions. Notice that the effectiveness of pooling is subject to the

coding stage. Indeed, if applied on non-coded descriptors, pooling would bring to a drastic loss of

information.

4. Action Recognition System

In this section we describe the versatile real-time action recognition system we propose. The system,

depicted in Figure 1, consists of three layers, that can be summarized as follows:

• Region Of Interest detection: we detect a Region of Interest (ROI), where the human subject

is actually performing the action. We use the combination of motion and depth to segment

the subject from the background.

• Action Representation: each ROI within a frame is mapped into a feature space with a

combination of 3D Histogram of Flow (3DHOF) and Global Histogram of Oriented Gradient

(GHOG) on the depth map. The resultant 3DHOF+GHOG descriptor is processed via a sparse

coding step to compute a compact and meaningful representation of the performed action.

• Action Learning: linear SVMs are used on frame buffers. A novel on-line video segmen-

tation algorithm is proposed which allows isolating different actions while recognizing the

action sequence.

4.1 Region Of Interest Segmentation

The first step of each action recognition system is to identify correctly where in the image the

action is occurring. Most of the algorithms in the literature involve background modeling techniques
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(Stauffer and Grimson, 1999), or space-time image filtering in order to extract the interesting spatio-

temporal locations of the action (Laptev and Lindeberg, 2003). Other approaches require an a

priori knowledge of the body pose (Lv and Nevatia, 2007). This task is greatly simplified in our

architecture, since in human-machine interaction we can safely assume the human to stand in front

of the camera sensors and that there is no other motion in the scene. For each video in the data set,

we initially compute the frame differences within consecutive frames in a small buffer, obtaining

the set P of pixels that are moving. Relying on this information, we compute the mean depth

µ of the pixels belonging to P, which corresponds to the mean depth of the subject within the

considered buffer. Thus, for the rest of the video sequence, we select the region of interest as

ROI(t) = {pi, j(t) : µ− ε ≤ d(pi, j(t)) ≤ µ+ ε}, where d(pi, j(t)) is the depth of the pixel pi, j(t) at

time t and ε is a tolerance value. In Figure 2 examples of segmentation are shown. We determined

empirically that this segmentation procedure achieves better performance with respect to classic

thresholding algorithms such as Otsu’s method (Otsu, 1979).

4.2 Action Representation

Finding a suitable representation is the most crucial part of any recognition system. Ideally, an

image representation should be both discriminative and invariant to image transformations. A dis-

criminative descriptor should represent features belonging to the same class in a similar way, while

it should show low similarity among data belonging to different classes. The invariance property,

instead, ensures that image transformations such as rotation, translation, scaling do not affect the

final representation. In practice, there is a trade-off between these two properties (Varma and Ray,

2007): for instance, image patches are highly discriminative but not invariant, whereas image his-

tograms are invariant but not discriminative, since different images could be associated to the same

representation. When a lot of training data is provided, one could focus on a more discriminative

and less invariant descriptor. In our specific case however, where only one training example is pro-

vided, invariance is a necessary condition in order to provide discriminant features; this aspect is

greatly considered in our method.

From the neuroscience literature it is known that body parts are represented already in the early

stages of human development (Mumme, 2001) and that certainly adults have prior knowledge on the

body appearance. Many suggests that motion alone can be used to recognize actions (Bisio et al.,

2010). In artificial systems this developmental-scale experience is typically not available, although

actions can still be represented from two main cues: motion and appearance (Giese and Poggio,

2003). Although many variants of complex features describing human actions have been proposed,

many of them imply computationally expensive routines. Differently, we rely on simple features

in order to fulfill real-time requirements, and we show that they still have a good discriminative

power. In particular we show that a combination of 3D Histograms of Flow (3DHOFs) and Global

Histograms of Gradient (GHOGs) models satisfactorily human actions. When a large number of

training examples is available, these two features should be able to describe a wide variety of actions,

however in one-shot learning scenarios with noisy inputs, they are not sufficient. In this respect,

a sparse representation, which keeps only relevant and robust components of the feature vector,

greatly simplifies the learning phase making it equally effective.
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Figure 3: The figure illustrates high level statistics obtained by the proposed scene flow description

(3D-HOFs). Starting from the left we show the histogram of the scene flow directions

at time t, for a moving hand going on the Right, Le f t, Forward, Backward respectively.

Each cuboid represents one bin of the histogram, for visualization purposes we divided

the 3D space in n×n×n bins with n = 4. Filled cuboids represent high density areas.

4.2.1 3D HISTOGRAM OF FLOW

Whereas 2D motion vector estimation has been largely investigated and various fast and effective

methods are available today (Papenberg et al., 2006; Horn and Shunk, 1981), the scene flow compu-

tation (or 3D motion field estimation) is still an active research field due to the required additional

binocular disparity estimation problem. The most promising works are the ones from Wedel et al.

(2010), Huguet and Devernay (2007) and Cech et al. (2011); however these algorithms are compu-

tationally expensive and may require computation time in the range of 1.5 seconds per frame. This

high computational cost is due to the fact that scene flow approaches try to estimate both the 2D

motion field and disparity changes. Because of the real-time requirement, we opted for a simpler

and faster method that produces a coarser estimation, but is effective for our purposes.

For each frame Ft we compute the 2D optical flow vectors U(x,y, t) and V (x,y, t) for the x and

y components with respect to the previous frame Ft−1, via the Fanerbäck algorithm (Farnebäck,

2003). Each pixel (xt−1,yt−1) belonging to the ROI of the frame Ft−1 is reprojected in 3D space

(Xt−1,Yt−1,Zt−1) where the Zt−1 coordinate is measured through the depth sensor and Xt−1,Yt−1 are

computed by:

(

Xt−1

Yt−1

)

=











(xt−1 − x0)Zt−1

f

(yt−1 − y0)Zt−1

f











,

where f is the focal length and (x0,y0)
T is the principal point of the sensor. Similarly, we can

reproject the final point (xt ,yt) of the 2D vector representing the flow, obtaining another 3D vector

(Xt ,Yt ,Zt)
T . For each pixel of the ROI, we can define the scene flow as the difference of the two 3D

vectors in two successive frames Ft−1 and Ft :

D = (Ẋ ,Ẏ , Ż)T =

= (Xt −Xt−1,Yt −Yt−1,Zt −Zt−1)
T
.

Once the 3D flow for each pixel of the ROI at time t has been computed, we normalize it with respect

to the L2-norm, so that the resulting descriptors D1, . . . ,Dn (n pixels of the ROI) are invariant to the

overall speed of the action. In order to extract a compact representation we build a 3D Histogram
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of Flow (3DHOF) z(t) of the 3D motion vectors, where z(t) ∈ R
n1 and 3

√
n1 is the quantization

parameter of the space (i.e., the bin size). In addition we normalize each 3DHOF z(t) so that

∑ j z j(t) = 1; hence we guarantee that these descriptors are invariant to the subject of interest’s

scale.

Figure 3 shows that the movements toward different directions reveal to be linearly separable,

and the main directions are accurately represented: each cuboid represents one bin of the histogram,

and the 3D space is divided in n× n× n bins with n = 4. It is possible to notice how, in the Right

direction for example, all the filled bins lay on the semi-space defined by x< 0. Similar observations

apply all cases.

4.2.2 GLOBAL HISTOGRAM OF ORIENTED GRADIENT

In specific contexts, motion information is not sufficient to discriminate actions, and information

on the pose or appearance becomes crucial. One notable example is the American Sign Language

(ASL), whose lexicon is based mostly on the shape of the hand. In these cases modeling the shape

of a gesture as well as its dynamics is very important. Thus we extend the motion descriptor with

a shape feature computed on the depth map. If we assume the subject to be in front of the camera,

it is unlikely that the perspective transformation would distort his/her pose, shape or appearance,

therefore we can approximately work with invariance to translation and scale. We are interested

in characterizing shapes, and the gradient of the depth stream shows the highest responses on the

contours, thus studying the orientation of the gradient is a suitable choice. The classical Histograms

of Oriented Gradient (HOGs) (Dalal and Triggs, 2005) have been designed for detection purposes

and do not show the above-mentioned invariance; indeed dividing the image in cells makes each sub-

histogram dependent on the location and the dimension of the object. Furthermore, HOGs exhibit

a high spatial complexity, as the classical HOG descriptor belongs to R
(ncells×nblocks×n2). Since we

aim at preserving such invariance as well as limiting the computational complexity, we employed a

simpler descriptor, the Global Histogram of Oriented Gradient (GHOG). This appearance descriptor

produces an overall description of the appearance of the ROI without splitting the image in cells.

We compute the histogram of gradient orientations of the pixels on the entire ROI obtained from

the depth map to generate another descriptor h(t) ∈ R
n2 , where n2 is the number of bins. The scale

invariance property is preserved normalizing the descriptor so that ∑ j h j(t) = 1. Computing this

descriptor on the depth map is fundamental in order to remove texture information; in fact, in this

context, the only visual properties we are interested in are related to shape.

4.2.3 SPARSE CODING

At this stage, each frame Ft is represented by two global descriptors: z(t) ∈ R
n1 for the motion

component and h(t) ∈ R
n2 for the appearance component. Due to the high variability of human

actions and to the simplicity of the descriptors, a feature selection stage is needed to catch the

relevant information underlying the data and discarding the redundant ones such as background or

body parts not involved in the action; to this aim we apply a sparse coding stage to our descriptor.

Given the set of the previously computed 3DHOFs Z = [z(1), . . . ,z(K)], where K is the number

of all the frames in the training data, our goal is to learn one motion dictionary DM (a n1×d1 matrix,

with d1 the dictionary size and n1 the motion vector size) and the codes UM (a d1 ×K matrix)

that minimize the Equation 1, so that z(t) ∼ DMuM(t). In the same manner, we define the equal

optimization problem for a dictionary DG (a n2 ×d2 matrix) and the codes UG (a d2 ×K matrix) for
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Figure 4: The figure illustrates on the left the SVMs scores (Equation 2) computed in real-time at

each time step t over a sequence of 170 frames. On the right the standard deviation of

the scores and its mean computed on a sliding window are depicted. The local minima of

the standard deviation function are break points that define the end of an action and the

beginning of another one. See Section 4.3.2 for details.

the set of GHOGs descriptors H = [h(1), . . . ,h(K)]. Therefore, after the Sparse Coding stage, we

can describe a frame as a code u(i), which is the concatenation of the motion and appearance codes:

u(i) = [uM(i),uG(i)].

Notice that we rely on global features, thus we do not need any pooling operator, which is

usually employed to summarize local features into a single one.

4.3 Learning and Recognition

The goal of this phase is to learn a model of a given action from data. Since we are implementing

a one-shot action recognition system, the available training data amounts to one training sequence

for each action of interest. In order to model the temporal extent of an action we extract sets of

sub-sequences from a sequence, each one containing T adjacent frames. In particular, instead of

using single frame descriptors (described in Section 4.2), we move to a concatenation of frames: a

set of T frames is represented as a sequence [u(1), . . . ,u(T )] of codes. This representation allows

us to perform simultaneously detection and classification of actions.

The learning algorithm we adopt is the Support Vector Machine (SVM) (Vapnik, 1998). We

employ linear SVMs, since they can be implemented with constant complexity during the test phase

fulfilling real-time requirements (Fan et al., 2008). Additionally, recent advances in the object

recognition field, such as Yang et al. (2009), showed that linear classifiers can effectively solve the

classification problem if a preliminary sparse coding stage has previously been applied. Our exper-

iments confirm these findings. Another advantage of linear SVMs is that they can be implemented

with a linear complexity in training (Fan et al., 2008); given this property, we can provide a real-time

one-shot learning procedure, extremely useful in real applications.

The remainder of the section describes in details the two phases of action learning and action

recognition.
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Figure 5: The figure illustrates only the scores of the recognized actions via the method described

in Section 4.3.2. Blue dots are the break points computed by the video segmentation

algorithm that indicate the end of an action and the beginning of a new one.

4.3.1 ACTION LEARNING

Given a video Vs of ts frames, containing only one action As, we compute a set of descriptors

[u(1), . . . ,u(ts)] as described in Section 4.2. Then, action learning is carried out on a set of data that

are descriptions of a frame buffer BT (t), where T is its length:

BT (t) = (u(t −T ), . . . ,u(t −1),u(t))T
.

We use a one-versus-all strategy to train a binary linear SVM for each class As, so that at the end

of the training phase we obtain a set of N linear SVM classifiers f1(B̄), . . . , fN(B̄), where N is the

number of actions. In particular, in this one-shot learning pipeline, the set of buffers

Bs = [BT (t0), . . . ,BT (ts)]

computed from the single video Vs of the class As are used as positive examples for the action As.

All the buffers belonging to A j with j 6= s are the negative examples. Although we use only one

example for each class, we benefit from the chosen representation: indeed, descriptors are computed

per frame, therefore one single video of length ts provides a number of examples equal to ts − T

where T is the buffer size. Given the training data {B,y} where B is the set of positive and negative

examples for the primitive As, yi = 1 if the example is positive, yi =−1 otherwise, the goal of SVM

is to learn a linear function (wT ,b) such that a new test vector B̄ is predicted as:

ypred = sign( f (B̄)) = sign(wTB̄+b).

4.3.2 ON-LINE RECOGNITION: VIDEO SEGMENTATION

Given a test video V , which may contain one or more known actions, the goal is to predict the

sequence of the performed actions. The video is analyzed using a sliding window BT (t) of size T .

We compute the output score fi(BT (t)) of the i = 1, . . . ,N SVM machines for each test buffer BT (t)
and we filter these scores with a low-pass filter W that attenuates noise. Therefore the new score at
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time t becomes:

Hi(BT (t)) =W ⋆ fi(BT (t)) i = 1, . . . ,N, (2)

where the ⋆ is the convolution operator. Figure 4 depicts an example of these scores computed

in real-time. As long as the scores evolve we need to predict (on-line) when an action ends and

another one begins; this is achieved computing the standard deviation σ(H) for a fixed t over all the

scores Ht
i (Figure 4, right chart). When an action ends we can expect all the SVM output scores

to be similar, because no model should be predominant with respect to idle states; this brings to a

local minimum in the function σ(H). Therefore, each local minimum corresponds to the end of an

action and the beginning of a new one. Let n be the number of local minima computed from the

standard deviation function; there will be n+ 1 actions, and in particular actions with the highest

score before and after each break point will be recognized. We can easily find these minima in

real-time: we calculate the mean value of the standard deviation over time using a sliding window.

When the standard deviation trend is below the mean, all the SVMs scores predict similar values,

hence it is likely that an action has just ended. In Figure 5 the segmented and recognized actions

are shown together with their scores.

5. Experiments

In this section we evaluate the performance of our system in three different settings:

• ChaLearn Gesture Data Set. The first experiment has been conducted on a publicly avail-

able data set, released by ChaLearn (, CGD2011). The main goal of the experiment is to

compare our method with other techniques.

• Kinect Data. In the second experiment we discuss how to improve the recognition rate using

all the functionalities of a real Kinect sensor. Gestures with high level of detail are easily

caught by the system.

• Human-Robot Interaction. For the last experiment we considered a real HMI scenario: we

implement the system on a real robot, the iCub humanoid robot (Metta et al., 2008), showing

the applicability of our algorithm also in human-robot interaction settings.

For the computation of the accuracy between a sequence of estimated actions and the ground truth

sequence we use the normalized Levenshtein Distance (Levenshtein, 1966), defined as:

TeLev =
S+D+ I

M
,

where each action is treated as a symbol in a sequence, S is the number of substitutions (misclassi-

fications), D the number of deletions (false negatives), I the number of insertions (false positives)

and M the length of the ground truth sequence. More specifically, this measure computes the min-

imum number of modifications that are required to transform a sequence of events in another one.

It is widely used in speech recognition contexts, where each symbol represents an event. In action

and gesture recognition, when sequences of gestures are to be evaluated, the Levenshtein Distance

shows to be a particularly suitable metric, as it allows accounting not only for the single classifier

accuracy, but also for the capability of the algorithm to accurately distinguish different gestures in a

sequence (Minnen et al., 2006).
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Figure 6: On the left examples of 2 different batches from the ChaLearn Data Set (, CGD2011).

On the right the overall Levenshtein Distance computed in 20 batches with respect to

the buffer size parameter is depicted for both 3DHOF+GHOG features and descriptors

processed with sparse coding.

We empirically choose a quantization parameter for the 3DHOF, n1 equal to 5, n2 = 64 bins for

the GHOG descriptor, and dictionary sizes d1 and d2 equal to 256 for both motion and appearance

components. This led to a frame descriptor of size 189 for simple descriptors, which increases to

512 after the sparse coding processing. The whole system runs at 25fps on 2.4Ghz Core 2 Duo

Processor.

5.1 ChaLearn Gesture Data Set

We firstly assess our method on the ChaLearn data set for the One-Shot Gesture Recognition Chal-

lenge (Guyon et al., 2012), see Figure 6. The data set is organized in batches, where each batch

includes 100 recorded gestures grouped in sequences of 1 to 5 gestures arbitrarily performed at dif-

ferent speeds. The gestures are drawn from a small vocabulary of 8 to 15 unique gestures called

lexicon, which is defined within a batch. For each video both RGB and Depth streams are provided,

but only one example is given for the training phase. In our experiments we do not use information

on the body pose of the human. We consider the batches from devel 01 to devel 20; each batch has

47 videos, where L (the lexicon size) videos are for training and the remaining are used as test data.

The main parameter of the system is the buffer size T , however in Figure 6 it is possible to

notice that the parameter offers stable performances with a buffer range of 1− 20, so it does not

represent a critical variable of our method. Furthermore, high performance for a wide buffer length

range imply that our framework is able to handle different speeds implicitly. We compute the

Levenshtein Distance as the average over all the batches, which is 25.11% for features processed

with sparse coding, whereas simple 3DHOF+GHOG descriptors without sparse coding lead to a

performance of 43.32%. Notably, each batch has its own lexicon and some of them are composed

of only gestures performed by hand or fingers; in these cases, if the GHOG is computed on the entire

ROI, the greatest contribution of the histogram comes from the body shape, whilst finger actions

(see Figure 2, bottom row) represent a poor percentage of the final descriptor. If we consider batches

where the lexicon is not composed of only hand/fingers gestures, the Levenshtein Distance reduces

to 15%.

We compared our method with several approaches. First of all a Template Matching technique,

where we used as descriptor the average of all depth frames for each action. The test video is split in
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Method TeLev TeLen

Sparse Representation (proposed) 25.11% 5.02%

3DHOF + GHOG 43.32% 9.03%

Template Matching 62.56% 15.12%

DTW 49.41% Manual

Manifold LSR (Lui, 2012) 28.73% 6.24%

MHI (Wu et al., 2012) 30.01% NA

Extended-MHI (Wu et al., 2012) 26.00% NA

BoVW (Wu et al., 2012) 72.32% NA

2D FFT-MHI (Mahbub et al., 2011) 37.46% NA

TBM+LDA (Malgireddy et al., 2012) 24.09% NA

Table 1: Levenshtein Distance on the ChaLearn Gesture Data Set. For SVM classification we chose

the appropriate buffer size for each batch according to the defined lexicon. TeLev is the

Levenshtein Distance, TeLen is the average error (false positives + false negatives) made

on the number of gestures (see text).

slices estimated using the average size of actions. In the recognition phase we classify each slice of

the video comparing it with all the templates. The overall Levenshtein Distance becomes 62.56%.

For the second comparison we employ Dynamic Time Warping (DTW) method (Sakoe and Chiba,

1978) with 3DHOF + GHOG features. We manually divided test videos in order to facilitate the

recognition for DTW; nevertheless the global Levenshtein Distance is 49.41%. Finally we report

the results presented in some recent works in the field, which exploit techniques based on manifolds

(Lui, 2012), Motion History Image (MHI) (Wu et al., 2012), Bag of Visual Words (BoVW) (Wu

et al., 2012), 2D FFT-MHI (Mahbub et al., 2011) and Temporal Bayesian Model (TBM) with Latent

Dirichlet Allocation (LDA) (Malgireddy et al., 2012).

Table 1 shows that most of the compared approaches are outperformed by our method except for

Malgireddy et al. (2012); however the method proposed by Malgireddy et al. (2012) has a training

computational complexity of O(n×k2) for each action class, where k is the number of HMM states

and n the number of examples, while the testing computational complexity for a video frame is

O(k2). Thanks to the sparse representation, we are able to use linear SVMs, which reduce the

training complexity with respect to the number of training examples to O(n× d) for each SVM,

where d is the descriptor size. In our case d is a constant value fixed a priori, and does not influence

the scalability of the problem. Therefore we may approximate the asymptotic behavior of the SVM

in training to O(n). Similarly, in testing the complexity for each SVM is constant with respect

to the number of training examples when considering a single frame, and it becomes O(N) for

the computation of all the N class scores. This allows us to provide real-time training and testing

procedures with the considered lexicons.

Furthermore our on-line video segmentation algorithm shows excellent results with respect to

the temporal segmentation used in the compared frameworks; in fact it is worth noting that the

proposed algorithm leads to an action detection error rate TeLen = FP+FN
M

equal to 5.02%, where

FP and FN are false positives and false negatives respectively, and M is the number of all test
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gestures. Considering the final results of the ChaLearn Gesture Challenge (Round 1),1 we placed

9th over 50 teams, but our method also fulfills real-time requirements for the entire pipeline, which

was not a requirement of the challenge.

5.1.1 MOTION VS APPEARANCE

In this section we evaluate the contribution of the frame descriptors. In general we notice that the

combination of both motion and appearance descriptors leads to the best results when the lexicon

is composed of actions where both motion and appearance are equally important. To show this, we

considered the 20 development batches from the ChaLearn Gesture Data Set. For this experiment,

we used only coded descriptors, since we have already experienced that they obtain higher perfor-

mance. Using only the motion component, the Levenshtein Distance is equal to 62.89%, whereas

a descriptor based only on the appearance leads to an error of 34.15%. The error obtained using

only the 3DHOF descriptors was expected, due to the nature of the lexicons chosen: indeed in most

gestures the motion component has little significance. Considering instead batch devel 01, where

motion is an important component in the gesture vocabulary, we have that 3DHOF descriptors lead

to a Levenshtein Distance equal to 29.48%, the GHOG descriptors to 21.12% and the combination

is equal to 9.11%. Results are consistent with previous findings, but in this specific case the gap

between the motion and the appearance components is not critical.

5.1.2 LINEAR VS NON-LINEAR CLASSIFIERS

In this section we compare the performances of linear and non linear SVM for the action recognition

task. The main advantage of a linear kernel is the computational time: non-linear SVMs have a worst

case training computational complexity per class equal to O(n3 ×d) against the O(n×d) of linear

SVMs, where n is the number of training examples, and d is the descriptor size. In testing, non linear

SVMs show computational complexity of O(n×d) per frame, since the number of support vectors

grows linearly with n. Moreover, non-linear classifiers usually require additional kernel parameter

estimation, which especially in one-shot learning scenarios is not trivial. Contrarily, linear SVMs

take O(d) per frame. For this experiment we used coded features where both motion and appearance

are employed. A non-linear SVM with RBF Kernel has been employed, where the kernel parameter

and the SVM regularization term have been chosen empirically after 10 trials on a subset of the

batches. The Levenshtein Distance among the 20 batches is 35.11%; this result confirms that linear

classifiers are sufficient to obtain good results with low computational cost if an appropriate data

representation, as the one offered by sparse coding, is adopted.

5.2 Kinect Data Set

In this section we assess the ability of our method to recognize more complex gestures captured by a

Kinect for Xbox 360 sensor. In Section 5.1, we noted that the resolution of the proposed appearance

descriptor is quite low and may not be ideal when actions differ by small details, especially on the

hands, therefore a localization of the interesting parts to model would be effective. The simplest way

to build in this specific information is to resort to a body part tracker; indeed, if a body tracker were

available it would have been easy to extract descriptors from different limbs and then concatenate

all the features to obtain the final frame representation. An excellent candidate to provide a reliable

1. The leaderboard website is: https://www.kaggle.com.
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Figure 7: On the right and bottom the two vocabularies used in Section 5.2; these gestures are

difficult to model without a proper body tracker, indeed the most contribution for the

GHOG comes from the body shape rather than the hand. On the left the Levenshtein

Distance.

body tracker is Microsoft Kinect SDK, which implements the method in Shotton et al. (2011). This

tool retrieves the 20 principal body joints position and pose of the user’s current posture. Given these

positions, we assign each 3D point of the ROI to its nearest joint, so that it is possible to correctly

isolate the two hands and the body from the rest of the scene (see Figure 7). Then, we slightly modify

the approach, computing 3DHOF and GHOG descriptors on three different body parts (left/right

hand and whole body shape); the final frame representation becomes the concatenation of all the

part descriptors. As for the experiments we have acquired two different sets of data (see Figure 7):

in the first one the lexicon is composed of numbers performed with fingers, in the second one we

replicate the lexicons devel 3 of the ChaLearn Gesture Data Set, the one where we obtained the

poorest performances. In Figure 7 on the left the overall accuracy is shown; using sparse coding

descriptors computed only on the body shape we obtain a Levenshtein Distance around 30%. By

concatenating descriptors extracted from the hands the system achieves 10% for features enhanced

with sparse coding and 20% for normal descriptors.

We compared our method with two previously mentioned techniques: a Template Matching

algorithm and an implementation of the Dynamic Time Warping approach (Sakoe and Chiba, 1978).

The resulted Levenshtein Distance is respectively 52.47% and 42.36%.

5.3 Human-Robot Interaction

The action recognition system has been implemented and tested on the iCub, a 53 degrees of free-

dom humanoid robot developed by the RobotCub Consortium (Metta et al., 2008). The robot

is equipped with force sensors and gyroscopes, and it resembles a 3-years old child. It mounts

two Dragonfly cameras, providing the basis for 3D vision, thus after an offline camera calibration

procedure we can rely on a full stereo vision system; here the depth map is computed following

Hirschmuller (2008). In this setting the action recognition system can be used for more general pur-

poses such as Human-Robot-Interaction (HRI) or learning by imitation tasks. In particular our goal

is to teach iCub how to perform simple manipulation tasks, such as move/grasp an object. In this

sense, we are interested in recognizing actions related to the arm-hand movements of the robot. We

define 8 actions, as shown in Figure 8, bottom row, according to the robot manipulation capabilities.

2632



KEEP IT SIMPLE AND SPARSE: REAL-TIME ACTION RECOGNITION

Figure 8: Accuracy for actions sequences (see bottom row). We evaluated the performance on more

than 100 actions composed of sequences of 1 to 6 actions.

Each action is modeled using only the motion component (3DHOF), since we want the descriptor

to be independent on the particular object shape used.

In Figure 8 we show the accuracy based on the Levenshtein Distance; this measure has been

calculated on more than 100 actions composed of sequences of 1 to 6 actions. Notably the error

is less than 10%; these good results were expected due to the high discriminative power of the

3DHOFs (Figure 3) on the chosen lexicon, which leads to a linearly separable set.

6. All Gestures You Can: a Real Application

As pointed out in the previous sections, our approach was designed for real applications where real-

time requirements need to be fulfilled. We developed and implemented a “game” against a humanoid

robot, showing the effectiveness of our system in a real HRI setting: “All Gestures You Can” (Gori

et al., 2012), a game aiming at improving memory skills, visual association and concentration.

Our game takes inspiration from the classic “Simon” game; nevertheless, since the original version

has been often defined as “visually boring”, we developed a revisited version, based on gesture

recognition, which involves a “less boring” opponent: the iCub (Metta et al., 2008). Both the human

and the robot have to take turns and perform the longest possible sequence of gestures by adding

one gesture at each turn: one player starts performing a gesture, the opponent has to recognize the

gesture, imitate it and add another gesture to the sequence. The game is carried on until one of

the two players loses: the human player can lose because of limited memory skills, whereas the

robot can lose because the gesture recognition system fails. As described in the previous sections,

the system has been designed for one-shot learning; however, Kinect does not provide information

about finger configuration, therefore a direct mapping between human fingers and the iCub’s ones

is not immediate. Thus we set a predefined pool of 8 gestures (see Figure 9, on the left). The

typical game setting is shown in Figure 10: the player stays in front of the robot while performing

gestures that are recognized with Kinect. Importantly, hand gestures cannot be learned exploiting

the Skeleton Data of Kinect: the body tracker detects the position of the hand and it is not enough

to discriminate more complicate actions,—for example, see gesture classes 1 and 5 or 2 and 6 in

Figure 9.
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Figure 9: On the left the hand gestures. The vision system has been trained using 8 different actors

performing each gesture class for 3 times. On the right the game architecture. There are

three main modules that take care of recognizing the action sequence, defining the game

rules and making the robot gestures.

The system is simple and modularized as it is organized in three components (see Figure 9)

based on the iCub middleware, YARP (Metta et al., 2006), which manages the communication be-

tween sensors, processors, and modules. The efficiency of the proposed implementation is assured

by its multithreading architecture, which also contributes to real-time performances. The software

presented in this section is available in the iCub repository.2

The proposed game has been played by more than 30 different players during the ChaLearn

Kinect Demonstration Competition at CVPR 2012.3 Most of them were completely naive without

prior knowledge about the gestures. They were asked to play using a lexicon that had been trained

specifically for the competition (Figure 9). After 50 matches we had 75% of robot victories. This

result indicates that the recognition system is robust also to different players performing variable

gestures at various speeds. 15% of the matches have been won by humans and usually they finished

during the first 3-4 turns of the game; this always occurred when players performed very different

gestures with respect to the trained ones. A few players ( 10% of matches) succeeded in playing

more than 8 turns, and they won due to recognition errors. “All Gestures You Can” ranked 2nd in

the ChaLearn Kinect Demonstration Competition.

7. Discussion

This paper presented the design and implementation of a complete action recognition system to be

used in real world applications such as HMI. We designed each step of the recognition pipeline to

function in real-time while maximizing the overall accuracy. We showed how a sparse action repre-

2. Code available at https://svn.code.sf.net/p/robotcub/code/trunk/iCub/contrib/src/

demoGestureRecognition.

3. The competition website is http://gesture.chalearn.org/

A YouTube video of our game is available at http://youtu.be/U_JLoe_fT3I.
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Figure 10: The first two turns of a match. Left: the human player performs the first gesture of the

sequence. Center: iCub recognized the gesture and imitates it. Right: iCub adds a new

random gesture to the sequence.

sentation could be effectively used for one-shot learning of actions in combination with conventional

machine learning algorithms (i.e., SVM), even if the latter would normally require a larger set of

training data. The comprehensive evaluation of the proposed approach showed that we achieve

good trade-off between accuracy and computation time. The main strengths of our learning and

recognition pipeline can be summarized as follows:

1. One-Shot Learning: one example is sufficient to teach an new action to the system; this is

mainly due to the effective per-frame representation.

2. Sparse Frame Representation: starting from a simple and computationally inexpensive de-

scription that combines global motion (3DHOF) and appearance (GHOG) information over a

ROI, subsequently filtered through sparse coding, we obtained a sparse representation at each

frame. We showed that these global descriptors are appropriate to model actions of the upper

body of a person.

3. On-line Video Segmentation: we propose a new, effective, reliable and on-line video seg-

mentation algorithm that achieved a 5% error rate on action detection on a set of 2000 actions

grouped in sequences of 1 to 5 gestures. This segmentation procedure works concurrently

with the recognition process, thus a sequence of actions is simultaneously segmented and

recognized.

4. Real-time Performances: the proposed system can be used in real-time applications, as it

does require neither a complex features processing nor a computationally expensive training

and testing phases. From the computational point of view the proposed approach scales well

even for large vocabularies of actions.

5. Effectiveness in Real Scenarios: our method achieves good performances in a Human-Robot

Interaction setting, where the RGBD images are obtained through binocular vision and dis-

parity estimation. For testing purposes, we proposed a memory game, called “All Gestures

You Can”, where a person can challenge the iCub robot on action recognition and sequencing.

The system ranked 2nd at the Kinect Demonstration Competition.4

4. The competition website is http://gesture.chalearn.org/.
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We stress here the simplicity of the learning and recognition pipeline: each stage is easy to imple-

ment and fast to compute. It is shown to be adequate to solve the problem of gesture recognition; we

obtained high-quality results while fulfilling real-time requirements. The approach is competitive

against many of the state-of-the-art methods for action recognition.

We are currently working on a more precise appearance description at frame level still under the

severe constraint of real-time performance; this would enable the use of more complex actions even

when the body tracker is not available.
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Abstract

The large volume principle proposed by Vladimir Vapnik, which advocates that hypotheses lying

in an equivalence class with a larger volume are more preferable, is a useful alternative to the large

margin principle. In this paper, we introduce a new discriminative clustering model based on the

large volume principle called maximum volume clustering (MVC), and then propose two approxi-

mation schemes to solve this MVC model: A soft-label MVC method using sequential quadratic

programming and a hard-label MVC method using semi-definite programming, respectively. The

proposed MVC is theoretically advantageous for three reasons. The optimization involved in hard-

label MVC is convex, and under mild conditions, the optimization involved in soft-label MVC is

akin to a convex one in terms of the resulting clusters. Secondly, the soft-label MVC method pos-
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sesses a clustering error bound. Thirdly, MVC includes the optimization problems of a spectral

clustering, two relaxed k-means clustering and an information-maximization clustering as special

limit cases when its regularization parameter goes to infinity. Experiments on several artificial and

benchmark data sets demonstrate that the proposed MVC compares favorably with state-of-the-art

clustering methods.

Keywords: discriminative clustering, large volume principle, sequential quadratic programming,

semi-definite programming, finite sample stability, clustering error bound

1. Introduction

Clustering has been an important topic in machine learning and data mining communities. Over the

past decades, a large number of clustering algorithms have been developed. For instance, k-means

clustering (MacQueen, 1967; Hartigan and Wong, 1979; Girolami, 2002), spectral clustering (Shi

and Malik, 2000; Meila and Shi, 2001; Ng et al., 2002), maximum margin clustering (MMC) (Xu

et al., 2005; Xu and Schuurmans, 2005), dependence-maximization clustering (Song et al., 2007;

Faivishevsky and Goldberger, 2010) and information-maximization clustering (Agakov and Barber,

2006; Gomes et al., 2010; Sugiyama et al., 2011). These algorithms have been successfully applied

to diverse real-world data sets for exploratory data analysis.

To the best of our knowledge, MMC, which partitions the data samples into two clusters based

on the large margin principle (LMP) (Vapnik, 1982), is the first clustering approach that is directly

connected to the statistical learning theory (Vapnik, 1998). For this reason, it has been extensively

investigated recently, for example, a generalization (Valizadegan and Jin, 2007) and many approxi-

mations for speedup (Zhang et al., 2007; Zhao et al., 2008b,a; Li et al., 2009; Wang et al., 2010).

However, LMP is not the only way to go in statistical learning theory. The large volume prin-

ciple (LVP) was also introduced by Vapnik (1982) for hyperplanes and then extended by El-Yaniv

et al. (2008) for soft response vectors. Roughly speaking, learning methods based on LVP should

prefer hypotheses in certain large-volume equivalence classes. See Figure 1 as an illustrative com-

parison of two principles. Here, C1, C2 and C3 represent three data clouds, and our goal is to choose

a better hypothesis from two candidates h1 and h2. A hypothesis is a line (e.g., h1), and an equiv-

alence class is a set of lines which equivalently separate data samples (e.g., H1). Hence, there are

two equivalence classes H1 and H2. Given an equivalence class H1 (or H2), its margin is measured

by the distance between two lines around it and its volume is measured by the area of the region

around it in the figure. Though LMP prefers h1 due to the larger margin of H1 than H2, we should

choose h2 when considering LVP since H2 has a larger volume than H1.

In this paper, we introduce a novel discriminative clustering approach called maximum volume

clustering (MVC), which serves as a prototype to partition the data samples into two clusters based

on LVP. We motivate our MVC as follows. Given the samples Xn, we construct an Xn-dependent

hypothesis space H (Xn). If H (Xn) has a measure on it, namely the power, then we can talk about

the likelihood or confidence of each equivalence class (Vapnik, 1998). Similarly to the margin used

in MMC, the notion of volume (El-Yaniv et al., 2008) can also be regarded as an estimation of the

power. Therefore, the larger the volume is, the more confident we are of the data partition, and we

consider the partition lying in the equivalence class with the maximum volume as the best partition.

Similarly to the majority of clustering methods, the optimization problem involved in MVC is

combinatorial and thus NP-hard, so we propose two approximation schemes:
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C1 C2 C3

Margin
H1 H2

h1 h2

C1 C2 C3

Volume
H1 H2

h1 h2

Figure 1: Large margin vs. large volume separation of three data clouds into two clusters. In this

figure, the three data clouds are C1, C2 and C3, and the two candidate hypotheses are h1

and h2. A hypothesis is a line (e.g., h1), and an equivalence class is a set of lines which

equivalently separate data samples (e.g., H1). More specifically, we shape H1 and H2 by

horizontally translating and rotating h1 and h2. Then given an equivalence class H1 (or

H2), its margin is measured by the distance between two lines around it and its volume

is measured by the area of the region around it (where we integrate all unit line segments

and treat the resulting area as its volume). The large margin principle prefers h1 and the

large volume principle prefers h2, since they consider different complexity measures.

• A soft-label MVC method that can be solved by sequential quadratic programming (Boggs

and Tolle, 1995) in O(n3) time;

• A hard-label MVC method as a semi-definite programming problem (De Bie and Cristianini,

2004; Lanckriet et al., 2004) that can be solved in O(n6.5) time.
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Subsequently, we show that the primal problem of soft-label MVC can be reduced to the optimiza-

tion problems of unnormalized spectral clustering (von Luxburg, 2007), plain and kernel k-means

clustering after relaxations (Ding and He, 2004), and squared-loss mutual information based clus-

tering (Sugiyama et al., 2011), as the regularization parameter of MVC approaches infinity. Hence,

MVC might be regarded as a natural extension of many existing clustering methods. Moreover, we

establish two theoretical results:

• A theory called finite sample stability for analyzing the soft-label MVC method. It suggests

that under mild conditions, different locally optimal solutions to soft-label MVC would in-

duce the same data partition, and thus the non-convex optimization of soft-label MVC seems

like a convex one;

• A clustering error bound for the soft-label MVC method. It upper bounds the distance be-

tween the partition returned by soft-label MVC and any partially observed partition based on

transductive Rademacher complexity (El-Yaniv and Pechyony, 2009).

Experiments on three artificial and fourteen benchmark data sets (i.e., ten IDA benchmarks, USPS,

MNIST, 20Newsgroups and Isolet) demonstrate that the proposed MVC approach is promising.

The rest of this paper is organized as follows. First of all, we briefly review the large volume

approximation in Section 2. Then, we propose the model and algorithms of MVC in Section 3, and

show that they are closely related to several existing clustering methods in Section 4. In Section 5,

we present the theory of finite sample stability. In Section 6, we derive the clustering error bound.

Next, a comparison with related works is made in Section 7. Experimental results are reported in

Section 8. Finally, we give concluding remarks and future prospects in Section 9.

2. Large Volume Approximation

Suppose that we are given a set of objects Xn = {x1, . . . ,xn}, where xi ∈ X for i = 1, . . . ,n, and most

often but not necessarily, X ⊂ Rd for some natural number d. We will construct a hypothesis space

H (Xn) that depends on Xn, such that for any hypothesis h ∈ H (Xn) ⊂ Rn, [h]i stands for a soft

response or confidence-rated label of xi, where [·]i means the i-th component of a vector. We will

then pick a soft response vector h∗ following the large volume principle and partition Xn into two

clusters {xi | [h∗]i > 0} and {xi | [h∗]i < 0}.1
As El-Yaniv et al. (2008), assume that we have a symmetric positive-definite matrix Q ∈ Rn×n

which contains the pairwise information about Xn. Consider the hypothesis space

HQ := {h | h⊤Qh≤ 1},

which is geometrically an origin-centered ellipsoid E(HQ) in Rn. The set of sign vectors

{sign(h) | h ∈HQ}

contains all 2n possible dichotomies of Xn. In other words, the hypothesis space HQ has been parti-

tioned into a finite number of equivalence classes H1, . . . ,H2n , such that for fixed k ∈ {1,2, . . . ,2n},

1. Due to our clustering model that will be defined as optimization (2) in page 2646, [h∗]i = 0 hardly happens in practice,

and we simply assume [h∗]i 6= 0 in our problem setting.
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all hypotheses in Hk will generate the same dichotomy of Xn. The power of an equivalence class Hk

is defined as a probability mass

P (Hk) :=
∫

Hk

p(h)dh, k = 1, . . . ,2n,

where p(h) is the underlying probability density of h over HQ. The hypotheses in Hk with a large

power P (Hk) are preferred according to statistical learning theory (Vapnik, 1998).

When no specific domain knowledge is available (i.e., p(h) is unknown), it would be natural to

assume the continuous uniform distribution p(h) = 1/∑2n

k=1 V (Hk), where

V (Hk) :=
∫

Hk

dh, k = 1, . . . ,2n,

is the volume of Hk as well as the geometric volume of the k-th quadrant of E(HQ). Consequently,

P (Hk) is proportional to V (Hk), and the larger the value of V (Hk) is, the more confident we are of

the data partition sign(h∗) where h∗ is chosen from Hk.

However, it is very hard to accurately compute the geometric volume of a single n-dimensional

convex body let alone for all 2n convex bodies, so we employ an efficient approximation introduced

by El-Yaniv et al. (2008) as follows. Let λ1 ≤ ·· · ≤ λn be the eigenvalues of Q, and v1, . . . ,vn be

the associated normalized eigenvectors. Then, vi and 1/
√

λi are the direction and length of the i-th

principal axis of E(HQ). Note that a small angle from some h ∈ Hk to vi with a small/large index i

(i.e., a long/short principal axis) implies that V (Hk) is large/small. Based on this key observation,

we define

V (h) :=
n

∑
i=1

λi

(
h⊤vi

‖h‖2

)2

=
h⊤Qh

‖h‖2
2

, (1)

where h⊤vi/‖h‖2 means the cosine of the angle between h and vi. We subsequently expect V (h)
to be small when h lies in a large-volume equivalence class, and conversely to be large when h lies

in a small-volume equivalence class.

3. Maximum Volume Clustering

In this section, we define our clustering model and propose two approximation algorithms.

3.1 Basic Formulation

Motivated by Xu et al. (2005), we think of the binary clustering problem from a regularization view-

point. If we had labels Yn = {y1, . . . ,yn} where yi ∈ {−1,+1}, we could find a certain classification

method to compute

ϑ(Xn,Yn) := min
h∈H (Xn,Yn)

∆(Yn,h)+ γW (Xn,h),

where H (Xn,Yn) is a hypothesis space (which depends upon Xn and Yn), ∆(Yn,h) is an overall loss

function, W (Xn,h) is a regularization function, and γ > 0 is a regularization parameter. The value

of ϑ(Xn,Yn) is generally a measure of classification quality.

When the labels Yn are absent, a clustering method tries to minimize ϑ(Xn,y) over all possible

assignments y ∈ {−1,+1}n for given Xn, that is, to solve the problem

y∗ = argmin
y∈{−1,+1}n

ϑ(Xn,y).
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Generally speaking, ϑ(Xn,y
∗) can be regarded as a measure of clustering quality. The smaller the

value of ϑ(Xn,y
∗) is, the more satisfied we are with the resulting data partition y∗.

In our discriminative clustering model, we hope to use V (h) in Equation (1) as our regularization

function. Formally speaking, given the matrix Q, by instantiating ∆(y,h) =−2h⊤y, we define the

basic model of maximum volume clustering (MVC) as

min
y∈{−1,+1}n

min
h∈HQ

−2h⊤y+ γ · h
⊤Qh

‖h‖2
2

, (2)

where HQ = {h | h⊤Qh ≤ 1} is the hypothesis space mentioned in Section 2, and γ > 0 is a regu-

larization parameter. Optimization problem (2) is computationally intractable, due to not only the

non-convexity of V (h) but also the integer feasible region of y which makes (2) combinatorial. In

the next two subsections, we will discuss two approximation schemes of (2) in detail.

3.2 Soft-Label Approximation

We now try to optimize h alone by removing y. After exchanging the order of the minimizations of

y and h in optimization (2), it is easy to see that the optimal y should be sign(h), since the second

term is independent of y and the first term is minimized when y = sign(h) for fixed h. Therefore,

(2) becomes

min
h∈HQ

−2‖h‖1 + γ · h
⊤Qh

‖h‖2
2

. (3)

Similarly to El-Yaniv et al. (2008), we replace the feasible region HQ with Rn, and relax (3) into

min
h∈Rn

−2‖h‖1 + γh⊤Qh s.t. ‖h‖2 = 1. (4)

Although the optimization is done in Rn, the regularization is done relative to HQ. Optimization (4)

is the primal problem of soft-label MVC (MVC-SL).

Optimization (4) is non-convex mainly attributed to the minimization of negative ℓ1-norm rather

than the equality constraint of ℓ2-norm. In order to solve this optimization, we resort to sequential

quadratic programming (SQP) (Boggs and Tolle, 1995). The basic idea of SQP is modeling a non-

convex problem by a sequence of convex subproblems: At each step, it uses a quadratic model for

the objective function and linear models for the constraints. A nonlinear optimization problem with

a quadratic objective function and linear constraints is known as quadratic programming (QP). An

SQP constructs and solves a local QP at each iteration, yielding a step toward the optimum.

More specifically, let us include a class balance constraint −b≤ h⊤1n ≤ b with a user-specified

class balance parameter b > 0 to prevent skewed clustering sizes. Denote the objective function of

optimization (4) by

f (h) :=−2h⊤sign(h)+ γh⊤Qh,

and the auxiliary functions by

f1(h) := h⊤h−1,

f2(h) := h⊤1n,
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where 1n means the all-one vector in Rn. Subsequently, let λ1 be the smallest eigenvalue of Q, the

corresponding Lagrange function should be2

L(h,η,µ,ν) = f (h)−η f1(h)−µ( f2(h)−b)+ν( f2(h)+b),

where η < γλ1 is the Lagrangian multiplier for the constraint f1(h) = 0, and µ,ν ≥ 0 are the La-

grangian multipliers for the constraint −b≤ f2(h)≤ b. Then, given constant h and variable p with

a tiny norm, the auxiliary functions can be approximated by

f1(h+p)≈ p⊤∇ f1(h)+ f1(h),

f2(h+p) = p⊤∇ f2(h)+ f2(h),

so the constraints are replaced with

p⊤∇ f1(h)+ f1(h) = 0,

−b≤ p⊤∇ f2(h)+ f2(h)≤ b.

Nevertheless, it would be incorrect to adopt the second-order Taylor expansion of f (h+p) as our

new objective function, since we need to capture the curvature of f1(h+p). The correct way is to

use the quadratic model3

L(h+p,η)≈ 1

2
p⊤∇2L(h,η)p+p⊤∇L(h,η)+L(h,η)

and form our objective at any fixed (h,η) into

min
p∈Rn

1

2
p⊤∇2L(h,η)p+p⊤∇ f (h),

according to Boggs and Tolle (1995, p. 9). As a consequence, the subproblem of the t-th iteration is

a simple QP at the current estimate (ht ,ηt):

min
pt∈Rn

p⊤t (γQ−ηtIn)pt +2p⊤t
(
γQht − sign(ht)

)

s.t. 2p⊤t ht +h⊤t ht = 1

−b≤ p⊤t 1n +h⊤t 1n ≤ b,

(5)

where In is the identity matrix of size n. The new estimate (ht+1,ηt+1) is given by

ht+1 = ht +p∗t , (6)

ηt+1 =
h⊤t
(
γQht+1−ηtp

∗
t − sign(ht)

)

h⊤t ht

, (7)

2. We will ignore variables µ and ν later, since first-order terms of L(h,η,µ,ν) would disappear in the second-order

derivative ∇2L(h,η,µ,ν). The Lagrange function L(h,η) itself has no constraint on h, so we impose η < γλ1 to

make sure that L(h,η) is bounded from below. Otherwise, the subproblem may be ill-defined.

3. Note that minimizing −h⊤y in optimization (2) or −‖h‖1 in optimization (4) has an effect to push h away from the

coordinate axes of Rn. Thus, [h]i = 0 hardly happens in practice and we assume that ‖h‖1 is always differentiable.
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Algorithm 1 MVC-SL

Input: stopping criterion ε,

symmetric positive-definite matrix Q,

regularization parameter γ,

class balance parameter b

Output: soft response vector h∗

1: Initialize (h0,η0), recommended but not required, from Equation (9)

2: t← 0

3: repeat

4: Obtain p∗t through optimization (5)

5: Update ht+1 through Equation (6)

6: Update ηt+1 through Equation (7)

7: if ηt+1 ≥ γλ1 then break

8: t← t +1

9: until ‖ht −ht−1‖2 + |ηt−ηt−1| ≤ ε

10: return h∗ = ht

where p∗t is the optimal solution to (5). Notice that we cannot obtain ηt+1 directly from (5) and in

fact Equation (7) comes from the best fit in the least-square sense of the following equation

∇2L(ht ,ηt)p
∗
t +∇ f (ht)−ηt+1∇ f1(ht) = 0. (8)

The MVC-SL algorithm based on SQP is summarized in Algorithm 1. In our experiments, we

use an initial solution (h0,η0) defined as

h0 =
1√
n

sign

(
v2−

1

n
1n1
⊤
nv2

)
, η0 = 0, (9)

where v2 is the eigenvector associated with the second smallest eigenvalue of Q. The construction

of h0 is explained as follows. The term (v2−1n1
⊤
nv2/n) equals Cnv2, where Cn = In−1n1

⊤
n/n is

the centering matrix of size n. It means that we cut v2 at the mean value of its components to form

two initial clusters, and normalize the corresponding soft response vector into the unit norm as h0.

The asymptotic time complexity of each iteration is at most O(n3), and the convergence rate of SQP

iterations is independent of n (Boggs and Tolle, 1995). Moreover, it takes O(n2) time to compute

h0. Hence, the overall computational complexity of Algorithm 1 is no more than O(n3).

3.3 Hard-Label Approximation

As opposed to the soft-label approximation, we can also optimize y alone. Let h = α ◦y, where

α = |h| is a vector of element-wise absolute values, y = sign(h) is a vector of the corresponding

signs, and ◦ means the element-wise product. We would like to further introduce a hyperparameter

C to bound each component of α, which might be helpful for dealing with outliers. Subsequently,
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the primal problem of hard-label MVC (MVC-HL) is written as

min
y∈{−1,+1}n

min
α∈Rn

−2α⊤1n + γα⊤
(

Q◦yy⊤
)
α

s.t. α⊤α= 1

0n ≤α≤C1n,

(10)

where 0n means the all-zero vector in Rn.

By employing the technique described in Lanckriet et al. (2004), let M = yy⊤ and then opti-

mization (10) can be relaxed to

min
M∈Rn×n

min
η∈R

max
α∈Rn

2α⊤1n− γα⊤(Q◦M)α+η(α⊤α−1)

s.t. M � 0

diag(M) = 1n

0n ≤α≤C1n,

(11)

where the function diag(·) forms the diagonal entries of a square matrix into a column vector, and

� 0 indicates the positive semi-definiteness of a symmetric matrix.4 The relaxation from (10) to

(11) is mainly achieved by replacing M ∈ {−1,+1}n×n and rank(M) = 1 with M ∈ Rn×n, M � 0

and diag(M) = 1n. As a result, optimization (11) is a semi-definite programming (SDP) provided

(γQ◦M−ηIn)� 0. Let ν ≥ 0n and µ≥ 0n be the Lagrangian multipliers for 0n ≤α and α≤C1n,

then (11) is equivalent to

min
M,µ,ν,η

max
α

2α⊤(1n−µ+ν)−α⊤(γQ◦M−ηIn)α+2Cµ⊤1n−η

s.t. M � 0

diag(M) = 1n

µ≥ 0n,ν ≥ 0n.

(12)

When considering the variable α in (12), the optimal α should be

α= (γQ◦M−ηIn)
†(1n−µ+ν),

where † is the operator of the pseudo inverse, and we can form (12) into

min
M,µ,ν,η

(1n−µ+ν)⊤(γQ◦M−ηIn)
†(1n−µ+ν)+2Cµ⊤1n−η

s.t. M � 0

diag(M) = 1n

µ≥ 0n,ν ≥ 0n

under an additional condition that (1n−µ+ν) is orthogonal to the null space of (γQ ◦M−ηIn).
Eventually, by the extended Schur complement lemma (De Bie and Cristianini, 2004), we arrive at

4. We imply by M � 0 that M is symmetric and will not explicitly write M⊤= M for convenience.
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a standard SDP formulation:

min
M,µ,ν,η,t

t

s.t. M � 0

diag(M) = 1n

µ≥ 0n,ν ≥ 0n(
γQ◦M−ηIn (1n−µ+ν)
(1n−µ+ν)⊤ t +η−2Cµ⊤1n

)
� 0.

(13)

The asymptotic time complexity of optimization (13) is O(n6.5) if directly solved by any stan-

dard SDP solver (De Bie and Cristianini, 2004). It could be reduced to O(n4.5) with the subspace

tricks (De Bie and Cristianini, 2006), which essentially make use of the spectral properties of Q to

control the trade-off between the computational cost and the accuracy.

After we obtain M∗, y∗ could be recovered from the rank one approximation of M∗ by either

thresholding (De Bie and Cristianini, 2004) or randomized rounding (Raghavan and Thompson,

1985; De Bie and Cristianini, 2006). In our experiments, we use the former technique: The eigen-

vector v∗ associated with the largest eigenvalue of M∗ is extracted, and then y∗ is recovered as

y∗ = sign

(
v∗− 1

n
1n1
⊤
nv
∗
)
,

where the threshold is the center of v∗ (cf., the construction of h0 in MVC-SL).

4. Generality

MVC is a general framework and closely related to several existing clustering methods. The primal

problem of MVC-SL can in fact be reduced to the optimization problems of unnormalized spectral

clustering (USC) (von Luxburg, 2007, p. 6), relaxed plain and kernel k-means clustering (Ding and

He, 2004), and squared-loss mutual information based clustering (SMIC) (Sugiyama et al., 2011)

as special limit cases. We demonstrate these claims in this section.

First of all, consider USC. The relaxed RatioCut problem can formulate USC from a graph cut

point of view as

min
f∈Rn

f⊤Lun f s.t. f⊥1n,‖ f‖2 =
√

n (14)

when the number of clusters is two, where Lun is the unnormalized graph Laplacian (von Luxburg,

2007, pp. 10–11). Note that we can rewrite the primal problem of MVC-SL defined in (4) as

min
h∈Rn

−2‖h‖1/γ+h⊤Qh s.t. ‖h‖2 = 1. (15)

Optimizations (15) and (4) share exactly the same optimal solution with/without the class balance

constraint −b ≤ h⊤1n ≤ b, though (15) has an optimal objective value γ times smaller than (4)’s.

Now, let Q = Lun + εIn with arbitrarily chosen ε > 0 to make sure the positive definiteness of Q.

Assume that f ∗ is the solution to (14), and h∗m is the solution to (15) with Q specified as above, a

class balance parameter b = 0, and a regularization parameter γm = m given a natural number m.

Subsequently, it is obvious that

lim
m→∞

h∗m = f ∗/
√

n,
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and

lim
m→∞
−2‖h∗m‖1/γm +h∗⊤m Qh∗m = f ∗⊤Lun f ∗/n+ ε,

since ‖h∗m‖1 ≤
√

n‖h∗m‖2 =
√

n and then limm→∞ ‖h∗m‖1/γm = 0. Therefore, USC may be viewed

as a special limit case of MVC-SL, that is, a special case with the specification Q = Lun + εIn of a

limit case as γ→ ∞.

Remark 1 The motivation of f⊥1n in USC is very different from h⊤1n = 0 in MVC-SL for class

balancing. When Lun is constructed from a fully connected similarity graph, the constraint f⊥1n

means that the feasible region of optimization (14) is in a space spanned by all eigenvectors of Lun

except the trivial eigenvector 1n. Note that h⊤1n = 0 just asks for strictly balanced soft responses

and is not equivalent to sign(h)⊤1n = 0 that demands strictly balanced cluster assignments.

On the other hand, continuous solutions to the relaxations of k-means clustering (MacQueen,

1967; Hartigan and Wong, 1979) and kernel k-means clustering (Girolami, 2002) can be obtained

by principle component analysis (PCA) and kernel PCA, respectively (Zha et al., 2002; Ding and

He, 2004). Now, let Q = εIn−CnKCn with arbitrarily chosen ε > ‖CnKCn‖2, where K is the kernel

matrix, Cn = In−1n1
⊤
n/n is the centering matrix, and ‖ · ‖2 here means the spectral norm (which is

also known as the operator norm induced by the ℓ2-norm) of a matrix. As a result,

lim
m→∞

h∗m = v∗,

and

lim
m→∞
−2‖h∗m‖1/γm +h∗⊤m Qh∗m = ε−v∗CnKCnv

∗,

where h∗m is the solution to (15) with Q specified as above and γm = m, and v∗ is the solution to the

relaxed kernel k-means clustering (Ding and He, 2004, Theorem 3.5). In addition, if X ⊂ Rd and

X ∈ Rn×d is the design matrix, we will have

lim
m→∞

h′∗m = v′∗,

and

lim
m→∞
−2‖h′∗m‖1/γm +h′∗⊤m Qh′∗m = ε−v′∗CnXX⊤Cnv

′∗,

where h′∗m is the solution to (15) with Q = εIn−CnXX⊤Cn, ε > ‖CnXX⊤Cn‖2 and γm = m, and v′∗

is the solution to the relaxed plain k-means clustering (Ding and He, 2004, Theorem 2.2). In other

words, plain k-means clustering and kernel k-means clustering after certain relaxations are special

limit cases of MVC-SL.5

Similarly to USC and two k-means clustering, the optimization problem of the binary SMIC is

another special limit case of MVC-SL. It involves the maximization of the following squared-loss

mutual information approximator

max
α1,α2∈Rn

1

n

2

∑
y=1

α⊤yK2αy−
1

2
(16)

5. When considering k-means algorithms that are referred to as certain iterative clustering algorithms rather than clus-

tering models, by no means they can be special limit cases of MVC-SL.
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under an orthonormal constraint of α1 and α2, where α1 and α2 are model parameters of posterior

probabilities and K is the kernel matrix. The optimal solutions to (16) can be obtained through

α∗1 = argmax
α∈Rn

α⊤K2α s.t. ‖α‖2 = 1, (17)

α∗2 = argmax
α∈Rn

α⊤K2α s.t.α⊥α∗1,‖α‖2 = 1. (18)

Now, let Q = εIn−K2 with arbitrarily chosen ε > ‖K‖2
2. We could then know

lim
m→∞

h∗1,m =α∗1,

and

lim
m→∞
−2‖h∗1,m‖1/γm +h∗⊤1,mQh∗1,m = ε−α∗1K2α∗1,

where h∗1,m is the solution to (15) with Q specified as above and γm = m. Likewise,

lim
m→∞

h∗2,m =α∗2,

and

lim
m→∞
−2‖h∗2,m‖1/γm +h∗⊤2,mQh∗2,m = ε−α∗2K2α∗2,

where h∗2,m is the solution to (15) with Q specified as above, γm = m, and a constraint h⊤h∗1,m = 0.

Remark 2 After optimizing (17) and (18), SMIC adopts the post-processing that encloses α∗1 and

α∗2 into posterior probabilities and enables the out-of-sample clustering ability for any x ∈ X even

if x 6∈ Xn (Sugiyama et al., 2011), while MVC-SL can use

h∗ =α∗1 sign(1⊤nα
∗
1)−α∗2 sign(1⊤nα

∗
2)

as the optimal soft response vector since there are just two clusters.

5. Finite Sample Stability

The stability of the resulting clusters is important for clustering models whose non-convex primal

problems are solved by randomized algorithms (e.g., MVC-SL and k-means clustering) rather than

relaxed to convex dual problems (e.g., MVC-HL and MMC). To this end, we investigate the finite

sample stability of the primal problem of MVC-SL in this section.

In the following, we presume that we are always able to find a locally optimal solution to opti-

mization (4) accurately. Under this presumption, we prove that the instability is resulted from the

symmetry of data samples: As long as the input matrix Q satisfies some asymmetry condition, we

could obtain the same data partition based on different locally optimal solutions, and consequently

the non-convex optimization of MVC-SL seems convex.

5.1 Definitions

Definition 3 The Hamming clustering distance for two n-dimensional soft response vectors h and

h′ is defined as

dH (h,h′) :=
1

2
min(‖sign(h)+ sign(h′)‖1,‖sign(h)− sign(h′)‖1).
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When measuring the difference of two binary clusterings, dH (h,h′) is always a natural number

smaller than n/2, since ‖sign(h)+ sign(h′)‖1 +‖sign(h)− sign(h′)‖1 = 2n.

Definition 4 (Irreducibility) A sample xi is isolated in Xn, if Qi,i > 0 and ∀ j 6= i,Qi, j = 0. A set of

samples Xn is irreducible, if no sample is isolated in Xn; otherwise Xn is reducible.

The idea behind the irreducibility of Xn is simple: If xi is isolated, we cannot decide its cluster

based on the information contained in Q no matter what binary clustering algorithm is used, unless

we assign xi to one cluster and Xn \ xi to the other cluster. We would like to remove such isolated

samples and reduce the clustering of Xn to a better-defined problem.

Next we define two symmetry concepts, the submatrix-information- (SI- for short) symmetry in

Definition 5 and the axisymmetry in Definition 7. SI-asymmetry is a part of the sufficient condition

for finite sample stability, and axisymmetry is a part of the sufficient condition for instability. The

relationship of irreducibility, axisymmetry and SI-symmetry will be proved in Theorem 10.

Definition 5 (Submatrix-Information-Symmetry) A set of samples Xn is submatrix-information-

symmetric, if there exist {δ1, . . . ,δn} ∈ {−1,+1}n and nonempty K ( {1, . . . ,n} such that

∑i∈K , j 6∈K ,δi=δ j
Qi, j = ∑i∈K , j 6∈K ,δi 6=δ j

Qi, j. (19)

Otherwise, Xn is submatrix-information-asymmetric.6

Remark 6 It is clear that

∑i∈K , j 6∈K ,δi=δ j
Qi, j = ∑i∈K , j 6∈K

δiδ jQi, j,

∑i∈K , j 6∈K ,δi 6=δ j
Qi, j =−∑i∈K , j 6∈K

δiδ jQi, j,

and thus Equation (19) is equivalent to

(
∑k∈K

δkek

)⊤
Q
(
∑k 6∈K

δkek

)
= 0, (20)

where {e1, . . . ,en} is a standard basis of Rn. From now on, we may use Equation (20) as the

condition to check SI-symmetry or SI-asymmetry for convenience.

Intuitively, the SI-symmetry of Xn says that Q has a submatrix containing the same amount of

similarity and dissimilarity information. More specifically, both {δ1, . . . ,δn} and K are valid parti-

tions of Xn, though they have different representations and functions. The partition {δ1, . . . ,δn} is a

reference for similarity and dissimilarity, and based on this partition, we categorize the information

Qi, j between xi and x j into similarity information if δi = δ j or dissimilarity information if δi 6= δ j.

On the other hand, we divide Q into four parts Q[i ∈ K ; j ∈ K ], Q[i ∈ K ; j 6∈ K ], Q[i 6∈ K ; j ∈ K ]
and Q[i 6∈ K ; j 6∈ K ] according to the partition K . The SI-symmetry of Xn shown in Equation (19)

6. Strictly speaking, saying that Xn is SI-symmetric is a bit abuse of terminology. In formal mathematical terminology,

an object is symmetric with respect to some operation, if this operation, when applied to the object, preserves certain

property. For example, in the axisymmetry, the object is Xn, the operation is φ and the property is Q. However, in the

SI-symmetry, the object is a set of two vectors {∑k∈K δkek,∑k 6∈K δkek}, the operation is replacing In with Q, and

the property is the orthogonality (preserved from the standard orthogonality to the Q-orthogonality).
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indicates that the submatrix Q[i ∈ K ; j 6∈ K ] (and likewise Q[i 6∈ K ; j ∈ K ]) contains the same

amount of similarity information (i.e., the left-hand side) and dissimilarity information (i.e., the

right-hand side).

When Xn is SI-symmetric, we could easily find two feasible solutions to optimization (4), such

that they would induce different partitions of Xn but share the same value of the objective function.

To see this, let

h+ =
∑k∈K δkek +∑k 6∈K δkek√

n
,

h− =
∑k∈K δkek−∑k 6∈K δkek√

n
.

It is easy to verify that ‖h±‖2 = 1, ‖h±‖1 =
√

n and dH (h+,h−)≥ 1. Moreover,

h⊤+Qh+ = h⊤+Qh+− (h++h−)
⊤Q(h+−h−) = h⊤−Qh−,

where we used (h++h−)⊤Q(h+−h−) = 0 by the condition Equation (20) of SI-symmetry. How-

ever, h+ and h− are not necessarily locally optimal solutions to optimization (4), and maybe no

locally optimal solution could induce the same partition with h+ or h−. The real reason for finite

sample instability is the axisymmetry of data samples defined below.

Definition 7 (Axisymmetry) A set of samples Xn is axisymmetric, if there exists a permutation φ of

{1, . . . ,n}, such that

1. ∃i ∈ {1, . . . ,n},φ(i) 6= i;

2. ∀i ∈ {1, . . . ,n},φ−1(i) = φ(i);

3. ∀1≤ i, j ≤ n,Qi, j = Qφ(i),φ( j).

The first property says that the permutation φ cannot be the identical mapping: It allows some,

but not all, sample xi mapped to itself. The second property requires that those samples mapped to

others are all paired. In other words, Xn is separated into two types of disjoint subsets according to

φ, and they are either cardinality one (i.e., {xi | φ(i) = i}) or two (i.e., {xi,xφ(i) | φ(i) 6= i}), but no

greater cardinality. The third property guarantees that Q is φ-invariant, or equivalently the samples

in the subset {xi,xφ(i) | φ(i) 6= i} cannot be distinguished by all other subsets {x j | φ( j) = j, j 6= i} or

{x j,xφ( j) | φ( j) 6= j, j 6= i, j 6= φ(i)} based on the information contained in Q, so we can exchange xi

and xφ(i) freely without modifying Q.

The axisymmetry of Xn in terms of Q is equivalent to the geometric axisymmetry of Xn in X , if

X ⊂ Rd and Q is a matrix induced from the Euclidean distance such as a Gaussian kernel matrix.

For example, as shown in Figure 2,

X4 = {(0,0),(1,0),(1,1),(0,1)},
X ′4 = {(0,0),(1,0),(1,0.5),(0,0.5)}

are axisymmetric both in R2 and in terms of Q if Q is a Gaussian kernel matrix, regardless of the

kernel width. The permutation φ for X ′4 could be {(1,2),(3,4)}, {(1,3),(2,4)} or {(1,4),(2,3)},
and besides them, φ for X4 could also be {(1),(3),(2,4)} or {(1,3),(2),(4)}. We can identify an
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Figure 2: Four-point sets that are typical in the theory of finite sample stability. Gaussian similari-

ties (σ = 1/
√

2) between nodes are visualized by the line thickness of edges. All sets in

this figure are irreducible. X4 in panel (a) is axisymmetric and SI-symmetric. X ′4 in (b)

is axisymmetric, SI-symmetric, anisotropic, and has a unique best partition. X ′′4 in (c) is

very special: It is anisotropic, SI-symmetric but not axisymmetric, since the similarity of

the diamond and circle equals the sum of the similarities of the diamond and squares. A

random set would be anisotropic and SI-asymmetric with high probability.

axis of symmetry geometrically in Rd : It must pass through either xi if φ(i) = i or (xi + xφ(i))/2 if

φ(i) 6= i for i = 1, . . . ,n. This is why we call such a property axisymmetry.

Generally speaking, the concepts of axisymmetry and SI-symmetry almost coincide, if Q is a

Gaussian kernel matrix or the corresponding graph Laplacian matrix. While it is possible to delib-

erately construct counter-examples that are SI-symmetric but not axisymmetric, it is improbable to

meet a counter-example in practice. For instance, as illustrated in panel (c) of Figure 2,

X ′′4 = {(0,0),(
√

ln(5/3),0),(
√

ln(10/3),0),(
√

ln(5/3),
√

ln2)}
≈ {(0,0),(0.7147,0),(1.0973,0),(0.7147,0.8326)}

is SI-symmetric but not axisymmetric in terms of Gaussian kernel matrix Q when σ = 1/
√

2, yet

X ′′4 is SI-asymmetric whenever σ 6= 1/
√

2.

Definition 8 (Anisotropy) A set of samples Xn is anisotropic, if Q has n distinct eigenvalues.
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The anisotropy of Xn is the other part of the sufficient condition for finite sample stability. The

name comes from a geometric interpretation of the ellipsoid E(HQ): All its principal axes achieve

distinct lengths when Q has distinct eigenvalues, and thus E(HQ) is anisotropic and not rotatable.

The concepts of anisotropy and axisymmetry are not complementary, since they concern different

aspects of different objects, that is, the rotation of E(HQ) vs. the reflection of Xn. In Figure 2, X4 is

axisymmetric, X ′4 is axisymmetric and anisotropic, and most random sets are just anisotropic. There

might be Xn neither axisymmetric nor anisotropic. Nonetheless, when considering the more general

SI-symmetry and certain families of Q such as Gaussian kernel matrices, Xn is anisotropic as long

as it is SI-asymmetric.

All definitions have been discussed. The theoretical results will be presented next.

5.2 Theoretical Results

The following lemma will be used in Theorems 11 and 13. All proofs are provided in Appendix A.

Lemma 9 Let Xn be an irreducible set of samples, v1, . . . ,vn be the normalized eigenvectors of Q,

and {e1, . . . ,en} be a standard basis of Rn. Then, ∀i, j ∈ {1, . . . ,n}, vi 6=±e j.

The following two theorems describe the relationship between the properties defined above.

Theorem 10 A set of samples Xn is SI-symmetric, if it is reducible or axisymmetric.

Theorem 11 If Xn is an SI-asymmetric set of samples, and there exists κ> 0 such that Q1,1 =Q2,2 =
· · ·= Qn,n = κ, then Xn is anisotropic.

We are ready to deliver our main theorems. To begin with, given a constant η, we define (recall

the assumption that ‖h‖1 is differentiable thanks to the non-sparsity of h)

G(h) := γh⊤Qh−η‖h‖2
2−2‖h‖1,

g(h) :=
1

2
∇G(h) = γQh−ηh− sign(h).

Theorem 12 (Twin Minimum Theorem) Assume that n> 2, Xn is an axisymmetric set of samples,

φ is the corresponding permutation, and I = {{i,φ(i)} | φ(i) 6= i} is the index set of those paired

samples given φ. For every minimum h∗ of optimization (4), if

1. ∀i, [h∗]i 6= 0, and

2. ∃{i,φ(i)} ∈ I , [h∗]φ(i)[h
∗]i < 0,

then h∗ has a twin minimum h⋆ satisfying G(h⋆) = G(h∗) and dH (h∗,h⋆)≥ 1. The only exception

is

∀i ∈ {1, . . . ,n}, [h∗]φ(i)[h∗]i < 0.

In order to explain the implication of Theorem 12, let us recall X4 and X ′4 shown in Figure 2.

There are many twin minima when considering the perfectly symmetric X4, but it is same even for

those convex relaxations of MMC due to the post-processing. On the other hand, X ′4 illustrates an

exception: While X4 allows φ(i) = i, this is impossible for X ′4. More specifically, any minimum h∗
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corresponding to partition (+1,−1,−1,+1) has no twin minimum, since φ can be {(1,2),(3,4)},
{(1,3),(2,4)} or {(1,4),(2,3)} for X ′4, and

∀φ,(∃i, [h∗]φ(i)[h∗]i < 0)→ (∀i, [h∗]φ(i)[h∗]i < 0).

It suggests that if we permute h∗ according to φ, then sign(h⋆) = ±sign(h∗) is the same partition

and thus dH (h∗,h⋆) = 0. Another minimum h that corresponds to (+1,+1,−1,−1) and satisfies

dH (h∗,h) ≥ 1 should have G(h) > G(h∗). In a word, local minima that correspond to different

partitions for X ′4 are not equally good and the best partition is still unique, as illustrated in panel (b)

of Figure 2. The genuine instability emerges only when the best partition is not unique, like X4 in

panel (a) of Figure 2.

Theorem 13 (Equivalent Minima Theorem) All minima of optimization (4) are equivalent with

respect to dH , provided that

1. Xn is SI-asymmetric;

2. Xn is anisotropic.

By combining Theorem 11 and Theorem 13, we have a corollary immediately.

Corollary 14 All minima of optimization (4) are equivalent with respect to dH , provided that

1. Xn is SI-asymmetric;

2. There exists κ > 0 such that Q1,1 = Q2,2 = · · ·= Qn,n = κ.

To sum up, if Q has the two properties listed above, different locally optimal solutions to opti-

mization (4) would ideally induce the same data partition. Nevertheless, the output of the algorithm

is not in the same form as the solution to optimization (4), since the variable η has been introduced,

and we cannot foresee its optimal value when we analyze the original model. Spectral clustering is

consistent (von Luxburg et al., 2008), but it has a similar problem in finite sample stability, that is,

when the graph Laplacian has distinct eigenvalues and the unique spectral decomposition leads to a

stable spectral embedding, the following k-means clustering can still introduce high instability due

to the non-convex nature of the distortion function.

Remark 15 We rely on a Karush-Kuhn-Tucker stationarity condition g(h∗) = 0n in the proofs of

Theorems 12 and 13, where h∗ is the optimal solution to (4). Actually, the objective function

of (4) usually has a non-zero derivative and the objective function of (3) always has a non-zero

derivative in their feasible regions. Therefore, we introduce the functions G(h) and g(h) to analyze

MVC-SL from a theoretical point of view. In MVC-SL, Equation (7) comes from the least-square

fitting of Equation (8), and if t → ∞, we will have p∗t → 0n and then Equation (8) will turn into

g(h∗) = limt→∞ g(ht) = 0n.

6. Clustering Error Bound

In this section, we derive a clustering error bound for MVC-SL based on transductive Rademacher

complexity (El-Yaniv and Pechyony, 2009).

It is extremely difficult, if possible, to evaluate clustering methods in an objective and domain-

independent manner (von Luxburg et al., 2012). However, when the goals and interests are clear, it
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makes sense to evaluate clustering results using classification benchmark data sets, where the class

structure coincides with the desired cluster structure according to the goals and interests.

In real-world applications, we often find some experts to cluster a small portion Xn′ of Xn where

n′ < n according to their professional knowledge, test a lot of clustering methods with a lot of simi-

larity measures, see their agreement with given clustering of Xn′ , and eliminate those low agreement

methods. This procedure may be viewed as propagating the knowledge of experts from Xn′ to Xn.

Here, we derive a data-dependent clustering error bound to guarantee the quality of this propa-

gation of knowledge. The key technique is transductive Rademacher complexity for deriving data-

dependent transductive error bounds. To begin with, we follow El-Yaniv and Pechyony (2009) for

the definition of transductive Rademacher complexity:

Definition 16 Fix positive integers m and u. Let H ⊆Rm+u be a hypothesis space, p∈ [0,1/2] be a

parameter, and σ = (σ1, . . . ,σm+u)
⊤ be a vector of independent and identically distributed random

variables, such that

σi :=





+1 with probability p,

−1 with probability p,

0 with probability 1−2p.

Then, the transductive Rademacher complexity of H with parameter p is defined as

Rm+u(H , p) :=

(
1

m
+

1

u

)
Eσ

{
suph∈H σ⊤h

}
.

For the sake of comparison, we give a definition of inductive Rademacher complexity following

El-Yaniv and Pechyony (2009).7

Definition 17 Let p(x) be a probability density on X , and Xn = {x1, . . . ,xn} be a set of independent

observations drawn from p(x). Let H be a class of functions from X to R, and σ = (σ1, . . . ,σn)
⊤ be

a vector of independent and identically distributed random variables, such that

σi :=

{
+1 with probability 1/2,

−1 with probability 1/2.

The empirical Rademacher complexity of H conditioned on Xn is

R̂
(ind)

n (H ) :=
2

n
Eσ

{
suph∈H σ⊤h | Xn

}
,

where h= (h(x1), . . . ,h(xn))
⊤, and the inductive Rademacher complexity of H is

R
(ind)

n (H ) := EXn

{
R̂

(ind)
n (H )

}
.

The transductive Rademacher complexity of H is an empirical quantity that depends only on p.

Given fixed Xn, we have Rm+u(H ) = 2R̂
(ind)

m+u (H ) when p = 1/2 and m = u.8 Whenever p < 1/2,

7. Albeit there are many definitions of Rademacher complexity, for example, Koltchinskii (2001), Bartlett and Mendel-

son (2002), Meir and Zhang (2003) and Bousquet et al. (2004), they are similar and conceptually equivalent.

8. A class of functions conditioned on fixed data is equivalent to a hypothesis space of soft response vectors.
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some Rademacher variables will attain zero values and reduce the complexity. We simply consider

p0 = mu/(m+ u)2 and abbreviate Rm+u(H , p0) to Rm+u(H ) as El-Yaniv and Pechyony (2009) in

Lemma 18 and Theorem 19, though these theoretical results hold for all p > p0 since Rm+u(H , p)
is monotonically increasing with p. Please refer to El-Yaniv and Pechyony (2009) for the detailed

discussions about transductive Rademacher complexity.

Lemma 18 Let H ′
Q be the set of all possible h returned by Algorithm 1 for the given Q, η∗ be the

optimal η when Algorithm 1 stops,

µ = suph∈H ′Q
sign(h)⊤(γQ−η∗In)

−1 sign(h),

and λ1, . . . ,λn be the eigenvalues of Q. Then, for the transductive Rademacher complexity of H ′
Q,

the following upper bound holds for any integer n′ = 1,2, . . . ,n−1,

Rn(H
′

Q)≤
√

2

n′(n−n′)
min




√

n,

(
n

∑
i=1

n

(γλi−η∗)2

)1/2

,

(
n

∑
i=1

µ

γλi−η∗

)1/2


 .

The proof of Lemma 18 can be found in Appendix B. By Lemma 18 together with Theorem 2

of El-Yaniv and Pechyony (2009), we can immediately obtain the clustering error bound:

Theorem 19 Assume that y∗ is the ground truth partition of Xn, and L is a random set of size n′

chosen uniformly from the set {L | L ⊂ {1, . . . ,n},#L = n′}. Let ℓ(z) = min(1,max(0,1− z)) for

z ∈R be the surrogate loss, H ′
Q be the set of all possible h returned by Algorithm 1 for the given Q,

η∗ be the optimal η when Algorithm 1 stops,

µ = suph∈H ′Q
sign(h)⊤(γQ−η∗In)

−1 sign(h),

λ1, . . . ,λn be the eigenvalues of Q, and c0 =
√

32(1+ ln4)/3. For any h ∈H ′
Q, with probability at

least 1−δ over the choice of L , we have

dH (h,y∗)≤ n

n′
min

{

∑
i∈L

ℓ([h]i[y
∗]i),∑

i∈L

ℓ(−[h]i[y∗]i)
}

+
c0n√

n′
+

√
2n2(n−n′)2

n′(2n−1)(2n−2n′−1)
ln(1/δ) (21)

+

√
2(n−n′)

n′
min




√

n,

(
n

∑
i=1

n

(γλi−η∗)2

)1/2

,

(
n

∑
i=1

µ

γλi−η∗

)1/2


 .

There are four terms in the right-hand side of inequality (21). The first term is a measure of the

clustering error on Xn′ = {xi | i∈L} by the surrogate loss times the ratio n/n′. More specifically, we

would like to select a proper similarity measure via given clustering {[y∗]i | i∈ L} to make the error

on Xn′ as small as possible, under the assumption that the error rates on Xn′ and Xn should be close

for a fixed similarity measure (the given {[y∗]i | i ∈ L} are not used for training). The second term

depends only on n and n′, i.e., the sizes of the whole set and the clustered subset. Besides n and n′,
the third term further depends on the significance level δ, as in common error bounds. The last term
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is the upper bound of (n− n′)Rn(H
′

Q), which carries out the complexity control of H ′
Q implicitly:

The smaller the value of Rn(H
′

Q) is, the more confident we are that dH (h,y∗) would be small, if the

error on Xn′ is small. When considering the average clustering error measured by dH (h,y∗)/n, the

order of the error bound is O(1/
√

n′) since the second term dominates the third and fourth terms.

Remark 20 Our problem setting is equivalent to neither semi-supervised clustering nor transduc-

tive classification: We do not reveal any labels to the clustering algorithm in Theorem 19; instead,

a set of randomly chosen labels are revealed to an evaluator who then returns the evaluation of the

quality of any possible partition generated by the algorithm. We can use the theory of transductive

Rademacher complexity to derive a clustering error bound for Algorithm 1, since it can be viewed

as a transductive algorithm that ignores all revealed labels.

7. Related Works

In this section, we review related works and qualitatively compare the proposed MVC with them.

7.1 Maximum Margin Clustering

Among existing clustering methods, maximum margin clustering (MMC) is closest to MVC. Both

of them originate from statistical learning theory, but their geneses and underlying criteria are still

different: The primal problems of all MMC adopt a regularizer ‖w‖2
2 from the margin, while MVC

relies on the regularizer V (h) in Equation (1) from the volume. The hypothesis shared by all MMC

is the hyperplane for induction, while the hypothesis in MVC is the soft response vector for trans-

duction. The latter is more natural, since clustering is more transductive than inductive.

The family of MMC algorithms was initiated by Xu et al. (2005). It follows the support vector

machine (SVM) (Boser et al., 1992; Cortes and Vapnik, 1995) and its hard-margin version can be

formulated as

min
y∈{−1,+1}n

min
w,ξ
‖w‖2

2

s.t. yiw
⊤xi ≥ 1, i = 1, . . . ,n.

The value of yiw
⊤xi is called the functional margin of (xi,yi), whereas the value of yiw

⊤xi/‖w‖2

is called the geometric margin of (xi,yi). MMC can maximize the geometric margin of all xi ∈ Xn

over y ∈ {−1,+1}n by minimizing ‖w‖2 and requiring the minimal functional margin to be one

simultaneously. Likewise, the primal problem of the soft-margin MMC is

min
y∈{−1,+1}n

min
w,ξ
‖w‖2

2 +C
n

∑
i=1

ξi

s.t. yiw
⊤xi ≥ 1−ξi,ξi ≥ 0, i = 1, . . . ,n,
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where C > 0 is a regularization parameter, and ξ= (ξ1, . . . ,ξn)
⊤ is a vector of slack variables. Then,

it can be relaxed into a standard SDP dual

min
M,µ,ν,t

t

s.t. M � 0

diag(M) = 1n

µ≥ 0n,ν ≥ 0n(
M ◦K (1n−µ+ν)

(1n−µ+ν)⊤ t−2Cµ⊤1n

)
� 0,

(22)

and solved by any standard SDP solver in O(n6.5) time.

Remark 21 Xu et al. (2005) initially imposed three groups of linear constraints on the entries of M

in MMC:

1. ∀i jk, Mi,k ≥Mi, j +M j,k−1;

2. ∀i jk, Mi,k ≥−Mi, j−M j,k−1;

3. ∀i, −b≤ ∑ j Mi, j ≤ b.

However, Xu and Schuurmans (2005) and Valizadegan and Jin (2007) considered (22) as the dual

problem of MMC, sometimes equipped with an additional class balance constraint −b1n ≤M1n ≤
b1n. In other words, the first and second groups of constraints were ignored.

Subsequently, generalized maximum margin clustering (GMMC) (Valizadegan and Jin, 2007)

relaxes the restriction that the original MMC only considers homogeneous hyperplanes and hence

demands every possible clustering boundary to pass through the origin. Furthermore, GMMC is a

convex relaxation of MMC, and its computational complexity is O(n4.5) that is remarkably faster

than MMC. In fact, GMMC optimizes an n-dimensional vector rather than an n× n matrix. More

specifically, the hard-margin GMMC converts the original MMC following Lanckriet et al. (2004)

into a dual problem as

min
y∈{−1,+1}n

min
ν,λ

1

2
(1n +ν+λy)⊤diag(y)K−1 diag(y)(1n +ν+λy)

s.t. ν ≥ 0n,

where the function diag(·) here converts a column vector into a diagonal matrix. The trick here is

(
K ◦yy⊤

)−1

= (diag(y)K diag(y))−1 = diag(y)K−1 diag(y),

since y ∈ {−1,+1}n. By a tricky substitution w = (diag(y)(1n +ν);λ) ∈ Rn+1 where we use the

semicolon to separate the rows of a vector or matrix (i.e., (A;B) = (A⊤,B⊤)⊤), it becomes

min
w∈Rn+1

w⊤(In;1⊤n)K
−1(In,1n)w+Ce

(
(1⊤n,0)w

)2

s.t. [w]2i ≥ 1, i = 1, . . . ,n,

(23)
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where ((1⊤n,0)w)2 is another regularization to remove the translation invariance from the objective

function and Ce is the corresponding regularization parameter. Let

W = (In;1⊤n)K
−1(In,1n)+Ce(1n;0)(1⊤n,0)−diag((γ;0)).

The SDP dual of optimization (23) is then

max
γ∈Rn

γ⊤1n s.t.W � 0,γ ≥ 0n.

This is the dual problem of the hard-margin GMMC. The dual problem of the soft-margin GMMC

is slightly different such that γ is upper bounded:

max
γ∈Rn

γ⊤1n s.t.W � 0,0n ≤ γ ≤Cδ1n, (24)

where Cδ is a regularization parameter to control the trade-off between the clustering error and the

margin. After obtaining the optimal γ, the partition can be inferred from the sign of the eigenvector

of W associated with the zero eigenvalue, since the Karush-Kuhn-Tucker complementary condition

is Ww = 0n+1, and sign([w]i) = sign([y]i) for i = 1, . . . ,n.

There exist a few faster MMC algorithms. Iterative support vector regression (IterSVR) (Zhang

et al., 2007) replaces SVM with the hinge loss in the inner optimization subproblem with SVR with

the Laplacian loss, while for each inner SVR the time complexity is at most O(n3) and the empirical

time complexity is usually between O(n) and O(n2.3). Cutting-plane maximum margin clustering

(CPMMC) (Zhao et al., 2008b) can be solved by a series of constrained concave-convex procedures

within a linear time complexity O(sn) where s is the average number of non-zero features. Unlike

MMC and GMMC that rely on SDP or IterSVR and CPMMC that are non-convex, label-generation

maximum margin clustering (LGMMC) (Li et al., 2009) is scalable yet convex so that it can achieve

its globally optimal solution. Roughly speaking, LGMMC replaces the hinge loss in SVM with the

squared hinge loss to get an alternative MMC:

min
y∈{−1,+1}n

min
w,ξ

1

2
‖w‖2

2−ρ+
C

2

n

∑
i=1

ξ2
i

s.t. yiw
⊤xi ≥ ρ−ξi, i = 1, . . . ,n

−b≤ y⊤1n ≤ b.

After a long derivation, LGMMC can be expressed as a multiple kernel learning problem:

min
µ∈R2n

max
α
− 1

2
α⊤
(

∑t:−b≤y⊤t 1n≤b
µtK ◦yty

⊤
t +

1

C
In

)
α

s.t. µ⊤12n = 1,µ≥ 02n

α⊤1n = 1,α≥ 0n.

This optimization is again solved by the cutting plane method, that is, finding the most violated yt

iteratively, and the empirical time complexity of multiple kernel learning has the same order as the

complexity of SVM which usually scales between O(n) and O(n2.3).
On the other hand, the stability of MVC is by no means inferior to those non-convex MMC in

terms of the resulting clusters. The optimization involved in MVC-HL is a convex SDP problem;
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the optimization involved in MVC-SL is a non-convex SQP problem, while under mild conditions,

it seems convex if one only cares the resulting clusters. Moreover, MVC-SL has a clustering error

bound, and to the best of our knowledge no MMC has such a result. Although the asymptotic time

complexity of MVC-SL is O(n3), its computation time has exhibited less potential of growth in our

experiments than the computationally-efficient LGMMC (see Figure 5 in page 2669).

7.2 Spectral Clustering

Spectral clustering (SC) (Shi and Malik, 2000; Meila and Shi, 2001; Ng et al., 2002) is also closely

related to MVC. SC algorithms include two steps, a spectral embedding step to unfold the manifold

structure and embed the input data into a low-dimensional space in a geodesic manner, and then a

k-means clustering step to carry out clustering using the embedded data.

Given a similarity matrix W ∈ Rn×n and the corresponding degree matrix D = diag(W1n), we

have three popular graph Laplacian matrices: The unnormalized graph Laplacian is defined as

Lun := D−W,

and two normalized graph Laplacian are

Lsym := D−1/2LunD−1/2 = In−D−1/2WD−1/2

Lrw := D−1Lun = In−D−1W.

The first matrix is denoted by Lsym since it is a symmetric matrix and the second one by Lrw since

it is closely related to a random walk. Each popular graph Laplacian corresponds to a popular SC

algorithm according to von Luxburg (2007). Unnormalized SC computes the first k eigenvectors of

Lun where the eigenvalues are all positive and listed in an increasing order. Shi and Malik (2000)

computes the first k generalized eigenvectors of the generalized eigenvalue problem Lunu = λDu

that are also the eigenvectors of Lrw, and hence it is called normalized SC.9 The other normalized

SC algorithm, namely Ng et al. (2002), computes the first k eigenvectors of Lsym, puts them into an

n× k matrix, and normalizes all rows of that matrix to the unit norm, that is, projects the embedded

data further to the k-dimensional unit sphere. Anyway, the main idea is to change the representation

from Rd to Rk and then run k-means clustering.

MVC-SL is able to integrate the two steps of unnormalized SC into a single optimization when

the number of clusters is two and the highly non-convex k-means step is unnecessary. Furthermore,

a vital difference between MVC and SC is that the basic model of MVC has a loss function which

pushes hypotheses away from the coordinate axes and always leads to non-sparse optimal solutions.

When considering the finite sample stability, the spectral embedding step of SC is stable if MVC-SL

is stable but not vice versa, since SC only requires that the graph Laplacian has distinct eigenvalues;

the k-means step is always unstable for fixed data due to the non-convex distortion function which

is essentially an integer programming, but it is stable for different random samplings from the same

underlying distribution, if the globally optimal solution is unique (Rakhlin and Caponnetto, 2007).

In addition, there are a few theoretical results about the infinite sample stability or the consistency

of SC. Globally optimal solutions to k-means clustering converge to a limit partition of the whole

data space X , if the underlying distribution has a finite support, and the globally optimal solution

9. Actually, two algorithms were proposed in Shi and Malik (2000): The two-way cut algorithm only makes use of the

second eigenvector and the k-way cut algorithm uses all first k eigenvectors.
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to the expectation of the distortion function with respect to the underlying distribution is unique

(Ben-David et al., 2007). Eigenvectors of graph Laplacian also converge to eigenvectors of certain

limit operators, while the conditions for convergence are very general for Lsym, but are very special

for Lun so that they are not easily satisfied (von Luxburg et al., 2005, 2008). In contrast, the infinite

sample stability of MVC is currently an open problem.

Remark 22 Certain SC algorithms such as Belkin and Niyogi (2002) ignore the first eigenvector

by extracting the second to k-th eigenvectors of some graph Laplacian, and thus change the repre-

sentation to Rk−1 rather than Rk. Nevertheless, the multiplicity of the eigenvalue zero of the graph

Laplacian equals the number of connected components of the similarity graph, and the eigenspace

of eigenvalue zero is spanned by the indicator vectors of the connected components (von Luxburg,

2007, Propositions 2 and 4). As a consequence, all three aforementioned SC algorithms keep the

first eigenvector in order to deal with disconnected similarity graphs.

7.3 Approximate Volume Regularization

The connection of approximate volume regularization (AVR) (El-Yaniv et al., 2008) and MVC is

analogous with the connection of SVM and MMC.

Compared with MVC, AVR is a transductive method for classification so that the label vector

y is constant and only the soft response vector h needs to be optimized. More specifically, given

m labeled data {(x1,y1), . . . ,(xm,ym)} and u unlabeled data {xm+1, . . . ,xm+u}, the label vector is

denoted by y = (y1, . . . ,ym,0, . . . ,0)
⊤∈ Rm+u, and the primal problem of AVR is defined as

min
h∈Rm+u

− 1

m
h⊤y+ γh⊤Qh s.t. ‖h‖2 = t, (25)

where t is a hyperparameter to control the scale of h. Since y is constant, optimization (25) can be

directly solved using Lagrangian multipliers and the Karush-Kuhn-Tucker conditions

−y/m+2γQh−2ηh= 0,

h⊤h− t2 = 0.

Let the eigen-decomposition of Q be Q =V ΛV⊤ and di = [V⊤y]i, then we get an equation about the

optimal η:

1

4m2

m+u

∑
i=1

d2
i

(γλi−η)2
− t2 = 0. (26)

Thanks to the special structure of (26), a binary search procedure is enough for finding its smallest

root η∗, and the optimal h is recovered by

h∗ =
1

2m
(γQ−η∗Im+u)

−1y.

On the other hand, MVC involves a combinatorial optimization similarly to the most clustering

models and several semi-supervised learning models such as MMC. This difficulty caused by the

integer feasible region is intrinsically owing to the clustering problem and has no business with the

large volume approximation V (h). In order to solve the basic model, we proposed two approxima-

tion schemes based on sequential quadratic programming and semi-definite programming that are

much more complicated than finding the smallest root of Equation (26) as in AVR.
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8. Experiments

In this section, we numerically evaluate the performance of the proposed MVC algorithms.

8.1 Setup

Seven clustering algorithms were included in our experiments:

• Kernel k-means clustering (KM; Zha et al., 2002),

• Normalized spectral clustering (NSC; Ng et al., 2002),

• Maximum margin clustering (MMC; Xu et al., 2005),

• Generalized MMC (GMMC; Valizadegan and Jin, 2007),

• Label-generation MMC (LGMMC; Li et al., 2009),

• Soft-label maximum volume clustering (MVC-SL),

• Hard-label maximum volume clustering (MVC-HL).

The CVX package (Grant and Boyd, 2011), which is a Matlab-based modeling system for disciplined

convex programming, was used to solve the QP problem (5) for MVC-SL and the SDP problems

(13), (22) and (24) for MVC-HL, MMC and GMMC.

Table 1 summarizes the specification of data sets in our experiments. We first evaluated all seven

algorithms on three artificial data sets. MVC-HL and MMC were excluded from the middle-scale

experiments since they were very time-consuming when n > 100. The IDA benchmark repository10

contains thirteen benchmark data sets for binary classification, and ten of them that have no intrinsic

within-class multi-modality were included. Additionally, we made intensive comparisons based on

four well-known benchmark data sets for classification: USPS and MNIST11 contain 8-bit gray-scale

images of handwritten digits ‘0’ through ‘9’ with the resolution 16×16 and 28×28, 20Newsgroups

sorted by date12 contains term-frequency vectors of documents that come from twenty newsgroups,

and Isolet13 contains acoustic features of isolated spoken letters from ‘A’ to ‘Z’.

In our experiments, the performance was measured by the clustering error rate

1

n
dH (y,y∗) =

1

2n
min(‖y+y∗‖1,‖y−y∗‖1),

where y is the label vector returned by clustering algorithms and y∗ is the ground truth label vector.

The similarity measure was either the Gaussian similarity

Wi, j = exp

(
−‖xi− x j‖2

2

2σ2

)

with a hyperparameter σ, the cosine similarity

Wi, j =





〈xi,x j〉
‖xi‖2‖x j‖2

if xi ∼k x j,

0 otherwise,

10. The data sets were downloaded from http://ida.first.gmd.de/˜raetsch/data/benchmarks.htm.

11. The data sets are available at http://cs.nyu.edu/˜roweis/data.html.

12. The data set is available at http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.

13. The data set is available at http://archive.ics.uci.edu/ml/datasets/isolet.
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# Classes # Features # Data # Samplings

Artificial Data

2gaussians 2 3 - 12×10

2moons 2 2 400 12×10

2circles 2 2 315 12×10

IDA Benchmarks

Breast-cancer 2 9 200 100

Diabetes 2 8 468 100

Flare-solar 2 9 666 100

German 2 20 700 100

Heart 2 13 170 100

Image 2 18 1300 20

Ringnorm 2 20 400 100

Splice 2 60 1000 20

Titanic 2 3 150 100

Twonorm 2 20 400 100

Other Benchmarks

USPS 10 256 11000 8×10

MNIST 10 784 70000 8×10

20Newsgroups 7 26214 18846 8×10

Isolet 26 617 7797 8×10

Table 1: Specification of artificial and benchmark data sets.

with a hyperparameter k, where xi ∼k x j means that xi and x j are among the k-nearest neighbors of

each other, or the locally-scaled Gaussian-like similarity (Zelnik-Manor and Perona, 2005)

Wi, j = exp

(
−‖xi− x j‖2

2

2σiσ j

)

with a hyperparameter k, where σi = ‖xi− x
(k)
i ‖2 is called the local scaling factor of xi and x

(k)
i is

the k-th nearest neighbor of xi in Xn. The kernel matrix was K =W for KM, MMC and LGMMC,

and K = W + In/n for GMMC since it would be very unstable without this small eigenvalue shift.

NSC relied on the graph Laplacian Lsym constructed from W . Due to the requirement of positive

definiteness of Q for MVC, we also slightly shifted the eigenvalues of certain positive semi-definite

matrices and adopted Q = Lsym + In/n for MVC-SL and Q =W + In/n for MVC-HL.

Numerical issues always exist and there may be more than one candidate h0 for MVC-SL. Let

λ1 ≤ ·· · ≤ λn be the eigenvalues of Q, and v1, . . . ,vn be the associated normalized eigenvectors. In

our implementation, we initialize MVC-SL by a few eigenvectors whose eigenvalues are close to

λ2. Specifically, we construct a set of candidate eigenvectors V = {vi | |λi−λ2| < 10−4}, and if

#V > 10, we say that Q is ill-defined and only keep ten such vi in V . Next we obtain one h0 from

each vi ∈ V and solve the SQP problem based on each h0. At last, the solution h∗ resulting in the

smallest objective value −2‖h∗‖1 + γh∗⊤Qh∗ would be selected as the final solution to MVC-SL.

This trick can sometimes improve the performance significantly, while the cost is the increase of the

computation time by no more than ten times.
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Figure 3: Visualization of artificial data sets.

8.2 Artificial Data Sets

To begin with, we compare the clustering error and the computation time of all seven algorithms

based on three artificial data sets. As visualized in Figure 3, 2gaussians is a three-dimensional data

set generated as follows. We first randomly sampled X+
n/2

from a Gaussian distribution with zero

mean and covariance matrix diag(100,4) and X−
n/2

from the other Gaussian distribution with zero

mean and covariance matrix diag(4,100), set the third dimension as +3 for X+
n/2

and −3 for X−
n/2

and combined X+
n/2

and X−
n/2

into Xn. Subsequently, 2moons is a two-dimensional data set with two

non-Gaussian crescent-like clusters, and 2circles is another two-dimensional data set with two non-

Gaussian ring-like clusters. The Gaussian similarity was applied to all algorithms, and σ was fixed

to mσ/10, where mσ is the mean pairwise distance given by

mσ =
∑1≤i< j≤n ‖xi− x j‖2

n(n−1)/2
=

∑n
i, j=1 ‖xi− x j‖2

n(n−1)
, (27)

since ‖xi− x j‖2 = 0 when i = j. Then, the regularization parameter C of MMC was the best value

among {10−3,1,103}, that is, we ran MMC three times using C = 10−3,1,103 and recorded the

best performance, since there lacks a uniformly effective model selection framework for clustering

algorithms. The regularization parameter C of LGMMC was also selected from {10−3,1,103} in

the same way. For GMMC, the regularization parameter Ce was set to 104 following Valizadegan

and Jin (2007) and the other regularization parameter Cδ was the best candidate in {10−3,1,103}.
We fixed the stopping threshold ε to 10−6, the regularization parameter γ to 10−2 and let the class
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(a) 2gaussians, small scale
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(b) 2moons, small scale
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(c) 2circles, small scale
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(d) 2gaussians, middle scale
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(e) 2moons, middle scale
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(f) 2circles, middle scale

Figure 4: Means of the clustering error (in %) on 2gaussians, 2moons and 2circles.

balance parameter b adaptively be 1/n for MVC-SL, while for MVC-HL, we fixed C to 1 and tried

γ ∈ {10−3,1,103}.
The experimental results in terms of the means of the clustering error are reported in Figure 4.

All of the results were obtained by repeatedly running an algorithm on 10 random samplings with

given sample size n, and the sample sizes were {50,60,70,80,90,100} for the small-scale experi-

ments and {50,100,150,200,250,300} for the middle-scale experiments. We can see that among

the three data sets, 2gaussians is most difficult such that LGMMC still had a mean clustering error

around twenty percents even when n = 300, and 2circles is easiest because MMC, MVC-SL and

MVC-HL already got near zero errors when n = 80 and LGMMC, GMMC and NSC also achieved

perfect partitions after n = 150. In contrast, KM cannot deal with these artificial data well due to

the non-convex distortion function and the random initialization of cluster centers, even though it

was equipped with the Gaussian similarity. Surprisingly, NSC was worse than KM on 2guassians,

whereas MVC-SL based on the almost same input Q = Lsym + In/n had much lower clustering

errors, which implies that the highly non-convex k-means step may be a bottleneck of NSC.

Next we report the corresponding computation time of these algorithms in Figure 5. All of the

results were measured in average seconds per run on Xeon X5670 processors. Note that the worst

case running time (i.e., the asymptotic time complexity) of KM is super-polynomial in the sample

size n (Arthur and Vassilvitskii, 2006), and so is the worst case running time of NSC. On the other

hand, the asymptotic time complexities of LGMMC, MVC-SL, GMMC, MMC and MVC-HL are

O(n3), O(n3), O(n4.5), O(n6.5) and O(n6.5), respectively. In our experiments, NSC was the most

computationally-efficient algorithm and almost always faster than KM, since the k-means invoked

by NSC after the spectral embedding converged in fewer iterations than KM. While LGMMC was
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(b) 2moons, small scale
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(c) 2circles, small scale
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(d) 2gaussians, middle scale
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(e) 2moons, middle scale
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(f) 2circles, middle scale

Figure 5: Means of the CPU time (in sec, per run) on 2gaussians, 2moons and 2circles.

consistently faster than GMMC, MVC-SL lay between them and was comparable with GMMC in

the small-scale experiments and comparable with LGMMC in the middle-scale experiments. As a

result, the computation time or empirical time complexity of MVC-SL exhibited less potential of

growth than LGMMC and GMMC. The worst-case computational complexities of MVC-HL and

MMC made them extremely time-consuming, poorly scalable to middle or large sample sizes, and

hence impractical despite their low mean clustering errors on 2guassians and 2circles.

Furthermore, we investigate three important properties of MVC-SL, and report the results over

100 random samplings in Figure 6.

Firstly, panel (a) shows the mean and median values about the number of iterations required by

MVC-SL, where each mean is shown with the standard error, and each median is shown with the

median absolute deviation divided by the square root of the number of random samplings (i.e., 10).

As mentioned before, the convergence rate of SQP iterations is independent of the sample size n,

and we can see that MVC-SL usually stopped within just a few iterations in our experiments. This

phenomenon implies that the empirical time complexity of MVC-SL is directly proportional to the

internal QP solver.

Secondly, we examine the distribution of η∗ which may influence the stability of the resulting

clusters. Fortunately, panel (b) shows that η∗ for fixed data set and fixed sample size were highly

concentrated, and the mean and median values exhibited a strong correlation with the sample size

as well as a weak correlation with the data set.

Thirdly, recall that there may be more than one candidate h0 and we initialize MVC-SL using

V = {vi | |λi−λ2| < 10−4}. Although all v ∈ V appear nearly equally good to NSC, they could

induce initial solutions of very different qualities for MVC-SL, as shown in panel (c). The vectors
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Figure 6: Experimental results concerning three important properties of MVC-SL.

v2, v0, h0, and h∗ are all treated as soft response vectors, and the means with standard errors of

the clustering error are plotted in panel (c), where v2 is the eigenvector of Q and Lsym associated

with λ2, v0 is the eigenvector selected by MVC-SL, and h0 and h∗ are the corresponding initial and

final solutions. We can see that h∗ was better than h0 and h0 was better than v0. Moreover, v0 was

significantly superior to v2 on 2guassians. It is interesting and surprising that both h0 and v0 were

significantly inferior to v2 on 2circles when n = 100, but they still resulted in h∗ with the lowest

mean clustering error. In a word, not only good initial solutions but also the SQP method contribute

to the success of MVC-SL, which in turn implies that the underlying large volume principle should

be reasonable for clustering.

8.3 Benchmark Data Sets

In the following, we discuss the experiments on the benchmarks listed in Table 1: The experiments

involving ten IDA benchmarks are discussed in the first part, then USPS and MNIST in the second

part, 20Newsgroups in the third part, and Isolet in the fourth part.

8.3.1 IDA BENCHMARKS

We compare KM, NSC, LGMMC, GMMC, and MVC-SL on ten data sets in the IDA benchmark

repository that are designed for binary classification tasks and have one hundred fixed realizations
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KM NSC LGMMC MVC-SL GMMC SVM

Breast-cancer 38.9±0.65 26.4±0.18 27.2±0.19 25.6±0.17 30.5±0.23 26.0
Diabetes 30.3±0.17 30.6±0.18 27.6±0.13 30.4±0.15 28.6±0.15 23.5
Flare-solar 35.5±0.20 44.9±0.11 37.6±0.16 44.5±0.12 N/A 32.4
German 39.4±0.20 30.2±0.09 30.1±0.09 30.2±0.09 N/A 23.6
Heart 18.5±0.38 18.0±0.23 18.7±0.28 18.8±0.22 18.9±0.21 16.0
Image 41.0±0.36 40.5±0.15 39.7±0.20 40.9±0.11 N/A 2.96

Ringnorm 4.68±0.11 2.20±0.06 6.61±0.11 2.17±0.06 2.07±0.06 1.66

Splice 29.1±1.41 35.5±0.44 25.5±0.72 36.1±0.44 N/A 10.9
Titanic 27.2±0.59 26.8±0.42 23.1±0.36 21.9±0.37 26.1±0.43 22.4
Twonorm 3.61±0.78 2.28±0.07 2.18±0.07 2.20±0.07 2.08±0.06 2.96

Table 2: Means with standard errors of the clustering error (in %) on IDA benchmark data sets. For

each data set, the best algorithm and comparable ones based on the unpaired t-test at the

significance level 5% are highlighted in boldface. Additionally, means of the classification

error of highly-tuned SVM provided by IDA are also listed for comparison.

for each data set except that the data sets Image and Splice only have twenty realizations. For each

realization of each data set, we ignored the test data and tested five clustering algorithms using the

training data, yet GMMC was not tested on the data sets Flare-solar, German, Image and Splice as it

required a very long execution time when n≥ 600. The Gaussian similarity was applied and σ was

the best value among {4mσ,2mσ,mσ,mσ/2,mσ/4} for each realization and each algorithm, where

the variable mσ was the mean pairwise distance defined in Equation (27). An exception is the data

set Ringnorm where the locally-scaled similarity with k = 7 was applied, since it consists of data

from two highly overlapped Gaussian distributions and can be treated as a multi-scale data set.14

The settings for other hyperparameters of LGMMC, GMMC, and MVC-SL were exactly same as

the experiments on the artificial data sets, specifically, C ∈ {10−3,1,103} for LGMMC, Ce = 104

and Cδ ∈ {10−3,1,103} for GMMC, and ε = 10−6, γ = 10−2 and b = 1/n for MVC-SL.

Table 2 describes the means with standard errors of the clustering error rate by each algorithm

on each data set. For the sake of comparison, Table 2 also lists the means of the classification error

rate of highly-tuned SVM provided by the official web site of the IDA benchmark repository.

We could see from Table 2 that LGMMC and MVC-SL were either the best algorithm or com-

parable to the best algorithm based on the unpaired t-test at the significance level 5% on five data

sets. The clustering errors of five algorithms exhibited large differences on five data sets, namely,

Breast-cancer, Flare-solar, German, Ringnorm and Splice, among which MVC-SL was one of the

best algorithms on three data sets, and LGMMC was one of the best algorithms on two data sets.

The clustering errors exhibited merely small differences on the other five data sets. Moreover, the

fully supervised SVM has a mean classification error obviously smaller than the lowest mean clus-

tering error on the data sets German, Image and Splice, and larger than the lowest mean clustering

error on the data sets Breast-cancer, Titanic and Twonorm. It should not be surprising or confusing

since the classification error is the out-of-sample test error on the test data whereas the clustering

error is the in-sample test error on the same data to be clustered.

14. In fact, Ringnorm violates the underlying assumption when evaluating clustering results using classification data sets,

that is, the class structure and the cluster structure must coincide with each other. However, 2circles does not violate

this assumption, since those ring-like clusters are neither Gaussian distributions nor overlapped clusters.
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8.3.2 IMAGES OF HANDWRITTEN DIGITS

Secondly, we take the images of handwritten digits in USPS and MNIST. Instead of testing KM,

NSC, LGMMC, GMMC and MVC-SL on all forty-five pairwise clustering tasks, a few challeng-

ing tasks were selected, namely, the pairs {1,7},{1,9},{8,9},{3,5},{3,8},{5,8} of USPS and

{1,7},{7,9},{8,9},{3,5},{3,8},{5,8} of MNIST. The task digits 7 vs. 9 of USPS is too hard for

all algorithms and then we selected an easier task digits 1 vs. 9. Unlike the training data in the IDA

benchmark repository that are already standardized (i.e., normalized to mean zero and standard de-

viation one) by the provider, the 8-bit gray-scale images in USPS/MNIST are raw data represented

by 256-/784-dimensional vectors of integers between 0 and 255. The popular pre-processing is to

divide each integer by 255 and thus change the representation to vectors of floating-point numbers

between 0 and 1. As a consequence, 〈xi,x j〉 is always nonnegative for any 1 ≤ i, j ≤ n and we

can use the cosine similarity for NSC, where in our experiments the hyperparameter k of the k-

nearest neighbors was the best value among {3,4,5,6,7,8} for each random sampling. The same

cosine similarity was also applied to MVC-SL. However, this cosine similarity did not work for the

other three algorithms here, and then we still used the Gaussian similarity with σ as the best value

among {4mσ,2mσ,mσ,mσ/2,mσ/4} for each random sampling, where mσ was the mean pairwise

distance defined in Equation (27). The settings for other hyperparameters of LGMMC, GMMC,

and MVC-SL were exactly same as the experiments on the artificial data sets.

Figure 7 reports the means of the clustering error by each algorithm on each task. The sample

sizes were {50,100,150,200,250,300,400,500} for all tasks, and each mean value was obtained

by repeatedly running an algorithm on 10 random samplings. Given a certain task with sample size

n, we first merged all data of the two classes and then randomly sampled a subset of size n, so the

classes in the resulting subset were not necessarily balanced when n was small. Moreover, Table 3

summarizes the means with standard errors of the clustering error, in which each algorithm has 80

random samplings on each task. Since the sample sizes here varied in a large range, we performed

the paired t-test of the null hypothesis that the difference of the clustering error is from a Gaussian

distribution with mean zero and unknown variance, against the alternative hypothesis that the mean

is not zero.

We can see from Figure 7 that the easiest task is MNIST 1 vs. 7, such that the mean clustering

errors of MVC-SL and NSC were less than two percents when n ≥ 100, and the hardest tasks are

MNIST 7 vs. 9 and 5 vs. 8, where no algorithm was better than twenty-five percents. Both Figure 7

and Table 3 show that the relatively easy tasks include the pairs {1,7},{1,9},{3,8} of USPS and

{1,7},{8,9},{3,8} of MNIST, while the relatively hard tasks are the pairs {8,9},{3,5},{5,8} of

USPS and {7,9},{3,5},{5,8} of MNIST. In addition, according to Figure 7, the mean clustering

errors of MVC-SL were basically non-increasing except in panel (f) USPS 5 vs. 8, and MVC-SL,

NSC and GMMC usually outperformed KM and LGMMC, as in Table 3. Similarly, MVC-SL was

either the best algorithm or comparable to the best algorithm on ten out of twelve tasks according

to Table 3, among which it was best on eight tasks and outperformed all others on seven tasks. The

second best algorithm GMMC was best on four tasks, and then NSC was comparable on two tasks.

In a word, MVC-SL was fairly promising on USPS and MNIST.

8.3.3 NEWSGROUP DOCUMENTS

The benchmark 20Newsgroups has three versions containing 19997, 18846, and 18828 newsgroup

documents, partitioned nearly evenly across twenty different newsgroups. The second version with
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(a) USPS, 1 vs. 7
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(b) USPS, 1 vs. 9
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(c) USPS, 8 vs. 9
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(d) USPS, 3 vs. 5
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(e) USPS, 3 vs. 8
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(f) USPS, 5 vs. 8
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(g) MNIST, 1 vs. 7
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(h) MNIST, 7 vs. 9
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(i) MNIST, 8 vs. 9
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(j) MNIST, 3 vs. 5
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(k) MNIST, 3 vs. 8
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(l) MNIST, 5 vs. 8

Figure 7: Means of the clustering error (in %) on USPS and MNIST.
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KM NSC LGMMC MVC-SL GMMC

USPS, 1 vs. 7 19.5±0.36 12.2±0.91 19.2±0.68 10.3±0.89 17.3±0.37

USPS, 1 vs. 9 18.0±0.55 6.9±0.85 16.6±0.54 6.3±0.77 14.7±0.38

USPS, 8 vs. 9 27.5±0.72 22.5±0.89 26.7±0.87 21.8±0.93 20.8±0.80

USPS, 3 vs. 5 29.2±0.61 19.9±0.97 28.1±0.72 17.0±0.96 24.2±0.62

USPS, 3 vs. 8 17.4±0.52 12.9±0.46 15.9±0.47 12.6±0.47 10.6±0.48

USPS, 5 vs. 8 21.1±0.65 19.4±0.59 20.8±0.74 19.7±0.67 19.3±0.84

MNIST, 1 vs. 7 5.5±0.36 2.1±0.35 3.7±0.21 2.0±0.35 2.8±0.19

MNIST, 7 vs. 9 43.1±0.44 30.1±0.59 37.4±0.58 29.7±0.62 33.9±0.56

MNIST, 8 vs. 9 16.1±0.96 6.4±0.77 14.7±0.80 5.9±0.75 7.2±0.36

MNIST, 3 vs. 5 32.1±0.65 23.5±0.66 30.9±0.52 21.8±0.72 28.3±0.47

MNIST, 3 vs. 8 21.2±0.49 11.9±0.54 19.8±0.58 11.6±0.59 16.4±0.54

MNIST, 5 vs. 8 39.2±0.47 33.2±1.17 34.7±0.79 33.0±1.22 27.4±0.80

Table 3: Means with standard errors of the clustering error (in %) on USPS and MNIST. For each

task, the best algorithm and comparable ones based on the paired t-test at the significance

level 5% are highlighted in boldface.

18846 documents is recommended by the original provider15 and hence is used in our experiments.

The documents in 20Newsgroups can be further grouped into seven topics: They are ‘alt’, ‘comp’,

‘misc’, ‘rec’, ‘sci’, ‘soc’ and ‘talk’, with 799, 4891, 975, 3979, 3952, 997 and 3253 documents

respectively, where comp consists of five classes, each of rec, sci and talk consists of four classes,

and each of alt, misc and soc consists of a single class. We prepared nine pairwise clustering tasks

which included all tasks between the four multi-modal topics and all tasks between the three uni-

modal topics. The term-frequency vectors were processed into term-frequency-inverse-document-

frequency vectors using the script written by the provider16 for the whole data set. We tried all of

the three similarity measures, and found that for any algorithm no one was consistently better than

the other two. However, the locally-scaled similarity generally fitted all five algorithms, where the

hyperparameter k was the best value in {3,4,5,6,7,8} for each random sampling. The settings for

other hyperparameters of LGMMC, GMMC and MVC-SL were exactly same as the experiments

on the artificial data sets.

Figure 8 reports the means of the clustering error by each algorithm on each task. The sample

sizes were {50,100,150,200,250,300,400,500} for all tasks, and each mean value was averaged

over 10 random samplings. Similarly to the random samplings of USPS and MNIST, the classes in

each random sampling here were not necessarily balanced when n was small. In addition, Table 4

summarizes the means with standard errors of the clustering error, in which each algorithm has 80

random samplings on each task. The paired t-test was performed due to the varied sample sizes.

We can see from Figure 8 and Table 4 that the tasks between the four multi-modal topics are

more difficult than the tasks between the three uni-modal topics. Two tasks involving misc (i.e., alt

vs. misc and misc vs. soc) are easiest, and three tasks involving sci (i.e., comp vs. sci, rec vs. sci,

and sci vs. talk) are hardest. Moreover, MVC-SL, NSC and GMMC usually outperformed KM and

LGMMC, and Figure 8 also illustrates that the mean clustering errors of MVC-SL were basically

non-increasing. As shown in Table 4, MVC-SL was either the best algorithm or comparable to the

15. See http://qwone.com/˜jason/20Newsgroups/.

16. See http://www.cad.zju.edu.cn/home/dengcai/Data/code/tfidf.m.
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(a) comp vs. rec
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(b) comp vs. sci
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(c) comp vs. talk
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(d) rec vs. sci
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(e) rec vs. talk
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(f) sci vs. talk
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(g) alt vs. misc
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(h) alt vs. soc
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(i) misc vs. soc

Figure 8: Means of the clustering error (in %) on 20Newsgroups.

best algorithm on eight out of nine tasks, among which it was best on six tasks and outperformed

all others on four tasks. The second best algorithm NSC was best on three tasks, and then GMMC

was best on two tasks and comparable on one task. In a word, MVC-SL was also fairly promising

on 20Newsgroups.

8.3.4 ISOLATED SPOKEN LETTERS

The final benchmark is Isolet from the UCI machine learning repository. The data were collected

by letting 150 subjects speak the name of each letter of the alphabet twice, while two ‘F’ and one

‘M’ were dropped due to difficulties in recording. Unlike the features of the previous benchmarks

USPS, MNIST and 20Newsgroups, the acoustic features of Isolet are extracted by different ways

and possess different physical meanings, including spectral coefficients, contour features, sonorant
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KM NSC LGMMC MVC-SL GMMC

comp vs. rec 37.9±0.77 21.0±1.46 33.1±0.57 18.1±1.41 16.8±0.74

comp vs. sci 37.2±0.65 27.8±1.20 33.1±0.61 24.9±1.17 25.1±0.69

comp vs. talk 32.3±0.93 13.3±1.69 31.1±0.73 13.3±1.65 13.3±0.80

rec vs. sci 42.0±0.55 23.3±0.84 40.0±0.73 22.3±0.85 27.0±1.01

rec vs. talk 36.8±0.76 15.6±1.11 34.1±1.02 14.3±1.08 18.8±1.08

sci vs. talk 38.5±0.71 23.5±1.01 36.4±0.67 20.8±0.97 24.1±0.86

alt vs. misc 23.3±1.85 1.0±0.12 15.5±1.07 1.1±0.13 5.5±0.60

alt vs. soc 32.0±1.05 11.3±1.01 21.7±0.95 10.7±0.85 12.7±0.91

misc vs. soc 14.1±1.32 1.7±0.16 10.5±0.67 1.8±0.16 6.6±0.60

Table 4: Means with standard errors of the clustering error (in %) on 20Newsgroups. For each task,

the best algorithm and comparable ones based on the paired t-test at the significance level

5% are highlighted in boldface.

KM NSC LGMMC MVC-SL GMMC

B vs. P 40.8±0.64 38.7±1.04 36.5±0.86 33.4±1.25 32.3±1.30

T vs. D 32.4±0.93 31.7±1.48 21.8±1.24 21.2±1.02 11.2±1.09

B vs. D 41.6±0.55 42.1±0.63 34.8±0.73 37.7±0.82 39.4±0.73

A vs. H 6.9±0.68 0.8±0.19 2.7±0.41 0.9±0.21 0.6±0.15

G vs. J 7.6±0.32 6.6±0.72 5.7±0.28 4.8±0.28 3.6±0.22

M vs. N 36.4±0.49 39.6±0.87 37.2±0.47 31.1±0.64 35.6±0.47

Table 5: Means with standard errors of the clustering error (in %) on Isolet. For each task, the best

algorithm and comparable ones based on the paired t-test at the significance level 5% are

highlighted in boldface.

features, pre-sonorant features and post-sonorant features. All features are real-valued and scaled

into the range −1 to +1. Generally speaking, all five algorithms can easily deal with the majority

of pairwise clustering tasks, if we randomly choose two letters. Therefore, similarly to USPS and

MNIST, a few challenging tasks that might sometimes be difficult for the mankind were selected:

The letters B vs. P, T vs. D, B vs. D, A vs. H, G vs. J, and M vs. N. The hyperparameters here were

slightly different from the previous experiments for better performance. The cosine similarity was

applied to NSC, and the hyperparameter k was the best value in {1,2,3,4,5,6} for each random

sampling. The Gaussian similarity was still used for KM, LGMMC and GMMC, and the hyperpa-

rameter σ was the best value in {2mσ,mσ,mσ/2,mσ/4,mσ/8} for each random sampling, where mσ

was defined in Equation (27). For MVC-SL, we adopted either Q = Lsym + In/n where Lsym was

constructed from the cosine similarity or Q = nIn−W with the Gaussian similarity depending on

the task and the sample size n, and the hyperparameter k or σ was chosen in the same way. A key

observation here was that for certain tasks such as M vs. N, the former specification was preferable

for small n, whereas the latter specification was more advisable for relatively large n. The settings

for other hyperparameters were exactly same as the experiments on the artificial data sets.

Figure 9 reports the means of the clustering error by each algorithm on each task. The sample

sizes were {50,100,150,200,250,300,400,500} for all tasks, and each mean value was averaged
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(b) T vs. D
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(d) A vs. H
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(e) G vs. J
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(f) M vs. N

Figure 9: Means of the clustering error (in %) on Isolet.

over 10 random samplings. Similarly to the random samplings of USPS and MNIST, the classes in

each random sampling here were not necessarily balanced when n was small. In addition, Table 5

summarizes the means with standard errors of the clustering error, in which each algorithm has 80

random samplings on each task. The paired t-test was performed due to the varied sample sizes.

We can see from Figure 9 and Table 5 that the tasks A vs. H and G vs. J are very easy, and the

tasks B vs. P, B vs. D and M vs. N are very hard. Interestingly, T vs. D is much easier than B vs. P

and B vs. D, such that the lowest mean clustering errors on B vs. P and B vs. D were almost three

times larger than the lowest mean clustering error on T vs. D. Unlike the curves shown in Figures

7 and 8, the mean clustering errors of MVC-SL in Figure 9 were basically non-increasing only in

panel (d) A vs. H. Furthermore, LGMMC instead of NSC became a competitive algorithm besides

GMMC and MVC-SL in Table 5, unlike the performance in Tables 3 and 4. According to Table 5,

GMMC was the best algorithm on four tasks, MVC-SL was best on one task and also comparable

to the best algorithm on one task, and LGMMC was best on one task. Nevertheless, MVC-SL was

still satisfying on Isolet, if considering that MVC-SL consumed less than five percents of the total

computation time while GMMC consumed over ninety percents, and thus GMMC was remarkably

less computationally-efficient than MVC-SL.

9. Conclusions

We proposed a new discriminative clustering model called maximum volume clustering (MVC) to

partition the data samples into two clusters based on the large volume principle. Two algorithms to
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approximate the basic model of MVC were developed: MVC-HL relaxes MVC to a semi-definite

programming problem that is convex but time-consuming; MVC-SL employs sequential quadratic

programming that is non-convex but computationally-efficient. Then, we demonstrated that MVC

includes the optimization problems of some well-known clustering methods as special limit cases,

and discussed the finite sample stability and the clustering error bound of MVC-SL in great detail.

Based on the encouraging experimental results on three artificial and fourteen benchmark data sets,

we conclude that the proposed MVC approach is promising, especially for images and text.

The future work includes but is not limited to the following three directions: Multi-way exten-

sion, improved optimization, and model selection and specification of Q. We briefly discuss these

future directions below.

First of all, the basic model of MVC is currently binary, and it needs a multi-way extension to

partition the data samples into more than two clusters. To this end, we should extend the definition

of the volume before extending the basic model of MVC. Unlike the margin, there exists no multi-

class definition of the volume hitherto. We may borrow the idea of the multi-class definition of the

margin in Crammer and Singer (2001) based on which the first multi-way extension of MMC was

proposed (Xu and Schuurmans, 2005).

Secondly, the proposed approximation schemes and optimization algorithms for MVC may be

improved. However, we believe that the improvement cannot be straightforward. We have consid-

ered several options and found that none of them befits MVC well. Recall that the primal problem of

MVC-SL defined in (4) is non-convex, and the concave-convex procedure and constrained concave-

convex procedure (CCCP) (Yuille and Rangarajan, 2003; Smola et al., 2005) seem able to solve it.

In fact, the former technique can only be applied to the Lagrange function L(h,η), and η as an op-

timization variable may diverge even though h is guaranteed to converge given constant η. On the

other hand, the latter technique accepts any first-order equality constraint and any inequality con-

straint involving the difference of two convex functions, but the second-order equality constraint like

h⊤h = 1 is unacceptable. If we relax the equality constraint h⊤h = 1 into an inequality constraint

h⊤h≤ 1, we will get

min
h∈Rn

−2‖h‖1 + γh⊤Qh s.t. h⊤h≤ 1. (28)

Unfortunately, CCCP fails to solve optimization (28) again, since now we cannot assume that ‖h‖1

is differentiable, and then we cannot easily linearize the concave part of the energy function. Note

that the popular trick to cope with ℓ1-regularization is futile here, since (28) is never equivalent to

min
h∈Rn

−2α⊤1n + γh⊤Qh

s.t. h⊤h≤ 1,−α≤ h≤α,α≥ 0n.

Similarly, (28) itself is not quadratically-constrained quadratic programming (QCQP) (Boyd and

Vandenberghe, 2004) due to the minimization of negative ℓ1-norm, but it can be reformulated as a

QCQP with an optimization variable essentially in R2n:

min
y∈[−1,+1]n

min
h∈Rn

−2h⊤y+ γh⊤Qh s.t. h⊤h≤ 1. (29)

Although optimization (29) is convex in y and convex in h, it is not jointly convex in y and h, so

no off-the-shelf QCQP solver is applicable and we need relax it via semi-definite programming or

reformulation-linearization technique (Sherali and Adams, 1998) once more. Actually, the feasible
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region [−1,+1]n of y is as difficult as the combinatorial {−1,+1}n, and all of optimizations (2),

(4), (28) and (29) are NP-hard, regardless of the different feasible regions of h. That being said, the

current implementation using sequential quadratic programming is imperfect as the final h∗ is a bit

sensitive to the initial h0 (see the experimental results reported in Figure 6 for details).

In contrast to MVC-SL, there is much more room for MVC-HL to be improved. GMMC uses a

tricky substitution to get (23), and that substitution is so specific that it does not work for MVC-HL.

Following the idea of LGMMC, we can obtain an alternative relaxation as

min
µ∈R2n

min
α
−2α⊤1n + γα⊤

(
∑t:−b≤y⊤t 1n≤b

µtQ◦yty
⊤
t

)
α

s.t. µ⊤12n = 1,µ≥ 02n

α⊤α= 1,α≥ 0n.

Similarly, this optimization can also be regarded as a multiple kernel learning problem and solved

by the cutting plane method, as LGMMC. However, the inner optimization subproblem is difficult

due to α⊤α = 1 instead of α⊤1n = 1 in LGMMC, and we decide to investigate how to solve it in

our future study since MVC-HL is not the main focus of the current paper.

Thirdly, in our experiments we always use the best candidate hyperparameters in the hindsight,

since there lacks a systematic way to tune the hyperparameters for clustering. Such choices may be

acceptable from the theoretical standpoint but not enough from the practical standpoint. Notice that

any (cross-) validation technique using the clustering error, which is the in-sample test error on the

same data to be clustered, simply does not work for model selection. In order to do model selection,

a criterion other than the clustering error is necessary. Fortunately, a few information criteria exist

though they are not uniformly effective for all clustering algorithms. In Sugiyama et al. (2011), the

mutual information (MI) (Shannon, 1948) was used for MI based clustering (Gomes et al., 2010)

via maximum likelihood MI (Suzuki et al., 2008) for model selection, and squared-loss MI (Suzuki

et al., 2009) was used for squared-loss MI based clustering (Sugiyama et al., 2011) via least-squares

MI (Suzuki et al., 2009) for model selection.

What is more, it is unclear how to specify the input matrix Q appropriately for a given data set,

including a proper similarity measure and the construction of Q from it. According to von Luxburg

et al. (2012), the former issue is actually open for all existing clustering algorithms and it probably

has no uniformly effective solution. For the latter issue, we suggest MVC-SL with Q = Lsym+ In/n,

where Lsym is the normalized graph Laplacian, and the underlying similarity measure can be any

similarity suitable for spectral clustering. Then, it is still unsolved when we should use MVC-SL,

and when we should use the family of MMC or other clustering algorithms. Unfortunately, there is

no answer from a theoretical point of view since clustering has no supervision at all. Nevertheless,

MVC-SL may work with high probability in practice when spectral clustering works. We argue that

it may be the minimization of negative ℓ1-norm in MVC-SL that has improved spectral clustering as

shown in panel (c) of Figure 6. Its preference of non-sparse optimal solutions may lead to a better

approximation to the normalized cut criterion (Shi and Malik, 2000) than spectral clustering.
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Appendix A. Proofs of Theoretical Results in Section 5.2

In this appendix, we prove the lemmas and theorems appeared in Section 5.2.

A.1 Proof of Lemma 9

If ∃ j ∈ {1, . . . ,n}, e j or−e j is an eigenvector of Q, there should exist an eigenvalue λ > 0 such that

Qe j = λe j. This equation means that Q j, j = λ and ∀i 6= j,Qi, j = 0. In other words, x j is isolated

and Xn is reducible.

A.2 Proof of Theorem 10

If xi is isolated in Xn, let δ1 = · · ·= δn = 1, K = {i} and by definition Xn is SI-symmetric.

If Xn is axisymmetric under a permutation φ, without loss of generality, we assume φ(1) = 2 and

let δ1 =−1,δ2 = · · ·= δn = 1 and K = {1,2}. Then Xn is SI-symmetric by Equation (20),

(
∑k∈K

δkek

)⊤
Q
(
∑k 6∈K

δkek

)
=

n

∑
i=3

(Q2,i−Q1,i) = 0,

since ∀i ∈ {3, . . . ,n}, φ(i) 6∈ {1,2} and Q1,i = Q2,φ(i).

A.3 Proof of Theorem 11

When n = 2, X2 must be axisymmetric if Q1,1 = Q2,2, and we can know that X2 is SI-symmetric by

Theorem 10.

When n > 2, assume that Xn is irreducible due to Theorem 10, and then Rn has two disjoint

bases according to Lemma 9: The standard basis and the set of the principle axes of E(HQ). We

present an indirect proof of the theorem as follows.

Step 1. Let λ1, . . . ,λn be the eigenvalues of Q and v1, . . . ,vn be the associated normalized eigenvec-

tors. Suppose that vi and v j are the directions of two principal axes of E(HQ) with the same length

1/
√

λi = 1/
√

λ j. There should be at least one principal axis vl such that l 6∈ {i, j}, λl 6= λi, and

E(HQ) is rotational about vl along the circle

C(vi,v j) := {cos(θ)vi + sin(θ)v j | θ ∈ [0,2π)}.

Otherwise, all principal axes have the same length and thus E(HQ) is a perfect ball, which contra-

dicts the fact that e1, . . . ,en are not eigenvectors of Q.

Further suppose that λk 6= λl for any k 6= l, that is, the principal axis with the direction vl has a

unique length. As a consequence, vl has a fixed position and cannot rotate within C(vk,vl) for any

k 6∈ {i, j, l}. Otherwise, all vectors in C(vk,vl) are legal principal axes and can be considered as vl

with a fixed position.

We can know that E(HQ) intersects the k-th coordinate axis at ±ek/
√

κ from Qk,k = κ, and the

intersections compose an (n−1)-dimensional hyperplane. Principal axes of E(HQ) are orthogonal
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and have at most (n− 1) distinct lengths, and E(HQ) also has a set of n orthogonal axes with

the same length 1/
√

κ, that is, the set {e1/
√

κ, . . . ,en/
√

κ}. Hence, any principal axis in a fixed

position, especially vl , should lie on the central direction of a certain quadrant with dimensionality

at least two. In other words, vl can be written in the form of

vl =
1√

∑n
k=1 δ2

k

n

∑
k=1

δkek, δk ∈ {−1,0,1},

where δ1, . . . ,δn cannot be all zeros.

Step 2. Let K = {k | δk = 0} and one has 0≤ #K < n where # measures the cardinality. We discuss

the cases #K > 0 and #K = 0 separately.

If #K > 0, we reset δk = 1 for k ∈K . Subsequently,

(
∑k∈K

δkek

)⊤
Q
(
∑k 6∈K

δkek

)
=
(
∑k∈K

ek

)⊤
Q
(√

n−#K vl

)

=
(
∑k∈K

ek

)⊤√
n−#K (Qvl)

=
(
∑k∈K

ek

)⊤√
n−#K (λlvl)

= λl

(
∑k∈K

ek

)⊤(√
n−#K vl

)

= λl

(
∑k∈K

ek

)⊤(
∑k 6∈K

δkek

)

= λl ∑
k∈K ,k′ 6∈K

δk′e
⊤
kek′

= 0,

due to Qvl = λlvl and the orthonormal condition of the basis {e1, . . . ,en}. If #K = 0, without loss

of generality, assume that δ1 = −δ2 = 1 since n > 2 and the sign of vl is arbitrary. The first two

rows of the eigenvalue equation Qvl = λlvl tell us





κ−Q1,2 +
n

∑
k=3

δkQ1,k = λl

Q2,1−κ−
n

∑
k=3

δkQ2,k =−λl

⇒
n

∑
k=3

δk(Q1,k−Q2,k) = 0.

Hence by resetting K = {1,2}, we obtain

(
∑k∈K

δkek

)⊤
Q
(
∑k 6∈K

δkek

)
=

n

∑
k=3

δk(Q1,k−Q2,k) = 0.

Both cases lead to a contradiction since Xn is SI-asymmetric.

Therefore, all principal axes of E(HQ) have distinct lengths, which is exactly what we were to

prove.
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A.4 Proof of Theorem 12

Let us denote h∗ = (h1, . . . ,hn)
⊤ and consider h⋆ = (hφ(1), . . . ,hφ(n))

⊤.

Obviously, ‖h⋆‖1 = ‖h∗‖1 and ‖h⋆‖2 = ‖h∗‖2. Moreover,

n

∑
i, j=1

Qi, jhφ(i)hφ( j) =
n

∑
i, j=1

Qφ(i),φ( j)hφ(i)hφ( j) =
n

∑
k,l=1

Qk,lhkhl ,

because of the third property of Definition 7. Hence, h⋆⊤Qh⋆ = h∗⊤Qh∗ and then G(h⋆) = G(h∗).
Similarly, ∀i ∈ {1, . . . ,n},

n

∑
j=1

Qi, jhφ( j) =
n

∑
j=1

Qφ(i),φ( j)hφ( j) =
n

∑
k=1

Qφ(i),khk,

where we use the third property of Definition 7 again. As a result,

[g(h⋆)]i = γ
n

∑
j=1

Qi, jhφ( j)−ηhφ(i)− sign(hφ(i))

= γ
n

∑
k=1

Qφ(i),khk−ηhφ(i)− sign(hφ(i))

= [g(h∗)]φ(i).

Hence, g(h⋆) = 0n according to the Karush-Kuhn-Tucker condition g(h∗) = 0n, which means that

h⋆ is also a minimum of optimization (4), since the Hessian matrix ∇2G(h) = 2(γQ−ηIn) must be

symmetric and positive-definite.

Notice that dH (h∗,h⋆)≥ 1 since ∃i,hφ(i)hi < 0, with the only exception dH (h∗,h⋆) = 0 when

sign(h⋆) =−sign(h∗), that is, ∀i,hφ(i)hi < 0. This completes the proof.

A.5 Proof of Theorem 13

We prove the theorem in three steps.

Step 1. Let 0 < λ1 < · · · < λn and v1, . . . ,vn be the eigenvalues and eigenvectors of Q. Given a

minimum h, the Karush-Kuhn-Tucker condition g(h) = 0 implies that

h= Q̂y, (30)

where y = sign(h), Q̂ = (γQ−ηIn)
−1, and the unknown η satisfies η < γλ1. Plug Equation (30)

into the constraint ‖h‖2 = 1, note that Q̂ is a symmetric matrix, and then we will have

y⊤Q̂2y = (Q̂y)⊤(Q̂y) = h⊤h= 1. (31)

All eigenvalues of Q are different and positive since Xn is anisotropic, so are all eigenvalues of

Q̂. Consequently, Q̂2 has a unique spectral decomposition. It is easy to see that

y⊤Q̂2y = y⊤
(

n

∑
i=1

µiviv
⊤
i

)
y =

n

∑
i=1

µi(v
⊤
i y)

2, (32)
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where µi = 1/(γλi−η)2 is the i-th largest eigenvalue of Q̂2.

Step 2. Define a linear mapping

ψ : Rn
β 7→ Rn

β 7→ β1v1 + · · ·+βnvn,

where β = (β1, . . . ,βn)
⊤, Rn

β = Rn and we just use the symbol Rn
β to distinguish the domain and the

range of ψ. It is obvious that ψ is a vector space automorphism, and the set of vectors {e1, . . . ,en}
and the set of images {ψ(e1), . . . ,ψ(en)}= {v1, . . . ,vn} are completely different bases due to The-

orem 10 and Lemma 9.

Let β = ψ−1(y). Then,

‖y‖2 =
√

n ⇒ β2
1 + · · ·+β2

n = n (33)

(31)+ (32) ⇒ µ1β2
1 + · · ·+µnβ2

n = 1. (34)

Equation (33) represents a hyper-ball in Rn
β, and Equation (34) represents an irrotational ellipsoid in

Rn
β since µ1, . . . ,µn are distinct eigenvalues. As a result, given any other β′= (β′1, . . . ,β

′
n)
⊤ satisfying

(33) and (34), there exist three disjoint index sets J+,J−,J0 such that J+∪ J−∪ J0 = {1, . . . ,n} and

∀ j ∈ J+,β j 6= 0,β j +β′j = 0

∀ j ∈ J−,β j 6= 0,β j−β′j = 0

∀ j ∈ J0,β j = β′j = 0.

Step 3. For another arbitrarily chosen minimum h′ of (4), let y′ = sign(h′) and β′ = ψ−1(y′), then

β′ is also a solution to the system of Equations (33) and (34), and it is guaranteed the existence of

aforementioned J+,J−,J0.

Notice that ∀ j ∈ J+,

v⊤j(y+y′) = β j +β′j = 0 ⇒ v⊤jy
′ =−v⊤jy.

Similarly, ∀ j ∈ J−,v⊤jy
′ = v⊤jy and ∀ j ∈ J0,v

⊤
jy
′ = v⊤jy = 0. In a word, we have (v⊤jy

′)2 = (v⊤jy)
2

for all j = 1, . . . ,n. Hence,

y⊤Qy =
n

∑
j=1

λ j(v
⊤
jy)

2 =
n

∑
j=1

λ j(v
⊤
jy
′)2 = y′⊤Qy′,

which indicates that (y+y′)⊤Q(y−y′) = 0.

Let δ1 = [y]1, · · · ,δn = [y]n and K = {k | [y]k = [y′]k,1 ≤ k ≤ n}. Subsequently, by checking

the condition Equation (20) we would find that

(
∑k∈K

δkek

)⊤
Q
(
∑k 6∈K

δkek

)
=

1

4
(y+y′)⊤Q(y−y′) = 0.

However, Xn is SI-asymmetric and thus there must be #K = 0 or #K = n, that is, y′=−y or y′= y.

Therefore, dH (h,h′) = 0 and h′ is equivalent to h.
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Appendix B. Proof of Lemma 18

For any h ∈ H ′
Q, there exists α ∈ Rn such that h=Uα, where U consists of n orthonormal eigen-

vectors of Q, and ‖α‖2 = 1 since ‖h‖2 = 1 and U⊤U = I. The expression h=Uα is an unlabeled-

labeled representation (ULR) since U only has the information about unlabeled samples extracted

from Q. Each column of U has a unit length, and thus ‖U‖2
F = n where ‖·‖F is the Frobenius norm.

The first part of the upper bound, namely,

Rn(H
′

Q)≤
√

2n/n′(n−n′),

comes from Equations (20)–(22) of El-Yaniv and Pechyony (2009).

Let Q̂ = (γQ−η∗In)
−1. Another ULR is shown in Equation (30), in the proof of Theorem 13:

h= Q̂sign(h).

It is clear that 1/(γλ1−η∗), . . . ,1/(γλn−η∗) are the eigenvalues of Q̂ given that λ1, . . . ,λn are the

eigenvalues of Q. Subsequently, the second part of the upper bound, that is,

Rn(H
′

Q)≤
√

2

n′(n−n′)

(
n

∑
i=1

n

(γλi−η∗)2

)1/2

,

can be derived from Equations (20)–(22) of El-Yaniv and Pechyony (2009) with µ1 =
√

n. Further-

more, Equation (30) is also a kernel ULR, since Q̂ is symmetric positive definite and can be viewed

as a kernel matrix. Thereby we can obtain the third part of the upper bound

Rn(H
′

Q)≤
√

2

n′(n−n′)

(
n

∑
i=1

µ

γλi−η∗

)1/2

based on Equations (23)–(25) of El-Yaniv and Pechyony (2009) with µ2 =
√

µ.
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Abstract

We introduce a new class of quadratic support (QS) functions, many of which already play a cru-

cial role in a variety of applications, including machine learning, robust statistical inference, spar-

sity promotion, and inverse problems such as Kalman smoothing. Well known examples of QS

penalties include the ℓ2, Huber, ℓ1 and Vapnik losses. We build on a dual representation for QS

functions, using it to characterize conditions necessary to interpret these functions as negative logs

of true probability densities. This interpretation establishes the foundation for statistical modeling

with both known and new QS loss functions, and enables construction of non-smooth multivariate

distributions with specified means and variances from simple scalar building blocks.

The main contribution of this paper is a flexible statistical modeling framework for a variety

of learning applications, together with a toolbox of efficient numerical methods for estimation.

In particular, a broad subclass of QS loss functions known as piecewise linear quadratic (PLQ)

penalties has a dual representation that can be exploited to design interior point (IP) methods.

IP methods solve nonsmooth optimization problems by working directly with smooth systems of

equations characterizing their optimality. We provide several numerical examples, along with a

code that can be used to solve general PLQ problems.

The efficiency of the IP approach depends on the structure of particular applications. We con-

sider the class of dynamic inverse problems using Kalman smoothing. This class comprises a wide

variety of applications, where the aim is to reconstruct the state of a dynamical system with known

process and measurement models starting from noisy output samples. In the classical case, Gaus-
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ing to these results has received funding from the European Union Seventh Framework Programme [FP7/2007-2013]

under grant agreement no 257462 HYCON2 Network of excellence, by the MIUR FIRB project RBFR12M3AC -
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sian errors are assumed both in the process and measurement models for such problems. We show

that the extended framework allows arbitrary PLQ densities to be used, and that the proposed IP ap-

proach solves the generalized Kalman smoothing problem while maintaining the linear complexity

in the size of the time series, just as in the Gaussian case. This extends the computational efficiency

of the Mayne-Fraser and Rauch-Tung-Striebel algorithms to a much broader nonsmooth setting,

and includes many recently proposed robust and sparse smoothers as special cases.

Keywords: statistical modeling, convex analysis, nonsmooth optimization, robust inference, spar-

sity optimization, Kalman smoothing, interior point methods

1. Introduction

Consider the classical problem of Bayesian parametric regression (MacKay, 1992; Roweis and

Ghahramani, 1999) where the unknown x ∈ R
n is a random vector,1 with a prior distribution speci-

fied using a known invertible matrix G ∈ R
n×n and known vector µ ∈ R

n via

µ = Gx+w , (1)

where w is a zero mean vector with covariance Q. Let z denote a linear transformation of x contam-

inated with additive zero mean measurement noise v with covariance R,

z = Hx+ v , (2)

where H ∈ R
ℓ×n is a known matrix, while v and w are independent. It is well known that the

(unconditional) minimum variance linear estimator of x, as a function of z, is the solution to the

following optimization problem:

min
x

(z−Hx)TR−1(z−Hx)+(µ−Gx)TQ−1(µ−Gx) . (3)

As we will show, (3) includes estimation problems arising in discrete-time dynamic linear systems

which admit a state space representation (Anderson and Moore, 1979; Brockett, 1970). In this

context, x is partitioned into N subvectors {xk}, where each xk represents the hidden system state

at time instant k. For known data z, the classical Kalman smoother exploits the special structure of

the matrices H,G,Q and R to compute the solution of (3) in O(N) operations (Gelb, 1974). This

procedure returns the minimum variance estimate of the state sequence {xk}when the additive noise

in the system is assumed to be Gaussian.

In many circumstances, the estimator (3) performs poorly; put another way, quadratic penaliza-

tion on model deviation is a bad model in many situations. For instance, it is not robust with respect

to the presence of outliers in the data (Huber, 1981; Gao, 2008; Aravkin et al., 2011a; Farahmand

et al., 2011) and may have difficulties in reconstructing fast system dynamics, for example, jumps in

the state values (Ohlsson et al., 2012). In addition, sparsity-promoting regularization is often used

in order to extract a small subset from a large measurement or parameter vector which has greatest

impact on the predictive capability of the estimate for future data. This sparsity principle permeates

many well known techniques in machine learning and signal processing, including feature selec-

tion, selective shrinkage, and compressed sensing (Hastie and Tibshirani, 1990; Efron et al., 2004;

Donoho, 2006). In these cases, (3) is often replaced by a more general formulation

min
x

V (Hx− z;R)+W (Gx−µ;Q) (4)

1. All vectors are column vectors, unless otherwise specified.
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where the loss V may be the ℓ2-norm, the Huber penalty (Huber, 1981), Vapnik’s ε-insensitive loss,

used in support vector regression (Vapnik, 1998; Hastie et al., 2001), or the hinge loss, leading to

support vector classifiers (Evgeniou et al., 2000; Pontil and Verri, 1998; Schölkopf et al., 2000). The

regularizer W may be the ℓ2-norm, the ℓ1-norm, as in the LASSO (Tibshirani, 1996), or a weighted

combination of the two, yielding the elastic net procedure (Zou and Hastie, 2005). Many learn-

ing algorithms using infinite-dimensional reproducing kernel Hilbert spaces as hypothesis spaces

(Aronszajn, 1950; Saitoh, 1988; Cucker and Smale, 2001) boil down to solving finite-dimensional

problems of the form (4) by virtue of the representer theorem (Wahba, 1998; Schölkopf et al., 2001).

These robust and sparse approaches can often be interpreted as placing non-Gaussian priors on

w (or directly on x) and on the measurement noise v. The Bayesian interpretation of (4) has been

extensively studied in the statistical and machine learning literature in recent years, and probabilistic

approaches used in the analysis of estimation and learning algorithms have been studied (Mackay,

1994; Tipping, 2001; Wipf et al., 2011). Non-Gaussian model errors and priors leading to a great

variety of loss and penalty functions are also reviewed by Palmer et al. (2006) using convex-type

representations, and integral-type variational representations related to Gaussian scale mixtures.

In contrast to the above approaches, in the first part of the paper, we consider a wide class

of quadratic support (QS) functions and exploit their dual representation. This class of functions

generalizes the notion of piecewise linear quadratic (PLQ) penalties (Rockafellar and Wets, 1998).

The dual representation is the key to identifying which QS loss functions can be associated with a

density, which in turn allows us to interpret the solution to the problem (4) as a MAP estimator when

the loss functions V and W come from this subclass of QS penalties. This viewpoint allows statistical

modeling using non-smooth penalties, such as the ℓ1, hinge, Huber and Vapnik losses, which are

all PLQ penalties. Identifying a statistical interpretation for this class of problems gives us several

advantages, including a systematic constructive approach to prescribe mean and variance parameters

for the corresponding model; a property that is particularly important for Kalman smoothing.

In addition, the dual representation provides the foundation for efficient numerical methods in

estimation based on interior point optimization technology. In the second part of the paper, we

derive the Karush-Kuhn-Tucker (KKT) equations for problem (4), and introduce interior point (IP)

methods, which are iterative methods to solve the KKT equations using smooth approximations.

This is essentially a smoothing approach to many (non-smooth) robust and sparse problems of

interest to practitioners. Furthermore, we provide conditions under which the IP methods solve (4)

when V and W come from PLQ densities, and describe implementation details for the entire class.

A concerted research effort has recently focused on the solution of regularized large-scale in-

verse and learning problems, where computational costs and memory limitations are critical. This

class of problems includes the popular kernel-based methods (Rasmussen and Williams, 2006;

Schölkopf and Smola, 2001; Smola and Schölkopf, 2003), coordinate descent methods (Tseng and

Yun, 2008; Lucidi et al., 2007; Dinuzzo, 2011) and decomposition techniques (Joachims, 1998;

Lin, 2001; Lucidi et al., 2007), one of which is the widely used sequential minimal optimization

algorithm for support vector machines (Platt, 1998). Other techniques are based on kernel ap-

proximations, for example, using incomplete Cholesky factorization (Fine and Scheinberg, 2001),

approximate eigen-decomposition (Zhang and Kwok, 2010) or truncated spectral representations

(Pillonetto and Bell, 2007). Efficient interior point methods have been developed for ℓ1-regularized

problems (Kim et al., 2007), and for support vector machines (Ferris and Munson, 2003).

In contrast, general and efficient solvers for state space estimation problems of the form (4) are

missing in the literature. The last part of this paper provides a contribution to fill this gap, spe-

2691



ARAVKIN, BURKE AND PILLONETTO

cializing the general results to the dynamic case, and recovering the classical efficiency results of

the least-squares formulation. In particular, we design new Kalman smoothers tailored for systems

subject to noises coming from PLQ densities. Amazingly, it turns out that the IP method studied by

Aravkin et al. (2011a) generalizes perfectly to the entire class of PLQ densities under a simple veri-

fiable non-degeneracy condition. In practice, IP methods converge in a small number of iterations,

and the effort per iteration depends on the structure of the underlying problem. We show that the IP

iterations for all PLQ Kalman smoothing problems can be computed with a number of operations

that scales linearly in N, as in the quadratic case. This theoretical foundation generalizes the results

recently obtained by Aravkin et al. (2011a), Aravkin et al. (2011b), Farahmand et al. (2011) and

Ohlsson et al. (2012), framing them as particular cases of the general framework presented here.

The paper is organized as follows. In Section 2 we introduce the class of QS convex functions,

and give sufficient conditions that allow us to interpret these functions as the negative logs of as-

sociated probability densities. In Section 3 we show how to construct QS penalties and densities

having a desired structure from basic components, and in particular how multivariate densities can

be endowed with prescribed means and variances using scalar building blocks. To illustrates this

procedure, further details are provided for the Huber and Vapnik penalties. In Section 4, we fo-

cus on PLQ penalties, derive the associated KKT system, and present a theorem that guarantees

convergence of IP methods under appropriate hypotheses. In Section 5, we present a few simple

well-known problems, and compare a basic IP implementation for these problems with an ADMM

implementation (all code is available online). In Section 6, we present the Kalman smoothing dy-

namic model, formulate Kalman smoothing with PLQ penalties, present the KKT system for the

dynamic case, and show that IP iterations for PLQ smoothing preserve the classical computational

efficiency known for the Gaussian case. We present numerical examples using both simulated and

real data in Section 7, and make some concluding remarks in Section 8. Section A serves as an

appendix where supporting mathematical results and proofs are presented.

2. Quadratic Support Functions And Densities

In this section, we introduce the class of Quadratic Support (QS) functions, characterize some of

their properties, and show that many commonly used penalties fall into this class. We also give a

statistical interpretation to QS penalties by interpreting them as negative log likelihoods of prob-

ability densities; this relationship allows prescribing means and variances along with the general

quality of the error model, an essential requirement of the Kalman smoothing framework and many

other areas.

2.1 Preliminaries

We recall a few definitions from convex analysis, required to specify the domains of QS penalties.

The reader is referred to Rockafellar (1970) and Rockafellar and Wets (1998) for more detailed

reading.

• (Affine hull) Define the affine hull of any set C⊂R
n, denoted by aff(C), as the smallest affine

set (translated subspace) that contains C.

• (Cone) For any set C ⊂ R
n, denote by cone C the set {tr|r ∈C, t ∈ R+}.

• (Domain) For f (x) : Rn→ R= {R∪∞}, dom( f ) = {x : f (x)< ∞}.
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• (Polars of convex sets) For any convex set C ⊂ R
m, the polar of C is defined to be

C◦ := {r|〈r,d〉 ≤ 1 ∀ d ∈C},

and if C is a convex cone, this representation is equivalent to

C◦ := {r|〈r,d〉 ≤ 0 ∀ d ∈C}.

• (Horizon cone). Let C ⊂ R
n be a nonempty convex set. The horizon cone C∞ is the convex

cone of ‘unbounded directions’ for C, that is, d ∈C∞ if C+d ⊂C.

• (Barrier cone). The barrier cone of a convex set C is denoted by bar(C):

bar(C) := {x∗|for some β ∈ R,〈x, x∗〉 ≤ β ∀x ∈C} .

• (Support function). The support function for a set C is denoted by δ∗ (x |C ):

δ∗ (x |C ) := sup
c∈C

〈x, c〉 .

2.2 QS Functions And Densities

We now introduce the QS functions and associated densities that are the focus of this paper. We

begin with the dual representation, which is crucial to both establishing a statistical interpretation

and to the development of a computational framework.

Definition 1 (Quadratic Support functions and penalties) A QS function is any function

ρ(U,M,b,B; ·) : Rn→ R having representation

ρ(U,M,b,B;y) = sup
u∈U

{
〈u,b+By〉− 1

2
〈u,Mu〉

}
, (5)

where U ⊂ R
m is a nonempty convex set, M ∈ S n

+ the set of real symmetric positive semidefinite

matrices, and b+By is an injective affine transformation in y, with B ∈ R
m×n, so, in particular,

m≤ n and null(B) = {0}.
When 0 ∈U, we refer to the associated QS function as a penalty, since it is necessarily non-

negative.

Remark 2 When U is polyhedral, 0 ∈U, b = 0 and B = I, we recover the basic piecewise linear-

quadratic penalties characterized in Rockafellar and Wets (1998, Example 11.18).

Theorem 3 Let U,M,B,b be as in Definition 1, and set K =U∞∩null(M). Then

B−1[bar(U)+Ran(M)−b]⊂ dom[ρ(U,M,B,b; ·)]⊂ B−1[K◦−b] ,

with equality throughout when bar(U)+Ran(M) is closed, where bar(U) = dom(δ∗ (· |U )) is the

barrier cone of U. In particular, equality always holds when U is polyhedral.

We now show that many commonly used penalties are special cases of QS (and indeed, of the

PLQ) class.
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−κ +κ −ε +ε

-1 1 −ε +ε

Figure 1: Scalar ℓ2 (top left), ℓ1 (top right), Huber (middle left), Vapnik (middle right), elastic net

(bottom left) and smooth insensitive loss (bottom right) penalties

Remark 4 (scalar examples) ℓ2, ℓ1, elastic net, Huber, hinge, and Vapnik penalties are all repre-

sentable using the notation of Definition 1.

1. ℓ2: Take U = R, M = 1, b = 0, and B = 1. We obtain

ρ(y) = sup
u∈R

{
uy−u2/2

}
.

The function inside the sup is maximized at u = y, hence ρ(y) = 1
2
y2, see top left panel of

Figure 1.

2. ℓ1: Take U = [−1,1], M = 0, b = 0, and B = 1. We obtain

ρ(y) = sup
u∈[−1,1]

{uy} .

The function inside the sup is maximized by taking u = sign(y), hence ρ(y) = |y|, see top right

panel of Figure 1.

3. Elastic net: ℓ2 +λℓ1. Take

U = R× [−λ,λ], b =

[
0

0

]
, M =

[
1 0

0 0

]
, B =

[
1

1

]
.

This construction reveals the general calculus of PLQ addition, see Remark 5. See bottom

right panel of Figure 1.
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4. Huber: Take U = [−κ,κ], M = 1, b = 0, and B = 1. We obtain

ρ(y) = sup
u∈[−κ,κ]

{
uy−u2/2

}
,

with three explicit cases:

(a) If y <−κ, take u =−κ to obtain −κy− 1
2
κ2.

(b) If −κ≤ y≤ κ, take u = y to obtain 1
2
y2.

(c) If y > κ, take u = κ to obtain a contribution of κy− 1
2
κ2.

This is the Huber penalty, shown in the middle left panel of Figure 1.

5. Hinge loss: Taking B = 1, b =−ε, M = 0 and U = [0,1] we have

ρ(y) = sup
u∈U

{(y− ε)u}= (y− ε)+.

To verify this, just note that if y < ε, u∗ = 0; otherwise u∗ = 1.

6. Vapnik loss is given by (y− ε)++(−y− ε)+. We immediately obtain its PLQ representation

by taking

B =

[
1

−1

]
, b =−

[
ε

ε

]
, M =

[
0 0

0 0

]
, U = [0,1]× [0,1]

to yield

ρ(y) = sup
u∈U

{〈[
y− ε

−y− ε

]
,u

〉}
= (y− ε)++(−y− ε)+.

The Vapnik penalty is shown in the middle right panel of Figure 1.

7. Soft hinge loss function (Chu et al., 2001). Combining ideas from examples 4 and 5, we can

construct a ‘soft’ hinge loss; that is, the function

ρ(y) =





0 if y < ε
1
2
(y− ε)2 if ε < y < ε+κ

κ(y− ε)− 1
2
(κ)2 if ε+κ < y .

that has a smooth (quadratic) transition rather than a kink at ε : Taking B = 1, b =−ε, M = 1

and U = [0,κ] we have

ρ(y) = sup
u∈[0,κ]

{(y− ε)u}− 1
2
u2 .

To verify this function has the explicit representation given above, note that if y < ε, u∗ = 0;

if ε < y < κ+ ε, we have u∗ = (y− ε)+, and if κ+ ε < y, we have u∗ = κ.

8. Soft insensitive loss function (Chu et al., 2001). Using example 7, we can create a symmetric

soft insensitive loss function (which one might term the Hubnik) by adding together to soft

hinge loss functions:

ρ(y) = sup
u∈[0,κ]

{(y− ε)u}− 1
2
u2 + sup

u∈[0,κ]
{(−y− ε)u}− 1

2
u2

= sup
u∈[0,κ]2

{〈[
y− ε

−y− ε

]
,u

〉}
− 1

2
uT

[
1 0

0 1

]
u .
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See bottom bottom right panel of Figure 1.

Note that the affine generalization (Definition 1) is needed to form the elastic net, the Vapnik penalty,

and the SILF function, as all of these are sums of simpler QS penalties. These sum constructions are

examples of a general calculus which allows the modeler to build up a QS density having a desired

structure. This calculus is described in the following remark.

Remark 5 Let ρ1(y) and ρ2(y) be two QS penalties specified by Ui,Mi,bi,Bi, for i = 1,2. Then the

sum ρ(y) = ρ1(y)+ρ2(y) is also a QS penalty, with

U =U1×U2, M =

[
M1 0

0 M2

]
, b =

[
b1

b2

]
, B =

[
B1

B2

]
.

Notwithstanding the catalogue of scalar QS functions in Remark 4 and the gluing procedure de-

scribed in Remark 5, the supremum in Definition 1 appears to be a significant roadblock to under-

standing and designing a QS function having specific properties. However, with some practice the

design of QS penalties is not as daunting a task as it first appears. A key tool in understanding the

structure of QS functions are Euclidean norm projections onto convex sets.

Theorem 6 (Projection Theorem for Convex Sets) [Zarantonello (1971)] Let Q ∈ R
n×n be sym-

metric and positive definite and let C⊂R be non-empty, closed and convex. Then Q defines an inner

product on R
n by 〈x, t〉Q = xT Qy with associated Euclidean norm ‖x‖Q =

√
〈x, x〉Q. The projection

of a point y ∈ R
n onto C in norm ‖ · ‖Q is the unique point PQ(y | C) solving the least distance

problem

inf
x∈C
‖y− x‖Q, (6)

and z = PQ (y |C ) if and only if z ∈C and

〈x− z, y− z〉Q ≤ 0 ∀ x ∈C . (7)

Note that the least distance problem (6) is equivalent to the problem

inf
x∈C

1
2
‖y− x‖2

Q .

In the following lemma we use projections as well as duality theory to provide alternative represen-

tations for QS penalties.

Theorem 7 Let M ∈ R
n×n be symmetric and positive semi-definite matrix, let L ∈ R

n×k be any

matrix satisfying M = LLT where k = rank(M), and let U ⊂ R
n be a non-empty, closed and convex

set that contains the origin. Then the QS function ρ := ρ(U,M,0, I; ·) has the primal representations

ρ(y) = inf
s∈Rk

[
1
2
‖s‖2

2 +δ∗ (y−Ls |U )
]
= inf

s∈Rk

[
1
2
‖s‖2

2 + γ(y−Ls |U◦ )
]
, (8)

where, for any convex set V ,

δ∗ (z |V ) := sup
v∈V

〈z, v〉 and γ(z |V ) := inf{t | t ≥ 0, z ∈ tV }
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are the support and gauge functionals for V , respectively.

If it is further assumed that M ∈ S n
++ the set of positive definite matrices, then ρ has the repre-

sentations

ρ(y) = inf
s∈Rk

[
1
2
‖s‖2

M + γ
(
M−1y− s

∣∣M−1U◦
)]

(9)

= 1
2
‖PM

(
M−1y |U

)
‖2

M + γ
(
M−1y−PM(M−1y|U)

∣∣M−1U◦
)

(10)

= inf
s∈Rk

[
1
2
‖s‖2

M−1 + γ(y− s |U◦ )
]

(11)

= 1
2
‖PM−1(y|MU)‖2

M−1 + γ(y−PM−1(y|MU) |U◦ ) (12)

= 1
2
yT M−1y− inf

u∈U

1
2
‖u−M−1y‖2

M (13)

= 1
2
‖PM(M−1y|U)‖2

M +
〈
M−1y−PM(M−1y|U), PM(M−1y|U)

〉
M

(14)

= 1
2
yT M−1y− inf

v∈MU

1
2
‖v− y‖2

M−1 (15)

= 1
2
‖PM−1(y|MU)‖2

M−1 + 〈y−PM−1(y|MU), PM−1(y|MU)〉M−1 . (16)

In particular, (15) says ρ(y) = 1
2
yT M−1y whenever y ∈MU. Also note that, by (8), one can replace

the gauge functionals in (9)-(12) by the support functional of the appropriate set where M−1U◦ =
(MU)◦.

The formulas (9)-(16) show how one can build PLQ penalties having a wide range of desirable

properties. We now give a short list of a few examples illustrating how to make use of these repre-

sentations.

Remark 8 (General examples) In this remark we show how the representations in Lemma 7 can

be used to build QS penalties with specific structure. In each example we specify the components

U,M,b, and B for the QS function ρ := ρ(U,M,b,B; ·).

1. Norms. Any norm ‖ · ‖ can be represented as a QS function by taking M = 0, B = I, b = 0,

U = B
◦, where B is the unit ball of the desired norm. Then, by (8), ρ(y) = ‖y‖= γ(y |B).

2. Gauges and support functions. Let U be any closed convex set containing the origin, and

Take M = 0,B = I,b = 0. Then, by (8), ρ(y) = γ(y |U◦ ) = δ∗ (y |U ).

3. Generalized Huber functions. Take any norm ‖ · ‖ having closed unit ball B. Let M ∈ S n
++,

B = I, b = 0, and U = B
◦. Then, by the representation (12),

ρ(y) = 1
2
PM−1(y|MB

◦)T M−1PM−1(y|MB
◦)+‖y−PM−1(y|MB

◦)‖ .

In particular, for y ∈MB
◦, ρ(y) = 1

2
yT M−1y.

If we take M = I and ‖ ·‖= κ−1‖ ·‖1 for κ > 0 (i.e., U = κB∞ and U◦ = κ−1
B1), then ρ is the

multivariate Huber function described in item 4 of Remark 4. In this way, Theorem 7 shows

how to generalize the essence of the Huber norm to any choice of norm. For example, if we

take U = κBM = {κu |‖u‖M ≤ 1}, then, by (14),

ρ(y) =

{
1
2
‖y‖2

M−1 , if ‖y‖M−1 ≤ κ

κ‖y‖M−1− κ2

2
, if ‖y‖M−1 > κ .

2697



ARAVKIN, BURKE AND PILLONETTO

4. Generalized hinge-loss functions. Let ‖ · ‖ be a norm with closed unit ball B, let K be a

non-empty closed convex cone in R
n, and let v ∈ R

n. Set M = 0, b = −v, B = I, and U =
−(B◦∩K◦) = B

◦∩ (−K)◦. Then, by (Burke, 1987, Section 2),

ρ(y) = dist(y |v−K ) = inf
u∈K
‖y−b+u‖ .

If we consider the order structure “≤K” induced on R
n by

y≤K v ⇐⇒ v− y ∈ K ,

then ρ(y) = 0 if and only if y≤K v. By taking ‖·‖= ‖·‖1, K =R
n
+ so (−K)◦ = K, and v = ε1,

where 1 is the vector of all ones, we recover the multivariate hinge loss function in Remark 4.

5. Order intervals and Vapnik loss functions. Let ‖ · ‖ be a norm with closed unit ball B, let

K ⊂ R
n be a non-empty symmetric convex cone in the sense that K◦ = −K, and let w <K v,

or equivalently, v−w ∈ intr(K). Set

U = (B◦∩K)× (B◦∩K◦), M =

[
0 0

0 0

]
, b =−

(
v

w

)
, and B =

[
I

I

]
.

Then

ρ(y) = dist(y |v−K )+dist(y |w+K ) .

Observe that ρ(y) = 0 if and only if w ≤K y ≤K v. The set {y |w≤K y≤K v} is an “or-

der interval” (Schaefer, 1970). If we take w = −v, then {y |−v≤K y≤K v} is a symmetric

neighborhood of the origin. By taking ‖ · ‖= ‖ · ‖1, K = R
n
+, and v = ε1=-w, we recover the

multivariate Vapnik loss function in Remark 4. Further examples of symmetric cones are S n
+

and the Lorentz or ℓ2 cone (Güler and Hauser, 2002).

The examples given above show that one can also construct generalized versions of the elastic net

as well as the soft insensitive loss functions defined in Remark 4. In addition, cone constraints can

also be added by using the identity δ∗ (· |K◦ ) = δ(· |K ). These examples serve to illustrate the wide

variety of penalty functions representable as QS functions. Computationally, one is only limited

by the ability to compute projections described in Theorem 7. For more details on computational

properties for QS functions, see Aravkin et al. (2013), Section 6.

In order to characterize QS functions as negative logs of density functions, we need to ensure the

integrability of said density functions. The function ρ(y) is said to be coercive if lim‖y‖→∞ ρ(y) = ∞,

and coercivity turns out to be the key property to ensure integrability. The proof of this fact and

the characterization of coercivity for QS functions are the subject of the next two theorems (see

Appendix for proofs).

Theorem 9 (QS integrability) Suppose ρ(y) is a coercive QS penalty. Then the function exp[−ρ(y)]
is integrable on aff[dom(ρ)] with respect to the dim(aff[dom(ρ)])-dimensional Lebesgue measure.

Theorem 10 A QS function ρ is coercive if and only if [BTcone(U)]◦ = {0}.

Theorem 10 can be used to show the coercivity of familiar penalties. In particular, note that if

B = I, then the QS function is coercive if and only if U contains the origin in its interior.
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Corollary 11 The penalties ℓ2, ℓ1, elastic net, Vapnik, and Huber are all coercive.

Proof We show that all of these penalties satisfy the hypothesis of Theorem 10.

ℓ2: U = R and B = 1, so
[
BTcone(U)

]◦
= R

◦ = {0}.

ℓ1: U = [−1,1], so cone(U) = R, and B = 1.

Elastic Net: In this case, cone(U) = R
2 and B =

[
1
1

]
.

Huber: U = [−κ,κ], so cone(U) = R, and B = 1.

Vapnik: U = [0,1]× [0,1], so cone(U) = R
2
+. B =

[
1
−1

]
, so BTcone(U) = R.

One can also show the coercivity of the above examples using their primal representations. How-

ever, our main objective is to pave the way for a modeling framework where multi-dimensional

penalties can be constructed from simple building blocks and then solved by a uniform approach

using the dual representations alone.

We now define a family of distributions on R
n by interpreting piecewise linear quadratic func-

tions ρ as negative logs of corresponding densities. Note that the support of the distributions is

always contained in dom ρ, which is characterized in Theorem 3.

Definition 12 (QS densities) Let ρ(U,M,B,b;y) be any coercive extended QS penalty on R
n. De-

fine p(y) to be the following density on R
n:

p(y) =

{
c−1 exp [−ρ(y)] y ∈ dom ρ

0 else,

where

c =

(∫
y∈dom ρ

exp [−ρ(y)]dy

)
,

and the integral is with respect to the dim(dom(ρ))-dimensional Lebesgue measure.

QS densities are true densities on the affine hull of the domain of ρ. The proof of Theorem 9

can be easily adapted to show that they have moments of all orders.

3. Constructing QS Densities

In this section, we describe how to construct multivariate QS densities with prescribed means and

variances. We show how to compute normalization constants to obtain scalar densities, and then

extend to multivariate densities using linear transformations. Finally, we show how to obtain the data

structures U,M,B,b corresponding to multivariate densities, since these are used by the optimization

approach in Section 4.

We make use of the following definitions. Given a sequence of column vectors {rk}= {r1, . . . ,rN}
and matrices {Σk}= {Σ1, . . . ,ΣN}, we use the notation

vec({rk}) =




r1

r2

...

rN


 , diag({Σk}) =




Σ1 0 · · · 0

0 Σ2
. . .

...
...

. . .
. . . 0

0 · · · 0 ΣN



.
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In definition 12, QS densities are defined over R
n. The moments of these densities depend

in a nontrivial way on the choice of parameters b,B,U,M. In practice, we would like to be able

to construct these densities to have prescribed means and variances. We show how this can be

done using scalar QS random variables as the building blocks. Suppose y = vec({yk}) is a vector

of independent (but not necessarily identical) QS random variables with mean 0 and variance 1.

Denote by bk,Bk,Uk,Mk the specification for the densities of yk. To obtain the density of y, we need

only take

U =U1×U2×·· ·×UN ,

M = diag({Mk}),
B = diag({Bk}),
b = vec({bk}) .

For example, the standard Gaussian distribution is specified by U = R
n, M = I, b = 0, B = I, while

the standard ℓ1-Laplace (Aravkin et al., 2011a) is specified by U = [−1,1]n, M = 0, b = 0, B =
√

2I.

The random vector ỹ = Q1/2(y+µ) has mean µ and variance Q. If c is the normalizing constant

for the density of y, then cdet(Q)1/2 is the normalizing constant for the density of ỹ.

Remark 13 Note that only independence of the building blocks is required in the above result.

This allows the flexibility to impose different QS densities on different errors in the model. Such

flexibility may be useful for example when combining measurement data from different instruments,

where some instruments may occasionally give bad data (with outliers), while others have errors

that are modeled well by Gaussian distributions.

We now show how to construct scalar building blocks with mean 0 and variance 1, that is, how to

compute the key normalizing constants for any QS penalty. To this aim, suppose ρ(y) is a scalar QS

penalty that is symmetric about 0. We would like to construct a density p(y) = exp [−ρ(c2y)]/c1 to

be a true density with unit variance, that is,

1

c1

∫
exp [−ρ(c2y)]dy = 1 and

1

c1

∫
y2 exp [−ρ(c2y)]dy = 1, (17)

where the integrals are over R. Using u-substitution, these equations become

c1c2 =
∫

exp [−ρ(y)]dy and c1c3
2 =

∫
y2 exp [−ρ(y)]dy.

Solving this system yields

c2 =

√∫
y2 exp [−ρ(y)]dy

/∫
exp [−ρ(y)]dy,

c1 =
1

c2

∫
exp [−ρ(y)]dy .

These expressions can be used to obtain the normalizing constants for any particular ρ using simple

integrals.
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3.1 Huber Density

The scalar density corresponding to the Huber penalty is constructed as follows. Set

pH(y) =
1

c1

exp[−ρH(c2y)] ,

where c1 and c2 are chosen as in (17). Specifically, we compute

∫
exp [−ρH(y)]dy = 2exp

[
−κ2/2

] 1

κ
+
√

2π[2Φ(κ)−1],

∫
y2 exp [−ρH(y)]dy = 4exp

[
−κ2/2

] 1+κ2

κ3
+
√

2π[2Φ(κ)−1] ,

where Φ is the standard normal cumulative density function. The constants c1 and c2 can now be

readily computed.

To obtain the multivariate Huber density with variance Q and mean µ, let U = [−κ,κ]n, M = I,

B = I any full rank matrix, and b = 0. This gives the desired density:

pH(y) =
1

cn
1 det(Q1/2)

exp

[
− sup

u∈U

{〈
c2Q−1/2 (y−µ) ,u

〉
− 1

2
uTu

}]
.

3.2 Vapnik Density

The scalar density associated with the Vapnik penalty is constructed as follows. Set

pV(y) =
1

c1

exp [−ρV (c2y)] ,

where the normalizing constants c1 and c2 can be obtained from

∫
exp [−ρV (y)]dy = 2(ε+1),

∫
y2 exp [−ρV (y)]dy =

2

3
ε3 +2(2−2ε+ ε2),

using the results in Section 3. Taking U = [0,1]2n, the multivariate Vapnik distribution with mean µ

and variance Q is

pV(y) =
1

cn
1 det(Q1/2)

exp

[
− sup

u∈U

{〈
c2BQ−1/2 (y−µ)− ε12n,u

〉}]
,

where B is block diagonal with each block of the form B =
[

1
−1

]
, and 12n is a column vector of 1’s

of length 2n.

4. Optimization With PLQ Penalties

In the previous sections, QS penalties were characterized using their dual representation and inter-

preted as negative log likelihoods of true densities. As we have seen, the scope of such densities is

extremely broad. Moreover, these densities can easily be constructed to possess specified moment
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properties. In this section, we expand on their utility by showing that the resulting estimation prob-

lems (4) can be solved with high accuracy using standard techniques from numerical optimization

for a large subclass of these penalties. We focus on PLQ penalties for the sake of simplicity in

our presentation of an interior point approach to solving these estimation problems. However, the

interior point approach applies in much more general settings (Nemirovskii and Nesterov, 1994).

Nonetheless, the PLQ case is sufficient to cover all of the examples given in Remark 4 while giving

the flavor of how to proceed in the more general cases.

We exploit the dual representation for the class of PLQ penalties (Rockafellar and Wets, 1998)

to explicitly construct the Karush-Kuhn-Tucker (KKT) conditions for a wide variety of model prob-

lems of the form (4). Working with these systems opens the door to using a wide variety of numer-

ical methods for convex quadratic programming to solve (4).

Let ρ(Uv,Mv,bv,Bv;y) and ρ(Uw,Mw,bw,Bw;y) be two PLQ penalties and define

V (v;R) := ρ(Uv,Mv,bv,Bv;R−1/2v) (18)

and

W (w;Q) := ρ(Uw,Mw,bw,Bw;Q−1/2w). (19)

Then (4) becomes

min
y∈Rn

ρ(U,M,b,B;y), (20)

where

U :=Uv×Uw, M :=

[
Mv 0

0 Mw

]
, b :=

(
bv−BvR−1/2z

bw−BwQ−1/2µ

)
,

and

B :=

[
BvR−1/2H

BwQ−1/2G

]
.

Moreover, the hypotheses in (1), (2), (4), and (5) imply that the matrix B in (20) is injective. Indeed,

By = 0 if and only if BwQ−1/2Gy = 0, but, since G is nonsingular and Bw is injective, this implies

that y = 0. That is, nul(B) = {0}. Consequently, the objective in (20) takes the form of a PLQ

penalty function (5). In particular, if (18) and (19) arise from PLQ densities (definition 12), then the

solution to problem (20) is the MAP estimator in the statistical model (1)-(2).

To simplify the notational burden, in the remainder of this section we work with (20) directly

and assume that the defining objects in (20) have the dimensions specified in (5);

U ∈ R
m, M ∈ R

m×m, b ∈ R
m, and B ∈ R

m×n.

The Lagrangian (Rockafellar and Wets, 1998)[Example 11.47] for problem (20) is given by

L(y,u) = bTu− 1

2
uTMu+uTBy .

By assumption U is polyhedral, and so can be specified to take the form

U = {u : ATu≤ a} , (21)
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where A ∈ R
m×ℓ. Using this representation for U , the optimality conditions for (20) (Rockafellar,

1970; Rockafellar and Wets, 1998) are

0 = BTu,

0 = b+By−Mu−Aq,

0 = ATu+ s−a,

0 = qisi , i = 1, . . . , ℓ , q,s≥ 0 ,

(22)

where the non-negative slack variable s is defined by the third equation in (22). The non-negativity

of s implies that u∈U . The equations 0= qisi , i= 1, . . . , ℓ in (22) are known as the complementarity

conditions. By convexity, solving the problem (20) is equivalent to satisfying (22). There is a vast

optimization literature on working directly with the KKT system. In particular, interior point (IP)

methods (Kojima et al., 1991; Nemirovskii and Nesterov, 1994; Wright, 1997) can be employed. In

the Kalman filtering/smoothing application, IP methods have been used to solve the KKT system

(22) in a numerically stable and efficient manner, see, for example, Aravkin et al. (2011b). Re-

markably, the IP approach studied by Aravkin et al. (2011b) generalizes to the entire PLQ class.

For Kalman filtering and smoothing, the computational efficiency is also preserved (see Section 6).

Here, we show the general development for the entire PLQ class using standard techniques from the

IP literature, see, for example, Kojima et al. (1991).

Let U,M,b,B, and A be as defined in (5) and (21), and let τ ∈ (0,+∞]. We define the τ slice of

the strict feasibility region for (22) to be the set

F+(τ) =

{
(s,q,u,y)

∣∣∣∣
0 < s, 0 < q, sTq≤ τ, and

(s,q,u,y) satisfy the affine equations in (22)

}
,

and the central path for (22) to be the set

C :=

{
(s,q,u,y)

∣∣∣∣
0 < s, 0 < q, γ = qisi i = 1, . . . , ℓ, and

(s,q,u,y) satisfy the affine equations in (22)

}
.

For simplicity, we define F+ := F+(+∞). The basic strategy of a primal-dual IP method is to follow

the central path to a solution of (22) as γ ↓ 0 by applying a predictor-corrector damped Newton

method to the function mapping R
ℓ×R

ℓ×R
m×R

n to itself given by

Fγ(s,q,u,y) =




s+ATu−a

D(q)D(s)1− γ1

By−Mu−Aq+b

BTu


 ,

where D(q) and D(s) are diagonal matrices with vectors q,s on the diagonal.

Theorem 14 Let U,M,b,B, and A be as defined in (5) and (21). Given τ > 0, let F+, F+(τ), and C

be as defined above. If

F+ 6= /0 and null(M)∩null(AT) = {0}, (23)

then the following statements hold.

(i) F
(1)

γ (s,q,u,y) is invertible for all (s,q,u,y) ∈ F+.
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(ii) Define F̂+ = {(s,q) |∃(u,y) ∈ R
m×R

n s.t. (s,q,u,y) ∈ F+ }. Then for each (s,q)∈ F̂+ there

exists a unique (u,y) ∈ R
m×R

n such that (s,q,u,y) ∈ F+.

(iii) The set F+(τ) is bounded for every τ > 0.

(iv) For every g ∈ R
ℓ
++, there is a unique (s,q,u,y) ∈ F+ such that g = (s1q1,s2q2, . . . ,sℓqℓ)

T.

(v) For every γ > 0, there is a unique solution [s(γ),q(γ),u(γ),y(γ)] to the equation Fγ(s,q,u,y) =
0. Moreover, these points form a differentiable trajectory in R

ν×R
ν×R

m×R
n. In particular,

we may write

C = {[s(γ),q(γ),u(γ),y(γ)] |γ > 0} .

(vi) The set of cluster points of the central path as γ ↓ 0 is non-empty, and every such cluster point

is a solution to (22).

Please see the Appendix for proof. Theorem 14 shows that if the conditions (23) hold, then IP

techniques can be applied to solve the problem (20). In all of the applications we consider, the

condition null(M)∩null(AT) = {0} is easily verified. For example, in the setting of (20) with

Uv = {u |Avu≤ av } and Uw = {u |Awu≤ bw } (24)

this condition reduces to

null(Mv)∩null(AT
v ) = {0} and null(Mw)∩null(AT

w) = {0}. (25)

Corollary 15 The densities corresponding to ℓ1, ℓ2, Huber, and Vapnik penalties all satisfy hypoth-

esis (25).

Proof We verify that null(M)∩ null(AT) = 0 for each of the four penalties. In the ℓ2 case, M has

full rank. For the ℓ1, Huber, and Vapnik penalties, the respective sets U are bounded, so U∞ = {0}.

On the other hand, the condition F+ 6= /0 is typically more difficult to verify. We show how this

is done for two sample cases from class (4), where the non-emptiness of F+ is established by

constructing an element of this set. Such constructed points are useful for initializing the interior

point algorithm.

4.1 ℓ1-ℓ2

Suppose V (v;R) =
∥∥R−1/2v

∥∥
1

and W (w;Q) = 1
2

∥∥Q−1/2w
∥∥2

2
. In this case

Uv = [−1m,1m], Mv = 0m×m, bv = 0m, Bv = Im×m,

Uw = R
n, Mw = In×n, bw = 0n, Bw = In×n,

and R ∈ R
m×m and Q ∈ R

n×n are symmetric positive definite covariance matrices. Following the

notation of (20) we have

U = [−1,1]×R
n, M =

[
0m×m 0

0 In×n

]
, b =

(
−R−1/2z

−Q−1/2µ

)
, B =

[
R−1/2H

Q−1/2G

]
.
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The specification of U in (21) is given by

AT =

[
Im×m 0n×n

−Im×m 0n×n

]
and a =

(
1

−1

)
.

Clearly, the condition null(M)∩null(AT) = {0} in (23) is satisfied. Hence, for Theorem 14 to apply,

we need only check that F+ 6= /0. This is easily established by noting that (s,q,u,y) ∈ F+, where

u =

(
0

0

)
, y = G−1µ, s =

(
1

1

)
, q =

(
1+[R−1/2(Hy− z)]+
1− [R−1/2(Hy− z)]−

)
,

where, for g ∈ R
ℓ, g+ is defined componentwise by g+(i) = max{gi,0} and g−(i) = min{gi,0}.

4.2 Vapnik-Huber

Suppose that V (v;R) and W (w;Q) are as in (18) and (19), respectively, with V a Vapnik penalty and

W a Huber penalty:

Uv = [0,1m]× [0,1m], Mv = 02m×2m, bv =−
(

ε1m

ε1m

)
, Bv =

[
Im×m

−Im×m

]
,

Uw = [−κ1n,κ1n], Mw = In×n, bw = 0n, Bw = In×n ,

and R ∈ R
m×m and Q ∈ R

n×n are symmetric positive definite covariance matrices. Following the

notation of (20) we have

U = ([0,1m]× [0,1m])× [−κ1n,κ1n], M =

[
02m×2m 0

0 In×n

]
,

b =−




ε1m +R−1/2z

ε1m−R−1/2z

Q−1/2µ


 , B =




R−1/2H

−R−1/2H

Q−1/2G


 .

The specification of U in (21) is given by

AT =




Im×m 0 0

−Im×m 0 0

0 Im×m 0

0 −Im×m 0

0 0 In×n

0 0 −In×n




and a =




1m

0m

1m

0m

κ1n

κ1n




.

Since null(AT) = {0}, the condition null(M)∩null(AT) = {0} in (23) is satisfied. Hence, for The-

orem 14 to apply, we need only check that F+ 6= /0. We establish this by constructing an element

(s,q,u,y) of F+. For this, let

u =




u1

u2

u3


 , s =




s1

s2

s3

s4

s5

s6



, q =




q1

q2

q3

q4

q5

q6



,
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and set

y = 0n, u1 = u2 =
1
2
1ℓ, u3 = 0n, s1 = s2 = s3 = s4 =

1
2
1ℓ, s5 = s6 = κ1n,

and

q1 = 1m− (ε1m +R−1/2z)−, q2 = 1m +(ε1m +R−1/2z)+,

q3 = 1m− (ε1m−R−1/2z)−, q4 = 1m +(ε1m−R−1/2z)+,

q5 = 1n− (Q−1/2µ)−, q6 = 1n +(Q−1/2µ)+ .

Then (s,q,u,y) ∈ F+.

5. Simple Numerical Examples And Comparisons

Before we proceed to the main application of interest (Kalman smoothing), we present a few simple

and interesting problems in the PLQ class. An IP solver that handles the problems discussed in

this section is available through github.com/saravkin/, along with example files and ADMM

implementations. A comprehensive comparison with other methods is not in our scope, but we

do compare the IP framework with the Alternating Direction Method of Multipliers (ADMM), see

Boyd et al. (2011) for a tutorial reference. We hope that the examples and the code will help readers

to develop intuition about these two methods.

We focus on ADMM in particular because these methods enjoy widespread use in machine

learning and other applications, due to their versatility and ability to scale to large problems. The

fundamental difference between ADMM and IP is that ADMM methods have at best linear con-

vergence, so they cannot reach high accuracy in reasonable time, see [Section 3.2.2] of Boyd et al.

(2011). In contrast, IP methods have a superlinear convergence rate. In fact, some variants have

2-step quadratic convergence, see Ye and Anstreicher (1993) and Wright (1997).

In addition to accuracy concerns, IP methods may be preferable to ADMM when

• objective contains complex non-smooth terms, for example, ‖Ax−b‖1.

• linear operators within the objective formulations are ill-conditioned.

For formulations with well-conditioned linear operators and simple nonsmooth pieces (such

as Lasso), ADMM can easily outperform IP. In these cases ADMM methods can attain moderate

accuracy (and good solutions) very quickly, by exploiting partial smoothness and/or simplicity of

regularizing functionals. For problems lacking these features, such as general formulations built

from (nonsmooth) PLQ penalties and possibly ill-conditioned linear operators, IP can dominate

ADMM, reaching the true solution while ADMM struggles.

We present a few simple examples below, either developing the ADMM approach for each, or

discussing the difficulties (when applicable). We explain advantages and disadvantages of using

IP, and present numerical results. A simple IP solver that handles all of the examples, together

with ADMM code used for the comparisons, is available through github.com/saravkin/. The

Lasso example was taken directly from http://www.stanford.edu/˜boyd/papers/admm/, and

we implemented the other ADMM examples using this code as a template.
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5.1 Lasso Problem

Consider the Lasso problem

min
x

1

2
‖Ax−b‖2

2 +λ‖x‖1 ,

where A∈Rn×m. Assume that m< n. In order to develop an ADMM approach, we split the variables

and introduce a constraint:

min
x,z

1

2
‖Ax−b‖2

2 +λ‖z‖1 s.t. x = z . (26)

The augmented Lagrangian for (26) is given by

L(x,z,y) =
1

2
‖Ax−b‖2

2 +λ‖z‖1 +ηyT (z− x)+
ρ

2
‖z− x‖2

2 ,

where η is the augmented Lagrangian parameter. The ADMM method now comprises the following

iterative updates:

xk+1 = argmin
x

1

2
‖Ax−b‖2

2 +
η

2
‖x+ yk− zk‖2

2,

zk+1 = argmin
z

λ‖z‖1 +
η

2
‖z− xk+1 + yk‖2

2,

yk+1 = yk +(zk+1− xk+1) .

Turning our attention to the x-update, note that the gradient is given by

AT (Ax−b)+η(x+ yk− zk) = (AT A+ I)x−AT b+η(yk− zk) .

At every iteration, the update requires solving the same positive definite m×m symmetric system.

Forming AT A+ I is O(nm2) time, and obtaining a Cholesky factorization is O(m3), but once this is

done, every x-update can be obtained in O(m2) time by doing two back-solves.

The z-update has a closed form solution given by soft thresholding:

zk+1 = S(xk+1− yk+1,λ/η) ,

which is an O(n) operation. The multiplier update is also O(n). Therefore, the complexity per

iteration is O(m2 +n), making ADMM a great method for this problem.

In contrast, each iteration of IP is dominated by the complexity of forming a dense m×m

system AT DkA, where Dk is a diagonal matrix that depends on the iteration. So while both methods

require an investment of O(nm2) to form and O(m3) to factorize the system, ADMM requires this

only at the outset, while IP has to repeat the computation for every iteration. A simple test shows

ADMM can find a good answer, with a significant speed advantage already evident for moderate

(1000×5000) well-conditioned systems (see Table 1).

5.2 Linear Support Vector Machines

The support vector machine problem can be formulated as the PLQ (see Ferris and Munson, 2003,

Section 2.1)

min
w,γ

1

2
‖w‖2 +λρ+(1−D(Aw− γ1)) , (27)
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Problem: Size ADMM Iters ADMM Inner IP Iters tADMM (s) tIP (s) ObjDiff

Lasso: 1500×5000 15 — 18 2.0 58.3 0.0025

SVM: 32561×123

cond(A) = 7.7×1010 653 — 77 41.2 23.9 0.17

H-Lasso: 1000×2000

ADMM/ADMM

cond(A) = 5.8 26 100 20 14.1 10.5 0.00006

cond(A) = 1330 27 100 24 40.0 13.0 0.0018

ADMM/L-BFGS

cond(A) = 5.8 18 — 20 2.8 10.3 1.02

cond(A) = 1330 22 — 24 21.2 13.1 1.24

L1 Lasso: 500×2000

ADMM/ADMM

cond(A) = 2.2 104 100 29 57.4 5.9 0.06

cond(A) = 1416 112 100 29 81.4 5.6 0.21

Table 1: For each problem, we list iterations for IP, outer ADMM, cap for inner ADMM itera-

tions (if applicable), total time for both algorithms and objective difference f(xADMM) -

f(xIP). This difference is always positive, since in all experiments IP found a lower objec-

tive value, and its magnitude is an accuracy heuristic for ADMM, where lower difference

means higher accuracy.

where ρ+ is the hinge loss function, wT x = γ is the hyperplane being sought, D∈Rm×m is a diagonal

matrix with {±1} on the diagonals (in accordance to the classification of the training data), and

A∈Rm×k is the observation matrix, where each row gives the features corresponding to observation

i ∈ {1, . . . ,m}. The ADMM details are similar to the Lasso example, so we omit them here. The

interested reader can study the details in the file linear_svm available through github/saravkin.

The SVM example turned out to be very interesting. We downloaded the 9th Adult example

from the SVM library at http://www.csie.ntu.edu.tw/˜cjlin/libsvm/. The training set has

32561 examples, each with 123 features. When we formed the operator A for problem (27), we

found it was very poorly conditioned, with condition number 7.7×1010. It should not surprise the

reader that after running for 653 iterations, ADMM is still appreciably far away—its objective value

is higher, and in fact the relative norm distance to the (unique) true solution is 10%.

It is interesting to note that in this application, high optimization accuracy does not mean better

classification accuracy on the test set—indeed, the (suboptimal) ADMM solution achieves a lower

classification error on the test set (18%, vs. 18.75% error for IP). Nonetheless, this is not an advan-

tage of one method over another—one can also stop the IP method early. The point here is that from

the optimization perspective, SVM illustrates the advantages of Newton methods over methods with

a linear rate.

2708



NONSMOOTH DENSITIES: MODELING, COMPUTATION AND THEORY

5.3 Robust Lasso

For the examples in this section, we take ρ(·) to be a robust convex loss, either the 1-norm or the

Huber function, and consider the robust Lasso problem

min
x

ρ(Ax−b)+λ‖x‖1 .

First, we develop an ADMM approach that works for both losses, exploiting the simple nature

of the regularizer. Then, we develop a second ADMM approach when ρ(x) is the Huber function

by exploiting partial smoothness of the objective.

Setting z = Ax−b, we obtain the augmented Lagrangian

L(x,z,y) = ρ(z)+λ‖x‖1 +ηyT (z−Ax+b)+
ρ

2
‖− z+Ax−b‖2

2 .

The ADMM updates for this formulation are

xk+1 = argmin
x

λ‖x‖1 +
η

2
‖Ax− yk− zk‖2

2,

zk+1 = argmin
z

ρ(z)+
η

2
‖z+ yk−Axk+1 +b‖2

2,

yk+1 = yk +(zk+1−Axk+1 +b) .

The z-update can be solved using thresholding, or modified thresholding, in O(m) time when ρ(·)
is the Huber loss or 1-norm. Unfortunately, the x-update now requires solving a LASSO problem.

This can be done with ADMM (see previous section), but the nested ADMM structure does not

perform as well as IP methods, even for well conditioned problems.

When ρ(·) is smooth, such as in the case of the Huber loss, the partial smoothness of the objec-

tive can be exploited by setting x = z, obtaining

L(x,z,y) = ρ(Ax−b)+λ‖z‖1 +ηyT (zx)+
ρ

2
‖x− z‖2

2 .

The ADMM updates are:

xk+1 = argmin
x

ρ(Ax−b)+
η

2
‖x− zk + yk‖2

2,

zk+1 = argmin
z

λ‖z‖1 +
η

2
‖z+(xk+1 + yk)‖2

2,

yk+1 = yk +(zk+1− xk+1) .

The problem required for the x-update is smooth, and can be solved by a fast quasi-Newton method,

such as L-BFGS. L-BFGS is implemented using only matrix-vector products, and for well-conditioned

problems, the ADMM/LBFGS approach has a speed advantage over IP methods. For ill-conditioned

problems, L-BFGS has to work harder to achieve high accuracy, and inexact solves may destabilize

the overall ADMM approach. IP methods are more consistent (see Table 1).

Just as in the Lasso problem, the IP implementation is dominated by the formation of AT DkA at

every iteration with complexity O(mn2). However, a simple change of penalty makes the problem

much harder for ADMM, especially when the operator A is ill-conditioned.

We hope that the toy problems, results, and code that we developed in order to write this section

have given the reader a better intuition for IP methods. In the next section, we apply IP methods

to Kalman smoothing, and show that these methods can be specifically designed to exploit the time

series structure and preserve computational efficiency of classical Kalman smoothers.
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6. Kalman Smoothing With PLQ Penalties

Consider now a dynamic scenario, where the system state xk evolves according to the following

stochastic discrete-time linear model

x1 = x0 +w1,

xk = Gkxk−1 +wk, k = 2,3, . . . ,N

zk = Hkxk + vk, k = 1,2, . . . ,N

(28)

where x0 is known, zk is the m-dimensional subvector of z containing the noisy output samples

collected at instant k, Gk and Hk are known matrices. Further, we consider the general case where

{wk} and {vk} are mutually independent zero-mean random variables which can come from any of

the densities introduced in the previous section, with positive definite covariance matrices denoted

by {Qk} and {Rk}, respectively.

In order to formulate the Kalman smoothing problem over the entire sequence {xk}, define

x = vec{x1, · · · ,xN} , w = vec{w1, · · · ,wN} ,
v = vec{v1, · · · ,vN} , Q = diag{Q1, · · · ,QN} ,
R = diag{R1, · · · ,RN} , H = diag{H1, · · · ,HN},

and

G =




I 0

−G2 I
. . .

. . .
. . . 0

−GN I



.

Then model (28) can be written in the form of (1)-(2), that is,

µ = Gx+w,

z = Hx+ v ,
(29)

where x ∈ R
nN is the entire state sequence of interest, w is corresponding process noise, z is the

vector of all measurements, v is the measurement noise, and µ is a vector of size nN with the first

n-block equal to x0, the initial state estimate, and the other blocks set to 0. This is precisely the

problem (1)-(2) that began our study. The problem (3) becomes the classical Kalman smoothing

problem with quadratic penalties. In this case, the objective function can be written

‖Gx−µ‖2
Q−1 +‖Hx− z‖2

R−1 ,

and the minimizer can be found by taking the gradient and setting it to zero:

(GT Q−1G+HT R−1H)x = r .

One can view this as a single step of Newton’s method, which converges to the solution because the

objective is quadratic. Note also that once the linear system above is formed, it takes only O(n3N)
operations to solve due to special block tridiagonal structure (for a generic system, it would take

O(n3N3) time). In this section, we will show that IP methods can preserve this complexity for much

more general penalties on the measurement and process residuals. We first make a brief remark

related to the statistical interpretation of PLQ penalties.
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Remark 16 Suppose we decide to move to an outlier robust formulation, where the 1-norm or

Huber penalties are used, but the measurement variance is known to be R. Using the statistical

interpretation developed in section 3, the statistically correct objective function for the smoother is

1

2
‖Gx−µ‖2

Q−1 +
√

2‖R−1(Hx− z)‖1 .

Analogously, the statistically correct objective when measurement error is the Huber penalty with

parameter κ is
1

2
‖Gx−µ‖2

Q−1 + c2ρ(R−1/2(Hx− z)) ,

where

c2 =
4exp

[
−κ2/2

]
1+κ2

κ3 +
√

2π[2Φ(κ)−1]

2exp [−κ2/2] 1
κ +
√

2π[2Φ(κ)−1]
.

The normalization constant comes from the results in Section 3.1, and ensures that the weighting

between process and measurement terms is still consistent with the situation regardless of which

shapes are used for the process and measurement penalties. This is one application of the statistical

interpretation.

Next, we show that when the penalties used on the process residual Gx−w and measurement

residual Hx− z arise from general PLQ densities, the general Kalman smoothing problem takes the

form (20), studied in the previous section. The details are given in the following remark.

Remark 17 Suppose that the noises w and v in the model (29) are PLQ densities with means 0,

variances Q and R (see Def. 12). Then, for suitable Uw,Mw,bw,Bw and Uv,Mv,bv,Bv and corre-

sponding ρw and ρv we have

p(w) ∝ exp
[
−ρ

(
Uw,Mw,bw,Bw;Q−1/2w

)]
,

p(v) ∝ exp
[
−ρ(Uv,Mv,bv,Bv;R−1/2v)

]

while the MAP estimator of x in the model (29) is

argmin
x∈RnN





ρ
[
Uw,Mw,bw,Bw;Q−1/2(Gx−µ)

]

+ρ
[
Uv,Mv,bv,Bv;R−1/2(Hx− z)

]



 . (30)

If Uw and Uv are given as in (24), then the system (22) decomposes as

0 = AT
wuw + sw−aw ; 0 = AT

v uv + sv−av,
0 = sT

wqw ; 0 = sT
v qv,

0 = b̃w +BwQ−1/2Gd−Mwuw−Awqw,

0 = b̃v−BvR−1/2Hd−Mvuv−Avqv,

0 = GTQ−T/2BT
wuw−HTR−T/2BT

v uv,
0 ≤ sw,sv,qw,qv.

(31)

See the Appendix and (Aravkin, 2010) for details on deriving the KKT system. By further exploiting

the decomposition shown in (28), we obtain the following theorem.
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Theorem 18 (PLQ Kalman smoother theorem) Suppose that all wk and vk in the Kalman smooth-

ing model (28) come from PLQ densities that satisfy

null(Mw
k )∩null((Aw

k )
T) = {0} ,null(Mv

k)∩null((Av
k)

T) = {0} , ∀k ,

that is, their corresponding penalties are finite-valued. Suppose further that the corresponding set

F+ from Theorem 14 is nonempty. Then (30) can be solved using an IP method, with computational

complexity O[N(n3 +m3 + l)], where l is the largest column dimension of the matrices {Aν
k} and

{Aw
k }.

Note that the first part of this theorem, the solvability of the problem using IP methods, already

follows from Theorem 14. The main contribution of the result in the dynamical system context is

the computational complexity. The proof is presented in the Appendix and shows that IP methods

for solving (30) preserve the key block tridiagonal structure of the standard smoother. If the number

of IP iterations is fixed (10− 20 are typically used in practice), general smoothing estimates can

thus be computed in O[N(n3 +m3 + l)] time. Notice also that the number of required operations

scales linearly with l, which represents the complexity of the PLQ density encoding.

7. Numerical Example

In this section, we illustrate the modeling capabilities and computational efficiency of PLQ Kalman

smoothers on simulated and real data.

7.1 Simulated Data

We use a simulated example to test the computational scheme described in the previous section. We

consider the following function

f (t) = exp [sin(8t)]

taken from Dinuzzo et al. (2007). Our aim is to reconstruct f starting from 2000 noisy samples

collected uniformly over the unit interval. The measurement noise vk was generated using a mixture

of two Gaussian densities, with p = 0.1 denoting the fraction from each Gaussian; that is,

vk ∼ (1− p)N(0,0.25)+ pN(0,25),

Data are displayed as dots in Figure 2. Note that the purpose of the second component of the

Gaussian mixture is to simulate outliers in the output data and that all the measurements exceeding

vertical axis limits are plotted on upper and lower axis limits (4 and -2) to improve readability.

The initial condition f (0) = 1 is assumed to be known, while the difference of the unknown

function from the initial condition (i.e., f (·)−1) is modeled as a Gaussian process given by an inte-

grated Wiener process. This model captures the Bayesian interpretation of cubic smoothing splines

(Wahba, 1990), and admits a two-dimensional state space representation where the first component

of x(t), which models f (·)−1, corresponds to the integral of the second state component, modelled

as Brownian motion. To be more specific, letting ∆t = 1/2000, the sampled version of the state

space model (Jazwinski, 1970; Oksendal, 2005) is defined by

Gk =

[
1 0

∆t 1

]
, k = 2,3, . . . ,2000

Hk =
[
0 1

]
, k = 1,2, . . . ,2000
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Figure 2: Simulation: measurements (·) with outliers plotted on axis limits (4 and−2), true function

(continuous line), smoothed estimate using either the quadratic loss (dashed line, left

panel) or the Vapnik’s ε-insensitive loss (dashed line, right panel)

with the autocovariance of wk given by

Qk = λ2

[
∆t ∆t2

2
∆t2

2
∆t3

3

]
, k = 1,2, . . . ,2000 ,

where λ2 is an unknown scale factor to be estimated from the data.

We compare the performance of two Kalman smoothers. The first (classical) estimator uses

a quadratic loss function to describe the negative log of the measurement noise density and con-

tains only λ2 as unknown parameter. The second estimator is a Vapnik smoother relying on the ε-

insensitive loss, and so depends on two unknown parameters: λ2 and ε. In both cases, the unknown

parameters are estimated by means of a cross validation strategy where the 2000 measurements are

randomly split into a training and a validation set of 1300 and 700 data points, respectively. The

Vapnik smoother was implemented by exploiting the efficient computational strategy described in

the previous section; Aravkin et al. (2011b) provide specific implementation details. Efficiency is
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Figure 3: Estimation of the smoothing filter parameters using the Vapnik loss. Average prediction

error on the validation data set as a function of the variance process λ2 and ε.

particularly important here, because of the need for cross-validation. In this way, for each value of

λ2 and ε contained in a 10× 20 grid on [0.01,10000]× [0,1], with λ2 logarithmically spaced, the

function estimate was rapidly obtained by the new smoother applied to the training set. Then, the

relative average prediction error on the validation set was computed, see Figure 3. The parameters

leading to the best prediction were λ2 = 2.15×103 and ε = 0.45, which give a sparse solution de-

fined by fewer than 400 support vectors. The value of λ2 for the classical Kalman smoother was

then estimated following the same strategy described above. In contrast to the Vapnik penalty, the

quadratic loss does not induce any sparsity, so that, in this case, the number of support vectors

equals the size of the training set.

The left and right panels of Figure 2 display the function estimate obtained using the quadratic

and the Vapnik losses, respectively. It is clear that the estimate obtained using the quadratic penalty

is heavily affected by the outliers. In contrast, as expected, the estimate coming from the Vapnik

based smoother performs well over the entire time period, and is virtually unaffected by the presence

of large outliers.

7.2 Real Industrial Data

Let us now consider real industrial data coming from Syncrude Canada Ltd, also analyzed by Liu

et al. (2004). Oil production data is typically a multivariate time series capturing variables such

as flow rate, pressure, particle velocity, and other observables. Because the data is proprietary,

the exact nature of the variables is not known. The data used by Liu et al. (2004) comprises two

anonymized time series variables, called V14 and V36, that have been selected from the process

data. Each time series consists of 936 measurements, collected at times [1,2, . . . ,936] (see the top

panels of Figure 4). Due to the nature of production data, we hypothesize that the temporal profile

of the variables is smooth and that the observations contain outliers, as suggested by the fact that

some observations differ markedly from their neighbors, especially in the case of V14.

Our aim is to compare the prediction performance of two smoothers that rely on ℓ2 and ℓ1 measure-
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ment loss functions. For this purpose, we consider 100 Monte Carlo runs. During each run, data are

randomly divided into three disjoint sets: training and a validation data sets, both of size 350, and

a test set of size 236. We use the same state space model adopted in the previous subsection, with

∆t = 1, and use a non-informative prior to model the initial condition of the system. The regular-

ization parameter γ (equal to the inverse of λ2 assuming that the noise variance is 1) is chosen using

standard cross validation techniques. For each value of γ, logarithmically spaced between 0.1 and

1000 (30 point grid), the smoothers are trained on the training set, and the γ chosen corresponds to

the smoother that achieves the best prediction on the validation set. After estimating γ, the variable’s

profile is reconstructed for the entire time series (at all times [1,2, . . . ,936]), using the measurements

contained in the union of the training and the validation data sets. Then, the prediction capability

of the smoothers is evaluated by computing the 236 relative percentage errors (ratio of residual and

observation times 100) in the reconstruction of the test set.

In Figure 4 we display the boxplots of the overall 23600 relative errors stored after the 100 runs

for V14 (bottom left panel) and V36 (bottom right panel). One can see that the ℓ1-Kalman smoother

outperforms the classical one, especially in case of V14. This is not surprising, since in this case

prediction is more difficult due to the larger numbers of outliers in the time series. In particular, for

V14, the average percentage errors are 1.4% and 2.4% while, for V36, they are 1% and 1.2% using

ℓ1 and ℓ2, respectively.

8. Conclusions

We have presented a new theory for robust and sparse estimation using nonsmooth QS penalties.

The QS class captures a variety of existing penalties, including all PLQ penalties, and we have

shown how to construct natural generalizations based on general norm and cone geometries, and

explored the structure of these functions using Euclidean projections.

Many penalties in the QS class can be interpreted as negative logs of true probability densities.

Coercivity (characterized in Theorem 10) is the key necessary condition for this interpretation, as

well as a fundamental prerequisite in sparse and robust estimation, since it precludes directions for

which the sum of the loss and the regularizer are insensitive to large parameter changes. Thus,

coercivity also ensures that the problem is well posed in the machine learning context, that is, the

learning machine has enough control over model complexity.

It is straightforward to design new formulations in the QS framework. Starting with the requisite

penalty shape, one can use results of Section 3 to obtain a standardized density, as well as the data

structures required for the optimization problem in Section 4. The statistical interpretation for these

methods allows specification of mean and variance parameters for the corresponding model.

In the second part of the paper, we presented a computational approach to solving estimation

problems (4) using IP methods. We derived additional conditions that guarantee the successful

implementation of IP methods to compute the estimator (4) when x and v come from PLQ densities,

and characterized the convergence of IP methods for this class. The key condition for successful

execution of IP iterations is for PLQ penalties to be finite valued, which implies non-degeneracy of

the corresponding statistical distribution (the support cannot be contained in a lower-dimensional

subspace). The statistical interpretation is thus strongly linked to the computational procedure.

We then applied both the statistical framework and the computational approach to the class of

state estimation problems in discrete-time dynamic systems, extending the classical formulations

to allow dynamics and measurement noise to come from any PLQ densities. We showed that clas-
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Figure 4: Left panels: data set for variable 14 (top) and relative percentage errors in the recon-

struction of the test set obtained by Kalman smoothers based on the ℓ2 and the ℓ1 loss

(bottom). Right panels: data set for variable 36 (top) and relative percentage errors in the

reconstruction of the test set obtained by Kalman smoothers based on the ℓ2 and the ℓ1

loss (bottom).

sical computational efficiency results are preserved when the general IP approach is used for state

estimation; specifically, the computational cost of PLQ Kalman smoothing scales linearly with the

length of the time series, as in the quadratic case.

While we only considered convex formulations in this paper, the presented approach makes

it possible to solve a much broader class of non-convex problems. In particular, if the functions

Hx and Gx in (4) are replaced by nonlinear functions g(x) and h(x), the methods in this paper

can be used to compute descent directions for the non-convex problem. For an example of this

approach, see Aravkin et al. (2011a), which considers non-convex Kalman smoothing problems

with nonlinear process and measurement models and solves by using the standard methodology of

convex composite optimization (Burke, 1985). At each outer iteration the process and measurement

models are linearized around the current iterate, and the descent direction is found by solving a

particular subproblem of type (4) using IP methods.

In many contexts, it would be useful to estimate the parameters that define QS penalties; for

example the κ in the Huber penalty or the ε in the Vapnik penalty. In the numerical examples

presented in this paper, we have relied on cross-validation to accomplish this task. An alternative
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method could be to compute the MAP points returned by our estimator for different filter parameters

to gain information about the joint posterior of states and parameters. This strategy could help in

designing a good proposal density for posterior simulation using, for example, particle smoothing

filters (Ristic et al., 2004). We leave a detailed study of this approach to the QS modeling framework

for future work.

Appendix A. Proofs

In this appendix, we present proofs for the new results given in the main body of the paper.

A.1 Proof of Theorem 3

Let ρ(y) = ρ(U,M, I,0;y) so that ρ(U,M,B,b;y) = ρ(b + By). Then dom(ρ(U,M,B,b; ·)) =
B−1(dom(ρ)−b), hence the theorem follows if it can be shown that bar(U)+Ran(M)⊂ dom(ρ)⊂
[U∞ ∩ null(M)]◦ with equality when bar(U)+Ran(M) is closed. Observe that if there exists w ∈
U∞∩null(M) such that 〈y, w〉> 0, then trivially ρ(y)=+∞ so y /∈ dom(ρ). Consequently, dom(ρ)⊂
[U∞ ∩ null(M)]◦. Next let y ∈ bar(U) + Ran(M), then there is a v ∈ bar(U) and w such that

y = v+Mw. Hence

sup
u∈U

[〈u, y〉− 1
2
〈u, Mu〉] = sup

u∈U

[〈u, v+Mw〉− 1
2
〈u, Mu〉]

= sup
u∈U

[〈u, v〉+ 1
2
wT Mw− 1

2
(w−u)T M(w−u)]

≤ δ∗ (v |U )+ 1
2
wT Mw < ∞ .

Hence bar(U)+Ran(M)⊂ dom(ρ).

If the set bar(U)+Ran(M) is closed, then so is the set bar(U). Therefore, by (Rockafellar,

1970, Corollary 14.2.1), (U∞)◦ = bar(U), and, by (Rockafellar, 1970, Corollary 16.4.2), [U∞ ∩
null(M)]◦ = bar(U)+Ran(M), which proves the result.

In the polyhedral case, bar(U) is a polyhedral convex set, and the sum of such sets is also a

polyhedral convex set (Rockafellar, 1970, Corollary 19.3.2).

A.2 Proof of Theorem 7

To see the first equation in (8) write ρ(y) = supu

[
〈y, u〉−

(
1
2
‖LT u‖2

2 +δ(u |U )
)]

, and then apply

the calculus of convex conjugate functions (Rockafellar, 1970, Section 16) to find that

(
1
2
‖LT · ‖2

2 +δ(· |U )
)∗
(y) = inf

s∈Rk

[
1
2
‖s‖2

2 +δ∗ (y−Ls |U )
]
.

The second equivalence in (8) follows from (Rockafellar, 1970, Theorem 14.5).

For the remainder, we assume that M is positive definite. In this case it is easily shown that

(MU)◦ = M−1U◦. Hence, by Theorem 14.5 of Rockafellar (1970), γ(· |MU ) = δ∗
(
·
∣∣M−1U◦

)
. We

use these facts freely throughout the proof.

The formula (9) follows by observing that

1
2
‖s‖2

2 +δ∗ (y−Ls |U ) = 1
2
‖L−T s‖2

M +δ∗
(
M−1y−L−T s |MU

)
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and then making the substitution v = L−T s. To see (10), note that the optimality conditions for (9)

are Ms ∈ ∂δ∗
(
M−1y− s |MU

)
, or equivalently, M−1y− s ∈ N (Ms |MU ), that is, s ∈U and

〈
M−1y− s, u− s

〉
M
=
〈
M−1y− s, M(u− s)

〉
≤ 0 ∀ u ∈U,

which, by (7), tells us that s = PM

(
M−1y |U

)
. Plugging this into (9) gives (10).

Using the substitution v = Ls, the argument showing (11) and (12) differs only slightly from that

for (9) and (10) and so is omitted.

The formula (13) follows by completing the square in the M-norm in the definition (5):

〈y, u〉− 1
2
〈u, Mu〉 =

〈
M−1y, u

〉
M
− 1

2
〈u, u〉M

= 1
2
yT M−1y− 1

2
[
〈
M−1y, M−1y

〉
M
−2

〈
M−1y, u

〉
M
+ 〈u, u〉M]

= 1
2
yT M−1y− 1

2
‖M−1y−u‖2

M .

The result as well as (14) now follow from Theorem 6. Both (15) and (16) follow similary by

completing the square in the M−1-norm.

A.3 Proof of Theorem 9

First we will show that if ρ is convex coercive, then for any x̄ ∈ argmin f 6= /0, there exist constants

R and K > 0 such that

ρ(x)≥ ρ(x̄)+K‖x− x̄‖ ∀ x /∈ RB . (32)

Without loss of generality, we can assume that 0 = ρ(0) = infρ. Otherwise, replace ρ(x) by

ρ̂(x) = ρ(x+ x̄)−ρ(x̄), where x̄ is any global minimizer of ρ.

Let α > 0. Since ρ is coercive, there exists R such that levρ (α) ⊂ RB. We will show that
α
R
‖x‖ ≤ ρ(x) for all x /∈ RB.

Indeed, for all x 6= 0, we have ρ( R
‖x‖x)≥ α. Therefore, if x /∈ RB, then 0 < R

‖x‖ < 1, and we have

α

R
‖x‖ ≤ ‖x‖

R
ρ

(
R

‖x‖x

)
≤ ‖x‖

R

R

‖x‖ρ(x) = ρ(x).

Then by (32),

∫
exp(−ρ(x))dx =

∫
x̄+RB

exp(−ρ(x))dx+
∫
‖x−x̄‖>R

exp(−ρ(x))dx

≤C1 +C2

∫
‖x−x̄‖>R

exp(−K‖x− x̄‖)dx < ∞ .

A.4 Proof of Theorem 10

First observe that B−1[cone(U)]◦ = [BTcone(U)]◦ by Corollary 16.3.2 of Rockafellar (1970).

Suppose that ŷ∈ B−1[cone(U)]◦, and ŷ 6= 0. Then Bŷ∈ cone(U), and Bŷ 6= 0 since B is injective,

and we have
ρ(tŷ) = supu∈U〈b+ tBŷ,u〉− 1

2
uTMu

= supu∈U〈b,u〉− 1
2
uTMu+ t〈Bŷ,u〉

≤ supu∈U〈b,u〉− 1
2
uTMu

≤ ρ(U,M,0, I;b),
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so ρ(tŷ) stays bounded even as t→ ∞, and so ρ cannot be coercive.

Conversely, suppose that ρ is not coercive. Then we can find a sequence {yk} with ‖yk‖ > k

and a constant P so that ρ(yk) ≤ P for all k > 0. Without loss of generality, we may assume that
yk

‖yk‖ → ȳ.

Then by definition of ρ, we have for all u ∈U

〈b+Byk,u〉− 1
2
uTMu≤ P,

〈b+Byk,u〉 ≤ P+ 1
2
uTMu,

〈 b+Byk

‖yk‖ ,u〉 ≤
P
‖yk‖ +

1
2‖yk‖u

TMu.

Note that ȳ 6= 0, so Bȳ 6= 0. When we take the limit as k → ∞, we get 〈Bȳ,u〉 ≤ 0. From this

inequality we see that Bȳ ∈ [cone(U)]◦, and so ȳ ∈ B−1[cone(U)]◦.

A.5 Proof of Theorem 14

Proof (i) Using standard elementary row operations, reduce the matrix

F
(1)

γ :=




I 0 AT 0

D(q) D(s) 0 0

0 −A −M B

0 0 BT 0




to 


I 0 AT 0

0 D(s) −D(q)AT 0

0 0 −T B

0 0 BT 0


 ,

where T =M+AD(q)D(s)−1AT. The matrix T is invertible since null(M)∩null(CT) = {0}. Hence,

we can further reduce this matrix to the block upper triangular form




I 0 AT 0

0 D(s) −D(q)CT 0

0 0 −T B

0 0 0 −BTT−1B


 .

Since B is injective, the matrix BTT−1B is also invertible. Hence this final block upper triangular is

invertible proving Part (i).

(ii) Let (s,q) ∈ F̂+ and choose (ui,yi) so that (s,q,ui,yi) ∈ F+ for i = 1,2. Set u := u1− u2 and

y := y1− y2. Then, by definition,

0 = ATu, 0 = By−Mu, and 0 = BTu . (33)

Multiplying the second of these equations on the left by u and using the third as well as the positive

semi-definiteness of M, we find that Mu = 0. Hence, u ∈ null(M)∩null(AT) = {0}, and so By = 0.

But then y = 0 as B is injective.
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(iii) Let (ŝ, q̂, û, ŷ) ∈ F+ and (s,q,u,y) ∈ F+(τ). Then, by (22),

(s− ŝ)T(q− q̂) = [(a−ATu)− (a−ATû)]T(q− q̂)

= (û−u)T(Aq−Aq̂)

= (û−u)T[(b+By−Mu)− (b+Bb̂−Mû)]

= (û−u)TM(û−u)

≥ 0.

Hence,

τ+ ŝTq̂≥ sTy+ ŝTq̂≥ sTŷ+ yTŝ≥ ξ‖(s,q)‖1 ,

where ξ = min{ŝi, q̂i | i = 1, . . . , ℓ}> 0. Therefore, the set

F̂+(τ) = {(s,q) |(s,q,u,y) ∈ F+(τ)}

is bounded. Now suppose the set F+(τ) is not bounded. Then there exists a sequence

{(sν,qν,uν,yν)} ⊂ F+(τ) such that ‖(sν,qν,uν,yν)‖ ↑ +∞. Since F̂+(τ) is bounded, we can as-

sume that ‖(uν,yν)‖ ↑ +∞ while ‖(sν,qν)‖ remains bounded. With no loss in generality, we may

assume that there exits (u,y) 6= (0,0) such that (uν,yν)/‖(uν,yν)‖ → (u,y). By dividing (22) by

‖(uν,yν)‖ and taking the limit, we find that (33) holds. But then, as in (33), (u,y) = (0,0). This

contradiction yields the result.

(iv) We first show existence. This follows from a standard continuation argument. Let (ŝ, q̂, û, ŷ) ∈
F+ and v ∈ R

ℓ
++. Define

F(s,q,u,y, t) =




s+ATu−a

D(q)D(s)1− [(1− t)v̂+ tv]
By−Mu−Aq

BTu+b


 ,

where ĝ := (ŝ1ŷ1, . . . , ŝℓŷℓ)
T. Note that

F(ŝ, q̂, û, ŷ,0) = 0 and, by Part (i), ∇(s,q,u,y)F(ŝ, q̂, û, ŷ,0)−1 exists.

The Implicit Function Theorem implies that there is a t̃ > 0 and a differentiable mapping t 7→
(s(t),q(t),u(t),y(t)) on [0, t̃) such that

F [s(t),q(t),u(t),y(t), t] = 0 on [0, t̃).

Let t̄ > 0 be the largest such t̃ on [0,1]. Since

{[s(t),q(t),u(t),y(t)] | t ∈ [0, t̄)} ⊂ F+(τ̄),

where τ̄ = max{1Tĝ,1Tg}, Part (iii) implies that there is a sequence ti → t̄ and a point (s̄, q̄, ū, ȳ)
such that [s(ti),q(ti),u(ti),y(ti)]→ (s̄, q̄, ū, ȳ). By continuity F(s̄, q̄, ū, ȳ, t̄) = 0. If t̄ = 1, we are done;

otherwise, apply the Implicit Function Theorem again at (s̄, q̄, ū, ȳ, t̄) to obtain a contradiction to the

maximality of t̄.

We now show uniqueness. By Part (ii), we need only establish the uniqueness of (s,q). Let

(sν,qν) ∈ F̂+ be such that g = (s j(1)q j(1),s j(2)q j(2), . . . ,s j(ℓ)q j(ℓ))
T, where s j(i) denotes the ith ele-

ment of s j, and j = 1,2. As in Part (iii), we have (s1− s2)
T(q1−q2) = (u1−u2)

TM((u1−u2)≥ 0,
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and, for each i = 1, . . . , ℓ, s1(i)q1(i) = s2(i)q2(i) = gi > 0. If (s1,q1) 6= (s2,q2), then, for some

i ∈ {1, . . . , ℓ}, (s1(i)− s2(i))(q1(i)− q2(i)) ≥ 0 and either s1(i) 6= s2(i) or q1(i) 6= q2(i). If s1(i) > s2(i),

then q1(i) ≥ q2(i) > 0 so that gi = s1(i)q1(i) > s2(i)q2(i) = gi, a contradiction. So with out loss in

generality (by exchanging (s1,q1) with (s2,q2) if necessary), we must have q1(i) > q2(i). But then

s1(i) ≥ s2(i) > 0, so that again gi = s1(i)q1(i) > s2(i)q2(i) = gi, and again a contradiction. Therefore,

(s,q) is unique.

(v) Apply Part (iv) to get a point on the central path and then use the continuation argument to trace

out the central path. The differentiability follows from the implicit function theorem.

(vi) Part (iii) allows us to apply a standard compactness argument to get the existence of cluster

points and the continuity of Fγ(s,q,u,y) in all of its arguments including γ implies that all of these

cluster points solve (22).

A.6 Details for Remark 17

The Lagrangian for (30) for feasible (x,uw,uv) is

L(x,uw,uv) =

〈[
b̃w

b̃v

]
,

[
uw

uv

]〉
− 1

2

[
uw

uv

]T[
Mw 0

0 Mv

][
uw

uv

]
−
〈[

uw

uv

]
,

[
−BwQ−1/2G

BvR−1/2H

]
x

〉

where b̃w = bw− BwQ−1/2x̃0 and b̃v = bv − BvR−1/2z. The associated optimality conditions for

feasible (x,uw,uv) are given by

GTQ−T/2BT
wūw−HTR−T/2BT

v ūv = 0,

b̃w−Mwūw +BwQ−1/2Gx̄ ∈ NUw
(ūw),

b̃v−Mvūv−BvR−1/2Hx̄ ∈ NUv
(ūv) ,

(34)

where NC(r) denotes the normal cone to the set C at the point r (Rockafellar, 1970).

Since Uw and Uv are polyhedral, we can derive explicit representations of the normal cones

NUw
(ūw) and NUv

(ūv). For a polyhedral set U ⊂ R
m and any point ū ∈U , the normal cone NU(ū) is

polyhedral. Indeed, relative to any representation

U = {u|ATu≤ a}

and the active index set I(ū) := {i|〈Ai, ū〉= ai}, where Ai denotes the ith column of A, we have

NU(ū) =
{

q1A1 + · · ·+qmAm

∣∣ qi ≥ 0 for i ∈ I(ū), qi = 0 for i 6∈ I(ū)
}
. (35)

Using (35), Then we may rewrite the optimality conditions (34) more explicitly as

GTQ−T/2BT
wūw−HTR−T/2BT

v ūv = 0,

b̃w−Mwūw +BwQ−1/2Gd̄ = Awqw,

b̃v−Mvūv−BvR−1/2Hd̄ = Avqv,

{qv ≥ 0|qv(i) = 0 for i 6∈ I(ūv)},
{qw ≥ 0|qw(i) = 0 for i 6∈ I(ūw)} .
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where qv(i) and qw(i) denote the ith elements of qv and qw. Define slack variables sw ≥ 0 and sv ≥ 0

as follows:

sw = aw−AT
wuw,

sv = av−AT
v uv.

Note that we know the entries of qw(i) and qv(i) are zero if and only if the corresponding slack

variables sv(i) and sw(i) are nonzero, respectively. Then we have qT
wsw = qT

v sv = 0. These equations

are known as the complementarity conditions. Together, all of these equations give system (31).

A.7 Proof of Theorem 18

IP methods apply a damped Newton iteration to find the solution of the relaxed KKT system Fγ = 0,

where

Fγ




sw

sv

qw

qv

uw

uv

x




=




AT
wuw + sw−aw

AT
v uv + sv−av

D(qw)D(sw)1− γ1

D(qv)D(sv)1− γ1

b̃w +BwQ−1/2Gd−Mwuw−Awqw

b̃v−BvR−1/2Hd−Mvuv−Avqv

GTQ−T/2BT
wuw−HTR−T/2BT

v ūv




.

This entails solving the system

F
(1)

γ




sw

sv

qw

qv

uw

uv

x







∆sw

∆sv

∆qw

∆qv

∆uw

∆uv

∆x




=−Fγ




sw

sv

qw

qv

uw

uv

x




, (36)

where the derivative matrix F
(1)

γ is given by




I 0 0 0 (Aw)
T 0 0

0 I 0 0 0 (Av)
T 0

D(qw) 0 D(sw) 0 0 0 0

0 D(qv) 0 D(sv) 0 0 0

0 0 −Aw 0 −Mw 0 BwQ−1/2G

0 0 0 −Av 0 −Mv −BvR−1/2H

0 0 0 0 GTQ−T/2BT
w −HTR−T/2BT

v 0




. (37)
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We now show the row operations necessary to reduce the matrix F
(1)

γ in (37) to upper block trian-

gular form. After each operation, we show only the row that was modified.

row3← row3−D(qw) row1[
0 0 D(sw) 0 −D(qw)A

T
w 0 0

]

row4← row4−D(qv) row2[
0 0 0 D(sv) 0 −D(qv)A

T
v 0

]

row5← row5 +AwD(sw)
−1 row3[

0 0 0 0 −Tw 0 BwQ−1/2G
]

row6← row6 +AvD(sv)
−1 row4[

0 0 0 0 0 −Tv −BvR−1/2H
]
.

In the above expressions,

Tw := Mw +AwD(sw)
−1D(qw)A

T
w,

Tv := Mv +AvD(sv)
−1D(qv)A

T
v ,

(38)

where D(sw)
−1D(qw) and D(sv)

−1D(qv) are always full-rank diagonal matrices, since the vectors

sw,qw,sv,qv. Matrices Tw and Tv are invertible as long as the PLQ densities for w and v satisfy (25).

Remark 19 (block diagonal structure of T in i.d. case) Suppose that y is a random vector, y =
vec({yk}), where each yi is itself a random vector in R

m(i), from some PLQ density

p(yi) ∝ exp[−c2ρ(Ui,Mi,0, I; ·)], and all yi are independent. Let Ui = {u : AT
i u ≤ ai}. Then the

matrix Tρ is given by Tρ = M +ADAT where M = diag[M1, · · · ,MN ], A = diag[A1, · · · ,AN ], D =
diag[D1, · · · ,DN ], and {Di} are diagonal with positive entries. Moreover, Tρ is block diagonal, with

ith diagonal block given by Mi +AiDiA
T
i .

From Remark 19, the matrices Tw and Tv in (38) are block diagonal provided that {wk} and {vk} are

independent vectors from any PLQ densities.

We now finish the reduction of F
(1)

γ to upper block triangular form:

row7← row7 +
(

GTQ−T/2BT
wT−1

w

)
row5−

(
HTR−T/2BT

v T−1
v

)
row6




I 0 0 0 (Aw)
T 0 0

0 I 0 0 0 (Av)
T 0

0 0 Sw 0 −Qw(Aw)
T 0 0

0 0 0 Sv 0 −Qv(Av)
T 0

0 0 0 0 −Tw 0 BwQ−1/2G

0 0 0 0 0 −Tv −BvR−1/2H

0 0 0 0 0 0 Ω




where

Ω = ΩG +ΩH = GTQ−T/2BT
wT−1

w BwQ−1/2G+HTR−T/2BT
v T−1

v BvR−1/2H.

Note that Ω is symmetric positive definite. Note also that Ω is block tridiagonal, since

1. ΩH is block diagonal.
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2. Q−T/2BT
wT−1

w BwQ−1/2 is block diagonal, and G is block bidiagonal, hence ΩG is block tridi-

agonal.

Solving system (36) requires inverting the block diagonal matrices Tv and Tw at each iteration of the

damped Newton’s method, as well as solving an equation of the form Ω∆x = ρ. The matrices Tv

and Tw are block diagonal, with sizes Nn and Nm, assuming m measurements at each time point.

Given that they are invertible (see (25)), these inversions take O(Nn3) and O(Nm3) time. Since Ω

is block tridiagonal, symmetric, and positive definite, Ω∆x = ρ can be solved in O(Nn3) time using

the block tridiagonal algorithm in Bell (2000). The remaining four back solves required to solve

(36) can each be done in O(Nl) time, where we assume that Av(k) ∈ R
n×l and Aw(k) ∈ R

m×l at each

time point k.
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Abstract

The CUR matrix decomposition and the Nyström approximation are two important low-rank matrix

approximation techniques. The Nyström method approximates a symmetric positive semidefinite

matrix in terms of a small number of its columns, while CUR approximates an arbitrary data matrix

by a small number of its columns and rows. Thus, CUR decomposition can be regarded as an

extension of the Nyström approximation.

In this paper we establish a more general error bound for the adaptive column/row sampling

algorithm, based on which we propose more accurate CUR and Nyström algorithms with expected

relative-error bounds. The proposed CUR and Nyström algorithms also have low time complexity

and can avoid maintaining the whole data matrix in RAM. In addition, we give theoretical analysis

for the lower error bounds of the standard Nyström method and the ensemble Nyström method.

The main theoretical results established in this paper are novel, and our analysis makes no special

assumption on the data matrices.

Keywords: large-scale matrix computation, CUR matrix decomposition, the Nyström method,

randomized algorithms, adaptive sampling

1. Introduction

Large-scale matrices emerging from stocks, genomes, web documents, web images and videos

everyday bring new challenges in modern data analysis. Most efforts have been focused on manipu-

lating, understanding and interpreting large-scale data matrices. In many cases, matrix factorization

methods are employed for constructing parsimonious and informative representations to facilitate

computation and interpretation. A principled approach is the truncated singular value decompo-

sition (SVD) which finds the best low-rank approximation of a data matrix. Applications of SVD

such as eigenfaces (Sirovich and Kirby, 1987; Turk and Pentland, 1991) and latent semantic analysis

(Deerwester et al., 1990) have been illustrated to be very successful.

∗. Corresponding author.
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However, using SVD to find basis vectors and low-rank approximations has its limitations.

As pointed out by Berry et al. (2005), it is often useful to find a low-rank matrix approximation

which posses additional structures such as sparsity or nonnegativity. Since SVD or the standard QR

decomposition for sparse matrices does not preserve sparsity in general, when the sparse matrix is

large, computing or even storing such decompositions becomes challenging. Therefore it is useful to

compute a low-rank matrix decomposition which preserves such structural properties of the original

data matrix.

Another limitation of SVD is that the basis vectors resulting from SVD have little concrete

meaning, which makes it very difficult for us to understand and interpret the data in question. An

example of Drineas et al. (2008) and Mahoney and Drineas (2009) has well shown this viewpoint;

that is, the vector [(1/2)age−(1/
√

2)height+(1/2)income], the sum of the significant uncorrelated

features from a data set of people’s features, is not particularly informative. Kuruvilla et al. (2002)

have also claimed: “it would be interesting to try to find basis vectors for all experiment vectors,

using actual experiment vectors and not artificial bases that offer little insight.” Therefore, it is

of great interest to represent a data matrix in terms of a small number of actual columns and/or

actual rows of the matrix. Matrix column selection and the CUR matrix decomposition provide such

techniques.

1.1 Matrix Column Selection

Column selection has been extensively studied in the theoretical computer science (TCS) and nu-

merical linear algebra (NLA) communities. The work in TCS mainly focuses on choosing good

columns by randomized algorithms with provable error bounds (Frieze et al., 2004; Deshpande

et al., 2006; Drineas et al., 2008; Deshpande and Rademacher, 2010; Boutsidis et al., 2011; Gu-

ruswami and Sinop, 2012). The focus in NLA is then on deterministic algorithms, especially the

rank-revealing QR factorizations, that select columns by pivoting rules (Foster, 1986; Chan, 1987;

Stewart, 1999; Bischof and Hansen, 1991; Hong and Pan, 1992; Chandrasekaran and Ipsen, 1994;

Gu and Eisenstat, 1996; Berry et al., 2005). In this paper we focus on randomized algorithms for

column selection.

Given a matrix A ∈ R
m×n, column selection algorithms aim to choose c columns of A to con-

struct a matrix C ∈ R
m×c such that ‖A−CC†A‖ξ achieves the minimum. Here “ξ = 2,” “ξ = F ,”

and “ξ = ∗” respectively represent the matrix spectral norm, the matrix Frobenius norm, and the

matrix nuclear norm, and C† denotes the Moore-Penrose inverse of C. Since there are (n
c) possible

choices of constructing C, selecting the best subset is a hard problem.

In recent years, many polynomial-time approximate algorithms have been proposed. Among

them we are especially interested in those algorithms with multiplicative upper bounds; that is,

there exists a polynomial function f (m,n,k,c) such that with c (≥ k) columns selected from A the

following inequality holds

‖A−CC†A‖ξ ≤ f (m,n,k,c)‖A−Ak‖ξ

with high probability (w.h.p.) or in expectation w.r.t. C. We call f the approximation factor. The

bounds are strong when f = 1+ε for an error parameter ε—they are known as relative-error bounds.

Particularly, the bounds are called constant-factor bounds when f does not depend on m and n (Ma-

honey, 2011). The relative-error bounds and constant-factor bounds of the CUR matrix decomposi-

tion and the Nyström approximation are similarly defined.
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However, the column selection method, also known as the A ≈ CX decomposition in some

applications, has its limitations. For a large sparse matrix A, its submatrix C is sparse, but the

coefficient matrix X ∈ R
c×n is not sparse in general. The CX decomposition suffices when m≫ n,

because X is small in size. However, when m and n are near equal, computing and storing the dense

matrix X in RAM becomes infeasible. In such an occasion the CUR matrix decomposition is a very

useful alternative.

1.2 The CUR Matrix Decomposition

The CUR matrix decomposition problem has been widely discussed in the literature (Goreinov

et al., 1997a,b; Stewart, 1999; Tyrtyshnikov, 2000; Berry et al., 2005; Drineas and Mahoney, 2005;

Mahoney et al., 2008; Bien et al., 2010), and it has been shown to be very useful in high dimensional

data analysis. Particularly, a CUR decomposition algorithm seeks to find a subset of c columns of

A to form a matrix C ∈ R
m×c, a subset of r rows to form a matrix R ∈ R

r×n, and an intersection

matrix U ∈Rc×r such that ‖A−CUR‖ξ is small. Accordingly, we use Ã = CUR to approximate A.

Drineas et al. (2006) proposed a CUR algorithm with additive-error bound. Later on, Drineas

et al. (2008) devised a randomized CUR algorithm which has relative-error bound w.h.p. if suffi-

ciently many columns and rows are sampled. Mackey et al. (2011) established a divide-and-conquer

method which solves the CUR problem in parallel. The CUR algorithms guaranteed by relative-

error bounds are of great interest.

Unfortunately, the existing CUR algorithms usually require a large number of columns and rows

to be chosen. For example, for an m×n matrix A and a target rank k≪min{m,n}, the subspace sam-

pling algorithm (Drineas et al., 2008)—a classical CUR algorithm—requires O(kε−2 logk) columns

and O(kε−4 log2 k) rows to achieve relative-error bound w.h.p. The subspace sampling algorithm

selects columns/rows according to the statistical leverage scores, so the computational cost of this

algorithm is at least equal to the cost of the truncated SVD of A, that is, O(mnk) in general. How-

ever, maintaining a large scale matrix in RAM is often impractical, not to mention performing SVD.

Recently, Drineas et al. (2012) devised fast approximation to statistical leverage scores which can

be used to speedup the subspace sampling algorithm heuristically—yet no theoretical results have

been reported that the leverage scores approximation can give provably efficient subspace sampling

algorithm.

The CUR matrix decomposition problem has a close connection with the column selection prob-

lem. Especially, most CUR algorithms such as those of Drineas and Kannan (2003); Drineas et al.

(2006, 2008) work in a two-stage manner where the first stage is a standard column selection pro-

cedure. Despite their strong resemblance, CUR is a harder problem than column selection because

“one can get good columns or rows separately” does not mean that one can get good columns

and rows together. If the second stage is naı̈vely solved by a column selection algorithm on AT ,

then the approximation factor will trivially be
√

2 f 1 (Mahoney and Drineas, 2009). Thus, more

sophisticated error analysis techniques for the second stage are indispensable in order to achieve

relative-error bound.

1. It is because ‖A−CUR‖2
F = ‖A−CC†A+CC†A−CC†AR†R‖2

F = ‖(I−CC†)A‖2
F + ‖CC†(A−AR†R)‖2

F ≤
‖A−CC†A‖2

F +‖A−AR†R‖2
F ≤ 2 f 2‖A−Ak‖2

F , where the second equality follows from (I−CC†)T CC† = 0.
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1.3 The Nyström Methods

The Nyström approximation is closely related to CUR, and it can potentially benefit from the ad-

vances in CUR techniques. Different from CUR, the Nyström methods are used for approximating

symmetric positive semidefinite (SPSD) matrices. The methods approximate an SPSD matrix only

using a subset of its columns, so they can alleviate computation and storage costs when the SPSD

matrix in question is large in size. In fact, the Nyström methods have been extensively used in the

machine learning community. For example, they have been applied to Gaussian processes (Williams

and Seeger, 2001), kernel SVMs (Zhang et al., 2008), spectral clustering (Fowlkes et al., 2004), ker-

nel PCA (Talwalkar et al., 2008; Zhang et al., 2008; Zhang and Kwok, 2010), etc.

The Nyström methods approximate any SPSD matrix in terms of a subset of its columns. Specif-

ically, given an m×m SPSD matrix A, they require sampling c (< m) columns of A to construct an

m× c matrix C. Since there exists an m×m permutation matrix Π such that ΠC consists of the first

c columns of ΠAΠT , we always assume that C consists of the first c columns of A without loss of

generality. We partition A and C as

A =

[
W AT

21

A21 A22

]

and C =

[
W

A21

]

,

where W and A21 are of sizes c× c and (m−c)× c, respectively. There are three models which are

defined as follows.

• The Standard Nyström Method. The standard Nyström approximation to A is

Ãnys
c = CW†CT =

[
W AT

21

A21 A21W†AT
21

]

. (1)

Here W† is called the intersection matrix. The matrix (Wk)
†, where k ≤ c and Wk is the best

k-rank approximation to W, is also used as an intersection matrix for constructing approxi-

mations with even lower rank. But using W† results in a tighter approximation than using

(Wk)
† usually.

• The Ensemble Nyström Method (Kumar et al., 2009). It selects a collection of t samples,

each sample C(i), (i = 1, · · · , t), containing c columns of A. Then the ensemble method com-

bines the samples to construct an approximation in the form of

Ãens
t,c =

t

∑
i=1

µ(i)C(i)W(i)†
C(i)T

, (2)

where µ(i) are the weights of the samples. Typically, the ensemble Nyström method seeks

to find out the weights by minimizing ‖A− Ãens
t,c ‖F or ‖A− Ãens

t,c ‖2. A simple but effective

strategy is to set the weights as µ(1) = · · ·= µ(t) = 1
t
.

• The Modified Nyström Method (proposed in this paper). It is defined as

Ãimp
c = C

(
C†A(C†)T

)
CT .

This model is not strictly the Nyström method because it uses a quite different intersection

matrix C†A(C†)T . It costs O(mc2) time to compute the Moore-Penrose inverse C† and m2c
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flops to compute matrix multiplications. The matrix multiplications can be executed very

efficiently in multi-processor environment, so ideally computing the intersection matrix costs

time only linear in m. This model is more accurate (which will be justified in Section 4.3

and 4.4) but more costly than the conventional ones, so there is a trade-off between time and

accuracy when deciding which model to use.

Here and later, we call those which use intersection matrix W† or (Wk)
† the conventional Nyström

methods, including the standard Nyström and the ensemble Nyström.

To generate effective approximations, much work has been built on the upper error bounds of the

sampling techniques for the Nyström method. Most of the work, for example, Drineas and Mahoney

(2005), Li et al. (2010), Kumar et al. (2009), Jin et al. (2011), and Kumar et al. (2012), studied the

additive-error bound. With assumptions on matrix coherence, better additive-error bounds were ob-

tained by Talwalkar and Rostamizadeh (2010), Jin et al. (2011), and Mackey et al. (2011). However,

as stated by Mahoney (2011), additive-error bounds are less compelling than relative-error bounds.

In one recent work, Gittens and Mahoney (2013) provided a relative-error bound for the first time,

where the bound is in nuclear norm.

However, the error bounds of the previous Nyström methods are much weaker than those of

the existing CUR algorithms, especially the relative-error bounds in which we are more interested

(Mahoney, 2011). Actually, as will be proved in this paper, the lower error bounds of the standard

Nyström method and the ensemble Nyström method are even much worse than the upper bounds

of some existing CUR algorithms. This motivates us to improve the Nyström method by borrowing

the techniques in CUR matrix decomposition.

1.4 Contributions and Outline

The main technical contribution of this work is the adaptive sampling bound in Theorem 5, which

is an extension of Theorem 2.1 of Deshpande et al. (2006). Theorem 2.1 of Deshpande et al. (2006)

bounds the error incurred by projection onto column or row space, while our Theorem 5 bounds the

error incurred by the projection simultaneously onto column space and row space. We also show

that Theorem 2.1 of Deshpande et al. (2006) can be regarded as a special case of Theorem 5.

More importantly, our adaptive sampling bound provides an approach for improving CUR and

the Nyström approximation: no matter which relative-error column selection algorithm is employed,

Theorem 5 ensures relative-error bounds for CUR and the Nyström approximation. We present the

results in Corollary 7.

Based on the adaptive sampling bound in Theorem 5 and its corollary 7, we provide a concrete

CUR algorithm which beats the best existing algorithm—the subspace sampling algorithm—both

theoretically and empirically. The CUR algorithm is described in Algorithm 2 and analyzed in

Theorem 8. In Table 1 we present a comparison between our proposed CUR algorithm and the

subspace sampling algorithm. As we see, our algorithm requires much fewer columns and rows

to achieve relative-error bound. Our method is more scalable for it works on only a few columns

or rows of the data matrix in question; in contrast, the subspace sampling algorithm maintains the

whole data matrix in RAM to implement SVD.

Another important application of the adaptive sampling bound is to yield an algorithm for the

modified Nyström method. The algorithm has a strong relative-error upper bound: for a target rank

k, by sampling 2k
ε2

(
1+o(1)

)
columns it achieves relative-error bound in expectation. The results are

shown in Theorem 10.
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#column (c) #row (r) time space

Adaptive 2k
ε

(
1+o(1)

)
c
ε

(
1+ ε

)
Roughly O

(
nk2ε−4

)
+TMultiply

(
mnkε−1

)
O
(

max{mc,nr}
)

Subspace O

(
k logk

ε2

)

O

(
c logc

ε2

)

O
(
mnk

)
O(mn)

Table 1: Comparisons between our adaptive sampling based CUR algorithm and the best existing

algorithm—the subspace sampling algorithm of Drineas et al. (2008).

‖A−Ã‖F

maxi, j |ai j|
‖A−Ã‖2

maxi, j |ai j|
‖A−Ã‖∗

maxi, j |ai j|
‖A−Ã‖F

‖A−Ak‖F

‖A−Ã‖2

‖A−Ak‖2

‖A−Ã‖∗
‖A−Ak‖∗

Standard Ω
(

m
√

k
c

)
Ω
(

m
c

)
Ω
(
m− c

)
Ω
(√

1+ mk
c2

)

Ω
(

m
c

)
Ω
(
1+ k

c

)

Ensemble Ω
(

m
√

k
c

)
– Ω

(
m− c

)
Ω
(√

1+ mk
c2

)

– Ω
(
1+ k

c

)

Table 2: Lower bounds of the standard Nyström method and the ensemble Nyström method. The

blanks indicate the lower bounds are unknown to us. Here m denotes the column/row

number of the SPSD matrix, c denotes the number of selected columns, and k denotes the

target rank.

Finally, we establish a collection of lower error bounds of the standard Nyström and the ensem-

ble Nyström that use W† as the intersection matrix. We show the lower bounds in Theorem 12 and

Table 3; here Table 2 briefly summarizes the lower bounds in Table 3. From the table we can see

that the upper error bound of our adaptive sampling algorithm for the modified Nyström method is

even better than the lower bounds of the conventional Nyström methods.2

The remainder of the paper is organized as follows. In Section 2 we give the notation that will be

used in this paper. In Section 3 we survey the previous work on the randomized column selection,

CUR matrix decomposition, and Nyström approximation. In Section 4 we present our theoretical

results and corresponding algorithms. In Section 5 we empirically evaluate our proposed CUR and

Nyström algorithms. Finally, we conclude our work in Section 6. All proofs are deferred to the

appendices.

2. Notation

First of all, we present the notation and notion that are used here and later. We let Im denote the

m×m identity matrix, 1m denote the m×1 vector of ones, and 0 denote a zero vector or matrix with

appropriate size. For a matrix A = [ai j] ∈Rm×n, we let a(i) be its i-th row, a j be its j-th column, and

Ai: j be a submatrix consisting of its i to j-th columns (i≤ j).

Let ρ = rank(A)≤min{m,n} and k ≤ ρ. The singular value decomposition (SVD) of A can be

written as

A =
ρ

∑
i=1

σA,iuA,iv
T
A,i = UAΣAVT

A =
[

UA,k UA,k⊥
]
[

ΣA,k 0

0 ΣA,k⊥

][
VT

A,k

VT
A,k⊥

]

,

2. This can be valid because the lower bounds in Table 2 do not hold when the intersection matrix is not W†.
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where UA,k (m×k), ΣA,k (k×k), and VA,k (n×k) correspond to the top k singular values. We denote

Ak = UA,kΣA,kVT
A,k which is the best (or closest) rank-k approximation to A. We also use σi(A) =

σA,i to denote the i-th largest singular value. When A is SPSD, the SVD is identical to the eigenvalue

decomposition, in which case we have UA = VA.

We define the matrix norms as follows. Let ‖A‖1 =∑i, j |ai j| be the ℓ1-norm, ‖A‖F =(∑i, j a2
i j)

1/2 =

(∑i σ2
A,i)

1/2 be the Frobenius norm, ‖A‖2 = maxx∈Rn,‖x‖2=1 ‖Ax‖2 = σA,1 be the spectral norm, and

‖A‖∗ = ∑i σA,i be the nuclear norm. We always use ‖ · ‖ξ to represent ‖ · ‖2, ‖ · ‖F , or ‖ · ‖∗.
Based on SVD, the statistical leverage scores of the columns of A relative to the best rank-k

approximation to A is defined as

ℓ
[k]
j =

∥
∥v

( j)
A,k

∥
∥2

2
, j = 1, · · · ,n. (3)

We have that ∑n
j=1 ℓ

[k]
j = k. The leverage scores of the rows of A are defined according to UA,k. The

leverage scores play an important role in low-rank matrix approximation. Informally speaking, the

columns (or rows) with high leverage scores have greater influence in rank-k approximation than

those with low leverage scores.

Additionally, let A† = VA,ρΣ−1
A,ρUT

A,ρ be the Moore-Penrose inverse of A (Ben-Israel and Gre-

ville, 2003). When A is nonsingular, the Moore-Penrose inverse is identical to the matrix inverse.

Given matrices A ∈ R
m×n, X ∈ R

m×p, and Y ∈ R
q×n, XX†A = UXUT

XA ∈ R
m×n is the projection

of A onto the column space of X, and AY†Y = AVYVT
Y ∈ R

m×n is the projection of A onto the row

space of Y.

Finally, we discuss the computational costs of the matrix operations mentioned above. For an

m×n general matrix A (assume m≥ n), it takes O(mn2) flops to compute the full SVD and O(mnk)
flops to compute the truncated SVD of rank k (< n). The computation of A† also takes O(mn2)
flops. It is worth mentioning that, although multiplying an m×n matrix by an n×p matrix runs

in mnp flops, it can be easily performed in parallel (Halko et al., 2011). In contrast, implementing

operations like SVD and QR decomposition in parallel is much more difficult. So we denote the time

complexity of such a matrix multiplication by TMultiply(mnp), which can be tremendously smaller

than O(mnp) in practice.

3. Previous Work

In Section 3.1 we present an adaptive sampling algorithm and its relative-error bound established by

Deshpande et al. (2006). In Section 3.2 we highlight the near-optimal column selection algorithm

of Boutsidis et al. (2011) which we will use in our CUR and Nyström algorithms for column/row

sampling. In Section 3.3 we introduce two important CUR algorithms. In Section 3.4 we introduce

the only known relative-error algorithm for the standard Nyström method.

3.1 The Adaptive Sampling Algorithm

Adaptive sampling is an effective and efficient column sampling algorithm for reducing the error

incurred by the first round of sampling. After one has selected a small subset of columns (denoted

C1), an adaptive sampling method is used to further select a proportion of columns according to

the residual of the first round, that is, A−C1C
†
1A. The approximation error is guaranteed to be

decreasing by a factor after the adaptive sampling (Deshpande et al., 2006). We show the result of

Deshpande et al. (2006) in the following lemma.
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Lemma 1 (The Adaptive Sampling Algorithm) (Deshpande et al., 2006) Given a matrix A ∈
R

m×n, we let C1 ∈ R
m×c1 consist of c1 columns of A, and define the residual B = A−C1C

†
1A.

Additionally, for i = 1, · · · ,n, we define

pi = ‖bi‖2
2/‖B‖2

F .

We further sample c2 columns i.i.d. from A, in each trial of which the i-th column is chosen with

probability pi. Let C2 ∈ R
m×c2 contain the c2 sampled columns and let C = [C1,C2] ∈ R

m×(c1+c2).

Then, for any integer k > 0, the following inequality holds:

E‖A−CC†A‖2
F ≤ ‖A−Ak‖2

F +
k

c2

‖A−C1C
†
1A‖2

F ,

where the expectation is taken w.r.t. C2.

We will establish in Theorem 5 a more general and more useful error bound for this adaptive

sampling algorithm. It can be shown that Lemma 1 is a special case of Theorem 5.

3.2 The Near-Optimal Column Selection Algorithm

Boutsidis et al. (2011) proposed a relative-error column selection algorithm which requires only

c = 2kε−1(1+o(1)) columns get selected. Boutsidis et al. (2011) also proved the lower bound of

the column selection problem which shows that no column selection algorithm can achieve relative-

error bound by selecting less than c= kε−1 columns. Thus this algorithm is near optimal. Though an

optimal algorithm recently proposed by Guruswami and Sinop (2012) attains the the lower bound,

this algorithm is quite inefficient in comparison with the near-optimal algorithm. So we prefer to

use the near-optimal algorithm in our CUR and Nyström algorithms for column/row sampling.

The near-optimal algorithm consists of three steps: the approximate SVD via random projection

(Boutsidis et al., 2011; Halko et al., 2011), the dual set sparsification algorithm (Boutsidis et al.,

2011), and the adaptive sampling algorithm (Deshpande et al., 2006). We describe the near-optimal

algorithm in Algorithm 1 and present the theoretical analysis in Lemma 2.

Lemma 2 (The Near-Optimal Column Selection Algorithm) Given a matrix A ∈ R
m×n of rank

ρ, a target rank k (2≤ k < ρ), and 0 < ε < 1. Algorithm 1 selects

c =
2k

ε

(

1+o(1)
)

columns of A to form a matrix C ∈ R
m×c, then the following inequality holds:

E‖A−CC†A‖2
F ≤ (1+ ε)‖A−Ak‖2

F ,

where the expectation is taken w.r.t. C. Furthermore, the matrix C can be obtained in O
(
mk2ε−4/3+

nk3ε−2/3
)
+TMultiply

(
mnkε−2/3

)
time.

This algorithm has the merits of low time complexity and space complexity. None of the three

steps—the randomized SVD, the dual set sparsification algorithm, and the adaptive sampling—

requires loading the whole of A into RAM. All of the three steps can work on only a small subset

of the columns of A. Though a relative-error algorithm recently proposed by Guruswami and Sinop

(2012) requires even fewer columns, it is less efficient than the near-optimal algorithm.
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Algorithm 1 The Near-Optimal Column Selection Algorithm of Boutsidis et al. (2011).

1: Input: a real matrix A ∈ R
m×n, target rank k, error parameter ε ∈ (0,1], target column number c =

2k
ε

(
1+o(1)

)
;

2: Compute approximate truncated SVD via random projection such that Ak ≈ ŨkΣ̃kṼk;

3: Construct U← columns of (A− ŨkΣ̃kṼk); V ← columns of ṼT
k ;

4: Compute s← Dual Set Spectral-Frobenius Sparsification Algorithm (U, V , c−2k/ε);

5: Construct C1← ADiag(s), and then delete the all-zero columns;

6: Residual matrix D← A−C1C
†
1A;

7: Compute sampling probabilities: pi = ‖di‖2
2/‖D‖2

F , i = 1, · · · ,n;

8: Sampling c2 = 2k/ε columns from A with probability {p1, · · · , pn} to construct C2;

9: return C = [C1,C2].

3.3 Previous Work in CUR Matrix Decomposition

We introduce in this section two highly effective CUR algorithms: one is deterministic and the other

is randomized.

3.3.1 THE SPARSE COLUMN-ROW APPROXIMATION (SCRA)

Stewart (1999) proposed a deterministic CUR algorithm and called it the sparse column-row ap-

proximation (SCRA). SCRA is based on the truncated pivoted QR decomposition via a quasi Gram-

Schmidt algorithm. Given a matrix A ∈ R
m×n, the truncated pivoted QR decomposition procedure

deterministically finds a set of columns C ∈ R
m×c by column pivoting, whose span approximates

the column space of A, and computes an upper triangular matrix TC ∈ R
c×c that orthogonalizes

those columns. SCRA runs the same procedure again on AT to select a set of rows R ∈ R
r×n and

computes the corresponding upper triangular matrix TR ∈ R
r×r. Let C = QCTC and RT = QRTR

denote the resulting truncated pivoted QR decomposition. The intersection matrix is computed by

U = (TT
CTC)

−1CT ART (TT
RTR)

−1. According to our experiments, this algorithm is quite effective

but very time expensive, especially when c and r are large. Moreover, this algorithm does not have

data-independent error bound.

3.3.2 THE SUBSPACE SAMPLING CUR ALGORITHM

Drineas et al. (2008) proposed a two-stage randomized CUR algorithm which has a relative-error

bound with high probability (w.h.p.). In the first stage the algorithm samples c columns of A to

construct C, and in the second stage it samples r rows from A and C simultaneously to construct R

and W and let U = W†. The sampling probabilities in the two stages are proportional to the leverage

scores of A and C, respectively. That is, in the first stage the sampling probabilities are proportional

to the squared ℓ2-norm of the rows of VA,k; in the second stage the sampling probabilities are

proportional to the squared ℓ2-norm of the rows of UC. That is why it is called the subspace sampling

algorithm. Here we show the main results of the subspace sampling algorithm in the following

lemma.

Lemma 3 (Subspace Sampling for CUR ) Given an m×n matrix A and a target rank k≪min{m,n},
the subspace sampling algorithm selects c = O(kε−2 logk log(1/δ)) columns and r =
O
(
cε−2 logc log(1/δ)

)
rows without replacement. Then

‖A−CUR‖F =
∥
∥A−CW†R

∥
∥

F
≤ (1+ ε)‖A−Ak‖F ,
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holds with probability at least 1− δ, where W contains the rows of C with scaling. The running

time is dominated by the truncated SVD of A, that is, O(mnk).

3.4 Previous Work in the Nyström Approximation

In a very recent work, Gittens and Mahoney (2013) established a framework for analyzing errors

incurred by the standard Nyström method. Especially, the authors provided the first and the only

known relative-error (in nuclear norm) algorithm for the standard Nyström method. The algorithm

is described as follows and, its bound is shown in Lemma 4.

Like the CUR algorithm in Section 3.3.2, the Nyström algorithm also samples columns by the

subspace sampling of Drineas et al. (2008). Each column is selected with probability p j =
1
k
ℓ
[k]
j

with replacement, where ℓ
[k]
1 , · · · , ℓ[k]m are leverage scores defined in (3). After column sampling, C

and W are obtained by scaling the selected columns, that is,

C = A(SD) and W = (SD)T A(SD).

Here S ∈ R
m×c is a column selection matrix that si j = 1 if the i-th column of A is the j-th column

selected, and D ∈ R
c×c is a diagonal scaling matrix satisfying d j j =

1√
cpi

if si j = 1.

Lemma 4 (Subspace Sampling for the Nyström Approximation) Given an m×m SPSD matrix

A and a target rank k≪ m, the subspace sampling algorithm selects

c = 3200ε−1k log(16k/δ)

columns without replacement and constructs C and W by scaling the selected columns. Then the

inequality
∥
∥A−CW†CT

∥
∥
∗ ≤ (1+ ε)‖A−Ak‖∗,

holds with probability at least 0.6−δ.

4. Main Results

We now present our main results. We establish a new error bound for the adaptive sampling al-

gorithm in Section 4.1. We apply adaptive sampling to the CUR and modified Nyström problems,

obtaining effective and efficient CUR and Nyström algorithms in Section 4.2 and Section 4.3 respec-

tively. In Section 4.4 we study lower bounds of the conventional Nyström methods to demonstrate

the advantages of our approach. Finally, in Section 4.5 we show that our expected bounds can

extend to with high probability (w.h.p.) bounds.

4.1 Adaptive Sampling

The relative-error adaptive sampling algorithm is originally established in Theorem 2.1 of Desh-

pande et al. (2006) (see also Lemma 1 in Section 3.1). The algorithm is based on the following idea:

after selecting a proportion of columns from A to form C1 by an arbitrary algorithm, the algorithm

randomly samples additional c2 columns according to the residual A−C1C
†
1A. Here we prove a

new and more general error bound for the same adaptive sampling algorithm.
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Theorem 5 (The Adaptive Sampling Algorithm) Given a matrix A ∈ R
m×n and a matrix C ∈

R
m×c such that rank(C) = rank(CC†A) = ρ (ρ≤ c≤ n). We let R1 ∈Rr1×n consist of r1 rows of A,

and define the residual B = A−AR
†
1R1. Additionally, for i = 1, · · · ,m, we define

pi = ‖b(i)‖2
2/‖B‖2

F .

We further sample r2 rows i.i.d. from A, in each trial of which the i-th row is chosen with probability

pi. Let R2 ∈ R
r2×n contain the r2 sampled rows and let R = [RT

1 ,R
T
2 ]

T ∈ R
(r1+r2)×n. Then we have

E‖A−CC†AR†R‖2
F ≤ ‖A−CC†A‖2

F +
ρ

r2

‖A−AR
†
1R1‖2

F ,

where the expectation is taken w.r.t. R2.

Remark 6 This theorem shows a more general bound for adaptive sampling than the original one in

Theorem 2.1 of Deshpande et al. (2006). The original one bounds the error incurred by projection

onto the column space of C, while Theorem 5 bounds the error incurred by projection onto the

column space of C and row space of R simultaneously—such situation rises in problems such as

CUR and the Nyström approximation. It is worth pointing out that Theorem 2.1 of Deshpande et al.

(2006) is a direct corollary of this theorem when C = Ak (i.e., c = n, ρ = k, and CC†A = Ak).

As discussed in Section 1.2, selecting good columns or rows separately does not ensure good

columns and rows together for CUR and the Nyström approximation. Theorem 5 is thereby im-

portant for it guarantees the combined effect column and row selection. Guaranteed by Theorem 5,

any column selection algorithm with relative-error bound can be applied to CUR and the Nyström

approximation. We show the result in the following corollary.

Corollary 7 (Adaptive Sampling for CUR and the Nyström Approximation) Given a matrix A∈
R

m×n, a target rank k (≪m,n), and a column selection algorithm Acol which achieves relative-error

upper bound by selecting c≥C(k,ε) columns. Then we have the following results for CUR and the

Nyström approximation.

(1) By selecting c ≥C(k,ε) columns of A to construct C and r1 = c rows to construct R1, both

using algorithm Acol, followed by selecting additional r2 = c/ε rows using the adaptive sam-

pling algorithm to construct R2, the CUR matrix decomposition achieves relative-error upper

bound in expectation:

E
∥
∥A−CUR

∥
∥

F
≤ (1+ ε)

∥
∥A−Ak

∥
∥

F
,

where R =
[
RT

1 ,R
T
2

]T
and U = C†AR†.

(2) Suppose A is an m×m symmetric matrix. By selecting c1 ≥ C(k,ε) columns of A to con-

struct C1 using Acol and selecting c2 = c1/ε columns of A to construct C2 using the adaptive

sampling algorithm, the modified Nyström method achieves relative-error upper bound in

expectation:

E
∥
∥A−CUCT

∥
∥

F
≤ (1+ ε)

∥
∥A−Ak

∥
∥

F
,

where C =
[
C1,C2

]
and U = C†A

(
C†

)T
.

Based on Corollary 7, we attempt to solve CUR and the Nyström by adaptive sampling algo-

rithms. We present concrete algorithms in Section 4.2 and 4.3.
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Algorithm 2 Adaptive Sampling for CUR.

1: Input: a real matrix A ∈ R
m×n, target rank k, ε ∈ (0,1], target column number c = 2k

ε

(
1+o(1)

)
, target

row number r = c
ε (1+ ε);

2: Select c = 2k
ε

(
1+o(1)

)
columns of A to construct C ∈ R

m×c using Algorithm 1;

3: Select r1 = c rows of A to construct R1 ∈ R
r1×n using Algorithm 1;

4: Adaptively sample r2 = c/ε rows from A according to the residual A−AR
†
1R1;

5: return C, R = [RT
1 ,R

T
2 ]

T , and U = C†AR†.

4.2 Adaptive Sampling for CUR Matrix Decomposition

Guaranteed by the novel adaptive sampling bound in Theorem 5, we combine the near-optimal col-

umn selection algorithm of Boutsidis et al. (2011) and the adaptive sampling algorithm for solving

the CUR problem, giving rise to an algorithm with a much tighter theoretical bound than exist-

ing algorithms. The algorithm is described in Algorithm 2 and its analysis is given in Theorem 8.

Theorem 8 follows immediately from Lemma 2 and Corollary 7.

Theorem 8 (Adaptive Sampling for CUR) Given a matrix A ∈ R
m×n and a positive integer k≪

min{m,n}, the CUR algorithm described in Algorithm 2 randomly selects c = 2k
ε (1+o(1)) columns

of A to construct C ∈Rm×c, and then selects r = c
ε(1+ε) rows of A to construct R ∈Rr×n. Then we

have

E‖A−CUR‖F = E‖A−C(C†AR†)R‖F ≤ (1+ ε)‖A−Ak‖F .

The algorithm costs time O
(
(m+ n)k3ε−2/3 +mk2ε−2 + nk2ε−4

)
+ TMultiply

(
mnkε−1

)
to compute

matrices C, U and R.

When the algorithm is executed in a single-core processor, the time complexity of the CUR al-

gorithm is linear in mn; when executed in multi-processor environment where matrix multiplication

is performed in parallel, ideally the algorithm costs time only linear in m+n. Another advantage of

this algorithm is that it avoids loading the whole m×n data matrix A into RAM. Neither the near-

optimal column selection algorithm nor the adaptive sampling algorithm requires loading the whole

of A into RAM. The most space-expensive operation throughout this algorithm is computation of

the Moore-Penrose inverses of C and R, which requires maintaining an m×c matrix or an r×n ma-

trix in RAM. To compute the intersection matrix C†AR†, the algorithm needs to visit each entry

of A, but it is not RAM expensive because the multiplication can be done by computing C†a j for

j = 1, · · · ,n separately. The above analysis is also valid for the Nyström algorithm in Theorem 10.

Remark 9 If we replace the near-optimal column selection algorithm in Theorem 8 by the optimal

algorithm of Guruswami and Sinop (2012), it suffices to select c = kε−1(1+o(1)) columns and r =
cε−1(1+ε) rows totally. But the optimal algorithm is less efficient than the near-optimal algorithm.

4.3 Adaptive Sampling for the Nyström Approximation

Theorem 5 provides an approach for bounding the approximation errors incurred by projection

simultaneously onto column space and row space. Thus this approach can be applied to solve the

modified Nyström method. The following theorem follows directly from Lemma 2 and Corollary 7.
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‖A−Ã‖F
maxi, j |ai j |

‖A−Ã‖2
maxi, j |ai j |

‖A−Ã‖∗
maxi, j |ai j |

Standard 0.99

√

m− c− k+ k
(

m+99k
c+99k

)2 0.99(m+99)
c+99

0.99(m− c)
(
1+ k

c+99k

)

Ensemble 0.99

√

(m−2c+ c
t
− k)+ k

(m−c+ c
t +99k

c+99k

)2
– 0.99(m− c)

(
1+ k

c+99k

)

‖A−Ã‖F
‖A−Ak‖F

‖A−Ã‖2
‖A−Ak‖2

‖A−Ã‖∗
‖A−Ak‖∗

Standard
√

1+ m2k−c3

c2(m−k)
m
c

m−c
m−k

(
1+ k

c

)

Ensemble

√

m−2c+c/t−k

m−k

(

1+ k(m−2c+c/t)
c2

)

– m−c
m−k

(
1+ k

c

)

Table 3: Lower bounds of the standard Nyström method and the ensemble Nyström method. The

blanks indicate the lower bounds are unknown to us. Here m denotes the column/row

number of the SPSD matrix, c denotes the number of selected columns, and k denotes the

target rank.

Theorem 10 (Adaptive Sampling for the Modified Nyström Method) Given a symmetric matrix

A ∈ R
m×m and a target rank k, with c1 = 2k

ε

(
1 + o(1)

)
columns sampled by Algorithm 1 and

c2 = c1/ε columns sampled by the adaptive sampling algorithm, that is, with totally c= 2k
ε2

(
1+o(1)

)

columns being sampled, the approximation error incurred by the modified Nyström method is upper

bounded by

E
∥
∥A−CUCT

∥
∥

F
≤ E

∥
∥
∥A−C

(

C†A(C†)T
)

CT
∥
∥
∥

F
≤ (1+ ε)‖A−Ak‖F .

The algorithm costs time O
(
mk2ε−4 +mk3ε−2/3

)
+TMultiply

(
m2kε−2

)
in computing C and U.

Remark 11 The error bound in Theorem 10 is the only Frobenius norm relative-error bound for the

Nyström approximation at present, and it is also a constant-factor bound. If one uses the optimal

column selection algorithm of Guruswami and Sinop (2012), which is less efficient, the error bound

is further improved: only c = k
ε2 (1+o(1)) columns are required. Furthermore, the theorem requires

the matrix A to be symmetric, which is milder than the SPSD requirement made in the previous work.

This is yet the strongest result for the Nyström approximation problem—much stronger than

the best possible algorithms for the conventional Nyström method. We will illustrate this point by

revealing the lower error bounds of the conventional Nyström methods.

4.4 Lower Error Bounds of the Conventional Nyström Methods

We now demonstrate to what an extent our modified Nyström method is superior over the conven-

tional Nyström methods (namely the standard Nyström defined in (1) and the ensemble Nyström

in (2)) by showing the lower error bounds of the conventional Nyström methods. The conventional

Nyström methods work no better than the lower error bounds unless additional assumptions are

made on the original matrix A. We show in Theorem 12 the lower error bounds of the conventional

Nyström methods; the results are briefly summarized previously in Table 2.

To derive lower error bounds, we construct two adversarial cases for the Nyström methods. To

derive the spectral norm lower bounds, we use an SPSD matrix B whose diagonal entries equal to 1
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and off-diagonal entries equal to α ∈ [0,1). For the Frobenius norm and nuclear norm bounds, we

construct an m×m block diagonal matrix A which has k diagonal blocks, each of which is m
k
× m

k
in

size and constructed in the same way as B. For the lower bounds on
‖A−Ã‖ξ

maxi, j |ai j| , α is set to be constant;

for the bounds on
‖A−Ã‖ξ

‖A−Ak‖ξ
, α is set to be α→ 1. The detailed proof of Theorem 12 is deferred to

Appendix C.

Theorem 12 (Lower Error Bounds of the Nyström Methods) Assume we are given an SPSD ma-

trix A ∈R
m×m and a target rank k. Let Ak denote the best rank-k approximation to A. Let Ã denote

either the rank-c approximation to A constructed by the standard Nyström method in (1), or the

approximation constructed by the ensemble Nyström method in (2) with t non-overlapping samples,

each of which contains c columns of A. Then there exists an SPSD matrix such that for any sampling

strategy the approximation errors of the conventional Nyström methods, that is, ‖A− Ã‖ξ, (ξ = 2,

F , or “∗”), are lower bounded by some factors which are shown in Table 3.

Remark 13 The lower bounds in Table 3 (or Table 2) show the conventional Nyström methods can

be sometimes very ineffective. The spectral norm and Frobenius norm bounds even depend on m, so

such bounds are not constant-factor bounds. Notice that the lower error bounds do not meet if W†

is replaced by C†A(C†)T , so our modified Nyström method is not limited by such lower bounds.

4.5 Discussions of the Expected Relative-Error Bounds

The upper error bounds established in this paper all hold in expectation. Now we show that the

expected error bounds immediately extend to w.h.p. bounds using Markov’s inequality. Let the

random variable X = ‖A− Ã‖F/‖A−Ak‖F denote the error ratio, where

Ã = CUR or CUCT .

Then we have E(X)≤ 1+ ε by the preceding theorems. By applying Markov’s inequality we have

that

P
(
X > 1+ sε

)
<

E(X)

1+ sε
<

1+ ε

1+ sε
,

where s is an arbitrary constant greater than 1. Repeating the sampling procedure for t times and

letting X(i) correspond to the error ratio of the i-th sample, we obtain an upper bound on the failure

probability:

P

(

min
i
{X(i)}> 1+ sε

)

= P

(

X(i) > 1+ sε ∀i = 1, · · · , t
)

<
( 1+ ε

1+ sε

)t

, δ, (4)

which decays exponentially with t. Therefore, by repeating the sampling procedure multiple times

and choosing the best sample, our CUR and Nyström algorithms are also guaranteed with w.h.p.

relative-error bounds. It follows directly from (4) that, by repeating the sampling procedure for

t ≥ 1+ ε

(s−1)ε
log

(1

δ

)

times, the inequality

‖A− Ã‖F ≤ (1+ sε)‖A−Ak‖F
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holds with probability at least 1−δ.

For instance, we let s = 1+ log(1/δ), then by repeating the sampling procedure for t ≥ 1+1/ε

times, the inequality

‖A− Ã‖F ≤
(

1+ ε+ ε log(1/δ)
)

‖A−Ak‖F

holds with probability at least 1−δ.

For another instance, we let s = 2, then by repeating the sampling procedure for t ≥ (1 +
1/ε) log(1/δ) times, the inequality

‖A− Ã‖F ≤ (1+2ε)‖A−Ak‖F

holds with probability at least 1−δ.

5. Empirical Analysis

In Section 5.1 we empirical evaluate our CUR algorithms in comparison with the algorithms in-

troduced in Section 3.3. In Section 5.2 we conduct empirical comparisons between the standard

Nyström and our modified Nyström, and comparisons among three sampling algorithms. We report

the approximation error incurred by each algorithm on each data set. The error ratio is defined by

Error Ratio =
‖A− Ã‖F

‖A−Ak‖F

,

where Ã = CUR for the CUR matrix decomposition, Ã = CW†CT for the standard Nyström

method, and Ã = C
(
C†A(C†)T

)
CT for the modified Nyström method.

We conduct experiments on a workstation with two Intel Xeon 2.40GHz CPUs, 24GB RAM,

and 64bit Windows Server 2008 system. We implement the algorithms in MATLAB R2011b, and

use the MATLAB function ‘svds’ for truncated SVD. To compare the running time, all the compu-

tations are carried out in a single thread by setting ‘maxNumCompThreads(1)’ in MATLAB.

5.1 Comparison among the CUR Algorithms

In this section we empirically compare our adaptive sampling based CUR algorithm (Algorithm 2)

with the subspace sampling algorithm of Drineas et al. (2008) and the deterministic sparse column-

row approximation (SCRA) algorithm of Stewart (1999). For SCRA, we use the MATLAB code

released by Stewart (1999). As for the subspace sampling algorithm, we compute the leverages

scores exactly via the truncated SVD. Although the fast approximation to leverage scores (Drineas

et al., 2012) can significantly speedup subspace sampling, we do not use it because the approxima-

tion has no theoretical guarantee when applied to subspace sampling.

Data Set Type Size #Nonzero Entries Source

Enron Emails text 39,861×28,102 3,710,420 Bag-of-words, UCI

Dexter text 20,000×2,600 248,616 Guyon et al. (2004)

Farm Ads text 54,877×4,143 821,284 Mesterharm and Pazzani (2011)

Gisette handwritten digit 13,500×5,000 8,770,559 Guyon et al. (2004)

Table 4: A summary of the data sets for CUR matrix decomposition.
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Figure 1: Results of the CUR algorithms on the Enron data set.

3 5 7 9 11 13 15 17 19 21 23 25
0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
 (

s
)

a

Elapsed Time

Adaptive Sampling

Subspace Sampling

Deterministic

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

T
im

e
 (

s
)

a

Elapsed Time

Adaptive Sampling

Subspace Sampling

Deterministic

3 5 7 9 11 13 15 17 19 21 23 25
0.9

0.95

1

1.05

1.1

1.15

E
rr

o
r 

R
a
ti
o

a

Approximation Error

Adaptive Sampling

Subspace Sampling

Deterministic

(a) k = 10, c = ak, and r = ac.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

E
rr

o
r 

R
a
ti
o

a

Approximation Error

Adaptive Sampling

Subspace Sampling

Deterministic

(b) k = 50, c = ak, and r = ac.

Figure 2: Results of the CUR algorithms on the Dexter data set.
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Figure 3: Results of the CUR algorithms on the Farm Ads data set.
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Figure 4: Results of the CUR algorithms on the Gisette data set.
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We conduct experiments on four UCI data sets (Frank and Asuncion, 2010) which are sum-

marized in Table 4. Each data set is represented as a data matrix, upon which we apply the CUR

algorithms. According to our analysis, the target rank k should be far less than m and n, and the

column number c and row number r should be strictly greater than k. For each data set and each

algorithm, we set k = 10 or 50, and c = ak, r = ac, where a ranges in each set of experiments. We

repeat each of the two randomized algorithms 10 times, and report the minimum error ratio and the

total elapsed time of the 10 rounds. We depict the error ratios and the elapsed time of the three CUR

matrix decomposition algorithms in Figures 1, 2, 3, and 4.

We can see from Figures 1, 2, 3, and 4 that our adaptive sampling based CUR algorithm has

much lower approximation error than the subspace sampling algorithm in all cases. Our adaptive

sampling based algorithm is better than the deterministic SCRA on the Farm Ads data set and the

Gisette data set, worse than SCRA on the Enron data set, and comparable to SCRA on the Dexter

data set. In addition, the experimental results match our theoretical analysis in Section 4 very well.

The empirical results all obey the theoretical relative-error upper bound

‖A−CUR‖F

‖A−Ak‖F

≤ 1+
2k

c

(
1+o(1)

)
= 1+

2

a

(
1+o(1)

)
.

As for the running time, the subspace sampling algorithm and our adaptive sampling based

algorithm are much more efficient than SCRA, especially when c and r are large. Our adaptive

sampling based algorithm is comparable to the subspace sampling algorithm when c and r are

small; however, our algorithm becomes less efficient when c and r are large. This is due to the

following reasons. First, the computational cost of the subspace sampling algorithm is dominated

by the truncated SVD of A, which is determined by the target rank k and the size and sparsity of the

data matrix. However, the cost of our algorithm grows with c and r. Thus, our algorithm becomes

less efficient when c and r are large. Second, the truncated SVD operation in MATLAB, that is,

the ‘svds’ function, gains from sparsity, but our algorithm does not. The four data sets are all very

sparse, so the subspace sampling algorithm has advantages. Third, the truncated SVD functions are

very well implemented by MATLAB (not in MATLAB language but in Fortran/C). In contrast, our

algorithm is implemented in MATLAB language, which is usually less efficient than Fortran/C.

5.2 Comparison among the Nyström Algorithms

In this section we empirically compare our adaptive sampling algorithm (in Theorem 10) with some

other sampling algorithms including the subspace sampling of Drineas et al. (2008) and the uniform

sampling, both without replacement. We also conduct comparison between the standard Nyström

and our modified Nyström, both use the three sampling algorithms to select columns.

We test the algorithms on three data sets which are summarized in Table 5. The experiment

setting follows Gittens and Mahoney (2013). For each data set we generate a radial basis function

(RBF) kernel matrix A which is defined by

ai j = exp

(

− ‖xi−x j‖2
2

2σ2

)

,

where xi and x j are data instances and σ is a scale parameter. Notice that the RBF kernel is dense

in general. We set σ = 0.2 or 1 in our experiments. For each data set with different settings of σ,

we fix a target rank k = 10, 20 or 50 and vary c in a very large range. We will discuss the choice
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Data Set #Instances #Attributes Source

Abalone 4,177 8 UCI (Frank and Asuncion, 2010)

Wine Quality 4,898 12 UCI (Cortez et al., 2009)

Letters 5,000 16 Statlog (Michie et al., 1994)

‖A−Ak‖F/‖A‖F
m
k std

(
ℓ[k]

)

k = 10 k = 20 k = 50 k = 10 k = 20 k = 50

Abalone (σ = 0.2) 0.4689 0.3144 0.1812 0.8194 0.6717 0.4894

Abalone (σ = 1.0) 0.0387 0.0122 0.0023 0.5879 0.8415 1.3830

Wine Quality (σ = 0.2) 0.8463 0.7930 0.7086 1.8703 1.6490 1.3715

Wine Quality (σ = 1.0) 0.0504 0.0245 0.0084 0.3052 0.5124 0.8067

Letters (σ = 0.2) 0.9546 0.9324 0.8877 5.4929 3.9346 2.6210

Letters (σ = 1.0) 0.1254 0.0735 0.0319 0.2481 0.2938 0.3833

Table 5: A summary of the data sets for the Nyström approximation. In the second tabular std
(
ℓ[k]

)

denotes the standard deviation of the statistical leverage scores of A relative to the best

rank-k approximation to A. We use the normalization factor m
k

because m
k
mean

(
ℓ[k]

)
= 1.

of σ and k in the following two paragraphs. We run each algorithm for 10 times, and report the the

minimum error ratio as well as the total elapsed time of the 10 repeats. The results are shown in

Figures 5, 6, and 7.

Table 5 provides useful implications on choosing the target rank k. In Table 5,
‖A−Ak‖F

‖A‖F
denotes

ratio that is not captured by the best rank-k approximation to the RBF kernel, and the parameter

σ has an influence on the ratio ‖A−Ak‖F/‖A‖F . When σ is large, the RBF kernel can be well

approximated by a low-rank matrix, which implies that (i) a small k suffices when σ is large, and (ii)

k should be set large when σ is small. So the settings (σ = 1, k = 10) and (σ = 0.2, k = 50) are more

reasonable than the rest. Let us take the RBF kernel in the Abalone data set as an example. When

σ = 1, the rank-10 approximation well captures the kernel, so k can be safely set as small as 10;

when σ = 0.2, the target rank k should be set large, say larger than 50, otherwise the approximation

is rough.

The standard deviation of the leverage scores reflects whether the advanced importance sam-

pling techniques such as the subspace sampling and adaptive sampling are useful. Figures 5, 6, and 7

show that the advantage of the subspace sampling and adaptive sampling over the uniform sampling

is significant whenever the standard deviation of the leverage scores is large (see Table 5), and vise

versa. Actually, as reflected in Table 5, the parameter σ influences the homogeneity/heterogeneity

of the leverage scores. Usually, when σ is small, the leverage scores become heterogeneous, and

the effect of choosing “good” columns is significant.

The experimental results also show that the subspace sampling and adaptive sampling algo-

rithms significantly outperform the uniform sampling when c is reasonably small, say c < 10k. This

indicates that the subspace sampling and adaptive sampling algorithms are good at choosing “good”

columns as basis vectors. The effect is especially evident on the RBF kernel with the scale param-

eter σ = 0.2, where the leverage scores are heterogeneous. In most cases our adaptive sampling

algorithm achieves the lowest approximation error among the three algorithms. The error ratios of

our adaptive sampling for the modified Nyström are in accordance with the theoretical bound in
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(b) σ = 0.2, k = 20, and c = ak.
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(c) σ = 0.2, k = 50, and c = ak.
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Figure 5: Results of the Nyström algorithms on the RBF kernel in the Abalone data set.
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(c) σ = 0.2, k = 50, and c = ak.

3 6 9 12 15 18 21 24 27 30
0

20

40

60

80

100

120

140

160

T
im

e
 (

s
)

a

Elapsed Time

Uniform Sampling (standard)

Uniform Sampling (modified)

Subspace Sampling (standard)

Subspace Sampling (modified)

Adaptive + Near−Optimal (standard)

Adaptive + Near−Optimal (modified)

3 6 9 12 15 18 21 24 27 30
0

50

100

150

200

250

T
im

e
 (

s
)

a

Elapsed Time

Uniform Sampling (standard)

Uniform Sampling (modified)

Subspace Sampling (standard)

Subspace Sampling (modified)

Adaptive + Near−Optimal (standard)

Adaptive + Near−Optimal (modified)

3 6 9 12 15 18 21 24 27 30
0

200

400

600

800

1000

T
im

e
 (

s
)

a

Elapsed Time

Uniform Sampling (standard)

Uniform Sampling (modified)

Subspace Sampling (standard)

Subspace Sampling (modified)

Adaptive + Near−Optimal (standard)

Adaptive + Near−Optimal (modified)

3 6 9 12 15 18 21 24 27 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

o
r 

R
a
ti
o

a

Approximation Error

Uniform Sampling (standard)

Uniform Sampling (modified)

Subspace Sampling (standard)

Subspace Sampling (modified)

Adaptive + Near−Optimal (standard)

Adaptive + Near−Optimal (modified)

(d) σ = 1, k = 10, and c = ak.

3 6 9 12 15 18 21 24 27 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

o
r 

R
a
ti
o

a

Approximation Error

Uniform Sampling (standard)

Uniform Sampling (modified)

Subspace Sampling (standard)

Subspace Sampling (modified)

Adaptive + Near−Optimal (standard)

Adaptive + Near−Optimal (modified)

(e) σ = 1, k = 20, and c = ak.

3 6 9 12 15 18 21 24 27 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

o
r 

R
a
ti
o

a

Approximation Error

Uniform Sampling (standard)

Uniform Sampling (modified)

Subspace Sampling (standard)

Subspace Sampling (modified)

Adaptive + Near−Optimal (standard)

Adaptive + Near−Optimal (modified)

(f) σ = 1, k = 50, and c = ak.

Figure 6: Results of the Nyström algorithms on the RBF kernel in the Wine Quality data set.
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Figure 7: Results of the Nyström algorithms on the RBF kernel in the Letters data set.
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Theorem 10; that is,

‖A−CUCT‖F

‖A−Ak‖F

≤ 1+

√

2k

c

(
1+o(1)

)
= 1+

√

2

a

(
1+o(1)

)
.

As for the running time, our adaptive sampling algorithm is more efficient than the subspace sam-

pling algorithm. This is partly because the RBF kernel matrix is dense, and hence the subspace

sampling algorithm costs O(m2k) time to compute the truncated SVD.

Furthermore, the experimental results show that using U = C†A(C†)T as the intersection matrix

(denoted by “modified” in the figures) always leads to much lower error than using U=W† (denoted

by “standard”). However, our modified Nyström method costs more time to compute the intersection

matrix than the standard Nyström method costs. Recall that the standard Nyström costs O(c3) time

to compute U = W† and that the modified Nyström costs O(mc2)+TMultiply(m
2c) time to compute

U=C†A(C†)T . So the users should make a trade-off between time and accuracy and decide whether

it is worthwhile to sacrifice extra computational overhead for the improvement in accuracy by using

the modified Nyström method.

6. Conclusion

In this paper we have built a novel and more general relative-error bound for the adaptive sampling

algorithm. Accordingly, we have devised novel CUR matrix decomposition and Nyström approxi-

mation algorithms which demonstrate significant improvement over the classical counterparts. Our

relative-error CUR algorithm requires only c = 2kε−1(1+o(1)) columns and r = cε−1(1+ε) rows

selected from the original matrix. To achieve relative-error bound, the best previous algorithm—

the subspace sampling algorithm—requires c = O(kε−2 logk) columns and r = O(cε−2 logc) rows.

Our modified Nyström method is different from the conventional Nyström methods in that it uses a

different intersection matrix. We have shown that our adaptive sampling algorithm for the modified

Nyström achieves relative-error upper bound by sampling only c = 2kε−2(1+o(1)) columns, which

even beats the lower error bounds of the standard Nyström and the ensemble Nyström. Our proposed

CUR and Nyström algorithms are scalable because they need only to maintain a small fraction of

columns or rows in RAM, and their time complexities are low provided that matrix multiplication

can be highly efficiently executed. Finally, the empirical comparison has also demonstrated the

effectiveness and efficiency of our algorithms.
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Appendix A. The Dual Set Sparsification Algorithm

For the sake of self-contained, we attach the dual set sparsification algorithm and describe some im-

plementation details. The deterministic dual set sparsification algorithm is established by Boutsidis

et al. (2011) and severs as an important step in the near-optimal column selection algorithm (de-

scribed in Lemma 2 and Algorithm 1 in this paper). We show the dual set sparsification algorithm
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Algorithm 3 Deterministic Dual Set Spectral-Frobenius Sparsification Algorithm.

1: Input: U = {xi}n
i=1 ⊂ R

l , (l < n); V = {vi}n
i=1 ⊂ R

k, with ∑n
i=1 viv

T
i = Ik (k < n); k < r < n;

2: Initialize: s0 = 0, A0 = 0;

3: Compute ‖xi‖2
2 for i = 1, · · · ,n, and then compute δU =

∑n
i=1 ‖xi‖22

1−
√

k/r
;

4: for τ = 0 to r−1 do

5: Compute the eigenvalue decomposition of Aτ;

6: Find any index j in {1, · · · ,n} and compute a weight t > 0 such that

δ−1
U ‖x j‖2

2 ≤ t−1 ≤
vT

j

(

Aτ− (Lτ +1)Ik

)−2

v j

φ(Lτ +1,Aτ)−φ(Lτ,Aτ)
−vT

j

(

Aτ− (Lτ +1)Ik

)−1

v j;

where

φ(L,A) =
k

∑
i=1

(

λi(A)−L
)−1

, Lτ = τ−
√

rk;

7: Update the j-th component of sτ and Aτ: sτ+1[ j] = sτ[ j]+ t, Aτ+1 = Aτ + tv jv
T
j ;

8: end for

9: return s =
1−
√

k/r

r
sr.

algorithm in Algorithm 3 and its bounds in Lemma 14, and we also analyze the time complexity

using our defined notation.

Lemma 14 (Dual Set Spectral-Frobenius Sparsification) Let U = {x1, · · · ,xn}⊂R
l (l < n) con-

tain the columns of an arbitrary matrix X ∈ R
l×n. Let V = {v1, · · · ,vn} ⊂ R

k (k < n) be a decom-

positions of the identity, that is, ∑n
i=1 viv

T
i = Ik. Given an integer r with k < r < n, Algorithm 3

deterministically computes a set of weights si ≥ 0 (i = 1, · · · ,n) at most r of which are non-zero,

such that

λk

( n

∑
i=1

siviv
T
i

)

≥
(

1−
√

k

r

)2

and tr
( n

∑
i=1

sixix
T
i

)

≤ ‖X‖2
F .

The weights si can be computed deterministically in O
(
rnk2

)
+TMultiply

(
nl
)

time.

Here we mention some implementation issues of Algorithm 3 which were not described in detail

by Boutsidis et al. (2011). In each iteration the algorithm performs once eigenvalue decomposition:

Aτ = WΛWT . Here Aτ is guaranteed to be SPSD in each iteration. Since

(

Aτ−αIk

)q

= WDiag
(

(λ1−α)q, · · · ,(λk−α)q
)

WT ,

(Aτ− (Lτ +1)Ik)
q can be efficiently computed based on the eigenvalue decomposition of Aτ. With

the eigenvalues at hand, φ(L,Aτ) can also be computed directly.

The algorithm runs in r iterations. In each iteration, the eigenvalue decomposition of Aτ requires

O(k3), and the n comparisons in Line 6 each requires O(k2). Moreover, computing ‖xi‖2
2 for each

xi requires TMultiply(nl). Overall, the running time of Algorithm 3 is at most O(rk3)+O(rnk2)+
TMultiply(nl) = O(rnk2)+TMultiply(nl).

The near-optimal column selection algorithm described in Lemma 2 has three steps: random-

ized SVD via random projection which costs O
(
mk2ε−4/3

)
+ TMultiply

(
mnkε−2/3

)
time, the dual
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set sparsification algorithm which costs O
(
nk3ε−2/3

)
+ TMultiply

(
mn

)
time, and the adaptive sam-

pling algorithm which costs O
(
mk2ε−4/3

)
+TMultiply

(
mnkε−2/3

)
time. Therefore, the near-optimal

column selection algorithm costs totally O
(
mk2ε−4/3 +nk3ε−2/3

)
+TMultiply

(
mnkε−2/3

)
time.

Appendix B. Proofs of the Adaptive Sampling Bounds

We present the proofs of Theorem 5, Corollary 7, Theorem 8, and Theorem 10 in Appendices B.1,

B.2, B.3, and B.4, respectively.

B.1 The Proof of Theorem 5

Theorem 5 can be equivalently expressed in Theorem 15. In order to stick to the column space

convention throughout this paper, we prove Theorem 15 instead of Theorem 5.

Theorem 15 (The Adaptive Sampling Algorithm) Given a matrix A ∈ R
m×n and a matrix R ∈

R
r×n such that rank(R) = rank(AR†R) = ρ (ρ ≤ r ≤ m), let C1 ∈ R

m×c1 consist of c1 columns of

A, and define the residual B = A−C1C
†
1A. For i = 1, · · · ,n, let

pi = ‖bi‖2
2/‖B‖2

F ,

where bi is the i-th column of the matrix B. Sample further c2 columns from A in c2 i.i.d. trials,

where in each trial the i-th column is chosen with probability pi. Let C2 ∈ R
m×c2 contain the c2

sampled columns and C = [C1,C2] ∈ R
m×(c1+c2) contain the columns of both C1 and C2, all of

which are columns of A. Then the following inequality holds:

E‖A−CC†AR†R‖2
F ≤ ‖A−AR†R‖2

F +
ρ

c2

‖A−C1C
†
1A‖2

F .

where the expectation is taken w.r.t. C2.

Proof With a little abuse of symbols, we use bold uppercase letters to denote random matrices and

bold lowercase to denote random vectors, without distinguishing between random matrices/vectors

and non-random matrices/vectors.

We denote the j-th column of VAR†R,ρ ∈ R
n×ρ as v j, and the (i, j)-th entry of VAR†R,ρ as vi j.

Define random vectors x j,(l) ∈ R
m such that for j = 1, · · · ,n and l = 1, · · · ,c2,

x j,(l) =
vi j

pi

bi =
vi j

pi

(

ai−C1C
†
1ai

)

with probability pi, for i = 1, · · · ,n,

Notice that x j,(l) is a linear function of a column of A sampled from the above defined distribution.

We have that

E[x j,(l)] =
n

∑
i=1

pi

vi j

pi

bi = Bv j,

E‖x j,(l)‖2
2 =

n

∑
i=1

pi

v2
i j

p2
i

‖bi‖2
2 =

n

∑
i=1

v2
i j

‖bi‖2
2/‖B‖2

F

‖bi‖2
2 = ‖B‖2

F .
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Then we let x j =
1
c2

∑
c2

l=1 x j,(l), we have

E[x j] = E[x j,(l)] = Bv j,

E‖x j−Bv j‖2
2 = E

∥
∥
∥x j−E[x j]

∥
∥
∥

2

2
=

1

c2

E

∥
∥
∥x j,(l)−E[x j,(l)]

∥
∥
∥

2

2
=

1

c2

E‖x j,(l)−Bv j‖2
2.

According to the construction of x1, · · · ,xρ, we define the c2 columns of A to be C2 ∈ R
m×c2 . Note

that all the random vectors x1 · · · ,xρ lie in the subspace span(C1)+ span(C2). We define random

vectors

w j = C1C
†
1AR†Rv j +x j = C1C

†
1Av j +x j, for j = 1, · · · ,ρ,

where the second equality follows from Lemma 16; that is, AR†Rv j = Av j if v j is one of the

top ρ right singular vectors of AR†R. Then we have that any set of random vectors {w1, · · · ,wρ}
lies in span(C) = span(C1)+ span(C2). Let W = [w1, · · · ,wρ] be a random matrix, we have that

span(W)⊂ span(C). The expectation of w j is

E[w j] = C1C
†
1Av j +E[x j] = C1C

†
1Av j +Bv j = Av j,

therefore we have that

w j−Av j = x j−Bv j.

The expectation of ‖w j−Av j‖2
2 is

E‖w j−Av j‖2
2 = E‖x j−Bv j‖2

2 =
1

c2

E‖x j,(l)−Bv j‖2
2

=
1

c2

E‖x j,(l)‖2
2−

2

c2

(Bv j)
T
E[x j,(l)]+

1

c2

‖Bv j‖2
2

=
1

c2

E‖x j,(l)‖2
2−

1

c2

‖Bv j‖2
2 =

1

c2

‖B‖2
F −

1

c2

‖Bv j‖2
2

≤ 1

c2

‖B‖2
F . (5)

To complete the proof, we denote

F = (
ρ

∑
q=1

σ−1
q wquT

q )AR†R,

where σq is the q-th largest singular value of AR†R and uq is the corresponding left singular vector

of AR†R. The column space of F is contained in span(W) (⊂ span(C)), and thus

‖AR†R−CC†AR†R‖2
F ≤ ‖AR†R−WW†AR†R‖2

F ≤ ‖AR†R−F‖2
F .

We use F to bound the error ‖AR†R−CC†AR†R‖2
F . That is,

E‖A−CC†AR†R‖2
F = E‖A−AR†R+AR†R−CC†AR†R‖2

F

= E

[

‖A−AR†R‖2
F +‖AR†R−CC†AR†R‖2

F

]

(6)

≤ ‖A−AR†R‖2
F +E‖AR†R−F‖2

F ,
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where (6) is due to that A(I−R†R) is orthogonal to (I−CC†)AR†R. Since AR†R and F both lie on

the space spanned by the right singular vectors of AR†R (i.e., {v j}ρ
j=1), we decompose AR†R−F

along {v j}ρ
j=1, obtaining that

E‖A−CC†AR†R‖2
F ≤ ‖A−AR†R‖2

F +E‖AR†R−F‖2
F ,

= ‖A−AR†R‖2
F +

ρ

∑
j=1

E

∥
∥
∥(AR†R−F)v j

∥
∥
∥

2

2

= ‖A−AR†R‖2
F +

ρ

∑
j=1

E

∥
∥
∥AR†Rv j− (

ρ

∑
q=1

σ−1
q wquT

q )σ ju j

∥
∥
∥

2

2

= ‖A−AR†R‖2
F +

ρ

∑
j=1

E

∥
∥
∥AR†Rv j−w j

∥
∥
∥

2

2

= ‖A−AR†R‖2
F +

ρ

∑
j=1

E‖Av j−w j‖2
2 (7)

≤ ‖A−AR†R‖2
F +

ρ

c2

‖B‖2
F , (8)

where (7) follows from Lemma 16 and (8) follows from (5).

Lemma 16 We are given a matrix A ∈ R
m×n and a matrix R ∈ R

r×n such that rank(AR†R) =
rank(R) = ρ (ρ ≤ r ≤ m). Letting v j ∈ R

n be the j-th top right singular vector of AR†R, we have

that

AR†Rv j = Av j, for j = 1, · · · ,ρ.

Proof First let VR,ρ ∈ R
n×ρ contain the top ρ right singular vectors of R. Then the projection of

A onto the row space of R is AR†R = AVR,ρVT
R,ρ. Let the thin SVD of AVR,ρ ∈ R

m×ρ be ŨΣ̃ṼT ,

where Ṽ ∈ R
ρ×ρ. Then the compact SVD of AR†R is

AR†R = AVR,ρVT
R,ρ = ŨΣ̃ṼT VT

R,ρ.

According to the definition, v j is the j-th column of (VR,ρṼ) ∈ R
n×ρ. Thus v j lies on the column

space of VR,ρ, and v j is orthogonal to VR,ρ⊥. Finally, since A−AR†R = AVR,ρ⊥VT
R,ρ⊥, we have

that v j is orthogonal to A−AR†R, that is, (A−AR†R)v j = 0, which directly proves the lemma.

B.2 The Proof of Corollary 7

Since C is constructed by columns of A and the column space of C is contained in the column space

of A, we have rank(CC†A) = rank(C) = ρ ≤ c. Consequently, the assumptions of Theorem 5 are

satisfied. The assumptions in turn imply

‖A−CC†A‖F ≤ (1+ ε)‖A−Ak‖F ,

‖A−AR
†
1R1‖F ≤ (1+ ε)‖A−Ak‖F ,
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and c/r2 = ε. It then follows from Theorem 5 that

ER

∥
∥A−CC†AR†R

∥
∥2

F
= ER1

[

ER2

[

‖A−CC†AR†R‖2
F

∣
∣
∣R1

]]

≤ ER1

[

‖A−CC†A‖2
F +

ρ

r2

‖A−AR
†
1R1‖2

F

]

≤ ‖A−CC†A‖2
F +

c

r2

(1+ ε)‖A−Ak‖2
F

= ‖A−CC†A‖2
F + ε(1+ ε)‖A−Ak‖2

F .

Furthermore, we have that

[

E‖A−CUR‖F

]2

≤ E‖A−CUR‖2
F = EC,R‖A−CC†AR†R‖2

F

= EC

[

ER

[

‖A−CC†AR†R‖2
F

∣
∣
∣C

]]

≤ EC

[

‖A−CC†A‖2
F + ε(1+ ε)‖A−Ak‖2

F

]

≤ (1+ ε)2‖A−Ak‖2
k ,

which yields the error bound for CUR matrix decomposition.

When the matrix A is symmetric, the matrix CT
1 consists of the rows A, and thus we can use The-

orem 15 (which is identical to Theorem 5) to prove the error bound for the Nyström approximation.

By replacing R in Theorem 15 by CT
1 , we have that

E
∥
∥A−CC†A(C†

1)
T

CT
1

∥
∥2

F
≤

∥
∥A−A(C†

1)
T

CT
1

∥
∥2

F
+

c1

c2

∥
∥A−C1C

†
1A

∥
∥2

F

=
(

1+
c1

c2

)∥
∥A−C1C

†
1A

∥
∥2

F
,

where the expectation is taken w.r.t. C2. Together with the inequality

∥
∥A−CC†A(C†)

T
CT

∥
∥2

F
≤

∥
∥A−CC†A(C†

1)
T

CT
1

∥
∥2

F

given by Lemma 17, we have that

EC1,C2

∥
∥A−CC†A(C†)

T
CT

∥
∥2

F
≤ EC1,C2

∥
∥A−CC†A(C†

1)
T

CT
1

∥
∥2

F

=
(

1+
c1

c2

)

EC1

∥
∥A−C1C

†
1A

∥
∥2

F

= (1+ε)2
∥
∥A−Ak

∥
∥2

F
.

Hence E
∥
∥A−CC†A(C†)

T
CT

∥
∥

F
≤
[

E
∥
∥A−CC†A(C†)

T
CT

∥
∥2

F

]− 1
2 ≤ (1+ε)

∥
∥A−Ak

∥
∥

F
.

Lemma 17 Given an m×m matrix A and an m×c matrix C = [C1,C2], the following inequality

holds:
∥
∥A−CC†A(C†)

T
CT

∥
∥2

F
≤

∥
∥A−CC†A(C†

1)
T

CT
1

∥
∥2

F
.
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Proof Let PCA=CC†A denote the projection of A onto the column space of C, and P̄C = Im−CC†

denote the projector onto the space orthogonal to the column space of C. It has been shown by Halko

et al. (2011) that, for any matrix A, if span(M)⊂ span(N), then the following inequalities hold:

‖PMA‖ξ ≤ ‖PNA‖ξ and ‖P̄MA‖ξ ≥ ‖P̄NA‖ξ.

Accordingly, AP T
RT = AR†R is the projection of A onto the row space of R∈Rr×n. We further have

that

‖A−PCAP
T
C‖2

F = ‖A−PCA+PCA−PCAP
T
C‖2

F

= ‖P̄CA+PCAP̄
T
C‖2

F = ‖P̄CA‖2
F +‖PCAP̄

T
C‖2

F

and

‖A−PCAP
T
C1
‖2

F = ‖A−PCA+PCA−PCAP
T
C1
‖2

F

= ‖P̄CA+PCAP̄
T
C1
‖2

F = ‖P̄CA‖2
F +‖PCAP̄

T
C1
‖2

F ,

where the last equalities follow from PC ⊥ P̄C. Since span(C1)⊂ span(C), we have ‖PCAP̄ T
C1
‖2

F ≥
‖PCAP̄ T

C‖2
F , which proves the lemma.

B.3 The Proof of Theorem 8

The error bound follows directly from Lemma 2 and Corollary 7. The near-optimal column se-

lection algorithm costs O
(
mk2ε−4/3 + nk3ε−2/3

)
+ TMultiply

(
mnkε−2/3

)
time to construct C and

O
(
nk2ε−4/3+mk3ε−2/3

)
+TMultiply

(
mnkε−2/3

)
time to construct R1. Then the adaptive sampling al-

gorithm costs O
(
nk2ε−2

)
+TMultiply

(
mnkε−1

)
time to construct R2. Computing the Moore-Penrose

inverses of C and R costs O(mc2)+O(nr2) = O
(
mk2ε−2 + nk2ε−4

)
time. The multiplication of

C†AR† costs TMultiply(mnc) = TMultiply(mnkε−1) time. So the total time complexity is O
(
(m +

n)k3ε−2/3 +mk2ε−2 +nk2ε−4
)
+TMultiply

(
mnkε−1

)
.

B.4 The Proof of Theorem 10

The error bound follows immediately from Lemma 2 and Corollary 7. The near-optimal col-

umn selection algorithm costs O
(
mk2ε−4/3 +mk3ε−2/3

)
+TMultiply

(
m2kε−2/3

)
time to select c1 =

O(kε−1) columns of A construct C1. Then the adaptive sampling algorithm costs O
(
mk2ε−2

)
+

TMultiply

(
m2kε−1

)
time to select c2 = O(kε−2) columns construct C2. Finally it costs O(mc2) +

TMultiply(m
2c)=O(mk2ε−4)+TMultiply

(
m2kε−2

)
time to construct the intersection matrix U=C†A(C†)T .

So the total time complexity is O
(
mk2ε−4 +mk3ε−2/3

)
+TMultiply

(
m2kε−2

)
.

Appendix C. Proofs of the Lower Error Bounds

In Appendix C.1 we construct two adversarial cases which will be used throughout this appendix.

In Appendix C.2 we prove the lower bounds of the standard Nyström method. In Appendix C.3 we

prove the lower bounds of the ensemble Nyström method. Theorems 20, 21, 22, 24, and 25 are used

for proving Theorem 12.
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C.1 Construction of the Adversarial Cases

We now consider the construction of adversarial cases for the spectral norm bounds and the Frobe-

nius norm and nuclear norm bounds, respectively.

C.1.1 THE ADVERSARIAL CASE FOR THE SPECTRAL NORM BOUND

We construct an m×m positive definite matrix B as follows:

B = (1−α)Im +α1m1T
m =








1 α · · · α

α 1 · · · α
...

...
. . .

...

α α · · · 1







=

[
W BT

21

B21 B22

]

, (9)

where α ∈ [0,1). It is easy to verify xT Bx > 0 for any nonzero x ∈ R
m. We show some properties

of B in Lemma 18.

Lemma 18 Let Bk be the best rank-k approximation to the matrix B defined in (9). Then we have

that

‖B‖F =
√

m2α2 +m(1−α2), ‖B−Bk‖F =
√

m− k (1−α),

‖B‖2 = 1+mα−α , ‖B−Bk‖2 = 1−α,

‖B‖∗ = m, ‖B−Bk‖∗ = (m− k)(1−α),

where 1≤ k ≤ m−1.

Proof The squared Frobenius norm of B is

‖B‖2
F = ∑

i, j

b2
i j = m+(m2−m)α2.

Then we study the singular values of B. Since B is SPSD, here we do not distinguish between its

singular values and eigenvalues.

The spectral norm, that is, the largest singular value, of B is

‖B‖2 = σ1 = λ1 = max
‖x‖2≤1

xT Bx = max
‖x‖2≤1

(1−α)‖x‖2
2 +α(1T

mx)2 = 1−α+mα,

where the maximum is attained when x = 1√
m

1m. Thus u1 =
1√
m

1m is the top singular vector of B.

Then the projection of B onto the subspace orthogonal to u1 is

B1⊥ , B−B1 = B−σ1u1uT
1 =

1−α

m
(mIm−1m1T

m).

Then for all j > 1, the j-th top eigenvalue σ j and eigenvector u j, that is, the singular value and

singular vector, of B satisfy

σ ju j = Bu j = B1⊥u j =
1−α

m

(
mu j− (1T

mu j)1m

)
=

1−α

m
(mu j−0),
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where the last equality follows from u j ⊥ u1, that is, 1T
mu j = 0. Thus σ j = 1−α, and

‖B−Bk‖2 = σk+1 = 1−α

for all 1≤ k < m. Finally we have that

‖B−Bk‖2
F = ‖B‖2

F −
k

∑
i=1

σ2
i = (m− k)(1−α)2,

‖B−Bk‖∗ = (m− k)σ2 = (m− k)(1−α),

‖B‖∗ =
m

∑
i=1

σi = (1+mα−α)+(m−1)(1−α) = m,

which complete our proofs.

C.1.2 THE ADVERSARIAL CASE FOR THE FROBENIUS NORM AND NUCLEAR NORM BOUNDS

Then we construct another adversarial case for proving the Frobenius norm and nuclear norm

bounds. Let B be a p× p matrix with diagonal entries equal to one and off-diagonal entries equal to

α. Let m = kp and we construct an m×m block diagonal matrix A as follows:

A = BlkDiag(B, · · · ,B
︸ ︷︷ ︸

k blocks

) =








B 0 · · · 0

0 B · · · 0
...

...
. . .

...

0 0 · · · B








. (10)

Lemma 19 Let Ak be the best rank-k approximation to the matrix A defined in (10). Then we have

that

σ1(A) = · · · = σk(A) = 1+ pα−α,

σk+1(A) = · · · = σm(A) = 1−α,
∥
∥A−Ak

∥
∥

F
= (1−α)

√
m− k,

∥
∥A−Ak

∥
∥
∗ = (1−α)(m− k).

Lemma 19 can be easily proved using Lemma 18.

C.2 Lower Bounds of the Standard Nyström Method

Theorem 20 For an m×m matrix B with diagonal entries equal to one and off-diagonal entries

equal to α ∈ [0,1), the approximation error incurred by the standard Nyström method is lower

bounded by

∥
∥B− B̃nys

c

∥
∥

F
≥ (1−α)

√

(m− c)
(

1+
m+ c+ 2

α −2

(c+ 1−α
α )2

)

,

∥
∥B− B̃nys

c

∥
∥

2
≥

(1−α)
(

m+ 1−α
α

)

c+ 1−α
α

,

∥
∥B− B̃nys

c

∥
∥
∗ ≥ (m− c)(1−α)

1+ cα

1+ cα−α
.
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Furthermore, the matrix (B− B̃
nys
c ) is SPSD.

Proof The matrix B is partitioned as in (9). The residual of the Nyström approximation is

‖B− B̃nys
c ‖ξ = ‖B22−B21W†BT

21‖ξ, (11)

where ξ = 2, F , or ∗. Since W = (1−α)Ic +α1c1T
c is nonsingular when α ∈ [0,1), so W† = W−1.

We apply the Sherman-Morrison-Woodbury formula

(A+BCD)−1 = A−1−A−1B(C−1 +DA−1B)−1DA−1

to compute W†, yielding

W† =
1

1−α
Ic−

α

(1−α)(1−α+ cα)
1c1T

c .

According to the construction, B21 is an (m−c)×c matrix with all entries equal to α, it follows that

B21W†BT
21 is an (m−c)×(m−c) matrix with all entries equal to

η , α21T
c W†1c =

cα2

1−α+ cα
. (12)

Then we obtain that

B22−B21W†BT
21 = (1−α)Im−c +(α−η)1m−c1T

m−c. (13)

It is easy to check that η≤ α≤ 1, thus the matrix (1−α)Im−c +(α−η)1m−c1T
m−c is SPSD, and so

is (B− B̃
nys
c ).

Combining (11) and (13), we have that

‖B− B̃nys
c ‖2

F =
∥
∥(1−α)Im−c +(α−η)1m−c1T

m−c

∥
∥2

F

= (m−c)
(
1−η

)2
+
(

(m−c)2− (m−c)
)(

α−η
)2

= (m−c)(1−α)2
(

1+
α2(m+c)+2(α−α2)

(1−α+cα)2

)

= (m−c)(1−α)2
(

1+
m+c+ 2

α −2

(c+ 1−α
α )2

)

, (14)

which proves the Frobenius norm of the residual.

Now we compute the spectral norm of the residual. Based on the results above we have that

∥
∥B− B̃nys

c

∥
∥

2
=

∥
∥(1−α)Im−c +(α−η)1m−c1T

m−c

∥
∥

2
.

Similar to the proof of Lemma 18, it is easily obtained that 1√
m−c

1m−c is the top singular vector of

the SPSD matrix (1−α)Im−c +(α−η)1m−c1T
m−c, so the top singular value is

σ1

(
B− B̃nys

c

)
= (m− c)(α−η)+1−α =

(1−α)
(

m+ 1−α
α

)

c+ 1−α
α

, (15)
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which proves the spectral norm bound because ‖B− B̃
nys
c ‖2 = σ1

(
B− B̃

nys
c

)
.

It is also easy to show the rest singular values obey

σ2

(
B− B̃nys

c

)
= · · · = σm−c

(
B− B̃nys

c

)
≥ 0,

σm−c+1

(
B− B̃nys

c

)
= · · · = σm

(
B− B̃nys

c

)
= 0.

Thus we have, for i = 2, · · · ,m− c,

σ2
i

(
B− B̃nys

c

)
=
‖B− B̃

nys
c ‖2

F −σ2
1

(
B− B̃

nys
c

)

m− c−1
= (1−α)2.

The nuclear norm of the residual
(
B− B̃

nys
c

)
is

‖B− B̃nys
c ‖∗ =

m

∑
i=1

σ
(
B− B̃nys

c

)

= σ1

(
B− B̃nys

c

)
+(m− c−1)σ2

(
B− B̃nys

c

)

= (m− c)(1−η)

= (m− c)(1−α)
(

1+
1

c+ 1−α
α

)

. (16)

The theorem follows from equalities (14), (15), and (16).

Now we use the matrix A constructed in (10) to show the Frobenius norm and nuclear norm

lower bound. The bound is stronger than the one in Theorem 20 by a factor of k.

Theorem 21 For the m×m SPSD matrix A defined in (10), the approximation error incurred by

the standard Nyström method is lower bounded by

∥
∥A−CW†CT

∥
∥

F
≥ (1−α)

√

m− c− k+
k(m+ 1−α

α k)2

(c+ 1−α
α k)2

,

∥
∥A−CW†CT

∥
∥
∗ ≥ (1−α)(m− c)

(

1+
k

c+ 1−α
α k

)

,

where k < m is an arbitrary positive integer.

Proof Let C consist of c column sampled from A and Ĉi consist of ci columns sampled from the i-th

block diagonal matrix in A. Without loss of generality, we assume Ĉi consists of the first ci columns

of B, and accordingly Ŵi consists of the top left ci× ci block of B. Thus C = BlkDiag
(
Ĉ1, · · · , Ĉk

)
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and W = BlkDiag
(
Ŵ1, · · · ,Ŵk

)
.

Ãnys
c = CW†C =






Ĉ1 0
. . .

0 Ĉk











Ŵ1 0
. . .

0 Ŵk






†




ĈT
1 0

. . .

0 ĈT
k






=






Ĉ1 0
. . .

0 Ĉk











Ŵ
†
1 0

. . .

0 Ŵ
†
k











ĈT
1 0

. . .

0 ĈT
k






=






Ĉ1Ŵ
†
1ĈT

1 0
. . .

0 ĈkŴ
†
kĈT

k




 . (17)

Then it follows from Theorem 20 that

∥
∥A− Ãnys

c

∥
∥2

F
=

k

∑
i=1

∥
∥B− ĈiŴ

†
i ĈT

i

∥
∥2

F

=
k

∑
i=1

(p− ci)(1−α)2
(

1+
p+ ci +2 1−α

α

(ci +
1−α

α )2

)

= (1−α)2
k

∑
i=1

( p̂− ĉi)
(

1+
p̂+ ĉi

ĉ2
i

)

= (1−α)2
(

m− c− k+ p̂2
k

∑
i=1

ĉ−2
i

)

,

where p̂ = p+ 1−α
α and ĉi = ci+

1−α
α . Since ∑k

i=1 ĉi = c+ 1−α
α k , ĉ, the term ∑k

i=1 ĉ−2
i is minimized

when ĉ1 = · · ·= ĉk. Thus ∑k
i=1 ĉ−2

i = k k2

ĉ2 = k3ĉ−2. Finally we have that

∥
∥A− Ãnys

c

∥
∥2

F
= (1−α)2

(

m− c− k+ p̂2
k

∑
i=1

ĉ−2
i

)

≥ (1−α)2
(

m− c− k+
k(m+ 1−α

α k)2

(c+ 1−α
α k)2

)

,

by which the Frobenius norm bound follows.

Since the matrices B− ĈiŴ
†
i ĈT

i are all SPSD by Theorem 20, so the matrix (A− Ã
nys
c ) is also

SPSD. We have that

∥
∥A− Ãnys

c

∥
∥
∗ =

k

∑
i=1

∥
∥B− ĈiŴ

†
i ĈT

i

∥
∥
∗

≥ (1−α)
k

∑
i=1

(p− ci)
(

1+
1

ci +
1−α

α

)

≥ (1−α)k (
m

k
− c

k
)
(

1+
1

c/k+ 1−α
α

)

= (1−α)(m− c)
(

1+
k

c+ 1−α
α k

)

,
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where the former inequality follows from Theorem 20, and the latter inequality follows by mini-

mizing w.r.t. c1, · · · ,ck subjecting to c1 + · · ·+ ck = c.

Theorem 22 There exists an m×m SPSD matrix A such that the approximation error incurred by

the standard Nyström method is lower bounded by

∥
∥A−CW†CT

∥
∥

F∥
∥A−Ak

∥
∥

F

≥
√

1+
m2k− c3

c2(m− k)
,

‖A−CW†CT‖2

‖A−Ak‖2

≥ m

c
,

‖A−CW†CT‖∗
‖A−Ak‖∗

≥ m− c

m− k

(

1+
k

c

)

,

where k < m is an arbitrary positive integer.

Proof For the spectral norm bound we use the matrix A constructed in (9) and set α→ 1, then it fol-

lows directly from Lemma 18 and Theorem 20. For the Frobenius norm and nuclear norm bounds,

we use the matrix A constructed in (10) and set α→ 1, then it follows directly from Lemma 19 and

Theorem 21.

C.3 Lower Bounds of the Ensemble Nyström Method

The ensemble Nyström method (Kumar et al., 2009) is previously defined in (2). To derive lower

bounds of the ensemble Nyström method, we assume that the t samples are non-overlapping. Ac-

cording to the construction of the matrix B in (9), each of the t non-overlapping samples are equally

“important”, so without loss of generality we set the t samples with equal weights: µ(1) = · · · =
µ(t) = 1

t
.

Lemma 23 Assume that the ensemble Nyström method selects a collection of t samples, each sam-

ple C(i) (i = 1, · · · , t) contains c columns of B without overlapping. For an m×m matrix B with all

diagonal entries equal to one and off-diagonal entries equal to α ∈ [0,1), the approximation error

incurred by the ensemble Nyström method is lower bounded by

∥
∥B− B̃ens

t,c

∥
∥

F
≥ (1−α)

√
(

m−2c+
c

t

)(

1+
m+ c

t
+ 2

α −2

(c+ 1−α
α )2

)

,

∥
∥B− B̃ens

t,c

∥
∥
∗ ≥ (1−α)(m− c)

c+ 1
α

c+ 1−α
α

.

where B̃ens
t,c = 1

t ∑t
i=1 C(i)W(i)†

C(i)T
. Furthermore, the matrix (B− B̃ens

t,c ) is SPSD.

Proof We use the matrix B constructed in (9). It is easy to check that W(1) = · · · = W(t), so we

use the notation W instead. We assume that the samples contain the firs tc columns of B and each

sample contains neighboring columns, that is,

B =
[
C(1), · · · ,C(t), B(tc+1):m

]
.
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Figure 8: An illustration of the matrix B−Bens
t,c for the ensemble Nyström method where B is de-

fined in (9). Here we set m = 100, c = 20, α = 0.8, and t = 3. For the ensemble Nyström

method without overlapping, the matrix B−Bens
t,c can always be partitioned into four re-

gions as annotated.

If a sample C contains the first c columns of B, then

CW†CT =

[
W BT

21

B21 B21W†BT
21

]

and B−CW†CT =

[
0 0

0 B22−B21W†BT
21

]

;

otherwise, after permuting the rows and columns of B−CW†CT , we get the same result:

Π
(
B−CW†CT

)
ΠT = B−Π

(
CW†CT

)
ΠT =

[
0 0

0 B22−B21W†BT
21

]

,

where Π is a permutation matrix. As was shown in Equation (12), B21W†BT
21 is an (m−c)×(m−c)

matrix with all entries equal to

η =
cα2

1−α+ cα
.

Based on the properties of the matrix B−C(i)W(i)†
C(i)T

, we study the values of the entries of

B− B̃ens
t,c . We can express it as

B− B̃ens
t,c = B− 1

t

t

∑
i=1

C(i)W(i)†
C(i)T

=
1

t

t

∑
i=1

(

B−C(i)W†C(i)T
)

, (18)

and then a discreet examination reveals that B− B̃ens
t,c can be partitioned into four kinds of regions

as illustrated in Figure 8. We annotate the regions in the figure and summarize the values of entries

in each region in the table below. (Region 1 and 4 are further partitioned into diagonal entries and

off-diagonal entries.)
Region 1 (diag) 1 (off-diag) 2 3 4 (diag) 4 (off-diag)

#Entries tc tc2− tc (tc)2− tc2 2tc(m− tc) m− tc (m− tc)2− (m− tc)

Value t−1
t (1−η) t−1

t (α−η) t−2
t (α−η) t−1

t (α−η) 1−η α−η
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Now we do summation over the entries of B− B̃ens
t,c to compute its squared Frobenius norm:

∥
∥B− B̃ens

t,c

∥
∥2

F
= tc

[ t−1

t
(1−η)

]2

+ · · ·+
[
(m− tc)2− (m− tc)

]
(α−η)2

= (1−α)(1+α−2η)(m−2c+
c

t
)+(α−η)2

(

4c2−4cm+m2 +
2cm−3c2

t

)

= (1−α)2
(

m−2c+
c

t

)

+
(1−α)2

(c+ 1−α
α )2

[

(m−2c+
c

t
)
( 2

α
−2+m

)
+

c(m− c)

t

]

≥ (1−α)2
(

m−2c+
c

t

)(

1+
m+ c

t
+ 2

α −2

(c+ 1−α
α )2

)

,

where the last inequality follows from
c(m−c)

t
= c

t

(

(m−2c+ c
t
)+(c− c

t
)
)

≥ c
t

(

m−2c+ c
t

)

.

Furthermore, since the matrices B−C(i)W†C(i)T
are all SPSD by Theorem 20, so their sum is

also SPSD. Then the SPSD property of (B− B̃ens
t,c ) follows from (18). Therefore, the nuclear norm

of (B− B̃ens
t,c ) equals to the matrix trace, that is,

∥
∥B− B̃ens

t,c

∥
∥
∗ = tr

(
B− B̃ens

t,c

)

= tc · t−1

t
(1−η)+(m− tc) · (1−η)

= (1−α)(m− c)
c+ 1

α

c+ 1−α
α

,

which proves the nuclear norm bound in the lemma.

Theorem 24 Assume that the ensemble Nyström method selects a collection of t samples, each

sample C(i) (i = 1, · · · , t) contains c columns of A without overlapping. For a the matrix A defined

in (10), the approximation error incurred by the ensemble Nyström method is lower bounded by

∥
∥A− Ãens

t,c

∥
∥

F
≥ (1−α)

√
(

m−2c+
c

t
− k

)

+ k

(
m− c+ c

t
+ k 1−α

α

c+ k 1−α
α

)2

,

∥
∥A− Ãens

t,c

∥
∥
∗ ≥ (1−α)(m− c)

c+ 1
α k

c+ 1−α
α k

,

where Ãens
t,c = 1

t ∑t
i=1 C(i)W(i)†

C(i)T
.

Proof According to the construction of A in (10), the i-th sample C(i) is also block diagonal. We

denote it by C(i) = BlkDiag
(
Ĉ
(i)
1 , · · · , Ĉ(i)

k

)
. Akin to (17), we have

Ãens
t,c =







1
t ∑t

i=1 Ĉ
(i)
1 Ŵ

†
1

(
Ĉ
(i)
1

)T
0

. . .

0 1
t ∑t

i=1 Ĉ
(i)
k Ŵ

†
k

(
Ĉ
(i)
k

)T







.
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Thus the approximation error of the ensemble Nyström method is

∥
∥
∥A− Ãens

t,c

∥
∥
∥

2

F
=

k

∑
j=1

∥
∥
∥B− 1

t

t

∑
i=1

Ĉ
(i)
j Ŵ

†
j

(
Ĉ
(i)
j

)T
∥
∥
∥

2

F

≥ (1−α)2
k

∑
j=1

(

p−2c j +
c j

t

)(

1+
p+

c j

t
+ 2

α −2

(c j +
1−α

α )2

)

= (1−α)2

[(

m−2c+
c

t

)

+
k

∑
j=1

(

p−2c j +
c j

t

) p+
c j

t
+ 2(1−α)

α

(c j +
1−α

α )2

]

,

where the inequality follows from Lemma 23, and the last equality follows from ∑k
j=1 c j = c and

kp = m. The summation in the last equality equals to

k

∑
j=1

[(

p+
c j

t
+

2(1−α)

α

)

−2
(

c j +
1−α

α

)] p+
c j

t
+ 2(1−α)

α

(c j +
1−α

α )2

= −k+
k

∑
j=1

(
p+

c j

t
+ 2(1−α)

α

c j +
1−α

α

−1

)2

≥ −k+ k

(
m− c+ c

t
+ k 1−α

α

c+ k 1−α
α

)2

.

Here the inequality holds because the function is minimized when c1 = · · ·= ck = c/k. Finally we

have that

∥
∥
∥A− Ãens

t,c

∥
∥
∥

2

F
≥ (1−α)2

[(

m−2c+
c

t
− k

)

+ k

(
m− c+ c

t
+ k 1−α

α

c+ k 1−α
α

)2]

,

which proves the Frobenius norm bound in the theorem.

Furthermore, since the matrix B− 1
t ∑t

i=1 Ĉ
(i)
j Ŵ

†
j

(
Ĉ
(i)
j

)T
is SPSD by Lemma 23, so the block

diagonal matrix (A− Ãens
t,c ) is also SPSD. Thus we have

∥
∥A− Ãens

t,c

∥
∥
∗ = (1−α)∑

i=1

(p− ci)
ci +

1
α

ci +
1−α

α

≥ (1−α)(m− c)
(

1+
k

c+ 1−α
α k

)

,

which proves the nuclear norm bound in the theorem.

Theorem 25 Assume that the ensemble Nyström method selects a collection of t samples, each

sample C(i) (i = 1, · · · , t) contains c columns of A without overlapping. Then there exists an m×m

SPSD matrix A such that the relative-error ratio of the ensemble Nyström method is lower bounded

by

‖A− Ãens
t,c ‖F

‖A−Ak‖F

≥
√

m−2c+ c/t− k

m− k

(

1+
k(m−2c+ c/t)

c2

)

,

‖A− Ãens
t,c ‖∗

‖A−Ak‖∗
≥ m− c

m− k

(

1+
k

c

)

,

where Ãens
t,c = 1

t ∑t
i=1 C(i)W(i)†

C(i)T
.
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Proof The theorem follows directly from Theorem 24 and Lemma 19 by setting α→ 1.
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Abstract

Imputing missing values in high dimensional time-series is a difficult problem. This paper presents

a strategy for training energy-based graphical models for imputation directly, bypassing difficul-

ties probabilistic approaches would face. The training strategy is inspired by recent work on

optimization-based learning (Domke, 2012) and allows complex neural models with convolutional

and recurrent structures to be trained for imputation tasks. In this work, we use this training strat-

egy to derive learning rules for three substantially different neural architectures. Inference in these

models is done by either truncated gradient descent or variational mean-field iterations. In our

experiments, we found that the training methods outperform the Contrastive Divergence learning

algorithm. Moreover, the training methods can easily handle missing values in the training data it-

self during learning. We demonstrate the performance of this learning scheme and the three models

we introduce on one artificial and two real-world data sets.

Keywords: neural networks, energy-based models, time-series, missing values, optimization

1. Introduction

Many interesting data sets in fields like meteorology, finance, and physics, are high dimensional

time-series. High dimensional time-series are also used in applications like speech recognition,

motion capture and handwriting recognition. To make optimal use of such data, it is often necessary

to impute missing values. Missing values can for example occur due to noise or malfunctioning

sensors. Unfortunately, imputing missing values can be a very challenging task when the time

series of interest are generated by complex non-linear processes.

Simple techniques like nearest neighbour interpolation treat the data as independent and ignore

temporal dependencies. Linear, polynomial and spline-based interpolation techniques tend to fail

when variables are missing for extended periods of time. It appears that more complicated models

are needed to make good predictions about missing values in high dimensional time-series.

Given a set of observed variables, one can try to define a function that returns a set of predictions

for the values that are missing. Models of this type belong to the discriminative family and are for

example linear regression, support vector machines and multi-layer perceptrons (Bishop, 2006).

Neural networks are interesting candidates for time-series tasks because their connection structure

can be designed to capture prior beliefs about the temporal dependencies. Examples of neural

networks that are able to deal with temporal sequences are recurrent neural networks and one-

c©2013 Philémon Brakel, Dirk Stroobandt and Benjamin Schrauwen.
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dimensional convolutional neural networks (Waibel et al., 1989). However, most models of the

discriminative type assume that the ordering of known and unknown variables is fixed. It is not

always clear how to use them if a variable that was known for one data point has to be predicted for

another and vice versa.

Nonetheless, there has been some work on training neural networks for missing value recovery

in a discriminative way. Nelwamondo et al. (2007) trained autoencoder neural networks to impute

missing values in non-temporal data. They used genetic algorithms to insert missing values that

maximized the performance of the network. Unfortunately it is not straightforward to apply this

method to high dimensional time-series as the required models would be too large for genetic al-

gorithms to remain computationally feasible. Gupta and Lam (1996) trained neural networks for

missing value imputation by using some of the input dimensions as input and the remaining ones

as output. This requires many neural networks to be trained and limits the available datapoints for

each network to those without any missing input dimensions. This method is especially difficult

to apply to high dimensional data with many missing dimensions. Convolutional neural networks

have been trained to restore images (Jain et al., 2007) in a supervised way but in that work the task

was not to impute missing values but to undo the effects of a contaminating process in a way that is

more similar to denoising.

At first sight, generative models appear to be a more natural approach to deal with missing val-

ues. Probabilistic graphical models (Koller and Friedman, 2009) have often been used to model

time-series. Examples of probabilistic graphical models for time-series are Hidden Markov Models

(HMM) and linear dynamical systems. For simple tractable models like these, conditional probabil-

ities can be computed analytically. Unfortunately, these simple models have trouble with the long

range dependencies and nonlinear structures in many of the more interesting data sets. HMMs have

trouble modelling data that is the result of multiple underlying processes because only a single hid-

den state variable is used. The number of states that is required to model information about the past,

grows exponentially as a function of the number of bits to represent. More complicated directed

graphical models often suffer from the so-called explaining away phenomenon (Pearl, 1988).

Undirected graphical models (also known as Markov Random Fields) have been used as well

but tend to be intractable. An example of an intractable model for high dimensional non-linear time

series is the Conditional Restricted Boltzmann Machines (CRBMs; Taylor et al. 2007), which was

used to reconstruct motion capture data.

There are some less conventional approaches to model nonlinear time series in a generative way

as well. A combination of the EM algorithm and the Extended Kalman Smoother can be used to train

certain classes of nonlinear dynamical systems (Ghahramani and Roweis, 1999). The difficulty with

this approach is that fixed radial basis functions need to be used for approximating the nonlinearities

to keep the model tractable. It is not clear how these would scale to higher dimensional state spaces

where radial basis functions become exponentially less effective.

Non-parametric models like the Gaussian process latent variable model (Lawrence, 2003) have

also been used to develop models for sequential tasks like synthesizing and imputing human motion

capture data. A continuation of this work is the Gaussian Process Dynamical Model (Wang et al.,

2008). While models of this type tend to display nice generalization properties for small data

sets, their application to larger data sets is limited because of the need to invert a great number

of kernel matrices that grow cubicly with the number of data points. There has been some work on

improving the computational efficiency of these models by introducing sparsity (Lawrence, 2007)

but parametric graphical models tend to remain more practical for larger data sets.
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We argue that while graphical models are a natural approach to time-series modelling, training

them probabilistically is not always the best strategy when the goal is to use them for missing value

imputation, especially if the model is intractable. The energy-based framework (LeCun and Huang,

2005; LeCun et al., 2006) permits a discriminative view of graphical models that has a couple of

advantages over maximum likelihood learning, especially for a task like missing-value imputation.

• By trying to model the whole joint distribution of a data set, a large part of the flexibility

of generative models is used to capture relationships that might not be necessary for the

task of interest. A model might put too much effort into assigning low likelihoods to types

of data that are very different to the patterns of observed values that will be encountered

during the imputation task. An energy model with a deterministic inference method can make

predictions that are directly optimized for the task of interest itself.

Let’s for example take an image inpainting task where it is known that the corruption often

occurs in the form of large gaps of neighbouring pixels that are missing. In this case, no

information from neighbouring values can be used to reconstruct the missing values in the

center of a gap. A generative model might have put too much emphasis on the correlations

between neighbouring pixels and not be able to efficiently use non-local information. A

model that has been trained discriminatively to deal with this type of data corruption would

not have this problem. Its parameters have only been optimized to learn the correlations that

were relevant for the task without trying to learn the entire distribution over the data.

• Since the normalization constant of many generative models is intractable, inference needs to

be done with methods like sampling or variational inference. Deterministic models circum-

vent this problem.

• Training is intractable as well for many generative graphical models and the design of al-

gorithms that approximate maximum likelihood learning well is still an active area of re-

search (Hyvärinen, 2005; Tieleman, 2008; Tieleman and Hinton, 2009; Desjardins et al.,

2010; Brakel et al., 2012). Some of the popular training algorithms like Contrastive Di-

vergence only work well if it is easy to obtain samples from certain groups of the variables in

the model.

There are some generative architectures that can handle sequential data with non-linear depen-

dencies. Certain types of Dynamical Factor Graphs (Mirowski and LeCun, 2009) are still tractable

when the energy function is designed in such a way that the partition function is remains constant.

Another tractable non-linear dynamical system is based on a combination of a recurrent neural net-

work and the neural autoregressive distribution estimator (Larochelle and Murray, 2011; Boulanger-

Lewandowski et al., 2012). We will discuss Dynamical Factor Graphs and the generative recurrent

neural network model in more detail in Section 7.1 and compare our models with a version of the

latter. Overall, however, discriminative energy-based models allow for a broader class of possible

models to be applied to missing value imputation while maintaining tractability.

The idea of training Markov Random Fields in a discriminative way by using a simple determin-

istic inference procedure is not new and has been used in image and natural language processing. In

image processing, the inpainting (Bertalmı́o et al., 2000) or denoising (Barbu, 2009) of pictures are

thoroughly studied problems. Barbu (2009) proposed Active Random Fields for denoising images.

Active random fields are Fields of Experts (Roth and Black, 2005) that are trained by doing infer-

ence with a couple of iterations of gradient descent. The model parameters are optimized to make
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the gradient descent inference procedure more efficient. In a more recent paper (Domke, 2012),

this approach was extended to more advanced optimization methods like heavy ball (Polyak, 1964)

and BFGS. In a similar fashion, gradients have been computed through message passing to train

Conditional Random Fields more efficiently (Domke, 2011; Stoyanov et al., 2011). In this paper,

we extend their approaches to models for time-series and missing value imputation. To our knowl-

edge, models that were used for image inpainting were either trained in a probabilistic way, or to do

denoising. We show that models can be trained for imputation directly and that the approach is not

limited to gradient based optimization. It can also be applied to models for which inference is done

using the mean-field method. Furthermore, we also show that quite complex models with recurrent

dependencies, that would be very difficult to train as probabilistic models, can be learned this way.

The first model we propose is based on a convolution over the data that is coupled to a set of

hidden variables. The second model is a recurrent neural network that is coupled to a set of hidden

variables as well. In both of these models, inference is done with gradient descent. The third model

is a Markov Random Field with distributed hidden state representations for which the inference

procedure consists of mean-field iterations.

1.1 Training for Missing Value Imputation

Given a sequence V, represented as a matrix of data vectors {v1, · · · ,vT}, let Ω be the set of tuples

of indices (i, j) that point to elements of data vectors that have been labelled as missing. For real-

valued data, a sound error function to minimize, is the sum of squared errors between the values we

predicted V̂ and the actual values V:

L =
1

2
∑

(i, j)∈Ω

(Vi j− V̂i j)
2.

Note that this loss function is only defined for a single data sequence. Since Ω will be sampled

from some distribution, the actual objective that is minimized during training is the expectation of

the sum squared error under a distribution over the missing values as defined for Ndata sequences by

O =
1

2

Ndata

∑
n=1

∑
Ω

P(Ω) ∑
(i, j)∈Ω

(

V(n)i j− V̂(n)i j

)2
. (1)

All our models will be trained to minimize this objective.

The selection of P(Ω) during training is task dependent and should reflect prior knowledge

about the structure of the missing values. If it is known that missing values occur over multiple

adjacent time steps for example, this can be reflected in the choice of P(Ω). For tasks that contain

missing values due to malfunctioning sensors or asynchronous sampling rates, this is pattern likely

to be present. We expect that a good choice of P(Ω) is important but that the objective is robust to

P(Ω) being somewhat imprecise.

1.2 Energy-Based Models and Optimization Based Learning

The models in this paper are inspired by the energy-based framework (LeCun et al., 2006). An

Energy-Based Model (EBM) defines a function E(·) that maps a set of observations V to an energy

value. This energy value represents a measure of the ‘goodness’ of a configuration of the input

variables. Most models for regression and classification can be seen as energy models. For a
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classifier for example, the variables might be the pixels of an image and a binary class label. A well

trained model should assign a lower energy to the image when it is combined with the correct class

label than when it is combined with the incorrect one. Inference in energy-based models is done by

minimizing the energy function and predictions are defined as

V̂(i, j)∈Ω← argmin
V(i, j)∈Ω

E(V;θ), (2)

where θ is the set of model parameters. The set Ω contains the indices of the variables to perform

the minimization over.1

In many cases, one wants to solve the optimization problem in Equation 2 with respect to a

large number of variables and inference is not as simple any more as in the example with the binary

classifier. When the variables of interest are continuous, this optimization problem can be solved

with gradient-based optimization methods (or as we will show coordinate descent) but unfortunately

it can take many iterations to reach the nearest local minimum of the energy function. In this paper,

we use a strategy advocated by Barbu (2009), Domke (2012) and Stoyanov et al. (2011) in which

the optimization algorithm has become part of the model. The optimizer is not necessarily run until

convergence and a prediction is now given by

V̂(i, j)∈Ω← opt-alg
V(i, j)∈Ω

E(V;θ).

To train models of this type and find good values for θ, there will be two levels of optimization

involved. Firstly, inference is done by minimizing the energy function. Subsequently, gradients

with respect to some loss functional are computed through the energy minimization procedure.

These gradients are used to optimize the model parameters θ with a method like stochastic gradient

descent.

Note that the objective function in Equation 1 is defined in terms of the predicted missing vari-

ables. A strict adherence to the energy-based learning framework would require us to use a loss

function that is only defined in terms of energy values. Common loss functions for energy-based

learning are the log likelihood, the generalized perceptron rule and functions that maximize a mar-

gin between the energy values of the desired and undesired configurations of variables (LeCun and

Huang, 2005). Most of those loss functions contain a contrastive term that requires one to identify

some specific ‘most offending’ points in the energy landscape that may be difficult to find when the

energy landscape is non-convex. The method we chose to use essentially circumvents this problem

by transforming the loss into one for which the contrastive term is analytically tractable.

To model complex processes, it is common practice to introduce latent or ‘hidden’ variables

that represent interactions between the observed variables. This leads to an energy function of the

form E(V,H), where H are the hidden variables, which need to be marginalized out to obtain the

energy value for V. To discriminate between the value E(V,H) and the sometimes intractable value

E(V) we will refer to the former as the energy and the latter as the free energy. This summation

(or integration) over hidden variables can be greatly simplified by designing models such that the

hidden variables are conditionally independent given an observation. A model that satisfies this

independence condition is the Restricted Boltzmann Machine (RBM) (Freund and Haussler, 1994;

Hinton, 2002), which is often used to build deep belief networks (Hinton et al., 2006).

1. We used Ω again to signify the search space to clarify the role the missing values will play later on.
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The first two models we will describe have a tractable free energy function E(V) and we chose

to use gradient descent to optimize it. The third model has no tractable free energy E(V) and we

chose to use coordinate descent to optimize a variational bound on the free energy instead.

2. The Convolutional Energy-Based Model

We will call the first model the Convolutional Energy-Based Model (CEBM). The CEBM has an

energy function that is defined as a one dimensional convolution over a sequence of data combined

with a quadratic term and is given by

E(V,H) =
T

∑
t=1

(

‖vt −bv‖
2

2σ2
−hT

t gconv(V, t;W)−hT

t bh

)

, (3)

where bv is a vector with biases for the visible units and H is a set of binary hidden units. The

function gconv(·) is defined by

gconv(V, t;W) = W[vt−k⊕·· ·⊕vt ⊕·· ·⊕vt+k],

for k < t < T −k and equal to zero for all other values of t. The matrix W contains trainable connec-

tion weights and the operator ⊕ signifies concatenation. The value k determines the number of time

frames that each hidden unit is a function of and σ is a parameter for the standard-deviation of the

visible variables which will be assumed to be 1 in all experiments. The set of trainable parameters

is given by θ = {W,bv,bh}. This model has the same energy function as the convolutional RBM

(Lee et al., 2009) and the main difference is the way training and inference are done. See Fig. 1a for

a graphical representation of the convolutional architecture.

The motivation behind this energy function is similar to that of regular RBM models. While

correlations between the visible units are not directly parametrized, the hidden variables allow these

correlations to be modelled implicitly. When they are not observed, they introduce dependencies

among the visible units. The quadratic visual bias term serves a similar role to that of the mean of a

Gaussian distribution and prevents the energy function from being unbounded with respect to V.

To compute the free energy of a sequence V, we have to sum over all possible values of H.

Fortunately, because the hidden units are binary and independent given the output of the function

gconv(·), the total free energy can efficiently be calculated analytically and is given by

E(V) =
T

∑
t

(

‖vt −bv‖
2

2σ2
−∑

j

log
(

1+ exp
(

gconv j(V, t;W)+bh

)

)

)

. (4)

The index j points to the jth hidden unit. See the paper by Freund and Haussler (1994) for a

derivation of the analytical sum over the hidden units in Equation 4.

The gradient of the free-energy function with respect to the function value gconv j(V, t;W) is

given by the negative sigmoid function:

∂E(V)

∂gconv j(V, t;W)
=−

(

1+ exp
(

gconv j(V, t;W)+bh

)

)−1

.

The chain rule can be used to calculate the derivatives with respect to the input of the network. The

derivative of the free energy with respect to the input variables is defined as

∂E(V)

∂vt

=
∂E(V)

∂gconv(V, t;W)

∂gconv(V, t;W)

∂vt

+
vt −bv

σ2
.
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(a) Convolutional structure. (b) Recurrent structure.

(c) Undirected structure.

Figure 1: The two model structures that are used in this paper. The wavy circles represent the hidden

units, the circles filled with dots the visible units and empty circles represent deterministic

functions. The time dimension runs from the left to the right and each circle represents a

layer of units.

3. The Recurrent Energy-Based Model

The second model we propose in this paper is the Recurrent Energy-Based Model (REBM). In this

model, the energy is based on the dynamics that the data elicit in a non-linear dynamical system. In

this case the non-linear dynamical system is instantiated as a Recurrent Neural Network (RNN).

RNNs are interesting models for time-series because they can process sequences of arbitrary

length. Unlike Hidden Markov Models, RNNs have hidden states that are high dimensional dis-

tributed representations of the previous input patterns.

The energy function of the REBM is again defined by Equation 3 but gconv is replaced by

grec(V, t;θRNN) = Axt +Bvt +br,

xt = tanh(Cxt−1 +Dvt +bx) 1 < t ≤ T,

where A, B, C and D are matrices with network connection parameters and br and bx are the bias

vectors of, respectively, the output variables and the hidden state variables X. The total set of

trainable parameters for this model is given by θ = {bh}∪θRNN with θRNN = {A,B,C,D,br,bx}.
See Fig. 1b for a graphical representation of the recurrent architecture.

In most situations, predictions by an RNN only depend on the previous input patterns. For the

REBM however, the energy function depends on the full input sequence. This allows predictions to

be based on future observations as well.

This model is similar to the Recurrent Temporal Restricted Boltzmann Machine (Sutskever

et al., 2008) but in our model the units that define the energy are in a separate layer and the visible

variables are not independent given the hidden variables. It is also similar to the Recurrent Neural

Network Restricted Boltzmann Machine (Boulanger-Lewandowski et al., 2012) that will be used as

a baseline in our experiments.
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4. The Discriminative Temporal Boltzmann Machine

The third model is inspired by the work on Deep Boltzmann Machines (Salakhutdinov and Hinton,

2009) and variational inference. In this model, the hidden units are connected over time in a way

that is similar to an undirected version of the factorial Hidden Markov Model (Ghahramani and

Jordan, 1997). Unlike the factorial Hidden Markov Model however, the hidden variables are not just

connected in temporal chains that would be independent given the input (note that this statement

is only true for undirected graphs). In this model, every hidden unit at a certain time step t is

connected to every hidden unit at time t +1 and time t−1. This allows the model to use distributed

representations that are highly interconnected. The hidden units are again binary and take values

from {−1,1}. The energy of the model is defined by the following equation:

E(V,H) =
T

∑
t=1

(

‖vt −bv‖
2

2σ2
−hT

t−1Wht −hT

t Avt −hT

t bh

)

,

where h0 is defined to be 0. Note that this energy function is very similar to Equation 3, but the

convolution has been replaced with a matrix multiplication and there is an additional term that

parametrizes correlations between hidden units at adjacent time steps. The structure of the model is

shown in Fig. 1c. This model can also be seen as a Deep Boltzmann Machine in which every layer

is connected to a different time step of the input sequence. Because this model has the structure of a

Boltzmann Machine time-series model and will be trained in a discriminative way, we will refer to

the model as the Discriminative Temporal Boltzmann Machine (DTBM). This model is very similar

to the one proposed in Williams and Hinton (1991) for discrete data but the way in which we will

train it is very different.

4.1 Inference

Since the hidden units of the DTBM are not independent from each other, we are not able to use

the free energy formulation from Equation 4. Even when values of the visible units are all known,

inference for the hidden units is still intractable. For this reason, we use variational mean-field

to minimize the free energy. Compared to other approximate inference algorithms like loopy belief

propagation, variational mean-field is relatively computationally efficient as the number of messages

to compute is equal to the number of variables rather than their pairwise interactions. In the DTBM

the number of pairwise interactions is very large compared to the actual number of variables.

The mean-field approximation can be motivated with ideas from variational inference. In the

variational inference framework, inference is cast as an optimization problem (Wainwright and Jor-

dan, 2008). Approximations can now be constructed by relaxing the optimization problem in some

way. In the mean-field approach, the optimization is simplified by limiting the set of functions that

are used to approximate the function of interest. For probabilistic models, this often means that a

simple, tractable, distribution is optimized to be as close as possible to the more complicated, in-

tractable distribution. This is done by optimizing a lower bound on the log likelihood. Optimizing

this bound is equivalent to minimization of the Kullback-Leibler divergence between the approxi-

mating and target distributions. The simplest way of selecting an approximating distribution, is by

dropping all dependencies between the variables. In other words, the approximating distribution

takes the form of a product of one-dimensional distributions. This is commonly referred to as naive

mean-field.
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In the original training procedure for the Deep Boltzmann Machine (Salakhutdinov and Hinton,

2009), the free energy is replaced by a variational lower-bound on the log likelihood. Given a set of

known variables x and a set of unknown variables y, this bound can be written as

ln p(x)≥∑
y

q(y|x;u) ln p(x,y)+H (q),

where q(·) is an approximating distribution with parameters u and H (·) is the entropy functional.

If the approximating distribution is chosen to be a fully factorized Bernoulli distribution of the

form ∏
T
t=1 ∏

Nh

j=1 q(h jt |u jt), with q(h jt = 1|u jt) =
1
2
(u jt + 1), q(h jt = −1|u jt) =

1
2
(1− u jt) and Nh

the number of hidden units, a simple algorithm can be derived that optimizes the set U ∈ (0,1)Nh×T

of variational parameters to maximize the bound. While the Deep Boltzmann Machine is originally

trained by approximating the free energy component of the gradient with the variational method and

the term of the gradient that comes from the partition function with sampling methods, we will only

use the variational optimization as our inference algorithm.

Because the distribution will now also be defined over some of the visible units that have been

labelled as missing, the variational distribution is augmented with the appropriate number of one-

dimensional Gaussian distributions of unit variance of the form q(v|û) = N (v|û,1). The lower

bound now has the following form:

ln p(V\Ω)≥ B(Ū) =
T

∑
t=1

(

−
‖vt −bv‖

2
\Ω

2σ2
+uT

t−1Wut +uT

t bh

−
‖ût −bv‖

2
Ω

2σ2
+ ∑

k,i∈Ω

Akiukt ûit + ∑
k,i6∈Ω

Akiuktvit

−
Nh

∑
j=1

(

u jt +1

2
ln

u jt +1

2
+

1−u jt

2
ln

1−u jt

2

)

)

+
1

2
Nû ln(2πeσ2)− lnZ(θ),

where Ω is the set of indices that point to the variables that have been labelled as missing, Nû is the

number of Gaussian variables to predict (i.e., the number of missing values) and Ū is the set of all

mean field parameters U∪ Û. Note that an upper bound on the free energy is now defined as

E(V\Ω)≤−B(Ū)− lnZ(θ).

Optimizing this bound will lead to values of the variational parameters that approach a mode of the

distribution in a similar way that a minimization of the free energy by means of gradient descent

will. Setting the gradient of this bound with respect to the mean-field parameters to zero, leads to

the following update equations:

ut ← tanh(WTut+1 +Wut−1 +bh +Aût), (5)

ût ← bv +ATut . (6)

Note that only the variables û that correspond to missing values get updated.

Ideally, the variational parameters for the hidden units should be updated in an alternating fash-

ion. The odd units will be mutually independent given the visible variables and the even hidden vari-

ables and vice versa. Results about coordinate descent (Bertsekas, 1999) show that the algorithm
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is guaranteed to converge to a local minimum of the free energy surface because every individual

update achieves the unique minimum for that update and the updates are linearly independent.

The model will be trained to make the variational inference updates more efficient for imputa-

tion. The naive mean-field iterations will approach a local mode of the distribution and the values of

the parameters û can be directly interpreted as predictions. Note that Salakhutdinov and Larochelle

(2010) proposed a method that hints in this direction by training a separate model to initialize the

mean-field algorithm as well as possible.

5. Computing Loss Gradients

To train the models above, it is necessary to compute the gradient of the loss function with respect

to the parameters. The loss gradients of both the models that use gradient descent inference can be

computed in a similar way. For these models, only the gradient of the energy is different. Since the

DTBM uses a different inference procedure, we describe the computation of its loss gradient in a

separate subsection.

5.1 Backpropagation Through Gradient Descent

To train the models that use gradient descent inference (i.e., the convolutional and recurrent models),

we backpropagated loss gradients through the gradient descent steps like in Domke (2011). Given

an input pattern and a set of indices that point to the missing values, a prediction was first obtained

by doing K steps of gradient descent with step size λ on the free energy. Subsequently, the gradient

of the mean squared error loss L with respect to the parameters was computed by propagating errors

back through the gradient descent steps in holder variables V̄ and θ̄ that in the end contained the

gradient of the error with respect to the input variables and the parameters of the models (we use θ

as a place holder for both the biases and weights of the models). Note that this procedure is similar

to the backpropagation through time procedure for recurrent neural networks. The gradient with

respect to the parameters was used to train the models with stochastic gradient descent. Hence,

the models were trained to improve the predictions that the optimization procedure came up with

directly.

Backpropagation is an application of the chain rule to propagate the error gradient back to the

parameters of interest by multiplication of a series of derivatives. A single gradient descent inference

step over the input variables is given by

V̂k+1← V̂k−λ∇VE(V̂k;θ). (7)

By application of the chain rule, the gradient of the loss with respect to the parameters θ is given by

∂L

∂θ
=

K

∑
k=1

∂L

∂V̂k

∂V̂k

∂θ
. (8)

Assuming a value of k that is smaller than K−1 the gradient of the loss with respect to one of the

intermediate states of the variables V̂k is given by

∂L

∂V̂k
=

∂L

∂V̂K

∂V̂K

∂V̂K−1
· · ·

∂V̂k+1

∂V̂k
.
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To propagate errors back we need to know ∂V̂k+1/∂V̂k. Differentiating Equation 7 with respect to

V gives

∂V̂k+1

∂V̂k
= I−λ

∂2E(V̂k;θ)

∂V∂VT
.

Similarly, to complete the computation in Equation 8, we also need to know ∂V̂k+1/∂θ to propagate

the errors back to the model parameters. This partial derivative is given by

∂V̂k+1

∂θ
=−λ

∂2E(V̂k;θ)

∂θ∂VT
.

Since we are using gradients of gradients, we need to compute second order derivatives. Both

of these second order derivatives are matrices that contain a very large number of values but fortu-

nately there are methods to compute their product with an arbitrary vector efficiently (Domke, 2012;

Pearlmutter, 1994). It is never required to explicitly store these values.

One way to compute the product of the second order derivative with a vector is by finite differ-

ences using
df

dyT
v≈

1

2ε
(f(y+ εv)− f(y− εv)) .

The error of this approximation is O(ε2). Another way to compute these values is by means of

automated differentiation or the R operator (Pearlmutter, 1994). In software for automated dif-

ferentiation like Theano (Bergstra et al., 2010), the required products can be computed relatively

efficiently by taking the inner product of the gradient of the energy with respect to the input and

the vector to obtain a new cost value. The automated differentiation software can now be used to

differentiate this new function again with respect to the input and the parameters.

We found that, even when applied recursively for three steps in single precision, the finite dif-

ferences approximation was very accurate. For the CEBM, the mean squared difference between

the finite differences based loss gradients and the exact gradients was of order 10−3, while the vari-

ance of the gradients was of order 102. In preliminary experiments, we didn’t see any effect of the

approximation on the actual performance for this model.

Since the finite difference approximation was generally faster than the exact computation of

the second order derivatives, we used it for most of the required quantities. For the REBM we

used finite differences with ε = 10−7 in double precision. For the CEBM we found that automatic

differentiation for the second order derivative with respect to the parameters was faster so for this

quantity we used this method instead of finite differences. The CEBM computations were done on

a GPU so we had to use single precision with ε = 10−4.

See Algorithm 1 for more details about the backpropagation through gradient descent procedure.

In the algorithm we omitted that all references to the data only concern the missing values to avoid

overly complicated notation.

5.2 Backpropagation Through Mean-Field

Computing error gradients for the mean-field based model is possible by backpropagating errors

through the mean-field updates. Intuitively, this model can be seen as a bi-directional recurrent

neural network with tied weights. The derivatives of the update Equations 5 and 6 are easy to

compute using the derivatives of the hyperbolic tangent function and linear operations:

∂ tanh(Wz)

∂z
= WT(1− tanh(Wz)2).
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Algorithm 1 Compute the error gradient through gradient descent

Initialize V̂0

for k = 0 to K−1 do

V̂k+1← V̂k−λ∇V̂E(V̂k;θ)
end for

V̄K ← ∇L(V̂K) = V̂K−V

θ̄← 0

for k = K−1 to 0 do

θ̄← θ̄−λ
∂2E(V̂k;θ)

∂θ∂VT
V̄k+1

V̄k← V̄k+1−λ
∂2E(V̂k;θ)

∂V∂VT
V̄k+1

end for

Return ∇θL = θ̄

� �

✁ ✂ ✂ ✁ ��

✂

Figure 2: Flow of information due to mean-field updates. The numbers represent the separate itera-

tions at which both the hidden units and the unknown visible units are updated.

However, to make it easy to experiment with the number of mean-field iterations, we used automated

differentiation for this.

While the number of gradient descent steps for the convolutional model and the recurrent neural

network model can be very low, the number of mean-field iterations has a more profound influence

on the behavior of the model. This is because the number of mean-field iterations directly deter-

mines the amount of context information that is available to guide the prediction of the missing

values. If for example, five iterations of mean-field are used, the activation in the hidden variables at

a certain time frame ht will be influenced by the five frames of visible variables to the left and right

of it and by the known values of vt ; every vector of hidden units now depends on eleven frames of

visible units. So a greater number of mean-field iterations increases the range of the dependencies

the model can capture. This flow of information is displayed for three iterations in Fig. 2.

Using backpropagation through variational optimization updates is referred to as variational

mode learning (Tappen, 2007). In Tappen (2007), Fields of Experts were trained by backpropagating

loss function gradients through variational updates that minimized a quadratic upper bound of the

loss function. This specific approach would not work for the type of model we defined here.

6. Experiments

We did experiments on three data sets. The first data set consisted of concatenated handwritten

digits, the second data set contained marker positions from motion capture recordings and the third

data set sensor readings from a mobile robot. The last experiment also investigated the robustness

of the models when there were not only missing values in the test set but also in the train data.
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To compare our approach with generative methods, we also trained a Convolutional RBM with

the same energy function as the Convolutional Energy-Based Model all these data sets. Between

these two models, the training method is the only thing that makes them different. Furthermore, we

also trained a Recurrent Neural Network Restricted Boltzmann Machine (RNN-RBM; Boulanger-

Lewandowski et al. 2012). This model is quite similar to the REBM as it also employs separate

sets of deterministic recurrent units and stochastic hidden units. The structure of the RNN-RBM

is the same as the architecture in Fig. 1b but the hidden units are connected to the next time step

instead of the current one and those connections are undirected. This makes it possible to use

Contrastive Divergence learning but also renders the model unable to incorporate future information

during inference because the information from the recurrent units is considered to be fixed. Training

a recurrent model that incorporates this kind of information with Contrastive Divergence would

require something like Hybrid Monte Carlo (Duane et al., 1987). Unfortunately, Hybrid Monte

Carlo requires careful tuning of the number and size of leap frog steps and is known to be less

efficient than block Gibbs sampling.

For the Energy-Based models we used the same inference procedure as during training. For

the Convolutional RBM and RNN-RBM we used mean-field iterations that were run until the MSE

changed less than a threshold of 10−5. For the RNN-RBM this was done by initializing the missing

values of a single time step with the values of the corresponding dimensions at the previous time-

step, running mean-field to update them, passing these new values through the recurrent neural

network and repeating this procedure for all remaining time-steps. This procedure proved to be

more accurate than Gibbs sampling which was originally used to generate sequences with this model

(Boulanger-Lewandowski et al., 2012).

6.1 Concatenated Handwritten Digits

To provide a qualitative assessment of the reconstruction abilities of the models, we used the USPS

handwritten digits data set (http://www.cs.nyu.edu/˜roweis/data/usps_all.mat). While the

task we trained the models on is of little practical use, visual inspection of the reconstructions allows

for an evaluation of the results that may be more insightful than just the mean squared error with

respect to the ground truth.

6.1.1 DATA

The USPS digits data set contains 8-bit grayscale 28×28 pixel images of the numbers ‘0’ through

‘9’. Each class has 1100 examples. To turn the data into a time-series task, we randomly permuted

the order of the digits and concatenated them horizontally. This sequence of 28 dimensional vectors

was split into a train set, a validation set and a test set that consisted of respectively 80% and two

times 10% of the data.

6.1.2 TRAINING

Good settings of the hyper parameters of the models were found with a random search2 over 500

points in the parameter space, followed by some manual fine-tuning to find the settings that led

to minimal error on the validation set. After this, the models were trained again on both the train

2. The set of hyper parameters included the variances of the Gaussian distributions from which initial weight matrices

were sampled, initial learning rates. The numbers of units in each layer were searched over in multiples of 50 up till

300 units.
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Inference iterations Learning rate Hidden units

CEBM 3 .005 300

REBM 5 .001 50

DTBM 15 .0005 500

Conv. RBM N/A .0005 300

RNN-RBM N/A 1.8 100

Table 1: Parameter settings for training the models on the USPS data. The learning rates were

always divided by the lengths of the sequences during training.

and the validation data with these settings. Since the CEBM, DTBM and Convolutional RBM are

very parallel in nature, we used a GPU for their simulations. All models were trained for 100,000

epochs on randomly selected mini batches of 100 frames. Linearly decaying learning rates were

used. Table 1 shows the settings of the hyper parameters. After some preliminary experimentation

we found that we got better results for the CEBM by initializing the biases of the hidden units at -2

to promote sparsity. We used a step size of .03 for the gradient descent inference algorithm of the

CEBM. The REBM had 200 recurrent units and we used a step size of .2 for the gradient descent

inference. The CEBM and the Convolutional RBM had a window size of 7 time frames. The RNN-

RBM had 200 recurrent units. Note that the best RNN-RBMs also had more hidden units than the

best performing REBMs.

The Convolutional RBM was trained with the Contrastive Divergence algorithm (CD; Hinton

2002). We found that we got better results with this model if we increased the number of CD

sampling steps over time. Initially a single CD step was used. After 20,000 iterations this number

was increased to 5, after 50,000 to 10 and after 75,000 to 20. We did not find any benefits from

stimulating sparsity in this model. For the RNN-RBM we found that a fixed number of 5 CD

sampling steps gave the best results.

Missing values were generated as 20 square shaped gaps in every data sequence. The gaps were

positioned at uniformly sampled locations. The size of each square was uniformly sampled from

the set {1,2, . . . ,8}. Fig. 3a shows an example of missing values that were generated this way for

six sequences. Fig. 3c shows an example of data that has been corrupted by this pattern of missing

values.

For this experiment, the Energy-Based Models that required missing values during training were

provided with missing values from the same distribution that was used to select them for evaluation.

To control for the random initialization of the parameters and the randomness induced by stochastic

gradient descent, we repeated every experiment 10 times.

6.1.3 RESULTS

Quantitatively, the DTBM achieved the best performance as can be seen in Table 2. The CEBM and

REBM performed on a similar level, while the Convolutional RBM and the RNN-RBM performed

far worse. Fig. 3 shows how the models reconstructed six damaged sequences from the test data.

The reconstructions by the Convolutional RBM in Fig. 3g seem to be of a lower quality than those

from the other models and look more blurry. This is consistent with the MSE scores. However,

just looking at the MSE scores does not seem to give the full picture as the reconstructions of the

CEBM look more smeared out and blurry than those of the REBM even though the MSE scores
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Train Test

CEBM .48(.0082) .49(.0089)
REBM .47(.01) .48(.0067)
DTBM .44(.011) .45(.0088)

Conv. RBM .66(.011) .66(.0085)
RNN-RBM .71(.0056) .73(.0062)

Table 2: Means and standard deviations of the results in mean squared error on the USPS data.

(a) Mask (b) Original data (c) Corrupted data

(d) CEBM (e) REBM (f) DTBM

(g) Conv. RBM (h) RNN-RBM

Figure 3: Visual representations of the reconstruction of six sequences of handwritten digits. The

reconstructions are produced by the CEBM, the REBM, the DTBM, the Convolutional

RBM and the RNN-RBM.
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of these models are similar. The DTBM provided reconstructions that look similar in quality to

those of the REBM. The RNN-RBM has a very bad MSE score while its reconstructions look very

sharp when they are correct. Somehow, this model seems to be too sure in cases where it is not

able to fill in the data well. This may be due to the fact that the reconstructions are generated

on a frame-by frame basis while the deterministic models and the Convolutional RBM can update

their predictions from previous iterations. This causes bad predictions to be propagated and possibly

amplified. Unfortunately this problem is intrinsic to the choice to keep sampling tractable by treating

the recurrent mapping as fixed context information.

6.2 Motion Capture

For the second experiment we applied the models to a motion capture data set. In visual motion

capture, a camera records movements of a person wearing a special suit with bright markers attached

to it. These markers are later used to link the movements to a skeleton model. Missing values can

occur due to lightning effects or occlusion. Motion capture data is high dimensional and generated

by a non-linear process. This makes motion capture reconstruction an interesting task for evaluating

more complex models for missing value imputation.

In previous work (Taylor et al., 2007), a Conditional Restricted Boltzmann Machine (CRBM)

was trained to impute missing values in motion capture as well. For comparison we also train a

CRBM but note that a direct comparison of performance is not fair because the CRBM only uses

information from a fixed number of previous frames to make predictions.

6.2.1 DATA

The data consisted of three motion capture recordings from 17 marker positions represented as three

49-dimensional sequences of joint angles. The data was down sampled to 30Hz and the sequences

consisted of 3128, 438, and 260 frames. The first sequence was used for training, the second for

validation and the third for testing. The sequences were derived from a subject who was walking

and turning and come from the MIT data set provided by Eugene Hsu.3 The data was preprocessed

by Graham Taylor (Taylor et al., 2007) using parts of Neil Lawrence’s Motion Capture Toolbox.

6.2.2 TRAINING

Again, good settings of the hyper parameters of the models were found with a random search on the

parameter space, followed by some manual fine-tuning to find the settings that led to minimal error

on the validation set. The models were trained on mini batches of 140 frames. Table 3 shows the

hyper parameter settings of the models. Note that the best RNN-RBMs had again more hidden units

than the best REBMs. Additionally, the inference step sizes of the CEBM and the REBM were both

set to .2. The CEBM and the Convolutional RBM had a window size of 15 time frames. All models

were trained for 50,000 iterations. The REBM had 200 recurrent units. To train the Convolutional

RBM, single iteration CD training was used during the first 10,000 epochs. Five iterations of CD

were used during the remaining training epochs. The CRBM was trained with single iteration CD.

Finally, the RNN-RBM had 200 recurrent units and was trained with 5 CD iterations. All models

were trained for a total of 50,000 epochs.

3. The data set can be found at http://people.csail.mit.edu/ehsu/work/sig05stf/.
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Inference iterations Learning rate Hidden units

CEBM 3 .5 200

REBM 5 .001 50

DTBM 10 .002 200

CRBM N/A .0001 200

Conv. RBM N/A .001 200

RNN-RBM N/A 2.14 100

Table 3: Parameter settings for training the models on the motion capture data. The learning rate

values were divided by the lengths of the sequences during training.

The CEBM, REBM and DTBM were again trained by labeling random sets of dimensions as

missing. The number of missing dimensions was sampled uniformly. The specific dimensions were

then randomly selected without replacement. The duration of the data loss was sampled uniformly

between 60 and 125 frames. This adds some bias towards situations in which the same dimensions

are missing for a certain duration. This seems to be a sensible assumption in the case of motion

capture data and it is an advantage of the training method that it is possible to add this kind of in-

formation. To control for the influence of the randomly initialization of the parameters, we repeated

every experiment 10 times.

Finally, Nearest neighbour interpolation was done by selecting the frame from the train set with

minimal Euclidean distance to the test frame according to the observed dimensions. The distances

were computed in the normalized joint angle space.

6.2.3 EVALUATION

To evaluate the models, a set of dimensions was removed from the test data for a duration of 120

frames (4 seconds). This was done for either the markers of the left leg or the markers of the

whole upper body (everything above the hip). Because the offset of this gap was chosen randomly

and because the CRBM had a stochastic inference procedure, this process was repeated 500 times

to obtain average mean squared error values for both the train and the test data. Note that this

distribution of missing values was quite different from the one that was used during training.

The CRBM was used in a generative way by conditioning it on the samples it generated at the

previous time steps while clamping the observed values and only sampling those that were missing

as was done the work by Taylor et al. (2007). Preliminary results showed that this led to similar

results to the use of mean-field or minimization of the model’s free energy to do inference.

6.2.4 RESULTS

Table 4 shows the mean squared error between the reconstructed dimensions of the data and their

actual values. The convolutional and recurrent models clearly outperform the CRBM and nearest

neighbour interpolation on the reconstruction of the left leg. The CEBM and the DTBM have the

best performance but a comparison of the train and test error scores suggests that the REBM might

display better generalization properties. The CRBM seems to suffer most from overfitting. The

results of the Convolutional RBM are only slightly worse than the CEBM and better than those of

the REBM for the reconstruction of the left leg, but far worse for the upper body where a greater

number of variables were missing. The RNN-RBM performed similar to the Convolutional RBM
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Left leg Upper body

Train Test Train Test

CEBM .18(.0036) .29(.011) .47(.023) .46(.017)
REBM .22(.0047) .33(.017) .47(.014) .42(.014)
DTBM .17(.0069) .28(.017) .43(.021) .45(.011)

CRBM .25(.0036) .44(.014) .51(.023) .49(.0065)
Conv. RBM .16(.0038) .36(.027) .48(.015) .68(.035)
RNN-RBM .18(.0055) .36(.023) .45(.017) .60(.055)
Nearest neighb. N/A .45 N/A .76

Table 4: Means and standard deviations of the results in mean squared error on the motion capture

data.

Figure 4: Plots of two dimensions reconstructed by the DTBM next to the actual data. For this

sequence the markers of the left leg were missing in the region between the vertical striped

lines.

when reconstructing the markers of the missing leg. It performed slightly better at reconstructing the

missing upper body than the Convolutional RBM but still a lot worse than the three deterministic

models. Fig. 4 shows plots of the predictions made by the DTBM for two of the markers for a

sequence from the test data.

6.3 Missing Training Data

So far, all experiments were done by training on data without actual missing values; values were only

truly unknown during testing. In practice, a useful model for missing value imputation should also

be able to deal with actual missing values in the train set. For generative models, missing values

in the train data shouldn’t pose a problem because they can be marginalized out. For intractable

models like RBMs however, this marginalization can easily become infeasible. For the models we

proposed in this paper, missing values in the train data are easily dealt with. During training, the

energy is optimized with respect to both the variables for which no ground truth value is available

and those that have artificially been labelled as missing. The loss however, is only computed for the
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Inference iterations Learning rate Hidden units

CEBM 3 .65 300

REBM 3 .0007 100

DTBM 5 .002 300

Conv. RBM N/A .00012 300

RNN-RBM N/A .15 50

Table 5: Parameter settings for training the models on the robot data. The learning rates were always

divided by the lengths of the sequences during training.

artificially created missing values for which the ground truth is known. A very similar method has

been used in earlier work to train neural networks for classification when missing values are present

(Bengio and Gingras, 1996).

To see how well our models deal with missing training data, we conducted an additional series

of experiments.

6.3.1 DATA

The data we used to investigate the effect of missing training data consists of the measurements

of the 24 ultrasound sensors of a SCITOS G5 robot navigating a room (Freire et al., 2009; Frank

and Asuncion, 2010). The 5456 sensor readings were sampled at a rate of 9Hz and the robot was

following the wall of the room in a clockwise direction, making four trips around the room. We

used 80% of the data for training and split the remaining 20% up in a validation set and a test set.

6.3.2 TRAINING

In the first experiment, we trained the models on fully intact training data to get an estimate of the

optimal performance the models could achieve on it. In this experiment we also compare the results

with those of the Convolutional RBM and the RNN-RBM. In the second experiment, we generated

a mask for the whole train set. The mask was divided in regions of 100 frames and at each of these

regions a randomly selected set of dimensions was labelled as missing. To train the models, we

selected random batches of 100 frames from the train data and selected another set of variables as

missing that were not already truly missing in the data. This way, the models never had access to

the values that were labelled as missing by the training data mask. To investigate the robustness of

the models, we varied the amount of data that was damaged in the train set. In both experiments, the

number of dimensions that we pretended to be missing in order to train the models was uniformly

sampled from {1, . . . ,5}. All models were trained for 100,000 epochs.

The hyper parameter settings were obtained in the same way as in the previous experiments

and are displayed in Table 5. Additionally, the Convolutional RBM and CEBM had a window

size of 5 and the REBM had 200 recurrent units. The step sizes for the CEBM and REBM were

respectively .016 and .7. The CEBM and the Convolutional RBM had a window size of 5 time

frames. The Convolutional RBM was trained with the same Contrastive Divergence scheme as in

the handwritten digits experiment. The RNN-RBM had 250 recurrent units and was trained with

5 iterations of Contrastive Divergence. Somehow the best performing RNN-RBMs had this time

fewer hidden units than the best performing REBMs. We used these settings for all the experiments,

regardless of the number of missing training dimensions.
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Train Test

CEBM .27 .43

REBM .41 .39

DTBM .29 .34

Conv. RBM .53 .47

RNN-RBM .38 .54

Table 6: Results in mean squared error on the wall robot data without missing dimensions during

training.

Figure 5: Mean square error as a function of the number of missing dimensions in the train data.

6.3.3 RESULTS

Table 6 shows the results for the experiment without missing train data. The DTBM had the best

performance, followed by the REBM, the CEBM, the Convolutional RBM, and the RNN-RBM

respectively. Surprisingly, the CEBM has a far better score on the train data than the REBM while

its test error is higher. This seems to be a sign of overfitting. The REBM is probably slightly

underfitting as its training error was even a little bit higher than its test error. The RNN-RBM

obtained a slightly better score on the train data than the REBM but performed a lot worse on the

test set.

Fig. 5 shows the error scores for the three energy-based models as a function of the number of

missing input dimensions. Obviously, as more dimensions are missing, there is less data available to

train on and the error scores of all the models are rising. For the DTBM and REBM, the error seems

to increase at a modest pace initially and when just a single value is missing, the performance is

similar to the first experiment. The CEBM has more trouble with missing values and is not learning

to reconstruct the data well any more after about 10 dimensions are missing. We interpret these

results as an upper bound on the error scores one could potentially achieve by doing more extensive

hyper parameter tuning for each individual level of data corruption.

7. Discussion

In all the experiments we did, the discriminatively trained models outperformed the baseline meth-

ods. The most interesting result is that the CEBM often performed much better than the Convolu-
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tional RBM. This indicates that our training strategy is more suited for missing value imputation

than the Contrastive Divergence algorithm. The REBM also outperformed the RNN-RBM. While

this comparison is less valid because the two models are not entirely the same, it still suggests that

our training method also works better for recurrent architectures. The DTBM outperformed all other

methods in all of the experiments except for reconstructing the upper body markers of the motion

capture data set where the REBM performed better. Given that it is also the easiest model to imple-

ment and relatively computationally efficient compared to the other models, this model seems to be

the most promising candidate for practical applications.

We didn’t show that our method outperforms maximum likelihood learning because Contrastive

Divergence is not optimizing the actual likelihood of the model. However, it seems to be the most

popular method for training these kind of models when true maximum likelihood learning is in-

tractable. We actually suspect that, compared to other approximate maximum likelihood methods,

Contrastive Divergence is still one of the best candidates for missing value imputation because it

optimizes the energy landscape locally by pushing up wrong predictions that are near the data itself.

When the number of missing values is not too large, inference would start near one of the regions

in which the energy landscape has a shape that promotes good predictions. When the number of

missing values is too high however, the inference algorithm might start in a region that was not

explicitly shaped by the learning algorithm because it was too far away from the data. This might

explain the bad performance of the Convolutional RBM when the whole upper body was missing

in the motion capture task. The CRBM and (to a lesser extent) the RNN-RBM were more robust in

this situation.

7.1 Relation to Other Models

As mentioned before, our training algorithm is based on the work by Domke (2011) with the main

difference that we optimize a loss function that only considers a subset of the data variables. Ex-

cept for the CEBM, our models also have a far more complicated structure and we think that the

discriminative training methods are not just more computationally efficient but actually allow us to

train models that would otherwise be very difficult to train at all.

Our work is also related to the training of Dynamical Factor Graphs (DFG; Mirowski and LeCun

2009). DFGs are used as generative models, but the way they are trained is more similar to the

energy-based learning framework. The types of DFGs that have been studied so far are similar to

our REBM model in that they employ both recurrent connections and latent variables. An important

difference is that in the REBM the latent variables are not involved in the recurrent part of the model.

By constraining the latent states of a DFG to operate under Gaussian noise with fixed covariance,

the partition function of the model becomes constant so that a minimization of the energy for a

certain state will automatically push up the energy values of all other possible states. The model is

not fully probabilistic as it aims to align its maximum a posteriori hidden states with the observed

data instead of the sum over all their possible values.

Inference for missing values in DFGs is done with gradient descent to find the minimum energy

latent state sequence, ignoring the missing values in the gradient computations. Subsequently, the

missing values are predicted as a function of this latent state sequence. There are a couple of

important differences with our approach:

• Our models don’t aim to provide generative models of the data.
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• The CEBM and REBM models use only a limited number of gradient descent updates while

for DFGs this minimization is run until convergence.

• In the CEBM and REBM, energy minimization only takes place with respect to the missing

values and not with respect to the latent variables which are marginalized out analytically.

It seems that some of the ideas behind DFGs are orthogonal to our approaches and may be combined

to design new interesting models.

Recently, a generative model called NADE (Larochelle and Murray, 2011) was proposed in

which the mean-field algorithm inspired a model similar to the Restricted Boltzmann Machine (Fre-

und and Haussler, 1994; Hinton, 2002), but with a tractable inference algorithm. In this model, a

single iteration of mean-field is used to approximate a set of conditional distributions that are com-

bined into a generative model. Our mean-field based model is substantially different in that it doesn’t

try to learn a joint distribution over all the variables and that mean-field is also used to estimate the

influence of connections between the hidden variables. NADE has been combined with a recurrent

neural network to construct a sequential model for note patterns in music (Boulanger-Lewandowski

et al., 2012). This model is practically the same as the RNN-RBM we used as a baseline but with

the RBM replaced by the NADE model. To our knowledge, NADE has not been applied to continu-

ous data yet, unlike the Recurrent Temporal Restricted Boltzmann Machine (Sutskever et al., 2008),

which is more similar to the RNN-RBM.

Adding artificial corruption to the data and training a model to reconstruct it is similar to the

way denoising autoencoders are trained (Vincent et al., 2008). The most important difference is that

our models only focus on recovery of the missing values given the observed variables and not on

reconstructing both.

The way the DTBM model dealt with missing training data in Section 6.3, is very similar to a

method for dealing with missing values in neural networks that was presented more than a decade

ago (Bengio and Gingras, 1996). In this method, missing values are also filled in by updating them

as if they are part of a recurrent neural network. An important difference with our work is that in

the work by Bengio and Gingras (1996) the goal was not to predict the missing values themselves,

but to perform better on classification tasks when missing values in the inputs are present.

It turns out that the architecture of the DTBM has also been proposed for learning to discriminate

between sequences (Williams and Hinton, 1991). In this work, a version of the mean field algorithm

that is inspired by simulated annealing is ran until convergence and the training algorithm aims

to maximize the lower bound on the likelihood for one class of sequences, while lowering it for

the remaining classes. Running mean-field iterations until convergence can make training very

inefficient so it might be interesting to see how backpropagation through mean-field performs for

tasks of this type.

7.2 Limitations

A downside of our models is that they can take quite long to train. For the CEBM and the DTBM,

this problem can be alleviated by using GPU parallelization but unfortunately this is not possible

for the REBM. It would probably not have been feasible to train this model with a more generic

approach in which the energy optimization would have to be executed until convergence for every

training sample during training. However, once training is done, inference for new sequences of

data is quite fast. The models took far less time to evaluate than the Convolutional RBM for which

mean-field had to be run until convergence to make predictions.

2792



ENERGY-BASED MODELS FOR TIME-SERIES IMPUTATION

Another downside of our approach is that it introduces new hyper parameters to tune. These

are the number of inference iterations and for the CEBM and the REBM also the step size of the

gradient descent algorithm. Because of this, we found it easier to find good settings for the DTBM

than for the CEBM and REBM. This problem could be solved to some extent by using an optimizer

for inference in the CEBM and the REBM that doesn’t need a step size parameter. LBFGS has

been shown to work quite well for optimization based inference (Domke, 2011) but is a lot more

complicated to implement.

The REBM was the most difficult model to train even though it sometimes performed better

than the CEBM. It seems to be more sensitive to the initial hyper parameter settings than the other

models. As more hidden units were used, these models became more difficult to optimize and this

explains why the optimal number of hidden units was generally lower than for the other models. We

think this problem occurs because the energy gradient is computed with backpropagation through

time over relatively long sequences. The gradients of recurrent neural networks are known to be

prone to exponential growth or decay and a single bad gradient can lead to a divergence of the

learning algorithm. Larger numbers of hidden units tend to lead to larger values in the gradients,

making problematic weight updates more frequent. In preliminary results we found that this prob-

lem can be solved to some extent by normalizing the loss gradient before updating the weights. The

DTBM might suffer less from this problem because the number of backpropagation steps that are

used is smaller.

Since the number of mean-field iterations of the DTBM is directly related to the length of the

temporal dependencies it can model, it might not be very suitable for problems in which these

dependencies are very long. That being said, this model benefits a lot from parallel computing

machinery like GPUs. As the performance of parallel computing hardware increases, the compu-

tational time required to model dependencies that are as long as the sequence itself might become

more comparable to simulating a regular recurrent neural network. It remains to be seen what kind

of effect this has on the quality of the computed gradients.

7.3 Conclusion

We presented a strategy for training models for missing value imputation in high dimensional time-

series. The three models we proposed showed promising performance on concatenated digits in-

painting, missing marker restoration for motion capture and imputation of values for robot sensors.

Our training methods appear to be more suitable for missing value imputation than Contrastive Di-

vergence learning, given similar model architectures. Furthermore, the models could also handle

missing values in the training data itself and seem to be relatively robust to these corruptions.

Future work should investigate the performance of different inference methods. Interesting

candidates would be variants of loopy belief propagation, expectation propagation and structured

mean-field. It would also be interesting to see if models of this type can be designed for other task

domains like image inpainting.
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Abstract

The sum-product or belief propagation (BP) algorithm is a widely used message-passing tech-

nique for computing approximate marginals in graphical models. We introduce a new technique,

called stochastic orthogonal series message-passing (SOSMP), for computing the BP fixed point

in models with continuous random variables. It is based on a deterministic approximation of the

messages via orthogonal series basis expansion, and a stochastic estimation of the basis coefficients

via Monte Carlo techniques and damped updates. We prove that the SOSMP iterates converge to a

δ-neighborhood of the unique BP fixed point for any tree-structured graph, and for any graphs with

cycles in which the BP updates satisfy a contractivity condition. In addition, we demonstrate how to

choose the number of basis coefficients as a function of the desired approximation accuracy δ and

smoothness of the compatibility functions. We illustrate our theory with both simulated examples

and in application to optical flow estimation.

Keywords: graphical models, sum-product for continuous state spaces, low-complexity belief

propagation, stochastic approximation, Monte Carlo methods, orthogonal basis expansion

1. Introduction

Graphical models provide a parsimonious yet flexible framework for describing probabilistic de-

pendencies among large numbers of random variables. They have proven useful in a variety of

application domains, including computational biology, computer vision and image processing, data

compression, and natural language processing, among others. In all of these applications, a cen-

tral computational challenge is the marginalization problem, by which we mean the problem of

computing marginal distributions over some subset of the variables. Naively approached, such

marginalization problems become intractable for all but toy problems, since they entail performing

summation or integration over high-dimensional spaces. The sum-product algorithm, also known

as belief propagation (BP), is a form of dynamic programming that can be used to compute exact

marginals much more efficiently for graphical models without cycles, known as trees. It is an iter-

ative algorithm in which nodes in the graph perform a local summation/integration operation, and

then relay results to their neighbors in the form of messages. Although it is guaranteed to be exact on

trees, it is also commonly applied to graphs with cycles, in which context it is often known as loopy

BP. For more details on graphical models and BP, we refer the readers to the papers by Kschischang

c©2013 Nima Noorshams and Martin J. Wainwright.
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et al. (2001), Wainwright and Jordan (2008), Aji and McEliece (2000), Loeliger (2004) and Yedidia

et al. (2005).

In many applications of graphical models, we encounter random variables that take on contin-

uous values (as opposed to discrete). For instance, in computer vision, the problem of optical flow

calculation is most readily formulated in terms of estimating a vector field in R
2. Other applica-

tions involving continuous random variables include tracking problems in sensor networks, vehicle

localization, image geotagging, and protein folding in computational biology. With certain excep-

tions (such as multivariate Gaussian problems), the marginalization problem is very challenging for

continuous random variables: in particular, the messages correspond to functions, so that they are

expensive to compute and transmit, in which case BP may be limited to small-scale problems. Mo-

tivated by this challenge, researchers have proposed different techniques to reduce complexity of

BP in different applications (Arulampalam et al., 2002; Sudderth et al., 2010; Isard, 2003; Doucet

et al., 2001; Ihler and McAllester, 2009; Coughlan and Shen, 2007; Isard et al., 2009; Song et al.,

2011; Noorshams and Wainwright, 2012, 2013). For instance, various types of quantization schemes

(Coughlan and Shen, 2007; Isard et al., 2009) have been used to reduce the effective state space and

consequently the complexity. In another line of work, researchers have proposed stochastic methods

inspired by particle filtering (Arulampalam et al., 2002; Sudderth et al., 2010; Isard, 2003; Doucet

et al., 2001; Ihler and McAllester, 2009). These techniques are typically based on approximating

the messages as weighted particles (Doucet et al., 2001; Ihler and McAllester, 2009), or mixture

of Gaussians (Sudderth et al., 2010; Isard, 2003). Other researchers (Song et al., 2011) have pro-

posed the use of kernel methods to simultaneously estimate parameters and compute approximate

marginals in a simultaneous manner.

In this paper, we present a low-complexity (efficient) alternative to belief propagation with con-

tinuous variables. Our method, which we refer to as stochastic orthogonal series message-passing

(SOSMP), is applicable to general pairwise Markov random fields, and is equipped with various

theoretical guarantees. As suggested by its name, the algorithm is based on combining two in-

gredients: orthogonal series approximation of the messages, and the use of stochastic updates for

efficiency. In this way, the SOSMP updates lead to a randomized algorithm with substantial re-

ductions in communication and computational complexity. Our main contributions are to analyze

the convergence properties of the SOSMP algorithm, and to provide rigorous bounds on the overall

error as a function of the associated computational complexity. In particular, for tree-structured

graphs, we establish almost sure convergence, and provide an explicit inverse polynomial conver-

gence rate (Theorem 2). For loopy graphical models on which the usual BP updates are contractive,

we also establish similar convergence rates (Theorem 3). Our general theory provides quantitative

upper bounds on the number of iterations required to compute a δ-accurate approximation to the BP

message fixed point, as we illustrate in the case of kernel-based potential functions (Theorem 4).

The reminder of the paper is organized as follows. We begin in Section 2, with the necessary

background on the graphical models as well as the BP algorithm. Section 3 is devoted to a precise

description of the SOSMP algorithm. In Section 4, we state our main theoretical results and develop

some of their corollaries. In order to demonstrate the algorithm’s effectiveness and confirm theoret-

ical predictions, we provide some experimental results, on both synthetic and real data, in Section 5.

In Section 6, we provide the proofs of our main results, with some of the technical aspects deferred

to the appendices.
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2. Background

We begin by providing some background on graphical models and the BP algorithm.

2.1 Undirected Graphical Models

Consider an undirected graph G = (V ,E), consisting of a collection of nodes V = {1,2, . . . ,n},

along with a collection of edges E ⊂ V ×V . An edge is an undirected pair (u,v), and self-edges

are forbidden (meaning that (u,u) /∈ E for all u ∈ V ). For each u ∈ V , let Xu be a random variable

taking values in a space Xu. An undirected graphical model, also known as a Markov random field,

defines a family of joint probability distributions over the random vector X := {Xu, u∈V }, in which

each distribution must factorize in terms of local potential functions associated with the cliques of

the graph. In this paper, we focus on the case of pairwise Markov random fields, in which case the

factorization is specified in terms of functions associated with the nodes and edges of the graph.

More precisely, we consider probability densities p that are absolutely continuous with respect

to a given measure µ, typically the Lebesgue measure for the continuous random variables consid-

ered here. We say that p respects the graph structure if it can be factorized in the form

p(x1,x2, . . . ,xn) ∝ ∏
u∈V

ψu(xu) ∏
(u,v)∈E

ψuv(xu,xv). (1)

Here ψu : Xu → (0,∞) is the node potential function, whereas ψuv : Xu ×Xv → (0,∞) denotes the

edge potential function. A factorization of this form (1) is also known as pairwise Markov random

field; see Figure 1 for a few examples that are widely used in practice.

In many applications, a central computational challenge is the computation of the marginal

distribution

p(xu) :=
∫

X
. . .

∫
X︸ ︷︷ ︸

(n−1) times

p(x1,x2, . . . ,xn) ∏
v∈V \{u}

µ(dxv) (2)

at each node u ∈ V . Naively approached, this problem suffers from the curse of dimensionality,

since it requires computing a multi-dimensional integral over an (n− 1)-dimensional space. For

Markov random fields defined on trees (graphs without cycles), part of this exponential explosion

can be circumvented by the use of the BP or sum-product algorithm, to which we turn in the fol-

lowing section.

Before proceeding, let us make a few comments about the relevance of the marginals in ap-

plied problems. In a typical application, one also makes independent noisy observations yu of each

hidden random variable Xu. By Bayes’ rule, the posterior distribution of X given the observations

y = (y1, . . . ,yn) then takes the form

pX |Y (x1, . . . ,xn | y1, . . . ,yn) ∝ ∏
u∈V

ψ̃u(xu;yu) ∏
(u,v)∈E

ψuv(xu,xv), (3)

where we have introduced the convenient shorthand for the modified node-wise potential func-

tions ψ̃u(xu;yu) := p(yu | xu) ψu(xu). Since the observation vector y is fixed and known, any com-

putational problem for the posterior distribution (3) can be reduced to an equivalent problem for a

pairwise Markov random field of the form (1), using the given definition of the modified potential
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ψuv
ψvψu

ψuv ψvψu

(a) (b)

Figure 1: Examples of pairwise Markov random fields. (a) Two-dimensional grid. (b) Markov

chain model. Potential functions ψu and ψv are associated with nodes u and v respectively,

whereas potential function ψuv is associated with edge (u,v).

functions. In addition, although our theory allows for distinct state spaces Xu at each node u ∈ V ,

throughout the remainder of the paper, we suppress this possible dependence so as to simplify ex-

position.

2.2 Belief Propagation

The BP algorithm, also known as the sum-product algorithm, is an iterative method based on

message-passing updates for computing either exact or approximate marginal distributions. For

trees (graphs without cycles), it is guaranteed to converge after a finite number of iterations and

yields the exact marginal distributions, whereas for graphs with cycles, it yields only approxima-

tions to the marginal distributions. Nonetheless, this “loopy” form of BP is widely used in practice.

Here we provide a very brief treatment sufficient for setting up the main results and analysis of this

paper, referring the reader to various standard sources (Kschischang et al., 2001; Wainwright and

Jordan, 2008) for further background.

In order to define the message-passing updates, we require some further notation. For each node

v ∈ V , let N (v) := {u ∈ V | (u,v) ∈ E} be its set of neighbors, and we use ~E(v) := {(v → u) |
u ∈ N (v)} to denote the set of all directed edges emanating from v. We use ~E := ∪v∈V

~E(v) to

denote the set of all directed edges in the graph. Let M denote the set of all probability densities

(with respect to the base measure µ) defined on the space X —that is

M =
{

m : X → [0,∞)
∣∣
∫

X
m(x)µ(dx) = 1

}
.

The messages passed by the BP algorithm are density functions, taking values in the space M . More

precisely, we assign one message mv→u ∈ M to every directed edge (v → u)∈ ~E , and we denote the
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collection of all messages by m = {mv→u, (v → u) ∈ ~E}. Note that the full collection of messages

m takes values in the product space M |~E |.

At an abstract level, the BP algorithm generates a sequence of message densities {mt} in the

space M |~E |, where t = 0,1,2 . . . is the iteration number. The update of message mt to message mt+1

can be written in the form mt+1 = F (mt), where F : M |~E | → M |~E | is a non-linear operator. This

global operator is defined by the local update operators1 Fv→u : M |~E | → M , one for each directed

edge of the graph, such that mt+1
v→u = Fv→u(m

t).

More precisely, in terms of these local updates, the BP algorithm operates as follows. At each

iteration t = 0,1, . . ., each node v ∈ V performs the following steps:

• for each one of its neighbors u ∈ N (v), it computes mt+1
v→u = Fv→u(m

t).

• it transmits message mt+1
v→u to neighbor u ∈ N (v).

In more detail, the message update takes the form

[Fv→u(m
t)](·)︸ ︷︷ ︸

mt+1
v→u(·)

:= κ

∫
X

{
ψuv(·,xv) ψv(xv) ∏

w∈N (v)\{u}
mt

w→v(xv)
}

µ(dxv), (4)

where κ is a normalization constant chosen to enforce the normalization condition
∫

X
mt+1

v→u(xu)µ(dxu) = 1.

By concatenating the local updates (4), we obtain a global update operator F : M |~E | → M |~E |, as

previously discussed. The goal of belief propagation message-passing is to obtain a fixed point,

meaning an element m∗ ∈ M |~E | such that F (m∗) = m∗. Under mild conditions, it can be shown

that there always exists at least one fixed point, and for any tree-structured graph, the fixed point is

unique.

Given a fixed point m∗, each node u ∈ V computes its marginal approximation τ∗u ∈ M by

combining the local potential function ψu with a product of all incoming messages as

τ∗u(xu) ∝ ψu(xu) ∏
v∈N (u)

m∗
v→u(xu). (5)

Figure 2 provides a graphical representation of the flow of the information in these local updates.

For tree-structured (cycle-free) graphs, it is known that BP updates (4) converge to the unique fixed

point in a finite number of iterations (Wainwright and Jordan, 2008). Moreover, the quantity τ∗u(xu)
is equal to the single-node marginal, as previously defined (2). For general graphs, uniqueness of

the fixed point is no longer guaranteed (Wainwright and Jordan, 2008); however, the same message-

passing updates can be applied, and are known to be extremely effective for computing approximate

marginals in numerous applications.

1. It is worth mentioning, and important for the computational efficiency of BP, that mv→u is only a function of the

messages mw→v for w ∈ N (v)\{u}. Therefore, we have Fv→u : M dv−1 → M , where dv is the degree of the node v.

However, we suppress this local dependence so as to reduce notational clutter.
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Figure 2: Graphical representation of message-passing algorithms. (a) Node v transmits the mes-

sage mv→u = Fv→u(m), derived from Equation (4), to its neighbor u. (b) Upon receiving

all the messages, node u updates its marginal estimate according to (5).

Although the BP algorithm is considerably more efficient than the brute force approach to

marginalization, the message update Equation (4) still involves computing an integral and trans-

mitting a real-valued function (message). With certain exceptions (such as multivariate Gaussians),

these continuous-valued messages do not have finite representations, so that this approach is com-

putationally very expensive. Although integrals can be computed by numerical methods, the BP

algorithm requires performing many such integrals at each iteration, which becomes very expen-

sive in practice.

3. Description of the Algorithm

We now turn to the description of the SOSMP algorithm. Before doing so, we begin with some

background on the main underlying ingredients: orthogonal series expansion, and stochastic mes-

sage updates.

3.1 Orthogonal Series Expansion

As described in the previous section, for continuous random variables, each message is a density

function in the space M ⊂ L2(X ;µ). We measure distances in this space using the usual L2 norm

‖ f − g‖2
2 :=

∫
X ( f (x)− g(x))2µ(dx). A standard way in which to approximate functions is via or-

thogonal series expansion. In particular, let {φ j}∞
j=1 be an orthonormal basis of L2(X ;µ), meaning

a collection of functions such that

∫
X

φi(x)φ j(x)µ(dx)
︸ ︷︷ ︸

:=〈φi,φ j〉L2

=

{
1 when i = j

0 otherwise.

Any function f ∈M ⊂ L2(X ;µ) then has an expansion of the form f =∑∞
j=1 a jφ j, where a j = 〈 f , φ j〉L2

are the basis expansion coefficients.
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Of course, maintaining the infinite sequence of basis coefficients {a j}∞
j=1 is also computation-

ally intractable, so that any practical algorithm will maintain only a finite number r of basis coef-

ficients. For a given r, we let f̂r ∝
[

∑r
j=1 a jφ j

]
+

be the approximation based on the first r coeffi-

cients. (Applying the operator [t]+ = max{0, t} amounts to projecting ∑r
j=1 a jφ j onto the space of

non-negative functions, and we also normalize to ensure that it is a density function.) In using only

r coefficients, we incur the approximation error

‖ f̂r − f‖2
2

(i)

≤ ‖
r

∑
j=1

a jφ j − f‖2
2

(ii)
=

∞

∑
j=r+1

a2
j , (6)

where inequality (i) uses non-expansivity of the projection, and step (ii) follows from Parseval’s

theorem. Consequently, the approximation error will depend both on

• how many coefficients r that we retain, and

• the decay rate of the expansion coefficients {a j}∞
j=1.

For future reference, it is worth noting that the local message update (4) is defined in terms of

an integral operator of the form

f (·) 7→
∫

X
ψuv(·,y) f (y)µ(dy). (7)

Consequently, whenever the edge potential function ψuv has desirable properties—such as differen-

tiability and/or higher order smoothness—then the messages also inherit these properties. With an

appropriate choice of the basis {φ j}∞
j=1, such properties translate into decay conditions on the basis

coefficients {a j}∞
j=1. For instance, for α-times differentiable functions expanded into the Fourier

basis, the Riemann-Lebesgue lemma guarantees that the coefficients a j decay faster than (1/ j)2α.

We develop these ideas at greater length in the sequel.

3.2 Stochastic Message Updates

In order to reduce the approximation error (6), the number of coefficients r needs to be increased (as

a function of the ultimate desired error δ). Since increases in r lead to increases in computational

complexity, we need to develop effective reduced-complexity methods. In this section, we describe

(at a high-level) how this can be done via a stochastic version of the BP message-passing updates.

We begin by observing that message update (4), following the appropriate normalization, can

be cast as an expectation operation. This equivalence is essential, because it allows us to obtain

unbiased approximations of the message update using stochastic techniques. In particular, for every

directed edge (v → u) let us define

Γuv(·,y) :=
ψuv(·,y)∫

X ψuv(x,y)µ(dx)
, and βv→u(y) := ψv(y)

∫
X

ψuv(x,y)µ(dx), (8)

the normalized compatibility function and the marginal potential weight respectively. By construc-

tion, for each y, we have
∫

X Γuv(x,y)µ(dx) = 1.
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Lemma 1 Given an input collection of messages m, let Y be a random variable with density pro-

portional to

[pv→u(m)](y) ∝ βv→u(y) ∏
w∈N (v)\{u}

mw→v(y). (9)

Then the message update Equation (4) can be written as

[Fv→u(m)](·) = EY

[
Γuv(·,Y )

]
.

Proof Let us introduce the convenient shorthand M(y) = ∏
w∈N (v)\{u}

mw→v(y). By definition (4) of

the message update, we have

[Fv→u(m)](·) =

∫
X

(
ψuv(·,y)ψv(y)M(y)µ(dy)∫

X

∫
X

(
ψuv(x,y)ψv(y)M(y)

)
µ(dy)µ(dx)

.

Since the integrand is positive, by Fubini’s theorem (Durrett, 1995), we can exchange the order of

integrals in the denominator. Doing so and simplifying the expression yields

[Fv→u(m)](·) =
∫

X

ψuv(·,y)∫
X ψuv(x,y)µ(dx)︸ ︷︷ ︸

Γuv(·,y)

βv→u(y)M(y)∫
X βv→u(z)M(z)µ(dz)︸ ︷︷ ︸

[pv→u(m)](y)

µ(dy),

which establishes the claim.

Based on Lemma 1, we can obtain a stochastic approximation to the message update by drawing

k i.i.d. samples Yi from the density (9), and then computing ∑k
i=1 Γuv(·,Yi) / k. Given the non-

negativity and chosen normalization of Γuv, note that this estimate belongs to M by construction.

Moreover, it is an unbiased estimate of the correctly updated message, which plays an important

role in our analysis.

3.3 Precise Description of the Algorithm

The SOSMP algorithm involves a combination of the orthogonal series expansion techniques and

stochastic methods previously described. Any particular version of the algorithm is specified by the

choice of basis {φ j}∞
j=1 and two positive integers: the number of coefficients r that are maintained,

and the number of samples k used in the stochastic update. Prior to running the algorithm, for each

directed edge (v → u), we pre-compute the inner products

γv→u; j(y) :=
∫

X
Γuv(x,y)φ j(x)µ(dx),

︸ ︷︷ ︸
〈Γuv(·, y),φ j(·)〉L2

for j = 1, . . . ,r. (10)

When ψuv is a symmetric and positive semidefinite kernel function, these inner products have an

explicit and simple representation in terms of its Mercer eigendecomposition (see Section 4.3).

In the general setting, these r inner products can be computed via standard numerical integration

techniques. Note that this is a fixed (one-time) cost prior to running the algorithm.

2806



STOCHASTIC MESSAGE-PASSING FOR CONTINUOUS STATE SPACES

SOSMP algorithm:

1. At time t = 0, initialize the message coefficients

a0
v→u; j = 1/r for all j = 1, . . . ,r, and (v → u) ∈ ~E .

2. For iterations t = 0,1,2, . . ., and for each directed edge (v → u)

(a) Form the projected message approximation m̂t
w→v(·) =

[
∑r

j=1 at
w→v; jφ j(·)

]
+

, for all

w ∈ N (v)\{u}.

(b) Draw k i.i.d. samples Y t+1
i from the probability density proportional to

βv→u(y) ∏
w∈N (v)\{u}

m̂t
w→v(y),

where βv→u was previously defined in Equation (8).

(c) Use the samples {Y t+1
1 , . . . ,Y t+1

k } from step (b) to compute

b̃t+1
v→u; j :=

1

k

k

∑
i=1

γv→u; j(Y
t+1
i ) for j = 1,2, . . . ,r, (12)

where the function γv→u; j is defined in Equation (10).

(d) For step size ηt = 1/(t + 1), update the r-dimensional message coefficient vectors

at
v→u 7→ at+1

v→u via

at+1
v→u = (1−ηt)at

v→u + ηt b̃t+1
v→u. (13)

Figure 3: The SOSMP algorithm for continuous state space marginalization.

At each iteration t = 0,1,2, . . ., the algorithm maintains an r-dimensional vector of basis expan-

sion coefficients

at
v→u = (at

v→u;1, . . . ,a
t
v→u;r) ∈ R

r, on directed edge (v → u) ∈ ~E .

This vector should be understood as defining the current message approximation mt
v→u on edge

(v → u) via the expansion

mt
v→u(·) :=

r

∑
j=1

at
v→u; j φ j(·). (11)

We use at =
{

at
v→u,(v → u) ∈ ~E

}
to denote the full set of r |~E | coefficients that are maintained by

the algorithm at iteration t. With this notation, the algorithm consists of a sequence of steps, detailed

in Figure 3, that perform the update at 7→ at+1, and hence implicitly the update mt 7→ mt+1.
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3.4 Computational Complexity

The sampling in Step 2(b) of the algorithm may be performed using standard sampling methods

(Ripley, 1987). For instance, accept-reject sampling involves drawing from an auxiliary distribution,

and then performing an accept-reject step. Let c denote the average number of times that an auxiliary

sample must be drawn until acceptance. From Figure 3, it can be seen that each iteration requires

O(crk) floating point operations on average per edge. Note that the accept-reject factor c depends

only on the state space X and the auxiliary distribution, and it is independent of r, k, and the graph

structure.

It is also interesting to compare the computational complexity of our algorithm to that of com-

peting methods. For instance, the non-parametric (Gaussian mixture) BP algorithm, as proposed

in past works (Sudderth et al., 2010; Isard, 2003), involves approximating each message with an ℓ-
component mixture of Gaussians. The associated computational complexity is O(ℓdmax) per iteration

per edge, where dmax is the maximum degree of the graph, so that the method is suitable for graphs

of relatively low degree. Ihler and McAllester (2009) suggested an improvement known as particle

BP, in which messages are approximated by particles associated with the nodes (as opposed to the

edges). Given an approximation based on ℓ particles at each node, the computational complexity of

particle BP is O(ℓ2) per iteration per edge. More recently, Song et al. (2011) proposed a method

known as kernel BP, designed for jointly estimating the potential functions and computing (approx-

imate) marginal distributions. Their approach is based on representing the potentials as weighted

sums of kernels in a reproducing kernel Hilbert space, which leads to simple BP updates. For a

training set with M samples, the computational complexity of the kernel BP is O(M2) per iteration

per edge. They also proposed a more efficient variant of the kernel BP by approximating the feature

matrices by weighted combination of subsets of their columns.

4. Theoretical Guarantees

We now turn to the theoretical analysis of the SOSMP algorithm, and guarantees relative to the fixed

points of the true BP algorithm. For any tree-structured graph, the BP algorithm is guaranteed to

have a unique message fixed point m∗ = {m∗
v→u, (v → u) ∈ ~E}. For graphs with cycles, uniqueness

is no longer guaranteed, which would make it difficult to compare with the SOSMP algorithm. Ac-

cordingly, in our analysis of the loopy graph, we make a natural contractivity assumption, which

guarantees uniqueness of the fixed point m∗.

The SOSMP algorithm generates a random sequence {at}∞
t=0, which define message approxi-

mations {mt}∞
t=0 via the expansion (11). Of interest to us are the following questions:

• under what conditions do the message iterates approach a neighborhood of the BP fixed point

m∗ as t →+∞?

• when such convergence takes place, how fast is it?

In order to address these questions, we separate the error in our analysis into two terms: al-

gorithmic error and approximation error. For a given r, let Πr denote the projection operator onto

the span of {φ1, . . . ,φr}. In detail, given a function f represented in terms of the infinite series
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expansion f = ∑∞
j=1 a jφ j, we have

Πr( f ) :=
r

∑
j=1

a jφ j.

For each directed edge (v → u) ∈ ~E , define the functional error

∆t
v→u := mt

v→u −Πr(m∗
v→u) (14)

between the message approximation at time t, and the BP fixed point projected onto the first r basis

functions. Moreover, define the approximation error at the BP fixed point as

Ar
v→u := m∗

v→u −Πr(m∗
v→u). (15)

Since ∆t
v→u belongs to the span of the first r basis functions, the Pythagorean theorem implies that

the overall error can be decomposed as

‖mt
v→u −m∗

v→u‖2
L2 = ‖∆t

v→u‖2
L2︸ ︷︷ ︸

Estimation error

+ ‖Ar
v→u‖2

L2︸ ︷︷ ︸
Approximation error

.

Note that the approximation error term is independent of the iteration number t, and can only be

reduced by increasing the number r of coefficients used in the series expansion. Our analysis of the

estimation error is based on controlling the |~E |-dimensional error vector

ρ2
(
∆t
)

:=
{
‖∆t

v→u‖2
L2 , (v → u) ∈ ~E

}
∈ R

|~E |, (16)

and in particular showing that it decreases as O(1/t) up to an error floor imposed by the approxi-

mation error. In order to analyze the error, we also introduce the |~E |-dimensional vector of approx-

imation errors

ρ2
(
Ar
)

:=
{
‖Ar

v→u‖2
L2 , (v → u) ∈ ~E

}
∈ R

|~E |. (17)

By increasing r, we can reduce this approximation error term, but at the same time, we increase

the computational complexity of each update. In Section 4.3, we discuss how to choose r so as to

trade-off the estimation and approximation errors with computational complexity.

4.1 Bounds for Tree-Structured Graphs

With this set-up, we now turn to bounds for tree-structured graphs. Our analysis of the tree-

structured case controls the vector of estimation errors ρ2
(
∆t
)

using a nilpotent matrix N ∈R
|~E |×|~E |

determined by the tree structure (Noorshams and Wainwright, 2013). Recall that a matrix N is

nilpotent with order ℓ if Nℓ = 0 and Nℓ−1 6= 0 for some ℓ. As illustrated in Figure 4, the rows and

columns of N are indexed by directed edges. For the row indexed by (v → u), there can be non-zero

entries only for edges in the set {(w→ v), w∈N (v)\{u}}. These directed edges are precisely those

that pass messages relevant in updating the message from v to u, so that N tracks the propagation

of message information in the graph. As shown in our previous work (see Lemma 1 in the paper

by Noorshams and Wainwright, 2013), the matrix N with such structure is nilpotent with degree at
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1

2

3 4

m1→2

m1→2

m2→1

m2→1 m3→2

m3→2

m2→3

m2→3

m2→4

m2→4

m4→2

m4→2

(a) (b)

Figure 4: (a) A simple tree with |E | = 3 edges and hence |~E | = 6 directed edges. (b) Structure

of nilpotent matrix N ∈ R
|~E |×|~E | defined by the graph in (a). Rows and columns of the

matrix are indexed by directed edges (v → u) ∈ ~E ; for the row indexed by (v → u), there

can be non-zero entries only for edges in the set {(w → v), w ∈ N (v)\{u}}.

most the diameter of the tree. (In a tree, there is always a unique edge-disjoint path between any

pair of nodes; the diameter of the tree is the length of the longest of these paths.)

Moreover, our results on tree-structured graphs impose one condition on the vector of approxi-

mation errors Ar, namely that

inf
y∈X

Πr
(
Γuv(x,y)

)
> 0, and |Ar

v→u(x)| ≤
1

2
inf
y∈X

Πr
(
Γuv(x,y)

)
(18)

for all x ∈ X and all directed edges (v → u) ∈ ~E . This condition ensures that the L2-norm of the ap-

proximation error is not too large relative to the compatibility functions. Since supx,y∈X |Πr
(
Γuv(x,y)

)
−

Γuv(x,y)| → 0 and supx∈X |Ar
v→u(x)| → 0 as r →+∞, assuming that the compatibility functions are

uniformly bounded away from zero, condition (18) will hold once the number of basis expansion

coefficients r is sufficiently large. Finally, our bounds involve the constants

B j := max
(v→u)∈~E

sup
y∈X

〈Γuv(·,y), φ j〉L2 . (19)

With this set-up, we have the following guarantees:

Theorem 2 (tree-structured graphs) Suppose that X is closed and bounded, the node and edge

potential functions are continuous, and that condition (18) holds. Then for any tree-structured

model, the sequence of messages {mt}∞
t=0 generated by the SOSMP algorithm have the following

properties:
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(a) There is a nilpotent matrix N ∈ R
|~E |×|~E | such that the error vector ρ2

(
∆t
)

converges almost

surely to the set

B :=
{

e ∈ R
|~E | | |e| � N(I −N)−1ρ2

(
Ar
)}

,

where � denotes elementwise inequality for vectors.

(b) Furthermore, for all iterations t = 1,2, . . ., we have

E
[
ρ2
(
∆t
)]

�
(

12
r

∑
j=1

B2
j

) (I − log t N)−1

t
(N~1 + 8) + N(I −N)−1ρ2

(
Ar
)
.

To clarify the statement in part (a), it guarantees that the difference ρ2
(
∆t
)
−ΠB

(
ρ2
(
∆t
))

be-

tween the error vector and its projection onto the set B converges almost surely to zero. Part (b)

provides a quantitative guarantee on how quickly the expected absolute value of this difference con-

verges to zero. In particular, apart from logarithmic factors in t, the convergence rate guarantees is

of the order O(1/t).

4.2 Bounds for General Graphs

Our next theorem addresses the case of general graphical models. The behavior of the ordinary

BP algorithm to a graph with cycles—in contrast to the tree-structured case—is more complicated.

On one hand, for strictly positive potential functions (as considered in this paper), a version of

Brouwer’s fixed point theorem can be used to establish existence of fixed points (Wainwright and

Jordan, 2008). However, in general, there may be multiple fixed points, and convergence is not

guaranteed. Accordingly, various researchers have studied conditions that are sufficient to guarantee

uniqueness of fixed points and/or convergence of the ordinary BP algorithm: one set of sufficient

conditions, for both uniqueness and convergence, involve assuming that the BP update operator is

a contraction in a suitable norm (e.g., Tatikonda and Jordan, 2002; Ihler et al., 2005; Mooij and

Kappen, 2007; Roosta et al., 2008).

In our analysis of the SOSMP algorithm for a general graph, we impose the following form of

contractivity: there exists a constant 0 < γ < 2 such that

‖Fv→u(m)−Fv→u(m
′)‖L2 ≤

(
1− γ

2

)√ 1

|N (v)\{u}| ∑
w∈N (v)\{u}

‖mw→v −m′
w→v‖2

L2 , (20)

for all directed edges (v → u) ∈ ~E , and feasible messages m, and m′. We say that the ordinary BP

algorithm is γ-contractive when condition (20) holds.

Theorem 3 (general graphs) Suppose that the ordinary BP algorithm is γ-contractive (20), and

consider the sequence of messages {mt}∞
t=0 generated with step-size ηt = 1/(γ(t +1)). Then for all

t = 1,2, . . ., the error sequence {∆t
v→u}∞

t=0 is bounded in mean-square as

E
[
ρ2
(
∆t
)]

�
[(

8∑r
j=1 B2

j

γ2

)
log t

t
+

1

γ
max

(v→u)∈~E
‖Ar

v→u‖2
L2

]
~1. (21)

where Ar
v→u = m∗

v→u −Πr(m∗
v→u) is the approximation error on edge (v → u).
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Theorem 3 guarantees that under the contractivity condition (20), the SOSMP iterates converge

to a neighborhood of the BP fixed point. The error offset depends on the approximation error term

that decays to zero as r is increased. Moreover, disregarding the logarithmic factor, the conver-

gence rate is O(1/t), which is the best possible for a stochastic approximation scheme of this type

(Nemirovsky and Yudin, 1983; Agarwal et al., 2012).

4.3 Explicit Rates for Kernel Classes

Theorems 2 and 3 are generic results that apply to any choices of the edge potential functions. In this

section, we pursue a more refined analysis of the number of arithmetic operations that are required

to compute a δ-uniformly accurate approximation to the BP fixed point m∗, where δ > 0 is a user-

specified tolerance parameter. By a δ-uniformly accurate approximation, we mean a collection of

messages m such that

max
(v→u)∈~E

E
[
‖mv→u −m∗

v→u‖2
L2

]
≤ δ.

In order to obtain such an approximation, we need to specify both the number of coefficients r to be

retained, and the number of iterations that we should perform. Based on these quantities, our goal

is to specify the minimal number of basic arithmetic operations T (δ) that are sufficient to compute

a δ-accurate message approximation.

In order to obtain concrete answers, we study this issue in the context of kernel-based potential

functions. In many applications, the edge potentials ψuv : X ×X → R+ are symmetric and positive

semidefinite (PSD) functions, frequently referred to as kernel functions.2 Commonly used exam-

ples include the Gaussian kernel ψuv(x,y) = exp(−γ‖x− y‖2
2), the closely related Laplacian kernel,

and other types of kernels that enforce smoothness priors. Any kernel function defines a positive

semidefinite integral operator, namely via Equation (7). When X is compact and the kernel function

is continuous, then Mercer’s theorem (Riesz and Nagy, 1990) guarantees that this integral operator

has a countable set of eigenfunctions {φ j}∞
j=1 that form an orthonormal basis of L2(X ;µ). Moreover,

the kernel function has the expansion

ψuv(x,y) =
∞

∑
j=1

λ j φ j(x)φ j(y),

where λ1 ≥ λ2 ≥ ·· · ≥ 0 are the eigenvalues, all guaranteed to be non-negative. In general, the

eigenvalues might differ from edge to edge, but we suppress this dependence for simplicity in expo-

sition. We study kernels that are trace class, meaning that the eigenvalues are absolutely summable

(i.e., ∑∞
j=1 λ j < ∞).

For a given eigenvalue sequence {λ j}∞
j=1 and some tolerance δ > 0, we define the critical di-

mension r∗ = r∗(δ;{λ j}) to be the smallest positive integer r such that

λr ≤ δ. (22)

Since λ j → 0, the existence of r∗ < ∞ is guaranteed for any δ > 0.

2. In detail, a PSD kernel function has the property that for all natural numbers n and {x1, . . . ,xn} ⊂ X , the n×n kernel

matrix with entries ψuv(xi,x j) is symmetric and positive semidefinite.
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Theorem 4 (complexity vs. accuracy) In addition to the conditions of Theorem 3, suppose that the

compatibility functions are defined by a symmetric PSD trace-class kernel with eigenvalues {λ j}. If

we run the SOSMP algorithm with r∗ = r∗(δ;{λ j}) basis coefficients, and k = O(1) samples, then

it suffices to perform

T (δ;{λ j}) = O
(

r∗
( r∗

∑
j=1

λ2
j

) (
1/δ

)
log(1/δ)

)
(23)

arithmetic operations per edge in order to obtain a δ-accurate message vector m.

The proof of Theorem 4 is provided in Section 6.3. It is based on showing that the choice (22) suf-

fices to reduce the approximation error to O(δ), and then bounding the total operation complexity

required to also reduce the estimation error.

Theorem 4 can be used to derive explicit estimates of the complexity for various types of kernel

classes. We begin with the case of kernels in which the eigenvalues decay at an inverse polynomial

rate: in particular, given some α > 1, we say that they exhibit α-polynomial decay if there is a

universal constant C such that

λ j ≤C/ jα for all j = 1,2, . . .. (24)

Examples of kernels in this class include Sobolov spline kernels (Gu, 2002), which are a widely

used type of smoothness prior. For example, the spline class associated with functions that are

s-times differentiable satisfies the decay condition (24) with α = 2s.

Corollary 5 In addition to the conditions of Theorem 3, suppose that the compatibility functions

are symmetric kernels with α-polynomial decay (24). Then it suffices to perform

Tpoly(δ) = O
((

1/δ
) 1+α

α log(1/δ)
)

operations per edge in order to obtain a δ-accurate message vector m.

The proof of this corollary is immediate from Theorem 4: given the assumption λ j ≤C/ jα, we see

that r∗ ≤ (C/δ)
1
α and ∑r∗

j=1 λ2
j = O(1). Substituting into the bound (23) yields the claim. Corollary 5

confirms a natural intuition—namely, that it should be easier to compute an approximate BP fixed

point for a graphical model with smooth potential functions. Disregarding the logarithmic factor

(which is of lower-order), the operation complexity Tpoly(δ) ranges from O
(
(1/δ)2

)
, obtained as

α → 1+ all the way down to O
(
1/δ

)
, obtained as α →+∞.

Another class of widely used kernels are those with exponentially decaying eigenvalues: in

particular, for some α > 0, we say that the kernel has α-exponential decay if there are universal

constants (C,c) such that

λ j ≤C exp(−c jα) for all j = 1,2, . . .. (25)

Examples of such kernels include the Gaussian kernel, which satisfies the decay condition (25) with

α = 2 (e.g., Steinwart and Christmann, 2008).
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Figure 5: Plot of normalized error et/e0 vs. the number of iterations t for 10 different sample paths

on a chain of size n = 100. The dashed lines are sample paths whereas the solid line is

the mean square error. In this experiment node and edge potentials are mixtures of three

Gaussians and we implemented SOSMP using the first r = 10 Fourier coefficients with

k = 5 samples.

Corollary 6 In addition to the conditions of Theorem 3, suppose that the compatibility functions

are symmetric kernels with α-exponential decay (25). Then it suffices to perform

Texp(δ) = O
(
(1/δ)

(
log(1/δ)

) 1+α
α

)
(26)

operations per edge in order to obtain a uniformly δ-accurate message vector m.

As with our earlier corollary, the proof of this claim is a straightforward consequence of Theo-

rem 4. Corollary 6 demonstrates that kernel classes with exponentially decaying eigenvalues are

not significantly different from parametric function classes, for which a stochastic algorithm would

have operation complexity O(1/δ). Apart from the lower order logarithmic terms, the complexity

bound (26) matches this parametric rate.

5. Experimental Results

In this section, we describe some experimental results that help to illustrate the theoretical predic-

tions of the previous section.

5.1 Synthetic Data

We begin by running some experiments for a simple model, in which both the node and edge po-

tentials are mixtures of Gaussians. More specifically, we form a graphical model with potential
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functions of the form

ψu(xu) =
3

∑
i=1

πu;i exp
(
− (xu −µu;i)

2/(2σ2
u;i)

)
, for all u ∈ V , and (27)

ψuv(xu,xv) =
3

∑
i=1

πuv;i exp
(
− (xv − xu)

2/(2σ2
uv;i)

)
for all (u,v) ∈ E , (28)

where the non-negative mixture weights are normalized (i.e., ∑3
i=1 πuv;i = ∑3

i=1 πu;i = 1). For each

vertex and edge and for all i = 1,2,3, the mixture parameters are chosen randomly from uniform

distributions over the range σ2
u;i,σ

2
uv;i ∈ (0,0.5] and µu;i ∈ [−3,3].

5.1.1 SAMPLE PATHS ON A TREE-STRUCTURED GRAPH

For a chain-structured graph with n = 100 nodes, we first compute the fixed point of the standard

BP, using direct numerical integration to compute the integrals,3 so to compute (a very accurate ap-

proximation of) the fixed point m∗. We compare this “exact” answer to the approximation obtained

by running the SOSMP algorithm using the first r = 10 Fourier basis coefficients and k = 5 samples.

Having run the SOSMP algorithm, we compute the average squared error

et :=
1

|~E | ∑
(v→u)∈~E

r

∑
j=1

(at
v→u; j −a∗v→u; j)

2 (29)

at each time t = 1,2, . . ..
Figure 5 provides plots of the error (29) versus the number of iterations for 10 different trials

of the SOSMP algorithm. (Since the algorithm is randomized, each path is slightly different.) The

plots support our claim of of almost sure convergence, and moreover, the straight lines seen in the

log-log plots confirm that convergence takes place at a rate inverse polynomial in t.

5.1.2 EFFECT OF THE NUMBER OF COEFFICIENTS r AND THE NUMBER OF SAMPLES k

In the next few simulations, we test the algorithm’s behavior with respect to the number of expansion

coefficients r, and number of samples k. In particular, Figure 6(a) illustrates the expected error,

averaged over several sample paths, vs. the number of iterations for different number of expansion

coefficients r ∈ {2,3,5,10} when k = 5 fixed; whereas Figure 6(b) depicts the expected error vs.

the number of iterations for different number of samples k ∈ {1,2,5,10} when r = 10 is fixed. As

expected, in Figure 6(a), the error decreases monotonically, with the rate of 1/t, till it hits a floor

corresponding the offset incurred by the approximation error. Moreover, the error floor decreases

with the number of expansion coefficients. On the other hand, in Figure 6(b), increasing the number

of samples causes a downward shift in the error. This behavior is also expected since increasing the

number of samples reduces the variance of the empirical expectation in Equation (12).

5.1.3 EFFECT OF THE EDGE POTENTIAL SMOOTHNESS

In our next set of experiments, still on a chain with n = 100 vertices, we test the behavior of the

SOSMP algorithm on graphs with edge potentials of varying degrees of smoothness. In all cases,

3. In particular, we approximate the integral update (4) with its Riemann sum over the range X = [−5,5] and with 100

samples per unit time.
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Figure 6: Normalized mean squared error E[et/e0] verses the number of iterations for a Markov

chain with n = 100 nodes, using potential functions specified by the mixture of Gaussians

model (27) and (28). (a) Behavior as the number of expansion coefficients is varied over

the range r ∈ {2,3,5,10} with k = 5 samples in all cases. As predicted by the theory,

the error drops monotonically with the number of iterations until it hits a floor. The

error floor, which corresponds to the approximation error incurred by message expansion

truncation, decreases as the number of coefficients r is increased. (b) Mean squared error

E[et ] verses the number of iterations t for different number of samples k ∈ {1,2,5,10},

in all cases using r = 10 coefficients. Increasing the number of samples k results in a

downward shift in the error.

we use node potentials from the Gaussian mixture ensemble (27) previously discussed, but form

the edge potentials in terms of a family of kernel functions. More specifically, consider the basis

functions

φ j(x) = sin
(
(2 j−1)π(x+5)/10

)
for j = 1,2, . . ..

each defined on the interval [−5,5]. It is straightforward that the family {φ j}∞
j=1 forms an orthonor-

mal basis of L2[−5,5]. We use this basis to form the edge potential functions

ψuv(x,y) =
1000

∑
j=1

(1/ j)αφ j(x)φ j(y),

where α > 0 is a parameter to be specified. By construction, each edge potential is a positive

semidefinite kernel function satisfying the α-polynomial decay condition (24).

Figure 7 illustrate the error curves for two different choices of the smoothness parameter: panel

(a) shows α = 0.1, whereas panel (b) shows α = 1. For the larger value of α shown in panel (b), the

messages in the BP algorithm are smoother, so that the SOSMP estimates are more accurate with

the same number of expansion coefficients. Moreover, similar to what we have observed previously,

the error decays with the rate of 1/t till it hits the error floor. Note that this error floor is lower for
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Figure 7: Plot of the estimation error et/e0 verses the number of iterations t for the cases of (a)

α = 0.1 and (b) α = 1. The BP messages are smoother when α = 1, and accordingly

the SOSMP estimates are more accurate with the same number of expansion coefficients.

Moreover, the error decays with the rate of 1/t till it hits a floor corresponding to the

approximation error incurred by truncating the message expansion coefficients.

the smoother kernel (α = 1) compared to the rougher case (α = 0.1). Moreover, as predicted by

our theory, the approximation error decays faster for the smoother kernel, as shown by the plots in

Figure 8, in which we plot the final error, due purely to approximation effects, versus the number of

expansion coefficients r. The semilog plot of Figure 8 shows that the resulting lines have different

slopes, as would be expected.

5.2 Computer Vision Application

Moving beyond simulated problems, we conclude by showing the SOSMP algorithm in application

to a larger scale problem that arises in computer vision—namely, that of optical flow estimation

(Baker et al., 2011). In this problem, the input data are two successive frames of a video sequence.

We model each frame as a collection of pixels arrayed over a
√

n×√
n grid, and measured in-

tensity values at each pixel location of the form {I(i, j), I′(i, j)}
√

n

i, j=1. Our goal is to estimate a

2-dimensional motion vector xu = (xu;1,xu;2) that captures the local motion at each pixel u = (i, j),
i, j = 1,2, . . . ,

√
n of the image sequence.

In order to cast this optical flow problem in terms of message-passing on a graph, we adopt the

model used by Boccignone et al. (2007). We model the local motion Xu as a 2-dimensional random

vector taking values in the space X = [−d,d]× [−d,d], and associate the random vector Xu with

vertex u, in a 2-dimensional grid (see Figure 1(a)). At node u = (i, j), we use the change between

the two image frames to specify the node potential

ψu(xu;1,xu;2) ∝ exp

(
− (I(i, j)− I′(i+ xu;1, j+ xu;2))

2

2σ2
u

)
.
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α=0.1
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Figure 8: Final approximation error vs. the number of expansion coefficients for the cases of α =
0.1 and α = 1. As predicted by the theory, the error floor decays with a faster pace for the

smoother edge potential.

(a) (b)

Figure 9: Two frames, each of dimension 250×250 pixels, taken from a video sequence of moving

cars.

On each edge (u,v), we introduce the potential function

ψuv(xu,xv) ∝ exp

(
− ‖xu − xv‖2

2σ2
uv

)
,

2818



STOCHASTIC MESSAGE-PASSING FOR CONTINUOUS STATE SPACES

which enforces a type of smoothness prior over the image.

To estimate the motion of a truck, we applied the SOSMP algorithm using the 2-dimensional

Fourier expansion as our orthonormal basis to two 250× 250 frames from a truck video sequence

(see Figure 9). We apply the SOSMP algorithm using the first r = 9 coefficients and k = 3 samples.

Figure 10 shows the HSV (hue, saturation, value) codings of the estimated motions after t = 1,10,40

iterations, in panels (a), (b) and (c) respectively. Panel (d) provides an illustration of the HSV

encoding: hue is used to represent the angular direction of the motion whereas the speed (magnitude

of the motion) is encoded by the saturation (darker colors meaning higher speeds). The initial

estimates of the motion vectors are noisy, but it fairly rapidly converges to a reasonable optical flow

field. (To be clear, the purpose of this experiment is not to show the effectiveness of SOSMP or BP

as a particular method for optical flow, but rather to demonstrate its correctness and feasibility of

the SOSMP in an applied setting.)

6. Proofs

We now turn to the proofs of our main results, which involve various techniques from concentration

of measure, stochastic approximation, and functional analysis. For the reader’s convenience, we

provide a high-level outline here. We begin in Section 6.1 by proving Theorem 2 dealing with

the case of tree-structured graphical models. In Section 6.2, we turn to the proof of Theorem 3

concerning the case of general graphs. Finally, in Section 6.3 we characterize the trade-off between

computational complexity and accuracy by proving Theorem 4. Each section involve technical

steps some of which are presented as lemmas. To increase the readability of the paper, proofs of the

lemmas are deferred to the appendices and can be ignored without affecting the flow of the main

argument.

6.1 Trees: Proof of Theorem 2

Our goal is to bound the error

‖∆t+1
v→u‖2

L2 = ‖mt+1
v→u −Πr(m∗

v→u)‖2
L2 =

r

∑
j=1

(
at+1

v→u; j −a∗v→u; j

)2
, (30)

where the final equality follows by Parseval’s theorem. Here {a∗v→u; j}r
j=1 are the basis expansion

coefficients that define the best r-approximation to the BP fixed point m∗. The following lemma pro-

vides an upper bound on this error in terms of two related quantities. First, we let {bt
v→u; j}∞

j=1 denote

the basis function expansion coefficients of the Fv→u(m̂
t)—that is, [Fv→u(m̂

t)](·)=∑∞
j=1 bt

v→u; jφ j(·).
Second, for each j = 1,2, . . . ,r, define the deviation ζt+1

v→u; j := b̃t+1
v→u; j−bt

v→u; j, where the coefficients

b̃t+1
v→u; j are updated in Step 2(c) Figure 3.

Lemma 7 For each iteration t = 0,1,2, . . ., we have

‖∆t+1
v→u‖2

L2 ≤ 2

t +1

r

∑
j=1

t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]2

︸ ︷︷ ︸
Deterministic term Dt+1

v→u

+
2

(t +1)2

r

∑
j=1

[ t

∑
τ=0

ζτ+1
v→u; j

]2

︸ ︷︷ ︸
Stochastic term St+1

v→u

. (31)
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(a) (b)

(c) (d)

Figure 10: Color coded images of the estimated motion vectors after (a) t = 1, (b) t = 10, (c) t = 40

iterations. Panel (d) illustrates the hsv color coding of the flow. The color hue is used to

encode the angular dimension of the motion, whereas the saturation level corresponds to

the speed (length of motion vector). We implemented the SOSMP algorithm by expand-

ing in the two-dimensional Fourier basis, using r = 9 coefficients and k = 3 samples.

Although the initial estimates are noisy, it converges to a reasonable optical flow esti-

mate after around 40 iterations.

The proof of this lemma is relatively straightforward; see Appendix A for the details. Note that

inequality (31) provides an upper bound on the error that involves two terms: the first term Dt+1
v→u

depends only on the expansion coefficients {bτ
v→u; j,τ = 0, . . . , t} and the BP fixed point, and there-

fore is a deterministic quantity when we condition on all randomness in stages up to step t. The

second term St+1
v→u, even when conditioned on randomness through step t, remains stochastic, since

the coefficients b̃t+1
v→u (involved in the error term ζt+1

v→u) are updated stochastically in moving from

iteration t to t +1.
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We split the remainder of our analysis into three parts: (a) control of the deterministic com-

ponent; (b) control of the stochastic term; and (c) combining the pieces to provide a convergence

bound.

6.1.1 UPPER-BOUNDING THE DETERMINISTIC TERM

By the Pythagorean theorem, we have

t

∑
τ=0

r

∑
j=1

[
bτ

v→u; j −a∗v→u; j

]2 ≤
t

∑
τ=0

‖Fv→u(m̂
t)−Fv→u(m

∗)‖2
L2 . (32)

In order to control this term, we make use of the following lemma, proved in Appendix B:

Lemma 8 For all directed edges (v → u) ∈ ~E , there exist constants {Lv→u;w,w ∈ N (v)\{u}} such

that

‖Fv→u(m̂
t) − Fv→u(m

∗)‖L2 ≤ ∑
w∈N (v)\{u}

Lv→u;w ‖m̂t
w→v − m∗

w→v‖L2 ,

for all t = 1,2, . . ..

Substituting the result of Lemma 8 in Equation (32) and performing some algebra, we find that

t

∑
τ=0

r

∑
j=1

[
bτ

v→u; j −a∗v→u; j

]2 ≤
t

∑
τ=0

(
∑

w∈N (v)\{u}
Lv→u;w ‖m̂τ

w→v − m∗
w→v‖L2

)2

≤ (dv −1)
t

∑
τ=0

∑
w∈N (v)\{u}

L2
v→u;w ‖m̂τ

w→v − m∗
w→v‖2

L2 , (33)

where dv is the degree of node v ∈ V . By definition, the message m̂τ
w→v is the L2-projection of mτ

w→v

onto M . Since m∗
w→v ∈ M and projection is non-expansive, we have

‖m̂τ
w→v − m∗

w→v‖2
L2 ≤ ‖mτ

w→v − m∗
w→v‖2

L2

= ‖∆τ
w→v‖2

L2 + ‖Ar
w→v‖2

L2 , (34)

where in the second step we have used the Pythagorean identity and recalled the definitions of

estimation error as well as approximation error from (14) and (15). Substituting the inequality (34)

into the bound (33) yields

t

∑
τ=0

r

∑
j=1

[
bτ

v→u; j −a∗v→u; j

]2 ≤ (dv −1)
t

∑
τ=0

∑
w∈N (v)\{u}

L2
v→u;w

(
‖∆τ

w→v‖2
L2 +‖Ar

w→v‖2
L2

)
.

Therefore, introducing the convenient shorthand L̃v→u,w := 2 (dv −1)L2
v→u;w, we have shown that

Dt+1
v→u ≤ 1

t +1

t

∑
τ=0

∑
w∈N (v)\{u}

L̃v→u,w

(
‖∆t

w→v‖2
L2 + ‖Ar

w→v‖2
L2

)
. (35)

We make further use of this inequality shortly.
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6.1.2 CONTROLLING THE STOCHASTIC TERM

We now turn to the stochastic part of the inequality (31). Our analysis is based on the following

fact, proved in Appendix C:

Lemma 9 For each t ≥ 0, let G t := σ(m0, . . . ,mt) be the σ-field generated by all messages through

time t. Then for every fixed j = 1,2, . . . ,r, the sequence ζt+1
v→u; j = b̃t+1

v→u; j − bt
v→u; j is a bounded

martingale difference with respect to {G t}∞
t=0. In particular, we have |ζt+1

v→u; j| ≤ 2B j, where B j was

previously defined (19).

Based on Lemma 9, standard martingale convergence results (Durrett, 1995) guarantee that for each

j = 1,2, . . . ,r, we have ∑t
τ=0 ζτ+1

v→u; j/(t +1) converges to 0 almost surely (a.s.) as t → ∞, and hence

St+1
v→u =

2

(t +1)2

r

∑
j=1

{ t

∑
τ=0

ζτ+1
v→u; j

}2

= 2
r

∑
j=1

{ 1

t +1

t

∑
τ=0

ζτ+1
v→u; j

}2 a.s.−→ 0. (36)

Furthermore, we can apply the Azuma-Hoeffding inequality (Chung and Lu, 2006) in order to char-

acterize the rate of convergence. For each j = 1,2, . . . ,r, define the non-negative random variable

Z j :=
{

∑t
τ=0 ζτ+1

v→u; j

}2
/(t +1)2. Since |ζτ+1

v→u; j| ≤ 2B j, for any δ ≥ 0, we have

P
(
Z j ≥ δ

)
= P

(√
Z j ≥

√
δ
)
≤ 2 exp

(
− (t +1) δ

8 B2
j

)
,

for all δ > 0. Moreover, Z j is non-negative; therefore, integrating its tail bound we can compute the

expectation

E[Z j] =
∫ ∞

0
P
(
Z j ≥ δ

)
dδ ≤ 2

∫ ∞

0
exp

(
− (t +1) δ

8 B2
j

)
dδ =

16B2
j

t +1
,

and consequently

E
[
|St+1

v→u|
]
≤

32 ∑r
j=1 B2

j

t +1
.

6.1.3 ESTABLISHING CONVERGENCE

We now make use of the results established so far to prove the claims. Substituting the upper

bound (35) on Dt+1
v→u into the decomposition (31) from Lemma 7, we find that

‖∆t+1
v→u‖2

L2 ≤ 1

t +1

t

∑
τ=0

∑
w∈N (v)\{u}

L̃v→u,w

{
‖∆τ

w→v‖2
L2 + ‖Ar

w→v‖2
L2

}
+St+1

v→u. (37)

For convenience, let us introduce the vector T t+1 = {T t+1
v→u,(v → u) ∈ ~E} ∈ R

|~E | with entries

T t+1
v→u :=

1

t +1

{
∑

w∈N (v)\{u}
L̃v→u,w ‖∆0

w→v‖2
L2

}
+ St+1

v→u. (38)
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Now define a matrix N ∈ R
|~E |×|~E | with entries indexed by the directed edges and set to

Nv→u, w→s :=

{
L̃v→u,w if s = v and w ∈ N (v)\{u}
0 otherwise.

In terms of this matrix and the error terms ρ2
(
·
)

previously defined in Equations (16) and (17), the

scalar inequalities (37) can be written in the matrix form

ρ2
(
∆t+1

)
� N

[ 1

t +1

t

∑
τ=1

ρ2
(
∆τ
)]

+ N ρ2
(
Ar
)
+ T t+1, (39)

where � denotes the element-wise inequality based on the orthant cone.

From Lemma 1 in the paper by Noorshams and Wainwright (2013), we know that the matrix N

is guaranteed to be nilpotent with degree ℓ equal to the graph diameter. Consequently, unwrapping

the recursion (39) for a total of ℓ= diam(G) times yields

ρ2
(
∆t+1

)
� T t+1

0 + N T t+1
1 + . . . + Nℓ−1 T t+1

ℓ−1 + (N + N2 + . . . + Nℓ)ρ2
(
Ar
)
,

where we define T t+1
0 ≡ T t+1, and then recursively T t+1

s :=(∑t
τ=1 T τ

s−1)/(t+1) for s = 1,2, . . . , ℓ−1.

By the nilpotency of N, we have the identity I +N + . . .+Nℓ−1 = (I −N)−1; so we can further sim-

plify the last inequality

ρ2
(
∆t+1

)
�

ℓ−1

∑
s=0

Ns T t+1
s + N (I −N)−1 ρ2

(
Ar
)
. (40)

Recalling the definition B :=
{

e ∈ R
|~E | | |e| � N(I −N)−1ρ2

(
Ar
)}

, inequality (40) implies that

∣∣ρ2
(
∆t+1

)
− ΠB

(
ρ2
(
∆t+1

))∣∣�
ℓ−1

∑
s=0

Ns T t+1
s . (41)

We now use the bound (41) to prove both parts of Theorem 2.

To prove the almost sure convergence claim in part (a), it suffices to show that for each s =
0,1, . . . , ℓ−1, we have T t

s
a.s.−→ 0 as t →+∞. From Equation (36) we know St+1

v→u → 0 almost surely

as t → ∞. In addition, the first term in (38) is at most O(1/t), so that also converges to zero

as t → ∞. Therefore, we conclude that T t
0

a.s.−→ 0 as t → ∞. In order to extend this argument to

higher-order terms, let us recall the following elementary fact from real analysis (Royden, 1988):

for any sequence of real numbers {xt}∞
t=0 such that xt → 0, then we also have (∑t

τ=0 xτ)/t → 0. In

order to apply this fact, we observe that T t
0

a.s.−→ 0 means that for almost every sample point ω the

deterministic sequence {T t+1
0 (ω)}∞

t=0 converges to zero. Consequently, the above fact implies that

T t+1
1 (ω) = (∑t

τ=1 T τ
0 (ω))/(t+1)→ 0 as t →∞ for almost all sample points ω, which is equivalent to

asserting that T t
1

a.s.−→~0. Iterating the same argument, we establish T t+1
s

a.s.−→~0 for all s = 0,1, . . . , ℓ−
1, thereby concluding the proof of Theorem 2(a).

Taking the expectation on both sides of the inequality (41) yields

E
[
|ρ2

(
∆t+1

)
−ΠB

(
ρ2
(
∆t+1

))
|
]
�

ℓ−1

∑
s=0

Ns
E[T t+1

s ] (42)

so that it suffices to upper bound the expectations E[T t+1
s ] for s = 0,1, . . . , ℓ−1. In Appendix D, we

prove the following result:
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Lemma 10 Define the |~E |-vector ~v :=
{

∑r
j=1 B2

j

}
(4N~1+ 32). Then for all s = 0,1, . . . , ℓ−1 and

t = 0,1,2, . . .,

E[T t+1
s ] � ~v

t +1

(
s

∑
u=0

(log(t +1))u

u!

)
. (43)

Using this lemma, the proof of part (b) follows easily. In particular, substituting the bounds (43)

into Equation (42) and doing some algebra yields

E
[
|ρ2

(
∆t+1

)
− ΠB

(
ρ2
(
∆t+1

))
|
]
�

ℓ−1

∑
s=0

Ns
s

∑
u=0

(log(t +1))u

u!

( ~v

t +1

)

� 3
ℓ−1

∑
s=0

(log(t +1))s Ns
( ~v

t +1

)

� 3 (I − log(t +1)N)−1
( ~v

t +1

)
,

where again we used the fact that Nℓ = 0.

6.2 General Graphs: Proof of Theorem 3

Recall the definition of the estimation error ∆t
v→u from (14). By Parseval’s identity we know that

‖∆t
v→u‖2

L2 = ∑r
j=1(a

t
v→u; j − a∗v→u; j)

2. For convenience, we introduce the following shorthands for

mean squared error on the directed edge (v → u)

ρ2(∆t
v→u) := E[‖∆t

v→u‖2
L2 ] = E

[ r

∑
j=1

(at
v→u; j −a∗v→u; j)

2
]
,

as well as the ℓ∞ error

ρ2
max(∆

t) := max
(v→u)∈~E

E[‖∆t
v→u‖2

L2 ],

similarly defined for approximation error

ρ2
max(A

r) := max
(v→u)∈~E

‖Ar
v→u‖2

L2 .

Using the definition of ρ2(∆t
v→u), some algebra yields

ρ2(∆t+1
v→u)−ρ2(∆t

v→u) = E

[ r

∑
j=1

(
at+1

v→u; j −a∗v→u; j

)2 −
r

∑
j=1

(
at

v→u; j −a∗v→u; j

)2
]

= E

[ r

∑
j=1

{
at+1

v→u; j −at
v→u; j

} {(
at+1

v→u; j −at
v→u; j

)
+ 2

(
at

v→u; j −a∗v→u; j

)}]
.

From the update Equation (13), we have

at+1
v→u; j −at

v→u; j = ηt
(
b̃t+1

v→u; j −at
v→u; j

)
,
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and hence

ρ2(∆t+1
v→u)−ρ2(∆t

v→u) = U t
v→u + V t

v→u, (44)

where

U t
v→u := (ηt)2

r

∑
j=1

E

[(
b̃t+1

v→u; j −at
v→u; j

)2
]
, and

V t
v→u := 2ηt

r

∑
j=1

E

[(
b̃t+1

v→u; j −at
v→u; j

)(
at

v→u; j −a∗v→u; j

)]
.

The following lemma, proved in Appendix E, provides upper bounds on these two terms.

Lemma 11 For all iterations t = 0,1,2, . . ., we have

U t
v→u ≤ 4(ηt)2

r

∑
j=1

B2
j , and (45)

V t
v→u ≤ ηt

(
1− γ

2

)
ρ2

max
(Ar) + ηt

(
1− γ

2

)
ρ2

max
(∆t) − ηt(1+

γ

2
)ρ2(∆t

v→u). (46)

We continue upper-bounding ρ2(∆t+1
v→u) by substituting the results of Lemma 11 into Equation (44),

thereby obtaining

ρ2(∆t+1
v→u) ≤ 4(ηt)2

r

∑
j=1

B2
j +ηt

(
1− γ

2

)
ρ2

max(A
r) + ηt

(
1− γ

2

)
ρ2

max(∆
t)

+
{

1−ηt
(
1+

γ

2

)}
ρ2(∆t

v→u)

≤ 4(ηt)2
r

∑
j=1

B2
j +ηt

(
1− γ

2

)
ρ2

max(A
r) +

(
1−ηtγ

)
ρ2

max(∆
t).

Since this equation holds for all directed edges (v → u), taking the maximum over the left-hand side

yields the recursion

ρ2
max(∆

t+1) ≤ (ηt)2 B2 + ηt
(
1− γ

2

)
ρ2

max(A
r) +

(
1−ηtγ

)
ρ2

max(∆
t),

where we have introduced the shorthand B2 = 4∑r
j=1 B2

j . Setting ηt = 1/(γ(t +1)) and unwrapping

this recursion, we find that

ρ2
max(∆

t+1) ≤ B2

γ2

t+1

∑
τ=1

1

τ(t +1)
+

2− γ

2γ
ρ2

max(A
r)

≤ 2B2

γ2

log(t +1)

t +1
+

1

γ
ρ2

max(A
r),

which establishes the claim.
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6.3 Complexity versus Accuracy: Proof of Theorem 4

As discussed earlier, each iteration of the SOSMP algorithm requires O(r) operations per edge. Con-

sequently, it suffices to show that running the algorithm with r = r∗ coefficients for

(∑r
j=1 λ2

j)(1/δ) log(1/δ) iterations suffices to achieve mean-squared error of the order of δ.

The bound (21) consists of two terms. In order to characterize the first term (estimation error),

we need to bound B j defined in (19). Using the orthonormality of the basis functions and the fact

that the supremum is attainable over the compact space X , we obtain

B j = max
(v→u)∈~E

sup
y∈X

λ j φ j(y)∫
X ψuv(x,y)µ(dx)

= O(λ j).

Therefore, the estimation error decays at the rate O
(
(∑r

j=1 λ2
j) (log t/t)

)
, so that a total of t =

O
(
(∑r

j=1 λ2
j)(1/δ) log(1/δ)

)
iterations are sufficient to reduce it to O(δ).

The second term (approximation error) in the bound (21) depends only on the choice of r, and

in particular on the r-term approximation error ‖Ar
v→u‖2

L2 = ‖m∗
v→u −Πr(m∗

v→u)‖2
L2 . To bound this

term, we begin by representing m∗
v→u in terms of the basis expansion ∑∞

j=1 a∗jφ j. By the Pythagorean

theorem, we have

‖m∗
v→u −Πr(m∗

v→u)‖2
L2 =

∞

∑
j=r+1

(a∗j)
2. (47)

Our first claim is that ∑∞
j=1(a

∗
j)

2/λ j <∞. Indeed, since m∗ is a fixed point of the message update

equation, we have

m∗
v→u(·) ∝

∫
X

ψuv(·,y)M(y)µ(dy),

where M(·) := ψv(·)∏w∈N (v)\{u} m∗
w→v(·). Exchanging the order of integrations using Fubini’s the-

orem, we obtain

a∗j = 〈m∗
v→u, φ j〉L2 ∝

∫
X
〈φ j(·), ψuv(·,y)〉L2 M(y)µ(dy). (48)

By the eigenexpansion of ψuv, we have

〈φ j(·), ψuv(·,y)〉L2 =
∞

∑
k=1

λk〈φ j, φk〉L2 φk(y) = λ j φ j(y).

Substituting back into our initial Equation (48), we find that

a∗j ∝ λ j

∫
X

φ j(y) M(y)µ(dy) = λ j ã j,

where ã j are the basis expansion coefficients of M. Since the space X is compact, one can see that

M ∈ L2(X ), and hence ∑∞
j=1 ã2

j < ∞. Therefore, we have

∞

∑
j=1

(a∗j)
2

λ j

∝
∞

∑
j=1

λ j ã2
j < +∞,
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where we used the fact that ∑∞
j=1 λ j < ∞.

We now use this bound to control the approximation error (47). For any r = 1,2, . . ., we have

∞

∑
j=r+1

(a∗j)
2 =

∞

∑
j=r+1

λ j

(a∗j)
2

λ j

≤ λr

∞

∑
j=r+1

(a∗j)
2

λ j

= O(λr),

using the non-increasing nature of the sequence {λ j}∞
j=1. Consequently, by definition of r∗ (22), we

have

‖m∗
v→u −Πr∗(m∗

v→u)‖2
L2 = O(δ),

as claimed.

7. Conclusion

Belief propagation is a widely used message-passing algorithm for computing (approximate)

marginals in graphical models. In this paper, we have presented and analyzed the SOSMP algo-

rithm for running BP in models with continuous variables. It is based on two forms of approxi-

mation: a deterministic approximation that involves projecting messages onto the span of r basis

functions, and a stochastic approximation that involves approximating basis coefficients via Monte

Carlo techniques and damped updates. These approximations, while leading to an algorithm with

substantially reduced complexity, are also controlled: we provide upper bounds on the convergence

of the stochastic error, showing that it goes to zero as O(log t/t) with the number of iterations, and

also control on the deterministic error. For graphs with relatively smooth potential functions, as

reflected in the decay rate of their basis coefficients, we provided a quantitative bound on the total

number of basic arithmetic operations required to compute the BP fixed point to within δ-accuracy.

We illustrated our theoretical predictions using experiments on simulated graphical models, as well

as in a real-world instance of optical flow estimation.

Our work leaves open a number of interesting questions. First, although we have focused ex-

clusively on models with pairwise interactions, it should be possible to develop forms of SOSMP

for higher-order factor graphs. Second, the bulk of our analysis was performed under a type of

contractivity condition, as has been used in past works (Tatikonda and Jordan, 2002; Ihler et al.,

2005; Mooij and Kappen, 2007; Roosta et al., 2008) on convergence of the standard BP updates.

However, we suspect that this condition might be somewhat relaxed, and doing so would demon-

strate applicability of the SOSMP algorithm to a larger class of graphical models. Finally, it would

be interesting to see if the ideas presented in this work can be applied to other graph-based learning

problems.
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Appendix A. Proof of Lemma 7

Subtracting a∗v→u; j from both sides of the update (13) in Step 2(c), we obtain

at+1
v→u; j −a∗v→u; j = (1−ηt)

[
at

v→u; j −a∗v→u; j

]
+ ηt

[
bt

v→u; j −a∗v→u; j

]
+ ηt ζt+1

v→u; j. (49)

Setting ηt = 1/(t +1) and unwrapping the recursion (49) then yields

at+1
v→u; j −a∗v→u; j =

1

t +1

t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]
+

1

t +1

t

∑
τ=0

ζτ+1
v→u; j.

Squaring both sides of this equality and using the upper bound (a+b)2 ≤ 2a2 +2b2, we obtain

(
at+1

v→u; j −a∗v→u; j

)2 ≤ 2

(t +1)2

{ t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]}2

+
2

(t +1)2

{ t

∑
τ=0

ζτ+1
v→u; j

}2

.

Summing over indices j = 1,2, . . . ,r and recalling the expansion (30), we find that

‖∆t
v→u‖2

L2 ≤
r

∑
j=1

{
2

(t +1)2

{ t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]}2

+
2

(t +1)2

{ t

∑
τ=0

ζτ+1
v→u; j

}2

}

(i)

≤ 2

(t +1)

r

∑
j=1

t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]2

︸ ︷︷ ︸
Deterministic term Dt+1

v→u

+
2

(t +1)2

r

∑
j=1

{ t

∑
τ=0

ζτ+1
v→u; j

}2

.

︸ ︷︷ ︸
Stochastic term St+1

v→u

Here step (i) follows from the elementary inequality

{ t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]}2

≤ (t +1)
t

∑
τ=0

[
bτ

v→u; j −a∗v→u; j

]2
.

Appendix B. Proof of Lemma 8

Recall the probability density

[pv→u(m)](·) ∝ βv→u(·) ∏
w∈N (v)\{u}

mw→v(·),

defined in Step 2 of the SOSMP algorithm. Using this shorthand notation, the claim of Lemma 1

can be re-written as [Fv→u(m)](x) = 〈Γuv(x, ·), [pv→u(m)](·)〉L2 . Therefore, applying the Cauchy-

Schwartz inequality yields

|[Fv→u(m)](x)− [Fv→u(m
′)](x)|2 ≤ ‖Γuv(x, ·)‖2

L2 ‖pv→u(m) − pv→u(m
′)‖2

L2 .

Integrating both sides of the previous inequality over X and taking square roots yields

‖Fv→u(m) − Fv→u(m
′)‖L2 ≤ Cuv ‖pv→u(m) − pv→u(m

′)‖L2 ,

where we have denoted the constant Cuv :=
(∫

X |Γuv(x,y)|2µ(dy)µ(dx)
)1/2

.
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The next step is to upper bound the term ‖pv→u(m)− pv→u(m
′)‖L2 . In order to do so, we first

show that pv→u(m) is a Frechet differentiable4 operator on the space M ′ :=
convhull{m∗,⊕(v→u)∈~E M ′

v→u}, where

M ′
v→u :=

{
m̂v→u

∣∣∣ m̂v→u =
[
EY∼ f

[
Πr

(
Γuv(·,Y )

)]]
+
, for some probability density f

}
,

denotes the space of all feasible SOSMP messages on the directed edge (v → u). Doing some

calculus using the chain rule, we calculate the partial directional (Gateaux) derivative of the operator

pv→u(m) with respect to the function mw→v. More specifically, for an arbitrary function hw→v, we

have

[Dw pv→u(m)](hw→v) =
βv→u ∏s∈N (v)\{u,w} ms→v

〈Mv→u, βv→u〉L2

hw→v

− βv→uMv→u

〈Mv→u, βv→u〉2
L2

〈hw→v, βv→u ∏
s∈N (v)\{u,w}

ms→v〉L2 ,

where Mv→u = ∏w∈N (v)\{u} mw→v. Clearly the Gateaux derivative is linear and continuous. It is also

bounded as will be shown now. Massaging the operator norm’s definition, we obtain

sup
m∈M ′

|||Dw pv→u(m)|||2 = sup
m∈M ′

sup
hw→v∈M ′

w→v

‖[Dw pv→u(m)](hw→v)‖L2

‖hw→v‖L2

≤ sup
m∈M ′

supx∈X βv→u(x)∏s∈N (v)\{u,w} ms→v(x)

〈Mv→u, βv→u〉L2

+ sup
m∈M ′

‖βv→uMv→u‖L2 ‖βv→u ∏s∈N (v)\{u,w} ms→v‖L2

〈Mv→u, βv→u〉2
L2

. (50)

Since the space X is compact, the continuous functions βv→u and ms→v achieve their maximum over

X . Therefore, the numerator of (50) is bounded and we only need to show that the denominator is

bounded away from zero.

For an arbitrary message mv→u ∈ M ′
v→u there exist 0 < α < 1 and a bounded probability density

f so that

mv→u(x) = α m∗
v→u(x) + (1−α)

[
EY∼ f

[
Γ̃uv(x,Y )

]]
+
,

4. For the convenience of the reader, we state the notions of Gateaux and Frechet differentiability (Clarke, 2013; Fabian

et al., 2011). For normed spaces X and Y , let U be an open subset of X , and let F : X → Y be an operator. For x ∈U

and z ∈ X , the F is Gateaux differentiable at x in the direction z if and only if the following limit exists

[DF(x)](z) := lim
t→0

F(x+ tz) − F(x)

t
=

d

dt
F(x+ tz) |t=0 .

Moreover, the operator F is Frechet differentiable at x if there exists a bounded linear operator DF(x) : X → Y such

that

lim
z→0

‖F(x+ z) − F(x) − [DF(x)](z)‖
‖z‖ = 0.
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where we have introduced the shorthand Γ̃uv(·,y) :=Πr(Γuv(·,y)). According to Lemma 1, we know

m∗
v→u = EY [Γuv(·,Y )], where Y ∼ pv→u(m

∗). Therefore, denoting p∗ = pv→u(m
∗), we have

mv→u(x) ≥ αEY∼p∗ [Γuv(x,Y )] + (1−α)EY∼ f [Γ̃uv(x,Y )]

= EY∼(αp∗+(1−α) f )[Γ̃uv(x,Y )] + αEY∼p∗ [Γuv(x,Y )− Γ̃uv(x,Y )]. (51)

On the other hand, since X is compact, we can exchange the order of expectation and projection

using Fubini’s theorem to obtain

EY∼p∗ [Γuv(·,Y )− Γ̃uv(·,Y )] = m∗
v→u −Πr(m∗

v→u) = Ar
v→u.

Substituting the last equality into the bound (51) yields

mv→u(x) ≥ inf
y∈X

Γ̃uv(x,y) − |Ar
v→u(x)|.

Recalling the assumption (18), one can conclude that the right hand side of the above inequality is

positive for all directed edges (v→ u). Therefore, the denominator of the expression (50) is bounded

away from zero and more importantly supm∈M ′ |||Dw pv→u(m)|||2 is attainable.

Since the derivative is a bounded, linear, and continuous operator, the Gateaux and Frechet

derivatives coincides and we can use Proposition 2 (Luenberger, 1969, page 176) to obtain the

following upper bound

‖pv→u(m) − pv→u(m
′)‖L2 ≤ ∑

w∈N (v)\{u}
sup

0≤α≤1

|||Dw pv→u(m
′+α (m−m′))|||2 ‖mw→v − m′

w→v‖L2 .

Setting Lv→u;w := Cuv supm∈M ′ |||Dw pv→u(m)|||2 and putting the pieces together yields

‖Fv→u(m) − Fv→u(m
′)‖L2 ≤ ∑

w∈N (v)\{u}
Lv→u;w ‖mw→v − m′

w→v‖L2 ,

for all m,m′ ∈ M ′.
The last step of the proof is to verify that m∗ ∈M ′, and m̂t ∈M ′ for all t = 1,2, . . .. By definition

we have m∗ ∈ M ′. On the other hand, unwrapping the update (13) we obtain

at
v→u; j =

1

t

t−1

∑
τ=0

b̃τ+1
v→u; j

=
1

t

t−1

∑
τ=0

1

k

k

∑
ℓ=1

∫
X

Γuv(x,Y
τ+1
ℓ )φ j(x)µ(dx)

=
∫

X
EY∼ p̂[Γuv(x,Y )]φ j(x)µ(dx),

where p̂ denotes the empirical probability density. Therefore, mt
v→u = ∑r

j=1 at
v→u; j φ j is equal to

Πr(EY∼ p̂[Γuv(·,Y )]), thereby completing the proof.
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Appendix C. Proof of Lemma 9

We begin by taking the conditional expectation of b̃t+1
v→u; j, previously defined (12), given the filter-

ation G t and with respect to the random samples {Y t+1
1 , . . . ,Y t+1

k } i.i.d.∼ [pv→u(m̂)](·). Exchanging

the order of expectation and integral5 and exploiting the result of Lemma 1, we obtain

E[b̃t+1
v→u; j |G t ] =

∫
X
[Fv→u(m̂

t)](x)φ j(x)µ(dx) = bt
v→u; j, (52)

and hence E[ζt+1
v→u; j |G t ] = 0, for all j = 1,2, . . . ,r and all directed edges (v → u) ∈ ~E . Also it is

clear that ζt+1
v→u; j is G t-measurable. Therefore, {ζτ+1

v→u; j}∞
τ=0 forms a martingale difference sequence

with respect to the filtration {G τ}∞
τ=0. On the other hand, recalling the bound (19), we have

|b̃t+1
v→u; j| ≤

1

k

k

∑
ℓ=1

|〈Γuv(·,Yℓ), φ j〉L2 | ≤ B j.

Moreover, exploiting the result of Lemma 1 and exchanging the order of the integration and expec-

tation once more yields

|bt
v→u; j| = |〈EY [Γuv(·,Y )], φ j〉L2 | = |EY [〈Γuv(·,Y ), φ j〉L2 ]| ≤ B j, (53)

where we have Y ∼ [pv→u(m̂
t)](y). Therefore, the martingale difference sequence is bounded, in

particular with

|ζt+1
v→u; j| ≤ |b̃t+1

v→u; j| + |bt
v→u; j| ≤ 2B j.

Appendix D. Proof of Lemma 10

We start by uniformly upper-bounding the terms E[|T t+1
v→u|]. To do so we first need to bound

‖∆t
v→u‖L2 . By definition we know ‖∆t

v→u‖2
L2 = ∑r

j=1[a
t
v→u; j − a∗v→u; j]

2; therefore we only need to

control the terms at
v→u; j and a∗v→u; j for j = 1,2, . . . ,r.

By construction, we always have |b̃t+1
v→u; j| ≤ B j for all iterations t = 0,1, . . .. Also, assuming that

|a0
v→u; j| ≤ B j, without loss of generality, a simple induction using the update Equation (13) shows

that |at
v→u; j| ≤ B j for all t. Moreover, using a similar argument leading to (53), we obtain

|a∗v→u; j| = |〈EY [Γuv(·,Y )], φ j〉L2 | = |EY [〈Γuv(·,Y ), φ j〉L2 ]| ≤ B j,

where we have Y ∼ [pv→u(m
∗)](y). Therefore, putting the pieces together, recalling the defini-

tion (38) of T t+1
v→u yields

E[|T t+1
v→u|] ≤

4

t +1
∑

w∈N (v)\{u}
L̃v→u,w

r

∑
j=1

B2
j +

32

t +1

r

∑
j=1

B2
j .

5. Since Γuv(x,y)φi(x)[pv→u(m̂
t)](y) is absolutely integrable, we can exchange the order of the integrals using Fubini’s

theorem.
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Concatenating the previous scalar inequalities yields E[T t+1
0 ] �~v/(t + 1), for all t ≥ 0, where we

have defined the |~E |-vector~v :=
{

∑r
j=1 B2

j

}
(4N~1+32). We now show, using an inductive argument,

that

E[T t+1
s ] � ~v

t +1

s

∑
u=0

(log(t +1))u

u!
,

for all s = 0,1,2, . . . and t = 0,1,2, . . .. We have already established the base case s = 0. For some

s > 0, assume that the claim holds for s−1. By the definition of T t+1
s , we have

E[T t+1
s ] =

1

t +1

t

∑
τ=1

E[T τ
s−1]

� ~v

t +1

t

∑
τ=1

{1

τ
+

s−1

∑
u=1

(logτ)u

u! τ

}
,

where the inequality follows from the induction hypothesis. We now make note of the elementary

inequalities ∑t
τ=1 1/τ ≤ 1+ log t, and

t

∑
τ=1

(logτ)u

u! τ
≤

∫ t

1

(logx)u

u! x
dx =

(log t)(u+1)

(u+1)!
, for all u ≥ 1

from which the claim follows.

Appendix E. Proof of Lemma 11

By construction, we always have |b̃t+1
v→u; j| ≤ B j for all iterations t = 0,1,2, . . .. Moreover, assuming

|a0
v→u; j| ≤ B j, without loss of generality, a simple induction on the update equation shows that

|at
v→u; j| ≤ B j for all iterations t = 0,1, . . .. On this basis, we find that

U t
v→u = (ηt)2

r

∑
j=1

E
[(

b̃t+1
v→u; j −at

v→u; j

)2] ≤ 4(ηt)2
r

∑
j=1

B2
j ,

which establishes the bound (45).

It remains to establish the bound (46) on V t
v→u. We first condition on the σ-field G t =σ(m0, . . . ,mt)

and take expectations over the remaining randomness, thereby obtaining

V t
v→u = 2ηt

E

[
E
[ r

∑
j=1

(
b̃t+1

v→u; j −at
v→u; j

)(
at

v→u; j −a∗v→u; j

)∣∣G t
]]

= 2ηt
E

[ r

∑
j=1

(
bt

v→u; j −at
v→u; j

)(
at

v→u; j −a∗v→u; j

)]
,

where {bt
v→u; j}∞

j=1 are the expansion coefficients of the function Fv→u(m̂
t)

(i.e., bt
v→u; j = 〈Fv→u(m̂

t), φ j〉L2), and we have recalled the result E[b̃t+1
v→u; j|G t ] = bt

v→u; j from (52).

By Parseval’s identity, we have

T :=
r

∑
j=1

(
bt

v→u; j −at
v→u; j

)(
at

v→u; j −a∗v→u; j

)

= 〈Πr(Fv→u(m̂
t))−mt

v→u, mt
v→u −Πr(m∗

v→u)〉L2 .
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Here we have used the basis expansions

mt
v→u =

r

∑
j=1

at
v→u; jφ j, and Πr(m∗

v→u) =
r

∑
j=1

a∗v→u; jφ j.

Since Πr(mt
v→u) = mt

v→u and Fv→u(m
∗) = m∗

v→u, we have

T = 〈Πr
(
Fv→u(m̂

t)−Fv→u(m
∗)
)
, mt

v→u −Πr(m∗
v→u)〉L2 − ‖mt

v→u −Πr(m∗
v→u)‖2

L2

(i)

≤ ‖Πr
(
Fv→u(m̂

t)−Fv→u(m
∗)
)
‖L2 ‖mt

v→u −Πr(m∗
v→u)‖L2 − ‖mt

v→u −Πr(m∗
v→u)‖2

L2

(ii)

≤ ‖Fv→u(m̂
t)−Fv→u(m

∗)‖L2 ‖mt
v→u −Πr(m∗

v→u)‖L2 − ‖mt
v→u −Πr(m∗

v→u)‖2
L2 .

where step (i) uses the Cauchy-Schwarz inequality, and step (ii) uses the non-expansivity of projec-

tion. Applying the contraction condition (20), we obtain

T ≤
(
1− γ

2

)
√√√√ ∑

w∈N (v)\{u}
‖m̂t

w→v −m∗
w→v‖2

L2

|N (v)|−1
‖mt

v→u −Πr(m∗
v→u)‖L2

− ‖mt
v→u −Πr(m∗

v→u)‖2
L2

≤
(
1− γ

2

){1

2

∑w∈N (v)\{u} ‖mt
w→v −m∗

w→v‖2
L2

|N (v)|−1
+

1

2
‖mt

v→u −Πr(m∗
v→u)‖2

L2

}

− ‖mt
v→u −Πr(m∗

v→u)‖2
L2 ,

where the second step follows from the elementary inequality ab ≤ a2/2 + b2/2 and the non-

expansivity of projection onto the space of non-negative functions. By the Pythagorean theorem,

we have

‖mt
w→v −m∗

w→v‖2
L2 = ‖mt

w→v −Πr(m∗
w→v)‖2

L2 + ‖Πr(m∗
w→v)−m∗

w→v‖2
L2

= ‖∆t
w→v‖2

L2 +‖Ar
w→v‖2

L2 .

Using this equality and taking expectations, we obtain

E[T ] ≤
(
1− γ

2

){1

2

∑w∈N (v)\{u}[ρ
2(∆t

w→v)+‖Ar
w→v‖2

L2 ]

|N (v)|−1
+

1

2
ρ2(∆t

v→u)

}
− ρ2(∆t

v→u)

≤
(1

2
− γ

4

)
ρ2

max(A
r) +

(1

2
− γ

4

)
ρ2

max(∆
t) − (

1

2
+

γ

4
)ρ2(∆t

v→u).

Since V t
v→u = 2ηt

E[T ], the claim follows.
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Université de Lille, France

40, avenue de Halley

59650 Villeneuve d’Ascq

France

Editor: Léon Bottou

Abstract

A metric between time-series distributions is proposed that can be evaluated using binary classi-

fication methods, which were originally developed to work on i.i.d. data. It is shown how this

metric can be used for solving statistical problems that are seemingly unrelated to classification

and concern highly dependent time series. Specifically, the problems of time-series clustering,

homogeneity testing and the three-sample problem are addressed. Universal consistency of the re-

sulting algorithms is proven under most general assumptions. The theoretical results are illustrated

with experiments on synthetic and real-world data.

Keywords: time series, reductions, stationary ergodic, clustering, metrics between probability

distributions

1. Introduction

Binary classification is one of the most well-understood problems of machine learning and statistics:

a wealth of efficient classification algorithms has been developed and applied to a wide range of

applications. Perhaps one of the reasons for this is that binary classification is conceptually one

of the simplest statistical learning problems. It is thus natural to try and use it as a building block

for solving other, more complex, newer or just different problems; in other words, one can try to

obtain efficient algorithms for different learning problems by reducing them to binary classification.

This approach has been applied to many different problems, starting with multi-class classification,

and including regression and ranking (Balcan et al., 2007; Langford et al., 2006), to give just a few

examples. However, all of these problems are formulated in terms of independent and identically

distributed (i.i.d.) samples. This is also the assumption underlying the theoretical analysis of most

of the classification algorithms.

In this work we consider learning problems that concern time-series data for which indepen-

dence assumptions do not hold. The series can exhibit arbitrary long-range dependence, and dif-

ferent time-series samples may be interdependent as well. Moreover, the learning problems that

we consider—the three-sample problem, time-series clustering, and homogeneity testing—at first

glance seem completely unrelated to classification.

c©2013 Daniil Ryabko and Jérémie Mary.
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We show how the considered problems can be reduced to binary classification methods, via a

new metric between time-series distributions. The results include asymptotically consistent algo-

rithms, as well as finite-sample analysis. To establish the consistency of the suggested methods, for

clustering and the three-sample problem the only assumption that we make on the data is that the

distributions generating the samples are stationary ergodic; this is one of the weakest assumptions

used in statistics. For homogeneity testing we have to make some mixing assumptions in order

to obtain consistency results (this is indeed unavoidable, as shown by Ryabko, 2010b). Mixing

conditions are also used to obtain finite-sample performance guarantees for the first two problems.

The proposed approach is based on a new distance between time-series distributions (that is,

between probability distributions on the space of infinite sequences), which we call telescope dis-

tance. This distance can be evaluated using binary classification methods, and its finite-sample

estimates are shown to be asymptotically consistent. Three main building blocks are used to con-

struct the telescope distance. The first one is a distance on finite-dimensional marginal distributions.

The distance we use for this is the following well-known metric: dH (P,Q) := suph∈H |EPh−EQh|
where P,Q are distributions and H is a set of functions. This distance can be estimated using binary

classification methods, and thus can be used to reduce various statistical problems to the classifi-

cation problem. This distance was previously applied to such statistical problems as homogeneity

testing and change-point estimation (Kifer et al., 2004). However, these applications so far have

only concerned i.i.d. data, whereas we want to work with highly-dependent time series. Thus, the

second building block are the recent results of Adams and Nobel (2012), that show that empiri-

cal estimates of dH are consistent (under certain conditions on H ) for arbitrary stationary ergodic

distributions. This, however, is not enough: evaluating dH for (stationary ergodic) time-series dis-

tributions means measuring the distance between their finite-dimensional marginals, and not the

distributions themselves. Finally, the third step to construct the distance is what we call telescoping.

It consists in summing the distances for all the (infinitely many) finite-dimensional marginals with

decreasing weights. The resulting distance can “automatically” select the marginal distribution of

the right order: marginals which cannot distinguish between the distributions give distance esti-

mates that converge to zero, while marginals whose orders are too high to have converged have very

small weights. Thus, the estimate is dominated by the marginals which can distinguish between the

time-series distributions, or converges to zero if the distributions are the same. It is worth noting

that a similar telescoping trick is used in different problems, most notably, in sequence prediction

(Solomonoff, 1978; B. Ryabko, 1988; Ryabko, 2011); it is also used in the distributional distance

(Gray, 1988), see Section 8 below.

We show that the resulting distance (telescope distance) indeed can be consistently estimated

based on sampling, for arbitrary stationary ergodic distributions. Further, we show how this fact can

be used to construct consistent algorithms for the considered problems on time series. Thus we can

harness binary classification methods to solve statistical learning problems concerning time series.

A remarkable feature of the resulting methods is that the performance guarantees obtained do not

depend on the approximation error of the binary classification methods used, they only depend on

their estimation error.

Moreover, we analyse some other distances between time-series distributions, the possibility of

their use for solving the statistical problems considered, and the relation of these distances to the

telescope distance introduced in this work.

To illustrate the theoretical results in an experimental setting, we chose the problem of time-

series clustering, since it is a difficult unsupervised problem which seems most different from the
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problem of binary classification. Experiments on both synthetic and real-world data are provided.

The real-world setting concerns brain-computer interface (BCI) data, which is a notoriously chal-

lenging application, and on which the presented algorithm demonstrates competitive performance.

A related approach to address the problems considered here, as well as some related problems

about stationary ergodic time series, is based on (consistent) empirical estimates of the distributional

distance, see Ryabko and Ryabko (2010), Ryabko (2010a), Khaleghi et al. (2012), as well as Gray

(1988) about the distributional distance. The empirical distance is based on counting frequencies of

bins of decreasing sizes and “telescoping.” This distance is described in some detail in Section 8

below, where we compare it to the telescope distance. Another related approach to time-series

analysis involves a different reduction, namely, that to data compression (B. Ryabko, 2009).

1.1 Organisation

Section 2 is preliminary. In Section 3 we introduce and discuss the telescope distance. Section 4

explains how this distance can be calculated using binary classification methods. Sections 5 and 6

are devoted to the three-sample problem and clustering, respectively. In Section 7, under some

mixing conditions, we address the problems of homogeneity testing, clustering with unknown k, and

finite-sample performance guarantees. In Section 8 we take a look at other distances between time-

series distributions and their relations to the telescope distance. Section 9 presents experimental

evaluation.

2. Notation and Definitions

Let (X ,F1) be a measurable space (the domain), and denote (X k,Fk) and (X N,F ) the product

probability space over X k and the induced probability space over the one-way infinite sequences

taking values in X . Time-series (or process) distributions are probability measures on the space

(XN,F ). We use the abbreviation X1..k for X1, . . . ,Xk. A set H of functions is called separable

if there is a countable set H ′ of functions such that any function in H is a pointwise limit of a

sequence of elements of H ′.
A distribution ρ is called stationary if ρ(X1..k ∈ A) = ρ(Xn+1..n+k ∈ A) for all A ∈ Fk, k,n ∈ N.

A stationary distribution is called (stationary) ergodic if

lim
n→∞

1

n
∑

i=1..n−k+1

IXi..i+k∈A = ρ(A) ρ− a.s.

for every A ∈ Fk, k ∈ N. (This definition, which is more suited for the purposes of this work, is

equivalent to the usual one expressed in terms of invariant sets, see, e.g., Gray, 1988.)

3. A Distance between Time-Series Distributions

We start with a distance between distributions on X , and then we extend it to distributions on X N.

For two probability distributions P and Q on (X ,F1) and a set H of measurable functions on X , one

can define the distance

dH (P,Q) := sup
h∈H

|EPh−EQh|. (1)

This metric in its general form has been studied at least since the 80’s (Zolotarev, 1983); its special

cases include Kolmogorov-Smirnov (Kolmogorov, 1933), Kantorovich-Rubinstein (Kantorovich
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and Rubinstein, 1957) and Fortet-Mourier (Fortet and Mourier, 1953) metrics. Note that the dis-

tance function so defined may not be measurable; however, it is measurable under mild conditions

which we assume whenever necessary. In particular, separability of H is a sufficient condition

(separability is required in most of the results below).

We are interested in the cases where dH (P,Q) = 0 implies P = Q. Note that in this case dH is a

metric (the rest of the properties are easy to see). For reasons that will become apparent shortly (see

Remark below), we are mainly interested in the sets H that consist of indicator functions. In this

case we can identify each f ∈ H with the indicator set {x : f (x) = 1} ⊂ X and (by a slight abuse of

notation) write dH (P,Q) := suph∈H |P(h)−Q(h)|. In this case it is easy to check that the following

statement holds true.

Lemma 1 dH is a metric on the space of probability distributions over X if and only if H gener-

ates F1.

The property that H generates F1 is often easy to verify directly. First of all, it trivially holds for

the case where H is the set of halfspaces in a Euclidean X . It is also easy to check that it holds if

H is the set of halfspaces in the feature space of most commonly used kernels (provided the feature

space is of the same or higher dimension than the input space), such as polynomial and Gaussian

kernels.

Based on dH we can construct a distance between time-series probability distributions. For two

time-series distributions ρ1,ρ2 we take the dH between k-dimensional marginal distributions of ρ1

and ρ2 for each k ∈ N, and sum them all up with decreasing weights.

Definition 2 (telescope distance DH) For two time series distributions ρ1 and ρ2 on the space

(X N,F ) and a sequence of sets of functions H = (H1,H2, . . .) define the telescope distance

DH(ρ1,ρ2) :=
∞

∑
k=1

wk sup
h∈Hk

|Eρ1
h(X1, . . . ,Xk)−Eρ2

h(Y1, . . . ,Yk)|, (2)

where wk, k ∈ N is a sequence of positive summable real weights (e.g., wk = 1/k2 or wk = 2−k).

Lemma 3 DH is a metric if and only if dHk
is a metric for every k ∈ N.

Proof The statement follows from the fact that two process distributions are the same if and only if

all their finite-dimensional marginals coincide.

Definition 4 (empirical telescope distance D̂) For a pair of samples X1..n and Y1..m define the em-

pirical telescope distance as

D̂H(X1..n,Y1..m) :=

min{m,n}

∑
k=1

wk sup
h∈Hk

∣

∣

∣

∣

∣

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣

∣

∣

∣

∣

. (3)

All the methods presented in this work are based on the empirical telescope distance. The key

fact is that it is an asymptotically consistent estimate of the telescope distance, that is, the latter can

be consistently estimated based on sampling.
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Theorem 5 Let H = (Hk)k∈N be a sequence of separable sets Hk of indicator functions (over X k)

of finite VC dimension such that Hk generates Fk. Then for every stationary ergodic time series

distributions ρX and ρY generating samples X1..n and Y1..m we have

lim
n,m→∞

D̂H(X1..n,Y1..m) = DH(ρX ,ρY )a.s.

Note that D̂H is a biased estimate of DH, and, unlike in the i.i.d. case, the bias may depend on the

distributions; however, the bias is o(n).

Remark. The condition that the sets Hk are sets of indicator function of finite VC dimension comes

from the results of Adams and Nobel (2012), who show that for any stationary ergodic distribution

ρ, under these conditions, suph∈Hk

1
n−k+1 ∑

n−k+1
i=1 h(Xi..i+k−1) is an asymptotically consistent estimate

of suph∈Hk
Eρh(X1, . . . ,Xk). This fact implies that dHk

can be consistently estimated, from which the

theorem is derived.

Proof [of Theorem 5] As established by Adams and Nobel (2012), under the conditions of the

theorem we have

lim
n→∞

sup
h∈Hk

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1) = sup
h∈Hk

EρX
h(X1, . . . ,Xk) ρX -a.s. (4)

for all k ∈ N, and likewise for ρY . Fix an ε > 0. We can find a T ∈ N such that

∑
k>T

wk ≤ ε. (5)

Note that T depends only on ε. Moreover, as follows from (4), for each k = 1..T we can find an Nk

such that
∣

∣

∣
sup
h∈Hk

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)− sup
h∈Hk

EρX
h(X1..k)

∣

∣

∣
≤ ε/T. (6)

Let Nk := maxi=1..T Ni and define analogously M for ρY . Thus, for n ≥ N, m ≥ M we have

D̂H(X1..n,Y1..m)

≤
T

∑
k=1

wk sup
h∈Hk

∣

∣

∣

∣

∣

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣

∣

∣

∣

∣

+ ε

≤
T

∑
k=1

wk sup
h∈Hk

{∣

∣

∣

∣

∣

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−Eρ1
h(X1..k)

∣

∣

∣

∣

∣

+ |Eρ1
h(X1..k)−Eρ2

h(Y1..k)|

+

∣

∣

∣

∣

∣

Eρ2
h(Y1..k)−

1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣

∣

∣

∣

∣

}

+ ε

≤ 3ε+DH(ρX ,ρY ),

where the first inequality follows from the definition (3) of D̂H and from (5), and the last inequality

follows from (6). Since ε was chosen arbitrary the statement follows.
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4. Calculating D̂H Using Binary-Classification Methods

The methods for solving various statistical problems that we suggest are all based on D̂H. The main

appeal of this approach is that D̂H can be calculated using binary classification methods. Here we

explain how to do it.

The definition (3) of DH involves calculating l summands (where l := min{n,m}), that is

sup
h∈Hk

∣

∣

∣

∣

∣

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣

∣

∣

∣

∣

(7)

for each k = 1..l. Assuming that h ∈ Hk are indicator functions, calculating each of the summands

amounts to solving the following k-dimensional binary classification problem. Consider Xi..i+k−1,

i = 1..n− k+1 as class-1 examples and Yi..i+k−1, i = 1..m− k+1 as class-0 examples. The supre-

mum (7) is attained on h ∈ Hk that minimizes the empirical risk, with examples weighted with

respect to the sample size. Indeed, we can define the weighted empirical risk of any h ∈ Hk as

1

n− k+1

n−k+1

∑
i=1

(1−h(Xi..i+k−1))+
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1), (8)

minimising which can be easily seen to be equivalent to (7).

Thus, as long as we have a way to find h ∈ Hk that minimizes empirical risk, we have a con-

sistent estimate of DH (ρX ,ρY ), under the mild conditions on H required by Theorem 5. Since

the dimension of the resulting classification problems grows with the length of the sequences, one

should prefer methods that work in high dimensions, such as soft-margin SVMs (Cortes and Vapnik,

1995).

A particularly remarkable feature is that the choice of Hk is much easier for the problems that we

consider than in the binary classification problem. Specifically, if (for some fixed k) the classifier

that achieves the minimal (Bayes) error for the classification problem is not in Hk, then obviously

the error of an empirical risk minimizer will not tend to zero, no matter how much data we have. In

contrast, all we need to achieve asymptotically 0 error in estimating D̂ (and therefore, in the learning

problems considered below) is that the sets Hk generate Fk and have a finite VC dimension (for each

k). This is the case already for the set of half-spaces in Rk. In other words, the approximation error

of the binary classification method (the classification error of the best f in Hk) is not important.

What is important is the estimation error; for asymptotic consistency results it has to go to 0 (hence

the requirement on the VC dimension); for non-asymptotic results, it will appear in the error bounds,

see Section 7. Thus, we have the following statement.

Claim 1 The error |DH(ρX ,ρY )− D̂H(X ,Y )|, and thus the error of the algorithms below, can be

much smaller than the error of classification algorithms used to calculate DH(X ,Y ).

We can conclude that, beyond the requirement that Hk generate Fk for each k ∈ N, the choice

of Hk (or, say, of the kernel to use in SVM) is entirely up to the needs and constraints of specific

applications.

Remark (number of summands in D̂H) Finally, we note that while in the definition of the empir-

ical distributional distance (3) the number of summands is l (the length of the shorter of the two
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samples), it can be replaced with any γl such that γl → ∞, without affecting any asymptotic consis-

tency results. In other words, Theorem 5, as well as all the consistency statements below, holds true

for l replaced with any non-decreasing function γl that tends to infinity with l. A practically viable

choice is γl = log l; in fact, there is no reason to choose faster growing γn since the estimates for

higher-order summands will not have enough data to converge. This is also the value we use in the

experiments.

Remark (relation to total variation) An illustrative example1 of the choice of the sets Hk is the

set of indicators of all measurable subsets of X k. In this case each summand in (2) is the total vari-

ation distance between the k-dimensional marginal distributions of ρ1 and ρ2. Take, for simplicity,

k = 1; denoting P and Q the corresponding single-dimensional marginals, the distance becomes

supA |P(A)−Q(A)| (cf. (1)). This supremum is reached on the set A∗ := {x ∈ X : f (x) ≥ g(x)},

where f and g are densities of P and Q with respect to some arbitrary measure that dominates both

P and Q (e.g., 1/2(P+Q)). A binary classifier corresponding to a set A declares P if x ∈ A and Q

otherwise. The optimal classification error is infA(1−P(A)+Q(A)) = 1− supA(P(A)+Q(A)) =
1−P(A∗)+Q(A∗) (cf. (8)). In general, estimating the total variation distance (and finding the best

classifier) is not possible, so using smaller sets Hk can be viewed as a regularization of this problem.

5. The Three-Sample Problem

We start with a conceptually simple problem known in statistics as the three-sample problem (some-

times also called time-series classification). We are given three samples X = (X1, . . . ,Xn), Y =
(Y1, . . . ,Ym) and Z = (Z1, . . . ,Zl). It is known that X and Y were generated by different time-series

distributions, whereas Z was generated by the same distribution as either X or Y . It is required

to find out which one is the case. Both distributions are assumed to be stationary ergodic, but no

further assumptions are made about them (no independence, mixing or memory assumptions). The

three sample-problem for dependent time series has been addressed by Gutman (1989) for Markov

processes and by Ryabko and Ryabko (2010) for stationary ergodic time series. The latter work

uses an approach based on the distributional distance.

Indeed, to solve this problem it suffices to have consistent estimates of some distance between

time series distributions. Thus, we can use the telescope distance. The following statement is a

simple corollary of Theorem 5.

Theorem 6 Let the samples X = (X1, . . . ,Xn), Y = (Y1, . . . ,Ym) and Z = (Z1, . . . ,Zl) be generated

by stationary ergodic distributions ρX ,ρY and ρZ , with ρX 6= ρY and either (i) ρZ = ρX or (ii)

ρZ = ρY . Let the sets Hk, k ∈ N be separable sets of indicator functions over X k. Assume that

each set Hk, k ∈ N has a finite VC dimension and generates Fk. A test that declares that (i) is

true if D̂H(Z,X) ≤ D̂H(Z,Y ) and that (ii) is true otherwise, makes only finitely many errors with

probability 1 as n,m, l → ∞.

It is straightforward to extend this theorem to more than two classes; in other words, instead of X

and Y one can have an arbitrary number of samples from different stationary ergodic distributions.

A further generalization of this problem is the problem of time-series clustering, considered in the

next section.

1. This example was suggested by an anonymous reviewer.
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6. Clustering Time Series

We are given N time-series samples X1 = (X1
1 , . . . ,X

1
n1
), . . . ,XN = (XN

1 , . . . ,XN
nN
), and it is required to

cluster them into K groups, where, in different settings, K may be either known or unknown. While

there may be many different approaches to define what should be considered a good clustering,

and, thus, what it means to have a consistent clustering algorithm, for the problem of clustering

time-series samples there is a natural choice, proposed by Ryabko (2010a): Assume that each of

the time-series samples X1 = (X1
1 , . . . ,X

1
n1
), . . . ,XN = (XN

1 , . . . ,XN
nN
) was generated by one out of K

different time-series distributions ρ1, . . . ,ρK . These distributions are unknown. The target clustering

is defined according to whether the samples were generated by the same or different distributions:

the samples belong to the same cluster if and only if they were generated by the same distribution.

A clustering algorithm is called asymptotically consistent if with probability 1 from some n on it

outputs the target clustering, where n is the length of the shortest sample n := mini=1..N ni ≥ n′.
Again, to solve this problem it is enough to have a metric between time-series distributions that

can be consistently estimated. Our approach here is based on the telescope distance, and thus we

use D̂.

The clustering problem is relatively simple if the target clustering has what is called the strict

separation property (Balcan et al., 2008): every two points in the same target cluster are closer

to each other than to any point from a different target cluster. The following statement is an easy

corollary of Theorem 5.

Theorem 7 Let the sets Hk, k ∈ N be separable sets of indicator functions over X k. Assume that

each set Hk, k ∈ N has a finite VC dimension and generates Fk. If the distributions ρ1, . . . ,ρK

generating the samples X1 = (X1
1 , . . . ,X

1
n1
), . . . ,XN = (XN

1 , . . . ,XN
nN
) are stationary ergodic, then with

probability 1 from some n := mini=1..N ni on the target clustering has the strict separation property

with respect to D̂H.

With the strict separation property at hand, if the number of clusters K is known, it is easy to

find asymptotically consistent algorithms. Here we give some simple examples, but the theorem

below can be extended to many other distance-based clustering algorithms.

The average linkage algorithm works as follows. The distance between clusters is defined as

the average distance between points in these clusters. First, put each point into a separate cluster.

Then, merge the two closest clusters; repeat the last step until the total number of clusters is K.

The farthest point clustering works as follows. Assign c1 := X1 to the first cluster. For i = 2..K,

find the point X j, j ∈ {1..N} that maximizes the distance mint=1..i D̂H(X
j,ct) (to the points already

assigned to clusters) and assign ci := X j to the cluster i. Then assign each of the remaining points

to the nearest cluster. The following statement is a corollary of Theorem 7.

Theorem 8 Under the conditions of Theorem 7, average linkage and farthest point clusterings are

asymptotically consistent, provided the correct number of clusters K is given to the algorithm.

Note that we do not require the samples to be independent; the joint distributions of the samples may

be completely arbitrary, as long as the marginal distribution of each sample is stationary ergodic.

These results can be extended to the online setting in the spirit of Khaleghi et al. (2012).

For the case of unknown number of clusters, the situation is different: one has to make stronger

assumptions on the distributions generating the samples, since there is no algorithm that is consistent

for all stationary ergodic distributions (Ryabko, 2010b); such stronger assumptions are considered

in the next section.
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7. Speed of Convergence

The results established so far are asymptotic out of necessity: they are established under the as-

sumption that the distributions involved are stationary ergodic, which is too general to allow for any

meaningful finite-time performance guarantees. While it is interesting to be able to establish consis-

tency results under such general assumptions, it is also interesting to see what results can be obtained

under stronger assumptions. Moreover, since it is usually not known in advance whether the data

at hand satisfies given assumptions or not, it appears important to have methods that have both

asymptotic consistency in the general setting and finite-time performance guarantees under stronger

assumptions. It turns out that this is possible: for the methods based on D̂ one can establish both the

asymptotic performance guarantees for all stationary ergodic distributions and finite-sample perfor-

mance guarantees under stronger assumptions, namely the uniform mixing conditions introduced

below.

Another reason to consider stronger assumptions on the distributions generating the data is that

some statistical problems, such as homogeneity testing or clustering when the number of clusters is

unknown, are provably impossible to solve under the only assumption of stationary ergodic distri-

butions, as shown by Ryabko (2010b).

Thus, in this section we analyse the speed of convergence of D̂ under certain mixing conditions,

and use it to construct solutions for the problems of homogeneity and clustering with an unknown

number of clusters, as well as to establish finite-time performance guarantees for the methods pre-

sented in the previous sections.

A stationary distribution on the space of one-way infinite sequences (X N,F ) can be uniquely

extended to a stationary distribution on the space of two-way infinite sequences (X Z,FZ) of the

form . . . ,X−1,X0,X1, . . . .

Definition 9 (β-mixing coefficients) For a process distribution ρ define the mixing coefficients

β(ρ,k) := sup
A∈σ(X−∞..0),
B∈σ(Xk..∞)

|ρ(A∩B)−ρ(A)ρ(B)|

where σ(..) denotes the sigma-algebra of the random variables in brackets.

When β(ρ,k)→ 0 the process ρ is called uniformly β-mixing (with coefficients β(ρ,k)); this con-

dition is much stronger than ergodicity, but is much weaker than the i.i.d. assumption. For more

information on mixing see, for example, Bosq (1996).

7.1 Speed of Convergence of D̂

Assume that a sample X1..n is generated by a distribution ρ that is uniformly β-mixing with coeffi-

cients β(ρ,k). Assume further that Hk is a set of indicator functions with a finite VC dimension dk,

for each k ∈ N.

Since in this section we are after finite-time bounds, we fix a concrete choice of the weights wk

in the definition of D̂ (Definition 2),

wk := 2−k. (9)
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The general tool that we use to obtain performance guarantees in this section is the following

bound that can be obtained from the results of Karandikar and Vidyasagar (2002).

qn(ρ,Hk,ε) := ρ

(

sup
h∈Hk

∣

∣

∣

∣

∣

1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−Eρh(X1..k)

∣

∣

∣

∣

∣

> ε

)

≤ nβ(ρ, tn − k)+8tdk+1
n e−lnε2/8, (10)

where tn are any integers in 1..n and ln = n/tn. The parameters tn should be set according to the

values of β in order to optimize the bound.

One can use similar bounds for classes of finite Pollard dimension (Pollard, 1984) or more

general bounds expressed in terms of covering numbers, such as those given by Karandikar and

Vidyasagar (2002). Here we consider classes of finite VC dimension only for the ease of the expo-

sition and for the sake of continuity with the previous section (where it was necessary).

Furthermore, for the rest of this section we assume geometric β-mixing distributions, that is,

β(ρ, t)≤ γt for some γ < 1. Letting ln = tn =
√

n the bound (10) becomes

qn(ρ,Hk,ε)≤ nγ
√

n−k +8n(dk+1)/2e−
√

nε2/8. (11)

Lemma 10 Let two samples X1..n and Y1..m be generated by stationary distributions ρX and ρY

whose β-mixing coefficients satisfy β(ρ., t) ≤ γt for some γ < 1. Let Hk, k ∈ N be some sets of

indicator functions on X k whose VC dimension dk is finite and non-decreasing with k. Then

P(|D̂H(X1..n,Y1..m)−DH(ρX ,ρY )|> ε)≤ 2∆(ε/4,n′) (12)

where n′ := min{n,m}, the probability is with respect to ρX ×ρY and

∆(ε,n) :=− logε(nγ
√

n+log(ε)+8n(d− logε+1)/2e−
√

nε2/8). (13)

Proof From (9) we have ∑∞
k=− logε/2 wk < ε/2. Using this and the definitions 2 and 4 of DH and D̂H

we obtain

P(|D̂H(X1..n1
,Y1..n2

)−DH(ρX ,ρY )|> ε)≤
− log(ε/2)

∑
k=1

(qn(ρX ,Hk,ε/4)+qn(ρY ,Hk,ε/4)),

which, together with (11), implies the statement.

7.2 Homogeneity Testing

Given two samples X1..n and Y1..m generated by distributions ρX and ρY respectively, the problem

of homogeneity testing (or the two-sample problem) consists in deciding whether ρX = ρY . A test

is called (asymptotically) consistent if its probability of error goes to zero as n′ := min{m,n} goes

to infinity. As mentioned above, in general, for stationary ergodic time series distributions there

is no asymptotically consistent test for homogeneity (Ryabko, 2010b) (even for binary-valued time

series); thus, stronger assumptions are in order.

Homogeneity testing is one of the classical problems of mathematical statistics, and one of the

most studied ones. Vast literature exits on homogeneity testing for i.i.d. data, and for dependent
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processes as well. We do not attempt to survey this literature here. Our contribution to this line of

research is to show that this problem can be reduced (via the telescope distance) to binary classifi-

cation, in the case of strongly dependent processes satisfying some mixing conditions.

It is easy to see that under the mixing conditions of Lemma 10 a consistent test for homogeneity

exists, and finite-sample performance guarantees can be obtained. It is enough to find a sequence

εn → 0 such that ∆(εn,n)→ 0 (see (13)). Then the test can be constructed as follows: say that the

two sequences X1..n and Y1..m were generated by the same distribution if D̂H(X1..n,Y1..m)< εmin{n,m};

otherwise say that they were generated by different distributions.

Theorem 11 Under the conditions of Lemma 10 the probability of Type I error (the distributions are

the same but the test says they are different) of the described test is upper-bounded by 2∆(ε/4,n′).
The probability of Type II error (the distributions are different but the test says they are the same) is

upper-bounded by 2∆((δ− ε)/4,n′) where δ := DH(ρX ,ρY ).

Proof The statement is an immediate consequence of Lemma 10. Indeed, for the Type I error,

the two sequences are generated by the same distribution, so the probability of error of the test is

given by (12) with DH(ρX ,ρY ) = 0. The probability of Type II error is given by P(DH(ρX ,ρY )−
D̂H(X1..n1

,Y1..n2
)> δ− ε), which is upper-bounded by 2∆((δ− ε))/4,n′) as follows from (12).

The optimal choice of εn may depend on the speed at which dk (the VC dimension of Hk)

increases; however, for most natural cases (recall that Hk are also parameters of the algorithm) this

growth is polynomial, so the main term to control is e−
√

nε2/8.

For example, if Hk is the set of halfspaces in X k = Rk then dk = k + 1 and one can choose

εn := n−1/8. The resulting probability of Type I error decreases as exp(−n1/4).

7.3 Clustering with a Known or Unknown Number of Clusters

If the distributions generating the samples satisfy certain mixing conditions, then we can augment

Theorems 7 and 8 with finite-sample performance guarantees.

Theorem 12 Let the distributions ρ1, . . . ,ρk generating the samples X1 = (X1
1 , . . . ,X

1
n1
), . . . , XN =

(XN
1 , . . . ,XN

nN
) satisfy the conditions of Lemma 10. Let n := mini=1..N ni and δ :=

mini, j=1..N,i6= j DH(ρi,ρ j). Then with probability at least 1−N(N − 1)∆(δ/12,n′) the target clus-

tering of the samples has the strict separation property. In this case single linkage and farthest

point algorithms output the target clustering.

Proof Note that a sufficient condition for the strict separation property to hold is that for every pair

i, j of samples generated by the same distribution we have D̂H(X
i,X j)≤ δ/3, and for every pair i, j

of samples generated by different distributions we have D̂H(X
i,X j)≥ 2δ/3. Using Lemma 10, the

probability of such an even (for each pair) is upper-bounded by 2∆(δ/12,n′), which, multiplied by

the total number N(N −1)/2 of pairs gives the statement. The second statement is obvious.

As with homogeneity testing, while in the general case of stationary ergodic distributions it is

impossible to have a consistent clustering algorithm when the number of clusters k is unknown,

the situation changes if the distributions satisfy certain mixing conditions. In this case a consistent

clustering algorithm can be obtained as follows. Assign to the same cluster all samples that are at
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most εn-far from each other, where the threshold εn is selected the same way as for homogeneity

testing: εn → 0 and ∆(εn,n)→ 0. The optimal choice of this parameter depends on the choice of Hk

through the speed of growth of the VC dimension dk of these sets.

Theorem 13 Given N samples generated by k different stationary distributions ρi, i = 1..k (un-

known k) all satisfying the conditions of Lemma 10, the probability of error (misclustering at least

one sample) of the described algorithm is upper-bounded by

N(N −1)max{∆(ε/4,n′),∆((δ− ε)/4,n′)}

where δ := mini, j=1..k,i6= j DH(ρi,ρ j) and n = mini=1..N ni, with ni, i = 1..N being lengths of the

samples.

Proof The statement follows from Theorem 11.

8. Other Metrics for Time-Series Distributions

The previous sections introduce a new metric on the space of time-series distributions, and use

its empirical estimates to solve several learning problems. In this section we attempt to put the

telescope distance into a more general context, and take a broader look at metrics between time-

series distributions.

Introduce the notation µk for the k-dimensional marginal distribution of a time-series distribu-

tion µ.

8.1 sum Distances

Observe that the telescope distance DH has the form

D(µ,ν) = ∑
k∈N

wkdk(µk,νk), (14)

where wk are summable positive real weights.

It is easy to see that distances of this form can be consistently estimated, as long as dk can be

consistently estimated for each k ∈ N; this is formalized in the following statement.

Proposition 14 (estimating sum-based distances) Let C be a set of distributions over X N. Let

dk,k ∈N be a series of distances on the spaces of distributions over X k, such that dk(µk,νk)≤ a ∈R
for all µ,ν ∈ C and such that there exists a series d̂k(X1..n,Y1..n),k ∈N of their consistent estimates:

for each µ,ν ∈ C we have limn→∞ d̂k(X1..n,Y1..n) = dk(µk,νk) a.s., whenever µ,ν ∈ C are chosen to

generate the sequences. Then the distance D given by (14) can be consistently estimated using the

estimate ∑k∈N wkd̂k(X1..n,Y1..n).

Proof The proof is an easy generalization of the proof of Theorem 5, with the condition on d̂k used

instead of (4).

Clearly, DH is an example of a distance in the form (14), and it satisfies the conditions of the

proposition with C being the set of all stationary ergodic processes.
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Another example of a distance in the form (14) is given by the so-called distributional distance

(Gray, 1988; Shields, 1996), whose definition is given below. Empirical estimates of this distance

are asymptotically consistent for stationary ergodic time series, and thus can be used (Ryabko and

Ryabko, 2010; Ryabko, 2010a; Khaleghi et al., 2012; Khaleghi and Ryabko, 2012; Ryabko, 2012)

to solve various statistical problems, including those considered above.

To define the distributional distance, let, for each k, l ∈ N, the set Bk,l be some partition of

the set X k, such that the set Bk = ∪l∈NBk,l generates Fk. Let also B = ∪∞
k=1Bk. Note that the set

{B×X N : B ∈ Bk,l,k, l ∈ N} generates F .

Definition 15 (distributional distance) The distributional distance is defined for a pair of pro-

cesses ρ1,ρ2 as follows

Ddd(ρ1,ρ2) :=
∞

∑
m,l=1

wmwl ∑
B∈Bm,l

|ρ1(B)−ρ2(B)|, (15)

where wk,k ∈ N is a summable sequence of positive real weights (e.g., w j = 2− j).

Remark. A more general definition, which is not specific to time-series distributions, is to take any

sequence B j ∈ F1, j ∈N of events that generate the sigma-algebra F of a probability space (X ,F ),
and then define

D′
dd(ρ1,ρ2) :=

∞

∑
j=1

w j|ρ1(B j)−ρ2(B j)|; (16)

see Gray (1988) for a general treatment. The latter definition is sometimes more convenient for

theoretical analysis (Ryabko, 2012), while the distance (15), which makes explicit the marginal

distributions on X m, m ∈ N and the level l of discretisation Bm,l of each set X m, is more suited

for time-series, and, specifically, for implementing algorithms, see Ryabko and Ryabko (2010),

Khaleghi et al. (2012) and Khaleghi and Ryabko (2012).

In general, it is perhaps impossible to tell which distance, specifically, DH or Ddd , should be

preferred for which problem. Conceptually, one of the advantages of the telescope distance DH is

that one can use different sets H—the choice that makes it adaptable to applications. Another is that

one can reuse readily available classification methods for calculating its empirical estimates. One

formal way to compare different metrics is to compare the resulting topologies. This is done in the

end of this section.

8.2 sup Distances

A different way to construct a distance between time-series distributions based on their finite-

dimensional marginals is to use the supremum instead of summation in (14):

d(µ,ν) = sup
k∈N

dk(µk,νk). (17)

Some commonly used metrics are defined in the form (17) or have natural interpretations in this

form, as the following two examples show.

Definition 16 (total variation) For time-series distributions ν,µ the total variation distance be-

tween them is defined as Dtv(µ,ν) := supA∈F |µ(A)−ν(A)|.
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It is easy to see that Dtv(µ,ν) = supk∈N supA∈Fk
|µ(A)−ν(A)|, so that the total variation distance has

the form (17).

However, the total variation distance is not very useful for time-series distributions for the fol-

lowing two reasons. First of all, for stationary ergodic distributions it is degenerate: Dtv(µ,ν) = 1 if

and only if µ 6= ν. This follows from the fact that any two different stationary ergodic distributions

are singular. Such a distance could still be useful as a formalization of the problem of homogeneity

testing. However, the problem of homogeneity testing is impossible to solve based on sampling for

stationary ergodic distributions (and even for a smaller family of B processes, see below) (Ryabko,

2010b), so the use of this distance remains limited to more restrictive classes of distributions.

This hints at an intrinsic problem with distances defined in the form (17). The problem is in the

difficulties to estimate such metrics based on sampling. At each time step t we observe only a sample

of finite length, say nt , and based on this we want to estimate a quantity that involves k-dimensional

marginals for all k, including those with k > nt . Considering a growing (with t) number of marginals

for the estimate may be a route to take, but this turns out to be difficult to analyse, especially if no

rates of convergence can be established for the set of time-series distributions at hand. This problem

is highlighted by the example of the so-called d̄ distance, whose definition follows.

Definition 17 (d̄ distance) Assume some distance δ over X is given. For two time-series distribu-

tions µ and ν define

d̄(µ,ν) := sup
k∈N

1

k
inf
p∈P

k

∑
i=1

Epδ(xi,yi),

where P is the set of all distributions over X k ×X k generating a pair of sequences x1..k,y1..k whose

marginal distributions are µk and νk correspondingly.

A process is called a B-process (or a Bernoulli process) if it is in the d̄-closure of the set of all

aperiodic stationary ergodic k-step Markov processes, where k ∈ N. For more information on d̄-

distance and B-processes see Gray (1988) and Shields (1996). The set of B-processes is a strict

subset of the set of all stationary ergodic time-series distributions. It turns out that d̄ distance is

impossible to estimate for the latter, while it can be estimated for the former (Ornstein and Weiss,

1990).

Theorem 18 (Ornstein and Weiss, 1990) There exists an estimator d̂(X1..n,Y1..n) such that, if

X1..n,Y1..n are generated by B-processes µ and ν then d̂(X1..n,Y1..n)→ d̄(µ,ν) a.s. However, for any

estimator d̂(X1..n,Y1..n) there is a pair of stationary ergodic processes µ and ν such that

limsupn→∞ |d̂(X1..n,Y1..n)− d̄(µ,ν)|> 1/2.

8.3 Comparison with the Distributional Distance

In this section we show that the telescope distance is stronger than the distributional distance in

the topological sense. Since in fact both the telescope distance and the distributional distance are

families of distances (the telescope distance depends on the sequence H), we will fix a simple natural

choice of each of these metrics. In general, different choices of parameters produce topologically

non-equivalent metrics; it is easy to check that the analysis in this section extends to many other

natural choices.
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Thus, for the purpose of this section, let us fix X = R and let H0
k be the set of halfspaces in X k.

Denote H0 := (H 0
k : k ∈N). Clearly, these Hk satisfy all the conditions of the theorems of Sections 5

and 6.

For the distributional distance (Definition 15), set Bk,l to be the partition of the set X k into k-

dimensional cubes with volume hk
l = (1/l)k. Denote D0

dd the distributional distance Ddd with this

set of parameters.

Definition 19 A metric d1 is said to be stronger than a metric d2 if any sequence that converges in

d1 also converges in d2. If, in addition, d2 is not stronger than d1, then d1 is called strictly stronger.

Note that for the distributional distance, if we use the same sets Bk to generate the sigma algebras

X k then the distance defined by (15) is stronger than the distance defined by (16).

Theorem 20 DH0 is strictly stronger than D0
dd .

Proof Fix any ε > 0 and find a T ∈ N such that ∑m,l>T wmwl < ε. Let ρi, i ∈ N be a sequence of

process measures that converges in DH0 . Let Ak be the set of all complements to X k of cubes with

sides of length s, for all s ∈N. Note that any cube B in Bk, as well as any set A in Ak, can be obtained

by intersecting 2k halfspaces. Therefore, we have

sup
B∈Bk∪Ak

|ρi(B)−ρ j(B)| ≤ 2kdHk
(ρi,ρ j)≤ 2kw−1

k DH0(ρi,ρ j), (18)

where the second inequality follows from the definition of DH0 . Observe that for each i ∈N one can

find a set Ai ∈ Ak such that ρi(Ai)< ε/2. From this, (18) and the fact that the sequence ρi converges

in DH0 , we conclude that there is a set A ∈ Ak such that

ρi(A)< ε

for all i ≥ jk. For all k, l ∈ N one can find Mk,l ∈ N such that the complement of A (which is a cube

in X k) is contained in the union of Mk,l cubes from Bk,l . Let M := maxk,l≤T Mk,l and J := maxi≤T ji.

Using (18) and the definition of the partitions Bk,l we can derive

∑
B∈Bk,l ,B*Ak

|ρi(B)−ρ j(B)| ≤ 2MTw−1
T DH0(ρi,ρ j)

for any i, j ≥ J and all k, l ≤ T . Increasing J if necessary to have 2MTw−1
T DH0(ρi,ρ j) < ε for all

i, j ≥ J, we obtain

D0
dd(ρi,ρ j)≤

T

∑
m,l=1

wmwl ∑
B∈Bm,l ,B*Am

|ρi(B)−ρ j(B)|+2ε ≤ 3ε

for all i, j > J, which means that the sequence ρi, i ∈N converges in D0
dd . Thus, DH0 is stronger than

D0
dd .

It remains to show that D0
dd is not stronger than DH0 . To see this, consider the following se-

quence of subsets of X = R. f is the dot {0}, and fk is the interval [0,1/k], for each k ∈ N. Define

the distributions ν j for j ∈ N as uniform on f j, and let ν be concentrated on f ; since we need time-

series distributions, extend this i.i.d. for all n ∈ N. It is easy to check that limi∈N D0
dd(νi,ν0) = 0

while DH0(νi,ν0) = 1 for all i > 0.
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Figure 1: Error of two-class clustering using TSSVM; 10 time series in each target cluster, averaged

over 20 runs.

9. Experimental Evaluation

For experimental evaluation we chose the problem of time-series clustering. The average-linkage

clustering is used, with the telescope distance between samples calculated using an SVM, as de-

scribed in Section 4. In all experiments, SVM is used with radial basis kernel, with default parame-

ters of libsvm (Chang and Lin, 2011). The parameters wk in the definition of the telescope distance

(Definition 2) are set to wk := k−2.

9.1 Synthetic Data

For the artificial setting we chose highly-dependent time-series distributions which have the same

single-dimensional marginals and which cannot be well approximated by finite- or countable-state

models. Variants of this family of distributions are standard examples in ergodic theory and dy-

namical systems (see, for example, Billingsley, 1965; Gray, 1988; Shields, 1996). The distributions

ρ(α), α ∈ (0,1), are constructed as follows. Select r0 ∈ [0,1] uniformly at random; then, for each

i = 1..n obtain ri by shifting ri−1 by α to the right, and removing the integer part. The time series

(X1,X2, . . .) is then obtained from ri by drawing a point from a distribution law N1 if ri < 0.5 and

from N2 otherwise. N1 is a 3-dimensional Gaussian with mean of 0 and covariance matrix Id×1/4.

N2 is the same but with mean 1. If α is irrational2 then the distribution ρ(α) is stationary ergodic,

but does not belong to any simpler natural distribution family; in particular, it is not a B-processes

(Shields, 1996). The single-dimensional marginal is the same for all values of α. The latter two

properties make all parametric and most non-parametric methods inapplicable to this problem.

In our experiments, we use two process distributions ρ(αi), i ∈ {1,2}, with α1 = 0.31..., α2 =
0.35...,. The dependence of error rate on the length of time series is shown on Figure 1. One

clustering experiment on sequences of length 1000 takes about 5 min. on a standard laptop.

9.2 Real Data

To demonstrate the applicability of the proposed methods to realistic scenarios, we chose the brain-

computer interface data from BCI competition III (Millán, 2004). The data set consists of (pre-

processed) BCI recordings of mental imagery: a person is thinking about one of three subjects

2. In the experiments we used a longdouble with a long mantissa

2852



FROM CLASSIFICATION TO PROBLEMS ON HIGHLY DEPENDENT TIME SERIES

s1 s2 s3

TSSVM 84% 81% 61%

DTW 46% 41% 36%

KCpA 79% 74% 61%

SVM 76% 69% 60%

Table 1: Clustering accuracy in the BCI data set. 3 subjects (columns), 4 methods (rows). Our

method is TSSVM.

(left foot, right foot, a random letter). Originally, each time series consisted of several consecutive

sequences of different classes, and the problem was supervised: three time series for training and

one for testing. We split each of the original time series into classes, and then used our clustering

algorithm in a completely unsupervised setting. The original problem is 96-dimensional, but we

used only the first 3 dimensions (using all 96 gives worse performance). The typical sequence

length is 300. The performance is reported in Table 1, labelled TSSVM. All the computation for this

experiment takes approximately 6 minutes on a standard laptop.

The following methods were used for comparison. First, we used dynamic time wrapping

(DTW) (Sakoe and Chiba, 1978) which is a popular base-line approach for time-series clustering.

The other two methods in Table 1 are from the paper of Harchaoui et al. (2008). The comparison is

not fully relevant, since the results of Harchaoui et al. (2008) are for different settings; the method

KCpA was used in change-point estimation method (a different but also unsupervised setting), and

SVM was used in a supervised setting. The latter is of particular interest since the classification

method we used in the telescope distance is also SVM, but our setting is unsupervised (cluster-

ing). On this data set the telescope distance demonstrates better performance than the comparison

methods, which indicates that it can be useful in real-world scenarios.

10. Outlook

We have proposed a binary-classifier-based metric and shown how it can be used to solve several

problems concerning highly dependent time series. The consistency results obtained concern the

use of the empirical risk minimizer as a binary classifier. For applications this suggests using clas-

sifiers that approximate empirical risk minimizers over target sets of (indicator) functions. It is easy

to extend the definition of the metric so that any classifier can be used, including such classifiers

as nearest-neighbours rules. However, in order to extend the obtained results to such classifiers,

one would need to establish the consistency of the empirical estimates of the resulting metric be-

tween time-series distributions, which means extending the results concerning the corresponding

classifiers from the i.i.d. samples to stationary ergodic time series. Note that, while consistency of

the empirical estimates of the time-series metric used is sufficient for the analysis of the learning

problems considered in this work, it is not sufficient for some other learning problems concerning

dependent time series that rely on a metric between time-series distributions. For example, some

change-point problems for stationary ergodic time series can be solved using the distributional dis-

tance (Ryabko and Ryabko, 2010; Khaleghi and Ryabko, 2012, 2013). It remains to see whether the

same results can be obtained with the telescope distance and its generalizations.
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Abstract

Expectation Propagation (EP) provides a framework for approximate inference. When the model

under consideration is over a latent Gaussian field, with the approximation being Gaussian, we

show how these approximations can systematically be corrected. A perturbative expansion is made

of the exact but intractable correction, and can be applied to the model’s partition function and

other moments of interest. The correction is expressed over the higher-order cumulants which are

neglected by EP’s local matching of moments. Through the expansion, we see that EP is correct to

first order. By considering higher orders, corrections of increasing polynomial complexity can be

applied to the approximation. The second order provides a correction in quadratic time, which we

apply to an array of Gaussian process and Ising models. The corrections generalize to arbitrarily

complex approximating families, which we illustrate on tree-structured Ising model approxima-

tions. Furthermore, they provide a polynomial-time assessment of the approximation error. We

also provide both theoretical and practical insights on the exactness of the EP solution.

Keywords: expectation consistent inference, expectation propagation, perturbation correction,

Wick expansions, Ising model, Gaussian process

1. Introduction

Expectation Propagation (EP) (Opper and Winther, 2000; Minka, 2001a,b) is part of a rich family

of variational methods, which approximate the sums and integrals required for exact probabilistic

inference by an optimization problem. Variational methods are perfectly amenable to probabilistic

graphical models, as the nature of the optimization problem often allows it to be distributed across

a graph. By relying on local computations on a graph, inference in very large probabilistic models

becomes feasible.

Being an approximation, some error may invariably be introduced. This paper is specifically

concerned with the error that arises when a Gaussian approximating family is used, and lays a

systematic foundation for examining and correcting these errors. It follows on earlier work by the

c©2013 Manfred Opper, Ulrich Paquet and Ole Winther.
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authors (Opper et al., 2009). The error that arises when the free energy (the negative logarithm

of the partition function or normalizer of the distribution) is approximated, may for instance be

written as a Taylor expansion (Opper et al., 2009; Paquet et al., 2009). A pleasing property of EP

is that, at its stationary point, the first order term of such an expansion is zero. Furthermore, the

quality of the approximation can then be ascertained in polynomial time by including corrections

beyond the first order, or beyond the standard EP solution. In general, the corrections improve the

approximation when they are comparatively small, but can also leave a question mark on the quality

of approximation when the lower-order terms are large.

The approach outlined here is by no means unique in correcting the approximation, as is evinced

by cluster-based expansions (Paquet et al., 2009), marginal corrections for EP (Cseke and Heskes,

2011) and the Laplace approximation (Rue et al., 2009), and corrections to Loopy Belief Propaga-

tion (Chertkov and Chernyak, 2006; Sudderth et al., 2008; Welling et al., 2012).

1.1 Overview

EP is introduced in a general way in Section 3, making it clear how various degrees of complexity

can be included in its approximating structure. The partition function will be used throughout the

paper to explain the necessary machinery for correcting any moments of interest. In the experi-

ments, corrections to the marginal and predictive means and variances are also shown, although the

technical details for correcting moments beyond the partition function are relegated to Appendix D.

The Ising model, which is cast as a Gaussian latent variable model in Section 2, will furthermore be

used as a running example throughout the paper.

The key to obtaining a correction lies in isolating the “intractable quantity” from the “tractable

part” (or EP solution) in the true problem. This is done by considering the cumulants of both: as EP

locally matches lower-order cumulants like means and variances, the “intractable part” exists as an

expression over the higher-order cumulants which are neglected by EP. This process is outlined in

Section 4, which concludes with two useful results: a shift of the “intractable part” to be an average

over complex Gaussian variables with zero diagonal relation matrix, and Wick’s theorem, which

allows us to evaluate the expectations of polynomials under centered Gaussian measures. As a last

stage, the “intractable part” is expanded in Sections 5 and 7 to obtain corrections to various orders.

In Section 6, we provide a theoretical analysis of the radius of convergence of these expansions.

Experimental evidence is presented in Section 8 on Gaussian process (GP) classification and

(non-Gaussian) GP regression models. An insightful counterexample where EP diverges under

increasing data, is also presented. Ising models are examined in Section 9.

Numerous additional examples, derivations, and material are provided in the appendices. Details

on different EP approximations can be found in Appendix A, while corrections to tree-structured

approximations are provided in Appendix B. In Appendix C we analytically show that the correction

to a tractable example is zero. The main body of the paper deals with corrections to the partition

function, while corrections to marginal moments are left to Appendix D. Finally, useful calculations

of certain cumulants appear in Appendix E.

2. Gaussian Latent Variable Models

Let x = (x1, . . . ,xN) be an unobserved random variable with an intractable distribution p(x). In the

Gaussian latent variable model (GLVM) considered in this paper, terms tn(xn) are combined over a
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quadratic exponential f0(x) to give

p(x) =
1

Z

N

∏
n=1

tn(xn) f0(x) (1)

with partition function (normalizer)

Z =
∫ N

∏
n=1

tn(xn) f0(x)dx .

This model encapsulates many important methods used in statistical inference. As an example, f0

can encode the covariance matrix of a Gaussian process (GP) prior on latent function observations

xn. In the case of GP classification with a class label yn ∈ {−1,+1} on a latent function evaluation

xn, the terms are typically probit link functions, for example

p(x) =
1

Z

N

∏
n=1

Φ(ynxn)N (x ; 0, K) . (2)

The probit function is the standard cumulative Gaussian density Φ(x) =
∫ x
−∞ N (z;0,1)dz. In this

example, the partition function is not analytically tractable but for the one-dimensional case N = 1.

An Ising model can be constructed by letting the terms tn restrict xn to ±1 (through Dirac delta

functions). By introducing the symmetric coupling matrix J and field θ into f0, an Ising model can

be written as

p(x) =
1

Z

N

∏
n=1

[
1

2
δ(xn +1)+

1

2
δ(xn −1)

]

exp

{
1

2
xT Jx+θT x

}

. (3)

In the Ising model, the partition function Z is intractable, as it sums f0(x) over 2N binary values

of x. In the variational approaches, the intractability is addressed by allowing approximations to Z

and other marginal distributions, decreasing the computational complexity from being exponential

to polynomial in N, which is typically cubic for EP.

3. Expectation Propagation

An approximation to Z can be made by allowing p(x) in Equation (1) to factorize into a product

of factors fa. This factorization is not unique, and the structure of the factorization of p(x) defines

the complexity of the resulting approximation, resulting in different structures in the approximating

distribution. Where GLVMs are concerned, a natural and computationally convenient choice is

to use Gaussian factors ga, and as such, the approximating distribution q(x) in this paper will be

Gaussian. Appendix A summarizes a number of factorizations for Gaussian approximations.

The tractability of the resulting inference method imposes a pragmatic constraint on the choice

of factorization; in the extreme case p(x) could be chosen as a single factor and inference would

be exact. For the model in Equation (1), a three-term product may be factorized as (t1)(t2)(t3),
which gives the typical GP setup. When a division is introduced and the term product factorizes

as (t1t2)(t2t3)/(t2), the resulting free energy will be that of the tree-structured EC approximation

(Opper and Winther, 2005). To therefore allow for regrouping, combining, splitting, and dividing

terms, a power Da is associated with each fa, such that

p(x) =
1

Z
∏

a

fa(x)
Da (4)
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with intractable normalization (or partition function) Z =
∫

∏a fa(x)
Da dx.1 Appendix A shows

how the introduction of Da lends itself to a clear definition of tree-structured and more complex

approximations.

To define an approximation to p, terms ga, which typically take an exponential family form, are

chosen such that

q(x) =
1

Zq
∏

a

ga(x)
Da (5)

has the same structure as p’s factorization. Although not shown explicitly, fa and ga have a depen-

dence on the same subset of variables xa. The optimal parameters of the ga-term approximations

are found through a set of auxiliary tilted distributions, defined by

qa(x) =
1

Za

(
q(x) fa(x)

ga(x)

)

. (6)

Here a single approximating term ga is replaced by an original term fa. Assuming that this replace-

ment leaves qa still tractable, the parameters in ga are determined by the condition that q(x) and

all qa(x) should be made as similar as possible. This is usually achieved by requiring that these

distributions share a set of generalised moments which usually coincide with the sufficient statistics

of the exponential family. For example with sufficient statistics φ(x) we require that

〈φ(x)〉qa
= 〈φ(x)〉q for all a . (7)

Note that those factors fa in p(x) which are already in the exponential family, such as the Gaussian

terms in examples above, can trivially be solved for by setting ga = fa. The partition function

associated with this approximation is

ZEP = Zq ∏
a

ZDa
a . (8)

Appendix A.2 shows that the moment-matching conditions must hold at a stationary point of logZEP.

The EP algorithm iteratively updates the ga-terms by enforcing q to share moments with each of

the tilted distributions qa; on reaching a fixed point all moments match according to Equation (7)

(Minka, 2001a,b). Although ZEP is defined in the terminology of EP, other algorithms may be

required to solve for the fixed point, and ZEP, as a free energy, can be derived from the saddle point

of a set of self-consistent (moment-matching) equations (Opper and Winther, 2005; van Gerven

et al., 2010; Seeger and Nickisch, 2010). We next make EP concrete by applying it to the Ising

model, which will serve as a running example in the paper. The section is finally concluded with a

discussion of the interpretation of EP.

3.1 EP for Ising Models

The Ising model in Equation (3) will be used as a running example throughout this paper. To make

the technical developments more concrete, we will consider both the N-variate and bivariate cases.

The bivariate case can be solved analytically, and thus allows for a direct comparison to be made

between the exact and approximate solutions.

We use the factorized approximation as a running example, dividing p(x) in Equation (3) into

N + 1 factors with f0(x) = exp{ 1
2
xT Jx+θT x} and fn(xn) = tn(xn) =

1
2
δ(xn + 1)+ 1

2
δ(xn − 1), for

1. The factorization and EP energy function is expressed here in the form of Power EP (Minka, 2004).
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n = 1, . . . ,N (see Appendix A for generalizations). We consider the Gaussian exponential family

such that gn(xn) = exp{λn1xn − 1
2
λn2x2

n} and g0(x) = f0(x). The approximating distribution from

Equation (5), q(x) ∝ f0(x)∏N
n=1 gn(xn), is thus a full multivariate Gaussian density, which we write

as q(x) = N (x;µ,Σ).

3.1.1 MOMENT MATCHING

The moment matching condition in Equation (7) involves only the mean and variance if q(x) fully

factorizes according to p(x)’s terms. We therefore only need to match the mean and variances of

marginals of q(x) and the tilted distribution qn(x) in Equation (6). The tilted distribution may be

decomposed into a Gaussian and a discrete part as qn(x) = qn(x\n|xn)qn(xn), where the vector x\n

consists of all variables apart from xn. We may marginalize out x\n and write qn(xn) in terms of two

factors:

qn(xn) ∝
1

2

[

δ(xn +1)+δ(xn −1)
]

︸ ︷︷ ︸

fn(x)=tn(xn)

exp
{

γxn − 1
2
Λx2

n

}

︸ ︷︷ ︸

∝
∫

dx\n q(x)/gn(x)

, (9)

where we dropped the dependency of γ and Λ on n for notational simplicity. Through some manip-

ulation, the tilted distribution is equivalent to

qn(xn) =
1+mn

2
δ(xn −1)+

1−mn

2
δ(xn +1) , mn = tanh(γ) =

eγ − e−γ

eγ + e−γ
. (10)

This discrete distribution has mean mn and variance 1−m2
n. By adapting the parameters of gn(xn)

using for example the EP algorithm, we aim to match the mean and variance of the marginal q(xn)
(of q(x)) to the mean and variance of qn(xn). The reader is referred to Section 9 for benchmarked

results for the Ising model.

3.1.2 ANALYTIC BIVARIATE CASE

Here we shall compare the exact result with EP and the correction for the simplest non-trivial model,

the N = 2 Ising model with no external field

p(x) =
1

4

(

δ(x1 −1)+δ(x1 +1)
)(

δ(x2 −1)+δ(x2 +1)
)

eJx1x2 .

In order to solve the moment matching conditions we observe that the mean values must be zero

because the distribution is symmetric around zero. Likewise the linear term in the approximat-

ing factors disappears and we can write gn(xn) = exp{−λx2
n/2} and q(x) = N (x;0,Σ) with Σ =

[
λ −J

−J λ

]−1

. The moment matching condition for the variances, 1 = Σnn, turns into a second

order equation with solution λ = 1
2

[

J2 +
√

J4 +4
]

. We can now insert this solution into the expres-

sion for the EP partition function in Equation (8). By expanding the result to the second order in J2,

we find that

logZEP =−1

2
+

1

2

√

1+4J2 − 1

2
log

(
1

2
(1+

√

1+4J2)

)

=
J2

2
− J4

4
+ . . . .

Comparing with the exact expression

logZ = logcosh(J) =
J2

2
− J4

12
+ . . .
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we see that EP gives the correct J2 coefficient, but the J4 coefficient comes out wrong. In Section 4

we investigate how cumulant corrections can correct for this discrepancy.

3.2 Two Explanations Why Gaussian EP is Often Very Accurate

EP, as introduced above, is an algorithm. The justification for the algorithm put forward by Minka

and adopted by others (see for example recent textbooks by Bishop 2006, Barber 2012 and Murphy

2012) is useful for explaining the steps in the algorithm but may be misleading in order to explain

why EP often provides excellent accuracy in estimation of marginal moments and Z.

The general justification for EP (Minka, 2001a,b) is based upon a minimization of Kullback-

Leiber (KL) divergences. Ideally, one would determine the approximating distribution q(x) as the

minimizer of KL(p‖q) in an exponential family of (in our case, Gaussian) densities. Since this

is not possible—it would require the computation of exact moments—we instead iteratively min-

imize “local” KL-divergences KL(qa‖q), between the tilted distribution qa and q, with respect to

ga (appearing in q). This leads to the moment matching conditions in Equation (7). The argument

for this procedure is essentially that this will ensure that the approximation q will capture high

density regions of the intractable posterior p. Obviously, this argument cannot be applied to Ising

models because the exact and approximate distributions are very different, with the former being

discrete due to the Dirac δ-functions that constrain xn = ±1 to be binary variables. Even though

the optimization still implies moment matching, this discrete-continuous discrepancy makes local

KL-divergences KL(qa‖q) infinite!

In order to justify the usefulness of EP for Ising models we therefore need an alternative argu-

ment. Our argument is entirely restricted to Gaussian EP for our extended definition of GLVMs and

do not extend to approximations with other exponential families. In the following, we will discuss

these assumptions in inference approximations that preceded the formulation of EP, in order to pro-

vide a possibly more relevant justification of the method. Although this justification is not strictly

necessary for practically using EP nor corrections to EP, it nevertheless provides a good starting

point for understanding both.

The argument goes back to the mathematical analysis of the Sherrington-Kirkpatrick (SK)

model for a disordered magnet (a so-called spin glass) (Sherrington and Kirckpatrick, 1975). For

this Ising model, the couplings J are drawn at random from a Gaussian distribution. An impor-

tant contribution in the context of inference for this model (the computations of partition functions

and average magnetizations) was the work of Thouless et al. (1977) who derived self-consistency

equations which are assumed to be valid with a probability (with respect to the drawing of ran-

dom couplings) approaching one as the number of variables xn grows to infinity. These so-called

Thouless-Anderson-Palmer (TAP) equations are closely related to the EP moment matching condi-

tions of Equation (7), but they differ by partly relying on the specific assumption of the randomness

of the couplings. Self-consistency equations equivalent to the EP moment matching conditions

which avoided such assumptions on the statistics of the random couplings were first derived by

Opper and Winther (2000) by using a so-called cavity argument (Mézard et al., 1987). A new im-

portant contribution of Minka (2001a) was to provide an efficient algorithmic recipe for solving

these equations.

We will now sketch the main idea of the cavity argument for the GLVM. Let x\n (“x without

n”) denote the complement to xn, that is x = x\n ∪ xn. Without loss of generality we will take the

quadratic exponential term to be written as f0(x) ∝ exp(−xT Jx/2). With similar definitions of J\n,
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the exact marginal distribution of xn may be written as

pn(xn) =
1

Z
tn(xn)

∫
exp

{

−1

2
xT Jx

}

∏
n′ 6=n

tn′(xn′)dx\n

=
tn(xn)

Z
e−Jnn x2

n/2

∫
exp

{

−xn ∑
n′ 6=n

Jnn′xn′ −
1

2
xT
\nJ\nx\n

}

∏
n′ 6=n

tn′(xn′)dx\n .

It is clear that pn(xn) depends entirely on the statistics of the random variable hn ≡∑n′ 6=n Jnn′xn′ . This

is the total ‘field’ created by all other ‘magnetic moments’ xn′ in the ‘cavity’ opened once xn has

been removed from the system. In the context of densely connected models with weak couplings,

we can appeal to the central limit theorem2 to approximate hn by a Gaussian random variable with

mean γn and variance Vn. When looking at the influence of the remaining variables x\n on xn, the

non-Gaussian details of their distribution have been washed out in the marginalization. Integrating

out the Gaussian random variable hn gives the Gaussian cavity field approximation to the marginal

distribution:

pn(xn)≈ const · tn(xn)e−Jnn x2
n/2

∫
e−xnh N (h ; γn,Vn)dh

= const · tn(xn)exp

{

−xnγn −
1

2
(Jnn −Vn)x

2
n

}

.

This is precisely of the form of the marginal tilted distribution qn(xn) of Equation (9) as given by

Gaussian EP. In the cavity formulation, q(x) is simply a placeholder for the sufficient statistics of

the individual Gaussian cavity fields. So we may observe cases, with the Ising model or bounded

support factors being the prime examples, where EP gives essentially correct results for the marginal

distributions of the xn and of the partition function Z, while q(x) gives a poor or even meaningless

(in the sense of KL divergences) approximation to the multivariate posterior. Note however, that

the entire covariance matrix of the xn can be computed simply from a derivative of the free energy

(Opper and Winther, 2005) resulting in an approximation of this covariance by that of q(x). This

may indicate that a good EP approximation of the free energy may also result in a good approxi-

mation to the full covariance. The near exactness of EP (as compared to exhaustive summation) in

Section 9 therefore shows the central limit theorem at work. Conversely, mediocre accuracy or even

failure of Gaussian EP, as also observed in our simulations in Sections 8.3 and 9, may be attributed

to breakdown of the Gaussian cavity field assumption. Exact inference on the strongest couplings as

considered for the Ising model in Section 9 is one way to alleviate the shortcoming of the Gaussian

cavity field assumption.

4. Corrections to EP

The ZEP approximation can be corrected in a principled approach, which traces the following out-

line:

1. The exact partition function Z is re-written in terms of ZEP, scaled by a correction factor

R = Z/ZEP. This correction factor R encapsulates the intractability in the model, and contains

a “local marginal” contribution by each fa (see Section 4.1).

2. In the context of sparsely connected models, other cavity arguments lead to loopy belief propagation.

2863



OPPER, PAQUET AND WINTHER

2. A “handle” on R is obtained by writing it in terms of the cumulants (to be defined in Section

4.2) of q(x) and qa(x) from Equations (5) and (6). As qa(x) and q(x) share their two first

cumulants, the mean and covariance from the moment matching condition in Equation (7), a

cumulant expansion of R will be in terms of higher-order cumulants (see Section 4.2).

3. R, defined in terms of cumulant differences, is written as a complex Gaussian average. Each

factor fa contributes a complex random variable ka in this average (see Section 4.3).

4. Finally, the cumulant differences are used as “small quantities” in a Taylor series expansion

of R, and the leading terms are kept (see Sections 5 and 7).

The series expansion is in terms of a complex expectation with a zero “self-relation” matrix,

and this has two important consequences. Firstly, it causes all first order terms in the Taylor

expansion to disappear, showing that ZEP is correct to first order. Secondly, due to Wick’s

theorem (introduced in Section 4.4), these zeros will contract the expansion by making many

other terms vanish.

The strategy that is presented here can be re-used to correct other quantities of interest, like marginal

distributions or the predictive density of new data when p(x) is a Bayesian probabilistic model.

These corrections are outlined in Appendix D.

4.1 Exact Expression for Correction

We define the (intractable) correction R as Z = RZEP. We can derive a useful expression for R in a

few steps as follows: First we solve for fa in Equation (6), and substitute this into Equation (4) to

obtain

∏
a

fa(x)
Da = ∏

a

(
Zaqa(x)ga(x)

q(x)

)Da

= ZEP q(x)∏
a

(
qa(x)

q(x)

)Da

. (11)

We introduce F(x)

F(x)≡ ∏
a

(
qa(x)

q(x)

)Da

to derive the expression for the correction R = Z/ZEP by integrating Equation (11):

R =
∫

q(x)F(x)dx , (12)

where we have used Z =
∫

∏a fa(x)
Da dx. Similarly we can write:

p(x) =
1

Z
∏

a

fa(x)
Da =

ZEP

Z
q(x)F(x) =

1

R
q(x)F(x) . (13)

Corrections to the marginal and predictive densities of p(x) can be computed from this formulation.

This expression will become especially useful because the terms in F(x) turn out to be “local”, that

is, they only depend on the marginals of the variables associated with factor a. Let fa(x) depend

on the subset xa of x, and let x\a (“x without a”) denote the remaining variables. The distributions

in Equations (5) and (6) differ only with respect to their marginals on xa, qa(xa) and q(xa), and

therefore
qa(x)

q(x)
=

q(x\a|xa)qa(xa)

q(x\a|xa)q(xa)
=

qa(xa)

q(xa)
.
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Now we can rewrite F(x) in terms of marginals:

F(x) = ∏
a

(
qa(xa)

q(xa)

)Da

. (14)

The key quantity, then, is F , after which the key operation is to compute its expected value. The

rest of this section is devoted to the task of obtaining a “handle” on F .

4.2 Characteristic Functions and Cumulants

The distributions present in each of the ratios in F(x) in Equation (14) share their first two cumu-

lants, mean and covariance. Cumulants and cumulant differences are formally defined in the next

paragraph. This simple observation has a crucial consequence: As the q(xa)’s are Gaussian and do

not contain any higher order cumulants (three and above), F can be expressed in terms of the higher

cumulants of the marginals qa(xa). When the term-product approximation is fully factorized, these

are simply cumulants of one-dimensional distributions.

Let Na be the number of variables in subvector xa. In the examples presented in this work, Na is

one or two. Furthermore, let ka be an Na-dimensional vector ka = (k1, . . . ,kNa
)a. The characteristic

function of qa is

χa(ka) =
∫

eikT
a xa qa(xa)dxa =

〈
eikT

a xa
〉

qa
, (15)

and is obtained through the Fourier transform of the density. Inversely,

qa(xa) =
1

(2π)Na

∫
e−ikT

a xaχa(ka)dka . (16)

The cumulants cαa of qa are the coefficients that appear in the Taylor expansion of logχa(ka) around

the zero vector,

cαa =

[

(−i)l

(
∂

∂ka

)α

logχa(ka)

]

ka=0

.

By this definition of cαa, the Taylor expansion of logχa(ka) is

logχa(ka) =
∞

∑
l=1

il ∑
|α|=l

cαa

α!
kα

a .

Some notation was introduced in the above two equations to facilitate manipulating a multivariate

series. The vector α = (α1, . . . ,αNa
), with α j ∈ N0, denotes a multi-index on the elements of ka.

Other notational conventions that employ α (writing k j instead of ka j) are:

|α|= ∑
j

α j , kα
a = ∏

j

k
α j

j , α! = ∏
j

α j! ,

(
∂

∂ka

)α

= ∏
j

∂α j

∂k
α j

j

.

For example, when Na = 2, say for the edge-factors in a spanning tree, the set of multi-indices α

where |α|= 3 are (3,0), (2,1), (1,2), and (0,3).

There are two characteristic functions that come into play in F(x) and R in Equation (13). The

first is that of the tilted distribution, logχa(ka), and the other is the characteristic function of the
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EP marginal q(xa), defined as χ(ka) = 〈eikT
a xa〉q. By virtue of matching the first two moments, and

q(xa) being Gaussian with cumulants c′αa,

ra(ka) = logχa(ka)− logχ(ka) = ∑
l≥1

il ∑
|α|=l

cαa − c′αa

α!
kα

a

= ∑
l≥3

il ∑
|α|=l

cαa

α!
kα

a (17)

contains the remaining higher-order cumulants where the tilted and approximate distributions differ.

All our subsequent derivations rest upon moment matching being attained. This especially means

that one cannot use the derived corrections if EP has not converged.

4.2.1 ISING MODEL EXAMPLE

The cumulant expansion for the discrete distribution in Equation (10) becomes

logχn(kn) = log

∫
dxn eiknxnqn(xn) = log

(
1+m

2
eikn +

1−m

2
e−ikn

)

= imkn −
1

2!
(1−m2)k2

n −
i

3!
(−2m+2m3)k3

n +
1

4!
(−2+8m2 −6m4)k4

n + · · ·

(we’re compactly writing m for mn), from which the cumulants are obtained as

c1n = m , c4n =−2+8m2 −6m4 ,

c2n = 1−m2 , c5n = 16m−40m3 +24m5 ,

c3n =−2m+2m3 , c6n = 16−136m2 +240m4 −120m6 .

4.3 The Correction as a Complex Expectation

The expected value of F , which is required for the correction, has a dependence on a product of

ratios of distributions qa(xa)/q(xa). In the preceding section it was shown that the contributing

distributions share lower-order statistics, allowing a twofold simplification. Firstly, the ratio qa/q

will be written as a single quantity that depends on ra, which was introduced above in Equation (17).

Secondly, we will show that it is natural to shift integration variables into the complex plane, and

rely on complex Gaussian random variables (meaning that both real and imaginary parts are jointly

Gaussian). These complex random variables that define the ra’s have a peculiar property: they have

a zero self-relation matrix! This property has important consequences in the resulting expansion.

4.3.1 COMPLEX EXPECTATIONS

Assume that q(xa) = N (xa ; µa,Σa) and qa(xa) share the same mean and covariance, and substitute

logχa(ka) = ra(ka)+ logχ(ka) in the definition of qa in Equation (16) to give

qa(xa)

q(xa)
=

∫
e−ikT

a xa+ra(ka) χ(ka)dka∫
e−ikT

a xa χ(ka)dka

. (18)

Although the ka variables have not been introduced as random variables, we find it natural to in-

terpret them as such, because the rules of expectations over Gaussian random variables will be
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Figure 1: Equation (20) shifts ka to the complex plane. In the simplest case the joint density

p(k|x)q(x) is x ∼ N (µ,σ2), ℜ(k)∼ N (0,σ−2) and equality ℑ(k) =−σ−2(x−µ). Notice

that ℜ(k)’s variance is the inverse of that of x. The joint density is a two-dimensional

flat ellipsoidal pancake that lives in three dimensions: x and the complex k plane (tilted

ellipsoid). Integrating over x gives the marginal over a complex k, which is still a two-

dimensional random variable (upright ellipsoid). The marginal has ℑ(k) ∼ N (0,σ−2),
and hence k has relation

〈
(ℜ(k)+ iℑ(k))2

〉
= σ−2 −σ−2 = 0 and variance

〈
kk
〉
= 2σ−2.

extremely helpful in developing the subsequent expansions. We will therefore write qa(xa)/q(xa)
as an expectation of expra(ka) over a density p(ka|xa) ∝ e−ikT

a xaχ(ka):

qa(xa)

q(xa)
=
〈

expra(ka)
〉

ka|xa

. (19)

By substituting logχ(ka) = iµT
a ka − kT

a Σaka/2 into Equation (18), we see that p(ka|xa) can be

viewed as Gaussian, but not for real random variables! We have to consider ka as Gaussian random

variables with a real and an imaginary part with

ℜ(ka)∼ N
(

ℜ(ka) ; 0,Σ−1
a

)

, ℑ(ka) =−Σ
−1
a (xa −µa) .

For the purpose of computing the expectation in Equation (19), ka|xa is a degenerate complex

Gaussian that shifts the coefficients ka into the complex plane. The expectation of expra(ka) is

therefore taken over Gaussian random variables that have q(xa)’s inverse covariance matrix as their

(real) covariance! As shorthand, we write

p(ka|xa) = N
(

ka ;−iΣ−1
a (xa −µa) ,Σ

−1
a

)

. (20)
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Figure 1 illustrates a simple density p(ka|xa), showing that the imaginary component is a de-

terministic function of xa. Once xa is averaged out of the joint density p(ka|xa)q(xa), a circularly

symmetric complex Gaussian distribution over ka remains. It is circularly symmetric as 〈ka〉= 0, re-

lation matrix
〈
kakT

a

〉
= 0, and covariance matrix

〈
kaka

T〉
= 2Σ−1

a (notation k indicates the complex

conjugate of k). For the purpose of computing the expected values with Wick’s theorem (following

in Section 4.4 below), we only need the relations
〈
kakT

b

〉
for pairs of factors a and b. All of these

will be derived next:

According to Equation (12), a further expectation over q(x) is needed, after integrating over

ka, to determine R. These variables will be combined into complex random variables to make the

averages in the expectation easier to derive. By substituting Equation (19) into Equation (12), R is

equal to

R =
〈
F(x)

〉

x∼q(x)
=

〈

∏
a

〈

expra(ka)
〉Da

ka|xa

〉

x

. (21)

When x is given, the ka-variables are independent. However, when they are averaged over q(x), the

ka-variables become coupled. They are zero-mean complex Gaussians

〈ka〉=
〈

〈ka〉ka|xa

〉

x
=
〈

−iΣ−1
a (xa −µa)

〉

x
= 0

and are coupled with a zero self-relation matrix! In other words, if Σab = cov(xa,xb), the expected

values
〈
kakT

b

〉
between the variables in the set {ka} are

〈
kakT

b

〉
=
〈〈

kakT
b

〉

ka,b|x

〉

x
+ i2Σ−1

a

〈

(xa −µa)(xb −µb)
T
〉

x
Σ

−1
b

=

{
0 if a = b

−Σ
−1
a ΣabΣ

−1
b if a 6= b

. (22)

Complex Gaussian random variables are additionally characterized by
〈
kakb

T〉
. However, these

expectations are not required for computing and simplifying the expansion of logR in Section 5,

and are not needed for the remainder of this paper. Figure 2 illustrates the structure of the resulting

relation matrix
〈
kakT

b

〉
for two different factorizations of the same distribution. Each factor fa

contributes a ka variable, such that the tree-structured approximation’s relation matrix will be larger

than that of the fully factorized one.

Section 5 shows that when Da = 1, the above expectation can be written directly over {ka} and

expanded. In the general case, discussed in Section 7, the inner expectation is first expanded (to

treat the Da powers) before computing an expectation over {ka}. In both cases the expectation will

involve polynomials in k-variables. The expected values of Gaussian polynomials can be evaluated

with Wick’s theorem.

4.4 Wick’s Theorem

Wick’s theorem provides a useful formula for mixed central moments of Gaussian variables. Let

kn1
, . . . ,knℓ be real or complex centered jointly Gaussian variables, noting that they do not have to

be different. Then

〈kn1
· · ·knℓ〉= ∑∏

η

〈
kiηk jη

〉
, (23)
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Figure 2: The relation matrices between ka for two factorizations of ∏4
n=1 tn(xn): the top illustration

is for t1t2t3t4, while the bottom illustration is of a tree structure (t1t2)(t2t3)(t3t4)/t2/t3. The

white squares indicate a zero relation matrix
〈
kakT

b

〉
, with the diagonal being zero. From

the properties of Equation (22) there are additional zeros in the tree structure’s relation

matrix, where edge and node factors share variables. The factor f0 = g0 is shadowed in

grey in the left-hand figures, and can make q(x) densely connected.

where the sum is over all partitions of {n1, . . . ,nℓ} into disjoint pairs {iη, jη}. If ℓ = 2m is even,

then there are (2m)!/(2mm!) = (2m−1)!! such partitions.3 If ℓ is odd, then there are none, and the

expectation in Equation (23) is zero.

Consider the one-dimensional variable k ∼ N (k;0,σ2). Wick’s theorem states that 〈kℓ〉= (ℓ−
1)!!σℓ if ℓ is even, and 〈kℓ〉= 0 if ℓ is odd. In other words, 〈k3〉= 0, 〈k4〉= 3(σ2)2, 〈k6〉= 15(σ2)3,

and so forth.

5. Factorized Approximations

In the fully factorized approximation, with fn(xn) = tn(xn), the exact distribution in Equation (13)

depends on the single node marginals F(x) = ∏n qn(xn)/q(xn). Following Equation (21), the cor-

rection to the free energy

R =

〈

∏
n

〈

exprn(kn)
〉

kn|xn

〉

x

=

〈

exp

[

∑
n

rn(kn)

]〉

k

(24)

is taken directly over the centered complex-valued Gaussian random variables k = (k1, . . . ,kN),
which have a relations

〈kmkn〉=
{

0 if m = n

−Σmn/(ΣmmΣnn) if m 6= n
. (25)

3. The double factorial is (2m−1)!! = (2m−1)× (2m−3)× (2m−5)×·· ·1.
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In the section to follow, all expectations shall be with respect to k, which will be dropped where it

is clear from the context.

Thus far, R is re-expressed in terms of site contributions. The expression in Equation (24) is

exact, albeit still intractable, and will be treated through a power series expansion. Other quantities

of interest, like marginal distributions or moments, can similarly be expressed exactly, and then

expanded (see Appendix D).

5.1 Second Order Correction to logR

Assuming that the rn’s are small on average with respect to k, Equation (24) is expanded and the

lower order terms kept:

logR = log

〈

exp

[

∑
n

rn(kn)

]〉

= ∑
n

〈rn〉+
1

2

〈(

∑
n

rn

)2
〉

− 1

2

(

∑
n

〈rn〉
)2

+ · · ·

=
1

2
∑

m6=n

〈rmrn〉+ · · · (26)

The simplification in the second line is a result of the variance terms being zero from Equation (25).

The single marginal terms also vanish (and hence EP is correct to first order) because both 〈kn〉= 0

and
〈
k2

n

〉
= 0.

This result can give us a hint in which situations the corrections are expected to be small:

• Firstly, the rn could be small for values of kn where the density of k is not small. For example,

under a zero noise Gaussian process classification model, qn(xn) equals a step function tn(xn)
times a Gaussian, where the latter often has small variance compared to the mean. Hence,

qn(xn) should be very close to a Gaussian.

• Secondly, for systems with weakly (posterior) dependent variables xn we might expect that

the log partition function logZ would scale approximately linearly with N, the number of

variables. Since terms with m = n vanish in the computation of lnR, there are no corrections

that are proportional to N when Σmn is sufficiently small as N → ∞. Hence, the dominant

contributions to logZ should already be included in the EP approximation. However, Section

8.3 illustrates an example where this need not be the case.

The expectation 〈rmrn〉, as it appears in Equation (26), is treated by substituting rn with its cumulant

expansion rn(kn) = ∑l≥3 ilclnkl
n/l! from Equation (17). Wick’s theorem now plays a pivotal role in

evaluating the expectations that appear in the expansion:

〈rm(km)rn(kn)〉= ∑
l,s≥3

il+s cln csm

l!s!
〈ks

mkl
n〉

= ∑
l≥3

i2ll!
cln csm

(l!)2
〈kmkn〉l

= ∑
l≥3

clm cln

l!

(
Σmn

ΣmmΣnn

)l

. (27)

The second line above follows from contractions in Wick’s theorem. All the self-pairing terms,

when for example one of the l kn’s is paired with another kn in Equation (23), are zero because
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〈
k2

n

〉
= 0. To therefore get a non-zero result for

〈
ks

mkl
n

〉
, using Equation (23), each factor kn has to

be paired with some factor km, and this is possible only when l = s. Wick’s theorem sums over all

pairings, and there are l! ways of pairing a kn with a km, giving the result in Equation (27). Finally,

plugging Equation (27) into Equation (26) gives the second order correction

logR =
1

2
∑

m6=n

∑
l≥3

clm cln

l!

(
Σmn

ΣmmΣnn

)l

+ · · · . (28)

5.1.1 ISING EXAMPLE CONTINUED

We can now compute the second order logR correction for the N = 2 Ising model example of

Section 3.1. The covariance matrix has Σnn = 1 from moment matching and Σ12 = J/(λ2 − J2)

with λ = 1
2

[

J2 +
√

J4 +4
]

. The uneven terms in the cumulant expansion derived in Section 4.2.1

disappear because m = 0. The first nontrivial term is therefore l = 4 which gives a contribution of
1
2
× 2× c2

4

4!
Σ4

12 = (−2)2

4!
Σ4

12 = 1
6
Σ4

12. In Section 3.1, we saw that logZ − logZEP = J4

6
plus terms of

order J6 and higher. To lowest order in J we have Σ12 = J and thus logR = J4

6
which exactly cancels

the lowest order error of EP.

5.2 Corrections to Other Quantities

The schema given here is applicable to any other quantity of interest, be it marginal or predictive

distributions, or the marginal moments of p(x). The cumulant corrections for the marginal moments

are derived in Appendix D; for example, the correction to the marginal mean µi of an approximation

q(x) = N (x;µ,Σ) is

〈xi〉p(x)−µi = ∑
l≥3

∑
j 6=n

Σi j

Σ j j

cl+1, jcln

l!

(
Σ jn

Σ j jΣnn

)l

+ · · · , (29)

while the correction to the marginal covariance is

〈(xi −µi)(xi′ −µi′)〉p(x)−Σii′ = ∑
l≥3

∑
j 6=n

Σi jΣi′ j

Σ2
j j

cl+2, jcln

l!

(
Σ jn

Σ j jΣnn

)l

+∑
l≥3

∑
j 6=n

Σi j

Σ j j

Σi′n

Σnn

cl jcln

l!

(
Σ jn

Σ j jΣnn

)l−1

+ · · · . (30)

5.3 Edgeworth-Type Expansions

To simplify the expansion of Equation (24), we integrated (combined) degenerate complex Gaus-

sians kn|xn over q(x) to obtain fully complex Gaussian random variables {kn}. We’ve then relied on
〈
k2

n

〉
= 0 to simplify the expansion of logR.

The expectations
〈
k2

n

〉
= 0 are closely related to the orthogonality of Hermite polynomials, and

this can be employed in an alternative derivation. In particular, one can first make a Taylor expansion

of exprn(kn) around zero, giving complex-valued polynomials in {kn}. When the inner average in

Equation (24) is then taken over kn|xn, a real-valued series of Hermite polynomials in {xn} arises.

These polynomials are orthogonal under q(x). The series that describes the tilted distribution qn(xn)
is equal to the product of q(xn) and an expansion of polynomials for the higher-cumulant deviation
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from a Gaussian density. This line of derivation gives an Edgeworth expansion foreach factor’s

tilted distribution.

As a second step, Equation (24) couples the product of separate Edgeworth expansions (one

for each factor) together by requiring an outer average over q(x). The orthogonality of Hermite

polynomials under q(x) now come into play: it allows products of orthogonal polynomials under

q(x) to integrate to zero. This is similar to contractions in Wick’s theorem, where
〈
k2

n

〉
= 0 allows us

to simplify Equation (27). Although it is not the focus of this work, an example of such a derivation

appears in Appendix C.1.

6. Radius of Convergence

We may hope that in practice the low order terms in the cumulant expansions will account already

for the dominant contributions. But will such an expansion actually converge when extended to

arbitrary orders? While we will leave a more general answer to future research, we can at least give

a partial result for the example of the Ising model. Let D = diag(Σ), the diagonal of the covariance

matrix of the EP approximation q(x). We prove here that a cumulant expansion for R will converge

when the eigenvalues of D−1/2
ΣD−1/2—which has diagonal values of one—are bounded between

zero and two.

In practice we’ve found that even if the largest of these eigenvalues grows with N, the second-

order correction gives a remarkable improvement. This, with the results in Figure 6, lead us to

believe that the power series expansion is often divergent. It may well be that our expansions are

only of an asymptotic type (Boyd, 1999) for which the summation of only a certain number of

terms might give an improvement whereas further terms would lead to worse results. It leads to a

paradoxical situation, which seems common when interesting functions are computed: On the one

hand we may have a series which does not converge, but in many ways is more practical; on the

other hand one might obtain an expansion that converges, but only impractically. Quoting George

F. Carrier’s rule from Boyd (1999):

Divergent series converge faster than convergent series because they don’t have to

converge.

For this, we do not yet have a clear-cut answer.

6.1 A Formal Expression for the Cumulant Expansion to All Orders

To discuss the question when our expansion will converge when extended to arbitrary orders, we

introduce a single extra parameter λ into R, which controls the strength of the contribution of cu-

mulants. Expanded into a series in powers of λ, contributions of cumulants of total order l are

multiplied by a factor λl , for example λlcnl or λk+lcnkcnl . Of course, at the end of the calculation,

we set λ = 1. This approach is obviously achieved by replacing

rn(kn)→ rn(λkn)

in Equation (24). Hence, we define

R(λ) =

〈

exp

[

∑
n

rn(λkn)

]〉

k

=

〈

exp

[

∑
n

rn(kn)

]〉

k′
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where
〈
k′mk′n

〉
=

{
0 if m = n

−λ2Σmn/(ΣmmΣnn) if m 6= n
.

By working backwards, and expressing everything by the original densities over xn, the correction

can be written as

R(λ) =

〈

∏
n

qn(xn)

q(xn)

〉

qλ(x)

, (31)

where the density qλ(x) is a multivariate Gaussian with mean µ and covariance given by

Σλ = D+ z(Σ−D) ,

where D = diag(Σ) and z = λ2. Hence, we see that the expansion in powers of λ is actually equiv-

alent to an expansion in products of nondiagonal elements of Σ.

Noticing that as R(λ) depends on λ through the density qλ(x) ∝ |Σλ|−1/2e−
1
2

x⊤Σ−1
λ

x, we can see

by expressing Σ
−1
λ in terms of eigenvalues and eigenvectors that for any fixed x, qλ(x) is an analytic

function of the complex variable z as long as Σλ is positive definite. Since

Σλ = D1/2
{

I+ z
(

D−1/2
ΣD−1/2 − I

)}

D1/2

this is equivalent to the condition that the matrix I+ z(D−1/2
ΣD−1/2 − I) is positive definite. In-

troducing γi, the eigenvalues of D−1/2
ΣD−1/2, positive definiteness fails when for the first time

1+ z(γi −1) = 0. Thus the series for qλ(x) is convergent for

|z|< min
i

1

|1− γi|
.

Setting z = 1, this is equivalent to the condition

1 < min
i

1

|1− γi|
.

This means that the eigenvalues have to fulfil 0 < γi < 2. Unfortunately, we can not conclude from

this condition that pointwise convergence of qλ(x) for each x leads to convergence of R(λ) (which

is an integral of qλ(x) over all x!). However, in cases where the integral eventually becomes a finite

sum, such as the Ising model, pointwise convergence in x leads to convergence of R(λ).

6.1.1 ISING MODEL EXAMPLE

From Section 4.2.1 the tilted distribution for the running example Ising model is qn(xn) =
1
2
[δ(xn +

1)+ δ(xn − 1)], and hence q(xn) =
1

(2π)1/2 e−x2
n/2. As each q(xn) is a unit-variance Gaussian, D =

diag(Σ) = I. Hence D−1/2
ΣD−1/2 =Σ and

R(λ) =
1

√

|(1−λ2)I+λ2Σ|
eN/2

2N ∑
x∈{−1,1}N

exp

[

−1

2
xT
(
(1−λ2)I+λ2

Σ
)−1

x

]

follows from Equation (31). The arguments of the previous section show that the radius of conver-

gence of R(λ) is determined by the condition that the matrix I+λ2(Σ− I) is positive definite or the

eigenvalues li of Σ fulfil |li −1| ≤ 1/λ2.
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In the N = 2 case, Σ =

(
1 c

c 1

)

with c = c(J) ∈]− 1,1[ which has eigenvalues 1− c and

1+ c, meaning that cumulant expansion for R(λ) is convergent for the N = 2 Ising model. For

N > 2, it is easy to show that this is not necessarily true. Consider the ‘isotropic’ Ising model with

Ji j = J and zero external field, then Σii = 1 and Σi j = c for i 6= j with c = c(J) ∈]− 1/(N − 1),1[.
The eigenvalues are now 1+(N − 1)c and 1− c (the latter with degeneracy N − 1). For finite c,

the largest eigenvalue will scale with N and thus be larger than the upper value of two that would

be required for convergence. Scaling with N for the largest eigenvalue of D−1/2
ΣD−1/2 is also

observed in the Ising model simulations Section 9.

We conjecture that convergence of the cumulant series for R(λ) also implies convergence of the

series for logR(λ) but leave an investigation of this point to future research. We only illustrate this

point for the N = 2 Ising model case, where we have the explicit formula

logR(λ) = 1− 1

2
log
(
1−λ4c2

)
− 1

1−λ4c2
+ logcosh

(
λ2c

1−λ4c2

)

.

As can be easily seen, an expansion in λ converges for c2λ4 < 1 which gives the same radius of

convergence |c|< 1 as for the expansion of R.

7. General Approximations

The general approximations differ from the factorized approximation in that an expansion in terms

of expectations under {ka} doesn’t immediately arise. Consider R in Equation (21): Its inner ex-

pectations are over ka|x, and outer expectations are over x. First take the binomial expansion of the

inner expectation, and keep it to second order in ra:

〈

era(ka)
〉Da

ka|x
=

(

1+ 〈ra〉+
1

2

〈
r2

a

〉
+ · · ·

)Da

= 1+Da

[

〈ra〉+
1

2

〈
r2

a

〉
+ · · ·

]

+
Da(Da −1)

2

[

〈ra〉+
1

2

〈
r2

a

〉
+ · · ·

]2

+ · · ·

= 1+Da 〈ra〉+
Da

2

〈
r2

a

〉
+

Da(Da −1)

2
〈ra〉2 + · · · .

Notice that ra(ka) can be complex, but 〈ra(ka)〉ka|x, as it appears in the above expansion, is real-

valued. Using this result, again expand 〈∏a 〈era〉Da

ka|x〉x
. The correction to logR, up to second order,

is

logR =
1

2
∑
a 6=b

DaDb

〈

〈ra(ka)〉ka|x 〈rb(kb)〉kb|x

〉

x

+
1

2
∑
a

Da(Da −1)
〈

〈ra(ka)〉2
ka|x

〉

x
+ · · · . (32)

In the above relation the first-order terms all disappeared as 〈〈ra(ka)〉〉 = 0. Terms involving

〈〈ra(ka)
2〉〉= 0 similarly disappear, as every polynomial in the expansion ra(ka)

2 averages to zero.

This is a general case of Equation (26), in which Dn = 1 for all factors. In Appendix B we show

how to use the general result for the case where the factorization is a tree and our factors are edges

(pairs) and nodes (single variables).
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8. Gaussian Process Results

One of the most important applications of EP is to statistical models with Gaussian process (GP)

priors, where x is a latent variable with Gaussian prior distribution with a kernel matrix K as covari-

ance E[xxT ] = K.

It is well known that for many models, like GP classification, inference with EP is on par with

MCMC ground truth (Kuss and Rasmussen, 2005). Section 8.1 underlines this case, and shows

corrections to the partition function on the USPS data set over a range of kernel hyperparameter

settings.

A common inference task is to predict the output for previously unseen data. Under a GP

regression model, a key quantity is the predictive mean function. The predictive mean is analytically

tractable when the latent function is corrupted with Gaussian noise to produce observations yn. This

need not be the case; in Section 8.2 we examine the problem of quantized regression, where the

noise model is non-Gaussian with sharp discontinuities. We show practically how the corrections

transfer to other moments, like the predictive mean. Through it, we arrive at a hypothetical rule of

thumb: if the data isn’t “sensible” under the (probabilistic) model of interest, there is no guarantee

for EP giving satisfactory inference.

Armed with the rule of thumb, Section 8.3 constructs an insightful counterexample where the

EP estimate diverges or is far from ground truth with more data. Divergence in the partition function

is manifested in the initial correction terms, giving a test for the approximation accuracy that doesn’t

rely on any Monte Carlo ground truth.

8.1 Gaussian Process Classification

The GP classification model arises when we observe N data points sn with class labels yn ∈ {−1,1},

and model y through a latent function x with a GP prior. The likelihood terms for yn are assumed to

be tn(xn) = Φ(ynxn), where Φ(·) denotes the cumulative Normal density.

An extensive MCMC evaluation of EP for GP classification on various data sets was given by

Kuss and Rasmussen (2005), showing that the log marginal likelihood of the data can be approxi-

mated remarkably well. As shown by Opper et al. (2009), an even more accurate estimation of the

approximation error is given by considering the second order correction in Equation (28). For GPC

we generally found that the l = 3 term dominates l = 4, and we do not include any higher cumulants

here.

Figure 3 illustrates the correction to logR, with l = 3,4, on the binary subproblem of the USPS

3’s vs. 5’s digits data set, with N = 767. This is the same set-up of Kuss and Rasmussen (2005) and

Opper et al. (2009), using the kernel k(s,s′) = σ2 exp(− 1
2
‖s− s′‖2/ℓ2), and we refer the reader to

both papers for additional and complimentary figures and results. We evaluated Equation (28) on a

similar grid of logℓ and logσ values. For the same grid values we obtained Monte Carlo estimates

of logZ, and hence logR. The correction, compared to the magnitude of the logZ grids by Kuss

and Rasmussen (2005), is remarkably small, and underlines their findings on the accuracy of EP for

GPC.

The correction from Equation (28), as computed here, is O(N2), and compares favorably to

O(N3) complexity of EP for GPC.
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Figure 3: A comparison of logR using a perturbation expansion of Equation (28) against Monte

Carlo estimates of logR, using the USPS data set from Kuss and Rasmussen (2005). The

second order correction to logR, with l = 3,4, is used on the left; the right plot uses a

Monte Carlo estimate of logR.

8.2 Uniform Noise Regression

We turn our attention to a regression problem, that of learning a latent function x(s) from inputs

{sn} and matching real-valued observations {yn}. A frequent nonparametric treatment assumes that

x(s) is a priori drawn from a GP prior with covariance function k(s,s′), from which a corrupted

version y is observed. Analytically tractable inference is no longer possible in this model when the

observation noise is non-Gaussian. Some scenarios include that of quantized regression, where yn

is formed by rounding x(sn) to, say, the nearest integer, or where x(s) indicates a robot’s path in a

control problem, with conditions to stay within certain “wall” bounds. In these scenarios the latent

function x(sn) can be reconstructed from yn by adding sharply discontinuous uniformly random

U[−a,a] noise,

p(x) =
1

Z
∏

n

I

[

|xn − yn|< a
]

N (x ; 0, K) .

We now assume an EP approximation q(x) = N (x ;µ,Σ), which can be obtained by using

the moment calculations in Appendix E.2. To simplify the exposition of the predictive marginal,

we follow the notation of Rasmussen and Williams (2005, Chapter 3) and let λn = (τn,νn), so

that the final EP approximation multiplies gn terms ∏n exp{− 1
2
τnx2

n + νnxn} into a joint Gaussian

N (x ; 0,K).

8.2.1 MAKING PREDICTIONS FOR NEW DATA

The latent function x(s∗) at any new input s∗ is obtained by the predictive marginal q(x∗) of q(x,x∗).
The marginal q(x∗)—given below in Equation (34)—is directly obtained from the EP approximation
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q(x) = N (x ;µ,Σ). However, the correction to its mean, as was given in Equation (29), requires

covariances Σ∗n, which are derived here.

Let κ∗ = k(s∗,s∗), and k∗ be a vector containing the covariance function evaluations k(s∗,sn).
Again following Rasmussen and Williams (2005)’s notation, let Σ̃ be the diagonal matrix containing

1/τn along its diagonal. The EP covariance, on the inclusion of x∗, is

Σ∗ =

([
K k∗
kT
∗ κ∗

]−1

+

[
Σ̃

−1 0

0T 0

])−1

=

[
Σ k∗−K(K+ Σ̃)−1k∗

kT
∗ −kT

∗ (K+ Σ̃)−1K κ∗−kT
∗ (K+ Σ̃)−1k∗

]

, (33)

with Σ = K−K(K+ Σ̃)−1K. There is no observation associated with s∗, hence τ∗ = 0 in the first

line above, and its inclusion has cl∗ = 0 for l ≥ 3. The second line follows by computing matrix

partitioned inverses twice on Σ∗. The joint EP approximation for any new input point s∗ is directly

obtained as

q(x,x∗) = N

([
x

x∗

]

;

[
µ

kT
∗ K−1µ

]

,Σ∗

)

,

with the marginal q(x∗) being

q(x∗) = N (x∗ ; kT
∗ K−1µ, κ∗−kT

∗ (K+ Σ̃)−1k∗) = N (x∗ ; µ∗, σ2
∗) . (34)

According to Equation (29), one needs the covariances Σ∗ j to correct the marginal’s mean; they

appear in the last column of Σ∗ in Equation (33). The correction is

〈x∗〉p(x,x∗)−µ∗ = ∑
l≥3

∑
j 6=n

Σ∗ j

Σ j j

cl+1, jcln

l!

(
Σ jn

Σ j jΣnn

)l

+ · · · .

The sum over pairs j 6= n include the added dimension ∗, and thus pairs ( j,∗) and (∗,n). The

cumulants for this problem, used both for EP and correcting it, are derived in Appendix E.2.

8.2.2 PREDICTIVE CORRECTIONS

In Figure 4 we investigate the predictive mean correction for two cases, one where the data cannot

realistically be expected to appear under the prior, and the other where the prior is reasonable. For

s ∈ R, the values of x(s∗) are predicted using a GP with squared exponential covariance function

k(s,s′) = θexp(− 1
2
(s− s′)2/ℓ).

In the first instance, the prior amplitude θ and lengthscale ℓ are deliberately set to values that

are too big; in other words, a typical sample from the prior would not match the observed data. We

illustrate the posterior marginal q(x∗), and using Equations (29) and (30), show visible corrections

to its mean and variance.4 For comparison, Figure 4 additionally shows what the predictive mean

would have been were {yn} observed under Gaussian noise with the same mean and variance as

U[−a,a]: it is substantially different.

In the second instance, logZEP is maximized with respect to the covariance function hyperpa-

rameters θ and ℓ to get a kernel function that more reasonably describes the data. The correction

4. In the correction for the mean in Equation (29), we used l = 3 and l = 4 in the second order correction. For the

correction to the variance in Equation (30), we used l = 3 in the first sum, and l = 3 and l = 4 in the second sum.
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Figure 4: Predicting x(s∗) with a GP. The “boxed” bars indicate the permissible x(sn) values; they

are linked to observations yn through the uniform likelihood I[|xn − yn| < a]. Due to the

U[−a,a] noise model, q(x∗) is ambivalent to where in the “box” x(s∗) is placed. A second

order correction to the mean of q(x∗) is shown in a dotted line. The lightly shaded function

plots p(x∗), if the likelihood was also Gaussian with variance matching that of the “box”.

In the top figure both the prior amplitude θ and lengthscale ℓ are overestimated. In the

bottom figure, θ and ℓ were chosen by maximizing logZEP with respect to their values.

Notice the smaller EP approximation error.

to the mean of q(s∗) is much smaller, and furthermore, generally follows the “Gaussian noise”

posterior mean. When the observed data is not typical under the prior, the correction to 〈x∗〉 is

substantially bigger than when the prior is representative of the data.
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Figure 5: Predicting x(s∗) with a GP with k(s,s′) = exp{−|s− s′|/2ℓ} and ℓ = 1. In the left figure

logRMCMC = 0.41, while the second order correction estimates it as logR ≈ 0.64. On

the right, the correction to the variance is not as accurate as that on the left. The right

correction is logRMCMC = 0.28, and its discrepancy with logR ≈ 0.45 (EP+corr) is much

bigger.

8.2.3 UNDERESTIMATING THE TRUTH

Under closer inspection, the variance in Figure 4 is slightly underestimated in regions where there

are many close box constraints |xn − yn| < a. However, under sparser constraints relative to the

kernel width, EP accurately estimates the predictive mean and variance. In Figure 5 this is taken

further: for N = 100 uniformly spaced inputs s ∈ [0,1], it is clear that q(x) becomes too narrow. The

second order correction, on the other hand, provides a much closer estimate to the ground truth.

One might inquire about the behavior of the EP estimate as N → ∞ in Figure 5. In the next

section, this will be used as a basis for illustrating a special case where logZEP diverges.

8.3 Gaussian Process in a Box

In the following insightful example—a special case of uniform noise regression—logZEP diverges

from the ground truth with more data. Consider the ratio of functions x(s) over [0,1], drawn from

a GP prior with kernel k(s,s′), such that x(s) lies within the [−a,a] box. Figure 6 illustrates three

random draws from a GP prior, two of which are not contained in the [−a,a] interval. The ratio of

functions contained in the interval is equal to the normalizing constant of

p(x) =
1

Z
∏

n

I

[

|xn|< a
]

N (x ; 0, K) . (35)

The fraction of samples from the GP prior that lie inside [−a,a] shouldn’t change as the GP is

sampled at increasing granularity of inputs s. As Figure 6 illustrates, the MCMC estimate of logZ

converges to a constant as N → ∞. The EP estimate logZEP, on the other hand, diverges to −∞.

(The cumulants that are required for the correction in Equation (28), and recipes for deriving them,

are given in Appendix E.1.) Of course the correction also depends on the value a chosen. Figure 7

shows that for both a → 0 and a → ∞ the correction is zero for large N.
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Figure 6: Samples from a GP prior with kernel k(s,s′) = exp{−|s−s′|/2ℓ} with ℓ= 1, two of which

are not contained in the [−a,a] interval, are shown top left. As N increases in Equation

(35), with sn ∈ [0,1], logZEP diverges, while logZ converges to a constant. This is shown

top right. The +’s and ×’s indicate the inclusion of the fourth (+) and fourth and sixth

(×) cumulants from the 2nd order in Equation (28) (an arrangement by total order would

include 3rd order c4–c4–c4 in ×). Bottom left and right show the growth for 2nd order c4

correction relative to the exact correction.

An intuitive explanation, due to Philipp Hennig, takes a one-dimensional model p(x) = I[|x|<
a]N N (x ; 0, 1). A fully-factorized approximation therefore has N −1 redundant factors, as remov-

ing them doesn’t change p(x). However, each additional I[|x| < a] truncates the estimate, forcing

EP to further reduce the variance of q(x). The EP estimate using N factors I[|x| < a]1/N is correct

(see Appendix C for a similar example and analysis), even though the original problem remains un-

changed. Even though this immediate solution cannot be applied to Equation (35), the redundancy

across factors could be addressed by a principled junction tree-like factorization, where tuples of

“neighboring” factors can be co-treated. Although beyond the scope of this paper, Appendix A

gives a guideline on how to structure such an approximation.
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Figure 7: The accurateness of logZEP depends on the size of the [−a,a] box relative to ℓ, with the

estimation being exact as a → 0 and a → ∞. The second order correction for Figure 6’s

kernel is illustrated here over varying a’s. The +’s and ×’s indicate the inclusion of the

4th (+) and 4th and 6th (×) cumulants in Equation (28). Of these, the top pair of lines are

for N = 100, and the bottom pair for N = 50.

9. Ising Model Results

This section discusses various aspects of corrections to EP as applied to the Ising model—a Bayesian

network with binary variables and pairwise potentials—in Equation (3).

We consider the set-up proposed by Wainwright and Jordan (2006) in which N = 16 nodes are

either fully connected or connected to their nearest neighbors in a 4-by-4 grid. The external field

(observation) strengths θi are drawn from a uniform distribution θi ∼ U[−dobs,dobs] with dobs =
0.25. Three types of coupling strength statistics are considered: repulsive (anti-ferromagnetic) Ji j ∼
U[−2dcoup,0], mixed Ji j ∼ U[−dcoup,+dcoup], and attractive (ferromagnetic) Ji j ∼ U[0,+2dcoup].

Previously we have shown (Opper and Winther, 2005) that EP/EC gives very competitive results

compared to several standard methods. In Section 9.1 we are interested in investigating whether

a further improvement is obtained with the cumulant expansion. In Section 9.2, we revisit the

correction approach proposed in Paquet et al. (2009) and make and empirical comparison with the

cumulant approach.

9.1 Cumulant Expansion

For the factorized approximation we use Equations (26) and (29) for the logZ and marginal correc-

tions, respectively. The expression for the cumulants of the Ising model is given in Section 4.2.1.

The derivation of the corresponding tree expressions may be found in Appendices B and E.4.

Table 1 gives the average absolute deviation (AAD) of marginals

AAD =
1

N
∑

i

∣
∣
∣p(xi = 1)− p(xi = 1|method)

∣
∣
∣=

1

2N
∑

i

∣
∣mi −mest

i

∣
∣ ,

while Table 2 gives the absolute deviation of logZ averaged of 100 repetitions. In two cases (Grid,

dcoup = 2 Repulsive and Attractive coupling) we observed some numerical problems with the EC
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Problem type AAD marginals

Graph Coupling dcoup LBP LD EC EC c EC t

Full

Repulsive
0.25 .037 .020 .003 .0006 .0017

0.50 .071 .018 .031 .0157 .0143

Mixed
0.25 .004 .020 .002 .0004 .0013

0.50 .055 .021 .022 .0159 .0151

Attractive
0.06 .024 .027 .004 .0023 .0025

0.12 .435 .033 .117 .1066 .0211

Grid

Repulsive
1.0 .294 .047 .153 .1693 .0031

2.0 .342 .041 .198 .4244 .0021

Mixed
1.0 .014 .016 .011 .0122 .0018

2.0 .095 .038 .082 .0984 .0068

Attractive
1.0 .440 .047 .125 .1759 .0028

2.0 .520 .042 .177 .4730 .0002

Table 1: Average absolute deviation (AAD) of marginals in a Wainwright-Jordan set-up, compar-

ing loopy belief propagation (LBP), log-determinant relaxation (LD), EC, EC with l = 4

second order correction (EC c), and an EC tree (EC t). Results in bold face highlight

best results, while italics indicate where the cumulant expression is less accurate than the

original approximation.

tree solver. It might be some cases that a solution does not exist but we ascribe numerical instabilities

in our implementation as the main cause for these problems. It is currently out of the scope of this

work to come up with a better solver. We choose to report the average performance for those runs

that could attain a high degree of expectation consistency: ∑N
i=1(〈xi〉qi

−〈xi〉q)
2 ≤ 10−20. This was

69 out of 100 in the mentioned cases and 100 of 100 in the remaining.

We observe that for the Grid simulations, the corrected marginals in factorized approximation

are less accurate than the original approximation. In Figure 8 we vary the coupling strength for a

specific set-up (Grid Mixed) and observe a cross-over between the correction and original for the

error on marginals as the coupling strength increases. We conjecture that when the error of the

original solution is high then the number of terms needed in the cumulant correction increases. The

estimation of the marginal seems more sensitive to this than the logZ estimate. The tree approx-

imation is very precise for the whole coupling strength interval considered and the fourth order

cumulant in the second order expansion is therefore sufficient to get often quite large improvements

over the original tree approximation.

9.2 The ε-Expansion

In Paquet et al. (2009) we introduced an alternative expansion for R and applied it to Gaussian

processes and mixture models. It is obtained from Equation (12) using a finite series expansion,

where the normalized deviation

εn(xn) =
qn(xn)

q(xn)
−1
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Problem type Absolute deviation logZ

Graph Coupling dcoup EC EC c EC εc EC t EC tc

Full

Repulsive
0.25 .0310 .0018 .0061 .0104 .0010

0.50 .3358 .0639 .0697 .1412 .0440

Mixed
0.25 .0235 .0013 .0046 .0129 .0009

0.50 .3362 .0655 .0671 .1798 .0620

Attractive
0.06 .0236 .0028 .0048 .0166 .0006

0.12 .8297 .1882 .2281 .2672 .2094

Grid

Repulsive
1.0 1.7776 .8461 .8124 .0279 .0115

2.0 4.3555 2.9239 3.4741 .0086 .0077

Mixed
1.0 .3539 .1443 .0321 .0133 .0039

2.0 1.2960 .7057 .4460 .0566 .0179

Attractive
1.0 1.6114 .7916 .7546 .0282 .0111

2.0 4.2861 2.9350 3.4638 .0441 .0433

Table 2: Absolute deviation log partition function in a Wainwright-Jordan set-up, comparing EC,

EC with l = 4 second order correction (EC c), EC with a full second order ε expansion

(EC εc), EC tree (EC t) and EC tree with l = 4 second order correction (EC tc). Results

in bold face highlight best results. The cumulant expression is consistently more accurate

than the original approximation.
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Figure 8: Error on marginal (left) and logZ (right) for grid and mixed couplings as a function of

coupling strength.

is treated as the small quantity instead of higher order cumulants. R has an exact representation with

2N terms that we may truncate at lowest non-trivial order:

R =

〈

∏
n

(1+ εn(xn))

〉

q(x)

≈ 1+ ∑
m<n

〈εm(xm)εn(xn)〉+O(ε3) .
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The linear terms are all equal to one because
〈

qn(xn)
q(xn)

〉

q
=

∫
q(xn)

qn(xn)
q(xn)

dxn = 1 and since qn(xn) is a

binary distribution the quadratic term becomes a weighted sum of ratios of Normal distributions:

〈
qm(xm)

q(xm)

〉

q(x)

= ∑
xn,xm=±1

1+ xmmm

2

1+ xnmn

2

q(xm,xn)

q(xm)q(xn)
.

The final expression for the lowest order approximation to R is then

R ≈ 1+ ∑
m<n

∑
xn,xm=±1

1+ xmmm

2

1+ xnmn

2

q(xm,xn)

q(xm)q(xn)
− N(N −1)

2
.

From Table 2 we observe an improvement over the original factorized approximation and results

similar to the cumulant correction to the factorized approximation for all settings. The ε-expansion

may also used to calculate marginals and applied to generalized factorizations. These topics will be

studied elsewhere.

10. Future Directions

Corrections to Gaussian EP approximations were examined in this paper. The Gaussian measure

allowed for a convenient set of mathematical tools to be employed, mostly because it admits or-

thogonality of a set of polynomials, the Hermite polynomials, which allowed a clean simplification

of many expressions. So far we have restricted ourselves to expansions to low orders in cumulants.

Our results indicate that these first corrections to EP can already provide useful information about

the quality of the EP solution. Small corrections typically show that EP is fairly accurate and the

corrections improve on that. On the other hand, large corrections indicate that the EP approximation

performs poorly. The low order corrections can yield a step in the right direction but in general their

result may not be trusted and alternatives to the Gaussian EP approximation should be considered.

It will be interesting to develop similar expansions to EP approximations with other exponential

families besides the Gaussian one.

Can we expect that higher order terms in the cumulant expansion will give more reliable approx-

imations? Before such a question could be attacked one first would need to decide in which order

the terms of the expansion should be evaluated in order to obtain the most dominant contributions.

For example, we might think of trying to first compute all terms in the second order expansion of

the exponential in Equation (26), and then move on to higher orders. An alternative is to sort the

expansion by the total sum of the orders of cumulants involved. This is in fact possible by intro-

ducing a suitable expansion parameter (which is later set equal to one) such that the formal Taylor

series with respect to this parameter yields the desired expansion. However, it is not clear yet if and

when such a power series expansion would actually converge. It may well be that our expansions

are only of an asymptotic type (Boyd, 1999) for which the summation of only a certain number of

terms might give an improvement whereas further terms would lead to worse results.

We expect that such questions could at least be answered for toy models such as the Gaussian

process in a box model of Section 8.3. Our results for the latter example (together with the related

uniform noise regression case) indicates that EP may not be understood as an off the shelf method

for approximately calculating arbitrary high dimensional sums or integrals. One may conjecture

that its quality strongly depends on the fact that such sums or integrals may or may not have an

interpretation in terms of a proper statistical inference model which contain data that are highly
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probable with respect to the model. It would be interesting to see if one can develop a theory for the

average case performance of EP under such statistical assumptions of the data.

Appendix A. Factorizations: Gaussian Examples

As p(x) is a latent Gaussian model, the g-terms in Equation (5) are chosen in this paper to give a

Gaussian approximation

q(x) =
1

Zq

exp{λT φ(x)}= N (x ; µ,Σ) .

The sufficient statistics φ(x) and natural parameters λ of the Gaussian are defined as

φ(x) = (x,− 1
2
xxT ) and λ= (γ,Λ) ,

where λT φ(x) = γT x− 1
2

tr[ΛxxT ] = γT x− 1
2
xT

Λx. There exists a bijection between the canonical

parameters µ and Σ and natural parameters, such that the mean and covariance can be determined

with Σ=Λ
−1 and µ=Σγ.

In Equation (1) we can define g0(x) = exp{λT
0 φ(x)}, where λ0 = (γ(0),Λ(0)), such that it is

essentially a rescaling of factor f0. In the Ising model in Equation (3), this means that Λ(0) =−J and

γ(0) = θ. In the Gaussian process classification model in Equation (2), this implies that Λ(0) = K−1

and γ(0) = 0.

A.1 Term-Wise Factorizations

It remains to define a suitable factorization for the term-product ∏n tn(xn). This factorization can

be fully factorized, factorized over disjoint sets of variables, factorized as a tree, or follow more

arbitrary factorizations (see the simple example in Appendix C). A few such factorizations are

given below in increasing orders of complexity. In each case we do not include the f0 factor for

clarity. Furthermore, even though the term factorization may be chosen to fully factorize, q(x) may

be fully connected through the inclusion of f0.

A.1.1 FULLY FACTORIZED

A common factorization of ∏n tn(xn) is to set fn(x) = tn(xn). The natural parameters of gn(x) =

exp{λT
n φ(x)} are chosen to be λn = (γ

(n)
n ,Λ

(n)
nn ), corresponding to φn(xn) = (xn,− 1

2
x2

n). For clarity

the other γ and Λ parameters in λn are not shown, as they are clamped at zero. This gives an

approximation q(x) that is defined by λ= λ0 +∑nλn.

A.1.2 FACTORIZATION INTO DISJOINT PAIRS

As a second step the N variables can be subdivided into disjoint pairs xπ = (xm,xn). The factoriza-

tion over terms couples pairs of variables through

∏
n

tn(xn) = ∏
π=(m,n)

[ tm(xm)tn(xn) ] = ∏
π

fπ(x) .

In this case each factor will have a contribution gπ(x) = exp{λT
πφ(x)} to the overall approximation,

and, as gπ is a function of two variables, it is parameterized by the “correlated Gaussian form”

λπ = (γ
(π)
m ,γ

(π)
n ,Λ

(π)
mm ,Λ

(π)
nn ,Λ

(π)
mn ). By symmetry Λ

(π)
nm = Λ

(π)
mn . The resulting q(x) is defined in

terms of these disjoint sets with λ= λ0 +∑πλπ.
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A.1.3 TREE-STRUCTURED FACTORIZATION

A tree structure factorization can be defined by extending the above “disjoint pairs” case to allow

for overlaps between terms. Let G define a spanning tree structure over all x, and let τ = (m,n)∈ G
define the edges in the tree. Let dn be the number of edges emanating from node xn in the graph.

Through a clever regrouping of terms into a “junction tree” form with

∏
n

tn(xn) =
∏τ=(m,n)[ tm(xm)tn(xn) ]

∏n tn(xn)dn−1
=

∏τ fτ (x)

∏n fn(x)dn−1
,

the term-approximation will be tree-structured. In this example the Da powers are 1 for edge factors

fτ and (1− dn) for node factors fn. Let gτ (x) and gn(x) be parameterized by λτ and λn, as was

done in the two examples above. Using

∏τ gτ (x)

∏n gn(x)dn−1
=

∏τ exp{λT
τφ(x)}

∏n exp{λT
n φ(x)}dn−1

,

the resulting q(x) has parameter vector λ= λ0 +∑τ λτ −∑n(dn −1)λn.

It is useful to note that the form of the tree-structured approximation given here is that used by

Opper and Winther (2005); it approximates the “junction tree” form using a Power EP factorization

(Minka, 2004). The factorization and stationary condition is different from that of Tree EP (Minka

and Qi, 2004).

A.2 Stationary Point

The EP moment matching conditions from Equation (7) are uniquely met at the stationary point of

logZEP in Equation (8), and are shown here. Consider the logarithm of the normalizer,

logZEP = logZq +∑
a

Da logZa . (36)

Using the sufficient statistics and natural parameters defined above, the two normalizers that consti-

tute Equation (36) are

Zq =
∫

e∑a Daλ
T
a φ(x) dx ,

Za =
1

Zq

∫
e∑b Dbλ

T
b φ(x)−λT

a φ(x) fa(x)dx .

Using these definitions, the derivatives of the terms in Equation (36) with respect to some EP factor

c’s parameters λc are

∂ logZq

∂λc

= Dc 〈φ(x)〉q ,

∂ logZa

∂λc

=

{
Dc 〈φ(x)〉qa

−Dc 〈φ(x)〉q if c 6= a

(Dc −1)〈φ(x)〉qc
−Dc 〈φ(x)〉q if c = a .

When ∂ logZEP/∂λc = 0 for any c, the following therefore holds:

0 = (Dc −1)(〈φ(x)〉qc
−〈φ(x)〉q)+ ∑

a 6=c

Da(〈φ(x)〉qa
−〈φ(x)〉q) .
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Let D be a square matrix where the values in column a are Da; all the rows in D are equal and it is

singular. Furthermore, let ψa = 〈φ(x)〉qa
−〈φ(x)〉q. By stacking all the ψa’s into a column vector

ψ, the above set of equalities lead to a system of equations

0 = ((D− I)⊗ Idim)ψ .

(The Kronecker product is only required as the sufficient statistics’ differences ψa have dimension-

ality “dim”, usually larger than one.) As D− I is nonsingular, it is solved by ψ = 0, and hence

〈φ(x)〉qa
= 〈φ(x)〉q for all a.

The choice of parameterization of λa might give an overcomplete representation, and the exact

moment-matching conditions 〈φ(x)〉qa
= 〈φ(x)〉q might have more than one unique solution. How-

ever, this does not invalidate that at the stationary point of Equation (36), all moment-matching

conditions must hold.

Appendix B. Tree-Structured Approximation

Let the factorization of the term-product ∏n tn(xn) take the form of a tree G with edges τ = (m,n)∈
G , as is described in Appendix A.1.3. The number connections to a node or vertex n shall be denoted

by dn. From Equation (32) the second order expansion is

logR =
1

2
∑

τ 6=τ ′
〈〈rτ 〉〈rτ ′〉〉+ 1

2
∑

m6=n

(1−dm)(1−dn)〈〈rm〉〈rn〉〉

+∑
τ ,n

(1−dn)〈〈rτ 〉〈rn〉〉+
1

2
∑
n

(1−dn)(−dn)
〈

〈rn〉2
〉

+ · · · , (37)

where the inner expectations are over kτ |x and kn|x, while the outer expectations are over x.5 The

edge-edge, edge-node, and node-node expectations that are needed in Equation (37) are given in the

following three sections.

B.1 Edge-Edge Expectations

The edge-edge expectation provides a beautiful illustration of the combinatorics that may be in-

volved in Wick’s theorem. For τ 6= τ ′, the following expectation needs to be evaluated:

〈〈rτ (kτ )〉〈rτ ′(kτ ′)〉〉

=

〈

∑
l≥3

∑
s≥3

il+s

{

∑
|α|=l

cατ

α!
〈kα

τ 〉kτ |x

}{

∑
|α′|=s

cα′τ ′

α′!

〈

kα′
τ ′

〉

k
τ
′ |x

}〉

x

. (38)

The vectors α that are summed over to get |α| = l are α = (0, l),(1, l − 1), . . . ,(l,0); let α =
(α1, l −α1) when |α|= l. From the independence of kτ |x and kτ ′ |x,

〈

〈kα
τ 〉kτ |x 〈k

α′
τ ′ 〉k

τ
′ |x

〉

x
=
〈

〈kα
τ kα′

τ ′ 〉kτ ,kτ
′ |x

〉

x
=
〈

kα1
τ1

kl−α1
τ2

k
α′

1

τ′1
k

s−α′
1

τ′2

〉

kτ ,kτ
′
, (39)

5. Some readers might wonder why there is no 1
2 associated with the sum over (τ ,n) in Equation (37). In the other

quadratic sums, for example over m 6= n, each (m,n) pair appears twice, as rmrn and as rnrm. Each edge-node pair

makes only one appearance in the sum; if the sum double-counted by including node-edge pairs, a division by two

would have been necessary.
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and therefore 〈〈rτ 〉〈rτ ′〉〉= 〈〈rτ rτ ′〉〉 whenever τ 6= τ ′.
Wick’s theorem is again instrumental in computing 〈kα

τ kα′
τ ′ 〉, as all possible pairings of the ran-

dom variables kτ = (kτ1
,kτ2

) and kτ ′ = (kτ′1
,kτ′2

) need to be included. As 〈k2
τ1
〉 = 0, 〈kτ1

kτ2
〉 =

0, 〈k2
τ′1
〉 = 0, and 〈kτ′1

kτ′2
〉 = 0, the only non-zero expectations in the Wick expansion of Equa-

tion (39) occur when all the variables in kτ and kτ ′ are paired. This immediately means that

〈kα1
τ1

k
l−α1
τ2

k
α′

1

τ′1
k

s−α′
1

τ′2
〉 = 0 whenever l 6= s, as there will be some remaining variables in kτ (or kτ ′)

that can’t be paired and have to be self-paired with zero expectation.

Given l = s, evaluate the expectation in Equation (39). We introduce the “pairing count” vector

β with elements β j ∈N0 and constraint ∑4
j=1 β j = l. Let β1 count the number of pairings of kτ1

with

kτ′1
, and β2 count the number of pairings of kτ1

with kτ′2
. As there are α1 kτ1

terms, the sum of its

outgoing pairings should equal α1 with

β1 +β2 = α1 .

A furthermore requirement is that

β1 +β3 = α′
1 , β3 +β4 = α2 , β2 +β4 = α′

2 ,

where α2 = l −α1 and α′
2 = l −α′

1, and β3 and β4 be as in the Wick expansion below. Define B
to be the set of all such β’s, and let C (β) count the number of permuted configurations for a given

pairing β. From Wick’s theorem the expected value is equal to the sum over all possible pairings β:

〈

kα1
τ1

kα2
τ2

k
α′

1

τ′1
k

α′
2

τ′2

〉

kτ ,kτ
′
= ∑

β∈B

C (β)〈kτ1
kτ′1

〉β1〈kτ1
kτ′2

〉β2〈kτ2
kτ′1

〉β3〈kτ2
kτ′2

〉β4 .

A simple scheme to enumerate all β ∈ B is to let

β =
[

β1, α1 −β1, α′
1 −β1, (l +β1)− (α1 +α′

1)
]

,

so that β ∈ B for each β1 ∈ {max(0,(α1 +α′
1)− l), . . . ,min(α1,α

′
1)}. The remaining components

of β are uniquely determined from β1.

B.1.1 COUNTING PAIRINGS

How many permuted pairings C (β) are there?

1. There are
(

α1

β1

)
ways of choosing β1 kτ1

’s, and then
α′

1!

(α′
1−β1)!

ways of choosing kτ′1
to pair with.

2. This leaves a remaining (α1 −β1) kτ1
’s, that need to be paired with (l −α′

1) kτ′2
’s. There are

(l−α′
1)!

((l−α′
1)−(α1−β1))!

such pairings.

3. There are also α′
1 −β1 remaining kτ′1

’s, that need to be paired with kτ2
variables. There are

(
l−α1

α′
1−β1

)
ways of picking a kτ2

, and a further (α′
1 −β1)! ways of arranging the remaining kτ′1

.

4. Finally, the (l −α′
1)− (α1 −β1) remaining k′τ2

s need to be coupled with the remaining kτ′2
’s,

and there are ((l −α′
1)− (α1 −β1))! such arrangements.
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Multiplying the possible pairings from the four steps above gives

C (β) =

(
α1

β1

)
α′

1!

(α′
1 −β1)!

(l −α′
1)!

((l +β1)− (α1 +α′
1))!

· · ·

· · ·×
(

l −α1

α′
1 −β1

)

(α′
1 −β1)! ((l +β1)− (α1 +α′

1))!

=

(
α1

β1

)

α′
1! (l −α′

1)!

(
l −α1

α′
1 −β1

)

,

which adds up to the total number of possible pairings ∑β∈B C (β) = l!. A further useful simplifi-

cation is C (β)/α!α′! = 1/β! when |α|= |α′|= l, and is used below.

B.1.2 EDGE-EDGE EXPECTATION

The absence of any self-interacting loops from Wick’s theorem lets the ∑s≥3 drop away in Equation

(38), as all terms are zero except for when l = s. Substituting 〈kα
τ kα′

τ ′ 〉 and C (β) into Equation (38)

gives the final result,

〈〈rτ (kτ )〉〈rτ ′(kτ ′)〉〉

= ∑
l≥3

(−1)l ∑
|α|=l

∑
|α′|=l

cατ cα′τ ′

{

∑
β∈B

1

β!
〈kτ1

kτ′1
〉β1〈kτ1

kτ′2
〉β2〈kτ2

kτ′1
〉β3〈kτ2

kτ′2
〉β4

}

.

B.2 Edge-Node Expectations

The derivation for the edge-node expectations is similar to that of the edge-edge case,

〈〈rτ (kτ )〉〈rn(kn)〉〉=
〈

∑
l≥3

∑
s≥3

il+s ∑
|α|=l

cατ csn

α! s!
〈kα

τ 〉kτ |x 〈k
s
n〉kn|x

〉

x

= ∑
l≥3

(−1)l ∑
|α|=l

cατ cln

α!
〈kτ1

kn〉α1 〈kτ2
kn〉l−α1 ,

where the expectations in the last line are again over {kτ ,kn}. When 〈kα
τ ks

n〉 is evaluated with

Wick’s theorem, there are α1 copies of kτ1
, l−α1 copies of kτ2

, and s copies of kn. The zero relation

of kτ and kn ensures that the only non-zero terms in the Wick sum are those where all the kτ’s are

paired with kn’s; in other words, when l = s. There are l! possible pairings, which cancels l! in the

denominator.

The above edge-node expectation is for any edge and node in the tree, but notice that it simplifies

greatly when the edge τ is a connection to node n. Say τ1 is the edge variable corresponding to xn.

In this case the covariance with respect to the opposite pair is zero, with 〈kτ2
,kn〉= 0 (see Figure 2)

and only one of the α’s will have a non-zero contribution to the sum, namely when α= (l,0).

B.3 Node-Node Expectations

The node-node expectation is given in Equation (27), and is also used for 〈〈rn〉2〉.6

6. Due to the square in 〈〈rn〉2
kn|x〉x

, the inner average 〈rn〉kn|x should first be computed to give an expansion over Hermite

polynomials in xn − µn. An example of such a result is given Appendix C. The orthogonality of these polynomials

over q(x−µ) allows 〈〈rn〉2
kn|x〉x

to also reduce to Equation (27).
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Appendix C. A Tractable, One-Dimensional Example

The following example illustrates a tractable one-dimensional model with two factors. It is shown

analytically that the correction to logZEP must be zero, and that the result is reflected in the higher-

order terms in Equation (32), which are also zero.

Consider the factorization of a probit term with a Gaussian prior into

p(x) =
1

Z
Φ(x)N (x;0,1) =

1

Z
fa(x)

1/2 fb(x)
1/2N (x;0,1) ,

where Φ(x) is the cumulative Gaussian density function, and fa(x) = fb(x) = Φ(x). Z can be

computed exactly, but for the sake of example p(x) will be approximated with

q(x) =
1

Zq

ga(x)
1/2gb(x)

1/2N (x;0,1) = N (x;µ,σ2) .

Choose ga(x) = exp{φ(x)Tλa}, and gb(x) = exp{φ(x)Tλb}. The q approximation has parameter

vector λ= λ0 +
1
2
λa +

1
2
λb. The EP fixed point is defined by λa = λb and Za = Zb. (For example,

subtracting λa at the fixed point will leave λ\a = λ0 + 0, which is equal to a scaled version of the

prior f0(x). The factor fa(x) = Φ(x) is hence incorporated into the prior, giving Za. By a symmetric

argument, Za = Zb.) Although it is trivial to show that ZEP = ZqZ
1/2
a Z

1/2

b will be equal to the true

partition function Z, we shall prove it by showing that the correction term is logR = 0.

C.1 Analytic Correction

In this section a transformation of variables from x to y ∼ N (y;0,1), with y = (x− µ)/σ, will be

used to make the derivation slightly simpler, and therefore

ka|y ∼ N

(

ka ; − iy

σ
, σ−2

)

, kb|y ∼ N

(

kb ; − iy

σ
, σ−2

)

.

Below we analytically show that the correction logR is zero, and hence that

R =

〈〈

era(ka)
〉1/2

ka|y

〈

erb(kb)
〉1/2

kb|y

〉

y

=
〈√

Fa(y)
√

Fb(y)
〉

y
= 1 , (40)

where Fa(y) is a shorthand for 〈era(ka)〉ka|y and

ra(ka) = ∑
l≥3

il
cal

l!
kl

a , rb(kb) = ∑
l≥3

il
cbl

l!
kl

b .

Because fa = fb, the cumulants will be the same for all l, hence cal = cbl . Furthermore, ka|y and

kb|y are both distributed according to the same density. Now define, using era = 1+ ra +
1
2
r2

a + · · · ,

Fa(y) =

〈

1+∑
l≥3

il
cal

l!
kl

a +
1

2
∑

l,s≥3

il+s calcas

l!s!
kl+s

a + · · ·
〉

ka|y

=

〈

1+∑
l≥3

cal

l!

(
1

σ

)l

(y+ iu)l +
1

2
∑

l,s≥3

calcas

l!s!

(
1

σ

)l+s

(y+ iu)l+s + · · ·
〉

u

= 1+∑
l≥3

cal

l!

(
1

σ

)l

Hl(y)+
1

2
∑

l,s≥3

calcas

l!s!

(
1

σ

)l+s

Hl+s(y)+ · · · (41)

2890



PERTURBATIVE CORRECTIONS FOR APPROXIMATE INFERENCE

In the second line above a transformation of variables was made in the integral, with u = σka + iy,

such that ka = (u− iy)/σ. The Jacobian 1/σ ensures proper normalization so that the average is

over u ∼ N (u;0,1). In the last line Hl(y) is the Hermite polynomial of degree l,

H0(y) = 1 , H1(y) = y , H2(y) = y2 −1 ,

H3(y) = y3 −3y , H4(x) = y4 −6y2 +3 , H5(y) = y5 −10y3 +15y · · ·

which can be obtained for any real y and integer l = 0,1,2, . . . from the average Hl(y) =
〈
(y+ iu)l

〉

u

over u ∼ N (u;0,1).7

The remarkable property 〈Hl(y)〉y = 0 for all l, ensures that 〈Fa(y)〉y = 1 in Equation (41). Fur-

thermore, Fa(y) = Fb(y) follows from the equivalence in cumulants cal = cbl; the roots in Equation

(40) disappear to give 〈Fa(y)〉y, proving that R = 1 in Equation (40).

C.2 Second Order Correction

The second order expansion in Equation (32) in Section 7 evaluates to zero, as the matching cumu-

lants cal = cbl and equal distributions of ka|x and kb|x ensure that 〈ra(ka)〉ka|x = 〈rb(kb)〉kb|x:

logR =
1

4

〈

〈ra(ka)〉ka|x 〈rb(kb)〉kb|x

〉

x
− 1

8

(〈

〈ra(ka)〉2
ka|x

〉

x
+
〈

〈rb(kb)〉2
kb|x

〉

x

)

+ · · ·

=
1

4

〈

〈ra(ka)〉2
ka|x

〉

x
− 1

8

(

2
〈

〈ra(ka)〉2
ka|x

〉

x

)

+ · · ·

= 0+ · · · .

Appendix D. Corrections to Marginals Distributions

Corrections to the marginal distributions follow from a similar derivation to that of the normalizing

constant. As a simplification, let the Gaussian approximation be centred with y = x−µ, so that

q(y)=N (y ; 0,Σ), and assume that q(x) is arises from the fully factorized approximation in Section

5. In this appendix corrections will be computed for the mean 〈xi −µi〉p(x) = 〈yi〉p(y), and variance
〈
(xi −µi)(x j −µ j)−Σi j

〉

p(x)
=
〈
yiy j

〉

p(y)
−Σi j.

A further simplification that will be employed in the following section is a change of variables

ηn = kn + iΣ−1
nn yn, so that ηn ∼ N (ηn ; 0, Σ−1

nn ). Let

zn = ηn − iΣ−1
nn yn ,

which is zero-mean complex Gaussian random variable with a relation
〈
z2

n

〉
= 0 and 〈zmzn〉 =

−Σmn/(ΣmmΣnn) when m 6= n. Following Equation (24), the correction reads

R =

〈

∏
n

〈

rn(kn)
〉

kn|yn

〉

y

=

〈

∏
n

〈

rn

(

ηn − iΣ−1
nn yn

)〉

ηn

〉

y

=

〈

exp

[

∑
n

rn(zn)

]〉

z

.

7. When F (y) in Equation (41) is rearranged as a power series in σl , we obtain an Edgeworth expansion to arbitrary

order l. The deviation from the Gaussian q(y) is thereby factorized out of tilted distribution with qa(y) = q(y)F (y).
The interested reader is pointed to Blinnikov and Moessner (1998).
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D.1 The Marginal Mean

The lowest order correction to the EP marginal’s mean follows from the result in Equation (13):

〈yi〉p(y) =
1

R

〈

yi e∑n rn(zn)
〉

z

=
1

R
∑

j

Σi j

〈
∂

∂y j

e∑n rn(zn)

〉

=
1

R
∑

j

Σi j

〈

∂

∂y j

(

1+∑
n

rn(zn)+
1

2
∑
m,n

rm(zm)rn(zn)+ · · ·
)〉

=
1

R
∑

j

Σi j

〈
∂r j(z j)

∂y j

+∑
n

rn(zn)
∂r j(z j)

∂y j

+ · · ·
〉

.

In the above expansion the first order term is
∂r j(z j)

∂y j
=

∂r j(z j)
∂z j

∂z j

∂y j
= −iΣ−1

j j

∂r j(z j)
∂z j

, and disappears as
〈

∂r j(z j)
∂z j

〉

= 0. The j = n second order term also disappears as
〈

r j(z j)
∂r j(z j)

∂z j

〉

= 0. These equiv-

alences can be seen by taking r j(z j) (and also its derivative) as a expansion over powers of z j; as

〈z2
j〉= 0, Wick’s theorem states that every expectation of powers of z j should be zero. Hence

〈yi〉p(y) =− i

R
∑
j 6=n

Σi j

Σ j j

〈

rn(zn)
∂r j(z j)

∂z j

〉

z

+ · · · . (42)

The derivative of the characteristic function, as required in Equation (42), is

∂r j(z j)

∂z j

=
∂

∂z j

[

∑
l≥3

il
cl j

l!
zl

j

]

= i ∑
l≥3

il−1 cl j

(l −1)!
zl−1

j = i ∑
l≥2

il
cl+1, j

l!
zl

j .

The expectations for j 6= n in Equation (42) evaluate to

〈

rn(zn)
∂r j(z j)

∂z j

〉

z

= i ∑
s,l≥3

is+l cl+1, j,csn

l!s!

〈

zl
jz

s
n

〉

+ i ∑
s≥3,l=2

is+l cl+1, j

2!s!

〈

zl
jz

s
n

〉

= i ∑
l≥3

i2l cl+1, jcln

(l!)2

〈

zl
jz

l
n

〉

, (43)

with the second term disappearing as s > l = 2 ensures that some zn is always self-paired in Wick’s

theorem. Finally, by substituting Equation (43) into (42), the correction to the mean is

〈yi〉p(y) = ∑
l≥3

∑
j 6=n

Σi j

Σ j j

cl+1, jcln

l!

(
Σ jn

Σ j jΣnn

)l

±·· · .
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D.2 The Marginal Covariance

The correction to the second moments follow the same recipe as that of the marginal mean in

Appendix D.1. We proceed by first treating yi with

〈
yiy j

〉

p(y)
=

1

R

〈

yi

{

y j e∑n rn(zn)
}〉

z

=
1

R
∑
k

Σik

〈
∂

∂yk

{

y j e∑n rn(zn)
}〉

=
1

R
∑
k

Σik

〈

δ jk e∑n rn(zn)+ y j

∂

∂yk

e∑n rn(zn)

〉

= Σi j +
1

R
∑
k

Σik

〈

y j

∂

∂yk

e∑n rn(zn)

〉

.

Reapplying the recipe gives the correction to the covariance:

〈
yiy j

〉

p(y)
−Σi j =

1

R
∑
kl

ΣilΣ jk

〈
∂2

∂yk∂yl

e∑n rn(zn)

〉

z

=−i∑
kl

Σil

Σll

Σ jk

〈
∂

∂yk

∂rl(zl)

∂zl

e∑n rn(zn)

〉

+ · · ·

=−∑
kl

Σil

Σll

Σ jk

Σkk

〈[

δkl

∂2rl(zl)

∂z2
l

+
∂rk(zk)

∂zk

∂rl(zl)

∂zl

]

e∑n rn(zn)

〉

= ∑
s≥3

∑
k 6=l

ΣilΣ jl

Σ2
ll

cskcs+2,l

s!

(
Σkl

ΣkkΣll

)s

+ ∑
s≥3

∑
k 6=l

Σil

Σll

Σ jk

Σkk

cskcsl

s!

(
Σkl

ΣkkΣll

)s−1

+ · · · .

Appendix E. Higher Order Cumulants

Much of this paper hinges on cumulants beyond the second order. These are frequently more cum-

bersome to obtain than the initial moments that are required by EP. This appendix provides details

of the cumulants used in this paper.

The cumulants of a distribution qn(x) can be obtained from its moments through

c3 =
〈
x3
〉
−3
〈
x2
〉
〈x〉+2〈x〉3 ,

c4 =
〈
x4
〉
−4
〈
x3
〉
〈x〉−3

〈
x2
〉2

+12
〈
x2
〉
〈x〉2 −6〈x〉4 ,

c5 =
〈
x5
〉
−5
〈
x4
〉
〈x〉−10

〈
x3
〉〈

x2
〉
+20

〈
x3
〉
〈x〉2 +30

〈
x2
〉2 〈x〉−60

〈
x2
〉
〈x〉3 +24〈x〉5

;

they are derived for doubly-truncated Gaussian distributions in Appendices E.1 and E.2. One might

also directly take derivatives of the cumulant generating function, and the cumulants of a Probit-

times-Gaussian distribution, common to GP classification models, are derived this way in Appendix

E.3.

The tree-structured approximation in Sections 7 and 9.1, and Appendices A.1.3 and B, require

cumulants over two variables. They are presented in Appendix E.4 for the Ising model.
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E.1 Doubly Truncated Centered Gaussian

Consider the centered distribution qn(xn) ∝ I[|xn| < a]N (xn ; 0, λ−1
n ). The odd moments of this

tilted distributions are, by symmetry, 〈xn〉=
〈
x3

n

〉
=
〈
x5

n

〉
= 0. Let

Zn = 2

√

λ

2π

∫ a

0
e−

1
2

λx2

dx = 2Φ(z)−1 , z =
√

λa ,

with the Probit function being Φ(x) =
∫ x
−∞ N (z;0,1)dz. Subscripts n are dropped where they are

clearly implied by their context. To get the even moments, consider

A1 = ∂λ logZn = ∂λ log

(√
λ

∫ a

−a
dxe−

1
2

λx2

)

=
1

2λ
− 1

2

〈
x2
〉
,

A2 = ∂2
λ logZn =− 1

2λ2
+

1

4

(〈
x4
〉
−
〈
x2
〉2
)

.

Using the partition function, we get

A1 = ∂λ log(2Φ(z)−1) =
a√
λ

(
N (z)

2Φ(z)−1

)

,

A2 =
a2

2λ

(
zN (z)

2Φ(z)−1

)

− a

2λ3/2

(
N (z)

2Φ(z)−1

)

− a2

λ

(
N (z)

2Φ(z)−1

)2

,

and thus

〈
x2
〉
=

1

λ
−2A1 ,

〈
x4
〉
=

2

λ2
+
〈
x2
〉2

+4A2 .

We can further determine A3 = ∂3
λ logZn using the partition function, giving

A3 =
3a

4λ5/2

(
N (z)

2Φ(z)−1

)

+
3a2

4λ2

(
zN (z)

2Φ(z)−1

)

+
3a2

2λ2

(
N (z)

2Φ(z)−1

)2

+
2a3

λ3/2

(
N (z)

2Φ(z)−1

)3

+
3a3

2λ3/2

(
N (z)

2Φ(z)−1

)(
zN (z)

2Φ(z)−1

)

+
a3

4λ3/2

(
(z2 −1)N (z)

2Φ(z)−1

)

.

Therefore
〈
x6
〉
=

8

λ3
+
〈
x2
〉〈

x4
〉
−2
〈
x2
〉3

+2
〈
x4
〉〈

x2
〉
−8A3 .

E.2 Doubly Truncated Non-Centered Gaussian

The same calculation from Appendix E.1 can be repeated to get the moments of the non-centered

truncated Gaussian qn(xn) ∝ I[|xn|< a]N (xn ; µ, λ−1
n ). The subscripts n are dropped where evident.

The partition function is

Z(λ,µ) =

√

λ

2π

∫ a

−a
e−

1
2

λ(x−µ)2

dx = Φ(zmax)−Φ(zmin) ,
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Figure 9: The moments of qn(x) ∝ I[|x| < a]N (x ; µ, σ2), as a function of σ2. As the Gaussian

variance σ2 → ∞, the moments converge to that of a uniform U[−a,a] distribution.

where

zmax =
√

λ(µ+a) , zmin =
√

λ(µ−a) .

By again taking increasing derivatives of Z(λ,µ) with respect to µ and λ, the moments solved for

are

〈x〉= µ+
1√
λ

N (zmax)−N (zmin)

Φ(zmax)−Φ(zmin)
,

〈
x2
〉
= 2〈x〉µ+

1

λ
−µ2 − 1

λ

zmaxN (zmax)− zminN (zmin)

Φ(zmax)−Φ(zmin)
,

〈
x3
〉
= 3

〈
x2
〉

µ+ 〈x〉
[

3

λ
−3µ2

]

− 3

λ
µ+µ3 ,

− 1

λ3/2

(1− z 2
max)N (zmax)− (1− z 2

min)N (zmin)

Φ(zmax)−Φ(zmin)
,

〈
x4
〉
= 4

〈
x3
〉

µ+
〈
x2
〉
[

2

λ
−6µ2

]

+ 〈x〉
[

4µ3 − 4

λ
µ

]

+
2

λ
µ2 −µ4 +

1

λ2

− 1

λ2

zmax(1+ z2
max)N (zmax)− zmin(1+ z2

min)N (zmin)

Φ(zmax)−Φ(zmin)
.

Finally,

〈
x5
〉
= 5

〈
x4
〉

µ+
〈
x3
〉
[

6

λ
−10µ2

]

+
〈
x2
〉
[

10µ3 − 18

λ
µ

]

+ 〈x〉
[

18

λ
µ2 −5µ4 − 3

λ2

]

+
3

λ2
µ

− 6

λ
µ3 +µ5 − 1

λ5/2

(1+2z2
max − z4

max)N (zmax)− (1+2z2
min − z4

min)N (zmin)

Φ(zmax)−Φ(zmin)
.

As Figure 9 illustrates, these moments will converge to that of a uniform distribution as the Gaus-

sian’s variance grows large.
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Figure 10: The third and fourth cumulants of the density qn(x) ∝ Φ((x−m)/v)N (x;µ,σ2) in Ap-

pendix E.3. The step function Θ(x), with m = v = 0, is taken as an example here. The

third cumulant is always positive, while the fourth cumulant is positive only when σ> µ.

E.3 Probit Link Cumulants

EP approximations to Probit regression models, and Gaussian process classification models in gen-

eral (see Section 8.1), depend on the moments of qn(x) ∝ Φ((x−m)/v)N (x;µ,σ2). We introduce

v ≥ 0 so that the likelihood can become a step function at v = 0, for example. We shall obtain the

cumulants by taking derivatives of the characteristic function. The characteristic function of qn(x),
as described by Equation (15), is

χn(k) =
〈
eikx
〉

qn(x)
= exp

{

ikµ− 1

2
k2σ2

}
Φ(zk)

Φ(z)
,

with

z =
µ−m√
v2 +σ2

, zk =
µ+ ikσ2 −m√

v2 +σ2
.

The cumulants cln are determined from the derivatives of logχn(k) at zero; a lengthy calculation

shows that they are

c3n = α3β
[
2β2 +3zβ+ z2 −1

]
,

c4n =−α4β
[
6β3 +12zβ2 +7z2β+ z3 −4β−3z

]
,

where α = σ2/
√

v2 +σ2 and β = N (z;0,1)/Φ(z).

E.4 Two-Variable Ising Model Cumulants

We need some third and fourth order two-variable cumulants and thus generalize the results of

Section 4.2 to the bivariate case. To do this we can exploit the cumulant generating property of

logχa(ka). Let c(l,l′) denote the joint l, l′ order cumulant of variable one and two, respectively. We

can generate this cumulant from derivatives of logχa(ka):

c(l,l′) =

(
∂

∂ik1

)l(
∂

∂ik2

)l′

logχa(ka)

∣
∣
∣
∣
∣
k=0

.
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We can also express this as a recursion in terms of cumulants:

c(l+n,l′+n′) =

(
∂

∂ik1

)n(
∂

∂ik2

)n′

c(l,l′)(k)

∣
∣
∣
∣
∣
k=0

.

By explicit calculation for a bivariate binary distribution we get the first two orders’ cumulants:

c(1,0) = m1, c(0,1) = m2, c(2,0) = 1−m2
1, c(0,2) = 1−m2

2 and c(1,1) is equal to the covariance between

the two variables (to be matched with q(x)). The fact that we can write c(2,0) in terms of the first

order cumulant shows that we can express all order cumulants in terms of the first and second order

cumulant for example:

c(2,1) =
∂

∂ik2

c(2,0)(k)

∣
∣
∣
∣
k=0

=
∂

∂ik2

(1− c2
(1,0)(k))

∣
∣
∣
∣
k=0

=−2c(1,0)c(1,1) .

Using the same recursion it is easy to show: c(3,0) = −2c(1,0)c(2,0), c(4,0) = −2c2
(2,0)− 2c(1,0)c(3,0),

c(3,1) =−2c(2,0)c(1,1)−2c(1,0)c(2,1) and c(2,2) =−2c2
(1,1)−2c(1,0)c(1,2) =−2c2

(1,1)+4c(1,0)c(0,1)c(1,1).
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M. Mézard, G. Parisi, and M. A. Virasoro. Spin Glass Theory and Beyond, volume 9 of Lecture

Notes in Physics. World Scientific, 1987.

T. P. Minka. Expectation propagation for approximate Bayesian inference. In UAI 2001, pages

362–369, 2001a.

T. P. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, MIT Media

Lab, 2001b.

T. P. Minka. Power EP. Technical Report MSR-TR-2004-149, Microsoft Research Ltd, 2004.

2897



OPPER, PAQUET AND WINTHER

T. P. Minka and Y. Qi. Tree-structured approximations by expectation propagation. In Advances in

Neural Information Processing Systems 16. 2004.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

M. Opper and O. Winther. Gaussian processes for classification: Mean field algorithms. Neural

Computation, 12:2655–2684, 2000.

M. Opper and O. Winther. Expectation consistent approximate inference. Journal of Machine

Learning Research, 6:2177–2204, 2005.

M. Opper, U. Paquet, and O. Winther. Improving on expectation propagation. In Advances in Neural

Information Processing Systems 21, pages 1241–1248. 2009.

U. Paquet, M. Opper, and O. Winther. Perturbation corrections in approximate inference: Mixture

modelling applications. Journal of Machine Learning Research, 10:935–976, 2009.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press,

2005.

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian models by

using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 71(2):319–392, 2009.

M. W. Seeger and H. Nickisch. Fast convergent algorithms for expectation propagation approximate

Bayesian inference. Arxiv preprint arXiv:1012.3584, 2010.

D. Sherrington and S. Kirckpatrick. Solvable model of a spin-glass. Phys. Rev. Lett., 35(26):1792–

1796, December 1975.

E. Sudderth, M. Wainwright, and A. Willsky. Loop series and Bethe variational bounds in attractive

graphical models. In Advances in Neural Information Processing Systems 20, pages 1425–1432.

2008.

D. J. Thouless, P. W. Anderson, and R. G. Palmer. Solution of a ‘solvable model of a spin glass’.

Phil. Mag., 35:593, 1977.

M. A. J. van Gerven, B. Cseke, F. P. de Lange, and T. Heskes. Efficient Bayesian multivariate fMRI

analysis using a sparsifying spatio-temporal prior. NeuroImage, 50(1):150–161, 2010.

M. J. Wainwright and M. I. Jordan. Log-determinant relaxation for approximate inference in discrete

Markov random fields. IEEE Transactions on Signal Processing, 54(6):2099–2109, 2006.

M. Welling, A. Gelfand, and A. Ihler. A cluster-cumulant expansion at the fixed points of belief

propagation. In Uncertainty in Artificial Intelligence (UAI). 2012.

2898



Journal of Machine Learning Research 14 (2013) 2899-2903 Submitted 11/12; Revised 4/13; Published 9/13

The CAM Software for Nonnegative Blind Source Separation in R-Java

Niya Wang WANGNY@VT.EDU

Fan Meng MENGFAN@VT.EDU

Department of Electrical and Computer Engineering

Virginia Polytechnic Institute and State University

Arlington, VA 22203, USA

Li Chen CHENL14@MAIL.NIH.GOV

Pediatric Oncology Branch, National Cancer Institute

National Institutes of Health

Gaithersburg, MD 20850, USA

Subha Madhavan SM696@GEORGETOWN.EDU

Innovation Center for Biomedical Informatics

Georgetown University

Washington DC 20007, USA

Robert Clarke CLARKER@GEORGETOWN.EDU

Lombardi Comprehensive Cancer Center

Georgetown University

Washington, DC 20057, USA

Eric P. Hoffman EHOFFMAN@CNMCRESEARCH.ORG

Research Center for Genetic Medicine

Children’s National Medical Center

Washington, DC 20010, USA

Jianhua Xuan XUAN@VT.EDU

Yue Wang YUEWANG@VT.EDU

Department of Electrical and Computer Engineering

Virginia Polytechnic Institute and State University

Arlington, VA 22203, USA

Editor: Antti Honkela

Abstract

We describe a R-Java CAM (convex analysis of mixtures) package that provides comprehensive an-

alytic functions and a graphic user interface (GUI) for blindly separating mixed nonnegative sources.

This open-source multiplatform software implements recent and classic algorithms in the literature

including Chan et al. (2008), Wang et al. (2010), Chen et al. (2011a) and Chen et al. (2011b). The

CAM package offers several attractive features: (1) instead of using proprietary MATLAB, its analytic

functions are written in R, which makes the codes more portable and easier to modify; (2) besides

producing and plotting results in R, it also provides a Java GUI for automatic progress update and

convenient visual monitoring; (3) multi-thread interactions between the R and Java modules are

driven and integrated by a Java GUI, assuring that the whole CAM software runs responsively; (4)

the package offers a simple mechanism to allow others to plug-in additional R-functions.

Keywords: convex analysis of mixtures, blind source separation, affinity propagation clustering,

compartment modeling, information-based model selection

c©2013 Niya Wang, Fan Meng, Li Chen, Subha Madhavan, Robert Clarke, Eric P. Hoffman, Jianhua Xuan and Yue Wang.



WANG, MENG, CHEN, MADHAVAN, CLARKE, HOFFMAN, XUAN AND WANG

1. Overview

Blind source separation (BSS) has proven to be a powerful and widely-applicable tool for the anal-

ysis and interpretation of composite patterns in engineering and science (Hillman and Moore, 2007;

Lee and Seung, 1999). BSS is often described by a linear latent variable model X = AS, where X is

the observation data matrix, A is the unknown mixing matrix, and S is the unknown source data ma-

trix. The fundamental objective of BSS is to estimate both the unknown but informative mixing pro-

portions and the source signals based only on the observed mixtures (Child, 2006; Cruces-Alvarez

et al., 2004; Hyvarinen et al., 2001; Keshava and Mustard, 2002).

While many existing BSS algorithms can usefully extract interesting patterns from mixture ob-

servations, they often prove inaccurate or even incorrect in the face of real-world BSS problems

in which the pre-imposed assumptions may be invalid. There is a family of approaches exploit-

ing the source non-negativity, including the non-negative matrix factorization (NMF) (Gillis, 2012;

Lee and Seung, 1999). This motivates the development of alternative BSS techniques involving ex-

ploitation of source nonnegative nature (Chan et al., 2008; Chen et al., 2011a,b; Wang et al., 2010).

The method works by performing convex analysis of mixtures (CAM) that automatically identifies

pure-source signals that reside at the vertices of the multifaceted simplex most tightly enclosing

the data scatter, enabling geometrically-principled delineation of distinct source patterns from mix-

tures, with the number of underlying sources being suggested by the minimum description length

criterion.

Consider a latent variable model x(i) = As(i), where the observation vector

x(i) = [x1(i), ...,xM(i)]T can be expressed as a non-negative linear combination of the source vectors

s(i) = [s1(i), ...,sJ(i)]
T

, and A= [a1, ...,aJ] is the mixing matrix with a j being the jth column vector.

This falls neatly within the definition of a convex set (Fig. 1) (Chen et al., 2011a):

X =
{

∑
J

j=1
s j(i)a j|a j ∈ A,s j(i)≥ 0,∑

J

j=1
s j(i) = 1, i = 1, ...,N

}

.

Assume that the sources have at least one sample point whose signal is exclusively enriched

in a particular source (Wang et al., 2010), we have shown that the vertex points of the observation

simplex (Fig. 1) correspond to the column vectors of the mixing matrix (Chen et al., 2011b). Via a

minimum-error-margin volume maximization, CAM identifies the optimum set of the vertices (Chen

et al., 2011b; Wang et al., 2010). Using the samples attached to the vertices, compartment modeling

(CM) (Chen et al., 2011a) obtains a parametric solution of A, nonnegative independent component

analysis (nICA) (Oja and Plumbley, 2004) estimates A (and s) that maximizes the independency

in s, and nonnegative well-grounded component analysis (nWCA) (Wang et al., 2010) finds the

column vectors of A directly from the vertex cluster centers.

Figure 1: Schematic and illustrative flowchart of R-Java CAM package.
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In this paper we describe a newly developed R-Java CAM package whose analytic functions are

written in R, while a graphic user interface (GUI) is implemented in Java, taking full advantages

of both programming languages. The core software suite implements CAM functions and includes

normalization, clustering, and data visualization. Multi-thread interactions between the R and Java

modules are driven and integrated by a Java GUI, which not only provides convenient data or

parameter passing and visual progress monitoring but also assures the responsive execution of the

entire CAM software.

2. Software Design and Implementation

The CAM package mainly consists of R and Java modules. The R module is a collection of main

and helper functions, each represented by an R function object and achieving an independent and

specific task (Fig. 1). The R module mainly performs various analytic tasks required by CAM: figure

plotting, update, or error message generation. The Java module is developed to provide a GUI

(Fig. 2). We adopt the model-view-controller (MVC) design strategy, and use different Java classes

to separately perform information visualization and human-computer interaction. The Java module

also serves as the software driver and integrator that use a multi-thread strategy to facilitate the

interactions between the R and Java modules, such as importing raw data, passing algorithmic

parameters, calling R scripts, and transporting results and messages.

Figure 2: Interactive Java GUI supported by a multi-thread design strategy.

2.1 Analytic and Presentation Tasks Implemented in R

The R module performs the CAM algorithm and facilitates a suite of subsequent analyses includ-

ing CM, nICA, and nWCA. These tasks are performed by the three main functions: CAM-CM.R,

CAM-nICA.R, and CAM-nWCA.R, which can be activated by the three R scripts: Java-runCAM-CM.R,

Java-runCAM-ICA.R, and Java-runCAM-nWCA.R. The R module also performs auxiliary tasks in-

cluding automatic R library installation, figure drawing, and result recording; and offers other stan-

dard methods such as nonnegative matrix factorization (Lee and Seung, 1999), Fast ICA (Hyvari-

nen et al., 2001), factor analysis (Child, 2006), principal component analysis, affinity propagation,

k-means clustering, and expectation-maximization algorithm for learning standard finite normal

mixture model.

2.2 Graphic User Interface Written in Java Swing

The Java GUI module allows users to import data, select algorithms and parameters, and display

results. The module encloses two packages: guiView contains classes for handling frames and

2901



WANG, MENG, CHEN, MADHAVAN, CLARKE, HOFFMAN, XUAN AND WANG

Figure 3: Application of R-Java CAM to deconvolving dynamic medical image sequence.

dialogs for managing user inputs; guiModel contains classes for representing result data sets and

for interacting with the R script caller. Packaged as one jar file, the GUI module runs automatically.

2.3 Functional Interaction Between R and Java

We adopt the open-source program RCaller (http://code.google.com/p/rcaller) to imple-

ment the interaction between R and Java modules (Fig. 2), supported by explicitly designed R

scripts such as Java-runCAM-CM.R. Specifically, five featured Java classes are introduced to in-

teract with R for importing data or parameters, running algorithms, passing on or recording re-

sults, displaying figures, and handing over error messages. The examples of these classes include

guiModel.MyRCaller.java, guiModel.MyRCaller.readResults(), and guiView.MyRPlotViewer.

3. Case Studies and Experimental Results

The CAM package has been successfully applied to various data types. Using dynamic contrast-

enhanced magnetic resonance imaging data set of an advanced breast cancer case (Chen, et al.,

2011b),“double click” (or command lines under Ubuntu) activated execution of CAM-Java.jar re-

veals two biologically interpretable vascular compartments with distinct kinetic patterns: fast clear-

ance in the peripheral “rim” and slow clearance in the inner “core”. These outcomes are consistent

with previously reported intratumor heterogeneity (Fig. 3). Angiogenesis is essential to tumor de-

velopment beyond 1-2mm3. It has been widely observed that active angiogenesis is often observed

in advanced breast tumors occurring in the peripheral “rim” with co-occurrence of inner-core hy-

poxia. This pattern is largely due to the defective endothelial barrier function and outgrowth blood

supply. In another application to natural image mixtures, CAM algorithm successfully recovered the

source images in a large number of trials (see Users Manual).

4. Summary and Acknowledgements

We have developed a R-Java CAM package for blindly separating mixed nonnegative sources. The

open-source cross-platform software is easy-to-use and effective, validated in several real-world

applications leading to plausible scientific discoveries. The software is freely downloadable from

http://mloss.org/software/view/437/. We intend to maintain and support this package in

the future. This work was supported in part by the US National Institutes of Health under Grants

CA109872, CA 100970, and NS29525. We thank T.H. Chan, F.Y. Wang, Y. Zhu, and D.J. Miller

for technical discussions.
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Abstract

The principal components analysis (PCA) algorithm is a standard tool for identifying good low-

dimensional approximations to high-dimensional data. Many data sets of interest contain private or

sensitive information about individuals. Algorithms which operate on such data should be sensitive

to the privacy risks in publishing their outputs. Differential privacy is a framework for developing

tradeoffs between privacy and the utility of these outputs. In this paper we investigate the theory and

empirical performance of differentially private approximations to PCA and propose a new method

which explicitly optimizes the utility of the output. We show that the sample complexity of the

proposed method differs from the existing procedure in the scaling with the data dimension, and

that our method is nearly optimal in terms of this scaling. We furthermore illustrate our results,

showing that on real data there is a large performance gap between the existing method and our

method.

Keywords: differential privacy, principal components analysis, dimension reduction

1. Introduction

Dimensionality reduction is a fundamental tool for understanding complex data sets that arise in

contemporary machine learning and data mining applications. Even though a single data point

can be represented by hundreds or even thousands of features, the phenomena of interest are often

intrinsically low-dimensional. By reducing the “extrinsic” dimension of the data to its “intrinsic” di-

mension, analysts can discover important structural relationships between features, more efficiently

∗. A preliminary version of this work appeared at the Neural Information Processing Systems conference (Chaudhuri

et al., 2012). This full version contains more experimental details, full proofs, and additional discussion.

c©2013 Kamalika Chaudhuri, Anand D. Sarwate and Kaushik Sinha.
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use the transformed data for learning tasks such as classification or regression, and greatly reduce

the space required to store the data. One of the oldest and most classical methods for dimensionality

reduction is principal components analysis (PCA), which computes a low-rank approximation to the

second moment matrix A of a set of points in R
d . The rank k of the approximation is chosen to be

the intrinsic dimension of the data. We view this procedure as specifying a k-dimensional subspace

of Rd .

Much of today’s machine-learning is performed on the vast amounts of personal information

collected by private companies and government agencies about individuals: examples include user

or customer behaviors, demographic surveys, and test results from experimental subjects or pa-

tients. These data sets contain sensitive information about individuals and typically involve a large

number of features. It is therefore important to design machine-learning algorithms which discover

important structural relationships in the data while taking into account its sensitive nature. We study

approximations to PCA which guarantee differential privacy, a cryptographically motivated defini-

tion of privacy (Dwork et al., 2006b) that has gained significant attention over the past few years in

the machine-learning and data-mining communities (Machanavajjhala et al., 2008; McSherry and

Mironov, 2009; McSherry, 2009; Friedman and Schuster, 2010; Mohammed et al., 2011). Differen-

tial privacy measures privacy risk by a parameter εp that bounds the log-likelihood ratio of output

of a (private) algorithm under two databases differing in a single individual.

There are many general tools for providing differential privacy. The sensitivity method due to

Dwork et al. (2006b) computes the desired algorithm (in our case, PCA) on the data and then adds

noise proportional to the maximum change than can be induced by changing a single point in the

data set. The PCA algorithm is very sensitive in this sense because the top eigenvector can change

by 90◦ by changing one point in the data set. Relaxations such as smoothed sensitivity (Nissim

et al., 2007) are difficult to compute in this setting as well. The SUb Linear Queries (SULQ) method

of Blum et al. (2005) adds noise to the second moment matrix and then runs PCA on the noisy

matrix. As our experiments show, the noise level required by SULQ may severely impact the quality

of approximation, making it impractical for data sets of moderate size.

The goal of this paper is to characterize the problem of differentially private PCA. We assume

that the algorithm is given n data points and a target dimension k and must produce a k-dimensional

subspace that approximates that produced by the standard PCA problem. We propose a new algo-

rithm, PPCA, which is an instance of the exponential mechanism of McSherry and Talwar (2007).

Unlike SULQ, PPCA explicitly takes into account the quality of approximation—it outputs a k-

dimensional subspace which is biased towards subspaces close to the output of PCA. In our case,

the method corresponds to sampling from the matrix Bingham distribution. We implement PPCA

using a Markov Chain Monte Carlo (MCMC) procedure due to Hoff (2009); simulations show that

the subspace produced by PPCA captures more of the variance of A than SULQ. When the MCMC

procedure converges, the algorithm provides differential privacy.

In order to understand the performance gap, we prove sample complexity bounds for the case

of k = 1 for SULQ and PPCA, as well as a general lower bound on the sample complexity for

any differentially private algorithm. We show that the sample complexity scales as Ω(d3/2
√

logd)
for SULQ and as O(d) for PPCA. Furthermore, we show that any differentially private algorithm

requires Ω(d) samples. Therefore PPCA is nearly optimal in terms of sample complexity as a

function of data dimension. These theoretical results suggest that our experiments demonstrate the

limit of how well εp-differentially private algorithms can perform, and our experiments show that

this gap should persist for general k. The result seems pessimistic for many applications, because
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the sample complexity depends on the extrinsic dimension d rather than the intrinsic dimension k.

However, we believe this is a consequence of the fact that we make minimal assumptions on the

data; our results imply that, absent additional limitations on the data set, the sample complexity

differentially private PCA must grow linearly with the data dimension.

There are several interesting open questions suggested by this work. One set of issues is com-

putational. Differentially privacy is a mathematical definition, but algorithms must be implemented

using finite precision machines. Privacy and computation interact in many places, including pseu-

dorandomness, numerical stability, optimization, and in the MCMC procedure we use to implement

PPCA; investigating the impact of approximate sampling is an avenue for future work. A second set

of issues is theoretical—while the privacy guarantees of PPCA hold for all k, our theoretical anal-

ysis of sample complexity applies only to k = 1 in which the distance and angles between vectors

are related. An interesting direction is to develop theoretical bounds for general k; challenges here

are providing the right notion of approximation of PCA, and extending the theory using packings of

Grassmann or Stiefel manifolds. Finally, in this work we assume k is given to the algorithm, but in

many applications k is chosen after looking at the data. Under differential privacy, the selection of

k itself must be done in a differentially private manner.

1.1 Related Work

Differential privacy was first proposed by Dwork et al. (2006b). There has been an extensive liter-

ature following this work in the computer science theory, machine learning, and databases commu-

nities. A survey of some of the theoretical work can be found in the survey by Dwork and Smith

(2009). Differential privacy has been shown to have strong semantic guarantees (Dwork et al.,

2006b; Kasiviswanathan and Smith, 2008) and is resistant to many attacks (Ganta et al., 2008) that

succeed against alternative definitions of privacy. In particular, so-called syntactic definitions of

privacy (Sweeney, 2002; Machanavajjhala et al., 2006; Li et al., 2010) may be susceptible to attacks

based on side-information about individuals in the database.

There are several general approaches to constructing differentially private approximations to

some desired algorithm or computation. Input perturbation (Blum et al., 2005) adds noise to the

data prior to performing the desired computation, whereas output perturbation (Dwork et al., 2006b)

adds noise to the output of the desired computation. The exponential mechanism (McSherry and

Talwar, 2007) can be used to perform differentially private selection based on a score function that

measures the quality of different outputs. Objective perturbation (Chaudhuri et al., 2011) adds noise

to the objective function for algorithms which are convex optimizations. These approaches and

related ideas such as Nissim et al. (2007) and Dwork and Lei (2009) have been used to approximate

a variety of statistical, machine learning, and data mining tasks under differential privacy (Barak

et al., 2007; Wasserman and Zhou, 2010; Smith, 2011; McSherry and Mironov, 2009; Williams and

McSherry, 2010; Chaudhuri et al., 2011; Rubinstein et al., 2012; Nissim et al., 2007; Blum et al.,

2008; McSherry and Talwar, 2007; Friedman and Schuster, 2010; Hardt and Roth, 2012).

This paper deals with the problem of differentially private approximations to PCA. Prior to our

work, the only proposed method for PCA was the Sub-Linear Queries (SULQ) method of Blum

et al. (2005). This approach adds noise to the second moment matrix of the data before calcu-

lating the singular value decomposition. By contrast, our algorithm, PPCA, uses the exponential

mechanism (McSherry and Talwar, 2007) to choose a k-dimensional subspace biased toward those

which capture more of “energy” of the matrix. Subsequent to our work, Kapralov and Talwar (2013)
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have proposed a dynamic programming algorithm for differentially private low rank matrix approx-

imation which involves sampling from a distribution induced by the exponential mechanism. The

running time of their algorithm is O(d6), where d is the data dimension, and it is unclear how this

may affect its implementation. Hardt and Roth (Hardt and Roth, 2012, 2013) have studied low-rank

matrix approximation under additional incoherence assumptions on the data. In particular, Hardt

and Roth (2012) consider the problem of differentially-private low-rank matrix reconstruction for

applications to sparse matrices; provided certain coherence conditions hold, they provide an algo-

rithm for constructing a rank 2k approximation B to a matrix A such that ‖A−B‖F is O(‖A−Ak‖)
plus some additional terms which depend on d, k and n; here Ak is the best rank k approximation

to A. Hardt and Roth (2013) show a method for guaranteeing (ε,δ)-differential privacy under an

entry-wise neighborhood condition using the power method for calculating singular values. They,

like Kapralov and Talwar (2013), also prove bounds under spectral norm perturbations, and their

algorithm achieves the same error rates but with running time that is nearly linear in the number of

non-zeros in the data.

In addition to these works, other researchers have examined the interplay between projections

and differential privacy. Zhou et al. (2009) analyze a differentially private data release scheme

where a random linear transformation is applied to data to preserve differential privacy, and then

measures how much this transformation affects the utility of a PCA of the data. One example of a

random linear transformation is random projection, popularized by the Johnson-Lindenstrauss (JL)

transform. Blocki et al. (2012) show that the JL transform of the data preserves differential privacy

provided the minimum singular value of the data matrix is large. Kenthapadi et al. (2013) study

the problem of estimating the distance between data points with differential privacy using a random

projection of the data points.

There has been significant work on other notions of privacy based on manipulating entries within

the database (Sweeney, 2002; Machanavajjhala et al., 2006; Li et al., 2010), for example by reducing

the resolution of certain features to create ambiguities. For more details on these and other alter-

native notions of privacy see Fung et al. (2010) for a survey with more references. An alternative

line of privacy-preserving data-mining work (Zhan and Matwin, 2007) is in the Secure Multiparty

Computation setting; one work (Han et al., 2009) studies privacy-preserving singular value decom-

position in this model. Finally, dimension reduction through random projection has been considered

as a technique for sanitizing data prior to publication (Liu et al., 2006); our work differs from this

line of work in that we offer differential privacy guarantees, and we only release the PCA subspace,

not actual data.

2. Preliminaries

The data given to our algorithm is a set of n vectors D = {x1,x2, . . . ,xn} where each xi corresponds

to the private value of one individual, xi ∈ R
d , and ‖xi‖ ≤ 1 for all i. Let X = [x1, . . . ,xn] be the

matrix whose columns are the data vectors {xi}. Let A = 1
n
XXT denote the d × d second moment

matrix of the data. The matrix A is positive semidefinite, and has Frobenius norm ‖A‖F at most 1.

The problem of dimensionality reduction is to find a “good” low-rank approximation to A. A

popular solution is to compute a rank-k matrix Â which minimizes the norm ‖A− Â‖F, where k is

much lower than the data dimension d. The Schmidt approximation theorem (Stewart, 1993) shows

that the minimizer is given by the singular value decomposition, also known as the PCA algorithm

in some areas of computer science.
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Definition 1 Suppose A is a positive semidefinite matrix whose first k eigenvalues are distinct. Let

the eigenvalues of A be λ1(A) ≥ λ2(A) ≥ ·· · ≥ λd(A) ≥ 0 and let Λ be a diagonal matrix with

Λii = λi(A). The matrix A decomposes as

A =V ΛV T , (1)

where V is an orthonormal matrix of eigenvectors. The top-k PCA subspace of A is the matrix

Vk(A) = [v1 v2 · · · vk] , (2)

where vi is the i-th column of V in (1). The k-th eigengap is ∆k = λk −λk+1.

Given the top-k subspace and the eigenvalue matrix Λ, we can form an approximation A(k) =
Vk(A)ΛkVk(A)

T to A, where Λk contains the k largest eigenvalues in Λ. In the special case k = 1

we have A(1) = λ1(A)v1vT
1 , where v1 is the eigenvector corresponding to λ1(A). We refer to v1 as

the top eigenvector of the data, and ∆ = ∆1 is the eigengap. For a d × k matrix V̂ with orthonormal

columns, the quality of V̂ in approximating Vk(A) can be measured by

qF(V̂ ) = tr
(

V̂ T AV̂
)

. (3)

The V̂ which maximizes q(V̂ ) has columns equal to {vi : i ∈ [k]}, corresponding to the top-k eigen-

vectors of A.

Our theoretical results on the utility of our PCA approximation apply to the special case k = 1.

We prove results about the inner product between the output vector v̂1 and the true top eigenvector

v1:

qA(v̂1) = |〈v̂1,v1〉| . (4)

The utility in (4) is related to (3). If we write v̂1 in the basis spanned by {vi}, then

qF(v̂1) = λ1qA(v̂1)
2 +

d

∑
i=2

λi〈v̂1,vi〉2.

Our proof techniques use the geometric properties of qA(·).

Definition 2 A randomized algorithm A(·) is an (ρ,η)-close approximation to the top eigenvector

if for all data sets D of n points we have

P(qA(A(D))≥ ρ)≥ 1−η,

where the probability is taken over A(·).

We study approximations to A to PCA that preserve the privacy of the underlying data. The

notion of privacy that we use is differential privacy, which quantifies the privacy guaranteed by a

randomized algorithm A applied to a data set D .
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Definition 3 An algorithm A(B) taking values in a set T provides εp-differential privacy if

sup
S

sup
D,D ′

µ(S | B = D)

µ(S | B = D ′)
≤ eεp ,

where the first supremum is over all measurable S ⊆ T , the second is over all data sets D and D ′

differing in a single entry, and µ(·|B) is the conditional distribution (measure) on T induced by

the output A(B) given a data set B . The ratio is interpreted to be 1 whenever the numerator and

denominator are both 0.

Definition 4 An algorithm A(B) taking values in a set T provides (εp,δ)-differential privacy if

P(A(D) ∈ S)≤ eεpP
(

A(D ′) ∈ S
)

+δ,

for all measurable S ⊆ T and all data sets D and D ′ differing in a single entry.

Here εp and δ are privacy parameters, where low εp and δ ensure more privacy (Dwork et al.,

2006b; Wasserman and Zhou, 2010; Dwork et al., 2006a). The second privacy guarantee is weaker;

the parameter δ bounds the probability of failure, and is typically chosen to be quite small. In our

experiments we chose small but constant δ—Ganta et al. (2008) suggest δ < 1
n2 is more appropriate.

In this paper we are interested in proving results on the sample complexity of differentially

private algorithms that approximate PCA. That is, for a given εp and ρ, how large must the number

of individuals n in the data set be such that the algorithm is both εp-differentially private and a

(ρ,η)-close approximation to PCA? It is well known that as the number of individuals n grows,

it is easier to guarantee the same level of privacy with relatively less noise or perturbation, and

therefore the utility of the approximation also improves. Our results characterize how the privacy

εp and utility ρ scale with n and the tradeoff between them for fixed n. We show that the sample

complexity depends on the eigengap ∆.

3. Algorithms and Results

In this section we describe differentially private techniques for approximating (2). The first is a

modified version of the Sub-Linear Queries (SULQ) method (Blum et al., 2005). Our new algo-

rithm for differentially-private PCA, PPCA, is an instantiation of the exponential mechanism due

to McSherry and Talwar (2007). Both procedures are differentially private approximations to the

top-k subspace: SULQ guarantees (εp,δ)-differential privacy and PPCA guarantees εp-differential

privacy.

3.1 Input Perturbation

The only differentially-private approximation to PCA prior to this work is the SULQ method (Blum

et al., 2005). The SULQ method perturbs each entry of the empirical second moment matrix A

to ensure differential privacy and releases the top-k eigenvectors of this perturbed matrix. More

specifically, SULQ recommends adding a matrix N of i.i.d. Gaussian noise of variance
8d2 log2(d/δ)

n2ε2
p

and applies the PCA algorithm to A+N. This guarantees a weaker privacy definition known as

(εp,δ)-differential privacy. One problem with this approach is that with probability 1 the matrix

A+N is not symmetric, so the largest eigenvalue may not be real and the entries of the corresponding
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eigenvector may be complex. Thus the SULQ algorithm, as written, is not a good candidate for

approximating PCA.

It is easy to modify SULQ to produce a an eigenvector with real entries that guarantees (εp,δ)
differential privacy. In Algorithm 1, instead of adding an asymmetric Gaussian matrix, we add a

symmetric matrix with i.i.d. Gaussian entries N. That is, for 1 ≤ i ≤ j ≤ d, the variable Ni j is an

independent Gaussian random variable with variance β2. Note that this matrix is symmetric but

not necessarily positive semidefinite, so some eigenvalues may be negative but the eigenvectors

are all real. A derivation for the noise variance in (5) of Algorithm 1 is given in Theorem 5. An

alternative is to add Laplace noise of an appropriate variance to each entry—this would guarantee

εp-differential privacy.

Algorithm 1: Algorithm MOD-SULQ (input pertubation)

inputs: d ×n data matrix X , privacy parameter εp, parameter δ

outputs: d × k matrix V̂k = [v̂1 v̂2 · · · v̂k] with orthonormal columns

1 Set A = 1
n
XXT .;

2 Set

β =
d +1

nεp

√

2log

(

d2 +d

δ2
√

2π

)

+
1

n
√

εp

. (5)

Generate a d×d symmetric random matrix N whose entries are i.i.d. drawn from N
(

0,β2
)

. ;

3 Compute V̂k =Vk(A+N) according to (2). ;

3.2 Exponential Mechanism

Our new method, PPCA, randomly samples a k-dimensional subspace from a distribution that en-

sures differential privacy and is biased towards high utility. The distribution from which our re-

leased subspace is sampled is known in the statistics literature as the matrix Bingham distribution

(Chikuse, 2003), which we denote by BMFk(B). The algorithm and its privacy properties apply to

general k < d but our theoretical results on the utility focus on the special case k = 1. The matrix

Bingham distribution takes values on the set of all k-dimensional subspaces of Rd and has a density

equal to

f (V ) =
1

F1 1

(

1
2
k, 1

2
d,B
) exp(tr(V T BV )), (6)

where V is a d × k matrix whose columns are orthonormal and F1 1

(

1
2
k, 1

2
d,B
)

is a confluent hyper-

geometric function (Chikuse, 2003, p.33).

By combining results on the exponential mechanism along with properties of PCA algorithm,

we can show that this procedure is differentially private. In many cases, sampling from the distri-

bution specified by the exponential mechanism may be expensive computationally, especially for

continuous-valued outputs. We implement PPCA using a recently-proposed Gibbs sampler due to

Hoff (2009). Gibbs sampling is a popular Markov Chain Monte Carlo (MCMC) technique in which

samples are generated according to a Markov chain whose stationary distribution is the density in
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Algorithm 2: Algorithm PPCA (exponential mechanism)

inputs: d ×n data matrix X , privacy parameter εp, dimension k

outputs: d × k matrix V̂k = [v̂1 v̂2 · · · v̂k] with orthonormal columns

1 Set A = 1
n
XXT ;

2 Sample V̂k = BMF
(

n
εp

2
A
)

;

(6). Assessing the “burn-in time” and other factors for this procedure is an interesting question in

its own right; further details are in Section 6.2.

3.3 Other Approaches

There are other general algorithmic strategies for guaranteeing differential privacy. The sensitivity

method (Dwork et al., 2006b) adds noise proportional to the maximum change that can be induced

by changing a single point in the data set. Consider a data set D with m + 1 copies of a unit

vector u and m copies of a unit vector u′ with u ⊥ u′ and let D ′ have m copies of u and m +
1 copies of u′. Then v1(D) = u but v1(D

′) = u′, so ‖v1(D)− v1(D
′)‖ =

√
2. Thus the global

sensitivity does not scale with the number of data points, so as n increases the variance of the

noise required by the sensitivity method will not decrease. An alternative to global sensitivity is

smooth sensitivity (Nissim et al., 2007). Except for special cases, such as the sample median,

smooth sensitivity is difficult to compute for general functions. A third method for computing

private, approximate solutions to high-dimensional optimization problems is objective perturbation

(Chaudhuri et al., 2011); to apply this method, we require the optimization problems to have certain

properties (namely, strong convexity and bounded norms of gradients), which do not apply to PCA.

3.4 Main Results

Our theoretical results are sample complexity bounds for PPCA and MOD-SULQ as well as a general

lower bound on the sample complexity for any εp-differentially private algorithm. These results

show that the PPCA is nearly optimal in terms of the scaling of the sample complexity with respect

to the data dimension d, privacy parameter εp, and eigengap ∆. We further show that MOD-SULQ

requires more samples as a function of d, despite having a slightly weaker privacy guarantee. Proofs

are presented in Sections 4 and 5.

Even though both algorithms can output the top-k PCA subspace for general k ≤ d, we prove

results for the case k = 1. Finding the scaling behavior of the sample complexity with k is an

interesting open problem that we leave for future work; challenges here are finding the right notion

of approximation of the PCA, and extending the theory using packings of Grassman or Stiefel

manifolds.

Theorem 5 For the β in (5) Algorithm MOD-SULQ is (εp,δ) differentially private.

Theorem 6 Algorithm PPCA is εp-differentially private.

The fact that these two algorithms are differentially private follows from some simple calcu-

lations. Our first sample complexity result provides an upper bound on the number of samples

required by PPCA to guarantee a certain level of privacy and accuracy. The sample complexity of
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PPCA grows linearly with the dimension d, inversely with εp, and inversely with the correlation gap

(1−ρ) and eigenvalue gap ∆. These sample complexity results hold for k = 1.

Theorem 7 (Sample complexity of PPCA) If

n >
d

εp∆(1−ρ)

(

4
log(1/η)

d
+2log

8λ1

(1−ρ2)∆

)

,

then the top PCA direction v1 and the output of PPCA v̂1 with privacy parameter εp satisfy

Pr(|〈v1, v̂1〉|> ρ)≥ 1−η.

That is, PPCA is a (ρ,η)-close approximation to PCA.

Our second result shows a lower bound on the number of samples required by any εp-differentially-

private algorithm to guarantee a certain level of accuracy for a large class of data sets, and uses proof

techniques in Chaudhuri and Hsu (2011, 2012).

Theorem 8 (Sample complexity lower bound) Fix d ≥ 3, εp, ∆ ≤ 1
2

and let 1 − φ =

exp
(

−2 · ln8+ln(1+exp(d))
d−2

)

. For any ρ ≥ 1− 1−φ
16

, no εp-differentially private algorithm A can ap-

proximate PCA with expected utility greater than ρ on all databases with n points in dimension d

having eigenvalue gap ∆, where

n <
d

εp∆
max

{

1,

√

1−φ

80(1−ρ)

}

.

Theorem 7 shows that if n scales like d
εp∆(1−ρ) log 1

1−ρ2 then PPCA produces an approximation

v̂1 that has correlation ρ with v1, whereas Theorem 8 shows that n must scale like d

εp∆
√

(1−ρ)
for any

εp-differentially private algorithm. In terms of scaling with d, εp and ∆, the upper and lower bounds

match, and they also match up to square-root factors with respect to the correlation. By contrast, the

following lower bound on the number of samples required by MOD-SULQ to ensure a certain level

of accuracy shows that MOD-SULQ has a less favorable scaling with dimension.

Theorem 9 (Sample complexity lower bound for MOD-SULQ) There are constants c and c′ such

that if

n < c
d3/2

√

log(d/δ)

εp

(1− c′(1−ρ)),

then there is a data set of size n in dimension d such that the top PCA direction v and the output v̂

of MOD-SULQ satisfy E [|〈v̂1,v1〉|]≤ ρ.

Notice that the dependence on n grows as d3/2 in SULQ as opposed to d in PPCA. Dimensionality

reduction via PCA is often used in applications where the data points occupy a low dimensional

space but are presented in high dimensions. These bounds suggest that PPCA is better suited to

such applications than MOD-SULQ.
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4. Analysis of PPCA

In this section we provide theoretical guarantees on the performance of PPCA. The proof of The-

orem 6 follows from the results on the exponential mechanism (McSherry and Talwar, 2007). To

find the sample complexity of PPCA we bound the density of the Bingham distribution, leading to

a sample complexity for k = 1 that depends on the gap λ1 −λ2 between the top two eigenvalues.

We also prove a general lower bound on the sample complexity that holds for any εp-differentially

private algorithm. The lower bound matches our upper bound up to log factors, showing that PPCA

is nearly optimal in terms of the scaling with dimension, privacy εp, and utility qA(·).

4.1 Privacy Guarantee

We first give a proof of Theorem 6.

Proof Let X be a data matrix whose i-th column is xi and A = 1
n
XXT . The PP-PCA algorithm is

the exponential mechanism of McSherry and Talwar (2007) applied to the score function n · vT Av.

Consider X ′ = [x1 x2 · · · xn−1 x′n] differing from X in a single column and let A′ = 1
n
X ′X ′T . We have

max
v∈Sd−1

∣

∣n · vT A′v−n · vT Av
∣

∣≤
∣

∣vT (x′nx′Tn − xnxT
n )v
∣

∣

≤
∣

∣

∣

∥

∥vT x′n
∥

∥

2 −
∥

∥vT xn

∥

∥

2
∣

∣

∣

≤ 1.

The last step follows because ‖xi‖ ≤ 1 for all i. The result now follows immediately from McSherry

and Talwar (2007, Theorem 6).

4.2 Upper Bound on Utility

The results on the exponential mechanism bound the gap between the value of the function qF(v̂1) =
n · v̂T

1 Av̂1 evaluated at the output v̂1 of the mechanism and the optimal value q(v1) = n ·λ1. We derive

a bound on the correlation qA(v̂1) = |〈v̂1,v1〉| via geometric arguments.

Lemma 10 (Lemmas 2.2 and 2.3 of Ball (1997)) Let µ be the uniform measure on the unit sphere

S
d−1. For any x ∈ S

d−1 and 0 ≤ c < 1 the following bounds hold:

1

2
exp

(

−d −1

2
log

2

1− c

)

≤ µ
({

v ∈ S
d−1 : 〈v,x〉 ≥ c

})

≤ exp
(

−dc2/2
)

.

We are now ready to provide a proof of Theorem 7.

Proof Fix a privacy level εp, target correlation ρ, and probability η. Let X be the data matrix and

B = (εp/2)XXT and

Uρ = {u : |〈u,v1〉| ≥ ρ} .

be the union of the two spherical caps centered at ±v1. Let Uρ denote the complement of Uρ in

S
d−1.

An output vector v̂1 is “good” if it is in Uρ. We first give some bounds on the score function

qF(u) on the boundary between Uρ and Uρ, where 〈u,v1〉 = ±ρ. On this boundary, the function
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qF(u) is maximized when u is a linear combination of v1 and v2, the top two eigenvectors of A. It

minimized when u is a linear combination of v1 and vd . Therefore

qF(u)≤
nεp

2
(ρ2λ1 +(1−ρ2)λ2) u ∈ Uρ, (7)

qF(u)≥
nεp

2
(ρ2λ1 +(1−ρ2)λd) u ∈ Uρ. (8)

Let µ(·) denote the uniform measure on the unit sphere. Then fixing an 0 ≤ b < 1, using (7),

(8), and the fact that λd ≥ 0,

P
(

Uρ

)

≤ P
(

Uρ

)

P(Uσ)

=

1

F1 1(
1
2

k, 1
2

m,B)

∫
Uρ

exp
(

uT Bu
)

dµ

1

F1 1(
1
2

k, 1
2

m,B)

∫
Uσ

exp(uT Bu)dµ

≤ exp
(

n(εp/2)
(

ρ2λ1 +(1−ρ2)λ2

))

·µ
(

Uρ

)

exp(n(εp/2)(σ2λ1 +(1−σ2)λd)) ·µ(Uσ)

≤ exp
(

−nεp

2

(

σ2λ1 − (ρ2λ1 +(1−ρ2)λ2)
)

)

· µ
(

Uρ

)

µ(Uσ)
. (9)

Applying the lower bound from Lemma 10 to the denominator of (9) and the upper bound µ
(

Uρ

)

≤
1 yields

P
(

Uρ

)

≤ exp
(

−nεp

2

(

σ2λ1 − (ρ2λ1 +(1−ρ2)λ2)
)

)

· exp

(

d −1

2
log

2

1−σ

)

. (10)

We must choose a σ2 > ρ2 to make the upper bound smaller than 1. More precisely,

σ2 > ρ2 +(1−ρ2)
λ2

λ1

,

1−σ2 < (1−ρ2)

(

1− λ2

λ1

)

.

For simplicity, choose

1−σ2 =
1

2
(1−ρ2)

(

1− λ2

λ1

)

.

So that

σ2λ1 − (ρ2λ1 +(1−ρ2)λ2) = (1−ρ2)λ1 − (1−σ2)λ1 − (1−ρ2)λ2

= (1−ρ2)

(

λ1 −
1

2
(λ1 −λ2)−λ2

)

=
1

2
(1−ρ2)(λ1 −λ2)
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and

log
2

1−σ
< log

4

1−σ2

= log
8λ1

(1−ρ2)(λ1 −λ2)
.

Setting the right hand side of (10) less than η yields

nεp

4
(1−ρ2)(λ1 −λ2)> log

1

η
+

d −1

2
log

8λ1

(1−ρ2)(λ1 −λ2)
.

Because 1−ρ < 1−ρ2, if we choose

n >
d

εp(1−ρ)(λ1 −λ2)

(

4
log(1/η)

d
+2log

8λ1

(1−ρ2)(λ1 −λ2)

)

,

then the output of PPCA will produce a v̂1 such that

P(|〈v̂1,v1〉|< ρ)< η.

4.3 Lower Bound on Utility

We now turn to a general lower bound on the sample complexity for any differentially private ap-

proximation to PCA. We construct K databases which differ in a small number of points whose top

eigenvectors are not too far from each other. For such a collection, Lemma 12 shows that for any

differentially private mechanism, the average correlation over the collection cannot be too large.

That is, any εp-differentially private mechanism cannot have high utility on all K data sets. The

remainder of the argument is to construct these K data sets.

The proof uses some simple eigenvalue and eigenvector computations. A matrix of positive

entries

A =

(

a b

b c

)

(11)

has characteristic polynomial

det(A−λI) = λ2 − (a+ c)λ+(ac−b2)

and eigenvalues

λ =
1

2
(a+ c)± 1

2

√

(a+ c)2 −4(ac−b2)

=
1

2
(a+ c)± 1

2

√

(a− c)2 +4b2.

The eigenvectors are in the directions (b,−(a−λ))T .

We will also need the following Lemma, which is proved in the Appendix.

2916



A NEAR-OPTIMAL ALGORITHM FOR DIFFERENTIALLY-PRIVATE PRINCIPAL COMPONENTS

Lemma 11 (Simple packing set) For φ ∈ [(2πd)−1/2,1), there exists a set of

K =
1

8
exp

(

(d −1) log
1

√

1−φ2

)

(12)

vectors C in S
d−1 such that for any pair µ,ν ∈ C , the inner product between them is upper bounded

by φ:

|〈µ,ν〉| ≤ φ.

The following Lemma gives a lower bound on the expected utility averaged over a set of

databases which differ in a “small” number of elements.

Lemma 12 Let D1,D2, . . . ,DK be K databases which differ in the value of at most
ln(K−1)

εp
points,

and let u1, . . . ,uK be the top eigenvectors of D1,D2, . . . ,DK . If A is any εp-differentially private

algorithm, then,

K

∑
i=1

EA [|〈A(Di),ui〉|]≤ K

(

1− 1

16
(1−max

∣

∣〈ui,u j〉
∣

∣)

)

.

Proof Let

t = min
i6= j

(
∥

∥ui −u j

∥

∥ ,
∥

∥ui +u j

∥

∥),

and Gi be the “double cap” around ±ui of radius t/2:

Gi = {u : ‖u−ui‖< t/2}∪{u : ‖u+ui‖< t/2} .

We claim that

K

∑
i=1

PA(A(Di) /∈ Gi)≥
1

2
(K −1). (13)

The proof is by contradiction. Suppose the claim is false. Because all of the caps Gi are disjoint,

and applying the definition of differential privacy,

1

2
(K −1)>

K

∑
i=1

PA(A(Di) /∈ Gi)

≥
K

∑
i=1

∑
i′ 6=i

PA(A(Di) ∈ Gi′)

≥
K

∑
i=1

∑
i′ 6=i

e−εp·ln(K−1)/εpPA(A(Di′) ∈ Gi′)

≥ (K −1) · 1

K −1
·

K

∑
i=1

PA(A(Di) ∈ Gi)

≥ K − 1

2
(K −1),
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which is a contradiction, so (13) holds. Therefore by the Markov inequality

K

∑
i=1

EA

[

min(‖A(Di)−ui‖2 ,‖A(Di)+ui‖2)
]

≥
K

∑
i=1

P(A(Di) /∈ Gi) ·
t2

4

≥ 1

8
(K −1)t2.

Rewriting the norms in terms of inner products shows

2K −2
K

∑
i=1

EA [|〈A(Di),ui〉|]≥
1

8
(K −1)

(

2−2max
∣

∣〈ui,u j〉
∣

∣

)

,

so

K

∑
i=1

EA [|〈A(Di),ui〉|]≤ K

(

1− 1

8

K −1

K
(1−max

∣

∣〈ui,u j〉
∣

∣)

)

≤ K

(

1− 1

16
(1−max

∣

∣〈ui,u j〉
∣

∣)

)

.

We can now prove Theorem 8.

Proof From Lemma 12, given a set of K databases differing in
ln(K−1)

εp
points with top eigenvectors

{ui : i = 1,2, . . . ,K}, for at least one database i,

EA [|〈A(Di),ui〉|]≤ 1− 1

16

(

1−max
∣

∣〈ui,u j〉
∣

∣

)

for any εp-differentially private algorithm. Setting the left side equal to some target ρ,

1−ρ ≥ 1

16

(

1−max
∣

∣〈ui,u j〉
∣

∣

)

. (14)

So our goal is construct these data bases such that the inner product between their eigenvectors is

small.

Let y = ed , the d-th coordinate vector, and let φ ∈ ((2πd)−1/2,1). Lemma 11 shows that there

exists a packing W = {w1,w2, . . . ,wK} of the sphere S
d−2 spanned by the first d − 1 elementary

vectors {e1,e2, . . . ,ed−1} such that maxi6= j |〈wi,w j〉| ≤ φ, where

K =
1

8
(1−φ)−(d−2)/2.

Choose φ such that ln(K −1) = d. This means

1−φ = exp

(

−2 · ln8+ ln(1+ exp(d))

d −2

)

.

The right side is minimized for d = 3 but this leads to a weak lower bound 1−φ > 3.5×10−5. By

contrast, for d = 100, the bound is 1−φ > 0.12. In all cases, 1−φ is at least a constant value.
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We construct a database with n points for each wi. Let β = d
nεp

. For now, we assume that

β ≤ ∆ ≤ 1
2
. The other case, when β ≥ ∆ will be considered later. Because β ≤ ∆, we have

n >
d

εp∆
.

The construction uses a parameter 0 ≤ m ≤ 1 that will be set as a function of the eigenvalue gap ∆.

We will derive conditions on n based on the requirements on d, εp, ρ, and ∆. For i = 1,2, . . . ,K let

the data set Di contain

• n(1−β) copies of
√

my

• nβ copies of zi =
1√
2
y+ 1√

2
wi.

Thus data sets Di and D j differ in the values of nβ = ln(K−1)
nεp

individuals. The second moment

matrix Ai of Di is

Ai = ((1−β)m+
1

2
β)yyT +

1

2
β(wT

i y+ ywT
i )+

1

2
βwiw

T
i .

By choosing an basis containing y and wi, we can write this as

Ai =





(1−β)m+ 1
2
β 1

2
β 0

1
2
β 1

2
β 0

0 0 0



 .

This is in the form (11), with a = (1−β)m+ 1
2
β, b = 1

2
β, and c = 1

2
β.

The matrix Ai has two nonzero eigenvalues given by

λ =
1

2
(a+ c)+

1

2

√

(a− c)2 +4b2, (15)

λ′ =
1

2
(a+ c)− 1

2

√

(a− c)2 +4b2,

The gap ∆ between the top two eigenvalues is:

∆ =
√

(a− c)2 +4b2 =
√

m2(1−β)2 +β2.

We can thus set m in the construction to ensure an eigengap of ∆:

m =

√

(∆2 −β2)

1−β
. (16)

The top eigenvector of Ai is given by

ui =
b

√

b2 +(a−λ)2
y+

(a−λ)
√

b2 +(a−λ)2
wi.

2919



CHAUDHURI, SARWATE AND SINHA

where λ is given by (15). Therefore

max
i6= j

∣

∣〈ui,u j〉
∣

∣≤ b2

b2 +(a−λ)2
+

(a−λ)2

b2 +(a−λ)2
max
i6= j

∣

∣〈wi,w j〉
∣

∣

≤ 1− (a−λ)2

b2 +(a−λ)2
(1−φ). (17)

To obtain an upper bound on maxi6= j

∣

∣〈ui,u j〉
∣

∣ we must lower bound
(a−λ)2

b2+(a−λ)2 .

Since x/(ν+ x) is monotonically increasing in x when ν > 0, we will find a lower bound on

(a−λ). Observe that from (15),

λ−a =
b2

λ− c
.

So to lower bound λ−a we need to upper bound λ− c. We have

λ− c =
1

2
(a− c)+

1

2
∆ =

1

2
((1−β)m+∆) .

Because b = β/2,

(λ−a)2 >

(

β2

2((1−β)m+∆)

)2

=
β4

4((1−β)m+∆)2
.

Now,

(a−λ)2

b2 +(a−λ)2
>

β4

β2((1−β)m+∆)2 +β4

=
β2

β2 +((1−β)m+∆)2

>
β2

5∆2
, (18)

where the last step follows by plugging in m from (16) and using the fact that β ≤ ∆. Putting it all

together, we have from (14), (17), and (18), and using the fact that φ is such that ln(K −1) = d and

β = d
nεp

,

1−ρ ≥ 1

16
· (a−λ)2

b2 +(a−λ)2
(1−φ)

>
1−φ

80

β2

∆2

=
1−φ

80
· d2

n2ε2
p∆2

,

which implies

n >
d

εp∆

√

1−φ

80(1−ρ)
.
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Thus for β ≤ ∆ ≤ 1/2, any εp-differentially private algorithm needs Ω
(

d
εp∆

√
1−ρ

)

points to get

expected inner product ρ on all data sets with eigengap ∆.

We now consider the case where β > ∆. We choose a slightly different construction here. The

i-th database now consists of n(1−β) copies of the 0 vector, and nβ copies of ∆
β wi. Thus, every pair

of databases differ in the values of nβ = ln(K−1)
εp

people, and the eigenvalue gap between the top two

eigenvectors is β · ∆
β = ∆.

As the top eigenvector of the i-th database is ui = wi,

max
i6= j

|〈ui,u j〉|= max
i6= j

|〈wi,w j〉| ≤ φ.

Combining this with (14), we obtain

1−ρ ≥ 1

16
(1−φ),

which provides the additional condition in the Theorem.

5. Analysis of MOD-SULQ

In this section we provide theoretical guarantees on the performance of the MOD-SULQ algorithm.

Theorem 5 shows that MOD-SULQ is (εp,δ)-differentially private. Theorem 15 provides a lower

bound on the distance between the vector released by MOD-SULQ and the true top eigenvector in

terms of the privacy parameters εp and δ and the number of points n in the data set. This im-

plicitly gives a lower bound on the sample complexity of MOD-SULQ. We provide some graphical

illustration of this tradeoff.

The following upper bound will be useful for future calculations : for two unit vectors x and y,

∑
1≤i≤ j≤d

(xix j − yiy j)
2 ≤ 2. (19)

Note that this upper bound is achievable by setting x and y to be orthogonal elementary vectors.

5.1 Privacy Guarantee

We first justify the choice of β2 in the MOD-SULQ algorithm by proving Theorem 5.

Proof Let B and B̂ be two independent symmetric random matrices where {Bi j : 1 ≤ i ≤ j ≤ d} and

{B̂i j : 1 ≤ i ≤ j ≤ d} are each sets of i.i.d. Gaussian random variables with mean 0 and variance β2.

Consider two data sets D = {xi : i = 1,2, . . . ,n} and D̂ = D1 ∪{x̂n} \ {xn} and let A and Â denote

their second moment matrices. Let G = A+B and Ĝ = Â+ B̂. We first calculate the log ratio of the

densities of G and Ĝ at a point H:

log
fG(H)

fĜ(H)
= ∑

1≤i≤ j≤d

(

− 1

2β2
(Hi j −Ai j)

2 +
1

2β2
(Hi j − Âi j)

2

)

=
1

2β2 ∑
1≤i≤ j≤d

(

2

n
(Hi j −Ai j)(xn,ixn, j − x̂n,ix̂n, j)+

1

n2
(x̂n,ix̂n, j − xn,ixn, j)

2

)

.
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From (19) the last term is upper bounded by 2/n2. To upper bound the first term,

∑
1≤i≤ j≤d

|x̂n,ix̂n, j − xn,ixn, j| ≤ 2 max
a:‖a‖≤1

∑
1≤i≤ j≤d

aia j

≤ 2 · 1

2
(d2 +d) · 1

d

= d +1.

Note that this bound is not too loose—by taking x̂ = d−1/21 and x = (1,0, . . . ,0)T , this term is still

linear in d.

Then for any measurable set S of matrices,

P(G ∈ S)≤ exp

(

1

2β2

(

2

n
(d +1)γ+

3

n2

))

P
(

Ĝ ∈ S
)

+P(Bi j > γ for all i, j) . (20)

To handle the last term, use a union bound over the (d2+d)/2 variables {Bi j} together with the

tail bound, which holds for γ > β:

P(Bi j > γ)≤ 1√
2π

e−γ2/2β2

.

Thus setting P(Bi j > γ for some i, j) = δ yields the condition

δ =
d2 +d

2
√

2π
e−γ2/2β2

.

Rearranging to solve for γ gives

γ = max

(

β,β

√

2log

(

d2 +d

δ2
√

2π

)

)

= β

√

2log

(

d2 +d

δ2
√

2π

)

for d > 1 and δ < 3/
√

2πe. This then gives an expression for εp to make (20) imply (εp,δ) differ-

ential privacy:

εp =
1

2β2

(

2

n
(d +1)γ+

2

n2

)

=
1

2β2

(

2

n
(d +1)β

√

2log

(

d2 +d

δ2
√

2π

)

+
2

n2

)

.

Solving for β using the quadratic formula yields the particularly messy expression in (5):

β =
d +1

2nεp

√

2log

(

d2 +d

δ2
√

2π

)

+
1

2nεp

(

2(d +1)2 log

(

d2 +d

δ2
√

2π

)

+4εp

)1/2

≤ d +1

nεp

√

2log

(

d2 +d

δ2
√

2π

)

+
1

√
εpn

.
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5.2 Proof of Theorem 9

In this section we provide theoretical guarantees on the performance of the MOD-SULQ algorithm.

Theorem 5 shows that MOD-SULQ is (εp,δ)-differentially private. Theorem 15 provides a lower

bound on the distance between the vector released by MOD-SULQ and the true top eigenvector in

terms of the privacy parameters εp and δ and the number of points n in the data set. This implicitly

gives a lower bound on the sample complexity of MOD-SULQ. We provide some graphical illus-

tration of this tradeoff. The main tool in our lower bound is a generalization by Yu (1997) of an

information-theoretic inequality due to Fano.

Theorem 13 (Fano’s inequality (Yu, 1997)) Let R be a set and Θ be a parameter space with a

pseudo-metric d(·). Let F be a set of r densities { f1, . . . , fr} on R corresponding to parameter

values {θ1, . . . ,θr} in Θ. Let X have distribution f ∈ F with corresponding parameter θ and let

θ̂(X) be an estimate of θ. If, for all i and j

d(θi,θ j)≥ τ

and

KL( fi‖ f j)≤ γ,

then

max
j

E j[d(θ̂,θ j)]≥
τ

2

(

1− γ+ log2

logr

)

,

where E j[·] denotes the expectation with respect to distribution f j.

To use this inequality, we will construct a set of densities on the set of covariance matrices

corresponding distribution of the random matrix in the MOD-SULQ algorithm under different inputs.

These inputs will be chosen using a set of unit vectors which are a packing on the surface of the unit

sphere.

Lemma 14 Let Σ be a positive definite matrix and let f denote the density N (a,Σ) and g denote

the density N (b,Σ). Then KL( f‖g) = 1
2
(a−b)T Σ−1(a−b).

Proof This is a simple calculation:

KL( f‖g) = Ex∼ f

[

−1

2
(x−a)T Σ−1(x−a)+

1

2
(x−b)Σ−1(x−b)

]

=
1

2

(

aT Σ−1a−aT Σ−1b−bT Σ−1a+bT Σ−1b
)

=
1

2
(a−b)T Σ−1(a−b).

The next theorem is a lower bound on the expected distance between the vector output by MOD-

SULQ and the true top eigenvector. In order to get this lower bound, we construct a class of data

sets and use Theorem 13 to derive a bound on the minimax error over the class.
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Theorem 15 (Utility bound for MOD-SULQ) Let d, n, and εp > 0 be given and let β be given by

Algorithm 1 so that the output of MOD-SULQ is (εp,δ)-differentially private for all data sets in R
d

with n elements. Then there exists a data set with n elements such that if v̂1 denotes the output of

MOD-SULQ and v1 is the top eigenvector of the empirical covariance matrix of the data set, the

expected correlation 〈v̂1,v1〉 is upper bounded:

E [|〈v̂1,v1〉|]≤ min
φ∈Φ






1− (1−φ)

4



1− 1/β2 + log2

(d −1) log 1√
1−φ2

− log(8)





2





, (21)

where

Φ ∈
[

max

{

1√
2πd

,

√

1− exp

(

−2log(8d)

d −1

)

,

√

1− exp

(

−2/β2 + log(256)

d −1

)

}

,1

)

. (22)

Proof For φ ∈ [(2πd)−1/2,1), Lemma 11 shows there exists a set of K unit vectors C such that for

µ,ν ∈ C , the inner product between them satisfies |〈µ,ν〉|< φ, where K is given by (12). Note that

for small φ this setting of K is loose, but any orthonormal basis provides d unit vectors which are

orthogonal, setting K = d and solving for φ yields

(

1− exp

(

−2log(8d)

d −1

))1/2

.

Setting the lower bound on φ to the maximum of these two yields the set of φ and K which we will

consider in (22).

For any unit vector µ, let

A(µ) = µµT +N,

where N is a d × d symmetric random matrix such that {Ni j : 1 ≤ i ≤ j ≤ d} are i.i.d. N (0,β2),
where β2 is the noise variance used in the MOD-SULQ algorithm. Due to symmetry, the matrix A(µ)
can be thought of as a jointly Gaussian random vector on the d(d+1)/2 variables {Ai j(µ) : 1 ≤ i ≤
j ≤ d}. The mean of this vector is

µ̄ =
(

µ2
1,µ

2
2, . . . ,µ

2
d,µ1µ2,µ1µ3, . . . ,µd−1µd

)T
,

and the covariance is β2Id(d+1)/2. Let fµ denote the density of this vector.

For µ,ν ∈ C , the divergence between fµ and fν can be calculated using Lemma 14:

KL( fµ‖ fν) =
1

2
(µ̄− ν̄)T Σ−1(µ̄− ν̄)

=
1

2β2
‖µ̄− ν̄‖2

≤ 1

β2
. (23)

The last line follows from the fact that the vectors in C are unit norm.
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For any two vectors µ,ν ∈ C , lower bound the Euclidean distance between them using the upper

bound on the inner product:

‖µ−ν‖ ≥
√

2(1−φ). (24)

Let Θ = S
d−1 with the Euclidean norm and R be the set of distributions {A(µ) : µ ∈ Θ}. From

(24) and (23), the set C satisfies the conditions of Theorem 13 with F = { fµ : µ ∈ C}, r = K,

τ =
√

2(1−φ), and γ = 1
β2 . The conclusion of the Theorem shows that for MOD-SULQ,

max
µ∈C

E fµ
[‖v̂−µ‖]≥

√

2(1−φ)

2

(

1− 1/β2 + log2

logK

)

. (25)

This lower bound is vacuous when the term inside the parenthesis is negative, which imposes further

conditions on φ. Setting logK = 1/β2 + log2, we can solve to find another lower bound on φ:

φ ≥
√

1− exp

(

−2/β2 + log(256)

d −1

)

.

This yields the third term in (22). Note that for larger n this term will dominate the others.

Using Jensen’s inequality on the the left side of (25):

max
µ∈C

E fµ
[2(1−|〈v̂,µ〉|)]≥ (1−φ)

2

(

1− 1/β2 + log2

logK

)2

.

So there exists a µ ∈ C such that

E fµ
[|〈v̂,µ〉|]≤ 1− (1−φ)

4

(

1− 1/β2 + log2

logK

)2

. (26)

Consider the data set consisting of n copies of µ. The corresponding covariance matrix is µµT with

top eigenvector v1 = µ. The output of the algorithm MOD-SULQ applied to this data set is an esti-

mator of µ and hence satisfies (26). Minimizing over φ gives the desired bound.

The minimization over φ in (21) does not lead to analytically pretty results, so we plotted the

results in Figure 1 in order to get a sense of the bounds. Figure 1 shows the lower bound on the

expected correlation E [|〈v̂1,v1〉|] as a function of the number of data points (given on a logarithmic

scale). Each panel shows a different dimension, from d = 50 to d = 1000, and plots are given for

different values of εp ranging from 0.01 to 2. In all experiments we set δ = 0.01. In high dimension,

the lower bound shows that the expected performance of MOD-SULQ is poor when there are a small

number of data points. This limitation may be particularly acute when the data lies in a very low

dimensional subspace but is presented in very high dimension. In such “sparse” settings, perturbing

the input as in MOD-SULQ is not a good approach. However, in lower dimensions and data-rich

regimes, the performance may be more favorable.

A little calculation yields the sample complexity bound in Theorem 9

Proof Suppose E [|〈v̂1,v1〉|] = ρ. Then a little algebra shows

2
√

1−ρ ≥ min
φ∈Φ

√

1−φ



1− 1/β2 + log2

(d −1) log 1√
1−φ2

− log(8)



 .
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Figure 1: Upper bound from Theorem 15 on the expected correlation between the true top eigenvec-

tor and the v̂1 produced by MOD-SULQ. The horizontal axis is log10(n) and the vertical

axis shows the lower bound in (21). The four panels correspond to different values of the

dimension d, from 50 to 1000. Each panel contains plots of the bound for different values

of εp.

Setting φ such that (d −1) log 1√
1−φ2

− log(8) = 2(1/β2 + log2) we have

4
√

1−ρ ≥
√

1−φ.

Since we are concerned with the scaling behavior for large d and n, this implies

log
1

√

1−φ2
= Θ

(

1

β2d

)

,

so

φ =

√

1− exp

(

−Θ

(

1

β2d

))

= Θ

(
√

1

β2d

)

.

From Algorithm 1, to get for some constant c1, we have the following lower bound on β:

β2 > c1
d2

n2ε2
p

log(d/δ).
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Substituting, we get for some constants c2 and c3 that

(1− c2(1−ρ))≤ c3

n2ε2
p

d3 log(d/δ)
.

Now solving for n shows

n ≥ c
d3/2

√

log(d/δ)

εp

(

1− c′(1−ρ)
)

.

6. Experiments

We next turn to validating our theoretical results on real data. We implemented MOD-SULQ and

PPCA in order to test our theoretical bounds. Implementing PPCA involved using a Gibbs sampling

procedure (Hoff, 2009). A crucial parameter in MCMC procedures is the burn-in time, which is

how long the chain must be run for it to reach its stationary distribution. Theoretically, chains reach

their stationary distribution only in the limit; however, in practice MCMC users must sample after

some finite time. In order to use this procedure appropriately, we determined a burn-in time using

our data sets. The interaction of MCMC procedures and differential privacy is a rich area for future

research.

6.1 Data and Preprocessing

We report on the performance of our algorithm on some real data sets. We chose four data sets

from four different domains—kddcup99 (Bache and Lichman, 2013), which includes features of

494,021 network connections, census (Bache and Lichman, 2013), a demographic data set on

199,523 individuals, localization (Kaluža et al., 2010), a medical data set with 164,860 instances

of sensor readings on individuals engaged in different activities, and insurance (van der Putten and

van Someren, 2000), a data set on product usage and demographics of 9,822 individuals.

These data sets contain a mix of continuous and categorical features. We preprocessed each

data set by converting a feature with q discrete values to a vector in {0,1}q; after preprocessing, the

data sets kddcup99, census, localization and insurance have dimensions 116, 513, 44 and 150

respectively. We also normalized each row so that each entry has maximum value 1, and normalize

each column such that the maximum (Euclidean) column norm is 1. We choose k = 4 for kddcup,

k = 8 for census, k = 10 for localization and k = 11 for insurance; in each case, the utility

qF(Vk) of the top-k PCA subspace of the data matrix accounts for at least 80% of ‖A‖F. Thus, all

four data sets, although fairly high dimensional, have good low-dimensional representations. The

properties of each data set are summarized in Table 1.

6.2 Implementation of Gibbs Sampling

The theoretical analysis of PPCA uses properties of the Bingham distribution BMFk(·) given in (6).

To implement this algorithm for experiments we use a Gibbs sampler due to Hoff (2009). The Gibbs

sampling scheme induces a Markov Chain, the stationary distribution of which is the density in (6).
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Data Set #instances #dimensions k qF(Vk) qF(Vk)/‖A‖F

kddcup 494,021 116 4 0.6587 0.96

census 199,523 513 8 0.7321 0.81

localization 164,860 44 10 0.5672 0.81

insurance 9,822 150 11 0.5118 0.81

Table 1: Parameters of each data set. The second column is the number of dimensions after prepro-

cessing. k is the dimensionality of the PCA, the third column contains qF(Vk), where Vk is

the top-k PCA subspace, and the fifth column is the normalized utility qF(Vk)/‖A‖F.

Gibbs sampling and other MCMC procedures are widely used in statistics, scientific modeling, and

machine learning to estimate properties of complex distributions (Brooks, 1998).

Finding the speed of convergence of MCMC methods is still an open area of research. There has

been much theoretical work on estimating convegence times (Jones and Hobart, 2004; Douc et al.,

2004; Jones and Hobart, 2001; Roberts, 1999; Roberts and Sahu, 2001; Roberts, 1999; Roberts and

Sahu, 2001; Rosenthal, 1995; Kolassa, 1999, 2000), but unfortunately, most theoretical guarantees

are available only in special cases and are often too weak for practical use. In lieu of theoretical

guarantees, users of MCMC methods empirically estimate the burn-in time, or the number of iter-

ations after which the chain is sufficiently close to its stationary distribution. Statisticians employ

a range of diagnostic methods and statistical tests to empirically determine if the Markov chain

is close to stationarity (Cowles and Carlin, 1996; Brooks and Roberts, 1998; Brooks and Gelman,

1998; El Adlouni et al., 2006). These tests do not provide a sufficient guarantee of stationarity, and

there is no “best test” to use. In practice, the convergence of derived statistics is used to estimate an

appropriate the burn-in time. In the case of the Bingham distribution, Hoff (2009) performs qualita-

tive measures of convergence. Developing a better characterization of the convergence of this Gibbs

sampler is an important question for future work.

Because the MCMC procedure of Hoff (2009) does not come with convergence-time guaran-

tees, for our experiments we had to choose an appropriate burn-in time. The “ideal” execution of

PPCA provides εp-differential privacy, but because our implementation only approximates sampling

from the Bingham distribution, we cannot guarantee that this implementation provides the privacy

guarantee. As noted by Mironov (2012), even current implementations of floating-point arithmetic

may suffer from privacy problems, so there is still significant work to do between theory and imple-

mentation. For this paper we tried to find a burn-in time that was sufficiently long so that we could

be confident that the empirical performance of PPCA was not affected by the initial conditions of

the sampler.

In order to choose an appropriate burn-in time, we examined the time series trace of the Markov

Chain. We ran l copies, or traces, of the chain, starting from l different initial locations drawn

uniformly from the set of all d × k matrices with orthonormal columns. Let X i(t) be the output of

the i-th copy at iteration t, and let U be the top-k PCA subspace of the data. We used the following

statistic as a function of iteration T :

F i
k(T ) =

1√
k

∥

∥

∥

∥

∥

1

T

T

∑
t=1

X i(t)

∥

∥

∥

∥

∥

F

,
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where || · ||F is the Frobenius norm. The matrix Bingham distribution has mean 0, and hence with

increasing T , the statistic F i
k(T ) should converge to 0.
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Figure 2: Plots of logF i
k(T ) for five different traces (values of i) on two different data sets. Figure

2(a) shows logF i
k(T ) for for k = 4 as a function of iteration T for 40,000 steps of the

Gibbs sampler on the kddcup data set. Figure 2(b) shows the same for the insurance

data set.

Figure 2 illustrates the behavior of the Gibbs sampler. The plots show the value of logF i
k(T ) as

a function of the Markov chain iteration for 5 different restarts of the MCMC procedure for two data

sets, kddcup and insurance. The initial starting points were chosen uniformly from the set of all

d × k matrices with orthonormal columns. The plots show that F i
k(T ) decreases rapidly after a few

thousand iterations, and is less than 0.01 after T = 20,000 in both cases. logF i
k(T ) also appears to

have a larger variance for kddcup than for insurance; this is explained by the fact that the kddcup

data set has a much larger number of samples, which makes its stationary distribution farther from

the initial distribution of the sampler. Based on these and other simulations, we observed that

the Gibbs sampler converges to Fk(t) < 0.01 at t = 20,000 when run on data with a few hundred

dimensions and with k between 5 and 10; we thus chose to run the Gibbs sampler for T = 20,000

timesteps for all the data sets.

Our simulations indicate that the chains converge fairly rapidly, particularly when ‖A−Ak‖F is

small so that Ak is a good approximation to A. Convergence is slower for larger n when the initial

state is chosen from the uniform distribution over all k×d matrices with orthonormal columns; this

is explained by the fact that for larger n, the stationary distribution is farther in variation distance

from the starting distribution, which results in a longer convergence time.

6.3 Scaling with Data Set Size

We ran three algorithms on these data sets : standard (non-private) PCA, MOD-SULQ, and PPCA.

As a sanity check, we also tried a uniformly generated random projection—since this projection is

data-independent we would expect it to have low utility. We measured the utility qF(U), where U is

the k-dimensional subspace output by the algorithm; qF(U) is maximized when U is the top-k PCA

subspace, and thus this reflects how close the output subspace is to the true PCA subspace in terms
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of representing the data. Although our theoretical results hold for qA(·), the “energy” qF(·) is more

relevant in practice for larger k.

To investigate how well these different algorithms performed on real data, for each data set

we subsampled data sets of different sizes n uniformly and ran the algorithms on the subsets. We

chose εp = 0.1 for this experiment, and for MOD-SULQ we used δ = 0.01. We averaged over 5

such subsets and over several instances of the randomized algorithms (10 restarts for PPCA and 100

for MOD-SULQ and random projections). For each subset and instance we calculated the resulting

utility qF(·) of the output subspace.

Figures 3(a), 3(b), 4(a), and 4(b) show qF(U) as a function of the subsampled data set sizes.

The bars indicate the standard deviation over the restarts (from subsampling the data and random

sampling for privacy). The non-private algorithm achieved qF(Vk) for nearly all subset sizes (see

Table 1 for the values). These plots illustrate how additional data can improve the utility of the

output for a fixed privacy level εp. As n increases, the dashed blue line indicating the utility of

PPCA begins to approach qF(Vk), the utility of the optimal subspace.

These experiments also show that the performance of PPCA is significantly better than that of

MOD-SULQ, and MOD-SULQ produces subspaces whose utility is on par with randomly choosing a

subspace. The only exception to this latter point is localization, We believe this is because d is

much lower for this data set (d = 44), which shows that for low dimension and large n, MOD-SULQ

may produce subspaces with reasonable utility. Furthermore, MOD-SULQ is simpler and hence runs

faster than PPCA, which requires running the Gibbs sampler past the burn-in time. Our theoretical

results suggest that the performance of differentially private PCA cannot be significantly improved

over the performance of PPCA but since those results hold for k = 1 they do not immediately apply

here.

6.4 Effect of Privacy on Classification

A common use of a dimension reduction algorithm is as a precursor to classification or clustering;

to evaluate the effectiveness of the different algorithms, we projected the data onto the subspace

output by the algorithms, and measured the classification accuracy using the projected data. The

classification results are summarized in Table 2. We chose the normal vs. all classification task in

kddcup99, and the falling vs. all classification task in localization.1 We used a linear SVM for

all classification tasks, which is implemented by libSVM (Chang and Lin, 2011).

For the classification experiments, we used half of the data as a holdout set for computing a

projection subspace. We projected the classification data onto the subspace computed based on the

holdout set; 10% of this data was used for training and parameter-tuning, and the rest for testing. We

repeated the classification process 5 times for 5 different (random) projections for each algorithm,

and then ran the entire procedure over 5 random permutations of the data. Each value in the figure

is thus an average over 5×5 = 25 rounds of classification.

The classification results show that our algorithm performs almost as well as non-private PCA

for classification in the top-k PCA subspace, while the performance of MOD-SULQ and random

projections are a little worse. The classification accuracy while using MOD-SULQ and random pro-

jections also appears to have higher variance compared to our algorithm and non-private PCA. This

1. For the other two data sets, census and insurance, the classification accuracy of linear SVM after (non-private)

PCAs is as low as always predicting the majority label.
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Figure 3: Plot of the unnormalized utility qF(U) versus the sample size n, averaged over random

subsets of the data and randomness in the algorithms. The bars are at one standard de-

viation about the mean. The top red line is the PCA algorithm without privacy con-

straints. The dashed line in blue is the utility for PPCA. The green and purple dashed

lines are nearly indistinguishable and represent the utility from random projections and

MOD-SULQ, respectively. In these plots εp = 0.1 and δ = 0.01.

is because the projections tend to be farther from the top-k PCA subspace, making the classification

error more variable.
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Figure 4: Plot of the unnormalized utility qF(U) versus the sample size n, averaged over random

subsets of the data and randomness in the algorithms. The bars are at one standard devi-

ation about the mean. The top red line is the PCA algorithm without privacy constraints.

The dashed line in blue is the utility for PPCA. The green and purple dashed lines are

nearly indistinguishable for insurance but diverge for localization—they represent

the utility from random projections and MOD-SULQ, respectively. In these plots εp = 0.1
and δ = 0.01.

6.5 Effect of the Privacy Requirement

How to choose εp is important open question for many applications. We wanted to understand

the impact of varying εp on the utility of the subspace. We did this via a synthetic data set—

we generated n = 5,000 points drawn from a Gaussian distribution in d = 10 with mean 0 and

covariance matrix with eigenvalues

{0.5,0.30,0.04,0.03,0.02,0.01,0.004,0.003,0.001,0.001}. (27)
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kddcup99 localization

Non-private PCA 98.97±0.05 100±0

PPCA 98.95±0.05 100±0

MOD-SULQ 98.18±0.65 97.06±2.17

Random Projections 98.23±0.49 96.28±2.34

Table 2: Classification accuracy in the k-dimensional subspaces for kddcup99 (k = 4), and

localization (k = 10) in the k-dimensional subspaces reported by the different algo-

rithms.

In this case the space spanned by the top two eigenvectors has most of the energy, so we chose k = 2

and plotted the utility qF(·) for non-private PCA, MOD-SULQ with δ = 0.05, and PPCA with a burn-

in time of T = 1000. We drew 100 samples from each privacy-preserving algorithm and the plot of

the average utility versus εp is shown in Figure 5. The privacy requirement relaxes as εp increases,

and both MOD-SULQ and PPCA approach the utility of PCA without privacy constraints. However,

for moderate εp PPCA still captures most of the utility, whereas the gap between MOD-SULQ and

PPCA becomes quite large.
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Figure 5: Plot of qF(U) versus εp for a synthetic data set with n = 5,000, d = 10, and k = 2. The

data has a Gaussian distribution whose covariance matrix has eigenvalues given by (27).

7. Conclusion

In this paper we investigated the theoretical and empirical performance of differentially private

approximations to PCA. Empirically, we showed that MOD-SULQ and PPCA differ markedly in

how well they approximate the top-k subspace of the data. The reason for this, theoretically, is that

the sample complexity of MOD-SULQ scales as d3/2
√

logd whereas PPCA scales as d. Because

PPCA uses the exponential mechanism with qF(·) as the utility function, it is not surprising that it
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performs well. However, MOD-SULQ often had a performance comparable to random projections,

indicating that the real data sets had too few points for it to be effective. We furthermore showed

that PPCA is nearly optimal, in that any differentially private approximation to PCA must use Ω(d)
samples.

Our investigation brought up many interesting issues to consider for future work. The descrip-

tion of differentially private algorithms assume an ideal model of computation : real systems require

additional security assumptions that have to be verified. The difference between truly random noise

and pseudorandomness and the effects of finite precision can lead to a gap between the theoretical

ideal and practice. Numerical optimization methods used in some privacy methods (Chaudhuri et al.,

2011) can only produce approximate solutions; they may also have complex termination conditions

unaccounted for in the theoretical analysis. MCMC sampling is similar : if we can guarantee that

the sampler’s distribution has total variation distance δ from the Bingham distribution, then sampler

can guarantee (εp,δ) differential privacy. However, we do not yet have such analytical bounds on

the convergence rate; we must determine the Gibbs sampler’s convergence empirically. Accounting

for these effects is an interesting avenue for future work that can bring theory and practice together.

For PCA more specifically, it would be interesting to extend the sample complexity results to

general k > 1. For k = 1 the utility functions qF(·) and qA(·) are related, but for larger k it is not

immediately clear what metric best captures the idea of “approximating” the top-k PCA subspace.

For minimax lower bounds, it may be possible to construct a packing with respect to a general utility

metric. For example, Kapralov and Talwar (2013) use properties of packings on the Grassmann

manifold. Upper bounds on the sample complexity for PPCA may be possible by performing a more

careful analysis of the Bingham distribution or by finding better approximations for its normalizing

constant. Developing a framework for analyzing general approximations to PCA may be of interest

more broadly in machine learning.

Acknowledgments

The authors would like to thank the reviewers for their detailed comments, which greatly improved

the quality and readability of the manuscript, and the action editor, Gabor Lugosi, for his patience

during the revision process. KC and KS would like to thank NIH for research support under U54-

HL108460. The experimental results were made possible by support from the UCSD FWGrid

Project, NSF Research Infrastructure Grant Number EIA-0303622. ADS was supported in part by

the California Institute for Telecommunications and Information Technology (CALIT2) at UC San

Diego.

Appendix A. A Packing Lemma

The proof of this lemma is relatively straightforward. The following is a slight refinement of a

lemma due to Csiszár and Narayan (1988, 1991).

Lemma 16 Let Z1,Z2, . . . ,ZN be arbitrary random variables and let fi(Z1, . . . ,Zi) be arbitrary

with 0 ≤ fi ≤ 1, i = 1,2, . . . ,N. Then the condition

E [ fi(Z1, . . . ,Zi)|Z1, . . . ,Zi−1]≤ ai a.s., i = 1,2, . . . ,N
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implies that

P

(

1

N

N

∑
i=1

fi(Z1, . . . ,Zi)> t

)

≤ exp

(

−Nt(log2)+
N

∑
i=1

ai

)

.

Proof First apply Markov’s inequality:

P

(

1

N

N

∑
i=1

fi(Z1, . . . ,Zi)> t

)

= P

(

2∑N
i=1 fi(Z1,...,Zi) > 2Nt

)

≤ 2−Nt
E

[

2∑N
i=1 fi(Z1,...,Zi)

]

≤ 2−Nt
E

[

2∑
N−1
i=1 fi(Z1,...,Zi)E

[

2 fN(Z1,...,ZN)|Z1, . . . ,ZN−1

]]

.

Now note that for b ∈ [0,1] we have 2b ≤ 1+b ≤ eb, so

E

[

2 fN(Z1,...,ZN)|Z1, . . . ,ZN−1

]

≤ E [1+ fN(Z1, . . . ,ZN)|Z1, . . . ,ZN−1]

≤ (1+aN)

≤ exp(aN).

Therefore

P

(

1

N

N

∑
i=1

fi(Z1, . . . ,Zi)> t

)

≤ exp(−Nt(log2)+aN)E
[

2∑
N−1
i=1 fi(Z1,...,Zi)

]

.

Continuing in the same way yields

P

(

1

N

N

∑
i=1

fi(Z1, . . . ,Zi)> t

)

≤ exp

(

−Nt(log2)+
N

∑
i=1

ai

)

.

The second technical lemma (Csiszár and Narayan, 1991, Lemma 2) is a basic result about the

distribution of inner product between a randomly chosen unit vector and any other fixed vector. It

is a consequence of a result of Shannon (Shannon, 1959) on the distribution of the angle between a

uniformly distributed unit vector and a fixed unit vector.

Lemma 17 (Lemma 2 of Csiszár and Narayan (1991)) Let U be a random vector distributed uni-

formly on the unit sphere S
d−1 in R

d . Then for every unit vector u on this sphere and any φ ∈
[(2πd)−1/2,1), the following inequality holds:

P(〈U,u〉 ≥ φ)≤ (1−φ2)(d−1)/2.

Lemma 18 (Packing set on the unit sphere) Let the dimension d and parameter φ∈ [(2πd)−1/2,1)
be given. For N and t satisfying

−Nt(log2)+N(N −1)(1−φ2)(d−1)/2 < 0 (28)
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there exists a set of K = ⌊(1− t)N⌋ unit vectors C such that for all distinct pairs µ,ν ∈ C ,

|〈µ,ν〉|< φ. (29)

Proof The goal is to generate a set of N unit vectors on the surface of the sphere S
d−1 such that

they have large pairwise distances or, equivalently, small pairwise inner products. To that end, define

i.i.d. random variables Z1,Z2, . . . ,ZN uniformly distributed on S
d−1 and functions

fi(Z1, . . . ,Zi) = 1
(∣

∣〈Zi,Z j〉
∣

∣> φ, j < i
)

.

That is, fi = 1 if Zi has large inner product with any Z j for j < i. The conditional expectation, by a

union bound and Lemma 17, is

E [ fi(Z1, . . . ,Zi)|Z1, . . . ,Zi−1]≤ 2(i−1)(1−φ2)(d−1)/2.

Let ai = 2(i−1)(1−φ2)(d−1)/2. Then

N

∑
i=1

ai = N(N −1)(1−φ2)(d−1)/2.

Then Lemma 16 shows

P

(

1

N

N

∑
i=1

fi(Z1, . . . ,Zi)> t

)

≤ exp
(

−Nt(log2)+N(N −1)(1−φ2)(d−1)/2
)

.

This inequality implies that as long as

−Nt(log2)+N(N −1)(1−φ2)(d−1)/2 < 0,

then there is a finite probability that {Zi} contains a subset {Z′
i} of size ⌊(1 − t)N⌋ such that

∣

∣

∣
〈Z′

i,Z
′
j〉
∣

∣

∣
< φ for all (i, j). Therefore such a set exists.

A simple setting of the parameters gives the packing in Lemma 11.

Proof Applying Lemma 18 yields a set of K vectors C satisfying (28) and (29). To get a simple

bound that’s easy to work with, we can set

−Nt(log2)+N(N −1)(1−φ2)(d−1)/2 = 0,

and find an N close to this. Setting ψ = (1−φ2)(d−1)/2, and solving for N we see

N = 1+
t log2

ψ
>

t

2ψ
.

Now setting K = t(1−t)
2ψ and t = 1/2 gives (12). So there exists a set of K vectors on S

d−1 whose

pairwise inner products are smaller than φ.

The maximum set of points that can be selected on a sphere of dimension d such that their

pairwise inner products are bounded by φ is an open question. These sets are sometimes referred to

as spherical codes (Conway and Sloane, 1998) because they correspond to a set of signaling points

of dimension d that can be perfectly decoded over a channel with bounded noise. The bounds here

are from a probabilistic construction and can be tightened for smaller d. However, in terms of

scaling with d this construction is essentially optimal (Shannon, 1959).
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Abstract

We propose a novel local isometry based dimensionality reduction method from the perspective of

vector fields, which is called parallel vector field embedding (PFE). We first give a discussion on

local isometry and global isometry to show the intrinsic connection between parallel vector fields

and isometry. The problem of finding an isometry turns out to be equivalent to finding orthonormal

parallel vector fields on the data manifold. Therefore, we first find orthonormal parallel vector fields

by solving a variational problem on the manifold. Then each embedding function can be obtained

by requiring its gradient field to be as close to the corresponding parallel vector field as possible.

Theoretical results show that our method can precisely recover the manifold if it is isometric to a

connected open subset of Euclidean space. Both synthetic and real data examples demonstrate the

effectiveness of our method even if there is heavy noise and high curvature.

Keywords: manifold learning, isometry, vector field, covariant derivative, out-of-sample extension

1. Introduction

In many data analysis tasks, one is often confronted with very high dimensional data. There is

a strong intuition that the data may have a lower dimensional intrinsic representation. Various re-

searchers have considered the case when the data is sampled from a submanifold embedded in much

higher dimensional Euclidean space. Consequently, estimating and extracting the low dimensional

manifold structure, or specifically the intrinsic topological and geometrical properties of the data

manifold, become a crucial problem. These problems are often referred to as manifold learning

(Belkin and Niyogi, 2007).

The most natural technique to exact low dimensional manifold structure with given finite sam-

ples is dimensionality reduction. The early work for dimensionality reduction includes principal

component analysis (PCA, Jolliffe, 1989), multidimensional scaling (MDS, Cox and Cox, 1994)

and linear discriminant analysis (LDA, Duda et al., 2000). PCA is probably the most popular di-

mensionality reduction methods. Given a data set, PCA finds the directions along which the data

c©2013 Binbin Lin, Xiaofei He, Chiyuan Zhang and Ming Ji.
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has maximum variance. However, these linear methods may fail to recover the intrinsic manifold

structure when the data manifold is not a low dimensional subspace or an affine manifold.

There are various works on nonlinear dimensionality reduction in the last decade. The typical

work includes isomap (Tenenbaum et al., 2000), locally linear embedding (LLE, Roweis and Saul,

2000), Laplacian eigenmaps (LE, Belkin and Niyogi, 2001), Hessian eigenmaps (HLLE, Donoho

and Grimes, 2003) and diffusion maps (Coifman and Lafon, 2006; Lafon and Lee, 2006; Nadler

et al., 2006). Isomap generalizes MDS to the nonlinear manifold case which tries to preserve pair-

wise geodesic distances on the data manifold. Diffusion maps tries to preserve another meaningful

distance, that is, diffusion distance on the manifold. Isomap is an instance of global isometry based

dimensionality reduction techniques, which tries to preserve the distance function or the metric of

the manifold globally. One limitation of Isomap is that it requires the manifold to be geodesically

convex. HLLE is based on local isometry criterion, which successfully overcomes this problem.

Laplacian operator and Hessian operator are two of the most important differential operators in

manifold learning. Intuitively, Laplacian measures the smoothness of the functions, while Hessian

measures how a function changes the metric of the manifold. However, the Laplacian based meth-

ods like LLE and LE mainly focus on the smoothness of the embedding function, which may not be

an isometry. The major difficulty in Hessian based methods is that they have to estimate the second

order derivative of embedding functions, and consequently they have strong requirement on data

samples.

One natural nonlinear extension of PCA is kernel principal component analysis (kernel PCA,

Schölkopf et al., 1998). Interestingly, Ham et al. (2004) showed that Isomap, LLE and LE are all

special cases of kernel PCA with specific kernels. Recently, Maximum Variance Unfolding (MVU,

Weinberger et al., 2004) is proposed to learn a kernel matrix that preserves pairwise distances on

the manifold. MVU can be thought of as an instance of local isometry with additional consideration

that the distances between two points that are not neighbors are maximized.

Tangent space based methods have also received considerable interest recently, such as local

tangent space alignment (LTSA, Zhang and Zha, 2004), manifold charting (Brand, 2003), Rieman-

nian Manifold Learning (RML, Lin and Zha, 2008) and locally smooth manifold learning (LSML,

Dollár et al., 2007). These methods try to find coordinates representation for curved manifolds.

LTSA tries to construct a global coordinate via local tangent space alignment. Manifold charting

has a similar strategy, which tries to expand the manifold by splicing local charts. RML uses normal

coordinate to unfold the manifold, which aims to preserve the metric of the manifold. LSML tries

to learn smooth tangent spaces of the manifold by proposing a smoothness regularization term of

tangent spaces. Vector diffusion maps (VDM, Singer and Wu, 2011) is a much recent work which

considers the tangent spaces structure of the manifold to define and preserve the vector diffusion

distance.

In this paper, we propose a novel dimensionality reduction method, called parallel vector field

embedding (PFE), from the perspective of vector fields. The theory of vector fields is a basic tool for

discovering the geometry and topology of the manifold. We first give a discussion on local isometry

and global isometry to show the intrinsic connection between parallel vector fields and isometry.

The problem of finding an isometry turns out to be equivalent to finding orthonormal parallel vector

fields on the data manifold. Therefore, we first find orthonormal parallel vector fields by minimizing

the covariant derivative of a vector field. We then find an embedding function whose gradient field

is as close to the parallel field as possible. In this way, the obtained embedding function would vary

linearly along the geodesics of the manifold. Naturally, the corresponding embedding consisted
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of embedding functions preserves the metric of the manifold. As pointed out by Goldberg et al.

(2008), almost all spectral methods including LLE, LE, LTSA and HLLE use global normalization

for embedding, which sacrifices isometry. PFE overcomes this problem by normalizing vector fields

locally. Our theoretical study shows that, if the manifold is isometric to a connected open subset of

Euclidean space, our method can faithfully recover the metric structure of the manifold.

The organization of the paper is as follows: In the next section, we provide a description of the

dimensionality reduction problem from the perspectives of isometry and vector fields. In Section 3,

we introduce our proposed Parallel Field Embedding algorithm. The extensive experimental results

on both synthetic and real data sets are presented in Section 4. Finally, we provide some concluding

remarks and suggestions for future work in Section 5.

2. Dimensionality Reduction from Geometric Perspective

Let (M ,g) be a d-dimensional Riemannian manifold embedded in a much higher dimensional Eu-

clidean space Rm, where g is a Riemannian metric on M . A Riemannian metric is a Euclidean inner

product gp on each of the tangent space TpM , where p is a point on the manifold M . In addition

we assume that gp varies smoothly (Petersen, 1998). This means that for any two smooth vector

fields X ,Y the inner product gp(Xp,Yp) should be a smooth function of p. The subscript p will be

suppressed when it is not needed. Thus we might write g(X ,Y ) or gp(X ,Y ) with the understanding

that this is to be evaluated at each p where X and Y are defined. Generally we use the induced

metric for M . That is, the inner product defined in the tangent space of M is the same as that in

the ambient space R
m, that is, g(u,v) = 〈u,v〉 where 〈·, ·〉 denote the canonical inner product in R

m.

In the problem of dimensionality reduction, one tries to find a smooth map: F : M → R
d , which

preserves the topological and geometrical properties of M .

However, for some kinds of manifolds, it is impossible to preserve all the geometrical and

topological properties. For example, consider a two-dimensional sphere, there is no such map that

maps the sphere to a plane without breaking the topology of the sphere. Thus, there should be some

assumptions of the data manifold. In this paper, we consider a relatively general assumption that

the manifold M is diffeomorphic to an open subset of the Euclidean space R
d . In other words, we

assume that there exists a topology preserving map from M to R
d .

Definition 1 (Diffeomorphism, Lee, 2003) A diffeomorphism between manifolds M and N is a

smooth map F : M → N that has a smooth inverse. We say M and N are diffeomorphic if there

exists a diffeomorphism between them.

For example, there is a diffeomorphism between a semi-sphere and a subset of R2. However, there

is no diffeomorphism between a sphere and any subset of R
2. In this paper, we only consider

manifolds that are diffeomorphic to an open connected subset of Euclidean space like semi-sphere,

swiss roll, swiss roll with hole, and so on.

2.1 Local Isometry and Global Isometry

With the assumption that the manifold is diffeomorphic to an open subset of Rd , the goal of dimen-

sionality reduction is to preserve the intrinsic geometry of the manifold as much as possible. Ideally,

one hopes to preserve the metric of the manifold, or intuitively the pairwise distance between data

points. This leads to the concept of isometry. Here we consider two kinds of isometry, that are,
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local isometry and global isometry.1 In the following we give the definitions and properties of local

isometry and global isometry.

Definition 2 (Local Isometry, Lee, 2003) Let (M ,g) and (N ,h) be two Riemannian manifolds,

where g and h are metrics on them. For a map between manifolds F : M → N , F is called local

isometry if h(dFp(v),dFp(v)) = g(v,v) for all p ∈ M ,v ∈ TpM . Here dF is the differential of F.

dF is also known as pushforward and denoted as F∗ in many texts. For a fixed point p ∈ M , dF is a

linear map between TpM and the corresponding tangent space TF(p)N . According to the definition,

dF preserves the norm of tangent vectors. Moreover, we have the following theorem:

Theorem 1 (Petersen, 1998) Let F : M → N be a local isometry, then

1. F maps geodesics to geodesics.

2. F is distance decreasing.

3. if F is also a bijection, then it is distance preserving.

Intuitively, local isometry preserves the metric of the manifold locally. If the local isometry F is

also a diffeomorphism, then it becomes global isometry.

Definition 3 (Global Isometry, Lee, 2003) A map F : M → N is called global isometry between

manifolds if it is a diffeomorphism and also a local isometry.

If F is a global isometry, then its inverse F−1 is also a global isometry. We have the following

proposition.

Proposition 1 A global isometry preserves geodesics. If F : M → N is a global isometry, then for

any two points p,q ∈ M , we have d(p,q) = d(F(p),F(q)), where d(·, ·) denotes geodesic distance

between two points.

Proof For any two points p,q ∈ M , we have d(p,q)≥ d(F(p),F(q)) according to the third state-

ment of Theorem 1. Since F−1 : N →M is also a global isometry, we have d(p,q)≤ d(F(p),F(q)).
Thus d(p,q) = d(F(p),F(q)).

Clearly, we hope the map F is a global isometry. This is because that, although local isometry maps

geodesics to geodesics, the shortest geodesic between two points on M may not be the shortest

geodesic on N . Please see Figure 1 as an illustrative example. Clearly the map F is a local isome-

try. However, consider two points p and q on M , we have d(p,q)> d(F(p),F(q)). Therefore F is

not a global isometry.

It is usually very difficult to find a global isometry. Isomap is designed to find the global isom-

etry. However, it is known that the computational cost is very expensive since pairwise distances

have to be estimated. Also, it has been shown that Isomap cannot handle geodesically non-convex

manifolds where in that case the geodesic distances cannot be accurately estimated. On the other

hand, based on our assumption that the manifold M is diffeomorphic to an open subset of Rd , it

suffices to find a local isometry which is also a diffeomorphism, according to Definition 3.

1. In many differential geometry textbooks, global isometry is often referred to as isometry or Riemannian isometry.
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Figure 1: Local isometry but not global isometry. F is a map from M to N . Clearly F is a local

isometry. However, due to the overlap, it is not a global isometry.

2.2 Gradient Fields and Local Isometry

Our analysis has shown that finding a global isometry is equivalent to finding a local isometry which

is also a diffeomorphism. Given a map F = ( f1, . . . , fd) : M → R
d , there is a deep connection

between local isometry and the differential dF = (d f1, . . . ,d fd). For a function f on the manifold

f : M → R, we will not strictly distinguish between its differential d f and its gradient field ∇ f

in this paper. Actually, they are dual 1-form which is uniquely determined by each other once the

metric of the manifold is given. For the relationship between local isometry and differential, we

have the following proposition:

Proposition 2 Consider a map F : M ⊂ R
m → R

d . Let fi, i = 1, . . . ,d denote the component of

F which maps the manifold to R, that is, F = ( f1, . . . , fd). The following three statements are

equivalent:

1. F is a local isometry.

2. dFp is an orthogonal transformation for all p ∈ M .

3. 〈d fi,d f j〉p = δi j, i, j = 1, ...,d, ∀p ∈ M .

Proof 2 ⇔ 3 is trivial by the definition of orthogonal transformation. 2 ⇒ 1 is obvious. Next

we prove 1 ⇒ 2. Since we use the induced metric for the manifold M , the computation of inner

product in tangent space is the same as the standard inner product in Euclidean space. We have

g(u,v) = 〈u,v〉,∀u,v ∈ TpM . According to Definition 2, we have 〈u,u〉 = 〈dFp(u),dFp(u)〉,∀p ∈
M ,u ∈ TpM . For arbitrary vectors u and v ∈ TpM , then we have

〈dFp(u+ v),dFp(u+ v)〉= 〈u+ v,u+ v〉.

By expanding both side and notice that 〈dFp(u),dFp(u)〉= 〈u,u〉 and 〈dFp(v),dFp(v)〉= 〈v,v〉, we

have 〈dFp(u),dFp(v)〉= 〈u,v〉 which implies that dF is an orthogonal transformation.
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(a) R
2 (b) Swiss Roll (c) Swiss Roll

Figure 2: Examples of parallel fields. The parallel fields on Euclidean space are all constant vector

fields.

This proposition indicates that finding a local isometry F is equivalent to finding d orthonormal dif-

ferentials d fi, i = 1, ...,d, or gradient fields ∇ fi, i = 1, ...,d since we have 〈∇ fi,∇ f j〉= 〈d fi,d f j〉=
δi j.

3. Parallel Field Embedding

In this section, we introduce our parallel field embedding (PFE) algorithm for dimensionality re-

duction.

Our goal is to find a map F = ( f1, . . . , fd) : M ⊂ R
m → R

d which preserves the metric of the

manifold. According to Proposition 2, its differential (or gradient fields) should be orthonormal. In

the next subsection, we show that if such differential exists, then each d fi (or ∇ fi) has to be parallel,

that is ∇d fi = 0 (or ∇∇ fi = 0). Naturally, we propose a vector field based method for solving this

problem. We first try to find orthonormal parallel vector fields on the manifold. Then we try to

reconstruct the map whose gradient fields can best approximate the parallel fields. In Theorem 2,

we show that if the manifold can be isometrically embedded into the Euclidean space, then there

exist orthonormal parallel fields and each parallel field is exactly a gradient field. Therefore, in such

cases our proposed approach can find the optimal embedding which is a global isometry.

3.1 Parallel Vector Fields

In this subsection, we will show the properties of parallel fields. We will also discuss the relationship

among local isometry, global isometry and parallel fields.

Definition 4 (Parallel Field, Petersen, 1998) A vector field X on manifold M is a parallel vector

field (or parallel field) if

∇X ≡ 0,

where ∇ is the covariant derivative on the manifold M .

Figure 2 shows some examples of parallel fields on Euclidean space and Swiss Roll. Given a point

p on the manifold and a vector vp on the tangent space TpM , then ∇vp
X is a vector at point p which

measures how the vector field X changes along the direction vp at point p. Since p is arbitrary, given

2950



PARALLEL VECTOR FIELD EMBEDDING

a vector field Y , then ∇Y X is a vector field which measures how the vector field X changes along

the vector field Y on the manifold. Since ∇X : Y 7→ ∇Y X is a map which maps a vector field Y to

another vector field ∇Y X , ∇X ≡ 0 also means that for any vector field Y on the manifold, we have

∇Y X = 0 and vice versa. For parallel fields, we also have the following proposition:

Proposition 3 Let V and W be parallel fields on M associated with the metric g. We define a

function h : M → R as follows:

h(p) = gp(V,W ),

where gp represents the inner product at p. Then h(p) = constant, ∀p ∈ M .

Proof Since V and W are parallel fields, we have ∇V = ∇W = 0 or ∇YV = ∇YW = 0 for any vector

field Y .

We first show that a vector field is a derivation. For simplicity, let vp be a tangent vector at

point p on Euclidean space Rm. Then vp defines the directional derivative in the direction vp at p as

follows:

vp f = Dv f (p) =
d

dt
|t=0 f (p+ tv).

For tangent vectors on a general manifold, we define them as derivations which satisfies the Leib-

niz’s rule, that is, vp( f g) = f (p)vpg+ g(p)vp f . If p varies, then all these vps constitute a vector

field. Since for each point p, vp is a derivation at p. Then the vector field is a derivation on the

manifold. Let X be an arbitrary smooth vector field, then we apply it to the function h and we have

X(h) = Xg(V,W )

= g(∇XV,W )+g(V,∇XW )

= 0+0 = 0.

The second equation is due to the property of the covariant derivative. Since the above equation

holds for arbitrary X , we have h(p) = gp(V,W ) = constant.

Corollary 1 Let V and W be parallel fields on M associated with the metric g, then
∫

M g(V,W )dx=
0 if and only if ∀ p ∈ M , gp(V,W ) = 0.

Proof From Proposition 3, we see that g(V,W ) = constant. Thus,
∫

M g(V,W )dx = vol(M )g(V,W ).
Since vol(M )> 0,

∫
M g(V,W )dx = 0 if and only if g(V,W ) = 0 or ∀p ∈ M , gp(V,W ) = 0.

This corollary tells us if we want to check the orthogonality of the parallel fields at every point,

it suffices to compute the integral of the inner product of the parallel fields. This is much more

convenient for finding orthogonal parallel fields.

Also we have the following corollary:

Corollary 2 Let V be a parallel vector field on M , then ∀p ∈ M ,‖Vp‖= constant where Vp repre-

sents the vector at p of the vector field V .

Proof Let W =V in Proposition 3, then ∀p ∈ M , we have ‖Vp‖2 = gp(V,V ) = constant.

Since every tangent vector of a parallel field has a constant length, we can perform normalization
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of the parallel field simply as dividing every tangent vector of the parallel field by a same length.

According to these results, finding orthonormal parallel fields becomes much easier: we first find

orthogonal parallel fields on the manifold one by one by requiring that the integral of the inner

product of two parallel fields is zero. We then normalize the vectors of parallel fields to be unit

norm.

Before presenting our main result, we still need to introduce some concepts and properties on

the relationship between isometry and parallel fields. We begin with the properties of the differential

of a map. We have the following lemma.

Lemma 1 (Please see Lemma 3.5 in Lee, 2003) Let F : M → N and let p ∈ M .

1. dF : TpM → TF(p)N is linear.

2. If F is a diffeomorphism, then dF : TpM → TF(p)N is an isomorphism.

This lemma shows that locally dF is an isomorphism if it is a diffeomorphism. Next, we show that

a parallel field is uniquely determined locally.

Proposition 4 Let M be an open connected manifold. For a given p ∈ M , a parallel field X is

uniquely determined by the vector Xp, where Xp denotes the value of the vector field X on the point

p.

Proof The equation ∇X ≡ 0 is linear in X , so the space of parallel fields is a vector space. There-

fore, it suffices to show that X ≡ 0 provided Xp = 0. According to Proposition. 3, a parallel field has

constant length. Thus for any point q ∈ M , we have ‖Xq‖2 = ‖Xp‖2 = 0.

Next we show that the differential of an isometry preserves covariant derivative.

Lemma 2 (Please see the exercise (2) in Chapter 3 of Petersen, 1998) If F : M → N is a global

isometry, then we have dF(∇XY ) = ∇dF(X)dF(Y ) for all vector fields X and Y .

More importantly, we show that an isometry preserves parallelism, that is, its differential carries a

parallel vector field to another parallel vector field.

Proposition 5 If F : M → N is a global isometry, then

1. dF maps parallel fields to parallel fields.

2. dF is an isometric isomorphism on the space of parallel fields.

Proof Let Y be a parallel field on M , we show that dF(Y ) is also a parallel field. It suffices to show

that ∇ZdF(Y ) = 0 for arbitrary Z on N . According to Lemma 2, for any p ∈ M and any vector

field X on M , we have ∇dF(X)dF(Y ) = dF(∇XY ) = 0 hold at p. Since X is arbitrary and dF is an

isomorphism (Lemma. 1) at p, then dF(X)p can be an arbitrary vector at p. Since p is also arbitrary,

then all these tangent vectors dF(X)p constitute an arbitrary vector field. Thus ∇ZdF(Y ) = 0 holds

for arbitrary vector field Z which proves the first statement.

For the second statement, since parallel fields are determined locally (Proposition 4), we only

have to show that dF is an isometrically isomorphism locally. Firstly, F is diffeomorphism. Ac-

cording to Lemma 1, dF is a local isomorphism. Secondly, according to the Definition 2, dF is a
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local isometry. Combining these two facts, dF is an isometric isomorphism on the space of parallel

fields.

Now we show that the gradient fields of a local isometry are also parallel fields.

Proposition 6 If F = ( f1, . . . , fd) : M → R
d is a local isometry, then each d fi is parallel, that is,

∇d fi = 0, i = 1, . . . ,d.

Proof According to the property of local isometry, for very point p ∈ M , there is a neighborhood

U ⊂ M of p such that F |U : U → F(U) is a global isometry of U onto an open subset F(U) of

R
d (please see Lee, 2003, pg. 187). Since F(U) is an open subset of R

d , we can choose an

orthonormal basis ∂i, i = 1, . . . ,d for F(U). Since F−1|U is also a global isometry, thus dF−1(∂i)
is an orthonormal basis of U . It can be seen as 〈dF−1(∂i),dF−1(∂ j)〉 = 〈∂i,∂ j〉 = δi j. The first

equation is due to the definition of isometry. Since F |U is a global isometry, dF |U is orthonormal

with respect to these coordinates. Thus we can rewrite F |U as F(x) = Ox+b, where x ∈U , O is an

orthonormal matrix and b ∈ R
d . Note that dF = (d f1, . . . ,d fd), thus d fi has constant coefficients

and we have ∇d fi = 0 at each local neighborhood. Since we can choose arbitrary p, ∇d fi ≡ 0 holds

on the whole manifold.

This proposition tells us that the gradient field of a local isometry is also a parallel field. Since it is

usually not easy to find a global isometry directly, in this paper, we try to find a set of orthonormal

parallel fields first, and then find an embedding function whose gradient field is equal to the parallel

field. Our main theorem will show that such an embedding is a global isometry.

3.2 Objective Function

As stated before, we first try to find vector fields which are as parallel as possible on the manifold.

Let V be a smooth vector field on M . By definition, the covariant derivative of V should be zero.

That is, ∇V ≡ 0. Naturally, we define our objective function as follows:

E(V ) =
∫

M
‖∇V‖2

HSdx, s.t.,
∫

M
‖V‖2 = 1, (1)

where ‖ · ‖HS denotes Hilbert-Schmidt tensor norm (see Defant and Floret, 1993). The constraint

removes arbitrary scale of the vector field. Once we obtain the first parallel vector field V1, by using

orthogonality constraint
∫

M g(V1,V2) = 0, we can find the second vector field V2, and so on. After

finding d orthogonal vector fields V1, . . . ,Vd , we normalize the vector fields at each point:

‖Vi|x‖= 1,∀x ∈ M , (2)

where Vi|x ∈ TxM denote the vector at x of the vector field Vi.

E(V ) enforce the vector fields to be parallel. The norm of the tangent vector ‖Vi|x‖ represents the

scale of the map at x, thus the normalization ‖Vi|x‖ removes the scale locally. This is quite different

from traditional manifold learning algorithms. Traditional methods remove the scale by normalizing

the norm of embedding function which is a global normalization. As pointed out by Goldberg et al.

(2008), the embedding functions obtained by these traditional methods are not isometry. As we

discussed in Section 2, the gradient fields of the isometry have to be orthonormal parallel fields.

However, traditional manifold learning methods may not satisfy this requirement, which will be

shown in our experiments.
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Figure 3: Covariant derivative demonstration. Let V,Y be two vector fields on manifold M . Given

a point x ∈ M , let ∇YV |x denote the tangent vector at x of the vector field ∇YV , we

show how to compute the vector ∇YV |x. Let γ(t) be a curve on M : γ : I → M which

satisfies γ(0) = x and γ′(0) =Yx. Then the covariant derivative along the direction
dγ(t)

dt
|t=0

can be computed by projecting dV
dt
|t=0 to the tangent space TxM at x. In other words,

∇γ′(0)V |x = Px(
dV
dt
|t=0), where Px : v ∈ R

m → Px(v) ∈ TxM is the projection matrix. It is

not difficult to check that the computation of ∇YV |x is independent to the choice of the

curve γ.

In the following we provide some explanation of our objective function. ∇V is the covariant

derivative of V that measures the change of the vector field V . If ∇V vanishes, V is a parallel vector

field which we are looking for. Formally, ∇V is a (1,1)-tensor which maps a vector field Y to

another vector field ∇YV and satisfies ∇αYV = α∇YV for any function α. For a fixed point x ∈ M ,

let ∇V |x denote the tensor value at x of the tensor field ∇V . It is a linear map on the tangent space

TxM . We show what ∇V |x is when given an orthonormal basis. Let ∂1, . . . ,∂d be an orthonormal

basis of TxM , then the element of ∇V |x would be gx(∇∂i
V,∂ j) where gx(·, ·) denote the inner product

at point x. By the definition of Hilbert-Schmidt tensor norm (see Defant and Floret, 1993), we have

‖∇V |x‖2
HS =

d

∑
i=1

d

∑
j=1

(gx(∇∂i
V,∂ j))

2

=
d

∑
i=1

gx(∇∂i
V,∇∂i

V ). (3)

The second equation uses the fact gx(∇∂i
V,∇∂i

V ) = ∑d
j=1(gx(∇∂i

V,∂ j))
2. It is important to point

out that the Hilbert-Schmidt norm ‖∇V‖HS is independent to the choice of the basis of tangent

space. Thus our objective function E(V ) is well defined. According to the above equations, the

computation of ‖∇V‖HS depends on the computation of the norm of covariant derivative ∇∂i
V .

Next we show the geometrical meaning of covariant derivative. For a given direction Yx at x ∈ M ,
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Figure 4: An example of a vector field but not a gradient field. This vector field has loops, thus it

cannot be a gradient field for any function.

let ∇YV |x denote the vector at x of vector field ∇YV . Then ∇YV |x is also a vector at x which is

demonstrated in Figure 3.

After finding the parallel vector fields Vi on M , the embedding function can be obtained by

minimizing the following objective function:

Φ( f ) =
∫

M
‖∇ f −V‖2dx. (4)

The solution of Φ( f ) is not unique, but differs with a constant function.

In the following, we show that if the manifold is flat and diffeomorphic to an open connected

subset of Euclidean space Rd , then our method can successfully recover the metric of the manifold.

Theorem 2 Let M be a d-dimensional Riemannian manifold embedded in R
m. If there exist a

global isometry ϕ : M → D ⊂ R
d , where D is an open connected subset of Rd , then there is an

orthonormal basis {Vi}d
i=1 of the parallel fields on M , and embedding function fi : M → R whose

gradient field satisfies ∇ fi =Vi, i = 1, . . . ,d. Moreover, F = ( f1, . . . , fd) is a global isometry.

Proof In Euclidean space, if a vector field is written in Cartesian coordinates, then it is parallel if

and only if it has constant coefficients (Petersen, 1998). Consider a parallel field on D. Since D is

open connected, this parallel field is globally constant. Thus the space of parallel fields on D is a d

dimensional linear space.

According to Proposition 5, we know that a global isometry preserves parallelism, that is, its

differential carries a parallel vector field to another parallel vector field. Thus for a global isometry

ϕ, dϕ maps parallel fields to parallel fields and dϕ is an isometric isomorphism, so is dϕ−1. Thus

the space of parallel fields on M is isomorphic to the space of parallel fields on D. Therefore there

exists an orthonormal basis {Vi}d
i=1 of the space of the parallel fields on M . Next we show Vi is
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also a gradient field. We first map Vi to D using dϕ. Clearly, dϕ(Vi) is a parallel field. Note that

a parallel field in Euclidean space has constant coefficients in Cartesian coordinates. We can write

dϕ(Vi) in Cartesian coordinates ∂ j, j = 1, . . . ,d as follows:

dϕ(Vi) = ∑
j

c
j
i ∂ j,

where c
j
i are constant. Since dϕ is an isometric isomorphism, we can rewrite it as follows:

Vi = ∑
j

c
j
i dϕ−1(∂ j).

Here dϕ−1(∂ j) actually is an orthonormal basis of M . Since c
j
i are constant, each Vi is a gradient

field for some linear function with respect to the coordinates of dϕ−1(∂ j). Let fi be a linear function

such that ∇ fi = Vi, i = 1, . . . ,d. It is worth noting that such a linear function fi is not unique but

only differs a constant. Then these { fi|i = 1, . . . ,d} constitutes a map F , F = ( f1, . . . , fd) : M →R
d ,

which maps the manifold M to R
d .

Next we show that such F is a global isometry on M . Firstly, F is a local isometry. According

to the construction of F , the differential of F dF = (d f1, . . . ,d fd) = (V1, . . . ,Vd) is orthonormal.

Thus F is a local isometry according to Proposition 2. Secondly, F is a differmorphism. Clearly

the map F restricted on the manifold M , F : M → F(M ), is surjective. Next we show F is also

injective. If not, assume there exist two distinct points p and q such that F(p) = F(q). Then we

have fi(p) = fi(q), i = 1, . . . ,d. Since fi is linear with respect to the coordinates of dϕ−1(∂ j). We

rewrite fi as follows:

fi(p) =
d

∑
j=1

c
j
i z j(p)+ εi,

where z j, j = 1, . . . ,d represent coordinate functions. Since c
j
i are constant, we have z j(p) = z j(q)

for j = 1, . . . ,d. Since z j are coordinates, we have p = q which contradicts to the assumption that p

and q are distinct points. So far, we have proved F is a homeomorphism. Since each fi is a linear

function, F is clearly smooth. According to the Proposition 5.7 of Lee (2003), F−1 is also smooth,

so F is a diffeomorphism. Since F is a local isometry and a diffeomorphism, it is a global isometry.

When there exists a global isometry, by optimizing our objective functions Equation (1), Equa-

tion (2) and Equation (4), Theorem 2 shows that our obtained gradient fields ∇ fi must be parallel.

Moreover, the obtained map F = ( f1, . . . , fd) is a global isometry. It might be worth noting that

there are two variations in finding the global isometry. The first variation is the choice of the or-

thonormal basis of parallel fields. The second variation is the constant added to each embedding

function. Thus the space of global isometry on M is actually O(d)×R
d . The first part is the space

of orthonormal basis of parallel fields and the second part is the space of constants. Geometrically,

the first part represents a rotation of the map and the second part represents a translation of the map.

When there is no isometry between the manifold M and R
d , our approach can still find a

reasonably good embedding function. For example, if the curvature of the manifold is not very

high, by minimizing Equation (1), we can still find vector fields are nearly parallel. Consequently,

the embedding would be nearly isometric. Please see our experimental results for details. However,
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when the curvature of the manifold is extremely high, as shown in Figure 4, the obtained vector

fields may have loops or singular points and is no longer a gradient field. The resulting embedding

may cause overlap. It would be important to note that, in such cases, the isometric embedding or

nearly isometric embedding does not exist.

3.3 Implementation

In real problems, the manifold M is usually unknown. In this subsection, we discuss how to find

the isometric embedding function F from random points.

The implementation includes two steps, first we estimate parallel vector fields on manifold

from random points, and then we reconstruct embedding functions by requiring that the gradient

fields are as close to the parallel fields as possible. The parallel vector fields are computed one by

one under orthogonality constraint. These two steps are described in subsections 3.3.1 and 3.3.2,

respectively. After finding d orthonormal vector fields and the corresponding embedding function

fi, the final map F is given by F = ( f1, . . . , fd). We discuss how to perform out-of-sample extension

in subsection 3.3.3. The detailed algorithmic procedure is presented in subsection 3.3.4.

Given xi ∈ M ⊂ R
m, i = 1, ...,n, we aim to find a lower dimensional Euclidean representation

of the data such that the geometrical and topological properties can be preserved. We first construct

a nearest neighbor graph by either ε-neighborhood or k nearest neighbors. Let xi ∼ x j denote that

xi is the neighbor of x j or x j is the neighbor of xi. Let N(i) denote the index set of the neighbors of

xi, that is, N(i) =
{

j|x j ∼ xi

}

. For each point xi, we estimate its tangent space Txi
M by performing

principal component analysis on the neighborhood N(i). We choose the largest d eigenvectors as

the bases since Txi
M is d dimensional. Let Ti ∈ R

m×d be the matrix whose columns constitute a

orthonormal basis for Txi
M . It is easy to show Pi = TiT

T
i is the unique orthogonal projection from

R
m onto the tangent space Txi

M (Golub and Loan, 1996). That is, for any vector a ∈ R
m, we have

Pia ∈ Txi
M and (a−Pia)⊥ Pia.

3.3.1 PARALLEL VECTOR FIELD ESTIMATION

Let V be a vector field on manifold. For each point xi, let Vxi
denote the value of the vector field V

at xi and ∇V |xi
denote the value of ∇V at xi. According to the definition of vector fields, Vxi

should

be a tangent vector in the tangent space Txi
M . Thus it can be represented by local coordinates of

the tangent space,

Vxi
= Tivi, (5)

where vi ∈ R
d . We define V =

(

vT
1 , . . . ,v

T
n

)T ∈ R
dn. That is, V is a dn-dimensional big column

vector which concatenates all the vi’s. By discretizing the objective function (1), the parallel field V

can be obtained by solving the following optimization problem:

min
V

E(V) =
n

∑
i=1

‖∇V |xi
‖2

HS,

s.t. ‖V‖= 1.

(6)

In the following we discuss, for a given point xi, how to approximate ‖∇V |xi
‖HS.

Let γ(t) be the geodesic connecting xi and x j which satisfies γ(0) = xi and γ(di j) = x j, where

di j is the geodesic distance of xi and x j. Let ei j = γ′(0). Since γ is a geodesic, ei j ∈ Txi
M is a unit
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vector. Then the covariant derivative of vector field V along ei j is given by (please see Figure 3)

∇ei j
V = Pi(

dV

dt
|t=0)

= Pi lim
t→0

V (γ(t))−V (γ(0))

t

= Pi

(Vx j
−Vxi

)

di j

≈ √
wi j(PiVx j

−Vxi
),

where di j ≈ 1/
√

wi j approximates the geodesic distance di j of xi and x j. There are several ways to

define the weights wi j. Since for neighboring points, Euclidean distance is a good approximation

to the geodesic distance, we can define the Euclidean weights as wi j =
1

‖xi−x j‖2 . If the data are

uniformly sampled from the manifold, then wi j would be almost constant. So in practice, 0− 1

weights is also widely used which is defined as follows:

wi j =

{

1, if xi ∼ x j

0, otherwise.

Since we do not know ∇∂i
V for a given basis ∂i, ‖∇V‖2

HS can not be computed according to

Equation (3). We define a (0,2) symmetric tensor α as α(X ,Y ) = g(∇XV,∇YV ), where X and Y are

vector fields on manifold. We have

Trace(α) =
d

∑
i=1

g(∇∂iV,∇∂i
V )

= ‖∇V‖2
HS,

where ∂1, . . . ,∂d is an orthonormal basis on tangent space. For the trace of α, we have the following

geometric interpretation (see the exercise 1.12 in Chow et al., 2006):

Trace(α) =
1

ωd

∫
Sd−1

α(X ,X)dδ(X),

where Sd−1 is the unit (d−1)-sphere, dωd is its volume, and dδ is its volume form. Thus for a given

point xi, we can approximate ‖∇V |xi
‖HS by the following

‖∇V |xi
‖2

HS = Trace(α)xi

=
1

ωd

∫
Sd−1

α(X ,X)|xi
dδ(X)

≈ ∑
j∈N(i)

‖∇ei j
V‖2

= ∑
j∈N(i)

wi j

∥

∥PiVx j
−Vxi

∥

∥

2
. (7)

For the third equation, the integral on the left hand side is approximated by the discrete summation

on nearest neighbors. It might be worth noting that we implicitly assume that the nearest neighbors
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are uniformly sampled. If the sampling is not uniform, then one should use weighted summation to

approximate the integral.

Combining Equation (5), the optimization problem Equation (6) reduces to:

min
V

E(V) = ∑
i∼ j

wi j

∥

∥PiTjv j −Tivi

∥

∥

2
,

s.t. ‖V‖= 1.

We first optimize E(V) to find parallel vector fields on manifold, and then re-normalize the vector

fields locally.

We will now switch to Lagrangian formulation of the problem. The Lagrangian is as follows:

L = E(V)−λ(VT
V−1).

By matrix calculus, we have

∂E(V)

∂vi

= −2 ∑
j∈N(i)

wi j(T
T

i (PiTjv j −Tivi)−T T
i Pj(PjTivi −Tjv j))

= 2 ∑
j∈N(i)

wi j((T
T

i TjT
T
j Ti + Id)vi −2T T

i Tjv j)

= 2 ∑
j∈N(i)

wi j((Qi jQ
T
i j + Id)vi −2Qi jv j),

where Qi j = T T
i Tj. Then we have

∂E(V)

∂V
= 2BV,B =







B11 · · · B1n

...
. . .

...

Bn1 · · · Bnn






,

where B is a dn×dn sparse block matrix. If we index each d×d block by Bi j, then for i = 1, . . . ,n,

we have

Bii = ∑
j∈N(i)

wi j(Qi jQ
T
i j + I), (8)

Bi j =

{

−2wi jQi j, if xi ∼ x j

0, otherwise.
(9)

Requiring that the gradient of L vanish gives the following eigenvector problem:

BV= λV.

In order to find multiple parallel fields, we just use the eigenvectors corresponding to the small-

est eigenvalues of the matrix B. Recall Corollary 1 tells us that if we want to check the orthogonality

of two parallel fields at every point, it suffices to compute the integral of the inner product of them
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which can be discretely approximated as 〈Vi,V j〉. Since the matrix B is symmetric, its eigenvectors

are mutually orthogonal and, thus, 〈Vi,V j〉= 0.

Recall Corollary 2 tells us for any point p ∈ M , the tangent vector Vp of a parallel field V has a

constant length. In our objective function (6), we only need to add a global normalization constraint

‖V‖ = 1 for the sake of simplicity. After finding d vector fields Vj, j = 1, . . . ,d, we can further

ensure local normalization as follows:

‖Vj|xi
‖= 1,∀i = 1, . . . ,n, j = 1, . . . ,d.

3.3.2 EMBEDDING

Once the parallel vector fields Vi are obtained, the embedding functions fi : M → R can be con-

structed by requiring their gradient fields to be as close to Vi as possible. Recall that, if the manifold

is isometric to Euclidean space, then the vector field computed via Equation (1) is also a gradient

field. However, if the manifold is not isometric to Euclidean space, V may not be a gradient field.

In this case, we try to find the optimal embedding function f in a least-square sense. This can be

achieved by solving the following minimization problem:

Φ( f ) =
∫

M
‖∇ f −V‖2dx.

In order to discretize the above objective function, we first discuss the Taylor expansion of f on the

manifold.

Let expx denote the exponential map at x. The exponential map expx : TxM → M maps the

tangent space TxM to the manifold M . Let a ∈ TxM be a tangent vector. Then there is a unique

geodesic γa satisfying γa(0)= x with initial tangent vector γ′a(0)= a. The corresponding exponential

map is defined by expx(ta) = γa(t), t ∈ [0,1]. Locally, the exponential map is a diffeomorphism.

Note that f ◦ expx : TxM → R is a smooth function on TxM . Then the following Taylor expan-

sion of f holds:

f (expx(a))≈ f (x)+ 〈∇ f (x),a〉, (10)

where a ∈ TxM is a sufficiently small tangent vector. In discrete case, let expxi
denote the exponen-

tial map at xi. Since expxi
is a diffeomorphism, there exists a tangent vector ai j ∈ Txi

M such that

expxi
(ai j) = x j. We approximate ai j by projecting the vector x j − xi to the tangent space, that is,

ai j ≈ Pi(x j − xi). Therefore, Equation (10) can be rewritten as follows:

f (x j) = f (xi)+ 〈∇ f (xi),Pi(x j − xi)〉. (11)

Since f is unknown, ∇ f is also unknown. In the following, we discuss how to compute ‖∇ f (xi)−
Vxi

‖ discretely. We first show that the vector norm can be computed by an integral on a unit sphere,

where the unit sphere can be discretely approximated by a neighborhood.

Let e be a unit vector on tangent space TxM , then we have (see the exercise 1.12 in Chow et al.,

2006)
1

ωd

∫
Sd−1

〈X ,e〉2dδ(X) = 1,

where Sd−1 is the unit (d −1)-sphere, dωd its volume, and dδ its volume form. Let ∂i, i = 1, . . . ,d,

be an orthonormal basis on TxM . Then for any vector b ∈ TxM , it can be written as b = ∑d
i=1 bi∂i.
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Furthermore, we have

‖b‖2 =
d

∑
i=1

(bi)2

=
d

∑
i=1

(bi)2 1

ωd

∫
Sd−1

〈X ,∂i〉2dδ(X)

=
1

ωd

∫
Sd−1

〈X ,b〉2dδ(X).

From Equation (11), we see that

〈∇ f (xi),Pi(x j − xi)〉= f (x j)− f (xi).

Thus, we have

‖∇ f (xi)−Vxi
‖2

=
1

ωd

∫
Sd−1

〈X ,∇ f (xi)−Vxi
〉2dδ(X)

≈ ∑
j∈N(i)

〈ei j,∇ f (xi)−Vxi
〉2

= ∑
j∈N(i)

1

d2
i j

〈ai j,∇ f (xi)−Vxi
〉2

≈ ∑
j∈N(i)

wi j〈Pi(x j − xi),∇ f (xi)−Vxi
〉2

= ∑
j∈N(i)

wi j

(

(Pi(x j − xi))
TVxi

− f (x j)+ f (xi)
)2
,

where ei j is a unit vector and wi j is the weight, and both of which are the same in Section 3.3.1. In

the second equation, the integral is approximated by the discrete summation on nearest neighbors

which is the same in Equation (7). In the fourth equation, the vector ai j is approximated by the

projection vector Pi(x j − xi). Recall that In Section 3.3.1 di j is approximated by 1√
wi j

and we have

‖ai j‖= di j. Next we show these two approximations are coincide as long as wi j = O( 1
‖x j−xi‖2 ). Let

us take the Euclidean weight wi j =
1

‖x j−xi‖2 as an example. We have

lim
x j→xi

‖Pi(x j − xi)‖2

‖x j − xi‖2
= lim

θ→0
cos(θ)2 = 1,

where θ is the angle between vector Pi(x j − xi) and vector x j − xi.

Let yi = f (xi) and y=(y1, . . . ,yn)
T . The objective function Φ( f ) can be discretely approximated

by Φ(y) as follows:

Φ(y) = ∑
i∼ j

wi j

(

(Pi(x j − xi))
TVxi

− y j + yi

)2
.

By setting ∂Ψ(y)/∂y = 0, we get

−∑
i∼ j

wi jsi j(x j − xi)
T PiVxi

+

(

∑
i∼ j

wi jsi js
T
i j

)

y = 0,
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where si j is an all-zero vector except the i-th element being −1 and the j-th element being 1. Let

L = ∑i∼ j wi jsi js
T
i j and c = ∑i∼ j wi jsi j(x j −xi)

T PiVxi
. Then we can rewrite the above linear system as

follows

Ly = c. (12)

Algorithm 1 PFE (Parallel Field Embedding)

Input: Data sample X = (x1, . . . ,xn) ∈ R
m×n

Output: Y = (y1, . . . ,yn) ∈ R
d×n

for i = 1 to n do

Compute tangent spaces Txi
M

end for

Construct matrix B according to Equation (8), Equation (9)

Find the smallest d eigenvalues λ1, . . . ,λd and the associated eigenvectors V1, . . . ,Vd of B

for l = 1 to d do

Construct vector field Vl from local representations Vl

Normalize Vl(xi) to unit-norm for each xi

end for

Solve linear system LY = c

return Y

It is easy to verify that L is a graph Laplacian matrix (Chung, 1997) and its rank is n−1. Thus,

the solution of Equation (12) is not unique. If y∗ is an optimal solution, y∗ + constant is also an

optimal solution. By fixing y1 = 0 in Equation (12), we get a unique solution of y. This is consistent

with the continuous case. If f is an optimal solution of Equation (4), then f + const is also an

optimal solution.

3.3.3 OUT-OF-SAMPLE EXTENSION

Most nonlinear manifold learning algorithms do not have straightforward extension for out-of-

sample examples. Some efforts (Bengio et al., 2003) are made to generalize existing nonlinear

manifold learning algorithms to novel points. We will show that our PFE algorithm has a natural

out-of-sample extension.

Given n training points x1, . . . ,xn and n′ new points xn+1, . . . ,xn+n′ . Our task is to estimate the

embedding results of the new points. For each new point x j, we first find its k nearest points in the

whole data set. Then we compute its tangent space Tx j
M by performing PCA on its neighborhood.

We choose the largest d eigenvectors as the bases of Tx j
M . Let Tj ∈ R

m×d be the matrix whose

columns constitute a orthonormal basis for Tx j
M . For each vector Vx j

, it can be represented by local

coordinates of the tangent space. That is, Vx j
= Tjv j.

Since ∂E/∂V= 2BV and B is a symmetric matrix, we have

E(V ) = V
T BV. (13)

Let V = (VT
o ,V

T
n ) =

(

vT
1 , . . . ,v

T
n ,v

T
n+1, . . . ,vn+n′

)T
, where Vo denotes the tangent vectors on the

original training points and Vn denotes the tangent vectors on new points. Then Equation (13) can
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be written as

E(V) = V
T BV=

[

V
T
o V

T
n

]

[

Boo Bon

Bno Bnn

][

Vo

Vn

]

.

Requiring ∂E(V)/∂Vn = 0, we obtain the following linear system:

BnnVn =−BnoVo.

After solving this linear system, we get the optimal Vn. Actually, one can compute fn in the same

way, where fn denotes the function values on new points. We first construct the Laplacian matrix

involving all points, including both new and old ones. Then taking derivatives with respect to fn,

we obtain the following linear system:

Lnn fn =−Lno fo,

where fo denotes the function values on old points, and Lnn and Lno are block matrices which are

defined in the same way as Bnn and Bno. Note that the procedure described above involves only

local computation on each neighborhood of new samples and solving two sparse linear systems.

Therefore our out-of-sample extension algorithm is quite efficient.

3.3.4 ALGORITHM

The PFE algorithm consists of three steps, which is summarized in Algorithm 1.

3.4 Related Work and Discussion

In this section, we would like to discuss the relationship between our work and related work which

are based on Laplacian, Hessian and connection Laplacian operators.

The approximation of the Laplacian operator using the graph Laplacian Chung (1997) has en-

joyed a great success in the last decade. Several theoretical results (Belkin and Niyogi, 2005; Hein

et al., 2005) also showed the consistency of the approximation. One of the most important features

of the graph Laplacian is that it is coordinate free. That is, the definition of the graph Laplacian

does not depend on any special coordinate systems. The Laplacian operator based methods are mo-

tivated by the smoothness criterion, that is, the norm of the gradient
∫

M ‖∇ f‖ should be small. In

the continuous case, with appropriate boundary conditions we have

∫
M
‖∇ f‖2 =

∫
M

f L( f )dx. (14)

Most of previous work focuses on approximating the continuous Laplacian operator. Next we show

our method provides a direct way to approximate the integral on the left hand side of Equation (14).

First note that

‖∇ f‖2 =
1

ωd

∫
Sd−1

〈X ,b〉2dδ(X).

From Equation (11), we see that

〈∇ f (xi),Pi(x j − xi)〉= f (x j)− f (xi).
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Therefore we have

‖∇ f (xi)‖2 =
1

ωd

∫
Sd−1

〈X ,∇ f (xi)〉2dδ(X)

≈ ∑
j∈N(i)

〈ei j,∇ f (xi)〉2

= ∑
j∈N(i)

1

d2
i j

〈ai j,∇ f (xi)〉2

≈ ∑
j∈N(i)

wi j〈Pi(x j − xi),∇ f (xi)〉2

= ∑
j∈N(i)

wi j ( f (xi)− f (x j))
2 .

It can be seen that this result is consistent with traditional graph Laplacian methods.

Our method is also closely related to the approximation of Hessian operator. Note that if we

replace V by ∇ f in Equation (1), E(V ) becomes Hessian functional (Donoho and Grimes, 2003).

It is evident by noticing that Hess f = ∇∇ f . The estimation of Hessian operator is very difficult

and challenging. Previous approaches (Donoho and Grimes, 2003; Kim et al., 2009) first estimate

normal coordinates on the tangent space, and then estimate the first order derivative of the function

at each point, which turns out to be a matrix pseudo-inversion problem. One major limitation of this

is that when the number of nearest neighbors k is larger than d+ d(d+1)
2

, where d is the dimension of

the manifold, the estimation will be inaccurate and unstable (Kim et al., 2009). This is contradictory

to the asymptotic case, since it is not desirable that k is bounded by a finite number when the data is

sufficiently dense. In contrast, we directly estimate the norm of the second order derivative instead

of trying to estimate its coefficients, which turns out to be an integral problem over the nearest

neighbors. We only need to do simple matrix multiplications to approximate the integral at each

point, but do not have to solve matrix inversion problems. Therefore, asymptotically, we would

expect our method to be much more accurate and robust for the approximation of the norm of the

second order derivative.

The most related work is the Vector Diffusion Maps (VDM, Singer and Wu, 2011) as we both

focus on vector fields rather than embedding functions. VDM is based on the heat kernel for vec-

tor fields rather than for functions over the data. It first constructs the heat kernel and orthogonal

transformations from the weighted graph. Then VDM defines an embedding of the data via full

spectral decomposition of the heat kernel. VDM tries to preserve the newly defined vector diffu-

sion distance for the data when doing embedding. Singer and Wu (2011) also provided theoretical

analysis that the construction for the kernel essentially defines the discrete type of the connection

Laplacian operator and they proved the consistency of such an approximation. We first show that

the objective function of finding parallel vector fields of PFE is the same as VDM. According to

the Bochner technique (please see Section 3.2 in Chapter 7 of Petersen, 1998), with appropriate

boundary conditions we have ∫
M
‖∇V‖2

HS =
∫

M
〈∇∗∇V,V 〉, (15)

where ∇∗∇ is the connection Laplacian operator. VDM approximated the connection Laplacian

operator by generalizing the graph Laplacian operator. We propose to directly approximate the

integral on the left hand side of Equation (15). The approximations of PFE and VDM share several
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similar important features but also differ in several aspects. Firstly, we use the same way to represent

vector fields by using local coordinates of tangent spaces. Intuitively, this is the most natural way

to represent vector fields as long as the data are embedded in Euclidean space, or in other words the

data has features. It would be very interesting to consider the problem of how to represent vector

fields on the graph data, that is, the data that do not have features. Secondly, the approximation of

the covariant derivative is similar but different. The idea of computing the covariant derivative is to

find a way to compute the difference between vectors on different tangent spaces. VDM proposed

an intrinsic way to compute covariant derivative using the concept of parallel transport. They first

transported the vectors to the same tangent space using the parallel transport, and then compute

the difference of vectors on the tangent space. The way of finding the parallel transport between

two points is to compute the orthogonal transformation between two corresponding tangent spaces.

It turns out that computing the parallel transport is a singular value decomposition problem for

each edge of the nearest neighbor graph. Our approach first computes the directional derivative

using the (parallel) transport of vectors on Euclidean space, then projects the directional derivative

to the corresponding tangent space. The main computational cost is the projection which is the

multiplication of matrices with vectors. In continuous cases, they are two different ways to define

the covariant derivative. Thirdly, the discrete type connection Laplacian operators (matrix D−1S− I

in VDM and matrix B in PFE) are different. The difference is that the transformation matrix Oi j

in VDM is orthogonal but the transformation matrix Qi j in PFE is not. It is because that we use

different ways to approximate the covariant derivative. It might be also worth noting that if we use

the orthogonal transformation matrix to compute the covariant derivative, the resulted connection

Laplacian matrix followed by our discrete approximation methods would be the same as VDM.

Overall, VDM uses vector fields to define the vector diffusion distance, while PFE uses vector fields

to find the isometry. Although the procedures of computing vector fields are similar, the motivation

and objective are different.

4. Experiments

In this section, we evaluate our algorithm on several synthetic manifold examples and two real data

sets.

4.1 Topology

In this example, we study the effectiveness of different manifold learning algorithms for isometric

embedding. The data set contains 2000 points sampled from a swiss roll with a hole, which is a 2D

manifold embedded in R
3. The swiss roll is a highly nonlinear manifold. Classical linear algorithms

like PCA cannot preserve the manifold structure. On the other hand, the swiss roll is a flat mani-

fold with zero-curvature everywhere and thus can be isometrically embedded in R
2. We compare

our algorithm with several state-of-the-art nonlinear dimensionality reduction algorithms: Isomap,

Laplacian Eigenmaps (LE), Locally Linear Embedding (LLE), Hessian Eigenmaps (HLLE), and

Maximum Variance Unfolding (MVU).

In all of our experiments, we use a binary-weighted k nearest neighbor graph for each algorithm

that needs to construct a graph. Since the manifold learning algorithms usually rely heavily on

the choice of the number of nearest neighbors for graph construction, we run each algorithm with

the number of nearest neighbors (k) varying in {4, 5, . . . , 20} and show the best results of each

algorithm according to the R-score (to be introduced shortly).
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(d) LLE(R:0.84,Rc:0.15)
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Figure 5: Isometric embedding of 2000 points on a Swiss Roll with a hole. The number of nearest

neighbors (k) is set to the best among {4, 5, . . . , 20} for each algorithm when constructing

the neighborhood graph. (a)-(f) show the embedding results of various algorithms. (g)-(h)

visualize the two vector fields obtained by our algorithm.
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Figure 6: 2000 points are randomly sampled from the Swiss roll with noise. The black points are

used for visualization of the gradient field.
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The embedding results for all algorithms are shown in Figure 5. Both LE and LLE fail to recover

the intrinsic rectangular shape of the original manifold. Isomap performs well at the two ends of

the swiss roll but generate a big distorted hole in the middle. This is due to the fact that Isomap

can not handle non-convex data. MVU also roughly preserved the overall rectangular shape, but it

still generates distortions around the hole. Both HLLE and PFE give very good results. However,

it would be important to note that our PFE algorithm generates an isometric embedding while the

result of HLLE fail to preserve the scale of the coordinates. In order to measure the faithfulness

of the embedding in a quantitative way, we employ the normalized R-score (Goldberg and Ritov,

2009):

R(X ,Y ) =
1

n

n

∑
i=1

G(Xi,Yi)/‖HXi‖2
F .

Here G(Xi,Yi) is the (normalized) Procrustes statistic (Sibson, 1978) which measures the distance

between two configurations of points (the original data Xi and the embedded Yi). H = I − 1
k
11T is

the centering matrix. A local isometry preserving embedding is considered faithful and thus would

get a low R-score. We also report a variant Rc-score (Goldberg and Ritov, 2009)

Rc(X ,Y ) =
1

n

n

∑
i=1

Gc(Xi,Yi)/‖HXi‖2
F ,

where Gc(Xi,Yi) allows not only rotation and translation, but also rescaling when measuring the

distance between two configurations of points. This score can be used to measure conformal map.

Please refer to Goldberg and Ritov (2009) for the details of R-score and Rc-score.

We give the measures of R-score and Rc-score for each algorithm in Figure 5. As can be seen,

PFE outperforms all the other algorithms by achieving the minimum R-score and Rc-score. For R-

score, except for PFE, Isomap and MVU, all the other three algorithms give excessively high value

because their normalization significantly change the scale of the original coordinates. These three

algorithm also performs worse than MVU, Isomap and especially PFE in terms of Rc-score.

4.2 Noise

In this example, we compare the performance of different algorithms on noisy data. 2000 points

are randomly sampled from the swiss roll without hole, as shown in Fig 6. Then we add random

Gaussian noises N (0,σ2) to each dimension. For each given σ2, we repeat our experiment 10 times

with random noise and the average and standard deviation of the Rc-scores are recorded for each

algorithm. The results are shown in Figure 7(a). As can be seen, our PFE method consistently

outperforms other algorithms and is relatively stable even under heavy noise. Isomap performs the

second best. It also achieves very small standard deviation under small noises, but it becomes very

unstable when σ ≥ 0.5.

Figure 7(b) shows the sample points when σ = 0.65 and Figure 7(c)∼(h) show the embedding

results of different algorithms. As can be seen, under such heavy noise, Isomap, LE, and LLE distort

the original Swiss roll. HLLE can expand the manifold correctly to some extent, but there is overlap

at the top. MVU unfolds the manifold correctly, but does not preserve the isometry well. Our PFE

algorithm can successfully recover the intrinsic structure of the manifold.

Note that, algorithms other than PFE do not calculate vector fields explicitly. However, once the

embedding result is obtained, we can reversely estimate the gradient field at each point xi, which is
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Figure 7: Swiss roll with noise. (a) shows the Rc-scores of the five algorithms. (b) shows the

2000 random points sampled from the swiss roll with noise (σ = 0.65). (c∼h) show the

embedding results of the six algorithms.

denoted as ∇ f (xi), by minimizing the following objective function at the local neighborhood of xi :

∑
j∼i

( f (x j)− f (xi)− (Pi(x j − xi)) ·∇ f (xi))
2.

Figure 8 shows the gradient fields obtained by various algorithms. For the purpose of better visual-

ization, we only show the gradient field at part of the Swiss roll (i.e., the black points in Figure 6).
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Figure 8: The gradient fields obtained by the six algorithms for the Swiss roll. For the sake of better

visualization, only part of the gradient fields is shown.
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Figure 9: Embedding results of Gaussian. (a∼f) show the embedding results of the six algorithms.

As can be seen, even with noise, our PFE algorithm can accurately find two orthogonal smooth

vector fields.

4.3 Curvature

Our PFE algorithm tries to find an isometric embedding. When the underlying manifold cannot be

isometrically embedded in R
d , PFE seeks for a least square approximation. The data set used in

this experiment is a Gaussian surface. Note that, there is no isometric map from this surface to R
2.

The embedding results of the six algorithms are shown in Figure 9. As can be seen, except PFE

and LLE, for all the other four algorithms, there is big distortion or overlap. LLE still produces

small distortions at the center of the embedding. Moreover, PFE has the advantage over LLE that it

optimally preserves the global isometry, and therefore achieving much smaller R-score. Even when

measured by the Rc score, PFE outperforms LLE and all the other algorithms.

4.4 Sampling Rate

In this subsection, we test the robustness of our algorithm with respect to the density of data points.

Specifically, we use the swiss roll with a hole manifold, and test our algorithm under different

sampling rates. As shown in Figure 10(a), we run our algorithm on a data set with the number of

data points varying from 200 to 1500 and report the corresponding R-score.

As can be seen, our algorithm produces near-optimal results when the number of points reaches

700. The R-score keeps increasing when the sampling rate reduces. This agrees with the com-

mon sense that it is difficult to analyze a small number of samples. However, the R-score does

not increase too much even with small sampling rate. As we visualized in Figure 10(b) and (c),
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Figure 10: Robustness with respect to the sampling rate. (a) shows the R-score achieved by PFE

on the swiss roll with hole data set, with respect to different numbers of samples (i.e.,

different sampling rates). (b) and (c) give the visualization of the embedding obtained

from 200 samples and 300 samples, respectively.

although the result of 200 points is distorted and overlapped, the result of 300 points is good. This

demonstrates the robustness of our algorithm with respect to different sampling rates.

4.5 Face Manifold

We consider the application of our algorithm on a real-world face data set. The data set2 contains

698 64× 64 gray-scale face images. So each face image is represented as a point in the 4096-

dimensional Euclidean space. However, the intrinsic dimensionality may be very low, because the

face images are rendered with variations on two pose parameters (up-down and left-right) and one

lighting condition parameter. By applying our PFE algorithm, the face images are embedded in a

two-dimensional space as shown in Figure 11. We show some representative images selected along

the boundary of the embedding. As can be seen, the new coordinates can accurately reflect the face

variations.

4.6 Classification after Embedding

In many scenarios, calculating the low-dimensional embedding of the data manifold is not the fi-

nal step. So another popular evaluation of dimensionality reduction algorithms is to measure the

performance of general machine learning algorithms on the low-dimensional representation. In this

subsection, we compare the dimensionality reduction algorithms by evaluating the accuracy of 1NN

classification on the low-dimensional data.

Specifically, we work with the CMU PIE face data set (Sim et al., 2003). This data set contains

68 subjects with 41,368 face images as a whole. The face images were captured by 13 synchronized

cameras and 21 flashes, under varying pose, illumination and expression. We use the frontal pose

(C27) subset with varying lighting and illumination in this experiment. Each face image is of the size

32×32, and we simply work with the raw pixel features without preprocessing. For each algorithm,

we calculate the low-dimensional embedding, and then run face recognition with simple Nearest-

neighbor classifier. The classification results for 2, 3, 4 and 5 training labels for each person3 are

2. It is available online from http://isomap.stanford.edu/face_data.mat.Z.

3. Labels are randomly chosen and 10 repetitions are run to calculate the averaged performance.
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Figure 11: Face manifold embedding. A face data set of 698 images is embedded in the 2-

dimensional Euclidean space. Some representative face images are selected along the

boundary.

shown in Figure 12. We also show the baseline performance, which corresponds to classification in

the original feature space without dimensionality reduction.

As we can see, PFE performs best around dimension 250. It is interesting to see that PFE does

not outperform other algorithm when the dimension is very low. But a significant performance gap

over other algorithms as well as the baseline can be observed when comparing the peak performance.

4.7 Out-of-Sample Extension

In this experiment, we evaluate the effectiveness of our PFE algorithm for out-of-sample extension.

The data set used here is the face data set used in Section 4.5. Specifically, we leave 4 points

(corresponding to 4 different poses) out and compute the embedding of the remaining 694 points.

The embedding result is shown in Figure 13, which looks almost identical to the previous result

in Figure 11. Then we compute the embedding of the 4 testing points by using our out-of-sample

extension algorithm. The 4 testing points associated with their face images are shown in Figure 13.

As can be seen, these testing samples optimally find their coordinates which reflect their intrinsic

property, that is, pose variation. Note beside poses, there is one extra degree of freedom (light

condition) in this data set. By embedding the data points in a plane, we ignore the factor of light

condition.
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Figure 12: Classification after embedding. Baseline shows the performance without dimensionality

reduction.

We also demonstrate the performance of out-of-sample extension by using synthetic data. Specif-

ically, 300 points are uniformly sampled from the swiss roll and embedded in a two-dimensional

space by using our PFE algorithm. Then we randomly sample 5000 other points from the same

manifold and embed them by using our out-of-sample extension algorithm. The 300 training points

and the final embedding results of all samples are shown in Figure 14(a) and Figure 14(b), respec-

tively. As can be seen, our algorithm can find a faithful embedding for both training and testing

points.

5. Conclusion

We have introduced a novel local isometry based dimensionality reduction method from the perspec-

tive of vector field. Learning on manifold has three most important aspects: geometry, topology and

functions on the manifold. Interestingly, there is strong connection between these three aspects and

the vector fields on the manifold. In this paper, we are particularly interested in the connection be-

tween the geometry and the vector fields on the manifold. A variational method is proposed to find

vector fields as parallel as possible on the manifold. The property of such vector field reflects the in-
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Figure 13: Out-of-sample extension for the face data set. As can be seen, these four testing sam-

ples optimally find their coordinates which reflect their intrinsic property, that is, pose

variation.
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Figure 14: Out-of-sample extension on the Swiss Roll. (a) shows the 300 uniformly sampled train-

ing points. (b) shows the embedding results of both the 300 training points and the 5000

testing points. Both R-score and Rc-score equal to 0.00 in this experiment.
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trinsic geometry and topology of the manifold. If the manifold is isometric to Euclidean space, then

the obtained vector field is parallel. If the manifold has high curvature or complex topology, then

the obtained vector field may be twisted and may have loops or singular points. These properties

can be used to study the intrinsic structure of the manifold.

Parallel fields play a central role for finding an isometry. Moreover, parallel fields provide a

natural parametric representation of the manifold. Besides dimensionality reduction, they are also

useful for other learning problems on the manifold. For example, we can perform classification and

regression on the manifold by requiring that the function varies smoothly along the vector fields.
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Abstract

Multi-task sparse feature learning aims to improve the generalization performance by exploiting

the shared features among tasks. It has been successfully applied to many applications includ-

ing computer vision and biomedical informatics. Most of the existing multi-task sparse feature

learning algorithms are formulated as a convex sparse regularization problem, which is usually

suboptimal, due to its looseness for approximating an ℓ0-type regularizer. In this paper, we pro-

pose a non-convex formulation for multi-task sparse feature learning based on a novel non-convex

regularizer. To solve the non-convex optimization problem, we propose a Multi-Stage Multi-Task

Feature Learning (MSMTFL) algorithm; we also provide intuitive interpretations, detailed con-

vergence and reproducibility analysis for the proposed algorithm. Moreover, we present a detailed

theoretical analysis showing that MSMTFL achieves a better parameter estimation error bound than

the convex formulation. Empirical studies on both synthetic and real-world data sets demonstrate

the effectiveness of MSMTFL in comparison with the state of the art multi-task sparse feature

learning algorithms.

Keywords: multi-task learning, multi-stage, non-convex, sparse learning

1. Introduction

Multi-task learning (MTL) (Caruana, 1997) exploits the relationships among multiple related tasks

to improve the generalization performance. It has been successfully applied to many applications

such as speech classification (Parameswaran and Weinberger, 2010), handwritten character recog-

nition (Obozinski et al., 2006; Quadrianto et al., 2010) and medical diagnosis (Bi et al., 2008). One

common assumption in multi-task learning is that all tasks should share some common structures

c©2013 Pinghua Gong, Jieping Ye and Changshui Zhang.
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including the prior or parameters of Bayesian models (Schwaighofer et al., 2005; Yu et al., 2005;

Zhang et al., 2006), a similarity metric matrix (Parameswaran and Weinberger, 2010), a classifica-

tion weight vector (Evgeniou and Pontil, 2004), a low rank subspace (Chen et al., 2010; Negahban

and Wainwright, 2011) and a common set of shared features (Argyriou et al., 2008; Gong et al.,

2012; Kim and Xing, 2009; Kolar et al., 2011; Lounici et al., 2009; Liu et al., 2009; Negahban and

Wainwright, 2008; Obozinski et al., 2006; Yang et al., 2009; Zhang et al., 2010).

Multi-task feature learning, which aims to learn a common set of shared features, has received

a lot of interests in machine learning recently, due to the popularity of various sparse learning

formulations and their successful applications in many problems. In this paper, we focus on a

specific multi-task feature learning setting, in which we learn the features specific to each task

as well as the common features shared among tasks. Although many multi-task feature learning

algorithms have been proposed in the past, many of them require the relevant features to be shared

by all tasks. This is too restrictive in real-world applications (Jalali et al., 2010). To overcome this

limitation, Jalali et al. (2010) proposed an ℓ1 + ℓ1,∞ regularized formulation, called “dirty model”,

to leverage the common features shared among tasks. The dirty model allows a certain feature to be

shared by some tasks but not all tasks. Jalali et al. (2010) also presented a theoretical analysis under

the incoherence condition (Donoho et al., 2006; Obozinski et al., 2011) which is more restrictive

than RIP (Candes and Tao, 2005; Zhang, 2012). The ℓ1 + ℓ1,∞ regularizer is a convex relaxation of

an ℓ0-type one, in which a globally optimal solution can be obtained. However, a convex regularizer

is known to be too loose to approximate the ℓ0-type one and often achieves suboptimal performance

(either require restrictive conditions or obtain a suboptimal error bound) (Zou and Li, 2008; Zhang,

2010, 2012; Zhang and Zhang, 2012; Shen et al., 2012; Fan et al., 2012). To remedy the limitation,

a non-convex regularizer can be used instead. However, the non-convex formulation is usually

difficult to solve and a globally optimal solution can not be obtained in most practical problems.

Moreover, the solution of the non-convex formulation heavily depends on the specific optimization

algorithms employed. Even with the same optimization algorithm adopted, different initializations

usually lead to different solutions. Thus, it is often challenging to analyze the theoretical behavior

of a non-convex formulation.

We propose a non-convex formulation, called capped-ℓ1,ℓ1 regularized model for multi-task fea-

ture learning. The proposed model aims to simultaneously learn the features specific to each task

as well as the common features shared among tasks. We propose a Multi-Stage Multi-Task Feature

Learning (MSMTFL) algorithm to solve the non-convex optimization problem. We also provide

intuitive interpretations of the proposed algorithm from several aspects. In addition, we present a

detailed convergence analysis for the proposed algorithm. To address the reproducibility issue of

the non-convex formulation, we show that the solution generated by the MSMTFL algorithm is

unique (i.e., the solution is reproducible) under a mild condition, which facilitates the theoretical

analysis of the MSMTFL algorithm. Although the MSMTFL algorithm may not obtain a globally

optimal solution, we show that this solution achieves good performance. Specifically, we present a

detailed theoretical analysis on the parameter estimation error bound for the MSMTFL algorithm.

Our analysis shows that, under the sparse eigenvalue condition which is weaker than the incoherence

condition used in Jalali et al. (2010), MSMTFL improves the error bound during the multi-stage iter-

ation, that is, the error bound at the current iteration improves the one at the last iteration. Empirical

studies on both synthetic and real-world data sets demonstrate the effectiveness of the MSMTFL

algorithm in comparison with the state of the art algorithms.
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1.1 Notations and Organization

Scalars and vectors are denoted by lower case letters and bold face lower case letters, respectively.

Matrices and sets are denoted by capital letters and calligraphic capital letters, respectively. The ℓ1

norm, Euclidean norm, ℓ∞ norm and Frobenius norm are denoted by ‖ · ‖1, ‖ · ‖, ‖ · ‖∞ and ‖ · ‖F ,

respectively. | · | denotes the absolute value of a scalar or the number of elements in a set, depending

on the context. We define the ℓp,q norm of a matrix X as ‖X‖p,q =
(

∑i

(

(∑ j |xi j|q)1/q
)p
)1/p

. We

define Nn as {1, · · · ,n} and N(µ,σ2) as the normal distribution with mean µ and variance σ2. For

a d ×m matrix W and sets Ii ⊆ Nd ×{i},I ⊆ Nd ×Nd , we let wIi
be the d ×1 vector with the j-th

entry being w ji, if ( j, i) ∈ Ii, and 0, otherwise. We also let WI be a d ×m matrix with the ( j, i)-th
entry being w ji, if ( j, i) ∈ I , and 0, otherwise.

In Section 2, we introduce a non-convex formulation and present the corresponding optimization

algorithm. In Section 3, we discuss the convergence and reproducibility issues of the MSMTFL

algorithm. In Section 4, we present a detailed theoretical analysis on the MSMTFL algorithm, in

terms of the parameter estimation error bound. In Section 5, we provide a sketch of the proof of

the presented theoretical results (the detailed proof is provided in the Appendix). In Section 6, we

report the experimental results and we conclude the paper in Section 7.

2. The Proposed Formulation and Algorithm

In this section, we first propose a non-convex formulation for multi-task feature learning, based

on the capped-ℓ1, ℓ1 regularization. Then, we show how to solve the corresponding non-convex

optimization problem. Finally, we provide intuitive interpretations and discussions for the proposed

algorithm.

2.1 A Non-convex Formulation

Assume we are given m learning tasks associated with training data {(X1,y1), · · · ,(Xm,ym)}, where

Xi ∈ R
ni×d is the data matrix of the i-th task with each row as a sample; yi ∈ R

ni is the response

of the i-th task; d is the data dimensionality; ni is the number of samples for the i-th task. We

consider learning a weight matrix W = [w1, · · · ,wm] ∈ R
d×m (wi ∈ R

d , i ∈ Nm) consisting of the

weight vectors for m linear predictive models: yi ≈ fi(Xi) = Xiwi, i ∈Nm. In this paper, we propose

a non-convex multi-task feature learning formulation to learn these m models simultaneously, based

on the capped-ℓ1,ℓ1 regularization. Specifically, we first impose the ℓ1 penalty on each row of W ,

obtaining a column vector. Then, we impose the capped-ℓ1 penalty (Zhang, 2010, 2012) on that

vector. Formally, we formulate our proposed model as follows:

capped−ℓ1, ℓ1 : min
W∈Rd×m

{

l(W )+λ
d

∑
j=1

min
(

‖w j‖1,θ
)

}

, (1)

where l(W ) is an empirical loss function of W ; λ (> 0) is a parameter balancing the empirical loss

and the regularization; θ (> 0) is a thresholding parameter; w j is the j-th row of the matrix W . In

this paper, we focus on the following quadratic loss function:

l(W ) =
m

∑
i=1

1

mni

‖Xiwi −yi‖2 . (2)
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Intuitively, due to the capped-ℓ1, ℓ1 penalty, the optimal solution of Equation (1) denoted as

W ⋆ has many zero rows. For a nonzero row (w⋆)k, some entries may be zero, due to the ℓ1-norm

imposed on each row of W . Thus, under the formulation in Equation (1), some features can be

shared by some tasks but not all the tasks. Therefore, the proposed formulation can leverage the

common features shared among tasks.

2.2 Two Relevant Non-convex Formulations

In this subsection, we discuss two relevant non-convex formulations. The first one is the capped-ℓ1

feature learning formulation:

capped−ℓ1 : min
W∈Rd×m

{

l(W )+λ
d

∑
j=1

m

∑
i=1

min(|w ji|,θ)
}

. (3)

Although the optimal solution of formulation (3) has a similar sparse pattern to that of the proposed

capped-ℓ1, ℓ1 multi-task feature learning (i.e., the optimal solution can have many zero rows and

enable some entries of a non-zero row to be zero), the models for different tasks decouple and thus

formulation (3) is equivalent to the single task feature learning. Thus, the existing analysis for the

single task setting in Zhang (2010, 2012) can be trivially adapted to this setting. The second one is

the capped-ℓ1, ℓ2 multi-task feature learning formulation:

capped−ℓ1, ℓ2 : min
W∈Rd×m

{

l(W )+λ
d

∑
j=1

min
(

‖w j‖,θ
)

}

. (4)

Due to the use of the capped-ℓ1, ℓ2 penalty, the optimal solution W ⋆ of formulation (4) has many

zero rows. However, any non-zero row of W ⋆ is less likely to contain zero entries because of the

Euclidean norm imposed on the rows of W . In other words, each row of W ⋆ is either a zero vector or

a vector composed of all non-zero entries. Thus, in this setting, some relevant features are required

to be shared by all tasks. This is obviously different from the motivation of the proposed capped-

ℓ1, ℓ1 multi-task feature learning, that is, some features are shared by some tasks but not all the

tasks.

2.3 Optimization Algorithm

The formulation in Equation (1) is non-convex and is difficult to solve. In this paper, we propose

an algorithm called Multi-Stage Multi-Task Feature Learning (MSMTFL) to solve the optimization

problem (see details in Algorithm 1).1 In this algorithm, a key step is how to efficiently solve

Equation (5). Observing that the objective function in Equation (5) can be decomposed into the

sum of a differential loss function and a non-differential regularization term, we employ FISTA

(Beck and Teboulle, 2009) to solve the sub-problem. In the following, we present some intuitive

interpretations of the proposed algorithm from several aspects.

1. We can use MSMTFL-type algorithms to solve the non-convex multi-task feature learning problems in Eqs. (3) and

(4). Please refer to Appendix C for details.
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Algorithm 1: MSMTFL: Multi-Stage Multi-Task Feature Learning

1 Initialize λ
(0)
j = λ;

2 for ℓ= 1,2, · · · do

3 Let Ŵ (ℓ) be a solution of the following problem:

min
W∈Rd×m

{

l(W )+
d

∑
j=1

λ
(ℓ−1)
j ‖w j‖1

}

. (5)

4 Let λ
(ℓ)
j = λI(‖(ŵ(ℓ)) j‖1 < θ) ( j = 1, · · · ,d), where (ŵ(ℓ)) j is the j-th row of Ŵ (ℓ) and

I(·) denotes the {0,1}-valued indicator function.

5 end

2.3.1 LOCALLY LINEAR APPROXIMATION

First, we define two auxiliary functions:

h : Rd×m 7→ R
d
+, h(W ) =

[

‖w1‖1, · · · ,‖wd‖1

]T

,

g : Rd
+ 7→ R+, g(u) =

d

∑
j=1

min(u j,θ).

We note that g(·) is a concave function and we say that a vector s ∈ R
d is a sub-gradient of g at

v ∈ R
d
+, if for all vector u ∈ R

d
+, the following inequality holds:

g(u)≤ g(v)+ 〈s,u−v〉,

where 〈·, ·〉 denotes the inner product. Using the functions defined above, Equation (1) can be

equivalently rewritten as follows:

min
W∈Rd×m

{l(W )+λg(h(W ))} . (6)

Based on the definition of the sub-gradient for a concave function given above, we can obtain an

upper bound of g(h(W )) using a locally linear approximation at h(Ŵ (ℓ)):

g(h(W ))≤ g(h(Ŵ (ℓ)))+
〈

s(ℓ),h(W )−h(Ŵ (ℓ))
〉

,

where s(ℓ) is a sub-gradient of g(u) at u = h(Ŵ (ℓ)). Furthermore, we can obtain an upper bound of

the objective function in Equation (6), if the solution Ŵ (ℓ) at the ℓ-th iteration is available:

∀W ∈ R
d×m : l(W )+λg(h(W ))≤ l(W )+λg(h(Ŵ (ℓ)))+λ

〈

s(ℓ),h(W )−h(Ŵ (ℓ))
〉

. (7)

It can be shown that a sub-gradient of g(u) at u = h(Ŵ (ℓ)) is

s(ℓ) =
[

I(‖(ŵ(ℓ))1‖1 < θ), · · · , I(‖(ŵ(ℓ))d‖1 < θ)
]T

, (8)
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which is used in Step 4 of Algorithm 1. Since both λ and h(Ŵ (ℓ)) are constant with respect to W ,

we have

Ŵ (ℓ+1) = argmin
W

{

l(W )+λg(h(Ŵ (ℓ)))+λ
〈

s(ℓ),h(W )−h(Ŵ (ℓ))
〉}

= argmin
W

{

l(W )+λ(s(ℓ))T h(W )
}

,

which, as shown in Step 3 of Algorithm 1, obtains the next iterative solution by minimizing the

upper bound of the objective function in Equation (6). Thus, in the viewpoint of the locally linear

approximation, we can understand Algorithm 1 as follows: The original formulation in Equation (6)

is non-convex and is difficult to solve; the proposed algorithm minimizes an upper bound in each

step, which is convex and can be solved efficiently. It is closely related to the Concave Convex

Procedure (CCCP) (Yuille and Rangarajan, 2003). In addition, we can easily verify that the objective

function value decreases monotonically as follows:

l(Ŵ (ℓ+1))+λg(h(Ŵ (ℓ+1)))≤ l(Ŵ (ℓ+1))+λg(h(Ŵ (ℓ)))+λ
〈

s(ℓ),h(Ŵ (ℓ+1))−h(Ŵ (ℓ))
〉

≤ l(Ŵ (ℓ))+λg(h(Ŵ (ℓ)))+λ
〈

s(ℓ),h(Ŵ (ℓ))−h(Ŵ (ℓ))
〉

= l(Ŵ (ℓ))+λg(h(Ŵ (ℓ))),

where the first inequality is due to Equation (7) and the second inequality follows from the fact that

Ŵ (ℓ+1) is a minimizer of the right hand side of Equation (7).

An important issue we should mention is that a monotonic decrease of the objective function

value does not guarantee the convergence of the algorithm, even if the objective function is strictly

convex and continuously differentiable (see an example in the book (Bertsekas, 1999, Fig 1.2.6)).

In Section 3.1, we will formally discuss the convergence issue.

2.3.2 BLOCK COORDINATE DESCENT

Recall that g(u) is a concave function. We can define its conjugate function as (Rockafellar, 1970):

g⋆(v) = inf
u
{vT u−g(u)}.

Since g(u) is also a closed function (i.e., the epigraph of g(u) is convex), the conjugate function of

g⋆(v) is the original function g(u) (Bertsekas, 1999, Chap. 5.4), that is:

g(u) = inf
v
{uT v−g⋆(v)}. (9)

Substituting Equation (9) with u = h(W ) into Equation (6), we can reformulate Equation (6) as:

min
W,v

{

f (W,v) = l(W )+λvT h(W )−λg⋆(v)
}

(10)

A straightforward algorithm for optimizing Equation (10) is the block coordinate descent (Grippo

and Sciandrone, 2000; Tseng, 2001) summarized below:
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• Fix W = Ŵ (ℓ):

v̂(ℓ) = argmin
v

{

l(Ŵ (ℓ))+λvT h(Ŵ (ℓ))−λg⋆(v)
}

= argmin
v

{

vT h(Ŵ (ℓ))−g⋆(v)
}

. (11)

Based on Equation (9) and the Danskin’s Theorem (Bertsekas, 1999, Proposition B.25), one

solution of Equation (11) is given by a sub-gradient of g(u) at u = h(Ŵ (ℓ)). That is, we can

choose v̂(ℓ) = s(ℓ) given in Equation (8). Apparently, Equation (11) is equivalent to Step 4 in

Algorithm 1.

• Fix v = v̂(ℓ) =
[

I(‖(ŵ(ℓ))1‖1 < θ), · · · , I(‖(ŵ(ℓ))d‖1 < θ)
]T

:

Ŵ (ℓ+1) = argmin
W

{

l(W )+λ(v̂(ℓ))T h(W )−λg⋆(v̂(ℓ))
}

= argmin
W

{

l(W )+λ(v̂(ℓ))T h(W )
}

, (12)

which corresponds to Step 3 of Algorithm 1.

The block coordinate descent procedure is intuitive, however, it is non-trivial to analyze its conver-

gence behavior. We will present the convergence analysis in Section 3.1.

2.3.3 DISCUSSIONS

If we terminate the algorithm with ℓ= 1, the MSMTFL algorithm is equivalent to the ℓ1 regularized

multi-task feature learning algorithm (Lasso). Thus, the solution obtained by MSMTFL can be

considered as a multi-stage refinement of that of Lasso. Basically, the MSMTFL algorithm solves a

sequence of weighted Lasso problems, where the weights λ j’s are set as the product of the parameter

λ in Equation (1) and a {0,1}-valued indicator function. Specifically, a penalty is imposed in the

current stage if the ℓ1-norm of some row of W in the last stage is smaller than the threshold θ;

otherwise, no penalty is imposed. In other words, MSMTFL in the current stage tends to shrink

the small rows of W and keep the large rows of W in the last stage. However, Lasso (corresponds

to ℓ = 1) penalizes all rows of W in the same way. It may incorrectly keep the irrelevant rows

(which should have been zero rows) or shrink the relevant rows (which should have been large

rows) to be zero vectors. MSMTFL overcomes this limitation by adaptively penalizing the rows

of W according to the solution generated in the last stage. One important question is whether the

MSMTFL algorithm can improve the performance during the multi-stage iteration. In Section 4, we

will theoretically show that the MSMTFL algorithm indeed achieves the stagewise improvement in

terms of the parameter estimation error bound. That is, the error bound in the current stage improves

the one in the last stage. Empirical studies in Section 6 also validate the presented theoretical

analysis.

3. Convergence and Reproducibility Analysis

In this section, we first present the convergence analysis. Then, we discuss the reproducibility issue

for the MSMTFL algorithm.
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3.1 Convergence Analysis

The main convergence result is summarized in the following theorem, which is based on the block

coordinate descent interpretation.

Theorem 1 Let (W ⋆,v⋆) be a limit point of the sequence {Ŵ (ℓ), v̂(ℓ)} generated by the block coor-

dinate descent algorithm. Then W ⋆ is a critical point of Equation (1).

Proof Based on Equation (11) and Equation (12), we have

f (Ŵ (ℓ), v̂(ℓ))≤ f (Ŵ (ℓ),v), ∀v ∈ R
d ,

f (Ŵ (ℓ+1), v̂(ℓ))≤ f (W, v̂(ℓ)), ∀W ∈ R
d×m. (13)

It follows that

f (Ŵ (ℓ+1), v̂(ℓ+1))≤ f (Ŵ (ℓ+1), v̂(ℓ))≤ f (Ŵ (ℓ), v̂(ℓ)),

which indicates that the sequence { f (Ŵ (ℓ), v̂(ℓ))} is monotonically decreasing. Since (W ⋆,v⋆) is a

limit point of {Ŵ (ℓ), v̂(ℓ)}, there exists a subsequence K such that

lim
ℓ∈K →∞

(Ŵ (ℓ), v̂(ℓ)) = (W ⋆,v⋆).

We observe that

f (W,v) = l(W )+λvT h(W )−λg⋆(v)

≥ l(W )+λg(h(W ))≥ 0,

where the first inequality above is due to Equation (9). Thus, { f (Ŵ (ℓ), v̂(ℓ))}ℓ∈K is bounded below.

Together with the fact that { f (Ŵ (ℓ), v̂(ℓ))} is decreasing, limℓ→∞ f (Ŵ (ℓ), v̂(ℓ)) > −∞ exists. Since

f (W,v) is continuous, we have

lim
ℓ→∞

f (Ŵ (ℓ), v̂(ℓ)) = lim
ℓ∈K →∞

f (Ŵ (ℓ), v̂(ℓ)) = f (W ⋆,v⋆).

Taking limits on both sides of Equation (13) with ℓ ∈ K → ∞, we have

f (W ⋆,v⋆)≤ f (W,v⋆), ∀W ∈ R
d×m,

which implies

W ⋆ ∈ argmin
W

f (W,v⋆)

= argmin
W

{

l(W )+λ(v⋆)T h(W )−λg⋆(v⋆)
}

= argmin
W

{

l(W )+λ(v⋆)T h(W )
}

. (14)

Therefore, the zero matrix O must be a sub-gradient of the objective function in Equation (14) at

W =W ⋆ :

O ∈ ∂l(W ⋆)+λ∂
(

(v⋆)T h(W ⋆)
)

= ∂l(W ⋆)+λ
d

∑
j=1

v⋆j∂
(

‖(w⋆) j‖1

)

, (15)
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where ∂l(W ⋆) denotes the sub-differential (which is a set composed of all sub-gradients) of l(W ) at

W =W ⋆. We observe that

v̂(ℓ) ∈ ∂g(u)|u=h(Ŵ (ℓ)),

which implies that ∀x ∈ R
d
+:

g(x)≤ g(h(Ŵ (ℓ)))+
〈

v̂(ℓ),x−h(Ŵ (ℓ))
〉

.

Taking limits on both sides of the above inequality with ℓ ∈ K → ∞, we have:

g(x)≤ g(h(W ⋆))+ 〈v⋆,x−h(W ⋆)〉 ,

which implies that v⋆ is a sub-gradient of g(u) at u = h(W ⋆), that is:

v⋆ ∈ ∂g(u)|u=h(W ⋆). (16)

Note that the objective function of Equation (1) can be written as a difference of two convex func-

tions:

l(W )+λ
d

∑
j=1

min
(

‖w j‖1,θ
)

= (l(W )+λ‖W‖1,1)−λ
d

∑
j=1

max
(

‖w j‖1 −θ,0
)

.

Based on Wright et al. (2009); Toland (1979), we know that W ⋆ is a critical point of Equation (1) if

the following holds:

O ∈ (∇l(W ⋆)+λ∂‖W ⋆‖1,1)−λ
d

∑
j=1

∂max
(

‖(w⋆) j‖1 −θ,0
)

. (17)

Substituting Equation (16) into Equation (15), we can obtain Equation (17). Therefore, W ⋆ is a

critical point of Equation (1). This completes the proof of Theorem 1.

Due to the equivalence between Algorithm 1 and the block coordinate descent algorithm above,

Theorem 1 indicates that any limit point of the sequence {Ŵ (ℓ)} generated by Algorithm 1 is a

critical point of Equation (1). The remaining issue is to analyze the performance of the critical

point. In the sequel, we will conduct analysis in two aspects: reproducibility and the parameter

estimation performance.

3.2 Reproducibility of The Algorithm

In general, it is difficult to analyze the performance of a non-convex formulation, as different solu-

tions can be obtained due to different initializations. One natural question is whether the solution

generated by Algorithm 1 (based on the initialization of λ
(0)
j = λ in Step 1) is reproducible. In other

words, is the solution of Algorithm 1 unique? If we can guarantee that, for any ℓ ≥ 1, the solution

Ŵ (ℓ) of Equation (5) is unique, then the solution generated by Algorithm 1 is unique. That is, the

solution is reproducible. The main result is summarized in the following theorem:
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Theorem 2 If Xi ∈ R
ni×d (i ∈ Nm) has entries drawn from a continuous probability distribution

on Rnid , then, for any ℓ ≥ 1, the optimization problem in Equation (5) has a unique solution with

probability one.

Proof Equation (5) can be decomposed into m independent smaller minimization problems:

ŵ
(ℓ)
i = argmin

wi∈Rd

1

mni

‖Xiwi −yi‖2 +
d

∑
j=1

λ
(ℓ−1)
j |w ji|.

Next, we only need to prove that the solution of the above optimization problem is unique. To sim-

plify the notations, we unclutter the above equation (by ignoring some superscripts and subscripts)

as follows:

ŵ = argmin
w∈Rd

1

mn
‖Xw−y‖2 +

d

∑
j=1

λ j|w j|, (18)

The first order optimal condition is ∀ j ∈ Nd :

2

mn
xT

j (y−Xŵ) = λ jsign(ŵ j),

where sign(ŵ j) = 1, if ŵ j > 0; sign(ŵ j) = −1, if ŵ j < 0; and sign(ŵ j) ∈ [−1,1], otherwise. We

define

E =

{

j ∈ Nd :
2

mn
|xT

j (y−Xŵ)|= λ j

}

,

s = sign

(

2

mn
XT

E (y−Xŵ)

)

,

where XE denotes the matrix composed of the columns of X indexed by E . Then, the optimal

solution ŵ of Equation (18) satisfies

ŵNd\E = 0,

ŵE = argmin
wE∈R|E |

1

mn
‖XE wE −y‖2 + ∑

j∈E

λ j|w j|, (19)

where wE denotes the vector composed of entries of w indexed by E . Since X ∈ R
ni×d is drawn

from the continuous probability distribution, X has columns in general positions with probability

one and hence rank(XE ) = |E | (or equivalently Null(XE ) = {0}), due to Lemma 3, Lemma 4 and

their discussions in Tibshirani (2013). Therefore, the objective function in Equation (19) is strictly

convex. Noticing that Xŵ is unique (Tibshirani, 2013), thus E is unique. This implies that ŵE is

unique. Thus, the optimal solution ŵ of Equation (18) is also unique and so is the optimization

problem in Equation (5) for any ℓ≥ 1. This completes the proof of Theorem 2.

Theorem 2 is important in the sense that it makes the theoretical analysis for the parameter estima-

tion performance of Algorithm 1 possible. Although the solution may not be globally optimal, we

show in the next section that the solution has good performance in terms of the parameter estimation

error bound.
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Remark 3 Zhang (2010, 2012) study the capped-ℓ1 regularized formulation for the single task

setting and propose the multi-stage algorithm for such formulation. However, Zhang (2010, 2012)

neither provide detailed convergence analysis nor discuss the reproducibility issues. The presented

analysis is applicable to the multi-stage algorithm proposed in Zhang (2010, 2012), as it is a special

case of the proposed algorithm with m = 1. To our best knowledge, this is the first work that

discusses the reproducibility issue for multi-stage optimization algorithms.

4. Parameter Estimation Error Bound

In this section, we theoretically analyze the parameter estimation performance of the solution ob-

tained by the MSMTFL algorithm. To simplify the notations in the theoretical analysis, we assume

that the number of samples for all the tasks are the same. However, our theoretical analysis can be

easily extended to the case where the tasks have different sample sizes.

We first present a sub-Gaussian noise assumption which is very common in the analysis of

sparse learning literature (Zhang and Zhang, 2012; Zhang, 2008, 2009, 2010, 2012).

Assumption 1 Let W̄ = [w̄1, · · · , w̄m] ∈ R
d×m be the underlying sparse weight matrix and yi =

Xiw̄i +δi, Eyi = Xiw̄i, where δi ∈ R
n is a random vector with all entries δ ji ( j ∈ Nn, i ∈ Nm) being

independent sub-Gaussians: there exists σ > 0 such that ∀ j ∈ Nn, i ∈ Nm, t ∈ R:

Eδ ji
exp(tδ ji)≤ exp

(

σ2t2

2

)

.

Remark 4 We call the random variable satisfying the condition in Assumption 1 sub-Gaussian,

since its moment generating function is bounded by that of a zero mean Gaussian random variable.

That is, if a normal random variable x ∼ N(0,σ2), then we have:

Eexp(tx) =
∫ ∞

−∞
exp(tx)

1√
2πσ

exp

(

− x2

2σ2

)

dx

= exp(σ2t2/2)
∫ ∞

−∞

1√
2πσ

exp

(

−(x−σ2t)2

2σ2

)

dx

= exp(σ2t2/2).

Remark 5 Based on the Hoeffding’s Lemma, for any random variable x ∈ [a,b] and Ex = 0, we

have E(exp(tx)) ≤ exp
(

t2(b−a)2

8

)

. Therefore, both zero mean Gaussian and zero mean bounded

random variables are sub-Gaussians. Thus, the sub-Gaussian noise assumption is more general

than the Gaussian noise assumption which is commonly used in the multi-task learning literature

(Jalali et al., 2010; Lounici et al., 2009).

We next introduce the following sparse eigenvalue concept which is also common in the analysis

of sparse learning literature (Zhang and Huang, 2008; Zhang and Zhang, 2012; Zhang, 2009, 2010,

2012).

Definition 6 Given 1 ≤ k ≤ d, we define

ρ+
i (k) = sup

w

{‖Xiw‖2

n‖w‖2
: ‖w‖0 ≤ k

}

, ρ+
max(k) = max

i∈Nm

ρ+
i (k),

ρ−
i (k) = inf

w

{‖Xiw‖2

n‖w‖2
: ‖w‖0 ≤ k

}

, ρ−
min(k) = min

i∈Nm

ρ−
i (k).
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Remark 7 ρ+
i (k) (ρ

−
i (k)) is in fact the maximum (minimum) eigenvalue of (Xi)

T
S (Xi)S/n, where S

is a set satisfying |S | ≤ k and (Xi)S is a submatrix composed of the columns of Xi indexed by S . In

the MTL setting, we need to exploit the relations of ρ+
i (k) (ρ

−
i (k)) among multiple tasks.

We present our parameter estimation error bound on MSMTFL in the following theorem:

Theorem 8 Let Assumption 1 hold. Define F̄i = {( j, i) : w̄ ji 6= 0} and F̄ = ∪i∈Nm
F̄i. Denote r̄ as

the number of nonzero rows of W̄ . We assume that

∀( j, i) ∈ F̄ ,‖w̄ j‖1 ≥ 2θ (20)

and
ρ+

i (s)

ρ−
i (2r̄+2s)

≤ 1+
s

2r̄
, (21)

where s is some integer satisfying s ≥ r̄. If we choose λ and θ such that for some s ≥ r̄:

λ ≥ 12σ

√

2ρ+
max(1) ln(2dm/η)

n
, (22)

θ ≥ 11mλ

ρ−
min(2r̄+ s)

, (23)

then the following parameter estimation error bound holds with probability larger than 1−η:

‖Ŵ (ℓ)−W̄‖2,1 ≤ 0.8ℓ/2 9.1mλ
√

r̄

ρ−
min(2r̄+ s)

+
39.5mσ

√

ρ+
max(r̄)(7.4r̄+2.7ln(2/η))/n

ρ−
min(2r̄+ s)

, (24)

where Ŵ (ℓ) is a solution of Equation (5).

Remark 9 Equation (20) assumes that the ℓ1-norm of each nonzero row of W̄ is away from zero.

This requires the true nonzero coefficients should be large enough, in order to distinguish them from

the noise. Equation (21) is called the sparse eigenvalue condition (Zhang, 2012), which requires

the eigenvalue ratio ρ+
i (s)/ρ−

i (s) to grow sub-linearly with respect to s. Such a condition is very

common in the analysis of sparse regularization (Zhang and Huang, 2008; Zhang, 2009) and it is

slightly weaker than the RIP condition (Candes and Tao, 2005; Huang and Zhang, 2010; Zhang,

2012).

Remark 10 When ℓ = 1 (corresponds to Lasso), the first term of the right-hand side of Equa-

tion (24) dominates the error bound in the order of

‖Ŵ Lasso −W̄‖2,1 = O
(

m
√

r̄ ln(dm/η)/n
)

, (25)

since λ satisfies the condition in Equation (22). Note that the first term of the right-hand side of

Equation (24) shrinks exponentially as ℓ increases. When ℓ is sufficiently large in the order of

O(ln(m
√

r̄/n)+ ln ln(dm)), this term tends to zero and we obtain the following parameter estima-

tion error bound:

‖Ŵ (ℓ)−W̄‖2,1 = O
(

m
√

r̄/n+ ln(1/η)/n
)

. (26)
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Jalali et al. (2010) gave an ℓ∞,∞-norm error bound ‖Ŵ Dirty −W̄‖∞,∞ = O
(

√

ln(dm/η)/n
)

as well

as a sign consistency result between Ŵ and W̄ . A direct comparison between these two bounds is

difficult due to the use of different norms. On the other hand, the worst-case estimate of the ℓ2,1-

norm error bound of the algorithm in Jalali et al. (2010) is in the same order with Equation (25),

that is: ‖Ŵ Dirty −W̄‖2,1 = O
(

m
√

r̄ ln(dm/η)/n
)

. When dm is large and the ground truth has a

large number of sparse rows (i.e., r̄ is a small constant), the bound in Equation (26) is significantly

better than the ones for the Lasso and Dirty model.

Remark 11 Jalali et al. (2010) presented an ℓ∞,∞-norm parameter estimation error bound and

hence a sign consistency result can be obtained. The results are derived under the incoherence

condition which is more restrictive than the RIP condition and hence more restrictive than the

sparse eigenvalue condition in Equation (21). From the viewpoint of the parameter estimation

error, our proposed algorithm can achieve a better bound under weaker conditions. Please refer

to (Van De Geer and Bühlmann, 2009; Zhang, 2009, 2012) for more details about the incoherence

condition, the RIP condition, the sparse eigenvalue condition and their relationships.

Remark 12 The capped-ℓ1 regularized formulation in Zhang (2010) is a special case of our formu-

lation when m = 1. However, extending the analysis from the single task to the multi-task setting is

nontrivial. Different from previous work on multi-stage sparse learning which focuses on a single

task (Zhang, 2010, 2012), we study a more general multi-stage framework in the multi-task set-

ting. We need to exploit the relationship among tasks, by using the relations of sparse eigenvalues

ρ+
i (k) (ρ

−
i (k)) and treating the ℓ1-norm on each row of the weight matrix as a whole for consid-

eration. Moreover, we simultaneously exploit the relations of each column and each row of the

matrix.

In addition, we want to emphasize that the support recovery analysis in Zhang (2012) can not be

easily adapted to the proposed capped-ℓ1, ℓ1 multi-task feature learning setting. The key difficulty

is that, in order to achieve a similar support recovery result for the formulation in Equation (1),

we need to assume that each row of the underlying sparse weight matrix W̄ is either a zero vector

or a vector composed of all nonzero entries. However, this is not the case in the proposed multi-

task formulation. Although this assumption holds for the capped-ℓ1, ℓ2 multi-task feature learning

problem in Equation (4), each subproblem involved for solving Equation (4) is a reweighed ℓ2 regu-

larized problem and its first-order optimality condition is quite different from that of the reweighed

ℓ1 regularized problem. Thus, it is also challenging to extend the analysis in Zhang (2012) to the

capped-ℓ1, ℓ2 multi-task feature learning setting.

5. Proof Sketch of Theorem 8

In this section, we present a proof sketch of Theorem 8. We first provide several important lemmas

(detailed proofs are available in the Appendix A) and then complete the proof of Theorem 8 based

on these lemmas.

Lemma 13 Let ϒ̄ = [ǭ1, · · · , ǭm] with ǭi = [ε̄1i, · · · , ε̄di]
T = 1

n
XT

i (Xiw̄i−yi) (i ∈Nm). Define H̄ ⊇ F̄

such that ( j, i) ∈ H̄ (∀i ∈ Nm), provided there exists ( j,g) ∈ F̄ (H̄ is a set consisting of the indices

of all entries in the nonzero rows of W̄ ). Under the conditions of Assumption 1 and the notations of
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Theorem 8, the followings hold with probability larger than 1−η:

‖ϒ̄‖∞,∞ ≤ σ

√

2ρ+
max(1) ln(2dm/η)

n
, (27)

‖ϒ̄H̄ ‖2
F ≤ mσ2ρ+

max(r̄)(7.4r̄+2.7ln(2/η))/n. (28)

Lemma 13 gives bounds on the residual correlation (ϒ̄) with respect to W̄ . We note that Equa-

tion (27) and Equation (28) are closely related to the assumption on λ in Equation (22) and the

second term of the right-hand side of Equation (24) (error bound), respectively. This lemma pro-

vides a fundamental basis for the proof of Theorem 8.

Lemma 14 Use the notations of Lemma 13 and consider Gi ⊆ Nd ×{i} such that F̄i ∩Gi = /0 (i ∈
Nm). Let Ŵ = Ŵ (ℓ) be a solution of Equation (5) and ∆Ŵ = Ŵ − W̄ . Denote λ̂i = λ̂

(ℓ−1)
i =

[λ
(ℓ−1)
1 , · · · ,λ(ℓ−1)

d ]T . Let λ̂Gi
= min( j,i)∈Gi

λ̂ ji, λ̂G = mini∈Gi
λ̂Gi

and λ̂0i = max j λ̂ ji, λ̂0 = maxi λ̂0i.

If 2‖ǭi‖∞ < λ̂Gi
, then the following inequality holds at any stage ℓ≥ 1:

m

∑
i=1

∑
( j,i)∈Gi

|ŵ(ℓ)
ji | ≤

2‖ϒ̄‖∞,∞ + λ̂0

λ̂G −2‖ϒ̄‖∞,∞

m

∑
i=1

∑
( j,i)∈G c

i

|∆ŵ
(ℓ)
ji |.

Denote G = ∪i∈Nm
Gi, F̄ = ∪i∈Nm

F̄i and notice that F̄ ∩G = /0 ⇒ ∆Ŵ
(ℓ)
G = Ŵ

(ℓ)
G . Lemma 14

says that ‖∆Ŵ
(ℓ)
G ‖1,1 = ‖Ŵ

(ℓ)
G ‖1,1 is upper bounded in terms of ‖∆Ŵ

(ℓ)
G c ‖1,1, which indicates that the

error of the estimated coefficients locating outside of F̄ should be small enough. This provides an

intuitive explanation why the parameter estimation error of our algorithm can be small.

Lemma 15 Using the notations of Lemma 14, we denote G = G(ℓ) = H̄ c ∩{( j, i) : λ̂
(ℓ−1)
ji = λ} =

∪i∈Nm
Gi with H̄ being defined as in Lemma 13 and Gi ⊆ Nd ×{i}. Let Ji be the indices of the

largest s coefficients (in absolute value) of ŵGi
, Ii = G c

i ∪ Ji, I = ∪i∈Nm
Ii and F̄ = ∪i∈Nm

F̄i. Then,

the following inequalities hold at any stage ℓ≥ 1:

‖∆Ŵ (ℓ)‖2,1 ≤

(

1+1.5
√

2r̄
s

)

√

8m
(

4‖ϒ̄G c
(ℓ)
‖2

F +∑( j,i)∈F̄ (λ̂
(ℓ−1)
ji )2

)

ρ−
min(2r̄+ s)

, (29)

‖∆Ŵ (ℓ)‖2,1 ≤
9.1mλ

√
r̄

ρ−
min(2r̄+ s)

. (30)

Lemma 15 is established based on Lemma 14, by considering the relationship between Equa-

tion (22) and Equation (27), and the specific definition of G = G(ℓ). Equation (29) provides a

parameter estimation error bound in terms of ℓ2,1-norm by ‖ϒ̄G c
(ℓ)
‖2

F and the regularization param-

eters λ̂
(ℓ−1)
ji (see the definition of λ̂ ji (λ̂

(ℓ−1)
ji ) in Lemma 14). This is the result directly used in the

proof of Theorem 8. Equation (30) states that the error bound is upper bounded in terms of λ, the

right-hand side of which constitutes the shrinkage part of the error bound in Equation (24).

Lemma 16 Let λ̂ ji = λI
(

‖ŵ j‖1 < θ, j ∈ Nd

)

,∀i ∈ Nm with some Ŵ ∈ R
d×m. H̄ ⊇ F̄ is defined in

Lemma 13. Then under the condition of Equation (20), we have:

∑
( j,i)∈F̄

λ̂2
ji ≤ ∑

( j,i)∈H̄

λ̂2
ji ≤ mλ2‖W̄H̄ −ŴH̄ ‖2

2,1/θ2.
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Lemma 16 establishes an upper bound of ∑( j,i)∈F̄ λ̂2
ji by ‖W̄H̄ −ŴH̄ ‖2

2,1, which is critical for

building the recursive relationship between ‖Ŵ (ℓ)−W̄‖2,1 and ‖Ŵ (ℓ−1)−W̄‖2,1 in the proof of The-

orem 8. This recursive relation is crucial for the shrinkage part of the error bound in Equation (24).

5.1 Proof of Theorem 8

We now complete the proof of Theorem 8 based on the lemmas above.

Proof For notational simplicity, we denote the right-hand side of Equation (28) as:

u = mσ2ρ+
max(r̄)(7.4r̄+2.7ln(2/η))/n. (31)

Based on H̄ ⊆ G c
(ℓ), Lemma 13 and Equation (22), the followings hold with probability larger than

1−η:

‖ϒ̄G c
(ℓ)
‖2

F = ‖ϒ̄H̄ ‖2
F +‖ϒ̄G c

(ℓ)\H̄ ‖2
F

≤ u+ |G c
(ℓ) \ H̄ |‖ϒ̄‖2

∞,∞

≤ u+λ2|G c
(ℓ) \ H̄ |/144

≤ u+(1/144)mλ2θ−2‖Ŵ
(ℓ−1)

G c
(ℓ)\H̄

−W̄G c
(ℓ)\H̄ ‖2

2,1, (32)

where the last inequality follows from

∀( j, i) ∈ G c
(ℓ) \ H̄ ,‖(ŵ(ℓ−1)) j‖2

1/θ2 = ‖(ŵ(ℓ−1)) j − w̄ j‖2
1/θ2 ≥ 1

⇒ |G c
(ℓ) \ H̄ | ≤ mθ−2‖Ŵ

(ℓ−1)

G c
(ℓ)\H̄

−W̄G c
(ℓ)\H̄ ‖2

2,1.

According to Equation (29), we have:

‖Ŵ (ℓ)−W̄‖2
2,1 = ‖∆Ŵ (ℓ)‖2

2,1

≤
8m
(

1+1.5
√

2r̄
s

)2(

4‖ϒ̄G c
(ℓ)
‖2

F +∑( j,i)∈F̄ (λ̂
(ℓ−1)
ji )2

)

(ρ−
min(2r̄+ s))2

≤
78m

(

4u+(37/36)mλ2θ−2
∥

∥Ŵ (ℓ−1)−W̄
∥

∥

2

2,1

)

(ρ−
min(2r̄+ s))2

≤ 312mu

(ρ−
min(2r̄+ s))2

+0.8
∥

∥

∥
Ŵ (ℓ−1)−W̄

∥

∥

∥

2

2,1

≤ ·· · ≤ 0.8ℓ
∥

∥

∥Ŵ
(0)−W̄

∥

∥

∥

2

2,1
+

312mu

(ρ−
min(2r̄+ s))2

1−0.8ℓ

1−0.8

≤ 0.8ℓ
9.12m2λ2r̄

(ρ−
min(2r̄+ s))2

+
1560mu

(ρ−
min(2r̄+ s))2

.

In the above derivation, the first inequality is due to Equation (29); the second inequality is due

to the assumption s ≥ r̄ in Theorem 8, Equation (32) and Lemma 16; the third inequality is due
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to Equation (23); the last inequality follows from Equation (30) and 1− 0.8ℓ ≤ 1 (ℓ ≥ 1). Thus,

following the inequality
√

a+b ≤√
a+

√
b (∀a,b ≥ 0), we obtain:

‖Ŵ (ℓ)−W̄‖2,1 ≤ 0.8ℓ/2 9.1mλ
√

r̄

ρ−
min(2r̄+ s)

+
39.5

√
mu

ρ−
min(2r̄+ s)

.

Substituting Equation (31) into the above inequality, we verify Theorem 8.

Remark 17 The assumption s ≥ r̄ used in the above proof indicates that at each stage, the zero

entries of Ŵ (ℓ) should be greater than mr̄ (see definition of s in Lemma 15). This requires the

solution obtained by Algorithm 1 at each stage is sparse, which is consistent with the sparsity of W̄

in Assumption 1.

6. Experiments

In this section, we present empirical studies on both synthetic and real-world data sets. In the

synthetic data experiments, we present the performance of the MSMTFL algorithm in terms of the

parameter estimation error. In the real-world data experiments, we show the performance of the

MSMTFL algorithm in terms of the prediction error.

6.1 Competing Algorithms

We present the empirical studies by comparing the following six algorithms:

• Lasso: ℓ1-norm regularized feature learning algorithm with λ‖W‖1,1 as the regularizer

• L1,2: ℓ1,2-norm regularized multi-task feature learning algorithm with

λ‖W‖1,2 as the regularizer (Obozinski et al., 2006)

• DirtyMTL: dirty model multi-task feature learning algorithm with

λs‖P‖1,1 +λb‖Q‖1,∞ (W = P+Q) as the regularizer (Jalali et al., 2010)

• CapL1,L1: our proposed multi-task feature learning algorithm with

λ∑d
j=1 min(‖w j‖1,θ) as the regularizer

• CapL1: capped-ℓ1 regularized feature learning algorithm with

λ∑d
j=1 ∑m

i=1 min(|w ji|,θ) as the regularizer

• CapL1,L2: capped-ℓ1, ℓ2 regularized multi-task feature learning algorithm with

λ∑d
j=1 min(‖w j‖,θ) as the regularizer

In the experiments, we employ the quadratic loss function in Equation (2) for all the compared

algorithms. We use MSMTFL-type algorithms (similar to Algorithm 1) to sovle capped-ℓ1 and

capped-ℓ1, ℓ2 regularized feature learning problems (details are provided in Appendix C).
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6.2 Synthetic Data Experiments

We generate synthetic data by setting the number of tasks as m and each task has n samples which

are of dimensionality d; each element of the data matrix Xi ∈ R
n×d (i ∈ Nm) for the i-th task is

sampled i.i.d. from the Gaussian distribution N(0,1) and we then normalize all columns to length

1; each entry of the underlying true weight W̄ ∈R
d×m is sampled i.i.d. from the uniform distribution

in the interval [−10,10]; we randomly set 90% rows of W̄ as zero vectors and 80% elements of the

remaining nonzero entries as zeros; each entry of the noise δi ∈ R
n is sampled i.i.d. from the

Gaussian distribution N(0,σ2); the responses are computed as yi = Xiw̄i +δi (i ∈ Nm).

We first report the averaged parameter estimation error ‖Ŵ − W̄‖2,1 vs. Stage (ℓ) plots for

MSMTFL (Figure 1). We observe that the error decreases as ℓ increases, which shows the advantage

of our proposed algorithm over Lasso. This is consistent with the theoretical result in Theorem 8.

Moreover, the parameter estimation error decreases quickly and converges in a few stages.

We then report the averaged parameter estimation error ‖Ŵ − W̄‖2,1 in comparison with six

algorithms in different parameter settings (Figure 2 and Figure 3). For a fair comparison, we com-

pare the smallest estimation errors of the six algorithms in all the parameter settings as done in

(Zhang, 2009, 2010). We observe that the parameter estimation errors of the capped-ℓ1, ℓ1, capped-

ℓ1 and capped-ℓ1, ℓ2 regularized feature learning formulations solved by MSMTFL-type algorithms

are the smallest among all algorithms. In most cases, CapL1,L1 achieves a slightly smaller error

than CapL1 and CapL1,L2. This empirical result demonstrates the effectiveness of the MSMTFL

algorithm. We also have the following observations: (a) When λ is large enough, all six algorithms

tend to have the same parameter estimation error. This is reasonable, because the solutions Ŵ ’s

obtained by the six algorithms are all zero matrices, when λ is very large. (b) The performance of

the MSMTFL algorithm is similar for different θ’s, when λ exceeds a certain value.

6.3 Real-World Data Experiments

We conduct experiments on two real-world data sets: MRI and Isolet data sets.

The MRI data set is collected from the ANDI database, which contains 675 patients’ MRI data

preprocessed using FreeSurfer.2. The MRI data include 306 features and the response (target) is the

Mini Mental State Examination (MMSE) score coming from 6 different time points: M06, M12,

M18, M24, M36, and M48. We remove the samples which fail the MRI quality controls and have

missing entries. Thus, we have 6 tasks with each task corresponding to a time point and the sample

sizes corresponding to 6 tasks are 648, 642, 293, 569, 389 and 87, respectively.

The Isolet data set3 is collected from 150 speakers who speak the name of each English letter

of the alphabet twice. Thus, there are 52 samples from each speaker. The speakers are grouped

into 5 subsets which respectively include 30 similar speakers, and the subsets are named Isolet1,

Isolet2, Isolet3, Isolet4, and Isolet5. Thus, we naturally have 5 tasks with each task corresponding

to one subset. The 5 tasks respectively have 1560, 1560, 1560, 1558, and 1559 samples,4 where

each sample includes 617 features and the response is the English letter label (1-26).

In the experiments, we treat the MMSE and letter labels as the regression values for the MRI data

set and the Isolet data set, respectively. For both data sets, we randomly extract the training samples

from each task with different training ratios (15%,20% and 25%) and use the rest of samples to

2. FreeSurfer can be found at www.loni.ucla.edu/ADNI/.

3. The data set can be found at www.zjucadcg.cn/dengcai/Data/data.html.

4. Three samples are historically missing.
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Figure 1: Averaged parameter estimation error ‖Ŵ −W̄‖2,1 vs. Stage (ℓ) plots for MSMTFL on the

synthetic data set (averaged over 10 runs). Here we set λ = α
√

ln(dm)/n, θ = 50mλ.

Note that ℓ= 1 corresponds to Lasso; the results show the stage-wise improvement over

Lasso.

form the test set. We evaluate the six algorithms in terms of the normalized mean squared error

(nMSE) and the averaged means squared error (aMSE), which are commonly used in multi-task

learning problems (Zhang and Yeung, 2010; Zhou et al., 2011; Gong et al., 2012). For each training
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Figure 2: Averaged parameter estimation error ‖Ŵ −W̄‖2,1 vs. λ plots on the synthetic data set

(averaged over 10 runs). DirtyMTL, CapL1,L1, CapL1, CapL1,L2 have two parameters;

we set λs/λb = 1,0.5,0.2,0.1 for DirtyMTL (1/m≤ λs/λb ≤ 1 was adopted in Jalali et al.

(2010)), θ/λ = 50m,10m,2m,0.4m for CapL1,L1, θ/λ = 50,10,2,0.4 for CapL1 and

θ/λ = 50m0.5,10m0.5,2m0.5,0.4m0.5 for CapL1,L2 (The settings of θ/λ for CapL1,L1,

CapL1 and CapL1,L2 are based on the relationships of ‖w j‖1, |w ji| and ‖w j‖, where

w j ∈ R
1×m and w ji are the j-th row and the ( j, i)-th entry of W , respectively).

ratio, both nMSE and aMSE are averaged over 10 random splittings of training and test sets and the

standard deviation is also shown. All parameters of the six algorithms are tuned via 3-fold cross

validation.
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Figure 3: (continued) Averaged parameter estimation error ‖Ŵ −W̄‖2,1 vs. λ plots on the synthetic

data set (averaged over 10 runs). DirtyMTL, CapL1,L1, CapL1, CapL1,L2 have two

parameters; we set λs/λb = 1,0.5,0.2,0.1 for DirtyMTL (1/m ≤ λs/λb ≤ 1 was adopted

in Jalali et al. (2010)), θ/λ = 50m,10m,2m,0.4m for CapL1,L1, θ/λ = 50,10,2,0.4 for

CapL1 and θ/λ = 50m0.5,10m0.5,2m0.5,0.4m0.5 for CapL1,L2 (The settings of θ/λ for

CapL1,L1, CapL1 and CapL1,L2 are based on the relationships of ‖w j‖1, |w ji| and ‖w j‖,

where w j ∈ R
1×m and w ji are the j-th row and the ( j, i)-th entry of W , respectively).

Table 1 and Table 2 show the experimental results in terms of the averaged nMSE (aMSE) and

the standard deviation. From these results, we observe that CapL1,L1 and CapL1,L2 outperform

all the other competing feature learning algorithms on both data sets in terms of the regression

errors (nMSE and aMSE). On the MRI data set, CapL1,L1 achieves slightly better performance than

CapL1,L2 and on the Isolet data set, CapL1,L2 achieves slightly better performance than CapL1,L1.

These empirical results demonstrate the effectiveness of the proposed MSMTFL (-type) algorithms.

7. Conclusions

In this paper, we propose a non-convex formulation for multi-task feature learning, which learns

the specific features of each task as well as the common features shared among tasks. The non-

convex formulation adopts the capped-ℓ1,ℓ1 regularizer to better approximate the ℓ0-type one than

the commonly used convex regularizer. To solve the non-convex optimization problem, we propose

a Multi-Stage Multi-Task Feature Learning (MSMTFL) algorithm and provide intuitive interpreta-

tions from several aspects. We also present a detailed convergence analysis and discuss the repro-

ducibility issue for the proposed algorithm. Specifically, we show that, under a mild condition, the

solution generated by MSMTFL is unique. Although the solution may not be globally optimal, we

theoretically show that it has good performance in terms of the parameter estimation error bound.

Experimental results on both synthetic and real-world data sets demonstrate the effectiveness of our
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measure traning ratio Lasso L1,2 DirtyMTL

nMSE

0.15 0.6577(0.0193) 0.6443(0.0326) 0.6150(0.0160)

0.20 0.6294(0.0255) 0.6541(0.0182) 0.6110(0.0122)

0.25 0.6007(0.0120) 0.6407(0.0310) 0.5997(0.0218)

aMSE

0.15 0.0190(0.0008) 0.0184(0.0006) 0.0173(0.0006)

0.20 0.0178(0.0009) 0.0184(0.0005) 0.0170(0.0007)

0.25 0.0173(0.0007) 0.0183(0.0004) 0.0169(0.0007)

measure traning ratio CapL1,L1 CapL1 CapL1,L2

nMSE

0.15 0.5551(0.0082) 0.6448(0.0238) 0.5591(0.0082)

0.20 0.5539(0.0094) 0.6245(0.0396) 0.5612(0.0086)

0.25 0.5513(0.0097) 0.5899(0.0203) 0.5595(0.0063)

aMSE

0.15 0.0163(0.0007) 0.0187(0.0009) 0.0165(0.0007)

0.20 0.0161(0.0006) 0.0177(0.0010) 0.0163(0.0006)

0.25 0.0162(0.0007) 0.0171(0.0009) 0.0164(0.0007)

Table 1: Comparison of six feature learning algorithms on the MRI data set in terms of the averaged

nMSE and aMSE (standard deviation), which are averaged over 10 random splittings. The

two best results are in bold.

measure traning ratio Lasso L1,2 DirtyMTL

nMSE

0.15 0.6798(0.0120) 0.6788(0.0149) 0.6427(0.0172)

0.2 0.6465(0.0105) 0.6778(0.0104) 0.6371(0.0111)

0.25 0.6279(0.0099) 0.6666(0.0110) 0.6304(0.0093)

aMSE

0.15 0.1605(0.0028) 0.1602(0.0033) 0.1517(0.0039)

0.2 0.1522(0.0022) 0.1596(0.0021) 0.1500(0.0023)

0.25 0.1477(0.0024) 0.1568(0.0025) 0.1482(0.0019)

measure traning ratio CapL1,L1 CapL1 CapL1,L2

nMSE

0.15 0.6421(0.0153) 0.6541(0.0122) 0.5819(0.0125)

0.2 0.5847(0.0081) 0.5962(0.0051) 0.5589(0.0056)

0.25 0.5496(0.0106) 0.5569(0.0158) 0.5422(0.0063)

aMSE

0.15 0.1516(0.0035) 0.1544(0.0028) 0.1373(0.0030)

0.2 0.1376(0.0020) 0.1404(0.0012) 0.1316(0.0014)

0.25 0.1293(0.0028) 0.1310(0.0042) 0.1275(0.0013)

Table 2: Comparison of six feature learning algorithms on the Isolet data set in terms of the aver-

aged nMSE and aMSE (standard deviation), which are averaged over 10 random splittings.

The two best results are in bold.

proposed MSMTFL algorithm in comparison with the state of the art multi-task feature learning

algorithms.
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There are several interesting issues that need to be addressed in the future. First, we will ex-

plore the conditions under which a globally optimal solution of the proposed formulation can be

obtained by the MSMTFL algorithm. Second, we plan to explore general theoretical bounds for

multi-task learning settings (involving different loss functions and non-convex regularization terms)

using multi-stage algorithms. Third, we will adapt the GIST algorithm (Gong et al., 2013a,b) to

solve the non-convex multi-task feature learning problem and derive theoretical bounds.
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Appendix A. Proofs of Lemmas 13 to 16

In this appendix, we provide detailed proofs for Lemmas 13 to 16. In our proofs, we use several

lemmas (summarized in Appendix B) from Zhang (2010).

We first introduce some notations used in the proof. Define

πi(ki,si) = sup
v∈Rki ,u∈Rsi ,Ii,Ji

vT A
(i)
Ii,Ji

u‖v‖
vT A

(i)
Ii,Ii

v‖u‖∞

,

where si + ki ≤ d with si,ki ≥ 1; Ii and Ji are disjoint subsets of Nd with ki and si elements respec-

tively (with some abuse of notation, we also let Ii be a subset of Nd ×{i}, depending on the context.);

A
(i)
Ii,Ji

is a sub-matrix of Ai = n−1XT
i Xi ∈ R

d×d with rows indexed by Ii and columns indexed by Ji.

We let wIi
be a d×1 vector with the j-th entry being w ji, if ( j, i) ∈ Ii, and 0, otherwise. We also

let WI be a d ×m matrix with ( j, i)-th entry being w ji, if ( j, i) ∈ I , and 0, otherwise.

Proof of Lemma 13 For the j-th entry of ǭi ( j ∈ Nd):

|ε̄ ji|=
1

n

∣

∣

∣

∣

(

x
(i)
j

)T

(Xiw̄i −yi)

∣

∣

∣

∣

=
1

n

∣

∣

∣

∣

(

x
(i)
j

)T

δi

∣

∣

∣

∣

,

where x
(i)
j is the j-th column of Xi. We know that the entries of δi are independent sub-Gaussian

random variables, and ‖1/nx
(i)
j ‖2 = ‖x

(i)
j ‖2/n2 ≤ ρ+

i (1)/n. According to Lemma 18, we have ∀t >
0:

Pr(|ε̄ ji| ≥ t)≤ 2exp(−nt2/(2σ2ρ+
i (1)))≤ 2exp(−nt2/(2σ2ρ+

max(1))).

Thus we obtain:

Pr(‖ϒ̄‖∞,∞ ≤ t)≥ 1−2dmexp(−nt2/(2σ2ρ+
max(1))).

Let η = 2dmexp(−nt2/(2σ2ρ+
max(1))) and we can obtain Equation (27). Equation (28) directly

follows from Lemma 21 and the following fact:

‖xi‖2 ≤ ayi ⇒‖X‖2
F =

m

∑
i=1

‖xi‖2 ≤ mamax
i∈Nm

yi.
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Proof of Lemma 14 The optimality condition of Equation (5) implies that

2

n
XT

i (Xiŵi −yi)+ λ̂i ⊙ sign(ŵi) = 0,

where ⊙ denotes the element-wise product; sign(w) = [sign(w1), · · · ,sign(wd)]
T , where sign(wi) =

1, if wi > 0; sign(wi) = −1, if wi < 0; and sign(wi) ∈ [−1,1], otherwise. We note that Xiŵi −yi =
Xiŵi −Xiw̄i +Xiw̄i −yi and we can rewrite the above equation into the following form:

2Ai∆ŵi =−2ǭi − λ̂i ⊙ sign(ŵi).

Thus, for all v ∈ R
d , we have

2vT Ai∆ŵi =−2vT
ǭi −

d

∑
j=1

λ̂ jiv jsign(ŵ ji). (33)

Letting v = ∆ŵi and noticing that ∆ŵ ji = ŵ ji for ( j, i) /∈ F̄i, i ∈ Nm, we obtain

0 ≤ 2∆ŵT
i Ai∆ŵi =−2∆ŵT

i ǭi −
d

∑
j=1

λ̂ ji∆ŵ jisign(ŵ ji)

≤ 2‖∆ŵi‖1‖ǭi‖∞ − ∑
( j,i)∈F̄i

λ̂ ji∆ŵ jisign(ŵ ji)− ∑
( j,i)/∈F̄i

λ̂ ji∆ŵ jisign(ŵ ji)

≤ 2‖∆ŵi‖1‖ǭi‖∞ + ∑
( j,i)∈F̄i

λ̂ ji|∆ŵ ji|− ∑
( j,i)/∈F̄i

λ̂ ji|ŵ ji|

≤ 2‖∆ŵi‖1‖ǭi‖∞ + ∑
( j,i)∈F̄i

λ̂ ji|∆ŵ ji|− ∑
( j,i)∈Gi

λ̂ ji|ŵ ji|

≤ 2‖∆ŵi‖1‖ǭi‖∞ + ∑
( j,i)∈F̄i

λ̂0i|∆ŵ ji|− ∑
( j,i)∈Gi

λ̂Gi
|ŵ ji|

= ∑
( j,i)∈Gi

(2‖ǭi‖∞ − λ̂Gi
)|ŵ ji|+ ∑

( j,i)/∈F̄i∪Gi

2‖ǭi‖∞|ŵ ji|+ ∑
( j,i)∈F̄i

(2‖ǭi‖∞ + λ̂0i)|∆ŵ ji|.

The last equality above is due to Nd ×{i} = Gi ∪ (F̄i ∪Gi)
c ∪ F̄i and ∆ŵ ji = ŵ ji,∀( j, i) /∈ F̄i ⊇ Gi.

Rearranging the above inequality and noticing that 2‖ǭi‖∞ < λ̂Gi
≤ λ̂0i, we obtain:

∑
( j,i)∈Gi

|ŵ ji| ≤
2‖ǭi‖∞

λ̂Gi
−2‖ǭi‖∞

∑
( j,i)/∈F̄i∪Gi

|ŵ ji|+
2‖ǭi‖∞ + λ̂0i

λ̂Gi
−2‖ǭi‖∞

∑
( j,i)∈F̄i

|∆ŵ ji|

≤ 2‖ǭi‖∞ + λ̂0i

λ̂Gi
−2‖ǭi‖∞

‖∆ŵG c
i
‖1. (34)

Then Lemma 14 can be obtained from the above inequality and the following two inequalities.

max
i∈Nm

2‖ǭi‖∞ + λ̂0i

λ̂Gi
−2‖ǭi‖∞

≤ 2‖ϒ̄‖∞,∞ + λ̂0

λ̂G −2‖ϒ̄‖∞,∞

and
m

∑
i=1

xiyi ≤ ‖x‖∞‖y‖1.
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Proof of Lemma 15 According to the definition of G (G(ℓ)), we know that F̄i ∩Gi = /0 (i ∈ Nm)

and ∀( j, i) ∈ G (G(ℓ)), λ̂
(ℓ−1)
ji = λ. Thus, all conditions of Lemma 14 are satisfied, by noticing the

relationship between Equation (22) and Equation (27). Based on the definition of G (G(ℓ)), we

easily obtain ∀ j ∈ Nd :

( j, i) ∈ Gi,∀i ∈ Nm or ( j, i) /∈ Gi,∀i ∈ Nm.

and hence kℓ = |G c
1 |= · · ·= |G c

m| (kℓ is some integer). Now, we assume that at stage ℓ≥ 1:

kℓ = |G c
1 |= · · ·= |G c

m| ≤ 2r̄. (35)

We will show in the second part of this proof that Equation (35) holds for all ℓ. Based on Lemma 19

and Equation (21), we have:

πi (2r̄+ s,s)≤ s1/2

2

√

ρ+
i (s)/ρ−

i (2r̄+2s)−1

≤ s1/2

2

√

1+ s/(2r̄)−1

= 0.5s(2r̄)−1/2,

which indicates that

0.5 ≤ ti = 1−πi(2r̄+ s,s)(2r̄)1/2s−1 ≤ 1.

For all ti ∈ [0.5,1], under the conditions of Equation (22) and Equation (27), we have

2‖ǭi‖∞ +λ

λ−2‖ǭi‖∞
≤ 2‖ϒ̄‖∞,∞ +λ

λ−2‖ϒ̄‖∞,∞
≤ 7

5
≤ 4− ti

4−3ti
≤ 3.

Following Lemma 14, we have

‖ŴG‖1,1 ≤ 3‖∆ŴG c‖1,1 = 3‖∆Ŵ −∆ŴG‖1,1 = 3‖∆Ŵ −ŴG‖1,1.

Therefore

‖∆Ŵ −∆ŴI‖∞,1 = ‖∆ŴG −∆ŴJ ‖∞,1

≤ ‖∆ŴJ ‖1,1/s = (‖∆ŴG‖1,1 −‖∆Ŵ −∆ŴI‖1,1)/s

≤ s−1(3‖∆Ŵ −ŴG‖1,1 −‖∆Ŵ −∆ŴI‖1,1),

which implies that

‖∆Ŵ‖2,1 −‖∆ŴI‖2,1 ≤ ‖∆Ŵ −∆ŴI‖2,1

≤ (‖∆Ŵ −∆ŴI‖1,1‖∆Ŵ −∆ŴI‖∞,1)
1/2

≤
(

‖∆Ŵ −∆ŴI‖1,1

)1/2 (
s−1(3‖∆Ŵ −ŴG‖1,1 −‖∆Ŵ −∆ŴI‖1,1)

)1/2

≤
(

(

3‖∆Ŵ −ŴG‖1,1/2
)2
)1/2

s−1/2

≤ (3/2)s−1/2(2r̄)1/2‖∆Ŵ −ŴG‖2,1

≤ (3/2)(2r̄/s)1/2‖∆ŴI‖2,1.
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In the above derivation, the third inequality is due to a(3b−a)≤ (3b/2)2, and the fourth inequality

follows from Equation (35) and F̄ ∩G = /0 ⇒ ∆ŴG = ŴG . Rearranging the above inequality, we

obtain at stage ℓ:

‖∆Ŵ‖2,1 ≤
(

1+1.5

√

2r̄

s

)

‖∆ŴI‖2,1. (36)

From Lemma 20, we have:

max(0,∆ŵT
Ii

Ai∆ŵi)

≥ ρ−
i (kℓ+ s)(‖∆ŵIi

‖−πi(kℓ+ s,s)‖ŵGi
‖1/s)‖∆ŵIi

‖
≥ ρ−

i (kℓ+ s)[1− (1− ti)(4− ti)/(4−3ti)]‖∆ŵIi
‖2

≥ 0.5tiρ
−
i (kℓ+ s)‖∆ŵIi

‖2

≥ 0.25ρ−
i (2r̄+ s)‖∆ŵIi

‖2

≥ 0.25ρ−
min(2r̄+ s)‖∆ŵIi

‖2,

where the second inequality is due to Equation (34), that is

‖ŵGi
‖1 ≤

2‖ǭi‖∞ + λ̂0i

λ̂Gi
−2‖ǭi‖∞

‖∆ŵG c
i
‖1

≤ (2‖ǭi‖∞ + λ̂0i)
√

kℓ

λ̂Gi
−2‖ǭi‖∞

‖∆ŵG c
i
‖

≤ (2‖ǭi‖∞ + λ̂0i)
√

kℓ

λ̂Gi
−2‖ǭi‖∞

‖∆ŵIi
‖

≤ (4− ti)
√

kℓ

4−3ti
‖∆ŵIi

‖;

the third inequality follows from 1− (1− ti)(4− ti)/(4−3ti) ≥ 0.5ti for ti ∈ [0.5,1] and the fourth

inequality follows from the assumption in Equation (35) and ti ≥ 0.5.

If ∆ŵT
Ii

Ai∆ŵi ≤ 0, then ‖∆ŵIi
‖= 0. If ∆ŵT

Ii
Ai∆ŵi > 0, then we have

∆ŵT
Ii

Ai∆ŵi ≥ 0.25ρ−
min(2r̄+ s)‖∆ŵIi

‖2. (37)
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By letting v = ∆ŵIi
, we obtain the following from Equation (33):

2∆ŵT
Ii

Ai∆ŵi =−2∆ŵT
Ii
ǭi − ∑

( j,i)∈Ii

λ̂ ji∆ŵ jisign(ŵ ji)

=−2∆ŵT
Ii
ǭG c

i
−2∆ŵT

Ii
ǭGi

− ∑
( j,i)∈F̄i

λ̂ ji∆ŵ jisign(ŵ ji)

− ∑
( j,i)∈Ji

λ̂ ji|∆ŵ ji|− ∑
( j,i)∈F̄ c

i ∩G c
i

λ̂ ji|∆ŵ ji|

=−2∆ŵT
Ii
ǭG c

i
−2∆ŵT

Ji
ǭJi

− ∑
( j,i)∈F̄i

λ̂ ji∆ŵ jisign(ŵ ji)

− ∑
( j,i)∈Ji

λ̂ ji|∆ŵ ji|− ∑
( j,i)∈F̄ c

i ∩G c
i

λ̂ ji|∆ŵ ji|

≤ 2‖∆ŵIi
‖‖ǭG c

i
‖+2‖ǭJi

‖∞ ∑
( j,i)∈Ji

|∆ŵ ji|+ ∑
( j,i)∈F̄i

λ̂ ji|∆ŵ ji|− ∑
( j,i)∈Ji

λ̂ ji|∆ŵ ji|

≤ 2‖∆ŵIi
‖‖ǭG c

i
‖+



 ∑
( j,i)∈F̄i

λ̂2
ji





1/2

‖∆ŵF̄i
‖

≤ 2‖∆ŵIi
‖‖ǭG c

i
‖+



 ∑
( j,i)∈F̄i

λ̂2
ji





1/2

‖∆ŵIi
‖. (38)

In the above derivation, the second equality is due to Ii = Ji ∪ F̄i ∪ (F̄ c
i ∩G c

i ); the third equality is

due to Ii ∩Gi = Ji; the second inequality follows from ∀( j, i) ∈ Ji, λ̂ ji = λ ≥ 2‖ǭi‖∞ ≥ 2‖ǭJi
‖∞ and

the last inequality follows from F̄i ⊆ G c
i ⊆ Ii. Combining Equation (37) and Equation (38), we have

‖∆ŵIi
‖ ≤ 2

ρ−
min(2r̄+ s)






2‖ǭG c

i
‖+



 ∑
( j,i)∈F̄i

λ̂2
ji





1/2





.

Notice that

‖xi‖ ≤ a(‖yi‖+‖zi‖)⇒‖X‖2
2,1 ≤ m‖X‖2

F = m∑
i

‖xi‖2 ≤ 2ma2(‖Y‖2
F +‖Z‖2

F).

Thus, we have

‖∆ŴI‖2,1 ≤

√

8m
(

4‖ϒ̄G c
(ℓ)
‖2

F +∑( j,i)∈F̄ (λ̂
(ℓ−1)
ji )2

)

ρ−
min(2r̄+ s)

. (39)
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Therefore, at stage ℓ, Equation (29) in Lemma 15 directly follows from Equation (36) and Equa-

tion (39). Following Equation (29), we have:

‖Ŵ (ℓ)−W̄‖2,1 = ‖∆Ŵ (ℓ)‖2,1

≤

(

1+1.5
√

2r̄
s

)

√

8m
(

4‖ϒ̄G c
(ℓ)
‖2

F +∑( j,i)∈F̄ (λ̂
(ℓ−1)
ji )2

)

ρ−
min(2r̄+ s)

≤
8.83

√
m
√

4‖ϒ‖2
∞,∞|G c

(ℓ)|+ r̄mλ2

ρ−
min(2r̄+ s)

≤
8.83

√
mλ
√

8
144

r̄m+ r̄m

ρ−
min(2r̄+ s)

≤ 9.1mλ
√

r̄

ρ−
min(2r̄+ s)

,

where the first inequality is due to Equation (39); the second inequality is due to s ≥ r̄ (assump-

tion in Theorem 8), λ̂ ji ≤ λ, r̄m = |H̄ | ≥ |F̄ | and the third inequality follows from Equation (35)

and ‖ϒ̄‖2
∞,∞ ≤ (1/144)λ2. Therefore, Equation (30) in Lemma 15 holds at stage ℓ.

Notice that we obtain Lemma 15 at stage ℓ, by assuming that Equation (35) is satisfied. To prove

that Lemma 15 holds for all stages, we next need to prove by induction that Equation (35) holds at

all stages.

When ℓ= 1, we have G c
(1) = H̄ , which implies that Equation (35) holds. Now, we assume that

Equation (35) holds at stage ℓ. Thus, by hypothesis induction, we have:

√

|G c
(ℓ+1) \ H̄ | ≤

√

mθ−2‖Ŵ
(ℓ)

G c
(ℓ+1)\H̄

−W̄G c
(ℓ+1)\H̄ ‖2

2,1

≤
√

mθ−1
∥

∥

∥Ŵ
(ℓ)−W̄

∥

∥

∥

2,1

≤ 9.1m3/2λ
√

r̄θ−1

ρ−
min(2r̄+ s)

≤
√

r̄m,

where θ is the thresholding parameter in Equation (1); the first inequality above follows from the

definition of G(ℓ) in Lemma 15:

∀( j, i) ∈ G c
(ℓ+1) \ H̄ ,‖(ŵ(ℓ)) j‖2

1/θ2 = ‖(ŵ(ℓ)) j − w̄ j‖2
1/θ2 ≥ 1

⇒|G c
(ℓ+1) \ H̄ | ≤ mθ−2‖Ŵ

(ℓ)

G c
(ℓ+1)\H̄

−W̄G c
(ℓ+1)\H̄ ‖2

2,1;

the last inequality is due to Equation (23). Thus, we have:

|G c
(ℓ+1) \ H̄ | ≤ r̄m ⇒ |G c

(ℓ+1)| ≤ 2r̄m ⇒ kℓ+1 ≤ 2r̄.

Therefore, Equation (35) holds at all stages. Thus the two inequalities in Lemma 15 hold at all

stages. This completes the proof of the lemma.

3005



GONG, YE AND ZHANG

Proof of Lemma 16 The first inequality directly follows from H̄ ⊇ F̄ . Next, we focus on the

second inequality. For each ( j, i) ∈ F̄ (H̄ ), if ‖ŵ j‖1 < θ, by considering Equation (20), we have

‖w̄ j − ŵ j‖1 ≥ ‖w̄ j‖1 −‖ŵ j‖1 ≥ 2θ−θ = θ.

Therefore, we have for each ( j, i) ∈ F̄ (H̄ ):

I
(

‖ŵ j‖1 < θ
)

≤ ‖w̄ j − ŵ j‖1/θ.

Thus, the second inequality of Lemma 16 directly follows from the above inequality.

Appendix B. Lemmas from Zhang (2010)

Lemma 18 Let a ∈ R
n be a fixed vector and x ∈ R

n be a random vector which is composed of

independent sub-Gaussian components with parameter σ. Then we have:

Pr(|aT x| ≥ t)≤ 2exp
(

−t2/(2σ2‖a‖2)
)

,∀t > 0.

Lemma 19 The following inequality holds:

πi(ki,si)≤
s

1/2
i

2

√

ρ+
i (si)/ρ−

i (ki + si)−1.

Lemma 20 Let Gi ⊆Nd ×{i} such that |G c
i |= ki, and let Ji be indices of the si largest components

(in absolute values) of wGi
and Ii = G c

i ∪ Ji. Then for any wi ∈ R
d , we have

max(0,wT
Ii

Aiwi)≥ ρ−
i (ki + si)(‖wIi

‖−πi(ki + si,si)‖wGi
‖1/si)‖wIi

‖.

Lemma 21 Let ǭi = [ε̄1i, · · · , ε̄di] =
1
n
XT

i (Xiw̄i −yi) (i ∈Nm), and H̄i ⊆Nd ×{i}. Under the condi-

tions of Assumption 1, the followings hold with probability larger than 1−η:

‖ǭH̄i
‖2 ≤ σ2ρ+

i (|H̄i|)(7.4|H̄i|+2.7ln(2/η))/n.

Appendix C. MSMTFL-type Algorithms

We present the multi-stage (-type) algorithms for the formulations in Equation (3) and Equation (4)

below.
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Abstract

The Neyman-Pearson (NP) paradigm in binary classification treats type I and type II errors with

different priorities. It seeks classifiers that minimize type II error, subject to a type I error con-

straint under a user specified level α. In this paper, plug-in classifiers are developed under the NP

paradigm. Based on the fundamental Neyman-Pearson Lemma, we propose two related plug-in

classifiers which amount to thresholding respectively the class conditional density ratio and the

regression function. These two classifiers handle different sampling schemes. This work focuses

on theoretical properties of the proposed classifiers; in particular, we derive oracle inequalities that

can be viewed as finite sample versions of risk bounds. NP classification can be used to address

anomaly detection problems, where asymmetry in errors is an intrinsic property. As opposed to a

common practice in anomaly detection that consists of thresholding normal class density, our ap-

proach does not assume a specific form for anomaly distributions. Such consideration is particularly

necessary when the anomaly class density is far from uniformly distributed.

Keywords: plug-in approach, Neyman-Pearson paradigm, nonparametric statistics, oracle in-

equality, anomaly detection

1. Introduction

Classification aims to identify which category a new observation belongs to, on the basis of labeled

training data. Applications include disease classification using high-throughput data such as mi-

croarrays, SNPs, spam detection and image recognition. This work investigates Neyman-Pearson

paradigm in classification with a plug-in approach.

1.1 Neyman-Pearson Paradigm

The Neyman-Pearson (NP) paradigm extends the objective of classical binary classification in that,

while the latter focuses on minimizing classification error that is a weighted sum of type I and type II

errors, the former minimizes type II error subject to an upper bound α on type I error, where the

threshold level α is chosen by the user. The NP paradigm is appropriate in many applications where

it is necessary to bring down one kind of error at the expense of the other. One example is medical

diagnosis: failing to detect a malignant tumor leads to loss of a life, while flagging a benign one

only induces some unnecessary medical cost. As healthy living and longer life expectancy cannot

be compensated by any amount of money, it is desirable to control the false negative rate of any

medical diagnosis, perhaps with some sacrifice in the false positive rate.

c©2013 Xin Tong.
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A few commonly used notations in classification literature are set up to facilitate our discussion.

Let (X ,Y ) be a random couple where X ∈ X ⊂ IRd is a vector of covariates, and where Y ∈ {0,1}
is a label that indicates to which class X belongs. A classifier h is a mapping h : X → {0,1} that

returns the predicted class given X . An error occurs when h(X) 6=Y . It is therefore natural to define

the classification loss by 1I(h(X) 6= Y ), where 1I(·) denotes the indicator function. The expectation

of the classification loss with respect to the joint distribution of (X ,Y ) is called classification risk

(error) and is defined by

R(h) = IP(h(X) 6= Y ) .

The risk function can be expressed as a convex combination of type I and II errors:

R(h) = IP(Y = 0)R0(h)+ IP(Y = 1)R1(h) , (1)

where

R0(h) = IP(h(X) 6= Y |Y = 0)denotes the type I error,

R1(h) = IP(h(X) 6= Y |Y = 1)denotes the type II error.

Also recall that the regression function of Y on X is defined by

η(x) = E[Y |X = x] = IP(Y = 1|X = x) .

Let h∗(x) = 1I(η(x) ≥ 1/2). The oracle classifier h∗ is named the Bayes classifier, and it achieves

the minimum risk among all possible candidate classifiers. The risk of h∗, R∗ = R(h∗) is called the

Bayes risk. A certain classifier ĥ in classical binary classification paradigm is good if the excess risk

R(ĥ)−R∗ is small on average or with high probability.

In contrast to the classical paradigm, the NP classification seeks a minimizer φ∗ that solves

min
R0(φ)≤α

R1(φ) ,

where a small α (e.g., 5%) reflects very conservative attitude towards type I error.

The NP paradigm is irrelevant if we can achieve very small type I and type II errors simulta-

neously. This is often impossible as expected, and we will demonstrate this point with a stylized

example. Note that for most joint distributions on (X ,Y ), the Bayes error R∗ is well above zero.

Suppose in a tumor detection application, R∗ = 10%. Clearly by (1), it is not feasible to have both

type I error R0 and type II error R1 be smaller than 10%. Since we insist on lowering the false

negative rate as our priority, with a desirable false negative rate much lower than 10%, we have to

sacrifice some false positive rate.

Moreover, even if a classifier φ̂ achieves a small risk, there is no guarantee on attaining desirable

type I or type II errors. Take another stylized example in medical diagnosis. Suppose that type I

error equals 0.5, that is, with 50% of the chances, detector φ̂ fails to find the malignant tumor, and

that type II error equals 0.01. Also assume the chance that a tumor is malignant is only 0.001. Then

the risk of φ̂ is approximately 1%. This is low, but φ̂ is by no means a good detector, because it

misses a malignant tumor with half of the chances!

Empirical risk minimization (ERM), a common approach to classification, has been studied

in the NP classification literature. Cannon et al. (2002) initiated the theoretical treatment of the
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NP classification paradigm and an early empirical study can be found in Casasent and Chen (2003).

Several results for traditional statistical learning such as PAC bounds or oracle inequalities have been

studied in Scott (2005) and Scott and Nowak (2005) in the same framework as the one laid down

by Cannon et al. (2002). Scott (2007) proposed performance measures for NP classification that

weights type I and type II error in sensible ways. More recently, Blanchard et al. (2010) developed

a general solution to semi-supervised novelty detection by reducing it NP classification, and Han

et al. (2008) transposed several earlier results to NP classification with convex loss. There is a

commonality in this line of literature: a relaxed empirical type I error constraint is used in the

optimization program, and as a result, type I errors of the classifiers can only be shown to satisfy

a relaxed upper bound. Take the framework set up by Cannon et al. (2002) for example: for some

ε0 > 0 and let H be a set of classifiers with finite VC dimension. They proposed the program

min
φ∈H ,R̂0(φ)≤α+ε0/2

R̂1(φ) ,

where R̂0 and R̂1 denote empirical type I and type II errors respectively. It is shown that solution

to the above program φ̂ satisfies simultaneously with high probability, the type II error R1(φ̂) is

bounded from above by R1(φ
∗)+ ε1, for some ε1 > 0, and the type I error R0(φ̂) is bounded from

above by α+ ε0.

However, following the original spirit of NP classification, a good classifier φ̂ should respect

the chosen significance level α, rather than some relaxation of α, that is, we should be able to i).

satisfy the type I error constraint R0(φ̂)≤ α with high probability, while ii). establishing an explicit

diminishing rate for the excess type II error R1(φ̂)−R1(φ
∗). The simultaneous achievements of

i). and ii). can be thought of as counterpart of oracle inequality in classical binary classification,

and we believe they are a desirable formulation of theoretical properties of good classifiers in NP

classification. Considering this point, Rigollet and Tong (2011) propose a computationally feasible

classifier h̃τ, such that ϕ-type I error of h̃τ is bounded from above by α with high probability and the

excess ϕ-type II error of h̃τ converges to 0 with explicit rates, where ϕ-type I error and ϕ-type II error

are standard convex relaxations of type I and type II errors respectively. Most related to the current

context, they also proved a negative result. Loosely speaking, it is shown by counter examples

that under the original type I/II criteria, if one adopts ERM approaches (convexification or not), one

cannot guarantee diminishing excess type II error if one insists type I error of the proposed classifier

be bounded from above by α with high probability. Interested readers are referred to Section 4.4 of

that paper.

In this work, we will fulfill the original NP paradigm spirit with the plug-in approach. Theoreti-

cal properties of the classifiers under the NP paradigm will be derived. To the best of our knowledge,

our paper is the first to do so. It looks as if from a theoretical point of view, a plug-in approach is

more suitable than ERM for the NP paradigm. However, such a comparison is not fair because

the two approaches are based on different sets of assumptions. For the ERM approach, the main

assumption is on the complexity of candidate classifiers, leaving the class conditional distributions

unrestricted. While with the plug-in approach, we put restrictions on the joint distributions.

A related framework that also addresses asymmetry in errors is the cost-sensitive learning, which

assigns different costs as weights of type I and type II errors (see, e.g., Elkan 2001, Zadrozny et al.

2003). This approach has many practical values, but when it is hard to assign costs to errors, or in

applications such as medical diagnosis, where it is morally inappropriate to do the usual cost and

benefit analysis, the NP paradigm is a natural choice.
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1.2 Plug-in Approach Based on the Fundamental Neyman-Pearson Lemma

NP classification is closely related to the NP approach to statistical hypothesis testing. The punch

line is that the fundamental Neyman-Pearson lemma itself suggests a direct plug-in classifier. The

interested reader is referred to Lehmann and Romano (2005) for a comprehensive treatment of

hypothesis testing. Here we only review the central knowledge that brings up this connection.

Hypothesis testing bears strong resemblance with binary classification if we assume the follow-

ing model. Let P− and P+ be two known probability distributions on X ⊂ IRd . Let π ∈ (0,1) and

assume that Y is a random variable defined by

Y =

{

1 with probability π ,
0 with probability 1−π .

Assume further that the conditional distribution of X given Y is denoted by P2Y−1. Given such

a model, the goal of statistical hypothesis testing is to determine whether X was generated from

P− or from P+. To that end, we construct a randomized test φ : X → [0,1] and the conclusion

of the test based on φ is that X is generated from P+ with probability φ(X) and from P− with

probability 1−φ(X). Note that randomness here comes from an exogenous randomization process

such as flipping a biased coin. Two kinds of errors arise: type I error occurs when rejecting P−

when it is true, and type II error occurs when not rejecting P− when it is false. The Neyman-

Pearson paradigm in hypothesis testing amounts to choosing φ that solves the following constrained

optimization problem

maximize IE[φ(X)|Y = 1] ,
subject to IE[φ(X)|Y = 0]≤ α ,

where α∈ (0,1) is the significance level of the test. In other words, we specify a significance level α

on type I error, and minimize type II error. We call a solution to this constrained optimization prob-

lem a most powerful test of level α. The Neyman-Pearson Lemma gives mild sufficient conditions

for the existence of such a test.

Theorem 1 (Neyman-Pearson Lemma) Let P− and P+ be probability distributions possessing den-

sities p0 and p1 respectively with respect to some measure µ. Let fCα(x) = 1I(L(x)≥Cα), where

L(x) = p1(x)/p0(x) and Cα is such that P−(L(X)>Cα)≤ α and P−(L(X)≥Cα)≥ α. Then,

• fCα is a level α = IE [ fCα(X)|Y = 0] most powerful test.

• For a given level α, the most powerful test of level α is defined by

φ(X) =











1 if L(X)>Cα

0 if L(X)<Cα
α−P−(L(X)>Cα)

P−(L(X)=Cα)
if L(X) =Cα .

Notice that in the learning framework, φ cannot be computed since it requires knowledge of the

distributions P− and P+. Nevertheless, the Neyman-Pearson Lemma motivates a plug-in classifier.

Concretely, although we do not know p1 and p0, we can find the kernel density estimators p̂1 and

p̂0 based on data. Then if we can also detect the approximately right threshold level Ĉα, the plug-in

approach leads to a classifier 1I( p̂1(x)/ p̂0(x)≥ Ĉα). We expect that this simple classifier would have

good type I/II performance bounds, and this intuition will be verified in the following sections. It
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is worthy to note that our plug-in approach to NP classification leads to problems related to density

level set estimation (see Rigollet and Vert 2009 and reference therein), where the task is to estimate

{x : p(x) > λ}, for some level λ > 0. Density level set estimation has applications in anomaly

detection and unsupervised or semi-supervised classification. Plug-in methods for density level set

estimation, as opposed to direct methods, do not involve complex optimization procedure, and only

amounts to thresholding the density estimate at proper level. The challenges in our setting different

from Rigollet and Vert (2009) are two folds. First, the threshold level in our current setup needs to

be estimated, and secondly, we deal with density ratios rather than densities. Plug-in methods in

classical binary classification have been also studied in the literature. Earlier works seemed to give

rise to pessimism of plug-in approach to classification. For example, under certain assumptions,

Yang (1999) showed plug-in estimators cannot achieve classification error faster than O(1/
√

n).
But direct methods can achieve fast rates up to O(1/n) under margin assumption (Mammen and

Tsybakov, 1999; Tsybakov, 2004; Tsybakov and van de Geer, 2005; Tarigan and van de Geer, 2006).

However Audibert and Tsybakov (2007) combined a smoothness condition condition on regression

function with the margin assumption, and showed that plug-in classifiers 1I(η̂n ≥ 1/2) based on

local polynomial estimators can achieve rates faster than O(1/n). We will borrow the smoothness

condition on the regression function and margin assumption from Audibert and Tsybakov (2007).

However in that paper again, the threshold level is not estimated, so new techniques are called for.

1.3 Application to Anomaly Detection

NP classification is a useful framework to address anomaly detection problems. In anomaly detec-

tion, the goal is to discover patterns that are different from usual outcomes or behaviors. An unusual

behavior is named an anomaly. A variety of problems, such as credit card fraud detection, insider

trading detection and system malfunctioning diagnosis, fall into this category. There are many

approaches to anomaly detection; some serving a specific purpose while others are more generic.

Modeling techniques include classification, clustering, nearest neighbors, statistical and spectrum,

etc. A recent comprehensive review of anomaly detection literature is provided by Chandola et al.

(2009). Earlier review papers include Agyemang et al. (2006), Hodge and Austin (2004), Markou

and Singh (2003a), Markou and Singh (2003b), Patcha and Park (2007), etc.

When we have training data from the normal class, a common approach to anomaly detection is

to estimate the normal class density p0 and try to threshold at a proper level, but this is inappropriate

if the anomaly class is far from uniformly distributed. Indeed, to decide whether a certain point is

an anomaly, one should consider how likely it is for this point to be normal as opposed to abnormal.

The likelihood ratio p1/p0 or the regression function η are good to formalize such a concern. Our

main results in NP classification will be adapted for anomaly detection applications, where the

normal sample size n is much bigger than the anomaly sample size m.

The rest of the paper is organized as follows. In Section 2, we introduce a few notations and

definitions. In Section 3, oracle inequalities for a direct plug-in classifier are derived based on

the density ratio p1/p0. Section 4 investigates another related plug-in classifier, which targets on

the regression function η. Finally, proofs of two important technical lemmas are relegated to the

Appendix.
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2. Notations and Definitions

Following Audibert and Tsybakov (2007), some notations are introduced. For any multi-index

s = (s1, . . . ,sd)∈N
d and any x = (x1, . . . ,xd)∈R

d , define |s|= ∑d
i=1 si, s! = s1! · · ·sd!, xs = x

s1

1 · · ·xsd

d

and ‖x‖= (x2
1 + · · ·+ x2

d)
1/2. Let Ds be the differential operator Ds = ∂s1+···+sd

∂x1
s1 ···∂xd

sd .

Let β > 0. Denote by ⌊β⌋ the largest integer strictly less than β. For any x,x′ ∈ R
d and any

⌊β⌋ times continuously differentiable real valued function g on R
d , we denote by gx its Taylor

polynomial of degree ⌊β⌋ at point x:

gx(x
′) = ∑

|s|≤⌊β⌋

(x′− x)s

s!
Dsg(x) .

For L > 0, the (β,L, [−1,1]d)-Hölder class of functions, denoted by Σ(β,L, [−1,1]d), is the set

of functions g : Rd → R that are ⌊β⌋ times continuously differentiable and satisfy, for any x,x′ ∈
[−1,1]d , the inequality:

|g(x′)−gx(x
′)| ≤ L‖x− x′‖β .

The (β,L, [−1,1]d)-Hölder class of density is defined as

PΣ(β,L, [−1,1]d) =

{

p : p ≥ 0,
∫

p = 1, p ∈ Σ(β,L, [−1,1]d)

}

.

Denote respectively by IP and IE generic probability distribution and expectation. Also recall

that we have denoted by p0 the density of class 0 and by p1 that of class 1. For all the theoretical

discussions in this paper, the domain of densities p0 and p1 is [−1,1]d .

We will use β-valid kernels throughout the paper, which are a multi-dimensional analog of

univariate higher order kernels. The definition of β-valid kernels is as follows

Definition 1 Let K be a real-valued function on R
d with support [−1,1]d . For fixed β > 0, the

function K(·) is a β-valid kernel if it satisfies
∫

K = 1,
∫ |K|p < ∞ for any p ≥ 1,

∫ ‖t‖β|K(t)|dt < ∞,

and in the case ⌊β⌋ ≥ 1, it satisfies
∫

tsK(t)dt = 0 for any s = (s1, . . . ,sd) ∈ N
d such that 1 ≤

s1 + . . .+ sd ≤ ⌊β⌋.

One example of β-valid kernels is the product kernel whose ingredients are kernels of order β in 1

dimension:

K̃(x) = K(x1)K(x2) · · ·K(xd)1I(x ∈ [−1,1]d),

where K is a 1-dimensional β-valid kernel and is constructed based on Legendre polynomials. We

refer interested readers to Section 1.2.2 of Tsybakov (2009). These kernels have been considered

in the literature, such as Rigollet and Vert (2009). When the β-valid kernel K is constructed out of

Legendre polynomials, it is also Lipschitz and bounded. Therefore, such a kernel satisfies conditions

for Lemma 1. For simplicity, we assume that all the β-valid kernels considered in this paper are

constructed from Legendre polynomials.

The next low noise condition helps characterize the difficulty of a classification problem.

Definition 2 (Margin Assumption) A function p satisfies the margin assumption of order γ̄ with

respect to probability distribution P at the level C∗ if there exist positive constants C0 and γ̄, such

that ∀δ ≥ 0,

P(|p(X)−C∗| ≤ δ)≤C0δγ̄ .
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The above condition for densities was first introduced in Polonik (1995), and its counterpart in

the classical binary classification was called margin condition (Mammen and Tsybakov, 1999),

from which we borrow the same terminology for discussion. A classification problem is less noisy

by requiring most data be further away from the optimal decision boundary. Recall that the set

{x : η(x) = 1/2} is the decision boundary of the Bayes classifier in the classical paradigm, and the

margin condition in the classical paradigm is a special case of Definition 2 by taking p = η and

C∗ = 1/2.

3. Plug-in Based on Ratio of Class Conditional Densities

In this section, we investigate a plug-in classifier motivated by the Neyman-Pearson Lemma based

on the density ratio p1/p0. Both the p0 known and the p0 unknown cases will be discussed. Al-

though assuming precise knowledge on class 0 density is far from realistic, the subtlety of the

plug-in approach in the NP paradigm, as opposed to in the classical paradigm, is revealed through

the comparison of the two cases. Most importantly, we formulate some detection condition to detect

the right threshold level in plug-in classifiers under the NP paradigm.

3.1 Class 0 Density p0 Known

In this subsection, suppose that we know the class 0 density p0, but have to estimate the class

1 density p1. It is interesting to note that this setup is essentially a dual of generalized quantile

(minimum volume) set estimation problems, where the volume and mass defining measures are

interchanged. Denote by p̂1 the kernel density estimator of p1 based on an i.i.d. class 1 sample

S1 = {X+
1 , . . . ,X+

m }, that is,

p̂1(x0) =
1

mhd

m

∑
i=1

K

(

X+
i − x0

h

)

,

where h is the bandwidth. For a given level α, define respectively Ĉα and C∗
α as solutions of

P0

(

p̂1(X)

p0(X)
≥ Ĉα

)

= α and P0

(

p1(X)

p0(X)
≥C∗

α

)

= α .

Note that for some α, Ĉα and C∗
α might not exist. In such cases, randomization is needed to achieve

the exact level α. For simplicity, we assume that Ĉα and C∗
α exist and are unique. Note that since p0

is known, the threshold Ĉα is detected precisely for each sample S1. The Neyman-Pearson Lemma

says that under mild regularity conditions, φ∗(x) = 1I(p1(x)/p0(x)≥C∗
α) is the most powerful test of

level α. Therefore, we have a plug-in classifier naturally motivated by the Neyman-Pearson Lemma:

φ̂(x) = 1I

(

p̂1(x)

p0(x)
≥ Ĉα

)

, (2)

where we plug in estimates p̂1 and Ĉα respectively for the class 1 density p1 and the threshold

level C∗
α. We are interested in the theoretical properties of φ̂. In particular, we will establish oracle

inequalities regarding the excess type I and type II errors. Note that since Ĉα is constructed to meet

the level α exactly, the excess type I error of φ̂ vanishes, that is,

R0(φ̂)−R0(φ
∗) = 0 .

We summarize as follows assumptions on class conditional densities that we will reply upon.
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Condition 1 Suppose that the class conditional densities p0 and p1 satisfy:

i) There exists a positive constant µmin, such that p0 ≥ µmin,

ii) The class 1 density p1 ∈ PΣ(β,L, [−1,1]d),

iii) The ratio of class conditional densities p1/p0 satisfies the margin assumption of order γ̄ with

respect to probability distribution P0 at the level C∗
α.

Note that part i) in Condition 1 is the same as assuming p0 > 0 on the compact domain [−1,1]d , as

long as p0 is continuous. Part ii) is a global smoothness condition, which is stronger than the local

smoothness conditions used in Rigollet and Vert (2009), in which different smoothness conditions

for a neighborhood around the interested level λ and for the complement of the neighborhood are

formulated. Rigollet and Vert (2009) emphasized on the smoothness property for a neighborhood

around level λ, as only this part affects the rate of convergence. However, as Ĉα is not known a

priori in our setup, we rely upon a global smoothness condition as opposed to a local one.

The following theorem addresses the excess type II error of φ̂: R1(φ̂)−R1(φ
∗).

Proposition 1 Let φ̂ be the plug-in classifier defined by (2). Assume that the class conditional

densities p0 and p1 satisfy the Condition 1 and that the kernel K is β-valid and L′-Lipschitz. Then

for any δ ∈ (0,1), and any class 1 sample size m is such that

√

log(m/δ)
mhd < 1, where the bandwidth

h = ( logm
m

)1/(2β+d), the excess type II error is bounded, with probability 1−δ, by

R1(φ̂)−R1(φ
∗)≤ 22+γ̄C0C1+γ̄

(µmin)1+γ̄

(

log(m/δ)

mhd

)

1+γ̄
2

,

where the constant C is the same as in Lemma 1 applied to density p1. In particular, there exists a

positive C̄, such that for any m ≥ 1/δ,

R1(φ̂)−R1(φ
∗)≤ C̄

(

logm

m

)

β(1+γ̄)
2β+d

.

Note that the dependency of the upper bound for the excess type II error on parameters β, L,

and L′ is incorporated into the constant C, whose explicit formula is given in Lemma 1, which

has an important role in the proof. Lemma 1 is a finite sample uniform deviation result on kernel

density estimators. Here we digress slightly and remark that theoretical properties of kernel density

estimators have been studied intensively in the literature. A result of similar flavor was obtained

in Lei et al. (2013). Readers are referred to Wied and Weiβbach (2010) and references therein

for a survey on consistency of kernel density estimators. Convergence in distribution for weighted

sup norms was derived in Giné et al. (2004). Lepski (2013) studied expected sup-norm loss of

multivariate density estimation with an oracle approach. We have the technical Lemma 1 and it

proof in the appendix, as none of previous results is tailored to our use. Another phenomenon

worth mentioning is that the upper bound does not explicitly depend on the significance level α.

This results from the way we formulate the margin assumption. Suppose we were to allow γ̄ in

the margin assumption to depend on α, that is, γ̄ = γ̄(α), or let C0 depend on α, the upper bound

would have explicit dependency on α. Also from the upper bound, we can see that the larger the

parameter γ̄, the sharper the margin assumption, and then the faster the rate of convergence for the
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excess type II error. Also, we re-emphasize that the feature dimension d considered in this paper is

fixed and does not increase with sample sizes.

Proof

First note that the excess type II error can be represented by

R1(φ̂)−R1(φ
∗) =

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ,

where G∗ =
{

p1

p0
<C∗

α

}

and Ĝ =
{

p̂1

p0
< Ĉα

}

, and G∗△Ĝ = (G∗∩ Ĝc)∪ (G∗c∩ Ĝ) is the symmetric

difference between G∗ and Ĝ. Indeed,

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0

=
∫

G∗∩Ĝc

(

C∗
α −

p1

p0

)

dP0 +
∫

G∗c∩Ĝ

(

p1

p0

−C∗
α

)

dP0

=
∫

G∗

(

C∗
α −

p1

p0

)

dP0 +
∫

Ĝ

(

p1

p0

−C∗
α

)

dP0

= C∗
αP0(G

∗)−P1(G
∗)−C∗

αP0(Ĝ)+P1(Ĝ)

= P1(Ĝ)−P1(G
∗) .

Define an event regarding the sample S1: E = {‖ p̂1− p1‖∞ < δ1

2
µmin}, where δ1 =

2C
µmin

√

log(m/δ)
mhd ,

and C is the same as in Lemma 1 (with p replaced by p1). From this point to the end of the proof,

we restrict ourselves to the event E .

Since G∗c ∩ Ĝ and G∗∩ Ĝc are disjoint, we can handle the two parts separately. Decompose

G∗c ∩ Ĝ =

{

p1

p0

≥C∗
α,

p̂1

p0

< Ĉα

}

= A1 ∪A2 ,

where

A1 =

{

C∗
α +δ1 ≥

p1

p0

≥C∗
α,

p̂1

p0

< Ĉα

}

,

and

A2 =

{

p1

p0

>C∗
α +δ1,

p̂1

p0

< Ĉα

}

.

Then, ∫
A1

(

p1

p0

−C∗
α

)

dP0 ≤ δ1P0(A1)≤C0(δ1)
1+γ̄ .

We can control the distance between Ĉα and C∗
α. Indeed,

α = P0

(

p̂1(X)

p0(X)
≥ Ĉα

)

= P0

(

p1(X)

p0(X)
≥C∗

α

)

≥ P0

(

p̂1(X)

p0(X)
≥C∗

α +
|p1(X)− p̂1(X)|

p0(X)

)

≥ P0

(

p̂1(X)

p0(X)
≥C∗

α +
δ1µmin

2µmin

)

= P0

(

p̂1(X)

p0(X)
≥C∗

α +
δ1

2

)

.
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This implies that Ĉα <C∗
α +

δ1

2
. Therefore,

A2 ⊂ A3 :=

{

p1

p0

≥C∗
α +δ1,

p̂1

p0

<C∗
α +δ1/2

}

.

It is clear that on the event E , P0(A3) = 0. Therefore,

∫
G∗c∩Ĝ

(

p1

p0

−C∗
α

)

dP0 ≤C0(δ1)
1+γ̄ .

Similarly, it can be shown that
∫

G∗∩Ĝc

(

C∗
α − p1

p0

)

dP0 ≤C0(δ1)
1+γ̄. Therefore,

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤ 2C0(δ1)
1+γ̄ .

Finally, Lemma 1 implies IP(E)≥ 1−δ. This completes the proof.

Although it is reasonable to assume that the class 0 density p0 can be approximated well, as-

suming p0 known exactly is not realistic for most applications. Next, we consider the unknown p0

case.

3.2 Class 0 Density p0 Unknown

Assume that both the class 0 density p0 and the class 1 density p1 are unknown. Knowledge on class

conditional densities is passed to us through samples. Because data from class 0 is needed to esti-

mate both the class 0 density and the threshold level, we split the class 0 data into two pieces. There-

fore, suppose available data include class 0 samples S0 =
{

X−
1 , . . . ,X−

n

}

, S̃0 =
{

X−
n+1, . . . ,X

−
2n

}

, and

a class 1 sample S1 =
{

X+
1 , . . . ,X+

m

}

. Also assume that given samples S0 and S1, the variables in S̃0

are independent. Our mission is still to construct a plug-in classifier based on the optimal test output

by the Neyman-Pearson Lemma and to show that it has desirable theoretical properties regarding

type I and II errors.

First estimate p0 and p1 respectively from S0 and S1 by kernel estimators,

p̂0(x) =
1

nhd
n

n

∑
i=1

K

(

X−
i − x

hn

)

and p̂1(x) =
1

mhd
m

m

∑
i=1

K

(

X+
i − x

hm

)

,

where hn and hm denote the bandwidths. Since p0 is unknown, Ĉα can not be defined trivially as in

the p0 known case. And, it turns out that detecting the right threshold level is important to proving

theoretical properties of the plug-in classifier. There is one essential piece of intuition. We know

that having fast diminishing excess type II error demands a low noise condition, such as the margin

assumption. On the other hand, if there are enough sample points around the optimal threshold

level, we can approximate the threshold C∗
α accurately. Approximating the optimal threshold level

is not a problem in the classical setting, because in that setting, the Bayes classifier is 1I(η(x) ≥
1/2), and the threshold level 1/2 on the regression function η is known. Therefore, estimating the

optimal threshold with the NP paradigm introduces new technical challenges. The following level

α detection condition addresses this concern.
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Condition 2 (level α detection condition) The function f satisfies the level α detection condition

(with respect to P0 (X ∼ P0)) if there exist positive constants C1 and γ
−
, such that for any δ in a small

right neighborhood of 0,

P0 (C
∗
α −δ ≤ f (X)≤C∗

α)∧P0 (C
∗
α ≤ f (X)≤C∗

α +δ)≥C1δ
γ− .

Definition 3 Fix δ ∈ (0,1), for dn = 2

√

2
log(2en)+log(2/δ)

n
, let Ĉα be the smallest C such that

1

n

2n

∑
i=n+1

1I

(

p̂1(X
−
i )

p̂0(X
−
i )

≥C

)

≤ α−dn.

Having p̂1, p̂0 and Ĉα, we propose a plug-in classifier motivated by the Neyman-Pearson Lemma in

statistical hypothesis testing:

φ̂(x) = 1I

(

p̂1(x)

p̂0(x)
≥ Ĉα

)

. (3)

Unlike the previous setup where p0 was known, we now need to bound the type I error of φ̂ first.

Proposition 2 With probability at least 1− δ regarding the samples S0, S̃0 and S1, type I error of

the plug-in classifier φ̂ defined in (3) is bounded from above by α, that is,

R0(φ̂)≤ α .

Proof Note that R0(φ̂) = P0

(

p̂1(X)
p̂0(X) ≥ Ĉα

)

and 1
n ∑2n

i=n+1 1I
(

p̂1(X
−
i )

p̂0(X
−
i )

≥ Ĉα

)

≤ α−dn. Let

At =

{

sup
c∈R

∣

∣

∣

∣

∣

P0

(

p̂1(X)

p̂0(X)
≥ c

)

− 1

n

2n

∑
i=n+1

1I

(

p̂1(X
−
i )

p̂0(X
−
i )

≥ c

)

∣

∣

∣

∣

∣

≥ t

}

.

Then it is enough to show that, IP(Adn
)≤ δ .

Note that IP(At) = IE(IP(At |S0,S1)) . Keep S0 and S1 fixed, and define f̂ (x) = p̂1(x)
p̂0(x)

. Let Q

be the conditional distribution of Z = f̂ (X) given S0 and S1, where X ∼ P0, and Qn denote the

conditional joint distribution of (Z−
n+1, . . . ,Z

−
2n) = ( f̂ (X−

n+1), . . . , f̂ (X−
2n)). Because half lines in R

have VC dimension 1, by taking t = dn = 2

√

2
log(2en)+log(2/δ)

n
, the VC inequality1 implies that

IP(Adn
|S0,S1) = Qn

(

supc |Q(Z ≥ c)− 1
n ∑2n

i=n+1 1I(Z−
i ≥ c)| ≥ dn

)

≤ δ .

Therefore,

IP(Adn
) = IE(IP(Adn

|S0,S1))≤ δ .

The next theorem addresses the excess type II error of φ̂.

1. For the readers’ convenience, a simple corollary of VC inequality is quoted: let G be a class of classifiers with VC

dimension l, then with probability at least 1− δ, supg∈G |R(g)−Rn(g)| ≤ 2

√

2
l log(2en/l)+log(2/δ)

n , where n is the

sample size and Rn denotes the empirical risk.
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Theorem 2 Let φ̂ be the plug-in classifier defined as in (3). Assume that the class conditional

densities p0 and p1 satisfy Condition 1, p0 ∈ PΣ(β,L, [−1,1]d) and the kernel K is β-valid and L′-
Lipschitz. Also assume that the likelihood ratio p1/p0 satisfies the level α detection condition for

some γ
−
≥ γ̄. Then for any δ ∈ (0,1) and any sample sizes m,n such that

max

(
√

log(m/δ)

mhd
m

,

√

log(n/δ)

nhd
n

)

< 1 ,

where the bandwidths hn = ( logn
n
)

1
2β+d and hm = ( logm

m
)

1
2β+d , it holds with probability 1−3δ,

R1(φ̂)−R1(φ
∗)≤ 2C0

[

(2dn/C1)
1/γ−+2Tm,n

]1+γ̄

+2C∗
αdn ,

where dn = 2

√

2
log(2en)+log(2/δ)

n
, Tm,n =

δ1+‖p1‖∞δ0/µmin

µmin−δ0
, δ0 =C2

√

log(n/δ)
nhd

n
,

δ1 =C3

√

log(m/δ)
mhd

m
, C2 and C3 are the same as C in Lemma 1 applied to p0 and p1 respectively.

In particular, there exists some positive C̄, such that for all n,m ≥ 1/δ,

R1(φ̂)−R1(φ
∗)≤ C̄







(

logn

n

)min

(

1
2
, 1+γ̄

2 γ−
, β(1+γ̄)

2β+d

)

+

(

logm

m

)

β(1+γ̄)
2β+d






. (4)

Proof

Denote by G∗ =
{

p1

p0
<C∗

α

}

and Ĝ =
{

p̂1

p̂0
< Ĉα

}

. Then

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0

=
∫

G∗∩Ĝc

(

C∗
α −

p1

p0

)

dP0 +
∫

G∗c∩Ĝ

(

p1

p0

−C∗
α

)

dP0

=
∫

G∗

(

C∗
α −

p1

p0

)

dP0 +
∫

Ĝ

(

p1

p0

−C∗
α

)

dP0

= P1(Ĝ)−P1(G
∗)+C∗

α

[

P0(G
∗)−P0(Ĝ)

]

.

Therefore the excess type II error can be decomposed in two parts,

P1(Ĝ)−P1(G
∗) =

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 +C∗
α

[

P0(G
∗c)−P0(Ĝ

c)
]

. (5)

Recall that P0(G
∗c) = α and P0(Ĝ

c) is type I error of φ̂. From the above decomposition, we see

that to control the excess type II error, type I error of φ̂ should be not only smaller than the level α,

but also not far from α. This is intuitively correct, because having a small type I error amounts to

having a very tight constraint set, which leads to significant deterioration in achievable type II error.

Fortunately, this is not the case here with high probability. Note that by the definition of Ĉα, for any

positive number l, the following holds for all n ≥ 1,

1

n

2n

∑
i=n+1

1I

(

p̂1(X
−
i )

p̂0(X
−
i )

≥ Ĉα − l

)

> α−dn .
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By the same argument as in the proof of Proposition 2, there exists an event Ēl regarding the samples

S0, S̃0 and S1 with IP(Ēl)≥ 1−δ, such that on this event,

P0

(

p̂1(X)

p̂0(X)
≥ Ĉα − l

)

≥ α−2dn . (6)

To control the second part of R.H.S. in(5), let Ĝl = { p̂1

p̂0
< Ĉα − l}, then

P0(G
∗c)−P0(Ĝ

c) = inf
l>0

[

P0(G
∗c)−P0(Ĝ

c
l )
]

≤ α− (α−2dn) = 2dn , (7)

on the event Ē := ∩l>0Ēl , and IP(Ē) = liml→0 IP(Ēl)≥ 1−δ.

Therefore, it remains to control the first part of R.H.S. in (5). Define an event regarding samples

S0 and S1:

E = {‖ p̂0 − p0‖∞ < δ0,‖ p̂1 − p1‖∞ < δ1} .

Lemma 1 implies that IP(E)≥ 1−2δ . We restrict ourselves to E ∩ Ē for the rest of the proof. Note

that the first part of R.H.S. in (5) can be decomposed by

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 =
∫

G∗c∩Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 +
∫

G∗∩Ĝc

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 .

We will focus on bounding the integral over G∗ ∩ Ĝc, because that over G∗c ∩ Ĝ can be bounded

similarly. Note that,

∣

∣

∣

∣

p̂1

p̂0

− p1

p0

∣

∣

∣

∣

≤
∣

∣

∣

∣

p̂1

p̂0

− p1

p̂0

∣

∣

∣

∣

+

∣

∣

∣

∣

p1

p̂0

− p1

p0

∣

∣

∣

∣

≤ 1

| p̂0|
| p̂1− p1|+

∣

∣

∣

∣

p1

p0

∣

∣

∣

∣

· |p0 − p̂0|
| p̂0|

<
‖p1‖∞δ0/µmin +δ1

µmin −δ0

= Tm,n .

The above inequality together with (6) implies that

α−2dn ≤ P0

(

p̂1(X)

p̂0(X)
≥ Ĉα − l

)

≤ P0

(

p1(X)

p0(X)
≥ Ĉα − l −Tm,n

)

. (8)

We need to bound Ĉα in terms of C∗
α. This is achieved through the following steps. First, we

determine some cn > 0 such that

P0

(

p1(X)

p0(X)
≥C∗

α + cn

)

≤ α−2dn ,

which follows if the next inequality holds

2dn ≤ P0

(

C∗
α <

p1(X)

p0(X)
<C∗

α + cn

)

.

By the level α detection condition, it is enough to take cn = (2dn/C1)
1/γ−

. Therefore in view of

inequality (8),

P0

(

p1(X)

p0(X)
≥C∗

α +(2dn/C1)
1/γ−
)

≤ α−2dn ≤ P0

(

p1(X)

p0(X)
≥ Ĉα − l −Tm,n

)

.
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This implies that

Ĉα ≤C∗
α +(2dn/C1)

1/γ−+ l +Tm,n .

Since the above holds for all l > 0, we have

Ĉα ≤C∗
α +(2dn/C1)

1/γ−+Tm,n .

For any positive Lm,n, we can decompose G∗c ∩ Ĝ by

G∗c ∩ Ĝ =

{

p1

p0

≥C∗
α,

p̂1

p̂0

< Ĉα

}

= A1 ∩A2 ,

where

A1 =

{

C∗
α +Lm,n >

p1

p0

≥C∗
α,

p̂1

p̂0

< Ĉα

}

, and A2 =

{

p1

p0

≥C∗
α +Lm,n,

p̂1

p̂0

< Ĉα

}

.

By the margin assumption,

∫
A1

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤ Lm,nP0(A1)≤C0(Lm,n)
1+γ̄ .

Note that

A2 ⊂ A3 :=

{

p1

p0

≥C∗
α +Lm,n,

p̂1

p̂0

<C∗
α +(2dn/C1)

1/γ−+Tm,n

}

.

Take Lm,n = (2dn/C1)
1/γ−+2Tm,n, then P0(A2) = P0(A3) = 0. Therefore,

∫
G∗c∩Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤C0(Lm,n)
1+γ̄ .

Similarly, we can bound the integral over G∗∩ Ĝc, so

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤ 2C0(Lm,n)
1+γ̄ . (9)

Finally, note that IP(E ∩ Ē)≥ 1−3δ. So (5), (7) and (9) together conclude the proof.

Now we briefly discuss the above result. Same as the p0 known setup, the coefficient γ̄ from the

margin assumption has influence on the convergence rate of the excess type II error. The larger the γ̄,

the easier the classification problem, and hence the faster the convergence of the excess type II error.

The coefficient γ
−

in the detection condition works differently. The larger the γ
−
, the more difficult

it is to detect the optimal decision boundary, and hence the harder the classification problem. Take

it to the extreme γ
−
→ ∞ (keep γ̄ fixed), which holds when the amount of data around the optimal

threshold level goes to zero,
(

logn

n

)

1+γ̄
2 γ− →

(

logn

n

)0

= 1 .
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In other words, the upper bound in (4) is uninformative when we have a null level α detection

condition.

In anomaly detection applications, let class 0 represent the normal class, and class 1 represent

the anomaly class. We have in mind n ≫ m, that is, the normal sample size is much bigger than

that of the anomaly, and so logn/n is dominated by logm/m. Therefore, the right hand side of (4)

is of the order

[

( logn
n
)

min(1/2,(1+γ̄)/(2γ−))+( logm
m

)β(1+γ̄)/(2β+d)

]

. Compared with the p0 known setup,

the extra term
(

logn
n

)min(1/2,(1+γ̄)/(2γ−))
arises from estimating the threshold level C∗

α. Let n → ∞,

which amounts to knowing p0, this term vanishes, and the upper bound reduces to the same as in

the previous subsection. When γ
−
< 1+ γ̄, we have 1/2 < (1+ γ̄)/(2γ

−
), so γ

−
does not show up in

the upper bound. Finally, for fixed γ
−
(≥ 1+ γ̄), β and d, we can calculate explicitly an order relation

between m and n, such that ( logm
m

)
β

2β+d ≥ ( logn
n
)

1
2 γ−

. A sufficient condition for this inequality is that

n ≥
(

m
logm

)βγ−/(4β+2d)
. Intuitively, this says that if the normal class sample size is large enough

compared to the anomaly class sample size, lack of precise knowledge on normal class density p0

does not change the type II error rate bound, up to a multiplicative constant.

4. Plug-in Based on the Regression Function

In this section, instead of plugging in class conditional densities p1 and p0, we target the regression

function η(x) = IE(Y |X = x) directly. As will be illustrated, this version of plug-in estimator allows

us to handle a different assumption on sampling scheme. Recall that the rationality behind plugging

in for p1/p0 lies in the Neyman-Pearson Lemma for hypothesis testing. A simple derivation shows

that a thresholding rule on p1/p0 can be translated into a thresholding rule on η. Indeed, let π =
IP(Y = 1), then we have

η(x) = IP(Y = 1|X = x) =
π · p1/p0(x)

π · p1/p0(x)+(1−π)
.

When π < 1, the function x 7→ πx
πx+(1−π) is strictly monotone increasing on R

+. Therefore, there

exists a positive constant D∗
α depending on α, such that

{

x ∈ [−1,1]d :
p1(x)

p0(x)
≥C∗

α

}

= {x ∈ [−1,1]d : η(x)≥ D∗
α} .

Moreover, the oracle thresholds C∗
α and D∗

α are related by D∗
α = πC∗

α

πC∗
α+(1−π) . Parallel to the previous

section, we address both the p0 known and p0 unknown setups. In both setups, we assume that we

have access to an i.i.d. sample S̄ = {(X1,Y1), . . . ,(Xm,Ym)}.

4.1 Class 0 Density p0 Known

This part is similar to the p0 known setup in Section 3. The essential technical difference is that

we need a uniform deviation result on the Nadaraya-Watson estimator η̂ (based on the sample S̄ )

instead of those on p̂0 and p̂1. Recall that η̂ = ∑m
i=1YiK

(

Xi−x
h

)

/∑m
i=1 K

(

Xi−x
h

)

can written as f̂/ p̂,
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where

p̂(x) =
1

mhd

m

∑
i=1

K

(

Xi − x

h

)

and f̂ (x) =
1

mhd

m

∑
i=1

YiK

(

Xi − x

h

)

,

in which h is the bandwidth. Denote by p = πp1 +(1−π)p0 and f = η · p, then η = f/p. For a

given level α, define D̂α and D∗
α respectively by

P0(η̂(X)≥ D̂α) = α and P0(η(X)≥ D∗
α) = α .

For simplicity, we assume that D̂α and D∗
α exist and are unique. Note that the oracle classifier of

level α is φ∗(x) = 1I(η(x)≥ D∗
α), so a plug-in classifier motivated by the Neyman-Pearson Lemma

is

φ̃(x) = 1I(η̂(x)≥ D̂α) . (10)

Since D̂α is constructed to meet the level α exactly, the excess type I error of φ̃ vanishes, that is,

R0(φ̃)−R0(φ
∗) = 0 .

The following theorem addresses type II error of φ̃.

Condition 3 Suppose that p the marginal density of X and η the regression function satisfy:

(i) There exist positive constants µ′min and ν′
max(< 1), such that p ≥ µ′min and η ≤ ν′

max,

(ii) f = η · p ∈ PΣ(β,L, [−1,1]d) and p ∈ PΣ(β,L, [−1,1]d),

(iii) The regression function η satisfies the margin assumption of order γ̄ with respect to probability

distribution P0 at the level D∗
α.

Proposition 3 Let φ̃ be the plug-in classifier defined by (10). Assume that p and η satisfy condition

3 and that the kernel K is β-valid and L′-Lipschitz. Then there exists a positive D̃, such that for any

δ ∈ (0,1) and any sample size m satisfying

√

log(m/δ)
mhd < 1, it holds with probability 1−δ,

R1(φ̃)−R1(φ
∗)≤ D̃

(

log(3m/δ)

mhd

)

1+γ̄
2

,

where h =
(

logm
m

)
1

2β+d
. Furthermore, there exists a positive D such that for any m ≥ 1/δ, it holds

with probability 1−δ,

R1(φ̃)−R1(φ
∗)≤ D

(

logm

m

)

β(1+γ̄)
2β+d

.

Proof First note that the excess type II error

R1(φ̃)−R1(φ
∗) =

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 = P1(Ĝ)−P1(G
∗) ,
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where G∗ = {η < D∗
α} and Ĝ =

{

η̂ < D̂α

}

, and G∗△Ĝ = (G∗∩ Ĝc)∪ (G∗c ∩ Ĝ).
Define an event regarding the sample S̄ ,

E = {‖η̂−η‖∞ < δ1/2} ,

where δ1 = D1

√

log(3m/δ)
mhd and D1 is a constant chosen as in Lemma 2. From this point to the end of

the proof, we restrict ourselves to E . Decompose

G∗c ∩ Ĝ =
{

η ≥ D∗
α, η̂ < D̂α

}

= A1 ∪A2 ,

where

A1 =
{

D∗
α +δ1 ≥ η ≥ D∗

α, η̂ < D̂α

}

,

and

A2 =
{

η > D∗
α +δ1, η̂ < D̂α

}

.

Now we need to control the distance of

∣

∣

∣

p1

p0
−C∗

α

∣

∣

∣
in terms of |η−D∗

α|. This can be achieved by

recalling

η =
πp1/p0

πp1/p0 +1−π
and D∗

α =
πC∗

α

πC∗
α +1−π

,

and the assumption that η ≤ ν′
max(< 1) (also D∗

α ≤ ν′
max should follow). Indeed, let

f (x) =
πx

πx+(1−π)
,0 < x < ν′

max .

Then,

g(x) = f−1(x) =
1−π

π

x

1− x
,0 < x <

πν′
max

πν′
max +1−π

.

Since |g′(x)| ≤ π
1−π

(

πµ′max+1−π
πν′max

)2

=: U , g is Lipschitz with Lipschitz constant U . Therefore,

|η−D∗
α| ≤ δ1 =⇒

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

≤Uδ1 .

This implies ∫
A1

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤Uδ1P0(A1)≤C0Uδ
1+γ̄
1 ,

where the second inequality follows from the margin assumption. To bound the integral over A2,

we control the distance between D̂α and D∗
α. Indeed,

α = P0(η̂(X)≥ D̂α) = P0(η(X)≥ D∗
α)

≥ P0(η̂(X)≥ D∗
α +δ1/2) .

This implies that D̂α ≤ D∗
α +δ1/2. So

P0(A2)≤ P0(η > D∗
α +δ1, η̂ < D∗

α +δ1/2) = 0 .

Therefore, ∫
G∗c∩Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

≤C0Uδ
1+γ̄
1 .
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Similarly bound the integral over G∗∩ Ĝc, then

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

≤ 2C0Uδ
1+γ̄
1 .

Lemma 2 implies that IP(E)≥ 1−δ. This concludes the proof.

Note that Lemma 2 is a uniform deviation result on the Nadaraya-Watson estimator, and it is the

first result of such kind to the best of our knowledge.

4.2 Class 0 Density p0 Unknown

In this subsection, the assumption of knowledge on p0 is relaxed. Suppose in addition to the mixed

sample S̄ = {(X1,Y1), . . . ,(Xm,Ym)}, we have access to a class 0 sample S0 = {X−
1 , . . . ,X−

n }. More-

over, assume that variables in S0 are independent given S̄ . As in the p0 known case, the notation

η̂ denotes the Nadaraya-Watson estimator based on the sample S̄ . Just like Ĉα in Definition 3, we

need to define the threshold level D̂α carefully.

Definition 4 Fix δ ∈ (0,1), for dn = 2

√

2
log(2en)+log(2/δ)

n
, let D̂α be the smallest L such that

1

n

n

∑
i=1

1I
(

η̂(X−
i )≥ L

)

≤ α−dn .

Unlike the previous setup where p0 is known, we now bound the excess type I error.

Proposition 4 With probability at least 1−δ, type I error of the plug-in classifier φ̃ defined in (10)

is bounded from above by α, that is,

R0(φ̃)≤ α .

The proof is omitted due to similarity to that of Proposition 2. A similar α level detection condition

can be formulated can be formulated for the regression function, but we omit it as C∗
α is simply

replaced by D∗
α. The next theorem address the excess type II error of φ̃: R1(φ̃)−R1(φ

∗).

Theorem 3 Let φ̃ = 1I(η̂ ≥ D̂α) be defined as in (10). Assume condition 3 and the regression

function η satisfies the level α detection condition for some γ
−
(≥ γ̄). Take the bandwidth h =

( logm
m

)1/(2β+d) in the Nadaraya-Watson estimator η̂, where the kernel K is β-valid and L′-Lipschitz.

Then there exists a positive constant C̄, such that for any δ ∈ (0,1) and any m,n ≥ 1/δ, it holds with

probability 1−2δ,

R1(φ̃)−R1(φ
∗)≤ C̄







(

logn

n

)min

(

1
2
, 1+γ̄

2 γ−

)

+

(

logm

m

)

β(1+γ̄)
2β+d






.

Proof Let G∗ = {η < D∗
α} and Ĝ = {η̂ < D̂α}, then the excess type II error of φ̃ can be decomposed

by

P1(Ĝ)−P1(G
∗) =

∫
G∗△G∗

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 +C∗
α +
[

P0(G
∗c)−P0(Ĝ

c)
]

. (11)
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Recall that P0(G
∗c) = α and P0(Ĝ

c) is type I error of φ̃. By the definition of D̂α, for any positive

number l, the following holds for all n ≥ 1,

1

n

n

∑
i=1

1I(η̂(X−
i )≥ D̂α − l)> α−dn ,

where dn = 2

√

2
log(2en)+log(2/δ)

n
. By the same argument as in the proof of Proposition 2, there exists

an event Ēl regarding the samples S0, S̃0 and S1 with IP(Ēl)≥ 1−δ, such that on this event,

P0

(

η̂ ≥ D̂α − l
)

≥ α−2dn .

To control the second part of R.H.S. in(11), let Ĝl = {η̂ < D̂α − l}, then

P0(G
∗c)−P0(Ĝ

c) = inf
l>0

[

P0(G
∗c)−P0(Ĝ

c
l )
]

≤ α− (α−2dn) = 2dn , (12)

on the event Ē := ∩l>0Ēl , and IP(Ē) = liml→0 IP(Ēl) ≥ 1− δ. Therefore, it remains to control the

first part of R.H.S. in (11). Define an event regarding the sample Ē ,

E = {‖η̂−η‖∞ < δ1/2} ,

where δ1 = D1

√

log(3m/δ)
mhd and D1 is a constant chosen as in Lemma 2. Lemma 2 implies that

IP(E) ≥ 1− δ. We restrict ourselves to E ∩ Ē for the rest of the proof. Note that the first part of

R.H.S. of (11) can be decomposed by

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 =
∫

G∗c∩Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 +
∫

G∗∩Ĝc

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 .

We will focus the integral over G∗ ∩ Ĝc, as that over G∗c ∩ Ĝ can be bounded similarly. Because

|η̂−η|< δ1/2, for all l > 0,

α−2dn ≤ P0

(

η̂ ≥ D̂α − l
)

≤ P0

(

η ≥ D̂α − l −δ1/2
)

.

We need to bound D̂α in terms of D∗
α. This is achieved through the following steps. First, we

determine some cn > 0 such that

P0 (η ≥ D∗
α + cn)≤ α−2dn ,

which follows if the next inequality holds

2dn ≤ P0 (D
∗
α < η < D∗

α + cn) .

By the level α detection condition, it is enough to take cn = (2dn/C1)
1/γ−

. Therefore,

P0

(

η ≥ D∗
α +(2dn/C1)

1/γ−
)

≤ α−2dn ≤ P0

(

η ≥ D̂α − l −δ1/2
)

.

This implies that

D̂α ≤ D∗
α +(2dn/C1)

1/γ−+ l +δ1/2 .
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Since the above holds for all l > 0, we have

D̂α ≤ D∗
α +(2dn/C1)

1/γ−+δ1/2 .

We can decompose G∗c ∩ Ĝ by

G∗c ∩ Ĝ =
{

η ≥ D∗
α, η̂ < D̂α

}

= A1 ∩A2 ,

where

A1 =

{

D∗
α +(2dn/C1)

1/γ−+δ1 > η ≥ D∗
α, η̂ < D̂α

}

, and

A2 =

{

η ≥ D∗
α +(2dn/C1)

1/γ−+δ1, η̂ < D̂α

}

.

Let U := π
1−π

(

πµ′max+1−π
πν′max

)2

, through the same derivation as the p0 known case,

|η−D∗
α| ≤ (2dn/C1)

1/γ−+δ1 =⇒
∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

≤U

(

(2dn/C1)
1/γ−+δ1

)

.

By the margin assumption,

∫
A1

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤U

(

(2dn/C1)
1/γ−+δ1

)

P0(A1)≤C0U

[

(2dn/C1)
1/γ−+δ1

]1+γ̄

.

Note that

A2 ⊂ A3 :=

{

η ≥ D∗
α +(2dn/C1)

1/γ−+δ1, η̂ < D∗
α +(2dn/C1)

1/γ−+δ1/2

}

,

but |η− η̂|< δ1/2 on E ∩ Ē , so P0(A2) = P0(A3) = 0. Therefore,

∫
G∗c∩Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤C0U

[

(2dn/C1)
1/γ−+δ1

]1+γ̄

.

Similarly, the integral over G∗∩ Ĝc can be bounded, so we have

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤ 2C0U

[

(2dn/C1)
1/γ−+δ1

]1+γ̄

. (13)

Finally, note that IP(E ∩ Ē)≥ 1−2δ. So (11), (12) and (13) together conclude the proof.

In anomaly detection applications, normal samples are considered abundant, that is, n ≫ m,

which implies that ( logn
n
)

1
2β+d ≤ ( logm

m
)

1
2β+d . Then the upper bounds for the excess type II errors

in Theorem 2 and Theorem 3 are of the same order. Having access to the mixture (contaminated)

sample S̄ looks like a weaker condition than having access to a pure anomaly sample. However, this
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does not seem to be the case in our settings. The essence is revealed by observing that the density

ratio p1/p0 and the regression function η play the same role in the oracle NP classifier at level α:

φ∗(x) = 1I(p1/p0(x)≥C∗
α) = 1I(η(x)≥ D∗

α) .

A plug-in classifier depends upon an estimate of either p1/p0 or η. Being able to estimate the

anomaly density p1 is not of particular advantage, because only the ratio p1/p0 matters. Strictly

speaking, the conditions for the two theorems are not the same, but one advantage of targeting the

regression function seems to be that we do not have to split the normal example into two, with one

to estimate p0 and the other to estimate the optimal threshold C∗
α.
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Appendix A. Technical Lemmas

The appendix includes two important technical lemmas and their proofs. Lemma 1 is a uniform

deviation result on kernel density estimators, and Lemma 2 is a uniform division result on Nadaraya-

Watson estimators.

Lemma 1 Let p ∈ PΣ(β,L, [−1,1]d)and the kernel K be β-valid and L′-Lipschitz. Denote by p̂(x) =
1

nhd ∑n
i=1 K

(

Xi−x
h

)

the kernel density estimator of p based on the i.i.d sample {X1, . . . ,Xn}, where h

is the bandwidth. For any ε ∈ (0,1), if the sample size n is such that

√

log(n/ε)
nhd < 1, it holds

IP(‖ p̂− p‖∞ ≥ δ)≤ ε ,

where

δ = (32c2d +
√

48dc1)

√

log(n/ε)

nhd
+2Lc3hβ +

1

nhd

√
dL′

nh
+(L+C̃ ∑

1≤|s|≤⌊β⌋

1

s!
)dβ/2n−2β ,

where c1 = ‖p‖∞‖K‖2, c2 = ‖K‖∞ + ‖p‖∞ +
∫ |K|‖t‖βdt, c3 =

∫ |K|‖t‖βdt, and C̃ is such that

C̃ ≥ sup1≤|s|≤⌊β⌋ supx∈[−1,1]d |Ds p(x)|.

Let h =
(

logn
n

)
1

2β+d
, it is enough to take δ =C

√

log(n/ε)
nhd , where

C = 32c2d +
√

48dc1 +2Lc3 +
√

dL′+L+C̃ ∑
1≤|s|≤⌊β⌋

1

s!
.

Proof Divide each coordinate of the hypercube [−1,1]d into 2M equally spaced subintervals. Then

[−1,1]d is subdivided into (2M)d small hypercubes, with a total of (2M+1)d vertices. We denote

the collection of these vertices by G. Note that for any δ > 0,

IP(‖ p̂− p‖∞ ≥ δ)≤ IP(M1 +M2 +M3 ≥ δ) , (14)
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where

M1 = sup

‖x−x′‖≤
√

d
M

1

nhd

∣

∣

∣

∣

∣

n

∑
i=1

(

K(
Xi − x

h
)−K(

Xi − x′

h
)

)

∣

∣

∣

∣

∣

,

M2 = sup

‖x−x′‖≤
√

d
M

|p(x)− p(x′)| ,

M3 = sup
x∈G

∣

∣

∣

∣

∣

1

nhd

n

∑
i=1

K(
Xi − x

h
)− p(x)

∣

∣

∣

∣

∣

.

Note that because K is L′-Lipschitz,

M1 ≤ sup

‖x−x′‖≤
√

d
M

1

nhd

n

∑
i=1

∣

∣

∣

∣

(

K(
Xi − x

h
)−K(

Xi − x′

h
)

)∣

∣

∣

∣

≤ 1

nhd

n
√

dL′

Mh
=

1

nhd

√
dL′

nh
.

To control M2, note that if β ≤ 1,

|p(x)− p(x′)|= |p(x)− px′(x)| ≤ L‖x− x′‖β .

If β > 1, p is ⌊β⌋-times continuously differentiable. In particular, for all s such that 1 ≤ |s| ≤ ⌊β⌋,

Ds p is continuous. Since [−1,1]d is compact, there exists a positive constant C̃, such that

sup
1≤|s|≤⌊β⌋

sup
x∈[−1,1]d

|Ds p(x)| ≤ C̃ .

Therefore,

|p(x)− p(x′)| ≤ |p(x)− px′(x)|+ |px′(x)− p(x′)|

= L‖x− x′‖β + ∑
1≤|s|≤⌊β⌋

∣

∣

∣

∣

(x′− x)s

s!
Ds p(x′)

∣

∣

∣

∣

≤
(

L+C̃ ∑
1≤|s|≤⌊β⌋

1

s!

)

‖x− x′‖β .

Putting together the β ≤ 1 and β > 1 cases yields M2 ≤
(

L+C̃ ∑1≤|s|≤⌊β⌋
1
s!

)

dβ/2n−2β.

Define by t = δ− 1
nhd

√
dL′
nh

−
(

L+C̃ ∑1≤|s|≤⌊β⌋
1
s!

)

dβ/2n−2β. Inequality (14) together with upper

bounds on M1 and M2, implies that

IP(‖ p̂− p‖∞ ≥ δ)≤ IP(M3 ≥ t) .

Use a union bound to control the tail probability of M3,

IP(M3 ≥ t) ≤ ∑
x∈G

IP

(∣

∣

∣

∣

∣

1

nhd

n

∑
i=1

K(
Xi − x

h
)− p(x)

∣

∣

∣

∣

∣

≥ t

)

.

≤ 2(2M+1)d exp

(

− hdnt2

8(c1 + c2t/6)

)

,
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for t ≥ 2Lc3hβ. The last inequality relies on the assumptions that p ∈ PΣ(β,L, [−1,1]d) and K is

β-valid. It essentially follows along the same lines as the proof of Lemma 4.1 in Rigollet and Vert

(2009), so we omit the derivation and refer the interested reader to this paper. For a given ε ∈ (0,1),
we would like to enforce

2(2M+1)d exp

(

− hdnt2

8(c1 + c2t/6)

)

≤ ε .

Because log2+d log(2M+1)≤ 6d logn, it is sufficient to have

6d logn− nhdt2

8(c1 + c2t/6)
≤ logε .

It is clear there exists a positive t∗ such that the above inequality attains equality, and that this

inequality holds for all t ≥ t∗. To get t∗, we restrict ourselves to t > 0, so that we have c1+c2t/6> 0.

Then we solve for t∗ as the bigger root of a quadratic function in t:

t∗ =
1

2nhd

(

8c2d logn− 4

3
logεc2 +

√

(8c2d logn− 4

3
logεc2)2 −4nhd(8c1 logε−48dc1 logn)

)

.

Observe that for positive a and b,
√

a+b ≤√
a+

√
b, so it holds

t∗ ≤ 1

2nhd

(

2(8c2d logn− 4

3
logεc2)+

√

4nhd(48dc1 logn−8c1 logε)

)

≤ 32c2d
log n

ε

nhd
+
√

48dc1

√

log n
ε

nhd

≤ (32c2d +
√

48dc1)

√

log n
ε

nhd
,

in which the last inequality holds for n such that

√

log(n/ε)
nhd < 1. Then we can take

δ = (32c2d +
√

48dc1)

√

log n
ε

nhd
+2Lc3hβ +

1

nhd

√
dL′

nh
+

(

L+C̃ ∑
1≤|s|≤⌊β⌋

1

s!

)

dβ/2n−2β .

When h =
(

logn
n

)
1

2β+d
, we have

√

logn

nhd = hβ =
(

logn
n

)

β
2β+d

, and nh > 1. Also, it is safe to assume

that dβ/2n−2β ≤
√

log(n/ε)/(nhd), Therefore,

δ ≤ (32c2d +
√

48dc1)

√

log n
ε

nhd
+2Lc3

√

logn

nhd
+
√

dL′
√

logn

nhd
+

(

L+C̃ ∑
1≤|s|≤⌊β⌋

1

s!

)

dβ/2

n2β

≤ C

√

log n
ε

nhd
,

where C = 32c2d +
√

48dc1 +2Lc3 +
√

dL′+L+C̃ ∑1≤|s|≤⌊β⌋
1
s!

.
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Lemma 2 Denote by η̂ the Nadaraya-Watson estimator of the regression function η based on an

i.i.d. sample {(X1,Y1), . . . ,(Xn,Yn)}. Let p be the marginal density of X, p ∈ PΣ(β,L, [−1,1]d),
f = η · p ∈ PΣ(β,L, [−1,1]d), and the kernel K be β-valid and L′-Lipschitz. Moreover, assume

p ≥ µ′min(> 0) and the sample size n is such that

√

log(n/ε)
nhd < 1. Then for any ε > 0,

IP(‖η̂−η‖∞ ≥ δ)≤ 3ε ,

for

δ =
1

µ′min −δ′

(

δ′+(32d‖K‖∞ +
√

12d‖K‖2‖p‖∞)

√

log(n/ε)

nhd
+(c4 + c5)h

β

)

+
1

µ′min −δ′

(

1

nhd

√
dL′

nh
+

(

L+C̃1 ∑
1≤|s|≤⌊β⌋

1

s!

)

dβ/2

n2β

)

,

where δ′ is the same as δ in Lemma 1, c4 =
‖p‖∞L

µ′min

(

1+ ‖ f‖∞

µ′min

)

(∫ |K(z)| · ‖z‖βdz
)

and c5 = L
∫ |K(z)| ·

‖z‖βdz, and C̃1 is such that C̃1 ≥ sup1≤|s|≤⌊β⌋ supx∈[−1,1]d |Ds p(x)|.
In particular, when h = ( logn

n
)

1
2β+d , there exists some positive D, such that we can take δ =

D

√

log(n/ε)
nhd .

Proof Recall that p̂(x) = 1
nhd ∑n

i=1 K(Xi−x
h

) and f̂ (x) = 1
nhd ∑n

i=1YiK(Xi−x
h

), so

|η̂−η|=
∣

∣

∣

∣

f̂

p̂
− f

p

∣

∣

∣

∣

≤
∣

∣

∣

∣

f

p̂
− f

p

∣

∣

∣

∣

+

∣

∣

∣

∣

f̂

p̂
− f

p̂

∣

∣

∣

∣

= | f | | p̂− p|
| p̂||p| +

1

| p̂| | f̂ − f | .

This implies that

IP(‖η̂−η‖∞ ≥ δ)≤ IP

(∥

∥

∥

∥

| f | | p̂− p|
| p̂||p|

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

1

| p̂| | f̂ − f |
∥

∥

∥

∥

∞

≥ δ

)

.

Therefore, to claim IP(‖η̂−η‖∞ ≥ δ) ≤ 3ε, it is enough to show that for δ1 and δ2 such that δ =
δ1 +δ2, it holds

i) IP

(∥

∥

∥

∥

| f | | p̂− p|
| p̂||p|

∥

∥

∥

∥

∞

≥ δ1

)

≤ ε , and ii) IP

(∥

∥

∥

∥

1

| p̂| | f̂ − f |
∥

∥

∥

∥

∞

≥ δ2

)

≤ 2ε , (15)

where the quantities δ1 and δ2 will be specified later.

i). We prove the first inequality in (15). Because η ≤ 1 and η(x) = f (x)/p(x),

IP

(∥

∥

∥

∥

| f | | p̂− p|
| p̂||p|

∥

∥

∥

∥

∞

≥ δ1

)

≤ IP

(∥

∥

∥

∥

p̂− p

p̂

∥

∥

∥

∥

∞

≥ δ1

)

.

Denote an event regarding the sample E = {‖ p̂− p‖∞ < δ′}, where δ′ is the same as δ in

Lemma 1. So by Lemma 1, IP(E)> 1− ε. Moreover,

IP(‖( p̂− p)/ p̂‖∞ ≥ δ1)

≤ IP
(

‖( p̂− p)/ p̂‖∞ ≥ δ1,‖ p̂− p‖∞ ≥ δ′
)

+ IP
(

‖( p̂− p)/ p̂‖∞ ≥ δ1,‖ p̂− p‖∞ < δ′
)

≤ IP(‖ p̂− p‖∞ ≥ δ′)+ IP
(

‖ p̂− p‖∞ ≥ δ1(µ
′
min −δ′),‖ p̂− p‖∞ < δ′

)

.
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Take δ1 =
δ′

µ′min−δ′ , then we have δ′ = δ1(µ
′
min −δ′). So

IP

(∥

∥

∥

∥

| f | | p̂− p|
| p̂||p|

∥

∥

∥

∥

∞

≥ δ1

)

≤ IP(‖ p̂− p‖∞ ≥ δ′)≤ ε .

ii). Now we prove the second inequality in (15). Note that

IP

(∥

∥

∥

∥

f̂ − f

p̂

∥

∥

∥

∥

∞

≥ δ2

)

= IP

(∥

∥

∥

∥

f̂ − f

p̂

∥

∥

∥

∥

∞

≥ δ2,‖ p̂− p‖∞ ≥ δ′
)

+ IP

(∥

∥

∥

∥

f̂ − f

p̂

∥

∥

∥

∥

∞

≥ δ2,‖ p̂− p‖∞ < δ′
)

≤ IP(‖ p̂− p‖∞ ≥ δ′)+ IP
(

‖ f̂ − f‖∞ ≥ δ2(µ
′
min −δ′)

)

= ε+ IP
(

‖ f̂ − f‖∞ ≥ δ2(µ
′
min −δ′)

)

.

Therefore, to bound the tail probability of ‖( f̂ − f )/ p̂‖∞, it remains to show

IP(‖ f̂ − f‖∞ ≥ δ2(µ
′
min −δ′))≤ ε .

Let G be the same collection of vertices of sub-cubes in [−1,1]d as in the proof of Lemma 1,

and denote by M = n2. Note that for every δ3 > 0, it holds

IP(‖ f̂ − f‖∞ ≥ δ3) ≤ IP(M1 +M2 +M3 ≥ δ3) ,

where

M1 = sup

‖x−x′‖≤
√

d
M

| f̂ (x)− f̂ (x′)| ,

M2 = sup

‖x−x′‖≤
√

d
M

| f (x)− f (x′)| ,

M3 = sup
x∈G

| f̂ (x)− f (x)| .

The quantity M1 can be controlled as follows:

M1 = sup

‖x−x′‖≤
√

d
M

∣

∣

∣

∣

∣

1

nhd

n

∑
i=1

YiK(
Xi − x

h
)− 1

nhd

n

∑
i=1

YiK(
Xi − x′

h
)

∣

∣

∣

∣

∣

≤ sup

‖x−x′‖≤
√

d
M

1

nhd

n

∑
i=1

∣

∣

∣

∣

K(
Xi − x

h
)−K(

Xi − x′

h
)

∣

∣

∣

∣

≤ 1

nhd

n
√

dL′

Mh
=

1

nhd

√
dL′

nh
.

The quantity M2 can be controlled similarly as its counterpart in proof for Lemma 1,

M2 ≤
(

L+C̃1 ∑
1≤|s|≤⌊β⌋

1

s!

)

d
β
2 n−2β .
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Let t = δ3 − 1
nhd

√
dL′
nh

−
(

L+C̃1 ∑1≤|s|≤⌊β⌋
1
s!

)

d
β
2 n−2β, then

IP(‖ f̂ − f‖∞ ≥ δ3)≤ IP(M3 ≥ t) .

Use a union bound to control the tail probability of M3:

IP(M3 ≥ t)≤ ∑
x∈G

IP
(

| f̂ (x)− f (x)| ≥ t
)

.

For each fixed x ∈ G,

f̂ (x)− f (x) =
1

nhd

n

∑
i=1

YiK(
Xi − x

h
)−η(x) · p(x)

=
1

nhd

n

∑
i=1

YiK(
Xi − x

h
)− IE

[

1

nhd

n

∑
i=1

YiK(
Xi − x

h
)

]

+ IE

[

1

nhd

n

∑
i=1

YiK(
Xi − x

h
)

]

−η(x) · p(x)

= B1(x)+B2(x) ,

where

B1(x) =
1

nhd

n

∑
i=1

YiK(
Xi − x

h
)− IE

[

1

nhd

n

∑
i=1

YiK(
Xi − x

h
)

]

,

B2(x) = IE

[

1

nhd

n

∑
i=1

YiK(
Xi − x

h
)

]

−η(x) · p(x) .

This implies that

IP(M1 ≥ t) ≤ ∑
x∈G

IP(|B1(x)|+ |B2(x)| ≥ t) .

The tail probability of |B1(x)| is controlled by invoking the Bernstein’s inequality. Denote

by Zi = Zi(x) =
1
hd YiK(Xi−x

h
)− IE

[

1
hd YiK(Xi−x

h
)
]

. It is clear that IE(Zi) = 0, |Zi| ≤ 2‖K‖∞h−d .

Moreover,

Var(Zi)≤ IE

(

h−2dK2(
Xi − x

h
)

)

=
∫

h−dK2(y)p(x+ yh)dy ≤ ‖K‖2‖p‖∞h−d .

Therefore for any t1 > 0,

∑
x∈G

IP(|B1(x)| ≥ t1) = ∑
x∈G

IP

(

1

n
|

n

∑
i=1

Zi| ≥ t1

)

≤ 2(2M+1)d exp

(

− nt2
1

2‖K‖2‖p‖∞h−d +4/3‖K‖∞h−dt1

)

.
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To have the last display bounded from above by ε ∈ (0,1), we recycle the arguments in the

proof for Lemma 1 to find out that t1 should be greater than or equal to

t∗1 =

(

32d‖K‖∞ +
√

12d‖K‖2‖p‖∞

)

√

log(n/ε)

nhd
,

provided the sample size n is such that

√

log(n/ε)
nhd < 1.

Decompose B2(x) into two parts,

B2(x) =
{

IE
[

1
nhd ∑n

i=1 K(Xi−x
h

)η(Xi)
]

− IE[ p̂(x)η(x)]
}

+{IE[ p̂(x)η(x)]− p(x)η(x)} .

Note that
∣

∣

∣

∣

∣

IE

[

1

nhd

n

∑
i=1

K(
Xi − x

h
)η(Xi)

]

− IE[ p̂(x)η(x)]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫
1

hd
K(

y− x

h
)(η(y)−η(x))p(y)dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫
K(z)[η(x+hz)−η(x)]p(x+hz)dz

∣

∣

∣

∣

≤ ‖p‖∞

∫
|K(z)| · |η(x+hz)−η(x)|dz . (16)

Note that

|η(x+hz)−η(x)| =

∣

∣

∣

∣

f (x+hz)

p(x+hz)
− f (x)

p(x)

∣

∣

∣

∣

≤ 1

µ′min

∣

∣

∣

∣

f (x+hz)− f (x)
p(x+hz)

p(x)

∣

∣

∣

∣

.

It follows from p ∈ PΣ(L,β, [−1,1]d) that

∣

∣

∣

∣

p(x+hz)

p(x)
−1

∣

∣

∣

∣

≤ L‖z‖βhβ

µ′min

.

Therefore,

|η(x+hz)−η(x)|

≤ 1

µ′min

(

| f (x+hz)− f (x)|+ | f (x)| · L

µ′min

‖z‖βhβ

)

≤
(

1+
‖ f‖∞

µ′min

)

L

µ′min

‖z‖βhβ ,

where the last inequality follows from f ∈ PΣ(β,L, [−1,1]d). The above inequality together

with (16) implies that
∣

∣

∣

∣

∣

IE

[

1

nhd

n

∑
i=1

K(
Xi − x

h
)η(Xi)

]

− IE[ p̂(x) ·η(x)]
∣

∣

∣

∣

∣

≤ c4hβ ,
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where c4 =
‖p‖∞L

µ′min

(

1+ ‖ f‖∞

µ′min

)

(∫ |K(z)| · ‖z‖βdz
)

.

Now we control the second part of B2(x). Because p ∈ PΣ(β,L, [−1,1]d), we have via similar

lines to the proof of Lemma 4.1 in Rigollet and Vert (2009),

|IE[ p̂(x)η(x)]− p(x)η(x)| ≤ |η(x)| · |IE p̂(x)− p(x)| ≤ c5hβ ,

where c5 = L
∫ |K(z)| · ‖z‖βdz. Therefore,

|B2(x)| ≤ (c4 + c5)h
β .

Taking t̃ = (32d‖K‖∞ +
√

12d‖K‖2‖p‖∞)
√

log(n/ε)
nhd + (c4 + c5)h

β, and δ3 = t̃ + 1
nhd

√
dL′
nh

+
(

L+C̃1 ∑1≤|s|≤⌊β⌋
1
s!

)

dβ/2n−2β, we have

IP(‖ f̂ − f‖∞ ≥ δ3)≤ IP(M1 ≥ t̃)≤ ∑
x∈G

IP
(

|B1(x)| ≥ t̃ − (c4 + c5)h
β
)

≤ ε .

Take δ2 =
δ3

µ′min−δ′ , we have IP(‖ f̂ − f‖∞ ≥ δ2(µ
′
min −δ′))≤ ε.

To conclude, part i) and part ii) in (15) together close the proof.

References

M. Agyemang, K. Barker, and R. Alhajj. A comprehensive survey of numeric and symbolic outlier

mining techniques. Intelligent Data Analysis, 6:521–538, 2006.

J. Audibert and A. Tsybakov. Fast learning rates for plug-in classifiers under the margin condition.

Annals of Statistics, 35:608–633, 2007.

G. Blanchard, G. Lee, and G. Scott. Semi-supervised novelty detection. Journal of Machine Learn-

ing Research, 11:2973–3009, 2010.

A. Cannon, J. Howse, D. Hush, and C. Scovel. Learning with the neyman-pearson and min-max

criteria. Technical Report LA-UR-02-2951, 2002.

D. Casasent and X. Chen. Radial basis function neural networks for nonlinear fisher discrimination

and neyman-pearson classification. Neural Networks, 16(5-6):529 – 535, 2003.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Computing Surveys,

09:1–72, 2009.

C. Elkan. The foundations of cost-sensitive learning. In Proceedings of the Seventeenth Interna-

tional Joint Conference on Artificial Intelligence, pages 973–978, 2001.
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Abstract

Randomized controlled experiments are often described as the most reliable tool available to scien-

tists for discovering causal relationships among quantities of interest. However, it is often unclear

how many and which different experiments are needed to identify the full (possibly cyclic) causal

structure among some given (possibly causally insufficient) set of variables. Recent results in the

causal discovery literature have explored various identifiability criteria that depend on the assump-

tions one is able to make about the underlying causal process, but these criteria are not directly

constructive for selecting the optimal set of experiments. Fortunately, many of the needed construc-

tions already exist in the combinatorics literature, albeit under terminology which is unfamiliar to

most of the causal discovery community. In this paper we translate the theoretical results and apply

them to the concrete problem of experiment selection. For a variety of settings we give explicit

constructions of the optimal set of experiments and adapt some of the general combinatorics results

to answer questions relating to the problem of experiment selection.

Keywords: causality, randomized experiments, experiment selection, separating systems, com-

pletely separating systems, cut-coverings

1. Introduction

In a variety of scientific fields one of the main goals is to understand the causal relationships among

some variables of interest. In most cases empirical data is key to discovering and verifying such

relationships. While there has been much work on inference principles and algorithms for discover-

ing causal relationships from purely ‘passive observational’ data, largely based on the seminal work

c©2013 Antti Hyttinen, Frederick Eberhardt and Patrik O. Hoyer.
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of Spirtes et al. (1993) and Pearl (2000), randomized controlled experiments (Fisher, 1935) still

often constitute the tool of choice for inferring causal relationships. In the more recent literature on

causal discovery, randomized experiments, in combination with novel inference principles, play an

increasingly prominent role (Cooper and Yoo, 1999; Tong and Koller, 2001; Murphy, 2001; Eaton

and Murphy, 2007; Meganck et al., 2005; Eberhardt et al., 2005; He and Geng, 2008; Hyttinen

et al., 2010, 2011; Claassen and Heskes, 2010). Thus, given a set of assumptions one is willing to

make in a test setting, questions concerning the optimal choices of the manipulations arise. What

sequence of experiments identifies the underlying causal structure most efficiently? Or, given some

background knowledge, how can one select an experiment that maximizes (in some to be defined

sense) the insight one can expect to gain?

In our work (Eberhardt, 2007; Eberhardt et al., 2010; Hyttinen et al., 2011, 2012a,b) we found

that many of these questions concerning the optimal selection of experiments are equivalent to

graph-theoretic or combinatoric problems for which, in several cases, there exist solutions in the

mathematics literature. Generally these solutions are couched in a terminology that is neither com-

mon in the literature on causal discovery, nor obvious for its connections to the problems in causal

discovery. The present article is intended to bridge this terminological gap, both to indicate which

problems of experiment selection already have formal solutions, and to provide explicit procedures

for the construction of optimal sets of experiments.1 It gives rise to new problems that (to our

knowledge) are still open and may benefit from the exchange of research in causal discovery on the

one hand, and the field of combinatorics and graph theory on the other.

2. Causal Models, Experiments, and Identifiability

We consider causal models which represent the relevant causal structure by a directed graph G =
(V ,D), where V is the set of variables under consideration, and D ⊆ V ×V is a set of directed

edges among the variables. A directed edge from xi ∈ V to x j ∈ V represents a direct causal

influence of xi on x j, with respect to the full set of variables in V (Spirtes et al., 1993; Pearl, 2000).

In addition to the graph G, a fully specified causal model also needs to describe the causal processes

that determine the value of each variable given its direct causes. Typically this is achieved either

by using conditional probability distributions (in the ‘causal Bayes nets’ framework) or stochastic

functional relationships (for ‘structural equation models’ (SEMs)).

In addition to describing the system in its ‘natural’ or ‘passive observational’ state, a causal

model also gives a precise definition of how the system behaves under manipulations. Specifically,

consider an intervention that sets (that is, forces) a given variable xi ∈ V to some value randomly

chosen by the experimenter. Such a “surgical” intervention corresponds to deleting all arcs pointing

into xi (leaving all outgoing arcs, and any other arcs in the model, unaffected), and disregarding

the specific process by which xi normally acquires its value.2 The resulting graph is known as the

‘manipulated’ graph corresponding to this intervention. If, in an experiment, the values of several

variables are set by the experimenter, any arcs into any of those variables are deleted. In this way, a

1. The different constructions and bounds presented in the paper are implemented in a code package at: http://www.

cs.helsinki.fi/group/neuroinf/nonparam/.

2. In Spirtes et al. (1993) this is how manipulations are defined, which are then combined with the Markov assump-

tion to yield the Manipulation Theorem that specifies formally the relation between the passive observational and a

manipulated model. In Pearl (2000) the relation is formally specified using the do-operator in combination with the

modularity assumption. For our purposes, either connection suffices.
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causal model provides a concrete prediction for the behaviour of the system under any experimental

conditions.

The problem of causal discovery is to infer (to the fullest extent possible) the underlying causal

model, from sample data generated by the model. The data can come either from a passive obser-

vational setting (no manipulations performed by the researcher) or from one or more randomized

experiments, each of which (repeatedly) sets some subset of the variables to values determined

purely by chance, while simultaneously measuring the remaining variables. We define an experi-

ment E = (J ,U) as a partition of the variable set V into two mutually exclusive and collectively

exhaustive sets J and U, where J ⊆V represents the variables that are intervened on (randomized)

in experiment E , and U = V \ J represents the remaining variables, all of which are passively ob-

served in this experiment. We will not consider the specific distributions employed to randomize

the intervened variables, except to require that the distribution is positive over all combinations of

values of the intervened variables. Note that the identifiability results mentioned below apply when

the variables simultaneously intervened on in one experiment are randomized independently of one

another.3

The extent to which the underlying causal model can be inferred then depends not only on

the amount of data available (number of samples) but fundamentally also on the details of what

experiments are available and what assumptions on the underlying model one can safely make.

In what follows, we only consider model identifiability,4 that is, we disregard sample size and only

examine the settings under which models can be learned in the large sample limit. The identifiability

results we consider build on causal discovery procedures that make one or more of the following

standard assumptions on the underlying model:

acyclicity The graph G is often assumed to be acyclic, that is, there exists no directed path from

a node back to itself. This assumption is useful for causal discovery because finding that x

causes y allows us to deduce that y does not cause x.

causal sufficiency In many cases only a subset of the variables involved in the underlying data

generating process are measured. Even if some variables are unobserved, a causal model

is said to be causally sufficient if there are no unobserved common causes of the observed

variables. Unobserved common causes are typically troublesome because they bring about

a dependence between two observed variables that is not due to any actual causal process

among the observed variables.

faithfulness Many causal discovery procedures use independence tests as a primary tool for infer-

ring the structure of the underlying graph. Such inferences are correct in the limit if the distri-

bution generated by the model is faithful to the graph structure, that is, all independencies in

distribution are consequences of the graph structure rather than the specific parameter values

defining the quantitative relationships between the variables. Under faithfulness, perturbing

the parameters defining the quantitative relationships will not break any of the observed inde-

pendencies between the variables in the distribution.

parametric form Some discovery methods rely on the quantitative causal relations between the

variables being restricted to a particular (simple or smooth) parametric form. The most com-

3. For linear cyclic models this assumption can be relaxed; see Lemma 5 in Hyttinen et al. (2012b).

4. In contrast, Shpitser and Pearl (2006) and Bareinboim and Pearl (2012) consider the identifiability of single causal

effects presuming the knowledge of the true causal structure.
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mon such assumption is linearity: the value of each variable is given by a linear sum of the

values of its parents plus a stochastic error term.

It is well known that even when one makes all of the above assumptions (using only linearity as a

parametric restriction), the true causal structure is in general underdetermined given only passive

observational data, but can be identified using experiments. We can ask more generally: Under

what combination of assumptions and conditions on a set of K experiments {E1, . . . ,EK} is the

underlying causal structure identified?

If a total of n observed variables is considered, it should come as no surprise that a set of

K = n randomized experiments, each of which intervenes on all but one of the variables, is in

general sufficient to uniquely identify the graph G that represents the causal structure among the n

variables. In each such experiment we can test which of the n−1 other variables are direct causes

of the one non-intervened variable. A natural question is whether the full identification of G can

be achieved with other sets of experiments, under various combinations of the above assumptions.

In particular, we can ask whether identification can be reached with fewer than n experiments, or

with experiments that only involve simultaneous interventions on many fewer than n− 1 variables

in each experiment.

Figure 1 provides an example with three variables. Suppose the true causal structure is the chain

x← y← z, as shown in graph (i). Assuming only faithfulness or linearity, the three experiments

intervening on two variables each are sufficient to uniquely identify the true causal graph. In par-

ticular, when intervening on both x and y, as illustrated in graph (ii), both of the edges in the true

model are cut, and z is independent of both of the intervened variables, indicating that the edges

x→ z and y→ z are both absent. On the other hand, when intervening on x and z, as shown in graph

(iii), a dependence is found between y and z, indicating that y← z must be present, while the inde-

pendence between x and y rules out the edge x→ y. Similar considerations apply when intervening

on y and z, illustrated in graph (iv). Together, all potential edges in the model are established as

either present or absent, and hence the full causal structure is identified. Note that this inference is

possible without assuming causal sufficiency or acyclicity.

Assuming causal sufficiency, acyclicity and faithfulness, fewer experiments are needed: If one

had started with an experiment only intervening on x, then a second single intervention experiment

on y would be sufficient for unique identifiability. This is because the first experiment, illustrated in

graph (v), rules out the edges x→ y and x→ z, but also establishes, due to the statistical dependence,

that y and z are connected by an edge (whose orientation is not yet known). Intervening on y next,

as shown in graph (vi), establishes the edge x← y, and the absence of the edge y→ z, allowing us

to conclude (using (v)) that y← z must be present in the true graph. Finally, x and z are independent

in this second experiment, ruling out the edge x← z. Thus, the true causal structure is identified. If

one had been lucky to start with an intervention on z then it turns out that one could have identified

the true causal graph in this single experiment. But that single experiment would, of course, have

been insufficient if in fact the causal chain had been oriented in the opposite direction.

The example illustrates the sensitivity of the identifiability results to the model space assump-

tions. However, recent research has shown that, in several different settings (described explicitly

below), identification hinges on the set of experiments satisfying some relatively simple conditions.

Specifically, consider the following conditions:

Definition 1 (Unordered Pair Condition) A set of experiments {E1, . . . ,EK} satisfies the unordered

pair condition for an unordered pair of variables {xi,x j} ⊆ V whenever there is an experiment
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Figure 1: Graph (i) shows the true data generating structure. Graphs (ii-vi) show the possible infer-

ences about the causal structure that can be made from experiments intervening on two

variables simultaneously (ii-iv), or intervening on a single variable (v-vi). Variables that

are circled twice are intervened on in the corresponding experiment. Edges determined

to be present are solid, edges determined to be absent are dotted and crossed out (×).

The solid line with a question mark denotes an edge determined to be present but whose

orientation is unknown. See the text for a description of the background assumptions that

support these inferences.

Ek = (Jk,Uk) in {E1, . . . ,EK} such that xi ∈ Jk (xi is intervened on) and x j ∈ Uk (x j is passively

observed), or x j ∈ Jk (x j is intervened on) and xi ∈Uk (xi is passively observed).

Definition 2 (Ordered Pair Condition) A set of experiments {E1, . . . ,EK} satisfies the ordered

pair condition for an ordered pair of variables (xi,x j) ∈ V ×V (with xi 6= x j) whenever there

is an experiment Ek = (Jk,Uk) in {E1, . . . ,EK} such that xi ∈ Jk (xi is intervened on) and x j ∈Uk

(x j is passively observed).

Definition 3 (Covariance Condition) A set of experiments {E1, . . . ,EK} satisfies the covariance

condition for an unordered pair of variables {xi,x j} ⊆ V whenever there is an experiment Ek =
(Jk,Uk) in {E1, . . . ,EK} such that xi ∈ Uk and x j ∈ Uk, that is, both variables are passively ob-

served.

The above conditions have been shown to underlie the following identifiability results: Assuming

causal sufficiency, acyclicity and faithfulness, a set of experiments uniquely identifies the causal

structure of a causal Bayes net if and only if for any two variables xi,x j ∈ V one of the follow-

ing is true: (i) the ordered pair condition holds for the ordered pairs (xi,x j) and (x j,xi), or (ii) the

unordered pair condition and the covariance condition hold for the unordered pair {xi,x j} (Eber-

hardt, 2007). Note that the ‘only if’ part is a worst-case result: For any set of experiments that

does not satisfy the above requirement, there exists a causal graph such that the structure is not

identified with these experiments. Since a single passive observation—a so-called null-experiment,

as J = /0—satisfies the covariance condition for all pairs of variables, under the stated assumptions

the main challenge is to find experiments that satisfy the unordered pair condition for every pair of

variables.
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Without causal sufficiency, acyclicity or faithfulness, but assuming a linear data generating

model, a set of experiments uniquely identifies5 the causal structure among the observed variables

of a linear SEM if and only if it satisfies the ordered pair condition for all ordered pairs of variables

(Eberhardt et al., 2010; Hyttinen et al., 2010, 2012a,b). Similar identifiability results can be ob-

tained for (acyclic) causal models with binary variables by assuming a noisy-OR parameterization

for the local conditional probability distributions (Hyttinen et al., 2011).

Such identifiability results immediately give rise to the following questions of optimal experi-

ment selection:

• What is the least number of experiments that satisfy the above conditions?

• Can we give procedures to construct such sets of experiments?

The above questions can be raised similarly given additional context, such as the following:

• The number of variables that can be subject to an intervention simultaneously is limited in

some way.

• Background knowledge about the underlying causal structure is available.

Naturally, there are other possible scenarios, but we focus on these, since we are aware of their

counterparts in the combinatorics literature. To avoid having to repeatedly state the relevant search

space assumptions, we will present the remainder of this article in terms of the satisfaction of the

(unordered and ordered) pair conditions, which provide the basis for the identifiability results just

cited.

3. Correspondence to Separating Systems and Cut-coverings

The satisfaction of the pair conditions introduced in the previous section is closely related to two

problems in combinatorics: Finding (completely) separating systems, and finding (directed) cut-

coverings. Throughout, to simplify notation and emphasize the connections, we will overload sym-

bols to the extent that there is a correspondence to the problem of experiment selection for causal

discovery.

Definition 4 (Separating System) A separating system C = {J1,J2, . . . ,JK} is a set of subsets of

an n-set V with the property that given any two distinct elements xi,x j ∈ V , there exists a Jk ∈ C

such that xi ∈ Jk∧ x j /∈ Jk or xi /∈ Jk∧ x j ∈ Jk.

Definition 5 (Completely Separating System) A completely separating system C = {J1,J2, . . . ,JK}
is a set of subsets of an n-set V with the property that given any two distinct elements xi,x j ∈ V ,

there exist Jk,Jk′ ∈ C such that xi ∈ Jk∧ x j /∈ Jk and xi /∈ Jk′ ∧ x j ∈ Jk′ .

As can be easily verified, a set of experiments {E1, . . . ,EK} that satisfies the unordered pair condi-

tion for all pairs over n variables in V directly corresponds to a separating system over the variable

5. For simplicity, we focus in this article on identifying the causal structure among the observed variables, even though

some of the cited results also permit the identification of confounding.
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set, while a set of experiments that satisfies the ordered pair condition for all ordered variable pairs

corresponds to a completely separating system over the variables.6

A related but more general problem is that of finding cut-coverings. First, we need to define

cuts and directed cuts: A cut Ek corresponds to a partition of a set of vertices V of an undirected

graph H = (V ,P ) into two sets J and U. Any edge p ∈ P connecting an xi ∈ J to an xu ∈U is said

to be in the cut Ek. For a directed graph F , a directed cut is a cut where only the edges from vertices

in J to vertices in U are in the cut, while edges in the opposite direction are not. We are thus ready

to define a cut-covering and a directed cut-covering:

Definition 6 (Cut-covering) A cut-covering for an undirected graph H = (V ,P ) is a set of cuts

{E1, . . . ,EK} such that each edge p ∈ P of H is in some cut Ek.

Definition 7 (Directed Cut-covering) A directed cut-covering for a directed graph F = (V ,Q ) is

a set of directed cuts {E1, . . . ,EK} such that each directed edge q ∈ Q of F is in some directed cut

Ek.

The correspondence of finding cut-coverings to the problem of experiment selection is now

immediate: In the case of searching for a set of experiments that satisfies the ordered pair condition

for all ordered pairs of variables in V , let the graph F = (V ,Q ) be a complete directed graph

over the vertex set V where each ordered pair of variables is connected by a directed edge. Each

directed edge represents an ordered pair condition for a pair of vertices (xi,x j) that needs to be

satisfied by the set of experiments. Finding such a set of experiments is then equivalent to finding

a directed cut-covering for F , where each experiment corresponds to a directed cut. An analogous

correspondence holds for the unordered pair condition with a complete undirected graph H. We

discuss the generalization and interpretation of the problem when H or F are not complete graphs

in Section 6.

As our overloading of symbols suggests, most aspects of the experiment selection have direct

counterparts in the cut-covering representation. However, the edges representing direct causes in

a causal graph G do not correspond to the edges representing the satisfaction of an ordered pair

condition in the directed graph F . That is, F and G in general do not share the same edge structure:

G is the graph of the underlying causal model to be identified, while F represents the set of ordered

pairs that are not yet satisfied. Moreover, there is a difference in how the causal graph G is changed

in light of an experiment E = (J ,U), and how the ordered pair graph F is changed in light of the

(corresponding) cut E . The experiment E results in the manipulated causal graph G′, which is

the same as the original causal graph G except that the edges into the variables in J are removed.

The corresponding cut E , however, cuts the edges of the ordered pair condition graph F that are

outgoing from variables in J (and simultaneously into variables in U). This may seem unintuitive,

but in fact these two representations of E (the experiment and the cut) illustrate two aspects of what

an experiment achieves: It manipulates the underlying causal graph G (by breaking incoming edges

on variables in J ), and it satisfies the ordered pair condition for all ordered pairs (x j,xu) with x j ∈ J

and xu ∈ U by determining whether x j has a causal effect on xu. Similarly in the unordered case,

the causal graph G (or its skeleton) must not be confused with the undirected graph H representing

the unordered pairs that are not yet satisfied.

6. Separating systems and completely separating systems are sometimes also referred to by the terms weakly separating

systems and strongly separating systems, respectively.
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Figure 2: Top: Satisfaction of the unordered pair condition for all pairs of variables in a three

variable model. Undirected double-lined edges indicate pairs for which the unordered

pair condition needs to be satisfied (graph (i)). The cuts (|) indicate which pairs are

satisfied by the experiments intervening on x (graph (ii)) and y (graph (iii)). Bottom:

Satisfication of the ordered pair condition: Directed double-lined edges indicate ordered

pairs for which the ordered pair condition needs to be satisfied (graph (iv)). Graphs (v-

vii) show which pairs are in the directed cuts (are satisfied) by the respective single-

intervention experiments. See text for details.

Figure 2 illustrates for a three variable model (such as that in Figure 1) how the satisfaction of

the (un)ordered pair condition for all pairs of variables is guaranteed using cut-coverings. Graph (i)

gives the complete undirected graph H over {x,y,z} illustrating the three unordered pairs for which

the unordered pair condition needs to be satisfied. Graphs (ii) and (iii) show for which pairs the

unordered pair condition is satisfied by a single intervention experiment on x (or y, respectively), that

is, which pairs are in the cut (|). The pairs that remain unsatisfied by each experiment, respectively,

are shown in gray for easier legibility. Together these experiments constitute a cut-covering for H.

Similarly, graph (iv) gives the complete directed graph F over the three variables, illustrating the six

ordered pairs of variables for which the ordered pair condition needs to be satisfied. Graphs (v-vii)

show for which pairs the ordered pair condition is satisfied by a single intervention experiment on

x (or y or z, respectively), that is which pairs are in the directed cut (|), while the others are again

shown in gray. As can be seen, in the ordered case all three experiments are needed to provide a

directed cut-covering for F .

The correspondence between the problem of finding experiments that satisfy the pair conditions

on the one hand and finding separating systems or cut-coverings on the other, allows us to tap into

the results in combinatorics to inform the selection of experiments in the causal discovery problem.

4. Minimal Sets of Experiments

We now turn to the concrete problem of constructing sets of experiments which satisfy the pair

condition for all pairs of variables, while simultaneously requiring as few experiments as possible.

We divide the results concerning the unordered and the ordered pair condition into Sections 4.1

and 4.2, respectively. In what follows, we always start by presenting the explicit construction of

the intervention sets, and subsequently give the available bounds on the number of experiments.

The constructions are also available as special cases of the algorithms presented in Section 5, and
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I1 = {}
I2 = {1}
I3 = {2}
I4 = {1,2}
I5 = {3}
I6 = {1,3}
I7 = {2,3}

−→

J3 J2 J1

I1 0 0 0

I2 0 0 1

I3 0 1 0

I4 0 1 1

I5 1 0 0

I6 1 0 1

I7 1 1 0

−→
J1 = {x2,x4,x6}
J2 = {x3,x4,x7}
J3 = {x5,x6,x7}

Figure 3: An illustration of the relationship between intervention sets and index sets, giving the

construction of a minimal set of experiments satisfying the unordered pair condition for

all pairs of variables in a 7 variable model. The index sets I1, . . . ,In (left) are chosen

as distinct subsets of the set of experiment indexes {1,2,3}, and each row of the binary

matrix (middle) marks the corresponding experiments. The intervention sets J1, . . . ,JK

(right) are then obtained by reading off the columns of this matrix. Note that one ad-

ditional variable could still be added (intervened on in all three experiments) while still

satisfying the unordered pair condition for all variable pairs. For nine variables, however,

a minimum of four experiments would be needed.

implemented in our associated code package. Throughout, i = 1, . . . ,n indexes the variables in the

variable set V , while k = 1, . . . ,K indexes the experiments in the construction.

Many of the constructions of intervention sets J1, . . . ,JK will be examined using so-called index

sets I1, . . . ,In, where

Ii = {k |xi ∈ Jk}.

That is, the i:th index set simply lists the indexes of the intervention sets that include the variable

xi. Clearly, K experiments (or separating sets) over n variables can be defined either in terms of the

intervention sets J1, . . . ,JK or equivalently in terms of the index sets I1, . . . ,In. See Figure 3 for an

illustration.

4.1 Satisfying the Unordered Pair Condition

The earliest results (that we are aware of) relevant to finding minimal sets of experiments satisfying

the unordered pair condition are given in Rényi (1961)7 in the terminology of separating systems.

He found that a separating system C = {J1,J2, . . . ,JK} over V can be obtained by assigning distinct

binary numbers to each variable in V . That is, the strategy is to choose distinct index sets for all

variables in V . This is supported by the following Lemma:

Lemma 8 (Index sets must be distinct) Intervention sets {J1, . . . ,JK} satisfy the unordered pair

condition for all unordered pairs of variables if and only if the corresponding index sets I1, . . . ,In

are distinct.

7. Rényi (1961) also examines the probability of finding separating systems when subsets of V are selected randomly.

These results apply to causal discovery when experiments are selected at random.
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Proof Assume that the index sets are distinct. Since the index sets Ii and I j of any two variables

are distinct, there must exist an index k such that either k ∈ Ii and k /∈ I j, or k /∈ Ii and k ∈ I j. Thus,

the experiment Ek satisfies the unordered pair condition for the pair {xi,x j}.

Next assume that the unordered pair condition is satisfied for all pairs. Take two arbitrary

index sets Ii and I j. Since the unordered pair condition is satisfied for the pair {xi,x j}, there is an

experiment Ek where xi is intervened on and x j is not, or x j is intervened and xi is not. Either way,

Ii 6= I j.

Again, Figure 3 is used to illustrate this concept.

Rényi (1961, p. 76) notes that the smallest separating system for a set of n variables has size

c(n) = ⌈log2(n)⌉. (1)

This is clear from the previous lemma: K experiments only allow for up to 2K distinct index sets.

Equivalent results and procedures are derived, only in the terminology of finding minimal cut-

coverings for complete graphs, by Loulou (1992, p. 303). In the terminology of causal discovery,

Eberhardt (2007, Theorem 3.3.4) requires ⌊log2(n)⌋+1 experiments to guarantee identifiability of

a causal model.8 For graphs over three variables, the result is obvious given the graph H (for the

unordered pair condition) in Figure 2 (top, left): For a cut-covering of the three undirected edges,

2 = ⌈log2(3)⌉ cuts are necessary and sufficient. The two cuts in graphs (ii) and (iii) in Figure 2

corresponding to the experiments in the last row of Figure 1 are an example. Figure 4 shows the

number of experiments needed to satisfy the unordered pair condition for all variable pairs for

models of up to 5,000 variables.

4.2 Satisfying the Ordered Pair Condition

When Dickson (1969, p. 192) coined the term “completely separating systems”, he also showed

that as the number n = |V | of elements tends to infinity, the size of a minimal completely separating

system approaches the size of a (standard) separating system, that is, log2(n). However, Dickson did

not derive the exact minimal size. Shortly after, Spencer (1970) recognized the connection between

completely separating systems and antichains in the subset lattice, as defined below. See Figure 5

for an illustration.

Definition 9 (Antichain) An antichain (also known as a Sperner system) {Si} over a set S is a

family of subsets of S such that ∀i, j : Si * S j and Si + S j.

The connection between antichains and completely separating systems (that is, satisfying the or-

dered pair condition) is then the following:

Lemma 10 (Index sets form an antichain) The intervention sets {J1, . . . ,JK} satisfy the ordered

pair condition for all ordered pairs if and only if the corresponding index sets {I1, . . . ,In} form an

antichain over {1, . . . ,K}.

8. The one additional experiment sometimes required in this case derives from the need to satisfy the ordered pair

condition, or unordered pair condition and the covariance condition, for each pair of variables, as discussed in Sec-

tion 2. The covariance condition can be trivially satisfied with a single passive observational data set (a so-called

null-experiment).
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Figure 4: Sufficient and necessary number of experiments needed to satisfy the unordered (blue,

lower solid line) and the ordered (red, upper solid line) pair condition for models of

different sizes (in log-scale). The number of variables in the models are only ticked

on the x-axis when an additional experiment is needed. For example, for a model with

100 variables, 7 experiments are needed to satisfy the unordered pair condition, while 9

experiments are needed to satisfy the ordered pair condition.
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Figure 5: Subset lattice of subsets of {1,2,3,4}. A directed path from set Si to set S j exists if and

only if Si ⊂ S j. The largest antichain is the family of sets that are not connected by any

directed paths, which in this case is formed by all the sets of size 2, that is, all the sets on

the middle ‘row’ of the graph.
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I1 = {1,2}
I2 = {1,3}
I3 = {1,4}
I4 = {2,3}
I5 = {2,4}
I6 = {3,4}

−→

J4 J3 J2 J1

I1 0 0 1 1

I2 0 1 0 1

I3 1 0 0 1

I4 0 1 1 0

I5 1 0 1 0

I6 1 1 0 0

−→
J1 = {x1,x2,x3}
J2 = {x1,x4,x5}
J3 = {x2,x4,x6}
J4 = {x3,x5,x6}

Figure 6: Designing the intervention sets of experiments satisfying the ordered pair condition for

all ordered pairs of variables in a n = 6 variable model with K = 4 experiments. Select

the index sets I1, . . . ,In as an antichain over {1, . . . ,K} and translate the index sets into

intervention sets J1, . . . ,JK .

Proof Assume that the index sets form an antichain. Consider an arbitrary ordered pair (xi,x j).
Since index sets form an antichain we have that Ii * I j and there must be experiment Ek such that

k ∈ Ii and k /∈ I j. This experiment satisfies the ordered pair condition for the ordered pair (xi,x j).
Next assume that the ordered pair condition is satisfied for all ordered pairs. Take two arbitrary

index sets Ii and I j. Since the ordered pair condition is satisfied for the pair (xi,x j), there is an

experiment where xi is intervened on and x j is not, thus Ii * I j. Symmetrically, I j * Ii. Thus the

index sets form an antichain.

Earlier, Sperner (1928) had already proven the following theorem on the maximum possible size of

an antichain.

Theorem 11 (Sperner’s Theorem) The largest antichain over {1, . . . ,K} is formed by the subsets

of constant size ⌊K/2⌋ and thus has size
(

K
⌊K/2⌋

)

.

Thus, the minimal completely separating system over a set of size n can always be constructed

by selecting the corresponding index sets as any distinct ⌊K/2⌋-size subsets. See Figure 6 for

an illustration. Using this rationale, Spencer (1970) notes that the cardinality c(n) of a minimal

completely separating system for n elements is given by

c(n) = min{K :

(

K

⌊K/2⌋

)

≥ n}, (2)

which can be approximated using Stirling’s approximation as

c(n) = log2(n)+
1

2
log2 log2(n)+

1

2
log2(

π

2
)+o(1).

Equation 2 is re-proven for directed cut-coverings over complete graphs by Alon et al. (2007, The-

orem 11), also using the connection to antichains. To our knowledge, tight bounds or constructions

have not been previously described in the causal discovery literature on experiment selection.

For graphs over three variables, the graph F (for the ordered pair condition) in Figure 2 (bottom,

left) illustrates the point: For a directed cut-covering of the six directed edges, c(3) = 3 directed cuts

are necessary and sufficient. The three cuts shown in graphs (v-vii) of Figure 2 corresponding to

the three possible single-intervention experiments are an example, but the cuts corresponding to the
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double-intervention experiments in graphs (ii-iv) of Figure 1 would also work. Figure 4 shows the

number of experiments required for models with up to 5,000 variables. Note that the difference

between the number of experiments needed for a separating and a completely separating system

over a given number of variables is only 2 or 3 experiments. Thus, in many cases the possibility of

applying an inference procedure based on weaker assumptions may be worth the investigative cost

of a few additional experiments to satisfy the ordered pair condition.

5. Limiting Intervention Set Size

Section 4 focused on characterizing minimal sets of experiments that guarantee identifiability, but

paid no attention to the particular nature of those experiments. In some cases, the experiments might

require a simultaneous intervention on half of the variables, but of course such experiments will in

many scientific contexts not be feasible. In this section we consider a generalization of the problem

of finding the optimal set of experiments that can take into account additional constraints on the size

of the intervention sets. We consider the following variants of the problem:

1. Given n variables and K experiments, find intervention sets J1, . . . ,JK ⊆ V satisfying the

ordered or unordered pair condition for all variable pairs, such that the intervention sets have

minimal

(a) average intervention set size meanK
k=1|Jk| =

1
K ∑K

k=1 |Jk| (which is equivalent to mini-

mizing the total number of interventions), or

(b) maximum intervention set size maxK
k=1|Jk|.

2. Given n variables and a maximum allowed intervention set size r, find the minimum number

of experiments m(n,r) for which there exists intervention sets J1, . . . ,Jm(n,r) ⊆ V that satisfy

the ordered or unordered pair condition for all variable pairs.

As will become clear from the following discussion, these problems are related. Note that, de-

pending on the additional constraints, these problems may not have solutions (for example, for the

unordered case of Problem 1(a) and 1(b), when K is smaller than the bound given in Equation 1), or

they may trivially reduce to the problems of the previous sections because the additional constraints

are irrelevant (for example, Problem 2 reduces for the unordered case to the problem discussed in

Section 4.1 if r ≥ n/2). As in the previous section, we separate the discussion of the results into

those pertaining to the unordered pair condition (Section 5.1) and those pertaining to the ordered

pair condition (Section 5.2). The algorithms presented here can also be used to construct interven-

tion sets that satisfy the bounds discussed in Section 4.

5.1 Limiting the Intervention Set Size for the Unordered Pair Condition

We start with the simplest problem, Problem 1(a) for the unordered case, and give the construction

of a set of experiments that achieves the smallest possible average intervention set size, given the

number of variables n and the number of experiments K. The construction we present here is

closely related to the first procedures we are aware of, given by Katona (1966). Finding a design

which minimizes the average intervention set size is straightforward once one considers the problem

in terms of the index sets. The sum of intervention set sizes is of course equal to the sum of index

3053



HYTTINEN, EBERHARDT AND HOYER

I1 = {}
I2 = {1}
I3 = {2}
I4 = {3}
I5 = {4}
I6 = {1,2}
I7 = {3,4}

−→

J4 J3 J2 J1

I1 0 0 0 0

I2 0 0 0 1

I3 0 0 1 0

I4 0 1 0 0

I5 1 0 0 0

I6 0 0 1 1

I7 1 1 0 0

−→
J1 = {x2,x6}
J2 = {x3,x6}
J3 = {x4,x7}
J4 = {x5,x7}

Figure 7: Intervention sets for experiments that satisfy the unordered pair condition for all pairs of

variables in a 7 variable model such that both the maximum and average intervention set

size are minimized. The index sets were chosen using Algorithm 2.

set sizes (because both represent the total number of interventions):

K

∑
k=1

|Jk| =
n

∑
i=1

|Ii|. (3)

This identity, together with Lemma 8, implies that to obtain intervention sets with minimum average

size, it is sufficient to find the n smallest distinct subsets of {1, . . . ,K} as the index sets. There are

a total of ∑
p
j=0

(

K
j

)

index sets Ii with |Ii| ≤ p. Consequently, the size l of the largest required index

set is the integer solution to the inequalities

l−1

∑
j=0

(

K

j

)

< n ≤
l

∑
j=0

(

K

j

)

. (4)

If there is no solution for l, the unordered pair condition cannot be satisfied with K experiments. If

there is a solution, the inequalities in Equation 4 imply that when choosing the smallest index sets,

we have to select all

t =
l−1

∑
j=0

(

K

j

)

index sets of sizes 0 to l−1, and the remaining n− t sets of size l. Since the sum of the intervention

set sizes is the same as the sum of the index set sizes (Equation 3), the average intervention set size

obtained is

meanK
k=1|Jk| =

1

K

K

∑
k=1

|Jk| =
1

K

n

∑
i=1

|Ii| =
1

K

[

l−1

∑
j=0

j

(

K

j

)

+ l(n− t)

]

. (5)

For K experiments this is the minimum average intervention set size possible that satisfies the un-

ordered pair condition for all pairs among n variables. For the case of n = 7 variables and K = 4

experiments, Figure 7 provides an example of the construction of intervention sets with minimal av-

erage size. Note that the minimum average would not have been affected if the index sets I6 and I7

had been chosen differently (but with the same size) as long as all the index sets remained distinct.
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Algorithm 1 Selects p index sets of size l, for K experiments, such that the indexes are distributed

fairly among the index sets. The idea of this algorithm appears in a proof in Cameron (1994,

accredited to D. Billington).

Fair(K,l,p)

Draw the index sets {I1, . . . ,Ip} as distinct l-size subsets of {1, . . . ,K}.

While TRUE,

Find the most frequent index M and the least frequent index m among the index sets {I1, . . . ,Ip}.

If freq(M)− freq(m)≤ 1 then exit the loop.

Find10 a set A of size l−1 such that ({M}∪A) ∈ {I1, . . . ,Ip} and ({m}∪A) /∈ {I1, . . . ,Ip}.

Replace the index set ({M}∪A) with ({m}∪A) in {I1, . . . ,Ip}.

Return the index sets {I1, . . . ,Ip}.

The minimum average intervention set size in Equation 5 also gives a lower bound for the

lowest possible maximum intervention set size, given the number of experiments K and variables

n (Problem 1(b)): At least one intervention set of size ⌈meanK
k=1|Jk|⌉ or larger is needed, because

otherwise the intervention sets would yield a lower average. Next, we will show that this is also an

upper bound.

The size of an arbitrary intervention set Jk is equal to the number of index sets that contain the

index k. We say that index sets are selected fairly when the corresponding intervention sets satisfy

|Jk|− |Jk′ | ≤ 1 ∀k,k′. (6)

In the construction that minimizes the average intervention set size, the index sets I1, . . . ,It

constitute all possible subsets of {1, . . . ,K} of size l−1 or less, and consequently all indexes appear

equally often in these sets.9 The remaining n− t index sets can be chosen fairly using Algorithm 1.

It finds fair index sets by simply switching the sets until the experiment indexes appear fairly. Since

(i) the average intervention set size remains unchanged by this switching, (ii) the minimum average

constitutes a lower bound, and (iii) the intervention set sizes differ by at most one, it follows (see

Appendix A) that the lowest maximum intervention set size is given by

maxK
k=1|Jk| = ⌈meanK

k=1|Jk|⌉. (7)

Thus, if the construction of index sets is fair, then both the minimum average and the smallest

maximum intervention set size is achieved, simultaneously solving both Problem 1(a) and 1(b).

Algorithm 2 provides this complete procedure. Note that in general it is possible to select index sets

such that the maximum intervention set size is not minimized, even though the average is minimal

(for example, if I7 had been {1,4} in Figure 7). Figure 8 (top) shows the lowest possible average

intervention set sizes. Rounding these figures up to the closest integer gives the lowest possible

9. This is easily seen if the index sets are represented as binary numbers, as in the center of Figure 7. It is also clear

from considerations of symmetry.

10. We can always find such a set A : If there were no such set A , then for all sets B of size l−1 such that ({M}∪B) ∈
{I1, . . . , Ip} we would also have that ({m}∪B) ∈ {I1, . . . , Ip}. But then, freq(M)− freq(m) ≤ 0 and the algorithm

would have exited already on the previous line.
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Algorithm 2 Constructs K intervention sets that satisfy the unordered pair condition for all pairs

among n variables with a minimum average and smallest maximum intervention set size.

FairUnordered( n, K )

Determine the maximum index set size l from Equation 4, if no such l exists, then the unordered pair

condition cannot be satisfied for n variables with K experiments.

Assign all subsets S ⊆ {1, . . . ,K} such that |S | ≤ l−1 to index sets I1, . . . ,It .

Draw the remaining l-size index sets with: It+1, . . . ,In ← Fair( K, l, n− t )

Return the intervention sets J1, . . . ,JK corresponding to the index sets I1, . . . ,In.

Algorithm 3 Constructs K intervention sets that satisfy the ordered pair condition for all ordered

pairs among n variables and approximates (and sometimes achieves) the minimum average and

smallest maximum intervention size.

FairOrdered( n, K )

Determine the maximum index set size l from Equation 10, if no such l exists, then the ordered pair condition

cannot be satisfied for n variables with K experiments.

Draw the l-size index sets with: I1, . . . ,In ← Fair( K, l, n )

Return the intervention sets J1, . . . ,JK corresponding to the index sets I1, . . . ,In.

maximum intervention set sizes. All of these numbers are achieved by intervention sets constructed

using Algorithm 2.

Using constructions similar to the above, Katona (1966) and Wegener (1979) were able to derive

the following bounds for Problem 2, the minimum number of experiments m(n,r) given an upper

bound r on the intervention set sizes:

m(n,r) = ⌈log2 n⌉, if r > n/2, (8)

log2 n

log2(e ·n/r)

n

r
≤ m(n,r) ≤

⌈

log2 n

log2⌈n/r⌉

⌉

(⌈n/r⌉−1), if r ≤ n/2, (9)

where e denotes Euler’s number. Equation 8 just restates Equation 1, since the constructions in

Section 4.1 without a constraint on the maximum intervention set size result in intervention sets

with no more than n/2 variables. For any practical values of n and r, the value of m(n,r) can be

found by simply evaluating Equations 4, 5 and 7 for different values of K (starting from the lower

bound in 9), so as to find the smallest value of K for which the maximum intervention set size is

smaller than or equal to r. Figure 8 (bottom) illustrates the behavior of the function m(n,r) and the

bounds given by Equation 9.

5.2 Limiting the Intervention Set Size for the Ordered Pair Condition

Recall from Lemma 10 that satisfaction of the ordered pair condition requires that the n index sets

of a set of K experiments form an antichain over {1, . . . ,K}. Thus, no matter whether we seek

to minimize the average or the maximum intervention set size, we have to ensure that the index

sets form an antichain. We begin by considering the (now ordered versions of) Problems 1(a) and
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Figure 8: Satisfying the unordered pair condition while limiting the intervention set sizes. Top:

Lowest achievable average intervention set sizes for models with n variables using K

experiments. The lowest achievable maximum intervention set size is the ceiling of the

average intervention set size shown in the figure. Grey areas denote an insufficient num-

ber of experiments to satisfy the unordered pair condition. Blank areas are uninteresting,

since the average intervention set size can be lowered here by including irrelevant pas-

sive observational (null-)experiments. Bottom: The number of experiments needed for

n = 1024 variables, with a limit r on the maximum allowed intervention set size.
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1(b): Given n and K, we want to specify experiments minimizing either the average or maximum

intervention set size.

First, we note that to obtain an antichain with n elements from K experiments, at least one of

the index sets must be of cardinality l or larger, where l is chosen to satisfy

(

K

l−1

)

< n ≤

(

K

l

)

. (10)

This must be the case because it can be shown using the Lemmas in the proof of Theorem 11 (see

p. 546 bottom in Sperner, 1928) that the largest antichain with sets of at most size l− 1 has size
(

K
l−1

)

, which—given how l was constructed in Equation 10—is not enough to accommodate all n

index sets. On the other hand, it is equally clear that it is possible to obtain an antichain by selecting

the n index sets to all have sizes l.

Thus, a simple approach to attempt to minimize the maximum intervention set size (that is,

solve Problem 1 (b)) is to select the n index sets all with sizes l and use Algorithm 3, exploiting

Algorithm 1, to construct a fair set of index sets. This construction is not fully optimal in all cases

because all sets are chosen with size l while in some cases a smaller maximum intervention set

size is achievable by combining index sets of different sizes. It is easily seen that Algorithm 3 will

generate sets of experiments that have an average and a maximum intervention set size of

meanK
k=1|Jk| =

1

K

K

∑
k=1

|Jk|=
1

K

n

∑
i=1

|Ii|=
n · l

K
, (11)

maxK
k=1|Jk| =

⌈

meanK
k=1|Jk|

⌉

=

⌈

n · l

K

⌉

. (12)

Figure 9 (top) shows the maximum intervention set size in the output of Algorithm 3 for several

values of n and K. Given some of the subsequent results it can also be shown that some of these are

guaranteed to be optimal.11 While this scheme for solving the directed case of Problem 1(b) is quite

good in practice, we are not aware of any efficient scheme that is always guaranteed to minimize

the maximum intervention set size.

Alternatively, one may focus on Problem 1 (a) and thus attempt to minimize the average in-

tervention set size. For this problem, there exists an efficient procedure that obtains the optimum.

Griggs et al. (2012) have recently provided some results in this direction. Here we apply their find-

ings to the problem of experiment selection. To present the construction we need to start with some

results pertaining to antichains.

An antichain is said to be flat if for any pair of sets Ii and I j in the antichain, the cardinalities

satisfy

|Ii|− |I j| ≤ 1, ∀i, j.

Note that flatness requires a selection of index sets that are themselves close in size, while fairness

(Equation 6) requires a selection of index sets such that the intervention sets are close in size. Using

this notion of flatness, Lieby (1994) originally formulated the following theorem as a conjecture:

11. But, for example, when n = 30 and K = 8, Algorithm 3 results in a maximum intervention set size of ⌈ 30·3
8 ⌉ = 12,

although for this case Algorithm 4 can be used to construct suitable intervention sets with at most 11 members.
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Figure 9: Satisfying the ordered pair condition while limiting the size of the intervention sets. Top:

Maximum intervention set sizes achieved by Algorithm 3. Black numbers mark the cases

where the achieved maximum intervention set size is known to be optimal, while red

numbers in parentheses mark cases that are not known to be optimal. Middle: Average

intervention set sizes achieved by Algorithm 4, all guaranteed to be optimal. Bottom:

Number of experiments needed to satisfy the ordered pair condition for n= 1024 variables

with a limit r on the maximum intervention set size.

3059



HYTTINEN, EBERHARDT AND HOYER

Theorem 12 (Flat Antichain Theorem) For every antichain there exists a flat antichain with the

same size and the same average set size.12

Since the sum of the index set sizes is identical to the sum of the intervention set sizes, Theorem 12

shows that whenever the ordered pair condition can be satisfied, the average intervention set size

can be minimized by a set of flat index sets. From Equation 10 it is thus clear that an antichain

minimizing the average set size can be selected solely from the sets of sizes l − 1 and l. The

question then becomes, how can we choose as many sets as possible of size l−1, thus minimizing

the number of sets needed of size l, nevertheless obtaining a valid antichain?

From the Kruskal-Katona Theorem (Kruskal, 1963; Katona, 1968) it follows that an optimal

solution can be obtained by choosing the first p index sets of size l and the last n− p index sets of

size l−1 from the colexicographical order of each of these sets (separately), defined below.

Definition 13 (Colexicographical Order) The colexicographical order over two sets A and B, where

|A| = |B|, is defined by A < B if and only if ∃ i : (A[i] < B[i] and ∀ j > i : A[ j] = B[ j]), where A[i]
denotes the i:th element of the set A, when the elements of the set are arranged in numerical order.

For example, comparing the sets A = {2,3,6} and B = {1,4,6} (note that they are already written

in numerical order), we obtain A < B because A[2] = 3 which is less than B[2] = 4, while A[3] =
B[3] = 6. (See Figure 10 for a further illustration.)

Furthermore, the theory also allows for easily computing the smallest p (and hence largest n− p)

for which a valid antichain is obtained: Any choice for p can be written in a unique l-cascade form

p =
l

∑
j=1

(

a j

j

)

, (13)

where the integers a1, . . . ,al can be computed using a simple greedy approach (for details see Jukna

(2011, p. 146-8) and the code package accompanying this paper). Then, as discussed by Jukna, the

number q of sets of size l−1 that are not subsets of the first p sets in the appropriate colexicograph-

ical order is given by

q =

(

K

l−1

)

−
l

∑
j=1

(

a j

j−1

)

. (14)

Thus, if one can pick the smallest p such that p+q≥ n, then it is possible to construct a flat antichain

of size n that maximizes the number of index sets with size l−1.

Algorithm 4 thus considers all values of p starting from 1, until Equations 13 and 14 imply that

there is a flat antichain of size at least n. It then selects the first p index sets in the colexicographical

order of sets of size l, and the last n− p sets in the colexicographical order of sets of size l−1. The

Kruskal-Katona Theorem ensures that the chosen (l−1)-sized sets will not be subsets of the chosen

l-sized sets, thereby guaranteeing the antichain property (Jukna, 2011, p. 146-8). See Figure 10 for

an example. Thus, Algorithm 4 returns a set of index sets that minimize the average intervention set

size, solving (the directed version of) Problem 1 (a). Figure 9 (middle) shows the optimal average

sizes for various values of n and K.

12. Partial proofs follow from the work of Kleitman and Milner (1973), Lieby (1999) and Roberts (1999), and quite

recently, Kisvölcsey (2006) was able to provide the full proof.
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{1,2,3} < {1,2,4} < {1,3,4} < {2,3,4} < {1,2,5} < {1,3,5}

>

{1,3,6} > {1,2,6} > {3,4,5} > {2,4,5} > {1,4,5} > {2,3,5}

>
{2,3,6} < {1,4,6} < {2,4,6} < {3,4,6} < {1,5,6} < · · ·

· · · < {3,6} < {4,6} < {5,6} < {1,7} < {2,7}

>

{2,8} > {1,8} > {6,7} > {5,7} > {4,7} > {3,7}

>

{3,8} < {4,8} < {5,8} < {6,8} < {7,8}

Figure 10: Selecting the index sets in colexicographical order for n = 30 and K = 8. Selecting 16

index sets of size 3 (up to {3,4,6}, in bold) and 14 index sets of size 2 (starting from

{5,6}, in bold), gives a total of 30 index sets and achieves the lowest possible average

intervention set size for the given n and K. Note that none of the selected index sets is a

subset of another, thus the sets form an antichain. If we were to select only 15 index set

of size 3 (up to {2,4,6}), we could still only select 14 index sets of size 2 (from {5,6}),
ending up with only 29 index sets. If we were to select 17 index sets of size 3 (up to

{1,5,6}), we could select 13 index sets of size 2 (from {1,7}), and find 30 index sets,

but the average intervention set size would then be 1/8 higher.

Algorithm 4 Obtains a set of K intervention sets satisfying the ordered pair condition for all ordered

pairs among n variables that minimizes the average intervention set size.

Flat( n, K )

Determine the maximum index set size l from Equation 10, if no such l exists, the ordered pair condition

cannot be satisfied for n variables with K experiments.

For p from 1 to n,

Find coefficients a1, . . . ,al for a cascade presentation of p in Equation 13.

Calculate the number q of available index sets of size l−1 by Equation 14.

If p+q≥ n exit the for-loop.

Choose the index sets I1, . . . ,Ip as the first sets of size l in the colexicographical order.

Choose the index sets Ip+1, . . . ,In as the last sets of size l−1 in the colexicographical order.

Return the intervention sets J1, . . . ,JK corresponding to the index sets I1, . . . ,In.

Trivially, the ceiling of the minimum average intervention set size for n variables in K experi-

ments gives a lower bound on the lowest maximum intervention set size, that is, for Problem 1 (b).

This allows us to determine the optimality of some of the outputs of Algorithm 3 in Figure 9 (top).
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Problem 2 reverses the free parameters and asks for the minimum number of experiments m(n,r)
given a limit r on the maximum size of any intervention set. Cai (1984b) shows that

m(n,r) =

⌈

2n

r

⌉

, if 2≤
1

2
r2 < n. (15)

With input K = ⌈2n/r⌉, Algorithm 3 generates intervention sets of at most size r (see Appendix B)—

this verifies that m(n,r)≤ ⌈2n/r⌉. Cai’s result also gives an exact minimum number of experiments

when the maximum intervention set size has to be small (see Figure 9 (bottom)). It can also be used

to construct a lower bound on the maximum intervention set size when the number of experiments K

is given: If m(n,r)> K for some r and K, then the maximum intervention set size given n variables

and K experiments must be at least r+1. Again, we use this connection to determine the optimality

of some of the outputs of Algorithm 3 in Figure 9 (top).

For cases when r does not satisfy the restrictions of Cai’s result, Kündgen et al. (2001) use a

similar construction to provide the following bounds:13

min{K|n≤

(

K

⌈Kr/n⌉

)

} ≤ m(n,r) ≤ min{K|n≤

(

K

⌊Kr/n⌋

)

}, if r ≤
n

2
. (16)

Again the upper bound can be easily verified: With the upper bound K as input, Algorithm 3 will

generate intervention sets of at most size r (see Appendix C). The lower bound is an application

of classic results of Kleitman and Milner (1973) concerning average index set sizes. In many cases

we can get an improved lower bound on m(n,r) using Algorithm 4 (which optimally minimizes the

average number of interventions per experiment, for given n and K): Find the smallest K such that

Algorithm 4 returns intervention sets with an average size less than r. In this case we know that the

minimum number of experiments given a maximum intervention set size of r must be at least K (see

Figure 9 (bottom)).

Finally, note that Ramsay and Roberts (1996) and Ramsay et al. (1998) have considered the

problem equivalent to finding a set of experiments where instead of a limited maximum intervention

set size, the intervention sets are constrained to have exactly some given size. Sometimes more

experiments are needed in order to satisfy this harder constraint.

6. Background Knowledge

The results and procedures of the previous two sections apply to scenarios in which there is no

background knowledge concerning the possible causal relationships among the variables. In those

cases, for complete identification, the chosen experiments must satisfy the (ordered or unordered,

depending on the assumptions) pair condition for all pairs of variables. However, in many cases

there exists domain knowledge that can assist in inferring the underlying system. For instance, it

may be the case that background knowledge rules out certain causal relationships. Hyttinen et al.

(2010) gave details of how, in the linear case, such prior knowledge can be integrated into the

discovery procedure, reducing the set of ordered pair conditions that need to be satisfied by the

experiments. As another example, under causal sufficiency, acyclicity, and faithfulness, if by prior

knowledge a given edge is known to be present, or it is known that there is no causal relation between

a given pair of variables, this translates directly to an unordered pair that does not need to be satisfied

13. Roberts and Rylands (2005) give the exact values for m(n,r) for n≤ 10 variables and all suitable r.

3062



EXPERIMENT SELECTION FOR CAUSAL DISCOVERY

by the set of experiments. Finally, any background knowledge that is equivalent to knowledge of

the outcome of some experiment can be described in terms of satisfied pair conditions. In this

section, we thus consider the selection of experiments when the experiments only need to satisfy

the pair condition for a given subset of all variable pairs, but acknowledge that not all background

knowledge is representable in terms of satisfied pair conditions.

When the pair condition only needs to be satisfied for a subset of the variable pairs, the search

problem is equivalent to that of finding a minimal cut-covering of a given graph. As described

in Section 3, we represent the satisfaction of the unordered pair condition by a graph H over the

vertices V , where an undirected edge between a pair of variables indicates that the unordered pair

condition is not yet satisfied for that pair (and hence needs to be satisfied by the experiments we

select), while the absence of an edge indicates it is already satisfied for the pair (and does not need to

be satisfied by our experiments). Similarly, we use a directed graph F to represent the satisfaction of

the ordered pair condition, in the analogous way. Essentially, the combinatorial problems discussed

in the two previous sections can thus be interpreted as finding a minimal cut-covering for a complete

directed or undirected graph, while in this section we consider the problem of finding a minimal cut-

covering for an arbitrary directed or undirected graph.14

First, consider the satisfaction of the unordered pair condition for an arbitrary subset of all vari-

able pairs. Unlike the case without background knowledge, discussed in Sections 4.1, the problem

of finding the smallest set of experiments to satisfy the unordered pair condition for a subset of all

pairs is known to be hard. Cai (1984a) establishes the connection to minimal graph colorings by

showing (in his Theorem 5) that the smallest cardinality c(H) of a cut-covering of an undirected

graph H relates to its chromatic number χ(H) (the smallest number of colors required to vertex-

color graph H) as

c(H) = ⌈log2(χ(H))⌉. (17)

The result indicates that the main constraint to reducing the number of experiments are cliques of

variables for which the unordered pair condition is not satisfied. Equation 17 constitutes a general-

ization of the results shown in Section 4.1. Furthermore, it follows from Cai’s Theorem 6 that the

problem of finding a minimal set of experiments given background knowledge for arbitrary pairs

is NP-hard, though constructing the appropriate experiments given a graph coloring is very simple.

Various approximation algorithms used for graph coloring could be applied, see for example Welsh

and Powell (1967), Motwani and Naor (1993), Halldórsson (1993), Bussieck (1994) and Liberti

et al. (2011) for proposals, bounds and simulations. Algorithm 5 calls a graph coloring method

(in the code package we use the simple approximation algorithm by Welsh and Powell, 1967) and

constructs intervention sets based on the graph coloring. It results in ⌈log2(χ(H)+c)⌉ experiments,

where c is the number of colors the coloring algorithm uses in excess of the chromatic number

χ(H). So it achieves Cai’s optimal bound on the minimum number of experiments (Equation 17) if

the coloring method uses the smallest number of colors.

In certain restricted cases the problem is easier. When the underlying model is known to be

acyclic and causally sufficient, and the background knowledge derives from passive observational

data or suitable previous experiments, the knowledge can be represented in terms of an (interven-

tional) Markov equivalence class. These are sets of causally sufficient acyclic causal models that are

14. Note that Cai (1984a) uses the terminology of ‘separating systems’ in relation to arbitrary graphs, but this use of the

terminology does not seem to be in widespread use so we do not adopt it here.
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Algorithm 5 Constructs a set of intervention sets satisfying the unordered pair condition for a

given arbitrary set of unordered pairs represented by an undirected graph H over n variables. The

algorithm is adapted from the proof of Theorem 5 in Cai (1984a).

BackgroundUnordered(H)

Obtain a partition Col(H) of the variables V of H into q color classes C1, . . . ,Cq (where χ(H) ≤ q ≤ n,

χ(H) is the chromatic number of H and n = |V |), such that no adjacent vertices belong to the same class

(for example, using the approximation algorithm in Welsh and Powell, 1967).

Let K = ⌈log2(q)⌉.

Obtain “intervention sets” J ′1, . . . ,J
′
K over the color classes C1, . . . ,Cq that satisfy the unordered pair condition

for all pairs of the q color classes (for example, by calling FairUnordered(q,K) (Algorithm 2)).

For each k from 1 to K,

Determine Jk =
⋃

Ci∈J ′
k
Ci. Intervention set Jk consists of all variables colored with a color in J ′k .

Return intervention sets J1, . . . ,JK .

indistinguishable given passive observational data or the experiments performed so far. Algorithm 3

in Hauser and Bühlmann (2012) constructs in polynomial time a minimal set of experiments that is

sufficient and in the worst case necessary to identify the true causal model within such an (inter-

ventional) Markov equivalence class, assuming the skeleton of the true causal graph is identifiable

given the set of experiments. We can translate this situation to our framework as follows: With such

background knowledge, for complete identifiability, the unordered pair condition only needs to be

satisfied for the pairs of variables adjacent in the skeleton, for which the orientation of the edge is

unknown. Thus, if we again consider the example graph (i) in Figure 11 (repeating graph (i) from

Figure 1), and assume that we have a passive observational data set to determine the Markov equiv-

alence class (graph (ii)), then the undirected graph H representing the pairs for which the unordered

pair condition remains unsatisfied is given by graph (iii). (In this case it has the same structure as

the skeleton of the Markov equivalence class of the true graph, but that is not generally the case.)

Given H (graph (iii)), it is obvious that a single experiment E = (J ,U) = ({y},{x,z}) would re-

solve the remaining pairs, that is, the single cut E is a minimal cut-covering (graph (iv)). Under the

assumption of acyclicity, causal sufficiency and faithfulness, this is sufficient for identifiability of

the causal structure.

Satisfaction of the ordered pair condition for an arbitrary subset of the ordered variable pairs

is also known to be hard. Cai (1984a) shows in his Theorem 7 that the problem of determining a

minimal cut-covering for an arbitrary directed graph is NP-hard. More recently, Watanabe et al.

(2000) offered the following bounds on the cardinality of the minimal directed cut-covering c(F):

log2(χ(F)) ≤ c(F) ≤ ⌈log2(χ(F))⌉+ ⌈log2⌈log2(χ(F))+1⌉⌉,

where χ(F) is the chromatic number of the directed graph F representing the unsatisfied ordered

pair conditions.15 These bounds constitute a generalization of the results in Section 4.2 where

no background knowledge was assumed. In general, the conversion of background knowledge to

15. Strictly speaking χ(F) is the chromatic number of the undirected graph with the same set of vertices as F and in

which an undirected edge exists between a pair of vertices if an only if they are adjacent in F .
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Figure 11: Graph (i) is the true causal generating model (repeating Figure 1, (i)), graph (ii) shows

the corresponding passive observational Markov equivalence class (MEC). Graph (iii)

illustrates the remaining pairs for which the unordered pair condition is not satisfied

given the MEC in (ii), and graph (iv) shows that a single intervention on y resolves these

pairs, that is, it provides a cut-covering. Given background knowledge obtained from a

passive observational data set of graph (i), graph (v) shows the ordered pairs for which

the ordered pair condition remains unsatisfied. In this case two further experiments are

required to provide a directed cut-covering, one intervening on y (graph (vi)) and one

intervening on x and z simultaneously (graph (vii)).

pairs satisfying the ordered pair condition is more complicated because the equivalence classes of

causal structures whose identifiability depends on the satisfaction of the ordered pair condition is

less well understood (consider, for example, the equivalence classes for linear cyclic models over a

causally insufficient set of variables). But for simple cases it can still be done: Given background

knowledge derived from a passive observational data set over graph (i) in Figure 11, graph (v)

is the directed graph F indicating the ordered pairs for which the ordered pair condition remains

unsatisfied. Graphs (vi) and (vii) then show the two directed cuts that are still required to obtain a

directed cut-covering of F . If we assume linearity, but not acyclicity or causal sufficiency, the two

experiments corresponding to these cuts would be necessary and sufficient for identifiability given

the background knowledge represented in graph (v).

7. Discussion: Related Work and Open Problems

The combinatorial results and procedures we have translated and combined in this paper update and

generalize a variety of results in the causal discovery literature on the selection of experiments. For

example, Eberhardt (2007, Theorem 3.3.17) only provides an upper bound on the minimum number

of experiments sufficient for the satisfaction of the ordered pair condition. With Spencer’s result

on completely separating systems (Equation 2) we now have an exact result and the experiments

that satisfy this result can be constructed using Algorithm 3. Similarly, Eberhardt (2007, Theorem

3.3.29) gave an upper bound on the minimum number of experiments sufficient to satisfy the un-

ordered pair condition when the maximum intervention set size was restricted. The translation of

the results of Katona (1966) and Wegener (1979) in Equations 8 and 9 now provide much better

bounds, and Algorithm 2 can be used to construct the appropriate intervention sets.

Tong and Koller (2001) and Murphy (2001) use a greedy Bayesian procedure to select the next

best single-intervention experiment, but given the computational complexity cannot solve for mod-

els with more than five variables. Meganck et al. (2005), He and Geng (2008), Eberhardt (2008) and
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Hauser and Bühlmann (2012), in their different ways, also try to find the best next experiment given

background knowledge, typically knowledge of the (interventional) Markov equivalence class. In

Section 6 we showed that the complexity of the satisfaction of the (un)ordered pair condition given

background knowledge is known to be NP-hard in general, and Cai (1984a) already showed (though

in the terminology of separating systems) that the minimum number of experiments required is a

function of the chromatic number of the graph of unsatisfied pair conditions. Except for special

cases (see, for example, Hauser and Bühlmann, 2012), graph-coloring heuristics seem to provide

the best approach to problems of this type, and we have implemented one such procedure in Algo-

rithm 5.

In addition, a variety of open problems remain: In Section 5.2 we noted that for the ordered

pair condition we are not aware of a general algorithm that generates intervention sets for which

the maximum intervention set size is minimized. We also do not know whether the maximum

and average intervention set size can be minimized simultaneously (as we showed is possible for

the unordered pair condition in Section 5.1). Nevertheless, for both cases we have shown that

Algorithm 3 provides a very good approximation and can be shown to provide optimal output in

many cases.

More generally, the type of background knowledge we considered in Section 6 may have to be

integrated into a search procedure that is subject to constraints on the size of the intervention sets.

How to compute the optimal set of experiments in such cases is an open combinatorical problem,

for which we are not aware of any solutions that are not brute force searches.

Naturally, there are also further generalizations of the problem settings we considered. For ex-

ample, it will often not be possible to perform all desired experiments. Some experiments will be

more expensive than others or certain combinations of variables may not be manipulable simulta-

neously. Given a restricted set of experiments, how to select the smallest subset that preserves the

discriminatory power of the full set, is known as the “test collection problem”. There is a large

literature on variants of this problem. Halldórsson et al. (2001) describe the connection to finding

minimal cut-coverings and analyze the complexity of the problem. They show that even good ap-

proximation algorithms are hard to obtain for this problem, but Moret and Shapiro (1985) analyze

and test a variety of heuristics and show that in a real world setting there is reason for optimism that

an (almost) minimal set of experiments can still be found relatively easily.

8. Conclusion

We have summarized and presented combinatorial results for the optimal selection of experiments

when the goal is to learn the causal structure of a system. Most results were originally derived

for so-called (completely) separating systems or minimal cut-coverings. We used these results to

specify the minimum number of experiments necessary and sufficient for identifiability when there

is no background knowledge (Section 4), when there are limitations on the size of the intervention

sets (Section 5), and when background knowledge is available (Section 6). Where possible, we

presented algorithms that actually construct the experiments that satisfy (or closely approximate)

the specified bounds and constraints, and we indicated where extant heuristics can be applied. We

hope that the constructive way of presenting the results and how to obtain them, may also provide

useful guidelines on which experiments to conduct in settings with assumptions not considered here.

For the combinatorics community, we have provided a novel area of application. We have also

given a unifying, more easily understandable framework for the set constructions (which are other-
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wise often hidden in the proofs of the reported bounds), along with clear examples and computer

code. This should help in understanding and comparing the different bounds and constructions.

Perhaps this compilation also helps in identifying where new theoretical findings would also have

a practical value. We hope that this note provides a translation aid and helps to produce a more

congenial flow of research problems and results between the fields of study.
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Appendix A. Proof of Equation 7

Marking the largest intervention set by Jh we have that

|Jh|−meanK
k=1|Jk| =

1

K

K

∑
k=1

(|Jh|− |Jk|) || Equation 6,h ∈ {1, . . . ,K}

≤
K−1

K
< 1.

Since the maximum intervention set size is an integer which is lower bounded by the average inter-

vention set size, yet less than one above it, Equation 7 follows directly.

Appendix B. Upper Bound of Cai (1984b)

We verify the upper bound in Equation 15: The minimum number of experiments m(n,r), given

a limit r on the maximum intervention set size, has an upper bound of ⌈2n/r⌉, when n > 1
2
r2.

Consider that Algorithm 3 is run with input n and K = ⌈2n/r⌉. The first step is to find l that satisfies

Equation 10. The upper bound in Equation 10 is satisfied when l = 2 under the assumption that

n > 1
2
r2:

(

K

l

)

=
K(K−1)

2
||K ≥

2n

r

≥
2n(K−1)

2r
||K ≥

2n

r
>

2 1
2
r2

r
= r⇒ K−1≥ r

≥
2nr

2r
= n.

Thus, the used index set size l will be at most two, as there exists an antichain of n index sets of

constant size l ≤ 2 over K = ⌈2n/r⌉ experiments. Then, Algorithm 3 will produce intervention sets
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with average size (Equation 11) bounded by r:

meanK
k=1|Jk| =

n · l

K
||

1

K
≤

r

2n

≤
nlr

2n
||l ≤ 2

≤
2nr

2n
= r.

Because the index sets are chosen fairly, the maximum intervention set size (Equation 12) is also

bounded by integer r:

maxK
k=1|Jk| = ⌈meanK

k=1|Jk|⌉ ≤ r.

Appendix C. Upper Bound of Kündgen et al. (2001)

We verify the upper bound in Equation 16: The minimum number of experiments m(n,r), given a

limit r on the maximum intervention set size, has an upper bound of min{K′|n ≤
(

K′

⌊K′r/n⌋

)

}, when

r≤ n/2. Consider that Algorithm 3 is run with input n and K =min{K′|n≤
(

K′

⌊K′r/n⌋

)

}. The first step

is to find l that satisfies Equation 10. The upper bound in Equation 10 is satisfied when l = ⌊Kr/n⌋,
simply by the definition of K. Thus, the used index set size l will be at most ⌊Kr/n⌋, as there exists

an antichain of n index sets of constant size l ≤ Kr/n over K experiments. Then, Algorithm 3 will

produce intervention sets with average size (Equation 11) bounded by r:

meanK
k=1|Jk| =

n · l

K
||l ≤

Kr

n

≤
nKr

Kn
= r.

Because the index sets are chosen fairly, the maximum intervention set size (Equation 12) is also

bounded by integer r:

maxK
k=1|Jk| = ⌈meanK

k=1|Jk|⌉ ≤ r.
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Abstract

Recently, researchers have proposed penalized maximum likelihood to identify network topology

underlying a dynamical system modeled by multivariate time series. The time series of interest

are assumed to be stationary, but this restriction is never taken into consideration by existing es-

timation methods. Moreover, practical problems of interest may have ultra-high dimensionality

and obvious node collinearity. In addition, none of the available algorithms provides a probabilis-

tic measure of the uncertainty for the obtained network topology which is informative in reliable

network identification. The main purpose of this paper is to tackle these challenging issues. We

propose the S2 learning framework, which stands for stationary-sparse network learning. We pro-

pose a novel algorithm referred to as the Berhu iterative sparsity pursuit with stationarity (BISPS),

where the Berhu regularization can improve the Lasso in detection and estimation. The algorithm is

extremely easy to implement, efficient in computation and has a theoretical guarantee to converge

to a global optimum. We also incorporate a screening technique into BISPS to tackle ultra-high

dimensional problems and enhance computational efficiency. Furthermore, a stationary bootstrap

technique is applied to provide connection occurring frequency for reliable topology learning. Ex-

periments show that our method can achieve stationary and sparse causality network learning and

is scalable for high-dimensional problems.

Keywords: stationarity, sparsity, Berhu, screening, bootstrap

1. Introduction

There has been an increasing interest in identifying network dynamics and topologies in the emerg-

ing scientific discipline of network science (e.g., Newman and Watts, 2006; Lewis, 2009). In a

dynamical network, the evolution of a node is controlled not only by itself, but also by other nodes.

For example, in the gene regulatory network (Faith et al., 2007), the expression levels of genes

influence each other, following some dynamic rules, which connect the genes together and form a

dynamical system. If the topology and evolution rules of the network are known, we can analyze the

c©2013 Yuejia He, Yiyuan She and Dapeng Wu.



HE, SHE AND WU

regulation between genes or detect unusual behaviors to help diagnose and cure genetic diseases.

Similarly, the modeling and estimation of dynamical networks are of great importance for various

domains including stock market (Mills and Markellos, 2008), brain network (Bullmore and Sporns,

2009) and social network (Hanneke et al., 2010). To accurately identify the topology and dynamics

underlying those networks, scientists are devoted to developing appropriate mathematical models

and corresponding estimation methods.

In practice, we can obtain discrete observations of the network over a period of time, which

can usually be modeled by multivariate time series from a statistical perspective. For example, the

fMRI data of the human brain is taken every one minute during a two-hour experiment; stock prices

are often recorded daily or weekly. These multivariate time series contain important information

of the network topology and dynamics. Vector autoregressive (VAR) process (Sims, 1980) is one

of the most commonly used models for characterizing the relations between the time series. In

this model, the state of each node is characterized by a time series. The value of a node at a time

point is a linear combination of the past values of itself and the nodes regulating it. This kind of

regulation relationship is regarded as the Granger causal connection (Granger, 1969). By estimating

the transition matrix of the model, we can understand the Granger causal relations between nodes.

In estimating the transition matrix, one must bare in mind two most important objectives: first,

the estimate fitted on the training data should provide accurate prediction; second, a sparse topology

that illustrates the most prominent network connections is desired. Recently, compressive sensing

approaches based on penalized maximum likelihood (PML) are applied to achieve accurate predic-

tion and sparse representation simultaneously (Donoho, 2006; Tsaig and Donoho, 2006; Songsiri

and Vandenberghe, 2010). Different penalties and algorithms are proposed (Fan and Li, 2006, 2001;

Zou, 2006; Zou and Hastie, 2005; Blumensath and Davies, 2010). The ℓ1 penalty (Tibshirani, 1996)

is popular for its computational efficiency and theoretical elegance. Nevertheless, the major prob-

lem of the ℓ1 penalty for dynamical network learning is its incapability of handling collinearity,

which typically exists in network data as a result of the interaction between nodes. The elastic net

(Zou and Hastie, 2005) uses a linear combination of the ℓ1 and ℓ2 penalties to deal with collinearity

and large noise. However, its ℓ2 component may counteract sparsity and bring the so-called “double

shrinkage” issue. To improve these drawbacks, we study a new ‘ℓ1 + ℓ2’ variant—Berhu (Owen,

2007), which fuses the ℓ1 and ℓ2 penalties in a nonlinear fashion and thus can deal with collinearity

as well as achieve sufficient sparsity. We propose a Berhu thresholding operator to efficiently solve

the Berhu penalized problem.

In real-world problems, raw observations from a dynamical network are usually preprocessed

and stationarized before the application of PML (Stock and Watson, 2012; Hsu et al., 2008). Nev-

ertheless, as will be demonstrated in the experiment, it is possible for PML to end up with a non-

stationary estimate, due to noise contamination and limited number of observations. Such nonsta-

tionary estimates may give unmeaningful prediction results, especially for long-term forecasting.

Hence, our work, distinguished from the existing ones, focuses on enforcing the stationarity guar-

antee in network estimation and topology identification, which is of great importance but has never

been properly addressed. The stationarity condition of the VAR model is its spectral radius being

smaller than one (Reinsel, 1997). This constraint is nonconvex and extremely difficult to tackle

directly (Burke et al., 2005; Curtis and Overton, 2012; Overton and Womersley, 1988). Hence, we

use a convex relaxation and come up with a stationarity constrained PML problem. We propose

an efficient algorithm, the Berhu iterative sparsity pursuit with stationarity (BISPS), to achieve

stationary-sparse (S2) network learning. This algorithm is very easy to implement and theoretically
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guaranteed to converge to a global optimum. Experimentation demonstrates that our method can

guarantee a stationary and sparse estimate. It not only gives satisfactory identification accuracy, but

also outperforms the plain PML method significantly in prediction.

Another challenge in network identification lies in the high dimensionality of the data (Fan and

Lv, 2010). For a network with p nodes and n observations, the number of unknown variables in the

transition matrix is p2, and we frequently face practical data sets with p2≫ n, for example, microar-

ray data sets consisting of thousands of genes but fewer than a hundred observations. This so-called

“ultra-high dimensional” problem (Fan and Lv, 2008) adds tremendous difficulties to the inference

methods in terms of statistical estimation accuracy as well as computational complexity. To address

this challenging issue, we propose two efficient techniques. First, the quantile thresholding iterative

screening (QTIS) is designed to “preselect” connections for the BISPS algorithm in a supervised

manner. QTIS differs from existing screening techniques such as the sure independence screening

(Fan and Lv, 2008) in that it takes into account of collinearity in the data. Secondly, we propose

the stationary bootstrap enhanced BISPS (SB-BISPS). Bootstrap is a nonparametric technique for

approximating the distributions of statistics or constructing confidence intervals. Our work applies

this powerful tool with stationarity guarantee to network identification and provides a confidence

level for the occurrence of each possible connection in the network.

The remainder of the paper is organized as follows: Section 2 introduces the stationary and

sparse network model and formulates the S2 learning framework. Section 3 proposes our algo-

rithms, mainly the Berhu iterative sparsity pursuit with stationarity (BISPS) and the quantile thresh-

olding iterative screening (QTIS), and provides theoretical proofs for their convergence. Section 4

describes the stationary bootstrap enhanced BISPS (SB-BISPS). In Section 5, we show experimen-

tal results on synthetic data. In Section 6, we apply the proposed method to the U.S. macroeconomic

data. Section 7 concludes our work.

2. The Stationary-Sparse (S2) Network Learning Framework

Let x be a p-dimensional random vector with each component being a time series associated with

one node in a dynamical network, where p is the number of nodes. We are interested in charac-

terizing the observations of x at different time points using mathematical models, based on which

we can conduct useful network analysis. In particular, we are interested in understanding the causal

relations between nodes and making predictions for future. A commonly used model describes the

current state xt of the system as a linear transformation of its previous state xt−1:

xt = Bxt−1 + εt , εt ∼N (0,Σε), (1)

where B is the transition matrix and εt is random noise. This corresponds to the first-order vector

autoregressive (VAR) model (Sims, 1980). It can be generalized to a VAR model with order m,

where the current state is a linear combination of the most recent m states. On the other hand, any

mth-order VAR model can be converted to a first-order VAR model by appropriately redefining the

node variables (Lütkepohl, 2007), and thus we focus on the former one with m = 1 in this paper.

In (1), the transition matrix B = [bi j]1≤i, j≤p describes a network that represents the dynamical

system: if bi j 6= 0, there is a Granger causal connection (Granger, 1969) from node j to node i with

weight bi j. In other words, node j Granger-causes node i. For example, for a network with 6 nodes
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Figure 1: Example of a network (1) with transition matrix (2).

and a transition matrix as
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, (2)

Figure 1a shows its topology (self-connections are removed). The nodes evolve and interact with

each other through the Granger causal connections, resulting in the random processes plotted in

Figure 1b. Therefore, matrix B not only illustrates the dynamic rules that govern the evolution of

the system, but also captures a linear causality network that describes the (Granger) casual relations

between nodes.

2.1 Sparse Network Learning by Penalized Maximum Likelihood Estimation

Given n observations of the dynamical network x1, · · · ,xn, we wish to estimate B. Due to Markov-

chain property, we can write the likelihood of B as

L(B|x1, · · · ,xn) =
n

∏
t=2

f (xt |xt−1, · · · ,x1,B) f (x1|B) =
n

∏
t=2

f (xt |xt−1,B) f (x1|B).

The exact maximum likelihood (ML) estimate requires solving a nonlinear optimization problem.

For simplicity, researchers often use the conditional likelihood where the initial state x1 is assumed

to be fixed. Due to normality, we have the conditional likelihood

Lc(B) =
n

∏
t=2

f (xt |xt−1,B) =
n

∏
t=2

(2π)−p/2|Σε|−1/2 exp{−1

2
(xt −Bxt−1)

TΣ−1
ε (xt −Bxt−1)}.

So the (conditional) ML estimate of B can be obtained by solving

min
B

1

2

n

∑
t=2

‖xt −Bxt−1‖2
2.
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Letting Y = [xT2 ,x
T

3 , · · · ,xTn ]T, X = [xT1 ,x
T

2 , · · · ,xTn−1]
T and A = BT, we can formulate the problem

in matrix form:

AML = argmin
A

l(A) =
1

2
‖Y −XA‖2

F .

For convenience, we use A instead of B to represent the network in the remainder of the paper.

Note that ai j describes the directed connection strength from node i to node j. The estimate ÂML

has been investigated and applied to many real-world data. For stationary process, the consistency

and asymptotic efficiency of ÂML are analyzed in Reinsel (1997). The small-sample properties are

discussed in Lütkepohl (2007).

Nevertheless, the plain ML estimation is not ideal for network learning. In practice, X usually

demonstrates high collinearity, especially when some nodes have similar dynamical behaviors and

when the number of observations is limited. Moreover, the ML estimation does not promote sparsity

and consequently the resulting model is difficult to interpret. To improve prediction accuracy and

obtain interpretable model, shrinkage estimation is necessary. It can be done by adding a penalty

and/or constraint. For example, we can estimate A via penalized maximum likelihood (PML):

ÂPML = argmin
A

l(A)+P(A;λ). (3)

We consider only the additive penalties and denote P(A;λ) = ∑i, j P(ai j;λi j), where P(·) is a penalty

function applied to each component of A, and λi j is the corresponding regularization parameter(s).

Alternatively, constraints can also be used. See Section 2.3 and Section 3.4.

Different penalties have been proposed. The famous Lasso (Tibshirani, 1996) solves the ℓ1

penalized problem. It is fast in computation. Nevertheless, Lasso suffers from some drawbacks

such as selection inconsistency, estimation bias and incapability of dealing with collinearity, in

particular. Zou and Hastie (2005) propose the elastic net (eNet for short in this paper) which adds

an additional ridge regularization (Hoerl and Kennard, 1970) to deal with collinearity and large

noise. However, the design counteracts sparsity to some extend and may bring the double shrinkage

issue. Some nonconvex alternatives, including the ‘ℓ0 + ℓ1’ SCAD (Fan and Li, 2001) and the

‘ℓ0 + ℓ2’ hard-ridge (She, 2009, 2012), are advocated to promote more sparsity. However, due to

nonconvexity, the convergent solution may be only locally optimal and depend on the choices of the

initial point. They are also more computationally expensive than convex approaches. Therefore, we

do not consider nonconvex regularizations hereinafter.

2.2 The S2 Network Learning

Many real-world time series (possibly after proper transformations such as taking logarithm and/or

differencing) are stationary. Stationary and nonstationary processes behave in fundamentally dif-

ferent manners. See Figure 2. For a stationary process, its probability distribution is invariant

with respect to the shift in time. In the nonstationary process, however, we can clearly see drift-

ing and trending behaviors. In practice, given raw observations sampled from a dynamical system,

researchers first stationarize the time series and then input them to the ML/PML estimator. The

resulting estimate ÂML/ÂPML is used for analysis and forecast. Unfortunately, however, the station-

arity requirement may be violated by ÂML/ÂPML in practice. Figure 3 shows a real-data example.

We apply ML and PML (adopting the ℓ1 penalty) respectively to the U.S. macroeconomic data

(Stock and Watson, 2012), which are stationary after proper transformations. The estimates are

then used to forecast an index “GDP263”. As shown in Figure 3, though the time series of GDP263

3077



HE, SHE AND WU

0 50 100 150
−20

−10

0

10

20
stationary process

X

0 50 100 150
−1

−0.5

0

0.5

1
x 10

26 non−stationary process

t

X

Figure 2: Example of stationary and nonstationary processes. The number of nodes is p = 50. The

stationary process has ρ(A) = 0.95 and the nonstationary process has ρ(A) = 1.05.
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Figure 3: Forecasts of GDP263 given by ML and PML estimation. The time series of GDP263

is obtained from seasonal observations between 1978:IV and 1998:IV. It is a stationary

process. However, the forecasts given by ML and PML exhibit nonstationary behaviors.

ρ(ÂML) = 1.171, ρ(ÂPML) = 1.073.

is stationary, the ML and PML forecasts clearly exhibit nonstationary behaviors and they fail to

capture all characteristics of the original time series.
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In this paper, we propose the framework of stationary-sparse (S2) network learning to address

the limitation of PML to guarantee the stationarity property of the network. We invoke the station-

arity condition and design an efficient algorithm to solve the optimization problem.

A random process as in (1) is stationary if and only if its spectral radius ρ(A) satisfies the

stationarity condition:

ρ(A)
∆
= max

i
|λi|< 1, (4)

where λi is the ith eigenvalue of A, possibly complex, and | · | is the complex norm (Reinsel, 1997).

This leads to the following optimization problem:

min
A

f (A) =
1

2
‖Y −XA‖2

F +P(A;λ)

s.t. ρ(A)< 1.
(5)

Nevertheless, problem (5) is extremely challenging due to the fact that ρ(A) is a nonconvex and

non-Lipschitz-continuous function of A. An optimization method proposed by Curtis and Overton

(2012), which combines sequential quadratic programming and gradient sampling, sheds some light

on solving (5). However, at each iteration, the gradient sampling needs to sample p2 points and

calculate the gradient of the spectral radius at each point. As discussed in Overton and Womersley

(1988), calculating the gradient of spectral radius for a single point is already a challenging and

computationally demanding problem. It is prohibitive to do so for p2 points at each iteration in our

problem. Moreover, this method only guarantees ρ(A)≤ 1, not ρ(A)< 1.

We consider a reasonable convex relaxation of (4) as the stationarity constraint:

‖A‖2
∆
= max

i
|νi| ≤ 1,

where νi is the ith singular value of A and thus ‖A‖2 is the spectral norm. For an arbitrary square

matrix, we have ρ(A) ≤ ‖A‖2, where the equality holds when A is a symmetric matrix. In all our

applications, we have ρ(A)< 1.

The S2 learning problem is given by

ÂS2 = argmin
A

f (A)

s.t. ‖A‖2 ≤ 1.
(6)

Note that the stationarity constraint also has a “shrinking” effect on the estimate, which contributes

to the shrinkage estimation we are seeking, as discussed in Section 2.1.

2.3 The “Berhu” Penalty for Sparsity Pursuit and Model Decorrelation

As discussed in Section 2.1, coherence is often observed in real-world network data, especially

when some nodes have similar dynamical behaviors or strong influence between each other. In

such cases, the conventional Lasso fails to handle collinearity and consequently gives unsatisfactory

identification and forecasting performance. Hence, a more proper penalty is in need for S2 network

learning. We adopt a new hybrid penalty “Berhu”, which has a close relation with Huber’s loss

function for robust regression (Huber, 1981). The Huber function is quadratic at small values and
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linear at large ones, which makes it more robust to outliers than the squared-error criterion. Inspired

by the Huber function, Owen (2007) designed a convex penalty function Berhu

PB(t;λ,M) =

{

λ|t| if |t| ≤M

λ t2+M2

2M
if |t|> M.

(7)

As implied by its name, Berhu reverses the composition of Huber: it is linear at small values and

quadratic at large ones.
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Figure 4: Penalty functions and corresponding solutions.

Figure 4 compares Berhu with the ridge penalty PR(t;η) = 1
2
ηt2, Lasso PL(t;λ) = λ|t| and

eNet PE(t;λ,η) = λ|t|+ 1
2
ηt2. The upper panel plots the functions, while the lower panel shows

their corresponding solutions in the univariate and orthogonal case (see Section 3.2 for details).

The ridge penalty shrinks the coefficients to compensate for collinearity. But it can not produce

exact zero coefficients in the estimate. The Lasso soft-thresholds the coefficients to encourage

sparsity. However, it does not shrink the large coefficients effectively and does not work well for

correlated data. The eNet incorporates the ridge component into the ℓ1. However, the singularity

of the penalty function at zero is smoothed out to some extent by the ℓ2 part, which may lead to

an estimate not parsimonious enough. Also, it tends to over-shrink medium and large coefficients

(Zou and Hastie, 2005). Berhu overcomes these drawbacks by using a nonlinear fusion of the ℓ1

and ℓ2 penalties: for small coefficients, the ℓ1 regularization is enforced to achieve sparsity; for

large coefficients, the ℓ2 regularization is enforced to compensate collinearity (Hoerl and Kennard,

1970) and multi-dimensionality (James and Stein, 1961). As a result, Berhu not only preserves the

singularity property of Lasso at zero but also inherits the advantage of ridge regression in model

decorrelation. It is convex as well. The difference between Berhu and eNet is significant. For

medium and large coefficients, eNet not only shifts but also shrinks, which results in the double

shrinkage effect (Zou and Hastie, 2005). On the other hand, Berhu shifts only medium coefficients
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and shrinks large ones. It does selection and decorrelation separately, which better serves two

important objectives of network learning: accurate prediction and parsimonious representation.

Substituting PB(A;λ,M) into (6), we focus on solving

argmin
A

fB(A) =
1

2
‖Y −XA‖2

F +PB(A;λ,M)

s.t. ‖A‖2 ≤ 1.
(8)

In this problem, PB(A;λ,M) is typically nondifferentiable at zero and piecewise. The stationarity

constraint adds more difficulties to the problem. Moreover, in practice we are frequently confronted

with large-scale networks. Hence, an efficient and scalable algorithm is desired for S2 network

learning.

3. Computation of BISPS

In this section, we propose an algorithm named Berhu iterative sparsity pursuit with stationarity

(BISPS) to effectively solve the S2 learning problem (8). Some algorithms based on conventional

techniques will be developed first. They suffer from high computational complexity, poor numerical

accuracy, and/or insufficient sparsity. We then propose the novel BISPS which is easy to implement

and computationally efficient. Finally, to facilitate BISPS for ultra-high dimensional problems, we

propose the quantile thresholding iterative screening (QTIS). Convergence proofs are provided.

We assume the data matrices X ,Y has been centered before all the computation. Precalculations

ΣXX
∆
= XTX and ΣXY

∆
= XTY help avoid repeated computation.

3.1 Algorithms Based on Conventional Techniques

Problem (8) can be reformulated and then solved by well-known optimization techniques, such

as semidefinite programming, projected subgradient method, and alternating direction method of

multipliers. We briefly discuss these algorithms before introducing BISPS.

3.1.1 SEMIDEFINITE PROGRAMMING

Problem (8) can be reformulated as a semidefinite programming (SDP) problem

min
A

fB(A)

s.t.

[

I A

AT I

]

� 0

and can be solved by general SDP solvers. However, since most of the SDP solvers use interior point

methods, they suffer from extremely high space complexity. For example, we tried the popular SDP

solvers SeDuMi (Sturm, 1998) and SDPT3 (Tütüncü et al., 2003) using MATLAB7.11.0 on a PC

with 4GB memory; when the number of network nodes is larger than 100, both solvers ran out of

memory.

3.1.2 PROJECTED SUBGRADIENT METHOD

Define the subgradient of fB(A) at A as

∂ fB(A) = ∇l(A)+∂PB(A;λ,M),
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where ∂PB(A;λ,M) is the subdifferential (Alber et al., 1998) of PB(·), and ∇l(A) is the gradient of

l(A): ∇l(A) = ΣXX A−ΣXY . The projected subgradient method (PSGM) for problem (8) computes

a sequence of feasible points {Ak} with the update rule

Ak+1 = Π(Ak−αkU
k;1), where Uk ∈ ∂ fB(A

k),

until Ak satisfies 0 ∈ ∂ fB(A
k). The operator Π stands for spectral norm projection defined in

Lemma 5.

PSGM is simple to implement. At each step, one performs subgradient evaluation and spectral

norm projection. Nevertheless, due to the uncertainty of the subgradient at the non-differentiable

point of the penalty function, it suffers from slow convergence and insufficiency of sparsity. For

example, in an experiment where the number of nodes p = 100 and number of observations n = 80,

it does not converge yet after 104 iterations.

3.1.3 ALTERNATING DIRECTION METHOD OF MULTIPLIERS

The basic idea of alternating direction method of multipliers (ADMM) is to split the objective

function and variables and update them in an alternating fashion (Boyd et al., 2010). To apply

ADMM for solving problem (8), we reformulate it as

min
A,B,C

1

2
‖Y −XA‖2

F +PB(B;λ,M)

s.t.

[

A

A

]

=

[

B

C

]

,

and ‖C‖2 ≤ 1.

The augmented Lagrangian can then be written as Lρ1,ρ2
(A,B,C,Γ1,Γ2) = 1

2
‖Y − XA‖2

F+
PB(B;λ,M)+ tr{ΓT

1 (A−B)}+ tr{ΓT

2 (A−C)}+ ρ1

2
‖A−B‖2

F + ρ2

2
‖A−C‖2

F , where Γ1 and Γ2 are

Lagrangian multipliers and ρ1 and ρ2 are the augmented Lagrangian parameters. The iteration of

ADMM consists of the following steps

Ak+1 = (ΣXX +ρ1I +ρ2I)−1(ΣXY −Γk
1−Γk

2 +ρ1Bk +ρ2Ck),

Bk+1 = ΘB(A
k+1 +Γk

1/ρ1;λ/ρ1,M),

Ck+1 = Π(Ak+1 +Γk
2/ρ2;1),

Γk+1
1 = Γk

1 +ρ1(A
k+1−Bk+1),

Γk+1
2 = Γk

2 +ρ2(A
k+1−Ck+1),

where ΘB is the thresholding operator of Berhu—see Appendix A for detail. Note that matrix in-

version is involved in updating A, which increases computational difficulty. The penalty parameters

ρ1 and ρ2 have to be large enough; the choices of them have been shown to influence the number

of iterations significantly. To speed up convergence in practice, one can replace the constants ρ1

and ρ2 with two sequences {ρk
1} and {ρk

2} respectively, where ρk
1 and ρk

2 vary along the iterations

following some ad hoc adaptive rule (He et al., 2000). However, the algorithm is still slow when the

problem is high dimensional. For example, when p = 300,n = 100, ADMM costs up to 10 times

more computation time than BISPS (to be described in Section 3.2) to reach comparable accuracy.

Also, the convergence property of ADMM with varying ρ is not clear.
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In summary, although we have implemented some algorithms based on conventional techniques

for the S2 network learning problem, they are unable to cope with large-scale networks. A more

efficient and scalable algorithm is in great need.

3.2 The Berhu Thresholding Operator

Section 2.3 advocates the Berhu penalty for S2 network learning. However, in the original paper

(Owen, 2007), Berhu was solved through cvx (Grant and Boyd, 2008). Practical applications call

for the development of much faster algorithms. In this paper, we reparameterize Berhu and develop

its coupled thresholding rule, which allows us to solve the Berhu sparsity pursuit—problem (3) with

Berhu penalty—in a simple and efficient way. This formulation facilitates easy parameter tuning.

Also, it helps us understand the essence of Berhu.

Let η = λ/M. Reformulate the Berhu penalty (7) as

PB(t;λ,η) =

{

λ|t| if |t| ≤ λ/η
η2t2+λ2

2η if |t|> λ/η.
(9)

Define a thresholding rule

ΘB(t;λ,η) =











0 if |t|< λ

t−λsgn(t) if λ≤ |t| ≤ λ+λ/η
t

1+η if |t|> λ+λ/η.

(10)

It can be verified that, as shown in Lemma 3, ΘB(·;λ,η) is the coupled thresholding rule for the

Berhu penalty PB(·;λ,η):

PB(t;λ,η) =
∫ |t|

0
(sup{s : ΘB(s;λ,η)≤ u}−u)du.

For the multivariate case, the Berhu thresholding operator is applied elementwise.

With ΘB(·;λ,η), we can solve the Berhu sparsity pursuit (without the stationarity constraint)

using a simple iterative procedure:

Ak+1 = ΘB(A
k +αk(ΣXY −ΣXX Ak);λ,η). (11)

Since PB(·;λ,η) is convex, algorithm convergence is guaranteed given αk ≤
√

2/‖X‖2 (She, 2012).

It is worth pointing out that, based on the construction rule (13), we can also define the thresh-

olding operators for other penalties including Lasso, eNet and the ridge penalty, as shown in Fig-

ure 4. The Berhu thresholding operator ΘB(t;λ,η) offers a nonlinear fusion of the soft thresholding

operator (coupled with Lasso) ΘS(t;λ) = sgn(t)(|t| − λ)1|t|≥λ and the ridge thresholding opera-

tor ΘR(t;η) = t
1+η . For the difference between the Berhu thresholding and the eNet thresholding

ΘE(t;λ,η) = 1
1+ηsgn(t)(|t|−λ)1|t|≥λ, see the discussion in Section 2.3.

3.3 The BISPS Algorithm

Based on the Berhu thresholding operator (10), we now propose BISPS as given in Algorithm 1.

This algorithm contains only simple matrix operations in addition to the spectral norm projection
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Algorithm 1 The Berhu iterative sparsity pursuit with stationarity (BISPS)

Input: data matrix ΣXX ,ΣXY ; regularization parameters λ, η; stopping criteria δ1,δ2, M1, M2; initial

estimate A0.

{Let ‖ · ‖2 denotes the spectral norm and ‖ · ‖max denote the elementwise max-norm.}
k0← any constant satisfying k0 > ‖X‖2;

k← 0;

repeat

1) B0← Ak + 1
k2

0

(ΣXY −ΣXX Ak);

2) j← 0;P0← 0;Q0← 0;

repeat

2.1) C j = ΘB(B
j +P j;λ/k2

0,η/k2
0);

2.2) P j+1 = B j +P j−C j;

2.3) B j+1 = Π(C j +Q j;1);
2.4) Q j+1 =C j +Q j−B j+1;

j← j+1;

until ‖B j−B j−1‖max ≤ δ2 or j ≥M2

3) Ak+1← B j;

k← k+1;

until ‖Ak−Ak−1‖max ≤ δ1 or k ≥M1

Â← Ak;

Output: Â.

Π. Parameter k0 can be set to any constant that is larger than the spectral norm of X . No ad

hoc algorithmic parameters, such as ρ1,ρ2 in ADMM and αk in PSGM, are involved. The inner

iteration of Step 2 often converges within 10 steps in practice, where matrices C,P,Q are auxiliary

variables that contribute to fast convergence of the procedure. Step 2.1 is to enforce sparsity by

Berhu thresholding and Step 2.3 is to project the estimate to the convex set {B : ‖B‖2 ≤ 1}. The

outer iteration has only a simple update step and converges fast. As a result, the algorithm is

computationally efficient as well as easy to implement.

The convergence of BISPS is theoretically guaranteed. For simplicity, we assume the inner

iteration is run till convergence. Theorem 1 states that Algorithm 1 solves the S2 network learning

problem.

Theorem 1 Suppose λ ≥ 0,η ≥ 0 and λη 6= 0. Given k0 > ‖X‖2, for any initial value A0, the

sequence of iterates {Ak} produced by Algorithm 1 converges to a globally optimal solution to

problem (8).

See Appendix A for the detailed proof.

BISPS has more flexibility and generality. Though it is designed with the Berhu penalty, by

replacing ΘB with an appropriate thresholding operator in Step 2.1, the algorithm allows for any

convex penalty for S2 learning. Moreover, if Step 2.2 to Step 2.4 are removed, Algorithm 1 reduces

to the Berhu sparsity pursuit (11).

The most expensive computation of Algorithm 1 lies in the spectral norm projection (Step 2.3).

In practice, we can apply some techniques to further improve computational efficiency. 1) We

can first run Algorithm 1 without Step 2.2 to Step 2.4 and obtain an estimate. If it satisfies the
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stationarity condition (4), we accept and output this solution. Otherwise, we rerun Algorithm 1 with

Step 2.2 to Step 2.4 included. 2) Moreover, we can take advantage of the fact that Ak+1 is sparse and

the number of singular values of Ak+1 that are larger than 1 is much smaller than p. The singular

value thresholding algorithm (Cai et al., 2010), among some other fast algorithms, calculates only

the singular values that are above a threshold and their corresponding singular vectors, which is

computationally efficient for large sparse matrix and thus fits our problem well. We use the package

MODIFIED-PROPACK provided by Lin (2011) to calculate the partial SVD with threshold being

1. For p = 500,n = 100, the partial SVD, compared with the original SVD, can accelerate the

calculation by up to 30 times.

3.4 Quantile Thresholding Iterative Screening

Nowadays, a great challenge for network identification and statistical learning comes from the large

scale of the system. For example, for a network with p = 1000 nodes, the number of variables in the

transition matrix is as large as p2 = 106, which poses a great challenge for any estimation algorithm

in scalability and stability. As a result, ultra-high dimensional learning has become a hot topic (Fan

et al., 2009; Fan and Lv, 2010) . For regression problems, under the assumption that the number

of nonzero coefficients is far smaller than n, screening techniques can be used to coarsely select

the variables before finer estimation. This idea can be adopted in network identification: if one is

sure that the average number of connections for each node is much less than ⌈µn⌉ (say µ = 0.8)

or the total number of connections in the network is much less than ⌈µpn⌉, one can first use fast

screening techniques to select m = ⌈µpn⌉ candidate connections, and then apply BISPS restricted

on the candidate connections for further selection and estimation. If the screening technique can

include all the true connections with high probability, dramatic computational gain can be attained

with mild performance sacrifice.

Independence screening methods, such as the sure independence screening (SIS) (Fan and Lv,

2008) can be applied to preselect variables in a supervised manner. Applied to network learning,

SIS sorts the elements of W = XTY by magnitude in a decreasing order and defines a reduced model

Mµ = {(i, j) : |wi j| is among the m largest of all,1≤ i, j ≤ p}.

This method is simple and fast, but it relies on the assumption that the predictors are independent,

since it only studies the marginal correlation between Y and X and selects the variables accordingly.

In network settings, the nodes are interacting dynamically with each other, so there is usually high

collinearity in the data. In such cases, SIS is too greedy and misses many true connections.

To derive a new screening technique that can handle network data, we first observe that SIS

corresponds to the first step of the iterative procedure in (11) with A0 = 0 and hard thresholding

ΘH(t;λ) = t1|t|≥λ with a properly chosen λ. This inspires us to apply an iterative procedure for

screening: starting from A0 = 0, repeat

1) Ak+1← Ak− 1
k2

0

(ΣXX Ak−ΣXY );

2) λk+1← (m+1)th largest element of Ak+1 in magnitude;

3) Ak+1←ΘH(A
k+1;λk+1);

4) M k+1
µ ←{(i, j) : |ak+1

i j | 6= 0,1≤ i, j ≤ p};

until M k
µ stops changing.
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We call this screening procedure the quantile thresholding iterative screening (QTIS). As shown

in Step 2 and Step 3, QTIS does not select variables using a fixed thresholding parameter λ. Instead,

it uses a dynamic threshold to keep a fixed number m of nonzero elements at each iteration. The

quantile parameter µ determines the number of variables to be selected. In comparison to SIS

which ranks the connections based on XTY , the iterative nature of QTIS lessens the greediness by

repeatedly updating the importance of each candidate connection with a theoretical guarantee of

convergence.

Theorem 2 Given k0 > ‖X‖2, for any 0 < µ≤ 1, the sequence of iterates {Ak} generated by QTIS

has the function value decreasing property that l(Ak+1)≤ l(Ak), where l(A) = 1
2
‖Y −XA‖2

F , and Ak

satisfies ‖Ak‖0 ≤ m, where ‖ · ‖0 denotes the number of nonzero elements.

See Appendix B for the detailed proof.

In practice, Mµ usually stops changing after less than a hundred iterations. The number of

unknowns is reduced from p2 to ⌈µpn⌉ effectively by a small amount of computation. Then, more

involved and sophisticated estimation, for example, BISPS, can be performed to the reduced model.

It is much faster than applying BISPS directly if p2≫ n. In addition, QTIS provides BISPS with a

sparse pattern, which facilitates the fast computation of partial SVD.

To apply BISPS on Mµ, we use element-wise penalty parameters λi j’s and set

λi j = ∞ if (i, j) /∈Mµ.

This simple modification guarantees that only elements in Mµ will be selected by BISPS.

3.5 Two-dimensional Selective Cross Validation for Tuning

The reparameterization of Berhu (9) separates the roles of ℓ1 and ℓ2 regularizations; each of them

is associated with a regularization parameter, namely λ for ℓ1 and η for ℓ2. This provides important

guidelines for parameter tuning. Based on our experience, the estimate is not very sensitive to η, so a

full two-dimensional grid search is not necessary. Instead, we search along several one-dimensional

solution paths including one η-path and three λ-paths:

• Step 1 : Run the η-path (λ = 0). Do ridge regression with a grid of values for η, and choose

the optimal η∗ using AIC (Akaike, 1974).

• Step 2 : Run 3 λ-paths with η = 0.5η∗,0.05η∗,0.005η∗ respectively. For each value of η,

run BISPS with a grid of values for λ, and find the optimal one λo using the K-fold selective

cross-validation (SCV) (She, 2012). This results in three λo’s, one from each path. Choose

the optimal one from them and let it be the optimal thresholding parameter λ∗. The pair (λ∗,
η∗) is our final choice of the two parameters.

The SCV cross-validates different sparsity patterns instead of the regularization parameters. It

is more computationally efficient than the plain cross validation since it runs the sparse algorithm

only once and globally (instead of K times locally). To calculate the SCV error associated with λ,

we first apply BISPS to the whole data set and obtain the solution Â(λ). Then, for k = 1, · · · ,K, we

apply ridge regression restricted to the variables that are picked by nz(Â(λ)) on the data without the

kth data piece, and evaluate its validation error using the kth data piece. The sum of the K validation

errors is defined as the SCV error. See She (2012) for more details.
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4. Stationary Bootstrap (SB) Enhanced Network Learning

The S2 learning framework proposed in Section 3 is an effective technique to identify stationary and

sparse network. Nevertheless, a “one-time” estimate, without any p-value or confidence interval,

provides only limited guidance in identifying the true network topology. In fact, whatever inference

method is used, there will be uncertainty underlying the variable selection procedure. It would be

greatly helpful if one could provide some kind of uncertainty measure for such an estimate. In

our case, we would like to find a certain confidence measure for the estimated topology. This can

be done by assigning a probability for the existence of each connection. Hence, we use bootstrap

(Efron, 1979). In this section, we propose the stationary bootstrap enhanced BISPS (SB-BISPS)

which provides a confidence level about whether a connection exists in the network by measuring

the frequency with which it is chosen by the BISPS algorithm.

4.1 The SB-BISPS Framework

The SB-BISPS procedure completes the BISPS (or QTIS+BISPS) algorithm with a stationary boot-

strap resampling step. The SB-BISPS is described as follows.

• Step 1 : Run BISPS over the original data set X . Record the pattern of Â, which is a p× p

binary matrix Φ = [φi j]1≤i, j≤p defined as:

φi j =

{

1 if âi j 6= 0

0 if âi j = 0.

• Step 2 : Draw B stationary bootstrap samples from X . Repeat Step 1 for each sample. Record

Φ∗j for the jth sample.

• Step 3 : Compute the matrix F = [ fi j]1≤i, j≤p of connection occurring frequency (COF) by

adding up all the patterns Φ∗j’s and normalizing the result by B:

F =
1

B

B

∑
j=1

Φ∗j .

Given a sufficiently large B, fi j is a good approximation of the probability for BISPS to select

connection ai j, which serves as a measure of how confident we are with the existence of this con-

nection. For example, if fi j = 80%, it means that in 80% of the bootstrap samples, a connection

from node i to node j is detected. So we can say the probability for the existence of this connection

is (approximately) 80%. We can use a cutoff value f ∗ to threshold the COF matrix, and choose only

the connections with fi j ≥ f ∗ for further analysis. This renders us a sparse topology that shows the

most significant connections within the network.

4.2 Stationary Bootstrap

There are different resampling schemes to draw bootstrap samples from the original data in Step 2.

If the observations are independent and identically distributed, we can resample the data randomly

with replacement. When the observations are time series, the problem is more complicated, since

the observations are largely dependent on each other, and we would like to preserve the specific
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dependency structure in bootstrapping. Techniques such as resampling blocks of consecutive ob-

servations or resampling “blocks of blocks” can be used (Kunsch, 1989). The basic idea is that,

despite the dependence of individual observations, blocks of observations can be approximately

independent with each other given a proper block size l.

When a time series is stationary, it is natural to maintain this property in the bootstrap samples.

The stationary bootstrap (Politis and Romano, 1994) is a method with this property. It is based on

resampling blocks of random lengths, where the length of each block follows a geometric distri-

bution with mean 1/γ. We apply a simple approach to conduct such resampling. Given that x∗i is

chosen to be the Jth observation xJ in the original time series, we choose x∗i+1 based on the following

rule:

x∗i+1 =

{

xJ+1 with probability 1− γ

picked randomly from x1, · · · ,xn with probability γ.

Similar with block bootstrap, where the block size l has to be determined, the value of γ should be

chosen properly. Fortunately, the sensitivity of γ in stationary bootstrap is less than that of l in block

bootstrap.

5. Experiments

In this section, we present the experimental results on synthetic data and demonstrate the effective-

ness of the proposed S2 network learning framework.

5.1 Performance Measures and Experiment Settings

To examine the performance of the proposed methods, we define the following measures.

• Stationarity violation percentage (Pv): In N repeated experiments, if there are Nv experiments

in which the estimate Â violates the stationarity condition (4), then the stationarity violation

percentage is defined as Pv = Nv/N.

• Miss rate (Pm): If ai j 6= 0, âi j = 0, we say there is a miss. Denote Cm as the total number of

misses and Cnz as the number of nonzero entries in A. The miss rate is defined as Pm =Cm/Cnz.

• False alarm rate (Pf ): If ai j = 0, âi j 6= 0, we say there is a false alarm. Denote C f as the total

number of false alarms and Cz as the number of zero entries in A. The false alarm rate is

defined as Pf =C f /Cz.

• Testing error (T E): The testing error is defined as T E = 1
nt
‖Y t−X t Â‖2

F , where Y t and X t are

testing data, and nt is their length. For time series, the testing data are collected right after the

training data.

• Computation time: The averaged running time of an algorithm. All the algorithms are run in

MATLAB7.11.0 on a PC with 4GB memory.

Particularly, to evaluate the prediction/forecasting performances of the algorithms, we adopt the

so-called rolling MSE, a conventional measure in econometrics (Stock and Watson, 2012). Suppose

we have T observations: x1, · · · ,xT . Let the rolling window size be W and the horizon be h. Standing

at time t, we use the most recent W observations to estimate A, denoting the estimate as Ât . Then
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we use this estimate to forecast xt+h, denoting the forecast as x̂t+h and the forecasting error as

eh
t = ‖xt+h− x̂t+h‖2

2. This process is repeated for t = W, · · · ,W +N − 1 as we shift the window.

N is the number of window shifting that satisfies 1 ≤ N ≤ T −W − h− 1. Then the rolling MSE

for horizon h is defined as MSEh
rolling =

1
N ∑W+N−1

t=W eh
t . When using Ât to forecast xt+h, we should

do pseudo out-of-sample forecasting. That is, we assume the observations after t are not available

and consequently we need do h-step-ahead forecast. For our model (1), this should be done as:

x̂t+h = Â
T

t x̂t+h−1 for h≥ 1, where x̂t
∆
= xt when h = 1. The testing error defined above corresponds

to the rolling MSE for h = 1.

We generate the p× p transition matrix A with both sparsity and stationarity properties. First,

the topology is generated from a directed random graph G(p,ξ), where the edge from one node to

another node occurs independently with probability ξ. Then the strength of the edges is generated

independently from a Gaussian distribution. This process is repeated until we obtain a matrix A that

has a desired spectral radius 0.9 < ρ(A)< 1. We set ξ = 10/p,Σε = σ2I,σ2 = 10.

The regularization parameters are chosen by SCV as described in Section 3.5. For a λ-path, we

use a grid of 100 values for λ, which is picked from the interval [0,‖A0 +XTY −XTXA0‖max]. The

initial estimate is simply set as A0 = 0. For an η-path, we use a grid of 76 values for η, which is

picked from the interval [2−10,25]. The number of folds for SCV is set to be K = 5. All the statistics

collected are averaged over N = 100 times of window shifting. The length of testing data nt = 200.

5.2 Performance of BISPS

We compare the performance of BISPS with Lasso, eNet and Berhu—we use the penalty name to

denote the corresponding PML estimation. The number of observations is n= 80. Table 1 shows the

experiment results for different network sizes, namely p = 100,200,300. Recall that for a network

with size p, the number of unknown parameters is p2. For example, for the network with 300 nodes,

the number of parameters to be estimated is 9× 104, which is extremely high compared with the

number of observations 80.

Among the three penalties, the Lasso solution gives higher miss rates. This is because when

some predictors are correlated, Lasso tends to choose only a part, or even none, of them. As a

result, Lasso sometimes “over-shrinks” the estimate. The eNet and Berhu, in such cases, tend to

include all the correlated predictors, thanks to the ℓ2 part in the penalties. However, the sparsity

of the eNet solution is affected by the ℓ2 regularization, so it gives high false alarm rates. On the

other hand, Berhu has improved eNet to some extend by enforcing the ℓ2 regularization only to

large coefficients. As a result, Berhu achieves the smallest testing errors (h = 1) among the three

penalties.

As shown by Pv, no matter what penalty is used, it is possible for PML to give a nonstationary

estimate, whereas the proposed S2 learning and BISPS can guarantee the stationarity property of Â.

This indicates that adding the stationarity constraint into the sparsity pursuit does effectively prevent

the estimate from becoming nonstationary. Meanwhile, the S2 estimate can achieve a comparable

estimation and detection accuracy with the PML estimate. Table 1 gives the rolling MSEs for

different horizons h to illustrate both the short term and long term forecasting performance. For

PML estimates, the rolling MSEs grow explosively with h due to the existence of nonstationary

estimates, while those of BISPS accumulate much more slowly.

To further illustrate the disadvantages of a nonstationary estimate, we find one run where

Lasso gives a nonstationary estimate ÂLasso. Starting from a time point t, we generate x̂t+h(Â)
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p method Pv (Pm,Pf )(%) h = 1 h = 64 h = 128

100

Lasso 5% (13.6, 22.3) 23.4 1058.3 7798.9

eNet 5% (12.3, 25.9) 23.5 1238.1 10842.8

Berhu 5% (12.3, 24.9) 23.0 1329.4 12219.6

BISPS 0% (12.4, 24.8) 23.1 195.9 209.2

200

Lasso 3% (15.8, 29.3) 41.8 332.8 10998.7

eNet 2% (14.5, 26.9) 36.5 207.8 405.3

Berhu 2% (14.2, 24.6) 32.2 201.4 391.5

BISPS 0% (14.2, 24.4) 32.1 131.9 200.5

300

Lasso 2% (18.1, 14.9) 19.9 61.6 111.2

eNet 3% (13.5, 26.1) 20.4 65.5 123.2

Berhu 3% (13.4, 22.9) 18.8 66.5 121.3

BISPS 0% (13.7, 22.1) 19.3 63.3 65.5

Table 1: Performance comparison of BISPS with Lasso, eNet and Berhu. n = 80.

for h = 1, · · · ,100 using ÂLasso and ÂBISPS respectively and compare them with xt+h observed from

the true model. The results are plotted in Figure 5. We can easily see that x̂(ÂBISPS) gives a reason-

able imitation of the true system. The nonstationary estimate x̂(ÂLasso), however, blows up quickly

and behaves completely differently from the true model. This indicates that ensuring a stationary

estimate is indeed crucial.

5.3 Performance of QTIS

To examine the performance of QTIS for connection screening, we first compare it with the sure

independence screening (SIS) (Fan and Lv, 2008) by examining their ability to include all the true

connections, which can be measured by the miss rate. Simulation is done for networks with dif-

ferent sizes, namely p = 300,400,500. The sample size n = 80. Independence screening methods,

including SIS, are very popular in ultra-high dimensional problems for dimension reduction and

variable selection. However, our finding is that such methods can perform very poorly for network

learning. As shown in Figure 6, it is possible for SIS to miss even more than half of the true connec-

tions. One possible reason is that, because of the evolving processes, correlation exits ubiquitously

in dynamical networks. As a result, independence screening is not appropriate for network learning.

On the other hand, the proposed QTIS algorithm considers the correlation issue and thus can obtain

much smaller miss rates than SIS. Also, its performance is more robust to the choice of the quantile

parameter µ.

We then run BISPS with and without QTIS and check the difference of their performances.

Denote “QTIS+BISPS” as the procedure that first applies QTIS to screen the connections and then

applies BISPS to the reduced model. Networks with sizes up to p = 800 are considered (the number

of unknown parameters is p2 = 640,000). The sample size n = 80. The quantile parameter µ = 0.8.

Figure 7 compares the performance of QTIS+BISPS and BISPS. When p/n ratio is large, adding

QTIS not only improves the estimation and identification accuracy, but also saves up to 80% of the

computation time. As the p/n ratio becomes larger, the improvement becomes more remarkable.

Therefore, QTIS is a helpful tool to facilitate BISPS for ultra-high dimensional network learning.
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Figure 5: Comparison of BISPS and Lasso in terms of forecasting performance. Top: sample from

the true model; Middle: forecast from the nonstationary estimate ÂLasso; Bottom: forecast

from the stationary estimate ÂBISPS.
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Figure 6: Miss rate comparison for QTIS and SIS. n = 80.

6. Application to U.S. Macroeconomic Data

We apply the proposed learning framework to the U.S. macroeconomic data. The data set consists

of quarterly observations on 108 macroeconomic variables from 1960:I to 2008:IV, which belong

to 12 categories. A complete description of the data can be found at "http://www.princeton.

edu/˜mwatson/wp.html". There are in total 109 macroeconomic variables from 13 categories.

We remove Category 13 (consumer expect) since it has only one variable while we are interested
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Figure 7: Performance of QTIS+BISPS, compared with applying BISPS to a full model. n = 80.

Category Lasso BISPS Category Lasso BISPS

1. GDP 0.589 0.445 7. Prices 1.971 1.874

2. IP 0.846 0.576 8. Wages 0.552 0.207

3. Employment 0.936 0.711 9. Interest rate 1.443 0.738

4. Unempl. rate 0.289 0.165 10. Money 0.114 0.065

5. Housing 0.071 0.033 11. Exchange rates 0.370 0.107

6. Inventories 0.506 0.217 12. Stock prices 0.254 0.100

Table 2: Normalized Rolling MSE of Lasso and BISPS for each category.

in multivariate time series. The data have been preprocessed so that each time series is a station-

ary process. We use the S2 network model (1) to detect Granger causal relations between these

macroeconomic indices.
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h 1 2 4 8 16 32

Lasso 0.017 0.021 0.029 0.365 329.9 3.1×108

BISPS 0.017 0.018 0.019 0.020 0.020 0.018

Table 3: Rolling MSE of Lasso and BISPS for different horizons.

6.1 Comparison of Rolling MSE

We first study the data set by category, considering that multiple time series explain the interactions

of the indices in each category. To each of the 12 categories, we apply Lasso and BISPS respectively

with the horizon h = 1 and the rolling window size W = 0.8× p, where p is the number of time

series (network size). Table 2 shows the rolling MSEs of the Lasso and BISPS, normalized by that

of the AR(4) model, which is a conventional benchmark of macroeconomic forecasting.

Compared with the AR(4) model, both Lasso and BISPS, based on a VAR model, have attained

much smaller forecasting errors, except for Category 7 (prices). Therefore, by introducing the

Granger causal interactions between different indices, we can build a multivariate network model

that is more accurate than the univariate AR model in capturing the evolution of the U.S. macroe-

conomics, given the same amount of observations. The exception of Category 7 may be due to the

higher lag order used in the univariate AR model.

Moreover, we note that BISPS gives smaller forecasting errors than Lasso for all the 12 cate-

gories of macroeconomic time series. It indicates that adopting a fusion of ℓ1 and ℓ2 penalties and

imposing the stationarity constraint can capture the network dynamics more accurately and achieve

a stronger capability of forecasting. To further support this conclusion, we apply Lasso and BISPS

respectively to all the 108 variables with W = 0.8× p and different horizons h. The rolling MSEs

for h = 1,2,4,8,16,32 is recorded in Table 3. As the horizon increases, the rolling MSE of Lasso

grows exponentially, which clearly indicates that some estimates of the Lasso are nonstationary and

thus fail to forecast for large horizons. On the other hand, the rolling MSE of BISPS stays stable for

different horizons. This phenomenon is similar to what is shown in Figure 5. They have illustrated

the fundamental difference of the S2 learning from the plain PML estimation.

6.2 Bootstrap Analysis

In this experiment, we apply the SB-BISPS to the macroeconomic data before and after the “Great

Moderation” (Davis and Kahn, 2008) and analyze the changes in their Granger causal connections.

As the economic structure of U.S. has gone through huge changes in the Great Moderation in mid-

1980, we expect to see significantly different causality networks before and after mid-1980. Hence,

we divide the time series into two periods, the pre-Great Moderation period and the post-Great

Moderation period, and apply SB-BISPS separately to the two periods.

For the pre-Great Moderation period, we use the data from 1960:I to 1979:IV as training set (80

observations); for the post-Great Moderation period, we use the data from 1985:I to 2004:IV (80

observations). The stationary bootstrap samples are obtained using the R function tsboot (Dalgaard,

2008) with default parameter values. The number of stationary bootstrap samples is set to be B =
100. Figure 8 shows the COF (connection occurring frequency) matrices given by SB-BISPS for

the pre-Great Moderation and the post-Great Moderation periods. We notice that the COF matrix of

the pre-Great Moderation period has a higher energy level than that of the post-Great Moderation
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Figure 8: COFs of the pre-Great Moderation period and the post-Great Moderation period.
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Figure 9: Topologies of the macroeconomic network in the pre-Great Moderation period and the

post-Great Moderation period. f ∗ = 80%. Self-loops are not shown.

period. This indicates that the nodes are more actively interacting with each other in the pre-Great

Moderation period than in the post-Great Moderation period, which effectively reflects the reduction

in volatility of the business cycle fluctuations since the Great Moderation.

To illustrate the idea more clearly, we set the cutoff value for COF to be f ∗ = 80% and identify

the most significant connections. The topologies obtained for the pre-Great Moderation period

and the post-Great Moderation period are shown in Figure 9. Isolated nodes are removed. In the

pre-Great Moderation period, the macro variables actively interact and form a complex dynamical
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network. There are three prominent variables, namely GDP281 (durable goods index), GDP256 and

GDP261 (gross private domestic investment indices), which act like “hub” variables. They interact

not only with many non-hub variables but also with each other. Therefore, there are no independent

clusters. After the Great Moderation, on the other hand, the interactions have been remarkably

reduced and most of the variables seem only self-regulated. This makes it easier for the network

to stay stable. There are two hub variables, GDP255 (real personal consumption expenditure) and

GDP275-3 (energy goods price index). The increasing importance of these two variables agrees

with the observation that environmental regulations and energy policies have begun to influence the

economic growth since the Great Moderation period (Jorgenson and Wilcoxen, 1990; Halkos and

Tzeremes, 2011).

7. Conclusion

We have proposed the stationary-sparse (S2) learning of causality networks described in Granger’s

sense. Distinguished from the existing works, we explicitly incorporated the stationarity concern in

a possibly ultra-high dimensional scenario and provided a probabilistic measure for the occurrence

of any causal connection. We added a relaxed stationarity constraint in the penalized maximum

likelihood estimation and proposed the BISPS algorithm which is easy to implement and computa-

tionally efficient. We must point out that although the algorithm is designed for the Berhu penalty,

the framework extends to any convex penalties and their coupled thresholding rules. In network

modeling, the number of unknown variables p2 is often much larger than the number of observa-

tions n, which confronts us with an ultra-high dimensional problem. Therefore, we implanted the

quantile thresholding iterative screening (QTIS) into the BISPS algorithm to improve scalability and

computational efficiency. Furthermore, the stationary bootstrap enhanced BISPS (SB-BISPS) was

proposed to provide a confidence measure for each possible connection in the network. The method

has been successfully applied to the U.S. macroeconomic data, which leads to some interesting

discoveries.

Our current work assumes multivariate Gaussian noise and focuses on learning the transition

matrix. We will pursue the network learning in more general settings in the future. One particular

problem of interest is to jointly capture the structure of the transition matrix and the concentration

matrix, which may provide more comprehensive descriptions of the network. Also, we will con-

sider the situations where the noise follows other distributions other than Gaussian, for example,

the heavy-tail distribution. Finally, we will proceed to nonlinear time series models for network

identification to handle more complex network data.
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Appendix A. Proof of Theorem 1

We begin the proof by introducing some lemmas. Throughout the proof, we assume τ ≥ 0,λ ≥
0,η≥ 0, and λη 6= 0.
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Lemma 3 Given the Berhu penalty (9), the minimization problem

min
B

1

2
‖B−Ξ‖2

F +PB(B;λ,η) (12)

has a unique optimal solution given by B̂ = ΘB(Ξ;λ,η), where ΘB(·;λ,η) is the Berhu thresholding

rule defined as (10).

Proof It is easy to verify that ΘB(·;λ,η) is an odd, nondecreasing, shrinkage function that satisfies

the definition of a thresholding rule given in She (2009). Following the construction procedure

P(t;λ,η) =
∫ |t|

0
(sup{s : Θ(s;λ,η)≤ u}−u)du, (13)

the Berhu penalty PB(·;λ,η) can be constructed from ΘB(·;λ,η). So ΘB(·;λ,η) is the coupled

thresholding rule for PB(·;λ,η). By Lemma 1 in She (2012), ΘB(·;λ,η) is the global minimizer

of (12).

Lemma 4 The Berhu thresholding operator ΘB(·;λ,η) is nonexpansive, that is, |ΘB(t;λ,η)−
ΘB(t̃;λ,η)| ≤ |t− t̃| for any t, t̃ ∈ R.

The conclusion directly extends to the multivariate case: ‖ΘB(A;λ,η)−ΘB(Ã;λ,η)‖≤ ‖A− Ã‖
for any A, Ã ∈ R

p×q.

Proof It is sufficient to show that the univariate Berhu thresholding operator ΘB is nonexpansive.

Define ∆ = |t− t̃|2−|ΘB(t;λ,η)−ΘB(t̃;λ,η)|2 and a = |t|,b = |t̃|.
a) Suppose a≤ λ,b≤ λ. Then ΘB(t;λ,η) = ΘB(t̃;λ,η) = 0. So ∆ = |t− t̃|2 ≥ 0.

b) Suppose a≤ λ,λ < b≤ λ+λ/η. Then |ΘB(t;λ,η)−ΘB(t̃;λ,η)|2 = |t̃−λsng(t̃)|2 = b2 +λ2−
2λb. So ∆ = a2 +b2−2ab− (b2 +λ2−2λb) = (λ−a)(2b−a−λ)≥ 0.

c) Suppose a≤ λ,b≥ λ+λ/η. Then |ΘB(t;λ,η)−ΘB(t̃;λ,η)|2 = | t̃
1+η |2. So ∆ = a2 +b2−2ab−

b2

(1+η2)
= a2 +[ η2+2η

(1+η)2 b−2a]b≥ a2 +[ η2+2η
(1+η)2 (λ+λ/η)−2a]λ = (a−λ)2 + 1

1+η λ2 ≥ 0.

d) Suppose λ < a≤ λ+λ/η,λ < b≤ λ+λ/η. Then ∆ = 2λ(1− sgn(tt̃))(a+b−λ)≥ 0.

e) Suppose λ < a ≤ λ+λ/η,b ≥ λ+λ/η. Then ∆ = |t− t̃|2−|t−λsgn(t)− t̃
η+1
|2 = η(η+2)

(η+1)2 b2−
2b

ηa+λ
η+1

sgn(tt̃)+λ(2a−λ)= b[η(η+2)
(η+1)2 b−2

ηa+λ
η+1

sgn(tt̃)]+λ(2a−λ)≥ (λ+λ/η)[η(η+2)
(η+1)2 (λ+λ/η)−

2
ηa+λ
η+1

sgn(tt̃)]+λ(2a−λ) = λ
η [ηλ+2λ−2(ηa+λ)sgn(tt̃)]+λ(2a−λ)≥ 0.

f) Suppose a≥ λ+λ/η,b≥ λ+λ/η. Then ∆ = |t− t̃|2−| t
1+η − t̃

1+η |2 =
η2+2η
(1+η)2 |t− t̃|2 ≥ 0.

Therefore, |ΘB(t;λ,η)−ΘB(t̃;λ,η)| ≤ |t− t̃| for any t, t̃ ∈ R. So the Berhu thresholding operator

is nonexpansive.

Lemma 5 Let the SVD of B be B =USVT, where S = diag(ν1,ν2, · · · ,νp) with ν1,ν2, · · · ,νp being

the singular values. Then Π(B;τ) defined by

Π(B;τ) =Udiag(min(ν1,τ), · · · ,min(νp,τ))V
T

gives the projection of B into the convex set {B : ‖B‖2 ≤ τ}.
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Proof Let C be the projection of B into the convex set {B : ‖B‖2 ≤ τ}. Then C can be solved by

min
C
‖B−C‖2

F ,

s.t. ‖C‖2 ≤ τ.

To prove the lemma, we introduce von Neumann’s trace inequality (von Neumann, 1937), which

states that for any p× p matrices A and B with singular values α1 ≥ α2 ≥ ·· · ≥ αp and β1 ≥ β2 ≥
·· · ≥ βp respectively,

|tr{AB}| ≤
p

∑
i=1

αiβi, (14)

where equality holds if and only if it is possible to find unitary matrices U and V that simultaneously

singular value decompose A and B.

Let B =U0S0VT

0 and C =USVT be the singular value decompositions of B and C respectively,

where S0 = diag(ν0,1,ν0,2, · · · ,ν0,p) and S = diag(ν1,ν2, · · · ,νp) with ν0,1 ≥ ν0,2 ≥ ·· · ≥ ν0,p and

ν1 ≥ ν2 ≥ ·· · ≥ νp. Then,

‖B−C‖2
F = ‖B‖2

F +‖C‖2
F +2tr{BTC}

≥ ‖S0‖2
F +‖S‖2

F +2tr{S0S}

=
p

∑
i=1

(ν0,i−νi)
2.

Equality holds if and only if U = U0 and V = V 0. Optimality is achieved at νi = min(ν0,i,τ), i =
1, · · · , p. The proof is complete.

Lemma 6 The projection operator Π(·;τ) defined in Lemma 5 is nonexpansive, that is, ‖Π(A)−
Π(Ã)‖F ≤ ‖A− Ã‖F for any A, Ã ∈ R

p×p.

Proof For simplicity, we denote Π(·;τ) as Π(·). Let the SVDs for p× p matrices A and Ã be

A =UDVT and Ã = ŨD̃Ṽ
T

respectively. Define ∆ = ‖A− Ã‖2
F −‖Π(A)−Π(Ã)‖2

F . Then,

∆ = ‖UDVT−ŨD̃Ṽ
T‖2

F −‖UΠ(D)VT−ŨΠ(D̃)Ṽ
T‖2

F

= ‖D‖2
F +‖D̃‖2

F −‖Π(D)‖2
F −‖Π(D̃)‖2

F −2tr{V DUTŨD̃Ṽ
T}+2tr{V Π(D)UTŨΠ(D̃)Ṽ

T}.

Applying von Neumann’s trace inequality (14) again, we have

−2tr{V DUTŨD̃Ṽ
T}+2tr{V Π(D)UTŨΠ(D̃)Ṽ

T}
=−2tr{V (D−Π(D))UTŨD̃Ṽ

T
+V Π(D)UTŨ(D̃−Π(D̃))Ṽ

T}

≥ −2{
p

∑
i=1

(di−Π(di))d̃i +
p

∑
i=1

(d̃i−Π(d̃i))Π(di)}.

Therefore,

∆≥
p

∑
i=1

{(di− d̃i)
2− (Π(di)−Π(d̃i))

2}.
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It is easy to verify that (di− d̃i)
2− (Π(di)−Π(d̃i))

2 ≥ 0, i = 1, · · · , p. So ∆≥ 0. The projection Π

is a nonexpansive mapping.

Lemma 7 Let P0 = Q0 = 0. The sequence {B j} of iterative procedure

C j = ΘB(B
j +P j;λ,η),

P j+1 = B j +P j−C j,

B j+1 = Π(C j +Q j;τ),

Q j+1 =C j +Q j−B j+1

(15)

converges to a globally optimal solution to

min
B

1

2
‖B−B0‖2

2 +PB(B;λ,η),

s.t. ‖B‖2 ≤ τ.
(16)

Procedure (15) is designed for a penalized minimization problem with a convex constraint based

on Dykstra’s projection algorithm (Dykstra, 1983; Boyle and Dykstra, 1986).

Proof First, we rewrite the problem as

min
B

1

2
‖B−B0‖2

2 + f (B)+g(B), (17)

where f (B) = PB(B;λ,η) and g(B) = 1‖B‖2≤τ is an indicator function for ‖B‖2 ≤ τ, defined as

1‖B‖2≤τ =

{

0 if ‖B‖2 ≤ τ

+∞ otherwise.

It is easy to show that g(B) is a proper lower semicontinuous convex function, f (B) is a proper

continuous (hence lower semicontinuous) convex function (Rockafellar, 1970) and they satisfy

dom f ∩domg 6= /0.

Lemma 3 and Lemma 5 imply that ΘB(·;λ,η) and Π(·;τ) are the proximity operators (Moreau,

1962) of f (B) and g(B) respectively:

prox f B = ΘB(B;λ,η) and proxgB = Π(B;τ).

Therefore, by Theorem 3.2 and Theorem 3.3 in Bauschke and Combettes (2008), it holds that

B j→ prox f+gB0.

Hence, the sequence {B j} converges to a globally optimal solution to problem (17).
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Now we can establish Theorem 1. Recall that Algorithm 1 is to solve

min
A

f (A;λ,η) =
1

2
‖Y −XA‖2

F +PB(A;λ,η),

s.t. ‖A‖2 ≤ 1.

We use Opial’s conditions (Opial, 1967) to prove the convergence of {Ak}. To be specific, we

show that the iteration of Step 1 to Step 3 in Algorithm 1 is a nonexpansive asymptotically regular

mapping with a nonempty set of fixed points.

Lemma 8 For the sequence {Ak} generated by Algorithm 1,

f (Ak;λ,η)− f (Ak+1;λ,η)≥ 1

2
(k2

0−‖X‖2
2)‖Ak+1−Ak‖2

F .

Proof First define

g(A,B;λ,η) =
1

2
‖Y −XB‖2

F +PB(B;λ,η)+
1

2
tr{(B−A)T(k2

0I−XTX)(B−A)}.

Given A, minimizing g over B is equivalent to

min
B

1

2
‖B−A− 1

k2
0

(XTY −XTXA)‖2
F +PB(B;λ/k2

0,η/k2
0)

s.t. ‖B‖2 ≤ 1.

We can obtain its globally optimal solution by performing the iterative procedure (15) in Lemma 7,

substituting τ← 1,B0← A+ 1
k2

0

(XTY −XTXA),λ← λ/k2
0,η← η/k2

0. Therefore, we have

f (Ak;λ,η) = g(Ak,Ak;λ,η)≥ g(Ak,Ak+1;λ,η) = f (Ak+1;λ,η)+
1

2
(k2

0−‖X‖2
2)‖Ak+1−Ak‖2

F .

The proof is complete.

Given k0 > ‖X‖2, Lemma 8 implies that the sequence {Ak} is asymptotically regular (Browder

and Petryshyn, 1966).

Lemma 9 The sequence {Ak} generated by the iteration of Algorithm 1 is uniformly bounded.

Proof First, based on Lemma 8 we have

PB(A
k;λ,η)≤ f (Ak;λ,η)≤ f (A0;λ,η)

∆
=C.

This implies that PB(a
k
i j;λ,η)≤C, ∀0≤ i, j ≤ p.

If |ak
i j| ≤ λ/η, we have λ|ak

i j| ≤C, which implies (ak
i j)

2 ≤ max(λ2/η2,C2/λ2). If |ak
i j| > λ/η,

we have
η2t2+λ2

2η ≤C, which implies (ak
i j)

2 ≤ 2ηC−λ2

η2 . Given λη 6= 0,

(ak
i j)

2 ≤max

(

λ2/η2,C2/λ2,
2ηC−λ2

η2

)

∆
=C2, 1≤ i, j ≤ p.
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Hence,

‖Ak‖2
F ≤ p2C2.

The sequence {Ak} is uniformly bounded.

Lemma 10 The iteration of Step 1 to Step 3 in Algorithm 1 is a nonexpansive mapping.

Proof From Lemma 4 and Lemma 6, ΘB and Π are nonexpansive mappings. In fact, the com-

position of nonexpansive mappings is also nonexpansive. So the inner iteration given by Step 2 in

Algorithm 1 is nonexpansive. When k0 ≥ ‖X‖2, Step 1 in Algorithm 1 is nonexpansive. Again, the

composition of Step 1 and Step 2 is nonexpansive. Hence, the iteration of Algorithm 1 is nonexpan-

sive.

Lemma 9 and Lemma 10 imply that the mapping of Algorithm 1 is a nonexpansive mapping

into a bounded closed convex subset. By Theorem 1 in Browder (1965), it has a fixed point. Then,

with all Opial’s conditions satisfied, the sequence {Ak} has a unique limit point, denoted as A∗, and

it is a fixed point of Algorithm 1.

Next, we prove that A∗ must be a global minimizer of problem (8). Denote h(A) = ‖A‖2− 1.

By Lemma 7 and Lemma 8, A∗ satisfies the KKT conditions (Boyd and Vandenberghe, 2004) of

problem (16) with τ = 1:























0 ∈ A∗−B0 +∂PB(A
∗;λ/k2

0,η/k2
0)+ν∗∂h(A∗),

h(A∗)≤ 0,

ν∗ ≥ 0,

ν∗h(A∗) = 0.

Substituting B0 = A∗+ 1
k2

0

(ΣXY −ΣXX A∗), we have























0 ∈ ΣXY −ΣXX A∗+∂PB(A
∗;λ,η)+ ν̃∗∂h(A∗),

h(A∗)≤ 0,

ν̃∗ ≥ 0,

ν̃∗h(A∗) = 0.

(18)

Note that problem (8) is convex and its KKT conditions are given by (18). Hence, A∗ is a global

minimizer of problem (8). The proof is complete.

Appendix B. Proof of Theorem 2

First, we introduce a quantile thresholding rule Θ#(·;m) as a variant of the hard thresholding rule.

Given 1 ≤ m ≤ pq: A ∈ R
p×q→ B ∈ R

p×q is defined as follows: bi j = ai j if |ai j| is among the m

largest in the set of {|ai j| : 1≤ i≤ p,1≤ j ≤ q}, and bi j = 0 otherwise.

To prove the function value decreasing property, we introduce the following lemma.
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Lemma 11 B̂ = Θ#(A;m) is a globally optimal solution to

min
B

l(B) =
1

2
‖A−B‖2

F

s.t. ‖B‖0 ≤ m.

Proof Let I ⊂ {(i, j)|1 ≤ i ≤ p,1 ≤ j ≤ q} with |I| = m. Assuming BIc = 0, we get the optimal

solution B̂ with B̂ = AI . It follows that l(B̂) = 1
2
‖A‖2

F − 1
2 ∑i, j∈I a2

i j. Therefore, the quantile thresh-

olding Θ#(A;m) yields a global minimizer.

Define a surrogate function

l̃(A,B) =
1

2
‖Y −XB‖2

F +
1

2
tr{(B−A)T(k2

0−XTX)(B−A)}.

Based on Lemma 11 and k0 ≥‖X‖2, the function value decreasing property can be proved following

the lines of Lemma 8. So we have

l(Ak) = l̃(Ak,Ak)≥ l̃(Ak,Ak+1) = l(Ak+1)+
1

2
(k2

0−‖X‖2
2)‖Ak+1−Ak‖2

F ≥ l(Ak+1).

The proof is complete.
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Abstract

We consider the problem of learning an unknown large-margin halfspace in the context of parallel

computation, giving both positive and negative results.

As our main positive result, we give a parallel algorithm for learning a large-margin half-

space, based on an algorithm of Nesterov’s that performs gradient descent with a momentum term.

We show that this algorithm can learn an unknown γ-margin halfspace over n dimensions using

n · poly(1/γ) processors and running in time Õ(1/γ)+O(logn). In contrast, naive parallel algo-

rithms that learn a γ-margin halfspace in time that depends polylogarithmically on n have an inverse

quadratic running time dependence on the margin parameter γ.

Our negative result deals with boosting, which is a standard approach to learning large-margin

halfspaces. We prove that in the original PAC framework, in which a weak learning algorithm is

provided as an oracle that is called by the booster, boosting cannot be parallelized. More precisely,

we show that, if the algorithm is allowed to call the weak learner multiple times in parallel within

a single boosting stage, this ability does not reduce the overall number of successive stages of

boosting needed for learning by even a single stage. Our proof is information-theoretic and does

not rely on unproven assumptions.

Keywords: PAC learning, parallel learning algorithms, halfspace learning, linear classifiers

1. Introduction

One of the most fundamental problems in machine learning is learning an unknown halfspace from

labeled examples that satisfy a margin constraint, meaning that no example may lie too close to the

separating hyperplane. In this paper we consider large-margin halfspace learning in the PAC (prob-

ably approximately correct) setting of learning from random examples: there is a target halfspace

f (x) = sign(w ·x), where w is an unknown unit vector, and an unknown probability distribution D

over the unit ball Bn = {x ∈Rn : ‖x‖2 ≤ 1} which is guaranteed to have support contained in the set

{x ∈ Bn : |w ·x| ≥ γ} of points that have Euclidean margin at least γ relative to the separating hyper-

plane. (Throughout this paper we refer to such a combination of target halfspace f and distribution

D as a γ-margin halfspace.) The learning algorithm is given access to labeled examples (x, f (x))

c©2013 Philip M. Long and Rocco A. Servedio.
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where each x is independently drawn from D , and it must with high probability output a (1− ε)-
accurate hypothesis, that is, a hypothesis h : Rn→{−1,1} that satisfies Prx∼D [h(x) 6= f (x)]≤ ε.

One of the earliest, and still most important, algorithms in machine learning is the perceptron

algorithm (Block, 1962; Novikoff, 1962; Rosenblatt, 1958) for learning a large-margin halfspace.

The perceptron is an online algorithm but it can be easily transformed to the PAC setting described

above (Vapnik and Chervonenkis, 1974; Littlestone, 1989; Freund and Schapire, 1999); the resulting

PAC algorithms run in poly(n, 1
γ ,

1
ε ) time, use O( 1

εγ2 ) labeled examples in Rn, and learn an unknown

n-dimensional γ-margin halfspace to accuracy 1− ε.
A motivating question: achieving perceptron’s performance in parallel? The last few years

have witnessed a resurgence of interest in highly efficient parallel algorithms for a wide range of

computational problems in many areas including machine learning (Workshop, 2009, 2011). So

a natural goal is to develop an efficient parallel algorithm for learning γ-margin halfspaces that

matches the performance of the perceptron algorithm. A well-established theoretical notion of

efficient parallel computation (see, for example, the text by Greenlaw et al. (1995) and the many

references therein) is that an efficient parallel algorithm for a problem with input size N is one that

uses poly(N) processors and runs in parallel time polylog(N). Since the input to the perceptron

algorithm is a sample of poly( 1
ε ,

1
γ ) labeled examples in Rn, we naturally arrive at the following:

Main Question: Is there a learning algorithm that uses poly(n, 1
γ ,

1
ε ) processors and

runs in time poly(logn, log 1
γ , log 1

ε ) to learn an unknown n-dimensional γ-margin half-

space to accuracy 1− ε?

Following Vitter and Lin (1992), we use a CRCW PRAM model of parallel computation. This

abstracts away issues like communication and synchronization, allowing us to focus on the most

fundamental issues. Also, as did Vitter and Lin (1992), we require that an efficient parallel learning

algorithm’s hypothesis must be efficiently evaluatable in parallel, since otherwise all the computa-

tion required to run any polynomial-time learning algorithm could be “offloaded” onto evaluating

the hypothesis. Because halfspace learning algorithms may be sensitive to issues of numerical pre-

cision, these are not abstracted away in our model; we assume that numbers are represented as

rationals.

As noted by Freund (1995) (see also Lemma 2 below), the existence of efficient boosting

algorithms such as the algorithms of Freund (1995) and Schapire (1990) implies that any PAC

learning algorithm can be efficiently parallelized in terms of its dependence on the accuracy pa-

rameter ε: more precisely, any PAC learnable class C of functions can be PAC learned to ac-

curacy 1− ε using O(1/ε) processors by an algorithm whose running time dependence on ε is

O(log
(

1
ε

)

· poly(log log(1/ε))), by boosting an algorithm that learns to accuracy (say) 9/10. We

may thus equivalently restate the above question as follows.

Main Question (simplified): Is there a learning algorithm that uses poly(n, 1
γ ) proces-

sors and runs in time poly(logn, log 1
γ ) to learn an unknown n-dimensional γ-margin

halfspace to accuracy 9/10?

The research reported in this paper is inspired by this question, which we view as a fundamental

open problem about the abilities and limitations of efficient parallel learning algorithms.
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Algorithm No. processors Running time

naive parallelization of perceptron poly(n,1/γ) Õ(1/γ2)+O(logn)

(Servedio, 2003) poly(n,1/γ) Õ(1/γ2)+O(logn)

poly-time linear programming (Blumer et al., 1989) 1 poly(n, log(1/γ))

this paper (algorithm of Section 2) n ·poly(1/γ) Õ(1/γ)+O(logn)

Table 1: Bounds on various parallel algorithms for learning a γ-margin halfspace over Rn.

1.1 Relevant Prior Results

Table 1 summarizes the running time and number of processors used by various parallel algorithms

to learn a γ-margin halfspace over Rn.

The naive parallelization of perceptron in the first line of the table is an algorithm that runs for

O(1/γ2) stages. In each stage it processes all of the O(1/γ2) examples simultaneously in parallel,

identifies one that causes the perceptron algorithm to update its hypothesis vector, and performs this

update. Since the examples are n-dimensional this can be accomplished in O(log(n/γ)) time using

O(n/γ2) processors; the mistake bound of the online perceptron algorithm is 1/γ2, so this gives a

running time bound of Õ(1/γ2) · logn. We do not see how to obtain parallel time bounds better than

O(1/γ2) from recent analyses of other algorithms based on gradient descent (Collins et al., 2002;

Dekel et al., 2011; Bradley et al., 2011), some of which use assumptions incomparable in strength

to the γ-margin condition studied here.

The second line of the table corresponds to a similar naive parallelization of the boosting-based

algorithm of Servedio (2003) that achieves perceptron-like performance for learning a γ-margin

halfspace. This algorithm boosts for O(1/γ2) stages over a O(1/γ2)-size sample. At each stage

of boosting this algorithm computes a real-valued weak hypothesis based on the vector average of

the (normalized) examples weighted according to the current distribution; since the sample size is

O(1/γ2) this can be done in O(log(n/γ)) time using poly(n,1/γ) processors. Since the boosting

algorithm runs for O(1/γ2) stages, the overall running time bound is Õ(1/γ2) · logn. (For both this

algorithm and the perceptron the time bound can be improved to Õ(1/γ2)+O(logn) as claimed in

the table by using an initial random projection step. We show how to do this in Section 2.3.)

The third line of the table, included for comparison, is simply a standard sequential algorithm

for learning a halfspace based on polynomial-time linear programming executed on one processor

(Blumer et al., 1989; Karmarkar, 1984).

In addition to the results summarized in the table, we note that efficient parallel algorithms have

been developed for some simpler PAC learning problems such as learning conjunctions, disjunc-

tions, and symmetric Boolean functions (Vitter and Lin, 1992). Bshouty et al. (1998) gave efficient

parallel PAC learning algorithms for some geometric constant-dimensional concept classes. Collins

et al. (2002) presented a family of boosting-type algorithms that optimize Bregman divergences by

updating a collection of parameters in parallel; however, their analysis does not seem to imply that

the algorithms need fewer than Ω(1/γ2) stages to learn γ-margin halfspaces.

In terms of negative results for parallel learning, Vitter and Lin (1992) showed that (under

a complexity-theoretic assumption) there is no parallel algorithm using poly(n) processors and

polylog(n) time that constructs a halfspace hypothesis that is consistent with a given linearly sep-

arable data set of n-dimensional labeled examples. This does not give a negative answer to the
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main question for several reasons: first, the main question allows any hypothesis representation that

can be efficiently evaluated in parallel, whereas the hardness result requires the hypothesis to be a

halfspace. Second, the main question allows the algorithm to use poly(n,1/γ) processors and to

run in poly(logn, log 1
γ ) time, whereas the hardness result of Vitter and Lin (1992) only rules out

algorithms that use poly(n, log 1
γ ) processors and run in poly(logn, log log 1

γ ) time. Finally, the main

question allows the final hypothesis to err on up to (say) 5% of the points in the data set, whereas

the hardness result of Vitter and Lin (1992) applies only to algorithms whose hypotheses correctly

classify all points in the data set.

Finally, we note that the main question has an affirmative answer if it is restricted so that either

the number of dimensions n or the margin parameter γ is fixed to be a constant (so the resulting

restricted question asks whether there is an algorithm that uses polynomially many processors and

polylogarithmic time in the remaining parameter). If γ is fixed to a constant then either of the first

two entries in Table 1 gives a poly(n)-processor, O(logn)-time algorithm. If n is fixed to a constant

then the efficient parallel algorithm of Alon and Megiddo (1994) for linear programming in constant

dimension can be used to learn a γ-margin halfspace using poly(1/γ) processors in polylog(1/γ)
running time (see also Vitter and Lin, 1992, Theorem 3.4).

1.2 Our Results

We give positive and negative results on learning halfspaces in parallel that are inspired by the main

question stated above.

1.2.1 POSITIVE RESULTS

Our main positive result is a parallel algorithm for learning large-margin halfspaces, based on a

rapidly converging gradient method due to Nesterov (2004), which uses O(n ·poly(1/γ)) processors

to learn γ-margin halfspaces in parallel time Õ(1/γ)+O(logn) (see Table 1). (An earlier version of

this paper (Long and Servedio, 2011) analyzed on algorithm based on interior-point methods from

convex optimization and fast parallel algorithms for linear algebra, showing that it uses poly(n,1/γ)
processors to learn γ-margin halfspaces in parallel time Õ(1/γ)+O(logn).) We are not aware of

prior parallel algorithms that provably learn γ-margin halfspaces running in time polylogarithmic in

n and subquadratic in 1/γ.

We note that simultaneously and independently of the initial conference publication of our work

(Long and Servedio, 2011), Soheili and Peña (2012) proposed a variant of the perceptron algorithm

and shown that it terminates in O
(√

logn

γ

)

iterations rather than the 1/γ2 iterations of the original

perceptron algorithm. Like our algorithm, the Soheili and Peña (2012) algorithm uses ideas of Nes-

terov (2005). Soheili and Peña (2012) do not discuss a parallel implementation of their algorithm,

but since their algorithm performs an n-dimensional matrix-vector multiplication at each iteration,

it appears that a parallel implementation of their algorithm would use Ω(n2) processors and would

have parallel running time at least Ω
(

(logn)3/2

γ

)

(assuming that multiplying a n× n matrix by an

n×1 vector takes parallel time Θ(logn) using n2 processors). In contrast, our algorithm requires a

linear number of processors as a function of n, and has parallel running time Õ(1/γ)+O(logn).1

1. We note also that Soheili and Peña (2012) analyze the number of iterations of their algorithm, and not the computation

time. In particular, they do not deal with finite precision issues, whereas a significant portion of our analysis concerns
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1.2.2 NEGATIVE RESULTS

By modifying our analysis of the algorithm we present, we believe that it may be possible to estab-

lish similar positive results for other formulations of the large-margin learning problem, including

ones (see Shalev-Shwartz and Singer, 2010) that have been tied closely to weak learnability. In

contrast, our main negative result is an information-theoretic argument that suggests that such pos-

itive parallel learning results cannot be obtained by boosting alone. We show that in a framework

where the weak learning algorithm must be invoked as an oracle, boosting cannot be parallelized:

being able to call the weak learner multiple times in parallel within a single boosting stage does not

reduce the overall number of sequential stages of boosting that are required. We prove that any par-

allel booster must perform Ω(log(1/ε)/γ2) sequential stages of boosting a “black-box” γ-advantage

weak learner to learn to accuracy 1− ε in the worst case; this extends an earlier Ω(log(1/ε)/γ2)
lower bound of Freund (1995) for standard (sequential) boosters that can only call the weak learner

once per stage.

2. An Algorithm Based on Nesterov’s Algorithm

In this section we describe and analyze a parallel algorithm for learning a γ-margin halfspace. The

algorithm of this section applies an algorithm of Nesterov (2004) that, roughly speaking, approxi-

mately minimizes a suitably smooth convex function to accuracy ε using O(
√

1/ε) iterative steps

(Nesterov, 2004), each of which can be easily parallelized.

Directly applying the basic Nesterov algorithm gives us an algorithm that uses O(n) processors,

runs in parallel time O(log(n) · (1/γ)), and outputs a halfspace hypothesis that has constant accu-

racy. By combining the basic algorithm with random projection and boosting we get the following

stronger result:

Theorem 1 There is a parallel algorithm with the following performance guarantee: Let f ,D de-

fine an unknown γ-margin halfspace over Bn. The algorithm is given as input ε,δ > 0 and access to

labeled examples (x, f (x)) that are drawn independently from D. It runs in

O(((1/γ)polylog(1/γ)+ log(n)) log(1/ε)poly(log log(1/ε))+ log log(1/δ))

parallel time, uses

n ·poly(1/γ,1/ε, log(1/δ))

processors, and with probability 1−δ it outputs a hypothesis h satisfying Prx∼D [h(x) 6= f (x)]≤ ε.

We assume that the value of γ is “known” to the algorithm, since otherwise the algorithm can

use a standard “guess and check” approach trying γ = 1,1/2,1/4, etc., until it finds a value that

works.

Freund (1995) indicated how to parallelize his boosting-by-filtering algorithm. In Appendix A,

we provide a detailed proof of the following lemma.

Lemma 2 (Freund, 1995) Let D be a distribution over (unlabeled) examples. Let A be a par-

allel learning algorithm, and cδ and cε be absolute positive constants, such that for all D ′ with

such issues, in order to fully establish our claimed bounds on the number of processors and the parallel running time

of our algorithms.
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Figure 1: A plot of a loss function φ used in Section 2.

support(D ′)⊆ support(D), given draws (x, f (x)) from D ′, with probability cδ, A outputs a hypothe-

sis with accuracy 1
2
+cε (w.r.t. D ′) using P processors in T time. Then there is a parallel algorithm

B that, given access to independent labeled examples (x, f (x)) drawn from D , with probability

1− δ, constructs a (1− ε)-accurate hypothesis (w.r.t. D) in O(T log(1/ε)poly(log log(1/ε)) +
log log(1/δ)) time using poly(P ,1/ε, log(1/δ)) processors.

In Section 2.1 we describe the basic way that Nesterov’s algorithm can be used to find a half-

space hypothesis that approximately minimizes a smooth loss function over a set of γ-margin labeled

examples. (This section has nothing to do with parallelism.) Then later we explain how this algo-

rithm is used in the larger context of a parallel algorithm for halfspaces.

2.1 The Basic Algorithm

Let S = (x1,y1), . . . ,(xm,ym) be a data set of m examples labeled according to the target γ-margin

halfspace f ; that is, yi = f (xi) for all i.
We will apply Nesterov’s algorithm to minimize a regularized loss as follows.

The loss part. For z ∈ R we define

φ(z) =
√

1+ z2− z.

(See Figure 1 for a plot of φ.) For v ∈ Rn we define

Φ(v) =
1

m

m

∑
t=1

φ(yt(v ·xt)).

The regularization part. We define a regularizer

R(v) = γ2‖v‖2/100

where ‖ · ‖ denotes the 2-norm.

We will apply Nesterov’s iterative algorithm to minimize the following function

Ψ(v) = Φ(v)+R(v).

Let g(v) be the gradient of Ψ at v. We will use the following algorithm, due to Nesterov (2004)

(see Section 2.2.1), which we call ANes. The algorithm takes a single input parameter γ > 0.
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Algorithm ANes:

• Set µ = γ2/50, L = 51/50.

• Initialize v0 = z0 = 0.

• For each k = 0,1, . . . , set

– vk+1 = zk− 1
L

g(zk), and

– zk+1 = vk+1 +
√

L−√µ√
L+
√

µ
(vk+1−vk).

We begin by establishing various bounds on Ψ that Nesterov uses in his analysis of ANes.

Lemma 3 The gradient g of Ψ has a Lipschitz constant at most 51/50.

Proof: We have
∂Ψ

∂vi

=
1

m
∑

t

φ′(yt(v ·xt))ytxt,i + γ2vi/50

and hence, writing g(v) to denote the gradient of Ψ at v, we have

g(v) =
1

m
∑

t

φ′(yt(v ·xt))ytxt + γ2v/50.

Choose r ∈ Rn. Applying the triangle inequality, we have

||g(v)−g(r)|| =

∥

∥

∥

∥

1

m
∑

t

(φ′(yt(v ·xt))−φ′(yt(r ·xt)))ytxt + γ2(v− r)/50

∥

∥

∥

∥

≤ 1

m
∑

t

||(φ′(yt(v ·xt))−φ′(yt(r ·xt)))ytxt ||+ γ2||v− r||/50

≤ 1

m
∑

t

|φ′(yt(v ·xt))−φ′(yt(r ·xt))|+ γ2||v− r||/50,

since each vector xt has length at most 1. Basic calculus gives that φ′′ is always at most 1, and hence

|φ′(yt(v ·xt))−φ′(yt(r ·xt))| ≤ |v ·xt− r ·xt | ≤ ||v− r||,

again since xt has length at most 1. The bound then follows from the fact that γ2 ≤ 1.

We recall the definition of strong convexity (Nesterov, 2004, pp. 63–64): a multivariate function

q is µ-strongly convex if for all v,w and all α ∈ [0,1] it holds that

q(αv+(1−α)w)≤ αq(v)+(1−α)q(w)− µα(1−α)||v−w||2
2

.

(For intuition’s sake, it may be helpful to note that a suitably smooth q is µ-strongly convex if any

restriction of q to a line has second derivative that is always at least µ.) We recall the fact that

strongly convex functions have unique minimizers.

Lemma 4 Ψ is µ-strongly convex.
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Proof: This follows directly from the fact that µ = γ2/50, Φ is convex, and ||v||2 is 2-strongly

convex.

Given the above, the following lemma is an immediate consequence of Theorem 2.2.3 of Nes-

terov’s (2004) book. The lemma upper bounds the difference between Ψ(vk), where vk is the point

computed in the k-th iteration of Nesterov’s algorithm ANes, and the true minimum value of Ψ. A

proof is in Appendix B.

Lemma 5 Let w be the minimizer of Ψ. For each k, we have Ψ(vk)−Ψ(w)≤ 4L(1+µ||w||2/2)

(2
√

L+k
√

µ)2
.

2.2 The Finite Precision Algorithm

The algorithm analyzed in the previous subsection computes real numbers with infinite precision.

Now we will analyze a finite precision variant of the algorithm, which we call ANfp (for “Nesterov

finite precision”).

(We note that d’Aspremont 2008, also analyzed a similar algorithm with an approximate gra-

dient, but we were not able to apply his results in our setting because of differences between his

assumptions and our needs. For example, the algorithm described by d’Aspremont 2008, assumed

that optimization was performed over a compact set C, and periodically projected solutions onto C;

it was not obvious to us how to parallelize this algorithm.)

We begin by writing the algorithm as if it took two parameters, γ and a precision parameter

β > 0. The analysis will show how to set β as a function of γ. To distinguish between ANfp and ANes

we use hats throughout our notation below.

Algorithm ANfp:

• Set µ = γ2/50, L = 51/50.

• Initialize v̂0 = ẑ0 = 0.

• For each k = 0,1, . . . ,

– Let r̂k be such that ||r̂k− 1
L

g(ẑk)|| ≤ β. Set

– v̂k+1 = ẑk− r̂k, and

– ẑk+1 = v̂k+1 +
√

L−√µ√
L+
√

µ
(v̂k+1− v̂k).

We discuss the details of exactly how this finite-precision algorithm is implemented, and the

parallel running time required for such an implementation, at the end of this section.

Our analysis of this algorithm will proceed by quantifying how closely its behavior tracks that

of the infinite-precision algorithm.

Lemma 6 Let v0,v1, ... be the sequence of points computed by the infinite precision version of

Nesterov’s algorithm, and v̂0, v̂1, ... be the corresponding finite-precision sequence. Then for all k,

we have ||vk− v̂k|| ≤ β ·7k.

Proof: Let ŝk = r̂k−g(ẑk). Our proof is by induction, with the additional inductive hypothesis that

||zk− ẑk|| ≤ 3β ·7k.

The base case is trivially true.
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We have

||vk+1− v̂k+1||=
∣

∣

∣

∣

∣

∣

∣

∣

(zk−
1

L
g(zk))− (ẑk− (

1

L
g(ẑk)+ ŝk)

∣

∣

∣

∣

∣

∣

∣

∣

,

and, using the triangle inequality, we get

||vk+1− v̂k+1|| ≤ ||zk− ẑk||+
∣

∣

∣

∣

∣

∣

∣

∣

1

L
g(zk)− (

1

L
g(ẑk)+ ŝk)

∣

∣

∣

∣

∣

∣

∣

∣

≤ 3β ·7k +

∣

∣

∣

∣

∣

∣

∣

∣

1

L
g(zk)− (

1

L
g(ẑk)+ ŝk)

∣

∣

∣

∣

∣

∣

∣

∣

≤ 3β ·7k +
1

L
||g(zk)−g(ẑk)||+ ||ŝk|| (triangle inequality)

≤ 3β ·7k + ||zk− ẑk||+ ||ŝk|| (by Lemma 3)

≤ 3β ·7k +3β ·7k +β (by definition of ŝk)

< β ·7k+1.

Also, we have

||zk+1− ẑk+1|| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

1+
√

µ/L
(vk+1− v̂k+1)−

√
L−√µ√
L+
√

µ
(vk− v̂k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

1+
√

µ/L
(vk+1− v̂k+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
L−√µ√
L+
√

µ
(vk− v̂k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2||vk+1− v̂k+1||+ ||vk− v̂k||
≤ 2β ·7k+1 +β ·7k

≤ 3β ·7k+1,

completing the proof.

2.3 Application to Learning

Now we are ready to prove Theorem 1. By Lemma 2 it suffices to prove the theorem in the case in

which ε = 7/16 and δ = 1/2.

We may also potentially reduce the number of variables by applying a random projection. We

say that a random projection matrix is a matrix A chosen uniformly from {−1,1}n×d . Given such

an A and a unit vector w ∈ Rn (defining a target halfspace f (x) = sign(w · x)), let w′ denote the

vector (1/
√

d)wA ∈ Rd . After transformation by A the distribution D over Bn is transformed to a

distribution D ′ over Rd in the natural way: a draw x′ from D ′ is obtained by making a draw x from

D and setting x′ = (1/
√

d)xA. We will use the following lemma, which is a slight variant of known

lemmas (Arriaga and Vempala, 2006; Blum, 2006); we prove this exact statement in Appendix C.

Lemma 7 Let f (x) = sign(w ·x) and D define a γ-margin halfspace as described in the introduc-

tion. For d = O((1/γ2) log(1/γ)), a random n×d projection matrix A will with probability 99/100

induce D ′ and w′ as described above such that Prx′∼D ′

[∣

∣

∣

w′
‖w′‖ ·x′

∣

∣

∣
< γ/2 or ‖x′‖2 > 2

]

≤ γ4.

We assume without loss of generality that γ = 1/integer.
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The algorithm first selects an n×d random projection matrix A where d =O(log(1/γ)/γ2). This

defines a transformation ΦA : Bn→Rd as follows: given x ∈ Bn, the vector ΦA(x) ∈Rd is obtained

by

(i) rounding each xi to the nearest integer multiple of 1/(4⌈
√

n/γ⌉); then

(ii) setting x′ =
(

1

2
√

d

)

xA (we scale down by an additional factor of two to get examples that are

contained in the unit ball Bd); and finally

(iii) rounding each x′i to the nearest multiple of 1/(8⌈d/γ⌉).

Given x it is easy to compute ΦA(x) using O(n log(1/γ)/γ2) processors in O(log(n/γ)) time. Let

D ′ denote the distribution over Rd obtained by applying ΦA to D. Across all coordinates D ′ is

supported on rational numbers with the same poly(1/γ) common denominator. By Lemma 7, with

probability 99/100

Pr
x′∼D ′

[

∣

∣x′ · (w′/‖w′‖)
∣

∣< γ′
def
= γ/8 or ‖x′‖2 > 1

]

≤ γ4.

Our algorithm draws c0d examples by sampling from D ′. Applying Lemma 7, we may assume

without loss of generality that our examples have d = O(log(1/γ)/γ2) and that the margin γ′ after

the projection is at least Θ(γ), and that all the coordinates of all the examples have a common

denominator which is at most poly(1/γ). Thus far the algorithm has used O(log(n/γ)) parallel time

and O(n log(1/γ)/γ2) many processors.

Next, the algorithm applies ANfp from the previous section for K stages, where K = ⌈c1/γ′⌉ and

β = c27−K . Here c0, c1, and c2 are absolute positive constants; our analysis will show that there

exist choices of these constants that give Theorem 1.

For our analysis, as before, let w be the minimizer of Ψ, and let u be a unit normal vector for

the target halfspace f (x) = sign(u · x). (We emphasize that Ψ is now defined using the projected

d-dimensional examples and with γ′ in place of γ in the definition of the regularizer R.)

Our first lemma gives an upper bound on the optimal value of the objective function.

Lemma 8 Ψ(w)≤ 0.26.

Proof Since w is the minimizer of Ψ we have Ψ(w)≤Ψ(3u/γ′). In turn Ψ(3u/γ′) is easily seen to

be at most φ(3)+9/100≤ 0.26, since every example has margin at least γ′ with respect to u.

Next, we bound the norm of w.

Lemma 9 ||w||2 ≤ 26/γ′2.

Proof: The definition of Ψ gives

||w||2 ≤ 100Ψ(w)/γ′2

and combining with Lemma 8 gives ||w||2 ≤ 26/γ′2.
Now we can bound the objective function value of vK .

Lemma 10 For c1 a sufficiently large absolute constant, we have Ψ(vK)≤ 2/5.
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Proof: Plugging Lemma 9 into the RHS of Lemma 5 and simplifying, we get

Ψ(vK)−Ψ(w)≤ 751

25(2
√

51+ γ′K)2
.

Applying Lemma 8, we get

Ψ(vK)≤ 0.26+
751

25(2
√

51+ γ′K)2
.

from which the lemma follows.

Now we can bound vK nearly the same way that we bounded w:

Lemma 11 ||vK || ≤ 7/γ′.

Proof: The argument is similar to the proof of Lemma 9, using Lemma 10 in place of Lemma 8.

Now we can bound the value of the objective function of the finite precision algorithm.

Lemma 12 There exist absolute positive constants c1,c2 such that Ψ(v̂K)≤ 3/7.

Proof Because β = c27−⌈c1/γ′⌉, Lemma 6 implies that ||v̂K − vK || ≤ c2. Since φ has a Lipschitz

constant of 2, so does Φ, and consequently we have that

Φ(v̂K)−Φ(vK)≤ 2c2. (1)

Next, since Lemma 11 gives ||vK || ≤ 7/γ′, and ||v̂K−vK || ≤ c2, we have ||v̂K || ≤ 7/γ′+ c2, which

in turn implies

‖v̂K‖2−‖vK‖2 ≤ (7/γ′+ c2)
2− (7/γ′)2 = 14c2/γ′+ c2

2.

and thus

R(v̂K)−R(vK)≤
14c2γ′

100
+

(γ′)2c2
2

100
.

Combining this with (1), we get that for c2 less than a sufficiently small positive absolute constant,

we have Ψ(v̂K)−Ψ(vK)< 3/7−2/5, and combining with Lemma 10 completes the proof.

Finally, we observe that Ψ(v̂k) is an upper bound on the fraction of examples in the sample that

are misclassified by v̂k. Taking c0 sufficiently large and applying standard VC sample complexity

bounds, we have established the (ε,δ) PAC learning properties of the algorithm. (Recall from the

start of this subsection that we have taken ε = 7/16 and δ = 1/2.)

It remains to analyze the parallel time complexity of the algorithm. We have already analyzed

the parallel time complexity of the initial random projection stage, and shown that we may take the

finite-precision iterative algorithm ANfp to run for O(1/γ) stages, so it suffices to analyze the parallel

time complexity of each stage ANfp. We will show that each stage runs in parallel time polylog(1/γ)
and thus establish the theorem.

Recall that we have set β = Θ(7−K) and that K = Θ(1/γ). The invariant we maintain throughout

each iteration k of algorithm ANfp is that each coordinate of v̂k is a poly(K)-bit rational number and

each coordinate of ẑk is a poly(K)-bit rational number. It remains to show that given such values v̂k

and ẑk, in parallel time polylog(1/γ) using log(1/γ) processors,
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1. it is possible to compute each coordinate g(ẑk)i to accuracy 2−100K/
√

d;

2. it is possible to determine a vector r̂k such that ‖r̂k−g(ẑk)‖ ≤ β, and that each coefficient of

the new value v̂k+1 = ẑk− r̂k is again a poly(K)-bit rational number; and

3. it is possible to compute the new value ẑk+1 and that each coordinate of ẑk+1 is again a

poly(K)-bit rational number.

We begin by analyzing the approximate computation of the gradient. Recall that

g(v) =
1

m
∑

t

φ′(yt(v ·xt))ytxt + γ2v/50.

Note that

φ′(z) =
z√

1+ z2
−1.

To analyze the approximation of φ′ we will first need a lemma about approximating the square

root function efficiently in parallel. While related statements are known and our statement below

can be proved using standard techniques, we have included a proof in Appendix D because we do

not know a reference for precisely this statement.

Lemma 13 There is an algorithm Ar that, given an L-bit positive rational number z and an L-bit

positive rational number β as input, outputs Ar(z) for which |Ar(z)−
√

z|≤β in poly(log log(1/β),
logL) parallel time using poly(log(1/β),L) processors.

Armed with the ability to approximate the square root, we can easily approximate φ′.

Lemma 14 There is an algorithm Ap that, given an L-bit positive rational number z, and an

L-bit positive rational number β ≤ 1/4, outputs Ap(z) for which |Ap(z)− φ′(z)| ≤ β in at most

poly(log log(1/β), logL) parallel time using poly(log(1/β),L) processors.

Proof: Assume without loss of generality that β≤ 1/4. Then, because
√

1+ z2 ≥ 1, if an approxi-

mation s of
√

1+ z2 satisfies |s−
√

1+ z2| ≤ β/2L+1, then

1

s
− 1√

1+ z2
≤ β/2L.

Applying Lemma 13 and recalling the well-known fact that there are efficient parallel algorithms

for division (see Beame et al., 1986) completes the proof.

Using this approximation for φ′, and calculating the sums in the straightforward way, we get the

required approximation r̂k. We may assume without loss of generality that each component of r̂k

has been rounded to the nearest multiple of β/2. Since each component of g has size at most 2, and

the denominator of r̂k has O(K) bits, r̂k in total requires at most O(K) bits. We can assume without

loss of generality that γ2/50 is a perfect square, so multiplying the components of a vector by
1−√µ

1+
√

µ

can be accomplished while adding O(log(1/γ)) bits to each of their rational representations. Thus,

a straightforward induction implies that each of the components of each of the denominators of vk

and zk can be written with k log(1/γ)+O(1/γ) = O((1/γ) log(1/γ)) bits.

To bound the numerators of the components of vk and zk, it suffices to bound the norms of vk

and zk. Lemma 11 implies that ||vk|| ≤ 5/γ′ and so Lemma 6 implies ||v̂k|| ≤ 5/γ′+1 which in turn

directly implies ||ẑk|| ≤ 3(5/γ′+1).
Thus, each iteration takes O(polylog(1/γ)) time, and there are a total of O(1/γ) iterations. This

completes the proof of Theorem 1.
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3. Lower Bound for Parallel Boosting in the Oracle Model

Boosting is a widely used method for learning large-margin halfspaces. In this section we consider

the question of whether boosting algorithms can be efficiently parallelized. We work in the original

PAC learning setting (Valiant, 1984; Kearns and Vazirani, 1994; Schapire, 1990) in which a weak

learning algorithm is provided as an oracle that is called by the boosting algorithm, which must

simulate a distribution over labeled examples for the weak learner. Our main result for this setting

is that boosting is inherently sequential; being able to call the weak learner multiple times in parallel

within a single boosting stage does not reduce the overall number of sequential boosting stages that

are required. In fact we show this in a very strong sense, by proving that a boosting algorithm that

runs arbitrarily many copies of the weak learner in parallel in each stage cannot save even one stage

over a sequential booster that runs the weak learner just once in each stage. This lower bound is

unconditional and information-theoretic.

Below we first define the parallel boosting framework and give some examples of parallel boost-

ers. We then state and prove our lower bound on the number of stages required by parallel boosters.

A consequence of our lower bound is that Ω(log(1/ε)/γ2) stages of parallel boosting are required

in order to boost a γ-advantage weak learner to achieve classification accuracy 1− ε no matter how

many copies of the weak learner are used in parallel in each stage.

3.1 Parallel Boosting

Our definition of weak learning is standard in PAC learning, except that for our discussion it suffices

to consider a single target function f : X →{−1,1} over a domain X .

Definition 15 A γ-advantage weak learner L is an algorithm that is given access to a source of inde-

pendent random labeled examples drawn from an (unknown and arbitrary) probability distribution

P over labeled examples {(x, f (x))}x∈X . L must2 return a weak hypothesis h : X → {−1,1} that

satisfies Pr(x, f (x))←P [h(x) = f (x)]≥ 1/2+ γ. Such an h is said to have advantage γ w.r.t. P .

We fix P to henceforth denote the initial distribution over labeled examples; that is, P is a distri-

bution over {(x, f (x))}x∈X where the marginal distribution PX may be an arbitrary distribution over

X .
Intuitively, a boosting algorithm runs the weak learner repeatedly on a sequence of carefully

chosen distributions P1,P2, . . . to obtain weak hypotheses h1,h2, . . . , and combines the weak hy-

potheses to obtain a final hypothesis h that has high accuracy under P . We first give a definition that

captures the idea of a “sequential” (non-parallel) booster, and then extend the definition to parallel

boosters.

3.1.1 SEQUENTIAL BOOSTERS

We give some intuition to motivate our definition. In a normal (sequential) boosting algorithm,

the probability weight that the (t + 1)st distribution Pt+1 puts on a labeled example (x, f (x)) may

depend on the values of all the previous weak hypotheses h1(x), . . . ,ht(x) and on the value of f (x).
No other dependence on x is allowed, since intuitively the only interface that the boosting algorithm

should have with each data point is through its label and the values of the weak hypotheses. We

2. The usual definition of a weak learner would allow L to fail with probability δ. This probability can be made expo-

nentially small by running L multiple times so for simplicity we assume there is no failure probability.
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further observe that since the distribution P is the only source of labeled examples, a booster should

construct the distribution Pt+1 by somehow “filtering” examples drawn from P based on the values

h1(x), . . . ,ht(x), f (x). We thus define a sequential booster as follows:

Definition 16 (Sequential booster) A T -stage sequential boosting algorithm is defined by a se-

quence α1, . . . ,αT of functions αt : {−1,1}t → [0,1] and a (randomized) Boolean function h :

{−1,1}T →{−1,1}. In the t-th stage of boosting, the distribution Pt over labeled examples that is

given to the weak learner by the booster is obtained from P by doing rejection sampling according

to αt . More precisely, a draw from Pt is made as follows: draw (x, f (x)) from P and compute the

value px := αt(h1(x), . . . ,ht−1(x), f (x)). With probability px accept (x, f (x)) as the output of the

draw from Pt , and with the remaining 1− px probability reject this (x, f (x)) and try again. In stage

t the booster gives the weak learner access to Pt as defined above, and the weak learner generates

a hypothesis ht that has advantage at least γ w.r.t. Pt . Together with h1, . . . ,ht−1, this ht enables the

booster to give the weak learner access to Pt+1 in the next stage.

After T stages, weak hypotheses h1, . . . ,hT have been obtained from the weak learner. The final

hypothesis of the booster is H(x) := h(h1(x), . . . ,hT (x)), and its accuracy is

min
h1,...,hT

Pr
(x, f (x))←P

[H(x) = f (x)],

where the min is taken over all sequences h1, . . . ,hT of T weak hypotheses subject to the condition

that each ht has advantage at least γ w.r.t. Pt .

Many PAC-model boosting algorithms in the literature are covered by Definition 16, such as

the original boosting algorithm of Schapire (1990), Boost-by-Majority (Freund, 1995), MadaBoost

(Domingo and Watanabe, 2000), BrownBoost (Freund, 2001), SmoothBoost (Servedio, 2003), Fil-

terBoost (Bradley and Schapire, 2007) and others. All these boosters use Ω(log(1/ε)/γ2) stages

of boosting to achieve 1− ε accuracy, and indeed Freund (1995) has shown that any sequential

booster must run for Ω(log(1/ε)/γ2) stages. More precisely, Freund (1995) modeled the phe-

nomenon of boosting using the majority function to combine weak hypotheses as an interactive

game between a “weightor” and a “chooser” (see Freund, 1995, Section 2). He gave a strategy for

the weightor, which corresponds to a boosting algorithm, and showed that after T stages of boost-

ing this boosting algorithm generates a final hypothesis that is guaranteed to have error at most

vote(γ,T )
def
= ∑

⌊T/2⌋
j=0

(

T
j

)(

1
2
+ γ

) j
(1/2− γ)T− j

(see Freund, 1995, Theorem 2.1). Freund also gives

a matching lower bound by showing (see his Theorem 2.4) that any T -stage sequential booster must

have error at least as large as vote(γ,T ), and so consequently any sequential booster that generates

a (1− ε)-accurate final hypothesis must run for Ω(log(1/ε)/γ2) stages. Our Theorem 18 below

extends this lower bound to parallel boosters.

3.1.2 PARALLEL BOOSTING

Parallel boosting is a natural generalization of sequential boosting. In stage t of a parallel booster the

boosting algorithm may simultaneously run the weak learner many times in parallel using different

probability distributions. The distributions that are used in stage t may depend on any of the weak

hypotheses from earlier stages, but may not depend on any of the weak hypotheses generated by

any of the calls to the weak learner in stage t.
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Definition 17 (Parallel booster) A T -stage parallel boosting algorithm with N-fold parallelism

is defined by T N functions {αt,k}t∈[T ],k∈[N] and a (randomized) Boolean function h, where αt,k :

{−1,1}(t−1)N+1→ [0,1] and h : {−1,1}TN→{−1,1}. In the t-th stage of boosting the weak learner

is run N times in parallel. For each k ∈ [N], the distribution Pt,k over labeled examples that is given

to the k-th run of the weak learner is as follows: a draw from Pt,k is made by drawing a labeled ex-

ample (x, f (x)) from P , computing the value px := αt,k(h1,1(x), . . . ,ht−1,N(x), f (x)), and accepting

(x, f (x)) as the output of the draw from Pt,k with probability px (and rejecting it and trying again

otherwise). In stage t, for each k ∈ [N] the booster gives the weak learner access to Pt,k as defined

above and the weak learner generates a hypothesis ht,k that has advantage at least γ w.r.t. Pt,k.

Together with the weak hypotheses {hs, j}s∈[t−1], j∈[N] obtained in earlier stages, these ht,k’s enable

the booster to give the weak learner access to each Pt+1,k in the next stage.

After T stages, T N weak hypotheses {ht,k}t∈[T ],k∈[N] have been obtained from the weak learner.

The final hypothesis of the booster is H(x) := h(h1,1(x), . . . ,hT,N(x)), and its accuracy is

min
ht,k

Pr
(x, f (x))←P

[H(x) = f (x)],

where the min is taken over all sequences of T N weak hypotheses subject to the condition that each

ht,k has advantage at least γ w.r.t. Pt,k.

The parameter N above corresponds to the number of processors that the parallel booster is

using. Parallel boosting algorithms that call the weak learner different numbers of times at different

stages fit into our definition simply by taking N to be the max number of parallel calls made at

any stage. Several parallel boosting algorithms have been given in the literature; in particular,

all boosters that construct branching program or decision tree hypotheses are of this type. The

number of stages of these boosting algorithms corresponds to the depth of the branching program

or decision tree that is constructed, and the number of nodes at each depth corresponds to the

parallelism parameter. Branching program boosters (Mansour and McAllester, 2002; Kalai and

Servedio, 2005; Long and Servedio, 2005, 2008) all make poly(1/γ) many calls to the weak learner

within each stage and all require Ω(log(1/ε)/γ2) stages, while the earlier decision tree booster

(Kearns and Mansour, 1996) requires Ω(log(1/ε)/γ2) stages but makes 2Ω(log(1/ε)/γ2) parallel calls

to the weak learner in some stages. Our results in the next subsection will imply that any parallel

booster must run for Ω(log(1/ε)/γ2) stages no matter how many parallel calls to the weak learner

are made in each stage.

3.2 The Lower Bound and Its Proof

Our lower bound theorem for parallel boosting is the following:

Theorem 18 Let B be any T -stage parallel boosting algorithm with N-fold parallelism. Then for

any 0 < γ < 1/2, when B is used to boost a γ-advantage weak learner the resulting final hypothesis

may have error as large as vote(γ,T ) (see the discussion after Definition 17).

We emphasize that Theorem 18 holds for any γ and any N that may depend on γ in an arbitrary

way.

The theorem is proved as follows: fix any 0 < γ < 1/2 and fix B to be any T -stage parallel

boosting algorithm. We will exhibit a target function f and a distribution P over {(x, f (x))x∈X , and
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describe a strategy that a weak learner W can use to generate weak hypotheses ht,k that all have

advantage at least γ with respect to the distributions Pt,k. We show that with this weak learner W ,

the resulting final hypothesis H that B outputs will have accuracy at most 1−vote(γ,T ).
We begin by describing the desired f and P , both of which are fairly simple. The domain X

of f is X = Z×Ω, where Z denotes the set {−1,1} and Ω denotes the set of all infinite sequences

ω = (ω1,ω2, . . .) where each ωi belongs to {−1,1}. The target function f is simply f (z,ω) = z; that

is, f always simply outputs the first coordinate of its input vector. The distribution P = (P X ,PY )
over labeled examples {(x, f (x))}x∈X is defined as follows.3 A draw from P is obtained by drawing

x = (z,ω) from P X and returning (x, f (x)). A draw of x = (z,ω) from P X is obtained by first

choosing a uniform random value in {−1,1} for z, and then choosing ωi ∈ {−1,1} to equal z

with probability 1/2+ γ independently for each i. Note that under P , given the label z = f (x) of a

labeled example (x, f (x)), each coordinate ωi of x is correct in predicting the value of f (x,z) with

probability 1/2+ γ independently of all other ω j’s.

We next describe a way that a weak learner W can generate a γ-advantage weak hypothesis each

time it is invoked by B. Fix any t ∈ [T ] and any k ∈ [N], and recall that Pt,k is the distribution over

labeled examples that is used for the k-th call to the weak learner in stage t. When W is invoked

with Pt,k it replies as follows (recall that for x ∈ X we have x = (z,ω) as described above):

(i) If Pr(x, f (x))←Pt,k
[ωt = f (x)] ≥ 1/2+ γ then the weak hypothesis ht,k(x) is the function “ωt ,”

the (t +1)-st coordinate of x. Otherwise,

(ii) the weak hypothesis ht,k(x) is “z,” the first coordinate of x. (Note that since f (x) = z for all x,
this weak hypothesis has zero error.)

It is clear that each weak hypothesis ht,k generated as described above indeed has advantage at

least γ w.r.t. Pt,k, so the above is a legitimate strategy for W . It is also clear that if the weak learner

ever uses option (ii) above at some invocation (t,k) then B may output a zero-error final hypothesis

simply by taking H = ht,k = f (x). On the other hand, the following crucial lemma shows that if

the weak learner never uses option (ii) for any (t,k) then the accuracy of B is upper bounded by

vote(γ,T ):

Lemma 19 If W never uses option (ii) then Pr(x, f (x))←P [H(x) 6= f (x)]≥ vote(γ,T ).

Proof If the weak learner never uses option (ii) then H depends only on variables

ω1, . . . ,ωT

and hence is a (randomized) Boolean function over these variables. Recall that for (x = (z,ω),
f (x) = z) drawn from P , each coordinate

ω1, . . . ,ωT

independently equals z with probability 1/2+ γ. Hence the optimal (randomized) Boolean function

H over inputs ω1, . . . ,ωT that maximizes the accuracy Pr(x, f (x))←P [H(x) = f (x)] is the (determinis-

tic) function H(x) =Maj(ω1, . . . , ωT ) that outputs the majority vote of its input bits. (This can be

3. Note that P X and PY are not independent; indeed, in a draw (x,y= f (x)) from (P X ,PY ) the outcome of x completely

determines y.
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easily verified using Bayes’ rule in the usual “Naive Bayes” calculation.) The error rate of this H is

precisely the probability that at most ⌊T/2⌋ “heads” are obtained in T independent (1/2+γ)-biased

coin tosses, which equals vote(γ,T ).

Thus to prove Theorem 18 it suffices to prove the following lemma, which we prove by induction

on t:

Lemma 20 W never uses option (ii) (that is, Pr(x, f (x))←Pt,k
[ωt = f (x)]≥ 1/2+ γ always).

Proof Base case (t = 1). For any k ∈ [N], since t = 1 there are no weak hypotheses from previous

stages, so the value of the rejection sampling parameter px is determined by the bit f (x) = z (see

Definition 17). Hence P1,k is a convex combination of two distributions which we call D1 and

D−1. For b ∈ {−1,1}, a draw of (x = (z,ω); f (x) = z) from Db is obtained by setting z = b and

independently setting each coordinate ωi equal to z with probability 1/2+ γ. Thus in the convex

combination P1,k of D1 and D−1, we also have that ω1 equals z (that is, f (x)) with probability

1/2+ γ. So the base case is done.

Inductive step (t > 1). Thanks to the conditional independence of different coordinates ωi given

the value of z in a draw from P , the proof is quite similar to the base case.

Fix any k ∈ [N]. The inductive hypothesis and the weak learner’s strategy together imply that

for each labeled example (x = (z,ω), f (x) = z), since hs,ℓ(x) = ωs for s < t, the rejection sampling

parameter px = αt,k(h1,1(x), . . . ,ht−1,N(x), f (x)) is determined by ω1, . . . ,ωt−1 and z and does not

depend on ωt ,ωt+1, .... Consequently the distribution Pt,k over labeled examples is some convex

combination of 2t distributions which we denote Db, where b ranges over {−1,1}t corresponding

to conditioning on all possible values for ω1, . . . ,ωt−1,z. For each b=(b1, . . . ,bt)∈{−1,1}t , a draw

of (x=(z,ω); f (x)= z) from Db is obtained by setting z= bt , setting (ω1, . . . ,ωt−1)= (b1, . . . ,bt−1),
and independently setting each other coordinate ω j ( j≥ t) equal to z with probability 1/2+γ. In par-

ticular, because ωt is conditionally independent of ω1, ...,ωt−1 given z, Pr(ωt = z|ω1 = b1, ...,ωt−1 =
bt−1) = Pr(ωt = z) = 1/2+ γ. Thus in the convex combination Pt,k of the different Db’s, we also

have that ωt equals z (that is, f (x)) with probability 1/2+ γ. This concludes the proof of the lemma

and the proof of Theorem 18.

4. Conclusion

There are many natural directions for future work on understanding the parallel complexity of learn-

ing large-margin halfspaces. One natural goal, of course, is to give an algorithm that provides an

affirmative answer to the main question. But it is not clear to us that such an algorithm must actually

exist, and so another intriguing direction is to prove negative results giving evidence that parallel

learning of large-margin halfspaces is computationally hard.

As one example of a possible negative result, perhaps it is the case that (assuming P 6= NC)

there is no poly(n)-processor, polylog(n)-time algorithm with the following performance guaran-

tee: given a sample of poly(n) many n-dimensional labeled examples that are consistent with some

1/poly(n)-margin halfspace, the algorithm outputs a consistent halfspace hypothesis. A stronger

result would be that no such algorithm can even output a halfspace hypothesis which is consistent
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with 99% (or 51%) of the labeled examples. Because of the requirement of a halfspace represen-

tation for the hypothesis such results would not directly contradict the main question, but they are

contrary to it in spirit. We view the possibility of establishing such negative results as an interesting

direction worthy of future study.
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Appendix A. Proof of Lemma 2

First, let us establish that we can “boost the confidence” efficiently. Suppose we have an algorithm

that achieves accuracy 1− ε in parallel time T ′′ with probability cδ. Then we can run O(log(1/δ))
copies of this algorithm in parallel, then test each of their hypotheses in parallel using O(log(1/δ)/ε)
examples. The tests of individual examples can be done in parallel, and we can compute each

empirical error rate in O(log(1/ε)+ log log(1/δ)) time. Then we can output the hypothesis with the

best accuracy on this additional test data. Finding the best hypothesis takes at most O(log log(1/δ))
parallel time (with polynomially many processors). The total parallel time taken is then O(T ′′+
log(1/ε)+ log log(1/δ)).

So now, we have as a subproblem the problem of achieving accuracy 1−ε with constant proba-

bility, say 1/2.

The theorem statement assumes that we have as a subroutine an algorithm A that achieves con-

stant accuracy with constant probability in time T . Using the above reduction, we can use A to get

an algorithm A′ that achieves constant accuracy with probability 1− c/ log(1/ε) (for a constant c)

in T ′ = O(T + log loglog(1/ε)) time. We will use such an algorithm A′. (Note that the time taken

by A′ is an upper bound on the number of examples needed by A′.)
Algorithm B runs a parallel version of a slight variant of the “boosting-by-filtering” algorithm

due to Freund (1995), using A′ as a weak learner. Algorithm B uses parameters α and T :

• For rounds t = 0, ...,T −1

– draw m = 2T α
ε max{T ′,4ln 32T 2α

ε } examples, call them

St = {(xt,1,yt,1), ...,(xt,m,yt,m)}.

– for each i = 1, ...,m,

∗ let rt,i be the the number of previous base classifiers h0,...,ht−1 that are correct on

(xt,i,yt,i), and

∗ wt,i =
(

T−t−1

⌊ T
2 ⌋−rt,i

)

( 1
2
+α)⌊ T

2 ⌋−rt,i( 1
2
−α)⌈ T

2 ⌉−t−1+rt,i ,

– let wt,max = maxr

(

T−t−1

⌊ T
2 ⌋−r

)

( 1
2
+α)⌊ T

2 ⌋−r( 1
2
−α)⌈ T

2 ⌉−t−1+r be the largest possible value

that any wt,i could take,

– apply the rejection method as follows: for each i ∈ St ,

∗ choose ut,i uniformly from [0,1],
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∗ if ut,i ≤ wt,i

wt,max
, set at,i = 1

– if there is a j such that j >
T αwt,max

ε max
{

∑
j
i=1 at,i,4ln

16T 2αwt,max

ε(1−ε)

}

∗ output a hypothesis ht that predicts randomly,

∗ otherwise, pass the examples in St to Algorithm A′, which returns ht .

• Output the classifier obtained by taking a majority vote over h0, ...,hT−1.

The only difference between algorithm B, as described above, and the way the algorithm is

described by Freund (1995) is that, in the above description, a batch of examples is chosen at the

beginning of the round. The number of examples is set using Freund’s upper bound on the number

of examples that can be chosen in a given round (see the displayed equation of the boost-by-majority

paper (Freund, 1995) immediately before (18)). In Freund’s description of this algorithm, once the

condition which causes the algorithm to output a random hypothesis is reached, the algorithm stops

sampling, but, for a parallel version, it is convenient to sample all of the examples for a round in

parallel.

Freund (1995) proves that, if α is a constant depending only on the accuracy of the hypotheses

output by A′, then T = O(log(1/ε)) suffices for algorithm B to output a hypothesis with accuracy

1− ε with probability 1/2. So the parallel time taken is O(log(1/ε)) times the time taken in each

iteration.

Let us now consider the time taken in each iteration. The weights for the various examples can

be computed in parallel. The value of wt,i is a product of O(T ) quantities, each of which can be

expressed using T bits, and can therefore be computed in O(poly(logT )) = O(poly(log log(1/ε)))
parallel time, as can wt,max. The rejection step also may be done in O(poly(log log(1/ε))) time in

parallel for each example. To check whether there is a j such that

j >
T αwt,max

ε
max

{

j

∑
i=1

at,i,4ln
16T 2αwt,max

ε(1− ε)

}

,

Algorithm B can compute the prefix sums ∑
j
i=1 at,i, and then test them in parallel. The prefix sums

can be computed in log(T ) parallel rounds (each on log(T )-bit numbers), using the standard tech-

nique of placing the values of at,i on the leaves of a binary tree, and working up from the leaves to

the root, computing the sums of subtrees, then making a pass down the tree, passing each node’s

sum to its right child, and using these to compute prefix sums in the obvious way.

Appendix B. Proof of Lemma 5

Algorithm ANes is a special case of the algorithm of (2.2.11) on page 81 of the book by Nesterov

(2004), obtained by setting y0← 0 and x0← 0. The bound of Lemma 5 is a consequence of Theorem

2.2.3 on page 80 of Nesterov’s book. This Theorem applies to all functions f that are µ-strongly

convex, and continuously differentiable with a gradient that is L-Lipschitz (see pages 71, 63 and

20). Lemmas 3 and 4 of this paper imply that Theorem 2.2.3 of Nesterov’s book applies to Ψ.

Plugging directly into Theorem 2.2.3 (in the special case of (2.2.11))

Ψ(vk)−Ψ(w)≤ 4L

(2
√

L+ k
√

µ)2
(Ψ(0)−Ψ(w)+µ||w||2)

which implies the Lemma 5, since Ψ(0)≤ 1 and Ψ(w)≥ 0.
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Appendix C. Proof of Lemma 7

First, we prove

Pr
A
[ Pr
x′∼D ′

[

||x′||> 2
]

> γ4/2] < 1/200. (2)

Recall that we sample x′ from D′ by first sampling x from a distribution D over Bn (so that

||x||= 1), and then setting x′ = (1/
√

d)xA, so that (2) is equivalent to

Pr
A
[ Pr
x∼D

[

||xA||> 2
√

d
]

> γ4/2] < 1/200.

Corollary 1 of the paper of Arriaga and Vempala (2006) directly implies that, for any x in Bn, we

have

Pr
A
[||xA|| ≥ 2

√
d]≤ 2e−

d
32 ,

so

Ex∈D[Pr
A
[||xA|| ≥ 2

√
d]]≤ 2e−

d
32 ,

which implies

EA[ Pr
x∈D

[||xA|| ≥ 2
√

d]]≤ 2e−
d
32 .

Applying Markov’s inequality,

Pr
A
[ Pr
x∈D

[||xA|| ≥ 2
√

d]> 400e−
d
32 ]≤ 1/200.

Setting d = O(log(1/γ)) then suffices to establish (2).

Now, we want to show that d = O((1/γ2) log(1/γ)) suffices to ensure that

Pr
A

[

Pr
x′∼D ′

[∣

∣

∣

∣

w′

‖w′‖ ·x
′
∣

∣

∣

∣

< γ/2

]

> γ4/2

]

≤ 1/200.

As above, Corollary 1 of the paper by Arriaga and Vempala (2006) directly implies that there is

an absolute constant c1 > 0 such that

Pr
A
[||w′||= ||(1/

√
d)wA||> 3/2]≤ 2e−c1d .

Furthermore, for any x ∈ Bn, Corollary 2 of the paper by Arriaga and Vempala (2006) directly

implies that there is an absolute constant c2 > 0 such that

Pr
A
[w′ ·x′ ≤ 3γ/4]≤ 4e−c2γ2d .

Thus,

Pr
A

[

w′

||w′|| ·x
′ ≤ γ/2

]

≤ 2e−c1d +4e−c2γ2d .

Arguing as above, we have

Ex∈D

[

Pr
A

[

w′

||w′|| ·x
′ ≤ γ/2

]]

≤ 2e−c1d +4e−c2γ2d ,

EA

[

Pr
x∈D

[

w′

||w′|| ·x
′ ≤ γ/2

]]

≤ 2e−c1d +4e−c2γ2d ,

Pr
A

[

Pr
x∈D

[

w′

||w′|| ·x
′ ≤ γ/2

]

> 200(2e−c1d +4e−c2γ2d)

]

≤ 1/200,
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from which d = O((1/γ2) log(1/γ)) suffices to get

Pr
A

[

Pr
x∈D

[

w′

||w′|| ·x
′ ≤ γ/2

]

> γ4/2

]

≤ 1/200,

completing the proof.

Appendix D. Proof of Lemma 13

First, Ar finds a rough guess u1 such that

√
z/2≤ u1 ≤

√
z. (3)

This can be done by checking in parallel, for each of θ∈{1/2L,1/2L−1, ...,1/2,1,2, ...,2L}, whether√
z≥ θ, and outputting the largest such θ. This first step takes O(logL) time using O(L) processors.

Then, using u1 as the initial solution, Ar runs Newton’s method to find a root of the function f

defined by f (u) = u2− z, repeatedly

uk+1 =
1

2

(

uk +
z

uk

)

. (4)

As we will see below, this is done for k = 1, . . . ,O(logL+ log log(1/β)). Using the fact that the

initial value u1 is an L-bit rational number, a straightforward analysis using (4) shows that for all

k ≤ O(logL+ log log(1/β)) the number uk is a rational number with poly(L, log(1/β)) bits (if bk

is the number of bits required to represent uk, then bk+1 ≤ 2bk +O(L)). Standard results on the

parallel complexity of integer multiplication thus imply that for k ≤ O(logL+ log log(1/β)) the

exact value of uk can be computed in the parallel time and processor bounds claimed by the Lemma.

To prove the Lemma, then, it suffices to show that taking k = O(logL+ log log(1/β)) gives the

desired accuracy; we do this next.

The Newton iterates defined by (4) satisfy

uk+1−
√

z

uk+1 +
√

z
=

(

uk−
√

z

uk +
√

z

)2

(see Weisstein, 2011), which, using induction, gives

uk+1−
√

z

uk+1 +
√

z
=

(

u1−
√

z

u1 +
√

z

)2k

.

Solving for uk+1 yields

uk+1 =
√

z







1+
(

u1−
√

z

u1+
√

z

)2k

1−
(

u1−
√

z

u1+
√

z

)2k






=
√

z






1+

2
(

u1−
√

z

u1+
√

z

)2k

1−
(

u1−
√

z

u1+
√

z

)2k






.

Thus,

uk+1−
√

z =
2
√

z
(

u1−
√

z

u1+
√

z

)2k

1−
(

u1−
√

z

u1+
√

z

)2k
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and, therefore, to get |uk+1−
√

z| ≤ β, we only need

(

u1−
√

z

u1 +
√

z

)2k

≤min

{

β

4
√

z
,1/2

}

.

Applying (3),

(1/4)2k ≤min

{

β

4
√

z
,1/2

}

also suffices, and, solving for k, this means that

O(log logz+ log log(1/β)) = O(logL+ log log(1/β))

iterations are enough.
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Abstract

This paper examines the efficacy of sampling-based low-rank approximation techniques when ap-

plied to large dense kernel matrices. We analyze two common approximate singular value decom-

position techniques, namely the Nyström and Column sampling methods. We present a theoretical

comparison between these two methods, provide novel insights regarding their suitability for vari-

ous tasks and present experimental results that support our theory. Our results illustrate the relative

strengths of each method. We next examine the performance of these two techniques on the large-

scale task of extracting low-dimensional manifold structure given millions of high-dimensional

face images. We address the computational challenges of non-linear dimensionality reduction via

Isomap and Laplacian Eigenmaps, using a graph containing about 18 million nodes and 65 million

edges. We present extensive experiments on learning low-dimensional embeddings for two large

face data sets: CMU-PIE (35 thousand faces) and a web data set (18 million faces). Our compar-

isons show that the Nyström approximation is superior to the Column sampling method for this

task. Furthermore, approximate Isomap tends to perform better than Laplacian Eigenmaps on both

clustering and classification with the labeled CMU-PIE data set.

Keywords: low-rank approximation, manifold learning, large-scale matrix factorization

1. Introduction

Kernel-based algorithms (Schölkopf and Smola, 2002) are a broad class of learning algorithms with

rich theoretical underpinnings and state-of-the-art empirical performance for a variety of problems,

for example, Support Vector Machines (SVMs) and Kernel Logistic Regression (KLR) for classifi-

c©2013 Ameet Talwalkar, Sanjiv Kumar, Mehryar Mohri and Henry Rowley.
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cation, Support Vector Regression (SVR) and Kernel Ridge Regression (KRR) for regression, Ker-

nel Principle Component Analysis (KPCA) for non-linear dimensionality reduction, SVM-Rank for

ranking, etc. Despite the favorable properties of kernel methods in terms of theory, empirical per-

formance and flexibility, scalability remains a major drawback. Given a set of n datapoints, these

algorithms require O(n2) space to store the kernel matrix. Furthermore, they often require O(n3)

time, requiring matrix inversion, Singular Value Decomposition (SVD) or quadratic programming

in the case of SVMs. For large-scale data sets, both the space and time requirements quickly become

intractable. Various optimization methods have been introduced to speed up kernel methods, for ex-

ample, SMO (Platt, 1999), shrinking (Joachims, 1999), chunking (Boser et al., 1992), parallelized

SVMs (Chang et al., 2008) and parallelized KLR (Mann et al., 2009). However for large-scale

problems, the storage and processing costs can nonetheless be intractable.

In this work,1 we focus on an attractive solution to this problem that involves efficiently gen-

erating low-rank approximations to the kernel matrix. Low-rank approximation appears in a wide

variety of applications including lossy data compression, image processing, text analysis and cryp-

tography, and is at the core of widely used algorithms such as Principle Component Analysis, Mul-

tidimensional Scaling and Latent Semantic Indexing. Moreover, kernel matrices can often be well

approximated by low-rank matrices, the latter of which are much easier to store and operate on.

Although SVD can be used to find ‘optimal’ low-rank approximations, SVD requires storage of the

full kernel matrix and the runtime is superlinear in n, and hence does not scale well for large-scale

applications.

For matrices of special form such as tridiagonal matrices, fast parallelized decomposition al-

gorithms exist (Dhillon and Parlett, 2004), but such methods are not generally applicable. Kernel

functions are sometimes chosen to yield sparse kernel matrices. When dealing with these sparse

matrices, iterative methods such as the Jacobi or Arnoldi techniques (Golub and Loan, 1983) can be

used to compute a compact SVD. More recent methods based on random projections (Halko et al.,

2009) and statistical leverage scores (Mahoney, 2011) can yield high-quality approximations more

efficiently than these standard iterative methods for sparse matrices. However, all of these methods

require operating on the full matrix, and in applications where the associated kernel matrices are

dense, working with full kernel matrix can be intractable. For instance, given a data set of 18M

data points, as in application presented in this work, storing a dense kernel matrix would require

1300TB, and even if we could somehow store it, performing O(n2) operations would be infeasible.

When working with large dense matrices, sampling-based techniques provide a powerful alter-

native, as they construct low-rank matrices that are nearly ‘optimal’ while also having linear space

and time constraints with respect to n. In this work, we focus on two commonly used sampling-

based techniques, the Nyström method (Williams and Seeger, 2000) and the Column sampling

method (Frieze et al., 1998). The Nyström approximation has been studied in the machine learn-

ing community (Williams and Seeger, 2000; Drineas and Mahoney, 2005), while Column sampling

techniques have been analyzed in the theoretical Computer Science community (Frieze et al., 1998;

Drineas et al., 2006; Deshpande et al., 2006). However, the relationship between these approxima-

tions had not been well studied. Here we provide an extensive theoretical analysis of these algo-

rithms, show connections between these approximations and provide a direct comparison between

their performances.

1. Portions of this work have previously appeared in preliminary forms in the Conference on Vision and Pattern Recog-

nition (Talwalkar et al., 2008) and the International Conference on Machine Learning (Kumar et al., 2009).
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We then examine the performance of these two low-rank approximation techniques on the task

of extracting low-dimensional manifold structure given millions of high-dimensional face images.

The problem of dimensionality reduction arises in many computer vision applications where it is

natural to represent images as vectors in a high-dimensional space. Manifold learning techniques

extract low-dimensional structure from high-dimensional data in an unsupervised manner. This

makes certain applications such as K-means clustering more effective in the transformed space.

Instead of assuming global linearity as in the case of linear dimensionality reduction techniques,

manifold learning methods typically make a weaker local-linearity assumption, that is, for nearby

points in high-dimensional input space, l2 distance is assumed to be a good measure of geodesic

distance, or distance along the manifold. Good sampling of the underlying manifold is essential

for this assumption to hold. In fact, many manifold learning techniques provide guarantees that the

accuracy of the recovered manifold increases as the number of data samples increases (Tenenbaum

et al., 2000; Donoho and Grimes, 2003). However, there is a trade-off between improved sampling

of the manifold and the computational cost of manifold learning algorithms, and we explore these

computational challenges in this work.

We focus on Isomap (Tenenbaum et al., 2000) and Laplacian Eigenmaps (Belkin and Niyogi,

2001), as both methods have good theoretical properties and the differences in their approaches

allow us to make interesting comparisons between dense and sparse methods. Isomap in particular

involves storing and operating on a dense similarity matrix, and although the similarity matrix is not

guaranteed to be positive definite,2 sampling-based low-rank approximation is a natural approach

for scalability, as previously noted by de Silva and Tenenbaum (2003) in the context of the Nyström

method. Hence, in this work we evaluate the efficacy of the Nyström method and the Column

sampling method on the task of large-scale manifold learning. We also discuss our efficient im-

plementation of a scalable manifold learning pipeline that leverages modern distributed computing

architecture in order to construct neighborhood graphs, calculate shortest paths within these graphs

and finally compute large-scale low-rank matrix approximations.

We now summarize our main contributions. First, we show connections between two random

sampling based singular value decomposition algorithms and provide the first direct comparison of

their performances on a variety of approximation tasks. In particular, we show that the Column

sampling method is superior for approximating singular values, singular vectors and matrix pro-

jection approximations (defined in Section 3.2), while the Nyström method is better for spectral

reconstruction approximations (also defined in Section 3.2), which are most relevant in the context

of low-rank approximation of large dense matrices. Second, we apply these two algorithms to the

task of large-scale manifold learning and present the largest scale study so far on manifold learning,

using 18M data points. To date, the largest manifold learning study involves the analysis of music

data using 267K points (Platt, 2004).

2. Preliminaries

In this section, we introduce notation and present basic definitions of two of the most common

sampling-based techniques for matrix approximation.

2. In the limit of infinite samples, Isomap can be viewed as an instance of Kernel PCA (Ham et al., 2004).
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2.1 Notation and Problem Setting

For a matrix T ∈ R
a×b, we define T( j), j = 1 . . .b, as the jth column vector of T and T(i), i =

1 . . .a, as the ith row vector of T. We denote by Tk the ‘best’ rank-k approximation to T, that is,

Tk = argminV∈Ra×b,rank(V)=k‖T−V‖ξ, where ξ ∈ {2,F}, ‖·‖2 denotes the spectral norm and ‖·‖F

the Frobenius norm of a matrix. Assuming that rank(T) = r, we can write the compact Singular

Value Decomposition (SVD) of this matrix as T = UTΣT V⊤
T where ΣT is diagonal and contains the

singular values of T sorted in decreasing order and UT ∈ R
a×r and VT ∈ R

b×r are corresponding

the left and right singular vectors of T. We can then describe Tk in terms of its SVD as Tk =
UT,kΣT,kV⊤

T,k. Let K ∈ R
n×n be a symmetric positive semidefinite (SPSD) kernel or Gram matrix

with rank(K) = r ≤ n. We will write the SVD of K as K = UΣU⊤, and the pseudo-inverse of

K as K+ = ∑r
t=1 σ−1

t U(t)U(t)⊤. For k < r, Kk = ∑k
t=1 σtU

(t)U(t)⊤ = UkΣkU⊤
k is the ‘best’ rank-k

approximation to K.

We focus on generating an approximation K̃ of K based on a sample of l ≪ n of its columns. We

assume that we sample columns uniformly without replacement as suggested by Kumar et al. (2012)

and motivated by the connection between uniform sampling and matrix incoherence (Talwalkar and

Rostamizadeh, 2010; Mackey et al., 2011), though various methods have been proposed to select

columns (see Chapter 4 of Talwalkar (2010) for more details on various sampling schemes). Let C

denote the n× l matrix formed by these columns and W the l× l matrix consisting of the intersection

of these l columns with the corresponding l rows of K. Note that W is SPSD since K is SPSD.

Without loss of generality, the columns and rows of K can be rearranged based on this sampling so

that K and C be written as follows:

K =

[
W K⊤

21

K21 K22

]
and C =

[
W

K21

]
. (1)

The approximation techniques discussed next use the SVD of W and C to generate approximations

for K.

2.2 Nyström Method

The Nyström method was first introduced as a quadrature method for numerical integration, used to

approximate eigenfunction solutions (Nyström, 1928). More recently, it was presented in Williams

and Seeger (2000) to speed up kernel algorithms and has been used in applications ranging from

manifold learning to image segmentation (Platt, 2004; Fowlkes et al., 2004; Talwalkar et al., 2008).

The Nyström method uses W and C from (1) to approximate K. Assuming a uniform sampling of

the columns, the Nyström method generates a rank-k approximation K̃ of K for k < n defined by:

K̃
nys
k = CW+

k C⊤ ≈ K, (2)

where Wk is the best k-rank approximation of W with respect to the spectral or Frobenius norm and

W+
k denotes the pseudo-inverse of Wk. If we write the SVD of W as W = UWΣW U⊤

W , then from

(2) we can write

K̃
nys
k = CUW,kΣ

+
W,kU⊤

W,kC⊤ =

(√
l

n
CUW,kΣ

+
W,k

)(
n

l
ΣW,k

)(√
l

n
CUW,kΣ

+
W,k

)⊤

,
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and hence the Nyström method approximates the top k singular values and vectors of K as:

Σ̃nys =
(n

l

)
ΣW,k and Ũnys =

√
l

n
CUW,kΣ

+
W,k. (3)

The time complexity of compact SVD on W is in O(l2k) and matrix multiplication with C takes

O(nlk), hence the total complexity of the Nyström approximation is in O(nlk).

2.3 Column Sampling Method

The Column sampling method was introduced to approximate the SVD of any rectangular matrix

(Frieze et al., 1998). It generates approximations of K by using the SVD of C.3 If we write the SVD

of C as C = UCΣCV⊤
C then the Column sampling method approximates the top k singular values

(Σk) and singular vectors (Uk) of K as:

Σ̃col =

√
n

l
ΣC,k and Ũcol = UC = CVC,kΣ

+
C,k. (4)

The runtime of the Column sampling method is dominated by the SVD of C. The algorithm takes

O(nlk) time to perform compact SVD on C, but is still more expensive than the Nyström method as

the constants for SVD are greater than those for the O(nlk) matrix multiplication step in the Nyström

method.

3. Nyström Versus Column Sampling

Given that two sampling-based techniques exist to approximate the SVD of SPSD matrices, we pose

a natural question: which method should one use to approximate singular values, singular vectors

and low-rank approximations? We next analyze the form of these approximations and empirically

evaluate their performance in Section 3.3.

3.1 Singular Values and Singular Vectors

As shown in (3) and (4), the singular values of K are approximated as the scaled singular values

of W and C, respectively. The scaling terms are quite rudimentary and are primarily meant to

compensate for the ‘small sample size’ effect for both approximations. Formally, these scaling

terms make the approximations in (3) and (4) unbiased estimators of the true singular values. The

form of singular vectors is more interesting. The Column sampling singular vectors (Ũcol) are

orthonormal since they are the singular vectors of C. In contrast, the Nyström singular vectors

(Ũnys) are approximated by extrapolating the singular vectors of W as shown in (3), and are not

orthonormal. As we show in Section 3.3, this adversely affects the accuracy of singular vector

approximation from the Nyström method. It is possible to orthonormalize the Nyström singular

vectors by using QR decomposition. Since Ũnys ∝ CUWΣ
+
W , where UW is orthogonal and ΣW is

diagonal, this simply implies that QR decomposition creates an orthonormal span of C rotated by

UW . However, the complexity of QR decomposition of Ũnys is the same as that of the SVD of C.

Thus, the computational cost of orthogonalizing Ũnys would nullify the computational benefit of the

Nyström method over Column sampling.

3. The Nyström method also uses sampled columns of K, but the Column sampling method is named so because it uses

direct decomposition of C, while the Nyström method decomposes its submatrix, W.
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3.2 Low-rank Approximation

Several studies have empirically shown that the accuracy of low-rank approximations of kernel ma-

trices is tied to the performance of kernel-based learning algorithms (Williams and Seeger, 2000;

Talwalkar and Rostamizadeh, 2010). Furthermore, the connection between kernel matrix approx-

imation and the hypothesis generated by several widely used kernel-based learning algorithms has

been theoretically analyzed (Cortes et al., 2010). Hence, accurate low-rank approximations are of

great practical interest in machine learning. As discussed in Section 2.1, the optimal Kk is given by,

Kk = UkΣkU⊤
k = UkU⊤

k K = KUkU⊤
k

where the columns of Uk are the k singular vectors of K corresponding to the top k singular values

of K. We refer to UkΣkU⊤
k as Spectral Reconstruction, since it uses both the singular values and

vectors of K, and UkU⊤
k K as Matrix Projection, since it uses only singular vectors to compute the

projection of K onto the space spanned by vectors Uk. These two low-rank approximations are

equal only if Σk and Uk contain the true singular values and singular vectors of K. Since this is

not the case for approximate methods such as Nyström and Column sampling these two measures

generally give different errors. Thus, we analyze each measure separately in the following sections.

3.2.1 MATRIX PROJECTION

For Column sampling using (4), the low-rank approximation via matrix projection is

K̃col
k = Ũcol,kŨ⊤

col,kK = UC,kU⊤
C,kK = C((C⊤C)k)

+C⊤K, (5)

where (C⊤C)−1
k = VC,k(Σ

2
C,k)

+V⊤
C,k. Clearly, if k = l, (C⊤C)k = C⊤C. Similarly, using (3), the

Nyström matrix projection is

K̃
nys
k = Ũnys,kŨ⊤

nys,kK =
l

n
C(W2

k)
+C⊤K. (6)

As shown in (5) and (6), the two methods have similar expressions for matrix projection, except

that C⊤C is replaced by a scaled W2. The scaling term appears only in the expression for the

Nyström method. We now present Theorem 1 and Observations 1 and 2, which provide further

insights about these two methods in the context of matrix projection.

Theorem 1 The Column sampling and Nyström matrix projections are of the form UCRU⊤
C K, where

R ∈ R
l×l is SPSD. Further, Column sampling gives the lowest reconstruction error (measured in

‖·‖F) among all such approximations if k = l.

Observation 1 For k = l, matrix projection for Column sampling reconstructs C exactly. This can

be seen by block-decomposing K as: K = [C C̄], where C̄ = [K21 K22]
⊤, and using (5):

K̃col
l = C(C⊤C)+C⊤K = [C C(C⊤C)+C⊤C̄] = [C C̄].

Observation 2 For k = l, the span of the orthogonalized Nyström singular vectors equals the span

of Ũcol , as discussed in Section 3.1. Hence, matrix projection is identical for Column sampling and

Orthonormal Nyström for k = l.

Matrix projection approximations are not necessarily symmetric and require storage of and mul-

tiplication with K. Hence, although matrix projection is often analyzed theoretically, for large-scale

problems, the storage and computational requirements may be inefficient or even infeasible.
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Data Set Data n d Kernel

PIE-2.7K faces 2731 2304 linear

PIE-7K faces 7412 2304 linear

MNIST digits 4000 784 linear

ESS proteins 4728 16 RBF

ABN abalones 4177 8 RBF

Table 1: Description of the data sets used in our experiments comparing sampling-based matrix

approximations (Sim et al., 2002; LeCun and Cortes, 1998; Talwalkar et al., 2008). ‘n’

denotes the number of points and ‘d’ denotes the data dimensionality, that is, the number

of features in input space.

3.2.2 SPECTRAL RECONSTRUCTION

Using (3), the Nyström spectral reconstruction is:

K̃
nys
k = Ũnys,kΣ̃nys,kŨ⊤

nys,k = CW+
k C⊤. (7)

When k= l, this approximation perfectly reconstructs three blocks of K, and K22 is approximated

by the Schur Complement of W in K. The Column sampling spectral reconstruction has a similar

form as (7):

K̃col
k = Ũcol,kΣ̃col,kŨ⊤

col,k =
√

n/l C
(
(C⊤C)

1
2

k

)+
C⊤. (8)

In contrast with matrix projection, the scaling term now appears in the Column sampling reconstruc-

tion. To analyze the two approximations, we consider an alternative characterization using the fact

that K = X⊤X for some X ∈ R
N×n. We define a zero-one sampling matrix, S ∈ R

n×l , that selects l

columns from K, that is, C = KS. Further, W = S⊤KS = X′⊤X′, where X′ ∈ R
N×l contains l sam-

pled columns of X and X′ = UX ′ΣX ′V⊤
X ′ is the SVD of X′. We now present two results. Theorem 2

shows that the optimal spectral reconstruction is data dependent and may differ from the Nyström

and Column sampling approximations. Moreover, Theorem 3 reveals that in certain instances the

Nyström method is optimal, while the Column sampling method enjoys no such guarantee.

Theorem 2 Column sampling and Nyström spectral reconstructions of rank k are of the form

X⊤UX ′,kZU⊤
X ′,kX, where Z ∈R

k×k is SPSD. Further, among all approximations of this form, neither

the Column sampling nor the Nyström approximation is optimal (in ‖·‖F).

Theorem 3 Let r = rank(K)≤ k ≤ l and rank(W) = r. Then, the Nyström approximation is exact

for spectral reconstruction. In contrast, Column sampling is exact iff W =
(
(l/n)C⊤C

)1/2
.

3.3 Empirical Comparison

To test the accuracy of singular values/vectors and low-rank approximations for different methods,

we used several kernel matrices arising in different applications, as described in Table 3.3. We

worked with data sets containing less than ten thousand points to be able to compare with exact

SVD. We fixed k to be 100 in all the experiments, which captures more than 90% of the spectral

energy for each data set.
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For singular values, we measured percentage accuracy of the approximate singular values with

respect to the exact ones. For a fixed l, we performed 10 trials by selecting columns uniformly at

random from K. We show in Figure 1(a) the difference in mean percentage accuracy for the two

methods for l = n/10, with results bucketed by groups of singular values, that is, we sorted the

singular values in descending order, grouped them as indicated in the figure, and report the average

percentage accuracy for each group. The empirical results show that the Column sampling method

generates more accurate singular values than the Nyström method. A similar trend was observed

for other values of l.

For singular vectors, the accuracy was measured by the dot product, that is, cosine of principal

angles between the exact and the approximate singular vectors. Figure 1(b) shows the difference in

mean accuracy between Nyström and Column sampling methods, once again bucketed by groups of

singular vectors sorted in descending order based on their corresponding singular values. The top

100 singular vectors were all better approximated by Column sampling for all data sets. This trend

was observed for other values of l as well. Furthermore, even when the Nyström singular vectors

are orthogonalized, the Column sampling approximations are superior, as shown in Figure 1(c).
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Figure 1: Comparison of singular values and vectors (values above zero indicate better performance

of Nyström). (a) Top 100 singular values with l = n/10. (b) Top 100 singular vectors with

l = n/10. (c) Comparison using orthogonalized Nyström singular vectors.

Next we compared the low-rank approximations generated by the two methods using matrix

projection and spectral reconstruction. We measured the accuracy of reconstruction relative to the

optimal rank-k approximation, Kk, via relative accuracy = ‖K−Kk‖F

‖K−K̃
nys/col

k ‖F

, which will approach one

for good approximations. As motivated by Theorem 1, Column sampling generates better recon-

structions via matrix projection (Figure 2(a)). In contrast, the Nyström method produces superior

results for spectral reconstruction (Figure 2(b)). These results may appear somewhat surprising

given the relatively poor quality of the singular values/vectors for the Nyström method, but they are

in agreement with the consequences of Theorem 3 and the fact that the kernel matrices we consider

(aside from ‘DEXT’) are nearly low-rank. Moreover, the performance of these two approximations

are indeed tied to the spectrum of K as stated in Theorem 2. Indeed, we found that the two ap-

proximations were roughly equivalent for a sparse kernel matrix with slowly decaying spectrum

(‘DEXT’ in Figure 2(b)), while the Nyström method was superior for dense kernel matrices with

exponentially decaying spectra arising from the other data sets used in the experiments.
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Figure 2: Plots (a)-(e) compare performance of various matrix approximations, and in all cases

values above zero indicate better performance of the first listed method. (a) Matrix pro-

jection, Nyström versus Column sampling, k = 100. (b) Spectral reconstruction, Nyström

versus Column sampling, k = 100. (c) Matrix projection, Orthonormal Nyström versus

Column sampling, k = 100. (d) Spectral reconstruction, Nyström versus Orthonormal

Nyström, k = 100. (e) Spectral reconstruction, Nyström versus Column sampling vary-

ing ranks. (f) Percentage of columns (l/n) needed to achieve 75% relative accuracy for

Nyström spectral reconstruction as a function of n.

The non-orthonormality of the Nyström method’s singular vectors (Section 3.1) is one factor

that impacts its accuracy for some tasks. When orthonormalized, the Nyström matrix projection

error is reduced considerably as shown in Figure 2(c), and supported by Observation 2. Also, the

accuracy of Orthonormal Nyström spectral reconstruction is worse relative to the standard Nyström

approximation, as shown in Figure 2(d). This result can be attributed to the fact that orthonormal-

ization of the singular vectors leads to the loss of some of the unique properties described in Section

3.2.2. For instance, Theorem 3 no longer holds and the scaling terms do not cancel out, that is,

K̃
nys
k 6= CW+

k C⊤.

We next tested the accuracy of spectral reconstruction for the two methods for varying values of

k and a fixed l. We found that the Nyström method outperforms Column sampling across all tested

values of k, as shown in Figure 2(e). Next, we addressed another basic issue: how many columns

do we need to obtain reasonable reconstruction accuracy? We performed an experiment in which

we fixed k and varied the size of our data set (n). For each n, we performed grid search over l to find

the minimal l for which the relative accuracy of Nyström spectral reconstruction was at least 75%.
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Figure 2(f) shows that the required percentage of columns (l/n) decreases quickly as n increases,

lending support to the use of sampling-based algorithms for large-scale data.

Finally, we note another important distinction between the Nyström method and Column sam-

pling, namely, out-of-sample extension. Out-of-sample extension is often discussed in the context

of manifold learning, in which case it involves efficiently deriving a low-dimensional embedding for

an arbitrary test point given embeddings from a set of training points (rather than rerunning the en-

tire manifold learning algorithm). The Nyström method naturally lends itself to such out-of-sample

extension, as a new point can be processed based on extrapolating from the sampled points (de Silva

and Tenenbaum, 2003). Moreover, it is possible to use Column sampling to learn embeddings on the

initial sample, and then use the Nyström method for subsequent out-of-sample-extension. Hence,

given a large set of samples, both the Nyström method and Column sampling are viable options to

enhance the scalability of manifold learning methods, as we will explore in Section 4.

4. Large-scale Manifold Learning

In the previous section, we discussed two sampling-based techniques that generate approximations

for kernel matrices. Although we analyzed the effectiveness of these techniques for approximat-

ing singular values, singular vectors and low-rank matrix reconstruction, we have yet to discuss

the effectiveness of these techniques in the context of actual machine learning tasks. In fact, the

Nyström method has been shown to be successful on a variety of learning tasks including Support

Vector Machines (Fine and Scheinberg, 2002), Gaussian Processes (Williams and Seeger, 2000),

Spectral Clustering (Fowlkes et al., 2004), Kernel Ridge Regression (Cortes et al., 2010) and more

generally to approximate regularized matrix inverses via the Woodbury approximation (Williams

and Seeger, 2000). In this section, we will discuss how approximate embeddings can be used in the

context of manifold learning, relying on the sampling based algorithms from the previous section

to generate an approximate SVD. We present the largest study to date for manifold learning, and

provide a quantitative comparison of Isomap and Laplacian Eigenmaps for large scale face manifold

construction on clustering and classification tasks.

4.1 Manifold Learning

Manifold learning aims to extract low-dimensional structure from high-dimensional data. Given

n input points, X = {xi}
n
i=1 and xi ∈ R

d , the goal is to find corresponding outputs Y = {yi}
n
i=1,

where yi ∈ R
k, k ≪ d, such that Y ‘faithfully’ represents X. Several manifold learning techniques

have been proposed, for example, Isomap (Tenenbaum et al., 2000), Laplacian Eigenmaps (Belkin

and Niyogi, 2001), Local Linear Embedding (LLE) (Roweis and Saul, 2000), Hessian Eigenmaps

(Donoho and Grimes, 2003), Structural Preserving Embedding (SPE) (Shaw and Jebara, 2009) and

Semidefinite Embedding (SDE) (Weinberger and Saul, 2006). Isomap aims to preserve all pair-wise

geodesic distances, whereas LLE, Laplacian Eigenmaps and Hessian Eigenmaps focus on preserv-

ing local neighborhood relationships. SDE and SPE are both formulated as instances of semidefi-

nite programming, and are prohibitively expensive for large-scale problems. We will focus on the

Isomap and Laplacian Eigenmaps algorithms as they are well-studied and highlight the differences

between global versus local manifold learning techniques. We next briefly review the main com-

putational efforts required for both algorithms, which involve neighborhood graph construction and

manipulation and SVD of a symmetric similarity matrix.
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4.1.1 ISOMAP

Isomap aims to extract a low-dimensional data representation that best preserves all pairwise dis-

tances between input points, as measured by their geodesic distances along the manifold (Tenen-

baum et al., 2000). It approximates the geodesic distance assuming that input space distance pro-

vides good approximations for nearby points, and for faraway points it estimates distance as a series

of hops between neighboring points. Isomap involves three steps: i) identifying t nearest neigh-

bors for each point and constructing the associated undirected neighborhood graph in O(n2) time,

ii) computing approximate geodesic distances via the neighborhood graph and converting these dis-

tances into a similarity matrix K via double centering, which overall requires O(n2 logn) time, and

iii) calculating the final embedding of the form Y = (Σk)
1/2U⊤

k , where Σk is the diagonal matrix

of the top k singular values of K and Uk are the associated singular vectors, which requires O(n2)

space for storing K, and O(n3) time for its SVD. The time and space complexities for all three steps

are intractable for n = 18M.

4.1.2 LAPLACIAN EIGENMAPS

Laplacian Eigenmaps aims to find a low-dimensional representation that best preserves local neigh-

borhood relations (Belkin and Niyogi, 2001). The algorithm first computes t nearest neighbors for

each point, from which it constructs a sparse weight matrix W.4 It then minimizes an objective

function that penalizes nearby inputs for being mapped to faraway outputs, with ‘nearness’ mea-

sured by the weight matrix W, and the solution to the objective is the bottom singular vectors of

the symmetrized, normalized form of the graph Laplacian, L . The runtime of this algorithm is

dominated by computing nearest neighbors, since the subsequent steps involve sparse matrices. In

particular, L can be stored in O(tn) space, and iterative methods, such as Lanczos, can be used to

compute its compact SVD relatively quickly.

4.2 Approximation Experiments

Since we use sampling-based SVD approximation to scale Isomap, we first examined how well the

Nyström and Column sampling methods approximated our desired low-dimensional embeddings,

that is, Y = (Σk)
1/2U⊤

k . Using (3), the Nyström low-dimensional embeddings are:

Ỹnys = Σ̃
1/2

nys,kŨ⊤
nys,k =

(
(ΣW )

1/2

k

)+
U⊤

W,kC⊤.

Similarly, from (4) we can express the Column sampling low-dimensional embeddings as:

Ỹcol = Σ̃
1/2

col,kŨ⊤
col,k =

4

√
n

l

(
(ΣC)

1/2

k

)+
V⊤

C,kC⊤.

Both approximations are of a similar form. Further, notice that the optimal low-dimensional

embeddings are in fact the square root of the optimal rank k approximation to the associated SPSD

matrix, that is, Y⊤Y = Kk, for Isomap. As such, there is a connection between the task of approx-

imating low-dimensional embeddings and the task of generating low-rank approximate spectral

reconstructions, as discussed in Section 3.2.2. Recall that the theoretical analysis in Section 3.2.2

4. The weight matrix should not be confused with the subsampled SPSD matrix, W, associated with the Nyström

method. Since sampling-based approximation techniques will not be used with Laplacian Eigenmaps, the notation

should be clear from the context.
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Figure 3: Comparison of embeddings (values above zero indicate better performance of Nyström).

as well as the empirical results in Section 3.3 both suggested that the Nyström method was superior

in its spectral reconstruction accuracy. Hence, we performed an empirical study using the data sets

from Table 3.3 to measure the quality of the low-dimensional embeddings generated by the two

techniques and see if the same trend exists.

We measured the quality of the low-dimensional embeddings by calculating the extent to which

they preserve distances, which is the appropriate criterion in the context of manifold learning. For

each data set, we started with a kernel matrix, K, from which we computed the associated n× n

squared distance matrix, D, using the fact that ‖xi−x j‖
2 = Kii+K j j −2Ki j. We then computed the

approximate low-dimensional embeddings using the Nyström and Column sampling methods, and

then used these embeddings to compute the associated approximate squared distance matrix, D̃. We

measured accuracy using the notion of relative accuracy defined in Section 3.3.

In our experiments, we set k = 100 and used various numbers of sampled columns, ranging

from l = n/50 to l = n/5. Figure 3 presents the results of our experiments. Surprisingly, we do not

see the same trend in our empirical results for embeddings as we previously observed for spectral

reconstruction, as the two techniques exhibit roughly similar behavior across data sets. As a result,

we decided to use both the Nyström and Column sampling methods for our subsequent manifold

learning study.

4.3 Large-scale Learning

In this section, we outline the process of learning a manifold of faces. We first describe the data sets

used in our experiments. We then explain how to extract nearest neighbors, a common step between

Laplacian Eigenmaps and Isomap. The remaining steps of Laplacian Eigenmaps are straightfor-

ward, so the subsequent sections focus on Isomap, and specifically on the computational efforts

required to generate a manifold using Webfaces-18M.5

4.3.1 DATA SETS

We used two faces data sets consisting of 35K and 18M images. The CMU PIE face data set (Sim

et al., 2002) contains 41,368 images of 68 subjects under 13 different poses and various illumination

conditions. A standard face detector extracted 35,247 faces (each 48×48 pixels), which comprised

our 35K set (PIE-35K). Being labeled, this set allowed us to perform quantitative comparisons. The

5. To run Laplacian Eigenmaps, we generated W from nearest neighbor data for the largest component of the neighbor-

hood graph and used a sparse eigensolver to compute the bottom eigenvalues of L .
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second data set, named Webfaces-18M, contains 18.2 million images extracted from the Web using

the same face detector. For both data sets, face images were represented as 2304 dimensional pixel

vectors that were globally normalized to have zero mean and unit variance. No other pre-processing,

for example, face alignment, was performed. In contrast, He et al. (2005) used well-aligned faces

(as well as much smaller data sets) to learn face manifolds. Constructing Webfaces-18M, including

face detection and duplicate removal, took 15 hours using a cluster of 500 machines. We used this

cluster for all experiments requiring distributed processing and data storage.

4.3.2 NEAREST NEIGHBORS AND NEIGHBORHOOD GRAPH

The cost of naive nearest neighbor computation is O(n2), where n is the size of the data set. It

is possible to compute exact neighbors for PIE-35K, but for Webfaces-18M this computation is

prohibitively expensive. So, for this set, we used a combination of random projections and spill

trees (Liu et al., 2004) to get approximate neighbors. Computing 5 nearest neighbors in parallel with

spill trees took ∼2 days on the cluster. Figure 4(a) shows the top 5 neighbors for a few randomly

chosen images in Webfaces-18M. In addition to this visualization, comparison of exact neighbors

and spill tree approximations for smaller subsets suggested good performance of spill trees.

We next constructed the neighborhood graph by representing each image as a node and con-

necting all neighboring nodes. Since Isomap and Laplacian Eigenmaps require this graph to be

connected, we used depth-first search to find its largest connected component. These steps re-

quired O(tn) space and time. Constructing the neighborhood graph for Webfaces-18M and finding

the largest connected component took 10 minutes on a single machine using the OpenFST library

(Allauzen et al., 2007).

For neighborhood graph construction, an ’appropriate’ choice of number of neighbors, t, is

crucial. A small t may give too many disconnected components, while a large t may introduce

unwanted edges. These edges stem from inadequately sampled regions of the manifold and false

positives introduced by the face detector. Since Isomap needs to compute shortest paths in the

neighborhood graph, the presence of bad edges can adversely impact these computations. This is

known as the problem of leakage or ‘short-circuits’ (Balasubramanian and Schwartz, 2002). Here,

we chose t = 5 and also enforced an upper limit on neighbor distance to alleviate the problem

of leakage. We used a distance limit corresponding to the 95th percentile of neighbor distances

in the PIE-35K data set. Figure 4(b) shows the effect of choosing different values for t with and

without enforcing the upper distance limit. As expected, the size of the largest connected component

increases as t increases. Also, enforcing the distance limit reduces the size of the largest component.

See Appendix D for visualizations of various components of the neighborhood graph.

4.3.3 APPROXIMATING GEODESICS

To construct the similarity matrix K in Isomap, one approximates geodesic distance by shortest-path

lengths between every pair of nodes in the neighborhood graph. This requires O(n2 logn) time and

O(n2) space, both of which are prohibitive for 18M nodes. However, since we use sampling-based

approximate decomposition, we need only l ≪ n columns of K, which form the submatrix C. We

thus computed geodesic distance between l randomly selected nodes (called landmark points) and

the rest of the nodes, which required O(ln logn) time and O(ln) space. Since this computation can

easily be parallelized, we performed geodesic computation on the cluster and stored the output in a

distributed fashion. The overall procedure took 60 minutes for Webfaces-18M using l = 10K. The

3141



TALWALKAR, KUMAR, MOHRI AND ROWLEY

No Upper Limit Upper Limit Enforced

t # Comp % Largest # Comp % Largest

1 1.7M 0.05 % 4.3M 0.03 %

2 97K 97.2 % 285K 80.1 %

3 18K 99.3 % 277K 82.2 %

5 1.9K 99.9 % 275K 83.1 %

(a) (b)

Figure 4: (a) Visualization of neighbors for Webfaces-18M. The first image in each row is the input,

and the next five are its neighbors. (b) Number of components in the Webfaces-18M

neighbor graph and the percentage of images within the largest connected component

(‘% Largest’) for varying numbers of neighbors (t) with and without an upper limit on

neighbor distances.

bottom four rows in Figure 5 show sample shortest paths for images within the largest component

for Webfaces-18M, illustrating smooth transitions between images along each path.6

4.3.4 GENERATING LOW-DIMENSIONAL EMBEDDINGS

Before generating low-dimensional embeddings using Isomap, one needs to convert distances into

similarities using a process called centering (Tenenbaum et al., 2000). For the Nyström approxima-

tion, we computed W by double centering D, the l× l matrix of squared geodesic distances between

all landmark nodes, as W = − 1
2
HDH, where H = Il −

1
l
11⊤ is the centering matrix, Il is the l × l

identity matrix and 1 is a column vector of all ones. Similarly, the matrix C was obtained from

squared geodesic distances between the landmark nodes and all other nodes using single-centering

as described in de Silva and Tenenbaum (2003).

For the Column sampling approximation, we decomposed C⊤C, which we constructed by per-

forming matrix multiplication in parallel on C. For both approximations, decomposition on an l× l

matrix (C⊤C or W) took about one hour. Finally, we computed low-dimensional embeddings by

multiplying the scaled singular vectors from approximate decomposition with C. For Webfaces-

18M, generating low dimensional embeddings took 1.5 hours for the Nyström method and 6 hours

for the Column sampling method.

4.4 Manifold Evaluation

Manifold learning techniques typically transform the data such that Euclidean distance in the trans-

formed space between any pair of points is meaningful, under the assumption that in the original

space Euclidean distance is meaningful only in local neighborhoods. Since K-means clustering

computes Euclidean distances between all pairs of points, it is a natural choice for evaluating these

techniques. We also compared the performance of various techniques using nearest neighbor classi-

fication. Since CMU-PIE is a labeled data set, we first focused on quantitative evaluation of different

6. Our techniques for approximating geodesic distances via shortest path are used by Google for its “People Hopper”

application which runs on the social networking site Orkut (Kumar and Rowley, 2010).
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Methods Purity (%) Accuracy (%)

PCA 54.3 (±0.8) 46.1 (±1.4)
Isomap 58.4 (±1.1) 53.3 (±4.3)
Nys-Iso 59.1 (±0.9) 53.3 (±2.7)
Col-Iso 56.5 (±0.7) 49.4 (±3.8)

Lap. Eig. 35.8 (±5.0) 69.2 (±10.8)

Methods Purity (%) Accuracy (%)

PCA 54.6 (±1.3) 46.8 (±1.3)
Nys-Iso 59.9 (±1.5) 53.7 (±4.4)
Col-Iso 56.1 (±1.0) 50.7 (±3.3)

Lap. Eig. 39.3 (±4.9) 74.7 (±5.1)

(a) (b)

Table 2: K-means clustering of face poses. Results are averaged over 10 random K-means initial-

izations. (a) PIE-10K. (b) PIE-35K.

embeddings using face pose as class labels. The PIE set contains faces in 13 poses, and such a fine

sampling of the pose space makes clustering and classification tasks very challenging. In all the

experiments we fixed the dimension of the reduced space, k, to be 100.

We first compared different Isomap approximations to exact Isomap, using a subset of PIE

with 10K images (PIE-10K) so that exact SVD required by Isomap was feasible. We fixed the

number of clusters in our experiments to equal the number of pose classes, and measured clustering

performance using two measures, Purity and Accuracy. Purity measures the frequency of data

belonging to the same cluster sharing the same class label, while Accuracy measures the frequency

of data from the same class appearing in a single cluster. Table 2(a) shows that clustering with

Nyström Isomap with just l=1K performs almost as well as exact Isomap on this data set. Column

sampling Isomap performs slightly worse than Nyström Isomap. The clustering results on the full

PIE-35K set (Table 2(b)) with l = 10K affirm this observation. As illustrated by Figure 7 (Appendix

E), the Nyström method separates the pose clusters better than Column sampling verifying the

quantitative results in Table 2.

One possible reason for the poor performance of Column sampling Isomap is due to the form of

the similarity matrix K. When using a finite number of data points for Isomap, K is not guaranteed

to be SPSD (Ham et al., 2004). We verified that K was not SPSD in our experiments, and a sig-

nificant number of top eigenvalues, that is, those with largest magnitudes, were negative. The two

approximation techniques differ in their treatment of negative eigenvalues and the corresponding

eigenvectors. The Nyström method allows one to use eigenvalue decomposition (EVD) of W to

yield signed eigenvalues, making it possible to discard the negative eigenvalues and the correspond-

ing eigenvectors. It is not possible to discard these in the Column-based method, since the signs of

eigenvalues are lost in the SVD of the rectangular matrix C (or EVD of C⊤C). Thus, the presence

of negative eigenvalues deteriorates the performance of Column sampling method more than the

Nyström method.

Table 2(a) and 2(b) also show a significant difference in the Isomap and Laplacian Eigenmaps

results. The 2D embeddings of PIE-35K (Figure 7 in Appendix E) reveal that Laplacian Eigenmaps

projects data points into a small compact region. When used for clustering, these compact embed-

dings lead to a few large clusters and several tiny clusters, thus explaining the high accuracy and low

purity of the clusters. This indicates poor clustering performance of Laplacian Eigenmaps, since one

can achieve even 100% Accuracy simply by grouping all points into a single cluster. However, the

Purity of such clustering would be very low. Finally, the improved clustering results of Isomap over

PCA for both data sets verify that the manifold of faces is not linear in the input space.
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Methods K = 1 K = 3 K = 5

Isomap 10.9 (±0.5) 14.1 (±0.7) 15.8 (±0.3)
Nys-Iso 11.0 (±0.5) 14.0 (±0.6) 15.8 (±0.6)
Col-Iso 12.0 (±0.4) 15.3 (±0.6) 16.6 (±0.5)

Lap. Eig. 12.7 (±0.7) 16.6 (±0.5) 18.9 (±0.9)

Nys-Iso Col-Iso Lap. Eig.

9.8 (±0.2) 10.3 (±0.3) 11.1 (±0.3)

(a) (b)

Table 3: Nearest neighbor face pose classification error (%). Results are averaged over 10 random

splits of training and test sets. (a) PIE-10K with K = {1,3,5} neighbors. (b) PIE-35K with

K = 1 neighbors.

(a) (b)

(c)

Figure 5: 2D embedding of Webfaces-18M using Nyström Isomap (Top row). Darker areas indicate

denser manifold regions. (a) Face samples at different locations on the manifold. (b)

Approximate geodesic paths between celebrities. (c) Visualization of paths shown in (b).

Moreover, we compared the performance of Laplacian Eigenmaps and Isomap embeddings on

pose classification.7 The data was randomly split into a training and a test set, and K-Nearest Neigh-

7. KNN only uses nearest neighbor information for classification. Since neighborhoods are considered to be locally

linear in the input space, we expect KNN to perform well in the input space. Hence, using KNN to compare low-

level embeddings indirectly measures how well nearest neighbor information is preserved.
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bor (KNN) was used for classification. K = 1 gives lower error than higher K as shown in Table

3(a). Also, the classification error is lower for both exact and approximate Isomap than for Lapla-

cian Eigenmaps, suggesting that neighborhood information is better preserved by Isomap (Table

3). Note that, similar to clustering, the Nyström approximation performs as well as Exact Isomap

(Table 3(a)). Better clustering and classification results (along with superior 2D visualizations as

shown in Appendix E), imply that approximate Isomap outperforms exact Laplacian Eigenmaps.

Moreover, the Nyström approximation is computationally cheaper and empirically more effective

than the Column sampling approximation. Thus, we used Nyström Isomap to generate embeddings

for Webfaces-18M.

After learning a face manifold from Webfaces-18M, we analyzed the results with various visu-

alizations. The top row of Figure 5 shows the 2D embeddings from Nyström Isomap. The top left

figure shows the face samples from various locations in the manifold. It is interesting to see that

embeddings tend to cluster the faces by pose. These results support the good clustering performance

observed using Isomap on PIE data. Also, two groups (bottom left and top right) with similar poses

but different illuminations are projected at different locations. Additionally, since 2D projections

are very condensed for 18M points, one can expect more discrimination for higher k, for example,

k = 100.

In Figure 5, the top right figure shows the shortest paths on the manifold between different

public figures. The images along the corresponding paths have smooth transitions as shown in the

bottom of the figure. In the limit of infinite samples, Isomap guarantees that the distance along the

shortest path between any pair of points will be preserved as Euclidean distance in the embedded

space. Even though the paths in the figure are reasonable approximations of straight lines in the

embedded space, these results suggest that either (i) 18M faces are perhaps not enough samples to

learn the face manifold exactly, or (ii) a low-dimensional manifold of faces may not actually exist

(perhaps the data clusters into multiple low dimensional manifolds). It remains an open question as

to how we can measure and evaluate these hypotheses, since even very large scale testing has not

provided conclusive evidence.

5. Conclusion

We have studied sampling based low-rank approximation algorithms, presenting an analysis of two

techniques for approximating SVD on large dense SPSD matrices and providing a theoretical and

empirical comparison. Although the Column sampling method generates more accurate singu-

lar values, singular vectors and low-rank matrix projections, the Nyström method constructs better

low-rank approximations, which are of great practical interest as they do not use the full matrix. Fur-

thermore, our large-scale manifold learning studies illustrate the applicability of these algorithms

when working with large dense kernel matrices, reveal that Isomap coupled with the Nyström ap-

proximation can effectively extract low-dimensional structure from data sets containing millions of

images.

Appendix A. Proof of Theorem 1

Proof From (5), it is easy to see that

K̃col
k =UC,kU⊤

C,kK = UCRcolU
⊤
C K,
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where Rcol =
[

Ik 0
0 0

]
. Similarly, from (6) we can derive

K̃
nys
k = UCRnysU

⊤
C K where Rnys = Y(Σ2

W,k)
+Y⊤,

and Y =
√

l/nΣCV⊤
C UW,k. Note that both Rcol and Rnys are SPSD matrices. Furthermore, if k = l,

Rcol = Il . Let E be the (squared) reconstruction error for an approximation of the form UCRU⊤
C K,

where R is an arbitrary SPSD matrix. Hence, when k = l, the difference in reconstruction error

between the generic and the Column sampling approximations is

E−Ecol =‖K−UCRU⊤
C K‖2

F −‖K−UCU⊤
C K‖2

F

=Tr
[
K⊤(In −UCRU⊤

C )
⊤(In −UCRU⊤

C )K
]

−Tr
[
K⊤(In −UCU⊤

C )
⊤(In −UCU⊤

C )K
]

=Tr
[
K⊤(UCR2U⊤

C −2UCRU⊤
C +UCU⊤

C )K
]

=Tr
[
((R− In)U

⊤
C K)⊤((R− In)U

⊤
C K)

]

≥ 0.

We used the facts that U⊤
C UC = In and A⊤A is SPSD for any matrix A.

Appendix B. Proof of Theorem 2

Proof If α =
√

n/l, then starting from (8) and expressing C and W in terms of X and S, we have

K̃col
k =αKS((S⊤K2S)

1/2

k )+S⊤K⊤

=αX⊤X′
(
(VC,kΣ

2
C,kV⊤

C,k)
1/2

)+
X′⊤X

=X⊤UX ′,kZcolU
⊤
X ′,kX,

where Zcol = αΣX ′V⊤
X ′VC,kΣ

+
C,kV⊤

C,kVX ′ΣX ′ . Similarly, from (7) we have:

K̃
nys
k =KS(S⊤KS)+k S⊤K⊤

=X⊤X′
(
X′⊤X′

)+
k

X′⊤X

=X⊤UX ′,kU⊤
X ′,kX. (9)

Clearly, Znys = Ik. Next, we analyze the error, E, for an arbitrary Z, which yields the approximation

K̃Z
k :

E = ‖K− K̃Z
k ‖

2
F = ‖X⊤(IN −UX ′,kZU⊤

X ′,k)X‖2
F .

Let X = UXΣX V⊤
X and Y = U⊤

X UX ′,k. Then,

E =Tr
[(

UXΣX U⊤
X (IN −UX ′,kZU⊤

X ′,k)UXΣX U⊤
X

)2]

=Tr
[(

UXΣX(IN −YZY⊤)ΣX U⊤
X

)2]

=Tr
[
ΣX(IN −YZY⊤)Σ2

X(IN −YZY⊤)ΣX

)]

=Tr
[
Σ

4
X −2Σ2

X YZY⊤
Σ

2
X +ΣX YZY⊤

Σ
2
X YZY⊤

ΣX

)]
. (10)
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(a)

(b)

(c)

Figure 6: (a) A few random samples from the largest connected component of the Webfaces-18M

neighborhood graph. (b) Visualization of disconnected components of the neighborhood

graphs from Webfaces-18M (top row) and from PIE-35K (bottom row). The neighbors

for each of these images are all within this set, thus making the entire set disconnected

from the rest of the graph. Note that these images are not exactly the same. (c) Visual-

ization of disconnected components containing exactly one image. Although several of

the images above are not faces, some are actual faces, suggesting that certain areas of the

face manifold are not adequately sampled by Webfaces-18M.

To find Z∗, the Z that minimizes (10), we use the convexity of (10) and set:

∂E/∂Z =−2Y⊤
Σ

4
X Y+2(Y⊤

Σ
2
X Y)Z∗(Y⊤

Σ
2
X Y) = 0

and solve for Z∗, which gives us:

Z∗ = (Y⊤
Σ

2
X Y)+(Y⊤

Σ
4
X Y)(Y⊤

Σ
2
X Y)+.

Z∗ = Znys = Ik if Y = Ik, though Z∗ does not in general equal either Zcol or Znys, which is clear by

comparing the expressions of these three matrices.8 Furthermore, since Σ
2
X =ΣK , Z∗ depends on

8. This fact is illustrated in our experimental results for the ‘DEXT’ data set in Figure 2(b).
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Figure 7: Optimal 2D projections of PIE-35K where each point is color coded according to its pose

label. (a) PCA projections tend to spread the data to capture maximum variance. (b)

Isomap projections with Nyström approximation tend to separate the clusters of different

poses while keeping the cluster of each pose compact. (c) Isomap projections with Col-

umn sampling approximation have more overlap than with Nyström approximation. (d)

Laplacian Eigenmaps projects the data into a very compact range.

the spectrum of K.

Appendix C. Proof of Theorem 3

Proof Since K = X⊤X, rank(K) = rank(X) = r. Similarly, W = X′⊤X′ implies rank(X′) = r.

Thus the columns of X′ span the columns of X and UX ′,r is an orthonormal basis for X, that is,

IN −UX ′,rU
⊤
X ′,r ∈ Null(X). Since k ≥ r, from (9) we have

‖K− K̃
nys
k ‖F = ‖X⊤(IN −UX ′,rU

⊤
X ′,r)X‖F = 0,

which proves the first statement of the theorem. To prove the second statement, we note that

rank(C) = r. Thus, C = UC,rΣC,rV
⊤
C,r and (C⊤C)

1/2

k = (C⊤C)1/2 = VC,rΣC,rV
⊤
C,r since k ≥ r.

If W = (1/α)(C⊤C)1/2, then the Column sampling and Nyström approximations are identical and
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hence exact. Conversely, to exactly reconstruct K, Column sampling necessarily reconstructs C

exactly. Using C⊤ = [W K⊤
21] in (8) we have:

K̃col
k = K =⇒ αC

(
(C⊤C)

1
2

k

)+
W = C

=⇒ αUC,rV
⊤
C,rW = UC,rΣC,rV

⊤
C,r

=⇒ αVC,rV
⊤
C,rW = VC,rΣC,rV

⊤
C,r (11)

=⇒ W =
1

α
(C⊤C)1/2. (12)

In (11) we use U⊤
C,rUC,r = Ir, while (12) follows since VC,rV

⊤
C,r is an orthogonal projection onto the

span of the rows of C and the columns of W lie within this span implying VC,rV
⊤
C,rW = W.

Appendix D. Visualization of Connected Components in Neighborhood Graph

Figure 6(a) shows a few random samples from the largest component of the neighborhood graph we

generate for Webfaces-18M. Images not within the largest component are either part of a strongly

connected set of images (Figure 6(b)) or do not have any neighbors within the upper distance limit

(Figure 6(c)). There are significantly more false positives in Figure 6(c) than in Figure 6(a), although

some of the images in Figure 6(c) are actually faces. Clearly, the distance limit introduces a trade-off

between filtering out non-faces and excluding actual faces from the largest component.

Appendix E. Visualization of 2D Embeddings of PIE-35K

Figure 7 shows the optimal 2D projections from different methods for PIE-35K.
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Abstract

In this paper, we propose QUANTMINER, a mining quantitative association rules system. This

system is based on a genetic algorithm that dynamically discovers “good” intervals in association

rules by optimizing both the support and the confidence. The experiments on real and artificial

databases have shown the usefulness of QUANTMINER as an interactive, exploratory data mining

tool.

Keywords: association rules, numerical and categorical attributes, unsupervised discretization,

genetic algorithm, simulated annealing

1. Introduction

In this paper, we propose a software for mining quantitative and categorical rules, that implements

the work proposed in Salleb-Aouissi et al. (2007). Given a set of categorical and quantitative at-

tributes and a data set, the aim is to find rules built on these attributes that optimize given criteria.

Expressions occurring in the rules are either A = v for a categorical attribute, or A ∈ [l,u] for a quan-

titative one. The main difficulty is to find the best bounds l and u of the intervals. Mining quantita-

tive association rules cannot be considered as a direct extension of mining categorical rules. While

this task has received less attention than mining Boolean association rules (Agrawal et al., 1993),

it remains a very important one from the point of view of applications. Several approaches have

been designed for this task. For instance, a preprocessing step, discretizing (also called binning)

c©2013 Ansaf Salleb-Aouissi, Christel Vrain, Cyril Nortet, Xiangrong Kong, Vivek Rathod and Daniel Cassard.
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numeric attributes into intervals is performed before the mining task in Srikant and Agrawal (1996).

Some approaches (e.g., Aumann and Lindell, 1999) restrict learning to special kind of rules: the

right-hand side of a rule expresses the distribution (e.g., mean, variance) of numeric attributes, the

left-hand side is composed either of a set of categorical attributes or of a single discretized numeric

attribute. Optimization-based approaches handle numeric attributes during the mining process. The

first one proposed in Fukuda et al. (1996) introduces a new optimization criterion, called the gain,

taking into account both the support and the confidence of a rule. Extensions have been proposed

in Brin et al. (2003) but the forms of the rules remain restricted to one or two numeric attributes. A

genetic algorithm is also proposed in Mata et al. (2002) to optimize the support of itemsets defined

on uninstantiated intervals of numeric attributes. This approach is limited to numeric attributes and

optimizes only the support before mining association rules. QuantMiner handles both categorical

and numerical attributes and optimizes the intervals of numeric attributes during the process of min-

ing association rules. It is based on a genetic algorithm, the fitness function aims at maximizing the

gain of an association rule while penalizing the attributes with large intervals. Recent work (e.g.,

Alcalá-Fdez et al., 2010) show the interest of evolutionary algorithms for such a task.

2. QuantMiner

In the following, an item is either an expression A = v, where A is a categorical (also called quali-

tative) attribute and v is a value from its domain, or an expression A ∈ [l,u] where A is a numerical

(also called quantitative) attribute. QuantMiner optimizes a set of rule patterns produced from a

user-specified rule template.

Rule templates: A rule template is a preset format of a quantitative association rule used as a

starting point for the quantitative mining process. It is defined by the set of attributes occurring in

the left hand side and the right hand side or both sides of the rule. Categorical attributes may or may

not have specific values. Furthermore, an attribute may be mandatory or optional, thus allowing to

generate rules of different lengths from the same rule template. Given a rule template, first for each

unspecified categorical attribute in the template, the frequent values are computed. Then, a set of

rule patterns verifying the specifications (position of the attributes, mandatory/optional presence of

the attributes, values for categorical attributes either provided, or computed as frequent) are built.

For each rule pattern, the algorithm looks for the “best” intervals for the numeric attributes occurring

in that template, relying on a genetic algorithm.

Example 1 Consider the Iris data set from the UCI machine learning repository.1 An example of

rule template and a specific example of rule are given in Figure 1 and in Figure 2 respectively.

Population: An individual is a set of items of the form attributei ∈ [li,ui], where attributei is

the ith numeric attribute in the rule template from the left to the right. The process for generating

the population is described in Salleb-Aouissi et al. (2007).

Genetic operators: Mutation and crossover are both used in QuantMiner. For the crossover

operator, for each attribute the interval is either inherited from one of the parents or formed by

mixing the bounds of the two parents. For an individual, mutation increases or decreases the lower

or upper bound of its intervals. Moving interval bounds is done so as to discard/involve no more

than 10% of tuples already covered by the interval.

1. The data set is available here: http://archive.ics.uci.edu/ml/datasets/Iris.
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Figure 1: An example of rule template exploring petal attributes for 2 categories of iris. petal length

and petal width are chosen to be on the right side of the rules template.

Fitness function: It is based on the Gain proposed in Fukuda et al. (1996), defined in Equation

1:

Gain(A ⇒ B) = Supp(A∧B)−MinCon f ∗Supp(A). (1)

Let Anum the set of numerical attributes present in the rule A ⇒ B. Let Ia denote the interval of

the attribute a ∈ Anum. In the following, size(a) denotes the length of the smallest interval which

contains all the data for the attribute a and size(Ia) denotes the length of the interval Ia. If Gain(A ⇒

B) is negative, then the fitness of the rule is set to the gain. If it is positive (the confidence of the

rule exceeds the minimum confidence threshold), the proportions of the intervals (defined as the

ratios between the sizes and the domains) is taken into account, so as to favor those with small sizes

as shown in Equation 2. Moreover, rules with low supports are penalized by decreasing drastically

their fitness values.

Fitness(A ⇒ B) = Gain(A ⇒ B)× ∏
a∈Anum

(

1−
size(Ia)

size(a)

)2

. (2)

3. Implementation

We developed QUANTMINER in JAVA as a 5-step GUI wizard allowing an interactive mining pro-

cess.2 After opening a data set, the user can choose attributes, a rule template, the optimization

technique and set its parameters, launch the process, and finally display the rules with various sort-

ing options: support, confidence or rule length. The user can save the mining-context, go back to

2. The software is available at http://quantminer.github.com/QuantMiner/.
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Figure 2: Example of rule visualization in QuantMiner. The top part shows filtering criteria that

facilitate exploring the rules. The bottom part shows a specific rule followed by the

proportion of each interval in its corresponding domain. More measures are given to

assess the quality of the rule, for example, con f idence(¬A ⇒ B).

previous steps, change the method, parameters, templates and restart the learning. Note that simu-

lated annealing is implemented in QuantMiner as an alternative optimization method. A tentative

for mining rules with disjunctive intervals is also implemented. We hope this functionality will be

further investigated.
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Abstract

Divvy is an application for applying unsupervised machine learning techniques (clustering and

dimensionality reduction) to the data analysis process. Divvy provides a novel UI that allows

researchers to tighten the action-perception loop of changing algorithm parameters and seeing a

visualization of the result. Machine learning researchers can use Divvy to publish easy to use

reference implementations of their algorithms, which helps the machine learning field have a greater

impact on research practices elsewhere.

Keywords: clustering, dimensionality reduction, open source software, human computer interac-

tion, data visualization

1. Introduction

The field of machine learning has produced many techniques for performing data analysis, but

researchers outside the field face substantial challenges applying them to their data. First, new

techniques are difficult to access. Authors often describe an algorithm without providing a refer-

ence implementation, and if they do provide code it may be for an unfamiliar language or platform.

Second, new techniques are difficult to apply correctly. A new technique might make strong as-

sumptions about the structure of its input or be very sensitive to parameter changes. Third, in the

early, exploratory stage of data analysis researchers should explore and compare several different

techniques. If each technique is challenging to get running for the reasons above, the challenge is

compounded with multiple techniques using different languages and data formats.

We have built Divvy to ameliorate these problems for those who would like to use unsupervised

machine learning techniques in their research (specifically clustering and dimensionality reduc-

tion), and provide a platform for machine learning researchers to publish fast, easy to use versions

of their algorithms. Using Divvy, researchers can quickly run an assortment of clustering and di-

mensionality reduction algorithms on their data, without worrying about programming languages,

data formats, or visualization.

Divvy is a member of a family of attempts to bring machine learning and data visualization to a

wider audience. The GGobi project (Swayne et al., 2003) provides a variety of interactive visualiza-

c©2013 Joshua M. Lewis, Virginia R. de Sa and Laurens van der Maaten.
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tions for high-dimensional data, and includes some lightweight machine learning components such

as PCA. The Orange project (University of Ljubljana Bioinformatics Laboratory, 2013) provides a

visual programming interface for machine learning techniques in Python. In the commercial sector,

Ayasdi, Inc. uses topology to help customers analyze their data intuitively (Ayasdi, Inc., 2013).

Divvy’s unique focus among these projects is on user experience and extensibility.

For users, Divvy provides a simple, fast interface for doing data analysis. For machine learning

researchers, Divvy provides a plugin architecture that lets one release a version of an algorithm

complete with custom UI and help resources. By publishing an algorithm on the Divvy platform,

machine learning researchers can drastically lower the barriers to entry that data analysts face when

attempting to use it. Divvy and all of its included plugins are open source, distributed under the

MIT license.

2. Interaction

Divvy has three fundamental components to its interface (see Figure 1). In the lower-right corner

of the main window (Label 1) is a collection of data sets for the user to analyze. Each data set

is associated with one or more data set views, which are visualized in the left hand portion of the

interface (Label 2). Finally each data set view is characterized by a combination of four plugins

from the top-right panel (Label 3): a dimensionality reduction algorithm, a clustering algorithm, a

point visualizer, and a data set visualizer.

Clustering and dimensionality reduction plugins are interfaces to their associated algorithms,

currently K-means and single/complete linkage for clustering, and PCA, Isomap (Tenenbaum et al.,

2000) and t-SNE (van der Maaten and Hinton, 2008) for dimensionality reduction. Point visualizers

render data points in a meaningful way, for example, by rendering images in a data set where points

represent images, or rendering type for a linguistic corpus. Data set visualizers render the entire

data set, for example as a scatter plot or parallel coordinates plot. Divvy includes an image point

visualizer and a scatter plot data set visualizer by default.

As an example, the user in Figure 1 has loaded four data sets into Divvy and selected the faces

data set. The user has created three views that represent three distinct perspectives on the data. The

top-right view is an Isomap embedding of the data set with an image point visualizer, so the user

sees a selection of points rendered as images and positioned in the first two Isomap dimensions. The

lower left view is a t-SNE embedding with coloring from K-means clustering rendered as a scatter

plot.

In practice a researcher can use these visualizations to evaluate different approaches to dimen-

sionality reduction and clustering. In Figure 1 the user can easily see that Isomap embeds the face

images in two dimension more smoothly than t-SNE. The structure of the faces data set is ideal for

Isomap, and a researcher can quickly discover that with Divvy.

Users can create as many perspectives on their data as they’d like, grow or shrink them with the

slider on the lower-right edge of the screen, and export their preferred views as PNGs. Whenever

they change a plugin or plugin parameter, the selected view automatically rerenders with the new

setting. In order to make Divvy as responsive as possible, each data set view is sandboxed in

its own set of threads (Divvy is task parallel with granularity at the view level). Users can start

a long computation in one view while still interacting with other views or data sets. For shorter

computations the view changes instantly, giving users immediate visual feedback on the effect of

their parameter selections.
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Figure 1: Divvy’s UI. (1) The data sets list—data sets the user has loaded appear here with some

summary statistics. (2) The data set view palette—data set views are visualizations of data

sets using a combination of a dimensionality reduction algorithm, a clustering algorithm,

a point visualizer, and a data set visualizer. Each data set can have multiple data set views.

(3) Data set view parameters—controls for setting the parameters of the algorithms that

compose a particular data set view, for example, the number of clusters for a clustering

algorithm.

Our goal with the Divvy UI is to tighten up the action-perception loop in data analysis. As an

analogy, baseball players have an excellent idea of how baseballs behave. A baseball’s behavior

is, of course, governed by the laws of physics and an explicit description of that behavior might be

quite complex when spin, deformation, wind and field texture are taken into account. Nevertheless,

through extensive experience baseball players acquire an excellent pragmatic understanding of how

baseballs behave, an understanding that one might guess is based on an implicit learned model of

baseball behavior rather than the explicit model a physicist would give. By giving Divvy users an

immediate, tactile experience of algorithmic behavior, we hope they can develop better intuitive

models of how algorithms behave and thus make better analysis decisions.
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3. Architecture

The core Divvy application performs no computation. Rather it is a lightweight framework for

loading data sets and plugins and then coordinating their interaction. Each plugin is an independent

bundle that defines a UI and follows one of four possible input/output protocols: clusterer, reducer,

point visualizer and data set visualizer.

While the core Divvy application is Mac OS X specific, each machine learning plugin is just a

lightly-wrapped reference implementation of its algorithm in C or C++.1 A researcher publishing

an algorithm in Divvy’s format need only add an OS X UI (and Divvy gives complete freedom

as to the details of that UI save a fixed width) to their implementation, which remains completely

platform-agnostic. With this bit of work users can drop the algorithm bundle into Divvy and start

using the new technique on their existing data sets.

We implemented Divvy on Mac OS X in order to focus on one user experience. While it’s of

course desirable to have open source software on as many platforms as possible, building the Divvy

UI across platforms was outside the scope of our engineering resources.2

Divvy can import data from CSV or a simple BIN format, and we have released R to Divvy and

MATLAB to Divvy exporters. Data within Divvy can be exported as PNG or CSV as appropriate.

Our goal is that Divvy can fit well into diverse analysis workflows.

4. Performance

Divvy is both task and data parallel. As mentioned above, each data set view owns a set of threads

that compute independently from the UI and those of other views. Within a view each plugin can

operate in parallel over its assigned data set. In our lab Divvy can achieve over 2,300% CPU

utilization on our hyperthreaded 12-core Mac Pro through a combination of these two forms of

parallelization.3

The task parallelism is achieved at the application level through the NSOperation framework in

Cocoa. Plugin authors get it for free. Data parallelism is the responsibility of plugin authors and

should be implemented using the open-source libdispatch library.4
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Abstract

The marginal maximum a posteriori probability (MAP) estimation problem, which calculates the

mode of the marginal posterior distribution of a subset of variables with the remaining variables

marginalized, is an important inference problem in many models, such as those with hidden vari-

ables or uncertain parameters. Unfortunately, marginal MAP can be NP-hard even on trees, and has

attracted less attention in the literature compared to the joint MAP (maximization) and marginal-

ization problems. We derive a general dual representation for marginal MAP that naturally inte-

grates the marginalization and maximization operations into a joint variational optimization prob-

lem, making it possible to easily extend most or all variational-based algorithms to marginal MAP.

In particular, we derive a set of “mixed-product” message passing algorithms for marginal MAP,

whose form is a hybrid of max-product, sum-product and a novel “argmax-product” message up-

dates. We also derive a class of convergent algorithms based on proximal point methods, includ-

ing one that transforms the marginal MAP problem into a sequence of standard marginalization

problems. Theoretically, we provide guarantees under which our algorithms give globally or lo-

cally optimal solutions, and provide novel upper bounds on the optimal objectives. Empirically,

we demonstrate that our algorithms significantly outperform the existing approaches, including a

state-of-the-art algorithm based on local search methods.

Keywords: graphical models, message passing, belief propagation, variational methods, maxi-

mum a posteriori, marginal-MAP, hidden variable models

1. Introduction

Graphical models such as Bayesian networks and Markov random fields provide a powerful frame-

work for reasoning about conditional dependency structures over many variables, and have found

wide application in many areas including error correcting codes, computer vision, and computa-

tional biology (Wainwright and Jordan, 2008; Koller and Friedman, 2009). Given a graphical model,

which may be estimated from empirical data or constructed by domain expertise, the term inference

refers generically to answering probabilistic queries about the model, such as computing marginal

probabilities or maximum a posteriori estimates. Although these inference tasks are NP-hard in the

worst case, recent algorithmic advances, including the development of variational methods and the

family of algorithms collectively called belief propagation, provide approximate or exact solutions

for these problems in many practical circumstances.

In this work we will focus on three common types of inference tasks. The first involves maxi-

mization or max-inference tasks, sometimes called maximum a posteriori (MAP) or most probable

c©2013 Qiang Liu and Alexander Ihler.
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explanation (MPE) tasks, which look for a mode of the joint probability. The second are sum-

inference tasks, which include calculating the marginal probabilities or the normalization constant

of the distribution (corresponding to the probability of evidence in a Bayesian network). Finally, the

main focus of this work is on marginal MAP, a type of mixed-inference problem that seeks a partial

configuration of variables that maximizes those variables’ marginal probability, with the remaining

variables summed out.1 Marginal MAP plays an essential role in many practical scenarios where

there exist hidden variables or uncertain parameters. For example, a marginal MAP problem can

arise as a MAP problem on models with hidden variables whose predictions are not of interest, or as

a robust optimization variant of MAP with some unknown or noisily observed parameters marginal-

ized w.r.t. a prior distribution. It can be also treated as a special case of the more complicated

frameworks of stochastic programming (Birge and Louveaux, 1997) or decision networks (Howard

and Matheson, 2005; Liu and Ihler, 2012).

These three types of inference tasks are listed in order of increasing difficulty: max-inference

is NP-complete, while sum-inference is #P-complete, and mixed-inference is NPPP-complete (Park

and Darwiche, 2004; De Campos, 2011). Practically speaking, max-inference tasks have a host

of efficient algorithms such as loopy max-product BP, tree-reweighted BP, and dual decomposi-

tion (see, e.g., Koller and Friedman, 2009; Sontag et al., 2011). Sum-inference is more difficult

than max-inference: for example there are models, such as those with binary attractive pairwise po-

tentials, on which sum-inference is #P-complete but max-inference is tractable (Greig et al., 1989;

Jerrum and Sinclair, 1993).

Mixed-inference is even much harder than either max- or sum- inference problems alone:

marginal MAP can be NP-hard even on tree structured graphs, as illustrated in the example by

Koller and Friedman (2009) in Figure 1. The difficulty arises in part because the max and sum

operators do not commute, causing the feasible elimination orders to have much higher induced

width than for sum- or max-inference. Viewed another way, the marginalization step may destroy

the dependency structure of the original graphical model, making the subsequent maximization step

far more challenging. Probably for these reasons, there is much less work on marginal MAP than

that on joint MAP or marginalization, despite its importance to many practical problems. In prac-

tice, it is common to over-use the simpler joint MAP or marginalization even when marginal MAP

would be more appropriate. This may cause serious problems, as we illustrate in Example 1 and our

empirical results in Section 9.

1.1 Contributions

We reformulate the mixed-inference problem to a joint maximization problem as a free energy ob-

jective that extends the well-known log-partition function duality form, making it possible to easily

extend essentially arbitrary variational algorithms to marginal MAP. In particular, we propose a

novel “mixed-product” BP algorithm that is a hybrid of max-product, sum-product, and a special

“argmax-product” message updates, as well as a convergent proximal point algorithm that works

by iteratively solving pure (or annealed) marginalization tasks. We also present junction graph BP

variants of our algorithms, that work on models with higher order cliques. We also discuss mean

field methods and highlight their connection to the expectation-maximization (EM) algorithm. We

give theoretical guarantees on the global and local optimality of our algorithms for cases when the

1. In some literature (e.g., Park and Darwiche, 2004), marginal MAP is simply referred to as MAP, and the joint MAP

problem is called MPE.
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sum variables form tree structured subgraphs. Our numerical experiments show that our methods

can provide significantly better solutions than existing algorithms, including a similar hybrid mes-

sage passing algorithm by Jiang et al. (2011) and a state-of-the-art algorithm based on local search

methods. A preliminary version of this work has appeared in Liu and Ihler (2011b).

1.2 Related Work

Expectation-maximization (EM) or variational EM provide one straightforward approach for

marginal MAP, by viewing the sum nodes as hidden variables and the max nodes as parameters

to be estimated; however, EM is prone to getting stuck at sub-optimal configurations. We show that

EM can be treated as a special case of our framework when a mean field-like approximation is ap-

plied. Other classical state-of-the-art approaches include local search methods (e.g., Park and Dar-

wiche, 2004), Markov chain Monte Carlo methods (e.g., Doucet et al., 2002; Yuan et al., 2004), and

variational elimination based methods (e.g., Dechter and Rish, 2003; Mauá and de Campos, 2012).

Jiang et al. (2011) recently proposed a hybrid message passing algorithm that has a similar form to

our mixed-product BP algorithm, but without theoretical guarantees; we show in Section 5.3 that

Jiang et al. (2011) can be viewed as an approximation of the marginal MAP problem that exchanges

the order of sum and max operators. Another message-passing-style algorithm was proposed very

recently in Altarelli et al. (2011) for general multi-stage stochastic optimization problems based

on survey propagation, which again does not have optimality guarantees and has a relatively more

complicated form. Finally, Ibrahimi et al. (2011) introduces a robust max-product belief propaga-

tion for solving a related worst-case robust optimization problem, where the hidden variables are

minimized instead of marginalized. To the best of our knowledge, our work is the first general

variational framework for marginal MAP, and provides the first strong optimality guarantees.

We begin in Section 2 by introducing background information on graphical models and vari-

ational inference. We then introduce a novel variational dual representation for marginal MAP in

Section 3, and propose analogues of the Bethe and tree-reweighted approximations for marginal

MAP in Section 4. A class of “mixed-product” message passing algorithms is proposed and ana-

lyzed in Section 5 and convergent alternatives are proposed in Section 6 based on proximal point

methods. We then discuss the EM algorithm and its connection to our framework in Section 7,

and provide an extension of our algorithms to junction graphs in Section 8. Finally, we present

numerical results in Section 9 and conclude the paper in Section 10.

2. Background

We give an overview of different inference problems on graphical models, and introduce the varia-

tional framework as applied to max- and sum- inference problems.

2.1 Graphical Models

Let x= {x1,x2, · · · ,xn} be a random vector in a discrete space X =X1×·· ·×Xn. Let V = {1, · · · ,n}.
For an index set α⊆V , denote by xα the sub-vector {xi : i ∈ α}, and similarly, Xα the cross product

of {Xi : i ∈ α}. A graphical model defines a factorized probability on x,

p(x) =
1

Z(ψ) ∏
α∈I

ψα(xα) or p(x;θ) = exp[∑
α∈I

θα(xα)−Φ(θ)],

3167



LIU AND IHLER

where I is a set of subsets of variable indexes, ψα : Xα → R
+ is called a factor function, and

θα(xα) = logψα(xα). Since the xi are discrete, the functions ψ and θ are tables; by alternatively

viewing θ as a vector, it is interpreted as the natural parameter in an overcomplete, exponential

family representation. Let ψ and θ be the joint vector of all ψα and θα respectively, for example, θ=
{θα(xα) : α ∈ I,xα ∈ Xα}. The normalization constant Z(ψ), called partition function, normalizes

the probability to sum to one, and Φ(θ) := logZ(ψ) is called the log-partition function,

Φ(θ) = log ∑
x∈X

exp[θ(x)],

where we define θ(x) = ∑α∈I θα(xα) to be the joint potential function that maps from X to R. The

factorization structure of p(x) can be represented by an undirected graph G = (V,E), where each

node i ∈V maps to a variable xi, and each edge (i j) ∈ E corresponds to two variables xi and x j that

coappear in some factor function ψα, that is, {i, j} ⊆ α. The set I is then a set of cliques (fully

connected subgraphs) of G. For the purpose of illustration, we mainly restrict our scope on the set

of pairwise models, on which I is the set of nodes and edges, that is, I = E∪V . However, we show

how to extend our algorithms to models with higher order cliques in Section 8.

2.2 Sum-Inference Problems and Variational Approximation

Sum-inference is the task of marginalizing (summing out) variables in the model, for example,

calculating the marginal probabilities of single variables, or the normalization constant Z,

p(xi) = ∑
xV\{i}

exp[θ(x)−Φ(θ)], Φ(θ) = log∑
x

exp[θ(x)].

Unfortunately, the problem is generally #P-complete, and the straightforward calculation requires

summing over an exponential number of terms. Variational methods are a class of approximation al-

gorithms that transform the marginalization problem into a continuous optimization problem, which

is then typically solved approximately.

2.2.1 MARGINAL POLYTOPE

The marginal polytope is a key concept in variational inference. We define the marginal polytope

M to be the set of local marginal probabilities τ = {τα(xα) : α ∈ I} that are extensible to a valid

joint distribution, that is,

M= {τ : ∃ joint distribution q(x), s.t. τα(xα) = ∑
xV\α

q(x) for ∀α ∈ I}.

Denote by Q [τ] the set of joint distributions whose marginals are consistent with τ ∈M; by the

principle of maximum entropy (Jaynes, 1957), there exists a unique distribution in Q [τ] that has

maximum entropy and follows the exponential family form for some θ.2 With an abuse of notation,

we denote these unique global distributions by τ(x), and we do not distinguish τ(x) and τ when it is

clear from the context.

2. In the case that p(x) has zero elements, the maximum entropy distribution is still unique and satisfies the exponential

family form, but the corresponding θ has negative infinite values (Jaynes, 1957).
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2.2.2 LOG-PARTITION FUNCTION DUALITY

A key result to many variational methods is that the log-partition function Φ(θ) is a convex function

of θ and can be rewritten into a convex dual form,

Φ(θ) = max
τ∈M

{

〈θ,τ〉+H(τ)
}

, (1)

where 〈θ,τ〉 = ∑α ∑xα
θα(xα)τα(xα) is the vectorized inner product, and H(τ) is the entropy of the

corresponding global distribution τ(x), that is, H(τ) = −∑x τ(x) logτ(x). The unique maximum τ∗

of (1) exactly equals the marginals of the original distribution p(x;θ), that is, τ∗(x) = p(x;θ). We

call Fsum(τ,θ) = 〈θ,τ〉+H(τ) the sum-inference free energy (although technically the negative free

energy).

The dual form (1) transforms the marginalization problem into a continuous optimization, but

does not make it any easier: the marginal polytope M is defined by an exponential number of linear

constraints, and the entropy term in the objective function is as difficult to calculate as the log-

partition function. However, (1) provides a framework for deriving efficient approximate inference

algorithms by approximating both the marginal polytope and the entropy (Wainwright and Jordan,

2008).

2.2.3 BP-LIKE METHODS

Many approximation methods replace M with the locally consistent polytope L; in pairwise models,

it is the set of singleton and pairwise “pseduo-marginals” {τi(xi) : i ∈V} and {τi j(xi,x j) : (i j) ∈ E}
that are consistent on their intersections, that is,

L= {τi,τi j : ∑
xi

τi j(xi,x j) = τ j(x j), ∑
xi

τi(xi) = 1, τi j(xi,x j)≥ 0}. (2)

Since not all such pseudo-marginals have valid global distributions, it is easy to see that L is an

outer bound of M, that is, M ⊆ L. Note that this means there may not exist a global distribution

τ(x) for τ in L.

The free energy remains intractable (and is not even well-defined) in L. We typically approx-

imate the free energy by a combination of singleton and pairwise entropies, which only requires

knowing τi and τi j. For example, the Bethe free energy approximation (Yedidia et al., 2003) is

H(τ)≈∑
i∈V

Hi(τ)− ∑
(i j)∈E

Ii j(τ), Φ(θ)≈max
τ∈L

{

〈θ,τ〉+ ∑
i∈V

Hi(τ)− ∑
(i j)∈E

Ii j(τ)
}

, (3)

where Hi(τ) is the entropy of τi(xi) and Ii j(τ) the mutual information of xi and x j, that is,

Hi(τ) =−∑
xi

τi(xi) logτi(xi), Ii j(τ) = ∑
xi,x j

τi j(xi,x j) log
τi j(xi,x j)

τi(xi)τ j(x j)
.

We sometimes abbreviate Hi(τ) and Ii j(τ) into Hi and Ii j for convenience. The well-known loopy

belief propagation (BP) algorithm of Pearl (1988) can be interpreted as a fixed point algorithm to

optimize the Bethe free energy in (3) on the locally consistent polytope L (Yedidia et al., 2003).

Unfortunately, the Bethe free energy is a non-concave function of τ, causing (3) to be a non-convex

3169



LIU AND IHLER

optimization. The tree reweighted (TRW) free energy is a convex surrogate of the Bethe free energy

(Wainwright et al., 2005a),

Φ(θ)≈max
τ∈L

{

〈θ,τ〉+ ∑
i∈V

Hi(τ)− ∑
(i j)∈E

ρi jIi j(τ)
}

, (4)

where {ρi j : (i j) ∈ E} is a set of positive edge appearance probabilities obtained from a weighted

collection of spanning trees of G (see Wainwright et al. (2005a) and Section 4.2 for the detailed

definition). The TRW approximation in (4) is a convex optimization problem, and is guaranteed

to give an upper bound of the true log-partition function. A message passing algorithm similar to

loopy BP, called tree reweighted BP, can be derived as a fixed point algorithm for solving the convex

optimization in (4).

2.2.4 MEAN-FIELD-BASED METHODS

Mean-field-based methods are another set of approximate inference algorithms, which work by re-

stricting M to a set of tractable distributions, on which both the marginal polytope and the joint

entropy are tractable. Precisely, let Mm f be a subset of M that corresponds to a set of tractable dis-

tributions, for example, the set of fully factored distributions, Mm f = {τ ∈M : τ(x) = ∏i∈V τi(xi)}.
Note that the joint entropy H(τ) for any τ ∈Mm f decomposes to the sum of singleton entropies

Hi(τ) of the marginal distributions τi(xi). This method then approximates the log-partition function

(1) by

max
τ∈Mm f

{

〈θ,τ〉+ ∑
i∈V

Hi(τ)
}

, (5)

which is guaranteed to give a lower bound of the log-partition function. Unfortunately, mean field

methods usually lead to non-convex optimization problems, because Mm f is often a non-convex set.

In practice, block coordinate descent methods can be adopted to find the local optima of (5).

2.3 Max-Inference Problems

Combinatorial maximization (max-inference), or maximum a posteriori (MAP), problems are the

tasks of finding a mode of the joint probability. That is,

Φ∞(θ) = max
x

θ(x), x∗ = argmax
x

θ(x),

where x∗ is a MAP configuration and Φ∞(θ) the optimal energy value. This problem can be re-

formed into a linear program,

Φ∞(θ) = max
τ∈M
〈θ,τ〉, (6)

which attains its maximum when τ∗(x) = 1(x = x∗), where 1(·) is the Kronecker delta function,

defined as 1(t) = 1 if condition t is true, and zero otherwise. If there are multiple MAP solutions,

say {x∗k : k = 1, . . . ,K}, then any convex combination ∑k ck1(x = x∗k) with ∑k ck = 1,ci ≥ 0 leads

to a maximum of (6).

The problem in (6) remains NP-hard, because the marginal polytope M includes exponentially

many inequality constraints. Most variational methods for MAP (e.g., Wainwright et al., 2005b;

Werner, 2007) can be interpreted as relaxing M to the locally consistent polytop L, yielding a linear

relaxation of the original integer programming problem. Note that (6) differs from (1) only by its

lack of an entropy term; in the next section, we generalize this similarity to marginal MAP.
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max:xB

sum:xA

Marginal MAP:

x∗B = argmax
xB

p(xB)

= argmax
xB

∑
xA

p(x).

Figure 1: An example from Koller and Friedman (2009) in which a marginal MAP query on a

tree requires exponential time complexity. The marginalization over xA destroys the con-

ditional dependency structure in the marginal distribution p(xB), causing an intractable

maximization problem over xB. The exact variable elimination method, which sequen-

tially marginalizes the sum nodes and then maximizes the max nodes, has time complex-

ity of O(exp(n)), where n is the length of the chain.

2.4 Marginal MAP Problems

Marginal MAP is simply a hybrid of the max- and sum- inference tasks. Let A be a subset of

nodes V , and B = V\A be the complement of A. The marginal MAP problem seeks a partial con-

figuration x∗B that has the maximum marginal probability p(xB) = ∑xA
p(x), where A is the set of

sum nodes to be marginalized out, and B the max nodes to be optimized. We call this a type of

“mixed-inference” problem, since it involves more than one type of variable elimination operator.

To facilitate developing our duality results, we formulate marginal MAP in terms of the exponential

family representation,

ΦAB(θ) = max
xB

Q(xB;θ), where Q(xB;θ) = log∑
xA

exp[θ(x)], (7)

where the maximum point x∗B of Q(xB;θ) is the marginal MAP solution. Although similar to max-

and sum-inference, marginal MAP is significantly harder than either of them. A classic example

is shown in Figure 1, where marginal MAP is NP-hard even on a tree structured graph (Koller and

Friedman, 2009). The main difficulty arises because the max and sum operators do not commute,

which restricts feasible elimination orders to those with all the sum nodes eliminated before any max

nodes. In the worst case, marginalizing the sum nodes xA may destroy any conditional independence

among the max nodes xB, making it difficult to represent or optimize Q(xB;θ), even when the sum

part alone is tractable (such as when the nodes in A form a tree).

Despite its computational difficulty, marginal MAP plays an essential role in many practical

scenarios. The marginal MAP configuration x∗B in (7) is Bayes optimal in the sense that it minimizes

the expected error on B, E[1(x∗B = xB)], where E[·] denotes the expectation under distribution p(x;θ).
Here, the variables xA are not included in the error criterion, for example because they are “nuisance”

hidden variables of no direct interest, or unobserved or inaccurately measured model parameters.

In contrast, the joint MAP configuration x∗ minimizes the joint error E[1(x∗ = x)], but gives no

guarantees on the partial error E[1(x∗B = xB)]. In practice, perhaps because of the wide availability

of efficient algorithms for joint MAP, researchers tend to over-use joint MAP even in cases where

marginal MAP would be more appropriate. The following toy example shows that this seemingly

reasonable approach can sometimes cause serious problems.

Example 1 (Weather Dilemma). Denote by xb ∈ {rainy,sunny} the weather condition of Irvine,

and xa ∈ {walk,drive} whether Alice drives or walks to the school depending on the weather con-
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dition. Assume the probabilities of xb and xa are

p(xb) : rainy 0.4

sunny 0.6

p(xa|xb) : walk drive

rainy 1/8 7/8

sunny 1/2 1/2

The task is to calculate the most likely weather condition of Irvine, which is obviously sunny accord-

ing to p(xb). The marginal MAP, x∗b = argmaxxb
p(xb) = sunny, gives the correct answer. However,

the full MAP estimator, [x∗a,x
∗
b] = argmax p(xa,xb) = [drive,rainy], gives answer x∗b = rainy (by

dropping the x∗a component), which is obviously wrong. Paradoxically, if p(xa|xb) is changed (say,

corresponding to a different person), the solution returned by full MAP could be different.

In the above example, since no evidence on xa is observed, the conditional probability p(xa|xb)
does not provide useful information for xb, but instead provides misleading information when it

is incorporated in the full MAP estimator. The marginal MAP, on the other hand, eliminates the

influence of the irrelevant p(xa|xb) by marginalizing (or averaging) xa. In general, the marginal

MAP and full MAP can differ significantly when the uncertainty in the hidden variables changes as

a function of xB.

3. A Dual Representation for Marginal MAP

In this section, we present our main result, a dual representation of the marginal MAP problem

(7). Our dual representation generalizes that of sum-inference in (1) and max-inference in (6), and

provides a unified framework for solving marginal MAP problems.

Theorem 2. The marginal MAP energy ΦAB(θ) in (7) has a dual representation,

ΦAB(θ) = max
τ∈M
{〈θ,τ〉+HA|B(τ)}, (8)

where HA|B(τ) is a conditional entropy, HA|B(τ) = −∑x τ(x) logτ(xA|xB). If Q(xB;θ) has a unique

maximum x∗B, the maximum point τ∗ of (8) is also unique, satisfying τ∗(x) = τ∗(xB)τ
∗(xA|xB), where

τ∗(xB) = 1(xB = x∗B) and τ∗(xA|xB) = p(xA|xB;θ)3.

Proof. For any τ ∈M and its corresponding global distribution τ(x), consider the conditional KL

divergence between τ(xA|xB) and p(xA|xB;θ),

DKL[τ(xA|xB)||p(xA|xB;θ)] = ∑
x

τ(x) log
τ(xA|xB)

p(xA|xB;θ)

=−HA|B(τ)−Eτ[log p(xA|xB;θ)]

=−HA|B(τ)−Eτ[θ(x)]+Eτ[Q(xB;θ)] ≥ 0,

where HA|B(τ) is the conditional entropy on τ(x); the equality on the last line holds because

p(xA|xB;θ) = exp(θ(x)−Q(xB;θ)); the last inequality follows from the nonnegativity of KL diver-

gence, and is tight if and only if τ(xA|xB) = p(xA|xB;θ) for all xA and xB that τ(xB) 6= 0. Therefore,

we have for any τ(x),

ΦAB(θ) = max
xB

Q(xB;θ)≥ Eτ[Q(xB;θ)]≥ Eτ[θ(x)]+HA|B(τ).

3. Since τ(xB) = 0 if xB 6= x∗B, we do not necessarily need to define τ∗(xA|xB) for xB 6= x∗B.
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Problem Type Primal Form Dual Form

Max-Inference logmax
x

exp(θ(x)) max
τ∈M
{〈θ,τ〉}

Sum-Inference log∑
x

exp(θ(x)) max
τ∈M
{〈θ,τ〉+H(τ)}

Marginal MAP logmax
xB

∑
xA

exp(θ(x)) max
τ∈M
{〈θ,τ〉+HA|B(τ)}

Table 1: The primal and dual forms of the three inference types. The dual forms of sum-inference

and max-inference are well known; the form for marginal MAP is a contribution of this

work. Intuitively, the max vs. sum operators in the primal form determine the conditioning

set of the conditional entropy term in the dual form.

It is easy to show that the two inequality signs are tight if and only if τ(x) equals τ∗(x) as defined

above. Substituting Eτ[θ(x)] = 〈θ,τ〉 completes the proof.

Remark 1. If Q(xB;θ) has multiple maxima {x∗kB }, each corresponding to a distribution τ∗k(x) =
1(xB = x∗B)p(xA|xB;θ), then the set of maximum points of (8) is the convex hull of {τ∗k}.

Remark 2. Theorem 2 naturally integrates the marginalization and maximization sub-problems

into one joint optimization problem, providing a novel and efficient treatment for marginal MAP

beyond the traditional approaches that treat the marginalization sub-problem as a sub-routine of

the maximization problem. As we show in Section 5, this enables us to derive efficient “mixed-

product” message passing algorithms that simultaneously takes marginalization and maximization

steps, avoiding expensive and possibly wasteful inner loop steps in the marginalization sub-routine.

Remark 3. Since we have HA|B(τ) = H(τ)−HB(τ) by the entropic chain rule (Cover and Thomas,

2006), the objective function in (8) can be view as a “truncated” free energy,

Fmix(τ,θ) := 〈θ,τ〉+HA|B(τ) = Fsum(τ,θ)−HB(τ),

where the entropy HB(τ) of the max nodes xB are removed from the regular sum-inference free

energy Fsum(τ,θ) = 〈θ,τ〉+H(τ). Theorem 2 generalizes the dual form of both sum-inference (1)

and max-inference (6), since it reduces to those forms when the max set B is empty or all nodes,

respectively. Table 1 shows all three forms together for comparision. Intuitively, since the entropy

HB(τ) is removed from the objective, the optimal marginal τ∗(xB) tends to have lower entropy and

its probability mass concentrates on the optimal configurations {x∗B}. Alternatively, the τ∗(x) can be

interpreted as the marginals obtained by clamping the value of xB at x∗B on the distribution p(x;θ),
that is, τ∗(x) = p(x|xB = x∗B;θ).

Remark 4. Unfortunately, subtracting the HB(τ) term causes some subtle difficulties. First, HB(τ)
(and hence Fmix(τ,θ)) may be intractable to calculate even when the joint entropy H(τ) is tractable,

because the marginal distribution p(xB) = ∑xA
p(x) does not necessarily inherit the conditional de-

pendency structure of the joint distribution. Therefore, the dual optimization in (8) may be in-

tractable even on a tree, reflecting the intrinsic difficulty of marginal MAP compared to full MAP

or marginalization. Interestingly, we show in the sequel that a certificate of optimality can still be

obtained on general tree graphs in some cases.
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Secondly, the conditional entropy HA|B(τ) (and hence Fmix(τ,θ)) is concave, but not strictly con-

cave, with respect to τ. This creates additional difficulty when optimizing (8), since many iterative

optimization algorithms, such as coordinate descent, can lose their typical convergence or optimality

guarantees when the objective function is not strongly convex.

3.1 Smoothed Approximation

To sidestep the issue of non-strictly convexity, we introduce a smoothed approximation of Fmix(τ,θ)
that “adds back” part of the missing HB(τ) term,

Fε
mix(τ,θ) = 〈θ,τ〉+HA|B(τ)+ εHB(τ),

where ε is a small positive constant. Similar smoothing techniques have also been applied to solve

the standard MAP problem; see, for example, Hazan and Shashua (2010); Meshi et al. (2012). We

show in the following theorem that this smoothed dual approximation is closely connected to a

direct approximation in the primal domain.

Theorem 3. Let ε be a positive constant, and Q(xB;θ) as defined in (7). Define

Φε
AB(θ) = log

{

[∑
xB

exp(Q(xB;θ))1/ε]ε
}

,

then we have

Φε
AB(θ) = max

τ∈M

{

〈θ,τ〉+HA|B(τ)+ εHB(τ)
}

.

In addition, we have

lim
ε→0+

Φε
AB(θ) = ΦAB(θ),

where ε→ 0+ denotes approaching zero from the positive side.

Proof. The proof is similar to that of Theorem 2, but exploits the non-negativity of a weighted sum

of two KL divergence terms,

DKL[τ(xA|xB)||p(xA|xB;θ)]+ εDKL[τ(xB)||p(xB)].

The remaining part follows directly from the standard zero temperature limit formula,

lim
ε→0+

[∑
x

f (x)1/ε]ε = max
x

f (x), (9)

where f (x) is any function with positive values.

4. Variational Approximations for Marginal MAP

Theorem 2 transforms the marginal MAP problem into a variational form, but obviously does not

decrease its computational hardness. Fortunately, many well-established variational techniques for

sum- and max-inference can be extended to apply to (8), opening a new door for deriving novel

approximate algorithms for marginal MAP. In the spirit of Wainwright and Jordan (2008), one can

either relax M to a simpler outer bound like L and replace Fmix(τ,θ) by some tractable form to give
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algorithms similar to loopy BP or TRW BP, or restrict M to a tractable subset like Mm f to give

mean-field-like algorithms. In the sequel, we demonstrate several such approximation schemes,

mainly focusing on the BP-like methods with pairwise free energies. We will briefly discuss mean-

field-like methods when we connect to EM in section 7, and derive an extension to junction graphs

that exploits higher order approximations in Section 8. Our framework can be easily adopted to

take advantage of other, more advanced variational techniques, like those using higher order cliques

(e.g., Yedidia et al., 2005; Globerson and Jaakkola, 2007; Liu and Ihler, 2011a; Hazan et al., 2012)

or more advanced optimization methods like dual decomposition (Sontag et al., 2011) or alternating

direction method of multipliers (Boyd et al., 2010).

We start by characterizing the graph structure on which marginal MAP is tractable.

Definition 4.1. We call G an A-B tree if there exists a partial order on the node set V = A∪B,

satisfying

1) Tree-order. For any i ∈ V , there is at most one other node j ∈ V (called its parent), such that

j ≺ i and (i j) ∈ E;

2) A-B Consistency. For any a ∈ A and b ∈ B, we have b≺ a.

We call such a partial order an A-B tree-order of G.

For further notation, let GA = (A,EA) be the subgraph induced by nodes in A, that is, EA =
{(i j) ∈ E : i ∈ A, j ∈ A}, and similarly for GB = (B,EB). Let ∂AB = {(i j) ∈ E : i ∈ A, j ∈ B} be the

edges that join sets A and B.

Obviously, marginal MAP on an A-B tree can be tractably solved by sequentially eliminating

the variables along the A-B tree-order (see, e.g., Koller and Friedman, 2009). We show that its dual

optimization is also tractable in this case.

Lemma 4. If G is an A-B tree, then

1) The locally consistent polytope equals the marginal polytope, that is, M= L.

2) The conditional entropy has a pairwise decomposition,

HA|B(τ) = ∑
i∈A

Hi(τ) − ∑
(i j)∈EA∪∂AB

Ii j(τ). (10)

Proof. 1) The fact that M = L on trees is a standard result; see Wainwright and Jordan (2008) for

details.

2) Because G is an A-B tree, both p(x) and p(xB) have tree structured conditional dependency. We

then have (see, e.g., Wainwright and Jordan, 2008) that

H(τ) = ∑
i∈V

Hi(τ)− ∑
(i j)∈E

Ii j(τ), and HB(τ) = ∑
i∈B

Hi(τ)− ∑
(i j)∈EB

Ii j(τ).

Equation (10) follows by using the entropic chain rule HA|B(τ) = H(τ)−HB(τ).
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4.1 Bethe-like Free Energy

Lemma 4 suggests that the free energy of A-B trees can be decomposed into singleton and pairwise

terms that are easy to deal with. This is not true for general graphs, but motivates a “Bethe” like

approximation,

Φbethe(θ) = max
τ∈L

Fbethe(τ,θ), Fbethe(τ,θ) = 〈θ,τ〉 + ∑
i∈A

Hi(τ) − ∑
(i j)∈EA∪∂AB

Ii j(τ), (11)

where Fbethe(τ,θ) is a “truncated” Bethe free energy, whose entropy and mutual information terms

that involve only max nodes are truncated. If G is an A-B tree, Φbethe equals the true ΦAB, giving an

intuitive justification. In the sequel we give more general theoretical conditions under which this ap-

proximation gives the exact solution, and we find empirically that it usually gives surprisingly good

solutions in practice. Similar to the regular Bethe approximation, (11) leads to a nonconvex opti-

mization, and we will derive both message passing algorithms and provably convergent algorithms

to solve it.

4.2 Tree-reweighted Free Energy

Following the idea of TRW belief propagation (Wainwright et al., 2005a), we construct an approxi-

mation of marginal MAP using a convex combination of A-B subtrees (subgraphs of G that are A-B

trees). Let TAB be a collection of A-B subtrees of G. We assign with each T ∈ TAB a weight wT

satisfying wT ≥ 0 and ∑T∈TAB
wT = 1. For each A-B sub-tree T = (V,ET ), define

HA|B(τ ; T ) = ∑
i∈A

Hi(τ) − ∑
(i j)∈ET \EB

Ii j(τ).

As shown in Wainwright and Jordan (2008), the HA|B(τ ; T ) is always a concave function of τ on

L, and HA|B(τ) ≤ HA|B(τ ; T ) for all τ ∈ M and T ∈ TAB. More generally, we have HA|B(τ) ≤

∑T∈TAB
wT HA|B(τ ; T ), which can be transformed to

HA|B(τ)≤∑
i∈A

Hi(τ) − ∑
(i j)∈EA∪∂AB

ρi jIi j(τ), (12)

where ρi j =∑T :(i j)∈ET
wT are the edge appearance probabilities as defined in Wainwright and Jordan

(2008). Replacing M with L and HA|B(τ) with the bound in (12) leads to a TRW-like approximation

of marginal MAP,

Φtrw(θ) = max
τ∈L

Ftrw(τ,θ), Ftrw(τ,θ) = 〈θ,τ〉 + ∑
i∈A

Hi(τ) − ∑
(i j)∈EA∪∂AB

ρi jIi j(τ). (13)

Since L is an outer bound of M, and Ftrw is a concave upper bound of the true free energy, we can

guarantee that Φtrw(θ) is always an upper bound of ΦAB(θ). To our knowledge, this provides the

first known convex relaxation for upper bounding marginal MAP. One can also optimize the weights

{wT : T ∈ TAB} to get the tightest upper bound using methods similar to those used for regular TRW

BP (see Wainwright et al., 2005a).

4.3 Global Optimality Guarantees

We show the global optimality guarantees of the above approximations under some circumstances.

In this section, we always assume GA is a tree, and hence the objective function is tractable to
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calculate for a given xB. However, the optimization component remains intractable in this case,

because the marginalization step destroys the decomposition structure of the objective function (see

Figure 1). It is thus nontrivial to see how the Bethe and TRW approximations behave in this case.

In general, suppose we approximate ΦAB(θ) using the following pairwise approximation,

Φtree(θ) = max
τ∈L

{

〈θ,τ〉 + ∑
i∈A

Hi(τ)− ∑
(i j)∈EA

Ii j(τ)− ∑
(i j)∈∂AB

ρi jIi j(τ)
}

, (14)

where the weights on the sum part, {ρi j : (i j) ∈ EA}, have been fixed to be ones. This choice

makes sure that the sum part is “intact” in the approximation, while the weights on the crossing

edges, ρAB = {ρi j : (i j) ∈ ∂AB}, can take arbitrary values, corresponding to different free energy

approximation methods. If ρi j = 1 for ∀(i j) ∈ ∂AB, it is the Bethe free energy; it will correspond to

the TRW free energy if {ρi j} are taken to be a set of edge appearance probabilities (which in general

have values less than one). The edge appearance probabilities of A-B trees are more restrictive than

for the standard trees used in TRW BP. For example, if the max part of a A-B sub-tree is a connected

tree, then it can include at most one crossing edge, so in this case ρAB should satisfy ∑(i j)∈∂AB
ρi j = 1,

ρi j ≥ 0. Interestingly, we will show in Section 7 that if ρi j→+∞ for ∀(i j)∈ ∂AB, then Equation (14)

is closely related to an EM algorithm.

Theorem 5. Suppose the sum part GA is a tree, and we approximate ΦAB(θ) using Φtree(θ) defined

in (14). Assume that (14) is globally optimized.

(i) We have Φtree(θ)≥ΦAB(θ). If there exists x∗B such that Q(x∗B;θ)=Φtree(θ), we have Φtree(θ)=
ΦAB(θ), and x∗B is a globally optimal marginal MAP solution.

(ii) Suppose τ∗ is a global maximum of (14), and {τ∗i (xi) : i ∈ B} have integral values, that is,

τ∗i (xi) = 0 or 1, then {x∗i = argmaxxi
τ∗i (xi) : i ∈ B} is a globally optimal solution of the

marginal MAP problem (7).

Proof (sketch). (See appendix for the complete proof.) The fact that the sum part GA is a tree

guarantees the marginalization is exact. Showing (14) is a relaxation of the maximization problem

and applying standard relaxation arguments completes the proof.

Remark. Theorem 5 works for arbitrary values of ρAB, and suggests a fundamental tradeoff of

hardness as ρAB takes on different values. On the one hand, the value of ρAB controls the concavity

of the objective function in (14) and hence the difficulty of finding a global optimum; small enough

ρAB (as in TRW) can ensure that (14) is a convex optimization, while larger ρAB (as in Bethe or

EM) causes (14) to become non-convex, making it difficult to apply Thoerem 5. On the other hand,

the value of ρAB also controls how likely the solution is to be integral—larger ρi j emphasizes the

mutual information terms, forcing the solution towards integral points. Thus the solution of the

TRW free energy is less likely to be integral than the Bethe free energy, causing a difficulty in

applying Theorem 5 to TRW solutions as well. The TRW approximation (∑i j ρi j = 1) and EM

(ρi j → +∞; see Section 7) reflect two extrema of this tradeoff between concavity and integrality,

respectively, while the Bethe approximation (ρi j = 1) appears to represent a reasonable compromise

that often gives excellent performance in practice. In Section 5.2, we give a different set of local

optimality guarantees that are derived from a reparameterization perspective.
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5. Message Passing Algorithms for Marginal MAP

We now derive message-passing-style algorithms to optimize the “truncated” Bethe or TRW free

energies in (11) and (13). Instead of optimizing the truncated free energies directly, we leverage the

results of Theorem 3 and consider their “annealed” versions,

max
τ∈L

{

〈θ,τ〉+ ĤA|B(τ)+ εĤB(τ)
}

,

where ε is a positive annealing coefficient (or temperature), and the ĤA|B(τ) and ĤB(τ) are the

generic pairwise approximations of HA|B(τ) and HB(τ), respectively. That is,

ĤA|B(τ) = ∑
i∈A

Hi(τ) − ∑
(i j)∈EA∪∂AB

ρi jIi j(τ), and ĤB(τ) = ∑
i∈B

Hi(τ) − ∑
(i j)∈EB

ρi jIi j(τ), (15)

where different values of pairwise weights {ρi j} correspond to either the Bethe approximation or

the TRW approximation. This yields a generic pairwise free energy optimization problem,

max
τ∈L

{

〈θ,τ〉+ ∑
i∈V

wiHi(τ)− ∑
(i j)∈E

wi jIi j(τ)
}

, (16)

where the weights {wi,wi j} are determined by the temperature ε and {ρi j} via

wi =

{

1 ∀i ∈ A

ε ∀i ∈ B,
wi j =

{

ρi j ∀(i j) ∈ EA∪∂AB

ερi j ∀(i j) ∈ EB.
(17)

The general framework in (16) provides a unified treatment for approximating sum-inference, max-

inference and mixed, marginal MAP problems simply by taking different weights. Specifically,

1. If wi = 1 for all i ∈V , Equation (16) corresponds to the sum-inference problem and the sum-

product BP objectives and algorithms.

2. If wi→ 0+ for all i ∈V (and the corresponding wi j→ 0+), Equation (16) corresponds to the

max-inference problem and the max-product linear programming objective and algorithms.

3. If wi = 1 for ∀i ∈ A and wi = 0 for ∀i ∈ B (and the corresponding wi j → 0+), Equation (16)

corresponds to the marginal MAP problem; in the sequel, we derive “mixed-product” BP

algorithms.

Note the different roles of the singleton and pairwise weights: the singleton weights {wi : i ∈ V}
define the type of inference problem, while the pairwise weights {wi j : (i j) ∈ E} determine the

approximation method (e.g., Bethe vs. TRW).

We now derive a message passing algorithm for solving the generic problem (16), using a La-

grange multiplier method similar to Yedidia et al. (2005) or Wainwright et al. (2005a).

Proposition 6. Assuming wi and wi j are strictly positive, the stationary points of (16) satisfy the

fixed point condition of the following message passing update,

Message Update: mi→ j(x j)←
[

∑
xi

(ψi(xi)m∼i(xi))
1

wi

(

ψi j(xi,x j)

m j→i(xi)

)
1

wi j ]wi j , (18)

Marginal Decoding:

τi(xi) ∝
[

ψi(xi)m∼i(xi)
]

1
wi , τi j(xi,x j) ∝ τi(xi)τ j(x j)

[

ψi j(xi,x j)

mi→ j(x j)m j→i(xi)

]
1

wi j

, (19)
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Algorithm 1 Annealed BP for Marginal MAP

Define the pairwise weights {ρi j : (i j) ∈ E}, for example, ρi j = 1 for Bethe or valid appearance

probabilities for TRW. Initialize the messages {mi→ j : (i j) ∈ E}.
for iteration t do

1. Update ε by ε = 1/t, and correspondingly the weights {wi,wi j} by (17).

2. Perform the message passing update in (18) for all edges (i j) ∈ E.

end for

Calculate the singleton beliefs bi(xi) and decode the solution x∗B,

x∗i = argmax
xi

bi(xi), ∀i ∈ B, where bi(xi) ∝ ψi(xi)m∼i(xi).

where m∼i(xi) := ∏
k∈∂i

mk→i(xi) is the product of messages sent into node i, and ∂i is the set of

neighboring nodes of i.

Proof (sketch). (See appendix for the complete proof.) Note that (19) is simply the KKT condition

of (16), with the log of the message logmi→ j being the Lagrange multipliers. Plugging (19) into the

local consistency constraints of L in (2) gives (18).

The above message update is mostly similar to TRW-BP of Wainwright et al. (2005a), except

that it incorporates general singleton weights wi. The marginal MAP problem can be solved by

running (18) with {wi,wi j} defined by (17) and a scheme for choosing the temperature ε, either

directly set to be a small constant, or gradually decreased (or annealed) to zero through iterations,

for example, by ε = 1/t where t is the iteration. Algorithm 1 describes the details for the annealing

method.

5.1 Mixed-Product Belief Propagation

Directly taking ε→ 0+ in message update (18), we can get an interesting “mixed-product” BP algo-

rithm that is a hybrid of the max-product and sum-product message updates, with a novel “argmax-

product” message update that is specific to marginal MAP problems. This algorithm is listed in

Algorithm 2, and described by the following proposition:

Proposition 7. As ε approaches zero from the positive side, that is, ε→ 0+, the message update

(18) reduces to the update in (20)-(22) in Algorithm 2.

Proof. For messages from i ∈ A to j ∈ A∪B, we have wi = 1, wi j = ρi j; the result is obvious.

For messages from i ∈ B to j ∈ B, we have wi = ε, wi j = ερi j. The result follows from the zero

temperature limit formula in (9), by letting f (xi) = (ψi(xi)m∼i(xi))
ρi j(

ψi j(xi,x j)
m j→i(xi)

).

For messages from i ∈ B to j ∈ A, we have wi = ε, wi j = ρi j. One can show that

lim
ε→0+

[ ψi(xi)m∼i(xi)

maxxi
ψi(xi)m∼i(xi)

]1/ε
= 1(xi ∈ X ∗i ),

where X ∗i = argmaxxi
ψi(xi)m∼i(xi). Plugging this into (18) and dropping the constant term, we get

the message update in (22).
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Algorithm 2 Mixed-product Belief Propagation for Marginal MAP

Define the pairwise weights {ρi j : (i j) ∈ E} and initialize messages {mi→ j : (i j) ∈ E} as in Al-

gorithm 1.

for iteration t do

for edge (i j) ∈ E do

Perform different message updates depending on the node type of the source and destination,

A→ A∪B:

(sum-product)
mi→ j(x j)←

[

∑
xi

(ψi(xi)m∼i(xi))(
ψi j(xi,x j)

m j→i(xi)
)1/ρi j

]ρi j , (20)

B→ B:

(max-product)
mi→ j(x j)←max

xi

(ψi(xi)m∼i(xi))
ρi j(

ψi j(xi,x j)

m j→i(xi)
), (21)

B→ A:

(argmax-product)
mi→ j(x j)←

[

∑
xi∈X ∗i

(ψi(xi)m∼i(xi))(
ψi j(xi,x j)

m j→i(xi)
)1/ρi j

]ρi j , (22)

where the set X ∗i = argmax
xi

ψi(xi)m∼i(xi) and m∼i(xi) = ∏
k∈∂i

mki(xi).

end for

end for

Calculate the singleton beliefs bi(xi) and decode the solution x∗B,

x∗i = argmax
xi

bi(xi), ∀i ∈ B, where bi(xi) ∝ ψi(xi)m∼i(xi).

Algorithm 2 has an intuitive interpretation: the sum-product and max-product messages in

(20) and (21) correspond to the marginalization and maximization steps, respectively. The spe-

cial “argmax-product” messages in (22) serves to synchronize the sum-product and max-product

messages—it restricts the max nodes to the currently decoded local marginal MAP solutions X ∗i =
argmaxψi(xi)m∼i(xi), and passes the posterior beliefs back to the sum part. Note that the summa-

tion notation in (22) can be ignored if X ∗i has only a single optimal state.

One critical feature of our mixed-product BP is that it takes simultaneous movements on the

marginalization and maximization sub-problems in a parallel fashion, and is computationally much

more efficient than the traditional methods that require fully solving a marginalization sub-problem

before taking each maximization step. This advantage is inherited from our general variational

framework, which naturally integrates the marginalization and maximization sub-problems into a

joint optimization problem.

Interestingly, Algorithm 2 also bears similarity to a recent hybrid message passing method of

Jiang et al. (2011), which differs from Algorithm 2 only in replacing the special argmax-product

messages (22) with regular max-product messages. We make a detailed comparison of these two

algorithms in Section 5.3, and show that it is in fact the argmax-product messages (22) that lends

our algorithm several appealing optimality guarantees.
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5.2 Reparameterization Interpretation and Local Optimality Guarantees

An important interpretation of the sum-product and max-product BP is the reparameterization view-

point (Wainwright et al., 2003; Weiss et al., 2007): Message passing updates can be viewed as mov-

ing probability mass between local pseudo-marginals (or beliefs), in a way that leaves their product

a reparameterization of the original distribution, while ensuring some consistency conditions at the

fixed points. Such viewpoints are theoretically important, because they are useful for proving op-

timality guarantees for the BP algorithms. In this section, we show that the mixed-product BP in

Algorithm 2 has a similar reparameterization interpretation, based on which we establish a local

optimality guarantee for mixed-product BP.

To start, we define a set of “mixed-beliefs” as

bi(xi) ∝ ψi(xi)m∼i(xi), bi j(xi j) ∝ bi(xi)b j(x j)

[

ψi j(xi,x j)

mi→ j(x j)m j→i(xi)

]1/ρi j

. (23)

The marginal MAP solution should be decoded from x∗i ∈ argmaxxi
bi(xi),∀i ∈ B, as is typical in

max-product BP. Note that the above mixed-beliefs {bi,bi j} are different from the local marginals

{τi,τi j} defined in (19), but are rather softened versions of {τi,τi j}.Their relationship is explicitly

clarified in the following.

Proposition 8. The {τi,τi j} in (19) and the {bi,bi j} in (23) are associated via,

{

bi ∝ τi ∀i ∈ A,

bi ∝ (τi)
ε ∀i ∈ B

{

bi j ∝ bib j(
τi j

τiτ j
) ∀(i j) ∈ EA∪∂AB

bi j ∝ bib j(
τi j

τiτ j
)ε ∀(i j) ∈ EB.

Proof. Result follows from the simple algebraic transformation between (19) and (23).

Therefore, as ε→ 0+, the τi (= b
1/ε
i ) for i ∈ B should concentrate their mass on a deterministic

configuration, but bi may continue to have soft values.

We now show that the mixed-beliefs {bi,bi j} have a reparameterization interpretation.

Theorem 9. At the fixed point of mixed-product BP in Algorithm 2 , the mixed-beliefs defined in

(23) satisfy

Reparameterization:

p(x) ∝ ∏
i∈V

bi(xi) ∏
(i j)∈E

[ bi j(xi,x j)

bi(xi)b j(x j)

]ρi j . (24)

Mixed-consistency:

(a) ∑
xi

bi j(xi,x j) = b j(x j), ∀i ∈ A, j ∈ A∪B, (25)

(b) max
xi

bi j(xi,x j) = b j(x j), ∀i ∈ B, j ∈ B, (26)

(c) ∑
xi∈argmaxbi

bi j(xi,x j) = b j(x j), ∀i ∈ B, j ∈ A. (27)

Proof. Directly substitute the definition (23) into the message update (20)-(22).
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The three mixed-consistency constraints exactly map to the three types of message updates in

Algorithm 2. Constraint (a) and (b) enforces the regular sum- and max- consistency of the sum- and

max- product messages in (20) and (21), respectively. Constraint (c) corresponds to the argmax-

product message update in (22): it enforces the marginals to be consistent after xi is assigned to the

currently decoded solution, xi = argmaxxi
bi(xi) = argmaxxi ∑x j

bi j(xi,x j), corresponding to solving

a local marginal MAP problem on bi j(xi,x j). It turns out that this special constraint is a crucial

ingredient of mixed-product BP, enabling us to prove guarantees on the strong local optimality of

the solution.

Some notation is required. Suppose C is a subset of max nodes in B. Let GC∪A = (C∪A,EC∪A)
be the subgraph of G induced by nodes C∪A, where EC∪A = {(i j) ∈ E : i, j ∈C∪A}. We call GC∪A

a semi-A-B subtree of G if the edges in EC∪A\EB form an A-B tree. In other words, GC∪A is a semi-

A-B tree if it is an A-B tree when ignoring any edges entirely within the max set B. See Figure 2 for

examples of semi A-B trees.

Following Weiss et al. (2007), we say that a set of weights {ρi j} is provably convex if there

exist positive constants κi and κi→ j, such that κi +∑i′∈∂i
κi′→i = 1 and κi→ j + κ j→i = ρi j. Weiss

et al. (2007) shows that if {ρi j} is provably convex, then H(τ) = ∑i Hi(τ)−∑i j ρi jIi j(τ) is a concave

function of τ in the locally consistent polytope L.

Theorem 10. Suppose C is a subset of B such that GC∪A is a semi-A-B tree, and the weights {ρi j}
satisfy

1. ρi j = 1 for (i j) ∈ EA;

2. 0≤ ρi j ≤ 1 for (i j) ∈ EC∪A∩∂AB;

3. {ρi j : (i j) ∈ EC∪A∩EB} is provably convex.

At the fixed point of mixed-product BP in Algorithm 2, if the mixed-beliefs on the max nodes

{bi,bi j : i, j ∈ B} defined in (23) all have unique maxima, then there exists a B-configuration x∗B
satisfying x∗i = argmaxbi for ∀i ∈ B and (x∗i ,x

∗
j) = argmaxbi j for ∀(i j) ∈ EB, and x∗B is locally op-

timal in the sense that Q(x∗B;θ) is not smaller than any B-configuration that differs from x∗B only on

C, that is, Q(x∗B;θ) = maxxC
Q([xC,x

∗
B\C];θ).

Proof (sketch). (See appendix for the complete proof.) The mixed-consistency constraint (c) in (27)

and the fact that GC∪A is a semi-A-B tree enables the summation part to be eliminated away. The

remaining part only involves the max nodes, and the method in Weiss et al. (2007) for analyzing

standard MAP can be applied.

Remark. The proof of Theorem 10 relies on transforming the marginal MAP problem to a

standard MAP problem by eliminating the summation part. Therefore, variants of Theorem 10

may be derived using other global optimality conditions of convexified belief propagation or linear

programming algorithms for MAP, such as those in Werner (2007, 2010); Wainwright et al. (2005b).

We leave this to future work.

For GC∪A to be a semi A-B tree, the sum part GA must be a tree, which Theorem 10 assumes

implicitly. For the hidden Markov chain in Figure 1, Theorem 10 implies only the local optimality

up to Hamming distance one (or coordinate-wise optimality), because any semi A-B subtree of G

in Figure 1 can contain at most one max node. However, Theorem 10 is in general much stronger,

especially when the sum part is not fully connected, or when the max part has interior regions

disconnected from the sum part. As examples, see Figure 2(b)-(c).
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(a) (b) (c)

Figure 2: Examples of semi A-B trees. The shaded nodes represent sum nodes, while the unshaded

are max nodes. In each graph, a semi A-B tree is labeled by red bold lines. Under the

conditions of Theorem 10, the fixed point of mixed-product BP is locally optimal up to

jointly perturbing all the max nodes in any semi-A-B subtree of G.

5.3 The Importance of the Argmax-product Message Updates

Jiang et al. (2011) proposed a similar hybrid message passing algorithm, repeated here as Algo-

rithm 3, which differs from our mixed-product BP only in replacing our argmax-product message

update (22) with the usual max-product message update (21). We show in this section that this very

difference gives Algorithm 3 very different properties, and fewer optimality guarantees, than our

mixed-product BP.

Algorithm 3 Hybrid Message Passing by Jiang et al. (2011)

1. Message Update:

A→ A∪B:

(sum-product)
mi→ j(x j)←

[

∑
xi

(ψi(xi)m∼i(xi))(
ψi j(xi,x j)

m j→i(xi)
)1/ρi j

]ρi j ,

A→ A∪B:

(max-product)
mi→ j(x j)←max

xi

(ψi(xi)m∼i(xi))
ρi j(

ψi j(xi,x j)

m j→i(xi)
).

2. Decoding: x∗i = argmaxxi
bi(xi) for ∀i ∈ B, where bi(xi) ∝ ψi(xi)m∼i(xi).

Similar to our mixed-product BP, Algorithm 3 also satisfies the reparameterization property in

(24) (with beliefs {bi,bi j} defined by (23)); it also satisfies a set of similar, but crucially different,

consistency conditions at its fixed points,

∑
xi

bi j(xi,x j) = b j(x j), ∀i ∈ A, j ∈ A∪B,

max
xi

bi j(xi,x j) = b j(x j), ∀i ∈ B, j ∈ A∪B,

which exactly map to the max- and sum- product message updates in Algorithm 3.

Despite its striking similarity, Algorithm 3 has very different properties, and does not share the

appealing variational interpretation and optimality guarantees that we have demonstrated for mixed-

product BP. First, it is unclear whether Algorithm 3 can be interpreted as a fixed point algorithm

for maximizing our, or a similar, variational objective function. Second, it does not inherit the

same optimality guarantees in Theorem 10, despite its similar reparameterization and consistency

conditions. These disadvantages are caused by the miss of the special argmax-product message

update and its associated mixed-consistency condition in (27), which was a critical ingredient of the

proof of Theorem 10.
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More detailed insights into Algorithm 3 and mixed-product BP can be obtained by considering

the special case when the full graph G is an undirected tree. We show that in this case, Algorithm 3

can be viewed as optimizing a set of approximate objective functions, obtained by rearranging

the max and sum operators into orders that require less computational cost, while mixed-product

BP attempts to maximize the exact objective function by message updates that effectively perform

some “asynchronous” coordinate descent steps. In the sequel, we use an illustrative toy example to

explain the main ideas.

Example 2. Consider a marginal MAP problem on a four node chain-structured graphical model

x3− x1− x2− x4, where the sum and max sets are A = {1,2} and B = {3,4}, respectively. We

analyze how Algorithm 3 and mixed-product BP in Algorithm 2 perform on this toy example, when

both taking Bethe weights (ρi j = 1 for (i j) ∈ E).

Algorithm 3 (Jiang et al. 2011). Since G is a tree, one can show that Algorithm 3 (with Bethe

weights) terminates after a full forward and backward iteration (e.g., messages passed along x3→
x1 → x2 → x4 and then x4 → x2 → x1 → x3). By tracking the messages, one can write its final

decoded solution in a closed form,

x∗3 = argmax
x3

∑
x1

∑
x2

max
x4

[exp(θ(x))], x∗4 = argmax
x4

∑
x2

∑
x1

max
x3

[exp(θ(x))],

On the other hand, the true marginal MAP solution is given by,

x∗3 = argmax
x3

max
x4

∑
x1

∑
x2

[exp(θ(x))], x∗4 = argmax
x4

max
x3

∑
x2

∑
x1

[exp(θ(x))].

Here, Algorithm 3 approximates the exact marginal MAP problem by rearranging the max and sum

operators into an elimination order that makes the calculation easier. A similar property holds for

the general case when G is undirected tree: Algorithm 3 (with Bethe weights) terminates in a finite

number of steps, and its output solution x∗i effectively maximizes an approximate objective func-

tion obtained by reordering the max and sum operators along a tree-order (see Definition 4.1) that is

rooted at node i. The performance of the algorithm should be related to the error caused by exchang-

ing the order of max and sum operators. However, exact optimality guarantees are likely difficult

to show because it maximizes an inexact objective function. In addition, since each component x∗i
uses a different order of arrangement, and hence maximizes a different surrogate objective function,

it is unclear whether the joint B-configuration x∗B = {x∗i : i ∈ B} given by Algorithm 3 maximizes a

single consistent objective function.

Algorithm 2 (mixed-product). On the other hand, the mixed-product belief propagation in Algo-

rithm 2 may not terminate in a finite number of steps, nor does it necessarily yield a closed form

solution when G is an undirected tree. However, Algorithm 2 proceeds in an attempt to optimize

the exact objective function. In this toy example, we can show that the true solution is guaranteed

to be a fixed point of Algorithm 2. Let b3(x3) be the mixed-belief on x3 at the current iteration, and

x∗3 = argmaxx3
b3(x3) its unique maxima. After a message sequence passed from x3 to x4, one can

show that b4(x4) and x∗4 update to

x∗4 = argmax
x4

b4(x4), b4(x4) = ∑
x2

∑
x1

exp(θ([x∗3,x¬3])) = exp(Q([x∗3,x4];θ)),

where we maximize the exact objective function Q([x3,x4];θ) with fixed x3 = x∗3. Therefore, on this

toy example, one sweep (x3→ x4 or x4→ x3) of Algorithm 2 is effectively performing a coordinate
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Algorithm 4 Proximal Point Algorithm for Marginal MAP (Exact)

Initialize local marginals τ0.

for iteration t do

θt+1 = θ+λt logτt
B, (28)

τt+1 = argmax
τ∈M
{〈τ,θt+1〉+HA|B(τ)+λtHB(τ)}, (29)

end for

Decoding: x∗i = argmax
xi

τi(xi) for ∀i ∈ B.

descent step, which monotonically improves the true objective function towards a local maximum.

In more general models, Algorithm 2 differs from sequential coordinate descent, and does not guar-

antee monotonic convergence. But, it can be viewed as a “parallel” version of coordinate descent,

which ensures the stronger local optimality guarantees shown in Theorem 10.

6. Convergent Algorithms by Proximal Point Methods

An obvious disadvantage of mixed-product BP is its lack of convergence guarantees, even when

G is an undirected tree. In this section, we apply a proximal point approach (e.g., Martinet, 1970;

Rockafellar, 1976) to derive convergent algorithms that directly optimize our free energy objectives,

which take the form of transforming marginal MAP into a sequence of pure (or annealed) sum-

inference tasks. Similar methods have been applied to standard sum-inference (Yuille, 2002) and

max-inference (Ravikumar et al., 2010).

For the purpose of illustration, we first consider the problem of maximizing the exact marginal

MAP free energy, Fmix(τ,θ) = 〈τ,θ〉+HA|B(τ). The proximal point algorithm works by iteratively

optimizing a smoothed problem,

τt+1 = argmin
τ∈M

{−Fmix(τ,θ)+λtD(τ||τt)},

where τt is the solution at iteration t, and λt is a positive coefficient. Here, D(·||·) is a distance,

called the proximal function, which forces τt+1 to be close to τt ; typical choices of D(·||·) are Eu-

clidean or Bregman distances or ψ-divergences (e.g., Teboulle, 1992; Iusem and Teboulle, 1993).

Proximal algorithms have nice convergence guarantees: the objective series { f (τt)} is guaranteed

to be non-increasing at each iteration, and {τt} converges to an optimal solution, under some reg-

ularity conditions. See, for example, Rockafellar (1976); Tseng and Bertsekas (1993); Iusem and

Teboulle (1993). The proximal algorithm is closely related to the majorize-minimize (MM) algo-

rithm (Hunter and Lange, 2004) and the convex-concave procedure (Yuille, 2002).

For our purpose, we take D(·||·) to be a KL divergence between distributions on the max nodes,

D(τ||τt) = KL(τB(xB)||τ
t
B(xB)) = ∑

xB

τB(xB) log
τB(xB)

τt
B(xB)

.

In this case, the proximal point algorithm reduces to Algorithm 4, which iteratively solves a

smoothed free energy objective, with natural parameter θt updated at each iteration. Intuitively,

the proximal inner loop (28)-(29) essentially “adds back” the truncated entropy term HB(τ), while
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canceling its effect by adjusting θ in the opposite direction. Typical choices of λt include λt = 1

(constant) and λt = 1/t (harmonic). Note that the proximal approach is distinct from an annealing

method, which would require that the annealing coefficient vanish to zero. Interestingly, if we take

λt = 1, then the inner maximization problem (29) reduces to the standard log-partition function du-

ality (1), corresponding to a pure marginalization task. This has the interpretation of transforming

the marginal MAP problem into a sequence of standard sum-inference problems.

In practice we approximate HA|B(τ) and HB(τ) by pairwise entropy decomposition ĤA|B(τ) and

ĤB(τ) in (15), respectively. If ĤB(τ) is provably convex in the sense of Weiss et al. (2007), that is,

there exist positive constants {κi,κi→ j} satisfying ρi = κi +∑k∈∂i
κk→i and ρi j = κi→ j + κ j→i for

i, j ∈ B. Then the resulting approximate algorithm can be interpreted as a proximal algorithm that

maximizes F̂mix(τ,θ) with proximal function as

Dpair(τ||τ
t) = ∑

i∈B

κiKL[τi(xi)||τ
0
i (xi)] + ∑

(i j)∈EB

κi→ jKL[(τi j(xi|x j)||τ
0
i j(xi|x j)].

In this case, Algorithm 4 is still a valid proximal algorithm and inherits its convergence guarantees.

In practice one uses approximations that are not provably convex. An interesting special case is

when both HA|B(τ) and HB(τ) are approximated by a Bethe approximation. This has the effect that

the optimization (29) can be solved using standard belief propagation. Although the Bethe form for

HA|B(τ) and HB(τ) is provably convex only in some special cases, such as when G is tree structured,

we find in practice that this approximation gives very accurate solutions, even on general loopy

graphs where its convergence is no longer theoretically guaranteed.

The global convergence guarantees of the proximal point algorithm may also fail if the inner up-

date (29) is not solved exactly. It should also be possible to develop globally convergent algorithms

without inner loops using the techniques that have been developed for full marginalization or MAP

problems (e.g., Meltzer et al., 2009; Hazan and Shashua, 2010; Jojic et al., 2010; Savchynskyy et al.,

2010), but we leave this to future work.

7. Connections to EM

A natural algorithm for solving the marginal MAP problem is to use the expectation-maximization

(EM) algorithm, by treating xA as the hidden variables and xB as the “parameters” to be maximized.

In this section, we show that the EM algorithm can be seen as a coordinate ascent algorithm on a

mean field variant of our framework.

We start by introducing a “non-convex” generalization of Theorem 2.

Corollary 11. Let Mo be the subset of the marginal polytope M corresponding to the distributions

in which xB are clamped to some deterministic values, that is,

M
o = {τ ∈M : ∃x∗B ∈ XB, such that τ(xB) = 1(xB = x∗B)}.

Then the dual optimization (8) remains exact if the marginal polytope M is replaced by any N

satisfying M
o ⊆ N⊆M, that is,

ΦAB = max
τ∈N
{〈θ,τ〉+HA|B(τ)}.

Proof. For an arbitrary marginal MAP solution x∗B, the τ∗ with τ∗(x)= p(x|xB = x∗B;θ) is an optimum

of (8) and satisfies τ∗ ∈M
o. Therefore, restricting the optimization on M

o (or any N) does not

change the maximum value of the objective function.
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Remark. Among all N satisfying M
o ⊆ N ⊆M, the marginal polytope M is the smallest (and the

unique) convex set that includes Mo, that is, it is the convex hull of Mo.

To connect to EM, we define M
×, the set of distributions in which xA and xB are independent,

that is, M×= {τ∈M : τ(x) = τ(xA)τ(xB)}. Since Mo⊂M
×⊂M, the dual optimization (8) remains

exact when restricted to M
×, that is,

ΦAB(θ) = max
τ∈M×
{〈θ,τ〉+HA|B(τ)}= max

τ∈M×
{〈θ,τ〉+HA(τ)},

where the second equality holds because HA|B(τ) = HA(τ) for τ ∈M
×.

Although M
× is no longer a convex set, it is natural to consider a coordinate update that alter-

nately optimizes τ(xA) and τ(xB),

Updating sum part : τt+1
A ← argmax

τA∈MA

{〈Eτt
B
(θ),τA〉+HA(τA)},

Updating max part : τt+1
B ← argmax

τB∈MB

〈Eτt+1
A
(θ),τB〉,

(30)

where MA and MB are the marginal polytopes over xA and xB, respectively. Note that the sum and

max step each happen to be the dual of a sum-inference and max-inference problem, respectively. If

we go back to the primal, and update the primal configuration xB instead of τB, (30) can be rewritten

into

E step : τt+1
A (xA)← p(xA|x

t
B;θ),

M step : xt+1
B ← argmax

xB

Eτt+1
A
(θ),

which is exactly the EM update, viewing xB as parameters and xA as hidden variables. Similar con-

nections between EM and the coordinate ascent method on variational objectives has been discussed

in Neal and Hinton (1998) and Wainwright and Jordan (2008).

When the E-step or M-step are intractable, one can insert various approximations. In particular,

approximating MA by a mean-field inner bound M
m f
A leads to variational EM. An interesting obser-

vation is obtained by using a Bethe approximation (3) to solve the E-step and a linear relaxation to

solve the M-step; in this case, the EM-like update is equivalent to solving

max
τ∈L×

{

〈θ,τ〉+∑
i∈A

Hi(τ) − ∑
(i j)∈EA

Ii j(τ)
}

, (31)

where L
× is the subset of L in which τi j(xi,x j) = τi(xi)τ j(x j) for (i j) ∈ ∂AB. Equivalently, L× is

the subset of L in which Ii j(τ) = 0 for (i j) ∈ ∂AB. Therefore, (31) can be treated as a special case

of (14) by taking ρi j→+∞, forcing the solution τ∗ to fall into L
×. As we discussed in Section 4.3,

EM represents an extreme of the tradeoff between convexity and integrality implied by Theorem 5,

which strongly encourages vertex solutions by sacrificing convexity, and hence is likely to become

stuck in local optima.

8. Junction Graph Belief Propagation for Marginal MAP

In the above, we have restricted the discussion to pairwise models and pairwise entropy approxi-

mations, mainly for the purpose of clarity. In this section, we extend our algorithms to leverage
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higher order cliques, based on the junction graph representation (Mateescu et al., 2010; Koller and

Friedman, 2009). Other higher order methods, like generalized BP (Yedidia et al., 2005) or their

convex variants (Wainwright et al., 2005a; Wiegerinck, 2005), can be derived similarly.

For notation, a cluster graph is a graph of subsets of variables (called clusters). Formally, it

is a triple (G ,C ,S), where G = (V ,E) is an undirected graph, with each node k ∈ V associated

with a cluster ck ∈ C , and each edge (kl) ∈ E with a subset skl ∈ S (called separators) satisfying

skl ⊆ ck∩cl . We assume that C subsumes the index set I , that is, for any α∈ I , we can assign it with

a ck ∈ C , denoted c[α], such that α⊆ ck. In this case, we can reparameterize θ = {θα : α ∈ I} into

θ= {θck
: k∈V } by taking θck

= ∑
α : c[α]=ck

θα, without changing the distribution. Therefore, we simply

assume C = I in this paper without loss of generality. A cluster graph is called a junction graph if it

satisfies the running intersection property—for each i ∈V , the induced sub-graph consisting of the

clusters and separators that include i is a connected tree. A junction graph is a junction tree if G is

a tree.

To approximate the variational dual form, we first replace M with a higher order locally con-

sistent polytope L(G), which is the set of local marginals τ = {τck
,τskl

: k ∈ V ,(kl) ∈ E} that are

consistent on the intersections of the clusters and separators, that is,

L(G) = {τ : ∑
xck\skl

τck
(xck

) = τ(xskl
),τck

(xck
)≥ 0, for ∀ k ∈ V ,(kl) ∈ E}.

Clearly, we have M ⊆ L(G) and that L(G) is tighter than the pairwise polytope L we used previ-

ously.

We then approximate the joint entropy term by a linear combination of the entropies over the

clusters and separators,

H(τ)≈ ∑
k∈V

Hck
(τ)− ∑

(kl)∈E

Hskl
(τ),

where Hck
(τ) and Hskl

(τ) are the entropy of the local marginals τck
and τskl

, respectively. Further,

we approximate HB(τ) by a slightly more restrictive entropy decomposition,

HB(τ)≈ ∑
k∈V

Hπk
(τ),

where {πk : k ∈V } is a non-overlapping partition of the max nodes B satisfying πk ⊆ ck for ∀k ∈V .

In other words, π represents an assignment of each max node xb ∈ B into a cluster k with xb ∈ πk.

Let B be the set of clusters k ∈ V for which πk 6= /0, and call B the max-clusters; correspondingly,

call A = V \B the sum-clusters. See Figure 3 for an example.

Overall, the marginal MAP dual form in (8) is approximated by

max
τ∈L(G)

{

〈θ,τ〉+ ∑
k∈A

Hck
(τ)+ ∑

k∈B

Hck|πk
(τ)− ∑

(kl)∈E

Hskl
(τ)

}

(32)

where Hck|πk
(τ) = Hck

(τ)−Hπk
(τ). Optimizing (32) using a method similar to the derivation of

mixed-product BP in Algorithm 2, we obtain a “mixed-product” junction graph belief propagation,

given in Algorithm 5.

Similarly to our mixed-product BP in Algorithm 2, Algorithm 5 also admits an intuitive repa-

rameterization interpretation and a strong local optimality guarantee. Algorithm 5 can be seen as
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f
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abc befbc

be
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(a) (b)

Figure 3: (a) An example of marginal MAP problem, where d,c,e are sum nodes (shaded) and

a,b, f are max nodes. (b) A junction graph of (a). Selecting a partitioning of max nodes,

πbde = πbe f = /0, πabc = {a,b}, and πbe f = { f}, results in {bde},{bce} being sum clusters

(shaded) and {abc},{be f} being max clusters.

Algorithm 5 Mixed-product Junction Graph BP

1. Passing messages between clusters on the junction graph until convergence:

A → A ∪B:

(sum-product)
mk→l(xskl

) ∝ ∑
xck\skl

ψck
(xck

)m∼k\l(xck
),

B → A ∪B:

(argmax-product)
mk→l(xskl

) ∝ ∑
xck\skl

(ψck
(xck

)m∼k\l(xck
)) ·1[xπk

∈ X ∗πk
],

where X ∗πk
= argmax

xπk

∑
xck\πk

bk(xck
),

bk(xck
) = ψck

(xck
) ∏
k′∈N (k)

mk′→k(xsk′k
) and m∼k\l(xck

) = ∏
k′∈N (k)\{l}

mk′→k(xsk′k
).

2. Decoding: x∗πk
= argmax

xπk

∑
xck\πk

bk(xck
) for ∀k ∈ B .

a special case of a more general junction graph BP algorithm derived in Liu and Ihler (2012) for

solving maximum expected utility tasks in decision networks. For more details, we refer the reader

to that work.

9. Experiments

We illustrate our algorithms on both simulated models and more realistic diagnostic Bayesian net-

works taken from the UAI08 inference challenge. We show that our Bethe approximation algorithms

perform best among all the tested algorithms, including Jiang et al. (2011)’s hybrid message passing

and a state-of-the-art local search algorithm (Park and Darwiche, 2004).

We implement our mixed-product BP in Algorithm 2 with Bethe weights (mix-product

(Bethe)), the regular sum-product BP (sum-product), max-product BP (max-product) and Jiang

et al. (2011)’s hybrid message passing (with Bethe weights) in Algorithm 3 (Jiang’s method),
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where the solutions are all extracted by maximizing the singleton marginals of the max nodes. For

all these algorithms, we run a maximum of 50 iterations; in case they fail to converge, we run 100

additional iterations with a damping coefficient of 0.1. We initialize all these algorithms with 5 ran-

dom initializations and pick the best solution; for mix-product (Bethe) and Jiang’s method,

we run an additional trial initialized using the sum-product messages, which was reported to perform

well in Park and Darwiche (2004) and Jiang et al. (2011). We also run the proximal point version

of mixed-product BP with Bethe weights (Proximal (Bethe) ), which is Algorithm 4 with both

HA|B(τ) and HB(τ) approximated by Bethe approximations.

We also implement the TRW approximation, but only using the convergent proximal point al-

gorithm, because the TRW upper bounds are valid only when the algorithms converge. The TRW

weights of ĤA|B are constructed by first (randomly) selecting spanning trees of GA, and then aug-

menting each spanning tree with one uniformly selected edge in ∂AB; the TRW weights of ĤB(τ)
are constructed to be provably convex, using the method of TRW-S in Kolmogorov (2006). We run

all the proximal point algorithms for a maximum of 100 iterations, with a maximum of 5 iterations

of weighted message passing updates (18)-(19) for the inner loops (with 5 additional damping with

0.1 damping coefficient).

In addition, we compare our algorithms with SamIam, which is a state-of-the-art implementation

of the local search algorithm for marginal MAP (Park and Darwiche, 2004); we use its default

Taboo search method with a maximum of 500 searching steps, and report the best results among 5

trials with random initializations, and one additional trial initialized by its default method (which

sequentially initializes xi by maximizing p(xi|xpai
) along some predefined order).

We also implement an EM algorithm, whose expectation and maximization steps are approxi-

mated by sum-product and max-product BP, respectively. We run EM with 5 random initializations

and one initialization by sum-product marginals, and pick the best solution.

9.1 Simulated Models

We consider pairwise models over discrete random variables taking values in {−1,0,+1}n,

p(x) ∝ exp
[

∑
i

θi(xi)+ ∑
(i j)∈E

θi j(xi,x j)
]

.

The value tables of θi and θi j are randomly generated from normal distribution, θi(k) ∼
Normal(0,0.01), θi j(k, l) ∼ Normal(0,σ2), where σ controls the strength of coupling. Our results

are averaged on 1000 randomly generated sets of parameters.

We consider different choices of graph structures and max / sum node patterns:

1. Hidden Markov chain with 20 nodes, as shown in Figure 1.

2. Latent tree models. We generate random trees of size 50, by finding the minimum spanning

trees of random symmetric matrices with elements drawn from Uniform([0,1]). We take the

leaf nodes to be max nodes, and the non-leaf nodes to be sum nodes. See Figure 5(a) for a

typical example.

3. 10×10 Grid with max and sum nodes distributed in two opposite chess board patterns shown

in Figure 6(a) and Figure 7(a), respectively. In Figure 6(a), the sum part is a loopy graph, and

the max part is a (fully disconnected) tree; in Figure 7(a), the max and sum parts are flipped.
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The results on the hidden Markov chain are shown in Figure 4, where we plot in panel (a)

different algorithms’ percentages of obtaining the globally optimal solutions among 1000 random

trials, and in panel (b) their relative energy errors defined by Q(x̂B;θ)−Q(x∗B;θ), where x̂B is the

solution returned by the algorithms, and x∗B is the true optimum.

The results of the latent tree models and the two types of 2D grids are shown in Figure 5, Figure 6

and Figure 7, respectively. Since the globally optimal solution x∗B is not tractable to calculate in these

cases, we report the approximate relative error defined by Q(x̂B;θ)−Q(x̃B;θ), where x̃B is the best

solution we found across all algorithms.

9.2 Diagnostic Bayesian Networks

We also test our algorithms on two diagnostic Bayesian networks taken from the UAI08 Inference

Challenge, where we construct marginal MAP problems by randomly selecting varying percentages

of nodes to be max nodes. Since these models are not pairwise, we implement the junction graph

versions of mix-product (Bethe) and proximal (Bethe) shown in Section 8. Figure 8 shows

the approximate relative errors of our algorithms and local search (SamIam) as the percentage

of the max nodes varies.

9.3 Insights

Across all the experiments, we find that mix-product (Bethe), proximal (Bethe) and local

search (SamIam) significantly outperform all the other algorithms, while proximal (Bethe)

outperforms the two others in some circumstances. In the hidden Markov chain example in Fig-

ure 4, these three algorithms almost always (with probability ≥ 99%) find the globally optimal

solutions. However, the performance of SamIam tends to degenerate when the max part has loopy

dependency structures (see Figure 7), or when the number of max nodes is large (see Figure 8),

both of which make it difficult to explore the solution space by local search. On the other hand,

mix-product (Bethe) tends to degenerate as the coupling strength σ increases (see Figure 7),

probably because its convergence gets worse as σ increases.

We note that our TRW approximation gives much less accurate solutions than the other algo-

rithms, but is able to provide an upper bound on the optimal energy. Similar phenomena have been

observed for TRW-BP in standard max- and sum- inference.

The hybrid message passing of Jiang et al. (2011) is significantly worse than mix-product

(Bethe), proximal (Bethe) and local search (SamIam), but is otherwise the best among the

remaining algorithms. EM performs similarly to (or sometimes worse than) Jiang’s method.

The regular max-product BP and sum-product BP are among the worst of the tested algorithms,

indicating the danger of approximating mixed-inference by pure max- or sum- inference. Interest-

ingly, the performances of max-product BP and sum-product BP have opposite trends: In Figure 4,

Figure 5 and Figure 6, where the max parts are fully disconnected and the sum parts are connected

and loopy, max-product BP usually performs worse than sum-product BP, but gets better as the cou-

pling strength σ increases; sum-product BP, on the other hand, tends to degenerate as σ increases.

In Figure 7, where the max / sum pattern is reversed (resulting in a larger, loopier max subgraph),

max-product BP performs better than sum-product BP.
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Figure 4: Results on the hidden Markov chain in Figure 1 (best viewed in color). (a) different al-

gorithms’ probabilities of obtaining the globally optimal solution among 1000 random

trials. Mix-product (Bethe), Proximal (Bethe) and Local Search (SamIam) al-

most always (with probability ≥ 99%) find the optimal solution. (b) The relative energy

errors of the different algorithms, and the upper bounds obtained by Proximal (TRW) as

a function of coupling strength σ.
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Figure 5: (a) A typical latent tree model, whose leaf nodes are taken to be max nodes (white) and

non-leaf nodes to be sum nodes (shaded). (b) The approximate relative energy errors of

different algorithms, and the upper bound obtained by Proximal (TRW) as a function of

coupling strength σ.

10. Conclusion and Further Directions

We have presented a general variational framework for solving marginal MAP problems approx-

imately, opening new doors for developing efficient algorithms. In particular, we show that our

proposed “mixed-product” BP admits appealing theoretical properties and performs well in prac-

tice.

Potential future directions include improving the performance of the truncated TRW approxi-

mation by optimizing weights, deriving optimality conditions that may be applicable even when the

sum component does not form a tree, studying the convergent properties of mixed-product BP, and

leveraging our results to learn hidden variable models for data.
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Figure 6: (a) A marginal MAP problem defined on a 10× 10 Ising grid, with shaded sum nodes

and unshaded max nodes; note that the sum part is a loopy graph, while max part is fully

disconnected. (b) The approximate relative errors of different algorithms and the upper

bound obtained by Proximal (TRW) as a function of coupling strength σ.
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Figure 7: (a) A marginal MAP problem defined on a 10× 10 Ising grid, but with max / sum part

exactly opposite to that in Figure 6; note that the max part is loopy, while the sum part is

fully disconnected in this case. (b) The approximate relative errors of different algorithms

and the upper bound obtained by Proximal (TRW) as a function of coupling strength σ.
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(a) The structure of Diagnostic BN-2, with 50% randomly selected sum nodes shaded.
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Figure 8: The results on two diagnostic Bayesian networks (BNs) in the UAI08 inference challenge.

(a) The Diagnostic BN-2 network. (b)-(c) The performances of algorithms on the two

BNs as a function of the percentage of max nodes. The local search method tends to

degenerate when the number of max nodes is large, making it difficult to search over the

solution space. Results are averaged over 100 random trials.

Appendix A. Proof of Proposition 6

Proof. The Lagrangian of (16) with the local consistency constraint of L in (2) is

〈θ,τ〉+ ∑
i∈V

[wiHi(τ)+λ0
i ∑

xi

τi(xi)]− ∑
(i j)∈E

[wi jIi j(τ)+∑
x j

λi→ j(x j)∑
xi

(τi j(xi,x j)− τ j(x j))],

where {λ0
i : i ∈V} and {λ j→i(xi) : (i j) ∈ E,xi ∈ Xi} are the Lagrange multipliers. Recall that

〈θ,τ〉= ∑
i∈V

θi(xi)τi(xi)+ ∑
(i j)∈E

θi j(xi,x j)τi j(xi,x j),

Hi(τ) =−∑
xi

τi(xi) logτi(xi),

Ii j(τ) = ∑
xi,x j

τi j(xi,x j) log
τi j(xi,x j)

∑xi
τi j(xi,x j)∑x j

τi j(xi,x j)
.

Taking the derivative of the Lagrangian w.r.t. τi(xi) and τi j(xi,x j), we have

θi(xi)−wi logτi(xi)+ ∑
j∈∂i

λ j→i(xi) = const, (33)

θi j(xi,x j)−wi j log
τi j(xi,x j)

τi(xi)τ j(x j)
+λi→ j(x j)+λ j→i(xi) = const, (34)

where we used the local consistency condition that ∑x j
τi j(xi,x j) = τi(xi). By defining mi→ j(x j) =

exp(λi→ j(x j)), we obtain (19) directly from (33)-(34).

Plugging (19) into the constraint that ∑x j
τi j(xi,x j) = τi(xi) gives (18).
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Appendix B. Proof of Theorem 5

Proof. (i). For τ ∈M
o, the objective function in (14) equals

Ftree(τ,θ) = 〈θ,τ〉 + ∑
i∈V

Hi(τ)− ∑
(i j)∈EA

Ii j(τ)− ∑
(i j)∈∂AB

ρi jIi j(τ)

= 〈θ,τ〉 + ∑
i∈V

Hi(τ)− ∑
(i j)∈EA

Ii j(τ) (35)

= 〈θ,τ〉 +HA|B(τ) (36)

= Fmix(τ,θ),

where the equality in (35) is because Ii j(τ) = 0 if ∀(i j) ∈ ∂AB, and the equality in (36) is because

the sum part GA is a tree and we have the tree decomposition HA|B = ∑i∈V Hi(τ)−∑(i j)∈EA
Ii j(τ).

Therefore we have

Φtree(θ) = max
τ∈L

Ftree(τ,θ)≥ max
τ∈Mo

Ftree(τ,θ) = max
τ∈Mo

Fmix(τ,θ) = ΦAB(θ), (37)

where the inequality is because M
o ⊂M⊂ L.

If there exists x∗B such that Q(x∗B;θ) = Φtree(θ), then we have

Q(x∗B;θ) = Φtree(θ)≥ΦAB(θ) = max
xB

Q(xB;θ).

This proves that x∗B is a globally optimal marginal MAP solution.

(ii). Because τ∗i (xi) for ∀i ∈ B are deterministic, and the sum part GA is a tree, we have that τ∗ ∈
M

o. Therefore the inequality in (37) is tight, and we can conclude the proof by using Corollary 11.

Appendix C. Proof of Theorem 10

Proof. By Theorem 9, the beliefs {bi,bi j} should satisfy the reparameterization property in (24)

and the consistency conditions in (25)-(27). Without loss of generality, we assume {bi,bi j} are

normalized such that ∑xi
bi(xi) = 1 for i ∈ A and maxxi

bi(xi) = 1 for i ∈ B.

I) For simplicity, we first prove the case of C = B, when G = GC∪A itself is a semi A-B tree, and

the theorem implies that x∗B is a global optimum. By the reparameterization condition, we have

p(x) = p̂B(xB) p̂A|B(x),

where

p̂B(xB) = ∏
i∈B

bi(xi) ∏
(i j)∈EB

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

, (38)

p̂A|B(x) = ∏
i∈A

bi(xi) ∏
(i j)∈EA

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

∏
(i j)∈∂AB

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

. (39)

Note we have

p(xB) = ∑
xA

p(x) = ∑
xA

p̂B(xB) p̂A|B(x) = p̂B(xB)∑
xA

p̂A|B(x).
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We just need to show that x∗B maximizes p̂B(xB) and ∑xA
p̂A|B(x), respectively.

First, since p̂B(xB) involves only the max nodes, a standard MAP analysis applies. Because the

max part of the beliefs, {bi,bi j : (i j) ∈ EB}, satisfy the standard max-consistency conditions, and

the corresponding TRW weights {ρi j : (i j) ∈ EB} are provably convex by assumption, we establish

that x∗B is the MAP solution of p̂B(xB) by Theorem 1 of Weiss et al. (2007).

Secondly, to show that x∗B also maximizes p̂A|B(x) requires the combination of the mixed-

consistency and sum-consistency conditions. Since G is a semi A-B tree, we denote by πi the

unique parent node of i (πi = /0 if i is a root). In addition, let ∂A be the subset of A whose parent

nodes are in B, that is, ∂A = {i ∈ A : πi ∈ B}. Equation (39) can be reformed into

p̂A|B(x) = ∏
i∈A\∂A

bi,πi
(xi,xπi

)

bπi
(xπi

) ∏
i∈∂A

[

bi,πi
(xi,xπi

)

bπi
(xπi

)

]ρi,πi
[

bi(xi)

]1−ρi,πi

,

where we used the fact that ρi j = 1 for (i j) ∈ EA. Therefore, we have for any xB ∈ XB,

∑
xA

p̂A|B(x) = ∑
xA

{

∏
i∈A\∂A

bi,πi
(xi,xπi

)

bπi
(xπi

) ∏
i∈∂A

[

bi,πi
(xi,xπi

)

bπi
(xπi

)

]ρi,πi
[

bi(xi)

]1−ρi,πi
}

= ∏
i∈∂A

∑
xi

[

bi,πi
(xi,xπi

)

bπi
(xπi

)

]ρi,πi
[

bi(xi)

]1−ρi,πi

(40)

≤ ∏
i∈∂A

[

∑
xi

bi,πi
(xi,xπi

)

bπi
(xπi

)

]ρi,πi
[

∑
xi

bi(xi)

]1−ρi,πi

(41)

= 1, (42)

where the equality in (40) eliminates (by summation) all the interior nodes in A. The inequality in

(41) follows from Hölder’s inequality. Finally, the equality in (42) holds because all the sum part of

beliefs {bi,bi j : (i j) ∈ EA} satisfies the sum-consistency (25).

On the other hand, for any (i,πi)∈ ∂AB, because x∗πi
= argmaxxπi

bπi
(xπi

), we have bi,πi
(xi,x

∗
πi
) =

bi(xi) by the mixed-consistency condition (27). Therefore,

∑
xA

p̂A|B([xA,x
∗
B]) = ∏

i∈∂A

∑
xi

[

bi,πi
(xi,x

∗
πi
)

bπi
(x∗πi

)

]ρi,πi
[

bi(xi)

]1−ρi,πi

= ∏
i∈∂A

[

1

bπi
(x∗πi

)

]ρi,πi

∑
xi

bi(xi)

= 1. (43)

Combining (42) and (43), we have ∑xA
p̂A|B(x) ≤ ∑xA

p̂A|B([xA,x
∗
B]) = 1 for any xB ∈ XB, that is, x∗B

maximizes ∑xA
p̂A|B(x). This finishes the proof for the case C = B.

II) In the case of C 6= B, let D = B\C. We decompose p(x) into

p(x) = p̂B([xC,xD]) p̂A|C([xA,xC])r̂AD([xA,xD])
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where p̂B(xB) and p̂A|B(x) are defined similarly to (38) and (39),

p̂B(xB) = ∏
i∈B

bi(xi) ∏
(i j)∈EB

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

,

p̂A|C([xA,xC]) = ∏
i∈A

bi(xi) ∏
(i j)∈EA

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

∏
(i j)∈∂AC

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

,

where πi is the parent node of i in the semi A-B tree GA∪C and ∂AC is set of edges across A and C,

that is, ∂AC = {(i j) ∈ E : i ∈ A, j ∈C}. The term r̂AD(x) is defined as

r̂AD([xA,xD]) = ∏
(i j)∈∂AD

[

bi j(xi,x j)

bi(xi)b j(x j)

]ρi j

,

where similarly ∂AD is the set of edges across A and D.

Because x∗j = argmaxx j
b j(x j) for j ∈D, we have bi j(xi,x

∗
j) = bi(xi) for (i j) ∈ ∂AD, j ∈D by the

mixed-consistency condition in (27). Therefore, one can show that r̂AD([xA,x
∗
D]) = 1, and hence

p([xA,xC,x
∗
D]) = p̂B([xC,x

∗
D]) p̂A|C([xA,xC]).

The remainder of the proof is similar to that for the case C =B: by the analysis in Weiss et al. (2007),

it follows that x∗C ∈ argmaxxC
p([xC,x

∗
D]), and we have previously shown that

x∗C ∈ argmaxxC
∑xA

p̂A|C([xA,xC]). This establishes that x∗C maximizes

∑
xA

p([xA,xC,x
∗
D]) = p([xC,x

∗
D])∑

xA

p̂A|C([xA,xC]),

which concludes the proof.
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Abstract

We present GURLS, a least squares, modular, easy-to-extend software library for efficient super-

vised learning. GURLS is targeted to machine learning practitioners, as well as non-specialists.

It offers a number state-of-the-art training strategies for medium and large-scale learning, and

routines for efficient model selection. The library is particularly well suited for multi-output

problems (multi-category/multi-label). GURLS is currently available in two independent imple-

mentations: Matlab and C++. It takes advantage of the favorable properties of regularized least

squares algorithm to exploit advanced tools in linear algebra. Routines to handle computations

with very large matrices by means of memory-mapped storage and distributed task execution are

available. The package is distributed under the BSD license and is available for download at

https://github.com/LCSL/GURLS.

Keywords: regularized least squares, big data, linear algebra

1. Introduction and Design

Supervised learning has become a fundamental tool for the design of intelligent systems and the

analysis of high dimensional data. Key to this success has been the availability of efficient, easy-to-

use software packages. New data collection technologies make it easy to gather high dimensional,

multi-output data sets of increasing size. This trend calls for new software solutions for the auto-

matic training, tuning and testing of supervised learning methods. These observations motivated the

design of GURLS (Grand Unified Regularized Least Squares). The package was developed to pur-

sue the following goals: Speed: Fast training/testing procedures for learning problems with poten-

tially large/huge number of points, features and especially outputs (e.g., classes). Memory: Flexible

data management to work with large data sets by means of memory-mapped storage. Performance:

∗. Also in the Laboratory for Computational and Statistical Learning, Istituto Italiano di Tecnologia and Massachusetts

Institute of Technology

c©2013 Andrea Tacchetti, Pavan K. Mallapragada, Matteo Santoro and Lorenzo Rosasco.
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State of the art results in high-dimensional multi-output problems. Usability and modularity: Easy

to use and to expand. GURLS is based on Regularized Least Squares (RLS) and takes advantage

of all the favorable properties of these methods (Rifkin et al., 2003). Since the algorithm reduces

to solving a linear system, GURLS is set up to exploit the powerful tools, and recent advances,

of linear algebra (including randomized solver, first order methods, etc.). Second, it makes use of

RLS properties which are particularly suited for high dimensional learning. For example: (1) RLS

has natural primal and dual formulation (hence having complexity which is the smallest between

number of examples and features); (2) efficient parameter selection (closed form expression of the

leave one out error and efficient computations of regularization path); (3) natural and efficient ex-

tension to multiple outputs. Specific attention has been devoted to handle large high dimensional

data sets. We rely on data structures that can be serialized using memory-mapped files, and on a

distributed task manager to perform a number of key steps (such as matrix multiplication) without

loading the whole data set in memory. Efforts were devoted to to provide a lean API and an ex-

haustive documentation. GURLS has been deployed and tested successfully on Linux, MacOS and

Windows. The library is distributed under the simplified BSD license, and can be downloaded from

https://github.com/LCSL/GURLS.

2. Description of the Library

The library comprises four main modules. GURLS and bGURLS—both implemented in Matlab—

are aimed at solving learning problems with small/medium and large-scale data sets respectively.

GURLS++and bGURLS++are their C++ counterparts. The Matlab and C++ versions share the

same design, but the C++modules have significant improvements, which make them faster and more

flexible. The specification of the desired machine learning experiment in the library is straightfor-

ward. Basically, it is a formal description of a pipeline, that is, an ordered sequence of steps. Each

step identifies an actual learning task, and belongs to a predefined category. The core of the library

is a method (a class in the C++implementation) called GURLScore, which is responsible for pro-

cessing the sequence of tasks in the proper order and for linking the output of the former task to

the input of the subsequent one. A key role is played by the additional “options” structure, referred

to as OPT. OPT is used to store all configuration parameters required to customize the behavior

of individual tasks in the pipeline. Tasks receive configuration parameters from OPT in read-only

mode and—upon termination—the results are appended to the structure by GURLScore in order to

make them available to subsequent tasks. This allows the user to skip the execution of some tasks

in a pipeline, by simply inserting the desired results directly into the options structure. Currently,

we identify six different task categories: data set splitting, kernel computation, model selection,

training, evaluation and testing and performance assessment and analysis. Tasks belonging to the

same category may be interchanged with each other.

2.1 Learning From Large Data Sets

Two modules in GURLS have been specifically designed to deal with big data scenarios. The

approach we adopted is mainly based on a memory-mapped abstraction of matrix and vector data

structures, and on a distributed computation of a number of standard problems in linear algebra.

For learning on big data, we decided to focus specifically on those situations where one seeks a

linear model on a large set of (possibly non linear) features. A more accurate specification of

what “large” means in GURLS is related to the number of features d and the number of training
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# of # of # of

data set samples classes variables

optdigit 3800 10 64

landast 4400 6 36

pendigit 7400 10 16

letter 10000 26 16

isolet 6200 26 600

Table 1: Data sets description.

examples n: we require it must be possible to store a min(d,n)× min(d,n) matrix in memory.

In practice, this roughly means we can train models with up-to 25k features on machines with

8Gb of RAM, and up-to 50k features on machines with 36Gb of RAM. We do not require the

data matrix itself to be stored in memory: within GURLS it is possible to manage an arbitrarily

large set of training examples. We distinguish two different scenarios. Data sets that can fully

reside in RAM without any memory mapping techniques—such as swapping—are considered to be

small/medium. Larger data sets are considered to be “big” and learning must be performed using

either bGURLS or bGURLS++. These two modules include all the design patterns described above,

and have been complemented with additional big data and distributed computation capabilities. Big

data support is obtained using a data structure called bigarray, which allows to handle data matrices

as large as the space available on the hard drive: we store the entire data set on disk and load

only small chunks in memory when required. There are some differences between the Matlab and

C++implementations. bGURLS relies on a simple, ad hoc interface, called GURLS Distributed

Manager (GDM), to distribute matrix-matrix multiplications, thus allowing users to perform the

important task of kernel matrix computation on a distributed network of computing nodes. After

this step, the subsequent tasks behave as in GURLS. bGURLS++(currently in active development)

offers more interesting features because it is based on the MPI libraries. Therefore, it allows for a

full distribution within every single task of the pipeline. All the processes read the input data from

a shared filesystem over the network and then start executing the same pipeline. During execution,

each process’ task communicates with the corresponding ones. Every process maintains its local

copy of the options. Once the same task is completed by all processes, the local copies of the

options are synchronized. This architecture allows for the creation of hybrid pipelines comprising

serial one-process-based tasks from GURLS++.

3. Experiments

We decided to focus the experimental analysis in the paper to the assessment of GURLS’ perfor-

mance both in terms of accuracy and time. In our experiments we considered 5 popular data sets,

briefly described in Table 1. Experiments were run on a Intel Xeon 5140 @ 2.33GHz processor

with 8GB of RAM, and running Ubuntu 8.10 Server (64 bit).

optdigit landsat pendigit

accuracy (%) time (s) accuracy (%) time (s) accuracy (%) time (s)

GURLS (linear primal) 92.3 0.49 63.68 0.22 82.24 0.23

GURLS (linear dual) 92.3 726 66.3 1148 82.46 5590

LS-SVM linear 92.3 7190 64.6 6526 82.3 46240

GURLS (500 random features) 96.8 25.6 63.5 28.0 96.7 31.6

GURLS (1000 random features) 97.5 207 63.5 187 95.8 199

GURLS (Gaussian kernel) 98.3 13500 90.4 20796 98.4 100600

LS-SVM (Gaussian kernel) 98.3 26100 90.51 18430 98.36 120170

Table 2: Comparison between GURLS and LS-SVM.
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Figure 1: Prediction accuracy vs. computing time. The color represents the training method and

the library used. In blue: the Matlab implementation of RLS with RBF kernel, in red: its

C++ counterpart. In dark red: results of LIBSVM with RBF kernel. In yellow and green:

results obtained using a linear kernel on 500 and 1000 random features respectively.

We set up different pipelines and compared the performance to SVM, for which we used the

python modular interface to LIBSVM (Chang and Lin, 2011). Automatic selection of the optimal

regularization parameter is implemented identically in all experiments: (i) split the data; (ii) define

a set of regularization parameter on a regular grid; (iii) perform hold-out validation. The variance of

the Gaussian kernel has been fixed by looking at the statistics of the pairwise distances among train-

ing examples. The prediction accuracy of GURLS and GURLS++is identical—as expected—but

the implementation in C++ is significantly faster. The prediction accuracy of standard RLS-based

methods is in many cases higher than SVM. Exploiting the primal formulation of RLS, we further

ran experiments with the random features approximation (Rahimi and Recht, 2008). As show in

Figure 1, the performance of this method is comparable to that of SVM at a much lower compu-

tational cost in the majority of the tested data sets. We further compared GURLS with another

available least squares based toolbox: the LS-SVM toolbox (Suykens et al., 2001), which includes

routines for parameter selection such as coupled simulated annealing and line/grid search. The goal

of this experiment is to benchmark the performance of the parameter selection with random data

splitting included in GURLS. For a fair comparison, we considered only the Matlab implemen-

tation of GURLS. Results are reported in Table 2. As expected, using the linear kernel with the

primal formulation—not available in LS-SVM—is the fastest approach since it leverages the lower

dimensionality of the input space. When the Gaussian kernel is used, GURLS and LS-SVM have

comparable computing time and classification performance. Note, however, that in GURLS the

number of parameter in the grid search is fixed to 400, while in LS-SVM it may vary and is limited

to 70. The interesting results obtained with the random features implementation in GURLS, make

it an interesting choice in many applications. Finally, all GURLS pipelines, in their Matlab imple-

mentation, are faster than LS-SVM and further improvements can be achieved with GURLS++.
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Abstract

This work shows how to leverage causal inference to understand the behavior of complex learning

systems interacting with their environment and predict the consequences of changes to the sys-

tem. Such predictions allow both humans and algorithms to select the changes that would have

improved the system performance. This work is illustrated by experiments on the ad placement

system associated with the Bing search engine.

Keywords: causation, counterfactual reasoning, computational advertising

1. Introduction

Statistical machine learning technologies in the real world are never without a purpose. Using their

predictions, humans or machines make decisions whose circuitous consequences often violate the

modeling assumptions that justified the system design in the first place.

Such contradictions appear very clearly in the case of the learning systems that power web

scale applications such as search engines, ad placement engines, or recommendation systems. For

instance, the placement of advertisement on the result pages of Internet search engines depend on

the bids of advertisers and on scores computed by statistical machine learning systems. Because

the scores affect the contents of the result pages proposed to the users, they directly influence the

occurrence of clicks and the corresponding advertiser payments. They also have important indirect

effects. Ad placement decisions impact the satisfaction of the users and therefore their willingness

to frequent this web site in the future. They also impact the return on investment observed by the
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advertisers and therefore their future bids. Finally they change the nature of the data collected for

training the statistical models in the future.

These complicated interactions are clarified by important theoretical works. Under simplified

assumptions, mechanism design (Myerson, 1981) leads to an insightful account of the advertiser

feedback loop (Varian, 2007; Edelman et al., 2007). Under simplified assumptions, multiarmed

bandits theory (Robbins, 1952; Auer et al., 2002; Langford and Zhang, 2008) and reinforcement

learning (Sutton and Barto, 1998) describe the exploration/exploitation dilemma associated with

the training feedback loop. However, none of these approaches gives a complete account of the

complex interactions found in real-life systems.

This contribution proposes a novel approach: we view these complicated interactions as man-

ifestations of the fundamental difference that separates correlation and causation. Using the ad

placement example as a model of our problem class, we therefore argue that the language and the

methods of causal inference provide flexible means to describe such complex machine learning sys-

tems and give sound answers to the practical questions facing the designer of such a system. Is

it useful to pass a new input signal to the statistical model? Is it worthwhile to collect and label

a new training set? What about changing the loss function or the learning algorithm? In order to

answer such questions and improve the operational performance of the learning system, one needs

to unravel how the information produced by the statistical models traverses the web of causes and

effects and eventually produces measurable performance metrics.

Readers with an interest in causal inference will find in this paper (i) a real world example

demonstrating the value of causal inference for large-scale machine learning applications, (ii)

causal inference techniques applicable to continuously valued variables with meaningful confidence

intervals, and (iii) quasi-static analysis techniques for estimating how small interventions affect cer-

tain causal equilibria. Readers with an interest in real-life applications will find (iv) a selection of

practical counterfactual analysis techniques applicable to many real-life machine learning systems.

Readers with an interest in computational advertising will find a principled framework that (v) ex-

plains how to soundly use machine learning techniques for ad placement, and (vi) conceptually

connects machine learning and auction theory in a compelling manner.

The paper is organized as follows. Section 2 gives an overview of the advertisement placement

problem which serves as our main example. In particular, we stress some of the difficulties encoun-

tered when one approaches such a problem without a principled perspective. Section 3 provides a

condensed review of the essential concepts of causal modeling and inference. Section 4 centers on

formulating and answering counterfactual questions such as “how would the system have performed

during the data collection period if certain interventions had been carried out on the system ?” We

describe importance sampling methods for counterfactual analysis, with clear conditions of validity

and confidence intervals. Section 5 illustrates how the structure of the causal graph reveals opportu-

nities to exploit prior information and vastly improve the confidence intervals. Section 6 describes

how counterfactual analysis provides essential signals that can drive learning algorithms. Assume

that we have identified interventions that would have caused the system to perform well during the

data collection period. Which guarantee can we obtain on the performance of these same inter-

ventions in the future? Section 7 presents counterfactual differential techniques for the study of

equlibria. Using data collected when the system is at equilibrium, we can estimate how a small

intervention displaces the equilibrium. This provides an elegant and effective way to reason about

long-term feedback effects. Various appendices complete the main text with information that we

think more relevant to readers with specific backgrounds.

3208



COUNTERFACTUAL REASONING AND LEARNING SYSTEMS

2. Causation Issues in Computational Advertising

After giving an overview of the advertisement placement problem, which serves as our main ex-

ample, this section illustrates some of the difficulties that arise when one does not pay sufficient

attention to the causal structure of the learning system.

2.1 Advertisement Placement

All Internet users are now familiar with the advertisement messages that adorn popular web pages.

Advertisements are particularly effective on search engine result pages because users who are

searching for something are good targets for advertisers who have something to offer. Several

actors take part in this Internet advertisement game:

• Advertisers create advertisement messages, and place bids that describe how much they are

willing to pay to see their ads displayed or clicked.

• Publishers provide attractive web services, such as, for instance, an Internet search engine.

They display selected ads and expect to receive payments from the advertisers. The infras-

tructure to collect the advertiser bids and select ads is sometimes provided by an advertising

network on behalf of its affiliated publishers. For the purposes of this work, we simply con-

sider a publisher large enough to run its own infrastructure.

• Users reveal information about their current interests, for instance, by entering a query in a

search engine. They are offered web pages that contain a selection of ads (Figure 1). Users

sometimes click on an advertisement and are transported to a web site controlled by the ad-

vertiser where they can initiate some business.

A conventional bidding language is necessary to precisely define under which conditions an adver-

tiser is willing to pay the bid amount. In the case of Internet search advertisement, each bid specifies

(a) the advertisement message, (b) a set of keywords, (c) one of several possible matching criteria

between the keywords and the user query, and (d) the maximal price the advertiser is willing to

pay when a user clicks on the ad after entering a query that matches the keywords according to the

specified criterion.

Whenever a user visits a publisher web page, an advertisement placement engine runs an auction

in real time in order to select winning ads, determine where to display them in the page, and compute

the prices charged to advertisers, should the user click on their ad. Since the placement engine

is operated by the publisher, it is designed to further the interests of the publisher. Fortunately

for everyone else, the publisher must balance short term interests, namely the immediate revenue

brought by the ads displayed on each web page, and long term interests, namely the future revenues

resulting from the continued satisfaction of both users and advertisers.

Auction theory explains how to design a mechanism that optimizes the revenue of the seller of

a single object (Myerson, 1981; Milgrom, 2004) under various assumptions about the information

available to the buyers regarding the intentions of the other buyers. In the case of the ad placement

problem, the publisher runs multiple auctions and sells opportunities to receive a click. When nearly

identical auctions occur thousand of times per second, it is tempting to consider that the advertisers

have perfect information about each other. This assumption gives support to the popular generalized

second price rank-score auction (Varian, 2007; Edelman et al., 2007):
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Figure 1: Mainline and sidebar ads on a search result page. Ads placed in the mainline are more

likely to be noticed, increasing both the chances of a click if the ad is relevant and the risk

of annoying the user if the ad is not relevant.

• Let x represent the auction context information, such as the user query, the user profile, the

date, the time, etc. The ad placement engine first determines all eligible ads a1 . . .an and the

corresponding bids b1 . . .bn on the basis of the auction context x and of the matching criteria

specified by the advertisers.

• For each selected ad ai and each potential position p on the web page, a statistical model

outputs the estimate qi,p(x) of the probability that ad ai displayed in position p receives a user

click. The rank-score ri,p(x) = biqi,p(x) then represents the purported value associated with

placing ad ai at position p.

• Let L represent a possible ad layout, that is, a set of positions that can simultaneously be

populated with ads, and let L be the set of possible ad layouts, including of course the empty

layout. The optimal layout and the corresponding ads are obtained by maximizing the total

rank-score

max
L∈L

max
i1,i2,...

∑
p∈L

rip,p(x) , (1)

subject to reserve constraints

∀p ∈ L, rip,p(x)≥ Rp(x) ,

and also subject to diverse policy constraints, such as, for instance, preventing the simultane-

ous display of multiple ads belonging to the same advertiser. Under mild assumptions, this

discrete maximization problem is amenable to computationally efficient greedy algorithms

(see appendix A.)

• The advertiser payment associated with a user click is computed using the generalized second

price (GSP) rule: the advertiser pays the smallest bid that it could have entered without chang-

ing the solution of the discrete maximization problem, all other bids remaining equal. In other

words, the advertiser could not have manipulated its bid and obtained the same treatment for

a better price.
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Under the perfect information assumption, the analysis suggests that the publisher simply needs to

find which reserve prices Rp(x) yield the best revenue per auction. However, the total revenue of the

publisher also depends on the traffic experienced by its web site. Displaying an excessive number

of irrelevant ads can train users to ignore the ads, and can also drive them to competing web sites.

Advertisers can artificially raise the rank-scores of irrelevant ads by temporarily increasing the bids.

Indelicate advertisers can create deceiving advertisements that elicit many clicks but direct users to

spam web sites. Experience shows that the continued satisfaction of the users is more important to

the publisher than it is to the advertisers.

Therefore the generalized second price rank-score auction has evolved. Rank-scores have been

augmented with terms that quantify the user satisfaction or the ad relevance. Bids receive adaptive

discounts in order to deal with situations where the perfect information assumption is unrealistic.

These adjustments are driven by additional statistical models. The ad placement engine should

therefore be viewed as a complex learning system interacting with both users and advertisers.

2.2 Controlled Experiments

The designer of such an ad placement engine faces the fundamental question of testing whether

a proposed modification of the ad placement engine results in an improvement of the operational

performance of the system.

The simplest way to answer such a question is to try the modification. The basic idea is to

randomly split the users into treatment and control groups (Kohavi et al., 2008). Users from the

control group see web pages generated using the unmodified system. Users of the treatment groups

see web pages generated using alternate versions of the system. Monitoring various performance

metrics for a couple months usually gives sufficient information to reliably decide which variant of

the system delivers the most satisfactory performance.

Modifying an advertisement placement engine elicits reactions from both the users and the ad-

vertisers. Whereas it is easy to split users into treatment and control groups, splitting advertisers

into treatment and control groups demands special attention because each auction involves multi-

ple advertisers (Charles et al., 2012). Simultaneously controlling for both users and advertisers is

probably impossible.

Controlled experiments also suffer from several drawbacks. They are expensive because they

demand a complete implementation of the proposed modifications. They are slow because each ex-

periment typically demands a couple months. Finally, although there are elegant ways to efficiently

run overlapping controlled experiments on the same traffic (Tang et al., 2010), they are limited by

the volume of traffic available for experimentation.

It is therefore difficult to rely on controlled experiments during the conception phase of potential

improvements to the ad placement engine. It is similarly difficult to use controlled experiments to

drive the training algorithms associated with click probability estimation models. Cheaper and faster

statistical methods are needed to drive these essential aspects of the development of an ad placement

engine. Unfortunately, interpreting cheap and fast data can be very deceiving.

2.3 Confounding Data

Assessing the consequence of an intervention using statistical data is generally challenging because

it is often difficult to determine whether the observed effect is a simple consequence of the interven-

tion or has other uncontrolled causes.
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Overall
Patients with
small stones

Patients with
large stones

Treatment A:
Open surgery

78% (273/350) 93% (81/87) 73% (192/263)

Treatment B:
Percutaneous nephrolithotomy

83% (289/350) 87% (234/270) 69% (55/80)

Table 1: A classic example of Simpson’s paradox. The table reports the success rates of two treat-

ments for kidney stones (Charig et al., 1986, Tables I and II). Although the overall success

rate of treatment B seems better, treatment B performs worse than treatment A on both

patients with small kidney stones and patients with large kidney stones. See Section 2.3.

For instance, the empirical comparison of certain kidney stone treatments illustrates this dif-

ficulty (Charig et al., 1986). Table 2.3 reports the success rates observed on two groups of 350

patients treated with respectively open surgery (treatment A, with 78% success) and percutaneous

nephrolithotomy (treatment B, with 83% success). Although treatment B seems more successful, it

was more frequently prescribed to patients suffering from small kidney stones, a less serious con-

dition. Did treatment B achieve a high success rate because of its intrinsic qualities or because it

was preferentially applied to less severe cases? Further splitting the data according to the size of

the kidney stones reverses the conclusion: treatment A now achieves the best success rate for both

patients suffering from large kidney stones and patients suffering from small kidney stones. Such

an inversion of the conclusion is called Simpson’s paradox (Simpson, 1951).

The stone size in this study is an example of a confounding variable, that is an uncontrolled

variable whose consequences pollute the effect of the intervention. Doctors knew the size of the

kidney stones, chose to treat the healthier patients with the least invasive treatment B, and therefore

caused treatment B to appear more effective than it actually was. If we now decide to apply treat-

ment B to all patients irrespective of the stone size, we break the causal path connecting the stone

size to the outcome, we eliminate the illusion, and we will experience disappointing results.

When we suspect the existence of a confounding variable, we can split the contingency tables

and reach improved conclusions. Unfortunately we cannot fully trust these conclusions unless we

are certain to have taken into account all confounding variables. The real problem therefore comes

from the confounding variables we do not know.

Randomized experiments arguably provide the only correct solution to this problem (see Stigler,

1992). The idea is to randomly chose whether the patient receives treatment A or treatment B.

Because this random choice is independent from all the potential confounding variables, known

and unknown, they cannot pollute the observed effect of the treatments (see also Section 4.2). This

is why controlled experiments in ad placement (Section 2.2) randomly distribute users between

treatment and control groups, and this is also why, in the case of an ad placement engine, we

should be somehow concerned by the practical impossibility to randomly distribute both users and

advertisers.
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Overall q2 low q2 high

q1 low 6.2% (124/2000) 5.1% (92/1823) 18.1% (32/176)

q1 high 7.5% (149/2000) 4.8% (71/1500) 15.6% (78/500)

Table 2: Confounding data in ad placement. The table reports the click-through rates and the click

counts of the second mainline ad. The overall counts suggest that the click-through rate

of the second mainline ad increases when the click probability estimate q1 of the top ad is

high. However, if we further split the pages according to the click probability estimate q2

of the second mainline ad, we reach the opposite conclusion. See Section 2.4.

2.4 Confounding Data in Ad Placement

Let us return to the question of assessing the value of passing a new input signal to the ad placement

engine click prediction model. Section 2.1 outlines a placement method where the click probability

estimates qi,p(x) depend on the ad and the position we consider, but do not depend on other ads

displayed on the page. We now consider replacing this model by a new model that additionally uses

the estimated click probability of the top mainline ad to estimate the click probability of the second

mainline ad (Figure 1). We would like to estimate the effect of such an intervention using existing

statistical data.

We have collected ad placement data for Bing search result pages served during three consecu-

tive hours on a certain slice of traffic. Let q1 and q2 denote the click probability estimates computed

by the existing model for respectively the top mainline ad and the second mainline ad. After ex-

cluding pages displaying fewer than two mainline ads, we form two groups of 2000 pages randomly

picked among those satisfying the conditions q1 < 0.15 for the first group and q1 ≥ 0.15 for the

second group. Table 2.4 reports the click counts and frequencies observed on the second mainline

ad in each group. Although the overall numbers show that users click more often on the second

mainline ad when the top mainline ad has a high click probability estimate q1, this conclusion is

reversed when we further split the data according to the click probability estimate q2 of the second

mainline ad.

Despite superficial similarities, this example is considerably more difficult to interpret than the

kidney stone example. The overall click counts show that the actual click-through rate of the second

mainline ad is positively correlated with the click probability estimate on the top mainline ad. Does

this mean that we can increase the total number of clicks by placing regular ads below frequently

clicked ads?

Remember that the click probability estimates depend on the search query which itself depends

on the user intention. The most likely explanation is that pages with a high q1 are frequently asso-

ciated with more commercial searches and therefore receive more ad clicks on all positions. The

observed correlation occurs because the presence of a click and the magnitude of the click probabil-

ity estimate q1 have a common cause: the user intention. Meanwhile, the click probability estimate

q2 returned by the current model for the second mainline ad also depend on the query and therefore

the user intention. Therefore, assuming that this dependence has comparable strength, and assuming

that there are no other causal paths, splitting the counts according to the magnitude of q2 factors out

the effects of this common confounding cause. We then observe a negative correlation which now
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suggests that a frequently clicked top mainline ad has a negative impact on the click-through rate of

the second mainline ad.

If this is correct, we would probably increase the accuracy of the click prediction model by

switching to the new model. This would decrease the click probability estimates for ads placed in

the second mainline position on commercial search pages. These ads are then less likely to clear

the reserve and therefore more likely to be displayed in the less attractive sidebar. The net result

is probably a loss of clicks and a loss of money despite the higher quality of the click probability

model. Although we could tune the reserve prices to compensate this unfortunate effect, nothing

in this data tells us where the performance of the ad placement engine will land. Furthermore,

unknown confounding variables might completely reverse our conclusions.

Making sense out of such data is just too complex !

2.5 A Better Way

It should now be obvious that we need a more principled way to reason about the effect of potential

interventions. We provide one such more principled approach using the causal inference machinery

(Section 3). The next step is then the identification of a class of questions that are sufficiently ex-

pressive to guide the designer of a complex learning system, and sufficiently simple to be answered

using data collected in the past using adequate procedures (Section 4).

A machine learning algorithm can then be viewed as an automated way to generate questions

about the parameters of a statistical model, obtain the corresponding answers, and update the param-

eters accordingly (Section 6). Learning algorithms derived in this manner are very flexible: human

designers and machine learning algorithms can cooperate seamlessly because they rely on similar

sources of information.

3. Modeling Causal Systems

When we point out a causal relationship between two events, we describe what we expect to happen

to the event we call the effect, should an external operator manipulate the event we call the cause.

Manipulability theories of causation (von Wright, 1971; Woodward, 2005) raise this commonsense

insight to the status of a definition of the causal relation. Difficult adjustments are then needed to

interpret statements involving causes that we can only observe through their effects, “because they

love me,” or that are not easily manipulated, “because the earth is round.”

Modern statistical thinking makes a clear distinction between the statistical model and the world.

The actual mechanisms underlying the data are considered unknown. The statistical models do not

need to reproduce these mechanisms to emulate the observable data (Breiman, 2001). Better models

are sometimes obtained by deliberately avoiding to reproduce the true mechanisms (Vapnik, 1982,

Section 8.6). We can approach the manipulability puzzle in the same spirit by viewing causation

as a reasoning model (Bottou, 2011) rather than a property of the world. Causes and effects are

simply the pieces of an abstract reasoning game. Causal statements that are not empirically testable

acquire validity when they are used as intermediate steps when one reasons about manipulations or

interventions amenable to experimental validation.

This section presents the rules of this reasoning game. We largely follow the framework pro-

posed by Pearl (2009) because it gives a clear account of the connections between causal models

and probabilistic models.
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x = f1(u,ε1) Query context x from user intent u.

a = f2(x,v,ε2) Eligible ads (ai) from query x and inventory v.

b = f3(x,v,ε3) Corresponding bids (bi).

q = f4(x,a,ε4) Scores (qi,p,Rp) from query x and ads a.

s = f5(a,q,b,ε5) Ad slate s from eligible ads a, scores q and bids b.

c = f6(a,q,b,ε6) Corresponding click prices c.

y = f7(s,u,ε7) User clicks y from ad slate s and user intent u.

z = f8(y,c,ε8) Revenue z from clicks y and prices c.

Figure 2: A structural equation model for ad placement. The sequence of equations describes the

flow of information. The functions fk describe how effects depend on their direct causes.

The additional noise variables εk represent independent sources of randomness useful to

model probabilistic dependencies.

3.1 The Flow of Information

Figure 2 gives a deterministic description of the operation of the ad placement engine. Variable u

represents the user and his or her intention in an unspecified manner. The query and query context

x is then expressed as an unknown function of the u and of a noise variable ε1. Noise variables

in this framework are best viewed as independent sources of randomness useful for modeling a

nondeterministic causal dependency. We shall only mention them when they play a specific role

in the discussion. The set of eligible ads a and the corresponding bids b are then derived from

the query x and the ad inventory v supplied by the advertisers. Statistical models then compute a

collection of scores q such as the click probability estimates qi,p and the reserves Rp introduced in

Section 2.1. The placement logic uses these scores to generate the “ad slate” s, that is, the set of

winning ads and their assigned positions. The corresponding click prices c are computed. The set

of user clicks y is expressed as an unknown function of the ad slate s and the user intent u. Finally

the revenue z is expressed as another function of the clicks y and the prices c.

Such a system of equations is named structural equation model (Wright, 1921). Each equation

asserts a functional dependency between an effect, appearing on the left hand side of the equation,

and its direct causes, appearing on the right hand side as arguments of the function. Some of these

causal dependencies are unknown. Although we postulate that the effect can be expressed as some

function of its direct causes, we do not know the form of this function. For instance, the designer of

the ad placement engine knows functions f2 to f6 and f8 because he has designed them. However,

he does not know the functions f1 and f7 because whoever designed the user did not leave sufficient

documentation.

Figure 3 represents the directed causal graph associated with the structural equation model.

Each arrow connects a direct cause to its effect. The noise variables are omitted for simplicity. The

structure of this graph reveals fundamental assumptions about our model. For instance, the user

clicks y do not directly depend on the scores q or the prices c because users do not have access to

this information.

We hold as a principle that causation obeys the arrow of time: causes always precede their

effects. Therefore the causal graph must be acyclic. Structural equation models then support two

fundamental operations, namely simulation and intervention.
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Figure 3: Causal graph associated with the structural equation model of Figure 2. The mutually

independent noise variables ε1 to ε8 are implicit. The variables a, b, q, s, c, and z depend

on their direct causes in known ways. In contrast, the variables u and v are exogenous

and the variables x and y depend on their direct causes through unknown functions.

• Simulation – Let us assume that we know both the exact form of all functional dependencies

and the value of all exogenous variables, that is, the variables that never appear in the left hand

side of an equation. We can compute the values of all the remaining variables by applying the

equations in their natural time sequence.

• Intervention – As long as the causal graph remains acyclic, we can construct derived structural

equation models using arbitrary algebraic manipulations of the system of equations. For

instance, we can clamp a variable to a constant value by rewriting the right-hand side of the

corresponding equation as the specified constant value.

The algebraic manipulation of the structural equation models provides a powerful language to

describe interventions on a causal system. This is not a coincidence. Many aspects of the mathe-

matical notation were invented to support causal inference in classical mechanics. However, we no

longer have to interpret the variable values as physical quantities: the equations simply describe the

flow of information in the causal model (Wiener, 1948).

3.2 The Isolation Assumption

Let us now turn our attention to the exogenous variables, that is, variables that never appear in the

left hand side of an equation of the structural model. Leibniz’s principle of sufficient reason claims

that there are no facts without causes. This suggests that the exogenous variables are the effects of

a network of causes not expressed by the structural equation model. For instance, the user intent

u and the ad inventory v in Figure 3 have temporal correlations because both users and advertisers

worry about their budgets when the end of the month approaches. Any structural equation model

should then be understood in the context of a larger structural equation model potentially describing

all things in existence.

Ads served on a particular page contribute to the continued satisfaction of both users and ad-

vertisers, and therefore have an effect on their willingness to use the services of the publisher in the

future. The ad placement structural equation model shown in Figure 2 only describes the causal de-

pendencies for a single page and therefore cannot account for such effects. Consider however a very
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Figure 4: Conceptually unrolling the user feedback loop by threading instances of the single page

causal graph (Figure 3). Both the ad slate st and user clicks yt have an indirect effect on

the user intent ut+1 associated with the next query.

large structural equation model containing a copy of the page-level model for every web page ever

served by the publisher. Figure 4 shows how we can thread the page-level models corresponding

to pages served to the same user. Similarly we could model how advertisers track the performance

and the cost of their advertisements and model how their satisfaction affects their future bids. The

resulting causal graphs can be very complex. Part of this complexity results from time-scale dif-

ferences. Thousands of search pages are served in a second. Each page contributes a little to the

continued satisfaction of one user and a few advertisers. The accumulation of these contributions

produces measurable effects after a few weeks.

Many of the functional dependencies expressed by the structural equation model are left un-

specified. Without direct knowledge of these functions, we must reason using statistical data. The

most fundamental statistical data is collected from repeated trials that are assumed independent.

When we consider the large structured equation model of everything, we can only have one large

trial producing a single data point.1 It is therefore desirable to identify repeated patterns of identical

equations that can be viewed as repeated independent trials. Therefore, when we study a structural

equation model representing such a pattern, we need to make an additional assumption to expresses

the idea that the outcome of one trial does not affect the other trials. We call such an assumption an

isolation assumption by analogy with thermodynamics.2 This can be achieved by assuming that the

exogenous variables are independently drawn from an unknown but fixed joint probability distribu-

tion. This assumption cuts the causation effects that could flow through the exogenous variables.

The noise variables are also exogenous variables acting as independent source of randomness.

The noise variables are useful to represent the conditional distribution P(effect |causes) using the

equation effect= f (causes,ε). Therefore, we also assume joint independence between all the noise

variables and any of the named exogenous variable.3 For instance, in the case of the ad placement

1. See also the discussion on reinforcement learning, Section 3.5.

2. The concept of isolation is pervasive in physics. An isolated system in thermodynamics (Reichl, 1998, Section 2.D)

or a closed system in mechanics (Landau and Lifshitz, 1969, §5) evolves without exchanging mass or energy with

its surroundings. Experimental trials involving systems that are assumed isolated may differ in their initial setup and

therefore have different outcomes. Assuming isolation implies that the outcome of each trial cannot affect the other

trials.

3. Rather than letting two noise variables display measurable statistical dependencies because they share a common

cause, we prefer to name the common cause and make the dependency explicit in the graph.
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P

(
u,v,x,a,b
q,s,c,y,z

)
=





P(u,v) Exogenous vars.

× P(x |u) Query.

× P(a |x,v) Eligible ads.

× P(b |x,v) Bids.

× P(q |x,a) Scores.

× P(s |a,q,b) Ad slate.

× P(c |a,q,b) Prices.

× P(y |s,u) Clicks.

× P(z |y,c) Revenue.

Figure 5: Markov factorization of the structural equation model of Figure 2.
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Figure 6: Bayesian network associated with the Markov factorization shown in Figure 5.

model shown in Figure 2, we assume that the joint distribution of the exogenous variables factorizes

as

P(u,v,ε1, . . . ,ε8) = P(u,v)P(ε1) . . .P(ε8) .

Since an isolation assumption is only true up to a point, it should be expressed clearly and remain

under constant scrutiny. We must therefore measure additional performance metrics that reveal how

the isolation assumption holds. For instance, the ad placement structural equation model and the

corresponding causal graph (figures 2 and 3) do not take user feedback or advertiser feedback into

account. Measuring the revenue is not enough because we could easily generate revenue at the

expense of the satisfaction of the users and advertisers. When we evaluate interventions under

such an isolation assumption, we also need to measure a battery of additional quantities that act as

proxies for the user and advertiser satisfaction. Noteworthy examples include ad relevance estimated

by human judges, and advertiser surplus estimated from the auctions (Varian, 2009).

3.3 Markov Factorization

Conceptually, we can draw a sample of the exogenous variables using the distribution specified

by the isolation assumption, and we can then generate values for all the remaining variables by

simulating the structural equation model.
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This process defines a generative probabilistic model representing the joint distribution of all

variables in the structural equation model. The distribution readily factorizes as the product of the

joint probability of the named exogenous variables, and, for each equation in the structural equation

model, the conditional probability of the effect given its direct causes (Spirtes et al., 1993; Pearl,

2000). As illustrated by figures 5 and 6, this Markov factorization connects the structural equa-

tion model that describes causation, and the Bayesian network that describes the joint probability

distribution followed by the variables under the isolation assumption.4

Structural equation models and Bayesian networks appear so intimately connected that it could

be easy to forget the differences. The structural equation model is an algebraic object. As long

as the causal graph remains acyclic, algebraic manipulations are interpreted as interventions on the

causal system. The Bayesian network is a generative statistical model representing a class of joint

probability distributions, and, as such, does not support algebraic manipulations. However, the

symbolic representation of its Markov factorization is an algebraic object, essentially equivalent to

the structural equation model.

3.4 Identification, Transportation, and Transfer Learning

Consider a causal system represented by a structural equation model with some unknown functional

dependencies. Subject to the isolation assumption, data collected during the operation of this system

follows the distribution described by the corresponding Markov factorization. Let us first assume

that this data is sufficient to identify the joint distribution of the subset of variables we can observe.

We can intervene on the system by clamping the value of some variables. This amounts to replacing

the right-hand side of the corresponding structural equations by constants. The joint distribution of

the variables is then described by a new Markov factorization that shares many factors with the orig-

inal Markov factorization. Which conditional probabilities associated with this new distribution can

we express using only conditional probabilities identified during the observation of the original sys-

tem? This is called the identifiability problem. More generally, we can consider arbitrarily complex

manipulations of the structural equation model, and we can perform multiple experiments involv-

ing different manipulations of the causal system. Which conditional probabilities pertaining to one

experiment can be expressed using only conditional probabilities identified during the observation

of other experiments? This is called the transportability problem.

Pearl’s do-calculus completely solves the identifiability problem and provides useful tools to

address many instances of the transportability problem (see Pearl, 2012). Assuming that we know

the conditional probability distributions involving observed variables in the original structural equa-

tion model, do-calculus allows us to derive conditional distributions pertaining to the manipulated

structural equation model.

Unfortunately, we must further distinguish the conditional probabilities that we know (because

we designed them) from those that we estimate from empirical data. This distinction is important

because estimating the distribution of continuous or high cardinality variables is notoriously dif-

ficult. Furthermore, do-calculus often combines the estimated probabilities in ways that amplify

estimation errors. This happens when the manipulated structural equation model exercises the vari-

ables in ways that were rarely observed in the data collected from the original structural equation

model.

4. Bayesian networks are directed graphs representing the Markov factorization of a joint probability distribution: the

arrows no longer have a causal interpretation.

3219



BOTTOU, PETERS, ET AL.

Therefore we prefer to use much simpler causal inference techniques (see sections 4.1 and 4.2).

Although these techniques do not have the completeness properties of do-calculus, they combine

estimation and transportation in a manner that facilitates the derivation of useful confidence inter-

vals.

3.5 Special Cases

Three special cases of causal models are particularly relevant to this work.

• In the multi-armed bandit (Robbins, 1952), a user-defined policy function π determines the

distribution of action a ∈ {1 . . .K}, and an unknown reward function r determines the distri-

bution of the outcome y given the action a (Figure 7). In order to maximize the accumulated

rewards, the player must construct policies π that balance the exploration of the action space

with the exploitation of the best action identified so far (Auer et al., 2002; Audibert et al.,

2007; Seldin et al., 2012).

• The contextual bandit problem (Langford and Zhang, 2008) significantly increases the com-

plexity of multi-armed bandits by adding one exogenous variable x to the policy function π

and the reward functions r (Figure 8).

• Both multi-armed bandit and contextual bandit are special case of reinforcement learning

(Sutton and Barto, 1998). In essence, a Markov decision process is a sequence of contextual

bandits where the context is no longer an exogenous variable but a state variable that depends

on the previous states and actions (Figure 9). Note that the policy function π, the reward

function r, and the transition function s are independent of time. All the time dependencies

are expressed using the states st .

These special cases have increasing generality. Many simple structural equation models can be

reduced to a contextual bandit problem using appropriate definitions of the context x, the action a

and the outcome y. For instance, assuming that the prices c are discrete, the ad placement struc-

tural equation model shown in Figure 2 reduces to a contextual bandit problem with context (u,v),
actions (s,c) and reward z. Similarly, given a sufficiently intricate definition of the state variables

st , all structural equation models with discrete variables can be reduced to a reinforcement learning

problem. Such reductions lose the fine structure of the causal graph. We show in Section 5 how this

fine structure can in fact be leveraged to obtain more information from the same experiments.

Modern reinforcement learning algorithms (see Sutton and Barto, 1998) leverage the assumption

that the policy function, the reward function, the transition function, and the distributions of the

corresponding noise variables, are independent from time. This invariance property provides great

benefits when the observed sequences of actions and rewards are long in comparison with the size

of the state space. Only Section 7 in this contribution presents methods that take advantage of such

an invariance. The general question of leveraging arbitrary functional invariances in causal graphs

is left for future work.

4. Counterfactual Analysis

We now return to the problem of formulating and answering questions about the value of proposed

changes of a learning system. Assume for instance that we consider replacing the score computation
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a = π(ε) Action a ∈ {1 . . .K}

y = r(a, ε′ ) Reward y ∈ R

Figure 7: Structural equation model for the multi-armed bandit problem. The policy π selects a

discrete action a, and the reward function r determines the outcome y. The noise vari-

ables ε and ε′ represent independent sources of randomness useful to model probabilistic

dependencies.

a = π(x, ε) Action a ∈ {1 . . .K}

y = r(x, a, ε′) Reward y ∈ R

Figure 8: Structural equation model for contextual bandit problem. Both the action and the reward

depend on an exogenous context variable x.

at = π(st−1, εt) Action

yt = r(st−1, at , ε′t ) Reward rt ∈ R

st = s(st−1, at , ε′′t ) Next state

Figure 9: Structural equation model for reinforcement learning. The above equations are replicated

for all t ∈ {0 . . . ,T}. The context is now provided by a state variable st−1 that depends on

the previous states and actions.

model M of an ad placement engine by an alternate model M∗. We seek an answer to the conditional

question:

“How will the system perform if we replace model M by model M∗ ?”

Given sufficient time and sufficient resources, we can obtain the answer using a controlled

experiment (Section 2.2). However, instead of carrying out a new experiment, we would like to

obtain an answer using data that we have already collected in the past.

“How would the system have performed if, when the data was collected, we had replaced

model M by model M∗?”

The answer of this counterfactual question is of course a counterfactual statement that describes

the system performance subject to a condition that did not happen.

Counterfactual statements challenge ordinary logic because they depend on a condition that is

known to be false. Although assertion A ⇒ B is always true when assertion A is false, we certainly

do not mean for all counterfactual statements to be true. Lewis (1973) navigates this paradox using

a modal logic in which a counterfactual statement describes the state of affairs in an alternate world

that resembles ours except for the specified differences. Counterfactuals indeed offer many subtle

ways to qualify such alternate worlds. For instance, we can easily describe isolation assumptions

(Section 3.2) in a counterfactual question:

“How would the system have performed if, when the data was collected, we had replaced

model M by model M∗ without incurring user or advertiser reactions?”
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Figure 10: Causal graph for an image recognition system. We can estimate counterfactuals by

replaying data collected in the past.
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Figure 11: Causal graph for a randomized experiment. We can estimate certain counterfactuals by

reweighting data collected in the past.

The fact that we could not have changed the model without incurring the user and advertiser reac-

tions does not matter any more than the fact that we did not replace model M by model M∗ in the

first place. This does not prevent us from using counterfactual statements to reason about causes

and effects. Counterfactual questions and statements provide a natural framework to express and

share our conclusions.

The remaining text in this section explains how we can answer certain counterfactual questions

using data collected in the past. More precisely, we seek to estimate performance metrics that can

be expressed as expectations with respect to the distribution that would have been observed if the

counterfactual conditions had been in force.5

4.1 Replaying Empirical Data

Figure 10 shows the causal graph associated with a simple image recognition system. The classifier

takes an image x and produces a prospective class label ŷ. The loss measures the penalty associated

with recognizing class ŷ while the true class is y.

To estimate the expected error of such a classifier, we collect a representative data set composed

of labelled images, run the classifier on each image, and average the resulting losses. In other words,

we replay the data set to estimate what (counterfactual) performance would have been observed if

we had used a different classifier. We can then select in retrospect the classifier that would have

worked the best and hope that it will keep working well. This is the counterfactual viewpoint on

empirical risk minimization (Vapnik, 1982).

Replaying the data set works because both the alternate classifier and the loss function are

known. More generally, to estimate a counterfactual by replaying a data set, we need to know all

the functional dependencies associated with all causal paths connecting the intervention point to the

measurement point. This is obviously not always the case.

5. Although counterfactual expectations can be viewed as expectations of unit-level counterfactuals (Pearl, 2009, Def-

inition 4), they elude the semantic subtleties of unit-level counterfactuals and can be measured with randomized

experiments (see Section 4.2.)
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4.2 Reweighting Randomized Trials

Figure 11 illustrates the randomized experiment suggested in Section 2.3. The patients are randomly

split into two equally sized groups receiving respectively treatments A and B. The overall success

rate for this experiment is therefore Y = (YA+YB)/2 where YA and YB are the success rates observed

for each group. We would like to estimate which (counterfactual) overall success rate Y ∗ would have

been observed if we had selected treatment A with probability p and treatment B with probability

1− p.

Since we do not know how the outcome depends on the treatment and the patient condition,

we cannot compute which outcome y∗ would have been obtained if we had treated patient x with a

different treatment u∗. Therefore we cannot answer this question by replaying the data as we did in

Section 4.1.

However, observing different success rates YA and YB for the treatment groups reveals an empir-

ical correlation between the treatment u and the outcome y. Since the only cause of the treatment u

is an independent roll of the dices, this correlation cannot result from any known or unknown con-

founding common cause.6 Having eliminated this possibility, we can reweight the observed out-

comes and compute the estimate Y ∗ ≈ pYA +(1− p)YB .

4.3 Markov Factor Replacement

The reweighting approach can in fact be applied under much less stringent conditions. Let us return

to the ad placement problem to illustrate this point.

The average number of ad clicks per page is often called click yield. Increasing the click yield

usually benefits both the advertiser and the publisher, whereas increasing the revenue per page

often benefits the publisher at the expense of the advertiser. Click yield is therefore a very useful

metric when we reason with an isolation assumption that ignores the advertiser reactions to pricing

changes.

Let ω be a shorthand for all variables appearing in the Markov factorization of the ad placement

structural equation model,

P(ω) = P(u,v)P(x |u)P(a |x,v)P(b |x,v)P(q |x,a)

× P(s |a,q,b)P(c |a,q,b)P(y |s,u)P(z |y,c) . (2)

Variable y was defined in Section 3.1 as the set of user clicks. In the rest of the document, we

slightly abuse this notation by using the same letter y to represent the number of clicks. We also

write the expectation Y = Eω∼P(ω)[y] using the integral notation

Y =
∫

ω
y P(ω) .

We would like to estimate what the expected click yield Y ∗ would have been if we had used

a different scoring function (Figure 12). This intervention amounts to replacing the actual factor

P(q |x,a) by a counterfactual factor P∗(q |x,a) in the Markov factorization.

P∗(ω) = P(u,v)P(x |u)P(a |x,v)P(b |x,v)P∗(q |x,a)

× P(s |a,q,b)P(c |a,q,b)P(y |s,u)P(z |x,c) . (3)

6. See also the discussion of Reichenbach’s common cause principle and of its limitations in Spirtes et al. (1993) and

Spirtes and Scheines (2004).
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Figure 12: Estimating which average number of clicks per page would have been observed if we

had used a different scoring model.

Let us assume, for simplicity, that the actual factor P(q |x,a) is nonzero everywhere. We can

then estimate the counterfactual expected click yield Y ∗ using the transformation

Y ∗ =
∫

ω
y P∗(ω) =

∫
ω

y
P∗(q |x,a)

P(q |x,a)
P(ω) ≈

1

n

n

∑
i=1

yi

P∗(qi |xi,ai)

P(qi |xi,ai)
, (4)

where the data set of tuples (ai,xi,qi,yi) is distributed according to the actual Markov factorization

instead of the counterfactual Markov factorization. This data could therefore have been collected

during the normal operation of the ad placement system. Each sample is reweighted to reflect its

probability of occurrence under the counterfactual conditions.

In general, we can use importance sampling to estimate the counterfactual expectation of any

quantity ℓ(ω) :

Y ∗ =
∫

ω
ℓ(ω) P∗(ω) =

∫
ω
ℓ(ω)

P∗(ω)

P(ω)
P(ω) ≈

1

n

n

∑
i=1

ℓ(ωi)wi (5)

with weights

wi = w(ωi) =
P∗(ωi)

P(ωi)
=

factors appearing in P∗(ωi) but not in P(ωi)

factors appearing in P(ωi) but not in P∗(ωi)
. (6)

Equation (6) emphasizes the simplifications resulting from the algebraic similarities of the actual

and counterfactual Markov factorizations. Because of these simplifications, the evaluation of the

weights only requires the knowledge of the few factors that differ between P(ω) and P∗(ω). Each

data sample needs to provide the value of ℓ(ωi) and the values of all variables needed to evaluate

the factors that do not cancel in the ratio (6).

In contrast, the replaying approach (Section 4.1) demands the knowledge of all factors of P∗(ω)
connecting the point of intervention to the point of measurement ℓ(ω). On the other hand, it does

not require the knowledge of factors appearing only in P(ω).
Importance sampling relies on the assumption that all the factors appearing in the denomina-

tor of the reweighting ratio (6) are nonzero whenever the factors appearing in the numerator are

nonzero. Since these factors represents conditional probabilities resulting from the effect of an

independent noise variable in the structural equation model, this assumption means that the data
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must be collected with an experiment involving active randomization. We must therefore design

cost-effective randomized experiments that yield enough information to estimate many interesting

counterfactual expectations with sufficient accuracy. This problem cannot be solved without an-

swering the confidence interval question: given data collected with a certain level of randomization,

with which accuracy can we estimate a given counterfactual expectation?

4.4 Confidence Intervals

At first sight, we can invoke the law of large numbers and write

Y ∗ =
∫

ω
ℓ(ω)w(ω) P(ω) ≈

1

n

n

∑
i=1

ℓ(ωi)wi . (7)

For sufficiently large n, the central limit theorem provides confidence intervals whose width grows

with the standard deviation of the product ℓ(ω)w(ω).

Unfortunately, when P(ω) is small, the reweighting ratio w(ω) takes large values with low

probability. This heavy tailed distribution has annoying consequences because the variance of the

integrand could be very high or infinite. When the variance is infinite, the central limit theorem

does not hold. When the variance is merely very large, the central limit convergence might occur

too slowly to justify such confidence intervals. Importance sampling works best when the actual

distribution and the counterfactual distribution overlap.

When the counterfactual distribution has significant mass in domains where the actual distribu-

tion is small, the few samples available in these domains receive very high weights. Their noisy

contribution dominates the reweighted estimate (7). We can obtain better confidence intervals by

eliminating these few samples drawn in poorly explored domains. The resulting bias can be bounded

using prior knowledge, for instance with an assumption about the range of values taken by ℓ(ω),

∀ω ℓ(ω) ∈ [0, M] . (8)

Let us choose the maximum weight value R deemed acceptable for the weights. We have ob-

tained very consistent results in practice with R equal to the fifth largest reweighting ratio observed

on the empirical data.7 We can then rely on clipped weights to eliminate the contribution of the

poorly explored domains,

w̄(ω) =

{
w(ω) if P∗(ω)< R P(ω)
0 otherwise.

The condition P∗(ω)< RP(ω) ensures that the ratio has a nonzero denominator P(ω) and is smaller

than R. Let ΩR be the set of all values of ω associated with acceptable ratios:

ΩR = {ω : P∗(ω)< R P(ω)} .

We can decompose Y ∗ in two terms:

Y ∗ =
∫

ω∈ΩR

ℓ(ω)P∗(ω) +
∫

ω∈Ω\ΩR

ℓ(ω)P∗(ω) = Ȳ ∗+(Y ∗− Ȳ ∗) . (9)

7. This is in fact a slight abuse because the theory calls for choosing R before seeing the data.
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The first term of this decomposition is the clipped expectation Ȳ ∗. Estimating the clipped expec-

tation Ȳ ∗ is much easier than estimating Y ∗ from (7) because the clipped weights w̄(ω) are bounded

by R.

Ȳ ∗ =
∫

ω∈ΩR

ℓ(ω)P∗(ω) =
∫

ω
ℓ(ω) w̄(ω) P(ω) ≈ Ŷ ∗ =

1

n

n

∑
i=1

ℓ(ωi) w̄(ωi) . (10)

The second term of Equation (9) can be bounded by leveraging assumption (8). The resulting

bound can then be conveniently estimated using only the clipped weights.

Y ∗− Ȳ ∗ =
∫

ω∈Ω\ΩR

ℓ(ω)P∗(ω) ∈
[

0, M P∗(Ω\ΩR)
]
=

[
0, M (1−W̄ ∗)

]
with

W̄ ∗ = P∗(ΩR) =
∫

ω∈ΩR

P∗(ω) =
∫

ω
w̄(ω)P(ω) ≈ Ŵ ∗ =

1

n

n

∑
i=1

w̄(ωi) . (11)

Since the clipped weights are bounded, the estimation errors associated with (10) and (11) are

well characterized using either the central limit theorem or using empirical Bernstein bounds (see

appendix B for details). Therefore we can derive an outer confidence interval of the form

P

{
Ŷ ∗− εR ≤ Ȳ ∗ ≤ Ŷ ∗+ εR

}
≥ 1−δ (12)

and an inner confidence interval of the form

P

{
Ȳ ∗ ≤ Y ∗ ≤ Ȳ ∗+M(1−Ŵ ∗+ξR)

}
≥ 1−δ . (13)

The names inner and outer are in fact related to our preferred way to visualize these intervals (e.g.,

Figure 13). Since the bounds on Y ∗− Ȳ ∗ can be written as

Ȳ ∗ ≤ Y ∗ ≤ Ȳ ∗+M (1−W̄ ∗) , (14)

we can derive our final confidence interval,

P

{
Ŷ ∗− εR ≤ Y ∗ ≤ Ŷ ∗+M(1−Ŵ ∗+ξR)+ εR

}
≥ 1−2δ . (15)

In conclusion, replacing the unbiased importance sampling estimator (7) by the clipped impor-

tance sampling estimator (10) with a suitable choice of R leads to improved confidence intervals.

Furthermore, since the derivation of these confidence intervals does not rely on the assumption that

P(ω) is nonzero everywhere, the clipped importance sampling estimator remains valid when the dis-

tribution P(ω) has a limited support. This relaxes the main restriction associated with importance

sampling.

4.5 Interpreting the Confidence Intervals

The estimation of the counterfactual expectation Y ∗ can be inaccurate because the sample size is in-

sufficient or because the sampling distribution P(ω) does not sufficiently explore the counterfactual

conditions of interest.

By construction, the clipped expectation Ȳ ∗ ignores the domains poorly explored by the sam-

pling distribution P(ω). The difference Y ∗− Ȳ ∗ then reflects the inaccuracy resulting from a lack

of exploration. Therefore, assuming that the bound R has been chosen competently, the relative

sizes of the outer and inner confidence intervals provide precious cues to determine whether we

can continue collecting data using the same experimental setup or should adjust the data collection

experiment in order to obtain a better coverage.
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• The inner confidence interval (13) witnesses the uncertainty associated with the domain GR

insufficiently explored by the actual distribution. A large inner confidence interval suggests

that the most practical way to improve the estimate is to adjust the data collection experiment

in order to obtain a better coverage of the counterfactual conditions of interest.

• The outer confidence interval (12) represents the uncertainty that results from the limited

sample size. A large outer confidence interval indicates that the sample is too small. To

improve the result, we simply need to continue collecting data using the same experimental

setup.

4.6 Experimenting with Mainline Reserves

We return to the ad placement problem to illustrate the reweighting approach and the interpretation

of the confidence intervals. Manipulating the reserves Rp(x) associated with the mainline positions

(Figure 1) controls which ads are prominently displayed in the mainline or displaced into the sidebar.

We seek in this section to answer counterfactual questions of the form:

“How would the ad placement system have performed if we had scaled the mainline

reserves by a constant factor ρ, without incurring user or advertiser reactions?”

Randomization was introduced using a modified version of the ad placement engine. Before

determining the ad layout (see Section 2.1), a random number ε is drawn according to the standard

normal distribution N (0,1), and all the mainline reserves are multiplied by m = ρe−σ2/2+σε. Such

multipliers follow a log-normal distribution8 whose mean is ρ and whose width is controlled by

σ. This effectively provides a parametrization of the conditional score distribution P(q |x,a) (see

Figure 5.)

The Bing search platform offers many ways to select traffic for controlled experiments (Sec-

tion 2.2). In order to match our isolation assumption, individual page views were randomly as-

signed to traffic buckets without regard to the user identity. The main treatment bucket was pro-

cessed with mainline reserves randomized by a multiplier drawn as explained above with ρ=1 and

σ= 0.3. With these parameters, the mean multiplier is exactly 1, and 95% of the multipliers are

in range [0.52,1.74]. Samples describing 22 million search result pages were collected during five

consecutive weeks.

We then use this data to estimate what would have been measured if the mainline reserve mul-

tipliers had been drawn according to a distribution determined by parameters ρ∗ and σ∗. This is

achieved by reweighting each sample ωi with

wi =
P∗(qi |xi,ai)

P(qi |xi,ai)
=

p(mi ; ρ∗, σ∗)

p(mi ; ρ, σ)
,

where mi is the multiplier drawn for this sample during the data collection experiment, and p(t ; ρ,σ)
is the density of the log-normal multiplier distribution.

Figure 13 reports results obtained by varying ρ∗ while keeping σ∗=σ. This amounts to esti-

mating what would have been measured if all mainline reserves had been multiplied by ρ∗ while

keeping the same randomization. The curves bound 95% confidence intervals on the variations of

the average number of mainline ads displayed per page, the average number of ad clicks per page,

8. More precisely, lnN (µ,σ2) with µ = σ2/2+ logρ.

3227



BOTTOU, PETERS, ET AL.

−40%

−20%

+0%

+20%

+40%

+60%

−50% +0% +50% +100%

Mainline reserve variation

Average mainline ads per page

−20%

−10%

+0%

+10%

+20%

+30%

+40%

+50%

−50% +0% +50% +100%

Mainline reserve variation

Average clicks per page

−15%

−10%

−5%

+0%

+5%

+10%

+15%

+20%

+25%

−50% +0% +50% +100%

Mainline reserve variation

Average revenue per page

Figure 13: Estimated variations of three performance metrics in response to mainline reserve

changes. The curves delimit 95% confidence intervals for the metrics we would have

observed if we had increased the mainline reserves by the percentage shown on the

horizontal axis. The filled areas represent the inner confidence intervals. The hollow

squares represent the metrics measured on the experimental data. The hollow circles

represent metrics measured on a second experimental bucket with mainline reserves re-

duced by 18%. The filled circles represent the metrics effectively measured on a control

bucket running without randomization.
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and the average revenue per page, as functions of ρ∗. The inner confidence intervals, represented

by the filled areas, grow sharply when ρ∗ leaves the range explored during the data collection ex-

periment. The average revenue per page has more variance because a few very competitive queries

command high prices.

In order to validate the accuracy of these counterfactual estimates, a second traffic bucket of

equal size was configured with mainline reserves reduced by about 18%. The hollow circles in

Figure 13 represent the metrics effectively measured on this bucket during the same time period.

The effective measurements and the counterfactual estimates match with high accuracy.

Finally, in order to measure the cost of the randomization, we also ran the unmodified ad place-

ment system on a control bucket. The brown filled circles in Figure 13 represent the metrics effec-

tively measured on the control bucket during the same time period. The randomization caused a

small but statistically significant increase of the number of mainline ads per page. The click yield

and average revenue differences are not significant.

This experiment shows that we can obtain accurate counterfactual estimates with affordable

randomization strategies. However, this nice conclusion does not capture the true practical value of

the counterfactual estimation approach.

4.7 More on Mainline Reserves

The main benefit of the counterfactual estimation approach is the ability to use the same data to

answer a broad range of counterfactual questions. Here are a few examples of counterfactual ques-

tions that can be answered using data collected using the simple mainline reserve randomization

scheme described in the previous section:

• Different variances – Instead of estimating what would have been measured if we had in-

creased the mainline reserves without changing the randomization variance, that is, letting

σ∗ = σ, we can use the same data to estimate what would have been measured if we had also

changed σ. This provides the means to determine which level of randomization we can afford

in future experiments.

• Pointwise estimates – We often want to estimate what would have been measured if we had

set the mainline reserves to a specific value without randomization. Although computing

estimates for small values of σ often works well enough, very small values lead to large

confidence intervals.

Let Yν(ρ) represent the expectation we would have observed if the multipliers m had mean ρ

and variance ν. We have then Yν(ρ) =Em[E[y|m] ] =Em[Y0(m)]. Assuming that the pointwise

value Y0 is smooth enough for a second order development,

Yν(ρ) ≈ Em

[
Y0(ρ)+(m−ρ)Y ′

0(ρ)+(m−ρ)2
Y ′′

0 (ρ)/2
]
= Y0(ρ)+νY ′′

0 (ρ)/2 .

Although the reweighting method cannot estimate the point-wise value Y0(ρ) directly, we can

use the reweighting method to estimate both Yν(ρ) and Y2ν(ρ) with acceptable confidence

intervals and write Y0(ρ)≈ 2Yν(ρ)−Y2ν(ρ) (Goodwin, 2011).

• Query-dependent reserves – Compare for instance the queries “car insurance” and “com-

mon cause principle” in a web search engine. Since the advertising potential of a search
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varies considerably with the query, it makes sense to investigate various ways to define query-

dependent reserves (Charles and Chickering, 2012).

The data collected using the simple mainline reserve randomization can also be used to es-

timate what would have been measured if we had increased all the mainline reserves by a

query-dependent multiplier ρ∗(x). This is simply achieved by reweighting each sample ωi

with

wi =
P∗(qi |xi,ai)

P(qi |xi,ai)
=

p(mi ; ρ∗(xi) , σ)

p(mi ; µ, σ)
.

Considerably broader ranges of counterfactual questions can be answered when data is collected

using randomization schemes that explore more dimensions. For instance, in the case of the ad

placement problem, we could apply an independent random multiplier for each score instead of

applying a single random multiplier to the mainline reserves only. However, the more dimensions

we randomize, the more data needs to be collected to effectively explore all these dimensions.

Fortunately, as discussed in section 5, the structure of the causal graph reveals many ways to leverage

a priori information and improve the confidence intervals.

4.8 Related Work

Importance sampling is widely used to deal with covariate shifts (Shimodaira, 2000; Sugiyama et al.,

2007). Since manipulating the causal graph changes the data distribution, such an intervention can

be viewed as a covariate shift amenable to importance sampling. Importance sampling techniques

have also been proposed without causal interpretation for many of the problems that we view as

causal inference problems. In particular, the work presented in this section is closely related to the

Monte-Carlo approach of reinforcement learning (Sutton and Barto, 1998, Chapter 5) and to the

offline evaluation of contextual bandit policies (Li et al., 2010, 2011).

Reinforcement learning research traditionally focuses on control problems with relatively small

discrete state spaces and long sequences of observations. This focus reduces the need for char-

acterizing exploration with tight confidence intervals. For instance, Sutton and Barto suggest to

normalize the importance sampling estimator by 1/∑i w(ωi) instead of 1/n. This would give erro-

neous results when the data collection distribution leaves parts of the state space poorly explored.

Contextual bandits are traditionally formulated with a finite set of discrete actions. For instance, Li’s

(2011) unbiased policy evaluation assumes that the data collection policy always selects an arbitrary

policy with probability greater than some small constant. This is not possible when the action space

is infinite.

Such assumptions on the data collection distribution are often impractical. For instance, certain

ad placement policies are not worth exploring because they cannot be implemented efficiently or

are known to elicit fraudulent behaviors. There are many practical situations in which one is only

interested in limited aspects of the ad placement policy involving continuous parameters such as

click prices or reserves. Discretizing such parameters eliminates useful a priori knowledge: for

instance, if we slightly increase a reserve, we can reasonable believe that we are going to show

slightly less ads.

Instead of making assumptions on the data collection distribution, we construct a biased estima-

tor (10) and bound its bias. We then interpret the inner and outer confidence intervals as resulting

from a lack of exploration or an insufficient sample size.
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Finally, the causal framework allows us to easily formulate counterfactual questions that pertain

to the practical ad placement problem and yet differ considerably in complexity and exploration

requirements. We can address specific problems identified by the engineers without incurring the

risks associated with a complete redesign of the system. Each of these incremental steps helps

demonstrating the soundness of the approach.

5. Structure

This section shows how the structure of the causal graph reveals many ways to leverage a priori

knowledge and improve the accuracy of our counterfactual estimates. Displacing the reweighting

point (Section 5.1) improves the inner confidence interval and therefore reduce the need for explo-

ration. Using a prediction function (Section 5.2) essentially improve the outer confidence interval

and therefore reduce the sample size requirements.

5.1 Better Reweighting Variables

Many search result pages come without eligible ads. We then know with certainty that such pages

will have zero mainline ads, receive zero clicks, and generate zero revenue. This is true for the

randomly selected value of the reserve, and this would have been true for any other value of the

reserve. We can exploit this knowledge by pretending that the reserve was drawn from the coun-

terfactual distribution P∗(q |xi,ai) instead of the actual distribution P(q |xi,ai). The ratio w(ωi) is

therefore forced to the unity. This does not change the estimate but reduces the size of the inner

confidence interval. The results of Figure 13 were in fact helped by this little optimization.

There are in fact many circumstances in which the observed outcome would have been the

same for other values of the randomized variables. This prior knowledge is in fact encoded in

the structure of the causal graph and can be exploited in a more systematic manner. For instance,

we know that users make click decisions without knowing which scores were computed by the ad

placement engine, and without knowing the prices charged to advertisers. The ad placement causal

graph encodes this knowledge by showing the clicks y as direct effects of the user intent u and the

ad slate s. This implies that the exact value of the scores q does not matter to the clicks y as long as

the ad slate s remains the same.

Because the causal graph has this special structure, we can simplify both the actual and counter-

factual Markov factorizations (2) (3) without eliminating the variable y whose expectation is sought.

Successively eliminating variables z, c, and q gives:

P(u,v,x,a,b,s,y) = P(u,v)P(x |u)P(a |x,v)P(b |x,v)P(s |x,a,b)P(y |s,u) ,

P∗(u,v,x,a,b,s,y) = P(u,v)P(x |u)P(a |x,v)P(b |x,v)P∗(s |x,a,b)P(y |s,u) .

The conditional distributions P(s |x,a,b) and P∗(s |x,a,b) did not originally appear in the Markov

factorization. They are defined by marginalization as a consequence of the elimination of the vari-

able q representing the scores.

P(s |x,a,b) =
∫

q
P(s |a,q,b)P(q |x,a) , P∗(s |x,a,b) =

∫
q

P(s |a,q,b)P∗(q |x,a) .
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Figure 14: Estimated variations of two performance metrics in response to mainline reserve

changes. These estimates were obtained using the ad slates s as reweighting variable.

Compare the inner confidence intervals with those shown in Figure 13.

We can estimate the counterfactual click yield Y ∗ using these simplified factorizations:

Y ∗ =
∫

y P∗(u,v,x,a,b,s,y) =
∫

y
P∗(s |x,a,b)

P(s |x,a,b)
P(u,v,x,a,b,s,y)

≈
1

n

n

∑
i=1

yi

P∗(si |xi,ai,bi)

P(si |xi,ai,bi)
. (16)

We have reproduced the experiments described in Section 4.6 with the counterfactual esti-

mate (16) instead of (4). For each example ωi, we determine which range [mmax
i ,mmin

i ] of mainline

reserve multipliers could have produced the observed ad slate si, and then compute the reweighting

ratio using the formula:

wi =
P∗(si |xi,ai,bi)

P(si |xi,ai,bi)
=

Ψ(mmax
i ; ρ∗,σ∗)−Ψ(mmin

i ; ρ∗,σ∗)

Ψ(mmax
i ; ρ,σ)−Ψ(mmin

i ; ρ,σ)
,

where Ψ(m;ρ,σ) is the cumulative of the log-normal multiplier distribution. Figure 14 shows coun-

terfactual estimates obtained using the same data as Figure 13. The obvious improvement of the
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Figure 15: The reweighting variable(s) must intercept all causal paths from the point of intervention

to the point of measurement.
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Figure 16: A distribution on the scores q induce a distribution on the possible ad slates s. If the

observed slate is slate2, the reweighting ratio is 34/22.

inner confidence intervals significantly extends the range of mainline reserve multipliers for which

we can compute accurate counterfactual expectations using this same data.

Comparing (4) and (16) makes the difference very clear: instead of computing the ratio of the

probabilities of the observed scores under the counterfactual and actual distributions, we compute

the ratio of the probabilities of the observed ad slates under the counterfactual and actual distribu-

tions. As illustrated by Figure 15, we now distinguish the reweighting variable (or variables) from

the intervention. In general, the corresponding manipulation of the Markov factorization consists of

marginalizing out all the variables that appear on the causal paths connecting the point of interven-

tion to the reweighting variables and factoring all the independent terms out of the integral. This

simplification works whenever the reweighting variables intercept all the causal paths connecting

the point of intervention to the measurement variable. In order to compute the new reweighting

ratios, all the factors remaining inside the integral, that is, all the factors appearing on the causal

paths connecting the point of intervention to the reweighting variables, have to be known.

Figure 14 does not report the average revenue per page because the revenue z also depends on

the scores q through the click prices c. This causal path is not intercepted by the ad slate variable s

alone. However, we can introduce a new variable c̃= f (c,y) that filters out the click prices computed
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for ads that did not receive a click. Markedly improved revenue estimates are then obtained by

reweighting according to the joint variable (s, c̃).

Figure 16 illustrates the same approach applied to the simultaneous randomization of all the

scores q using independent log-normal multipliers. The weight w(ωi) is the ratio of the probabilities

of the observed ad slate si under the counterfactual and actual multiplier distributions. Computing

these probabilities amounts to integrating a multivariate Gaussian distribution (Genz, 1992). Details

will be provided in a forthcoming publication.

5.2 Variance Reduction with Predictors

Although we do not know exactly how the variable of interest ℓ(ω) depends on the measurable vari-

ables and are affected by interventions on the causal graph, we may have strong a priori knowledge

about this dependency. For instance, if we augment the slate s with an ad that usually receives a lot

of clicks, we can expect an increase of the number of clicks.

Let the invariant variables υ be all observed variables that are not direct or indirect effects of

variables affected by the intervention under consideration. This definition implies that the distri-

bution of the invariant variables is not affected by the intervention. Therefore the values υi of the

invariant variables sampled during the actual experiment are also representative of the distribution

of the invariant variables under the counterfactual conditions.

We can leverage a priori knowledge to construct a predictor ζ(ω) of the quantity ℓ(ω) whose

counterfactual expectation Y ∗ is sought. We assume that the predictor ζ(ω) depends only on the

invariant variables or on variables that depend on the invariant variables through known functional

dependencies. Given sampled values υi of the invariant variables, we can replay both the original

and manipulated structural equation model as explained in Section 4.1 and obtain samples ζi and ζ∗i
that respectively follow the actual and counterfactual distributions

Then, regardless of the quality of the predictor,

Y ∗ =
∫

ω
ℓ(ω)P∗(ω) =

∫
ω

ζ(ω)P∗(ω) +
∫

ω
(ℓ(ω)−ζ(ω))P∗(ω)

≈
1

n

n

∑
i=1

ζ∗i +
1

n

n

∑
i=1

(ℓ(ωi)−ζi)w(ωi) . (17)

The first term in this sum represents the counterfactual expectation of the predictor and can be

accurately estimated by averaging the simulated counterfactual samples ζ∗i without resorting to po-

tentially large importance weights. The second term in this sum represents the counterfactual ex-

pectation of the residuals ℓ(ω)−ζ(ω) and must be estimated using importance sampling. Since the

magnitude of the residuals is hopefully smaller than that of ℓ(ω), the variance of (ℓ(ω)−ζ(ω))w(ω)
is reduced and the importance sampling estimator of the second term has improved confidence in-

tervals. The more accurate the predictor ζ(ω), the more effective this variance reduction strategy.

This variance reduction technique is in fact identical to the doubly robust contextual bandit eval-

uation technique of Dudík et al. (2012). Doubly robust variance reduction has also been extensively

used for causal inference applied to biostatistics (see Robins et al., 2000; Bang and Robins, 2005).

We subjectively find that viewing the predictor as a component of the causal graph (Figure 17) clar-

ifies how a well designed predictor can leverage prior knowledge. For instance, in order to estimate

the counterfactual performance of the ad placement system, we can easily use a predictor that runs

the ad auction and simulate the user clicks using a click probability model trained offline.
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Figure 17: Leveraging a predictor. Yellow nodes represent known functional relations in the struc-

tural equation model. We can estimate the counterfactual expectation Y ∗ of the number

of clicks per page as the sum of the counterfactual expectations of a predictor ζ, which

is easy to estimate by replaying empirical data, and y−ζ, which has to be estimated by

importance sampling but has reduced variance.

Figure 18: The two plots show the hourly click yield for two variants of the ad placement engine.

The daily variations dwarf the differences between the two treatments.
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5.3 Invariant Predictors

In order to evaluate which of two interventions is most likely to improve the system, the designer of

a learning system often seeks to estimate a counterfactual difference, that is, the difference Y+−Y ∗

of the expectations of a same quantity ℓ(ω) under two different counterfactual distributions P+(ω)
and P∗(ω). These expectations are often affected by variables whose value is left unchanged by the

interventions under consideration. For instance, seasonal effects can have very large effects on the

number of ad clicks (Figure 18) but affect Y+ and Y ∗ in similar ways.

Substantially better confidence intervals on the difference Y+ −Y ∗ can be obtained using an

invariant predictor, that is, a predictor function that depends only on invariant variables υ such as

the time of the day. Since the invariant predictor ζ(υ) is not affected by the interventions under

consideration, ∫
ω

ζ(υ)P∗(ω) =
∫

ω
ζ(υ)P+(ω) . (18)

Therefore

Y+−Y ∗ =
∫

ω
ζ(υ)P+(ω)+

∫
ω
(ℓ(ω)−ζ(υ))P+(ω)

−
∫

ω
ζ(υ)P∗(ω)−

∫
ω
(ℓ(ω)−ζ(υ))P∗(ω)

≈
1

n

n

∑
i=1

(
ℓ(ωi)−ζ(υi)

) P+(ωi)−P∗(ωi)

P(ωi)
.

This direct estimate of the counterfactual difference Y+−Y ∗ benefits from the same variance reduc-

tion effect as (17) without need to estimate the expectations (18). Appendix C provide details on the

computation of confidence intervals for estimators of the counterfactual differences. Appendix D

shows how the same approach can be used to compute counterfactual derivatives that describe the

response of the system to very small interventions.

6. Learning

The previous sections deal with the identification and the measurement of interpretable signals that

can justify the actions of human decision makers. These same signals can also justify the actions of

machine learning algorithms. This section explains why optimizing a counterfactual estimate is a

sound learning procedure.

6.1 A Learning Principle

We consider in this section interventions that depend on a parameter θ. For instance, we might

want to know what the performance of the ad placement engine would have been if we had used

different values for the parameter θ of the click scoring model. Let Pθ(ω) denote the counterfactual

Markov factorization associated with this intervention. Let Y θ be the counterfactual expectation of

ℓ(ω) under distribution Pθ. Figure 19 illustrates our simple learning setup. Training data is collected

from a single experiment associated with an initial parameter value θ0 chosen using prior knowledge

acquired in an unspecified manner. A preferred parameter value θ∗ is then determined using the

training data and loaded into the system. The goal is of course to observe a good performance on

data collected during a test period that takes place after the switching point.
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Figure 19: Single design – A preferred parameter value θ∗ is determined using randomized data

collected in the past. Test data is collected after loading θ∗ into the system.

The isolation assumption introduced in Section 3.2 states that the exogenous variables are drawn

from an unknown but fixed joint probability distribution. This distribution induces a joint distribu-

tion P(ω) on all the variables ω appearing in the structural equation model associated with the

parameter θ. Therefore, if the isolation assumption remains valid during the test period, the test

data follows the same distribution Pθ∗(ω) that would have been observed during the training data

collection period if the system had been using parameter θ∗ all along.

We can therefore formulate this problem as the optimization of the expectation Y θ of the reward

ℓ(ω) with respect to the distribution Pθ(ω)

max
θ

Y θ =
∫

ω
ℓ(ω)Pθ(ω)

on the basis of a finite set of training examples ω1, . . . ,ωn sampled from P(ω).
However, it would be unwise to maximize the estimates obtained using approximation (5) be-

cause they could reach a maximum for a value of θ that is poorly explored by the actual distribution.

As explained in Section 4.5, the gap between the upper and lower bound of inequality (14) reveals

the uncertainty associated with insufficient exploration. Maximizing an empirical estimate Ŷ θ of

the lower bound Ȳ θ ensures that the optimization algorithm finds a trustworthy answer

θ∗ = argmax
θ

Ŷ θ . (19)

We shall now discuss the statistical basis of this learning principle.9

6.2 Uniform Confidence Intervals

As discussed in Section 4.4, inequality (14),

Ȳ θ ≤ Y θ ≤ Ȳ θ +M(1−W̄ θ) ,

where

Ȳ θ =
∫

ω
ℓ(ω) w̄(ω)P(ω) ≈ Ŷ θ =

1

n

n

∑
i=1

ℓ(ωi) w̄(ωi) ,

W̄ θ =
∫

ω
w̄(ω)P(ω) ≈ Ŵ θ =

1

n

n

∑
i=1

w̄(ωi) ,

9. The idea of maximizing the lower bound may surprise readers familiar with the UCB algorithm for multi-armed

bandits (Auer et al., 2002). UCB performs exploration by maximizing the upper confidence interval bound and

updating the confidence intervals online. Exploration in our setup results from the active system randomization

during the offline data collection. See also Section 6.4.
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leads to confidence intervals (15) of the form

∀δ > 0, ∀θ P

{
Ŷ θ − εR ≤ Y θ ≤ Ŷ θ +M(1−Ŵ θ +ξR)+ εR

}
≥ 1−δ . (20)

Both εR and ξR converge to zero in inverse proportion to the square root of the sample size n. They

also increase at most linearly in logδ and depend on both the capping bound R and the parameter θ

through the empirical variances (see appendix B.)

Such confidence intervals are insufficient to provide guarantees for a parameter value θ∗ that

depends on the sample. In fact, the optimization (19) procedure is likely to select values of θ

for which the inequality is violated. We therefore seek uniform confidence intervals (Vapnik and

Chervonenkis, 1968), simultaneously valid for all values of θ.

• When the parameter θ is chosen from a finite set F , applying the union bound to the ordinary

intervals (20) immediately gives the uniform confidence interval :

P

{
∀θ ∈ F , Ŷ θ−εR ≤ Y θ ≤ Ŷ θ+M(1−Ŵ θ+ξR)+εR

}
≥ 1−|F |δ .

• Following the pioneering work of Vapnik and Chervonenkis, a broad choice of mathematical

tools have been developed to construct uniform confidence intervals when the set F is infinite.

For instance, appendix E leverages uniform empirical Bernstein bounds (Maurer and Pontil,

2009) and obtains the uniform confidence interval

P

{
∀θ ∈ F , Ŷ θ−εR ≤ Y θ ≤ Ŷ θ+M(1−Ŵ θ+ξR)+εR

}
≥ 1−M (n)δ , (21)

where the growth function M (n) measures the capacity of the family of functions

{ fθ : ω 7→ ℓ(ω)w̄(ω) , gθ : ω 7→ w̄(ω) , ∀θ ∈ F } .

Many practical choices of P∗(ω) lead to functions M (n) that grow polynomially with the

sample size. Because both εR and ξR are O(n−1/2 logδ), they converge to zero with the sample

size when one maintains the confidence level 1−M (n)δ equal to a predefined constant.

The interpretation of the inner and outer confidence intervals (Section 4.5) also applies to the

uniform confidence interval (21). When the sample size is sufficiently large and the capping bound R

chosen appropriately, the inner confidence interval reflects the upper and lower bound of inequal-

ity (14).

The uniform confidence interval therefore ensures that Y θ∗ is close to the maximum of the lower

bound of inequality (14) which essentially represents the best performance that can be guaranteed

using training data sampled from P(ω). Meanwhile, the upper bound of this same inequality reveals

which values of θ could potentially offer better performance but have been insufficiently probed by

the sampling distribution (Figure 20.)

6.3 Tuning Ad Placement Auctions

We now present an application of this learning principle to the optimization of auction tuning pa-

rameters in the ad placement engine. Despite increasingly challenging engineering difficulties,
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Figure 20: The uniform inner confidence interval reveals where the best guaranteed Y θ is reached

and where additional exploration is needed.
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Figure 21: Level curves associated with the average number of mainline ads per page (red curves

labelled from −6% to +10%) and the average estimated advertisement value generated

per page (black curves, labelled with arbitrary units ranging from 164 to 169) that would

have been observed for a certain query cluster if we had changed the mainline reserves

by the multiplicative factor shown on the horizontal axis, and if we had applied a squash-

ing exponent α shown on the vertical axis to the estimated click probabilities qi,p(x).

comparable optimization procedures can obviously be applied to larger numbers of tunable param-

eters.

Lahaie and McAfee (2011) propose to account for the uncertainty of the click probability esti-

mation by introducing a squashing exponent α to control the impact of the estimated probabilities

on the rank scores. Using the notations introduced in Section 2.1, and assuming that the estimated

probability of a click on ad i placed at position p after query x has the form qip(x) = γp βi(x) (see
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appendix A), they redefine the rank-score rip(x) as:

rip(x) = γp bi βi(x)
α .

Using a squashing exponent α < 1 reduces the contribution of the estimated probabilities and in-

creases the reliance on the bids bi placed by the advertisers.

Because the squashing exponent changes the rank-score scale, it is necessary to simultaneously

adjust the reserves in order to display comparable number of ads. In order to estimate the counter-

factual performance of the system under interventions affecting both the squashing exponent and the

mainline reserves, we have collected data using a random squashing exponent following a normal

distribution, and a mainline reserve multiplier following a log-normal distribution as described in

Section 4.6. Samples describing 12 million search result pages were collected during four consecu-

tive weeks.

Following Charles and Chickering (2012), we consider separate squashing coefficients αk and

mainline reserve multipliers ρk per query cluster k ∈ {1..K}, and, in order to avoid negative user or

advertiser reactions, we seek the auction tuning parameters αk and ρk that maximize an estimate of

the advertisement value10 subject to a global constraint on the average number of ads displayed in

the mainline. Because maximizing the advertisement value instead of the publisher revenue amounts

to maximizing the size of the advertisement pie instead of the publisher slice of the pie, this criterion

is less likely to simply raise the prices without improving the ads. Meanwhile the constraint ensures

that users are not exposed to excessive numbers of mainline ads.

We then use the collected data to estimate bounds on the counterfactual expectations of the

advertiser value and the counterfactual expectation of the number of mainline ads per page. Fig-

ure 21 shows the corresponding level curves for a particular query cluster. We can then run a simple

optimization algorithm and determine the optimal auction tuning parameters for each cluster sub-

ject to the global mainline footprint constraint. Appendix D describes how to estimate off-policy

counterfactual derivatives that greatly help the numerical optimization.

The obvious alternative (see Charles and Chickering, 2012) consists of replaying the auctions

with different parameters and simulating the user using a click probability model. However, it may

be unwise to rely on a click probability model to estimate the best value of a squashing coefficient

that is expected to compensate for the uncertainty of the click prediction model itself. The coun-

terfactual approach described here avoids the problem because it does not rely on a click prediction

model to simulate users. Instead it estimates the counterfactual performance of the system using the

actual behavior of the users collected under moderate randomization.

6.4 Sequential Design

Confidence intervals computed after a first randomized data collection experiment might not offer

sufficient accuracy to choose a final value of the parameter θ. It is generally unwise to simply col-

lect additional samples using the same experimental setup because the current data already reveals

information (Figure 20) that can be used to design a better data collection experiment. Therefore,

it seems natural to extend the learning principle discussed in Section 6.1 to a sequence of data col-

lection experiments. The parameter θt characterizing the t-th experiment is then determined using

samples collected during the previous experiments (Figure 22).

10. The value of an ad click from the point of view of the advertiser. The advertiser payment then splits the advertisement

value between the publisher and the advertiser.
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Figure 22: Sequential design – The parameter θt of each data collection experiment is determined

using data collected during the previous experiments.

Although it is relatively easy to construct convergent sequential design algorithms, reaching the

optimal learning performance is notoriously difficult (Wald, 1945) because the selection of param-

eter θt involves a trade-off between exploitation, that is, the maximization of the immediate reward

Y θt , and exploration, that is, the collection of samples potentially leading to better Y θ in the more

distant future.

The optimal exploration exploitation trade-off for multi-armed bandits is well understood (Git-

tins, 1989; Auer et al., 2002; Audibert et al., 2007) because an essential property of multi-armed

bandits makes the analysis much simpler: the outcome observed after performing a particular action

brings no information about the value of other actions. Such an assumption is both unrealistic and

pessimistic. For instance, the outcome observed after displaying a certain ad in response to a certain

query brings very useful information about the value of displaying similar ads on similar queries.

Refined contextual bandit approaches (Slivkins, 2011) account for similarities in the context and

action spaces but do not take advantage of all the additional opportunities expressed by structural

equation models. For instance, in the contextual bandit formulation of the ad placement problem

outlined in Section 3.5, actions are pairs (s,c) describing the ad slate s and the corresponding click

prices c, policies select actions by combining individual ad scores in very specific ways, and actions

determine the rewards through very specific mechanisms.

Meanwhile, despite their suboptimal asymptotic properties, heuristic exploration strategies per-

form surprisingly well during the time span in which the problem can be considered stationary.

Even in the simple case of multi-armed bandits, excellent empirical results have been obtained us-

ing Thompson sampling (Chapelle and Li, 2011) or fixed strategies (Vermorel and Mohri, 2005;

Kuleshov and Precup, 2010). Leveraging the problem structure seems more important in practice

than perfecting an otherwise sound exploration strategy.

Therefore, in the absence of sufficient theoretical guidance, it is both expedient and practical to

maximizing Ŷ θ at each round, as described in Section 6.1, subject to additional ad-hoc constraints

ensuring a minimum level of exploration.

7. Equilibrium Analysis

All the methods discussed in this contribution rely on the isolation assumption presented in Sec-

tion 3.2. This assumption lets us interpret the samples as repeated independent trials that follow the

pattern defined by the structural equation model and are amenable to statistical analysis.

The isolation assumption is in fact a component of the counterfactual conditions under inves-

tigation. For instance, in Section 4.6, we model single auctions (Figure 3) in order to empirically
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determine how the ad placement system would have performed if we had changed the mainline

reserves without incurring a reaction from the users or the advertisers.

Since the future publisher revenues depend on the continued satisfaction of users and advertisers,

lifting this restriction is highly desirable.

• We can in principle work with larger structural equation models. For instance, Figure 4

suggests to thread single auction models with additional causal links representing the impact

of the displayed ads on the future user goodwill. However, there are practical limits on the

number of trials we can consider at once. For instance, it is relatively easy to simultaneously

model all the auctions associated with the web pages served to the same user during a thirty

minute web session. On the other hand, it is practically impossible to consider several weeks

worth of auctions in order to model their accumulated effect on the continued satisfaction of

users and advertisers.

• We can sometimes use problem-specific knowledge to construct alternate performance met-

rics that anticipate the future effects of the feedback loops. For instance, in Section 6.3, we

optimize the advertisement value instead of the publisher revenue. Since this alternative cri-

terion takes the advertiser interests into account, it can be viewed as a heuristic proxy for the

future revenues of the publisher.

This section proposes an alternative way to account for such feedback loops using the quasistatic

equilibrium method familiar to physicists: we assume that the publisher changes the parameter θ so

slowly that the system remains at equilibrium at all times. Using data collected while the system

was at equilibrium, we describe empirical methods to determine how an infinitesimal intervention

dθ on the model parameters would have displaced the equilibrium:

“How would the system have performed during the data collection period if a small

change dθ had been applied to the model parameter θ and the equilibrium had been

reached before the data collection period.”

A learning algorithm can then update θ to improve selected performance metrics.

7.1 Rational Advertisers

The ad placement system is an example of game where each actor furthers his or her interests by

controlling some aspects of the system: the publisher controls the placement engine parameters, the

advertisers control the bids, and the users control the clicks.

As an example of the general quasi-static approach, this section focuses on the reaction of ratio-

nal advertisers to small changes of the scoring functions driving the ad placement system. Rational

advertisers always select bids that maximize their economic interests. Although there are more re-

alistic ways to model advertisers, this exercise is interesting because the auction theory approaches

also rely on the rational advertiser assumption (see Section 2.1). This analysis seamlessly integrates

the auction theory and machine learning perspectives.

As illustrated in Figure 23, we treat the bid vector b⋆ = (b1 . . .bA) ∈ [0,bmax]
A as the parameter

of the conditional distribution Pb⋆(b|x,v) of the bids associated with the eligible ads.11 The vari-

11. Quantities measured when a feedback causal system reaches equilibrium often display conditional independence

patterns that cannot be represented with directed acyclic graphs (Lauritzen and Richardson, 2002; Dash, 2003).

Treating the feedback loop as parameters instead of variables works around this difficulty in a manner that appears

sufficient to perform the quasi-static analysis.

3242



COUNTERFACTUAL REASONING AND LEARNING SYSTEMS

�����������	� 
����������	������	�


��	� ����	�

�����	�

��
��	� ������	�

������		 �������	


����	

�
�
�����	�

����	��	���

	
�	�������

������		�	
��	��
����	
�
���	
�	�������

Figure 23: Advertisers select the bid amounts ba on the basis of the past number of clicks ya and

the past prices za observed for the corresponding ads.
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Figure 24: Advertisers control the expected number of clicks Ya and expected prices Za by adjusting

their bids ba. Rational advertisers select bids that maximize the difference between the

value they see in the clicks and the price they pay.

ables ya in the structural equation model represents the number of clicks received by ads associated

with bid ba. The variables za represents the amount charged for these clicks to the corresponding

advertiser. The advertisers select their bids ba according to their anticipated impact on the number

of resulting clicks ya and on their cost za.

Following the pattern of the perfect information assumption (see Section 2.1), we assume that

the advertisers eventually acquire full knowledge of the expectations

Ya(θ,b⋆) =
∫

ω
ya Pθ,b⋆(ω) and Za(θ,b⋆) =

∫
ω

za Pθ,b⋆(ω) .

Let Va denote the value of a click for the corresponding advertiser. Rational advertiser seek to

maximize the difference between the value they see in the clicks and the price they pay to the

publisher, as illustrated in Figure 24. This is expressed by the utility functions

Uθ
a (b⋆) = Va Ya(θ,b⋆)−Za(θ,b⋆) .
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Following Athey and Nekipelov (2010), we argue that the injection of smooth random noise

into the auction mechanism changes the discrete problem into a continuous problem amenable to

standard differential methods. Mild regularity assumption on the densities probability Pb⋆(b|x,v)
and Pθ(q|x,a) are in fact sufficient to ensure that the expectations Ya(θ,b⋆) and Za(θ,b⋆) are con-

tinuously differentiable functions of the distribution parameters b⋆ and θ. Further assuming that

utility functions Uθ
a (b⋆) are diagonally quasiconcave, Athey and Nekipelov establish the existence

of a unique Nash equilibrium

∀a ba ∈ ArgMax
b

Uθ
a (b1, . . . ,ba−1,b,ba+1, . . . ,bA)

characterized by its first order Karush-Kuhn-Tucker conditions

∀a Va

∂Ya

∂ba

−
∂Za

∂ba





≤ 0 if ba = 0,

≥ 0 if ba = bmax,

= 0 if 0 < ba < bmax.

(22)

We use the first order equilibrium conditions (22) for two related purposes. Section 7.2 explains

how to complete the advertiser model by estimating the values Va. Section 7.3 estimates how the

equilibrium bids and the system performance metrics respond to a small change dθ of the model

parameters.

Interestingly, this approach remains sensible when key assumptions of the equilibrium model

are violated. The perfect information assumption is unlikely to hold in practice. The quasi-concavity

of the utility functions is merely plausible. However, after observing the operation of the stationary

ad placement system for a sufficiently long time, it is reasonable to assume that the most active

advertisers have tried small bid variations and have chosen locally optimal ones. Less active adver-

tisers may leave their bids unchanged for longer time periods, but can also update them brutally if

they experience a significant change in return on investment. Therefore it makes sense to use data

collected when the system is stationary to estimate advertiser values Va that are consistent with the

first order equilibrium conditions. We then hope to maintain the conditions that each advertisers had

found sufficiently attractive, by first estimating how a small change dθ displaces this posited local

equilibrium, then by using performance metrics that take this displacement into account.

7.2 Estimating Advertiser Values

We first need to estimate the partial derivatives appearing in the equilibrium condition (22). These

derivatives measure how the expectations Ya and Za would have been changed if each advertiser had

placed a slightly different bid ba. Such quantities can be estimated by randomizing the bids and

computing on-policy counterfactual derivatives as explained in appendix D. Confidence intervals

can be derived with the usual tools.

Unfortunately, the publisher is not allowed to directly randomize the bids because the advertisers

expect to pay prices computed using the bid they have specified and not the potentially higher bids

resulting from the randomization. However, the publisher has full control on the estimated click

probabilities qi,p(x). Since the rank-scores ri,p(x) are the products of the bids and the estimated click

probabilities (see Section 2.1), a random multiplier applied to the bids can also be interpreted as a

random multiplier applied to the estimated click probabilities. Under these two interpretations, the

same ads are shown to the users, but different click prices are charged to the advertisers. Therefore,
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the publisher can simultaneously charge prices computed as if the multiplier had been applied to the

estimated click probabilities, and collect data as if the multiplier had been applied to the bid. This

data can then be used to estimate the derivatives.

Solving the first order equilibrium equations then yields estimated advertiser values Va that are

consistent with the observed data.12

Va ≈
∂Ya

∂ba

/∂Za

∂ba

There are however a couple caveats:

• The advertiser bid ba may be too small to cause ads to be displayed. In the absence of data,

we have no means to estimate a click value for these advertisers.

• Many ads are not displayed often enough to obtain accurate estimates of the partial derivatives
∂Ya

∂ba
and ∂Za

∂ba
. This can be partially remediated by smartly aggregating the data of advertisers

deemed similar.

• Some advertisers attempt to capture all the available ad opportunities by placing extremely

high bids and hoping to pay reasonable prices thanks to the generalized second price rule.

Both partial derivatives ∂Ya

∂ba
and ∂Za

∂ba
are equal to zero in such cases. Therefore we cannot

recover Va by solving the equilibrium Equation (22). It is however possible to collect useful

data by selecting for these advertisers a maximum bid bmax that prevents them from monop-

olizing the eligible ad opportunities. Since the equilibrium condition is an inequality when

ba = bmax, we can only determine a lower bound of the values Va for these advertisers.

These caveats in fact underline the limitations of the advertiser modelling assumptions. When their

ads are not displayed often enough, advertisers have no more chance to acquire a full knowledge

of the expectations Ya and Za than the publisher has a chance to determine their value. Similarly,

advertisers that place extremely high bids are probably underestimating the risk to occasionally

experience a very high click price. A more realistic model of the advertiser information acquisition

is required to adequately handle these cases.

7.3 Estimating the Equilibrium Response

Let A be the set of the active advertisers, that is, the advertisers whose value can be estimated

(or lower bounded) with sufficient accuracy. Assuming that the other advertisers leave their bids

unchanged, we can estimate how the active advertisers adjust their bids in response to an infinitesi-

mal change dθ of the scoring model parameters. This is achieved by differentiating the equilibrium

equations (22):

∀a′ ∈ A , 0 =

(
Va′

∂2Ya′

∂ba′ ∂θ
−

∂2Za′

∂ba′ ∂θ

)
dθ+ ∑

a∈A

(
Va′

∂2Ya′

∂ba′ ∂ba

−
∂2Za′

∂ba′ ∂ba

)
dba . (23)

The partial second derivatives must be estimated as described in appendix D. Solving this linear

system of equations then yields an expression of the form

dba = Ξa dθ .

12. This approach is of course related to the value estimation method proposed by Athey and Nekipelov (2010) but strictly

relies on the explicit randomization of the scores. In contrast, practical considerations force Athey and Nekipelov to

rely on the apparent noise and hope that the noise model accounts for all potential confounding factors.
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This expression can then be used to estimate how any counterfactual expectation Y of interest

changes when the publisher applies an infinitesimal change dθ to the scoring parameter θ and the

active advertisers A rationally adjust their bids ba in response:

dY =

(
∂Y

∂θ
+ ∑

a

Ξa

∂Y

∂ba

)
dθ . (24)

Although this expression provides useful information, one should remain aware of its limita-

tions. Because we only can estimate the reaction of active advertisers, expression (24) does not

includes the potentially positive reactions of advertisers who did not bid but could have. Because

we only can estimate a lower bound of their values, this expression does not model the potential re-

actions of advertisers placing unrealistically high bids. Furthermore, one needs to be very cautious

when the system (23) approaches singularities. Singularities indicate that the rational advertiser

assumption is no longer sufficient to determine the reactions of certain advertisers. This happens for

instance when advertisers cannot find bids that deliver a satisfactory return. The eventual behavior

of such advertisers then depends on factors not taken in consideration by our model.

To alleviate these issues, we could alter the auction mechanism in a manner that forces advertis-

ers to reveal more information, and we could enforce policies ensuring that the system (23) remains

safely nonsingular. We could also design experiments revealing the impact of the fixed costs in-

curred by advertisers participating into new auctions. Although additional work is needed to design

such refinements, the quasistatic equilibrium approach provides a generic framework to take such

aspects into account.

7.4 Discussion

The rational advertiser assumption is the cornerstone of seminal works describing simplified vari-

ants of the ad placement problem using auction theory (Varian, 2007; Edelman et al., 2007). More

sophisticated works account for more aspects of the ad placement problem, such as the impact of

click prediction learning algorithms (Lahaie and McAfee, 2011), the repeated nature of the ad auc-

tions (Bergemann and Said, 2010), or for the fact that advertisers place bids valid for multiple auc-

tions (Athey and Nekipelov, 2010). Despite these advances, it seems technically very challenging

to use these methods and account for all the effects that can be observed in practical ad placement

systems.

We believe that our counterfactual reasoning framework is best viewed as a modular toolkit

that lets us apply insights from auction theory and machine learning to problems that are far more

complex than those studied in any single paper. For instance, the quasi-static equilibrium analysis

technique illustrated in this section extends naturally to the analysis of multiple simultaneous causal

feedback loops involving additional players:

• The first step consists in designing ad-hoc experiments to identify the parameters that deter-

mine the equilibrium equation of each player. In the case of the advertisers, we have shown

how to use randomized scores to reveal the advertiser values. In the case of the user feedback,

we must carefully design experiments that reveal how users respond to changes in the quality

of the displayed ads.

• Differentiating all the equilibrium equations yields a linear system of equations linking the

variations of the parameter under our control, such as dθ, and all the parameters under the
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control of the other players, such as the advertiser bids, or the user willingness to visit the

site and click on ads. Solving this system and writing the total derivative of the performance

measure gives the answer to our question.

Although this programme has not yet been fully realized, the existence of a principled frame-

work to handle such complex interactions is remarkable. Furthermore, thanks to the flexibility of

the causal inference frameworks, these techniques can be infinitely adapted to various modeling

assumptions and various system complexities.

8. Conclusion

Using the ad placement example, this work demonstrates the central role of causal inference (Pearl,

2000; Spirtes et al., 1993) for the design of learning systems interacting with their environment.

Thanks to importance sampling techniques, data collected during randomized experiments gives

precious cues to assist the designer of such learning systems and useful signals to drive learning

algorithms.

Two recurrent themes structure this work. First, we maintain a sharp distinction between the

learning algorithms and the extraction of the signals that drive them. Since real world learning

systems often involve a mixture of human decision and automated processes, it makes sense to

separate the discussion of the learning signals from the discussion of the learning algorithms that

leverage them. Second, we claim that the mathematical and philosophical tools developed for the

analysis of physical systems appear very effective for the analysis of causal information systems

and of their equilibria. These two themes are in fact a vindication of cybernetics (Wiener, 1948).
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Appendix A. Greedy Ad Placement Algorithms

Section 2.1 describes how to select and place ads on a web page by maximizing the total rank-

score (1). Following (Varian, 2007; Edelman et al., 2007) , we assume that the click probability

estimates are expressed as the product of a positive position term γp and a positive ad term βi(x).
The rank-scores can therefore be written as ri,p(x) = γpbiβi(x). We also assume that the policy

constraints simply state that a web page should not display more than one ad belonging to any given

advertiser. The discrete maximization problem is then amenable to computationally efficient greedy

algorithms.

Let us fix a layout L and focus on the inner maximization problem. Without loss of generality,

we can renumber the positions such that

L = {1,2, . . .N} and γ1 ≥ γ2 ≥ ·· · ≥ 0 .
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and write the inner maximization problem as

max
i1,...,iN

RL(i1, . . . , iN) = ∑
p∈L

rip,p(x)

subject to the policy constraints and reserve constraints ri,p(x)≥ Rp(x).

Let Si denote the advertiser owning ad i. The set of ads is then partitioned into subsets Is = {i :

Si = s} gathering the ads belonging to the same advertiser s. The ads that maximize the product

biβi(x) within set Is are called the best ads for advertiser s. If the solution of the discrete maximiza-

tion problem contains one ad belonging to advertiser s, then it is easy to see that this ad must be one

of the best ads for advertiser s: were it not the case, replacing the offending ad by one of the best

ads would yield a higher RL without violating any of the constraints. It is also easy to see that one

could select any of the best ads for advertiser s without changing RL.

Let the set I ∗ contain exactly one ad per advertiser, arbitrarily chosen among the best ads for

this advertiser. The inner maximization problem can then be simplified as:

max
i1,...,iN∈I ∗

RL(i1, . . . , iN) = ∑
p∈L

γp bip
βip

(x)

where all the indices i1, . . . , iN are distinct, and subject to the reserve constraints.

Assume that this maximization problem has a solution i1, . . . , iN , meaning that there is a feasible

ad placement solution for the layout L. For k = 1 . . .N, let us define I∗k ⊂ I ∗ as

I∗k = ArgMax
i∈I ∗\{i1,...,ik−1}

biβi(x) .

It is easy to see that I∗k intersects {ik, . . . , iN} because, were it not the case, replacing ik by any

element of I∗k would increase RL without violating any of the constraints. Furthermore it is easy to

see that ik ∈ I∗k because, were it not the case, there would be h > k such that ih ∈ I∗k , and swapping

ik and ih would increase RL without violating any of the constraints.

Therefore, if the inner maximization problem admits a solution, we can compute a solution

by recursively picking i1, . . . , iN from I∗1 , I
∗
2 , . . . , I

∗
N . This can be done efficiently by first sorting

the biβi(x) in decreasing order, and then greedily assigning ads to the best positions subject to the

reserve constraints. This operation has to be repeated for all possible layouts, including of course

the empty layout.

The same analysis can be carried out for click prediction estimates expressed as arbitrary mono-

tone combination of a position term γp(x) and an ad term βi(x), as shown, for instance, by Graepel

et al. (2010).

Appendix B. Confidence Intervals

Section 4.4 explains how to obtain improved confidence intervals by replacing the unbiased impor-

tance sampling estimator (7) by the clipped importance sampling estimator (10). This appendix

provides details that could have obscured the main message.
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B.1 Outer Confidence Interval

We first address the computation of the outer confidence interval (12) which describes how the

estimator Ŷ ∗ approaches the clipped expectation Ȳ ∗.

Ȳ ∗ =
∫

ω
ℓ(ω) w̄(ω) P(ω) ≈ Ŷ ∗ =

1

n

n

∑
i=1

ℓ(ωi) w̄(ωi) .

Since the samples ℓ(ωi) w̄(ωi) are independent and identically distributed, the central limit theorem

(e.g., Cramér, 1946, Section 17.4) states that the empirical average Ŷ ∗ converges in law to a normal

distribution of mean Ȳ ∗ = E[ℓ(ω) w̄(ω)] and variance V̄ = var[ℓ(ω) w̄(ω)]. Since this convergence

usually occurs quickly, it is widely accepted to write

P

{
Ŷ ∗− εR ≤ Ȳ ∗ ≤ Ŷ ∗+ εR

}
≥ 1−δ ,

with

εR = erf
−1
(1−δ)

√
2V̄ . (25)

and to estimate the variance V̄ using the sample variance V̂

V̄ ≈ V̂ =
1

n−1

n

∑
i=1

(
ℓ(ωi) w̄(ωi)− Ŷ ∗

)2

.

This approach works well when the ratio ceiling R is relatively small. However the presence of a

few very large ratios makes the variance estimation noisy and might slow down the central limit

convergence.

The first remedy is to bound the variance more rigorously. For instance, the following bound

results from (Maurer and Pontil, 2009, Theorem 10).

P

{√
V̄ >

√
V̂ + (M−m)R

√
2log(2/δ)

n−1

}
≤ δ

Combining this bound with (25) gives a confidence interval valid with probability greater than

1−2δ. Although this approach eliminates the potential problems related to the variance estimation,

it does not address the potentially slow convergence of the central limit theorem.

The next remedy is to rely on empirical Bernstein bounds to derive rigorous confidence intervals

that leverage both the sample mean and the sample variance (Audibert et al., 2007; Maurer and

Pontil, 2009).

Theorem 1 (Empirical Bernstein bound) (Maurer and Pontil, 2009, thm 4)

Let X ,X1,X2, . . . ,Xn be i.i.d. random variable with values in [a,b] and let δ > 0. Then, with proba-

bility at least 1−δ,

E[X ]−Mn ≤

√
2Vn log(2/δ)

n
+(b−a)

7log(2/δ)

3(n−1)
,

where Mn and Vn respectively are the sample mean and variance

Mn =
1

n

n

∑
i=1

Xi , Vn =
1

n−1

n

∑
i=1

(Xi −Mn)
2 .
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Applying this theorem to both ℓ(ωi) w̄(ωi) and −ℓ(ωi) w̄(ωi) provides confidence intervals that

hold for for the worst possible distribution of the variables ℓ(ω) and w̄(ω).

P

{
Ŷ ∗− εR ≤ Ȳ ∗ ≤ Ŷ ∗+ εR

}
≥ 1−2δ

where

εR =

√
2V̂ log(2/δ)

n
+M R

7log(2/δ)

3(n−1)
. (26)

Because they hold for the worst possible distribution, confidence intervals obtained in this way

are less tight than confidence intervals based on the central limit theorem. On the other hand, thanks

to the Bernstein bound, they remains reasonably competitive, and they provide a much stronger

guarantee.

B.2 Inner Confidence Interval

Inner confidence intervals are derived from inequality (14) which bounds the difference between the

counterfactual expectation Y ∗ and the clipped expectation Ȳ ∗ :

0 ≤ Y ∗− Ȳ ∗ ≤ M (1−W̄ ∗) .

The constant M is defined by assumption (8). The first step of the derivation consists in obtaining a

lower bound of W̄ ∗−Ŵ ∗ using either the central limit theorem or an empirical Bernstein bound.

For instance, applying theorem 1 to −w̄(ωi) yields

P



 W̄ ∗ ≥ Ŵ ∗−

√
2V̂w log(2/δ)

n
−R

7log(2/δ)

3(n−1)



 ≥ 1−δ

where V̂w is the sample variance of the clipped weights

V̂w =
1

n−1

n

∑
i=1

(
w̄(ωi)−Ŵ ∗

)2

.

Replacing in inequality (14) gives the outer confidence interval

P

{
Ȳ ∗ ≤ Y ∗ ≤ Ȳ ∗+M(1−Ŵ ∗+ξR)

}
≥ 1−δ .

with

ξR =

√
2V̂w log(2/δ)

n
+R

7log(2/δ)

3(n−1)
. (27)

Note that 1−Ŵ + ξR can occasionally be negative. This occurs in the unlucky cases where the

confidence interval is violated, with probability smaller than δ.

Putting together the inner and outer confidence intervals,

P

{
Ŷ ∗− εR ≤ Y ∗ ≤ Ŷ ∗+M(1−Ŵ ∗+ξR)+ εR

}
≥ 1−3δ ,

with εR and ξR computed as described in expressions (26) and (27).
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Appendix C. Counterfactual Differences

We now seek to estimate the difference Y+−Y ∗ of the expectations of a same quantity ℓ(ω) under

two different counterfactual distributions P+(ω) and P∗(ω). These expectations are often affected

by variables whose value is left unchanged by the interventions under consideration. For instance,

seasonal effects can have very large effects on the number of ad clicks. When these variables affect

both Y+ and Y ∗ in similar ways, we can obtain substantially better confidence intervals for the

difference Y+−Y ∗.

In addition to the notation ω representing all the variables in the structural equation model, we

use notation υ to represent all the variables that are not direct or indirect effects of variables affected

by the interventions under consideration.

Let ζ(υ) be a known function believed to be a good predictor of the quantity ℓ(ω) whose coun-

terfactual expectation is sought. Since P∗(υ) = P(υ), the following equality holds regardless of the

quality of this prediction:

Y ∗ =
∫

ω
ℓ(ω) P∗(ω) =

∫
υ

ζ(υ) P∗(υ) +
∫

ω

[
ℓ(ω)−ζ(υ)

]
P∗(ω)

=
∫

υ
ζ(υ) P(υ) +

∫
ω

[
ℓ(ω)−ζ(υ)

]
w(ω) P(ω) . (28)

Decomposing both Y+ and Y ∗ in this way and computing the difference,

Y+−Y ∗ =
∫

ω
[ℓ(ω)−ζ(υ)]∆w(ω) P(ω) ≈

1

n

n

∑
i=1

[
ℓ(ωi)−ζ(υi)

]
∆w(ωi) ,

with ∆w(ω) =
P+(ω)

P(ω)
−

P∗(ω)

P(ω)
=

P+(ω)−P∗(ω)

P(ω)
.

The outer confidence interval size is reduced if the variance of the residual ℓ(ω)−ζ(υ) is smaller

than the variance of the original variable ℓ(ω). For instance, a suitable predictor function ζ(υ)
can significantly capture the seasonal click yield variations regardless of the interventions under

consideration. Even a constant predictor function can considerably change the variance of the outer

confidence interval. Therefore, in the absence of better predictor, we still can ( and always should )

center the integrand using a constant predictor.

The rest of this appendix describes how to construct confidence intervals for the estimation of

counterfactual differences. Additional bookkeeping is required because both the weights ∆w(ωi)
and the integrand ℓ(ω)−ζ(υ) can be positive or negative. We use the notation υ to represent the

variables of the structural equation model that are left unchanged by the intervention under consid-

erations. Such variables satisfy the relations P∗(υ) = P(υ) and P∗(ω) = P∗(ω\υ |υ)P(υ), where we

use notation ω\υ to denote all remaining variables in the structural equation model. An invariant

predictor is then a function ζ(υ) that is believed to be a good predictor of ℓ(ω). In particular, it is

expected that var[ℓ(ω)−ζ(υ)] is smaller than var[ℓ(ω)].

C.1 Inner Confidence Interval with Dependent Bounds

We first describe how to construct finer inner confidence intervals by using more refined bounds on

ℓ(ω). In particular, instead of the simple bound (8), we can use bounds that depend on invariant

variables:

∀ω m ≤ m(υ)≤ ℓ(ω)≤ M(υ)≤ M .
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The key observation is the equality

E[w∗(ω)|υ] =
∫

ω\υ
w∗(ω) P(ω\υ |υ) =

∫
ω\υ

P∗(ω\υ |υ)P(υ)

P(ω\υ |υ)P(υ)
P(ω\υ |υ) = 1 .

We can then write

Y ∗− Ȳ ∗ =
∫

ω

[
w∗(ω)− w̄∗(ω)

]
ℓ(ω) P(ω) ≤

∫
υ
E[w∗(ω)− w̄∗(ω) |υ ] M(υ) P(υ)

=
∫

υ
(1−E[w̄∗(ω)|υ] ) M(υ) P(υ) =

∫
ω
(1− w̄∗(ω)) M(υ) P(ω) = Bhi .

Using a similar derivation for the lower bound Blo, we obtain the inequality

Blo ≤ Y ∗− Ȳ ∗ ≤ Bhi

With the notations

B̂lo =
1

n

n

∑
i=1

(1− w̄∗(ωi))m(υi) , B̂hi =
1

n

n

∑
i=1

(1− w̄∗(ωi))M(υi) ,

V̂lo =
1

n−1

n

∑
i=1

[
(1−w̄∗(ωi))m(υi)− B̂lo

]2

, V̂hi =
1

n−1

n

∑
i=1

[
(1−w̄∗(ωi))M(υi)− B̂hi

]2

,

ξlo =

√
2V̂lo log(2/δ)

n
+ |m|R

7log(2/δ)

3(n−1)
, ξhi =

√
2V̂hi log(2/δ)

n
+ |M|R

7log(2/δ)

3(n−1)
,

two applications of theorem 1 give the inner confidence interval:

P

{
Ȳ ∗+ B̂lo −ξlo ≤ Y ∗ ≤ Ȳ ∗+ B̂hi +ξhi

}
≥ 1−2δ .

C.2 Confidence Intervals for Counterfactual Differences

We now describe how to leverage invariant predictors in order to construct tighter confidence inter-

vals for the difference of two counterfactual expectations.

Y+−Y ∗ ≈
1

n

n

∑
i=1

[
ℓ(ωi)−ζ(υi)

]
∆w(ωi) with ∆w(ω) =

P+(ω)−P∗(ω)

P(ω)
.

Let us define the reweigthing ratios w+(ω) = P+(ω)/P(ω) and w∗(ω) = P∗(ω)/P(ω), their clipped

variants w̄+(ω) and w̄∗(ω), and the clipped centered expectations

Ȳ+
c =

∫
ω
[ℓ(ω)−ζ(υ)] w̄+(ω)P(ω) and Ȳ ∗

c =
∫

ω
[ℓ(ω)−ζ(υ)] w̄∗(ω)P(ω) .

The outer confidence interval is obtained by applying the techniques of Section B.1 to

Ȳ+
c − Ȳ ∗

c =
∫

ω
[ ℓ(ω)−ζ(υ) ] [ w̄+(ω)− w̄∗(ω) ] P(ω) .

Since the weights w̄+− w̄∗ can be positive or negative, adding or removing a constant to ℓ(ω)
can considerably change the variance of the outer confidence interval. This means that one should
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always use a predictor. Even a constant predictor can vastly improve the outer confidence interval

difference.

The inner confidence interval is then obtained by writing the difference

(
Y+−Y ∗

)
−
(
Ȳ+

c − Ȳ ∗
c

)
=

∫
ω

[
ℓ(ω)−ζ(υ)

] [
w+(ω)− w̄+(ω)

]
P(ω)

−
∫

ω

[
ℓ(ω)−ζ(υ)

] [
w∗(ω)− w̄∗(ω)

]
P(ω)

and bounding both terms by leveraging υ-dependent bounds on the integrand:

∀ω −M ≤ −ζ(υ) ≤ ℓ(ω)−ζ(υ) ≤ M−ζ(υ) ≤ M .

This can be achieved as shown in Section C.1.

Appendix D. Counterfactual Derivatives

We now consider interventions that depend on a continuous parameter θ. For instance, we might

want to know what the performance of the ad placement engine would have been if we had used a

parametrized scoring model. Let Pθ(ω) represent the counterfactual Markov factorization associated

with this intervention. Let Y θ be the counterfactual expectation of ℓ(ω) under distribution Pθ.

Computing the derivative of (28) immediately gives

∂Y θ

∂θ
=

∫
w

[
ℓ(ω)−ζ(υ)

]
w′

θ(ω) P(ω) ≈
1

n

n

∑
i=1

[
ℓ(ωi)−ζ(υi)

]
w′

θ(ωi)

with wθ(ω) =
Pθ(ω)

P(ω)
and w′

θ(ω) =
∂wθ(ω)

∂θ
= wθ(ω)

∂logPθ(ω)

∂θ
. (29)

Replacing the expressions P(ω) and Pθ(ω) by the corresponding Markov factorizations gives

many opportunities to simplify the reweighting ratio w′
θ(ω). The term wθ(ω) simplifies as shown

in (6). The derivative of logPθ(ω) depends only on the factors parametrized by θ. Therefore, in

order to evaluate w′
θ(ω), we only need to know the few factors affected by the intervention.

Higher order derivatives can be estimated using the same approach. For instance,

∂2Y θ

∂θi ∂θ j

=
∫

w

[
ℓ(ω)−ζ(υ)

]
w′′

i j(ω) P(ω) ≈
1

n

n

∑
i=1

[
ℓ(ωi)−ζ(υi)

]
w′′

i j(ωi)

with w′′
i j(ω) =

∂2wθ(ω)

∂θi ∂θ j

= wθ(ω)
∂logPθ(ω)

∂θi

∂logPθ(ω)

∂θ j

+wθ(ω)
∂2logPθ(ω)

∂θi ∂θ j

.

The second term in w′′
i j(ω) vanishes when θi and θ j parametrize distinct factors in Pθ(ω).

D.1 Infinitesimal Interventions and Policy Gradient

Expression (29) becomes particularly attractive when P(ω) = Pθ(ω), that is, when one seeks deriva-

tives that describe the effect of an infinitesimal intervention on the system from which the data

was collected. The resulting expression is then identical to the celebrated policy gradient (Alek-

sandrov et al., 1968; Glynn, 1987; Williams, 1992) which expresses how the accumulated rewards
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in a reinforcement learning problem are affected by small changes of the parameters of the policy

function.

∂Y θ

∂θ
=

∫
ω

[
ℓ(ω)−ζ(υ)

]
w′

θ(ω)Pθ(ω) ≈
1

n

n

∑
i=1

[
ℓ(ωi)−ζ(υi)

]
w′

θ(ωi)

where ωi are sampled i.i.d. from Pθ and w′
θ(ω) =

∂logPθ(ω)

∂θ
.

Sampling from Pθ(ω) eliminates the potentially large ratio wθ(ω) that usually plagues impor-

tance sampling approaches. Choosing a parametrized distribution that depends smoothly on θ is

then sufficient to contain the size of the weights w′
θ(ω). Since the weights can be positive or nega-

tive, centering the integrand with a prediction function ζ(υ) remains very important. Even a constant

predictor ζ can substantially reduce the variance

var[ (ℓ(ω)−ζ)w′
θ(ω) ] = var[ℓ(ω)w′

θ(ω)−ζw′
θ(ω) ]

= var[ℓ(ω)w′
θ(ω)]−2ζcov[ℓ(ω)w′

θ(ω), w′
θ(ω) ]+ζ2 var[w′

θ(ω)]

whose minimum is reached for ζ =
cov[ℓ(ω)w′

θ(ω),w
′
θ(ω)]

var[w′
θ(ω)]

=
E[ℓ(ω)w′

θ(ω)
2]

E[w′
θ(ω)

2]
.

We sometimes want to evaluate expectations under a counterfactual distribution that is too far

from the actual distribution to obtain reasonable confidence intervals. Suppose, for instance, that we

are unable to reliably estimate which click yield would have been observed if we had used a certain

parameter θ∗ for the scoring models. We still can estimate how quickly and in which direction the

click yield would have changed if we had slightly moved the current scoring model parameters θ in

the direction of the target θ∗. Although such an answer is not as good as a reliable estimate of Y θ∗ ,

it is certainly better than no answer.

D.2 Off-Policy Gradient

We assume in this subsection that the parametrized probability distribution Pθ(ω) is regular enough

to ensure that all the derivatives of interest are defined and that the event {wθ(ω)=R} has probability

zero. Furthermore, in order to simplify the exposition, the following derivation does not leverage an

invariant predictor function.

Estimating derivatives using data sampled from a distribution P(ω) different from Pθ(ω) is

more challenging because the ratios wθ(ωi) in Equation (29) can take very large values. However

it is comparatively easy to estimate the derivatives of lower and upper bounds using a slightly

different way to clip the weights. Using notation 1l(x) represent the indicator function, equal to one

if condition x is true and zero otherwise, let us define respectively the clipped weights w̄Z

θ and the

capped weights w̄M

θ :

w̄Z

θ(ω) = wθ(ω)1l{P∗(ω)< RP(ω)} and w̄M

θ (ω) = min{wθ(ω), R} .

Although Section 4.4 illustrates the use of clipped weights, the confidence interval derivation

can be easily extended to the capped weights. Defining the capped quantities

Ȳ θ =
∫

ω
ℓ(ω) w̄M

θ (ω)P(ω) and W̄ θ =
∫

ω
w̄M

θ (ω)P(ω)
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and writing

0 ≤ Y θ − Ȳ θ =
∫

ω∈Ω\ΩR

ℓ(ω)(P∗(ω)−RP(ω))

≤ M
(

1−P∗(ΩR)−RP(Ω\ΩR)
)

= M

(
1−

∫
ω

w̄M

θ (ω)P(ω)

)

yields the inequality

Ȳ θ ≤ Y θ ≤ Ȳ θ +M(1−W̄ θ) . (30)

In order to obtain reliable estimates of the derivatives of these upper and lower bounds, it is of course

sufficient to obtain reliable estimates of the derivatives of Ȳ θ and W̄ θ. By separately considering the

cases wθ(ω)< R and wθ(ω)> R, we easily obtain the relation

w̄M
′

θ (ω) =
∂w̄M

θ (ω)

∂θ
= w̄Z

θ(ω)
∂logPθ(ω)

∂θ
when wθ(ω) 6= R

and, thanks to the regularity assumptions, we can write

∂Ȳ θ

∂θ
=

∫
ω
ℓ(ω) w̄M

′

θ (ω)P(ω) ≈
1

n

n

∑
i=1

ℓ(ωi) w̄M
′

θ (ωi) ,

∂W̄ θ

∂θ
=

∫
ω

w̄M
′

θ (ω)P(ω) ≈
1

n

n

∑
i=1

w̄M
′

θ (ωi) ,

Estimating these derivatives is considerably easier than using approximation (29) because they in-

volve the bounded quantity w̄Z

θ(ω) instead of the potentially large ratio wθ(ω). It is still necessary

to choose a sufficiently smooth sampling distribution P(ω) to limit the magnitude of ∂logPθ/∂θ.

Such derivatives are very useful to drive optimization algorithms. Assume for instance that

we want to find the parameter θ that maximizes the counterfactual expectation Y θ as illustrated in

Section 6.3. Maximizing the estimate obtained using approximation (5) could reach its maximum

for a value of θ that is poorly explored by the actual distribution. Maximizing an estimate of the

lower bound (30) ensures that the optimization algorithm finds a trustworthy answer.

Appendix E. Uniform Empirical Bernstein Bounds

This appendix reviews the uniform empirical Bernstein bound given by Maurer and Pontil (2009)

and describes how it can be used to construct the uniform confidence interval (21). The first step

consists of characterizing the size of a family F of functions mapping a space X into the in-

terval [a,b] ⊂ R. Given n points x = (x1. . .xn) ∈ X n, the trace F (x) ∈ R
n is the set of vectors(

f (x1), . . . , f (xn)
)

for all functions f ∈ F .

Definition 2 (Covering numbers, etc.) Given ε > 0, the covering number N (x,ε,F ) is the small-

est possible cardinality of a subset C ⊂ F (x) satisfying the condition

∀v ∈ F (x) ∃c ∈C max
i=1...n

|vi − ci| ≤ ε ,

and the growth function N (n,ε,F ) is

N (n,ε,F ) = sup
x∈X n

N (x,ε,F ) .
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Thanks to a famous combinatorial lemma (Vapnik and Chervonenkis, 1968, 1971; Sauer, 1972), for

many usual parametric families F , the growth function N (n,ε,F ) increases at most polynomially13

with both n and 1/ε.

Theorem 3 (Uniform empirical Bernstein bound) (Maurer and Pontil, 2009, thm 6)

Let δ ∈ (0,1), n >= 16. Let X ,X1, . . . ,Xn be i.i.d. random variables with values in X . Let F be a

set of functions mapping X into [a,b]⊂ R and let M (n) = 10N (2n,F ,1/n). Then we probability

at least 1−δ,

∀ f ∈ F , E[ f (X)]−Mn ≤

√
18Vn log(M (n)/δ)

n
+(b−a)

15 log(M (n)/δ)

n−1
,

where Mn and Vn respectively are the sample mean and variance

Mn =
1

n

n

∑
i=1

f (Xi) , Vn =
1

n−1

n

∑
i=1

( f (Xi)−Mn)
2 .

The statement of this theorem emphasizes its similarity with the non-uniform empirical Bern-

stein bound (theorem 1). Although the constants are less attractive, the uniform bound still con-

verges to zero when n increases, provided of course that M (n) = 10N (2n,F ,1/n) grows polyno-

mially with n.

Let us then define the family of functions

F = { fθ : ω 7→ ℓ(ω)w̄M

θ (ω) , gθ : ω 7→ w̄M

θ (ω) , ∀θ ∈ F } ,

and use the uniform empirical Bernstein bound to derive an outer inequality similar to (26) and an

inner inequality similar to (27). The theorem implies that, with probability 1− δ, both inequalities

are simultaneously true for all values of the parameter θ. The uniform confidence interval (21) then

follows directly.
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Abstract
We propose a new, nonparametric method for multivariate regression subject to convexity or con-
cavity constraints on the response function. Convexity constraints are common in economics,
statistics, operations research, financial engineering and optimization, but there is currently no
multivariate method that is stable and computationally feasible for more than a few thousand ob-
servations. We introduce convex adaptive partitioning (CAP), which creates a globally convex
regression model from locally linear estimates fit on adaptively selected covariate partitions. CAP
is a computationally efficient, consistent method for convex regression. We demonstrate empir-
ical performance by comparing the performance of CAP to other shape-constrained and uncon-
strained regression methods for predicting weekly wages and value function approximation for
pricing American basket options.
Keywords: adaptive partitioning, convex regression, nonparametricregression, shape constraint,
treed linear model

1. Introduction

Consider the regression model forx ∈ X ⊂ R
p andy∈ R,

y= f0(x)+ ε,

where f0 : Rp → R andε is a mean 0 random variable. In this paper, we study the situation where
f0 is convex. That is,

λ f0(x1)+(1−λ) f0(x2)≥ f0(λx1+(1−λ)x2),

for everyx1,x2 ∈ X andλ ∈ (0,1). Given the observations(x1,y1), . . . ,(xn,yn), we would like to
estimatef0 subject to the convexity constraint. Convex regression is easily extendedto concave
regression since a concave function is the negative of a convex function.

Convex regression problems occur in a variety of settings. Economic theory often dictates
that demand (Varian, 1982), production (Varian, 1984; Allon et al., 2007) and consumer prefer-
ence (Boyd and Vandenberghe, 2004) functions are concave. In financial engineering, stock option
prices often have convexity restrictions (Aı̄t-Sahalia and Duarte, 2003). Stochastic optimization
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problems in operations research and reinforcement learning can be solved with response surfaces
(Lim, 2010) or value-to-go functions. These exhibit concavity in many settings, like resource al-
location (Topaloglu and Powell, 2003; Powell, 2007; Toriello et al., 2010) or stochastic control
(Keshavarz et al., 2011). Similarly, efficient frontier methods like data envelopment analysis (Kuos-
manen and Johnson, 2010) include convexity constraints. In density estimation, shape restrictions
like log-concavity provide flexible estimators without tunable parameters (Culeet al., 2010; Cule
and Samworth, 2010; Schuhmacher and Dümbgen, 2010). Finally, in optimization, convex approxi-
mations to polynomial constraints are valuable for geometric programming (Kim etal., 2004; Boyd
et al., 2007; Magnani and Boyd, 2009).

Although convex regression has been well explored in the univariate setting, the literature re-
mains underdeveloped in the multivariate setting. Methods where an objectivefunction is con-
strained to the set of convex functions through supporting hyperplane constraints for each pair of
observations (Hildreth, 1954; Holloway, 1979; Kuosmanen, 2008; Seijoand Sen, 2011; Lim and
Glynn, 2012; Allon et al., 2007) or semidefinite constraints over all observations (Roy et al., 2007;
Aguilera and Morin, 2008, 2009; Henderson and Parmeter, 2009; Wang and Ni, 2012) are too com-
putationally demanding for more than a few thousand observations.

In more recent approaches, different methods have been developed. Fitting a convex hull to a
smoothed version of the data (Aguilera et al., 2011) scales to larger data sets, but is inefficient for
more than 4 or 5 dimensions. Refitting a series of hyperplanes can be done ina frequentist (Magnani
and Boyd, 2009) or Bayesian (Hannah and Dunson, 2011) manner. While the Bayesian method does
not scale to more than a few thousand observations, the frequentist method scales to much larger
data sets but can exhibit unstable behavior. Recent literature is more fully reviewed in Section 2.

In this paper, we introduce the first computationally efficient and theoretically sound multivari-
ate convex regression method: convex adaptive partitioning (CAP). It fits a series of hyperplanes to
the data through adaptive partitioning. It relies on an alternate, first-order definition of convexity,

f0(x1)≥ f0(x2)+g0(x2)
T(x1−x2), (1)

for everyx1,x2 ∈ X , whereg0(x) ∈ ∂ f0(x) is a subgradient off0 at x. Equation (1) states that a
convex function lies above all of its supporting hyperplanes, or subgradients tangent tof0. More-
over, with enough supporting hyperplanes,f0 can be approximately reconstructed by taking the
maximum over those hyperplanes.

The CAP estimator is formed by adaptively partitioning a set of observations ina method similar
to trees with linear leaves (Chaudhuri et al., 1994). Within each subset ofthe partition, we fit a linear
model to approximate the subgradient off0 within that subset. Given a partition withK subsets and
linear models,(αk,βk)

K
k=1, a continuous, convex (concave) function is then generated by taking the

maximum (minimum) over the hyperplanes by

fn(x) = max
k∈{1,...,K}

αk+βT
k x.

The partition is refined by a twofold strategy. First, one of the subsets is splitalong a cardinal
direction (say,x1 or x3) to growK. Then, the hyperplanes themselves are used to refit the subsets.
A piecewise linear function likefn induces a partition; a subset is defined as the region where a
particular hyperplane is dominant. The refitting step places the hyperplanesin closer alignment with
the observations that generated them. This procedure is repeated until allsubsets have a minimal
number of observations. The CAP estimator is then created by selecting the value ofK that balances
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fit with complexity using a generalized cross validation method (Golub et al., 1979; Friedman,
1991). We show that CAP is consistent with respect to theℓ∞ metric. Because of the dramatic
reduction in runtime, CAP opens a new class of problems for study, namely moderate to large
problems with convexity or concavity constraints.

2. Literature Review

The literature for convex regression is scattered throughout a variety of fields, including statistics,
operations research, economics numerical analysis and electrical engineering. Most methods are de-
signed for the univariate setting, which is closely related to isotonic regression. Univariate methods
rely on the ordering implicit to the real line. Settingxi−1 < xi < xi+1 for i = 2, . . . ,n−1,

f0(xi)− f0(xi−1)

xi −xi−1
≤ f0(xi+1)− f0(xi)

xi+1−xi
, i = 2, . . . ,n−1, (2)

is equivalent to Equation (1). Whenf0 is differentiable, Equation (2) is equivalent to an increasing
derivative function.

The oldest and simplest solution method is the least squares estimator (LSE), which produces
a piecewise linear estimator by solving a quadratic program with a least squares objective function
subject to the constraints in Equation (2) (Hildreth, 1954; Dent, 1973). Although the LSE is com-
pletely free of tunable parameters, the estimator is not smooth and can overfitin boundary regions.
Consistency, rate of convergence, and asymptotic distribution were shown by Hanson and Pledger
(1976), Mammen (1991) and Groeneboom et al. (2001), respectively. Algorithmic methods for
solving the quadratic program were given in Wu (1982); Dykstra (1983) and Fraser and Massam
(1989).

Splines use linear combinations of basis functions to produce a smooth estimator; in univari-
ate convex regression, an increasing function can be fit to the derivative of the original function.
Meyer (2008) and Meyer et al. (2011) used convex-restricted splines with positive parameters in
frequentist and Bayesian settings, respectively. Turlach (2005) andShively et al. (2011) used unre-
stricted splines with restricted parameters in frequentist and Bayesian settings, respectively. In other
methods, Birke and Dette (2007) used convexity constrained kernel regression. Chang et al. (2007)
used a random Bernstein polynomial prior with constrained parameters. Due to the constraint on
the derivative off0, univariate convex regression is quite similar to univariate isotonic regression;
see Brunk (1955), Hall and Huang (2001), Neelon and Dunson (2004) and Shively et al. (2009) for
examples.

In the multivariate setting Equation (1) cannot be reduced to a set ofn−1 linear inequalities.
Instead, it needs to hold for every pair of points. The multivariate least squares estimator Hildreth
(1954); Holloway (1979) solves the quadratic program,

min
n

∑
i=1

(yi − ŷi)
2 (3)

subject to ˆy j ≥ ŷi +gT
i (x j −xi), i, j = 1, . . . ,n.

Here,ŷi andgi are the estimated values off0(xi) and the subgradient off0 at xi , respectively. The
estimatorf LSE

n is piecewise linear,

f LSE
n (x) = max

i∈{1,...,n}
ŷi +gT

i (x−xi).
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The characterization (Kuosmanen, 2008) and consistency (Seijo and Sen, 2011; Lim and Glynn,
2012) of the least squares problem have only recently been studied. The LSE quickly becomes
impractical due to its size: Equation (3) hasn(n−1) constraints. This results in a computational
complexity ofO((p+1)4n5) (Monteiro and Adler, 1989), which becomes impractical after one to
two thousand observations. It can also severely overfit in boundary regions. In similar approach,
Allon et al. (2007) proposed a method based on reformulating the maximum likelihood problem
as one minimizing entropic distance, again subject ton2 linear constraints generated by the dual
problem.

An alternative to first order constraints in Equation (1) is second order,or Hessian, constraints.
Roy et al. (2007) and Aguilera and Morin (2008, 2009) solved a math program with a least squares
objective function and semidefinite constraints through semidefinite programming. Henderson and
Parmeter (2009) used kernel smoothing with a restricted Hessian and found a solution with sequen-
tial quadratic programming. While these methods are consistent in some cases (Aguilera and Morin,
2008, 2009), they are computationally infeasible for more than about a thousand observations.

Recently, multivariate convex regression methods have been proposed with different approaches.
Aguilera et al. (2011) proposed a two step smoothing and fitting process. First, the data were
smoothed and functional estimates were generated over anε-net over the domain. Then the convex
hull of the smoothed estimate was used as a convex estimator. Again, although this method is con-
sistent, it is sensitive to the choice of smoothing parameter and does not scaleto more than a few
dimensions. Hannah and Dunson (2011) proposed a Bayesian model that placed a prior over the set
of all piecewise linear models. They were able to show adaptive rates of convergence, but the in-
ference algorithm did not scale to more than a few thousand observations.Koushanfar et al. (2010)
transformed the ordering problem associated with shape constrained inference into a combinatorial
optimization problem which was solved with dynamic programming; this scales to a few hundred
observations.

The work that is closest to CAP is an iterative fitting scheme of Magnani and Boyd (2009). In
this method, the data were divided intoK random subsets and a linear model was fit within each
subset; a convex function was generated by taking the maximum over these hyperplanes. This new
function induced a partition over the covariate space, which generated a new collection ofK subsets.
Again, linear models were fitted and another convex function was produced by taking the maximum
over the new hyperplanes. This sequence was repeated until convergence. Although this method
usually produces a high quality estimate, it does not always converge andcan be unstable.

3. Convex Adaptive Partitioning

A natural way to model a convex functionf0 is through the maximum of a set ofK hyperplanes. We
do this by partitioning the covariate space and approximating the gradients withineach region by
hyperplanes generated by the least squares estimator. The covariate space partition andK are chosen
through adaptive partitioning. Given a partition{A1, . . . ,AK} of X , an estimate of the gradient for
each subset can be created by taking the least squares linear estimate based on all of the observations
within that region,

(αk,βk) = argmin
α,β

∑
i :xi∈Ak

(

yi −α−βTxi
)2
.
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A convex functionf̂ can be created by taking the maximum over(αk,βk)
K
k=1,

f̂n(x) = max
k∈{1,...,K}

αk+βT
k x.

Adaptive partitioning models with linear leaves have been proposed before; see Chaudhuri et al.
(1994), Chaudhuri et al. (1995), Alexander and Grimshaw (1996),Nobel (1996), Dobra and Gehrke
(2002), Gÿorfi et al. (2002) and Potts and Sammut (2005) for examples. In most of these cases,
the partition is created by adaptively refining an existing partition by dyadic splitting of one subset
along one dimension. That is, all data is initially placed within a single subset, which is then split
into two new subsets along a single dimension, for example atx1 = 5. The split dimension and
value is chosen in a way that minimizes local error within the subset, through impurity (Chaudhuri
et al., 1994) or mean squared error minimization (Alexander and Grimshaw, 1996). The SUPPORT
algorithm of Chaudhuri et al. (1994) computes test statistics for the difference between the means
and variances of the residuals and selects the split with the smallest associated p−value. Splitting
is continued within a subset until a terminal level of purity or a minimal number of observations is
reached in that subset; however, SUPPORT uses a cross-validation based method as a stopping rule.
Once a full tree has been created, it is pruned using a variety of cross-validation based methods that
aim to remove individual leaves or branches to produce the most simple tree that represents the data
well; see Breiman et al. (1984) and Quinlan (1993) for pruning methods.

There are two problems that arise when a piecewise linear additive function,

f ∗(x) =
K

∑
k=1

(

αk+βT
k x
)

1{x∈Ak},

is changed into a piecewise linear maximization function, likef̂ . First, a split that minimizes local
error does not necessarily minimize global error forf̂ . This is easily remedied by selecting splits
based on minimizing global error. The second problem is more difficult: the linear models often act
in areas over which they were not estimated.

The piecewise linear max function,fn, generates a new partition,{A′
1, . . . ,A

′
K}, by

A′
k =

{

x ∈ X : αk+βT
k x > α j +βT

j x,∀ j 6= k
}

.

The partition{A1, . . . ,AK} is not necessarily the same as{A′
1, . . . ,A

′
K}. We can use this new partition

to refit the hyperplanes and produce a significantly better estimate. A graphical representation is
given in Figure 1.

Refitting hyperplanes in this manner can be viewed as a Gauss-Newton methodfor the non-
linear least squares problem (Magnani and Boyd, 2009),

minimize
n

∑
i=1

(

yi − max
k∈{1,...,K}

(

αk+βT
k xi
)

)2

.

Similar methods for refitting hyperplanes have been proposed in Breiman (1993) and Magnani and
Boyd (2009). However, repeated refitting may not converge to a stationary partition and is sensitive
to the initial partition.

Convex adaptive partitioning uses adaptive partitioning with linear leaves to fit a convex function
that is defined as the maximum over the set of leaves. The adaptive partitioning itself differs from
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Figure 1: The original space partitionA and accompanying data partitionC with hyperplanes fit
according to that partition (left), the convex estimator based on those hyperplanes; some
points are not represented by the hyperplane they were used to fit (center), and subsets
refit based on the hyperplanes (right).

previous methods in order to fit piecewise linear maximization functions. Partitions are refined in
two steps. First, candidate splits are generated through dyadic splits of existing partitions. These
are evaluated and the one that minimizes global error is greedily selected. Second, the new partition
is then refit. Although simple, these rules, and refitting in particular, producelarge gains over naive
adaptive partitioning methods; empirical results are discussed in Section 6.

Most other adaptive partitioning methods use backfitting or pruning to selectthe tree or partition
size. Due to the construction of the CAP estimator, we cannot locally prune and so instead we rely
on model selection criteria. We derive a generalized cross-validation method for this setting that is
used to selectK. This is discussed in Section 5.

3.1 The Algorithm

We now introduce some notation required for convex adaptive partitioning.When presented with
data, a partition can be defined over the covariate space (denoted by{A1, . . . ,AK}, with Ak ⊆ X )
or over the observation space (denoted by{C1, . . . ,CK}, with Ck ⊆ {1, . . . ,n}). The observation
partition is defined from the covariate partition,

Ck = {i : xi ∈ Ak} , k= 1, . . . ,K.

The relationship between these is shown in Figure 1. CAP proposes and searches over a set of
models,M1, . . . ,MK . A model Mk is defined by: 1) the covariate partition{A1, . . . ,AK}, 2) the
corresponding observation partition,{C1, . . . ,CK}, and 3) the hyperplanes(α j ,β j)

K
j=1 fit to those

partitions.
The CAP algorithm progressively refines the partition until each subset cannot be split without

one subset having fewer than a minimal number of observations,nmin. This value is chosen to
balance increasing model complexity against accurate local model fit and computational complexity.
When a relatively small number of observations is used to fit local linear models, the local models
tend to fit noise. This is particularly problematic with linear models, which can predict extreme
values based on overfit models. The issue is aggravated when the estimatoris defined as a max over
local linear models, which can be dominated by a few extreme values; it can cause instability in the
estimator of Magnani and Boyd (2009). Therefore, we choose a conservative value fornmin, which
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admits logarithmic partition growth,

nmin = min

{

n
D log(n)

,2(d+1)

}

.

HereD is a log scaling factor, which acts to change the base of the log operator. Webriefly outline
the CAP algorithm below.

3.1.1 CONVEX ADAPTIVE PARTITIONING (CAP)

1. Initialize. SetK = 1; place all observations into a single observation subset,C1 = {1, . . . ,n};
A1 = X ; this defines modelM1.

2. Split. Refine partition by splitting a subset.

a. Generate candidate splits.Generate candidate modelM̂k jℓ by 1) fixing a subsetk, 2) fixing
a dimensionj, 3) dyadically dividing the data in subsetk and dimensionsj according to
knotaℓ. This is done forL knots, allp dimensions andK subsets.

b. Select split. Choose the modelMK+1 from the candidates that minimizes global mean
squared error on the training set and satisfies mink |Ck| ≥ nmin. SetK = K+1.

3. Refit. Use the partition induced by the hyperplanes to generate modelM′
K . SetMK = M′

K if
for every subsetC′

k in M′
K , |C′

k| ≥ nmin.

4. Stopping conditions. If for every subsetCk in Mk, |Ck| < 2nmin, stop fitting and proceed to
step 5. Otherwise, go to step 2.

5. Select model size.Each modelMk creates an estimator,

fk(x) = max
j∈{1,...,k}

α j +βT
j x.

Use generalized cross-validation on the estimators to select final modelM∗ from {Mk}K
k=1.

3.2 Splitting Rules

To split, we create a collection of candidate models by splitting a single subset intotwo subsets. We
create models for every subset and search along every cardinal direction by splitting the data along
that direction. For a fixed dimensionj and subsetk, let x jk

min be the minimum value andx jk
max be the

maximum value of the covariates in this subset and dimension. Let 0< a1 < · · · < aL < 1 be a set
of evenly spaced knots that represent the proportion betweenx jk

min andx jk
max.

We create model̂M jkℓ by 1) fixing subsetk∈ {1, . . . ,K}, and 2) fixing dimensionj ∈ {1, . . . , p}.

x jk
min = min{xi j : i ∈Ck}, x jk

max= max{xi j : i ∈Ck}.

Use the weighted averageb jkℓ = aℓx
jk
min+(1−aℓ)x

jk
max to splitCk andAk in dimensionj. Set

C′
k = {i : i ∈Ck, xi j ≤ b jkℓ}, C′

K+1 = {i : i ∈Ck, xi j > b jkℓ},
A′

k = {x : x ∈ Ak, x j ≤ b jkℓ}, A′
K+1 = {x : x ∈ Ak, x j > b jkℓ}.
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Figure 2: (A) The original observation partitionC for M2, (B) new splits generated from the subset
C1, and (C) new splits generated from the subsetC2. Since there is only one dimension,
we fix j = 1.

These define new subset and covariate partitions,C′
1:K+1 andA′

1:K+1 whereC′
k′ =Ck′ andC′

k′ =Ck′

for k′ 6= k. See Figure 2 for an example. Fit hyperplanes(α̂k, β̂k)
K+1
k=1 in each of the subsets. The

triplet of observation partitionC′
1:K+1, covariate partition,A′

1:K+1, and set of hyperplanes(α̂k, β̂k)
K+1
k=1

defines the modelM′
jkℓ. This is done fork= 1, . . . ,K, j = 1, . . . , p andℓ= 1, . . . ,L. After all models

are generated, setK = K+1.
We note that any models where mink |C′

k| < nmin are discarded. If all models are discarded in
one subset/dimension pair, we produce a model by splitting on the subset median in that dimension.

3.3 Split Selection

We select the modelM′
jkℓ that gives the smallestglobalerror. Let(α jkℓ

i ,β jkℓ
i )K

i=1 be the hyperplanes
associated withM′

jkℓ and let

f̂ jkℓ(x) = max
i∈{1,...,K}

α jkℓ
i +β jkℓ

i

T
x

be its estimator. We set the modelMK to be the one that minimizes global mean squared error,

MK =

{

M̂ jkℓ : ( j,k, ℓ) = argmin
j,k,ℓ

1
n

n

∑
i=1

(

yi − f̂ jkℓ(xi)
)2
}

.

Set f̂K to be the minimal estimator. We note thatMK may not be unique, however this seldom occurs
in practice.
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3.4 Refitting

We refit by using the partition induced by the hyperplanes. Let(α1:K ,β1:K) be the hyperplanes
associated withMK . Refit the partitions by

C′
k = {xi : αk+βT

k xi ≥ α j +βT
j xi , j 6= k}

for k = 1, . . . ,K. The covariate partition,A′
1:K is defined in a similar manner. Fit hyperplanes in

each of those subsets. LetM′
K be the model generated by the partitionC′

1, . . . ,C
′
K . SetMK = M′

K if
|C′

k| ≥ nmin for all k.

3.5 Stopping Criteria

Stopping criteria are similar to those in tree-based models (Nobel, 1996; Györfi et al., 2002). That
is, the model stops when there are not enough observations within each subset of leaf to generate
any further candidate splits,

|Ck| ≤ 2nmin

for k = 1, . . . ,K. After fitting to termination the final model size, however, is chosen through a
pruning method discussed Section 5.

3.6 Tunable Parameters

CAP has two tunable parameters,L andnmin. L specifies the number of knots used when generating
candidate models for a split. Its value is tied to the smoothness off0 and after a certain value,
usually 5 to 10 for most functions, higher values ofL offer little fitting gain.

We choose a minimal subset size,nmin, that admits at mostO(log(n))subsets. A parameterD
is used to specify a minimum subset size,nmin = n/(D log(n)). HereD transforms the base of the
logarithm frome into exp(1/D). We have found thatD = 3 (implying base≈ 1.4) is a good choice
for most problems.

Increases in either of these parameters increase the computational time. Sensitivity to these
parameters, both in terms of predictive error and computational time, is empirically examined in
Appendix B.

3.7 Computational Efficiency

Each round of CAP requiresO(dKL) regressions to be fit for model proposal. Since observations
are moved from one side of a threshold to another within each leaf, an efficient method is to maintain
and update parameters and the sum of squares and cross products withineach leaf. Alternately, a
QRdecomposition may be maintained and updated for each leaf (Alexander and Grimshaw, 1996).
Unlike treed linear models, all linear models need to be refit for each round of CAP.

4. Consistency

Consistency for CAP can be shown in a related manner to consistency for other adaptive partitioning
models, like CART (Breiman et al., 1984), treed linear models (Chaudhuri et al., 1994) and other
variants (Nobel, 1996; Gÿorfi et al., 2002). We take a two-step approach, first showing consistency
for the mean function and first derivatives of a more traditional treed linearmodel based on CAP
under theℓ∞ metric and then we use that to show consistency for the CAP estimator itself.
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Letting M∗
n be the model for the CAP estimate aftern observations, define the discontinuous

piecewise linear estimate based onM∗
n,

f ∗n (x) =
Kn

∑
k=1

(

αk+βT
k x
)

1{x∈Ak},

whereKn is the partition size,A1, . . . ,AKn are the covariate partitions and(αk,βk)
Kn
k=1 are the hyper-

planes associated withM∗
n. Let fn(x) be the CAP estimator based onM∗

n,

fn(x) = max
k∈{1,...,Kn}

αk+βT
k x.

Each subsetAk has an associated diameter,dnk = supx1,x2∈Ak
||x1− x2||2. Define the empirical co-

variate mean for subsetk asx̄k =
1

|Ck| ∑i∈Ck
xi . Forxi ∈ Ak, define

Γi =

[

[1, . . . ,1]
d−1

nk (xi − x̄k)

]

, Gk = ∑
i∈Ck

ΓiΓT
i .

Note that(αk,βk) = G−1
k ∑i∈Ck

Γiyi wheneverGk is nonsingular.
Let x1, . . . ,xn be i.i.d. random variables. We make the following assumptions:

A1. X is compact andf0 is Lipschitz continuous and continuously differentiable onX with Lips-
chitz parameterζ.

A2. There is ana> 0 such thatE
[

ea|Y− f0(x)| |X = x
]

is bounded onX .

A3. Let λk be the smallest eigenvalue of|Ck|−1Gk andλn = mink λk. Thenλn remains bounded
away from 0 in probability asn→ ∞.

A4. The diameter of the partition maxk d−1
nk → 0 in probability asn→ ∞.

A5. The number of observations in each subset satisfies mink=1,...,Kn |Ck|> d−1
nk

√

nlog(n) in prob-
ability asn→ ∞.

AssumptionsA1. and A2. place regularity conditions onf0 and the noise distribution, re-
spectively. AssumptionA3. is a regularity condition on the covariate distribution to ensure the
uniqueness of the linear estimates. AssumptionA4. is a condition that can be included in the algo-
rithm and checked along with the subset cardinality,|Ck|. If X is given, it can be computed directly,
otherwise it can be approximated using{xi : i ∈Ck}. AssumptionA5. ensures that there are enough
observations in the terminal nodes to fit the linear models.

To show consistency offn under theℓ∞ metric, we first show consistency off ∗n and its derivatives
under theℓ∞ metric in Theorem 1. This is similar to Theorem 1 of Chaudhuri et al. (1994) for treed
linear models, although we need to modify it to allow partitions with an arbitrarily large number of
faces.

Theorem 1 Suppose that assumptionsA1. throughA5. hold. Then,

max
k=1,...,Kn

sup
x∈Ak

∣

∣αk+βT
k x− f0(x)

∣

∣→ 0, max
k=1,...,Kn

sup
x∈Ak

||βk−∇ f0(x)||∞ → 0

in probability as n→ ∞.
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The CAP algorithm is similar to the SUPPORT algorithm of Chaudhuri et al. (1994), except the
refitting step of CAP allows partition subsets to be polyhedra with up toKn faces. Theorem 1 is
analogous to Theorem 1 of Chaudhuri et al. (1994); to prove our theorem, we modify parts of the
proof in Chaudhuri et al. (1994) that rely on a fixed number of polyhedral faces. The proof is given
in Appendix A.

Using the results from Theorem 1, extension to consistency forfn under theℓ∞ metric is fairly
simple; this is given in Theorem 2.

Theorem 2 Suppose that assumptionsA1. throughA5. hold. Then,

sup
x∈X

| fn(x)− f0(x)| → 0

in probability as n→ ∞.

The proof follows immediately from Theorem 1 and some algebra. Details are given in the Ap-
pendix A.

5. Generalized Cross-Validation

The terminal model produced by CAP can overfit the data. As a fast approximation to leave-one-out
cross-validation, we use generalized cross-validation (GCV) (Golub etal., 1979; Friedman, 1991)
to select the best model from all of those produced by CAP,M1, . . . ,MK . A given modelMK is
generated by a collection ofK linear models. In linear regression, GCV relies on the following
approximation

1
n

n

∑
i=1

(yi − f−i(xi))
2 =

1
n

n

∑
i=1

(

yi − fn(xi)

1−Hii

)2

≈ 1
n

n

∑
i=1

(

yi − fn(xi)

1−Tr(H)

)2

, (4)

whereHii is the ith diagonal element of the hat matrix,X(XTX)−1XT , f̂−i is the estimator condi-
tioned on all of the data minus elementi. We note that Tr(H) is sometimes approximated by the
degrees of freedom divided by the number of observations.

The modelMK is defined byC1, . . . ,CK , the partition, and the hyperplanes(αk,βk)
K
k=1, which

were generated by the partition. Let(α(−i)
k ,β(−i)

k )K
k=1 be the collection of hyperplanes generated

when observationi is removed; notice that ifi ∈Ck, only (αk,βk) changes. Let̂f−iK be the estimator
for modelMK with observationi removed. Using the derivation in Equation (4),

1
n

n

∑
i=1

(

yi − f̂−iK (xi)
)2

=
1
n

n

∑
i=1

(

yi − max
k∈{1,...,K}

α(−i)
k +β(−i)

k

T
xi

)2

,

=
1
n

n

∑
i=1





yi −αk(i)−βT
k(i)xi

1−Hk(i)
ii 1{i∈Ck(i)}





2

≈ 1
n

n

∑
i=1

(

yi −αk(i)−βT
k(i)xi

1−Tr(Hk(i))1{i∈Ck(i)}

)2

, (5)
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Figure 3: Log-continuous plots for number of observations vs. K (top),MSE (middle), and run-
time in seconds (bottom) for GCV, 5-fold and 10-fold cross validation, plus/minus one
standard error. Data were generated from 10 i.i.d. training sets withx ∼ N5(0, I),
y= (x1+ .5x2+x3)

2−x4+ .25x2
5+ ε, andε ∼ N(0,1).

where, in a slight abuse of notation,Hk
ii is the diagonal entry of the hat matrix for subsetk corre-

sponding to elementi, and

k(i) = arg max
k∈{1,...,K}

αk+βT
k xi

1−Tr(Hk)1{i∈Ck}
.
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To selectK, we find theK that minimizes the right hand side of Equation (5). Although more
computationally intensive than GCV in linear models, the computational complexity for CAP GCV
is similar to that of the CAP split selection step.

We empirically compared GCV selection ofK with 5- and 10-fold cross validation selection of
K. GCV tends to select a smallerK than full cross validation, particularly on smaller problems.
Predictive results, however, are comparable for moderate to large problem sizes (n≥ 5,000) while
the runtime of GCV is orders of magnitude less than 5- and 10-fold cross validation. We should
expect more discrepancy between cross-validation and GCV on smaller problems because GCV
relies on an asymptotic approximation. In these cases, full cross validation selection ofK may be
worthwhile. Representative results are given in Figure 3.

We can use generalized cross-validation to create a more efficient stopping rule for CAP. We
note that GCV scores are often unimodal inK. Instead of fully growing the tree, we stop splitting
after the score has increased twice in a row. The resulting algorithm is calledFast CAP; details are
given in Appendix B.

6. Empirical Analysis

We compare shape constrained and unconstrained regression methods across a set of convex re-
gression problems: two synthetic regression problems, predicting mean weekly wages and value
function approximation for pricing basket options.

6.1 Synthetic Regression Problems

We apply CAP to two synthetic regression problems to demonstrate predictive performance and
analyze sensitivity to tunable parameters. The first problem has a non-additive structure, high levels
of covariate interaction and moderate noise, while the second has a simple univariate structure em-
bedded in a higher dimensional space and low noise. Low noise or noise free problems often occur
when a highly complicated convex function needs to be approximated by a simpler one (Magnani
and Boyd, 2009).

6.1.1 PROBLEM 1

Herex ∈ R
5. Set

y= (x1+ .5x2+x3)
2−x4+ .25x2

5+ ε,

whereε ∼ N(0,1). The covariates are drawn from a 5 dimensional standard Gaussian distribution,
N5(0, I).

6.1.2 PROBLEM 2

Herex ∈ R
10. Set

y= exp
(

xTq
)

+ ε,

whereq was randomly drawn from a Dirichlet(1,. . . ,1) distribution,

q = (0.0680,0.0160,0.1707,0.1513,0.1790,0.2097,0.0548,0.0337,0.0377,0.0791)T.

We setε ∼ N(0,0.12). The covariates are drawn from a 10 dimensional standard Gaussian distribu-
tion, N10(0, I).
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6.1.3 PREDICTIVE PERFORMANCE ANDRUNTIMES

We compared the performance of CAP and Fast CAP to other regression methods on problems 1 and
2. We implemented the following shape constrained algorithms: the least squares regression (LSE)
usingcvx (Grant and Boyd, 2012, 2008), and the linear refitting algorithm of Magnani and Boyd
(2009). The general methods included Gaussian processes (Rasmussen and Williams, 2006) using
gpml in Matlab, tree regression with constant values in the leaves usingclassregtree in Matlab,
multivariate adaptive regression splines (MARS) (Friedman, 1991) usingARESlab in Matlab, and
support vector machines (SVMs) using thee1071 package inR.

For CAP and Fast CAP, we set the parameters toD = 3 andL = 10; the sensitivity to these
parameters is examined in Appendix C. The parameterK was chosen by GCV for CAP. In Fast
CAP, the number of random search directions was set to bep= min(d,10). All methods were given
a maximum runtime of 90 minutes, after which the results were discarded. Methods were run on
10 random training sets and tested on the same testing set of 10,000 random covariates. Average
runtimes and predictive performance are shown in Figure 4.

Non-convex regression methods performed poorly compared to shape restricted methods, par-
ticularly in the higher noise setting. Amongst the shape restricted methods, only CAP and Fast
CAP had consistently low predictive error. The method of Magnani and Boyd (2009) can become
unstable, which is seen in problem 1. Surprisingly, the LSE had high predictive error. This can be
attributed to overfitting, particularly in the boundary regions. A demonstrationis given in Figure
5. Although CAP and Fast CAP had similar predictive performance, their runtimes often differed
by an order of magnitude with the largest differences on the biggest problem sizes. Based on this
performance, we would suggest using Fast CAP on larger problems.

We note that the empirical rate of convergence for CAP and Fast CAP is much faster than would
be predicted by minimax convergence rates. The results, however, are consistent with rates that
adapt to an underlying linear subspace; this is examined in Appendix D.

6.1.4 CAPAND TREED L INEAR MODELS

Treed linear models are a popular method for regression and classification. They can be easily
modified to produce a convex regression estimator by taking the maximum over the linear leaves.
CAP differs from existing treed linear models in how the partition is refined. First, subset splits
are selected based on global reduction of error. Second, the partition isrefit after a split is made.
To investigate the contributions of each step, we compare to treed linear modelsgenerated by: 1)
local error reduction as an objective for split selection and no refitting, 2) global error reduction as
an objective function for split selection and no refitting, and 3) local error reduction as an objective
for split selection along with refitting. All estimators based on treed linear modelsare generated by
taking the maximum over the set of linear models in the leaves. We compared the performance of
these methods on problems 1 and 2 over 10 different training sets and a single testing set. Average
predictive error is displayed in Figure 6.

Global split selection and refitting are both beneficial, but in different ways. Refitting dramat-
ically reduces predictive error, but can add variance to the estimator in noisy settings. Global split
selection modestly reduces predictive error but can reduce variance innoisy settings, like problem
1. The combination of the two produces CAP, which has both low variance and high predictive
accuracy.
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Figure 4: Mean squared error (top) and runtime in seconds (bottom) plus/minus one standard error
on problem 1 (left) and problem 2 (right) for CAP, Fast CAP, Gaussian processes, MARS,
CART, the least squares estimator, the linear fitting method of Magnani and Boyd (2009)
and support vector machines.

6.2 Predicting Weekly Wages

We use shape restricted methods to predict mean weekly wages based on years of education and
experience. The data are from the 1988 Current Population Survey (CPS); they originally appeared
in Bierens and Ginther (2001) and can be accessed asex1029 in the Sleuth2 package inR. The
data set contains 25,361 records of weekly wages for full-time, adult, male workers for 1987, along
with years experience, years of education, race (either back or white;no others were included in the
sample), region, and whether the last job held was part time.

A reasonable assumption for wages is that they are concave in years experience. Each year pre-
viously worked should have decreasing returns for average wages until peak earnings are reached,
with modest declines afterwards. Indeed, this pattern is seen in Figure 7 when we compare aver-
age weekly wages against experience. Wages can also be expected to increase based on education
level, but not in a concave or convex fashion. However, concavity can be generated with an expo-
nential transformation of education; this is shown in Figure 7. We therefore used a transformation,
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Figure 8: Root mean squared error (RMSE), left, and runtime in seconds, right, for CAP, Fast CAP,
CART, MARS, and SVMs for predicting weekly wages based on years experience and
years education.

1.2years education, as a covariate. Shape restrictions do not hold with any other covariates,so they are
discarded.

We implemented CAP, fast CAP, the linear model of Magnani and Boyd (2009), CART, MARS,
and SVMs. Due to the problem size, we did not use Gaussian processes or the least squares esti-
mator. We estimated RMSE through 10-fold cross validation. Results and runtimes are shown in
Figure 8 for all methods except Magnani and Boyd (2009). This had a RMSE of 10,156, orders of
magnitude larger than other methods, and was hence omitted from the figures.
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Method RMSE Time
CAP 385.7±20.8 12.8±0.8

Fast CAP 385.7±20.8 1.9±0.2
CART 489.6±26.1 2.6±0.2
MARS 385.8±20.7 150.4±12.8

Magnani and Boyd (2009) 10156.0±9765.2 8.0±0.7
SVM 388.9±20.7 72.9±1.6

Table 1: Average RMSE and runtime in seconds, plus/minus one standard error for CAP, Fast CAP,
CART, MARS, Magnani and Boyd (2009) and SVMs.

This data set presents difficulties for many methods due to its size (n > 20,000) and highly
skewed distribution. CAP, Fast CAP, MARS and SVMs all had comparable predictive error rates,
while CART produced error rates about 27% higher. The linear fitting method of Magnani and
Boyd (2009) occasionally tried to fit outliers with hyperplanes, resulting in about a 2,500% increase
in predictive error. This potential instability is one of the largest drawbacks with the method of
Magnani and Boyd (2009). In terms of runtimes, Fast CAP and CAP wereboth significantly faster
than any methods that produced comparable results, with runtime reductions of more than 80% over
SVMs.

In Figure 9, we compare the predicted functions produced by CAP and SVMs. In areas with
small amounts of data, such for people with low education, the SVM producesresults that do not
match prior information. In the SVM surface, someone with 0 years of experience and 0 years of
education is predicted to have about a 150% larger weekly wage than a highschool graduate with 0
years of experience and about the same weekly wage as someone with a 4-year college degree and
0 years of experience. By imposing shape constraints, CAP eliminates thesetypes of problems and
produces a surface that conforms to prior knowledge.

Unlike the surface produced by SVM regression, the surface produced by CAP is not smooth. A
greater degree of smoothness can be added through ensemble methods likebagging (Breiman, 1996)
and smearing (Breiman, 2000). Averaging randomized convex estimators produces a new convex
estimator; these methods have been explored for approximating objective functions in Hannah and
Dunson (2012). A surface produced by smearing CAP is shown on the right in Figure 9. Note that
its overall shape is quite similar to the original CAP estimator while most of the sharpedges have
been smoothed away.

6.3 Pricing Stock Options

In sequential decision problems, a decision maker takes an action based ona currently observed state
of the world based on the current rewards of that action and possible future rewards. Approximate
dynamic programming is a modeling method for such problems based on approximating a value-to-
go function. Value-to-go functions, or simply “value functions,” give thevalue for each state of the
world if all optimal decisions are made subsequently.

Often value functions are known to be convex or concave in the state variable; this is common
in options pricing, portfolio optimization and logistics problems. In some situations,such as when
a linear program is solved each time period to determine an action, a convex value function is
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Figure 9: Mean weekly wage based on years of experience and yearsof education (top left), pre-
dicted values using SVM regression (top right), CAP (bottom left), and smeared CAP
(bottom right).

required for computational tractability. Convex regression holds great promise forvalue function
approximation in these problems.

To give a simple example for value function approximation, we consider pricing American
basket options on the average ofM underlying assets. Options give the holder the right—but not
the obligation—to buy the underlying asset, in this case the average ofM individual assets, for a
predetermined strike priceR. In an American option, this can be done at any time between the
issue date and the maturity date,T. However, American options are notoriously difficult to price,
particularly when the underlying asset base is large.

A popular method for pricing American options uses approximate dynamic programming where
continuation values are approximated via regression (Carriere, 1996; Tsitsiklis and Van Roy, 1999,
2001; Longstaff and Schwartz, 2001). We summarize these methods as follows; see Glasserman
(2004) for a more thorough treatment. The underlying assets are assumedto have the sample path
{X1, . . . ,XT}, whereXt = {S1(t), . . . ,SM(t)} is the set of securities at timet. At each timet, a
continuation value function,̄Vt(Xt), is estimated by regressing a value function for the next time
period, V̄t+1(Xt+1), on the current state,Xt . The continuation value is the value of holding the
option rather than exercising given the current state of the assets. The value function is defined to
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be the max of the current exercise value and the continuation value. Optionsare exercised when the
current exercise value is greater than or equal to the continuation value.

The procedure to estimate the continuation values is as follows (as summarized inGlasserman
2004):

0. Define basket payoff function,

h(Xt) = max

{

1
M

M

∑
k=1

Sk(t)−R,0

}

.

1. SampleN independent paths,{X1 j , . . . ,XT j}, j = 1, . . . ,N.

2. At timeT, setV̄T(XT j) = h(XT j).

3. Apply backwards induction: fort = T −1, . . . ,1,

• given {V̄t+1(Xt+1 j)}N
j=1, regress on{Xt j}N

j=1 to get continuation value estimates
{C̄t(Xt j)}N

j=1.

• set value function,
V̄t(Xt j) = max

{

h(Xt j),C̄t(Xt j)
}

.

We use the value function defined by Tsitsiklis and Van Roy (1999).
The regression values are used to create a policy that is implemented on a testset: exercise

when the current exercise value is greater than or equal to the estimated continuation value. A good
regression model is crucial to creating a good policy.

In previous literature,{Ct(Xt j)}N
j=1 has been estimated by regression splines for a single under-

lying asset (Carriere, 1996), or least squares linear regression ona set of basis functions (Tsitsiklis
and Van Roy, 1999; Longstaff and Schwartz, 2001; Glasserman, 2004). Regression on a set of ba-
sis functions becomes problematic whenXt j is defined over moderate to high dimensional spaces.
Well-defined sets of bases such as radial basis functions and polynomialsrequire an exponential
number of functions to span the space, while manually selecting basis functions can be quite diffi-
cult. Since the expected continuation values are convex in the asset price for basket options, CAP is
a simple, nonparametric alternative to these methods.

We compared the following methods: CAP and Fast CAP withD = 3, L = 10 for both and
P′ = min(M,10), the number of random search directions in Fast CAP; the method of Magnani and
Boyd (2009); regression trees with constant leaves using the Matlab function classregtree ; least
squares using the polynomial basis functions

(1,Si(t),S
2
i (t),S

3
i (t),Si(t)Sj(t),h(Xt)), i = 1, . . . ,M, j 6= i;

ridge regression on the same basis functions with ridge parameter chosen by 10-fold cross-validation
each time period from values between 10−3 and 105.

We compared value function regression methods as follows. We simulated forbothN = 10,000
andN = 50,000 training samples for a 3-month American basket option with a number of underly-
ing assets,M, varying between 1 and 30 using a geometric Brownian motion with a drift of 0.05 and
a volatility of 0.10. All assets had correlation 0.5 and starting value 100. The option had strike price
110. Policy values were approximated on 50,000 testing sample paths. An approximate upper bound
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was generated using the dual martingale methods of Haugh and Kogan (2004) from value functions
generated using polynomial basis functions based on the mean of the assets, (1,Yt ,Y2

t ,Y
3
t ,h(Yt)),

whereYt = 1/M ∑M
i=1Xi(t), with 2,000 samples. Upper and lower bounds were generated using 5

training and testing sets.

Results are displayed in Figure 10. We found that CAP and Fast CAP gavestate of the art per-
formance without the difficulties associated with linear functions, such as choosing basis functions
and regularization parameters. We observed a decline in the performance of least squares as the
number of assets grew due to overfitting. Ridge regularization greatly improved the least squares
performance as the number of assets grew. Tree regression did poorlyin all settings, likely due
to overfitting in the presence of the non-symmetric error distribution generated by the geometric
Brownian motion. These results suggest that CAP is robust even in less than ideal conditions, such
as when data have heteroscedastic, non-symmetric error distributions.

Again, we noticed that while the performances of CAP and Fast CAP were comparable, the
runtimes were about an order of magnitude different. On the larger problems, runtimes for Fast
CAP were similar to those for unregularized least squares. This is likely because the number of
covariates in the least squares regression grew likeM2, while all linear regressions in CAP only had
M covariates.

7. Conclusions

In this article, we presented convex adaptive partitioning, a computationally efficient, theoretically
sound and empirically robust method for regression subject to a convexityconstraint. CAP is the
first convex regression method to scale to large problems, both in terms of dimensions and number
of observations. As such, we believe that it can allow the study of problemsthat were once thought
to be computationally intractable. These include econometrics problems, like estimating consumer
preference or production functions in multiple dimensions, approximating complex constraint func-
tions for convex optimization, or creating convex value-to-go functions orresponse surfaces that
can be easily searched in stochastic optimization.

CAP can be extended in a number of ways. First, as demonstrated in Hannahand Dunson
(2012), CAP can be used in an ensemble setting—like bagging or smearing—toproduce a smoother
estimator. Averages of piecewise linear estimators are particularly useful inan optimization setting.
They are still piecewise linear and can be searched by a linear program, but have more stable min-
imum locations than sparse methods like CAP and the linear fitting method of Magnaniand Boyd
(2009). Second, CAP can be extended to more shape constrained settings, like monotone, concave
and semi-convex functions. Monotone, concave functions are concave functions with increasing
slopes, which are common in economics. Although CAP is not a general purpose shape constrained
inference method, a variant for monotone functions can easily be generated by placing positivity
constraints on the parameters of the linear models. Semi-convex functions are convex in some
dimensions but unconstrained in others. Variants of CAP could be combinedwith other nonpara-
metric methods like kernels to produce efficient inference methods for partially convex functions.
We believe that the methods supporting the CAP algorithm can bring efficient, theoretically sound
inference to a variety of shape constrained problems that are inapproachable with traditional meth-
ods.

3281



HANNAH AND DUNSON

 Number of Assets

V
a
lu

e
 o

f 
P

o
lic

y

5

10

15

20

25

5

10

15

20

25

5 10 15 20 25 30

n
=

1
0
0
0
0

n
=

5
0
0
0
0

Algorithm

CAP Fast  CAP CART LS Ridge  LS Magnani  and  Boyd Upper  Bound

 Number of Assets

T
im

e
 (

in
 s

e
c
o
n
d
s
) 10

0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

5 10 15 20 25 30

n
=

1
0
0
0
0

n
=

5
0
0
0
0

Algorithm

CAP Fast  CAP CART LS Ridge  LS Magnani  and  Boyd

Figure 10: Average values (top) and runtimes (bottom) plus/minus one standard error for pricing
America basket options as a function of the number of underlying assets are shown for
CAP, Fast CAP, tree regression with constant leaves (CART), the methodof Magnani
and Boyd (2009), least squares (LS) and ridge regularized least squares value function
approximation.

3282



MULTIVARIATE CONVEX REGRESSION WITHADAPTIVE PARTITIONING

8. Online Supplements

Code for CAP can be downloaded athttp://www.columbia.edu/ ˜ lah2178/Research.html and
as an online supplement at the JMLR website.
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Appendix A.

The proof of Theorem 1 is essentially identical to the proof of Theorem 1 of Chaudhuri et al.
(1994) with a few modifications. The Chaudhuri et al. (1994) results arefor an algorithm that splits
subsections parallel to axes. By allowing subsets to be determined by the dominating hyperplanes,
the subsets are now polyhedral with a maximal number of faces determined bythe dimension and
maximal number of subsets. To show this, we modify Lemma 12.27 of Breiman et al.(1984).
Proof [Proof of Theorem 1] It is sufficient to show that

max
k=1,...,Kn

d−1
nk

∣

∣[αk,βk]
t −∆(x̄k)

∣

∣→ 0

in probability, where∆(x̄k) is the vector of elements[ f0(x̄k,d
−1
nk

∂
∂x1

f0(x̄k), . . . ,d
−1
nk

∂
∂xp

f0(x̄k)]
t . Let

α0
k = αk−βt

kx̄k. AssumptionA3. ensures that the matricesDk for all subsets are nonsingular with
probability tending to 1, whereDk = ∑xi∈Ck

ΓiΓt
i . LettingYi = f0(xi)+ εi , we have

[α0
k,βk]

t = D−1
k ∑

xi∈Ck

Γi f0(xi)+D−1
k ∑

xi∈Ck

Γiεi (6)

for k= 1, . . . ,Kn with probability tending towards 1. Doing a Taylor expansion of Equation (6), we
get

[α0
k,βk]

t −∆(x̄k) = D−1
k ∑

i∈Ck

Γir(xi − x̄k)+D−1
k ∑

i∈Ck

Γiεi ,

wherer(xi − x̄k) are the second order and above terms of the Taylor expansion off0(x̄k). Assump-
tionsA1., A3. andA4. ensure maxk=1,...,Kn

∣

∣d−1
nk D−1

k ∑i∈Ck
Γir(xi − x̄k)

∣

∣→ 0 in probability asn→∞.
To bound the random error term of Equation (6), we first assume thatAk is fixed. Applying Lemma
12.26 of Breiman et al. (1984) to each component ofd−1

nk |Ck|−1 ∑i∈Ck
Γiεi , there exist constants

h1 > 0, h2 > 0 andγ0 > 0 such that

P

(

d−1
nk

∣

∣

∣

∣

∣

|Ck|−1 ∑
i∈Ck

Γiεi

∣

∣

∣

∣

∣

> γ

)

≤ h1e−h2d2
nk|Ck|γ2

, (7)

wheneverγ ≤ γ0. Modifying Lemma 12.27 of Breiman et al. (1984) to account for the greaterVC
dimension of the subsets, we noteA5. bounds the number of polyhedral faces for each subset to be
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Kn(p+2). Following the proof of 12.27, formn such thatmn/ log(n)→ ∞, we use Equation (7) to
show

P
(∣

∣[α0
k,βk]

t −∆(x̄k)
∣

∣≥ γ|x1:n
)

≤ h1e−h2γ2nd2
nk|Ck|/n,

≤ h1e−h2γ2mn log(n),

= h1n−h2γ2mn

on the eventd2
nk|Ck|/n≥ mn log(n)/n. Using the VC dimension of the partition,

P
(∣

∣[α0
k,βk]

t −∆(x̄k)
∣

∣≥ γ for eachAk andd2
nk|Ck| ≥ mnD log(n)

)

≤ h121+Kn(p+2)nKn(p+2)−h2γ2mn.

SinceA5. ensures thatmn → ∞, the result holds.

Proof [Proof of Theorem 2] Fixε > 0; let dX be the diameter ofX . ChooseN such that for every
n≥ N

P

{

max
k=1,...,Kn

sup
x∈Ak

∣

∣αk+βT
k x− f0(x)

∣

∣>
ε

ζdX

}

< ε/2,

P

{

max
k=1,...,Kn

sup
x∈Ak

||βk−∇ f0(x)||∞ >
ε

ζdX

}

< ε/2.

Fix a δ net overX such that at least one point of the net sits inAk for eachk = 1, . . . ,K. Let nδ be
the number of points in the net and letxδ

i be a point. Then,

P

{

sup
x∈X

| fn(x)− f0(x)|> ε
}

= P

{

sup
x∈X

∣

∣

∣

∣

max
k=1,...,Kn

αk+βT
k x− f0(x)

∣

∣

∣

∣

> ε
}

,

≤ P

{

max
i=1,...,nδ

∣

∣

∣

∣

max
k=1,...,Kn

αk+βT
k xδ

i − f0(xδ
i )

∣

∣

∣

∣

>
ε
ζ

}

,

≤ P

{

max
i=1,...,nδ

∣

∣

∣

∣

∣

Kn

∑
k=1

(

αk+βT
k xδ

i

)

1{xδ
i ∈Ak}− f0(xδ

i )

∣

∣

∣

∣

∣

>
ε

ζdX

}

,

< ε.

Appendix B.

The CAP algorithm offers two main computational bottlenecks. First, it searches over all cardinal
directions, and only cardinal directions, to produce candidate models. Second, it keeps generating
models until no subsets can be split without one having less than the minimum number of observa-
tions. In most cases, the optimal number of components is much lower than the terminal number of
components.
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To alleviate the first problem, we suggest usingP′ random projections as a basis for search.
Using ideas similar to compressive sensing, each projectiong j ∼ Np(0, I) for j = 1, . . . ,P′. Then we
search along the directiongT

j x rather thanx j . When we expect the true function to live in a lower
dimensional space, as is the case with superfluous covariates, we can set P′ < p.

We solve the second problem by modifying the stopping rule. Instead of fullygrowing the tree
until each subset has less than 2n/(2log(n)) observations, we use generalized cross-validation. We
grow the tree until the generalized cross-validation value has increased intwo consecutive iterations
or each subset has less than 2n/(2log(n)) observations. As the generalized cross-validation error is
usually concave inK, this heuristic often offers a good fit at a fraction of the computational expense
of the full CAP algorithm.

The Fast CAP algorithm has the potential to substantially reduce the log(n)2 factor by halting
the model generation long beforeK reachesD log(n). Since every feasible partition is searched for
splitting, the computational complexity grows ask gets larger.

The Fast CAP algorithm is summarized as follows.

B.1 Fast Convex Adaptive Partitioning (Fast CAP)

1. Initialize. As in CAP.

2. Split.

a. Generate candidate splits.Generate candidate modelM̂ jkℓ by 1) fixing a subsetk, 2)
generating a random directionj with g j ∼ Np(0, I), and 3) dividing the data as follows:

• setx jk
min = min{gT

j xi : i ∈Ck}, x jk
max= max{gT

j xi : i ∈Ck} andb jkℓ = aℓx
jk
min+(1−

aℓ)x
jk
max

• set

C′
k = {i : i ∈Ck, gT

j xi ≤ b jkℓ}, C′
K+1 = {i : i ∈Ck, gT

j xi > b jkℓ},
A′

k = {x : x ∈ Ak, gT
j x ≤ b jkℓ}, A′

K+1 = {x : x ∈ Ak, gT
j x > b jkℓ}.

Then new hyperplanes are fit to each of the new subsets. This is done for L knots,P′

dimensions andK subsets.

b. Select split.As in CAP.

3. Refit. As in CAP.

4. Stopping conditions.Let GCV(MK) be the generalized cross-validation error for modelMK .
Stop if GCV(MK) > GCV(MK−1) and GCV(MK−1) > GCV(MK−2) of if |Ck| < 2nmin for
k= 1, . . . ,K. Then select final model as in CAP.

Appendix C.

In this subsection, we empirically examine the effects of the two tunable parameters, the log factor,
D, and the number of knots,L. The log factor controls the minimal number of elements in each
subset by setting|Ck| ≥ n/(D log(n)), and hence it controls the number of subsets,K, at least for
large enoughn. IncreasingD allows the potential accuracy of the estimator to increase, but at the

3285



HANNAH AND DUNSON

D

 

10
3

10
2

10
1

10
0

10
1

10
3

10
2

10
1

10
0

10
1

10
2

Problem1

1 3 5 10 20

Problem2

1 3 5 10 20

M
S

E
T

im
e
(s

e
c
o
n
d
s
)

Algorithm

CAP, n=500 Fast  CAP, n=500 CAP, n=5,000 Fast  CAP, n=5,000

Figure 11: Log factorD (log scale) vs. mean squared error (log scale) for CAP and Fast CAP (top).
Log factorD (log scale) vs. runtime in seconds (log scale) (bottom). Both methods were
run on problem 1 (left) and problem 2 (right) withn = 500 andn = 5,000. Lines are
mean value and shading represents one standard error.

cost of greater computational time due to the increase in possible values forK and the larger number
of possibly admissible sets generated in the splitting step of CAP.

We compared values forD ranging from 0.1 to 20 on problems 1 and 2 with sample sizes of
n= 500 andn= 5,000 over 100 training sets and one testing set. Results are displayed in Figure
11. Note that error may not be strictly decreasing withD because different subsets are proposed
under each value. Additionally, Fast CAP is a randomized algorithm so variance in error rate and
runtime is to be expected.

Empirically, onceD ≥ 1, there was little substantive error reduction in the models, but the
runtime increased asO(D2) for the full CAP algorithm. SinceD controls the maximum partition
size,Kn =D log(n), and a linear regression is fitK log(K) times, the expected increase in the runtime
should only beO(D log(D)). We believe that the extra empirical growth comes from an increased
number of feasible candidate splits. In the Fast CAP algorithm, which terminatesafter generalized
cross-validation gains cease to be made, we see runtimes leveling off with higher values ofD. Based
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Figure 12: Number of knotsL (log scale) vs. mean squared error (log scale) for CAP and Fast CAP
(top). Number of knotsL (log scale) vs. runtime in seconds (log scale) (bottom). Both
methods were run on problem 1 (left) and problem 2 (right) withn= 500 andn= 5,000.
Lines are mean value and shading represents one standard error.

on these results, we believe that settingD = 3 offers a good balance between fit and computational
expense.

The number of knots,L, determines how many possible subsets will be examined during the
splitting step. LikeD, an increase inL offers a better fit at the expense of increased computation.
We compared values forL ranging from 1 to 50 on problems 1 and 2 with sample sizes ofn= 500
andn= 5,000 over 100 training sets and 1 testing set. Results are displayed in Figure 12.

The changes in fit and runtime are less dramatic withL than they are withD. After L = 3, the
predictive error rates almost completely stabilized. Runtime increased asO(L) as expected. Due to
the minimal increase in computation, we feel thatL = 10 is a good choice for most settings.
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Figure 13: Number of observationsn (log scale) vs. square root of mean squared error (log scale)
for problem 1 (A) and problem 2 (B). Linear models are fit to find the empirical rate of
convergence.

Appendix D.

Although theoretical rates of convergence are not yet available for CAP, we are able to empirically
examine them. Rates of convergence for multivariate convex regression have only been studied
in two articles of which we are aware. Aguilera et al. (2011) studied rates of convergence for an
estimator that is created by first smoothing the data, then evaluating the smootheddata over anε-net,
and finally convexifying the net of smoothed data by taking the convex hull. They showed that the
convexify step preserved the rates of the smoothing step. For most smoothing algorithms, these are

minimax nonparametric rates,n−
1

p+2 with respect to the empiricalℓ2 norm.
Hannah and Dunson (2011) showed adaptive rates for a Bayesian model that places a prior over

the set of all piecewise linear functions. Specifically, they showed that if the true mean functionf0
actually maps ad-dimensional linear subspace ofX toR, that is

f0(x) = g0(xA), A ∈ R
p×d,

then their model achieves rates of log−1(n)n−
1

d+2 with respect to the empiricalℓ2 norm. Empirically,
we see these types of adaptive rates with CAP.

In Figure 13, we plotted the number of observations against the square root of the mean squared
error in a log-log plot for problems 1 and 2. We then fitted a linear model for both CAP and Fast
CAP. For problem 1,p= 5 butd= 3, due to the sum in the quadratic term. Likewise, for problem 2,
p= 10 butd= 1 because it is an exponential of a linear combination. Under standard nonparametric
rates, we would expect the slope of the linear model to be−1

7 for problem 1 and− 1
12 for problem

2. However, we see slopes closer to−1
5 and−1

3 for problems 1 and 2, respectively; values are given
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Method Problem 1 Problem 2
Expected: Rates inp −0.1429 −0.0833
Expected: Rates ind −0.2000 −0.3333
Empirical: CAP −0.2003 −0.2919
Empirical: Fast CAP −0.2234 −0.2969

Table 2: Slopes for linear models fit to log(n) vs. log(
√

MSE) in Figure 13. Expected slopes
are given when: 1) rates are with respect to full dimensionality,p, and 2) rates are with
respect to dimensionality of linear subspace,d. Empirical slopes are fit to mean squared
error generated by CAP and Fast CAP. Note that all empirical slopes areclosest to those
for linear subspace rates rather than those for full dimensionality rates.

in Table 2. These results strongly imply that CAP achieves adaptive convergence rates of the type
shown by Hannah and Dunson (2011) for problems 1 and 2.
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Abstract
Markov jump processes (or continuous-time Markov chains) are a simple and important class of
continuous-time dynamical systems. In this paper, we tackle the problem of simulating from the
posterior distribution over paths in these models, given partial and noisy observations. Our ap-
proach is an auxiliary variable Gibbs sampler, and is based on the idea ofuniformization. This sets
up a Markov chain over paths by alternately sampling a finite set of virtual jump times given the
current path, and then sampling a new path given the set of extant and virtual jump times. The
first step involves simulating a piecewise-constant inhomogeneous Poisson process, while for the
second, we use a standard hidden Markov model forward filtering-backward sampling algorithm.
Our method is exact and does not involve approximations liketime-discretization. We demonstrate
how our sampler extends naturally to MJP-based models like Markov-modulated Poisson processes
and continuous-time Bayesian networks, and show significant computational benefits over state-of-
the-art MCMC samplers for these models.

Keywords: Markov jump process, MCMC, Gibbs sampler, uniformization,Markov-modulated
Poisson process, continuous-time Bayesian network

1. Introduction

The Markov jump process (MJP) extends the discrete-time Markov chain to continuous time, and
forms a simple and popular class of continuous-time dynamical systems. In Bayesian modelling
applications, the MJP is widely used as a prior distribution over the piecewise-constant evolution of
the state of a system. The Markov property of the MJP makes it both a realistic model for various
physical and chemical systems, as well as a convenient approximation formore complex phenomena
in biology, finance, queueing systems etc. In chemistry and biology, stochastic kinetic models
use the state of an MJP to represent the sizes of various interactingspecies(e.g., Gillespie, 1977;
Golightly and Wilkinson, 2011). In queueing applications, the state may represent the number of
pending jobs in a queue (Breuer, 2003; Tijms, 1986), with the arrival and processing of jobs treated
as memoryless events. MJPs find wide application in genetics, for example, anMJP trajectory is
sometimes used to represent a segmentation of a strand of genetic matter. Here‘time’ represents

∗. Corresponding author

c©2013 Vinayak Rao and Yee Whye Teh.



RAO AND TEH

position along the strand, with particular motifs occurring with different ratesin different regions
(Fearnhead and Sherlock, 2006). MJPs are also widely used in finance, for example, Elliott and
Osakwe (2006) use an MJP to model switches in the parameters that governthe dynamics of stock
prices (the latter being modelled with a Lévy process).

In the Bayesian setting, the challenge is to characterize the posterior distribution over MJP
trajectories given noisy observations; this typically cannot be performedanalytically. Various
sampling-based (Fearnhead and Sherlock, 2006; Boys et al., 2008; El-Hay et al., 2008; Fan and
Shelton, 2008; Hobolth and Stone, 2009) and deterministic (Nodelman et al., 2002, 2005; Opper
and Sanguinetti, 2007; Cohn et al., 2010) approximations have been proposed in the literature, but
come with problems: they are often generic methods that do not exploit the structure of the MJP,
and when they do, involve expensive computations like matrix exponentiation,matrix diagonal-
ization or root-finding, or are biased, involving some form of time-discretization or independence
assumptions. Moreover, these methods do not extend easily to more complicated likelihood func-
tions which require specialized algorithms (for instance, the contribution of Fearnhead and Sherlock
(2006) is to develop an exact sampler for Markov-modulated Poisson processes (MMPPs), where
an MJP modulates the rate of a Poisson process).

In this work, an extension of Rao and Teh (2011a), we describe a novel Markov chain Monte
Carlo (MCMC) sampling algorithm for MJPs that avoids the need for the expensive computations
described previously, and does not involve any form of approximation (i.e., our MCMC sampler
converges to the true posterior). Importantly, our sampler is easily adaptedto complicated exten-
sions of MJPs such as MMPPs and continuous-time Bayesian networks (CTBNs) (Nodelman et al.,
2002), and is significantly more efficient than the specialized samplers developed for these models.
Like many existing methods, our sampler introduces auxiliary variables which simplify the structure
of the MJP, using an idea calleduniformization. Importantly, unlike some existing methods which
produceindependentposterior samples of these auxiliary variables, our method samples thesecon-
ditionedon the current sample trajectory. While the former approach depends on the observation
process, and can be hard for complicated likelihood functions, ours results in a simple distribution
over the auxiliary variables that is independent of the observations. Theobservations are accounted
for during a straightforward discrete-time forward-filtering backward-sampling step to resample a
new trajectory. The overall structure of our algorithm is that of an auxiliary variable Gibbs sampler,
alternately resampling the auxiliary variables given the MJP trajectory, and the trajectory given the
auxiliary variables.

In Section 2 we briefly review Markov jump processes. In Section 3 we introduce the idea of
uniformization and describe our MCMC sampler for the simple case of a discretely observed MJP.
In Section 4, we apply our sampler to the Markov-modulated Poisson process, while in Section 5,
we describe continuous-time Bayesian networks, and extend our algorithmto that setting. In both
sections, we report experiments comparing our algorithm to state-of-the-art sampling algorithms
developed for these models. We end with a discussion in Section 6.

2. Markov Jump Processes (MJPs)

A Markov jump process(S(t), t ∈ R+) is a stochastic process with right-continuous, piecewise-
constant paths (see for example Çinlar, 1975). The paths themselves take values in some countable
space(S ,ΣS ), whereΣS is the discreteσ-algebra. As in typical applications, we assumeS is finite
(sayS = {1,2, ...N}). We also assume the process is homogeneous, implying (together with the
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Figure 1: (left) An MJP path(s0,S,T), (right) a uniformized representation(v0,V,W).

Markov property) that for all timest, t ′ ∈ R+ and statess,s′ ∈ S ,

p
(

S(t ′+ t) = s|S(t ′) = s′,(S(u),u< t ′)
)

= [Pt ]ss′

for some stochastic matrixPt that depends only ont. The family of transition matrices(Pt , t ≥ 0) is
defined by a matrixA∈R

N×N called therate matrixor generatorof the MJP.A is the time-derivative
of Pt at t = 0, with

Pt = exp(At), (1)

p(S(t ′+dt) = s|S(t ′) = s′) = Ass′dt (for s 6= s′),

where Equation (1) is the matrix exponential. The off-diagonal elements ofA are nonnegative,
and represent the rates of transiting from one state to another. Its diagonal entries areAs ≡ Ass=
−∑s′ 6=sAs′s for eachs, so that its columns sum to 0, with−As = |As| characterizing the total rate of
leaving states.

Consider a time intervalT ≡ [tstart, tend], with the Borelσ-algebraΣT . Let π0 be a density with
respect to the counting measureµS on (S ,ΣS ); this defines the initial distribution over states attstart.
Then an MJP is described by the following generative process over paths on this interval, commonly
calledGillespie’s algorithm(Gillespie, 1977):

Algorithm 1 Gillespie’s algorithm to sample an MJP path on the interval[tstart, tend]

Input: The rate matrixA and the initial distribution over statesπ0.
Output: An MJP trajectoryS(t)≡ (s0,S,T).

1: Assign the MJP a states0 ∼ π0. Sett0 = tstart andi = 0.
2: loop
3: Drawz∼ exp(|Asi |).
4: If ti +z> tend then return (s0, . . . ,si , t1, . . . , ti) andstop.
5: Incrementi and letti = ti−1+z.
6: The MJP jumps to a new statesi = s at timeti , for ans 6= si−1,
7: with probability proportional toAssi−1.
8: end loop

3297



RAO AND TEH

If all event rates are finite, an MJP trajectory will almost surely have only afinite number of
jumps. Let there ben jumps, and let these occur at the ordered times(t1, · · · , tn). DefineT ≡
(t1, · · · , tn), and letS≡ (s1, · · · ,sn) be the corresponding sequence of states, wheresi = S(ti). The
triplet (s0,S,T) completely characterizes the MJP trajectory overT (Figure 1 (left)).

From Gillespie’s algorithm, we see that sampling an MJP trajectory involves sequentially sam-
pling n+ 1 waiting times from exponential densities with one ofN rates, andn new states from
one ofN discrete distributions, each depending on the previous state. Theith waiting time equals
(ti −ti−1) and is drawn from an exponential with rate|Asi−1|, while the probability theith state equals
si is Asisi−1/|Asi−1|. The last waiting time can take any value greater thantend− tn. Thus, under an
MJP, a random element(s0,S,T) has density

p(s0,S,T) = π0(s0)

(

n

∏
i=1

|Asi−1|e
−|Asi−1|(ti−ti−1) Asi si−1

|Asi−1|

)

·e−|Asn|(tend−tn)

= π0(s0)

(

n

∏
i=1

Asisi−1

)

exp

(

−
∫ tend

tstart

|AS(t)|dt

)

. (2)

To be precise, we must state the base measure with respect to which the density above is defined.
The reader might wish to skip these details (and for more details, we recommendDaley and Vere-
Jones, 2008). LetµT be Lebesgue measure onT . Recalling that the state space of the MJP is
S , we can view(S,T) as a sequence of elements in the product spaceM ≡ S ×T . Let ΣM and
µM = µS ×µT be the corresponding productσ-algebra and product measure. DefineM n as then-
fold product space with the usual productσ-algebraΣn

M
and product measureµn

M
. Now letM ∪ ≡⋃∞

i=0M
i be a union space, elements of which represent finite length pure-jump paths.1 Let Σ∪

M
be the corresponding unionσ-algebra, where each measurable setB ∈ Σ∪

M
can be expressed as

B= ∪∞
i=0Bi with Bi = B∩M i ∈ Σi

M
. Assign this space the measureµ∪

M
defined as:

µ∪M (B) =
∞

∑
i=0

µi
M (Bi).

Then, any element(s0,S,T) ∈ S ×M ∪ sampled from Gillespie’s algorithm has density w.r.t.µS ×
µ∪
M

given by Equation (2).

3. MCMC Inference via Uniformization

In this paper, we are concerned with the problem of sampling MJP paths over the intervalT ≡
[tstart, tend] given noisy observations of the state of the MJP. In the simplest case, we observe the
process at the boundarieststart andtend. More generally, we are given the initial distribution over
statesπ0 as well as a set ofO noisy observationsX = {Xto

1
, ...Xto

O
} at timesTo = {to

1, . . . , t
o
O} with

likelihoods p(Xto
i
|S(to

i )), and we wish to sample from the posteriorp(s0,S,T|X). Here we have
implicitly assumed that the observation timesTo are fixed. Sometimes the observation times them-
selves can depend on the state of the MJP, resulting effectively incontinuous-timeobservations.
This is the case for the Markov-modulated Poisson process and CTBNs. As we will show later, our
method handles these cases quite naturally as well.

1. DefineM 0 as a point satisfyingM 0×M =M ×M 0 =M (Daley and Vere-Jones, 2008).
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A simple approach to inference is to discretize time and work with the resulting approximation.
The time-discretized MJP corresponds to the familiar discrete-time Markov chain, and its Markov
structure can be exploited to construct dynamic programming algorithms like the forward-filtering
backward-sampling (FFBS) algorithm (Früwirth-Schnatter, 1994; Carter and Kohn, 1996; see also
Appendix A) to sample posterior trajectories efficiently. However, time-discretization introduces
a bias into our inferences, as the system can change state only at a fixed set of times, and as the
maximum number of state changes is limited to a finite number. To control this bias, one needs to
discretize time at a fine granularity, resulting in long Markov chains, and expensive computations.

Recently, there has been growing interest in constructingexactMCMC samplers for MJPs with-
out any approximations such as time-discretization. We review these in Section3.3. One class of
methods exploits the fact an MJP can be exactly represented by a discrete-time Markov chain on
a randomtime-discretization. Unlike discretization on a regular grid, a random grid canbe quite
coarse without introducing any bias. Given this discretization, we can usethe FFBS algorithm to
perform efficient sampling. However, we do not observe the random discretization, and thus also
need to sample this from its posterior distribution. This posterior now dependson the likelihood
process, and a number of algorithms attempt to solve this problem for specificobservation pro-
cesses. Our approach is to resample the discretization conditioned on the system trajectory. As we
will see this isindependentof the likelihood process, resulting in a simple, flexible and efficient
MCMC sampler.

3.1 Uniformization

We first introduce the idea ofuniformization(Jensen, 1953; Çinlar, 1975; Hobolth and Stone, 2009),
which forms the basis of our sampling algorithm. For an MJP with rate-matrixA, choose some
Ω ≥ maxs|As|. Let W = (w1, . . . ,w|W|) be an ordered set of times on the interval[tstart, tend] drawn
from a homogeneous Poisson process with intensityΩ. W constitutes a random discretization of the
time-interval[tstart, tend].

Next, lettingI be the identity matrix, observe thatB =
(

I + 1
ΩA
)

is a stochastic matrix (it has
nonnegative elements, and its columns sum to one). Run a discrete-time Markov chain with initial
distributionπ0 and transition matrixB on the times inW; this is a Markov chainsubordinatedto the
Poisson processW. The Markov chain will assign a set of states(v0,V); v0 at the initial timetstart,
andV =(v1, . . . ,v|V|) at the discretization timesW (so that|V|= |W|). In particular,v0 is drawn from
π0, while vi is drawn from the probability vector given by thevi−1th column ofB. Just as(s0,S,T)
characterizes an MJP path,(v0,V,W) also characterizes a sample path of some piecewise-constant,
right-continuous stochastic process on[tstart, tend]. Observe that the matrixB allows self-transitions,
so that unlikeS, V can jump from a state back to the same state. We treat these asvirtual jumps,
and regard(v0,V,W) as a redundant representation of a pure-jump process that always jumps to a
new state (see Figure 1 (right)). The virtual jumps provide a mechanism to ‘thin’ the setW, thereby
rejecting some of its events. This corrects for the fact that since the Poisson rateΩ dominates the
leaving rates of all states of the MJP,W will on average contain more events than there are jumps in
the MJP path. As the parameterΩ increases, the number of events inW increases; at the same time
the diagonal entries ofB start to dominate, so that the number of self-transitions (thinned events)
also increases. The next proposition shows that these two effects exactly compensate each other, so
that the process characterized by(v0,V,W) is precisely the desired MJP.
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Proposition 1 (Jensen, 1953) For anyΩ ≥ maxs|As|, (s0,S,T) and (v0,V,W) define the same
Markov jump processS(t).

Proof We follow Hobolth and Stone (2009). From Equation (1), the marginal distribution of the
MJP at timet is given by

πt = exp(At)π0

= exp(Ω(B− I)t)π0

= exp(−Ωt)exp(ΩtB)π0

=
∞

∑
n=0

((

exp(−Ωt)
(Ωt)n

n!

)

(Bnπ0)

)

.

The first term in the summation is the probability that a rateΩ Poisson producesn events in an
interval of lengtht, that is, that|W|= n. The second term gives the marginal distribution over states
for a discrete-time Markov chain aftern steps, given that the initial state is drawn fromπ0, and
subsequent states are assigned according to a transition matrixB. Summing overn, we obtain the
marginal distribution over states at timet. Since the transition kernels induced by the uniformiza-
tion procedure agree with those of the Markov jump process (exp(At)) for all t, and since the two
processes also share the same initial distribution of states,π0, all finite dimensional distributions
agree. Following Kolmogorov’s extension theorem (Kallenberg, 2002),both define versions of the
same stochastic process.

A more direct but cumbersome approach is note that(v0,V,W) is also an element of the space
S×M ∪. We can then write down its densityp(v0,V,W) w.r.t. µS ×µ∪, and show that marginalizing
out the number and locations of self-transitions recovers Equation (2). While we do not do this,
we will derive the densityp(v0,V,W) for later use. As in Section 2, letT ∪ andS∪ denote the
measure spaces consisting of finite sequences of times and states respectively, and letµ∪T andµ∪S
be the corresponding base measures. The Poisson realizationW is determined by waiting times
sampled from a rateΩ exponential distribution, so that following Equation (2),W has density w.r.t.
µ∪T given by

p(W) = Ω|W|e−Ω(tend−tstart). (3)

Similarly, from the construction of the Markov chain, it follows that the state assignment(v0,V)
has probability density w.r.t.µS ×µ∪S given by

p(v0,V|W) = π0(v0)
|V|

∏
i=1

(

1+
Avi

Ω

)1(vi=vi−1)(Avivi−1

Ω

)1(vi 6=vi−1)

.

Since under uniformization|V|= |W|, it follows that

µ∪S (dV)×µ∪T (dW) = µ|V|
S (dV)×µ|W|

T (dW)

= (µT ×µS )
|V|(d(V,W))

= µ∪M (d(V,W)). (4)
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Thus, from Equations (3) and (4),(v0,V,W) has density w.r.t.µS ×µ∪
M

given by

p(v0,V,W) = e−Ω(tend−tstart)π0(v0)
|V|

∏
i=1

(Ω+Avi )
1(vi=vi−1)

(

Avivi−1

)1(vi 6=vi−1) . (5)

3.2 The MCMC Algorithm

We adapt the uniformization scheme described above to construct an auxiliary variable Gibbs sam-
pler. Recall that the only difference between(s0,S,T) and(v0,V,W) is the presence of an auxiliary
set of virtual jumps in the latter. Call the virtual jump timesUT ; associated withUT is a sequence
of statesUS . US is uniquely determined by(s0,S,T) andUT (see Figure 1(right)), and we say
this configuration iscompatible. Let U = (US ,UT ), and observe that for compatible values ofUS ,
(s0,S,T,U) and(v0,V,W) represent the same point inS ×M ∪.

Figure 2: Uniformization-based Gibbs sampler: starting with an MJP trajectory(left), resample the
thinned events (middle) and then resample the trajectory given all Poisson events (right).
Discard the thinned events and repeat.

Given an MJP trajectory(s0,S,T) (Figure 2 (left)), we proceed by first sampling the set of
virtual jumpsUT given(s0,S,T), as a result recovering the uniformized characterization(s0,V,W)
(Figure 2 (middle)). This corresponds to a random discretization of[tstart, tend] at timesW. We now
discard the state sequenceV, and perform a simple HMM forward-filtering backward-sampling step
to resample a new state sequenceṼ. Finally, dropping the virtual jumps in(s0,Ṽ,W) gives a new
MJP path(s0, S̃, T̃). Figure 2 describes an iteration of the MCMC algorithm.

The next proposition shows that conditioned on(s0,S,T), the virtual jump timesUT are dis-
tributed as aninhomogeneousPoisson process with intensityR(t) = Ω+AS(t) (we remind the reader
that A has a negative diagonal, so thatR(t) ≤ Ω). This intensity is piecewise-constant, taking the
valuer i = Ω+Asi on the interval[ti , ti+1) (with t0 = tstart andtn+1 = tend), so it is easy to sampleUT

and thusU .

Proposition 2 For anyΩ≥maxs(|As|), both(s0,S,T,U) and(v0,V,W) have the same density w.r.t.
µS ×µ∪

M
. In other words, the Markov jump process(s0,S,T) along with virtual jumps U drawn

from the inhomogeneous Poisson process as above is equivalent to the times W being drawn from
a Poisson process with rateΩ, followed by the states(v0,V) being drawn from the subordinated
Markov chain.

Proof Let n= |T| be the number of jumps in the current MJP trajectory. Define|Ui | as the number
of auxiliary times in interval(ti , ti+1). Then,|UT | = ∑n

i=0 |Ui |. If UT is sampled from a piecewise-
constant inhomogeneous Poisson process, its density is the product of the densities of a sequence of
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homogeneous Poisson processes, and from Equation (3) is

p(UT |s0,S,T) =

(

n

∏
i=0

(Ω+Asi )
|Ui |

)

exp

(

−
∫ tend

tstart

(Ω+AS(t))dt

)

(6)

w.r.t. µ∪T . Having realized the timesUT , the associated statesUS are determined too (elements of
US in the interval(ti−1, ti) equalsi−1). ThusU = (US ,UT ) given(s0,S,T) has the same density as
Equation (6), but now w.r.t.µ∪

M
, and now restricted to elements ofM ∪ whereUS is compatible with

(S,T,UT ). Multiplying Equations (2) and (6), we see that(s0,S,T,U) has density

p(s0,S,T,U) = e−Ω(tend−tstart)π0(s0)
n

∏
i=0

(Ω+Asi )
|Ui |

n

∏
i=1

Asisi−1

w.r.t. µS ×µ∪
M

×µ∪
M

. However, by definition,

µ∪M (d(S,T))×µ∪M (dU) = µ|T|
M
(d(S,T))×µ|U |

M
(dU)

= µ|T|+|U |

M
(d(S,T,U))

= µ∪M (d(S,T,U)).

Comparing with Equation (5), and noting that|Ui | is the number of self-transitions in interval
(ti−1, ti), we see both are equal wheneverUS is compatible with(s0,S,T,UT ). The probability
density at any incompatible setting ofUS is zero, giving us the desired result.

We can now incorporate the likelihoods coming from the observationsX. Firstly, note that by
assumption,X depends only on the MJP trajectory(s0,S,T) and not on the auxiliary jumpsU . Thus,
the conditional distribution ofUT given (s0,S,T,X) is still the inhomogeneous Poisson process
given above. LetX[wi ,wi+1) represent the observations in the interval[wi ,wi+1) (takingw|W|+1 = tend).
Throughout this interval, the MJP is in statevi , giving a likelihood term:

Li(vi) = p(X[wi ,wi+1)|S(t) = vi for t ∈ [wi ,wi+1)). (7)

For the case of noisy observations of the MJP state at a discrete set of timesTo, this simplifies to

Li(vi) = ∏
j:to

j ∈[wi ,wi+1)

p(Xto
j
|S(to

j ) = vi).

Conditioned on the timesW, (s0,V) is a Markov chain with initial distributionπ0, transition ma-
trix B and likelihoods given by Equation (7). We can efficiently resample(s0,V) using the standard
forward filtering-backward sampling (FFBS) algorithm. We provide a description of this algorithm
in Appendix A. This cost of such a resampling step isO(N2|V|), quadratic in the number of states
and linear in the length of the chain. Further, any structure inA (e.g., sparsity) is inherited byB and
can be exploited easily. Let(s̃0,Ṽ) be the new state sequence. Then(s̃0,Ṽ,W) will correspond to
a new MJP path̃S(t) ≡ (s̃0, S̃, T̃), obtained by discarding virtual jumps from(Ṽ,W). Effectively,
given an MJP path, an iteration of our algorithm corresponds to introducingthinned events, rela-
belling the thinned and actual transitions using FFBS, and then discarding thenew thinned events
to obtain a new MJP. We summarize this in Algorithm 2.
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Algorithm 2 Blocked Gibbs sampler for an MJP on the interval[tstart, tend]

Input: A set of observationsX, and parametersA (the rate matrix),π0 (the
initial distribution over states) andΩ > maxs(|As|).
The previous MJP path,S(t)≡ (s0,S,T).

Output: A new MJP trajectorỹS(t)≡ (s̃0, S̃, T̃).

1: SampleUT ⊂ [tstart, tend] from a Poisson process with piecewise-constant rate

R(t) = (Ω+AS(t)).

DefineW = T ∪UT (in increasing order).
2: Sample a path(s̃0,Ṽ) from a discrete-time Markov chain with 1+ |W| steps using the FFBS al-

gorithm. The transition matrix of the Markov chain isB=
(

I + A
Ω
)

while the initial distribution
over states isπ0. The likelihood of statesat stepi is

Li(s) = p(X[wi ,wi+1)|S(t) = s for t ∈ [wi ,wi+1)).

3: Let T̃ be the set of times inW when the Markov chain changes state. DefineS̃ as the corre-
sponding set of state values.Return (s̃0, S̃, T̃).

Proposition 3 The auxiliary variable Gibbs sampler described above has the posterior distribution
p(s0,S,T|X) as its stationary distribution. Moreover, ifΩ > maxs|As|, the resulting Markov chain
is irreducible.

Proof The first statement follows since the algorithm simply introduces auxiliary variablesU , and
then conditionally samplesV givenX andW. For the second, note that ifΩ > maxs(|As|), then the
intensity of the subordinating Poisson process is strictly positive. Thus, there is positive probability
density of sampling appropriate auxiliary jump timesU and moving from any MJP trajectory to any
other.

Note that it is essential forΩ to be strictly greater than maxs|As|; equality is not sufficient for
irreducibility. For example, if all diagonal elements ofA are equal toΩ, then the Poisson process
for UT will have intensity 0, so that the set of jump timesT will never increase.

Since FFBS returns a new state sequenceṼ that is independent ofV givenW, the only depen-
dence between successive MCMC samples arises because the new candidate jump times include the
old jump times, that is,T ⊂ W. This means that the new MJP trajectory has non-zero probability
of making a jump at a same time as the old trajectory. IncreasingΩ introduces more virtual jumps,
and asT becomes a smaller subset ofW, we get faster mixing. Of course, increasingΩ makes the
HMM chain grow longer, leading to a linear increase in the computational costper iteration. Thus
the parameterΩ allows a trade-off between mixing rate and computational cost. We will study this
trade-off in Section 3.5. In all other experiments, we setΩ = maxs(2|As|) as we find this works
quite well, with the samplers typically converging after fewer than 5 iterations.

3.3 Previous Posterior Sampling Schemes

A simple approach when the MJP state is observed at the ends of an intervalis rejection sampling:
sample paths given the observed start state via Gillespie’s algorithm, and reject those that do not end
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in the observed end state (Nielsen, 2002). We can extend this to noisy observations by importance
sampling or particle filtering (Fan and Shelton, 2008). Recently, Golightly andWilkinson (2011)
have applied particle MCMC methods to correct the bias introduced by standard particle filtering
methods. However, these methods are efficient only in situations where the data exerts a relatively
weak influence on the unobserved trajectory (compared to the prior): a large state-space or an
unlikely end state can result in a large number of rejections or small effective sample sizes (Hobolth
and Stone, 2009).

A second approach, more specific to MJPs, integrates out the infinitely manypaths of the MJP
in between observations using matrix exponentiation (Equation (1)), and uses forward-backward
dynamic programming to sum over the states at the finitely many observation times (see Hobolth
and Stone, 2009 for a review). Unfortunately, matrix exponentiation is an expensive operation that
scales asO(N3), cubically in the number of states. Moreover, the matrix resulting from matrix
exponentiation is dense and any structure (like sparsity), in the rate matrixA cannot be exploited.

A third approach is, like ours, based on the idea of uniformization (Hobolth and Stone, 2009).
This proceeds by producing independent posterior samples of the Poisson eventsW in the interval
between observations, and then (like our sampler) running a discrete-time Markov chain on this set
of times to sample a new trajectory. However, sampling from the posterior distribution overW is
not easy, depending crucially on the observation process, and usuallyrequires a random number of
O(N3) matrix multiplications (as the sampler iterates over the possible number of Poisson events).
By contrast, instead of producing independent samples, ours is an MCMCalgorithm. At the price of
producing dependent samples, our method scales asO(N2) given a random discretization of time,
does not require matrix exponentiations, easily exploits structure in the rate matrix and naturally
extends to various extensions of MJPs. Moreover, we demonstrate that our sampler mixes very
rapidly. We point out here that as the number of statesN increases, if the transition ratesAss′ , s 6= s′,
remainO(1), then the uniformization rateΩ and the total number of state transitions areO(N).
Thus, our algorithm now scales overall asO(N3), while the matrix exponentiation-based approach
is O(N4). In either case, whetherAss′ is O(1) or O(1/N), our algorithm is an order of magnitude
faster.

3.4 Bayesian Inference on the MJP Parameters

In this section we briefly describe how full Bayesian analysis can be performed by placing priors on
the MJP parametersA andπ0 and sampling them as part of the MCMC algorithm. Like Fearnhead
and Sherlock (2006), we place independent gamma priors on the (negative) diagonal elements of
A and independent Dirichlet priors on the transition probabilities. In particular, for all s let ps′s =
As′s/|As| and define the prior:

|As| ∼ Gamma(α1,α2),

(ps′s,s
′ 6= s)∼ Dirichlet(β).

This prior is conjugate, with sufficient statistics for the posterior distribution given a trajectoryS(t)
being the total amount of timeTs spent in each statesand the number of transitionsns′s from eachs
to s′. In particular,

|As| |(s0,S,T)∼ Gamma(α1+∑s′ 6=sns′s,α2+Ts), and (8)

(ps′s,s
′ 6= s)|(s0,S,T)∼ Dirichlet(β+(ns′s,s

′ 6= s)) (9)
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It is important to note that we resample the rate matrixA conditioned on(s0,S,T), andnot(v0,V,W).
A new rate matrixÃ implies a new uniformization ratẽΩ, and in the latter case, we must also
account for the probability of the Poisson eventsW underΩ̃. Besides being more complicated, this
coupling betweenW andΩ can slow down mixing of the MCMC sampler. Thus, we first discard
the thinned eventsU , updateA conditioned only on the MJP trajectory, and then reintroduce the
thinned events under the new parameters. We can view the sampler of Algorithm 2 as a transition
kernelKA((s0,S,T),(s̃0, S̃, T̃)) that preserves the posterior distribution under the rate matrixA. Our
overall sampler then alternately updates(s0,S,T) via the transition kernelKA(·, ·), and then updates
A given(s0,S,T).

Finally, we can either fixπ0 or (as is sometimes appropriate) set it equal to the stationary distri-
bution of the MJP with rate matrixA. In the latter case, Equations (8) and (9) serve as a Metropolis-
Hastings proposal. We accept a proposedÃ sampled from this distribution with probability equal to
the probability of the current initial state under the stationary distribution ofÃ. Note that computing
this stationary distribution requires solving anO(N3) eigenvector problem, so that in this case, the
overall Gibbs sampler scales cubically even though Algorithm 2 scales quadratically.

3.5 Experiments

We first look at the effect of the parameterΩ on the mixing on the MCMC sampler. We generated
a random 5-by-5 matrixA (with hyperparametersα1 = α2 = β = 1), and used this to generate an
MJP trajectory with a uniform initial distribution over states. The state of this MJPtrajectory was
observed via a Poisson process likelihood model (see Section 4), and posterior samples given the
observations andA were produced by a C++ implementation of our algorithm. 1000 MCMC runs
were performed, each run consisting of 10000 iterations after a burn-inof 1000 iterations. For
each run, the number of transitions as well as the time spent in each state was calculated, and
effective sample sizes (ESSs) of these statistics (the number of independent samples with the same
‘information’ as the correlated MCMC samples) were calculated using R-CODA (Plummer et al.,
2006). The overall ESS of a run is defined to be the median ESS across allthese ESSs.

Figure 3 (left) plots the overall ESS against computation time per run, for different scalings
k, whereΩ = kmaxs|As|. We see that increasingΩ does increase the mixing rate, however the
added computational cost quickly swamps out any benefit this might afford. Figure 3 (right) is a
similar plot for the case where we also performed Bayesian inference forthe MJP parameterA as
described in Section 3.4. Now we estimated the ESS of all off-diagonal elements of the matrixA,
and the overall ESS of an MCMC run is defined as the median ESS. Interestingly, in this scenario,
the ESS is fairly insensitive toΩ, suggesting an ‘MCMC within Gibbs’ update as proposed here
using dependent trajectories is as effective as one using independenttrajectories. We found this to
be true in general: when embedded within an outer MCMC sampler, our samplerproduced similar
effective ESSs as an MJP sampler that produces independent trajectories. The latter is typically
more expensive, and in any case, we will show that the computational savings provided by our
sampler far outweigh the cost of dependent trajectories.

In light of Figure 3, for all subsequent experiments we setΩ = 2maxs|As|. Figure 4 shows the
initial burn-in of a sampler with this setting for different initializations. The vertical axis shows the
number of state transitions in the MJP trajectory of each iteration. This quantity quickly reaches its
equilibrium value within a few iterations.
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Figure 3: Effective sample sizes vs computation times for different scalingsof Ω for (left) a fixed
rate matrixA and (right) Bayesian inference onA. Whiskers are quartiles over 1000 runs.
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Figure 4: Trace plot of the number of MJP transitions for different initializations. Black lines are
the maximum and minimum number of MJP transitions for each iteration, over all initial-
izations.

4. Markov-Modulated Poisson Processes

A Markov modulated Poisson process (MMPP) is a doubly-stochastic Poisson process whose inten-
sity function is piecewise-constant and distributed according to a Markov jump process. Suppose
the MJP(S(t), t ∈ [tstart, tend]) hasN states, and is parametrized by an initial distribution over states
π0 and a rate matrixA. Associate with each states a nonnegative constantλs called the emission
rate of states. Let O be a set of points drawn from a Poisson process with piecewise-constant rate
R(t) = λS(t). Note thatO is unrelated to the subordinating Poisson process from the uniformization-
based construction of the MJP, and we call it the output Poisson process. The Poisson observations
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O effectively form a continuous-time observation of the latent MJP, with theabsenceof Poisson
events also informative about the MJP state. MMPPs have been used to model phenomenon like
the distribution of rare DNA motifs along a gene (Fearnhead and Sherlock,2006), photon arrival in
single molecule fluorescence experiments (Burzykowski et al., 2003), and requests to web servers
(Scott and Smyth, 2003).

Fearnhead and Sherlock (2006) developed an exact sampler for MMPPs based on a dynamic
program for calculating the probability ofO marginalizing out the MJP trajectory. The dynamic
program keeps track of the probability of the MMPP emitting all Poisson eventsprior to a timet
and ending in MJP states. The dynamic program then proceeds by iterating over all Poisson events
in O in increasing order, at each iteration updating probabilities using matrix exponentiation. A
backward sampling step then draws an exact posterior sample of the MJP trajectory (S(t), t ∈ O)
evaluated at the times inO. Finally a uniformization-based endpoint conditioned MJP sampler is
used to fill in the MJP trajectory between every pair of times inO.

The main advantage of this method is that it produces independent posteriorsamples. It does
this at the price of being fairly complicated and computationally intensive. Moreover, it has the
disadvantage of operating at the time scale of the Poisson observations rather than the dynamics of
the latent MJP. For high Poisson rates, the number of matrix exponentiations will be high even if
the underlying MJP has very low transition rates. This can lead to an inefficient algorithm.

Our MCMC sampler outlined in the previous section can be straightforwardly extended to the
MMPP without any of these disadvantages. Resampling the auxiliary jump events (step 1 in algo-
rithm 2) remains unaffected, since conditioned on the current MJP trajectory, they are independent
of the observationsO. Step 2 requires calculating the emission likelihoodsLi(s), which is simply
given by:

Li(s) = (λs)
|Oi |exp(−λs(wi+1−wi)) ,

|Oi | being the number of events ofO in the interval[wi ,wi+1). Note that evaluating this likelihood
only requires counting the number of observed Poisson events between every successive pair of
times inW. Compared to our algorithm, the approach of Fearnhead and Sherlock (2006) is much
more involved and inefficient.

4.1 Experiments

In the following, we compare a C++ implementation of our algorithm with an implementation2

of the algorithm of Fearnhead and Sherlock (2006), coded in C. We performed fully Bayesian
inference, sampling both the MJP parameters (as described in Section 3.4) and the Poisson rates
λs (conjugate gamma priors were placed on these). In all instances, our algorithm did significantly
better, the performance improvement increasing with the complexity of the problem.

In the first set of experiments, the dimension of the latent MJP was fixed to 5.The prior on the
rate matrixA had parametersα1 = α2 = β = 1 (see Section 3.4). The shape parameter of the gamma
prior on the emission rate of states, λs, was set tos (thereby breaking symmetry across states); the
scale parameter was fixed at 1. 10 draws ofO were simulated using the MMPP. For each observed
O, both MCMC algorithms were run for 1000 burn-in iterations followed by 10000 iterations where
samples were collected. For each run, the ESS for each parameter was estimated using R-CODA,
and the overall ESS was defined to be the median ESS over all parameters.

2. Code was downloaded from Chris Sherlock’s webpage.
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Figure 5: CPU time to produce 100 effective samples as we observe (left) increasing number of
Poisson events in an interval of length 10, (centre) 10 Poisson events over increasing time
intervals, and (right) increasing intervals with the number of events increasing on average.

Figure 5 reports the average computation times required by each algorithm to produce 100
effective samples, under different scenarios. The leftmost plot shows the computation times as
a function of the numbers of Poisson events observed in an interval of fixed length 10. For our
sampler, increasing the number of observed events leaves the computation timelargely unaffected,
while for the sampler of Fearnhead and Sherlock (2006), this increasesquite significantly. This
reiterates the point that our sampler works at the time scale of the latent MJP, while Fearnhead and
Sherlock (2006) work at the time scale of the observed Poisson process. In the middle plot, we fix
the number of observed Poisson events to 10, while increasing the length ofthe observation interval
instead, while in the rightmost plot, we increase both the interval length and the average number of
observations in that interval. In both cases, our sampler again offers increased efficiency of up to
two orders of magnitude. In fact, the only problems where we observed thesampler of Fearnhead
and Sherlock (2006) to outperform ours were low-dimensional problemswith only a few Poisson
observations in a long interval, and with one very unstable state. A few verystable MJP states and a
few very unstable ones results in a high uniformization rateΩ but only a few state transitions. The
resulting large number of virtual jumps can make our sampler inefficient.

In Figure 6, we plot the time to produce 100 effective samples as the number of states of the
latent MJP increases. Here, we fixed the number of Poisson observations to 10 over an interval
of length 10. We see that our sampler (plotted with squares) offers substantial speed-up over the
sampler of Fearnhead and Sherlock (2006) (plotted with circles). We seethat for both samplers
computation time scales cubically with the latent dimension. However, recall that this cubic scaling
is not a property of our MJP trajectory sampler; rather it is a consequence of using the equilibrium
distribution of a sampled rate matrix as the initial distribution over states, which requires calculating
an eigenvector of a proposed rate matrix. If we fix the initial distribution overstates (to the discrete
uniform distribution), giving the line plotted with inverted triangles in the figure,we observe that
our sampler scales quadratically.

5. Continuous-Time Bayesian Networks (CTBNs)

Continuous-time Bayesian networks (CTBNs) are compact, multi-component representations of
MJPs with structured rate matrices (Nodelman et al., 2002). Special instances of these models
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Figure 6: CPU time to produce 100 effective samples as the MJP dimension increases
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Figure 7: The predator-prey network (left) and the drug-effect CTBN (right)

have long existed in the literature, particularly stochastic kinetic models like the Lotka-Volterra
equations, which describe interacting populations of animal species, chemical reactants or gene
regulatory networks (Wilkinson, 2009). There have also been a numberof related developments,
see for example Bolch et al. (1998) or Didelez (2008). For concreteness however, we shall focus on
CTBNs, a formalism introduced in Nodelman et al. (2002) to harness the representational power of
Bayesian networks to characterize structured MJPs.

Just as the familiar Bayesian network uses a product of conditional probability tables to repre-
sent a much larger probability table, so too a CTBN represents a structuredrate matrix with smaller
conditional rate matrices. Anm-component CTBN represents the state of an MJP at timet with
the states ofm nodesS1(t), . . . ,Sm(t) in a directed (and possibly cyclic) graphG . Figure 7 shows
two CTBNs, the ‘predator-prey network’ and the ‘drug-effect network’. The former is a CTBN
governed by the Lotka-Volterra equations (see subsection 5.3.1), while the latter is used to model
the dependencies in events leading to and following a patient taking a drug (Nodelman et al., 2002).
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Figure 8: Expanded CTBN

Intuitively, each node of the CTBN acts as an MJP with an instantaneous rate matrix that de-
pends on the current configuration of its parents (and not its children, although the presence of
directed cycles means a child can be a parent as well). The trajectories of all nodes are piecewise
constant, and when a node changes state, the event rates of all its children change. The graphG and
the set of rate matrices (one for each node and for each configuration of its parents) characterize the
dynamics of the CTBN, the former describing the structure of the dependencies between various
components, and the latter quantifying this. Completing the specification of the CTBN is an initial
distributionπ0 over the state of nodes, possibly specified via a Bayesian network.

It is convenient to think of a CTBN as a compact representation of an expanded (and now
acyclic) graph, consisting of the nodes ofG repeated infinitely along a continuum (viz. time). In
this graph, arrows lead from a node at a timet to instances of its children at timet +dt. Figure 8
displays this for a section of the drug-effect CTBN. The rates associated with a particular node at
time t +dt are determined by the configuration of its parents at timet. Figure 8 is the continuous-
time limit of a class of discrete-time models called dynamic Bayesian networks (DBNs) (Murphy,
2002). In a DBN, the state of a node at stagei+1 is dependent upon the configuration of its parents
at stagei. Just as MJPs are continuous-time limits of discrete-time Markov chains, CTBNs are also
continuous-time limits of DBNs.

It is possible to combine all local rate matrices of a CTBN into one global rate matrix (see
Nodelman et al., 2002), resulting in a simple MJP whose state-space is the product state-space of all
component nodes. Consequently, it possible, conceptually at least, to directly sample a trajectory
over an interval[tstart, tend] using Gillespie’s algorithm. However, with an eye towards inference,
Algorithm 3 describes a generative process that exploits the structure in the graphG . Like Section
2, we represent the trajectory of the CTBN,S(t), with the initial states0 and the pair of sequences
(S,T). Let the CTBN havem nodes. Now,si , the ith element ofS, is anm-component vector
representing the states of all nodes atti , the time of theith state change of the CTBN. We write this
assi = (s1

i , · · · ,s
m
i ). Let ki identify the component of the CTBN that changed state atti . The rate

matrix of a noden varies over time as the configuration of its parents changes, and we will writeAn,t

for the relevant matrix at timet. Following Equation (2), we can write down the probability density
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of (s0,S,T) as

p(s0,S,T) = π0(s0)

(

|T|

∏
i=1

Aki ,ti−1

s
ki
i s

ki
i−1

)

exp

(

−
m

∑
k=1

∫ tend

tstart

|Ak,t
Sk(t)|dt

)

. (10)

Algorithm 3 Algorithm to sample a CTBN trajectory on the interval[tstart, tend]

Input: The CTBN graphG , a set of rate matrices{A} for all nodes and for all
parent configurations and an initial distribution over statesπ0.

Output: A CTBN trajectoryS(t)≡ (s0,S,T).

1: Draw an initial configurations0 ≡ (s1
0,s

2
0, ...)∼ π0. Sett0 = tstart andi = 0.

2: loop
3: For each nodek, drawzk ∼ exp(|Ak,ti

sk
i
|).

4: Let ki+1 = argmink zk be the first node to change state.
5: If ti +zki+1 > tend then return (s0, . . . ,si , t1, . . . , ti) andstop.
6: Incrementi and letti = ti−1+zki be the next jump time.
7: Let s′ = ski

i−1 be the previous state of nodeki .

8: Setski
i = s with probability proportional toAki ,ti−1

ss′ for eachs 6= s′.
9: Setsk

i = sk
i−1 for all k 6= ki .

10: end loop

5.1 Inference in CTBNs

We now consider the problem of posterior inference over trajectories given some observations.
Write the parents and children of a nodek asP (k) andC (k) respectively. LetMB(k) be the Markov
blanket of nodek, which consists of its parents, children, and the parents of its children. Given the
entire trajectories of all nodes inMB(k), nodek is independent of all other nodes in the network
(Nodelman et al., 2002) (see also Equation (12) below). This suggests a Gibbs sampling scheme
where the trajectory of each node is resampled given the configuration ofits Markov blanket. This
approach was followed by El-Hay et al. (2008).

However, even without any associated observations, sampling a node trajectory conditioned on
the complete trajectory of its Markov blanket is not straightforward. To seethis, rearrange the terms
of Equation (10) to give

p(s0,S,T) = π0(s0)
m

∏
k=1

φ(Sk,Tk|s0,S
P (k),TP (k)), and

φ(Sk,Tk|s0,S
P (k),TP (k)) =

(

∏
i:ki=k

Ak,ti−1

sk
i sk

i−1

)

exp

(

−
∫ tend

tstart

|Ak,t
Sk(t)|dt

)

, (11)

where for any set of nodesB, (sB
0 ,S

B,TB) represents the associated trajectories. Note that the
φ(·) terms are not conditional densities given parent trajectories, since the graphG can be cyclic.
We must also account for the trajectories of nodek’s children, so that the conditional density of
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(sk
0,S

k,Tk) is actually

p(sk
0,S

k,Tk|s¬k
0 ,S¬k,T¬k) ∝π0(s

k
0|s

¬k
0 )φ(Sk,Tk|s0,S

P (k),TP (k))

· ∏
c∈C (k)

φ(Sc,Tc|s0,S
P (c),TP (c)). (12)

Here¬k denotes all nodes other thank. Thus, even over an interval of time where the parent configu-
ration remains constant, the conditional distribution of the trajectory of a nodeis not a homogeneous
MJP because of the effect of the node’s children, which act as ‘observations’ that are continuously
observed. For any childc, if Ac,t is constant overt, the correspondingφ(·) is the density of an MJP
given the initial state. SinceAc,t varies in a piecewise-constant manner according to the state of
k, theφ(·) term is actually the density of a piecewise-inhomogeneous MJP. Effectively, we have a
‘MJP-modulated MJP’, so that the inference problem here is a generalization of that for the MMPP
of Section 4.

El-Hay et al. (2008) described a matrix-exponentiation-based algorithm toupdate the trajectory
of nodek. At a high-level their algorithm is similar to Fearnhead and Sherlock (2006)for MMPPs,
with the Poisson observations of the MMPP generalized to transitions in the trajectories of child
nodes. Consequently, it uses an expensive forward-backward algorithm involving matrix exponen-
tiations. In addition, El-Hay et al. (2008) resort to discretizing time via a binary search to obtain the
transition times upto machine accuracy.

5.2 Auxiliary Variable Gibbs Sampling for CTBNs

We now show how our uniformization-based sampler can easily be adapted toconditionally sample
a trajectory for nodek without resorting to approximations. In the following, for notational simplic-
ity. we will drop the superscriptk whenever it is clear from context. For nodek, the MJP trajectory
(s0,S,T) has a uniformized construction from a subordinating Poisson process. The piecewise con-
stant trajectories of the parents ofk imply that the MJP is piecewise homogeneous, and we will use
a piecewise constant rateΩt which dominates the associated transition rates, that is,Ωt > |Ak,t

s | for
all s. This allows the dominating rate to ‘adapt’ to the local transition rates, and is moreefficient
when, for example, the transition rates associated with different parent configurations are markedly
different. Recall also that our algorithm first reconstructs the thinned Poisson eventsUT using a
piecewise homogeneous Poisson process with rate(Ωt +Ak,t

S(t)), and then updates the trajectory us-
ing the forward-backward algorithm (so thatW = T ∪UT forms the candidate transitions times of
the MJP).

In the present CTBN context, just as the subordinating Poisson processis inhomogeneous, so too
the Markov chain used for the forward-backward algorithm will have different transition matrices
at different times. In particular, the transition matrix at a timewi (whereW = (w1, . . . ,w|W|)) is

Bi = I +
Ak,wi

Ωwi
.

Finally, we need also to specify the likelihood functionLi(s) accounting for the trajectories of
the children in addition to actual observations in each time interval[wi ,wi+1). From Equations (11)
and (12), this is given by

Li(s) = LO
i (s) ∏

c∈C (k)

(

∏
j:k j=k,t j∈[wi ,wi+1)

A
k,t j−1

sk
j s

k
j−1

)

exp

(

−
∫ wi+1

wi

|Ak,t
Sk(t)|dt

)

,
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whereLO
i (s) is the likelihood coming from actual observations dependent on the state of nodek in

the time interval. Note that the likelihood above depends only on the number of transitions each of
the children make as well as how much time they spend in each state, for each parent configuration.

The new trajectorỹSk(t) is now obtained using the forward-filtering backward-sampling algo-
rithm, with the given inhomogeneous transition matrices and likelihood functions.The following
proposition now follows directly from our previous results in Section 3:

Proposition 4 The auxiliary variable Gibbs sampler described above converges to the posterior
distribution over the CTBN sample paths.

Note that our algorithm produces a new trajectory that is dependent, through T, on the previ-
ous trajectory (unlike a true Gibbs update as in El-Hay et al. (2008) wherethey are independent).
However, we find that since the update is part of an overall Gibbs cycle over nodes of the CTBN,
the mixing rate is actually dominated by dependence across nodes. Thus, a true Gibbs update has
negligible benefit towards mixing, while being more expensive computationally.

5.3 Experiments

In the following, we evaluate a C++ implementation of our algorithm on a number ofCTBNs. As
before, the dominating rateΩt was set to maxs2|Ak,t

s |.

5.3.1 THE LOTKA-VOLTERRA PROCESS

We first apply our sampler to the Lotka-Volterra process (Wilkinson, 2009;Opper and Sanguinetti,
2007). Commonly referred to as the predator-prey model, this describes the evolution of two in-
teracting populations of ‘prey’ and ‘predator’ species. The two species form the two nodes of a
cyclic CTBN (Figure 7 (left)), whose statesx andy represent the sizes of the prey and predator
populations. The process rates are given by

A({x,y}→ {x+1,y}) = αx, A({x,y}→ {x−1,y}) = βxy,

A({x,y}→ {x,y+1}) = δxy, A({x,y}→ {x,y−1}) = γy,

where we set the parameters as follows:α = 5×10−4,β = 1×10−4,γ = 5×10−4,δ = 1×10−4.
All other rates are 0. This defines two infinite sets of infinite-dimensional conditional rate matrices.
In its present form, our sampler cannot handle this infinite state-space (but see Rao and Teh, 2012).
Like Opper and Sanguinetti (2007), we limit the maximum number of individuals of each species to
200, leaving us with 400 rate matrices of size 200×200. Note that these matrices are tridiagonal and
very sparse: at any time the size of each population can change by at most one. Consequently, the
complexity of our algorithm scaleslinearly with the number of states (we did not modify our code to
exploit this structure, though this is straightforward). A ‘true’ path of predator-prey population sizes
was sampled from this process, and its state at timet = 0 was observed noiselessly. Additionally 15
noisy observations were generated, spaced uniformly at intervals of 100. The noise process was:

p(X(t)|S(t)) ∝
1

2|X(t)−S(t)|+10−6
.

Given these observations (as well as the true parameter values), we approximated the posterior
distribution over paths by two methods: using 1000 samples from our MCMC sampler (with a
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Figure 9: Posterior (mean and 90% credible intervals) over (left) prey and (right) predator paths
(observations (circles) were available only until 1500).

burn-in period of 100) and using the mean-field (MF) approximation of Opper and Sanguinetti
(2007).3 We could not apply the implementation of the Gibbs sampler of El-Hay et al. (2008) (see
Section 5.4) to a state-space and time-interval this large. Figure 9 shows the true paths (in black),
the observations (as circles) as well as the posterior means and 90% credible intervals produced
by the two algorithms for the prey (left) and predator (right) populations. Ascan be seen, both
algorithms do well over the first half of the interval where data is present. In the second half, the
MF algorithm appears to underestimate the predicted size of the predator population. On the other
hand, the MCMC posterior reflects the true trajectory better. In general, we found the MF algorithm
to underestimate the posterior variance in the MJP trajectories, especially over regions with few
observations.

5.4 Average Relative Error vs Number of Samples

For the remaining experiments, we compared our sampler with the Gibbs sampler of El-Hay et al.
(2008). For this comparison, we used the CTBN-RLE package of Sheltonet al. (2010) (also im-
plemented in C++). In all our experiments, as with the MMPP, we found our algorithm to be
significantly faster, especially for larger problems. To prevent details ofthe two implementations
from clouding the picture and to reiterate the benefit afforded by avoidingmatrix exponentiations,
we also measured the amount of time CTBN-RLE spent exponentiating matrices.This constituted
between 10% to 70% of the total running time of their algorithm. In the plots we refer to this as ‘El
Hay et al. (Matrix Exp.)’. We found that our algorithm took less time than eventhis.

In our first experiment, we followed El-Hay et al. (2008) in studying how average relative error
varies with the number of samples from the Markov chain. Average relativeerror is defined by

∑ j
|θ̂ j−θ j |

θ j
, and measures the total normalized difference between empirical (θ̂ j ) and true (θ j ) av-

erages of sufficient statistics of the posterior. The statistics in question arethe time spent by each
node in different states as well as the number of transitions from each stateto the others. The exact

3. We thank Guido Sanguinetti for providing us with his code.
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Figure 10: Average relative error vs number of samples for 1000 independent runs; burn-in = 200.
Note that in this scenario, uniformization was about 12 times faster, so that for the same
computational effort, it produces significantly lower errors.

values were calculated by numerical integration when possible, otherwise from a very long run of
CTBN-RLE.

As in El-Hay et al. (2008), we consider a CTBN with the topology of a chain,consisting of 5
nodes, each with 5 states. The states of the nodes were observed at times 0and 20 and we produced
endpoint-conditioned posterior samples of paths over the time interval[0,20]. We calculate the
average relative error as a function of the number of samples, with a burn-in of 200 samples. Figure
10 shows the results from running 1000 independent chains for both samplers. Not surprisingly, the
sampler of El-Hay et al. (2008), which produces conditionally independent samples, has slightly
lower errors. However the difference in relative errors is minor, and isnegligible when considering
the dramatic (sometimes up to two orders of magnitude; see below) speed improvements of our
algorithm. For instance, to produce the 10000 samples, the El-Hay et al. (2008) sampler took about
6 minutes, while our sampler ran in about 30 seconds.

5.5 Time Requirements for the Chain-Shaped CTBN

In the next two experiments, we compare the times required by CTBN-RLE andour uniformization-
based sampler to produce 100 effective samples as the size of the chain-shaped CTBN increased in
different ways. In the first cases, we increased the length of the chain, and in the second, the
dimensionality of each node. In both cases, we produced posterior samples from an endpoint-
conditioned CTBN with random gamma distributed parameters.

The time requirements were estimated from runs of 10000 samples after a burn-in period of
1000 iterations. Since CTBN-RLE does not support Bayesian inference for CTBN parameters, we
kept these fixed to the truth. To produce ESS estimates, we counted the number of transitions of
each node and the amount of time spent in each state, and for each MCMC run, we estimated the
ESS of these quantities. Like in Section 4.1, the overall ESS is the median of these estimates. Each
point in the figures is an average over 10 simulations.
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Figure 11: CPU time vs (left) length of CTBN chain (centre) number of states of CTBN nodes
(right) time interval of CTBN paths.

In the first of these experiments, we measured the times to produce 100 effective samples for
the chain-shaped CTBN described above, as the number of nodes in the chain (i.e., its length)
increases. The leftmost plot in Figure 11 shows the results. As might be expected, the time required
by our algorithm grows linearly with the number of nodes. For El-Hay et al. (2008), the cost of the
algorithm grows faster than linear, and quickly becoming unmanageable. The time spent calculating
matrix exponentialsdoesgrow linearly, however our uniformization-based sampler always takes less
time than even this.

Next, we kept the length of the chain fixed at 5, instead increasing the number of states per node.
As seen in the middle plot, once again, our sampler is always faster. Asymptotically, we expect our
sampler to scale asO(N2) and El-Hay et al. (2008) asO(N3). While we have not hit that regime
yet, we can see that the cost of our sampler grows more slowly with the numberof states.

5.6 Time Requirements for the Drug-Effect CTBN

Our final experiment, reported in the rightmost plot of Figure 11, measuresthe time required as the
interval length(tend− tstart) increases. For this experiment, we used the drug-effect network shown
in Figure 7, where the parameters were set to standard values (obtained from CTBN-RLE) and the
state of the network was fully observed at the beginning and end times. Again, our algorithm is the
faster of the two, showing a linear increases in computational costs with the length of the interval.
It is worth pointing out here that the algorithm of El-Hay et al. (2008) has a‘precision’ parameter,
and that by reducing the desired temporal precision, faster performance can be obtained. However,
since our sampler producesexactsamples (up to numerical precision), our comparison is fair. In the
above experiments, we left this parameter at its default value.

6. Discussion

We proposed a novel Markov chain Monte Carlo sampling method for Markov jump processes.
Our method exploits the simplification of the structure of the MJP resulting from theintroduction
of auxiliary variables via the idea of uniformization. This constructs a Markov jump process by
subordinating a Markov chain to a Poisson process, and amounts to running a Markov chain on a
random discretization of time. Our sampler is a blocked Gibbs sampler in this augmented represen-
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tation and proceeds by alternately resampling the discretization given the Markov chain and vice
versa. Experimentally, we find that this auxiliary variable Gibbs sampler is computationally very
efficient. The sampler easily generalizes to other MJP-based models, and we presented samplers for
Markov-modulated Poisson processes and continuous-time Bayesian networks. In our experiments,
we showed significant speed-up compared to state-of-the-art samplersfor both.

Our method opens a number of avenues worth exploring. One concerns the subordinating Pois-
son rateΩ which acts as a free-parameter of the sampler. While our heuristic of setting this to
maxs2|As| worked well in our experiments, this may not be the case for rate matrices with widely
varying transition rates. A possible approach is to ‘learn’ a good setting ofthis parameter via
adaptive MCMC methods. More fundamentally, it would be interesting to investigate if theoretical
claims can be made about the ‘best’ setting of this parameter under some measures of mixing speed
and computational cost.

Next, there are a number of immediate generalizations of our sampler. First, our algorithm is
easily applicable to inhomogeneous Markov jump processes where techniques based on matrix ex-
ponentiation cannot be applied. Following recent work (Rao and Teh, 2011b), we can also look at
generalizing our sampler to semi-Markov processes where the holding times of the states follow
non-exponential distributions. These models find applications in fields like biostatistics, neuro-
science and queueing theory (Mode and Pickens, 1988). By combining our technique with slice
sampling ideas (Neal, 2003), we can explore Markov jump processes with countably infinite state
spaces. Another generalization concerns MJPs with unbounded rate matrices. For the predator-prey
model, we avoided this problem by bounding the maximum population sizes; otherwise it is impos-
sible to choose a dominatingΩ. Of course, in practical settings, any trajectory from this process is
bounded with probability 1, and we can extend our method to this case by treating Ω as a trajectory
dependent random variable. For some work in this direction, we refer to Rao and Teh (2012).
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Appendix A. The Forward-Filtering Backward-Sampling (FFBS) Algorithm

For completeness, we include a description of the forward-filtering backward-sampling algorithm
for discrete-time Markov chains. The earliest references for this that we are aware of are Früwirth-
Schnatter (1994) and Carter and Kohn (1996).

Let St , t ∈ {0, · · ·T} be a discrete-time Markov chain with a discrete state spaceS ≡ {1, · · ·N}.
We allow the chain to be inhomogeneous, withBt being the state transition matrix at timet (so that
p(St+1 = s′|St = s) = Bt

s′s). Let π0 be the initial distribution over states att = 0. LetOt be a noisy
observation of the state at timet, with the likelihood given byLt(s) = p(Ot |St = s). Given a set of
observationsO = (O0, · · · ,OT), FFBS returns an independent posterior sample of the state vector.
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Defineαt(s) = p(O0, · · · ,Ot−1,St = s). From the Markov property, we have the following re-
cursion:

αt+1(s′) =
N

∑
s=1

αt(s)Lt(s)Bt
s′s.

Calculating this for allN values ofs′ takesO(N2) computation, and a forward pass through all
T times isO(TN2). At the end of the forward pass, we have a vector

βT(s) := LT(s)αT(s) = p(O,ST = s) ∝ p(ST = s|O).

It is easy to sample a realization ofST from this. Next, note that

p(St = s|St+1 = s′,O) ∝ p(St = s,St+1 = s′,O)

= αt(s)Bt
s′sL

t(s)p(Ot+1, · · · ,OT |St+1 = s′)

∝ αt(s)Bt
s′sL

t(s),

where the second equality follows from the Markov property. This too is easy to sample from, and
the backward pass of FFBS successively samplesST−1 to S0. We thus have a sample(S0, · · · ,ST).
The overall algorithm is given below:

Algorithm 4 The forward-filtering backward-sampling algorithm

Input: An initial distribution over statesπ0, a sequence of transition matri-
cesBt , a sequence of observationsO = (O1, · · ·OT) with likelihoods
Lt(s) = p(Ot |St = s).

Output: A realization of the Markov chain(S0, · · · ,ST).

1: Setα0(s) = π0(s).
2: for t = 1→ T do
3: αt(s′) = ∑N

s=1

(

αt−1(s)Lt−1(s)Bt−1
s′s

)

for s′ ∈ {1, · · · ,N}.
4: end for
5: SampleST ∼ βT(·), whereβT(s) := LT(s)αT(s).
6: for t = T → 0 do
7: Defineβt(s) = αt(s)Bt

St+1sL
t(s).

8: SampleSt ∼ βt(·).
9: end for

10: return (S0, · · · ,ST).
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Abstract
We analyze two communication-efficient algorithms for distributed optimization in statistical set-
tings involving large-scale data sets. The first algorithm is a standard averaging method that
distributes theN data samples evenly tom machines, performs separate minimization on each
subset, and then averages the estimates. We provide a sharp analysis of this average mixture
algorithm, showing that under a reasonable set of conditions, the combined parameter achieves
mean-squared error (MSE) that decays asO(N−1+(N/m)−2). Wheneverm≤

√
N, this guaran-

tee matches the best possible rate achievable by a centralized algorithm having access to allN
samples. The second algorithm is a novel method, based on an appropriate form of bootstrap
subsampling. Requiring only a single round of communication, it has mean-squared error that
decays asO(N−1 + (N/m)−3), and so is more robust to the amount of parallelization. In ad-
dition, we show that a stochastic gradient-based method attains mean-squared error decaying as
O(N−1 +(N/m)−3/2), easing computation at the expense of a potentially slower MSE rate. We
also provide an experimental evaluation of our methods, investigating their performance both on
simulated data and on a large-scale regression problem fromthe internet search domain. In particu-
lar, we show that our methods can be used to efficiently solve an advertisement prediction problem
from the Chinese SoSo Search Engine, which involves logistic regression withN ≈ 2.4×108 sam-
ples andd ≈ 740,000 covariates.
Keywords: distributed learning, stochastic optimization, averaging, subsampling

1. Introduction

Many procedures for statistical estimation are based on a form of (regularized) empirical risk min-
imization, meaning that a parameter of interest is estimated by minimizing an objective function
defined by the average of a loss function over the data. Given the current explosion in the size and
amount of data available in statistical studies, a central challenge is to design efficient algorithms for
solving large-scale problem instances. In a centralized setting, there aremany procedures for solv-
ing empirical risk minimization problems, among them standard convex programmingapproaches
(e.g., Boyd and Vandenberghe, 2004) as well as stochastic approximation and optimization algo-
rithms (Robbins and Monro, 1951; Hazan et al., 2006; Nemirovski et al., 2009). When the size of
the data set becomes extremely large, however, it may be infeasible to store all of the data on a
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single computer, or at least to keep the data in memory. Accordingly, the focus of this paper is the
study of some distributed and communication-efficient procedures for empirical risk minimization.

Recent years have witnessed a flurry of research on distributed approaches to solving very large-
scale statistical optimization problems. Although we cannot survey the literatureadequately—the
papers Nedíc and Ozdaglar (2009), Ram et al. (2010), Johansson et al. (2009), Duchi et al. (2012a),
Dekel et al. (2012), Agarwal and Duchi (2011), Recht et al. (2011), Duchi et al. (2012b) and ref-
erences therein contain a sample of relevant work—we touch on a few important themes here. It
can be difficult within a purely optimization-theoretic setting to show explicit benefits arising from
distributed computation. In statistical settings, however, distributed computation can lead to gains in
computational efficiency, as shown by a number of authors (Agarwal and Duchi, 2011; Dekel et al.,
2012; Recht et al., 2011; Duchi et al., 2012b). Within the family of distributed algorithms, there can
be significant differences in communication complexity: different computersmust be synchronized,
and when the dimensionality of the data is high, communication can be prohibitivelyexpensive. It
is thus interesting to study distributed estimation algorithms that require fairly limited synchroniza-
tion and communication while still enjoying the greater statistical accuracy that is usually associated
with a larger data set.

With this context, perhaps the simplest algorithm for distributed statistical estimationis what we
term theaverage mixture(AVGM) algorithm. It is an appealingly simple method: givenm different
machines and a data set of sizeN, first assign to each machine a (distinct) data set of sizen= N/m,
then have each machinei compute the empirical minimizerθi on its fraction of the data, and finally
average all the parameter estimatesθi across the machines. This approach has been studied for some
classification and estimation problems by Mann et al. (2009) and McDonald etal. (2010), as well
as for certain stochastic approximation methods by Zinkevich et al. (2010).Given an empirical risk
minimization algorithm that works on one machine, the procedure is straightforward to implement
and is extremely communication efficient, requiring only a single round of communication. It is
also relatively robust to possible failures in a subset of machines and/or differences in speeds, since
there is no repeated synchronization. When the local estimators are all unbiased, it is clear that the
the AVGM procedure will yield an estimate that is essentially as good as that of an estimatorbased
on all N samples. However, many estimators used in practice are biased, and so it is natural to ask
whether the method has any guarantees in a more general setting. To the best of our knowledge,
however, no work has shown rigorously that the AVGM procedure generally has greater efficiency
than the naive approach of usingn= N/msamples on a single machine.

This paper makes three main contributions. First, in Section 3, we provide a sharp analysis of
the AVGM algorithm, showing that under a reasonable set of conditions on the population risk, it
can indeed achieve substantially better rates than the naive approach. More concretely, we provide
bounds on the mean-squared error (MSE) that decay asO((nm)−1+n−2). Whenever the number
of machinesm is less than the number of samplesn per machine, this guarantee matches the best
possible rate achievable by a centralized algorithm having access to allN = nm samples. In the
special case of optimizing log likelihoods, the pre-factor in our bound involves the trace of the
Fisher information, a quantity well-known to control the fundamental limits of statistical estimation.
We also show how the result extends to stochastic programming approaches, exhibiting a stochastic
gradient-descent based procedure that also attains convergence rates scaling asO((nm)−1), but with
slightly worse dependence on different problem-specific parameters.

Our second contribution is to develop a novel extension of simple averaging. It is based on an
appropriate form of resampling (Efron and Tibshirani, 1993; Hall, 1992; Politis et al., 1999), which
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we refer to as thesubsampled average mixture(SAVGM ) approach. At a high level, the SAVGM

algorithm distributes samples evenly amongm processors or computers as before, but instead of
simply returning the empirical minimizer, each processor further subsamples itsown data set in
order to estimate the bias of its own estimate, and returns a subsample-corrected estimate. We
establish that the SAVGM algorithm has mean-squared error decaying asO(m−1n−1+n−3). As long
asm< n2, the subsampled method again matches the centralized gold standard in the first-order
term, and has a second-order term smaller than the standard averaging approach.

Our third contribution is to perform a detailed empirical evaluation of both the AVGM and
SAVGM procedures, which we present in Sections 4 and 5. Using simulated data from normal and
non-normal regression models, we explore the conditions under which theSAVGM algorithm yields
better performance than the AVGM algorithm; in addition, we study the performance of both meth-
ods relative to an oracle baseline that uses allN samples. We also study the sensitivity of the algo-
rithms to the number of splitsmof the data, and in the SAVGM case, we investigate the sensitivity of
the method to the amount of resampling. These simulations show that both AVGM and SAVGM have
favourable performance, even when compared to the unattainable “gold standard” procedure that
has access to allN samples. In Section 5, we complement our simulation experiments with a large
logistic regression experiment that arises from the problem of predicting whether a user of a search
engine will click on an advertisement. This experiment is large enough—involving N ≈ 2.4×108

samples ind ≈ 740,000 dimensions with a storage size of approximately 55 gigabytes—that it is
difficult to solve efficiently on one machine. Consequently, a distributed approach is essential to
take full advantage of this data set. Our experiments on this problem show that SAVGM—with the
resampling and correction it provides—gives substantial performance benefits over naive solutions
as well as the averaging algorithm AVGM.

2. Background and Problem Set-up

We begin by setting up our decision-theoretic framework for empirical risk minimization, after
which we describe our algorithms and the assumptions we require for our maintheoretical results.

2.1 Empirical Risk Minimization

Let { f (·;x), x∈ X } be a collection of real-valued and convex loss functions, each defined on a set
containing the convex setΘ ⊆ R

d. Let P be a probability distribution over the sample spaceX .
Assuming that each functionx 7→ f (θ; x) is P-integrable, thepopulation risk F0 : Θ →R is given by

F0(θ) := EP[ f (θ;X)] =
∫
X

f (θ;x)dP(x).

Our goal is to estimate the parameter vector minimizing the population risk, namely the quantity

θ∗ := argmin
θ∈Θ

F0(θ) = argmin
θ∈Θ

∫
X

f (θ;x)dP(x),

which we assume to be unique. In practice, the population distributionP is unknown to us, but we
have access to a collectionS of samples from the distributionP. Empirical risk minimization is
based on estimatingθ∗ by solving the optimization problem

θ̂ ∈ argmin
θ∈Θ

{ 1
|S| ∑

x∈S

f (θ;x)
}
.
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Throughout the paper, we impose some regularity conditions on the parameter space, the risk
functionF0, and the instantaneous loss functionsf (·;x) : Θ → R. These conditions are standard in
classical statistical analysis ofM-estimators (e.g., Lehmann and Casella, 1998; Keener, 2010). Our
first assumption deals with the relationship of the parameter space to the optimal parameterθ∗.

Assumption 1 (Parameters)The parameter spaceΘ⊂R
d is a compact convex set, withθ∗ ∈ intΘ

andℓ2-radius R= max
θ∈Θ

‖θ−θ∗‖2.

In addition, the risk function is required to have some amount of curvature.We formalize this notion
in terms of the Hessian ofF0:

Assumption 2 (Local strong convexity) The population risk is twice differentiable, and there ex-
ists a parameterλ > 0 such that∇2F0(θ∗)� λId×d.

Here∇2F0(θ) denotes thed×d Hessian matrix of the population objectiveF0 evaluated atθ, and
we use� to denote the positive semidefinite ordering (i.e.,A � B means thatA−B is positive
semidefinite.) This local condition is milder than a global strong convexity condition and is required
to hold only for the population riskF0 evaluated atθ∗. It is worth observing that some type of
curvature of the risk is required for any method to consistently estimate the parametersθ∗.

2.2 Averaging Methods

Consider a data set consisting ofN = mnsamples, drawn i.i.d. according to the distributionP. In
the distributed setting, we divide thisN-sample data set evenly and uniformly at random among a
total of m processors. (For simplicity, we have assumed the total number of samples is amultiple
of m.) For i = 1, . . . ,m, we letS1,i denote the data set assigned to processori; by construction, it
is a collection ofn samples drawn i.i.d. according toP, and the samples in subsetsS1,i andS1, j are
independent fori 6= j. In addition, for each processori we define the (local) empirical distribution
P1,i and empirical objectiveF1,i via

P1,i :=
1
|S1| ∑

x∈S1,i

δx, and F1,i(θ) :=
1

|S1,i | ∑
x∈S1,i

f (θ;x).

With this notation, the AVGM algorithm is very simple to describe.

2.2.1 AVERAGE M IXTURE ALGORITHM

(1) For eachi ∈ {1, . . . ,m}, processori uses its local data setS1,i to compute the local empirical
minimizer

θ1,i ∈ argmin
θ∈Θ

{ 1
|S1,i | ∑

x∈S1,i

f (θ;x)

︸ ︷︷ ︸
F1,i(θ)

}
. (1)

(2) Thesem local estimates are then averaged together—that is, we compute

θ1 =
1
m

m

∑
i=1

θ1,i . (2)
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The subsampled average mixture (SAVGM ) algorithm is based on an additional level of sampling
on top of the first, involving a fixed subsampling rater ∈ [0,1]. It consists of the following additional
steps:

2.2.2 SUBSAMPLED AVERAGE M IXTURE ALGORITHM

(1) Each processori draws a subsetS2,i of size⌈rn⌉ by sampling uniformly at random without
replacement from its local data setS1,i .

(2) Each processori computes both the local empirical minimizersθ1,i from Equation (1) and the
empirical minimizer

θ2,i ∈ argmin
θ∈Θ

{ 1
|S2,i | ∑

x∈S2,i

f (θ;x)

︸ ︷︷ ︸
F2,i(θ)

}
.

(3) In addition to the previous average (2), the SAVGM algorithm computes the bootstrap average
θ2 := 1

m ∑m
i=1 θ2,i , and then returns the weighted combination

θSAVGM :=
θ1− rθ2

1− r
. (3)

The intuition for the weighted estimator (3) is similar to that for standard bias correction pro-
cedures using the bootstrap or subsampling (Efron and Tibshirani, 1993; Hall, 1992; Politis et al.,
1999). Roughly speaking, ifb0 = θ∗−θ1 is the bias of the first estimator, then we may approximate
b0 by the subsampled estimate of biasb1 = θ∗−θ2. Then, we use the fact thatb1 ≈ b0/r to argue
thatθ∗ ≈ (θ1− rθ2)/(1− r). The re-normalization enforces that the relative “weights” ofθ1 andθ2

sum to 1.

The goal of this paper is to understand under what conditions—and in what sense—the estima-
tors (2) and (3) approach theoracle performance, by which we mean the error of a centralized risk
minimization procedure that is given access to allN = nmsamples.

2.2.3 NOTATION

Before continuing, we define the remainder of our notation. We useℓ2 to denote the usual Euclidean
norm ‖θ‖2 = (∑d

j=1 θ2
j )

1
2 . The ℓ2-operator norm of a matrixA ∈ R

d1×d2 is its maximum singular
value, defined by

|||A|||2 := sup
v∈Rd2,‖v‖2≤1

‖Av‖2.

A convex functionF is λ-strongly convex on a setU ⊆ R
d if for arbitraryu,v∈U we have

F(u)≥ F(v)+ 〈∇F(v),u−v〉+ λ
2
‖u−v‖2

2 .

(If F is not differentiable, we may replace∇F with any subgradient ofF .) We let⊗ denote the
Kronecker product, and for a pair of vectorsu,v, we define the outer productu⊗ v = uv⊤. For a
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three-times differentiable functionF , we denote the third derivative tensor by∇3F , so that for each
u∈ domF the operator∇3F(u) : Rd×d → R

d is linear and satisfies the relation

[
∇3F(u)(v⊗v)

]
i =

d

∑
j,k=1

(
∂3

∂ui∂u j∂uk
F(u)

)
v jvk.

We denote the indicator function of an eventE by 1(E), which is 1 ifE is true and 0 otherwise.

3. Theoretical Results

Having described the AVGM and SAVGM algorithms, we now turn to statements of our main theo-
rems on their statistical properties, along with some consequences and comparison to past work.

3.1 Smoothness Conditions

In addition to our previously stated assumptions on the population risk, we require regularity con-
ditions on the empirical risk functions. It is simplest to state these in terms of the functions
θ 7→ f (θ;x), and we note that, as with Assumption 2, we require these to hold only locally around
the optimal pointθ∗, in particular within some Euclidean ballU = {θ ∈ R

d | ‖θ∗−θ‖2 ≤ ρ} ⊆ Θ
of radiusρ > 0.

Assumption 3 (Smoothness)There are finite constants G,H such that the first and the second
partial derivatives of f exist and satisfy the bounds

E[‖∇ f (θ;X)‖8
2]≤ G8 and E[

∣∣∣∣∣∣∇2 f (θ;X)−∇2F0(θ)
∣∣∣∣∣∣8

2]≤ H8 for all θ ∈U.

In addition, for any x∈ X , the Hessian matrix∇2 f (θ;x) is L(x)-Lipschitz continuous, meaning that
∣∣∣∣∣∣∇2 f (θ′;x)−∇2 f (θ;x)

∣∣∣∣∣∣
2 ≤ L(x)

∥∥θ′−θ
∥∥

2 for all θ,θ′ ∈U. (4)

We require thatE[L(X)8]≤ L8 andE[(L(X)−E[L(X)])8]≤ L8 for some finite constant L.

It is an important insight of our analysis that some type of smoothness condition on the Hessian
matrix, as in the Lipschitz condition (4), isessentialin order for simple averaging methods to work.
This necessity is illustrated by the following example:

Example 1 (Necessity of Hessian conditions)Let X be a Bernoulli variable with parameter12,
and consider the loss function

f (θ;x) =

{
θ2−θ if x = 0

θ21(θ≤0)+θ if x = 1,
(5)

where1(θ≤0) is the indicator of the event{θ ≤ 0}. The associated population risk is F0(θ) =
1
2(θ

2 + θ21(θ≤0)). Since|F ′
0(w)− F ′

0(v)| ≤ 2|w− v|, the population risk is strongly convex and
smooth, but it has discontinuous second derivative. The unique minimizerof the population risk is
θ∗ = 0, and by an asymptotic expansion given in Appendix A, it can be shown thatE[θ1,i ] =Ω(n−

1
2 ).

Consequently, the bias ofθ1 is Ω(n−
1
2 ), and theAVGM algorithm using N= mn observations must

suffer mean squared errorE[(θ1−θ∗)2] = Ω(n−1).
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The previous example establishes the necessity of a smoothness condition. However, in a certain
sense, it is a pathological case: both the smoothness condition given in Assumption 3 and the local
strong convexity condition given in Assumption 2 are relatively innocuous for practical problems.
For instance, both conditions will hold for standard forms of regression,such as linear and logistic,
as long as thepopulationdata covariance matrix is not rank deficient and the data has suitable
moments. Moreover, in the linear regression case, one hasL = 0.

3.2 Bounds for Simple Averaging

We now turn to our first theorem that provides guarantees on the statisticalerror associated with the
AVGM procedure. We recall thatθ∗ denotes the minimizer of the population objective functionF0,
and that for eachi ∈ {1, . . . ,m}, we useSi to denote a data set ofn independent samples. For eachi,
we useθi ∈ argminθ∈Θ{1

n ∑x∈Si
f (θ;x)} to denote a minimizer of the empirical risk for the data set

Si , and we define the averaged vectorθ = 1
m ∑m

i=1 θi . The following result bounds the mean-squared
error between this averaged estimate and the minimizerθ∗ of the population risk.

Theorem 1 Under Assumptions 1 through 3, the mean-squared error is upper bounded as

E

[∥∥θ−θ∗∥∥2
2

]
≤ 2

nm
E

[∥∥∇2F0(θ∗)−1∇ f (θ∗;X)
∥∥2

2

]
(6)

+
c

λ2n2

(
H2 logd+

L2G2

λ2

)
E

[∥∥∇2F0(θ∗)−1∇ f (θ∗;X)
∥∥2

2

]

+O(m−1n−2)+O(n−3),

where c is a numerical constant.

A slightly weaker corollary of Theorem 1 makes it easier to parse. In particular, note that

∥∥∇2F0(θ∗)−1∇ f (θ∗;x)
∥∥

2

(i)
≤
∣∣∣∣∣∣∇2F0(θ∗)−1

∣∣∣∣∣∣
2‖∇ f (θ∗;x)‖2

(ii)
≤ 1

λ
‖∇ f (θ∗;x)‖2 , (7)

where step (i) follows from the inequality|||Ax|||2 ≤ |||A|||‖x‖2, valid for any matrixA and vectorx;
and step (ii) follows from Assumption 2. In addition, Assumption 3 impliesE[‖∇ f (θ∗;X)‖2

2]≤ G2,
and putting together the pieces, we have established the following.

Corollary 2 Under the same conditions as Theorem 1,

E

[∥∥θ−θ∗∥∥2
2

]
≤ 2G2

λ2nm
+

cG2

λ4n2

(
H2 logd+

L2G2

λ2

)
+O(m−1n−2)+O(n−3). (8)

This upper bound shows that the leading term decays proportionally to(nm)−1, with the pre-factor
depending inversely on the strong convexity constantλ and growing proportionally with the bound
G on the loss gradient. Although easily interpretable, the upper bound (8) can be loose, since it is
based on the relatively weak series of bounds (7).

The leading term in our original upper bound (6) involves the product ofthe gradient∇ f (θ∗;X)
with the inverse Hessian. In many statistical settings, including the problem of linear regression,
the effect of this matrix-vector multiplication is to perform some type of standardization. When the
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loss f (·;x) : Θ →R is actually the negative log-likelihoodℓ(x | θ) for a parametric family of models
{Pθ}, we can make this intuition precise. In particular, under suitable regularity conditions (e.g.,
Lehmann and Casella, 1998, Chapter 6), we can define the Fisher information matrix

I(θ∗) := E

[
∇ℓ(X | θ∗)∇ℓ(X | θ∗)⊤

]
= E[∇2ℓ(X | θ∗)].

Recalling thatN = mn is the total number of samples available, let us define the neighbourhood
B2(θ, t) := {θ′ ∈ R

d : ‖θ′−θ‖2 ≤ t}. Then under our assumptions, the Hájek-Le Cam minimax
theorem (van der Vaart, 1998, Theorem 8.11) guarantees forany estimator̂θN based onN samples
that

lim
c→∞

liminf
N→∞

sup
θ∈B2(θ∗,c/

√
N)

NEθ

[∥∥θ̂N −θ
∥∥2

2

]
≥ tr(I(θ∗)−1).

In connection with Theorem 1, we obtain:

Corollary 3 In addition to the conditions of Theorem 1, suppose that the loss functions f(·;x) are
the negative log-likelihoodℓ(x | θ) for a parametric family{Pθ, θ ∈ Θ}. Then the mean-squared
error is upper bounded as

E

[∥∥θ1−θ∗∥∥2
2

]
≤ 2

N
tr(I(θ∗)−1)+

cm2 tr(I(θ∗)−1)

λ2N2

(
H2 logd+

L2G2

λ2

)
+O(mN−2),

where c is a numerical constant.

Proof Rewriting the log-likelihood in the notation of Theorem 1, we have∇ℓ(x | θ∗) = ∇ f (θ∗;x)
and all we need to note is that

I(θ∗)−1 = E

[
I(θ∗)−1∇ℓ(X | θ∗)∇ℓ(X | θ∗)⊤I(θ∗)−1

]

= E

[(
∇2F0(θ∗)−1∇ f (θ∗;X)

)(
∇2F0(θ∗)−1∇ f (θ∗;X)

)⊤ ]
.

Now apply the linearity of the trace and use the fact that tr(uu⊤) = ‖u‖2
2.

Except for the factor of two in the bound, Corollary 3 shows that Theorem 1 essentially achieves
the best possible result. The important aspect of our bound, however,is that we obtain this conver-
gence rate without calculating an estimate on allN = mn samples: instead, we calculatem inde-
pendent estimators, and then average them to attain the convergence guarantee. We remark that an
inspection of our proof shows that, at the expense of worse constants on higher order terms, we can
reduce the factor of 2/mnon the leading term in Theorem 1 to(1+ c)/mn for any constantc> 0;
as made clear by Corollary 3, this is unimprovable, even by constant factors.

As noted in the introduction, our bounds are certainly to be expected for unbiased estimators,
since in such cases averagingm independent solutions reduces the variance by 1/m. In this sense,
our results are similar to classical distributional convergence results inM-estimation: for smooth
enough problems,M-estimators behave asymptotically like averages (van der Vaart, 1998; Lehmann
and Casella, 1998), and averaging multiple independent realizations reduces their variance. How-
ever, it is often desirable to use biased estimators, and such bias introduces difficulty in the analysis,
which we explore more in the next section. We also note that in contrast to classical asymptotic re-
sults, our results are applicable to finite samples and give explicit upper bounds on the mean-squared
error. Lastly, our results are not tied to a specific model, which allows for fairly general sampling
distributions.
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3.3 Bounds for Subsampled Mixture Averaging

When the number of machinesm is relatively small, Theorem 1 and Corollary 2 show that the
convergence rate of the AVGM algorithm is mainly determined by the first term in the bound (6),
which is at most G2

λ2mn. In contrast, when the number of processorsm grows, the second term in the
bound (6), in spite of beingO(n−2), may have non-negligible effect. This issue is exacerbated when
the local strong convexity parameterλ of the riskF0 is close to zero or the Lipschitz continuity con-
stantH of ∇ f is large. This concern motivated our development of the subsampled average mixture
(SAVGM ) algorithm, to which we now return.

Due to the additional randomness introduced by the subsampling in SAVGM , its analysis requires
an additional smoothness condition. In particular, recalling the Euclideanρ-neighbourhoodU of the
optimumθ∗, we require that the loss functionf is (locally) smooth through its third derivatives.

Assumption 4 (Strong smoothness)For each x∈ X , the third derivatives of f are M(x)-Lipschitz
continuous, meaning that

∥∥(∇3 f (θ;x)−∇3 f (θ′;x)
)
(u⊗u)

∥∥
2 ≤ M(x)

∥∥θ−θ′∥∥
2‖u‖2

2 for all θ,θ′ ∈U, and u∈ R
d,

whereE[M8(X)]≤ M8 for some constant M< ∞.

It is easy to verify that Assumption 4 holds for least-squares regressionwith M = 0. It also holds
for various types of non-linear regression problems (e.g., logistic, multinomial etc.) as long as the
covariates have finite eighth moments.

With this set-up, our second theorem establishes that bootstrap sampling yields improved per-
formance:

Theorem 4 Under Assumptions 1 through 4, the outputθSAVGM = (θ1− rθ2)/(1− r) of the boot-
strapSAVGM algorithm has mean-squared error bounded as

E

[∥∥θSAVGM −θ∗∥∥2
2

]
≤ 2+3r

(1− r)2 ·
1

nm
E

[∥∥∇2F0(θ∗)−1∇ f (θ∗;X)
∥∥2

2

]
(9)

+c

(
M2G6

λ6 +
G4L2d logd

λ4

)(
1

r(1− r)2

)
n−3+O

(
1

(1− r)2m−1n−2
)

for a numerical constant c.

Comparing the conclusions of Theorem 4 to those of Theorem 1, we see that the theO(n−2)
term in the bound (6) has been eliminated. The reason for this elimination is that subsampling
at a rater reduces the bias of the SAVGM algorithm toO(n−3), whereas in contrast, the bias
of the AVGM algorithm induces terms of ordern−2. Theorem 4 suggests that the performance
of the SAVGM algorithm is affected by the subsampling rater; in order to minimize the upper
bound (9) in the regimem< N2/3, the optimal choice is of the formr ∝ C

√
m/n=Cm3/2/N where

C≈ (G2/λ2)max{MG/λ,L
√

d logd}. Roughly, as the number of machinesm becomes larger, we
may increaser, since we enjoy averaging affects from the SAVGM algorithm.

Let us consider the relative effects of having larger numbers of machines m for both the AVGM

and SAVGM algorithms, which provides some guidance to selectingm in practice. We defineσ2 =
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E[
∥∥∇2F0(θ∗)−1∇ f (θ∗;X)

∥∥2
2] to be the asymptotic variance. Then to obtain the optimal convergence

rate ofσ2/N, we must have

1
λ2 max

{
H2 logd,L2G2}m2

N2 σ2 ≤ σ2

N
or m≤ N

1
2

√
λ2

max{H2 logd,L2G2/λ2} (10)

in Theorem 1. Applying the bound of Theorem 4, we find that to obtain the same rate we require

max

{
M2G2

λ6 ,
L2d logd

λ4

}
G4m3

rN3 ≤ (1+ r)σ2

N
or m≤ N

2
3

(
λ4r(1+ r)σ2

max{M2G6/λ2,G4L2d logd}

) 1
3

.

Now suppose that we replacer with Cm3/2/N as in the previous paragraph. Under the conditions
σ2 ≈ G2 andr = o(1), we then find that

m≤ N
2
3

(
λ2σ2m3/2

G2max
{

MG/λ,L
√

d logd
}

N

) 1
3

or m≤ N
2
3

(
λ2

max
{

MG/λ,L
√

d logd
}
) 2

3

. (11)

Comparing inequalities (10) and (11), we see that in both casesm may grow polynomially with
the global sample sizeN while still guaranteeing optimal convergence rates. On one hand, this
asymptotic growth is faster in the subsampled case (11); on the other hand, the dependence on the
dimensiond of the problem is more stringent than the standard averaging case (10). As the local
strong convexity constantλ of thepopulation riskshrinks, both methods allow less splitting of the
data, meaning that the sample size per machine must be larger. This limitation is intuitive, since
lower curvature for the population risk means that the local empirical risks associated with each
machine will inherit lower curvature as well, and this effect will be exacerbated with a small local
sample size per machine. Averaging methods are, of course, not a panacea: the allowed number
of partitionsm does not grow linearly in either case, so blindly increasing the number of machines
proportionally to the total sample sizeN will not lead to a useful estimate.

In practice, an optimal choice ofr may not be apparent, which may necessitate cross validation
or another type of model evaluation. We leave as intriguing open questions whether computing
multiple subsamples at each machine can yield improved performance or reduce the variance of the
SAVGM procedure, and whether using estimates based on resampling the data with replacement, as
opposed to without replacement as considered here, can yield improved performance.

3.4 Time Complexity

In practice, the exact empirical minimizers assumed in Theorems 1 and 4 may be unavailable. In-
stead, we need to use a finite number of iterations of some optimization algorithm in order to obtain
reasonable approximations to the exact minimizers. In this section, we sketch an argument that
shows that both the AVGM algorithm and the SAVGM algorithm can use such approximate empir-
ical minimizers, and as long as the optimization error is sufficiently small, the resulting averaged
estimate achieves the same order-optimal statistical error. Here we provide the arguments only for
the AVGM algorithm; the arguments for the SAVGM algorithm are analogous.

More precisely, suppose that each processor runs a finite number of iterations of some optimiza-
tion algorithm, thereby obtaining the vectorθ′

i as an approximate minimizer of the objective function
F1,i . Thus, the vectorθ′

i can be viewed as an approximate form ofθi , and we letθ′
= 1

m ∑m
i=1 θ′

i denote
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the average of these approximate minimizers, which corresponds to the output of the approximate
AVGM algorithm. With this notation, we have

E

[∥∥θ′−θ∗∥∥2
2

] (i)
≤ 2E[

∥∥θ−θ∗∥∥2
2]+2E

[∥∥θ′−θ
∥∥2

2

] (ii)
≤ 2E[

∥∥θ−θ∗∥∥2
2]+2E[

∥∥θ′
1−θ1

∥∥2
2], (12)

where step (i) follows by triangle inequality and the elementary bound(a+b)2 ≤ 2a2+2b2; step
(ii) follows by Jensen’s inequality. Consequently, suppose that processor i runs enough iterations to
obtain an approximate minimizerθ′

1 such that

E[
∥∥θ′

i −θi
∥∥2

2] = O((mn)−2). (13)

When this condition holds, the bound (12) shows that the averageθ′
of the approximate minimizers

shares the same convergence rates provided by Theorem 1.
But how long does it take to compute an approximate minimizerθ′

i satisfying condition (13)?
Assuming processing one sample requires one unit of time, we claim that this computation can be
performed in timeO(nlog(mn)). In particular, the following two-stage strategy, involving a com-
bination of stochastic gradient descent (see the following subsection formore details) and standard
gradient descent, has this complexity:

(1) As shown in the proof of Theorem 1, with high probability, the empirical risk F1 is strongly
convex in a ballBρ(θ1) of constant radiusρ> 0 aroundθ1. Consequently, performing stochas-
tic gradient descent onF1 forO(log2(mn)/ρ2) iterations yields an approximate minimizer that
falls within Bρ(θ1) with high probability (e.g., Nemirovski et al., 2009, Proposition 2.1). Note
that the radiusρ for local strong convexity is a property of the population riskF0 we use as a
prior knowledge.

(2) This initial estimate can be further improved by a few iterations of standardgradient descent.
Under local strong convexity of the objective function, gradient descent is known to converge
at a geometric rate (see, e.g., Nocedal and Wright, 2006; Boyd and Vandenberghe, 2004),
soO(log(1/ε)) iterations will reduce the error to orderε. In our case, we haveε = (mn)−2,
and since each iteration of standard gradient descent requiresO(n) units of time, a total of
O(nlog(mn)) time units are sufficient to obtain a final estimateθ′

1 satisfying condition (13).

Overall, we conclude that the speed-up of the AVGM relative to the naive approach of processing
all N = mnsamples on one processor, is at least of orderm/ log(N).

3.5 Stochastic Gradient Descent with Averaging

The previous strategy involved a combination of stochastic gradient descent and standard gradient
descent. In many settings, it may be appealing to use only a stochastic gradient algorithm, due
to their ease of their implementation and limited computational requirements. In this section, we
describe an extension of Theorem 1 to the case in which each machine computes an approximate
minimizer using only stochastic gradient descent.

Stochastic gradient algorithms have a lengthy history in statistics, optimization, and machine
learning (Robbins and Monro, 1951; Polyak and Juditsky, 1992; Nemirovski et al., 2009; Rakhlin
et al., 2012). Let us begin by briefly reviewing the basic form of stochastic gradient descent (SGD).
Stochastic gradient descent algorithms iteratively update a parameter vector θt over time based on
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randomly sampled gradient information. Specifically, at iterationt, a sampleXt is drawn at random
from the distributionP (or, in the case of a finite set of data{X1, . . . ,Xn}, a sampleXt is chosen from
the data set). The method then performs the following two steps:

θt+ 1
2 = θt −ηt∇ f (θt ;Xt) and θt+1 = argmin

θ∈Θ

{∥∥θ−θt+ 1
2
∥∥2

2

}
. (14)

Hereηt > 0 is a stepsize, and the first update in (14) is a gradient descent step with respect to the
random gradient∇ f (θt ;Xt). The method then projects the intermediate pointθt+ 1

2 back onto the
constraint setΘ (if there is a constraint set). The convergence of SGD methods of the form (14) has
been well-studied, and we refer the reader to the papers by Polyak and Juditsky (1992), Nemirovski
et al. (2009), and Rakhlin et al. (2012) for deeper investigations.

To prove convergence of our stochastic gradient-based averaging algorithms, we require the
following smoothness and strong convexity condition, which is an alternativeto the Assumptions 2
and 3 used previously.

Assumption 5 (Smoothness and Strong Convexity II)There exists a function L: X → R+ such
that ∣∣∣∣∣∣∇2 f (θ;x)−∇2 f (θ∗;x)

∣∣∣∣∣∣
2 ≤ L(x)‖θ−θ∗‖2 for all x ∈ X ,

andE[L2(X)]≤ L2 < ∞. There are finite constants G and H such that

E[‖∇ f (θ;X)‖4
2]≤ G4, and E[

∣∣∣∣∣∣∇2 f (θ∗;X)
∣∣∣∣∣∣4

2]≤ H4 for each fixedθ ∈ Θ.

In addition, the population function F0 is λ-strongly convex over the spaceΘ, meaning that

∇2F0(θ)� λId×d for all θ ∈ Θ.

Assumption 5 does not require as many moments as does Assumption 3, but it does require each
moment bound to hold globally, that is, over the entire spaceΘ, rather than only in a neighbourhood
of the optimal pointθ∗. Similarly, the necessary curvature—in the form of the lower bound on
the Hessian matrix∇2F0—is also required to hold globally, rather than only locally. Nonetheless,
Assumption 5 holds for many common problems; for instance, it holds for any linear regression
problem in which the covariates have finite fourth moments and the domainΘ is compact.

The averaged stochastic gradient algorithm (SGDAVGM ) is based on the following two steps:

(1) Given some constantc > 1, each machine performsn iterations of stochastic gradient de-
scent (14) on its local data set ofn samples using the stepsizeηt =

c
λt , then outputs the

resulting local parameterθ′
i .

(2) The algorithm computes the averageθn
= 1

m ∑m
i=1 θ′

i .

The following result characterizes the mean-squared error of this procedure in terms of the constants

α := 4c2 and β := max

{⌈
cH
λ

⌉
,

cα3/4G3/2

(c−1)λ5/2

(
α1/4LG1/2

λ1/2
+

4G+HR

ρ3/2

)}
.
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Theorem 5 Under Assumptions 1 and 5, the outputθn
of theSAVGM algorithm has mean-squared

error upper bounded as

E

[∥∥θn−θ∗∥∥2
2

]
≤ αG2

λ2mn
+

β2

n3/2
. (15)

Theorem 5 shows that the averaged stochastic gradient descent procedure attains the optimal
convergence rateO(N−1) as a function of the total number of observationsN = mn. The constant
and problem-dependent factors are somewhat worse than those in the earlier results we presented
in Theorems 1 and 4, but the practical implementability of such a procedure mayin some circum-
stances outweigh those differences. We also note that the second term oforderO(n−3/2) may be
reduced toO(n(2−2k)/k) for anyk≥ 4 by assuming the existence ofkth moments in Assumption 5;
we show this in passing after our proof of the theorem in Appendix D. It is not clear whether a
bootstrap correction is possible for the stochastic-gradient based estimator; such a correction could
be significant, because the termβ2/n3/2 arising from the bias in the stochastic gradient estimator
may be non-trivial. We leave this question to future work.

4. Performance on Synthetic Data

In this section, we report the results of simulation studies comparing the AVGM, SAVGM , and
SGDAVGM methods, as well as a trivial method using only a fraction of the data available on a
single machine. For each of our simulated experiments, we use a fixed total number of samples
N = 100,000, but we vary the number of parallel splitsm of the data (and consequently, the local
data set sizesn= N/m) and the dimensionalityd of the problem solved.

For our experiments, we simulate data from one of three regression models:

y= 〈u,x〉+ ε, (16)

y= 〈u,x〉+
d

∑
j=1

v jx
3
j + ε, or (17)

y= 〈u,x〉+h(x)|ε|, (18)

whereε ∼ N(0,1), andh is a function to be specified. Specifically, the data generation procedure
is as follows. For each individual simulation, we choose fixed vectoru ∈ R

d with entriesui dis-
tributed uniformly in[0,1] (and similarly forv), and we seth(x) = ∑d

j=1(x j/2)3. The models (16)
through (18) provide points on a curve from correctly-specified to grossly mis-specified models, so
models (17) and (18) help us understand the effects of subsampling in the SAVGM algorithm. (In
contrast, the standard least-squares estimator is unbiased for model (16).) The noise variableε is
always chosen as a standard Gaussian variateN(0,1), independent from sample to sample.

In our simulation experiments we use the least-squares loss

f (θ;(x,y)) :=
1
2
(〈θ,x〉−y)2.

The goal in each experiment is to estimate the vectorθ∗ minimizing F0(θ) := E[ f (θ;(X,Y))]. For
each simulation, we generateN samples according to either the model (16) or (18). For eachm∈
{2,4,8,16,32,64,128}, we estimateθ∗ = argminθ F0(θ) using a parallel method with data split into
m independent sets of sizen= N/m, specifically
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Figure 1: The error‖θ̂−θ∗‖2
2 versus number of machines, with standard errors across twenty simu-

lations, for solving least squares with data generated according to the normal model (16).
The oracle least-squares estimate using allN samples is given by the line “All,” while the
line “Single” gives the performance of the naive estimator using onlyn= N/msamples.

(i) The AVGM method

(ii) The SAVGM method with several settings of the subsampling ratior

(iii) The SGDAVGM method with stepsizeηt = d/(10(d+ t)), which gave good performance.

In addition to (i)–(iii), we also estimateθ∗ with

(iv) The empirical minimizer of a single split of the data of sizen= N/m

(v) The empirical minimizer on the full data set (the oracle solution).

4.1 Averaging Methods

For our first set of experiments, we study the performance of the averaging methods (AVGM and
SAVGM ), showing their scaling as the number of splits of data—the number of machinesm—grows
for fixed N and dimensionsd = 20 andd = 200. We use the standard regression model (16) to
generate the data, and throughout we letθ̂ denote the estimate returned by the method under consid-
eration (so in the AVGM case, for example, this is the vectorθ̂ := θ1). The data samples consist of
pairs(x,y), wherex∈R

d andy∈R is the target value. To sample eachx vector, we choose five dis-
tinct indices in{1, . . . ,d} uniformly at random, and the entries ofx at those indices are distributed
asN(0,1). For the model (16), the population optimal vectorθ∗ is u.

In Figure 1, we plot the error‖θ̂−θ∗‖2
2 of the inferred parameter vectorθ̂ for the true parameters

θ∗ versus the number of splitsm, or equivalently, the number of separate machines available for use.
We also plot standard errors (across twenty experiments) for each curve. As a baseline in each plot,
we plot as a red line the squared error‖θ̂N −θ∗‖2

2 of the centralized “gold standard,” obtained by
applying a batch method to allN samples.

From the plots in Figure 1, we can make a few observations. The AVGM algorithm enjoys
excellent performance, as predicted by our theoretical results, especially compared to the naive
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Figure 2: Comparison of AVGM and SGDAVGM methods as in Figure 1 plotted on logarithmic
scale. The plot shows‖θ̂−θ∗‖2

2−‖θN −θ∗‖2
2, whereθN is the oracle least-squares esti-

mator using allN data samples.

solution using only a fraction 1/m of the data. In particular, if̂θ is obtained by the batch method,
then AVGM is almost as good as the full-batch baseline even form as large as 128, though there is
some evident degradation in solution quality. The SGDAVGM (stochastic-gradient with averaging)
solution also yields much higher accuracy than the naive solution, but its performance degrades
more quickly than the AVGM method’s asm grows. In higher dimensions, both the AVGM and
SGDAVGM procedures have somewhat worse performance; again, this is not unexpected since in
high dimensions the strong convexity condition is satisfied with lower probability inlocal data sets.

We present a comparison between the AVGM method and the SGDAVGM method with some-
what more distinguishing power in Figure 2. For these plots, we compute the gap between the
AVGM mean-squared-error and the unparallel baseline MSE, which is the accuracy lost due to par-
allelization or distributing the inference procedure across multiple machines. Figure 2 shows that
the mean-squared error grows polynomially with the number of machinesm, which is consistent
with our theoretical results. From Corollary 3, we expect the AVGM method to suffer (lower-order)
penalties proportional tom2 asm grows, while Theorem 5 suggests the somewhat faster growth
we see for the SGDAVGM method in Figure 2. Thus, we see that the improved run-time perfor-
mance of the SGDAVGM method—requiring only a single pass through the data on each machine,
touching each datum only once—comes at the expense of some loss of accuracy, as measured by
mean-squared error.

4.2 Subsampling Correction

We now turn to developing an understanding of the SAVGM algorithm in comparison to the standard
average mixture algorithm, developing intuition for the benefits and drawbacks of the method. Be-
fore describing the results, we remark that for the standard regressionmodel (16), the least-squares
solution is unbiased forθ∗, so we expect subsampled averaging to yield little (if any) improvement.
The SAVGM method is essentially aimed at correcting the bias of the estimatorθ1, and de-biasing an
unbiased estimator only increases its variance. However, for the mis-specified models (17) and (18)
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Figure 3: The error‖θ̂−θ∗‖2
2 plotted against the number of machinesm for the AVGM and SAVGM

methods, with standard errors across twenty simulations, using the normal regression
model (16). The oracle estimator is denoted by the line “All.”
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Figure 4: The error‖θ̂−θ∗‖2
2 plotted against the number of machinesm for the AVGM and SAVGM

methods, with standard errors across twenty simulations, using the non-normal regression
model (18). The oracle estimator is denoted by the line “All.”

we expect to see some performance gains. In our experiments, we use multiplesub-sampling rates
to study their effects, choosingr ∈ {0.005,0.01,0.02,0.04}, where we recall that the output of the
SAVGM algorithm is the vector̂θ := (θ1− rθ2)/(1− r).

We begin with experiments in which the data is generated as in the previous section. That is, to
generate a feature vectorx∈d, choose five distinct indices in{1, . . . ,d} uniformly at random, and the
entries ofx at those indices are distributed asN(0,1). In Figure 3, we plot the results of simulations
comparing AVGM and SAVGM with data generated from the normal regression model (16). Both
algorithms have have low error rates, but the AVGM method is slightly better than the SAVGM

method for both values of the dimensiond and all and sub-sampling ratesr. As expected, in this
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Figure 5: The error‖θ̂−θ∗‖2
2 plotted against the number of machinesm for the AVGM and SAVGM

methods using regression model (17).

case the SAVGM method does not offer improvement over AVGM, since the estimators are unbiased.
(In Figure 3(a), we note that the standard error is in fact very small, since the mean-squared error is
only of order 10−3.)

To understand settings in which subsampling for bias correction helps, in Figure 4, we plot
mean-square error curves for the least-squares regression problem when the vectory is sampled
according to the non-normal regression model (18). In this case, the least-squares estimator is
biased forθ∗ (which, as before, we estimate by solving a larger regression problem using 10N data
samples). Figure 4 shows that both the AVGM and SAVGM method still enjoy good performance;
in some cases, the SAVGM method even beats the oracle least-squares estimator forθ∗ that uses
all N samples. Since the AVGM estimate is biased in this case, its error curve increases roughly
quadratically withm, which agrees with our theoretical predictions in Theorem 1. In contrast,we see
that the SAVGM algorithm enjoys somewhat more stable performance, with increasing benefit as the
number of machinesm increases. For example, in case ofd= 200, if we chooser = 0.01 form≤ 32,
chooser = 0.02 for m= 64 andr = 0.04 for m= 128, then SAVGM has performance comparable
with the oracle method that uses allN samples. Moreover, we see that all the values ofr—at least
for the reasonably small values we use in the experiment—provide performance improvements over
a non-subsampled distributed estimator.

For our final simulation, we plot results comparing SAVGM with AVGM in model (17), which is
mis-specified but still a normal model. We use a simpler data generating mechanism, specifically,
we drawx∼ N(0, Id×d) from a standardd-dimensional normal, andv is chosen uniformly in[0,1];
in this case, the population minimizer has the closed formθ∗ = u+3v. Figure 5 shows the results
for dimensionsd = 20 andd = 40 performed over 100 experiments (the standard errors are too
small to see). Since the model (17) is not that badly mis-specified, the performance of the SAVGM

method improves upon that of the AVGM method only for relatively large values ofm, however, the
performance of the SAVGM is always at least as good as that of AVGM.
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Feature Name Dimension Description
Query 20000 Word tokens appearing in the query.
Gender 3 Gender of the user
Keyword 20000 Word tokens appearing in the purchase keywords.
Title 20000 Word tokens appearing in the ad title.
Advertiser 39191 Advertiser’s ID
AdID 641707 Advertisement’s ID.
Age 6 Age of the user
UserFreq 25 Number of appearances of the same user.
Position 3 Position of advertisement on search page.
Depth 3 Number of ads in the session.
QueryFreq 25 Number of occurrences of the same query.
AdFreq 25 Number of occurrences of the same ad.
QueryLength 20 Number of words in the query.
TitleLength 30 Number of words in the ad title.
DespLength 50 Number of words in the ad description.
QueryCtr 150 Average click-through-rate for query.
UserCtr 150 Average click-through-rate for user.
AdvrCtr 150 Average click-through-rate for advertiser.
WordCtr 150 Average click-through-rate for keyword advertised.
UserAdFreq 20 Number of times this user sees an ad.
UserQueryFreq 20 Number of times this user performs a search.

Table 1: Features used in online advertisement prediction problem.

5. Experiments with Advertising Data

Predicting whether a user of a search engine will click on an advertisementpresented to him or
her is of central importance to the business of several internet companies, and in this section, we
present experiments studying the performance of the AVGM and SAVGM methods for this task. We
use a large data set from the Tencent search engine,soso.com (Sun, 2012), which contains 641,707
distinct advertisement items withN = 235,582,879 data samples.

Each sample consists of a so-calledimpression, which in the terminology of the information
retrieval literature (e.g., see the book by Manning et al., 2008), is a list containing a user-issued
search, the advertisement presented to the user in response to the search, and a labely∈ {+1,−1}
indicating whether the user clicked on the advertisement. The ads in our data set were presented to
23,669,283 distinct users.

Transforming an impression into a useable set of regressorsx is non-trivial, but the Tencent data
set provides a standard encoding. We list the features present in the data in Table 1, along with some
description of their meaning. Each text-based feature—that is, those made up of words, which are
Query, Keyword, and Title—is given a “bag-of-words” encoding (Manning et al., 2008). This en-
coding assigns each of 20,000 possible words an index, and if the word appears in the query (or Key-
word or Title feature), the corresponding index in the vectorx is set to 1. Words that do not appear
are encoded with a zero. Real-valued features, corresponding to the bottom fifteen features in Ta-
ble 1 beginning with “Age”, are binned into a fixed number of intervals[−∞,a1],(a1,a2] , . . . ,(ak,∞],
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Figure 6: The negative log-likelihood of the output of the AVGM, SAVGM , and stochastic methods
on the held-out data set for the click-through prediction task. (a) Performance of the
AVGM and SAVGM methods versus the number of splitsm of the data. (b) Performance
of SDCA and SGD baselines as a function of number of passes through theentire data
set.

each of which is assigned an index inx. (Note that the intervals and number thereof vary per feature,
and the dimension of the features listed in Table 1 corresponds to the number of intervals). When a
feature falls into a particular bin, the corresponding entry ofx is assigned a 1, and otherwise the en-
tries ofx corresponding to the feature are 0. Each feature has one additional value for “unknown.”
The remaining categorical features—gender, advertiser, and advertisement ID (AdID)—are also
given {0,1} encodings, where only one index ofx corresponding to the feature may be non-zero
(which indicates the particular gender, advertiser, or AdID). This combination of encodings yields
a binary-valued covariate vectorx∈ {0,1}d with d = 741,725 dimensions. Note also that the fea-
tures incorporate information about the user, advertisement, and query issued, encoding information
about their interactions into the model.

Our goal is to predict the probability of a user clicking a given advertisement as a function of
the covariates in Table 1. To do so, we use a logistic regression model to estimate the probability of
a click response

P(y= 1 | x;θ) :=
1

1+exp(−〈θ,x〉) ,

whereθ ∈ R
d is the unknown regression vector. We use the negative logarithm ofP as the loss,

incorporating a ridge regularization penalty. This combination yields instantaneous loss

f (θ;(x,y)) = log(1+exp(−y〈θ,x〉))+ λ
2
‖θ‖2

2 .

In all our experiments, we assume that the population negative log-likelihoodrisk has local strong
convexity as suggested by Assumption 2. In practice, we use a small regularization parameter
λ = 10−6 to ensure fast convergence for the local sub-problems.

For this problem, we cannot evaluate the mean-squared error‖θ̂−θ∗‖2
2, as we do not know

the true optimal parameterθ∗. Consequently, we evaluate the performance of an estimateθ̂ using
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log-loss on a held-out data set. Specifically, we perform a five-fold validation experiment, where
we shuffle the data and partition it into five equal-sized subsets. For each of our five experiments,
we hold out one partition to use as the test set, using the remaining data as the training set for
inference. When studying the AVGM or SAVGM method, we compute the local estimateθi via a
trust-region Newton-based method (Nocedal and Wright, 2006) implementedby LIBSVM (Chang
and Lin, 2011).

The data set is too large to fit in the memory of most computers: in total, four splits of the
data require 55 gigabytes. Consequently, it is difficult to provide an oracle training comparison
using the fullN samples. Instead, for each experiment, we perform 10 passes of stochastic dual
coordinate ascent (SDCA) (Shalev-Shwartz and Zhang, 2012) and 10 passes of stochastic gradient
descent (SGD) through the data set to get two rough baselines of the performance attained by the
empirical minimizer for the entire training data set. Figure 6(b) shows the hold-out set log-loss
after each of the sequential passes through the training data finishes. Note that although the SDCA
enjoys faster convergence rate on the regularized empirical risk (Shalev-Shwartz and Zhang, 2012),
the plot shows that the SGD has better generalization performance.

In Figure 6(a), we show the average hold-out set log-loss (with standard errors) of the estimator
θ1 provided by the AVGM method versus number of splits of the datam, and we also plot the log-loss
of the SAVGM method using subsampling ratios ofr ∈ {.1, .25}. The plot shows that for smallm,
both AVGM and SAVGM enjoy good performance, comparable to or better than (our proxy for) the
oracle solution using allN samples. As the number of machinesm grows, however, the de-biasing
provided by the subsampled bootstrap method yields substantial improvements over the standard
AVGM method. In addition, even withm= 128 splits of the data set, the SAVGM method gives
better hold-out set performance than performing two passes of stochastic gradient on the entire data
set ofm samples; withm= 64, SAVGM enjoys performance as strong as looping through the data
four times with stochastic gradient descent. This is striking, since doing even one pass through
the data with stochastic gradient descent gives minimax optimal convergencerates (Polyak and
Juditsky, 1992; Agarwal et al., 2012). In ranking applications, ratherthan measuring negative log-
likelihood, one may wish to use a direct measure of prediction error; to that end, Figure 7 shows
plots of the area-under-the-curve (AUC) measure for the AVGM and SAVGM methods; AUC is a
well-known measure of prediction error for bipartite ranking (Manning etal., 2008). Broadly, this
plot shows a similar story to that in Figure 6.

It is instructive and important to understand the sensitivity of the SAVGM method to the value
of the resampling parameterr. We explore this question in Figure 8 usingm= 128 splits, where
we plot the log-loss of the SAVGM estimator on the held-out data set versus the subsampling ratio
r. We choosem= 128 because more data splits provide more variable performance inr. For the
soso.com ad prediction data set, the choicer = .25 achieves the best performance, but Figure 8
suggests that mis-specifying the ratio is not terribly detrimental. Indeed, whilethe performance
of SAVGM degrades to that of the AVGM method, a wide range of settings ofr give improved
performance, and there does not appear to be a phase transition to poorperformance.

6. Discussion

Large scale statistical inference problems are challenging, and the difficulty of solving them will
only grow as data becomes more abundant: the amount of data we collect is growing much faster
than the speed or storage capabilities of our computers. Our AVGM, SAVGM , and SGDAVGM meth-
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Figure 7: The area-under-the-curve (AUC) measure of ranking error for the output of the AVGM

and SAVGM methods for the click-through prediction task.
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Figure 8: The log-loss on held-out data for the SAVGM method applied withm= 128 parallel splits
of the data, plotted versus the sub-sampling rater.

ods provide strategies for efficiently solving such large-scale risk minimization problems, enjoying
performance comparable to an oracle method that is able to access the entire large data set. We
believe there are several interesting questions that remain open after this work. First, nonparametric
estimation problems, which often suffer superlinear scaling in the size of the data, may provide an
interesting avenue for further study of decomposition-based methods. Our own recent work has
addressed aspects of this challenge in the context of kernel methods fornon-parametric regression
(Zhang et al., 2013). More generally, an understanding of the interplaybetween statistical efficiency
and communication could provide an avenue for further research, and itmay also be interesting to
study the effects of subsampled or bootstrap-based estimators in other distributed environments.
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Appendix A. The Necessity of Smoothness

Here we show that some version of the smoothness conditions presented in Assumption 3 are nec-
essary for averaging methods to attain better mean-squared error than using only then samples on
a single processor. Given the loss function (5), letn0 = ∑n

i=11(Xi=0) to be the count of 0 samples.
Usingθ1 as shorthand forθ1,i , we see by inspection that the empirical minimizerθ1 is

θ1 =

{
n0
n − 1

2 whenn0 ≤ n/2

1− n
2n0

otherwise.

For simplicity, we may assume thatn is odd. In this case, we obtain that

E[θ1] =
1
4
+E

[n0

n
1(n0<n/2)

]
−E

[
n

2n0
1(n0>n/2)

]

=
1
4
+

1
2n

⌊n/2⌋

∑
i=0

(
n
i

)
i
n
− 1

2n

n

∑
i=⌈n/2⌉

(
n
i

)
n
2i

=
1
4
+

1
2n

⌊n/2⌋

∑
i=0

(
n
i

)[
i
n
− n

2(n− i)

]

by the symmetry of the binomial. Adding and subtracting1
2 from the term within the braces, noting

thatP(n0 < n/2) = 1/2, we have the equality

E[θ1] =
1
2n

⌊n/2⌋

∑
i=0

(
n
i

)[
i
n
− n

2(n− i)
+

1
2

]
=

1
2n

⌊n/2⌋

∑
i=0

(
n
i

)
i(n−2i)
2n(n− i)

.

If Z is distributed normally with mean 1/2 and variance 1/(4n), then an asymptotic expansion of
the binomial distribution yields

(
1
2

)n ⌊n/2⌋

∑
i=0

(
n
i

)
i(n−2i)
2n(n− i)

= E

[
Z(1−2Z)

2−2Z
| 0≤ Z ≤ 1

2

]
+o(n−1/2)

≥ 1
2
E

[
Z−2Z2 | 0≤ Z ≤ 1

2

]
+o(n−1/2) = Ω(n−

1
2 ),

the final equality following from standard calculations, sinceE[|Z|] = Ω(n−1/2).
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Appendix B. Proof of Theorem 1

Although Theorem 1 is in terms of bounds on 8th order moments, we prove a somewhat more
general result in terms of a set of(k0,k1,k2) moment conditions given by

E[‖∇ f (θ;X)‖k0
2 ]≤ Gk0, E[

∣∣∣∣∣∣∇2 f (θ;X)−∇2F0(θ)
∣∣∣∣∣∣k1

2 ]≤ Hk1,

E[L(X)k2]≤ Lk2 and E[(L(X)−E[L(X)])k2]≤ Lk2

for θ ∈ U . (Recall the definition ofU prior to Assumption 3). Doing so allows sharper control if
higher moment bounds are available. The reader should recall throughout our arguments that we
have assumed min{k0,k1,k2} ≥ 8. Throughout the proof, we useF1 andθ1 to indicate the local
empirical objective and empirical minimizer of machine 1 (which have the same distribution as
those of the other processors), and we recall the notation 1(E) for the indicator function of the event
E .

Before beginning the proof of Theorem 1 proper, we begin with a simple inequality that relates
the error termθ − θ∗ to an average of the errorsθi − θ∗, each of which we can bound in turn.
Specifically, a bit of algebra gives us that

E[
∥∥θ−θ∗∥∥2

2] = E

[∥∥∥∥
1
m

m

∑
i=1

θi −θ∗
∥∥∥∥

2

2

]

=
1

m2

m

∑
i=1

E[‖θi −θ∗‖2
2]+

1
m2 ∑

i 6= j

E[
〈
θi −θ∗,θ j −θ∗〉]

≤ 1
m
E[‖θ1−θ∗‖2

2]+
m(m−1)

m2 ‖E[θ1−θ∗]‖2
2

≤ 1
m
E[‖θ1−θ∗‖2

2]+‖E[θ1−θ∗]‖2
2 . (19)

Here we used the definition of the averaged vectorθ and the fact that fori 6= j, the vectorsθi andθ j

are statistically independent, they are functions of independent samples. The upper bound (19) illu-
minates the path for the remainder of our proof: we bound each ofE[‖θi −θ∗‖2

2] and‖E[θi −θ∗]‖2
2.

Intuitively, since our objective is locally strongly convex by Assumption 2, the empirical minimiz-
ing vectorθ1 is a nearly unbiased estimator forθ∗, which allows us to prove the convergence rates
in the theorem.

We begin by defining three events—which we (later) show hold with high probability—that
guarantee the closeness ofθ1 and θ∗. In rough terms, when these events hold, the functionF1

behaves similarly to the population riskF0 around the pointθ∗; sinceF0 is locally strongly convex,
the minimizerθ1 of F1 will be close toθ∗. Recall that Assumption 3 guarantees the existence of a
ball Uρ = {θ ∈ R

d : ‖θ−θ∗‖2 < ρ} of radiusρ ∈ (0,1) such that

∣∣∣∣∣∣∇2 f (θ;x)−∇2 f (θ′;x)
∣∣∣∣∣∣

2 ≤ L(x)
∥∥θ−θ′∥∥

2

for all θ,θ′ ∈ Uρ and anyx, whereE[L(X)k2] ≤ Lk2. In addition, Assumption 2 guarantees that
∇2F0(θ∗) � λI . Now, choosing the potentially smaller radiusδρ = min{ρ,ρλ/4L}, we can define
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the three “good” events

E0 :=

{
1
n

n

∑
i=1

L(Xi)≤ 2L

}
,

E1 :=

{∣∣∣∣∣∣∇2F1(θ∗)−∇2F0(θ∗)
∣∣∣∣∣∣

2 ≤
ρλ
2

}
, and (20)

E2 :=

{
‖∇F1(θ∗)‖2 ≤

(1−ρ)λδρ

2

}
.

We then have the following lemma:

Lemma 6 Under the eventsE0, E1, andE2 previously defined(20), we have

‖θ1−θ∗‖2 ≤
2‖∇F1(θ∗)‖2

(1−ρ)λ
, and ∇2F1(θ)� (1−ρ)λId×d.

The proof of Lemma 6 relies on some standard optimization guarantees relating gradients to mini-
mizers of functions (e.g., Boyd and Vandenberghe, 2004, Chapter 9),although some care is required
since smoothness and strong convexity hold only locally in our problem. As theargument is some-
what technical, we defer it to Appendix E.

Our approach from here is to give bounds onE[‖θ1−θ∗‖2
2] and‖E[θ1−θ∗]‖2

2 by careful Taylor

expansions, which allows us to boundE[
∥∥θ1−θ∗∥∥2

2] via our initial expansion (19). We begin by
noting that whenever the eventsE0, E1, andE2 hold, then∇F1(θ1) = 0, and moreover, by a Taylor
series expansion of∇F1 betweenθ∗ andθ1, we have

0= ∇F1(θ1) = ∇F1(θ∗)+∇2F1(θ′)(θ1−θ∗)

whereθ′ = κθ∗+(1−κ)θ1 for someκ ∈ [0,1]. By adding and subtracting terms, we have

0= ∇F1(θ∗)+(∇2F1(θ′)−∇2F1(θ∗))(θ1−θ∗)

+(∇2F1(θ∗)−∇2F0(θ∗))(θ1−θ∗)+∇2F0(θ∗)(θ1−θ∗). (21)

Since∇2F0(θ∗) � λI , we can define the inverse Hessian matrixΣ−1 := [∇2F0(θ∗)]−1, and setting
∆ := θ1−θ∗, we multiply both sides of the Taylor expansion (21) byΣ−1 to obtain the relation

∆ =−Σ−1∇F1(θ∗)+Σ−1(∇2F1(θ∗)−∇2F1(θ′))∆+Σ−1(∇2F0(θ∗)−∇2F1(θ∗))∆. (22)

Thus, if we define the matricesP = ∇2F0(θ∗)−∇2F1(θ∗) andQ = ∇2F1(θ∗)−∇2F1(θ′), equal-
ity (22) can be re-written as

θ1−θ∗ =−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗). (23)

Note that Equation (23) holds when the conditions of Lemma 6 hold, and otherwise we may simply
assert only that‖θ1−θ∗‖2 ≤ R. Roughly, we expect the final two terms in the error expansion (23)
to be of smaller order than the first term, since we hope thatθ1−θ∗ → 0 and additionally that the
Hessian differences decrease to zero at a sufficiently fast rate. We now formalize this intuition.

Inspecting the Taylor expansion (23), we see that there are several terms of a form similar to
(∇2F0(θ∗)−∇2F1(θ∗))(θ1−θ∗); using the smoothness Assumption 3, we can convert these terms
into higher order terms involving onlyθ1 − θ∗. Thus, to effectively control the expansions (22)
and (23), we must show that higher order terms of the formE[‖θ1−θ∗‖k

2], for k ≥ 2, decrease
quickly enough inn.
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B.0.1 CONTROL OFE[‖θ1−θ∗‖k
2]

Recalling the events (20), we defineE := E0∩E1∩E2 and then observe that

E[‖θ1−θ∗‖k
2] = E[1(E) ‖θ1−θ∗‖k

2]+E[1(Ec) ‖θ1−θ∗‖k
2]

≤
2k
E[1(E) ‖∇F1(θ∗)‖k

2]

(1−ρ)kλk +P(Ec)Rk

≤ 2k
E[‖∇F1(θ∗)‖k

2]

(1−ρ)kλk +P(Ec)Rk,

where we have used the bound‖θ−θ∗‖2 ≤ R for all θ ∈ Θ, from Assumption 1. Our goal is to
prove thatE[‖∇F1(θ∗)‖k

2] = O(n−k/2) and thatP(Ec) = O(n−k/2). We move forward with a two
lemmas that lay the groundwork for proving these two facts:

Lemma 7 Under Assumption 3, there exist constants C and C′ (dependent only on the moments k0

and k1 respectively) such that

E[‖∇F1(θ∗)‖k0
2 ]≤C

Gk0

nk0/2
, and (24)

E[
∣∣∣∣∣∣∇2F1(θ∗)−∇2F0(θ∗)

∣∣∣∣∣∣k1

2 ]≤C′ logk1/2(2d)Hk1

nk1/2
. (25)

See Appendix F for the proof of this claim.
As an immediate consequence of Lemma 7, we see that the eventsE1 andE2 defined by (20)

occur with reasonably high probability. Indeed, recalling thatE = E0∩E1∩E2, Boole’s law and
the union bound imply

P(Ec) = P(Ec
0 ∪Ec

1 ∪Ec
2)

≤ P(Ec
0)+P(Ec

1)+P(Ec
2)

≤ E[|1
n ∑n

i=1L(Xi)−E[L(X)]|k2]

Lk2
+

2k1E[
∣∣∣∣∣∣∇2F1(θ∗)−∇2F0(θ∗)

∣∣∣∣∣∣k1

2 ]

ρk1λk1
+

2k0E[‖∇F1(θ∗)‖k0
2 ]

(1−ρ)k0λk0δk0
ρ

≤C2
1

nk2/2
+C1

logk1/2(2d)Hk1

nk1/2
+C0

Gk0

nk0/2
(26)

for some universal constantsC0,C1,C2, where in the second-to-last line we have invoked the moment
bound in Assumption 3. Consequently, we find that

P(Ec)Rk = O(Rk(n−k1/2+n−k2/2+n−k0/2) for anyk∈ N.

In summary, we have proved the following lemma:

Lemma 8 Let Assumptions 2 and 3 hold. For any k∈ N with k≤ min{k0,k1,k2}, we have

E[‖θ1−θ∗‖k
2] = O

(
n−k/2 · Gk

(1−ρ)kλk +n−k0/2+n−k1/2+n−k2/2
)
= O

(
n−k/2

)
,

where the order statements hold as n→+∞.
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Now recall the matrixQ = ∇2F1(θ∗)−∇2F1(θ′) defined following Equation (22). The following
result controls the moments of its operator norm:

Lemma 9 For k≤ min{k2,k1,k0}/2, we haveE[|||Q|||k2] = O(n−k/2).

Proof We begin by using Jensen’s inequality and Assumption 3 to see that

|||Q|||k ≤ 1
n

n

∑
i=1

∣∣∣∣∣∣∇2 f (θ′;Xi)−∇2 f (θ∗;Xi)
∣∣∣∣∣∣k ≤ 1

n

n

∑
i=1

L(Xi)
k
∥∥θ′−θ∗∥∥k

2 .

Now we apply the Cauchy-Schwarz inequality and Lemma 8, thereby obtaining

E[|||Q|||k2]≤ E

[(
1
n

n

∑
i=1

L(Xi)
k
)2
] 1

2

E

[
‖θ1−θ∗‖2k

2

] 1
2
= O

(
Lk Gk

(1−ρ)kλk n−k/2
)
,

where we have used Assumption 3 again.

Lemma 8 allows us to control the first term from our initial bound (19) almost immediately.
Indeed, using our last Taylor expansion (23) and the definition of the eventE = E0∩E1∩E2, we
have

E[‖θ1−θ∗‖2
2] = E

[
1(E)

∥∥−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗)
∥∥2

2

]
+E[1(Ec) ‖θ1−θ∗‖2

2]

≤ 2E
[∥∥Σ−1∇F1(θ∗)

∥∥2
2

]
+2E

[∥∥Σ−1(P+Q)(θ1−θ∗)
∥∥2

2

]
+P(Ec)R2,

where we have applied the inequality(a+b)2 ≤ 2a2+2b2. Again using this same inequality, then
applying Cauchy-Schwarz and Lemmas 8 and 9, we see that

E

[∥∥Σ−1(P+Q)(θ1−θ∗)
∥∥2

2

]
≤ 2

∣∣∣∣∣∣Σ−1
∣∣∣∣∣∣2

2

(
E[|||P|||22‖θ1−θ∗‖2

2]+E[|||Q|||22‖θ1−θ∗‖2
2]
)

≤ 2
∣∣∣∣∣∣Σ−1

∣∣∣∣∣∣2
2

(√
E[|||P|||42]E[‖θ1−θ∗‖4

2]+

√
E[|||Q|||42]E[‖θ1−θ∗‖4

2]

)

= O(n−2),

where we have used the fact that min{k0,k1,k2} ≥ 8 to apply Lemma 9. Combining these results,
we obtain the upper bound

E[‖θ1−θ∗‖2
2]≤ 2E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]
+O(n−2), (27)

which completes the first part of our proof of Theorem 1.

B.0.2 CONTROL OF‖E[θ1−θ∗]‖2
2

It remains to consider the‖E[θ1−θ∗]‖2
2 term from our initial error inequality (19). When the

events (20) occur, we know that all derivatives exist, so we may recursively apply our expansion (23)
of θ1−θ∗ to find that

θ1−θ∗ =−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗)

=−Σ−1∇F1(θ∗)+Σ−1(P+Q)
[
−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗)

]
︸ ︷︷ ︸

=:v

(28)
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where we have introducedv as shorthand for the vector on the right hand side. Thus, with a bit of
algebraic manipulation we obtain the relation

θ1−θ∗ = 1(E)v+1(Ec)(θ1−θ∗) = v+1(Ec)(θ1−θ∗)−1(Ec)v= v+1(Ec)(θ1−θ∗−v). (29)

Now note thatE[∇F1(θ∗)] = 0 thus

E[v] = E
[
−Σ−1∇F1(θ∗)+Σ−1(P+Q)[−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗)]

]

= E
[
Σ−1(P+Q)Σ−1 [(P+Q)(θ1−θ∗)−∇F1(θ∗)]

]
.

Thus, by re-substituting the appropriate quantities in (29) and applying the triangle inequality, we
have

‖E[θ1−θ∗]‖2

≤
∥∥E[Σ−1(P+Q)Σ−1((P+Q)(θ1−θ∗)−∇F1(θ∗))]

∥∥
2+
∥∥E[1(Ec)(θ1−θ∗−v)]

∥∥
2

≤
∥∥E[Σ−1(P+Q)Σ−1((P+Q)(θ1−θ∗)−∇F1(θ∗))]

∥∥
2+E[1(Ec) ‖θ1−θ∗‖2]

+E
[
1(Ec)

∥∥−Σ−1∇F1(θ∗)+Σ−1(P+Q)Σ−1 [−∇F1(θ∗)+(P+Q)(θ1−θ∗)]
∥∥

2

]
. (30)

Since‖θ1−θ∗‖2 ≤ Rby assumption, we have

E[1(Ec) ‖θ1−θ∗‖2]≤ P(Ec)R
(i)
= O(Rn−k/2)

for anyk≤ min{k2,k1,k0}, where step (i) follows from the inequality (26). Hölder’s inequality also
yields that

E
[
1(Ec)

∥∥Σ−1(P+Q)Σ−1∇F1(θ∗)
∥∥

2

]
≤ E

[
1(Ec)

∣∣∣∣∣∣Σ−1(P+Q)
∣∣∣∣∣∣

2

∥∥Σ−1∇F1(θ∗)
∥∥

2

]

≤
√
P(Ec)E

[∣∣∣∣∣∣Σ−1(P+Q)
∣∣∣∣∣∣4

2

]1/4
E

[∥∥Σ−1∇F1(θ∗)
∥∥4

2

]1/4
.

Recalling Lemmas 7 and 9, we haveE[
∣∣∣∣∣∣Σ−1(P+Q)

∣∣∣∣∣∣4
2] = O(log2(d)n−2), and we similarly have

E[
∥∥Σ−1∇F1(θ∗)

∥∥4
2] = O(n−2). Lastly, we haveP(Ec) = O(n−k/2) for k ≤ min{k0,k1,k2}, whence

we find that for any suchk,

E
[
1(Ec)

∥∥Σ−1(P+Q)Σ−1∇F1(θ∗)
∥∥

2

]
= O

(√
log(d)n−k/4−1

)
.

We can similarly apply Lemma 8 to the last remaining term in the inequality (30) to obtain that for
anyk≤ min{k2,k1,k0},

E
[
1(Ec)

∥∥−Σ−1∇F1(θ∗)+Σ−1(P+Q)
[
−Σ−1∇F1(θ∗)+Σ−1(P+Q)(θ1−θ∗)

]∥∥
2

]

= O(n−k/2+n−k/4−1).

Applying these two bounds, we find that

‖E[θ1−θ∗]‖2 ≤
∥∥E
[
Σ−1(P+Q)Σ−1((P+Q)(θ1−θ∗)−∇F1(θ∗))

]∥∥
2+O(n−k) (31)

for anyk such thatk≤ min{k0,k1,k2}/2 andk≤ min{k0,k1,k2}/4+1.
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In the remainder of the proof, we show that part of the bound (31) still consists only of higher-
order terms, leaving us with an expression not involvingθ1−θ∗. To that end, note that

E

[∥∥Σ−1(P+Q)Σ−1(P+Q)(θ1−θ∗)
∥∥2

2

]
= O(n−3)

by three applications of Ḧolder’s inequality, the fact that‖Ax‖2 ≤ |||A|||2‖x‖2, and Lemmas 7, 8
and 9. Coupled with our bound (31), we use the fact that(a+b)2 ≤ 2a2+2b2 to obtain

‖E[θ1−θ∗]‖2
2 ≤ 2

∥∥E[Σ−1(P+Q)Σ−1∇F1(θ∗)]
∥∥2

2+O(n−3). (32)

We focus on bounding the remaining expectation. We have the following series of inequalities:

∥∥E[Σ−1(P+Q)Σ−1∇F1(θ∗)]
∥∥

2

(i)
≤ E

[∣∣∣∣∣∣Σ−1(P+Q)
∣∣∣∣∣∣

2

∥∥Σ−1∇F1(θ∗)
∥∥

2

]

(ii)
≤
(
E

[∣∣∣∣∣∣Σ−1(P+Q)
∣∣∣∣∣∣2

2

]
E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]) 1
2

(iii )
≤
(

2E
[∣∣∣∣∣∣Σ−1P

∣∣∣∣∣∣2
2+
∣∣∣∣∣∣Σ−1Q

∣∣∣∣∣∣2
2

]
E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]) 1
2
.

Here step (i) follows from Jensen’s inequality and the fact that‖Ax‖2 ≤ |||A|||2‖x‖2; step (ii) uses the
Cauchy-Schwarz inequality; and step (iii) follows from the fact that(a+b)2 ≤ 2a2+2b2. We have
already bounded the first two terms in the product in our proofs; in particular, Lemma 7 guarantees
thatE[|||P|||22]≤CH logd/n, while

E[|||Q|||22]≤ E

[
1
n

n

∑
i=1

L(Xi)
4
] 1

2

E[‖θ1−θ∗‖4
2]

1
2 ≤C

L2G2

(1−ρ)2λ2 ·n
−1

for some numerical constantC (recall Lemma 9). Summarizing our bounds on|||P|||2 and|||Q|||2, we
have

∥∥E
[
Σ−1(P+Q)Σ−1∇F1(θ∗)

]∥∥2
2

≤ 2
∣∣∣∣∣∣Σ−1

∣∣∣∣∣∣2
2

(
2H2(logd+1)

n
+2C

L2G2

(1−ρ)2λ2n
+O(n−2)

)
E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]
. (33)

From Assumption 3 we know thatE[‖∇F1(θ∗)‖2
2] ≤ G2/n and

∣∣∣∣∣∣Σ−1
∣∣∣∣∣∣

2 ≤ 1/λ, and hence we can
further simplify the bound (33) to obtain

‖E[θ1−θ∗]‖2
2 ≤

C
λ2

(
H2 logd+L2G2/λ2(1−ρ)2

n

)
E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]
+O(n−3)

=
C
λ2

(
H2 logd+L2G2/λ2(1−ρ)2

n2

)
E

[∥∥Σ−1∇ f (θ∗;X)
∥∥2

2

]
+O(n−3)

for some numerical constantC, where we have applied our earlier inequality (32). Noting that we
may (without loss of generality) takeρ < 1

2, then applying this inequality with the bound (27) on
E[‖θ1−θ∗‖2

2] we previously proved to our decomposition (19) completes the proof.

3348



COMMUNICATION -EFFICIENT ALGORITHMS FORSTATISTICAL OPTIMIZATION

Appendix C. Proof of Theorem 4

Our proof of Theorem 4 begins with a simple inequality that mimics our first inequality (19) in
the proof of Theorem 1. Recall the definitions of the averaged vectorθ1 and subsampled averaged
vectorθ2. Let θ1 denote the minimizer of the (an arbitrary) empirical riskF1, andθ2 denote the
minimizer of the resampled empirical riskF2 (from the same samples asθ1). Then we have

E

[∥∥∥∥
θ1− rθ2

1− r
−θ∗

∥∥∥∥
2

2

]
≤
∥∥∥∥E
[

θ1− rθ2

1− r
−θ∗

]∥∥∥∥
2

2
+

1
m
E

[∥∥∥∥
θ1− rθ2

1− r
−θ∗

∥∥∥∥
2

2

]
. (34)

Thus, parallel to our proof of Theorem 1, it suffices to bound the two terms in the decomposition (34)
separately. Specifically, we prove the following two lemmas.

Lemma 10 Under the conditions of Theorem 4,

∥∥∥∥E
[

θ1− rθ2

1− r
−θ∗

]∥∥∥∥
2

2
≤ O(1)

1
r(1− r)2

(
M2G6

λ6 +
G4L2

λ4 d logd

)
1
n3 . (35)

Lemma 11 Under the conditions of Theorem 4,

E

[
‖θ1−θ∗− r(θ2−θ∗)‖2

2

]
≤ (2+3r)E

[∥∥∇2F0(θ∗)−1∇F1(θ∗)
∥∥2

2

]
+O(n−2) (36)

In conjunction, Lemmas 10 and 11 coupled with the decomposition (34) yield the desired claim.
Indeed, applying each of the lemmas to the decomposition (34), we see that

E

[∥∥∥∥
θ1− rθ2

1− r
−θ∗

∥∥∥∥
2

2

]
≤ 2+3r

(1− r)2m
E

[∥∥∇2F0(θ∗)−1∇F1(θ∗)
∥∥2

2

]

+O

(
1

(1− r)2m−1n−2
)
+O

(
1

r(1− r)2n−3
)
,

which is the statement of Theorem 4.
The remainder of our argument is devoted to establishing Lemmas 10 and 11. Before providing

their proofs (in Appendices C.3 and C.4 respectively), we require some further set-up and auxiliary
results. Throughout the rest of the proof, we use the notation

Y =Y′+Rk

for some random variablesY andY′ to mean that there exists a random variableZ such thatY =
Y′+Z andE[‖Z‖2

2] = O(n−k).1 The symbolRk may indicate different random variables throughout
a proof and is notational shorthand for a moment-based big-O notation. We also remark that if we
haveE[‖Z‖2

2] = O(akn−k), we haveZ = ak/2Rk, since(ak/2)2 = ak. For shorthand, we also say that
E[Z] = O(h(n)) if ‖E[Z]‖2 = O(h(n)), which implies that ifZ = Rk thenE[Z] = O(n−k/2), since

‖E[Z]‖2 ≤
√
E[‖Z‖2

2] = O(n−k/2).

1. Formally, in our proof this will mean that there exist random vectorsY, Y′, andZ that are measurable with respect to
theσ-field σ(X1, . . . ,Xn), whereY =Y′+Z andE[‖Z‖2

2] = O(n−k).
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C.1 Optimization Error Expansion

In this section, we derive a sharper asymptotic expansion of the optimization errorsθ1−θ∗. Recall
our definition of the Kronecker product⊗, where for vectorsu,v we haveu⊗ v = uv⊤. With this
notation, we have the following expansion ofθ1−θ∗. In these lemmas,R3 denotes a vectorZ for
whichE[‖Z‖2

2]≤ cn−3 for a numerical constantc.

Lemma 12 Under the conditions of Theorem 4, we have

θ1−θ∗ =−Σ−1∇F1(θ∗)+Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗) (37)

−Σ−1∇3F0(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)

+
(
M2G6/λ6+G4L2d log(d)/λ4)R3.

We prove Lemma 12 in Appendix G. The lemma requires careful moment controlover the expan-
sion θ1 − θ∗, leading to some technical difficulty, but is similar in spirit to the results leading to
Theorem 1.

An immediately analogous result to Lemma 12 follows for our sub-sampled estimators. Since
we use⌈rn⌉ samples to computeθ2, the second level estimator, we find

Lemma 13 Under the conditions of Theorem 4, we have

θ2−θ∗ =−Σ−1∇F2(θ∗)+Σ−1(∇2F2(θ∗)−Σ)Σ−1∇F2(θ∗)

−Σ−1∇3F0(θ∗)
(
(Σ−1∇F2(θ∗))⊗ (Σ−1∇F2(θ∗))

)

+ r−
3
2
(
M2G6/λ6+G4L2d log(d)/λ4)R3.

C.2 Bias Correction

Now that we have given Taylor expansions that describe the behaviourof θ1 − θ∗ and θ2 − θ∗,
we can prove Lemmas 10 and 11 (though, as noted earlier, we defer the proof of Lemma 11 to
Appendix C.4). The key insight is that expectations of terms involving∇F2(θ∗) are nearly the same
as expectations of terms involving∇F1(θ∗), except that some corrections for the sampling ratior
are necessary.

We begin by noting that

θ1− rθ2

1− r
−θ∗ =

θ1−θ∗

1− r
− r

θ2−θ∗

1− r
. (38)

In Lemmas 12 and 13, we derived expansions for each of the right handside terms, and since

E[Σ−1∇F1(θ∗)] = 0 and E[Σ−1∇F2(θ∗)] = 0,

Lemmas 12 and 13 coupled with the rewritten correction (38) yield

E[θ1−θ∗− r(θ2−θ∗)] =−rE[Σ−1(∇2F2(θ∗)−Σ)Σ−1∇F2(θ∗)]

+E[Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗)]

+ rE[Σ−1∇3F0(θ∗)
(
(Σ−1∇F2(θ∗))⊗ (Σ−1∇F2(θ∗))

)
]

−E[Σ−1∇3F0(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)
]

+O(1)r−1/2(M2G6/λ6+G4L2d log(d)/λ4)n−3/2. (39)

Here the remainder terms follow because of ther−3/2R3 term onθ2−θ∗.
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C.3 Proof of Lemma 10

To prove the claim in the lemma, it suffices to show that

rE[Σ−1(∇2F2(θ∗)−Σ)Σ−1∇F2(θ∗)] = E[Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗)] (40)

and

rE[Σ−1∇3F0(θ∗)
(
(Σ−1∇F2(θ∗))⊗ (Σ−1∇F2(θ∗))

)
]

= E[Σ−1∇3F0(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)
] (41)

Indeed, these two claims combined with the expansion (39) yield the bound (35) in Lemma 10
immediately.

We first consider the difference (40). To make things notationally simpler, we define functions
A : X → R

d×d andB : X → R
d via A(x) := Σ−1(∇2 f (θ∗;x)−Σ) andB(x) := Σ−1∇ f (θ∗;x). If we

let S1 = {X1, . . . ,Xn} be the original samples andS2 = {Y1, . . . ,Yrn} be the subsampled data set, we
must show

rE

[
1

(rn)2

rn

∑
i, j

A(Yi)B(Yj)

]
= E

[
1
n2

n

∑
i, j

A(Xi)B(Xj)

]
.

Since theYi are sampled without replacement (i.e., fromPdirectly), andE[A(Xi)] = 0 andE[B(Xi)] =
0, we find thatE[A(Yi)B(Yj)] = 0 for i 6= j, and thus

rn

∑
i, j

E[A(Yi)B(Yj)] =
rn

∑
i=1

E[A(Yi)B(Yi)] = rnE[A(Y1)B(Y1)].

In particular, we see that the equality (40) holds:

r
(rn)2

rn

∑
i, j

E[A(Yi)B(Yj)] =
r
rn

E[A(Y1)B(Y1)] =
1
n
E[A(X1)B(X1)]

=
1
n2

n

∑
i, j

E[A(Xi)B(Xj)].

The statement (41) follows from analogous arguments.

C.4 Proof of Lemma 11

The proof of Lemma 11 follows from that of Lemmas 12 and 13. We first claim that

θ1−θ∗ =−Σ−1∇F1(θ∗)+R2 and θ2−θ∗ =−Σ−1∇F2(θ∗)+ r−1R2. (42)

The proofs of both claims similar, so we focus on proving the second statement. Using the inequality
(a+b+c)2 ≤ 3(a2+b2+c2) and Lemma 13, we see that

E

[∥∥θ2−θ∗+Σ−1∇F2(θ∗)
∥∥2

2

]
≤ 3E

[∥∥Σ−1(∇2F2(θ∗)−Σ)Σ−1∇F2(θ∗)
∥∥2

2

]

+3E
[∥∥Σ−1∇3F0(θ∗)

(
(Σ−1∇F2(θ∗))⊗ (Σ−1∇F2(θ∗))

)∥∥2
2

]

+3r−3O(n−3). (43)
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We now bound the first two terms in inequality (43). Applying the Cauchy-Schwarz inequality and
Lemma 7, the first term can be upper bounded as

E

[∥∥Σ−1(∇2F2(θ∗)−Σ)Σ−1∇F2(θ∗)
∥∥2

2

]

≤
(
E

[∣∣∣∣∣∣Σ−1(∇2F2(θ∗)−Σ)
∣∣∣∣∣∣4

2

]
E

[∥∥Σ−1∇F2(θ∗)
∥∥4

2

])1/2

=
(
r−2)O(log2(d)n−2) · r−2O(n−2)

)1/2
= r−2O(n−2),

where the order notation subsumes the logarithmic factor in the dimension. Since∇3F0(θ∗) : Rd2 →
R

d is linear, the second term in the inequality (43) may be bounded completely analogously as
it involves the outer productΣ−1∇F2(θ∗)⊗Σ−1∇F2(θ∗). Recalling the bound (43), we have thus
shown that

E

[∥∥θ2−θ∗+Σ−1∇F2(θ∗)
∥∥2

2

]
= r−2O(n−2),

or θ2 − θ∗ = −Σ−1∇F2(θ∗) + r−1R2. The proof of the first equality in Equation (42) is entirely
analogous.

We now apply the equalities (42) to obtain the result of the lemma. We have

E

[
‖θ1−θ∗− r(θ2−θ∗)‖2

2

]
= E

[∥∥−Σ−1∇F1(θ∗)+ rΣ−1∇F2(θ∗)+R2
∥∥2

2

]
.

Using the inequality(a+b)2 ≤ (1+η)a2+(1+1/η)b2 for anyη ≥ 0, we have

(a+b+c)2 ≤ (1+η)a2+(1+1/η)(b+c)2

≤ (1+η)a2+(1+1/η)(1+α)b2+(1+1/η)(1+1/α)c2

for anyη,α ≥ 0. Takingη = 1 andα = 1/2, we obtain(a+b+c)2 ≤ 2a2+3b2+6c2, so applying
the triangle inequality, we have

E

[
‖θ1−θ∗− r(θ2−θ∗)‖2

2

]
= E

[∥∥−Σ−1∇F1(θ∗)+ rΣ−1∇F2(θ∗)+R2
∥∥2

2

]
(44)

≤ 2E
[∥∥Σ−1∇F1(θ∗)

∥∥2
2

]
+3r2

E

[∥∥Σ−1∇F2(θ∗)
∥∥2

2

]
+O(n−2).

SinceF2 is a sub-sampled version ofF1, algebraic manipulations yield

E

[∥∥Σ−1∇F2(θ∗)
∥∥2

2

]
=

n
rn

E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]
=

1
r
E

[∥∥Σ−1∇F1(θ∗)
∥∥2

2

]
. (45)

Combining equations (44) and (45), we obtain the desired bound (36).

Appendix D. Proof of Theorem 5

We begin by recalling that ifθn denotes the output of performing stochastic gradient on one machine,
then from the inequality (19) we have the upper bound

E[
∥∥θn−θ∗∥∥2

2]≤
1
m
E[‖θn−θ∗‖2

2]+‖E[θn−θ∗]‖2
2 .
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To prove the error bound (15), it thus suffices to prove the inequalities

E[‖θn−θ∗‖2
2]≤

αG2

λ2n
, and (46)

‖E[θn−θ∗]‖2
2 ≤

β2

n3/2
. (47)

Before proving the theorem, we introduce some notation and a few preliminaryresults. Letgt =
∇ f (θt ;Xt) be the gradient of thetth sample in stochastic gradient descent, where we consider run-
ning SGD on a single machine. We also let

Π(v) := argmin
θ∈Θ

{
‖θ−v‖2

2

}

denote the projection of the pointv onto the domainΘ.
We now state a known result, which gives sharp rates on the convergence of the iterates{θt} in

stochastic gradient descent.

Lemma 14 (Rakhlin et al., 2012)Assume thatE[‖gt‖2
2]≤ G2 for all t. Choosingηt =

c
λt for some

c≥ 1, for any t∈ N we have

E

[∥∥θt −θ∗∥∥2
2

]
≤ αG2

λ2t
where α = 4c2.

With these ingredients, we can now turn to the proof of Theorem 5. Lemma 14 gives the
inequality (46), so it remains to prove thatθn

has the smaller bound (47) on its bias. To that end,
recall the neighborhoodUρ ⊂ Θ in Assumption 5, and note that

θt+1−θ∗ = Π(θt −ηtgt −θ∗)

= θt −ηtgt −θ∗+1(θt+1 6∈Uρ)
(
Π(θt −ηtgt)− (θt −ηtgt)

)

since whenθ ∈Uρ, we haveΠ(θ) = θ. Consequently, an application of the triangle inequality gives
∥∥E[θt+1−θ∗]

∥∥
2 ≤

∥∥E[θt −ηtgt −θ∗]
∥∥

2+E[
∥∥(Π(θt −ηtgt)− (θt −ηtgt))1(θt+1 /∈Uρ)

∥∥
2].

By the definition of the projection and the fact thatθt ∈ Θ, we additionally have
∥∥Π(θt −ηtgt)− (θt −ηtgt)

∥∥
2 ≤

∥∥θt − (θt −ηtgt))
∥∥

2 ≤ ηt ‖gt‖2 .

Thus, by applying Ḧolder’s inequality (with the conjugate choices(p,q) = (4, 4
3)) and Assump-

tion 5, we have
∥∥E[θt+1−θ∗]

∥∥
2 ≤

∥∥E[θt −ηtgt −θ∗]
∥∥

2+ηtE[‖gt‖21(θt+1 6∈Uρ)]

≤
∥∥E[θt −ηtgt −θ∗]

∥∥
2+ηt

4
√

E[‖gt‖4
2]

(
E[14/3

(θt 6∈Uρ)
]

)3/4

≤
∥∥E[θt −ηtgt −θ∗]

∥∥
2+ηtG

(
P(θt 6∈Uρ)

)3/4

≤
∥∥E[θt −ηtgt −θ∗]

∥∥
2+ηtG

(
E
∥∥θt+1−θ∗∥∥2

2

ρ2

)3/4

, (48)
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the inequality (48) following from an application of Markov’s inequality. By applying Lemma 14,
we finally obtain

∥∥E[θt+1−θ∗]
∥∥

2 ≤
∥∥E[θt −ηtgt −θ∗]

∥∥
2+ηtG

(
αG2

λ2ρ2t

)3/4

=
∥∥E[θt −ηtgt −θ∗]

∥∥
2+

cα3/4G5/2

λ5/2ρ3/2
· 1

t7/4
. (49)

Now we turn to controlling the rate at whichθt − ηtgt goes to zero. Letft(·) = f (·;Xt) be
shorthand for the loss evaluated on thetth data point. By defining

rt = gt −∇ ft(θ∗)−∇2 ft(θ∗)(θt −θ∗),

a bit of algebra yields
gt = ∇ ft(θ∗)+∇2 ft(θ∗)(θt −θ∗)+ rt .

Sinceθt belongs to theσ-field of X1, . . . ,Xt−1, the Hessian∇2 ft(θ∗) is (conditionally) independent
of θt and

E[gt ] = ∇2F0(θ∗)E[θt −θ∗]+E[rt1(θt∈Uρ)]+E[rt1(θt /∈Uρ)]. (50)

If θt ∈Uρ, then Taylor’s theorem implies thatrt is the Lagrange remainder

rt = (∇2 ft(θ′)−∇2 ft(θ∗))(θ′−θ∗),

whereθ′ = κθt +(1−κ)θ∗ for someκ ∈ [0,1]. Applying Assumption 5 and Ḧolder’s inequality, we
find that sinceθt is conditionally independent ofXt ,

E

[∥∥∥rt1(θt∈Uρ)

∥∥∥
2

]
≤ E

[∣∣∣∣∣∣∇2 f (θ′;Xt)−∇2 f (θ∗;Xt)
∣∣∣∣∣∣∥∥θt −θ∗∥∥

21(θt∈Uρ)

]

≤ E

[
L(Xt)

∥∥θt −θ∗∥∥2
2

]
= E[L(Xt)]E[

∥∥θt −θ∗∥∥2
2]

≤ LE
[∥∥θt −θ∗∥∥2

2

]
≤ αLG2

λ2t
.

On the other hand, whenθt 6∈Uρ, we have the following sequence of inequalities:

E

[∥∥∥rt1(θt 6∈Uρ)

∥∥∥
2

] (i)
≤ 4
√
E[‖rt‖4

2]
(
P(θt 6∈Uρ)

)3/4

(ii)
≤ 4

√
33
(
E[‖gt‖4

2]+E[‖∇ ft(θ∗)‖4
2]+E[‖∇2 ft(θ∗)(θt −θ∗)‖4

2]
)(

P(θt 6∈Uρ)
)3/4

≤ 33/4 4
√

G4+G4+H4R4
(
P(θt 6∈Uρ)

)3/4

(iii )
≤ 3(G+HR)

(
αG2

λ2ρ2t

)3/4

.

Here step (i) follows from Ḧolder’s inequality (again applied with the conjugates(p,q) = (4, 4
3));

step (ii) follows from Jensen’s inequality, since(a+b+c)4 ≤ 33(a4+b4+c4); and step (iii) follows
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from Markov’s inequality, as in the bounds (48) and (49). Combining ourtwo bounds onrt , we find
that

E[‖rt‖2]≤
αLG2

λ2t
+

3α3/4G3/2(G+HR)

λ3/2ρ3/2
· 1

t3/4
. (51)

By combining the expansion (50) with the bound (51), we find that
∥∥E[θt −ηtgt −θ∗]

∥∥
2 =

∥∥E[(I −ηt∇2F0(θ∗))(θt −θ∗)+ηtrt ]
∥∥

2

≤
∥∥E[(I −ηt∇2F0(θ∗))(θt −θ∗)]

∥∥
2+

cαLG2

λ3t2 +
3cα3/4G3/2(G+HR)

λ5/2ρ3/2
· 1

t7/4
.

Using the earlier bound (49), this inequality then yields

∥∥E[θt+1−θ∗]
∥∥

2 ≤
∣∣∣∣∣∣I −ηt∇tF0(θ∗)

∣∣∣∣∣∣
2

∥∥E[θt −θ∗]
∥∥

2+
cα3/4G3/2

λ5/2t7/4

(
α1/4LG1/2

λ1/2t1/4
+

4G+HR

ρ3/2

)
.

We now complete the proof via an inductive argument using our immediately preceding bounds.
Our reasoning follows a similar induction given by Rakhlin et al. (2012). First, note that by strong
convexity and our condition that

∣∣∣∣∣∣∇2F0(θ∗)
∣∣∣∣∣∣≤ H, we have

∣∣∣∣∣∣I −ηt∇2F0(θ∗)
∣∣∣∣∣∣= 1−ηtλmin(∇2F0(θ∗)≤ 1−ηtλ

whenever 1−ηtH ≥ 0. Defineτ0 = ⌈cH/λ⌉; then fort ≥ t0 we obtain

∥∥E[θt+1−θ∗]
∥∥

2 ≤ (1−c/t)
∥∥E[θt −θ∗]

∥∥
2+

1

t7/4
· cα3/4G3/2

λ5/2

(
α1/4LG1/2

λ1/2t1/4
+

4G+HR

ρ3/2

)
. (52)

For shorthand, we define two intermediate variables

at =
∥∥E(θt −θ∗)

∥∥
2 and b=

cα3/4G3/2

λ5/2

(
α1/4LG1/2

λ1/2
+

4G+HR

ρ3/2

)
.

Inequality (52) then implies the inductive relationat+1 ≤ (1− c/t)at +b/t7/4. Now we show that
by definingβ = max{τ0R,b/(c−1)}, we haveat ≤ β/t3/4. Indeed, it is clear thata1 ≤ τ0R. Using
the inductive hypothesis, we then have

at+1 ≤
(1−c/t)β

t3/4
+

b

t7/4
=

β(t −1)

t7/4
− β(c−1)−b

t2 ≤ β(t −1)

t7/4
≤ β

(t +1)3/4
.

This completes the proof of the inequality (47). �

D.0.1 REMARK

If we assumekth moment bounds instead of 4th, that is,E[
∣∣∣∣∣∣∇2 f (θ∗;X)

∣∣∣∣∣∣k
2]≤Hk andE[‖gt‖k

2]≤Gk,
we find the following analogue of the bound (52):

∥∥E[θt+1−θ∗]
∥∥

2 ≤ (1−c/t)
∥∥E[θt −θ∗]

∥∥
2

+
1

t
2k−1

k

· cα
k−1

k G
2k−2

k

λ
3k−2

k

[(
541/k+1

)
G+541/kHR

ρ
2k−2

k

+
α1/kLG2/k

λ2/kt1/k

]
.
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In this case, if we define

b=
cα

k−1
k G

2k−2
k

λ
3k−2

k

[(
541/k+1

)
G+541/kHR

ρ
2k−2

k

+
α1/kLG2/k

λ2/k

]
and β = max

{
τ0R,

b
c−1

}
,

we have the same result except we obtain the bound‖E[θn−θ∗]‖2
2 ≤ β2/n

2k−2
k .

Appendix E. Proof of Lemma 6

We first prove that under the conditions given in the lemma statement, the function F1 is (1−ρ)λ-
strongly convex over the ballU :=

{
θ ∈ R

d : ‖θ−θ∗‖2 < δρ
}

aroundθ∗. Indeed, fixγ ∈ U , then
use the triangle inequality to conclude that

∣∣∣∣∣∣∇2F1(γ)−∇2F0(θ∗)
∣∣∣∣∣∣

2 ≤
∣∣∣∣∣∣∇2F1(γ)−∇2F1(θ∗)

∣∣∣∣∣∣
2+
∣∣∣∣∣∣∇2F1(θ∗)−∇2F0(θ∗)

∣∣∣∣∣∣
2

≤ L‖γ−θ∗‖2+
ρλ
2
.

Here we used Assumption 3 on the first term and the fact that the eventE1 holds on the second. By
our choice ofδρ ≤ ρλ/4L, this final term is bounded byλρ. In particular, we have

∇2F0(θ∗)� λI so ∇2F1(γ)� λI −ρλI = (1−ρ)λI ,

which proves thatF1 is (1−ρ)λ-strongly convex on the ballU .
In order to prove the conclusion of the lemma, we argue that sinceF1 is (locally) strongly

convex, if the functionF1 has small gradient at the pointθ∗, it must be the case that the minimizer
θ1 of F1 is nearθ∗. Then we can employ reasoning similar to standard analyses of optimality for
globally strongly convex functions (e.g., Boyd and Vandenberghe, 2004, Chapter 9). By definition
of (the local) strong convexity on the setU , for anyθ′ ∈ Θ, we have

F1(θ′)≥ F1(θ∗)+
〈
∇F1(θ∗),θ′−θ∗〉+ (1−ρ)λ

2
min

{∥∥θ∗−θ′∥∥2
2 ,δ

2
ρ

}
.

Rewriting this inequality, we find that

min
{∥∥θ∗−θ′∥∥2

2 ,δ
2
ρ

}
≤ 2

(1−ρ)λ
[
F1(θ′)−F1(θ∗)+

〈
∇F1(θ∗),θ′−θ∗〉]

≤ 2
(1−ρ)λ

[
F1(θ′)−F1(θ∗)+‖∇F1(θ∗)‖2

∥∥θ′−θ∗∥∥
2

]
.

Dividing each side by‖θ′−θ∗‖2, then noting that we may setθ′ = κθ1+(1−κ)θ∗ for anyκ∈ [0,1],
we have

min

{
κ‖θ1−θ∗‖2 ,

δ2
ρ

κ‖θ1−θ∗‖2

}
≤ 2[F1(κθ1+(1−κ)θ∗)−F1(θ∗)]

κ(1−ρ)λ‖θ1−θ∗‖2
+

2‖∇F1(θ∗)‖2

(1−ρ)λ
.

Of course,F1(θ1) < F1(θ∗) by assumption, so we find that for anyκ ∈ (0,1) we have the strict
inequality

min

{
κ‖θ1−θ∗‖2 ,

δ2
ρ

κ‖θ1−θ∗‖2

}
<

2‖∇F1(θ∗)‖2

(1−ρ)λ
≤ δρ,
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the last inequality following from the definition ofE2. Since this holds for anyκ ∈ (0,1), if
‖θ1−θ∗‖2 > δρ, we may setκ = δρ/‖θ1−θ∗‖2, which would yield a contradiction. Thus, we
have‖θ1−θ∗‖2 ≤ δρ, and by our earlier inequalities,

‖θ1−θ∗‖2
2 ≤

2
(1−ρ)λ

[F1(θ1)−F1(θ∗)+‖∇F1(θ∗)‖2‖θ1−θ∗‖2]≤
2‖∇F1(θ∗)‖2

(1−ρ)λ
‖θ1−θ∗‖2 .

Dividing by ‖θ1−θ∗‖2 completes the proof. �

Appendix F. Moment Bounds

In this appendix, we state two useful moment bounds, showing how they combine to provide a proof
of Lemma 7. The two lemmas are a vector and a non-commutative matrix variant of the classical
Rosenthal inequalities. We begin with the case of independent random vectors:

Lemma 15 (de Acosta, 1981, Theorem 2.1)Let k≥ 2 and Xi be a sequence of independent ran-
dom vectors in a separable Banach space with norm‖·‖ andE[‖Xi‖k] < ∞. There exists a finite
constant Ck such that

E

[∣∣∣∣
∥∥∥∥

n

∑
i=1

Xi

∥∥∥∥−E

[∥∥∥∥
n

∑
i=1

Xi

∥∥∥∥
]∣∣∣∣

k]
≤Ck



(

n

∑
i=1

E[‖Xi‖2]

)k/2

+
n

∑
i=1

E[‖Xi‖k]


 .

We say that a random matrixX is symmetrically distributed ifX and−X have the same distri-
bution. For such matrices, we have:

Lemma 16 (Chen et al., 2012, Theorem A.1(2))Let Xi ∈R
d×d be independent and symmetrically

distributed Hermitian matrices. Then

E

[∣∣∣∣
∣∣∣∣
∣∣∣∣

n

∑
i=1

Xi

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]1/k

≤
√

2elogd

∣∣∣∣
∣∣∣∣
∣∣∣∣
( n

∑
i=1

E
[
X2

i

])1/2∣∣∣∣
∣∣∣∣
∣∣∣∣+2elogd

(
E[max

i
|||Xi |||k]

)1/k

.

Equipped with these two auxiliary results, we turn to our proof Lemma 7. To prove the first
bound (24), let 2≤ k≤ k0 and note that by Jensen’s inequality, we have

E[‖∇F1(θ∗)‖k
2]≤ 2k−1

E

[∣∣‖∇F1(θ∗)‖2−E[‖∇F1(θ∗)‖2]
∣∣k
]
+2k−1

E [‖∇F1(θ∗)‖2]
k .

Again applying Jensen’s inequality,E[‖∇ f (θ∗;X)‖2
2]≤G2. Thus by recalling the definition∇F1(θ∗)=

1
n ∑n

i=1 ∇ f (θ∗;Xi) and applying the inequality

E[‖∇F1(θ∗)‖2]≤ E[‖∇F1(θ∗)‖2
2]

1/2 ≤ n−1/2G,

we see that Lemma 15 impliesE
[
‖∇F1(θ∗)‖k

2

]
is upper bounded by

2k−1Ck



(

1
n2

n

∑
i=1

E[‖∇ f (θ;Xi)‖2
2]

)k/2

+
1
nk

n

∑
i=1

E[‖∇ f (θ∗;Xi)‖k
2]


+2k−1

E[‖∇F1(θ∗)‖2]
k

≤ 2k−1 Ck

nk/2



(

1
n

n

∑
i=1

E[‖∇ f (θ∗;Xi)‖2
2]

)k/2

+
1

nk/2

n

∑
i=1

E[‖∇ f (θ∗;Xi)‖k
2]


+ 2k−1Gk

nk/2
.
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Applying Jensen’s inequality yields

(
1
n

n

∑
i=1

E[‖∇ f (θ∗;Xi)‖2
2]

)k/2

≤ 1
n

n

∑
i=1

E[‖∇ f (θ∗;Xi)‖2
2]

k/2 ≤ Gk,

completes the proof of the inequality (24).
The proof of the bound (25) requires a very slightly more delicate argument involving sym-

metrization step. Define matricesZi =
1
n

(
∇2 f (θ∗;Xi)−∇2F0(θ∗)

)
. If εi ∈{±1} are i.i.d. Rademacher

variables independent ofZi , then for any integerk in the interval[2,k2], a standard symmetrization
argument (e.g., Ledoux and Talagrand, 1991, Lemma 6.3) implies that

E

[∣∣∣∣
∣∣∣∣
∣∣∣∣

n

∑
i=1

Zi

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]1/k

≤ 2E

[∣∣∣∣
∣∣∣∣
∣∣∣∣

n

∑
i=1

εiZi

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]1/k

.

Now we may apply Lemma 16, since the matricesεiZi are Hermitian and symmetrically dis-
tributed; by expanding the definition of theZi , we find that

E

[∣∣∣∣∣∣∇2F1(θ∗)−∇2F0(θ∗)
∣∣∣∣∣∣k
]1/k

≤ 5
√

logd

∣∣∣∣
∣∣∣∣
∣∣∣∣
(

1
n2

n

∑
i=1

E[(∇2 f (θ;Xi)−∇2F0(θ∗))2]

)1/2∣∣∣∣
∣∣∣∣
∣∣∣∣

+4elogd

(
n−k

E[max
i

∣∣∣∣∣∣∇2 f (θ∗;Xi)−∇2F0(θ∗)
∣∣∣∣∣∣k]
)1/k

.

Since theXi are i.i.d., we have

∣∣∣∣
∣∣∣∣
∣∣∣∣
(

1
n2

n

∑
i=1

E[(∇2 f (θ;Xi)−∇2F0(θ∗))2]

)1/2∣∣∣∣
∣∣∣∣
∣∣∣∣=
∣∣∣∣
∣∣∣∣
∣∣∣∣n

−1/2
E

[(
∇2 f (θ∗;X)−∇2F0(θ∗)

)2
]1/2

∣∣∣∣
∣∣∣∣
∣∣∣∣

≤ n−1/2
E

[∣∣∣∣∣∣∇2 f (θ∗;X)−∇2F0(θ∗)
∣∣∣∣∣∣2
]1/2

by Jensen’s inequality, since
∣∣∣∣∣∣A1/2

∣∣∣∣∣∣= |||A|||1/2 for semidefiniteA. Finally, noting that

1
nkE

[
max

i

∣∣∣∣∣∣∇2 f (θ∗;Xi)−∇2F0(θ∗)
∣∣∣∣∣∣k
]
≤ n

nkE

[∣∣∣∣∣∣∇2 f (θ∗;X)−∇2F0(θ∗)
∣∣∣∣∣∣k
]
≤ n1−kHk

completes the proof of the second bound (25).

Appendix G. Proof of Lemma 12

The proof follows from a slightly more careful application of the Taylor expansion (21). The starting
point in our proof is to recall the success events (20) and the joint eventE := E0∩E1∩E2. We
begin by arguing that we may focus on the case whereE holds. LetC denote the right hand side
of the equality (37) except for the remainderR3 term. By Assumption 3, we follow the bound (26)
(with min{k0,k1,k2} ≥ 8) to find that

E

[
1(Ec) ‖θ1−θ∗‖2

2

]
= O

(
R2n−4) ,

so we can focus on the case where the joint eventE = E0∩E1∩E2 does occur.
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Defining ∆ = θ1− θ∗ for notational convenience, onE we have that for someκ ∈ [0,1], with
θ′ = (1−κ)θ1+κθ∗,

0= ∇F1(θ∗)+∇2F1(θ∗)∆+∇3F1(θ′)(∆⊗∆)

= ∇F1(θ∗)+∇2F0(θ∗)∆+∇3F0(θ∗)(∆⊗∆)

+(∇2F1(θ∗)−∇2F0(θ∗))∆+(∇3F1(θ′)−∇3F0(θ∗))(∆⊗∆).

Now, we recall the definitionΣ = ∇2F0(θ∗), the Hessian of the risk at the optimal point, and solve
for the error∆ to see that

∆ =−Σ−1∇F1(θ∗)−Σ−1(∇2F1(θ∗)−Σ)∆−Σ−1∇3F1(θ∗)(∆⊗∆)

+Σ−1(∇3F0(θ∗)−∇3F1(θ′))(∆⊗∆) (53)

on the eventE . As we did in the proof of Theorem 1, specifically in deriving the recursive equal-
ity (28), we may apply the expansion (23) of∆ = θ1−θ∗ to obtain a clean asymptotic expansion of
∆ using (53). Recall the definitionP = ∇2F0(θ∗)−∇2F1(θ∗) for shorthand here (as in the expan-
sion (23), though we no longer requireQ).

First, we claim that

1(E)(∇3F0(θ∗)−∇3F1(θ′))(∆⊗∆) =
(
M2G6/λ6+G4L2d log(d)/λ4)R3. (54)

To prove the above expression, we add and subtract∇3F1(θ∗) (and drop 1(E) for simplicity). We
must control

(∇3F0(θ∗)−∇3F1(θ∗))(∆⊗∆)+(∇3F1(θ∗)−∇3F1(θ′))(∆⊗∆).

To begin, recall that|||u⊗v|||2 =
∣∣∣∣∣∣uv⊤

∣∣∣∣∣∣
2 = ‖u‖2‖v‖2. By Assumption 4, on the eventE we have

that∇3F1 is (1/n)∑n
i=1M(Xi)-Lipschitz, so definingMn = (1/n)∑n

i=1M(Xi), we have

E

[
1(E)

∥∥(∇3F1(θ∗)−∇3F1(θ′)
)
(∆⊗∆)

∥∥2
2

]
≤ E

[
M2

n

∥∥θ∗−θ′∥∥2
2‖∆‖4

2

]

≤ E
[
M8

n

]1/4
E

[
‖θ1−θ∗‖8

2

]3/4
≤ O(1)M2 G6

λ6n3

by Hölder’s inequality and Lemma 8. The remaining term we must control is the derivative differ-
enceE[‖(∇3F1(θ∗)−∇3F0(θ∗))(∆⊗∆)‖2

2]. Define the random vector-valued functionG= ∇(F1−
F0), and letG j denote itsjth coordinate. Then by definition we have

(∇3F1(θ∗)−∇3F0(θ∗))(∆⊗∆) =
[
∆⊤(∇2G1(θ∗))∆ · · · ∆⊤(∇2Gd(θ∗))∆

]⊤
∈ R

d.

Therefore, by the Cauchy-Schwarz inequality and the fact thatx⊤Ax≤ |||A|||2‖x‖2
2,

E

[∥∥(∇3F1(θ∗)−∇3F0(θ∗))(∆⊗∆)
∥∥2

2

]
=

d

∑
j=1

E

[(
∆⊤(∇2G j(θ∗))∆

)2
]

≤
d

∑
j=1

(
E

[
‖∆‖8

2

]
E

[∣∣∣∣∣∣∇2G j(θ∗)
∣∣∣∣∣∣4

2

])1/2
.
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Applying Lemma 8 yields thatE[‖∆‖8
2] = O(G8/(λ2n)4). Introducing the shorthand notation

g(·;x) := ∇ f (·;x)−∇F0(·), we can write

∇2G j(θ∗) =
1
n

n

∑
i=1

∇2g j(θ∗;Xi)

For every coordinatej, the random matrices∇2g j(θ∗;Xi) (i = 1, . . . ,n) are i.i.d. and mean zero. By

Assumption 3, we have
∣∣∣∣∣∣∇2g j(θ∗;Xi)

∣∣∣∣∣∣
2 ≤ 2L(Xi), whence we haveE[

∣∣∣∣∣∣∇2g j(θ∗;Xi)
∣∣∣∣∣∣8

2]≤ 28L8.
Applying Lemma 16, we obtain

E

[∣∣∣∣∣∣∇2G j(θ∗)
∣∣∣∣∣∣4

2

]
≤ O(1)L4n−2 log2(d),

and hence

E

[∥∥(∇3F1(θ∗)−∇3F0(θ∗))(∆⊗∆)
∥∥2

2

]
≤ O(1)

G4L2

λ4 d log(d)n−3,

which implies the desired result (54). From now on, terms of the formR3 will have no larger
constants than those in the equality (54), so we ignore them.

Now we claim that

1(E)∇3F1(θ∗)(∆⊗∆) = ∇3F1(θ∗)((Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗)))+R3. (55)

Indeed, applying the expansion (23) to the difference∆ = θ1−θ∗, we have onE that

∆⊗∆ = (Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))+(Σ−1P∆)⊗ (Σ−1P∆)

− (Σ−1P∆)⊗ (Σ−1∇F1(θ∗))− (Σ−1∇F1(θ∗))⊗ (Σ−1P∆).

We can bound each of the second three outer products in the equality above similarly; we focus on
the last for simplicity. Applying the Cauchy-Schwarz inequality, we have

E

[∣∣∣∣∣∣(Σ−1∇F1(θ∗))⊗ (Σ−1P∆)
∣∣∣∣∣∣2

2

]
≤
(
E

[∥∥Σ−1∇F1(θ∗)
∥∥4

2

]
E

[∥∥Σ−1P(θ1−θ∗)
∥∥4

2

]) 1
2
.

From Lemmas 8 and 9, we obtain that

E

[∥∥Σ−1∇F1(θ∗)
∥∥4

2

]
= O(n−2) and E

[∥∥Σ−1P(θ1−θ∗)
∥∥4

2

]
= O(n−4)

after an additional application of Cauchy-Schwarz for the second expectation. This shows that

(Σ−1∇F1(θ∗))⊗ (Σ−1P∆) = R3,

and a similar proof applies to the other three terms in the outer product∆⊗∆. Using the linearity of
∇3F1(θ∗), we see that to prove the equality (55), all that is required is that

1(Ec)∇3F1(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)
= R3. (56)
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For this, we apply Ḧolder’s inequality several times. Indeed, we have

E

[∥∥1(Ec)∇3F1(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)∥∥2

2

]

≤ E[1(Ec)]
1/4

E

[∥∥∇3F1(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)∥∥8/3
2

]3/4

≤ E[1(Ec)]
1/4

E

[∣∣∣∣∣∣∇3F1(θ∗)
∣∣∣∣∣∣8/3∥∥Σ−1∇F1(θ∗)

∥∥16/3
2

]3/4

≤ E[1(Ec)]
1/4

E

[∣∣∣∣∣∣∇3F1(θ∗)
∣∣∣∣∣∣8
]1/4

E

[∥∥Σ−1∇F1(θ∗)
∥∥8

2

]2/4
= O(n−1 ·L2 ·n−2).

For the final asymptotic bound, we used Equation (26) to boundE[1(Ec)], used the fact (from As-
sumption 3) thatE[L(X)8] ≤ L8 to bound the term involving∇3F1(θ∗), and applied Lemma 7 to
controlE[‖Σ−1∇F1(θ∗)‖8

2]. Thus the equality (56) holds, and this completes the proof of the equal-
ity (55).

For the final step in the lemma, we claim that

−1(E)Σ−1(∇2F1(θ∗)−Σ)∆ = Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗)+R3. (57)

To prove (57) requires an argument completely parallel to that for our claim (55). As before, we use
the expansion (23) of the difference∆ to obtain that onE ,

−Σ−1(∇2F1(θ∗)−Σ)∆

= Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗)−Σ−1(∇2F1(θ∗)−Σ)Σ−1P∆.

Now apply Lemmas 8 and 9 to the final term after a few applications of Hölder’s inequality. To
finish the equality (57), we argue that 1(Ec)Σ−1(∇2F1(θ∗)− Σ)Σ−1∇F1(θ∗) = R3, which follows
exactly the line of reasoning used to prove the remainder (56).

Applying equalities (54), (55), and (57) to our earlier expansion (53) yields that

∆ = 1(E)

[
−Σ−1∇F1(θ∗)−Σ−1(∇2F1(θ∗)−Σ)∆−Σ−1∇3F1(θ∗)(∆⊗∆)

+Σ−1(∇3F0(θ∗)−∇3F1(θ′))(∆⊗∆)
]
+1(Ec)∆

=−Σ−1∇F1(θ∗)+Σ−1(∇2F1(θ∗)−Σ)Σ−1∇F1(θ∗)

−Σ−1∇3F1(θ∗)
(
(Σ−1∇F1(θ∗))⊗ (Σ−1∇F1(θ∗))

)
+R3+1(Ec)∆.

Finally, the bound (26) implies thatE[1(Ec) ‖∆‖2
2]≤ P(Ec)R2 = O(n−4), which yields the claim.
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Abstract
The PC algorithm uses conditional independence tests for model selection in graphical modeling
with acyclic directed graphs. In Gaussian models, tests of conditional independence are typically
based on Pearson correlations, and high-dimensional consistency results have been obtained for the
PC algorithm in this setting. Analyzing the error propagation from marginal to partial correlations,
we prove that high-dimensional consistency carries over toa broader class of Gaussian copula or
nonparanormalmodels when using rank-based measures of correlation. For graph sequences with
bounded degree, our consistency result is as strong as priorGaussian results. In simulations, the
‘Rank PC’ algorithm works as well as the ‘Pearson PC’ algorithm for normal data and considerably
better for non-normal data, all the while incurring a negligible increase of computation time. While
our interest is in the PC algorithm, the presented analysis of error propagation could be applied to
other algorithms that test the vanishing of low-order partial correlations.

Keywords: Gaussian copula, graphical model, model selection, multivariate normal distribution,
nonparanormal distribution

1. Introduction

Let G= (V,E) be an acyclic digraph with finite vertex set, and letX = (Xv)v∈V be a random vec-
tor whose entries are in correspondence with the graph’s vertices. Then the graphG determines a
statistical model for the joint distribution ofX by imposing conditional independences that can be
read off fromG using the concept of d-separation. These independences are natural if the edges
in E encode causal/functional relationships among the random variablesXv, and a distribution that
satisfies them is said to beMarkovwith respect toG. Appendix B contains a brief review of these
and other key notions that are relevant to this paper. More detailed introductions to statistical mod-
eling with directed graphs can be found in Lauritzen (1996), Pearl (2009), Spirtes et al. (2000) or
Drton et al. (2009, Chapter 3). As common in the field, we use the abbreviation DAG (for ‘directed
acyclic graph’) when referring to acyclic digraphs.

We will be concerned with the consistency of the PC algorithm, which is named for its inventors,
the first two authors of Spirtes et al. (2000). This algorithm uses conditional independence tests to
infer a DAG from data. Alongside greedy-search techniques that optimizeinformation criteria, the
PC algorithm is one of the main methods for inference of directed graphs. Recent applications of the
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PC algorithm can be found in Maathuis et al. (2010), Schmidberger et al. (2011), Le et al. (2013),
and Verdugo et al. (2013).

Graph inference is complicated by the fact that two DAGsG = (V,E) and H = (V,F) with
the same vertex setV may beMarkov equivalent, that is, they may possess the same d-separation
relations and, consequently, induce the same statistical model. Hence, the goal becomes estimation
of the Markov equivalence class of an acyclic digraphG. For representation of the equivalence class,
prior work considers a particular partially directed graphC(G), for which it holds thatC(G) =C(H)
if and only if the two DAGsG and H are Markov equivalent; see Andersson et al. (1997) and
Chickering (2002). The graphC(G) may contain both directed and undirected edges, and it is
acyclic in the sense of its directed subgraph having no directed cycles. Wewill refer to C(G) as the
completed partially directed acyclic graph(CPDAG), but other terminology such as theessential
graph is in use.

The PC algorithm uses conditional independence tests to infer a CPDAG from data (Spirtes
et al., 2000). In its population version, the algorithm amounts to a clever scheme to reconstruct
the CPDAGC(G) from answers to queries about d-separation relations in the underlying DAG G.
Theorem 1 summarizes the properties of the PC algorithm that are relevant for the present paper.
For a proof of the theorem as well as a compact description of the PC algorithm we refer the reader
to Kalisch and B̈uhlmann (2007). Recall that the degree of a node is the number of edges itis
incident to, and that the degree of a DAGG is the maximum degree of any node, which we denote
by deg(G).

Theorem 1 Given only the ability to check d-separation relations in a DAG G, the PC algorithm
finds the CPDAG C(G) by checking whether pairs of distinct nodes are d-separated by sets S of
cardinality |S| ≤ deg(G).

Let XA denote the subvector(Xv)v∈A. The joint distribution of a random vectorX = (Xv)v∈V

is faithful to a DAG G if, for any triple of pairwise disjoint subsetsA,B,S⊂ V, we have thatS
d-separatesA andB in G if and only if XA andXB are conditionally independent givenXS; it is
customary to denote this conditional independence byXA ⊥⊥ XB |XS. Under faithfulness, statistical
tests of conditional independence can be used to determine d-separation relations in a DAG and lead
to a sample version of the PC algorithm that is applicable to data.

If X follows the multivariate normal distributionN(µ,Σ), with positive definite covariance ma-
trix Σ, then

XA⊥⊥ XB |XS ⇐⇒ Xu⊥⊥ Xv |XS ∀u∈ A, v∈ B.

Moreover, the pairwise conditional independence ofXu andXv given XS is equivalent to the van-
ishing of thepartial correlation ρuv|S, that is, the correlation obtained from the bivariate normal
conditional distribution of(Xu,Xv) given XS. The iterations of the PC algorithm make use of the
recursion

ρuv|S=
ρuv|S\w−ρuw|S\wρvw|S\w

√

(

1−ρ2
uw|S\w

)(

1−ρ2
vw|S\w

)

, (1)

for anyw∈ S, whereρuv| /0 = ρuv is the correlation ofu andv. Our later theoretical analysis will use
the fact that

ρuv|S=−
Ψ−1

uv
√

Ψ−1
uu Ψ−1

vv

, (2)
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whereΨ = Σ(u,v,S),(u,v,S) is the concerned principal submatrix ofΣ.
A natural estimate ofρuv|S is the sample partial correlation obtained by replacingΣ with the em-

pirical covariance matrix of available observations. Sample partial correlations derived from inde-
pendent normal observations have favorable distributional properties(Anderson, 2003, Chapter 4),
which form the basis for the work of Kalisch and Bühlmann (2007) who treat the PC algorithm in
the Gaussian context with conditional independence tests based on sample partial correlations. The
main results in Kalisch and B̈uhlmann (2007) show high-dimensional consistency of the PC algo-
rithm, when the observations form a sample of independent normal randomvectors that are faithful
to a suitably sparse DAG.

The purpose of this paper is to show that the PC algorithm has high-dimensional consistency
properties for a broader class of distributions, when standard Pearson-type empirical correlations
are replaced by rank-based measures of correlations in tests of conditional independence. The
broader class we consider includes continuous distributions with Gaussiancopula. Phrased in the
terminology of Liu et al. (2009), we considernonparanormaldistributions. Recall that a correlation
matrix is a covariance matrix with all diagonal entries equal to one.

Definition 2 Let f = ( fv)v∈V be a collection of strictly increasing functions fv : R→ R, and let
Σ ∈ R

V×V be a positive definite correlation matrix. The nonparanormal distribution NPN( f ,Σ) is
the distribution of the random vector( fv(Zv))v∈V for (Zv)v∈V ∼ N(0,Σ).

Taking the functionsfv to be affine shows that all multivariate normal distributions are also
nonparanormal. IfX ∼ NPN( f ,Σ), then the univariate marginal distribution for a coordinate, say
Xv, may have any continuous cumulative distribution functionF , as we may takefv =F−◦Φ, where
Φ is the standard normal distribution function andF−(u) = inf{x : F(x) ≥ u}. Note that fv need
not be continuous.

Definition 3 The nonparanormal graphical model NPN(G) associated with a DAG G is the set of
all distributions NPN( f ,Σ) that are Markov with respect to G.

Since the marginal transformationsfv are deterministic, the dependence structure in a nonpara-
normal distribution corresponds to that in the underlying latent multivariate normal distribution. In
other words, ifX ∼NPN( f ,Σ) andZ∼N(0,Σ), then it holds for any triple of pairwise disjoint sets
A,B,S⊂V that

XA⊥⊥ XB |XS ⇐⇒ ZA⊥⊥ ZB |ZS.

Hence, for two nodesu andv and a separating setS⊂V \{u,v}, it holds that

Xu⊥⊥ Xv |XS ⇐⇒ ρuv|S= 0, (3)

with ρuv|S calculated fromΣ as in (1) or (2). In light of this equivalence, we will occasionally speak
of a correlation matrixΣ being Markov or faithful to a DAG, meaning that the requirement holds
for any distributionNPN( f ,Σ).

In the remainder of the paper we study the PC algorithm in the nonparanormalcontext, propos-
ing the use of Spearman’s rank correlation and Kendall’sτ for estimation of the correlation matrix
parameter of a nonparanormal distribution. In Section 2, we review how transformations of Spear-
man’s rank correlation and Kendall’sτ yield accurate estimators of the latent Gaussian correlations.
In particular, we summarize tail bounds from Liu et al. (2012a). Theorem8 in Section 4 gives
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our main result, an error bound for the output of the PC algorithm when correlations are used to
determine nonparanormal conditional independence. In Corollary 9, wedescribe high-dimensional
asymptotic scenarios and suitable conditions that lead to consistency of the PCalgorithm. The proof
of Theorem 8 is given in Section 3, which provides an analysis of error propagation from marginal
to partial correlations. Our numerical work in Section 5 makes a strong casefor the use of rank
correlations in the PC algorithm. Some concluding remarks are given in Section6.

2. Rank Correlations

Let (X,Y) be a pair of random variables, and letF andG be the cumulative distribution functions
of X andY, respectively. Spearman’sρ for the bivariate distribution of(X,Y) is defined as

ρS= Corr(F(X),G(Y)) ,

that is, it is the ordinary Pearson correlation between the quantilesF(X) andG(Y). Another classical
measure of correlation is Kendall’sτ, defined as

τ = Corr
(

sign
(

X−X′
)

,sign
(

Y−Y′
))

where(X′,Y′) is an independent copy of(X,Y), that is,(X′,Y′) and (X,Y) are independent and
have the same distribution.

Suppose(X1,Y1), . . .(Xn,Yn) are independent pairs of random variables, each pair distributed as
(X,Y). Let rank(Xi) be the rank ofXi amongX1, . . . ,Xn. In the nonparanormal setting, the marginal
distributions are continuous so that ties occur with probability zero, making ranks well-defined. The
natural estimator ofρS is the sample correlation among ranks, that is,

ρ̂S=
1
n ∑n

i=1

( rank(Xi)
n+1 − 1

2

)( rank(Yi)
n+1 − 1

2

)

√

1
n ∑n

i=1

( rank(Xi)
n+1 − 1

2

)2
√

1
n ∑n

i=1

( rank(Yi)
n+1 − 1

2

)2

= 1− 6
n(n2−1)

n

∑
i=1

(

rank(Xi)− rank(Yi)
)2
,

which can be computed inO(nlogn) time. Kendall’sτ may be estimated by

τ̂ =
2

n(n−1) ∑
1≤i< j≤n

sign(Xi−Xj)sign(Yi−Yj) .

A clever algorithm using sorting and binary trees to computeτ̂ in time O(nlogn) instead of the
naiveO(n2) time has been developed by Christensen (2005).

It turns out that simple trigonometric transformations ofρ̂S andτ̂ are excellent estimators of the
population Pearson correlation for multivariate normal data. In particular,Liu et al. (2012a) show
that if (X,Y) are bivariate normal with Corr(X,Y) = ρ, then

P

(∣

∣

∣
2sin

(π
6

ρ̂S
)

−ρ
∣

∣

∣
> ε
)

≤ 2exp

(

− 2
9π2nε2

)

(4)

and

P

(∣

∣

∣
sin
(π

2
τ̂
)

−ρ
∣

∣

∣
> ε
)

≤ 2exp

(

− 2
π2nε2

)

. (5)
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Clearly,ρ̂S andτ̂ depend on the observations(X1,Y1), . . .(Xn,Yn) only through their ranks. Since
ranks are preserved under strictly increasing functions, (4) and (5)still hold if (X,Y)∼ NPN( f ,Σ)
with Pearson correlationρ = Σxy in the underlying latent bivariate normal distribution. Throughout
the rest of this paper, we will assume that we have some estimatorρ̂ of ρ which has the property
that, for nonparanormal data,

P(|ρ̂−ρ|> ε) < Aexp
(

−Bnε2) (6)

for fixed constants 0< A,B< ∞. As just argued, the estimators considered in (4) and (5) both have
this property.

When presented with multivariate observations from a distributionNPN( f ,Σ), we apply the
estimator from (6) to every pair of coordinates to obtain an estimatorΣ̂ of the correlation matrix
parameter. PlugginĝΣ into (1) or equivalently into (2) gives partial correlation estimators that we
denoteρ̂uv|S.

3. Error Propagation from Marginal to Partial Correlations

The PC algorithm leverages statistical decisions on conditional independence. An analysis of the
algorithm in the context of nonparanormal distributions thus requires bounds on errors in partial
correlations. The following Lemma 4 is our main tool. It provides a uniform bound on errors
in partial correlations when a uniform bound on errors in marginal correlations is available. At
times we will write such uniform bounds in terms of thel∞ vector norm of a matrix. For matrix
A= (ai j ) ∈ R

q×q we denote this norm by

‖A‖∞ = max
1≤i, j≤q

|ai j |.

Some proofs involve the spectral norm‖A‖, that is, the square-root of the maximal eigenvalue of
ATA.

Lemma 4 (Errors in partial correlations) SupposeΣ ∈ R
q×q is a positive definite matrix with

minimal eigenvalueλmin > 0. If Σ̂ ∈ R
q×q satisfies

‖Σ̂−Σ‖∞ <
cλ2

min

(2+c)q+λmincq

with c> 0, then all partial correlations are well-defined and their differences are bounded as

|ρ̂uv|\{u,v}−ρuv|\{u,v}| :=

∣

∣

∣

∣

∣

Σ−1
uv

√

Σ−1
uu Σ−1

vv

− Σ̂−1
uv

√

Σ̂−1
uu Σ̂−1

vv

∣

∣

∣

∣

∣

< c, 1≤ u< v≤ q.

The proof of Lemma 4 follows by combining the conclusions of Lemmas 5, 6 and 7from this
section. The first of these, that is, Lemma 5, invokes classical results on error propagation in matrix
inversion.

Lemma 5 (Matrix inversion) SupposeΣ ∈ R
q×q is a positive definite matrix with minimal eigen-

valueλmin > 0. If E ∈ R
q×q is a matrix of errors with‖E‖∞ < ε < λmin/q, thenΣ+E is invertible

and

‖(Σ+E)−1−Σ−1‖∞ ≤
qε/λ2

min

1−qε/λmin
.

3369



HARRIS AND DRTON

Proof First, note that
‖E‖∞ ≤ ‖E‖ ≤ q‖E‖∞; (7)

see entries(2,6) and (6,2) in the table on p. 314 in Horn and Johnson (1990). Using the sub-
multiplicativity of a matrix norm, the second inequality in (7), and our assumption onε, we find
that

‖EΣ−1‖ ≤ ‖Σ−1‖ · ‖E‖< qε
λmin

< 1. (8)

As discussed in Horn and Johnson (1990, Section 5.8), this implies thatI +EΣ−1 and thus also
Σ +E is invertible. Moreover, by the first inequality in (7) and inequality (5.8.2) in Horn and
Johnson (1990), we obtain that

‖(Σ+E)−1−Σ−1‖∞ ≤ ‖(Σ+E)−1−Σ−1‖ ≤ ‖Σ−1‖ · ‖EΣ−1‖
1−‖EΣ−1‖ .

Since the functionx 7→ x/(1− x) is increasing forx < 1, our claim follows from the fact that
‖Σ−1‖= 1/λmin and the inequality‖EΣ−1‖< qε/λmin from (8).

Lemma 6 (Diagonal of inverted correlation matrix) If Σ ∈Rq×q is a positive definite correlation
matrix, then the diagonal entries ofΣ−1 = (σi j ) satisfyσii ≥ 1.

Proof The claim is trivial forq = 1. So assumeq≥ 2. By symmetry, it suffices to consider the
entryσqq, and we partition the matrix as

Σ =

(

A b
bT 1

)

with A∈ R
(q−1)×(q−1) andb∈ R

q−1. By the Schur complement formula for the inverse of a parti-
tioned matrix,

σqq =
1

1−bTA−1b
;

compare Horn and Johnson (1990, Section 0.7.3). SinceA is positive definite, so isA−1. Hence,
bTA−1b≥ 0. SinceΣ−1 is positive definite,σqq cannot be negative, and so we deduce thatσqq≥ 1,
with equality if and only ifb= 0.

The next lemma addresses the error propagation from the inverse of a correlation matrix to
partial correlations.

Lemma 7 (Correlations) Let A= (ai j ) and B= (bi j ) be symmetric2×2 matrices. If A is positive
definite with a11,a22≥ 1 and‖A−B‖∞ < δ < 1, then

∣

∣

∣

∣

a12√
a11a22

− b12√
b11b22

∣

∣

∣

∣

<
2δ

1−δ
.
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Proof Without loss of generality, supposea12≥ 0. Since‖A−B‖∞ < δ,

b12√
b11b22

− a12√
a11a22

<
a12+δ

√

(a11−δ)(a22−δ)
− a12√

a11a22

=
δ

√

(a11−δ)(a22−δ)
+a12

(

1
√

(a11−δ)(a22−δ)
− 1√

a11a22

)

.

Using thata11,a22≥ 1 to bound the first term anda2
12< a11a22 to bound the second term, we obtain

that

b12√
b11b22

− a12√
a11a22

<
δ

1−δ
+
√

a11a22

(

1
√

(a11−δ)(a22−δ)
− 1√

a11a22

)

=
δ

1−δ
+

(√

a11

a11−δ
· a22

a22−δ
−1

)

.

Since the functionx 7→ x/(x−δ) is decreasing, we may use our assumption thata11,a22≥ 1 to get
the bound

b12√
b11b22

− a12√
a11a22

<
δ

1−δ
+

(

√

1
1−δ

· 1
1−δ

−1

)

=
2δ

1−δ

A similar argument yields that

a12√
a11a22

− b12√
b11b22

<
2δ

1+δ
,

from which our claim follows.

4. Rank PC Algorithm

Based on the equivalence (3), we may use the rank-based partial correlation estimateŝρuv|S to test
conditional independences. In other words, we conclude that

Xu⊥⊥ Xv|XS ⇐⇒
∣

∣ρ̂uv|S
∣

∣≤ γ, (9)

whereγ ∈ [0,1] is a fixed threshold. We will refer to the PC algorithm that uses the conditional
independence tests from (9) as the ‘Rank PC’ (RPC) algorithm. We writeĈγ(G) for the output of
the RPC algorithm with tuning parameterγ.

The RPC algorithm consist of two parts. The first part computes the correlation matrixΣ̂= (ρ̂uv)
in time O(p2nlogn), wherep := |V|. This computation takesO(logn) longer than its analogue
under use of Pearson correlations. The second part of the algorithm isindependent of the type of
correlations involved. It determines partial correlations and performs graphical operations. For an
accurate enough estimate of a correlation matrixΣ that is faithful to a DAGG, this second part takes
O(pdeg(G)) time in the worst case, but it is often much faster; compare Kalisch and Bühlmann (2007).
For high-dimensional data withn smaller thanp, the computation time for RPC is dominated by
the second part, the PC-algorithm component. Moreover, in practice, onemay wish to apply RPC
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for several different values ofγ, in which case the estimatêΣ needs to be calculated only once. As
a result, Rank PC takes only marginally longer to compute than Pearson PC forhigh-dimensional
data.

What follows is our main result about the correctness of RPC. For a correlation matrixΣ ∈
R

V×V , let
cmin(Σ) := min

{

|ρuv|S| : u,v∈V, S⊆V \{u,v}, ρuv|S 6= 0
}

(10)

be the minimal magnitude of any non-zero partial correlation, and letλmin(Σ) be the minimal eigen-
value. Then for any integerq≥ 2, let

cmin(Σ,q) := min{cmin(ΣI ,I ) : I ⊆V, |I | ≤ q} , and (11)

λmin(Σ,q) := min{λmin(ΣI ,I ) : I ⊆V, |I | ≤ q} (12)

be the minimal magnitude of a non-zero partial correlation and, respectively, the minimal eigenvalue
of any principal submatrix of order at mostq.

Theorem 8 (Error bound for RPC-algorithm) Let X1, . . . ,Xn be a sample of independent obser-
vations drawn from a nonparanormal distribution NPN( f ,Σ) that is faithful to a DAG G with p
nodes. For q:= deg(G)+2, let c := cmin(Σ,q) and λ := λmin(Σ,q). If n > q, then there exists a
thresholdγ ∈ [0,1] for which

P
(

Ĉγ(G) 6=C(G)
)

≤ A
2

p2exp

(

−Bλ4nc2

36q2

)

,

where0< A,B< ∞ are the constants from (6).

We remark that while all subsets of sizeq appear in the definitions in (11) and (12), our proof
of Theorem 8 only requires the corresponding minima over those principalsubmatrices that are
actually inverted in the run of the PC-algorithm.
Proof (Theorem 8)We will show that our claimed probability bound for the eventĈγ(G) 6=C(G)
holds when the threshold in the RPC algorithm isγ = c/2. By Theorem 1, if all conditional inde-
pendence tests for conditioning sets of size|S| ≤ deg(G) make correct decisions, then the output of
the RPC algorithmĈγ(G) is equal to the CPDAGC(G). Whenγ = c/2, the conditional indepen-
dence test accepts a hypothesisXu ⊥⊥ Xv|XS if and only if |ρ̂uv|S| < γ = c/2. Hence, the test makes
a correct decision if|ρ̂uv|S−ρuv|S| < c/2 because all non-zero partial correlations for|S| ≤ deg(G)
are bounded away from zero byc; recall (10) and (11). It remains to argue, using the error analy-
sis from Lemma 4, that the event|ρ̂uv|S−ρuv|S| ≥ c/2 occurs with small enough probability when
|S| ≤ deg(G).

Suppose our correlation matrix estimateΣ̂ = (ρ̂uv) satisfies‖Σ̂−Σ‖∞ < ε for

ε =
cλ2

(4+c)q+λcq
=

λ2c/2
(2+c/2)q+λqc/2

> 0. (13)

Choose any two nodesu,v∈V and a setS⊆V \{u,v}with |S| ≤ deg(G) = q−2. LetI = {u,v}∪S.
Applying Lemma 4 to theI × I submatrix ofΣ andΣ̂ yields

|ρ̂uv|S−ρuv|S| <
c
2
.
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Therefore,‖Σ̂−Σ‖∞ < ε implies that our tests decide all conditional independences correctly in the
RPC algorithm.

Next, using (6) and a union bound, we find that

P
(

Ĉγ(G) 6=C(G)
)

≤ P
(

|Σ̂uv−Σuv| ≥ ε for someu,v∈V
)

≤ A
p(p−1)

2
exp
(

−Bnε2) .

Plugging in the definition ofε gives the claimed inequality

P
(

Ĉγ(G) 6=C(G)
)

≤ A
2

p2exp

(

− Bλ4nc2

((4+c)q+λcq)2

)

≤ A
2

p2exp

(

−Bλ4nc2

36q2

)

becausec≤ 1 andλ ≤ 1. The inequalityc≤ 1 holds trivially because partial correlations are in
[−1,1]. The inequalityλ≤ 1 holds because aq×q correlation matrix has traceq, this trace is equal
to the sum of theq eigenvalues, andλ is the minimal eigenvalue.

From the probability bound in Theorem 8, we may deduce high-dimensional consistency of
RPC. For two positive sequences(sn) and(tn), we writesn = O(tn) if sn ≤Mtn, andsn = Ω(tn) if
sn≥Mtn for a constant 0< M < ∞.

Corollary 9 (Consistency of RPC-algorithm) Let (Gn) be a sequence of DAGs. Let pn be the
number of nodes of Gn, and let qn = deg(Gn)+2. Suppose(Σn) is a sequence of pn× pn correlation
matrices, withΣn faithful to Gn. Suppose further that there are constants0≤ a,b,d, f < 1 that
govern the growth of the graphs as

logpn = O(na), qn = O(nb),

and minimal signal strengths and eigenvalues as

cmin(Σn,qn) = Ω(n−d), λmin(Σn,qn) = Ω(n− f ).

If a+2b+2d+4 f < 1, then there exists a sequence of thresholdsγn for which

lim
n→∞

P
(

Ĉγn(Gn) =C(Gn)
)

= 1,

whereĈγn(Gn) is the output of the RPC algorithm for a sample of independent observationsX1, . . . ,Xn

from a nonparanormal distribution NPN( · ,Σn).

Proof By Theorem 8, for large enoughn, we can pick a thresholdγn such that

P(Ĉγn(Gn) 6=C(Gn)≤ A′exp
(

2na−B′n1−2b−2d−4 f
)

for constants 0< A′,B′ < ∞. The bound goes to zero if 1−2b−2d−4 f > a.

As previously mentioned, Kalisch and Bühlmann (2007) prove a similar consistency result in
the Gaussian case. Whereas our proof consists of propagation of errors from correlation to partial
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correlation estimates, their proof appeals to Fisher’s result that under Gaussianity, sample partial
correlations follow the same type of distribution as sample correlations when thesample size is
adjusted by subtracting the cardinality of the conditioning set (Anderson, 2003, Chapter 4). It is
then natural to work with a bound on the partial correlations associated with small conditioning
sets. More precisely, Kalisch and Bühlmann (2007) assume that there is a constant 0≤M < 1 such
that for anyn, the partial correlationsρuv|S of the matrixΣn satisfy

|ρuv|S| ≤M ∀u,v∈V, S⊆V \{u,v}, |S| ≤ qn. (14)

It is then no longer necessary to involve the minimal eigenvalues from (12).The work in Kalisch
and B̈uhlmann (2007) is thus free of an analogue to our constantf . Stated for the case of polynomial
growth ofpn (with a= 0), their result gives consistency whenb+2d< 1; our constantb corresponds
to 1− b in Kalisch and B̈uhlmann (2007). The condition from Corollary 9, on the other hand,
requires 2b+2d < 1 even if f = 0. This is more restrictive as largerb allows for faster growth in
the degree of the graphs and largerd allows for faster decay of the minimal signal strength.

In the important special case of bounded degree, however, our nonparanormal result is just
as strong as the previously established Gaussian consistency guarantee. Staying with polynomial
growth of pn, that is,a= 0, suppose the sequence of graph degrees deg(Gn) is indeed bounded by
a fixed constant, sayq0−2. Then clearly,b= 0. Moreover, the set of correlation matrices of size
q0 satisfying (14) withqn = q0 is compact. Since the smallest eigenvalue is a continuous function,
the infimum of all eigenvalues of such matrices is achieved for some invertible matrix. Hence, the
smallest eigenvalue is bounded away from zero, and we conclude thatf = 0. Corollary 9 thus
implies consistency if 2d < 1, or if d < 1

2 = 1−b
2 , precisely as in Kalisch and B̈uhlmann (2007). (No

generality is lost by assuminga= 0; in either one of the compared results this constant is involved
solely in a union bound over orderp2 events.)

5. Numerical Experiments

In this section we evaluate the finite-sample properties of the RPC algorithm in simulations and in
an application to gene expression data. In implementations of the PC algorithm in thepcalg pack-
age for R (Kalisch et al., 2012) and other software such asTetrad IV,1 the Gaussian conditional
independence tests use a fixed levelα ∈ [0,1] and decide that

Xu⊥⊥ Xv|XS ⇐⇒
√

n−|S|−3

∣

∣

∣

∣

1
2

log

(

1+ ρ̂uv|S
1− ρ̂uv|S

)∣

∣

∣

∣

≤Φ−1(1−α/2) . (15)

If the observations are multivariate normal andρ̂uv|S are sample partial correlations thenα is an
asymptotic significance level for the test. The sample size adjustment fromn to n−|S|−3 achieves
a bias-correction (Anderson, 2003).

Suppose for a moment that in (15) the square root ofn− |S| − 3 was simply
√

n. Then, for
fixed n andα, the acceptance region in (15) could be translated into a corresponding fixed value
for γ in (9). Hence, our Theorem 8 would apply directly when plugging rank correlations into the
mentioned software implementations of the PC algorithm. With the sample size adjustmentfrom n
to n−|S|−3, however, the value ofγ depends on|S| and further arguments are needed. We postpone
these to Appendix A, where we show that the sample size adjustment has indeed no effect on the
consistency result in Corollary 9.

1. Tetrad IV can be found athttp://www.phil.cmu.edu/projects/tetrad.
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5.1 Simulations

We compare RPC to two other versions of the PC-algorithm: (i) ‘Pearson-PC’, by which we mean
the standard approach of using sample partial correlations to test Gaussian conditional indepen-
dences, and (ii) ‘Qn-PC’, which is based on a robust estimator of the covariance matrix and was
considered in Kalisch and B̈uhlmann (2008). All our computations are done with thepcalg pack-
age for R.

Following Kalisch and B̈uhlmann (2007), we simulate random DAGs and sample from proba-
bility distributions faithful to them. Fix a sparsity parameters∈ [0,1] and enumerate the vertices
asV = {1, . . . , p}. Then we generate a DAG by including the edgeu→ v with probabilitys, inde-
pendently for each pair(u,v) with 1≤ u< v≤ p. In this scheme, each node has the same expected
degree(p−1)s.

Given a DAGG=(V,E), letΛ=(λuv) be ap×p matrix withλuv= 0 if u→ v 6∈E. Furthermore,
let ε = (ε1, . . . ,εp) be a vector of independent random variables. Then the random vectorX solving
the equation system

X = ΛX+ ε (16)

is well-known to be Markov with respect toG. Here, we draw the edge coefficientsλuv, u→ v∈ E,
independently from a uniform distribution on the interval(0.1,1). For such a random choice, with
probability one, the vectorX solving (16) is faithful with respect toG. We consider three different
types of data:

(i) multivariate normal observations, which we generate by takingε in (16) to have independent
standard normal entries;

(ii) observations with Gaussian copula obtained by transforming the marginalsof the normal
random vectors from (i) to anF1,1-distribution;

(iii) contaminated data, for which we generate the entries ofε in (16) as independent draws from
a 80-20 mixture between a standard normal and a standard Cauchy distribution.

The contaminated distributions in (iii) do not belong to the nonparanormal class.
For the simulations we sample from two graph distributions: A small graph on ten vertices with

an expected vertex degree of three, and a larger graph on one hundred vertices with an expected
vertex degree of six. For eachn∈ {50,1000} and each of the three types of data listed above, we
sample 201 random graphs from both the small and large graph distributions, and then samplen
observations from the graph with the given data distribution.

For each resulting combination, we run each of the three considered versions of the PC algorithm
on a grid ofα’s ranging from 10−100 to 0.8. We consider the RPC algorithm in the version that uses
Spearman correlations as in (4); the results for Kendall’sτ were similar. For each estimated skeleton,
we compute the proportions of true and of false positives by comparing the estimated skeleton to
the true skeleton. The skeleton of a graphG is the undirected graph with edges between nodes that
are adjacent inG. Finally, we compute the area under the receiver operating characteristiccurve
(AUC) for each of the 201 repetitions. Mean areas with standard deviationin parenthesis are listed
in Tables 1- 3.

A clear message emerges from the tables. First, Table 1 shows that for normal data, RPC per-
forms only marginally worse than Pearson-PC. TheQn-PC algorithm does well on larger sample
sizes, but it not as good on smaller sample sizes. Second, Table 2 shows adramatic relative gain
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Pearson-PC Qn-PC RPC
Small graph,n= 50 0.824 (0.065) 0.734 (0.102) 0.809 (0.072)
Small graph,n= 1000 0.938 (0.050) 0.930 (0.053) 0.936 (0.050)
Large graph,n= 50 0.721 (0.016) 0.584 (0.022) 0.706 (0.016)
Large graph,n= 1000 0.837 (0.023) 0.830 (0.023) 0.835 (0.023)

Table 1: Mean AUC for Normal data

Pearson-PC Qn-PC RPC
Small graph,n= 50 0.668 (0.079) 0.506 (0.062) 0.813 (0.067)
Small graph,n= 1000 0.774 (0.068) 0.566 (0.082) 0.930 (0.054)
Large graph,n= 50 0.587 (0.012) 0.502 (0.004) 0.704 (0.016)
Large graph,n= 1000 0.678 (0.021) 0.525 (0.011) 0.833 (0.024)

Table 2: Mean AUC for Nonparanormal data

in performance for RPC for the Gaussian copula data withF1,1 marginals. As expected, the per-
formance of RPC on nonparanormal data is the same as on normal data, whilethat of Pearson-PC
andQn-PC deteriorate. Finally, Table 3 shows that RPC continues to do well in the presence of
contaminated data, the mean AUC for the other two algorithms is significantly lower.Curiously,
despite using a robust covariance matrix estimator, theQn-PC performs substantially worse than
Pearson-PC on this data.

5.2 Gene Expression Data

While Kendall’sτ and Spearman’s rank correlation give similar results for continuous observations
from a distribution with Gaussian copula, the two measures of correlation cangive quite differ-
ent results in applications. We illustrate this for data on gene expression in yeast from Brem and
Kruglyak (2005), where we focus onp= 54 genes from the MAPK signaling pathway as was done
in Sun and Li (2012). The sample size isn= 112.

When plotting histograms of the expression measurements for each of the 54 genes, the majority
of the plots do not show any obvious deviation from normality but, as one mightsuspect, there are
several with signs of skewness as well as some outliers. Moreover, forfive genes, the marginal
distribution appears to be bimodal; see Figure 1 for an example. Multimodal marginals can arise
under nonparanormal distributions, which thus have the potential to alleviatethe effects of such

Pearson-PC Qn-PC RPC
Small graph,n= 50 0.781 (0.075) 0.656 (0.102) 0.819 (0.073)
Small graph,n= 1000 0.905 (0.078) 0.859 (0.110) 0.939 (0.053)
Large graph,n= 50 0.646 (0.023) 0.518 (0.008) 0.690 (0.017)
Large graph,n= 1000 0.738 (0.039) 0.616 (0.044) 0.832 (0.024)

Table 3: Mean AUC for Contaminated data
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Figure 1: A histogram suggesting a bimodal distribution for the expression values of gene BCK1.

obvious departures from multivariate normality. This said, a Gaussian copula remains of course a
strong assumption about the joint distribution.

We ran the PC algorithm using Pearson correlations, Spearman correlations as well as Kendall’s
τ. We considered a grid of values forα from 10−8 to 0.5 and selectedα by optimizing the Bayesian
information criterion (BIC) of Schwarz (1978). (Extensions in the spirit of Chen and Chen, 2008 and
Foygel and Drton, 2010 could be attractive for this tuning problem but have yet to be adapted and
studied for directed graphs.) The computations were done using routines from the aforementioned
R packagepcalg as well as the packageggm (Sadeghi and Marchetti, 2012). The former package
offers, in particular, routines to create DAGs from the PC output and the latter package contains a
routine to fit a DAG model by maximum likelihood.

For the case of Pearson correlations, tuning with BIC gaveα = 0.5 and a graph with 178 edges.
Spearman correlations behaved similarly. No true optimum arose during the BIC tuning, which
again suggestedα = 0.5 and led to a graph with 171 edges. For Kendall’sτ on the other hand,
the BIC was minimal forα = 0.1 and only values in the range[0.05,0.1] gave comparable BIC
values. The graph inferred forα = 0.1 has 74 edges. We display its largest connected component in
Figure 2.

Figure 2 was produced using output from TETRAD IV and features directed, undirected and
bidirected edges. While the former two arise in CPDAGs, the latter type of edgeindicates incon-
sistencies that the PC algorithm encountered. Briefly put, a bidirected edgearises when this edge
appears in the skeleton inferred in the first stage of the PC algorithm but theedge orientation rules
in the second stage of the algorithm yield arrowheads at both tails of the edge.

As mentioned in Sun and Li (2012), some prior biological knowledge aboutthe pathway is
available but not in a form that can be translated into a statistical model as considered here. Never-
theless, in this example, the use of Kendall’sτ seems preferable to that of Pearson and also Spearman
correlations. Both the sparsity of the inferred graph as well as the more favorable behavior in the
likelihood computations underlying the BIC search speak for Kendall’sτ.

3377



HARRIS AND DRTON

MFa2

GPA1

RAS2

MFa1

SSK2

MFA1

DIG1

MFA2

SLG1

SSK22

STE2

TEC1

STE3

WSC2

SHO1

STE18

STE5

DIG2

CDC42 CDC24

MLP2STE7 KSS1

BEM1

SLT2

BNI1

YPD1

STE11

MSG5

FAR1

WSC3

GLO1

FUS1

SSK1

SWI4

MKK1

MID2

HOG1

RHO1

PKC1

CTT1

PBS2

MSN2GSC2

FKS1

Figure 2: Largest connected component in the output of the Kendall RPCalgorithm applied to
expression data for genes in the MAPK pathway in yeast.

6. Conclusion

The PC algorithm of Spirtes et al. (2000) addresses the problem of modelselection in graphical mod-
elling with directed graphs via a clever scheme of testing conditional independences. For multivari-
ate normal observations, the algorithm is known to have high-dimensional consistency properties
when conditional independence is tested using sample partial correlations (Kalisch and B̈uhlmann,
2007). We showed that the PC algorithm retains these consistency properties when observations fol-
low a Gaussian copula model and rank-based measures of correlation are used to assess conditional
independence. The assumptions needed in our analysis are no strongerthan those in prior Gaus-
sian work when the considered sequence of DAGs has bounded degree. When the degree grows
our assumptions are slightly more restrictive as our proof requires control of the conditioning of
principal submatrices of correlation matrices that are inverted to estimate partial correlations in the
rank-based PC (RPC) algorithm.

In our simulations, the use of the RPC algorithm led to negligible differences in statistical ef-
ficiency when data were indeed normal. For nonnormal data, RPC clearly outperformed the other
considered versions of the algorithm. Since rank correlations take only marginally longer to com-
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pute than sample correlations, the simulations suggest that there are hardly any downsides associated
with making RPC the standard version of the PC algorithm for continuous data.

Consistency results assume the data-generating distribution to be faithful to an underlying DAG.
In fact, our results make the stronger assumption that non-zero partial correlations are sufficiently
far from zero. As shown in Uhler et al. (2013), this can be a restrictiveassumption, which provides
an explanation for why consistency does not ‘kick-in’ quicker in simulationstudies such as the one
in Kalisch and B̈uhlmann (2007) and also ours.

Our analysis of the PC algorithm made use of two main arguments. First, for graphs with suit-
ably bounded degree the population version of the PC algorithm only needsto check conditional
independences with small conditioning sets. Second, the low-order partialcorrelations whose van-
ishing corresponds to these conditional independence can be estimated accurately. Lemma 4, which
provides the error propagation from marginal to partial correlations, could similarly be used to an-
alyze other algorithms that test the vanishing of low-order partial correlations. One example is the
FCI algorithm that infers a more complex graphical object to deal with situations in which some
relevant variables remain unobserved (Spirtes et al., 2000; Colombo et al., 2012).

Recent work shows that Kendall’sτ can be used to obtain accurate estimates of the dispersion
parameters in a more general setting of elliptical (rather than nonparanormal) distributions. Our
analysis would again carry over to this case as an analogue to (5) is available in this setting. How-
ever, in the elliptical family zeros in the dispersion matrix do not correspond to independences and
would have to be interpreted in terms of a latent normal random vector (Liu etal., 2012b).
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Appendix A. Sample Size Adjustment

We now show that the consistency result in Corollary 9 still holds when usingthe conditional inde-
pendence tests from (15). In these tests, the sample size is adjusted fromn to n−|S|−3.
Proof The test in (15) accepts a conditional independence hypothesis if and only if

|ρ̂uv|S| ≤ γ(n, |S|,z), (17)

where

γ(n, |S|,z) = exp
(

z/
√

n−|S|−3
)

−1

exp
(

z/
√

n−|S|−3
)

+1

andz= z(α) = 2Φ−1(1−α/2). We need to find a sequence(αn) of values forα such that con-
sistency holds under the scaling assumptions made in Corollary 9. We will do thisby specifying a
sequence(zn) for values for the (doubled) quantilesz.

We claim that the RPC algorithm using the tests from (17) is consistent when choosing the
quantile sequence

zn =
√

n−3· log

(

1+cn/3
1−cn/3

)

, (18)
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where we use the abbreviation
cn := cmin(Σn,qn).

We will show that as the sample sizen tends to infinity, with probability tending to one,|ρ̂uv|S−
ρuv|S|< cn/3 for everyu,v∈V and|S| ≤ qn. Furthermore, we will show that for the above choice of
zn and all sufficiently largen, we havecn/3≤ γ(n, |S|,zn)≤ 2cn/3 for each relevant setSwith 0≤
|S| ≤ qn. These facts imply that, with asymptotic probability one, every conditional independence
test is correct, and the RPC algorithm succeeds.

First, we slightly adapt the proof of Theorem 8. Choosing the uniform error threshold for the
correlation estimates as

ε =
cλ2

(6+c)q+λcq
> 0

in place of (13) yields that, with probability at least

1− A
2

p2exp

(

−Bλ4nc2

64q2

)

, (19)

we have that|ρ̂uv|S−ρuv|S| < c/3 for everyu,v∈V and|S| ≤ q. When substitutingpn, qn, cn and
λmin(Σn,qn) for p, q, c andλ, respectively, the scaling assumptions in Corollary 9 imply that the
probability bound in (19) tends to one asn→ ∞, and we obtain the first part of our claim.

For the second part of our claim, note that our choice ofzn in (18) givesγ(n,0,zn) = cn/3. Since
γ(n, |S|,z) is monotonically increasing in|S|, we need only show that for sufficiently largen,

γ(n,qn,zn)− γ(n,0,zn)≤ cn/3.

Forx≥ 0, the function

f (x) =
exp(x)−1
exp(x)+1

is concave and, thus, for anyqn≥ 0,

γ(n,qn,zn)− γ(n,0,zn) = f

(

z√
n−qn−3

)

− f

(

z√
n−3

)

≤ f ′
(

z√
n−3

)(

z√
n−qn−3

− z√
n−3

)

. (20)

The derivative off is

f ′(x) =
2exp(x)

(exp(x)+1)2 .

Evaluating the right hand side of (20), we obtain that

γ(n,qn,zn)− γ(n,0,zn)≤
1
2

(

1− c2
n

9

)

log

(

1+cn/3
1−cn/3

)(
√

n−3√
n−qn−3

−1

)

≤ 1
2

log

(

1+cn/3
1−cn/3

)(
√

n−3√
n−qn−3

−1

)

. (21)
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Being derived from absolute values of partial correlations, the sequencecn is in [0,1]. Now, log[(1+
x)/(1− x)] is a convex function ofx≥ 0 that is zero atx = 0 and equal to log(2) for x = 1/3.
Therefore,

1
2

log

(

1+cn/3
1−cn/3

)

≤ 1
2

log(2) ·cn, cn ∈ [0,1].

This shows that the bound in (21) iso(cn) because, by assumption,qn = o(
√

n). In particular, the
bound in (21) is less thancn/3 for sufficiently largen, proving the claimed consistency result.

Appendix B. Background on Graphical Models

Let G= (V,E) be an acyclic digraph with finite vertex set. We writev→w∈E to indicate that(v,w)
is an edge inE. As mentioned in the introduction, the conditional independences associatedwith
the graphG may be determined using d-separation; compare, for example, page 48 in Lauritzen
(1996). We briefly review the concept.

Since a DAG contains at most one edge between any two nodes, we may define a path from a
nodeu to a nodev to be a sequence of distinct nodes(v0,v1, . . . ,vn) such thatv0 = u, vn = v and
for all 1≤ k≤ n, eithervk−1→ vk ∈ E or vk−1← vk ∈ E. Two distinct nodesu andv are then said
to bed-separatedby a setS⊂V \{v,u} if every path fromu to v contains three consecutive nodes
(vk−1,vk,vk+1) for which one of the following is true:

(i) The three nodes form a chainvk−1→ vk→ vk+1, a chainvk−1← vk← vk+1, or a forkvk−1←
vk→ vk+1, and the middle nodevk is in S.

(ii) The three nodes form a collidervk−1→ vk← vk+1, and neithervk nor any of its descendants
is in S.

SupposeA,B,Sare pairwise disjoint subsets ofV. ThenSd-separatesA andB if Sd-separates any
pair of nodesa andb with a∈ A andb∈ B.

Two DAGsG= (V,E) andH = (V,F) with the same vertex setV areMarkov equivalentif they
may possess the same d-separation relations, that is, two setsA andB are d-separated given a third
setC in the graphG if and only if the same holds inH. To give an example, the graphsu→ v→ w
andu← v← w are Markov equivalent, butu→ v→ w andu→ v← w are not. As first shown in
Verma and Pearl (1991), two DAGsG andH are Markov equivalent if and only if they have the
same skeleton and the same unshielded colliders. Theskeletonof a digraphG is the undirected
graph obtained by converting each directed edge into an undirected edge. An unshielded collideris
a triple of nodes(u,v,w) that induces the subgraphu→ v← w, that is, there is no edge betweenu
andw.

Let [G] be the Markov equivalence class of an acyclic digraphG= (V,E). Write E(H) for the
edge set of a DAGH, and define the edge set

[E] =
⋃

H∈[G]

E(H).

That is,(v,w) ∈ [E] if there exists a DAGH ∈ [G] with the edgev→ w in its edge set. We interpret
the presence of both(v,w) and (w,v) in [E] as an undirected edge betweenv andw. The graph
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C(G) = (V, [E]) is known as thecompleted partially directed acyclic graph(CPDAG) forG or also
as theessential graph. Two DAGsG andH satisfyC(G) =C(H) if and only if [G] = [H], making
the CPDAG a useful graphical representation of a Markov equivalence class; see Andersson et al.
(1997) and Chickering (2002).
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Abstract

We propose a new method of learning a sparse nonnegative-definite target matrix. Our primary

example of the target matrix is the inverse of a population covariance or correlation matrix. The

algorithm first estimates each column of the target matrix by the scaled Lasso and then adjusts

the matrix estimator to be symmetric. The penalty level of the scaled Lasso for each column is

completely determined by data via convex minimization, without using cross-validation.

We prove that this scaled Lasso method guarantees the fastest proven rate of convergence in

the spectrum norm under conditions of weaker form than those in the existing analyses of other ℓ1

regularized algorithms, and has faster guaranteed rate of convergence when the ratio of the ℓ1 and

spectrum norms of the target inverse matrix diverges to infinity. A simulation study demonstrates

the computational feasibility and superb performance of the proposed method.

Our analysis also provides new performance bounds for the Lasso and scaled Lasso to guar-

antee higher concentration of the error at a smaller threshold level than previous analyses, and to

allow the use of the union bound in column-by-column applications of the scaled Lasso without

an adjustment of the penalty level. In addition, the least squares estimation after the scaled Lasso

selection is considered and proven to guarantee performance bounds similar to that of the scaled

Lasso.

Keywords: precision matrix, concentration matrix, inverse matrix, graphical model, scaled Lasso,

linear regression, spectrum norm

1. Introduction

We consider the estimation of the matrix inversion Θ∗ satisfying ΣΘ∗ ≈ I for a given data matrix

Σ. When Σ is a sample covariance matrix, our problem is the estimation of the inverse of the

corresponding population covariance matrix. The inverse covariance matrix is also called precision

matrix or concentration matrix. With the dramatic advances in technology, the number of variables

p, or the size of the matrix Θ∗, is often of greater order than the sample size n in statistical and

engineering applications. In such cases, the sample covariance matrix is always singular and a

certain type of sparsity condition is typically imposed for proper estimation of the precision matrix

and for theoretical investigation of the problem. In a simple version of our theory, this condition is

c©2013 Tingni Sun and Cun-Hui Zhang.
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expressed as the ℓ0 sparsity, or equivalently the maximum degree, of the target inverse matrix Θ∗.
A weaker condition of capped ℓ1 sparsity is also studied to allow many small signals.

Several approaches have been proposed to the estimation of sparse inverse matrices in high-

dimensional setting. The ℓ1 penalization is one of the most popular methods. Lasso-type methods,

or convex minimization algorithms with the ℓ1 penalty on all entries of Θ∗, have been developed

in Banerjee et al. (2008) and Friedman et al. (2008), and in Yuan and Lin (2007) with ℓ1 penal-

ization on the off-diagonal matrix only. This is refereed to as the graphical Lasso (GLasso) due

to the connection of the precision matrix to Gaussian Markov graphical models. In this GLasso

framework, Ravikumar et al. (2008) provides sufficient conditions for model selection consistency,

while Rothman et al. (2008) provides the convergence rate {((p+ s)/n) log p}1/2 in the Frobenius

norm and {(s/n) log p}1/2 in the spectrum norm, where s is the number of nonzero off-diagonal

entries in the precision matrix. Concave penalty has been studied to reduce the bias of the GLasso

(Lam and Fan, 2009). Similar convergence rates have been studied under the Frobenius norm in

a unified framework for penalized estimation in Negahban et al. (2012). Since the spectrum norm

can be controlled via the Frobenius norm, this provides a sufficient condition (s/n) log p→ 0 for

the convergence to the unknown precision matrix under the spectrum norm. However, in the case

of p ≥ n, this condition does not hold for banded precision matrices, where s is of the order of the

product of p and the width of the band.

A potentially faster rate d
√

(log p)/n can be achieved by ℓ1 regularized estimation of individual

columns of the precision matrix, where d, the matrix degree, is the largest number of nonzero entries

in a column. This was done in Yuan (2010) by applying the Dantzig selector to the regression of

each variable against others, followed by a symmetrization step via linear programming. When

the ℓ1 operator norm of the precision matrix is bounded, this method achieves the convergence

rate d
√

(log p)/n in ℓq matrix operator norms. The CLIME estimator (Cai et al., 2011), which

uses the Dantzig selector directly to estimate each column of the precision matrix, also achieves the

d
√
(log p)/n rate under the boundedness assumption of the ℓ1 operator norm. In Yang and Kolaczyk

(2010), the Lasso is applied to estimate the columns of the target matrix under the assumption

of equal diagonal, and the estimation error is studied in the Frobenius norm for p = nν. This

column-by-column idea reduces a graphical model to p regression models. It was first introduced

by Meinshausen and Bühlmann (2006) for identifying nonzero variables in a graphical model, called

neighborhood selection. In addition, Rocha et al. (2008) proposed a pseudo-likelihood method by

merging all p linear regressions into a single least squares problem.

In this paper, we propose to apply the scaled Lasso (Sun and Zhang, 2012) column-by-column

to estimate a precision matrix in the high dimensional setting. Based on the connection of preci-

sion matrix estimation to linear regression, we construct a column estimator with the scaled Lasso,

a joint estimator for the regression coefficients and noise level. Since we only need a sample co-

variance matrix as input, this estimator could be extended to generate an approximate inverse of a

nonnegative-definite data matrix in a more general setting. This scaled Lasso algorithm provides

a fully specified map from the space of nonnegative-definite matrices to the space of symmetric

matrices. For each column, the penalty level of the scaled Lasso is determined by data via convex

minimization, without using cross-validation.

We study theoretical properties of the proposed estimator for a precision matrix under a nor-

mality assumption. More precisely, we assume that the data matrix is the sample covariance matrix

Σ = XT X/n, where the rows of X are iid N(0,Σ∗) vectors. Let R∗ = (diagΣ∗)−1/2Σ∗(diagΣ∗)−1/2

be the population correlation matrix. Our target is to estimate the inverse matrices Θ∗ = (Σ∗)−1 and
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Ω∗ = (R∗)−1. Define

d = max
1≤ j≤p

#{k : Θ∗jk 6= 0}. (1)

A simple version of our main theoretical result can be stated as follows.

Theorem 1 Let Θ̂ and Ω̂ be the scaled Lasso estimators defined in (4), (7) and (9) below with

penalty level λ0 = A
√

4(log p)/n, A > 1, based on n iid observations from N(0,Σ∗). Suppose the

spectrum norm of Ω∗ = (diagΣ∗)1/2Θ∗(diagΣ∗)1/2 is bounded and that d2(log p)/n→ 0. Then,

‖Ω̂−Ω∗‖2 = OP(1)d
√
(log p)/n = o(1),

where ‖·‖2 is the spectrum norm (the ℓ2 matrix operator norm). If in addition the diagonal elements

of Θ∗ is uniformly bounded, then

‖Θ̂−Θ∗‖2 = OP(1)d
√
(log p)/n = o(1).

Theorem 1 provides a simple boundedness condition on the spectrum norm of Ω∗ for the con-

vergence of Ω̂ in spectrum norm with sample size n≫ d2 log p. The additional condition on the

diagonal of Θ∗ is natural due to scale change. The boundedness condition on the spectrum norm of

(diagΣ∗)1/2Θ∗(diagΣ∗)1/2 and the diagonal of Θ∗ is weaker than the boundedness of the ℓ1 operator

norm assumed in Yuan (2010) and Cai et al. (2011) since the boundedness of diagΣ∗ is also needed

there. When the ratio of the ℓ1 operator norm and spectrum norm of the precision matrix diverges to

infinity, the proposed estimator has a faster proven convergence rate. This sharper result is a direct

consequence of the faster convergence rate of the scaled Lasso estimator of the noise level in linear

regression. To the best of our knowledge, it is unclear if the ℓ1 regularization method of Yuan (2010)

and Cai et al. (2011) also achieve the convergence rate under the weaker spectrum norm condition.

An important advantage of the scaled Lasso is that the penalty level is automatically set to

achieve the optimal convergence rate in the regression model for the estimation of each column of

the inverse matrix. This raises the possibility for the scaled Lasso to outperform methods using a

single unscaled penalty level for the estimation of all columns such as the GLasso and CLIME. We

provide an example in Section 7 to demonstrate the feasibility of such a scenario.

Another contribution of this paper is to study the scaled Lasso at a smaller penalty level than

those based on ℓ∞ bounds of the noise. The ℓ∞-based analysis requires a penalty level λ0 satisfying

P{N(0,1/n) > λ0/A} = ε/p for a small ε and A > 1. For A ≈ 1 and ε = po(1), this penalty level

is comparable to the universal penalty level
√
(2/n) log p. However, ε = o(1/p), or equivalently

λ0 ≈
√
(4/n) log p, is required if the union bound is used to simultaneously control the error of p

applications of the scaled Lasso in the estimation of individual columns of a precision matrix. This

may create a significant gap between theory and implementation. We close this gap by providing

a theory based on a sparse ℓ2 measure of the noise, corresponding to a penalty level satisfying

P{N(0,1/n) > λ0/A} = k/p with A > 1 and a potentially large k. This penalty level provides

a faster convergence rate than the universal penalty level in linear regression when log(p/k) ≈
log(p/‖β‖0)≪ log p. Moreover, the new analysis provides a higher concentration of the error

so that the same penalty level λ0 ≈
√
(2/n) log(p/k) can be used to simultaneously control the

estimation error in p applications of the scaled Lasso for the estimation of a precision matrix.
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The rest of the paper is organized as follows. In Section 2, we present the scaled Lasso method

for the estimation of the inversion of a nonnegative definite matrix. In Section 3, we study the

estimation error of the proposed method. In Section 4, we provide a theory for the Lasso and its

scaled version with higher proven concentration at a smaller, practical penalty level. In Section

5, we study the least square estimation after the scaled Lasso selection. Simulation studies are

presented in Section 6. In Section 7, we discuss the benefits of using the scaled penalty levels for

the estimation of different columns of the precision matrix, compared with an optimal fixed penalty

level for all columns. An appendix provides all the proofs.

We use the following notation throughout the paper. For real x, x+ = max(x,0). For a vec-

tor v = (v1, . . . ,vp), ‖v‖q = (∑ j |v j|q)1/q is the ℓq norm with the special ‖v‖ = ‖v‖2 and the usual

extensions ‖v‖∞ = max j |v j| and ‖v‖0 = #{ j : v j 6= 0}. For matrices M, Mi,∗ is the i-th row and

M∗, j the j-th column, MA,B represents the submatrix of M with rows in A and columns in B,

‖M‖q = sup‖v‖q=1 ‖Mv‖q is the ℓq matrix operator norm. In particular, ‖·‖2 is the spectrum norm for

symmetric matrices. Moreover, we may denote the set { j} by j and denote the set {1, . . . , p}\{ j}
by − j in the subscript.

2. Matrix Inversion via Scaled Lasso

Let Σ be a nonnegative-definite data matrix and Θ∗ be a positive-definite target matrix with ΣΘ∗ ≈ I.

In this section, we describe the relationship between positive-definite matrix inversion and linear

regression and propose an estimator for Θ∗ via scaled Lasso, a joint convex minimization for the

estimation of regression coefficients and noise level.

We use the scaled Lasso to estimate Θ∗ column by column. Define σ j > 0 and β ∈ R
p×p by

σ2
j = (Θ∗j j)

−1, β∗, j =−Θ∗∗, jσ
2
j =−Θ∗∗, j(Θ

∗
j j)
−1.

In the matrix form, we have the following relationship

diagΘ∗ = diag(σ−2
j , j = 1, . . . , p), Θ∗ =−β(diagΘ∗). (2)

Let Σ∗=(Θ∗)−1. Since (∂/∂b− j)b
T Σ∗b= 2Σ∗− j,∗b= 0 at b= β∗, j, one may estimate the j-th column

of β by minimizing the ℓ1 penalized quadratic loss. In order to penalize the unknown coefficients

in the same scale, we adjust the ℓ1 penalty with diagonal standardization, leading to the following

penalized quadratic loss:

bT Σb/2+λ
p

∑
k=1

Σ
1/2

kk |bk|. (3)

For Σ = XT X/n and b j =−1, bT Σb = ‖x j−∑k 6= j bkxk‖2
2/n, so that (3) is the penalized loss for the

Lasso in linear regression of x j against {xk,k 6= j}. This is similar to the procedures in Yuan (2010)

and Cai et al. (2011) that use the Dantzig selector to estimate Θ∗∗, j column-by-column. However,

one still needs to choose a penalty level λ and to estimate σ j in order to recover Θ∗ via (2). A

solution to resolve these two issues is the scaled Lasso (Sun and Zhang, 2012):

{β̂∗, j, σ̂ j}= argmin
b,σ

{bT Σb

2σ
+

σ

2
+λ0

p

∑
k=1

Σ
1/2

kk |bk| : b j =−1
}

(4)
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with λ0 ≈
√
(2/n) log p. The scaled Lasso (4) is a solution of joint convex minimization in {b,σ}

(Huber and Ronchetti, 2009; Antoniadis, 2010). Since βT Σ∗β = (diagΘ∗)−1Θ∗(diagΘ∗)−1,

diag
(
βT Σ∗β

)
= (diagΘ∗)−1 = diag(σ2

j , j = 1, . . . , p).

Thus, (4) is expected to yield consistent estimates of σ j = (Θ∗j j)
−1/2.

An iterative algorithm has been provided in Sun and Zhang (2012) to compute the scaled Lasso

estimator (4). We rewrite the algorithm in the form of matrices. For each j ∈ {1, . . . , p}, the Lasso

path is given by the estimates β̂− j, j(λ) satisfying the following Karush-Kuhn-Tucker conditions:

for all k 6= j,

{
Σ
−1/2

kk Σk,∗β̂∗, j(λ) =−λsgn(β̂k, j(λ)), β̂k, j 6= 0,

Σ
−1/2

kk Σk,∗β̂∗, j(λ) ∈ λ[−1,1], β̂k, j = 0,
(5)

where β̂ j j(λ) = −1. Based on the Lasso path β̂∗, j(λ), the scaled Lasso estimator {β̂∗, j, σ̂ j} is

computed iteratively by

σ̂2
j ← β̂

T

∗, jΣβ̂∗, j, λ← σ̂ jλ0, β̂∗, j← β̂∗, j(λ). (6)

Here the penalty level of the Lasso is determined by the data without using cross-validation. We

then simply take advantage of the relationship (2) and compute the coefficients and noise levels by

the scaled Lasso for each column

diagΘ̃ = diag(σ̂−2
j , j = 1, . . . , p), Θ̃ =−β̂(diagΘ̃). (7)

Now we have constructed an estimator for Θ∗. In our primary example of taking Σ as a sample

covariance matrix, the target Θ∗ is the inverse covariance matrix. One may also be interested in

estimating the inverse correlation matrix

Ω∗ = (R∗)−1 =
{

D−1/2Σ∗D−1/2
}−1

= D1/2(Σ∗)−1D1/2, (8)

where D = diag(Σ∗) and R∗ = D−1/2Σ∗D−1/2 is the population correlation matrix. The diagonal

matrix D can be approximated by the diagonal of Σ. Thus, the inverse correlation matrix is estimated

by

Ω̃ = D̂
1/2

Θ̃D̂
1/2

with D̂ = diag(Σ j j, j = 1, . . . , p).

The estimator Ω̃ here is a result of normalizing the precision matrix estimator by the population

variances. Alternatively, we may estimate the inverse correlation matrix by using the population

correlation matrix

R = (diagΣ)−1/2Σ(diagΣ)−1/2 = D̂
−1/2

ΣD̂
−1/2

as data matrix. Let {α̂∗, j, τ̂ j} be the solution of (4) with R in place of Σ. We combine these column

estimators as in (7) to have an alternative estimator for Ω∗ as follows:

diag
(
Ω̃

Alt)
= diag(τ̂−2

j , j = 1, . . . , p), Ω̃
Alt

=−α̂diag
(
Ω̃

Alt)
.
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Since R j j = 1 for all j, it follows from (4) that

α̂∗, j = D̂
1/2

β̂∗, jD̂
−1/2

j j , τ̂ j = σ̂ jD̂
−1/2

j j .

This implies

Ω̃
Alt

=−D̂
1/2

β̂diag(D̂
−1/2

j j σ̂−2
j D̂ j j, j = 1, . . . , p) = D̂

1/2
Θ̃D̂

1/2
= Ω̃.

Thus, in this scaled Lasso approach, the estimator based on the normalized data matrix is exactly the

same as the one based on the original data matrix followed by a normalization step. The scaled Lasso

methodology is scale-free in the noise level, and as a result, the estimator for inverse correlation

matrix is also scale free in diagonal normalization.

It is noticed that a good estimator for Θ∗ or Ω∗ should be a symmetric matrix. However, the

estimators Θ̃ and Ω̃ do not have to be symmetric. We improve them by using a symmetrization step

as in Yuan (2010),

Θ̂ = argmin
M:MT=M

‖M− Θ̃‖1, Ω̂ = argmin
M:MT=M

‖M− Ω̃‖1, (9)

which can be solved by linear programming. It is obvious that Θ̂ and Ω̂ are both symmetric, but

not guaranteed to be positive-definite. It follows from Theorem 1 that Θ̂ and Ω̂ are positive-definite

with large probability. Alternatively, semidefinite programming, which is somewhat more expensive

computationally, can be used to produce a nonnegative-definite Θ̂ and Ω̂ in (9).

According to the definition, the estimators Θ̂ and Ω̂ have the same ℓ1 error rate as Θ̃ and Ω̃

respectively. A nice property of symmetric matrices is that the spectrum norm is bounded by the

ℓ1 matrix norm. The ℓ1 matrix norm can be expressed more explicitly as the maximum ℓ1 norm

of the columns, while the ℓ∞ matrix norm is the maximum ℓ1 norm of the rows. Hence, for any

symmetric matrix, the ℓ1 matrix norm is equivalent to the ℓ∞ matrix norm, and the spectrum norm

can be bounded by either of them. Since our estimators and target matrices are all symmetric, the

error bound based on the spectrum norm could be studied by bounding the ℓ1 error as typically done

in the existing literature. We will study the estimation error of (9) in Section 3.

To sum up, we propose to estimate the matrix inversion by (4), (7) and (9). The iterative algo-

rithm (6) computes (4) based on a Lasso path determined by (5). Then (7) translates the resulting

estimators of (6) to column estimators and thus a preliminary matrix estimator is constructed. Fi-

nally, the symmetrization step (9) produces a symmetric estimate for our target matrix.

3. Theoretical Properties

From now on, we suppose that the data matrix is the sample covariance matrix Σ = XT X/n, where

the rows of X are iid N(0,Σ∗). Let Θ∗ = (Σ∗)−1 be the precision matrix as the inverse of the

population covariance matrix. Let D be the diagonal of Σ∗, R∗ = D−1/2Σ∗D−1/2 the population

correlation matrix, Ω∗ = (R∗)−1 its inverse as in (8). In this section, we study Ω̂ and Θ̂ in (9),

respectively for the estimation of Ω∗ and Θ∗.
We consider a certain capped ℓ1 sparsity for individual columns of the inverse matrix as follows.

For a certain ε0 > 0, a threshold level λ∗,0 > 0 not depending on j and an index set S j ⊂ {1, . . . , p}\
{ j}, the capped ℓ1 sparsity condition measures the complexity of the j-th column of Ω∗ by

|S j|+(1− ε0)
−1 ∑

k 6= j,k 6∈S j

|Ω∗k j|
(Ω∗j j)

1/2λ∗,0
≤ s∗, j. (10)
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The condition can be written as

∑
j 6=k

min

{
|Ω∗k j|

(1− ε0)(Ω∗j j)
1/2λ∗,0

,1

}
≤ s∗, j

if we do not care about the choice of S j. In the ℓ0 sparsity case of S j = {k : k 6= j,Ω∗k j 6= 0}, we may

set s∗, j = |S j|+1 as the degree for the j-th node in the graph induced by matrix Ω∗ (or Θ∗). In this

case, d = max j(1+ |S j|) is the maximum degree as in (1).

In addition to the sparsity condition on the inverse matrix, we also require a certain invertibility

condition on R∗. Let S j ⊆ B j ⊆ {1, . . . , p} \ { j}. A simple version of the required invertibility

condition can be written as

inf

{
uT (R∗− j,− j)u

‖uB j
‖2

2

: uB j
6= 0

}
≥ c∗ (11)

with a fixed constant c∗ > 0. This condition requires a certain partial invertibility of the population

correlation matrix. It certainly holds if the smallest eigenvalue of R∗− j,− j is no smaller than c∗ for all

j ≤ p, or the spectrum norm of Ω∗ is no greater than 1/c∗ as assumed in Theorem 1. In the proof of

Theorems 2 and 3, we only use a weaker version of condition (11) in the form of (35) with {Σ∗,Σ}
replaced by {R∗− j,− j,R− j,− j} there.

Theorem 2 Suppose Σ is the sample covariance matrix of n iid N(0,Σ∗) vectors. Let Θ∗ = (Σ∗)−1

and Ω∗ as in (8) be the inverses of the population covariance and correlation matrices. Let Θ̂ and Ω̂

be their scaled Lasso estimators defined in (4), (7) and (9) with a penalty level λ0 = A
√

4(log p)/n,

A > 1. Suppose (10) and (11) hold with ε0 = 0 and max j≤p(1+ s∗, j)λ0 ≤ c0 for a certain constant

c0 > 0 depending on c∗ only. Then, the spectrum norm of the errors are bounded by

‖Θ̂−Θ∗‖2 ≤ ‖Θ̂−Θ∗‖1 ≤C
(

max
j≤p

(
∥∥D−1
− j‖∞Θ∗j j)

1/2s∗, jλ0 +
∥∥Θ∗

∥∥
1
λ0

)
, (12)

‖Ω̂−Ω∗‖2 ≤ ‖Ω̂−Ω∗‖1 ≤C
(

max
j≤p

(Ω∗j j)
1/2s∗, jλ0 +‖Ω∗‖1λ0

)
, (13)

with large probability, where C is a constant depending on {c0,c∗,A} only. Moreover, the term

‖Θ∗‖1λ0 in (12) can be replaced by

max
j≤p
‖Θ∗∗, j‖1s∗, jλ

2
0 + τn(Θ

∗), (14)

where τn(M) = inf{τ : ∑ j exp(−nτ2/‖M∗, j‖2
1)≤ 1/e} for a matrix M.

Theorem 2 implies Theorem 1 due to s∗, j ≤ d−1, 1/D j j ≤ Θ∗j j ≤ ‖Θ∗‖2, ‖Θ∗‖1 ≤ d max j Θ∗j j

and similar inequalities for Ω∗. We note that B j = S j in (11) gives the largest c∗ and thus the sharpest

error bounds in Theorem 2. In Section 7, we give an example to demonstrate the advantage of this

theorem.

In a 2011 arXiv version of this paper (http://arxiv.org/pdf/1202.2723v1.pdf), we are able to

demonstrate good numerical performance of the scaled Lasso estimator with the universal penalty

level λ0 =
√

2(log p)/n, compared with some existing methods, but not the larger penalty level

λ0 >
√

4(log p)/n in Theorems 1 and 2. Since a main advantage of our proposal is automatic
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selection of the penalty level without resorting to cross validation, a question arises as to whether a

theory can be developed for a smaller penalty level to match the choice in a demonstration of good

performance of the scaled Lasso in our simulation experiments.

We are able to provide an affirmative answer in this version of the paper by proving a higher

concentration of the error of the scaled Lasso at a smaller penalty level as follows. Let Ln(t) be the

N(0,1/n) quantile function satisfying

P
{

N(0,1)> n1/2Ln(t)
}
= t.

Our earlier analysis is based on existing oracle inequalities of the Lasso which holds with probability

1− 2ε when the inner product of design vectors and noise are bounded by their ε/p and 1− ε/p

quantiles. Application of the union bound in p applications of the Lasso requires a threshold level

λ∗,0 = Ln(ε/p2) with a small ε > 0, which matches
√

4(log p)/n with ε≍ 1/
√

log p in Theorems 1

and 2. Our new analysis of the scaled Lasso allows a threshold level

λ∗,0 = Ln−3/2(k/p)

with k ≍ s log(p/s), where s = 1+max j s∗, j. More precisely, we require a penalty level λ0 ≥ Aλ∗,0
with a constant A satisfying

A−1 > A1 ≥max
j

{[ e1/(4n−6)2

4k

m j(L4 +2L2)

]1/2

+
e1/(4n−6)2

L
√

2π

√
ψ j +

L1(ε/p)

L

√
ψ j

}
, (15)

where L = L1(k/p), s∗, j ≤ m j ≤ min(|B j|,C0s∗, j) with the s∗, j and B j in (10) and (11), and ψ j =
κ+(m j;R∗− j,− j)/m j +Ln(5ε/p2) with

κ+(m;Σ) = max
‖u‖0=m,‖u‖2=1

uT Σu. (16)

Theorem 3 Let {Σ,Σ∗,Θ∗,Ω∗} be matrices as in Theorem 2, and Θ̂ and Ω̂ be the scaled Lasso

estimators with a penalty level λ0 ≥ Aλ∗,0 where λ∗,0 = Ln−3/2(k/p). Suppose (10) and (11) hold

with certain {S j,s∗, j,ε0,B j,c∗}, (15) holds with constants {A,A1,C0} and certain integers m j, and

P{(1− ε0)
2 ≤ χ2

n/n≤ (1+ ε0)
2} ≤ ε/p. Then, there exist constants c0 depending on c∗ only and C

depending on {A,A1,C0,c∗,c0} only such that when max j s∗, jλ0 ≤ c0, the conclusions of Theorem

2 hold with at least probability 1−6ε−2k ∑ j(p−1−|B j|)/p.

The condition max j s∗, jλ0 ≤ c0 on (10), which controls the capped ℓ1 sparsity of the inverse

correlation matrix, weakens the ℓ0 sparsity condition d
√
(log p)/n→ 0.

The extra condition on the upper sparse eigenvalue κ+(m;R∗− j,− j) in (15) is mild, since it only

requires a small κ+(m;R∗)/m that is actually decreasing in m.

The invertibility condition (11) is used to regularize the design matrix in linear regression pro-

cedures. As we mentioned earlier, condition (11) holds if the spectrum norm of Ω∗ is bounded by

1/c∗. Since (R∗)−1 = Ω∗ = (diagΣ∗)1/2Θ∗(diagΣ∗)1/2, it suffices to have

‖(R∗)−1‖2 ≤maxΣ∗j j‖Θ∗‖2 ≤ 1/c∗.

To achieve the convergence rate d
√

(log p)/n, both Yuan (2010) and Cai et al. (2011) require con-

ditions ‖Θ∗‖1 = O(1) and maxΣ∗j j = O(1). In comparison, the spectrum norm condition is not only
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weaker than the ℓ1 operator norm condition, but also more natural for the convergence in spectrum

norm.

Our sharper theoretical results are consequences of using the scaled Lasso estimator (4) and its

fast convergence rate in linear regression. In Sun and Zhang (2012), a convergence rate of order

s∗(log p)/n was established for the scaled Lasso estimation of the noise level, compared with an

oracle noise level as the moment estimator based on the noise vector. In the context of the column-

by-column application of the scaled Lasso for precision matrix estimation, the results in Sun and

Zhang (2012) can be written as

∣∣∣
σ∗j
σ̂ j

−1

∣∣∣≤C1s∗, jλ
2
0, ∑

k 6= j

Σ
1/2

kk |β̂k, j−βk, j|
√

Θ∗j j ≤C2s∗, jλ0, (17)

where σ∗j = ‖Xβ∗, j‖2/
√

n. We note that n(σ∗j)
2Θ∗j j is a chi-square variable with n degrees of free-

dom when X has iid N(0,Σ∗) rows. The oracle inequalities in (17) play a crucial role in our analysis

of the proposed estimators for inverse matrices, as the following proposition attests.

Proposition 4 Let Θ∗ be a nonnegative definite target matrix, Σ∗=(Θ∗)−1, and β=−Θ∗(diagΘ∗)−1.

Let Θ̂ and Ω̂ be defined as (7) and (9) based on certain β̂ and σ̂ j satisfying (17). Suppose further

that

|Θ∗j j(σ
∗
j)

2−1| ≤C0λ0, max
j
|(Σ j j/Σ∗j j)

−1/2−1| ≤C0λ0, (18)

and that max{4C0λ0,4λ0,C1s∗, jλ0} ≤ 1. Then, (12) and (13) hold with a constant C depending on

{C0,C2} only. Moreover, if nΘ∗j j(σ
∗
j)

2 ∼ χ2
n, then the term λ0‖Θ∗‖1 in (12) can be replaced by (14)

with large probability.

While the results in Sun and Zhang (2012) requires a penalty level A
√
(2/n) log(p2) to allow

simultaneous application of (17) for all j≤ p via the union bound in proving Theorem 2, Theorem 3

allows a smaller penalty level λ∗,0 = ALn−3/2(k/p) with A> 1 and a potentially large k≍ s log(p/s).
This is based on new theoretical results for the Lasso and scaled Lasso developed in Section 4.

4. Linear Regression Revisited

This section provides certain new error bounds for the Lasso and scaled Lasso in the linear regres-

sion model. Compared with existing error bounds, the new results characterize the concentration of

the estimation and prediction errors at fixed, smaller threshold levels. The new results also allow

high correlation among certain nuisance design vectors.

Consider the linear regression model with standardized design and normal error:

y = Xβ+ ε, ‖x j‖2
2 = n, ε∼ N(0,σ2In).

Let λuniv =
√
(2/n) log p be the universal penalty level (Donoho and Johnstone, 1994). For the

estimation of β and variable selection, existing theoretical results with p≫ n typically require a

penalty level λ = Aσλuniv, with A > 1, to guarantee rate optimality of regularized estimators. This

includes the scaled Lasso with a jointly estimated σ. For the Dantzig selector (Candès and Tao,

2007), performance bounds have been established for A = 1.
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It is well understood that σλuniv in such theorems is a convenient probabilistic upper bound

of ‖XT ε/n‖∞ for controlling the maximum gradient of the squared loss ‖y−Xb‖2
2/(2n) at b = β̂.

For λ < ‖XT ε/n‖∞, variable selection is known to be inconsistent for the Lasso and most other

regularized estimates of β, and the analysis of such procedures become more complicated due to

false selection. However, this does not preclude the possibility that such a smaller λ outperforms

the theoretical λ≥ σλuniv for the estimation of β or prediction.

In addition to theoretical studies, a large volume of numerical comparisons among regularized

estimators exists in the literature. In such numerical studies, the choice of penalty level is typically

delegated to computationally more expensive cross-validation methods. Since cross-validation aims

to optimize prediction performance, it may lead to a smaller penalty level than λ= σλuniv. However,

this gap between λ≥ σλuniv in theoretical studies and the possible choice of λ < σλuniv in numerical

studies is largely ignored in the existing literature.

The purpose of this section is to provide rate optimal oracle inequalities for the Lasso and its

scaled version, which hold with at least probability 1− ε/p for a reasonably small ε, at a fixed

penalty level λ satisfying P{N(0,σ2/n)> λ/A}= k/p, with a given A > 1 and potentially large k,

up to k/(2log(p/k))2 ≍ s∗, where s∗ is a complexity measure of β, for example, s∗ = ‖β‖0.

When the (scaled) Lasso is simultaneously applied to p subproblems as in the case of matrix

estimation, the new oracle inequalities allow the use of the union bound to uniformly control the

estimation error in subproblems at the same penalty level.

Rate optimal oracle inequalities have been established for ℓ1 and concave regularized estimators

in Zhang (2010) and Ye and Zhang (2010) for penalty level λ=Aσ
√

c∗(2/n) log(p/(εs∗)), where c∗

is an upper sparse eigenvalue, A > 1 and 1−ε is the guaranteed probability for the oracle inequality

to hold. The new oracle inequalities remove the factors c∗ and ε from the penalty level, as long as

1/ε is polynomial in p. The penalty level Aσ
√
(2/n) log(p/(εs)) has been considered for models

of size s under ℓ0 regularization (Birge and Massart, 2001, 2007; Bunea et al., 2007; Abramovich

and Grinshtein, 2010).

To bound the effect of the noise when λ < ‖XT ε/n‖∞, we use a certain sparse ℓ2 norm to control

the excess of XT ε/n over a threshold level λ∗. The sparse ℓq norm was used in the analysis of

regularized estimators before (Candès and Tao, 2007; Zhang and Huang, 2008; Zhang, 2009; Cai

et al., 2010; Ye and Zhang, 2010; Zhang, 2010), but it was done without a formal definition of the

quantity to the best of our knowledge. To avoid repeating existing calculation, we define the norm

and its dual here and summarize their properties in a proposition.

For 1≤ q≤ ∞ and t > 0, the sparse ℓq norm and its dual are defined as

‖v‖(q,t) = max
|B|<t+1

‖vB‖q, ‖v‖∗(q,t) = max
‖u‖(q,t)≤1

uT v.

The following proposition describes some of their basic properties.

Proposition 5 Let m≥ 1 be an integer, q′ = q/(q−1) and aq = (1−1/q)/q1/(q−1).

(i) Properties of ‖ · ‖(q,m): ‖v‖(q,m) ↓ q, ‖v‖(q,m)/m1/q ↓ m, ‖v‖(q,m)/m1/q ↑ q,

‖v‖∞ = ‖v‖(q,1) ≤ ‖v‖(q,m) ≤ (‖v‖q)∧ (m1/q‖v‖∞),

and ‖v‖q
q ≤ ‖v‖q

(q,m)+(aq/m)q−1‖v‖q
1.

(ii) Properties of ‖ · ‖∗(q,m): m1/q‖v‖∗(q,m) ↓ q, and

max
(
‖v‖q′ ,m

−1/q‖v‖1

)
≤ ‖v‖∗(q,m) ≤min

(
‖v‖(q′,m/aq)+m−1/q‖v‖1,‖v‖1

)
.
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(iii) Let Σ = XT X/n and κ+(m;M) be the sparse eigenvalue in (16). Then,

‖Σv‖(2,m) ≤min
{

κ
1/2
+ (m;Σ)‖Σ1/2

v‖2,κ+(m;Σ)‖v‖2

}
.

4.1 Lasso with Smaller Penalty: Analytical Bounds

The Lasso path is defined as an R
p-valued function of λ > 0 as

β̂(λ) = argmin
b

{
‖y−Xb‖2

2/(2n)+λ‖b‖1

}
.

For threshold levels λ∗ > 0, we consider β satisfying the following complexity bound,

|S|+ ∑
j 6∈S

|β j|/λ∗ ≤ s∗ (19)

with a certain S ⊂ {1, . . . , p}. This includes the ℓ0 sparsity condition ‖β‖0 = s∗ with S = supp(β)
and allows ‖β‖0 to far exceed s∗ with many small |β j|.

The sparse ℓ2 norm of a soft-thresholded vector v, at threshold level λ∗ in (19), is

ζ(2,m)(v,λ∗) = ‖(|v|−λ∗)+‖(2,m) = max
|J|≤m

{
∑
j∈J

(|v j|−λ∗)
2
+

}1/2

. (20)

Let B⊆ {1, . . . , p} and

z = (z1, . . . ,zp)
T = XT ε/n.

We bound the effect of the excess of the noise over λ∗ under the condition

‖zBc‖∞ ≤ λ∗, ζ(2,m)(zB,λ∗)≤ A1m1/2λ∗, (21)

for some A1 ≥ 0. We prove that when λ≥ Aλ∗ with A > 1+A1 and (21) holds, a scaled version of

β̂(λ)−β belongs to a set U (Σ,S,B;A,A1,m,s∗−|S|), where

U (Σ,S,B;A,A1,m,m1) (22)

=
{

u : uT Σu+(A−1)‖uSc‖1 ≤ (A+1)‖uS‖1 +A1m1/2‖uB‖∗(2,m)+2Am1

}
.

This leads to the definition of

M∗pred = sup
{uT Σu/A2

m1 + |S|
: u ∈U (Σ,S,B;A,A1,m,m1)

}
(23)

as a constant factor for the prediction error of the Lasso and

M∗q = sup
{ ‖u‖q/A

(m1 + |S|)1/q
: u ∈U (Σ,S,B;A,A1,m,m1)

}
(24)

for the ℓq estimation error of the Lasso.

The following theorem provides analytic error bounds for the Lasso prediction and estimation

under the sparse ℓ2 norm condition (21) on the noise. This is different from existing analyses of the

Lasso based on the ℓ∞ noise bound ‖XT ε/n‖∞≤ λ∗. In the case of Gaussian error, (21) allows a fixed

threshold level λ∗=σ
√
(2/n) log(p/m) to uniformly control the error of p applications of the Lasso

for the estimation of a precision matrix. When m ≍ s∗ and σ
√
(2/n) log(p/m)≪ σ

√
(2/n) log p,

using such smaller λ∗ is necessary for achieving error bounds with the sharper rate corresponding

to σ
√
(2/n) log(p/m).
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Theorem 6 Suppose (19) holds with certain {S,s∗,λ∗}. Let A > 1, β̂ = β̂(λ) be the Lasso estimator

with penalty level λ≥ Aλ∗, h = β̂−β, and m1 = s∗−|S|. If (21) holds with A1 ≥ 0, a positive integer

m and B⊆ {1, . . . , p}, then

‖Xh‖2
2/n≤M∗preds∗λ

2, ‖h‖q ≤M∗qs
1/q
∗ λ. (25)

Remark 7 Theorem 6 covers ‖XT ε/n‖∞ ≤ λ∗ as a special case with A1 = 0. In this case, the

set (22) does not depend on {m,B}. For A1 = 0 and |S| = s∗ (m1 = 0), (22) contains all vectors

satisfying a basic inequality uT Σu+(A−1)‖uSc‖1 ≤ (A+1)‖uS‖1 (Bickel et al., 2009; van de Geer

and Bühlmann, 2009; Ye and Zhang, 2010) and Theorem 6 still holds when (22) is replaced by the

smaller

U−(Σ,S,A) =
{

u : ‖ΣS,∗u‖∞ ≤ A+1,u jΣ j,∗u≤−|u j|(A−1) ∀ j 6∈ S
}
.

Thus, in what follows, we always treat U (Σ,S,B;A,0,m,0) as U−(Σ,S,A) when A1 = 0 and |S|= s∗.
This yields smaller constants {M∗pred ,M

∗
q} in (23) and (24).

The purpose of including a choice B in (21) is to achieve bounded {M∗pred ,M
∗
1} in the presence

of some highly correlated design vectors outside S∪B when ΣS∪B,(S∪B)c is small. Since ‖uB‖∗(2,m)

is increasing in B, a larger B leads to a larger set (22) and larger {M∗pred ,M
∗
q}. However, (21)

with smaller B typically requires larger λ∗. Fortunately, the difference in the required λ∗ in (21)

is of smaller order than λ∗ between the largest B = {1, . . . , p} and smaller B with |Bc| ≤ p/m.

We discuss the relationship between {M∗pred ,M
∗
q} and existing conditions on the design in the next

section, along with some simple upper bounds for {M∗pred ,M
∗
1 ,M

∗
2}.

4.2 Scaled Lasso with Smaller Penalty: Analytical Bounds

The scaled Lasso estimator is defined as

{β̂, σ̂}= argmin
b,σ

{
‖y−Xb‖2

2/(2nσ)+λ0‖b‖1 +σ/2
}
, (26)

where λ0 > 0 is a scale-free penalty level. In this section, we describe the implication of Theorem

6 on the scaled Lasso.

A scaled version of (19) is

|S|+ ∑
j 6∈S

|β j|/(σ∗λ∗,0) = s∗,0 ≤ s∗, (27)

where σ∗ = ‖ε‖2/
√

n is an oracle estimate of the noise level and λ∗,0 > 0 is a scaled threshold level.

This holds automatically under (19) when S ⊇ supp(β). When βSc 6= 0, (27) can be viewed as an

event of large probability. When

|S|+(1− ε0)
−1 ∑

j 6∈S

|β j|
σλ∗,0

≤ s∗ (28)

and ε∼ N(0,σIn), P
{

s∗,0 ≤ s∗
}
≥ P

{
χ2

n/n≥ (1− ε0)
2
}
→ 1 for fixed ε0 > 0. Let

M∗σ = sup
u∈U

{
uT Σu

s∗A2
+

2‖u‖1

s∗A2
+

2A1m1/2‖uB‖∗(2,m)

s∗A2

}
(29)
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with U = U (Σ,S,B;A,A1,m,m1) in (22), as in (23) and (24). Set

η∗ = M∗σA2λ2
∗,0s∗, λ0 ≥ Aλ∗,0/

√
(1−η∗)+, η0 = M∗σλ2

0s∗.

Theorem 8 Suppose η0 < 1. Let {β̂, σ̂} be the scaled Lasso estimator in (26), φ1 = 1/
√

1+η0,

φ2 = 1/
√

1−η0, and σ∗ = ‖ε‖2/
√

n. Suppose (21) holds with {zB,λ∗} replaced by {zB/σ∗,λ∗,0}.
(i) Let h∗ = (β̂−β)/σ∗. Suppose (27) holds. Then,

φ1 < σ̂/σ∗ < φ2, ‖Xh∗‖2
2/n < M∗preds∗(φ2λ0)

2, ‖h∗‖q < M∗qs∗φ2λ0. (30)

(ii) Let h = β̂−β. Suppose (28) holds and 1− ε0 ≤ σ∗/σ≤ 1+ ε0. Then,

(1− ε0)φ1 < σ̂/σ < φ2(1+ ε0), (31)

‖Xh‖2
2/n < (1+ ε0)

2M∗preds∗(σφ2λ0)
2,

‖h‖q < (1+ ε0)M
∗
qs∗σφ2λ0.

Compared with Theorem 6, Theorem 8 requires nearly identical conditions on the design X ,

the noise and penalty level under proper scale. It essentially allows the substitution of {y,X ,β} by

{y/σ∗,X ,β/σ∗} when η0 is small.

Theorems 6 and 8 require an upper bound (21) for the sparse ℓ2 norm of the excess noise as well

as upper bounds for the constant factors {M∗pred ,M
∗
q ,M

∗
σ} in (23), (24) and (29). Probabilistic upper

bounds for the noise and consequences of their combination with Theorems 6 and 8 are discussed

in Section 4.3. We use the rest of this subsection to discuss {M∗pred ,M
∗
q ,M

∗
σ}.

Existing analyses of the Lasso and Dantzig selector can be to used find upper bounds for

{M∗pred ,M
∗
q ,M

∗
σ} via the sparse eigenvalues (Candès and Tao, 2005, 2007; Zhang and Huang, 2008;

Zhang, 2009; Cai et al., 2010; Zhang, 2010; Ye and Zhang, 2010). In the simpler case A1 = m1 = 0,

shaper bounds can be obtained using the compatibility factor (van de Geer, 2007; van de Geer and

Bühlmann, 2009), the restricted eigenvalue (Bickel et al., 2009; Koltchinskii, 2009), or the cone in-

vertibility factors (Ye and Zhang, 2010; Zhang and Zhang, 2012). Detailed discussions can be found

in van de Geer and Bühlmann (2009), Ye and Zhang (2010) and Zhang and Zhang (2012) among

others. The main difference here is the possibility of excluding some highly correlated vectors from

B in the case of A1 > 0. The following lemma provide some simple bounds used in our analysis of

the scaled Lasso estimation of the precision matrix.

Lemma 9 Let {M∗pred ,M
∗
q ,M

∗
σ} be as in (23), (24) and (29) with the vector class

U (Σ,S,B;A,A1,m,m1) in (22). Suppose that for a nonnegative-definite matrix Σ, max j ‖Σ j,∗ −
Σ j,∗‖∞ ≤ λ∗ and c∗‖uS∪B‖2

2 ≤ uT Σu for u ∈U (Σ,S,B;A,A1,m,m1). Suppose further that λ∗{(s∗∨
m)/c∗}(2A+A1)

2 ≤ (A−A1−1)2
+/2. Then,

M∗pred +M∗1
(

1− A1 +1

A

)
≤max

{ 4∨ (4m/s∗)
c∗(2+A1/A)−2

,
c∗(1−|S|/s∗)

A2

}
(32)

and

M∗σ ≤
(

1+
2A1

c∗A

)
M∗pred +2(1+A1)

M∗1
A

+
A1m

As∗
+

2A1

A3

(
1− |S|

s∗

)
. (33)

Moreover, if in addition B = {1, . . . , p} then

M∗2 ≤ (2/c∗)M
∗
pred +2(1−|S|/s∗)/(A

2). (34)
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The main condition of Lemma 9,

c∗ ≤ inf

{
uT Σu

‖uS∪B‖2
2

: u ∈U (Σ,S,B;A,A1,m,m1)

}
, (35)

can be viewed as a restricted eigenvalue condition (Bickel et al., 2009) on a population version of

the Gram matrix. However, one may also pick the sample version Σ = Σ with λ∗ = 0. Let {A,A1}
be fixed constants satisfying A1 < A−1. Lemma 9 asserts that the factors {M∗pred ,M

∗
1 ,M

∗
σ} can be

all treated as constants when 1/c∗ and m/s∗ are bounded and λ∗(s∗∨m)/c∗ is smaller than a certain

constant. Moreover, M∗2 can be also treated as a constant when (35) holds for B = {1, . . . , p}.

4.3 Probabilistic Error Bounds

Theorems 6 and 8 provides analytical error bounds based on the size of the excess noise over a

given threshold. Here we provide probabilistic upper bounds for the excess noise and describe their

implications in combination with Theorems 6 and 8. We use the following notation:

Ln(t) = n−1/2Φ−1(1− t), (36)

where Φ−1(t) is the standard normal quantile function.

Proposition 10 Let ζ(2,m)(v,λ∗) be as in (20) and κ+(m) = κ+(m;Σ) as in (16) with Σ = XT X/n.

Suppose ε∼ N(0,σ2In) and ‖x j‖2
2 = n. Let k > 0.

(i) Let z = XT ε/n and λ∗ = σLn(k/p). Then,

P{ζ(2,p)(z,λ∗)> 0} ≤ 2k, and

Eζ2
(2,p)(z,λ∗)≤ 4kλ2

∗/{L4
1(k/p)+2L2

1(k/p)},

P
{

ζ(2,m)(z,λ∗)> Eζ(2,p)(z,λ∗)+σLn(ε)
√

κ+(m)
}
≤ ε. (37)

(ii) Let σ∗= ‖ε‖2/
√

n, z∗= z/σ∗, λ∗,0 = Ln−3/2(k/p) and εn = e1/(4n−6)2−1. Then, P{ζ(2,p)(z∗,λ∗,0)>
0} ≤ (1+ εn)k, Eζ2

(2,p)(z
∗,λ∗,0)≤ (1+ εn)4kλ2

∗,0/{L4
1(k/p)+2L2

1(k/p)}, and

P
{

ζ(2,m)(z
∗,λ∗,0)> µ(2,m)+Ln−3/2(ε)

√
κ+(m)

}
≤ (1+ εn)ε, (38)

where µ(2,m) is the median of ζ(2,m)(z
∗,λ∗,0). Moreover,

µ(2,m) ≤ Eζ(2,p)(z
∗,λ∗,0)+(1+ εn){λ∗,0/L1(k/p)}

√
κ+(m)/(2π). (39)

We describe consequences of combining Proposition 10 with Theorems 6 and 8 in three theo-

rems, respectively using the probability of no excess noise over the threshold, the Markov inequality

with the second moment, and the concentration bound on the excess noise.

Theorem 11 Let 0 < ε < p. Suppose ε∼ N(0,σ2In).
(i) Let the notation be as in Theorem 6 and (36) with A1 = 0 and λ∗ = σLn(ε/p2). If (19) holds,

then (25) holds with at least probability 1−2ε/p.

(ii) Let the notation be as in Theorem 8 and (36) with A1 = 0 and λ∗,0 = Ln−3/2(ε/p2). If (28)

holds with P{(1−ε0)
2 ≤ χ2

n/n≤ (1+ε0)
2} ≤ ε/p, then (30) and (31) hold with at least probability

1−3ε/p.
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For a single application of the Lasso or scaled Lasso, ε/p = o(1) guarantees ‖z‖∞ ≤ λ∗ in

Theorem 11 (i) and ‖z∗‖∞ ≤ λ∗,0 in Theorem 11 (ii) with high probability. The threshold levels

are λ∗/σ ≈ λ∗,0 ≈ λuniv =
√
(2/n) log p, as typically considered in the literature. In numerical

experiments, this often produces nearly optimal results although the threshold level may still be

somewhat higher than optimal for the prediction and estimation of β. However, if we use the union

bound to guarantee the simultaneous validity of the oracle inequalities in p applications of the

scaled Lasso in the estimation of individual columns of a precision matrix, Theorem 11 requires

ε = o(1), or equivalently a significantly higher threshold level λ∗,0 ≈
√
(4/n) log p. This higher

λ∗,0, which does not change the theoretical results by much, may produce clearly suboptimal results

in numerical experiments.

Theorem 12 Let k > 0. Suppose ε∼ N(0,σ2In).
(i) Let the notation be as in Theorem 6 and Proposition 10, λ∗ = σLn(k/p), and A− 1 > A1 ≥√

4k/(εm(L4
1(k/p)+2L2

1(k/p))). If (19) holds, then (25) holds with at least probability 1− ε−
2|Bc|k/p.

(ii) Let the notation be as in Theorem 8 and Proposition 10, λ∗,0 = Ln−3/2(k/p), εn = e1/(4n−6)2 −
1, and A− 1 > A1 ≥

√
(1+ εn)4k/(εm(L4

1(k/p)+2L2
1(k/p))). If (28) holds with P{(1− ε0)

2 ≤
χ2

n/n≤ (1+ ε0)
2} ≤ ε, then (30) and (31) hold with at least probability 1−2ε−2|Bc|k/p.

Theorem 12 uses the upper bounds for Eζ2
(2,p)(z,λ∗) and Eζ2

(2,p)(z
∗,λ∗,0) to verify (21). Since

Ln(k/p) ≈
√
(2/n) log(p/k), it allows smaller threshold levels λ∗ and λ∗,0 as long as

k/(εm(L4
1(k/p) + 2L2

1(k/p))) is small. However, it does not allow ε ≤ 1/p for using the union

bound in p applications of the Lasso in precision matrix estimation.

Theorem 13 Let k > 0. Suppose ε∼ N(0,σ2In).
(i) Let the notation be as in Theorem 6 and Proposition 10, λ∗ = σLn(k/p), and

A−1 > A1 ≥
( 4k/m

L4
1(k/p)+2L2

1(k/p)

)1/2

+
L1(ε/p)

L1(k/p)

(κ+(m)

m

)1/2

.

If (19) holds, then (25) holds with at least probability 1− ε/p−2|Bc|k/p.

(ii) Let the notation be as in Theorem 8 and Proposition 10, λ∗,0 = Ln−3/2(k/p), εn = e1/(4n−6)2−1,

and

A−1 > A1 ≥
( (1+ εn)4k/m

L4
1(k/p)+2L2

1(k/p)

)1/2

+
(L1(ε/p)

L1(k/p)
+

1+ εn

L1(k/p)
√

2π

)(κ+(m)

m

)1/2

.

If (28) holds with P{(1− ε0)
2 ≤ χ2

n/n ≤ (1+ ε0)
2} ≤ ε/p, then (30) and (31) hold with at least

probability 1−2ε/p−2|Bc|k/p.

Theorem 13 uses concentration inequalities (37) and (38) to verify (21). Let B = {1, . . . , p} and

Ln(t) be as in (36). By guaranteeing the validity of the oracle inequalities with 1− ε/p probability,

with a reasonably small ε, Theorem 13 justifies the use of a fixed smaller threshold level λ∗,0 =
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Ln−3/2(k/p) ≈
√
(2/n) log(p/k) in p applications of the scaled Lasso to estimate columns of a

precision matrix.

Since L1(ε/p) ≈ L1(k/p) typically holds, Theorem 13 only requires (k/m)/(L4
1(k/p)+

2L2
1(k/p)) and κ+(m)/m be smaller than a fixed small constant. This condition relies on the

upper sparse eigenvalue only in a mild way since κ+(m)/m is decreasing in m and κ+(m)/m ≤
1/m+(1−1/m)max j 6=k |xT

j xk/n| (Zhang and Huang, 2008).

For k≍m and log(p/k)≍ log(p/(s∗∨1)), Theorem 13 provides prediction and ℓq error bounds

of the orders σ2(s∗ ∨ 1)λ2
∗,0 ≈ σ2((s∗ ∨ 1)/n)2log(p/(s∗ ∨ 1)) and σ(s∗ ∨ 1)1/qλ∗,0 respectively.

For log(p/n)≪ logn, this could be of smaller order than the error bounds with λ∗,0 ≈ λuniv =√
(2/n) log p.

Theorem 13 suggests the use of a penalty level satisfying λ/σ = λ0 = ALn(k/p) ≈
A
√
(2/n) log(p/k) with 1 < A ≤

√
2 and a real solution of k = L4

1(k/p) + 2L2
1(k/p). This is

conservative since the constraint on A in the theorem is valid with a moderate m = O(s∗ + 1).
For p applications of the scaled Lasso in the estimation of precision matrix, this also provides a

more practical penalty level compared with A′Ln(ε/p2)≈ A′
√
(4/n) log(p/ε1/2), A′ > 1 and ε≪ 1,

based on existing results and Theorem 11. In our simulation study, we use λ0 =
√

2Ln(k/p) with

k = L4
1(k/p)+2L2

1(k/p).

4.4 A Lower Performance Bound

It is well understood that in the class of β satisfying the sparsity condition (19), s∗σ2L2
n(s∗/p) and

s
1/q
∗ σLn(s∗/p) are respectively lower bounds for the rates of minimax prediction and ℓq estimation

error (Ye and Zhang, 2010; Raskutti et al., 2011). This can be achieved by the Lasso with λ∗ =
σLn(m/p), m ≍ s∗, or scaled Lasso with λ∗,0 = Ln−3/2(m/p). The following proposition asserts

that for each fixed β, the minimax error rate cannot be achieved by regularizing the gradient with a

threshold level of smaller order.

Proposition 14 Let y = Xβ+ ε, β̃(λ) satisfy ‖XT (y−X β̃(λ))/n‖∞ ≤ λ, and h̃(λ) = β̃(λ)−β. Let

Σ = XT X/n and κ+(m; ·) be as in (16).

(i) If ‖XT ε/n‖(2,k) ≥ k1/2λ∗ > 0, then for all A > 1

inf
λ≤λ∗/A

min
{‖Xh̃(λ)‖2/n

κ−1
+ (k;Σ)

,
‖h̃(λ)‖2

2

κ−2
+ (k;Σ)

}
≥ (1−1/A)2kλ2

∗. (40)

(ii) Let σ∗ = ‖ε‖2/
√

n and Nk = #{ j : |xT
j ε|/(nσ∗)≥ L̃n(k/p)} with L̃n(t) = Ln(t)−n−1/2. Suppose

X has iid N(0,Σ) rows, diag(Σ) = Ip, and 2k− 4‖Σ‖2 ≥
(√

k−1+
√

2‖Σ‖2 log(1/ε)
)2

. Then,

P{Nk ≥ k} ≥ 1− ε and

P
{
‖XT ε/n‖(q,k) ≥ σ∗k1/qσL̃n(k/p)

}
≥ 1− ε. (41)

Consequently, there exist numerical constants c1 and c2 such that

P
{

inf
λ≤c1σLn(k/p)

min
(‖Xh̃(λ)‖2/n

κ−1
+ (k;Σ)

,
‖h̃(λ)‖2

2

κ−2
+ (k;Σ)

)
≥ c2σ2kL2

n(k/p)
}
≥ 1− ε− e−n/9.

It follows from Proposition 14 (ii) that the prediction and ℓ2 estimation error is of no smaller or-

der than kσ2L2
n(k/p) for all λ≤ c1σLn(k/p). This rate is suboptimal when k log(p/k)≫ s∗ log(p/s∗).
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5. Estimation after Model Selection

We have presented theoretical properties of the scaled Lasso for linear regression and precision

matrix estimation. After model selection, the least squares estimator is often used to remove bias of

regularized estimators. The usefulness of this technique after the scaled Lasso was demonstrated in

Sun and Zhang (2012), along with its theoretical justification. In this section, we extend the theory

to smaller threshold level and to the estimation of precision matrix.

In linear regression, the least squares estimator β and the corresponding estimate of σ in the

model selected by a regularized estimator β̂ are given by

β = argmin
b

{
‖y−Xb‖2

2 : supp(b)⊆ Ŝ
}
, σ =

∥∥y−Xβ
∥∥

2

/√
n, (42)

where Ŝ = supp(β̂). To study the performance of (42), we define sparse eigenvalues relative to a

support set S as follows:

κ∗−(m
∗,S;Σ) = min

J⊇S,|J\S|≤m∗
min
‖uJ‖2=1

uT
J ΣJ,JuJ,

κ∗+(m
∗,S;Σ) = min

J∩S= /0,|J|≤m∗
max
‖uJ‖2=1

uT
J ΣJ,JuJ.

It is proved in Sun and Zhang (2012) that {β,σ} satisfies prediction and estimation error bounds of

the same order as those for the scaled Lasso (26) under some extra conditions on κ∗±(m
∗,S;Σ). The

extra condition on κ∗+(m
∗,S;Σ) is used to derive an upper bound for the false positive |Ŝ \ S|, and

then the extra condition on κ∗−(m
∗,S;Σ) is used to invert X

S∪Ŝ
. The following theorem extends the

result to the smaller threshold level λ∗,0 = Ln−3/2(k/p) in Theorem 13 (ii). Let

M∗lse =

[{
|S|+

(√
m∗+

√
2m∗ log(ep/m∗)

)2}1/2
+L1(ε/p)

]2

s∗ log(p/s∗)
.

Theorem 15 Let (β̂, σ̂) be the scaled lasso estimator in (26) and (β,σ) be the least squares estima-

tor (42) in the selected model Ŝ = supp(β̂). Let the notation be as in Theorem 13 (ii) and m∗ > m

be an integer satisfying s∗M∗pred/{(1−ξ1)(1−1/A)}2 ≤ m∗/κ∗+(m
∗,S). Suppose βSc = 0 and (21)

holds with {zB,λ∗} replaced by {z∗B,λ∗,0}. Then,

|Ŝ\S| ≤ m∗ (43)

with at least probability 1−2ε/p−2|Bc|k/p. Moreover,

(σ∗)2−σ2M∗lse(s∗/n) log(p/s∗)
≤ σ2

≤ σ̂2,
κ∗−(m

∗−1,S)‖h‖2
2 (44)

≤ ‖Xh‖2
2/n

≤ (1+ ε0)
2M∗preds∗(σφ2λ0)

2 +σ2M∗lse(s∗/n) log(p/s∗),

with at least probability 1−3ε/p−2|Bc|k/p, where h = β−β.
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Theorem 15 asserts that when k∨m∗ ≍ s∗, the least squares estimator {β,σ} after the scaled

Lasso selection enjoys estimation and prediction properties comparable to that of the scaled Lasso:

λ−2
0

{∣∣σ/σ∗−1
∣∣+

∥∥β−β
∥∥2

2
+
∥∥Xβ−Xβ

∥∥2

2
/n
}
+‖β‖0 = OP(1)s∗.

Now we apply this method for precision matrix estimation. Let β̂ be as in (4) and define β and

σ as follows:

β∗, j = argmin
b

{
‖Xb‖2

2 : b j =−1,supp(b)⊆ supp(β̂∗, j)
}
,

σ j =
∥∥Xβ∗, j

∥∥
2

/√
n. (45)

We define Θ̃
LSE

and Θ̂
LSE

as in (7) and (9) with β and σ in place of β̂ and σ̂.

Under an additional condition on the upper sparse eigenvalue, Theorem 15 is parallel to Theo-

rem 8 (ii), and the theoretical results in Sun and Zhang (2012) are parallel to Theorem 6 (ii). These

results can be used to verify the condition (17), so that Proposition 4 also applies to (45) with the

extra upper sparse eigenvalue condition on the population correlation matrix R∗. We formally state

this result as a corollary.

Corollary 16 Under the additional condition ‖R∗‖2 = O(1) on the population correlation matrix

R∗, Theorems 2 and 3 are applicable to the estimator Θ̂
LSE

and the corresponding estimator for

Ω∗ = (R∗)−1 with possibly different numerical constants.

6. Numerical Study

In this section, we present some numerical comparison between the proposed and existing methods.

In addition to the proposed estimator (7) and (9) based on the scaled Lasso (4) and the least squares

estimation after the scale Lasso (45), the graphical Lasso and CLIME are considered. The following

three models are considered. Models 1 and 2 have been considered in Cai et al. (2011), while Model

2 in Rothman et al. (2008).

• Model 1: Θi j = 0.6|i− j|.

• Model 2: Let Θ = B+δI, where each off-diagonal entry in B is generated independently and

equals to 0.5 with probability 0.1 or 0 with probability 0.9. The constant δ is chosen such that

the condition number of Θ∗ is p. Finally, we rescale the matrix Θ∗ to the unit in diagonal.

• Model 3: The diagonal of the target matrix has unequal values. Θ = D1/2ΩD1/2, where

Ωi j = 0.6|i− j| and D is a diagonal matrix with diagonal elements dii = (4i+ p−5)/{5(p−1)}.

Among the three models, Model 2 is the densest. For p = 1000, the capped ℓ1 sparsity s∗ is 8.84,

24.63, and 8.80 for three models respectively.

In each model, we generate a training sample of size 100 from a multivariate normal distribution

with mean zero and covariance matrix Σ = Θ−1 and an independent sample of size 100 from the

same distribution for validating the tuning parameter λ for the graphical Lasso and CLIME. The

GLasso and CLIME estimators are computed based on training data with various λ’s and we choose

λ by minimizing likelihood loss {trace(ΣΘ̂)− logdet(Θ̂)} on the validation sample. The scaled
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Lasso estimators are computed based on the training sample alone with penalty level λ0 =ALn(k/p),
where A=

√
2 and k is the solution of k = L4

1(k/p)+2L2
1(k/p). The symmetrization step in Cai et al.

(2011) is applied. We consider six different dimensions p = 30,60,90,150,300,1000 and replicate

100 times in each setting. The CLIME estimators for p = 300 and p = 1000 are not computed due

to computational costs.

Table 1 presents the mean and standard deviation of estimation errors based on 100 replications.

The estimation error is measured by three matrix norms: the spectrum norm, the matrix ℓ1 norm

and the Frobenius norm. The scaled Lasso estimator, labeled as SLasso, outperforms the graphical

Lasso (GLasso) in all cases except for the smaller p ∈ {30,60,90} in the Frobenius loss in the

denser Model 2. It also outperforms the CLIME in most cases, except for smaller p in sparser

models (p = 30 in Model 1 and p ∈ {30,60} in Model 3). The least squares estimator after the

scaled Lasso selection outperforms all estimators by large margin in the spectrum and Frobenius

losses in Models 1 and 3, but in general underperforms in the ℓ1 operator norm and in Model 2.

It seems that post processing by the least squares method is a somewhat aggressive procedure for

bias correction. It performs well in sparse models, where variable selection is easier, but may not

perform very well in denser models.

Both the scaled Lasso and the CLIME are resulting from sparse linear regression solutions. A

main advantage of the scaled Lasso over the CLIME is adaptive choice of the penalty level for the

estimation of each column of the precision matrix. The CLIME uses cross-validation to choose

a common penalty level for all p columns. When p is large, it is computationally difficult. In

fact, this prevented us from completing the simulation experiment for the CLIME for the larger

p ∈ {300,1000}.

7. Discussion

Since the scaled Lasso choose penalty levels adaptively in the estimation of each column of the

precision matrix, it is expected to outperform methods using a fixed penalty level for all columns in

the presence of heterogeneity of the diagonal of the precision matrix. Let Θ̃(λ) be an estimator with

columns

Θ̃∗ j(λ) = argmin
v∈Rp

{∥∥v
∥∥

1
:
∥∥Σv− e j

∥∥
∞
≤ λ

}
, j = 1, . . . , p. (46)

The CLIME is a symmetrization of this estimator Θ̃(λ) with fixed penalty level for all columns.

In the following example, the scaled Lasso estimator has a faster convergence rate than (46). The

example also demonstrates the possibility of achieving the rate dλ0 in Theorem 2 with unbounded

‖Θ∗‖2 ≥ d2, when Theorem 1 is not applicable.

Example 1 Let p > n2 + 3 + m with (m,m4(log p)/n) → (∞,0) and 4m2 ≤ log p. Let Ln(t) ≈√
(2/n) log(1/t) be as in (36). Let {J1,J2,J3} be a partition of {1, . . . , p} with J1 = {1,2} and J2 =

{3, . . . ,3+m}. Let ρ1 =
√

1−1/m2, v= (v1, . . . ,vm)
T ∈Rm with v2

j = 1/m, ρ2 = c0m3/2Ln(m/p) =
o(1), and

Σ∗ =




Σ∗J1,J1
0 0

0 Σ∗J2,J2
0

0 0 Ip−m−3


 , Σ∗J1,J1

=

(
1 ρ1

ρ1 1

)
, Σ∗J2,J2

=

(
1 ρ2vT

ρ2v Im

)
.
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The eigenvalues of Σ∗J1,J1
are 1±ρ1, those of Σ∗J2,J2

are 1±ρ2,1, . . . ,1, and

(Σ∗J1,J1
)−1 = m2

(
1 −ρ1

−ρ1 1

)
, (Σ∗J2,J2

)−1 =
1

1−ρ2
2

(
1 −ρ2vT

−ρ2v (1−ρ2
2)Im +ρ2

2vvT

)
.

We note that diag(Σ∗) = Ip, d = m+ 1 is the maximum degree, ‖Θ∗‖2 = 1/(1− ρ1) ≈ 2d2, and

‖Θ∗‖1 ≈ 2d2. The following statements are proved in the Appendix.

(i) Let Θ̂ be the scaled Lasso estimator of Θ∗ = (Σ∗)−1 with penalty level λ0 = A
√
(4/n) log p,

A > 1, as in Theorem 2. Then, there exists a constant M∗1 such that

P
{
‖Θ̂−Θ∗‖2 ≤ ‖Θ̂−Θ∗‖1 ≤M∗1mLn(m/p)

}
→ 1.

(ii) If ρ2 = c0m3/2Ln(m/p) with a sufficiently small constant c0 > 0, then

P
{

inf
λ>0
‖Θ̃(λ)−Θ∗‖2 ≥ c0m3/2Ln(m/p)/

√
1+1/m

}
→ 1.

Thus, the order of the ℓ1 and spectrum norms of the error of (46) for the best data dependent penalty

level λ is larger than that of the scaled Lasso by a factor
√

m.
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Appendix A.

We provide all proofs in this appendix. We first prove the results in Section 4 since they are used to

prove the results in Section 3.

A.1 Proof of Proposition 5

Lemma 20 in Ye and Zhang (2010) gives ‖v‖q
q ≤ ‖v‖q

(q,m) + (aq/m)q−1‖v‖q
1. The rest of part

(i) follows directly from definition. Lemma 20 in Ye and Zhang (2010) also gives ‖v‖∗(q,m) ≤
‖v‖(q′,m/aq)+m−1/q‖v‖1. The rest of part (ii) is dual to the corresponding parts of part (i). Since

‖Σv‖(2,m) = max‖u‖0=m,‖u‖2=1 uT Σv and ‖uT Σ
q‖2 ≤ κ

q
+(m;Σ) for q ∈ {1/2,1}, part (iii) follows. �

A.2 Proof of Theorem 6

By the Karush-Kuhn-Tucker conditions,

(XT X/n)h = z−λg, sgn(β̂ j)g j ∈ {0,1}, ‖g‖∞ ≤ 1. (47)

Since ζ(2,m)(zB,λ∗) is the ‖ · ‖(2,m) norm of (|zB|−λ∗)+, (21) implies

|hT z| ≤ λ∗‖h‖1 + ∑
j∈B

|h j|(|z j|−λ∗)+
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≤ λ∗‖h‖1 +A1λ∗m
1/2‖hB‖∗(2,m). (48)

Since −h jsgn(β̂ j)≤ |β j|− |β̂ j| ≤min(|h j|,−|h j|+2|β j|) ∀ j ∈ Sc, (19) and (47) yield

−λhT g ≤ λ‖hS‖1−λ‖hSc‖1 +2λ‖βSc‖1

≤ λ‖hS‖1−λ‖hSc‖1 +2λλ∗(s∗−|S|).

By applying the above bounds to the inner product of h and (47), we find

‖Xh‖2
2/n ≤ A1λ∗m

1/2‖hB‖∗(2,m)+(λ∗−λ)‖hSc‖1

+(λ+λ∗)‖hS‖1 +2λλ∗(s∗−|S|).

Let u = (A/λ)h. It follows that when Aλ∗ ≤ λ,

‖Xu‖2
2

n
≤ A1m1/2‖uB‖∗(2,m)− (A−1)‖uSc‖1 +(A+1)‖uS‖1 +2A(s∗−|S|).

Since XT X/n=Σ, u∈U (Σ,S,B;A,A1,m,m1) with m1 = s∗−|S|. Since h= λu/A and s∗=m1+ |S|,
the conclusion follows from (23) and (24). �

A.3 Proof of Theorem 8

It follows from the scale equivariance of (26) that

{β̂/σ∗, σ̂/σ∗}= {b̂, φ̂}= argmin
b,φ

{
‖y∗−Xb‖2

2/(2nφ)+λ0‖b‖1 +φ/2
}
, (49)

where y∗ = y/σ∗ = Xb∗+ ε∗ with b∗ = β/σ∗ and ε∗ = ε/σ∗. Our objective is to bound ‖X(b̂−
b∗)‖2

2/n and ‖b̂−b∗‖q from the above and σ̂/σ∗ from both sides. To this end, we apply Theorem 6

to the Lasso estimator

b̂(λ) = argmin
b

{
‖y∗−Xb‖2

2/(2n)+λ‖b‖1

}
.

Let z∗ = z/σ∗ and h∗(λ) = b̂(λ)−b∗. Since ‖y∗−Xb∗‖2
2/n = ‖ε∗‖2

2/n = 1,

1−‖y∗−Xb̂(λ)‖2
2/n = h∗(λ)T XT (y∗−Xb̂(λ))/n+h∗(λ)T z∗

= 2h∗(λ)T z∗−‖Xh∗(λ)‖2
2/n.

Consider λ≥ Aλ∗,0. Since (21) holds with {z,λ∗} replaced by {z∗,λ∗,0}, we find as in the proof of

Theorem 6 that

u(λ) = h∗(λ)A/λ ∈U (Σ,S,B;A,A1,m,m1).

In particular, (48) gives

|h∗(λ)T z∗| ≤ λ∗,0‖h∗(λ)‖1 +A1λ∗,0m1/2‖h∗B(λ)‖∗(2,m)

≤ (λ2/A2)
{
‖u(λ)‖1 +A1m1/2‖uB(λ)‖∗(2,m)

}
.
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Thus, the definition of M∗σ in (29) gives

|2h∗(λ)T z∗−‖Xh∗(λ)‖2
2/n|< M∗σs∗λ

2.

We summarize the calculation in this paragraph with the following statement:

λ≥ Aλ∗,0 ⇒
∣∣1−‖y−Xb̂(λ)‖2

2/n
∣∣< M∗σs∗λ

2. (50)

As in Sun and Zhang (2012), the convexity of the joint loss function in (49) implies

(φ− φ̂)(φ2−‖y−Xb̂(φλ0)‖2
2/n)≥ 0,

so that φ̂ can be bounded by testing the sign of φ2−‖y−Xb̂(φλ0)‖2
2/n. For (φ,λ) = (φ1,φ1λ0), we

have

λ2 =
λ2

0

1+λ2
0M∗σs∗

≥
A2λ2

∗,0
1−η∗+A2λ2

∗,0M∗σs∗
= A2λ2

∗,0,

which implies ‖y−Xb̂(φ1λ0)‖2
2/n > 1− φ2

1η0 = φ2
1 by (50) and the definition of φ1. This yields

φ̂ > φ1. Similarly, φ̂ < φ2. The error bounds for the prediction and the estimation β̂ follow from

Theorem 6 due to Aλ∗,0 ≤ φ1λ0 < φ̂λ0 < φ2λ0. �

A.4 Proof of Lemma 9

By Proposition 5, m1/2‖uB‖∗(2,m) ≤ ‖uB‖1 +m1/2‖uB‖(2,4m), so that for u ∈U (Σ,S,B;A,A1,m,m1),

uT Σu+(A−A1−1)‖u‖1 ≤ 2A‖uS‖1 +A1m1/2‖uB‖2 +2Am1.

Let ξ = A/(A−A1−1) and ξ1 = A1/(A−A1−1). It follows that

(ξ/A)uT Σu+‖u‖1

≤ 2ξ‖uS‖1 +ξ1m1/2‖uB‖2 +2ξm1

≤ (2ξ|S|+ξ1m+2ξm1)
1/2{(2ξ+ξ1)‖uS∪B‖2

2 +2ξm1}1/2

≤ {(2ξs∗+ξ1m)/c∗}1/2{(2ξ+ξ1)u
T Σu+2ξc∗m1}1/2

≤ {(s∗∨m)/c∗}1/2(2ξ+ξ1)(u
T Σu+ c∗m1)

1/2 (51)

due to s∗ = |S|+m1 and c∗‖uS∪B‖2
2 ≤ uT Σu. In terms of {ξ,ξ1}, the condition of the Lemma can be

stated as λ∗{(s∗∨m)/c∗}(2ξ+ξ1)
2 ≤ 1/2. Thus,

uT Σu−uT Σu≤ λ∗‖u‖2
1 ≤ uT Σu/2+ c∗m1/2. (52)

Inserting this inequality back into (51), we find that

(ξ/A)uT Σu+‖u‖1 ≤ {(s∗∨m)/c∗}1/2(2ξ+ξ1)(2uT Σu+2c∗m1)
1/2.

If (ξ/A)uT Σu+‖u‖1 ≥ (ξ/A)(2uT Σu+2c∗m1)/4, we have

(ξ/A)uT Σu+‖u‖1 ≤ {(s∗∨m)/c∗}(2ξ+ξ1)
2(4A/ξ).
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Otherwise, we have (ξ/A)uT Σu+2‖u‖1 ≤ (ξ/A)c∗m1. Consequently,

(ξ/A)uT Σu+‖u‖1 ≤max
{
{(s∗∨m)/c∗}(2ξ+ξ1)

2(4A/ξ),(ξ/A)c∗(s∗−|S|)
}
.

This and the definition of {M∗pred ,M
∗
1} yield (32) via

ξM∗pred +M∗1 ≤max
{(

1∨ (m/s∗))(2ξ+ξ1)
2 4

ξc∗
,ξc∗(1−|S|/s∗)/A2

}
.

Moreover, (52) gives c∗‖uS∪B‖2
2 ≤ uT Σu≤ 2uT Σu+2c∗m1, so that M∗σ can be bounded via

uT Σu/(s∗A
2)+2

(
‖u‖1 +A1m1/2‖uB‖∗(2,m)

)
/(s∗A

2)

≤ M∗pred +2(1+A1)‖u‖1/(s∗A
2)+(A1/A)

{
m/s∗+‖uB‖2

2/(s∗A
2)
}

≤ M∗pred +2(1+A1)M
∗
1/A+(A1/A)

(
m/s∗+(2/c∗)M

∗
pred +2(1−|S|/s∗)/A2

)
.

This gives (33). If in addition B = {1, . . . , p}, then it yields (34)

M∗2 = sup
u∈U

‖u‖2
2/(s∗A

2)≤ (2/c∗)M
∗
pred +2(1−|S|/s∗)/A2.

This completes the proof. �

The tail probability bound for ζ∗(z∗,λ∗,m)/σ∗ in part (ii) of Proposition 10 uses the following

version of the Lévy concentration inequality in the sphere.

Lemma 17 Let ε̃m =
√

2/(m−1/2)Γ(m/2+1/2)/Γ(m/2)−1, U = (U1, . . . ,Um+1)
T be a uniform

random vector in Sm = {u ∈ R
m+1 : ‖u‖2 = 1}, f (u) a unit Lipschitz function in Sm, and m f the

median of f (U). Then,

P{U1 > x} ≤ (1+ ε̃m)P
{

N(0,1/(m−1/2))>
√
− log(1− x2)

}
, (53)

1 < 1+ ε̃m < exp
(
1/(4m−2)2

)
, and

P{ f (U)> m f + x} ≤ P
{

U1 > x

√
1− (x/2)2

}

≤ (1+ ε̃m)P{N(0,1/(m−1/2))> x}. (54)

PROOF. Since U2
1 follows the beta(1/2,m/2) distribution,

P
{

U1 > x
}
=

Γ(m/2+1/2)/2

Γ(m/2)Γ(1/2)

∫ 1

x2
t−1/2(1− t)m/2−1dt.

Let y =
√
−(m−1/2) log(1− t). We observe that −t−1 log(1− t) ≤ (1− t)−1/2 by inspecting the

infinite series expansions of the two functions. This gives

e−y2/2dy

t−1/2(1− t)m/2−1dt
=

t1/2e−y2/2(m−1/2)1/2

2(− log(1− t))1/2(1− t)m/2
≥ 2−1

√
m−1/2.

3408
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Since y =
√
−(m−1/2) log(1− x2) when t = x2, it follows that

P
{

U1 > x
}
≤ (1+ ε̃m)

∫ ∞

√
−(m−1/2) log(1−x2)

(2π)−1/2e−y2/2dt.

Let Ã = {u ∈ Sm : f (u) ≤ m f }, H = {u : u1 ≤ 0}, and Ax = ∪v∈A{u ∈ Sm : ‖u− v‖2 ≤ x} for all

A ⊂ Sm. Since u ∈ Ãx implies f (u) ≤ m f + x and P{U ∈ Ã} ≥ P{U ∈ H}, the Lévy concentration

inequality gives

P{ f (U)> m f + x} ≤ P{U 6∈ Hx}= P
{

U1 > x

√
1− (x/2)2

}
.

The second inequality of (54) then follows from (d/dx){− log{1−(x2−x4/4)}−x2}≥ 0 for x2≤ 2

and ‖U1‖∞ ≤ 1.

It remains to bound 1+ ε̃m. Let x = m+1/2. Since

1+ ε̃m

1+ ε̃m+2

=
(m/2)

√
m+3/2

(m/2+1/2)
√

m−1/2
=

(x−1/2)
√

x+1

(x+1/2)
√

x−1
,

the infinite series expansion of its logarithm is bounded by

log
( 1+ ε̃m

1+ ε̃m+2

)
=

1

2
log

(1+1/x

1−1/x

)
+ log

(1−1/(2x)

1+1/(2x)

)
≤ x−3

4
+

x−5

5
+ · · ·

Since {(x−1)−2− (x+1)−2}/2 = 2x−3 +4x−5 + · · · by Newton’s binomial formula,

log
( 1+ ε̃m

1+ ε̃m+2

)
≤ {(x−1)−2− (x+1)−2}/16.

This gives log(1+ ε̃m)≤ 1/{16(x−1)2}. �

A.5 Proof of Proposition 10

(i) Let L= L1(k/p). Since P{N(0,σ2/n)> λ∗}= k/p, λ∗=σL/
√

n. Since z j = xT
j ε/n∼N(0,σ2/n),

P{ζ(2,p)(z,λ∗)> 0} ≤ 2k and

Eζ2
(2,p)(z,λ∗) = p(σ2/n)E(|N(0,1)|−L)2

+

= 2p(σ2/n)
∫ ∞

L
(x−L)2ϕ(x)dx.

Let Jk(t) =
∫ ∞

0 xke−x−x2/(2t2)dx. By definition

t2
∫ ∞

t (x− t)2ϕ(x)dx

Φ(−t)
=

t2
∫ ∞

0 x2e−tx−x2/2dx∫ ∞
0 e−tx−x2/2dx

=

∫ ∞
0 u2e−u−u2/(2t2)du∫ ∞

0 e−u−u2/(2t2)du
=

J2(t)

J0(t)
.

Since Jk+1 + Jk+2/t2 =−∫ ∞
0 xk+1de−x−x2/(2t2) = (k+1)Jk(t), we find

J2(t)

J0(t)
=

J2(t)

{J2(t)+ J3(t)/t2}/2+ J2(t)/t2
≤ 1

1/2+1/t2
.
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Thus, Eζ2
(2,p)(z,λ∗) = 2p(σ2/n)(k/p)L−2J2(L)/J0(L)≤ 2kλ2

∗L
−4/(1/2+1/L2).

Since z j = xT
j ε/n,

(
∑ j∈B(|z j| −λ∗)2

+

)1/2
is a function of ε with the Lipschitz norm ‖XB/n‖2.

Thus, ζ(2,m)(z,λ∗) is a function of ε with the Lipschitz norm max|B|=m ‖XB/n‖2 =
√

κ+(m)/n. In

addition, since ζ(2,m)(z,λ∗) is an increasing convex function of (|z j| − λ∗)+ and (|z j| − λ∗)+ are

convex in ε, ζ(2,m)(z,λ∗) is a convex function of ε. The mean of ζ(2,m)(z,λ∗) is no smaller than its

median. This gives (37) by the Gaussian concentration inequality (Borell, 1975).

(ii) The scaled version of the proof uses Lemma 17 with m = n−1 there. Let U = ε/‖ε‖2, z∗j =
xT

j ε/(nσ∗)= (x j/
√

n)TU and z∗=XT ε/(nσ∗). Since z∗j ∼U1, (53) yields the bound P{ζ(2,p)(z∗,λ∗,0)>
0} ≤ (1+ εn)2k and

Eζ2
(2,p)(z

∗,λ∗,0) = pE(|U1|−λ∗)
2
+ ≤ (1+ εn)pE(|N(0,1)|−L)2

+/(n−3/2).

The bound for Eζ2
(2,p)(z

∗,λ∗,0) is then derived as in (i). Lemma 17 also gives

P
{
± (ζ(2,m)(z

∗,λ∗,0)−µ(2,m))> x
√

κ+(m)
}

≤ (1+ εn)P{|N(0,1/(n−3/2))|> x}

and

|Eζ(2,m)(z
∗,λ∗,0)−µ(2,m)| ≤ (1+ εn)

√
κ+(m)/(n−3/2)E

(
N(0,1)

)
+

= (1+ εn)
√

κ+(m)/{2π(n−3/2)}.

The above two inequalities yield (38) and (39). �

A.6 Proof of Theorems 11, 12 and 13

The conclusions follow from Theorems 6 and 8 once (21) is proved to hold with the given probabil-

ity. In Theorem 11, the tail probability bounds for ζ(0,p) in Proposition 10 yield (21) with A1 = 0.

In Theorem 12, the moment bounds for ζ(0,p) in Proposition 10 controls the excess noise in (21). In

Theorem 13 (i), we need A1λ∗m1/2 ≥ Eζ(0,p)(z,λ∗)+σLn(ε/p)
√

κ+(m) by (37), so that the given

lower bound of A1 suffices due to Ln(ε)/Ln(k/p) = L1(ε/p)/L1(k/p). The proof of Theorem 13

(ii) is nearly identical, with (38) and (39) in place of (38). We omit the details. �

A.7 Proof of Proposition 14

(i) By the ℓ∞ constraint,

‖XT (ε−Xh̃(λ))/n‖(2,k) = ‖XT (y−X β̃(λ))/n‖(2,k) ≤ λ
√

k.

Thus, when λ
√

k ≤ ‖XT ε/n‖(2,k)/A,

‖XT ε/n‖(2,k)(1−1/A)≤ ‖XT ε/n‖(2,k)−λ
√

k ≤ ‖XT Xh̃(λ)/n‖(2,k).

Thus, Proposition 5 (iii) gives (40).

(ii) Let f (x) = (x− L̃1(k/p))+∧1 and z∗ = XT ε/‖ε‖2. Since z∗ ∼N(0,Σ) and ‖ f (z∗)‖2 has unit

Lipschitz norm, the Gaussian concentration theorem gives

P
{

E f (z∗)− f (z∗)≥
√

2‖Σ‖2 log(1/ε)
}
≤ ε.
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This implies Var( f (z∗))≤ 4‖Σ‖2. Since E f 2(z∗)≥ pP{|N(0,1)| ≥ L1(k/p)}= 2k,

E f (z∗)−
√

2‖Σ‖2 log(1/ε)≥
√

2k−4‖Σ‖2−
√

2‖Σ‖2 log(1/ε)≥
√

k−1.

This gives P{Nk ≥ k} ≥ P{ f (z∗) >
√

k−1} ≥ 1− ε due to Nk ≥ f 2(z∗). Thus, (41) follows from

‖XT ε/n‖(q,k) ≥ σ∗k1/qL̃n(k/p) when Nk ≥ k. The final conclusion follows from part (i) and large

deviation for (σ∗/σ)2 ∼ χ2
n/n. �

Lemma 18 Let χ2
m, j be χ2 distributed variables with m degrees of freedom. Then,

E max
1≤ j≤t

χ2
m, j ≤

(√
m+

√
2log t

)2
, t ≥ 1.

PROOF. Let f (t) = 2log t− ∫ ∞
0 min

(
1, tP{N(0,1)> x}

)
dx2. We first proof f (t) ≥ 0 for t ≥ 2.

Let L1(x) =−Φ−1(x). We have f (2)≥ 2log2−1 > 0 and

f ′(t) = 2/t−2

∫ ∞

L1(1/t)
P
{

N(0,1)> x
}

xdx≥ 2/t−2

∫ ∞

L1(1/t)
ϕ(x)dx = 0.

The conclusion follows from P{χm, j >
√

m+ x} ≤ P{N(0,1)> x} for x > 0. �

A.8 Proof of Theorem 15

Let h = β̂−β and λ̂ = σ̂λ0. Consider J ⊆ Ŝ \ S with m ≤ |J| ≤ m∗. For any j ∈ Ŝ, it follows from

the KKT conditions that |xT
j Xh/n|= |xT

j (y−X β̂−ε)| ≥ λ̂−|z j|. By the definition of κ∗+(m
∗,S) and

(25),

∑
j∈J

(̂λ−|z j|)2
+ ≤ ∑

j∈J

|xT
j Xh/n|2

= (XT
J Xh/n)T (XT

J Xh/n)
≤ κ∗+(m

∗,S)‖Xh‖2
2/n

≤ κ∗+(m
∗,S)M∗preds∗λ̂

2. (55)

Since ζ(2,k)(z
∗
B,λ∗,0)/k1/2 ↓ k by Proposition 5 (i), the {z∗,λ0,∗} version of (21) gives ζ(2,|J|)(z

∗,λ∗,0)/|J|1/2≤
ζ(2,m)(z

∗
B,λ∗,0)/m1/2 ≤ ξ1(A−1)λ∗,0. Thus, with z∗j = z j/σ∗,

∑
j∈J

(̂λ−|z j|)2
+ ≥ ∑

j∈J

{
λ̂−σ∗λ∗,0−σ∗(|z∗j |−λ∗,0)+

}2

+

≥
{
|J|1/2(̂λ−σ∗λ∗,0)−σ∗ζ(2,|J|)(z

∗
B,λ∗,0)

}2

+

≥ |J|
{

λ̂−σ∗λ∗,0−σ∗ξ1(A−1)λ∗,0
}2

+

Since λ2
∗,0/(λ0φ1)

2 =(λ∗,0/λ0)
2(1+η0)≤ (1−η∗)/A2+η∗/A2 = 1/A2, we have λ∗,0σ∗< λ∗,0σ̂/φ1≤

λ̂/A. The above inequalities and (55) yield

|J| ≤
κ∗+(m

∗,S)M∗preds∗λ̂2

{
λ̂−σ∗λ∗,0−σ∗ξ1(A−1)λ∗,0

}2

+

<
κ∗+(m

∗,S)M∗preds∗
{

1−1/A−ξ1(1−1/A)
}2

+

≤ m∗.
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Since Ŝ \S does not have a subset of size m∗, we have |Ŝ \S| < m∗ as stated in (43). Let PB be the

projection to the linear span of {x j, j ∈ B}. We have

σ̂2 ≥ ‖P⊥
Ŝ

y‖2
2/n = σ2 ≥ ‖P⊥

S∪Ŝ
y‖2

2/n = (σ∗)2−‖P
S∪Ŝ

ε‖2
2/n,

‖Xh‖2
2/n = ‖P

Ŝ
y−Xβ‖2

2/n = ‖P
Ŝ
ε‖2

2/n+‖P⊥
Ŝ

Xβ‖2
2/n. (56)

Let N =
(

p
m∗
)
. We have logN ≤ m∗ log(ep/m∗) by Stirling. By Lemma 18,

E‖P
S∪Ŝ

ε‖2
2/σ2 ≤ E max

|B|=m∗
‖PS∪Bε‖2

2/σ2 ≤ |S|+(
√

m∗+
√

2logN)2.

Since max|B|=m ‖PS∪Bε‖2 is a unit Lipschitz function,

‖P
S∪Ŝ

ε‖2/σ ≤
{
|S|+

(√
m∗+

√
2m∗ log(ep/m∗)

)2}1/2
+L1(ε/p)

≤
√

M∗lses∗ log(p/s∗)

with probability ε/p. In addition, Theorem 8 gives ‖P⊥
Ŝ

Xβ‖2
2 ≤ ‖X β̂ − Xβ‖2

2 ≤
(1+ ε0)

2M∗preds∗(σφ2λ0)
2. Inserting these bounds into (56) yields (44). �

Lemma 19 Suppose that the rows of X ∈ R
n×p are iid N(0,Σ) random vectors.

(i) Let Y = trace(AX ′X/n) and σ2 = trace{(A+A′)Σ(A+A′)Σ}/2 with a deterministic matrix A.

Then, EY = µ = trace(AΣ), Var(Y ) = σ2/n and

E exp
{

t(Y −µ)
}
≤ exp

{
− tσ√

2
− n

2
log(1−

√
2tσ/n)

}
.

Consequently, for 0 < x≤ 1,

P
{
(Y −µ)/σ > x

}
≤ exp

{
− n

2

(√
2x− log(1+

√
2x)

)}
≤ e−nx2/4.

(ii) Let R∗ and R be the population and sample correlation matrices of X. Then,

P
{
|R jk−R∗jk|> x

√
1− (R∗jk)

2
}
≤ 2P

{
|tn|> n1/2x

}

where tn has the t-distribution with n degrees of freedom. In particular, for n≥ 4,

P
{
|R jk−R∗jk|>

√
2x
}
≤ 2e1/(4n−2)2

P
{
|N(0,1/n)|> x

}
, 0≤ x≤ 1.

PROOF. (i) This part can be proved by computing the moment generating function with tσ/n =
x/(1+

√
2x). We omit details. For 0 < x < 1,

f (x) =

√
2x− log(1+

√
2x)

x2
=

∫ √2x

0

udu

x2(1+u)
=

∫ √2

0

udu

1+ xu
≥ f (1)> 1/2.

(ii) Conditionally on Σkk, Σ jk/Σkk ∼ N(Σ jk/Σkk,(1− (R∗jk)
2)Σ j j/(nΣkk)). Thus,

z jk =
( nΣkk

(1− (R∗jk)
2)Σ j j

)1/2(Σ jk

Σkk

− Σ jk

Σkk

)
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=
( n

1− (R∗jk)
2

)1/2(
R jk

Σ
1/2

j j

Σ
1/2
j j

−R jk

Σ
1/2

kk

Σ
1/2

kk

)

is a N(0,1) variable independent of Σkk. Consequently,

n1/2|R jk−R jk|
(1− (R∗jk)

2)1/2
=

|z jk + zk j|
Σ

1/2

j j /Σ
1/2
j j +Σ

1/2

kk /Σ
1/2

kk

≤ |t jk|∨ |tk j|

with t jk = z jkΣ
1/2

kk /Σ
1/2

kk ∼ tn. Let U1 be a uniformly distributed variable in the unit sphere of Rn+1.

Since t2
n/n∼U2

1 /(1−U2
1 ), Lemma 17 provides

P
{

t2
n/n > ex2−1

}
= P

{
U2

1 > 1− e−x2}≤ 2e1/(4n−2)2

P
{

N(0,1/(n−1/2))> x
}
.

The conclusion follows from ex2n/(n−1/2)−1≤ 2x2 for 0 < x≤ 1. �

A.9 Proof of Proposition 4

Since Θ̃ j j = 1/σ̂2
j and max{C0λ0,C1s∗, jλ2

0} ≤ 1/4, (17) and the condition on σ∗j implies

|Θ̃ j j/Θ∗j j| ≤ (5/4)3 ≤ 2, |Θ̃ j j/Θ∗j j−1| ≤ {(5/4)2C0 +5/4+1}λ0.

It follows from (7), (17) and the condition on D = diag(Σ j j, j ≤ p) that

∥∥Θ̃∗, j−Θ∗∗, j
∥∥

1
=
∥∥− β̂∗, jΘ̃ j j−Θ∗∗, j

∥∥
1

≤
∥∥(β̂− j, j−β− j, j)Θ̃ j j

∥∥
1
+
∥∥Θ∗∗, j(Θ̃ j j/Θ∗j j−1)

∥∥
1

≤
∥∥D̂
−1/2

− j

∥∥
∞

∥∥D̂
1/2

− j (β̂− j, j−β− j, j)
∥∥

1
Θ̃ j j +

∥∥Θ∗∗, j
∥∥

1

∣∣Θ̃ j j/Θ∗j j−1
∣∣

≤ (5/2)Θ∗j j

∥∥D
−1/2
− j

∥∥
∞
(Θ∗j j)

−1/2C2s∗, jλ0 +
∥∥Θ∗, j

∥∥
1
{(3/2)C0 +5/2}λ0

≤C
{
(
∥∥D−1
− j

∥∥
∞

Θ∗j j)
1/2s∗, jλ0 +

∥∥Θ∗, j
∥∥

1
λ0

}

with C = max(5C2/2,3C0/2+5/2). This gives (12) due to ‖Θ̂−Θ∗‖1 ≤ 2‖Θ̃−Θ∗‖1 by (9). Simi-

larly,

∥∥Ω̃∗, j−Ω∗∗, j
∥∥

1
=

∥∥− D̂
1/2

− j β̂∗, jΘ̃ j jD̂
1/2
j j −Ω∗∗, j

∥∥
1

≤
∥∥D̂

1/2

− j (β̂− j, j−β− j, j)
∥∥

1
Θ̃ j jD̂

1/2
j j

+
∥∥D̂

1/2

− j D
−1/2
− j Ω∗∗, j(Θ̃ j j/Θ∗j j)(D̂ j j/D j)

1/2−Ω∗∗, j
∥∥

1

≤ C
{
(Θ∗j j)

−1/2s∗, jλ0Θ∗j jD
1/2
j j +

∥∥Ω∗, j
∥∥

1
λ0

}

This gives (13) due to D j jΘ
∗
j j = Ω∗j j. We omit an explicit calculation of C.

Let χ2
n, j = nΘ∗j j(σ

∗
j)

2. When χ2
n, j ∼ χ2

n, we have

|Θ̃ j j/Θ∗j j−1| ≤ {(5/4)2 +5/4}C1s∗, jλ
2
0 +(4/3)|χ2

n, j/n−1|
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It follows from Lemma 19 that P{|χ2
n, j/n−1|>

√
2x} ≤ 2e−nx2/4 for x ≤ 1. Let a j = ‖Θ∗, j‖1, t =

max{M max j a j/
√

n,τn(Θ
∗)} and B0 = { j : a j≤

√
8t}. By definition t ≤Mτn(Θ

∗) and nt2/a2
j ≥M2.

It follows that

P
{

max
j
|χ2

n, j/n−1|a j > 4t
}
≤ |B0|e−n/4 + ∑

j 6∈B0

exp(−2nt2/a2
j)

≤ pe−n/4 + e−M2

∑
j 6∈B0

exp
(
−nτ2(Θ∗)/a2

j

)
.

≤ pe−n/4 + e−M2

.

Thus, max j |Θ̃ j j/Θ∗j j−1|a j = OP

(
τn(Θ

∗)+max j s∗, ja jλ
2
0). �

A.10 Proof of Theorem 2

We need to verify conditions (17) and (18) in order to apply Proposition 4. Since Θ∗j j(σ
∗
j)

2 ∼
Σ j j/Σ∗j j ∼ χ2

n/n, (18) follows from Lemma 19 (i) with λ0 ≍
√
(log p)/n. Moreover, the condition

P{(1− ε0)
2 ≤ χ2

n/n ≤ (1+ ε0)
2} ≤ ε/p holds with small ε0 and ε since

√
(log p)/n = λ0/(2A) is

assumed to be sufficiently small. We take ε0 = 0 in (10) since its value does not change the order of

s∗, j.

If we treat Σ
1/2

kk βk as the regression coefficient in (4) for the standardized design vector Σ
−1/2

kk xk,

k 6= j, Theorem 11 (ii) asserts that the conclusions of Theorem 8 hold with probability 1−3ε/p for

each j, with λ0 = A
√

4(log p)/n, A1 = 0 and ε≍ 1/
√

log p. By the union bound, the conclusions of

Theorem 8 holds simultaneously for all j with probability 1−3ε. Moreover, (17) is included in the

conclusions of Theorem 8 when M∗σ and M∗1 are uniformly bounded in the p regression problems

with large probability. Thus, it suffices to verify the uniform boundedness of these quantities.

We use Lemma 9 to verify the uniform boundedness of M∗σ and M∗1 with A1 = 0, B j = S j, m j = 0

and {Σ,Σ∗} replaced by {R− j,− j,R
∗
− j,− j}. Note that the Gram matrix for the regression problem in

(4) is R− j,− j, which is random and dependent on j, so that M∗σ and M∗1 are random and dependent

on j with the random design. It follows from Lemma 19 (ii) that

max
k 6= j
‖Rk,− j−R∗k,− j‖∞ ≤max

j,k
|Rk, j−Rk, j| ≤ Ln(5ε/p2)

with probability 1− ε. We may take Ln(5ε/p2) = 2
√
(log p)/n with ε ≍ 1/

√
log p. This yields

the first condition of Lemma 9 with λ∗ = 2
√
(log p)/n ≍ λ0. The second condition c∗‖uS‖2

2 ≤
uT R∗− j,− ju follows from (11). The third condition translates to max j≤p λ0s∗, j ≤ c0, which is imposed

in Theorem 2. Thus, all conditions of Lemma 9 hold simultaneously for all j with large probability.

The proof is complete since the conclusions of Lemma 9 with m = m j = 0 guarantee the uniform

boundedness of M∗σ and M∗1 . �

A.11 Proof of Theorem 3

The proof is parallel to that of Theorem 2. Since the smaller λ∗,0 = Ln−3/2(k/p) is used, we need to

apply Theorem 13 (ii) with A1 > 0, m = m j > 0 and typically much larger B j than S j. Since the con-

dition m j ≤C0s∗, j is impose in (15), the conclusions of Lemma 9 still guarantee the uniform bound-

edness of M∗σ and M∗1 . The verification of the conditions of Lemma 9 is identical to the case of larger

λ∗,0 in Theorem 2. The only difference is the need to verify that condition (15) uniformly guarantees
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the condition on A1 in Theorem 13 (ii), where κ+/m has the interpretation of κ+(m j;R− j,− j)/m j,

which depends on j and random R. Anyway, it suffices to verify κ+(m j;R− j,− j)/m j ≤ ψ j simulta-

neously for all j with large probability.

We verify κ+(m j;R− j,− j)/m j ≤ ψ j with the same argument as in Lemma 9. For any vector u

with ‖u‖0 = m j and ‖u‖2 = 1, it holds with probability 1− ε that

∣∣∣uT (R− j,− j−R− j,− j)u
∣∣∣≤max

j,k
|Rk, j−Rk, j|∑

j,k

|u juk| ≤ Ln(5ε/p2)m j.

Thus, it follows from the definition of κ+(m;Σ) in (16) that κ+(m j;R− j,− j)/m j ≤
κ+(m j;R− j,− j)/m j +Ln(5ε/p2) = ψ j for all j. This completes the proof. �

A.12 Proof of Example 1

(i) Let s∗, j = d j = #{k : Θ∗jk 6= 0} ≤ m + 1. We have max j(1 + s∗, j)λ0 ≤ (m + 2)λ0 → 0. Let

B j = {k 6= j : Θ∗k j 6= 0}. Since B j = J1 \{ j} for j ∈ J1, (11) holds with

inf
{

uT (R∗− j,− j)u/‖uB j
‖2

2 : uB j
6= 0

}
≥ 1−ρ2→ 1.

Thus, Theorem 2 is directly applicable to this example.

Next, we calculate the error bound in (12) and (14). Since d j(Θ
∗
j j)

1/2 = 2/(1−ρ2
1)

1/2 = 2m for

j ∈ J1 and d j(Θ
∗
j j)

1/2 ≤ (m+1)/(1−ρ2
2)

1/2 ≤ 2m for j ∈ J2,

(
∥∥D−1
− j‖∞Θ∗j j)

1/2s∗, jλ0 = (Θ∗j j)
1/2s∗, jλ0 ≤ 2mλ0.

In addition, ‖Θ∗, j‖1 ≤ 2m2 for j ∈ J1 and ‖Θ∗, j‖1 ≤ (1+ρ2‖v‖1)/(1−ρ2
2)≤ 3/2+o(1) for j ∈ J2,

so that for t =
√
(2/n) log p,

∑
j

exp(−nt2/‖Θ∗, j‖2
1)≤ 2exp

(
− 2log p

4m2

)
+ pexp

(
− 2log p

3/2+o(1)

)
→ 0.

It follows that the quantities in (14) are bounded by

max
j≤p

s∗, j‖Θ∗∗, j‖1λ2
0 ≤ 2(mλ0)

2, τn(Θ
∗)≤

√
(2/n) log p≤ λ0/(A

√
2).

Since mλ0 → 0, the error for the scaled Lasso is of the order mλ0 by Theorem 2. The conclusion

follows since Ln(m/p) = (1+o(1))
√
(2/n) log p when 4m2 ≤ log p.

(ii)Let λ̃ = max j ‖Σ∗, j−Σ∗∗, j‖∞ and λ̃∗ = ρ2/
√

m+ λ̃. Since diag(Σ∗) = In,

λ̃ . Ln(1/p)≪ ρ2/
√

m, λ̃∗ = (1+o(1))ρ2/
√

m = (1+o(1))c0mLn(m/p).

For λ ≥ λ̃∗, e3 is feasible for (46) with j = 3 ∈ J2, so that ‖Θ̃∗ j(λ)‖1 ≤ 1. Since ‖Θ∗J2,3‖1 ≥ 1+

m1/2ρ2,

m1/2ρ2 ≤ inf
λ≥λ̃∗
‖Θ̃J2,3(λ)−Θ∗J2,3(λ)‖1 ≤ (m+1)1/2 inf

λ≥λ̃∗
‖Θ̃J2,3(λ)−Θ∗J2,3(λ)‖2.
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It follows that for λ≥ λ̃∗, Θ̃(λ) is suboptimal in the sense of

inf
λ≥λ̃∗
‖Θ̃(λ)−Θ∗(λ)‖2 ≥

√
m/(1+m)ρ2 = c0m3/2Ln(m/p)/

√
1+1/m.

Consider λ≤ λ̃∗. Let β− j, j =−Θ∗− j, j/Θ∗j j, β̃− j, j(λ) =−Θ̃− j, j(λ)/Θ̃ j j(λ), σ j = (Θ∗j, j)
−1/2, and

h̃ j(λ) = β̃− j, j(λ)−β− j, j. By (46), ‖XT
− j(x j−X− jβ̃(λ))/n‖∞ ≤ λ/Θ̃ j j(λ). Since m(log p)/n→ 0

and ‖Σ∗‖2 ≤ 2, P{κ+(m;Σ) ≤ 3} → 1. Thus, by Proposition 14, there exist positive constants

{c1,c2} such that

min
j

P
{

inf
λ/Θ̃ j j(λ)≤c1σ jLn(m/p)

‖h̃ j(λ)‖2 ≥ c2σ j

√
mLn(m/p)

}
→ 1.

For Θ̃ j j(λ)≥Θ∗j j/2,

‖h̃ j(λ)‖2 = ‖Θ̃− j, j (̃λ)/Θ̃ j j(λ)−Θ∗− j, j/Θ∗j j‖2

≤ ‖Θ̃− j, j (̃λ)−Θ∗− j, j‖2/Θ̃ j j(λ)+‖β− j, j‖2|Θ̃ j j(λ)−Θ∗j j|/Θ̃ j j(λ)

≤ ‖Θ̃∗, j (̃λ)−Θ∗∗, j‖2(1+‖β− j, j‖2)/(Θ
∗
j j/2).

For j = 1, Θ∗j j = m2 and ‖β− j, j‖2 = ρ1, so that ‖Θ̃∗, j (̃λ)−Θ∗∗, j‖2 ≥ m2‖h̃ j(λ)‖2/4 when Θ̃ j j(λ)≥
Θ∗j j/2. Since ‖Θ̃∗, j (̃λ)−Θ∗∗, j‖2 ≥ m2/2 when Θ̃ j j(λ)≤Θ∗j j/2,

inf
λ≤λ̃∗
‖Θ̃(λ)−Θ∗‖2 ≥min

(
m2‖h̃1(λ)‖2/4,m2/2

)
.

Pick 0 < c0 < min(c1/2,c2/4). Since σ1 = (Θ∗11)
−1/2 = 1/m,

P
{

inf
λ≤λ̃∗
‖Θ̃(λ)−Θ∗‖2 ≤min

(
m2/2,(c2/4)m3/2Ln(m/p)

)}

≤ P
{

λ̃∗ > (m2/2)(c1/m)Ln(m/p)
}
+o(1) = o(1).

Since Ln(m/p)→ 0 implies min
(
m2/2,(c2/4)m3/2Ln(m/p)

)
≥ c0m3/2Ln(m/p), the conclusion fol-

lows. �
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N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the Lasso.

Annals of Statistics, 34:1436–1462, 2006.

S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-

dimensional analysis of M-estimators with decomposable regularizers. Statistical Science, 27:

538–557, 2012.

G. Raskutti, M. J. Wainwright, and B. Yu. Minimax rates of estimation for high–dimensional linear

regression over ℓq–balls. IEEE Trans. Info. Theory, 57:6976–6994, 2011.

P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. Model selection in gaussian graphical mod-

els: High-dimensional consistency of ℓ1-regularized MLE. In Advances in Neural Information

Processing Systems (NIPS), 21, 2008.

G. Rocha, P. Zhao, and B. Yu. A path following algorithm for sparse pseudo-likelihood inverse

covariance estimation (splice). Technical report, University of California, Berkeley, 2008.

3417



SUN AND ZHANG

A.J. Rothman, P.J. Bickel, E. Levina, and J. Zhu. Sparse permutation invariant covariance estima-

tion. Electronic Journal of Statistics, 2:494–515, 2008.

T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, 99:879–898, 2012.

S. van de Geer. The deterministic Lasso. Technical Report 140, ETH Zurich, Switzerland, 2007.
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Abstract

Penalized regression models are popularly used in high-dimensional data analysis to conduct vari-

able selection and model fitting simultaneously. Whereas success has been widely reported in litera-

ture, their performances largely depend on the tuning parameters that balance the trade-off between

model fitting and model sparsity. Existing tuning criteria mainly follow the route of minimizing

the estimated prediction error or maximizing the posterior model probability, such as cross vali-

dation, AIC and BIC. This article introduces a general tuning parameter selection criterion based

on variable selection stability. The key idea is to select the tuning parameters so that the resultant

penalized regression model is stable in variable selection. The asymptotic selection consistency

is established for both fixed and diverging dimensions. Its effectiveness is also demonstrated in a

variety of simulated examples as well as an application to the prostate cancer data.

Keywords: kappa coefficient, penalized regression, selection consistency, stability, tuning

1. Introduction

The rapid advance of technology has led to an increasing demand for modern statistical techniques

to analyze data with complex structure such as the high-dimensional data. In high-dimensional

data analysis, it is generally believed that only a small number of variables are truly informative

while others are redundant. An underfitted model excludes truly informative variables and may

lead to severe estimation bias in model fitting, whereas an overfitted model includes the redundant

uninformative variables, increases the estimation variance and hinders the model interpretation.

Therefore, identifying the truly informative variables is regarded as the primary goal of the high-

dimensional data analysis as well as its many real applications such as health studies (Fan and Li,

2006).

c©2013 Wei Sun, Junhui Wang and Yixin Fang.
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Among other variable selection methods, penalized regression models have been popularly used,

which penalize the model fitting with various regularization terms to encourage model sparsity, such

as the lasso regression (Tibshirani, 1996), the smoothly clipped absolute deviation (SCAD, Fan and

Li, 2001), the adaptive lasso (Zou, 2006), and the truncated l1-norm regression (Shen et al., 2012).

In the penalized regression models, tuning parameters are often employed to balance the trade-off

between model fitting and model sparsity, which largely affects the numerical performance and the

asymptotic behavior of the penalized regression models. For example, Zhao and Yu (2006) showed

that, under the irrepresentable condition, the lasso regression is selection consistent when the tuning

parameter converges to 0 at a rate slower than O(n−1/2). Analogous results on the choice of tuning

parameters have also been established for the SCAD, the adaptive lasso, and the truncated l1-norm

regression. Therefore, it is of crucial importance to select the appropriate tuning parameters so that

the performance of the penalized regression models can be optimized.

In literature, many classical selection criteria have been applied to the penalized regression

models, including cross validation (Stone, 1974), generalized cross validation (Craven and Wahba,

1979), Mallows’ Cp (Mallows, 1973), AIC (Akaike, 1974) and BIC (Schwarz, 1978). Under certain

regularity conditions, Wang et al. (2007) and Wang et al. (2009) established the selection consis-

tency of BIC for the SCAD, and Zhang et al. (2010) showed the selection consistency of generalized

information criterion (GIC) for the SCAD. Most of these criteria follow the route of minimizing the

estimated prediction error or maximizing the posterior model probability. To the best of our knowl-

edge, few criteria has been developed directly focusing on the selection of the informative variables.

This article proposes a tuning parameter selection criterion based on variable selection stability.

The key idea is that if multiple samples are available from the same distribution, a good variable

selection method should yield similar sets of informative variables that do not vary much from one

sample to another. The similarity between two informative variable sets is measured by Cohen’s

kappa coefficient (Cohen, 1960), which adjusts the actual variable selection agreement relative to

the possible agreement by chance. Similar stability measures have been studied in the context

of cluster analysis (Ben-Hur et al., 2002; Wang, 2010) and variable selection (Meinshausen and

Bühlmann, 2010). Whereas the stability selection method (Meinshausen and Bühlmann, 2010) also

follows the idea of variable selection stability, it mainly focuses on selecting the informative vari-

ables as opposed to selecting the tuning parameters for any given variable selection methods. The

effectiveness of the proposed selection criterion is demonstrated in a variety of simulated examples

and a real application. More importantly, its asymptotic selection consistency is established, show-

ing that the variable selection method with the selected tuning parameter would recover the truly

informative variable set with probability tending to one.

The rest of the article is organized as follows. Section 2 briefly reviews the penalized regression

models. Section 3 presents the idea of variable selection stability as well as the proposed kappa

selection criterion. Section 4 establishes the asymptotic selection consistency of the kappa selection

criterion. Simulation studies are given in Section 5, followed by a real application in Section 6. A

brief discussion is provided in Section 7, and the Appendix is devoted to the technical proofs.
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2. Penalized Least Squares Regression

Given that (x1,y1), . . . ,(xn,yn) are independent and identically distributed from some unknown joint

distribution, we consider the linear regression model

y = Xβ+ ε =
p

∑
j=1

β jx( j)+ ε,

where β = (β1, · · · ,βp)
T , y = (y1, · · · ,yn)

T , X = (x1, · · · ,xn)
T = (x(1), · · · ,x(p)) with xi =

(xi1, · · · ,xip)
T or x( j) = (x1 j, · · · ,xn j)

T , and ε|X ∼ N(0,σ2In). When p is large, it is also assumed

that only a small number of β j’s are nonzero, corresponding to the truly informative variables. In

addition, both y and x( j)’s are centered, so the intercept can be omitted in the regression model.

The general framework of the penalized regression models can be formulated as

argmin
β

1

n
‖y−Xβ‖2 +

p

∑
j=1

pλ(|β j|), (1)

where ‖ · ‖ is the Euclidean norm, and pλ(|β j|) is a regularization term encouraging sparsity in β.

Widely used regularization terms include the lasso penalty pλ(θ)= λθ (Tibshirani, 1996), the SCAD

penalty with p′λ(θ) = λ(I(θ ≤ λ)+ (γλ−θ)+
(γ−1)λ I(θ > λ)) (Fan and Li, 2001), the adaptive lasso penalty

pλ(θ) = λ jθ = λθ/|β̂ j| (Zou, 2006) with β̂ j being some initial estimate of β j, and the truncated

l1-norm penalty pλ(θ) = λmin(1,θ) (Shen et al., 2012).

With appropriately chosen λn, all the aforementioned regularization terms have been shown to

be selection consistent. Here a penalty term is said to be selection consistent if the probability that

the fitted regression model includes only the truly informative variables is tending to one, and λ

is replaced by λn to emphasize its dependence on n in quantifying the asymptotic behaviors. In

particular, Zhao and Yu (2006) showed that the lasso regression is selection consistent under the

irrepresentable condition when
√

nλn → ∞ and λn → 0; Fan and Li (2001) showed that the SCAD

is selection consistent when
√

nλn → ∞ and λn → 0; Zou (2006) showed that the adaptive lasso is

selection consistent when nλn → ∞ and
√

nλn → 0; and Shen et al. (2012) showed that the truncated

l1-norm penalty is also selection consistent when λn satisfies a relatively more complex constraint.

Although the asymptotic order of λn is known to assure the selection consistency of the penal-

ized regression models, it remains unclear how to appropriately select λn in finite sample so that the

resultant model in (1) with the selected λn can achieve superior numerical performance and attain

asymptotic selection consistency. Therefore, it is in demand to devise a tuning parameter selection

criterion that can be employed by the penalized regression models so that their variable selection

performance can be optimized.

3. Tuning via Variable Selection Stability

This section introduces the proposed tuning parameter selection criterion based on the concept of

variable selection stability. The key idea is that if we repeatedly draw samples from the population

and apply the candidate variable selection methods, a desirable method should produce the infor-

mative variable set that does not vary much from one sample to another. Clearly, variable selection

stability is assumption free and can be used to tune any penalized regression model.
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3.1 Variable Selection Stability

For simplicity, we denote the training sample as zn. A base variable selection method Ψ(zn;λ) with

a given training sample zn and a tuning parameter λ yields a set of selected informative variables

A ⊂ {1, · · · , p}, called the active set. When Ψ is applied to various training samples, different active

sets can be produced. Supposed that two active sets A1 and A2 are produced, the agreement between

A1 and A2 can be measured by Cohen’s kappa coefficient (Cohen, 1960),

κ(A1,A2) =
Pr(a)−Pr(e)

1−Pr(e)
. (2)

Here the relative observed agreement between A1 and A2 is Pr(a)= (n11+n22)/p, and the hypothet-

ical probability of chance agreement Pr(e) = (n11+n12)(n11+n21)/p2+(n12+n22)(n21+n22)/p2,

with n11 = |A1 ∩A2|, n12 = |A1 ∩A
c
2 |, n21 = |Ac

1 ∩A2|, n22 = |Ac
1 ∩A

c
2 |, and | · | being the set cardi-

nality. Note that −1 ≤ κ(A1,A2)≤ 1, where κ(A1,A2) = 1 when A1 and A2 are in complete agree-

ment with n12 = n21 = 0, and κ(A1,A2) = −1 when A1 and A2 are in complete disagreement with

n11 = n22 = 0 and n12 = n21 = p/2. For degenerate cases with A1 =A2 = /0 or A1 =A2 = {1, . . . , p},

we set κ( /0, /0) = κ({1, . . . , p},{1, . . . , p}) = −1 under the assumption that the true model is sparse

and containing at least one informative variable. As a consequence, the kappa coefficient in (2) is

not suitable for evaluating the null model with no informative variable and the complete model with

all variables. Based on (2), the variable selection stability is defined as follows.

Definition 1 The variable selection stability of Ψ(·;λ) is defined as

s(Ψ,λ,n) = E
(

κ(Ψ(Zn
1 ;λ),Ψ(Zn

2 ;λ))
)
,

where the expectation is taken with respect to Zn
1 and Zn

2 , two independent and identically training

samples of size n, and Ψ(Zn
1 ;λ) and Ψ(Zn

2 ;λ) are two active sets obtained by applying Ψ(·;λ) to Zn
1

and Zn
2 , respectively.

By definition, −1 ≤ s(Ψ,λ,n) ≤ 1, and large value of s(Ψ,λ,n) indicates a stable variable se-

lection method Ψ(·;λ). Note that the definition of s(Ψ,λ,n) relies on the unknown population

distribution, therefore it needs to be estimated based on the only available training sample in prac-

tice.

3.2 Kappa Selection Criterion

This section proposes an estimation scheme of the variable selection stability based on cross val-

idation, and develops a kappa selection criterion to tune the penalized regression models by max-

imizing the estimated variable selection stability. Specifically, the training sample zn is randomly

partitioned into two subsets zm
1 and zm

2 with m = ⌊n/2⌋ for simplicity. The base variable selection

method Ψ(·;λ) is applied to two subsets separately, and then two active sets Â1λ and Â2λ are ob-

tained, and s(Ψ,λ,m) is estimated as κ(Â1λ, Â2λ). Furthermore, in order to reduce the estimation

variability due to the splitting randomness, multiple data splitting can be conducted and the aver-

age estimated variable selection stability over all splittings is computed. The selected λ is then the

one obtaining upper αn quartile of the average estimated variable selection stability. The proposed

kappa selection criterion is present as follows.
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Algorithm 1 (kappa selection criterion) :

Step 1. Randomly partition (x1, · · · ,xn)
T into two subsets z∗b

1 = (x∗b
1 , · · · ,x∗b

m )T and z∗b
2 =

(x∗b
m+1, · · · ,x∗b

2m)
T .

Step 2. Obtain Â
∗b
1λ and Â

∗b
2λ from Ψ(z∗b

1 ,λ) and Ψ(z∗b
2 ,λ) respectively, and estimate the variable

selection stability of Ψ(·;λ) in the b-th splitting by

ŝ∗b(Ψ,λ,m) = κ(Â∗b
1λ , Â

∗b
2λ).

Step 3. Repeat Steps 1-2 for B times. The average estimated variable selection stability of

Ψ(·;λ) is then

ŝ(Ψ,λ,m) = B−1
B

∑
b=1

ŝ∗b(Ψ,λ,m).

Step 4. Compute ŝ(Ψ,λ,m) for a sequence of λ’s, and select

λ̂ = min
{

λ :
ŝ(Ψ,λ,m)

maxλ′ ŝ(Ψ,λ′,m)
≥ 1−αn

}
.

Note that the treatment in Step 4 is necessary since some informative variables may have rela-

tively weak effect compared with others. A large value of λ may produce an active set that consis-

tently overlooks the weakly informative variables, which leads to an underfitted model with large

variable selection stability. To assure the asymptotic selection consistency, the thresholding value

αn in Step 4 needs to be small and converges to 0 as n grows. Setting αn = 0.1 in the numerical

experiments yields satisfactory performance based on our limited experience. Furthermore, the sen-

sitivity study in Section 5.1 suggests that αn has very little effect on the selection performance when

it varies in a certain range. In Steps 1-3, the estimation scheme based on cross-validation can be

replaced by other data re-sampling strategies such as bootstrap or random weighting, which do not

reduce the sample size in estimating Â
∗b
1λ and Â

∗b
2λ , but the independence between Â

∗b
1λ and Â

∗b
2λ will

no longer hold.

The proposed kappa selection criterion shares the similar idea of variable selection stability with

the stability selection method (Meinshausen and Bühlmann, 2010), but they differ in a number of

ways. First, the stability selection method is a competitive variable selection method, which com-

bines the randomized lasso regression and the bootstrap, and achieves superior variable selection

performance. However, the kappa selection criterion can be regarded as a model selection criterion

that is designed to select appropriate tuning parameters for any variable selection method. Second,

despite of its robustness, the stability selection method still requires a number of tuning parameters.

The authors proposed to select the tuning parameters via controlling the expected number of falsely

selected variables. However, this criterion is less applicable in practice since the expected number

of falsely selected variables can only be upper bounded by an expression involving various unknown

quantities. On the contrary, the kappa selection criterion can be directly applied to select the tuning

parameters for the stability selection method.

4. Asymptotic Selection Consistency

This section presents the asymptotic selection consistency of the proposed kappa selection criterion.

Without loss of generality, we assume that only the first p0 variables with 0< p0 < p are informative,

and denote the truly informative variable set as AT = {1, · · · , p0} and the uninformative variable set
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as A
c
T = {p0 +1, · · · , p}. Furthermore, we denote rn ≺ sn if rn converges to 0 at a faster rate than sn,

rn ∼ sn if rn converges to 0 at the same rate as sn, and rn � sn if rn converges to 0 at a rate not slower

than sn.

4.1 Consistency with Fixed p

To establish the asymptotic selection consistency with fixed p, the following technical assumptions

are made.

Assumption 1: There exist positive rn and sn such that the base variable selection method is

selection consistent if rn ≺ λn ≺ sn. Let λ∗
n be such a tuning parameter with rn ≺ λ∗

n ≺ sn, then

P(Âλ∗
n
= AT ) ≥ 1− εn for some εn → 0. In addition, for any positive constant λ0, there exists

positive c0(λ0) such that, when n is sufficiently large,

P
( ⋂

λ0rn≤λn≤λ∗
n

{Âλn
= AT}

)
≥ 1− c0(λ0), (3)

where c0(λ0) converges to 0 as λ0 → ∞.

Assumption 1 specifies an asymptotic working interval for λn within which the base variable

selection method is selection consistent. Here the consistent rate εn is defined for λ∗
n only, and needs

not hold uniformly over all λn with rn ≺ λn ≺ sn. Furthermore, (3) establishes an uniform lower

bound for the probability of selecting the true model when λn is within the interval (λ0rn,λ
∗
n).

Assumption 2: Given rn in Assumption 1, for any positive constant λ0, there exist ζn, c1(λ0) and

c2(λ0) such that, when n is sufficiently large,

min
j∈AT

P
( ⋂

r−1
n λn≤λ0

{ j ∈ Âλn
}
)
≥ 1−ζn, (4)

min
j∈A

c
T

P
( ⋂

r−1
n λn≤λ0

{ j ∈ Âλn
}
)
≥ c1(λ0), (5)

max
j∈A

c
T

P
( ⋂

r−1
n λn≥λ0

{ j /∈ Âλn
}
)
≥ c2(λ0), (6)

where ζn → 0 as n → ∞, c1(λ0) and c2(λ0) are positive and only depend on λ0, and c1(λ0)→ 1 as

λ0 → 0.

Assumption 2 implies that if λn converges to 0 faster than rn, the base variable selection method

will select all the variables asymptotically, and when λn converges to 0 at the same rate of rn, the base

variable selection method will select any noise variable with an asymptotically positive probability.

The inequalities (4)-(6) also establish uniform lower bounds for various probabilities of selecting

informative variables or noise variables.

Assumptions 1 and 2 are mild in that they are satisfied by many popular variable selection

methods. For instance, Lemma 2 in the online supplementary material shows that Assumptions

1 and 2 are satisfied by the lasso regression, the adaptive lasso, and the SCAD. The assumptions

can also be verified for other methods such as the elastic-net (Zou and Hastie, 2005), the adaptive

elastic net (Zou and Zhang, 2009), the group lasso (Yuan and Lin, 2006), and the adaptive group

lasso (Wang and Leng, 2008).

Given that the base variable selection method is selection consistent with appropriately selected

λn’s, Theorem 1 shows that the proposed kappa selection criterion is able to identify such λn’s.
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Theorem 1 Under Assumptions 1 and 2, any variable selection method in (1) with λ̂n selected as

in Algorithm 1 with αn ≻ εn is selection consistent. That is,

lim
n→∞

lim
B→∞

P(Âλ̂n
= AT ) = 1.

Theorem 1 claims the asymptotic selection consistency of the proposed kappa selection criterion

when p is fixed. That is, with probability tending to one, the selected active set by the resultant

variable selection method with tuning parameter λ̂n contains only the truly informative variables.

As long as αn converges to 0 not too fast, the kappa selection criterion is guaranteed to be consistent.

Therefore, the value of αn is expected to have little effect on the performance of the kappa selection

criterion, which agrees with the sensitivity study in Section 5.1.

4.2 Consistency with Diverging pn

In high-dimensional data analysis, it is of interest to study the asymptotic behavior of the proposed

kappa selection criterion with diverging pn, where size of truly informative set p0n may also diverge

with n. To accommodate the diverging pn scenario, the technical assumptions are modified as

follows.

Assumption 1a: There exist positive rn and sn such that the base variable selection method is

selection consistent if rn ≺ λn ≺ sn. Let λ∗
n be such a tuning parameter with rn ≺ λ∗

n ≺ sn, then

P(Âλ∗
n
= AT ) ≥ 1− εn for some εn → 0. In addition, for any positive constant λ0, there exists

positive c0n(λ0) such that, when n is sufficiently large,

P
( ⋂

λ0rn≤λn≤λ∗
n

{Âλn
= AT}

)
≥ 1− c0n(λ0), (7)

where limλ0→∞ limn→∞ c0n(λ0)→ 0.

Assumption 2a: Given rn in Assumption 1a, for any positive constant λ0, there exist ζn, c1n(λ0)
and c2n(λ0) such that, when n is sufficiently large,

min
j∈AT

P
( ⋂

r−1
n λn≤λ0

{ j ∈ Âλn
}
)
≥ 1−ζn, (8)

min
j∈A

c
T

P
( ⋂

r−1
n λn≤λ0

{ j ∈ Âλn
}
)
≥ c1n(λ0), (9)

max
j∈A

c
T

P
( ⋂

r−1
n λn≥λ0

{ j /∈ Âλn
}
)
≥ c2n(λ0), (10)

where ζn satisfies pnζn → 0 as n → ∞, c1n(λ0) and c2n(λ0) are positive and may depend on n and

λ0, and limλ0→0 limn→∞ c1n(λ0) = 1.

Theorem 2 Under Assumptions 1a and 2a, any variable selection method in (1) with λ̂n selected

as in Algorithm 1 with min(pn(1− c̃1n), p−1
n c1nc2n) ≻ αn ≻ εn is selection consistent, where c̃1n =

supλ0
c1n(λ0), c1n = infλ0

c1n(λ0), and c2n = infλ0
c2n(λ0).

Theorem 2 shows the asymptotic selection consistency of the proposed kappa selection criterion

with satisfied αn for diverging pn, where the diverging speed of pn is bounded as in Theorem 2 and
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depends on the base variable selection method. Lemma 3 in the online supplementary material

shows that (7)-(10) in Assumptions 1a and 2a are satisfied by the lasso regression. However, it is

generally difficult to verify Assumptions 1a and 2a for other popular variable selection algorithms

(Fan and Peng, 2004; Huang and Xie, 2007; Huang et al., 2008), as the convergence rates in both

assumptions are not explicitly specified.

5. Simulations

This section examines the effectiveness of the proposed kappa selection criterion in simulated ex-

amples. Its performance is compared against a number of popular competitors, including Mallows’

Cp (Cp), BIC, 10-fold cross validation (CV), and generalized cross validation (GCV). Their formu-

lations are given as follows,

Cp(λ) =
SSEλ

σ̂2
− n + 2d̂ f , (11)

BIC(λ) = log
(SSEλ

n

)
+

log(n)d̂ f

n
,

CV (λ) =
10

∑
s=1

∑
(yk,xk)∈T−s

(
yk −xT

k β̂(s)(λ)
)2

, (12)

GCV (λ) =
SSEλ

n(1− d̂ f/n)2
,

where SSEλ = ‖y−Xβ̂(λ)‖2, d̂ f is estimated as the number of nonzero variables in β̂(λ) (Zou et

al., 2007), and σ̂2 in (11) is estimated based on the saturated model. In (12), T s and T−s are the

training and validation sets in CV, and β̂(s)(λ) is the estimated β using the training set T s and tuning

parameter λ. The optimal λ̂ is then selected as the one that minimizes the corresponding Cp(λ),
BIC(λ), CV (λ), or GCV (λ), respectively.

To assess the performance of each selection criterion, we report the percentage of selecting the

true model over all replicates, as well as the number of correctly selected zeros and incorrectly

selected zeros in β̂(λ̂). The final estimator β̂(λ̂) is obtained by refitting the standard least squares

regression based only on the selected informative variables. We then compare the prediction perfor-

mance through the relative prediction error RPE = E(xT β̂(λ̂)−xT β)2/σ2 (Zou, 2006).

5.1 Scenario I: Fixed p

The simulated data sets (xi,yi)
n
i=1 are generated from the model

y = xT β+σε =
8

∑
j=1

x( j)β j +σε,

where β = (3,1.5,0,0,2,0,0,0)T , σ = 1, x( j) and ε are generated from standard normal distribution,

and the correlation between x(i) and x( j) is set as 0.5|i− j|. This example has been commonly used in

literature, including Tibshirani (1996), Fan and Li (2001), and Wang et al. (2007).

For comparison, we set n = 40, 60 or 80 and implement the lasso regression, the adaptive lasso

and the SCAD as the base variable selection methods. The lasso regression and the adaptive lasso
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are implemented by package ‘lars’ (Efron et al., 2004) and the SCAD is implemented by package

‘ncvreg’ (Breheny and Huang, 2011) in R. The tuning parameter λ’s are selected via each selection

criterion, optimized through a grid search over 100 points {10−2+4l/99; l = 0, . . . ,99}. The number

of splittings B for the kappa selection criterion is 20. Each simulation is replicated 100 times, and

the percentages of selecting the true active set, the average numbers of correctly selected zeros (C)

and incorrectly selected zeros (I), and the relative prediction errors (RPE) are summarized in Tables

1-2 and Figure 1.

n Penalty Ks Cp BIC CV GCV

Lasso 0.63 0.16 0.26 0.09 0.16

40 Ada lasso 0.98 0.53 0.72 0.63 0.52

SCAD 0.98 0.55 0.78 0.76 0.52

Lasso 0.81 0.16 0.32 0.14 0.17

60 Ada lasso 0.99 0.52 0.84 0.65 0.52

SCAD 1 0.58 0.86 0.76 0.56

Lasso 0.89 0.16 0.38 0.08 0.16

80 Ada lasso 0.99 0.56 0.86 0.77 0.56

SCAD 0.99 0.62 0.89 0.75 0.61

Table 1: The percentages of selecting the true active set for various selection criteria in simulations

of Section 5.1. Here ‘Ks’, ‘Cp’, ‘BIC’, ‘CV’ and ‘GCV’ represent the kappa selection

criterion, Mallows’ Cp, BIC, CV and GCV, respectively.

Ks Ks Cp Cp BIC BIC CV CV GCV GCV

n Penalty C I C I C I C I C I

Lasso 4.58 0.01 3.26 0 3.60 0 2.66 0 3.25 0

40 Ada lasso 4.98 0 4.16 0 4.54 0 4.25 0 4.15 0

SCAD 4.99 0.01 4.11 0 4.59 0 4.39 0 4.06 0

Lasso 4.80 0 3.12 0 3.91 0 2.85 0 3.13 0

60 Ada lasso 4.99 0 4.17 0 4.80 0 4.35 0 4.17 0

SCAD 5 0 4.15 0 4.79 0 4.37 0 4.12 0

Lasso 4.88 0 3.01 0 4.02 0 2.66 0 3 0

80 Ada lasso 4.99 0 4.19 0 4.80 0 4.49 0 4.19 0

SCAD 4.99 0 4.23 0 4.83 0 4.45 0 4.22 0

Table 2: The average numbers of correctly selected zeros (C) and incorrectly selected zeros (I) for

various selection criteria in simulations of Section 5.1. Here ‘Ks’, ‘Cp’, ‘BIC’, ‘CV’ and

‘GCV’ represent the kappa selection criterion, Mallows’ Cp, BIC, CV and GCV, respec-

tively.

Evidently, the proposed kappa selection criterion delivers superior performance against its com-

petitors in terms of both variable selection accuracy and relative prediction error. As shown in Table

1, the kappa selection criterion has the largest probability of choosing the true active set and consis-

tently outperforms other selection criteria, especially when the lasso regression is used as the base

variable selection method. As the sample size n increases, the percentage of selecting the true active

set is also improving, which supports the selection consistency in Section 4.
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Table 2 shows that the kappa selection criterion yields the largest number of correctly selected

zeros in all scenarios, and it yields almost perfect performance for the adaptive lasso and the SCAD.

In addition, all selection criteria barely select any incorrect zeros, whereas the kappa selection cri-

terion is relatively more aggressive in that it has small chance to shrink some informative variables

to zeros when sample size is small. All other criteria tend to be conservative and include some

uninformative variables, so the numbers of correctly selected zeros are significantly less than 5.

Besides the superior variable selection performance, the kappa selection criterion also delivers

accurate prediction performance and yields small relative prediction error as displayed in Figure

1. Note that other criteria, especially Cp and GCV, produce large relative prediction errors, which

could be due to their conservative selection of the informative variables.
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n=80

Figure 1: Relative prediction errors (RPE) for various selection criteria in simulations of Section

5.1. Here ‘K’, ‘Cp’, ‘B’, ‘C’ and ‘G’ represent the kappa selection criterion, Mallows’

Cp, BIC, CV and GCV, respectively.

To illustrate the effectiveness of the kappa selection criterion, we randomly select one repli-

cation with n = 40 and display the estimated variable selection stability as well as the results of

detection and sparsity for various λ’s for the lasso regression. The detection is defined as the per-
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Figure 2: The detection and sparsity of the lasso regression with the kappa selection criterion are

shown on the top and the sensitivity of α to the relative prediction error is shown on the

bottom. The optimal log(λ) selected by the kappa selection criterion is denoted as the

filled triangle in the detection and sparsity plots.

centage of selecting the truly informative variables, and the sparsity is defined as the percentage of

excluding the truly uninformative variables. Figure 2 illustrates the clear relationship between the

variable selection stability and the values of detection and sparsity. More importantly, the selection

performance of the kappa selection criterion is very stable against αn when it is small. Specifically,

we apply the kappa selection criterion on the lasso regression for αn = { l
100

; l = 0, . . . ,30} and

compute the corresponding average RPE over 100 replications. As shown in the last panel of Figure

2, the average RPE’s are almost the same for αn ∈ (0,0.13), which agrees with the theoretical result

in Section 4.

5.2 Scenario II: Diverging pn

To investigate the effects of the noise level and the dimensionality, we compare all the selection

criteria in the diverging pn scenario with a similar simulation model as in Scenario I, except that

β = (5,4,3,2,1,0, · · · ,0)T , pn = [
√

n], and σ = 1 or 6. More specifically, 8 cases are examined:
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n = 100, pn = 10; n = 200, pn = 14; n = 400, pn = 20; and n = 800, pn = 28, with σ = 1 or

6 respectively. Note that when σ = 6, the truly informative variables are much more difficult to

detect due to the increased noise level. The percentages of selecting the true active set, the average

numbers of correctly selected zeros (C) and incorrectly selected zeros (I), and the relative prediction

errors (RPE) are summarized in Tables 3-4 and Figures 3-4.

n pn Penalty Ks Cp BIC CV GCV

σ = 1

Lasso 0.98 0.17 0.43 0.10 0.17

100 10 Ada lasso 0.99 0.48 0.86 0.74 0.47

SCAD 0.97 0.47 0.92 0.82 0.47

Lasso 1 0.11 0.49 0.07 0.11

200 14 Ada lasso 1 0.38 0.90 0.66 0.38

SCAD 1 0.46 0.93 0.73 0.47

Lasso 1 0.09 0.53 0.04 0.09

400 20 Ada lasso 1 0.34 0.93 0.73 0.33

SCAD 1 0.43 0.98 0.75 0.43

Lasso 1 0.11 0.51 0.04 0.11

800 28 Ada lasso 1 0.30 0.96 0.74 0.29

SCAD 1 0.46 0.99 0.71 0.46

σ = 6

Lasso 0.35 0.14 0.31 0.11 0.15

100 10 Ada lasso 0.21 0.15 0.18 0.11 0.15

SCAD 0.17 0.07 0.12 0.12 0.07

Lasso 0.52 0.10 0.39 0.08 0.09

200 14 Ada lasso 0.40 0.18 0.30 0.16 0.18

SCAD 0.24 0.09 0.15 0.13 0.09

Lasso 0.77 0.10 0.47 0.04 0.10

400 20 Ada lasso 0.53 0.22 0.57 0.24 0.19

SCAD 0.40 0.13 0.30 0.13 0.13

Lasso 0.82 0.07 0.51 0.04 0.06

800 28 Ada lasso 0.68 0.20 0.66 0.37 0.20

SCAD 0.46 0.21 0.39 0.17 0.21

Table 3: The percentages of selecting the true active set for various selection criteria in simulations

of Section 5.2. Here ‘Ks’, ‘Cp’, ‘BIC’, ‘CV’ and ‘GCV’ represent the kappa selection

criterion, Mallows’ Cp, BIC, CV and GCV, respectively.

In the low noise case with σ = 1, the proposed kappa selection criterion outperforms other

competitors in both variable selection and prediction performance. As illustrated in Tables 3-4, the

kappa selection criterion delivers the largest percentage of selecting the true active set among all the

selection criteria, and achieves perfect variable selection performance for all the variable selection

methods when n ≥ 200. Furthermore, as shown in Figure 3, the kappa selection criterion yields the

smallest relative prediction error across all cases.

As the noise level increases to σ = 6, the kappa selection criterion still delivers the largest

percentage of selecting the true active set among all scenarios except for the adaptive lasso with

n = 400, where the percentage is slightly smaller than that of BIC. As shown in Table 4, the kappa
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Ks Ks Cp Cp BIC BIC CV CV GCV GCV

n pn Penalty C I C I C I C I C I

σ = 1

Lasso 5 0.02 3.25 0 4.20 0 2.95 0 3.25 0

100 10 Ada lasso 5 0.01 4.23 0 4.84 0 4.48 0 4.21 0

SCAD 5 0.03 4.12 0 4.91 0 4.67 0 4.15 0

Lasso 9 0 6.18 0 8.26 0 5.62 0 6.18 0

200 14 Ada lasso 9 0 7.50 0 8.87 0 8.24 0 7.50 0

SCAD 9 0 7.43 0 8.91 0 8.26 0 7.47 0

Lasso 15 0 11.29 0 14.23 0 10.56 0 11.29 0

400 20 Ada lasso 15 0 12.93 0 14.92 0 14.28 0 12.91 0

SCAD 15 0 12.67 0 14.98 0 14.21 0 12.64 0

Lasso 23 0 18.49 0 22.27 0 18.20 0 18.63 0

800 28 Ada lasso 23 0 20.31 0 22.94 0 22.07 0 20.23 0

SCAD 23 0 20.21 0 22.99 0 21.95 0 20.21 0

σ = 6

Lasso 4.76 0.57 3.27 0.24 4.31 0.35 3.09 0.20 3.28 0.24

100 10 Ada lasso 4.57 0.77 3.81 0.54 4.62 0.85 3.31 0.49 3.84 0.54

SCAD 4.88 1.22 3.63 0.56 4.37 0.94 3.52 0.58 3.65 0.56

Lasso 8.93 0.43 6.20 0.08 8.32 0.21 5.79 0.07 6.22 0.08

200 14 Ada lasso 8.72 0.55 7.28 0.32 8.69 0.56 7.34 0.37 7.26 0.32

SCAD 9 0.95 7.07 0.37 8.37 0.63 7.25 0.44 7.07 0.37

Lasso 14.98 0.21 11.46 0.03 14.21 0.07 10.60 0.03 11.45 0.03

400 20 Ada lasso 14.88 0.40 12.24 0.09 14.80 0.30 12.93 0.15 12.16 0.09

SCAD 15 0.67 11.97 0.13 14.65 0.51 12.66 0.23 11.88 0.12

Lasso 22.99 0.17 18.65 0.01 22.27 0.01 18.14 0.01 18.68 0.01

800 28 Ada lasso 22.96 0.29 19.84 0.02 22.71 0.16 21.19 0.04 19.71 0.02

SCAD 23 0.55 19.55 0.04 22.73 0.37 20.42 0.11 19.47 0.04

Table 4: The average numbers of correctly selected zeros (C) and incorrectly selected zeros (I) for

various selection criteria in simulations of Section 5.2. Here ‘Ks’, ‘Cp’, ‘BIC’, ‘CV’ and

‘GCV’ represent the kappa selection criterion, Mallows’ Cp, BIC, CV and GCV, respec-

tively.

selection criterion yields the largest number of correctly selection zeros. However, it has relatively

higher chance of shrinking the fifth informative variable to zero, while the chance is diminishing as

n increases. This phenomenon is also present for BIC. Considering the smaller relative prediction

errors achieved by the kappa selection criterion and BIC, these two criteria tend to produce sparser

models with satisfactory prediction performance. In practice, if false negatives are of concern, one

can increase the thresholding value αn in the kappa selection criterion, to allow higher tolerance

of instability and hence decrease the chance of claiming false negatives. In addition, as shown

in Figure 4, the kappa selection criterion yields the smallest relative prediction error for the lasso

regression and the adaptive lasso among all scenarios, whereas the advantage is considerably less

significant for the SCAD. This is somewhat expected as the SCAD is sensitive to the noise level

(Zou, 2006), which may lead to inaccurate estimation of the variable selection stability.
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Figure 3: Relative prediction errors (RPE) for various selection criteria in Scenario 2 with σ = 1.

Here ‘K’, ‘Cp’, ‘B’, ‘C’ and ‘G’ represent the kappa selection criterion, Mallows’ Cp,

BIC, CV and GCV, respectively.

6. Real Application

In this section, we apply the kappa selection criterion to the prostate cancer data (Stamey et al.,

1989), which were used to study the relationship between the level of log(prostate specific antigen)

(l psa) and a number of clinical measures. The data set consisted of 97 patients who had received

a radical prostatectomy, and eight clinical measures were log(cancer volume) (lcavol), log(prostate

weight) (lweight), age, log(benign prostaic hyperplasia amount) (lbph), seminal vesicle invasion

(svi), log(capsular penetration) (lcp), Gleason score (gleason) and percentage Gleason scores 4 or

5 (pgg45).

The data set is randomly split into two halves: a training set with 67 patients and a test set

with 30 patients. Similarly as in the simulated examples, the tuning parameter λ’s are selected

through a grid search over 100 grid points {10−2+4l/99; l = 0, . . . ,99} on the training set. Since it

is unknown whether the clinical measures are truly informative or not, the performance of all the

selection criteria are compared by computing their corresponding prediction errors on the test set in

Table 5.

As shown in Table 5, the proposed kappa selection criterion yields the sparsest model and

achieves the smallest prediction error for the lasso regression and the SCAD, while the predic-
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Figure 4: Relative prediction errors (RPE) for various selection criteria in Scenario 2 with σ = 6.

Here ‘K’, ‘Cp’, ‘B’, ‘C’ and ‘G’ represent the kappa selection criterion, Mallows’ Cp,

BIC, CV and GCV, respectively.

Penalty Ks Cp BIC CV GCV

Active Lasso 1,2,4,5 1,2,3,4,5,6,7,8 1,2,4,5 1,2,3,4,5,7,8 1,2,3,4,5,6,7,8

Set Ada lasso 1,2,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7,8 1,2,3,4,5

SCAD 1,2,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6,7,8 1,2,3,4,5

Lasso 0.734 0.797 0.734 0.807 0.797

PE Ada lasso 0.806 0.825 0.825 0.797 0.825

SCAD 0.734 0.825 0.825 0.797 0.825

Table 5: The selected active sets and the prediction errors (PE) for various selection criteria in the

prostate cancer example. Here ‘Ks’, ‘Cp’, ‘BIC’, ‘CV’ and ‘GCV’ represent the kappa

selection criterion, Mallows’ Cp, BIC, CV and GCV, respectively.

tion error for the adaptive lasso is comparable to the minima. Specifically, the lasso regression and

the SCAD with the kappa selection criterion include lcavol, lweight, lbph and svi as the informa-

tive variables, and the adaptive lasso with the kappa selection criterion selects only lcavol, lweight
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and svi as the informative variables. As opposed to the sparse regression models produced by other

selection criteria, the variable age is excluded by the kappa selection criterion for all base variable

selection methods, which agrees with the findings in Zou and Hastie (2005).

7. Discussion

This article proposes a tuning parameter selection criterion based on the concept of variable selec-

tion stability. Its key idea is to select the tuning parameter so that the resultant variable selection

method is stable in selecting the informative variables. The proposed criterion delivers superior

numerical performance in a variety of experiments. Its asymptotic selection consistency is also es-

tablished for both fixed and diverging dimensions. Furthermore, it is worth pointing out that the

idea of stability is general and can be naturally extended to a broader framework of model selection,

such as the penalized nonparametric regression (Xue et al., 2010) and the penalized clustering (Sun

et al., 2012).

8. Supplementary Material

Lemmas 2 and 3 and their proofs are provided as online supplementary material for this article.
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Appendix A.

The lemma stated below shows that if a variable selection method is selection consistent and εn ≺αn,

then its variable selection stability converges to 1 in probability.

Lemma 3 Let λ∗
n be as defined in Assumption 1. For any αn,

P
(

ŝ(Ψ,λ∗
n,m)≥ 1−αn

)
≥ 1−2εn/αn.

Proof of Lemma 3: We denote Â
∗b
1λ∗

n
and Â

∗b
2λ∗

n
as the corresponding active sets obtained from two

sub-samples at the b-th random splitting. Then the estimated variable selection stability based on

the b-th splitting can be bounded as

P
(

ŝ∗b(Ψ,λ∗
n,m) = 1

)
= P

(
Â

∗b
1λ∗

n
= Â

∗b
2λ∗

n

)
≥ P

(
Â

∗b
1λ∗

n
= AT

)2

≥ (1− εn)
2 ≥ 1−2εn.

By the fact that 0 ≤ ŝ∗b(Ψ,λ∗
n,n)≤ 1, we have

E
(

ŝ(Ψ,λ∗
n,m)

)
= E

(
B−1

B

∑
b=1

ŝ∗b(Ψ,λ∗
n,m)

)
≥ 1−2εn,
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and 0 ≤ ŝ(Ψ,λ∗
n,n)≤ 1. Finally, Markov inequality yields that

P
(

1− ŝ(Ψ,λ∗
n,m)≥ αn

)
≤

E
(

1− ŝ(Ψ,λ∗
n,m)

)

αn

≤ 2εn

αn

,

which implies the desired result immediately. �

Proof of Theorem 1: We first show that for any ε > 0,

lim
n→∞

P
(

λ̂n > λ∗
n or r−1

n λ̂n ≤ 1/ε
)
= 0.

Denote Ω1 = {λn : λn > λ∗
n}, Ω2 = {λn : r−1

n λn ≤ τ} and Ω3 = {λn : τ ≤ r−1
n λn ≤ 1/ε}, where

τ < 1/ε, c1(τ)≥ 1−1/p. It then suffices to show that for any ε > 0,

P
(

λ̂n ∈ Ω1 ∪Ω2 ∪Ω3

)
→ 0.

First, the definition of λ̂n and Lemma 1 imply that

P(λ̂n ≤ λ∗
n)≥ P

( ŝ(Ψ,λ∗
n,m)

maxλ ŝ(Ψ,λ,m)
≥ 1−αn

)
≥ P

(
ŝ(Ψ,λ∗

n,m)≥ 1−αn

)
≥ 1− 2εn

αn

.

This, together with εn ≺ αn, yields that

P
(

λ̂n ∈ Ω1

)
= P(λ̂n > λ∗

n)≤
2εn

αn

→ 0.

Next, the definition of λ̂n implies that

ŝ(Ψ, λ̂n,m)≥ (1−αn)max
λ

ŝ(Ψ,λ,m)≥ (1−αn)ŝ(Ψ,λ∗
n,m).

This, together with Lemma 1, leads to

P
(

ŝ(Ψ, λ̂n,m)≥ 1−2αn

)
≥ P

(
ŝ(Ψ, λ̂n,m)≥ (1−αn)

2
)

≥ P
(

ŝ(Ψ,λ∗
n,m)≥ 1−αn

)
≥ 1− 2εn

αn

,

and hence when εn ≺ αn,

P
(

ŝ(Ψ, λ̂n,m)≥ 1−2αn

)
→ 1.

Therefore, to show P(λ̂n ∈ Ω2)→ 0, it suffices to show

P
(

sup
λn∈Ω2

ŝ(Ψ,λn,m)< 1−2αn

)
→ 1. (13)

But Assumption 2 implies that for any j ∈ A
c
T and j1 ∈ AT , we have

P
(

j ∈
⋂

λn∈Ω2

Âλn

)
≥ c1(τ)≥ 1− 1

p
and P

(
j1 ∈

⋂

λn∈Ω2

Âλn

)
≥ 1−ζn.
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It implies that

lim
n→∞

P
(
{1, . . . , p} ∈

⋂

λn∈Ω2

Âλn

)

≥ lim
n→∞

1− ∑
j∈A

c
T

P
(

j /∈
⋂

λn∈Ω2

Âλn

)
− ∑

j1∈AT

P
(

j1 /∈
⋂

λn∈Ω2

Âλn

)

≥ lim
n→∞

1− p− p0

p
− p0ζn =

p0

p
> 0.

Since {1, . . . , p} ∈⋂
λn∈Ω2

Â
∗b
λn

implies supλn∈Ω2
ŝ∗b(Ψ,λn,m) =−1, then

lim
n→∞

E
(

sup
λn∈Ω2

ŝ∗b(Ψ,λn,m)
)
≤ 1− lim

n→∞
P
(

sup
λn∈Ω2

ŝ∗b(Ψ,λn,m) =−1
)
≤ 1− p0

p
.

In addition, the strong law of large number for U-statistics (Hoeffding, 1961) implies that

B−1
B

∑
b=1

sup
λn∈Ω2

ŝ∗b(Ψ,λn,m)
a.s.−→ E

(
sup

λn∈Ω2

ŝ∗b(Ψ,λn,m)
)

as B → ∞.

Note that supλn∈Ω2
ŝ(Ψ,λn,m) ≤ B−1 ∑B

b=1 supλn∈Ω2
ŝ∗b(Ψ,λn,m), it then follows immediately that

P(supλn∈Ω2
ŝ(Ψ,λn,m)≤ 1− p0

p
)→ 1 and hence P(supλn∈Ω2

ŝ(Ψ,λn,m)< 1−2αn)→ 1. Therefore

P(λ̂n ∈ Ω2)→ 0.

Finally, to show P(λ̂n ∈ Ω3)→ 0, it also suffices to show

P
(

sup
λn∈Ω3

ŝ(Ψ,λn,m)< 1−2αn

)
→ 1. (14)

Assumption 2 implies that for any j ∈ A
c
T and some j1 ∈ A

c
T , when n is sufficiently large,

P(∩λn∈Ω3
{ j ∈ Âλn

})≥ c1(1/ε)> 0 and P(∩λn∈Ω3
{ j1 /∈ Âλn

})≥ c2(τ)> 0.

Therefore, it follows from the independence between two sub-samples that

P
( ⋂

λn∈Ω3

{Â
∗b
1λn

6= Â
∗b
2λn

}
)

≥ P
( ⋂

λn∈Ω3

⋃

j∈A
c
T

{ j /∈ Â
∗b
1λn

, j ∈ Â
∗b
2λn

}
)

≥ P
( ⋂

λn∈Ω3

{ j1 /∈ Â
∗b
1λn

, j1 ∈ Â
∗b
2λn

}
)

= P
( ⋂

λn∈Ω3

{ j1 /∈ Â
∗b
1λn

}
)

P
( ⋂

λn∈Ω3

{ j1 ∈ Â
∗b
2λn

}
)
,

≥ c1(1/ε)c2(τ).

Since the event
⋂

λn∈Ω3
{Â

∗b
1λn

6= Â
∗b
2λn

} implies that supλn∈Ω3
ŝ∗b(Ψ,λn,m) ≤ c3 with c3 =

maxA1 6=A2
κ(A1,A2)≤ p−1

p
where A1,A2 ⊂ {1, · · · , p}, we have, for sufficiently large n,

P
(

sup
λn∈Ω3

ŝ∗b(Ψ,λn,m)≤ c3

)
≥ c1(1/ε)c2(τ).
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Therefore, for sufficiently large n and any b > 0,

E
(

sup
λn∈Ω3

ŝ∗b(Ψ,λn,m)
)
≤ 1− c1(1/ε)c2(τ)(1− c3).

Again, by the strong law of large number for U-statistics (Hoeffding, 1961) and the fact that

supλn∈Ω3
ŝ(Ψ,λn,m)≤ B−1 ∑B

b=1 supλn∈Ω3
ŝ∗b(Ψ,λn,m), we have

P
(

sup
λn∈Ω3

ŝ(Ψ,λn,m)≤ 1− c1(1/ε)c2(τ)(1− c3)
)
→ 1.

For any ε, c1(1/ε)c2(τ)(1− c3) is strictly positive and αn → 0, we have

P
(

sup
λn∈Ω3

ŝ(Ψ,λn,m)< 1−2αn

)
≥ P

(
sup

λn∈Ω3

ŝ(Ψ,λn,m)≤ 1− c1(1/ε)c2(τ)(1− c3)
)
→ 1,

and hence (14) is verified and P
(

λ̂n ∈ Ω3

)
→ 0.

Combining the above results, we have for any ε > 0,

lim
n→∞

lim
B→∞

P
(

rn/ε ≤ λ̂n ≤ λ∗
n

)
= 1. (15)

Furthermore, since for any ε > 0,

P(Âλ̂n
= AT ) ≥ P

(
Âλ̂n

= AT , rn/ε ≤ λ̂n ≤ λ∗
n

)

≥ P
( ⋂

rn/ε≤λn≤λ∗
n

{Âλn
= AT}

)
+P

(
rn/ε ≤ λ̂n ≤ λ∗

n

)
−1.

Therefore, the desired selection consistency directly follows from (15) and Assumption 1 by letting

ε → 0. �

Proof of Theorem 2: We prove Theorem 2 by similar approach as in the proof of Theorem 1. For

any ε > 0, we denote Ω1 = {λn : λn > λ∗
n}, Ω2 = {λn : r−1

n λn ≤ τ} and Ω3 = {λn : τ ≤ r−1
n λn ≤ 1/ε},

where τ is selected so that τ < 1/ε and pn(1 − c1n(τ)) ≻ αn. Then we just need to show that

P(λ̂n ∈ Ω1 ∪Ω2 ∪Ω3)→ 0. The probability P(λ̂n ∈ Ω1)→ 0 for any ε > 0 can be proved similarly

as in Theorem 1.

In addition, Lemma 1 implies that P(ŝ(Ψ,λ∗
n,m) ≥ 1−αn) ≥ 1−2εn/αn, and the definition of

λ̂n leads to P(ŝ(Ψ, λ̂n,m)≥ (1−αn)(1−αn))≥ 1−2εn/αn, and hence

P
(

ŝ(Ψ, λ̂n,m)≥ 1−2αn

)
≥ P

(
ŝ(Ψ, λ̂n,m)≥ (1−αn)(1−αn)

)
≥ 1− 2εn

αn

→ 1.

To show P(λ̂n ∈ Ω2)→ 0, it suffices to show P(supλn∈Ω2
ŝ(Ψ,λn,m)< 1−2αn)→ 1, which can be

verified by slightly modifying the proof of (13). Assumption 2a implies that for any j ∈ A
c
T and

j1 ∈ AT , we have

P
(

j ∈
⋂

λn∈Ω2

Âλn

)
≥ c1n(τ) and P

(
j1 ∈

⋂

λn∈Ω2

Âλn

)
≥ 1−ζn.
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As shown in Theorem 1, it implies that

P
(
{1, . . . , p} ∈

⋂

λn∈Ω2

Âλn

)
≥ 1− (pn − p0n)(1− c1n(τ))− p0nζn,

and hence E(supλn∈Ω2
ŝ∗b(Ψ,λn,m)) ≤ 1− (pn − p0n)(1− c1n(τ))− p0nζn. By the strong law of

large number for U-statistics,

P
(

sup
λn∈Ω2

ŝ(Ψ,λn,m)≤ 1− (pn − p0n)(1− c1n(τ))− p0nζn

)
→ 1.

Therefore, P(supλn∈Ω2
ŝ(Ψ,λn,m)< 1−2αn)→ 1 provided that pn(1−c1n(τ))≻ αn and pnζn → 0.

To show P(λ̂n ∈ Ω3)→ 0, it suffices to show

P
(

sup
λn∈Ω3

ŝ(Ψ,λn,m)< 1−2αn

)
→ 1. (16)

Here (16) follows by modifying the proof of (14). According to c4 ≤ (pn −1)/pn, we have

E
(

sup
λn∈Ω3

ŝ∗b(Ψ,λn,m)
)
≤ 1− p−1

n c1n(1/ε)c2n(τ).

Therefore, following the same derivation as in Theorem 1, we have

P
(

sup
λn∈Ω3

ŝ(Ψ,λn,m)≤ 1− p−1
n c1n(1/ε)c2n(τ)

)
→ 1.

This, together with the assumptions that αn ≺ p−1
n c1n(1/ε)c2n(τ) for any ε and τ, leads to the con-

vergence in (16), which completes the proof of Theorem 2. �
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Abstract

We present a theoretical analysis for prediction algorithms based on association rules. As part of

this analysis, we introduce a problem for which rules are particularly natural, called “sequential

event prediction.” In sequential event prediction, events in a sequence are revealed one by one,

and the goal is to determine which event will next be revealed. The training set is a collection

of past sequences of events. An example application is to predict which item will next be placed

into a customer’s online shopping cart, given his/her past purchases. In the context of this problem,

algorithms based on association rules have distinct advantages over classical statistical and machine

learning methods: they look at correlations based on subsets of co-occurring past events (items a

and b imply item c), they can be applied to the sequential event prediction problem in a natural way,

they can potentially handle the “cold start” problem where the training set is small, and they yield

interpretable predictions. In this work, we present two algorithms that incorporate association rules.

These algorithms can be used both for sequential event prediction and for supervised classification,

and they are simple enough that they can possibly be understood by users, customers, patients,

managers, etc. We provide generalization guarantees on these algorithms based on algorithmic

stability analysis from statistical learning theory. We include a discussion of the strict minimum

support threshold often used in association rule mining, and introduce an “adjusted confidence”

measure that provides a weaker minimum support condition that has advantages over the strict

minimum support. The paper brings together ideas from statistical learning theory, association rule

mining and Bayesian analysis.

Keywords: statistical learning theory, algorithmic stability, association rules, sequence prediction,

associative classification
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1. Introduction

Consider the problem of predicting the next event within a current event sequence, given a “sequence

database” of past event sequences to learn from. We might wish to do this, for instance, using data

generated by a customer placing items into the virtual basket of an online grocery store such as

NYC’s Fresh Direct, Peapod by Stop & Shop, or Roche Bros. The customer adds items one by one

into the current basket, creating a sequence of events. The customer has identified him- or herself,

so that all past orders are known. After each item selection, a confirmation screen contains a small

list of recommendations for items that are not already in the basket. If the store can find patterns

within the customer’s past purchases, it may be able to accurately recommend the next item that the

customer will add to the basket. Another example is to predict each next symptom of a sick patient,

given the patient’s past sequence of symptoms and treatments, and a database of the timelines of

symptoms and treatments for other patients. We call the problem of predicting these sequentially

revealed events based on past sequences of events “sequential event prediction.”

In these examples, a subset of past events (for instance, a set of ingredients for a particular

recipe) can be useful in predicting the next event. In order to make predictions using subsets of past

events, we employ association rules (Agrawal et al., 1993). An association rule in this setting is an

implication a → b (such as lettuce and carrots → tomatoes), where a is a subset of items, and b is a

single item. The association rule approach has the distinct advantage in being able to directly model

underlying conditional probabilities P(b|a) eschewing the linearity assumptions underlying many

classical supervised classification, regression, and ranking methods. Rules also yield predictive

models that are interpretable, meaning that for the rule a → b, it is clear that b was recommended

because a is satisfied.

The association rules approach makes predictions from subsets of co-occurring past events.

Using subsets may make the estimation problem much easier, because it helps avoid problems with

the curse of dimensionality. For instance P(tomatoes | lettuce and carrots) could be much easier

to estimate than P(tomatoes | lettuce, carrots, pears, potatoes, ketchup, eggs, bread, etc.). This is

precisely why learning algorithms created from rules can be helpful for the “cold start” problem in

recommender systems, where predictions need to be made when there are not enough data available

to accurately compute the full probability of a new item being purchased.

There are two main contributions in this work: a generalization analysis for association-rule-

based algorithms, and a formal definition of the problem of sequential event prediction. An impor-

tant part of the rule-based analysis is how a fundamental property of a rule, namely the “support,”

is incorporated into the generalization bounds. The “support” of an itemset is the number of times

that the itemset has appeared in the sequence database. For instance, the support of lettuce is the

number of times lettuce has been purchased in the past. Typically in association rule mining, a

strict minimum support threshold condition is placed on the support of itemsets within a rule, so

that rules falling below the minimum support threshold are simply discarded. The idea of a con-

dition on the support is not shared with other types of supervised learning algorithms, since they

do not use subsets in the same way as when using rules. Thus a new aspect of generalization is

explored in this analysis in that it handles predictions created from subsets of data. In classical

supervised learning paradigms, bounds scale only with the sample size, and a large sample is neces-

sary to create a generalization guarantee. In the context of association rules, the minimum support

threshold forces predictions to be made only when there are enough data. Thus, in the association

rules analysis, there are now two mechanisms for generalization: first a large sample, and second,

3442



LEARNING THEORY ANALYSIS FOR ASSOCIATION RULES AND SEQUENTIAL EVENT PREDICTION

a minimum support. These are separate mechanisms, in the sense that it is possible to generalize

with a somewhat small sample size and a large minimum support threshold, and it is also possible to

generalize with a large sample size and no support threshold. We thus derive two types of bounds:

large sample bounds, which scale with the sample size, and small sample bounds, which scale with

the minimum support of rules. Using both large and small sample bounds (that is, the minimum

of the two bounds) gives a complete picture. The large sample bounds are of order O(
√

1/m) as

in classical analysis of supervised learning, where m denotes the number of event sequences in the

database, that is, the number of past baskets ordered by the online grocery store customer.

Most of our bounds are derived using a specific notion of algorithmic stability called “pointwise

hypothesis stability.” The original notions of algorithmic stability were invented in the 1970’s and

have been revitalized recently (Devroye and Wagner, 1979; Bousquet and Elisseeff, 2002), the main

idea being that algorithms may be better able to generalize if they are insensitive to small changes in

the training data such as the removal or change of one training example. The pointwise hypothesis

stability specifically considers the average change in loss that will occur at one of the training ex-

amples if that example is removed from the training set. Our generalization analysis uses conditions

on the minimum support of rules in order to bound the pointwise hypothesis stability.

There are two algorithms considered in this work. At the core of each algorithm is a method

for rank-ordering association rules where the list of possible rules is generated using the customer’s

past purchase history and subsets of items within the current basket. These algorithms build off of

the rule mining literature that has been developing since the early 1990’s (Agrawal et al., 1993) by

using an application-specific rule mining method as a subroutine. Our algorithms are interpretable

in two different ways: the predictive model coming out of the algorithm is interpretable, and the

whole algorithm for producing the predictive model is interpretable. In other words, the algorithms

are straightforward enough that they can be understood by users, customers, patients, managers,

etc. Further, the rules within the predictive model can provide a simple reason to the customer why

an item might be relevant, or identify that a key ingredient is missing from a particular recipe. The

rules provide “IF,THEN,ELSE” conditions, and yield models of the same form as those from the

expert systems literature from the early days of artificial intelligence (Jackson, 1998). Many authors

have emphasized the importance of interpretability and explanation in predictive modeling (see, for

example, the work of Madigan et al., 1997).

The first of the two algorithms considered in this work uses a fixed minimum support threshold

to exclude rules whose itemsets occur rarely. Then the remaining rules are ranked according to the

“confidence,” which for rule a → b is the empirical probability that b will be in the basket given

that a is in the basket. The right-hand sides of the highest ranked rules will be recommended by

the algorithm. However, the use of a strict minimum support threshold is problematic for several

well-known reasons, for instance it is known that important rules (“nuggets,” which are rare but

strong rules) are often excluded by a minimum support threshold condition.

The other algorithm introduced in this work provides an alternative to the minimum support

threshold, in that rules are ranked by an “adjusted” confidence, which is a simple Bayesian shrinkage

estimator of the probability of a rule P(b|a). The right-hand sides of rules with the highest adjusted

confidence are recommended by the algorithm. For this algorithm, the generalization guarantee

is smoothly controlled by a parameter K, which provides only a weak (less restrictive) minimum

support condition. The key benefits of an algorithm based on the adjusted confidence are that: 1) it

allows the possibility of choosing very accurate (high confidence) rules that have appeared very few

times in the training set (low support), and 2) given two rules with the same or similar prediction
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accuracy on the training set (confidence), the rule that appears more frequently (higher support)

achieves a higher adjusted confidence and is thus preferred over the other rule.

All of the bounds are tied to the measure of quality (the loss function) used within the analy-

sis. We would like to directly compare the performance of algorithms for various settings of the

adjusted confidence’s K parameter (and for the minimum support threshold θ). It is problematic to

have the loss defined using the same K value as the algorithm, in that case we would be using a

different method of evaluation for each setting of K, and we would not be able to directly compare

performance across different settings of K. To allow a direct comparison, we select one reference

value of the adjusted confidence, called Kr (r for “reference”), and the loss depends on Kr rather

than on K. The bounds are written generally in terms of Kr. The special case Kr = 0 is where the

algorithm is evaluated with respect to the confidence measure. The small sample bounds for the

adjusted confidence algorithm have two terms: one that generally decreases with K (as the support

increases, there is better generalization) and the other that decreases as K gets closer to Kr (better

generalization as the algorithm is closer to the way it is being measured). These two terms are thus

agreeing if Kr > K and competing if Kr < K. In practice, the choice of K can be determined in

several ways: K can be manually determined (for instance by the customer), it can be set using side

information as considered by McCormick et al. (2012), or it can be set via cross-validation on an

extra hold-out set.

The novel elements of the paper include: 1) generalization analysis that incorporates the use

of association rules, for both classification and sequential event prediction, 2) the algorithm based

on adjusted confidence, where the adjusted confidence is a Bayesian version of the confidence,

3) the definition of a new supervised learning problem, namely sequential event prediction. The

work falls in the intersection of several fields that are rarely connected: association rule mining and

associative classification, supervised machine learning and generalization bounds from statistical

learning theory, and Bayesian analysis.

In terms of applications, the definition of “sequential event prediction” was inspired by, but not

restricted to, online grocery stores. Examples are Fresh Direct, Amazon.com grocery, and netgro-

cer.com. Many supermarket chains with local outlets also offer an online shop-and-delivery option,

such as Peapod (paired with Stop & Shop and Giant). Other online retailers and recommendation

engines may benefit from ranking algorithms that are transparent to the user like amazon.com’s

“customers who purchased this also purchased that” recommender system. The same techniques

used to solve the sequential event prediction problem could be used in medical applications to pre-

dict, for instance, the winners at each round of a tournament (e.g, the winners of games in a football

season), or the next move of a video game player in order to design a more interesting game. The

work of McCormick et al. (2012) contains a Bayesian algorithm, based on the analysis introduced in

this paper, for predicting conditions of medical patients in a clinical trial. The work of Letham et al.

(2013b) uses empirical risk minimization to solve sequential event prediction problems dealing with

email recipient recommendation, healthcare, and cooking.

Section 2 describes the two rule-based prediction algorithms, one based on a hard thresholding

of the support (min support) and the other based on the soft thresholding (adjusted confidence).

Section 3 formally defines sequential event prediction. Section 4 provides the generalization anal-

ysis, Section 5 contains proofs, and Section 6 provides experimental validation. Section 7 contains

a summary of relevant literature. Appendix A discusses the suitability of regression approaches

for solving the sequential event prediction problem. Appendix B provides additional experimental

results. Appendix C contains an additional proof.
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2. Derivation of Algorithms

We assume an interface similar to that of Fresh Direct, where users add items one by one into the

basket. After each selection, a confirmation screen contains a handful of recommendations for items

that are not already in the customer’s basket. The customer’s past orders are known.

The set of items is X , for instance X ={apples, bananas, pears, etc}; X is the set of pos-

sible events. The customer has a past history of orders S which is a collection of m baskets,

S = {zi}i=1,...,m, zi ⊆ X ; S is the sequence database. The customer’s current basket is usually de-

noted by B ⊂ X ; B is the current sequence. An algorithm uses B and S to find rules a → b, where

a is in the basket and b is not in the basket. For instance, if salsa and guacamole are in the basket

B and also if salsa, guacamole and tortilla chips were often purchased together in S, then the rule

(salsa and guacamole) → tortilla chips might be used to recommend tortilla chips.

The support of a, written Sup(a) or #a, is the number of times in the past the customer has

ordered itemset a,

Sup(a) := #a :=
m

∑
i=1

1[a⊆zi].

If a = ∅, meaning a contains no items, then #a := ∑i 1 = m. The confidence of a rule a → b is

denoted “Conf” or “ fS,0”:

Conf(a → b) := fS,0(a,b) :=
#(a∪b)

#a
,

the fraction of times b is purchased given that a is purchased. It is an estimate of the conditional

probability of b given a. Ultimately an algorithm should order rules by conditional probability;

however, the rules that possess the highest confidence values often have a left-hand side with small

support, and their confidence values do not yield good estimates for the true conditional probabili-

ties. Note that a∪b is the union of the set a with item b (the intersection is empty). In this work we

introduce the “adjusted” confidence as a remedy for this problem: The adjusted confidence for rule

a → b is:

fS,K(a,b) :=
#(a∪b)

#a+K
.

The adjusted confidence for K = 0 is equivalent to the confidence.

The adjusted confidence is a particular Bayesian estimate of the confidence. Specifically, as-

suming a beta prior distribution for the confidence, the posterior mean is given by:

p̂ =
L+#(a∪b)

L+K +#a
,

where L and K denote the parameters of the beta prior distribution. The beta distribution is the

“conjugate” prior distribution for a binomial likelihood. For the adjusted confidence we choose

L = 0. This choice yields the benefits of the lower bounds derived in the remainder of this section,

and the stability properties described later. The prior for the adjusted confidence tends to bias rules

towards the bottom of the ranked list. Any rule achieving a high adjusted confidence must overcome

this bias.

Other possible choices for L and K are meaningful. For instance we could choose the following:
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• Collaborative filtering prior: have L/(L+K) represent the probability of purchasing item b

given that item a was purchased, calculated over a subset of other customers. This biases

estimates of the target user’s behavior towards the “average” user.

• Revenue management prior: choose L and K based on the item’s price, so more expensive

items are more likely to be recommended.

• Time dependent prior: use only the customer’s most recent orders, and choose L and K to

summarize the user’s behavior before this point.

A rule cannot have a high adjusted confidence unless it has a large enough confidence and also

a large enough support on the left-hand side. To see this, consider the case when we take fS,K(a,b)
large, meaning for some η, we have fS,K(a,b)> η, implying:

Conf(a → b) = fS,0(a,b)> η
#a+K

#a
≥ η,

Sup(a) = #a ≥ (#a+K)

[

#(a∪b)

#a+K

]

> (#a+K)η, implying Sup(a) = #a >
ηK

1−η
. (1)

And further, expression (1) implies:

Sup(a∪b) = #(a∪b)> η(#a+K)> ηK/(1−η).

Thus, rules attaining high values of adjusted confidence have a lower bound on confidence, and

a lower bound on support of both the right and left-hand sides, which means a better estimate of

the conditional probability. The bounds clearly do not provide any advantage when K = 0 and the

confidence is used.

As K increases, rules with low support are heavily penalized, so they tend not to be at the top

of the list. On the other hand, such rules might be chosen when all other rules have low confidence.

That is an advantage of having no firm minimum support cutoff: “nuggets” that have fairly low

support may filter to the top. Figure 1 illustrates this by showing the support of rules ordered by

adjusted confidence, for two values of K, using a transactional data set “T25I10D10KN200” from

the IBM Quest Market-Basket Synthetic Data Generator (Agrawal and Srikant, 1994) which mimics

a retail data set.1 We use all rules with either one or no items on the left and one item on the right

(as produced for instance by GenRules, presented in Algorithm 1). On each scatter plot, each of

the rules is represented by a point. The rules are ordered on the x-axis by adjusted confidence, and

the support of the rule is indicated on the y-axis. As K increases, rules with the highest adjusted

confidence are required to achieve a higher support, as can be seen from the gap in the lower left

corner of the scatter plot for larger K.

We now formally state the recommendation algorithms. Both algorithms use a subroutine for

mining association rules to generate a set of candidate rules. GenRules (Algorithm 1) is one of

the simplest such rule mining algorithms, which in practice should be replaced by a rule mining

algorithm that retrieves rules tailored to the application. There is a vast literature on such algorithms

since the field of association rule mining evolved on their development, e.g. Apriori (Agrawal et al.,

1993). GenRules requires a set A which is the set of allowed left-hand sides of rules.

1. The data set generated is T25I10D10KN200 that contains 10K transactions, 200 items, and where the average length

of transactions is 25 and the average pattern length is 10.
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K = 0 K = 10 K = 50

Figure 1: Support vs. rank in adjusted confidence for K = 0,10,50. Rules with the highest adjusted

confidence are on the left.

Algorithm 1: Subroutine GenRules.

Input: (S,B,X ), that is, past orders S = {zi}i=1,...,m, zi ⊆ X , current basket B ⊂ X , set of

items X

Output: Set of all rules {a j → b j} j where b j is a single item that is not in the basket B, and

where a j is either a subset of items in the basket B, or else it is the empty set. Also

the left-hand side a j must be allowed (meaning it is in A). That is, output rules

{a j → b j} j such that b j ∈ X \B and a j ⊆ B ⊂ X with a j ∈ A, or a j =∅.

2.1 Max Confidence, Min Support Algorithm

The max confidence, min support algorithm, shown as Algorithm 2, is based on the idea of elimi-

nating rules whose itemsets occur rarely, which is commonly done in the rule-mining literature. For

this algorithm, the rules are ranked by confidence, and rules that do not achieve a predetermined

fixed minimum support threshold are completely omitted. The algorithm recommends the right-

hand sides from the top ranked rules. Specifically, if c items are to be recommended to the user, the

algorithm picks the top ranked c distinct items.

It is common that the minimum support threshold is imposed on the right and left side Sup(a∪
b) ≥ θ; however, as long as Sup(a) is large, we can get a reasonable estimate of P(b|a). In that

sense, it is sufficient (and less restrictive) to impose the minimum support threshold on the left side:

Sup(a) ≥ θ. Here θ is a number determined beforehand (for instance, the support of the left must

be at least 5 items). In this work, we only have a required minimum support on the left side. As a

technical note, we might worry about the minimum support threshold being so high that there are no

rules that meet the threshold. This is actually not a major concern because of the minimum support

being imposed only on the left-hand side: as long as m ≥ θ, all rules ∅ → b meet the minimum

support threshold.

The thresholded confidence is denoted by f̄S,θ:

f̄S,θ(a,b) := fS,0(a,b) if #a ≥ θ,and f̄S,θ(a,b) := 0 otherwise.
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Algorithm 2: Max Confidence, Min Support Algorithm.

Input: (θ,X ,S,B, GenRules, c), that is, minimum threshold parameter θ, set of items X , past

orders S = {zi}i=1,...,m, zi ⊆ X , current basket B ⊂ X , GenRules generates candidate

rules GenRules(S,B,X ) = {a j → b j} j, number of recommendations c ≥ 1

Output: Recommendation List, which is a subset of c items in X

1 Apply GenRules(S,B,X ) to get rules {a j → b j} j where a j is in the basket B and b j is not.

2 Compute score for each rule a j → b j as f̄S,θ(a j,b j) = fS,0(a j,b j) =
#(a j∪b j)

#a j
when support

#a j ≥ θ, and f̄S,θ(a j,b j) = 0 otherwise.

3 Reorder rules by decreasing score.

4 Find the top c rules with distinct right-hand sides, and let Recommendation List be the

right-hand sides of these rules.

Algorithm 3: Adjusted Confidence Algorithm.

Input: (K,X ,S,B, GenRules, c), that is, parameter K, set of items X , past orders

S = {zi}i=1,...,m, zi ⊆ X , current basket B ⊂ X , GenRules generates candidate rules

GenRules(S,B,X ) = {a j → b j} j, number of recommendations c ≥ 1

Output: Recommendation List, which is a subset of c items in X

1 Apply GenRules(S,B,X ) to get rules {a j → b j} j where a j is in the basket B and b j is not.

2 Compute adjusted confidence of each rule a j → b j as fS,K(a j,b j) =
#(a j∪b j)
#a j+K

.

3 Reorder rules by decreasing adjusted confidence.

4 Find the top c rules with distinct right-hand sides, and let Recommendation List be the

right-hand sides of these rules.

2.2 Adjusted Confidence Algorithm

The adjusted confidence algorithm is shown as Algorithm 3. A chosen value of K is used to compute

the adjusted confidence for each rule, and rules are then ranked according to adjusted confidence.

The definition of the adjusted confidence makes an implicit assumption that the order in which

items were placed into previous baskets is irrelevant. It is easy to include a dependence on the

order by defining a “directed” version of the adjusted confidence, and calculations can be adapted

accordingly. The numerator of the adjusted confidence becomes the number of past orders where a

is placed in the basket before b.

f
(directed)
S,K (a,b) =

#{(a∪b) : b follows a}

#a+K
.

2.3 Rule Selection

In classical supervised machine learning problems, like classification and regression, designing fea-

tures is one of the main engineering challenges. In association rule modeling, the analogous chal-

lenge is designing the allowed sets of items for the left and right sides of rules. For instance, we

can choose to capture only positive correlations, as if customers were purchasing items from several

independent recipes. The present work considers mainly positive correlations, for the purpose of

exposition and to keep things simple. Beyond this, it is easily possible to capture negative corre-
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lations between items by creating “negation” items, such as ¬b. As an example of using negation

rules in the ice cream category, we impose that for vanilla to be on the right, both chocolate and

strawberry need to be on the left, in either their usual form or negated. Of these, the rule that is

used corresponds to the current basket. In that case, ¬chocolate, ¬strawberry → vanilla could have

a high score in order to recommend vanilla when chocolate and strawberry are not in the basket,

whereas chocolate, ¬strawberry → vanilla might have a low score, conveying that since chocolate

is already in the basket that vanilla should not be recommended. Alternatively, we could create a

negation item ¬ice cream indicating that the basket contains no ice cream presently, so sprinkles +

¬ice cream → vanilla could have a high score.

We can also use negation items on the right, where if there is a rule a→¬b that receives a higher

score (confidence or adjusted confidence) than any other rules recommending b, we can choose not

to recommend b. Rules can be designed to capture higher level correlations in specific regimes,

for instance the allowed set A can contain up to three items in one product category, but only two

items in another. It is not practical in general to exhaustively enumerate and use all possible rules

in a rule modeling algorithm due to problems with computational complexity. The key is to find a

small but good set of rules, for instance the set of rules containing exhaustively all subsets of 1, 2,

or 3 items on the left; or perhaps use the top rules that come out of the Apriori algorithm (Agrawal

et al., 1993). In Section 7 we provide citations to surveys on association rule mining and associative

classification that discuss this important issue of rule-construction and rule-engineering.

2.4 Modeling Assumption

The general modeling assumption that we make with the two algorithms above can be written as fol-

lows, where current basket B is composed of items b1, . . .bt , and Xi is the random variable governing

whether item i will be placed into the basket next:

argmax
i=1,...,m

i/∈B

P(Xi = 1|Xb1
= 1,Xb2

= 1, . . . ,Xbt
= 1)

= argmax
i=1,...,m

i/∈B

max
a∈A

a⊆{b1,...,bt }

P(Xi = 1|Xa1
= 1,Xa2

= 1, . . .).

This expression states that the most likely item to be added next into the basket can be identified

using a subset of items in the basket, denoted a. That subset is restricted to fall into a class A which

is chosen based on the application at hand and the ease in which that subset can be searched. The

set A determines the hypothesis space for learning, and it would be chosen differently as we move

from the small sample regime to the large sample regime, so that the right side of this expression

would eventually look just like the left side when the sample is large.

The choice of A can help with the problem of “curse of dimensionality” by allowing us to look

at small subsets on the left. A similar example to the one in the introduction is P(machine will

break | a particular part is old) could be much easier to estimate accurately than the full probability

P(machine will break | part 1 did poorly at last inspection, part 2 is very old, part 3 is new, part 4

is ok,..., part 612 is ok, etc.). The large dimensionality would likely be a problem when estimating

the full probability. Further, the approximation also could actually be sufficient to estimate the

full probability. We note that there are circumstances in which it is natural to only consider positive

correlations. In the example of equipment failure, for instance, individual component failures would

always increase the risk of overall failure. More typically, however, consideration of both positive

and negative correlations will be important.
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Our modeling assumption aligns with sequential event prediction, where only part of a sequence

is available to make a prediction at time t. This is a case where standard linear modeling approaches

do not naturally apply, since one would need to make a linear combination of terms, some of which

are unrealized. We discuss this more in Appendix A.

3. Definition of Sequential Event Prediction

For simplicity in notation, at each time the algorithm recommends only one item, c = 1. A basket

z consists of an ordered (permuted) set of items, z ∈ 2X ×Π, where 2X is the set of all subsets

of X , and Π is the set of permutations over at most |X | elements. We have a training set of m

baskets S = {zi}1...m that are the customer’s past orders. Denote z ∼ D to mean that basket z is

drawn randomly (iid) according to distribution D over the space of possible items in baskets and

permutations over those items, 2X ×Π. The tth item added to the basket is written z·,t , where the

dot is just a placeholder for the generic basket z. The tth element of the ith basket in the training

set is written zi,t . We define the number of items in basket z by Tz, that is, Tz := |z|. We introduce

a generic scoring function fS : (a,b) 7→ R where a is a subset of items and b is a single item. The

input a to the score is {z·,1, . . . ,z·,t} or is a subset of {z·,1, . . . ,z·,t}. For now we let a be the full set

{z·,1, . . . ,z·,t}. The input b is an item that is not already in the basket, b ∈ X \{z·,1, . . . ,z·,t}. The

scoring function fS comes from an algorithm that takes data set S as input. We can consider fS to

be parameterized, and the algorithm will learn the parameters of fS from S.

If the score fS({z·,1, . . . ,z·,t},b) is larger than that of fS({z·,1, . . . ,z·,t},z·,t+1), it means that the

algorithm recommended the wrong item. The loss function below counts the proportion of times

this happens for each basket.

ℓ0−1( fS,z) :=

1

Tz

Tz−1

∑
t=0

{

1 if fS({z·,1, . . . ,z·,t},z·,t+1)−maxb∈X \{z·,1,...,z·,t} fS({z·,1, . . . ,z·,t},b)≤ 0

0 otherwise.

(Note that if z contains all items in X , then the recommendation for the last item is deterministic,

so we would not count it towards the loss.) The true error for sequential event prediction is an

expectation of the loss with respect to D , and is again a random variable since the training set S is

random.

TrueErr( fS) := Ez∼Dℓ0−1( fS,z).

The empirical risk is the average loss with respect to S:

EmpErr( fS) :=
1

m

m

∑
i=1

ℓ0−1( fS,zi).

The loss is bounded (by 1), the baskets are chosen independently, and the empirical risk is an

average of iid random variables and the true risk is the expectation. Thus, the problem fits into the

traditional scope of statistical learning, and the loss can be used within concentration arguments to

obtain generalization bounds.

In the analysis below, we build the full algorithm for constructing fS into the notation. The

algorithms above are simple enough that they can be encoded within the same line of notation. To

do this we will say that fS acts on the the subset of {z·,1, . . . ,z·,t} within A that has the maximum
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score. For instance, if we are using the adjusted confidence algorithm,

fS({z·,1, . . . ,z·,t},b) := max
a∈A,a⊆{z·,1,...,z·,t}

fS,K(a,b).

The 0-1 loss is not smooth, so we will often use a smooth convex upper bound for the loss within

the bounds. Specifically, for the way we have defined sequential event prediction, if any item has

a higher score than the next item added, the algorithm incurs an error. (Even if that item is added

later on, the algorithm incurs an error at this timestep.) To measure the size of that error, we can use

the 0-1 loss, indicating whether or not our algorithm gave the highest score to the next item added.

However, the 0-1 loss does not capture how close our algorithm was to correctly predicting the next

item, though this information might be useful in determining how well the algorithm will generalize.

We approximate the 0-1 loss using a modified loss that decays linearly near the discontinuity. This

modified loss allows us to consider differences in adjusted confidence, not just whether one is larger

than another:

|(adjusted conf. of highest-scoring-correct rule)

−(adjusted conf. of highest-scoring-incorrect rule)|.

However, as discussed in the introduction, if we adjust the loss function’s K value to match the

adjusted confidence K value, then we cannot fairly compare the algorithm’s performance using two

different values of K. An illustration of this point is that for large K, all adjusted confidence values

are ≪ 1, and for small K, the adjusted confidence can be ≈ 1; differences in adjusted confidence

for small K cannot be directly compared to those for large K. Since we want to directly compare

performance as K is adjusted, we fix an evaluation measure that is separate from the choice of K.

Specifically, we use the difference in adjusted confidence values with respect to a reference Kr:

|({adjusted conf.}Kr
of highest-scoring-correct ruleK)

−({adjusted conf.}Kr
of highest-scoring-incorrect ruleK)|. (2)

The reference Kr is a parameter of the loss function, whereas K is a parameter of an algorithm.

We set Kr = 0 to measure loss using the difference in confidence, and K = 0 for an algorithm that

chooses rules according to the confidence. As K gets farther from Kr, the algorithm is more distant

from the way it is being evaluated, which leads to worse generalization. Note that for Kr = K, the

0-1 loss is the same as the sign of (2).

A similar loss will be used in classification, where we incur an error if the adjusted confidence

of the incorrect label is higher than that of the correct label.

4. Generalization

Our goal in this section is to provide a foundation for supervised learning with association rules,

and also a foundation for sequential event prediction. We will consider several quantities that may

be important in the learning process: m, K or θ, the size of the set of possible itemsets |A|, and the

probability of the least probable itemsets and items.

As part of this section, we establish bounds for vanilla supervised binary classification with

rules. Specifically we consider “max-score” association rule classifiers. For a given example, a

max-score classifier assigns a score to the label +1 and a score to the label -1, and chooses the label
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corresponding to the higher of the two scores. Max-score association rule classifiers are a special

type of “associative classifier” (Liu et al., 1998) and are also a type of “decision list” (Rivest, 1987).

The result in 4.2 is a uniform bound based on the VC dimension of the set of max-score classifiers.

This bound does not depend explicitly on K, which we hypothesize is an important quantity for the

learning process.

In order to understand how K might affect learning, we use algorithmic stability analysis. This

approach originated in the 1970’s (Rogers and Wagner, 1978; Devroye and Wagner, 1979) and

was revitalized by Bousquet and Elisseeff (2002). Stability bounds depend on how the space of

functions is searched by the algorithm (rather than the size of the function space), so it often yields

more insightful bounds. These bounds are still not often directly useful due to large multiplicative

constants (in our case a factor of 6), but they capture more closely the scalability relationship of

a particular algorithm with respect to important quantities in the learning process. The calculation

required for an algorithmic stability bound is to show that the empirical error will not dramatically

change by altering or removing one of the training examples and re-running the algorithm. There

are many different ways to measure the stability of an algorithm; most of the bounds presented here

use a specific type of algorithmic stability (pointwise hypothesis stability) so that the bounds scale

correctly with the number of training examples m.

Section 4.1 presents a basic stability bound for sequential event prediction. Section 4.2 presents

a uniform VC bound for classification with max-score classifiers. Section 4.3 provides notation.

Section 4.4 presents another basic stability bound for sequential event prediction, for a rule-based

loss function. We then focus on stability bounds for the rule-based algorithms provided in Section 2.

Specifically, Section 4.5 provides stability bounds for the large sample asymptotic regime (for both

sequential event prediction and classification). Then we consider the new small m regime in Section

4.6, starting with stability bounds that formally show that minimum support thresholds can lead to

better generalization (for both sequential event prediction and classification). From there, we present

small sample bounds for the adjusted confidence algorithm, for classification and (separately) for

sequential event prediction.

We note that the space of possible baskets (up to a maximum size) is a combinatorially large,

discrete space. Because the space is discrete, all probability estimates converge to the true proba-

bilities, which means that an algorithm that is statistically consistent can be obtained by estimating

p(b|B) directly for the current basket B. If m is large, prediction is easy. The difficult part is when

we have only enough data to well estimate conditionals that are much smaller, P(b|a),a ⊂ B. That

is the problem we are concerned with. Consistency does not imply anything about generalization

bounds for the finite sample case.

4.1 General Stability Bound for Sequential Event Prediction

In this section we provide a basic stability-based bound for sequential event prediction, by analogy

with Theorem 17 of Bousquet and Elisseeff (2002) (B&E).

We define a sequential event prediction algorithm producing fS to have strong sequential event

prediction stability β (by analogy with B&E Definition 15) if the following holds:

∀S ∈ Dm,∀i ∈ {1, ...,m}

‖maxt=0,...,Tz−1 | fS({z·,1, . . . ,z·,t},z·,t+1)− fS/i({z·,1, . . . ,z·,t},z·,t+1)|‖∞ ≤ β,

3452



LEARNING THEORY ANALYSIS FOR ASSOCIATION RULES AND SEQUENTIAL EVENT PREDICTION

where the ∞-norm is over baskets. A definition we will use from B&E is as follows: an algorithm

producing function fS with uniform stability β′ obeys:

∀S,∀i ∈ {1, ...,m},‖ℓ( fS, ·)− ℓ( fS/i , ·)‖∞ ≤ β′.

Let us define a modified loss function. Let symbol ∆ temporarily denote fS({z·,1, . . . ,z·,t},z·,t+1)−
maxb∈X \{z·,1,...,z·,t} fS({z·,1, . . . ,z·,t},b) in the expression below. The loss is:

ℓγ( fS,z) :=
1

Tz

Tz−1

∑
t=0











1 if ∆ ≤ 0

1− 1
γ ∆ if 0 ≤ ∆ ≤ γ

0 if ∆ ≥ γ.

The empirical error and leave-one-out error defined for this loss are:

EmpErrγ( fS,zi) :=
1

m

m

∑
i=1

ℓγ( fS,zi),

LooErrγ( fS,zi) :=
1

m

m

∑
i=1

ℓγ( fS/i ,zi).

Lemma 1 A sequential event prediction algorithm producing fS with strong sequential event pre-

diction stability β has uniform stability 2β/γ with respect to the loss function ℓγ.

Proof

|ℓγ( fS,z)− ℓγ( fS/i ,z)|

≤
1

Tz

Tz−1

∑
t=0

1

γ

∣

∣

∣

∣

[

fS({z·,1, . . . ,z·,t},z·,t+1)− max
b∈X \{z·,1,...,z·,t}

fS({z·,1, . . . ,z·,t},b)

]

−

[

fS/i({z·,1, . . . ,z·,t},z·,t+1)− max
b∈X \{z·,1,...,z·,t}

fS/i({z·,1, . . . ,z·,t},b)

]∣

∣

∣

∣

≤
1

γ

1

Tz

Tz−1

∑
t=0

[| fS({z·,1, . . . ,z·,t},z·,t+1)− fS/i({z·,1, . . . ,z·,t},z·,t+1)| +

∣

∣

∣

∣

max
b∈X \{z·,1,...,z·,t}

fS({z·,1, . . . ,z·,t},b)− max
b∈X \{z·,1,...,z·,t}

fS/i({z·,1, . . . ,z·,t},b)

∣

∣

∣

∣

]

≤
1

γ
2β.

The first inequality uses the Lipschitz property of the loss, as well as an upper bound from moving

the absolute values inside the sum. The third inequality uses the strong stability with respect to fS.

The following theorem is analogous to Theorem 17 in B&E, for sequential event prediction. The

proof is a direct application of Theorem 12 of B&E to the sequential event prediction loss, combined

with Lemma 1.
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Theorem 2 Let fS be a sequential event prediction algorithm with sequential event stability β. Then

for all γ > 0 and any m ≥ 1 and any δ ∈ (0,1) with probability at least 1−δ over the random draw

of sample S,

TrueErr( fS)≤ EmpErrγ( fS)+
4β

γ
+

(

8m
β

γ
+1

)

√

ln(1/δ)

2m

and with probability at least 1−δ over the random draw of sample S,

TrueErr( fS)≤ LooErrγ( fS)+
4β

γ
+

(

8m
β

γ
+1

)

√

ln(1/δ)

2m
.

As with classification algorithms, the type of stability one would need to apply these bounds can

be quite difficult to achieve, as it requires that the change in the model is small for any training

set when any example is removed. This is particularly difficult to achieve when the sample size is

somewhat small. For the association rule bounds, we know that uniform stability is not possible for

many algorithms that perform well. However, there are some algorithms that do exhibit stronger

stability, as we will discuss.

4.2 Classification with Association Rules: A Uniform Bound

In the classification problem, each basket receives a single label that is one of two possible labels

{+1,−1}. This contrasts with sequential event prediction where there is a sequence of labels,

one for each item in the basket as it arrives. For classification, we represent basket x as a binary

vector, where entry j is 1 if item j is in the basket. We sample baskets with labels, z = (x,y),
where x ∈ 2X is a set of items (or, equivalently, a binary feature vector) and y ∈ {−1,1} is the

corresponding label. Each labeled basket z is chosen randomly (iid) from a fixed (but unknown)

probability distribution D over baskets and labels. Given a training set S of m labeled baskets, we

wish to construct a classifier that can assign the correct label to new, unlabeled baskets. We begin

by defining a scoring function g : A×{−1,1} → R that assigns a score g(a,y) to a rule a → y.

The set of left-hand sides A can be any collection of itemsets so long as every x ∈ 2X contains

at least one a ∈ A. We define a valid scoring function as one where ∀a ∈ A, g(a,1) 6= g(a,−1)
and ∀a1,a2 ∈ A, maxy∈{−1,1} g(a1,y) 6= maxy∈{−1,1} g(a2,y), that is, there are no ties. The validity

requirement will be discussed in the following paragraph. Define G to be the class of all valid

scoring functions. We now define a class of decision functions that use a valid scoring function

g ∈ G to provide a label to a basket x, fg : 2X → {−1,1}. The decision function assigns the label

corresponding to the highest scoring rule whose left-hand side is contained in x. Specifically,

fg(x) = argmax
y∈{−1,1}

max
a∈A,a⊆x

g(a,y). (3)

We call such a classifier a “max-score association rule classifier” (or “decision list”) because it uses

the association rule with the maximum score to perform the classification. Let Fmaxscore be the

class of all max-score association rule classifiers: Fmaxscore := { fg : g ∈ G}. We will bound the VC

dimension of class Fmaxscore. By definition, the VC dimension is the size of the largest set of baskets

to which arbitrary labels can be assigned using some fg ∈ Fmaxscore; it is the size of the largest set

that can be shattered.

The argmax in (3) is unique because g is valid, thus there are no ties. If ties are allowed but

broken randomly, arbitrary labels can be realized with some probability, for example by taking
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g(a,y) = 0 for all a and y. In this case the VC dimension can be considered to be infinite, which

motivates our definition of a valid scoring function. This problem actually happens with any clas-

sification problem where function f (x) = 0 ∀x is within the hypothesis space, thereby allowing all

points to sit on the decision boundary. Our definition of validity is equivalent to one in which ties are

allowed but are broken deterministically using a pre-determined ordering on the rules. In practice,

ties are generally broken in a deterministic way by the computer, so the inclusion of the function

f = 0 is not problematic.

The true error of the max-score association rule classifier is the expected misclassification error:

TrueErrClass( fg) := E(x,y)∼D1[ fg(x) 6=y]. (4)

The empirical error is the average misclassification error over a training set of m baskets:

EmpErrClass( fg) :=
1

m

m

∑
i=1

1[ fg(xi) 6=yi].

The main result of this subsection is the following theorem, which indicates that the size of the

allowed set of left-hand sides may influence generalization.

Theorem 3 (VC Dimension for Classification)

The VC dimension h of the set of max-score classifiers is equal to the size of the allowed set of left

hand sides of rules:

VCdim(Fmaxscore) := h := |A|.

From this theorem, classical results such as those of Vapnik (1999, Equations 20 and 21) can be

directly applied to obtain a generalization bound:

Corollary 4 (Uniform Generalization Bound for Classification)

With probability at least 1−δ the following holds simultaneously for all fg ∈ Fmaxscore:

TrueErrClass( fg)≤ EmpErrClass( fg)+
ε

2

(

1+

√

1+
4EmpErrClass( fg)

ε

)

,

where ε = 4
|A|
(

ln 2m
|A| +1

)

− lnδ

m
.

Note 1 (on uniform bounds): The result of Theorem 3 holds generally, well beyond the simple

adjusted confidence or max confidence, min support algorithms. Those two algorithms correspond

to specific choices of the scoring function g: the adjusted confidence algorithm takes g(a,y) =
fS,K(a,y), and the max confidence, min support algorithm takes g(a,y) = f̄S,θ(a,y). We could use

other strategies to choose g, for example, choosing fg ∈ F to minimize an empirical risk (similar to

what we do in Letham et al., 2013c).

Note 2 (on replacing itemsets with general boolean operators): Although in this paper we restrict

our attention to left-hand sides that are sets of items (e.g., “apples and oranges”), association rules

can be constructed using the boolean operators AND, OR, and NOT (e.g., “apples or oranges but

not bananas”). In this case, the left-hand sides of rules are not contained in x, rather they are true

with respect to x. By replacing “contained in x” with “true with respect to x” in the first half of the
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proof of Theorem 3 (in Section 5), it can be seen that h ≤ |A| even when A contains general boolean

association rules. Thus the bound in Corollary 4 extends to boolean operators.

Note 3 (dependence on |A|): We can use a standard argument involving Hoeffding’s inequality and

the union bound over elements of Fmaxscore to obtain that with probability at least 1−δ, the following

holds for all fg ∈ Fmaxscore:

TrueErrClass( fg)≤ EmpErrClass( fg)+

√

1

2m

(

ln(2|Fmaxscore|)+ ln
1

δ

)

.

The value of |Fmaxscore| is at most 2|A|. This is because there are |A| ways to determine max
a∈A,a⊆x

g(a,y),

and there are 2 ways to determine the argmax over y. The bound then depends on
√

|A| (as classical

VC bounds would also give, using Theorem 3), but not log |A|. Note that the bound is meaningful

when |A|< m so that 2|A| < 2m.

Note 4 (on reducing |A|): It is possible that many of the possible left-hand sides in |A| are realized

with zero probability. (This depends on the unknown probability distribution that the examples are

drawn from.) Because of this, if we are willing to redefine A to include only realizable left-hand

sides, |A| can be replaced in the bound by |A |, where A = {a ∈ A : Pz(a ⊆ x)> 0} are the itemsets

that have some probability of being chosen.

4.3 Notation for Algorithmic Stability Bounds

We will now introduce the notation that will be used for the algorithmic stability bounds, first for

classification and then for sequential event prediction.

4.3.1 NOTATION FOR CLASSIFICATION BOUNDS

Recall that we sample z = (x,y) where x ∈ 2X is a set of items and y ∈ {−1,1} is the corresponding

label. Each z is sampled randomly (iid) according to a distribution D over the space 2X ×{−1,1}.

The adjusted confidence algorithm uses the training set S of m iid baskets to compute the adjusted

confidences fS,K and find a rule that will be used to label the basket. We use z = (x,y) to refer to a

general labeled basket, and zi = (xi,yi) to refer specifically to the ith labeled basket in the training

set. We define a highest-scoring-correct rule for x as a rule with the highest adjusted confidence

that predicts the correct label y. The left-hand side of a highest-scoring-correct rule obeys:

a+SxK ∈ argmax
a⊆x,a∈A

fS,K(a,y) = argmax
a⊆x,a∈A

#(a∪ y)

#a+K
,

where K ≥ 0. If more than one rule is tied for the maximum adjusted confidence, one can now be

chosen randomly. If the true label y is not found in the training set, then the confidence of all rules

with y on the right-hand side will be 0, and we take ∅ → y as the maximizing rule. We define a

highest-scoring incorrect rule for x as a rule with the highest adjusted confidence that predicts the

incorrect label −y, so the left-hand side obeys:

a-
SxK ∈ argmax

a⊆x,a∈A
fS,K(a,−y) = argmax

a⊆x,a∈A

#(a∪−y)

#a+K
.
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Again, if the label −y is not found in the training set, we take ∅ → −y as the maximizing rule.

Otherwise, ties are broken randomly.

A misclassification error is made for labeled basket z when the highest-scoring-correct rule,

a+SxK → y, has a lower adjusted confidence than the highest-scoring incorrect rule a-
SxK → −y. As

discussed earlier, we will measure this difference in adjusted confidence values with respect to a

reference Kr in order to allow comparisons with different values of K. We will take Kr ≥ 0. This

leads to the definition of the 0-1 loss for classification:

ℓclass
0−1,Kr

( fS,K ,z) :=

{

1 if fS,Kr
(a+SxK ,y)− fS,Kr

(a-
SxK ,−y)≤ 0

0 otherwise.

The term fS,Kr
(a+SxK ,y)− fS,Kr

(a-
SxK ,−y) is the “margin” of example z (that is, the gap in score

between the predictions for the two classes, see also Shen and Wang, 2007).

We will now define the true error which, when K =Kr, is a specific case of TrueErrClass defined

in (4). (The function g is chosen using the data set, and it is fS,K .) The true error is an expectation

of a loss function with respect to D , and is a random variable since the training set S is random,

S ∼ Dm.

TrueErrClass( fS,K ,Kr) := Ez∼Dℓclass
0−1,Kr

( fS,K ,z).

We approximate the true error using a different loss ℓclass
γ,Kr

that is a continuous upper bound on the

0-1 loss ℓclass
0−1,Kr

. It is defined with respect to Kr and another real-valued parameter γ > 0 as follows:

ℓclass
γ,Kr

( fS,K ,z) := cγ( fS,Kr
(a+SxK ,y)− fS,Kr

(a-
SxK ,−y)),

where cγ : R→ [0,1],

cγ(y) =







1 for y ≤ 0

1− y/γ for 0 ≤ y ≤ γ

0 for y ≥ γ.

As γ approaches 0, loss cγ approaches the standard 0-1 loss. Also, ℓclass
0−1,Kr

( fS,K ,z) ≤ ℓclass
γ,Kr

( fS,K ,z).
We define TrueErrClassγ using this loss:

TrueErrClassγ( fS,K ,Kr) = Ez∼Dℓclass
γ,Kr

( fS,K ,z),

where TrueErrClass ≤ TrueErrClassγ. The generalization bounds for classification will bound

TrueErrClass by considering the difference between TrueErrClassγ and its empirical counterpart

that we will soon define. For training basket xi, the left-hand side of a highest-scoring-correct rule

obeys:

a+SxiK
∈ argmax

a⊆xi,a∈A
fS,K(a,yi),

and the left-hand side of a highest-scoring-incorrect rule obeys:

a-
SxiK

∈ argmax
a⊆xi,a∈A

fS,K(a,−yi).

The empirical error is an average of the loss over the baskets:

EmpErrClassγ( fS,K ,Kr) :=
1

m

m

∑
i=1

ℓclass
γ,Kr

( fS,K ,zi).
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For the max confidence, min support algorithm, we substitute θ where K appears in the notation.

For instance, for general labeled basket z = (x,y), we analogously define:

a+Sxθ ∈ argmax
a⊆x,a∈A

f̄S,θ(a,y),

a-
Sxθ ∈ argmax

a⊆x,a∈A
f̄S,θ(a,−y),

ℓclass
0−1,Kr

( f̄S,θ,z) =

{

1 if fS,Kr
(a+Sxθ,y)− fS,Kr

(a-
Sxθ,−y)≤ 0

0 otherwise,

ℓclass
γ,Kr

( f̄S,θ,z) = cγ( fS,Kr
(a+Sxθ,y)− fS,Kr

(a-
Sxθ,−y)),

and TrueErrClass( f̄S,θ,Kr) and TrueErrClassγ( f̄S,θ,Kr) are defined analogously as expectations of

the losses, and EmpErrClassγ( f̄S,θ,Kr) is again an average of the loss over the training baskets.

4.3.2 NOTATION FOR SEQUENTIAL EVENT PREDICTION BOUNDS

The notation and the bounds for sequential event prediction are similar to those of classification, the

main differences being an additional index t to denote the different time steps, and a set of possible

incorrect recommendations in the place of the single incorrect label −y. As defined in Section 3,

a basket z consists of an ordered (permuted) set of items, z ∈ 2X ×Π, where 2X is the set of all

subsets of X , and Π is the set of permutations over at most |X | elements.2 We have a training set

of m baskets S = {zi}1...m that are the customer’s past orders. Denote z ∼ D to mean that basket z

is drawn randomly (iid) according to distribution D over the space of possible items in baskets and

permutations over those items, 2X ×Π. The tth item added to the basket is written z·,t , where the dot

is just a placeholder for the generic basket z. The tth element of the ith basket in the training set is

written zi,t . We define the number of items in basket z by Tz, that is, Tz := |z|.
For sequential event prediction, a highest-scoring-correct rule is a highest scoring rule that has

the next item z·,t+1 on the right. The left-hand side a+SztK of a highest-scoring-correct rule obeys:

a+SztK ∈ argmax
a⊆{z·,1,...,z·,t},a∈A

fS,K(a,z·,t+1).

If z·,t+1 has never been purchased, the adjusted confidence for all rules a→ z·,t+1 is 0, and we choose

the maximizing rule to be ∅→ z·,t+1. Also at time 0 when the basket is empty, the maximizing rule

is ∅→ z·,t+1.

The algorithm incurs an error when it recommends an incorrect item. A highest-scoring-

incorrect rule is a highest scoring rule that does not have z·,t+1 on the right. It is denoted a-
SztK →

b-
SztK , and obeys:

[a-
SztK ,b

-
SztK ] ∈ argmax

a⊆{z·,1,...,z·,t },a∈A

b∈X \{z·,1,...,z·,t+1}

fS,K(a,b).

If there is more than one highest-scoring rule, one is chosen at random (with the exception that all

incorrect rules are tied at zero adjusted confidence, in which case the left side is taken as ∅ and

the right side is chosen randomly). At time t = 0, the left side is again ∅. The adjusted confidence

algorithm determines a+SztK , a-
SztK , and b-

SztK , whereas nature chooses z·,t+1.

2. Even though we define an order for the basket for this discussion of prediction, we are still using the undirected

adjusted confidence to make recommendations rather than the directed version introduced in Section 2. The results

can be trivially extended to the directed case.
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If the adjusted confidence of the rule a-
SztK → b-

SztK is larger than that of a+SztK → z·,t+1, it means

that the algorithm recommended the wrong item. The loss function below, which is the same as

the one in Section 3 but with the algorithm built into it, again counts the proportion of times this

happens for each basket, and is defined with respect to Kr.

ℓ0−1,Kr
( fS,K ,z) :=

1

Tz

Tz−1

∑
t=0

{

1 if fS,Kr
(a+SztK ,z·,t+1)− fS,Kr

(a-
SztK ,b

-
SztK)≤ 0

0 otherwise.

The true error for sequential event prediction is an expectation of the loss:

TrueErr( fS,K ,Kr) := Ez∼Dℓ0−1,Kr
( fS,K ,z).

We create an upper bound for the true error by using a different loss ℓγ,Kr
that is a continuous

upper bound on the 0-1 loss ℓ0−1,Kr
. It is defined analogously to classification, with respect to Kr

and cγ:

ℓγ,Kr
( fS,K ,z) :=

1

Tz

Tz−1

∑
t=0

cγ( fS,Kr
(a+SztK ,z·,t+1)− fS,Kr

(a-
SztK ,b

-
SztK)).

It is true that ℓ0−1,Kr
( fS,K ,z)≤ ℓγ,Kr

( fS,K ,z). We define TrueErrγ:

TrueErrγ( fS,K ,Kr) := Ez∼Dℓγ,Kr
( fS,K ,z),

where TrueErr ≤ TrueErrγ. The first set of results for sequential event prediction below bound

TrueErr by considering the difference between TrueErrγ and its empirical counterpart that we will

soon define.

For the specific training basket zi, the left-hand side a+SzitK
of a highest-scoring-correct rule at

time t obeys :

a+SzitK
∈ argmax

a⊆{zi,1,...,zi,t},a∈A
fS,K(a,zi,t+1),

similarly, a highest-scoring-incorrect rule for zi at time t has:

[a-
SzitK

,b-
SzitK

] ∈ argmax
a⊆{zi,1,...,zi,t },a∈A

b∈X \{zi,1,...,zi,t+1}

fS,K(a,b).

The empirical error is defined as:

EmpErrγ( fS,K ,Kr) :=
1

m

m

∑
baskets i=1

ℓγ,Kr
( fS,K ,zi).

For the max confidence, min support algorithm, we again substitute θ where K appears in the

notation. For example, we define:

a+Sztθ ∈ argmax
a⊆{z·,1,...,z·,t},a∈A

f̄S,θ(a,z·,t+1),

[

a-
Sztθ,b

-
Sztθ

]

∈ argmax
a⊆{z·,1,...,z·,t },a∈A

b∈X \{z·,1,...,z·,t+1}

f̄S,θ(a,b),

ℓ0−1,Kr
( f̄S,θ,z) :=

1

Tz

Tz−1

∑
t=0

{

1 if fS,Kr
(a+Sztθ,z·,t+1)− fS,Kr

(a-
Sztθ,b

-
Sztθ)≤ 0

0 otherwise,

ℓγ,Kr
( f̄S,θ,z) :=

1

Tz

Tz−1

∑
t=0

cγ( fS,Kr
(a+Sztθ,z·,t+1)− fS,Kr

(a-
Sztθ,b

-
Sztθ)).
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TrueErr( f̄S,θ,Kr) and TrueErrγ( f̄S,θ,Kr) are expectations of the losses, and EmpErrγ( f̄S,θ,Kr) is an

average of the loss over the training baskets.

4.4 General Stability Bound for Sequential Event Prediction with Rule-Based Loss

This section contains a stability bound for sequential event prediction, by analogy with Theorem 17

of Bousquet and Elisseeff (2002), using the loss we just defined, which involves rules. We need to

define what is meant by a rule-based sequential event prediction algorithm. To keep this definition

general, we define an algorithm Alg to take as input a data set S, basket z, and item b∗ (where

b∗ is the desired output for basket z), and have the algorithm output: (i) the left hand side of the

algorithm’s chosen rule to predict b∗, which we call a+S,z,b∗,Alg, (ii) the algorithm’s chosen rule that

predicts an item other than b∗, which is called a−S,z,b∗,Alg → b−S,z,b∗,Alg.

We define Alg : S,z,b∗ 7→ a+S,z,b∗,Alg,a
−
S,z,b∗,Alg,b

−
S,z,b∗,Alg to have uniform rule stability β for se-

quential event prediction with respect to Kr if:

∀S,∀z,∀b∗, we have | fS,Kr
(a+S,z,b∗,Alg,b

∗)− fS,Kr
(a+

S/i,z,b∗,Alg
,b∗)| ≤ β and

| fS,Kr
(a−S,z,b∗,Alg,b

−
S,z,b∗,Alg)− fS,Kr

(a−
S/i,z,b∗,Alg

,b−
S/i,z,b∗,Alg

)| ≤ β.

That is, the algorithm is stable whenever (i) the adjusted confidence of the rules used to predict

both b∗ is not affected much by the removal of one training example, and (ii) when the adjusted

confidence of the rule to predict something other than b∗ is not affected much by the removal of one

training example. We can then show:

Lemma 5 A rule-based sequential event prediction algorithm with uniform rule stability β has

uniform stability 2β/γ with respect to the loss function ℓγ,Kr
.

Proof
∣

∣

∣
ℓγ,Kr

(Alg(S, ·, ·),z)− ℓγ,Kr

(

Alg(S/i, ·, ·),z
)∣

∣

∣

=

∣

∣

∣

∣

∣

1

Tz

Tz−1

∑
t=0

cγ

(

fS,Kr
(a+S,z·,1...z·,t ,z·,t+1,Alg,z·,t+1)

− fS,Kr
(a−S,z·,1...z·,t ,z·,t+1,Alg,b

−
S,z·,1...z·,t ,z·,t+1,Alg)

)

−cγ

(

fS,Kr
(a+

S/i,z·,1...z·,t ,z·,t+1,Alg
,z·,t+1)

− fS,Kr
(a−

S/i,z·,1...z·,t ,z·,t+1,Alg
,b−

S/i,z·,1...z·,t ,z·,t+1,Alg
)
)∣

∣

∣

≤
1

Tz,γ

Tz−1

∑
t=0

∣

∣

∣
fS,Kr

(a+S,z·,1...z·,t ,z·,t+1,Alg,z·,t+1)

− fS,Kr
(a−

S/i,z·,1...z·,t ,z·,t+1,Alg
,z·,t+1)

∣

∣

∣

+
∣

∣

∣
fS,Kr

(a−S,z·,1...z·,t ,z·,t+1,Alg,b
−
S,z·,1...z·,t ,z·,t+1,Alg)

− fS,Kr
(a−

S/i,z·,1...z·,t ,z·,t+1,Alg
,b−

S/i,z·,1...z·,t ,z·,t+1,Alg
)
∣

∣

∣

≤
1

γ
2β.
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In the first inequality, we used the Lipschitz property of the loss, and properties of absolute values.

In the second inequality, we used the definition of uniform rule stability for both absolute value

terms with b∗ being z·,t+1, and basket z being z·,1...z·,t .

Adapting the definitions in the previous subsection to Alg (rather than fS), the following theorem

is analogous to Theorem 17 in B&E, for the rule-based loss ℓγ,Kr
for sequential event prediction. The

proof is an application of Theorem 12 of B&E to the rule-based sequential event prediction loss,

combined with Lemma 5.

Theorem 6 Let Alg be a sequential event prediction algorithm with uniform rule stability β for

sequential event stability. Then for all γ > 0 and any m ≥ 1 and any δ ∈ (0,1) with probability at

least 1−δ over the random draw of sample S,

TrueErr(Alg,Kr)≤ EmpErrγ(Alg,Kr)+
4β

γ
+

(

8m
β

γ
+1

)

√

ln(1/δ)

2m

and with probability at least 1−δ over the random draw of sample S,

TrueErr(Alg,Kr)≤ LooErrγ(Alg,Kr)+
4β

γ
+

(

8m
β

γ
+1

)

√

ln(1/δ)

2m
.

We now focus our attention back to the rule-based algorithms from Section 2, and derive a variety

of bounds for these algorithms.

4.5 Generalization Analysis for Large m

The choice of minimum support threshold θ or the choice of parameter K matters mainly in the

regime where m is small. For the max confidence, min support algorithm, when m is large, then

all (realizable) itemsets have appeared more times than the minimum support threshold with high

probability. For the adjusted confidence algorithm, when m is large, prediction ability is guaranteed

as follows.

Theorem 7 (Generalization Bound for Adjusted Confidence Algorithm, Large m)

For set of rules A, K ≥ 0, Kr ≥ 0, with probability at least 1−δ (with respect to training set S ∼Dm),

TrueErr( fS,K ,Kr)≤ EmpErrγ( fS,K ,Kr)+

√

1

δ

[

1

2m
+6β

]

where β =
2|A |

γ

[

1

(m−1)pminA +K
+

|Kr −K| m
m+K

(m−1)pminA +Kr

]

+O

(

1

m2

)

,

and where A = {a ∈ A : Pz(a ⊆ z)> 0} are the itemsets that have some probability of being chosen.

Out of these, any itemset that is the least likely to be chosen has probability pminA:

pminA := min
a∈A

Pz∼D(a ⊆ z).
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As a corollary, the same result holds for classification, replacing TrueErr( fS,K ,Kr) with

TrueErrClass( fS,K ,Kr) and EmpErrγ( fS,K ,Kr) with EmpErrClassγ( fS,K ,Kr).

A special case is where Kr = K = 0: the algorithm chooses the rule with maximum confidence,

and accuracy is then judged by the difference in confidence values between the highest-scoring-

incorrect rule and the highest-scoring-correct rule. The bound reduces to:

Corollary 8 (Generalization Bound for Maximum Confidence Setting, Large m)

With probability at least 1−δ (with respect to S ∼ Dm),

TrueErr( fS,0,0)≤ EmpErrγ( fS,0,0)+

√

1

δ

[

1

2m
+

12|A |

γ(m−1)pminA

]

+O

(

1

m2

)

.

Again the result holds for classification with appropriate substitutions. The use of the pointwise

hypothesis stability within this proof is the key to providing a decay of order
√

(1/m). Now that

this bound is established, we move to the small sample case, where the minimum support is the

force that provides generalization.

4.6 Generalization Analysis for Small m

The first small sample result is a general bound for the max confidence, min support algorithm,

which holds for both classification and sequential event prediction. The max confidence, min sup-

port algorithm has uniform stability, which is a stronger kind of stability than pointwise hypothesis

stability. This result strengthens the one in the conference version of this work (Rudin et al., 2011),

where we used the bound for pointwise hypothesis stability; uniform stability implies pointwise

hypothesis stability, so the result in the conference version follows automatically.

Theorem 9 (Generalization Bound for Max Confidence, Min Support)

For θ ≥ 1, Kr ≥ 0, with probability at least 1−δ (with respect to S ∼ Dm), m > θ,

TrueErr( f̄S,θ,Kr)≤ EmpErrγ( f̄S,θ,Kr)+2β+(4mβ+1)

√

ln1/δ

2m

where β =
2

γ

[

1

θ
+Kr

(

1

θ+Kr

)(

1+
1

θ

)]

.

Note that |A| does not appear in the bound. For classification, TrueErr( f̄S,θ,Kr) is replaced by

TrueErrClass( f̄S,θ,Kr) and EmpErrγ( f̄S,θ,Kr) is replaced by EmpErrClassγ( f̄S,θ,Kr). Figure 2 shows

β as a function of θ for several different values of Kr. The special case of interest is when Kr = 0,

so that the loss is judged with respect to differences in confidence, as follows:

Corollary 10 (Generalization Bound for Max Confidence, Min Support, Kr = 0)

For θ ≥ 1, with probability at least 1−δ (with respect to S ∼ Dm), m > θ,

TrueErr( f̄S,θ,0)≤ EmpErrγ( f̄S,θ,0)+
4

γθ
+

(

8m

γθ
+1

)

√

ln1/δ

2m
.
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Figure 2: β vs. θ from Theorem 9, with γ = 1. The different curves are different values of Kr = 0,

1, 5, 10, 50 from bottom to top.

It is common to use a minimum support threshold that is a fraction of m, for instance, θ =
0.1×m. In that case, the bound again scales with

√

(1/m). Note that there is no generalization

guarantee when θ = 0; the minimum support threshold enables generalization in the small m case.

Now we discuss the adjusted confidence algorithm for small m setting. We present separate

small sample bounds for classification and sequential event prediction.

Theorem 11 (Generalization Bound for Adjusted Confidence Algorithm, Small m, For Classifica-

tion Only) For K > 0,Kr ≥ 0, with probability at least 1−δ,

TrueErrClass( fS,K ,Kr)≤ EmpErrClassγ( fS,K ,Kr)+

√

1

δ

[

1

2m
+6β

]

where

β =
2

γ

1

K

(

1−
(m−1)py,min

m+K

)

+
2

γ
|Kr −K|Eζ∼Bin(m−1,py,min)





1

K
(

ζ
m+K−ζ

)

+Kr

(

m

m+K
+

1

K

(

1−
ζ

m+K

))



 ,

where py,min = min(P(y = 1),P(y =−1)) is the probability of the less popular label.

Again, |A| does not appear in the bound, and generalization is provided by K, and the difference

between K and Kr; the interpretation will be further discussed after we state the small sample bound

for sequential event prediction.

In the proof of the following theorem, if we were to use the definitions established in Section

4.3.2, the bound does not simplify beyond a certain point and is difficult to read at an intuitive level.

From that bound, it would not be easy to see what are the important quantities for the learning

process, and how they scale. In what follows, we redefine the loss function slightly, so that it

approximates a 0-1 loss from below instead of from above. This provides a concise and intuitive

bound.
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Define a highest-scoring rule a∗SztK → b∗SztK as a rule that achieves the maximum adjusted con-

fidence, over all of the possible rules. It will either be equal to a+SztK → z·,t+1 or a-
SztK → b-

SztK ,

depending on which has the larger adjusted confidence:

[a∗SztK ,b
∗
SztK ] ∈ argmax

a⊆{z·,1,...,z·,t },a∈A

b∈X \{z·,1,...,z·,t }

fS,K(a,b).

Note that b∗SztK can be equal to z·,t+1 whereas b-
SztK cannot. The notation for a∗SzitK

and b∗SzitK
is

similar, and the new loss is:

ℓnew
0−1,Kr

( fS,K ,z) :=
1

Tz

Tz−1

∑
t=0

{

1 if fS,Kr
(a+SztK ,z·,t+1)− fS,Kr

(a∗SztK ,b
∗
SztK)< 0

0 otherwise.

By definition, the difference fS,Kr
(a+SztK ,z·,t+1)− fS,Kr

(a∗SztK ,b
∗
SztK) can never be strictly positive.

The continuous approximation is:

ℓnew
γ,Kr

( fS,K ,z) :=
1

Tz

Tz−1

∑
t=0

cnew
γ ( fS,Kr

(a+SztK ,z·,t+1)− fS,Kr
(a∗SztK ,b

∗
SztK)), where

cnew
γ (y) =







1 for y ≤−γ

−y/γ for −γ ≤ y ≤ 0

0 for y ≥ 0.

As γ approaches 0, the cγ loss approaches the 0-1 loss. We define TrueErrnew
γ and EmpErrnew

γ using

this loss: TrueErrnew
γ ( fS,K ,Kr) :=Ez∼Dℓnew

γ,Kr
( fS,K ,z), and EmpErrnew

γ ( fS,K ,Kr) := 1
m ∑m

i=1 ℓ
new
γ,Kr

( fS,K ,zi).
The minimum support threshold condition we used in Theorem 9 is replaced by a weaker condi-

tion on the support. This weaker condition has the benefit of allowing more rules to be used in order

to achieve a better empirical error; however, it is more difficult to get a generalization guarantee.

This support condition is derived from the fact that the adjusted confidence of the highest-scoring

rule a∗SzitK
→ b∗SzitK

exceeds that of the highest-scoring-correct rule a+SzitK
→ zi,t+1, which exceeds

that of the marginal rule ∅→ zi,t+1:

#a∗SzitK

#a∗SzitK
+K

≥
#(a∗SzitK

∪b∗SzitK
)

#a∗SzitK
+K

≥
#(a+SzitK

∪ zi,t+1)

#a+SzitK
+K

≥
#zi,t+1

m+K
. (5)

This leads to a lower bound on the support #a∗SzitK
:

#a∗SzitK
≥ K

(

#zi,t+1

m+K −#zi,t+1

)

. (6)

This is not a hard minimum support threshold, yet since the support generally increases as K in-

creases, the bound will give a better guarantee for large K. Note that in the original notation, we

would replace the condition (5) with
#a-

SzitK

#a-
SzitK

+K
≥

#(a-
SzitK

∪b-
SzitK

)

#a-
SzitK

+K
≥

#b-
SzitK

m+K
and proceed with analogous

steps in the proof.

Theorem 12 (Generalization Bound for Adjusted Confidence Algorithm, Small m) For K > 0,Kr ≥
0, with probability at least 1−δ,

TrueErrnew
γ ( fS,K ,Kr)≤ EmpErrnew

γ ( fS,K ,Kr)+

√

1

δ

[

1

2m
+6β

]

where
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Figure 3: β and βApprox vs. K, where Kr = 10, pmin = 0.3, m = 20, γ = 1.

β =
2

γ

1

K

(

1−
(m−1)pmin

m+K

)

+
2

γ
|Kr −K|Eζ∼Bin(m−1,pmin)

1

K
(

ζ
m+K−ζ−1

)

+Kr

(

m

m+K
+

1

K

(

1−
ζ

m+K

))

,

and where Q = {x ∈ X : Pz∼D(x ∈ z)> 0} are the items that have some probability of being chosen

by the customer. Out of these, any item that is the least likely to be chosen has probability pmin :=
minx∈Q Pz∼D(x ∈ z).

The stability β has two main terms. The first term decreases generally as 1/K. The second term

arises from the error in measuring loss with Kr rather than K. In order to interpret β, consider the

following approximation to the expectation in the bound, which assumes that m is large and that

m ≫ K ≫ 0, and that ζ ≈ mpmin:

β ≈
2

γ

1

K

(

1−
(m−1)pmin

m+K

)

+
2

γ
|Kr −K|

1

K
pmin

1−pmin
+Kr

. (7)

Intuitively, if either K is close to Kr or pmin is large (close to 1) then this term becomes small. Figure

3 shows an example plot of β and the approximation using (7), which we denote by βApprox.

One can observe that if Kr > K, then both terms tend to improve (decrease) with increasing K.

When Kr < K, then the two terms can compete as K increases.

4.7 Summary of Bounds

We have provided probabilistic guarantees on performance that show the following: 1) For large

m, the association rule-based algorithms have a performance guarantee of the same order as other

bounds for supervised learning. 2) For small m, the minimum support threshold guarantees general-

ization (at the expense of possibly removing important rules). 3) The adjusted confidence provides

a weaker support threshold, allowing important rules to be used, while still being able to generalize.

4) All generalization guarantees depend on the way the goodness of the algorithm is measured (the

choice of Kr in the loss function). 5) Important quantities in the learning process may include: |A|
or |A |, K or θ, pminA or pmin (or py,min).
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5. Proofs

In this section, we prove all results from Section 4.

Proof (Of Theorem 3) First we show that h ≤ |A|. To do this, we must show that for any collection

of baskets x1, . . . ,xN , N > |A|, there exists a corresponding set of labels y1, . . . ,yN that cannot be

realized by any max-score association rule classifier. For each xi, we introduce a vector x̄i of length

|A|, where each element corresponds to an a ∈ A. The element of x̄i corresponding to a is 1 if a ⊆ xi

and 0 otherwise. Each vector x̄i is an element of R
|A|, so the collection of vectors x̄1, . . . , x̄N must

be linearly dependent if N > |A|. By linear dependence and the fact that every x̄i is non-zero and

non-negative, there must exist coefficients ci and disjoint, non-empty sets M0 and M1 such that:

∑
i∈M0

cix̄i = ∑
i∈M1

cix̄i, ci > 0. (8)

Define A0 = {a ∈ A : a ⊆ xi for some i ∈ M0} and A1 = {a ∈ A : a ⊆ xi for some i ∈ M1}. If a ⊆ xi

for some i ∈ M0, then the corresponding element of x̄i will be 1 and the same element in the left

part of (8) will be strictly positive. Then, (8) implies that a ⊆ x j for some j ∈ M1. Thus, A0 ⊆ A1,

and the reverse argument shows A1 ⊆ A0, so A0 = A1. There exists a left-hand side with maximum

score, a∗ = argmaxa∈A0
maxy∈{−1,1} g(a,y) = argmaxa∈A1

maxy∈{−1,1} g(a,y). The label assigned to

xi, where i is in M0 or M1 and xi contains itemset a∗, is y∗ = argmaxy∈{−1,1} g(a∗,y). Thus for at

least one i ∈ M0 and at least one j ∈ M1, fg(xi) = y∗ = fg(x j). Set yi =−1 for all i ∈ M0 and yi = 1

for all i ∈ M1 and this set of labels cannot be realized, which shows that h ≤ |A|.

We now show that this upper bound can be achieved by providing a set of |A| baskets and find-

ing elements of Fmaxscore that can assign them arbitrary labels. Specifically, we list the elements of

A as a1, . . . ,a|A| and take xi = ai, for i = 1, . . . , |A|. Thus each basket is one of the left-hand sides

from the allowed set. The elements of A are not all the same size, and some elements of A may

contain other elements; this could cause problems when we are constructing a max-score classifier

that uniquely assigns a given label to each basket. To get around this, we will place the elements

of A in order of increasing size. The possible sizes of elements of A are denoted l1, . . . , lL, so that

l1 < l2 < .. . < lL. We arrange the elements of A into sets based on their sizes: Sk = {i : |ai| = lk},

k = 1,2, . . . ,L. We are now ready to construct a classifier fg so that, given an arbitrary set of labels

{yi}i, it can label the xi’s according to the yi’s. For all i ∈ S1, we set g(ai,yi) = c1, any positive

number, and g(ai,−yi) = 0. Thus, for the corresponding xi, fg(xi) = yi. Similarly, for all i ∈ S2, we

set g(ai,yi) = c2, c2 > c1, and g(ai,−yi) = 0. For any i ∈ S2, it may be that there exists some j ∈ S1

such that a j ⊂ xi. However, because c2 > c1, the rule with the maximum score will be “ai → yi” and

xi is labeled as desired. In general, for any i ∈ Sk, we set g(ai,yi) = ck, where ck−1 < ck < ck+1 and

g(ai,−yi) = 0 to get fg(xi) = yi. Because this set of |A| examples can be arbitrarily labeled using el-

ements of Fmaxscore, we have h ≥ |A|, which combined with the previous result shows that h = |A|.

The remaining theorems are based on the algorithmic stability bounds of Bousquet and Elisseeff

(2002) (B&E). Many of the proofs that we provide for classification are essentially identical to those

for sequential event prediction. In these cases, the proofs are given for sequential event prediction,

and afterwards the translation to classification is outlined. The proofs follow this outline: first,

we show how differences in adjusted confidence values with respect to Kr can be translated into

differences with respect to K (Lemma 15). Then we bound the difference in adjusted confidence

values (Lemma 16) in terms of the support. Various lower bounds on the support are used to obtain
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stability for each of the separate cases: large m (Theorem 7), small m for the max confidence, min

support algorithm (Theorem 9, which uses uniform stability), small m for classification with the

adjusted confidence algorithm (Theorem 11), and small m for sequential event prediction with the

adjusted confidence algorithm (Theorem 12).

Following notation of Bousquet and Elisseeff (2002), the input space and output space are X and

Y . Their training set is S ∈ Z̄m, S = {z̄1 = (x1,y1), . . . , z̄m = (xm,ym)}. An algorithm is a function

A from Z̄m into F ⊂ Y X which maps a learning set S onto a function AS from X to Y . The loss is

ℓ( f , z̄)= c( f (x),y), where c :Y ×Y →R+. S/i means to exclude the ith example z̄i. B&E assume that

Y ⊂ R but we believe this assumption is unnecessary. In any case, Y is empty for sequential event

prediction. An algorithm A has pointwise hypothesis stability β with respect to the loss function ℓ if

the following holds:

∀ i ∈ {1, . . . ,m}, ES∼Dm [|ℓ(AS, z̄i)− ℓ(AS/i, z̄i)|]≤ β.

An algorithm A has uniform stability β with respect to the loss function ℓ if the following holds:

∀ S ∈ Z̄m,∀ i ∈ {1, . . . ,m}, ||ℓ(AS, ·)− ℓ(AS/i, ·)||∞ ≤ β.

The empirical error is defined by:

Remp(A,S) :=
1

m

m

∑
i=1

ℓ(AS, z̄i)

and the true error is:

R(A,S) := Ez̄[ℓ(AS, z̄)].

We will use the following results that are based on ideas of Devroye and Wagner (1979).

Theorem 13 (B&E Pointwise Hypothesis Stability Bound)(Bousquet and Elisseeff, 2002, Theorem

11, first part)

For any learning algorithm A with pointwise hypothesis stability β with respect to a loss function ℓ,
such that the value of ℓ is at most M, we have with probability 1−δ,

R(A,S)≤ Remp(A,S)+

√

M2 +12Mmβ

2mδ
.

Theorem 14 (B&E Uniform Stability Bound)(Bousquet and Elisseeff, 2002, Theorem 12, first part)

For any learning algorithm A with uniform stability β with respect to a loss function ℓ, such that the

value of ℓ is at most M, we have with probability 1−δ over a random draw of S,

R ≤ Remp +2β+(4mβ+M)

√

ln1/δ

2m
.

Translating B&E’s notation to the adjusted confidence setting for sequential event prediction,

z̄i = xi = zi, with zi ∈ 2X ×Π. For our problem, f (xi) is the value of the loss and the yi’s are not de-

fined. In other words, ℓ(AS, z̄i) = c( f (xi),yi) = f (xi) which in our notation is equal to ℓγ,Kr
( fS,K ,zi).

For the max confidence, min support setting, ℓ(AS, z̄i) translates to ℓγ,Kr
( f̄S,θ,zi). The adjusted con-

fidence is bounded by 1 so M = 1.

The following lemma allows us to convert differences in adjusted confidence with respect to Kr

into differences with respect to K.
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Lemma 15 (Conversion of Adjusted Confidence) For K ≥ 0, Kr ≥ 0, 0 ≤ s1 ≤ S1, 0 ≤ s2 ≤ S2

∣

∣

∣

∣

s1

S1 +Kr

−
s2

S2 +Kr

∣

∣

∣

∣

≤

∣

∣

∣

∣

s1

S1 +K
−

s2

S2 +K

∣

∣

∣

∣

(

1+
|Kr −K|

S1 +Kr

)

+

(

|Kr −K|

S̃+Kr

)(

s2

S2 +K

)

where S̃ = min(S1,S2).

Proof

∣

∣

∣

∣

s1

S1 +Kr

−
s2

S2 +Kr

∣

∣

∣

∣

=

∣

∣

∣

∣

s1

S1 +K
−

s2

S2 +K
+(−Kr +K)

[

s1

S1 +K

(

1

S1 +Kr

)

−
s2

S2 +K

(

1

S2 +Kr

)]∣

∣

∣

∣

≤

∣

∣

∣

∣

s1

S1 +K
−

s2

S2 +K

∣

∣

∣

∣

+ |Kr −K|

∣

∣

∣

∣

s1

S1 +K

(

1

S1 +Kr

)

−
s2

S2 +K

(

1

S2 +Kr

)∣

∣

∣

∣

. (9)

Taking just the second absolute value term:

∣

∣

∣

∣

s1

S1 +K

(

1

S1 +Kr

)

−
s2

S2 +K

(

1

S2 +Kr

)∣

∣

∣

∣

=

∣

∣

∣

∣

s1

S1 +K

(

1

S1 +Kr

)

−
s2

S2 +K

(

1

S1 +Kr

)

+
s2

S2 +K

(

1

S1 +Kr

)

−
s2

S2 +K

(

1

S2 +Kr

)∣

∣

∣

∣

≤

∣

∣

∣

∣

s1

S1 +K
−

s2

S2 +K

∣

∣

∣

∣

1

S1 +Kr

+
s2

S2 +K

∣

∣

∣

∣

1

S1 +Kr

−
1

S2 +Kr

∣

∣

∣

∣

≤

∣

∣

∣

∣

s1

S1 +K
−

s2

S2 +K

∣

∣

∣

∣

1

S1 +Kr

+
s2

S2 +K

∣

∣

∣

∣

1

S̃+Kr

∣

∣

∣

∣

.

Putting this back into (9) yields the statement.

The next results bound the difference in the highest adjusted confidence values when the basket

zi is removed from S. We require some additional notation in order to exclude basket i. Denote #/ia

to be the number of times a has appeared in S/i, that is, #/ia = ∑i′ 6=i1[a∈zi′ ]
. For sequential event

prediction, the left-hand side of a highest-scoring-correct rule for a general basket z on S/i obeys:

a+
S/iztK

∈ argmax
a⊆{z·,1,...,z·,t},a∈A

fS/i,K(a,z·,t+1) = argmax
a⊆{z·,1,...,z·,t},a∈A

#/i(a∪ z·,t+1)

#/ia+K
.

A highest-scoring-incorrect rule for basket z on S/i obeys:

[a-
S/iztK

,b-
S/iztK

] ∈ argmax
a⊆{z·,1,...,z·,t },a∈A

b∈X \{z·,1,...,z·,t+1}

fS/i,K(a,b) = argmax
a⊆{z·,1,...,z·,t },a∈A

b∈X \{z·,1,...,z·,t+1}

#/i(a∪b)

#/ia+K
.

In Lemma 16 below, we bound the difference in adjusted confidence of a general basket z when

zi is removed from the training set, in the sequential event prediction setting.
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Lemma 16 (Difference in Adjusted Confidence)

Define ãz := min(#a-
SztK ,#

/ia-
S/iztK

) and âz := min(#a+SztK ,#
/ia+

S/iztK
). Then,

(I) | fS,K(a
-
SztK ,b

-
SztK)− fS/i,K(a

-
S/iztK

,b-
S/iztK

)| ≤
1

ãz +K
, and

(II) | fS,K(a
+
SztK ,z·,t+1)− fS/i,K(a

+
S/iztK

,z·,t+1)| ≤
1

âz +K
.

Proof Any itemset a is either in zi or not, thus #/ia ≥ #a− 1 and #/ia ≤ #a. Also the number of

times we see a∪b is less than or equal to the number of times we see a. These observations lead to

the following inequalities that will be used throughout the proof:

#/i(a-
SztK ∪b-

SztK) ≥ #(a-
SztK ∪b-

SztK)−1, (10)

#/ia-
SztK ≤ #a-

SztK , (11)

#(a-
S/iztK

∪b-
S/iztK

) ≥ #/i(a-
S/iztK

∪b-
S/iztK

), (12)

#a-
S/iztK

≤ #/ia-
S/iztK

+1, (13)

#/i(a-
S/iztK

∪b-
S/iztK

) ≤ #/ia-
S/iztK

, (14)

#/i(a+SztK ∪ z·,t+1) ≥ #(a+SztK ∪ z·,t+1)−1, (15)

#/ia+SztK ≤ #a+SztK , (16)

#(a+
S/iztK

∪ z·,t+1) ≥ #/i(a+
S/iztK

∪ z·,t+1), (17)

#a+
S/iztK

≤ #/ia+
S/iztK

+1, (18)

#/i(a+
S/iztK

∪ z·,t+1) ≤ #/ia+
S/iztK

. (19)

To prove (I) we provide upper bounds for both fS,K(a
-
SztK ,b

-
SztK) − fS/i,K(a

-
S/iztK

,b-
S/iztK

) and

fS/i,K(a
-
S/iztK

,b-
S/iztK

)− fS,K(a
-
SztK ,b

-
SztK). Using that for basket z the adjusted confidence of the

highest-scoring-incorrect rule on S/i, a-
S/iztK

→ b-
S/iztK

, exceeds that of another incorrect rule a-
SztK →

b-
SztK , and using inequalities (10) and (11),

#/i(a-
S/iztK

∪b-
S/iztK

)

#/ia-
S/iztK

+K
≥

#/i(a-
SztK ∪b-

SztK)

#/ia-
SztK +K

≥
#(a-

SztK ∪b-
SztK)−1

#a-
SztK +K

.

Using the inequality above:

fS,K(a
-
SztK ,b

-
SztK)− fS/i,K(a

-
S/iztK

,b-
S/iztK

)

=
#(a-

SztK ∪b-
SztK)

#a-
SztK +K

−
#/i(a-

S/iztK
∪b-

S/iztK
)

#/ia-
S/iztK

+K

≤
#(a-

SztK ∪b-
SztK)

#a-
SztK +K

−
#(a-

SztK ∪b-
SztK)−1

#a-
SztK +K

=
1

#a-
SztK +K

. (20)

Considering the other direction, using that the highest-scoring-incorrect rule under S has higher

adjusted confidence than the rule a-
S/iztK

→ b-
S/iztK

and inequalities (12) and (13):

#(a-
SztK ∪b-

SztK)

#a-
SztK +K

≥
#(a-

S/iztK
∪b-

S/iztK
)

#a-
S/iztK

+K
≥

#/i(a-
S/iztK

∪b-
S/iztK

)

#/ia-
S/iztK

+1+K
.
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Using this, and inequality (14),

fS/i,K(a
-
S/iztK

,b-
S/iztK

)− fS,K(a
-
SztK ,b

-
SztK)

=
#/i(a-

S/iztK
∪b-

S/iztK
)

#/ia-
S/iztK

+K
−

#(a-
SztK ∪b-

SztK)

#a-
SztK +K

≤
#/i(a-

S/iztK
∪b-

S/iztK
)

#/ia-
S/iztK

+K
−

#/i(a-
S/iztK

∪b-
S/iztK

)

#/ia-
S/iztK

+1+K

=
#/i(a-

S/iztK
∪b-

S/iztK
)

(#/ia-
S/iztK

+K)(#/ia-
S/iztK

+1+K)

≤
#/ia-

S/iztK

(#/ia-
S/iztK

+K)(#/ia-
S/iztK

+1+K)
≤

1

#/ia-
S/iztK

+K
.

Together with (20) this proves (I). The proof of part (II) is identical, using a+SztK and a+
S/iztK

in the

place of a-
SztK and a-

S/iztK
, z·,t+1 in the place of b-

SztK and b-
S/iztK

, and inequalities (15)-(19).

The following lemma is the backbone for our stability computations. The upper bound in this

lemma depends only on the supports of the relevant rules. Recall that ãz := min(#a-
SztK ,#

/ia-
S/iztK

)

and âz := min(#a+SztK ,#
/ia+

S/iztK
).

Lemma 17 (Large Support Implies Stability)

|ℓγ,Kr
( fS,K ,z)− ℓγ,Kr

( fS/i,K ,z)|

≤
1

γ

1

Tz

Tz−1

∑
t=0

[

1

ãz +K
+ |Kr −K|

[

1

ãz +Kr

(

m

m+K
+

1

ãz +K

)]

+
1

âz +K
+ |Kr −K|

[

1

âz +Kr

(

m

m+K
+

1

âz +K

)]]

.

Proof

|ℓγ,Kr
( fS,K ,z)− ℓγ,Kr

( fS/i,K ,z)|

=

∣

∣

∣

∣

∣

1

Tz

Tz−1

∑
t=0

cγ

(

fS,Kr
(a+SztK ,z·,t+1)− fS,Kr

(a-
SztK ,b

-
SztK)

)

−cγ

(

fS/i,Kr
(a+

S/iztK
,z·,t+1)− fS/i,Kr

(a-
S/iztK

,b-
S/iztK

)
)∣

∣

∣

≤
1

γ

1

Tz

Tz−1

∑
t=0

| fS,Kr
(a+SztK ,z·,t+1)− fS,Kr

(a-
SztK ,b

-
SztK)

− fS/i,Kr
(a+

S/iztK
,z·,t+1)+ fS/i,Kr

(a-
S/iztK

,b-
S/iztK

)|

≤
1

γ

1

Tz

Tz−1

∑
t=0

| fS,Kr
(a-

SztK ,b
-
SztK)− fS/i,Kr

(a-
S/iztK

,b-
S/iztK

)|

+| fS,Kr
(a+SztK ,z·,t+1)− fS/i,Kr

(a+
S/iztK

,z·,t+1)|

=:
1

γ

1

Tz

Tz−1

∑
t=0

term1 + term2.
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The first inequality above used that cγ is 1/γ-Lipschitz. Consider an upper bound for term1 as

follows from Lemma 15:

term1 = | fS,Kr
(a-

SztK ,b
-
SztK)− fS/i,Kr

(a-
S/iztK

,b-
S/iztK

)|

≤ | fS,K(a
-
SztK ,b

-
SztK)− fS/i,K(a

-
S/iztK

,b-
S/iztK

)|

(

1+
|Kr −K|

#a-
SztK +Kr

)

+
|Kr −K|

min(#a-
SztK ,#

/ia-
S/iztK

)+Kr

#/i(a-
S/iztK

∪b-
S/iztK

)

#/ia-
S/iztK

+K

≤ | fS,K(a
-
SztK ,b

-
SztK)− fS/i,K(a

-
S/iztK

,b-
S/iztK

)|

(

1+
|Kr −K|

ãz +Kr

)

+
|Kr −K|

ãz +Kr

#/i(a-
S/iztK

∪b-
S/iztK

)

#/ia-
S/iztK

+K
.

Now incorporating Lemma 16 and that
#/i(a-

S/iztK
∪b-

S/iztK
)

#/ia-

S/iztK
+K

≤ m−1
m−1+K

≤ m
m+K

,

term1 ≤
1

ãz +K

(

1+
|Kr −K|

ãz +Kr

)

+
|Kr −K|

ãz +Kr

m

m+K

=
1

ãz +K
+ |Kr −K|

[

1

ãz +Kr

(

m

m+K
+

1

ãz +K

)]

.

The same steps can be followed exactly for term2.

The following lemma is used for the proof for the large sample bound.

Lemma 18 (Asymptotic Expectation of 1/(#a+K)) For any itemset a ∈ A and any K ≥ 0,

ES∼D

1

#a+K
≤

1

mpa +K
+O

(

1

m2

)

,

where pa is the probability that a random basket contains a, that is, pa = Pz∼D(a ⊆ z).

Since #a is binomially distributed, #a ∼ Binomial(m, pa), the proof of this lemma can be found by

directly applying Lemma 21 in Appendix C.

We now give the proof of pointwise hypothesis stability for the large sample bound. We are in-

terested in the change in adjusted confidence of specific basket zi when that same basket is removed

from the training set, that is on S/i. Because Lemma 17 holds for any z, it also holds for zi, where

ãzi
:= min(#a-

SzitK
,#/ia-

S/izitK
) and âzi

:= min(#a+SzitK
,#/ia+

S/izitK
).

Proof (Of Theorem 7) First, note that:

1

ãzi
+Kr

=
1

min(#a-
SzitK

,#/ia-
S/izitK

)+Kr

≤
1

min(#/ia-
SzitK

,#/ia-
S/izitK

)+Kr

≤ ∑
a∈A

1

#/ia+Kr

.
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By the same reasoning, similar upper bounds hold for 1/(ãzi
+K), 1/(âzi

+Kr), and 1/(âzi
+K).

Starting from Lemma 17 using specific basket zi and incorporating these bounds on each fraction,

|ℓγ,Kr
( fS,K ,zi)− ℓγ,Kr

( fS/i,K ,zi)|

≤
2

γ

1

Tzi

Tzi
−1

∑
t=0

[

∑
a∈A

1

#/ia+K
+ |Kr −K|

[(

∑
a∈A

1

#/ia+Kr

)(

m

m+K
+ ∑

a∈A

1

#/ia+K

)]]

. (21)

We have also that for any Kr, using that pminA ≤ pa for all a ∈ A , and Lemma 18:

ES/i∼Dm−1 ∑
a∈A

1

#/ia+Kr

≤
|A |

(m−1)pminA +Kr

+O

(

1

m2

)

. (22)

Thus from (21) and (22), for any 1 ≤ i ≤ m,

ES∼Dm |ℓγ,Kr
( fS,K ,zi)− ℓγ,Kr

( fS/i,K ,zi)|

≤
2

γ
Ezi∼D

1

Tzi

Tzi
−1

∑
t=0

ES/i∼Dm−1

[

∑
a∈A

1

#/ia+K

+ |Kr −K|

[(

∑
a∈A

1

#/ia+Kr

)(

m

m+K
+ ∑

a∈A

1

#/ia+K

)]]

≤
2

γ
Ezi∼D

1

Tzi

Tzi
−1

∑
t=0

|A |

(m−1)pminA +K
+O

(

1

m2

)

+|Kr −K|

[(

|A |

(m−1)pminA +Kr

)(

m

m+K

)

+O

(

1

m2

)]

=
2

γ

|A |

(m−1)pminA +K
+ |Kr −K|

2

γ

(

|A |

(m−1)pminA +Kr

)(

m

m+K

)

+O

(

1

m2

)

=: β,

where in the second inequality, we moved the (∑a∈A 1/(#/ia+Kr))(∑a∈A 1/(#/ia+K)) terms into

the O
(

1
m2

)

. To see this, one can take a Taylor expansion around the mean for all of the terms similar

to 1
#a+K

as follows:

1

#a+K
≈

1

mpa +K
−

(#a−mpa)

(mpa +K)2
+

(#a−mpa)
2

(mpa +K)3
+ . . . .

When these terms are multiplied together, the result is always O
(

1
m2

)

. Thus, the algorithm has

pointwise hypothesis stability β. Using β within the B&E theorem yields the result.

Proof (Of Theorem 9)

Starting from Lemma 17, we will use the minimum support threshold to provide the upper bound

for the reciprocal of the support of rules. All of the steps used to derive Lemma 17 are valid

for the max confidence, min support setting, only the notation needs to be changed. We define

ãz,θ := min(#a-
Sztθ,#

/ia-
S/iztθ

), and now define also âz,θ := min(#a+Sztθ,#
/ia+

S/iztθ
). Lemma 17 provides

for f̄S,θ and using K = 0:

|ℓγ,Kr
( f̄S,θ,z)− ℓγ,Kr

( f̄S/i,θ,z)|

≤
1

γ

1

Tz

Tz−1

∑
t=0

[

1

ãz,θ
+Kr

[

1

ãz,θ +Kr

(

1+
1

ãz,θ

)]

+
1

âz,θ
+Kr

[

1

âz,θ +Kr

(

1+
1

âz,θ

)]]

.
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The requirement of a minimum support threshold ensures that for any particular item b, the highest

scoring rule with b on the right must have support at least θ, that is: argmax
a⊆{z·,1,...,z·,t},a∈A

f̄S,θ(a,b)

includes only itemsets with support at least θ. If b has never been ordered, maxa f̄S,θ(a,b) = 0 and

we choose the maximizing rule to be ∅ → b, with support m > m− 1 ≥ θ. By this reasoning, all

of the rules we use have support at least θ: #a-
Sztθ ≥ θ, #/ia-

S/iztθ
≥ θ, #a+Sztθ ≥ θ, and #/ia+

S/iztθ
≥ θ.

Thus, ãz,θ ≥ θ and also âz,θ ≥ θ. Using this in the previous expression:

|ℓγ,Kr
( f̄S,θ,z)− ℓγ,Kr

( f̄S/i,θ,z)|

≤
2

γ

1

Tz

Tz−1

∑
t=0

[

1

θ
+Kr

[(

1

θ+Kr

)(

1+
1

θ

)]]

=
2

γ

[

1

θ
+Kr

(

1

θ+Kr

)(

1+
1

θ

)]

=: β.

This expression holds for all S and for all z. It is thus an upper bound on the uniform stability. Using

β within the B&E theorem yields the result.

The proofs of Theorems 7 and 9 for classification are essentially identical to those provided

above for sequential event prediction. The left-hand side of a highest-scoring-correct rule for general

basket x on S/i obeys:

a+
S/ixK

∈ argmax
a⊆x,a∈A

fS/i,K(a,y) = argmax
a⊆x,a∈A

#/i(a∪ y)

#/ia+K
.

And the left-hand side of a highest-scoring-incorrect rule for x on S/i obeys:

a-
S/ixK

∈ argmax
a⊆x,a∈A

fS/i,K(a,−y) = argmax
a⊆x,a∈A

#/i(a∪−y)

#/ia+K
.

We further define ãx = min(#a-
SxK ,#

/ia-
S/ixK

) and âx := min(#a+SxK ,#
/ia+

S/ixK
), and ãxi

and âxi
as the

analogous quantities for specific basket xi. Lemma 16, Lemma 17, and the proof of Theorem 7 all

hold for classification by making the following substitutions in notation: ãx and ãxi
for ãz and ãzi

;

âx and âxi
for âz and âzi

; a-
SxK and −y for a-

SztK and b-
SztK ; a+SxK and y for a+SztK and z·,t+1; a-

S/ixK

and −y for a-
S/iztK

and b-
S/iztK

; a+
S/ixK

for a+
S/iztK

; ℓclass
γ,Kr

for ℓγ,Kr
; and removing entirely 1

Tz
∑

Tz−1
t=0 . For

Theorem 9, we again replace K with θ in the notation to define ãx,θ = min(#a-
Sxθ,#

/ia-
S/ixθ

) and

âx,θ := min(#a+Sxθ,#
/ia+

S/ixθ
), and then substitute ãx,θ and âx,θ for ãz,θ and âz,θ in the proof of the

theorem.

The next lemma is specific to classification and is used for the small sample bound for the

adjusted confidence algorithm.
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Lemma 19 (Support Thresholds for Adjusted Confidence, Classification)

For specific basket xi, it is true that:

1

ãxi
+Kr

≤ α̃Kr
, where α̃Kr

=
m+K −#/i(−yi)

K(#/i(−yi))+Kr(m+K −#/i(−yi))
;

1

ãxi
+K

≤ α̃K , where α̃K =
1

K

(

1−
#/i(−yi)

m+K

)

;

1

âxi
+Kr

≤ α̂Kr
, where α̂Kr

=
m+K −#/iyi

K(#/iyi)+Kr(m+K −#/iyi)
; and,

1

âxi
+K

≤ α̂K , where α̂K =
1

K

(

1−
#/iyi

m+K

)

.

Proof First we use the fact that on S, the adjusted confidence of the highest-scoring-incorrect rule

for xi, a-
SxiK

→−yi, exceeds that of the rule ∅→−yi:

#a-
SxiK

#a-
SxiK

+K
≥

#(a-
SxiK

∪−yi)

#a-
SxiK

+K
≥

#(−yi)

m+K
=

#/i(−yi)

m+K
,

where in the last step we used that basket xi does not have label −yi. Rearranging,

#a-
SxiK

≥ σ̃ where σ̃ := K

(

#/i(−yi)

m+K −#/i(−yi)

)

.

Similarly, the adjusted confidence of the highest-scoring-incorrect rule for xi with data set S/i,

a-
S/ixiK

→−yi, exceeds that of the rule ∅→−yi, thus:

#/ia-
S/ixiK

#/ia-
S/ixiK

+K
≥

#/i(a-
S/ixiK

∪−yi)

#/ia-
S/ixiK

+K
≥

#/i(−yi)

m−1+K
≥

#/i(−yi)

m+K
.

Rearranging, we find that #/ia-
S/ixiK

≥ σ̃. Thus, ãxi
= min(#a-

SxiK
,#/ia-

S/ixiK
) ≥ σ̃. We can derive a

similar bound for âxi
, beginning with #a+SxiK

:

#a+SxiK

#a+SxiK
+K

≥
#(a+SxiK

∪ yi)

#a+SxiK
+K

≥
#yi

m+K
=

#/iyi +1

m+K
>

#/iyi

m+K
.

The first equality uses that basket xi has label yi. Rearranging,

#a+SxiK
> σ̂ where σ̂ := K

(

#/iyi

m+K −#/iyi

)

.

Similarly for #/ia+
S/ixiK

:

#/ia+
S/ixiK

#/ia+
S/ixiK

+K
≥

#/i(a+
S/ixiK

∪ yi)

#/ia+
S/ixiK

+K
≥

#/iyi

m−1+K
≥

#/iyi

m+K
.
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Rearranging, we find #/ia-
S/ixiK

≥ σ̂. Thus âxi
= min(#a+SxiK

,#/ia+
S/ixiK

)≥ σ̂. These lower bounds on

the supports are now used to create upper bounds for the reciprocals:

1

ãxi
+Kr

≤
1

σ̃+Kr

= α̃Kr
and

1

ãxi
+K

≤
1

σ̃+K
= α̃K .

The bounds for 1
âxi

+Kr
and 1

âxi
+K

are obtained in a similar way using σ̂.

The proof of the small sample bound for classification follows directly from this lemma.

Proof (Of Theorem 11)

From Lemma 17, adapted for classification,

|ℓclass
γ,Kr

( fS,K ,zi)− ℓclass
γ,Kr

( fS/i,K ,zi)|

≤
1

γ

[

1

ãxi
+K

+ |Kr −K|

[

1

ãxi
+Kr

(

m

m+K
+

1

ãxi
+K

)]

+
1

âxi
+K

+ |Kr −K|

[

1

âxi
+Kr

(

m

m+K
+

1

âxi
+K

)]]

.

Combining this and Lemma 19, we have:

|ℓclass
γ,Kr

( fS,K ,zi)− ℓclass
γ,Kr

( fS/i,K ,zi)|

≤
1

γ

[

α̃K + |Kr −K|α̃Kr

(

m

m+K
+ α̃K

)

+ α̂K + |Kr −K|α̂Kr

(

m

m+K
+ α̂K

)]

=
1

γ
(α̃K + α̂K)+

1

γ
|Kr −K|

[

α̃Kr

(

m

m+K
+ α̃K

)

+ α̂Kr

(

m

m+K
+ α̂K

)]

.

We now provide an upper bound on the expectation of this quantity, beginning with the first

term:

Ez1,...,zm

1

γ
(α̃K + α̂K) = Ez1,...,zm

1

γ

1

K

[(

1−
#/i(−yi)

m+K

)

+

(

1−
#/iyi

m+K

)]

=
1

γ

1

K

(

2−
(m−1)p−yi

m+K
−

(m−1)pyi

m+K

)

≤
2

γ

1

K

(

1−
(m−1)py,min

m+K

)

.

Here we used the fact that the mean of the binomial distribution Bin(m− 1, pyi
) is (m− 1)pyi

,

and we use a lower bound for pyi
and p−yi

, namely py,min = min(P(y = 1),P(y =−1)) the minimum
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probability of a randomly chosen basket having any particular label. For the second term,

Ez1,...,zm

1

γ
|Kr −K|

[

α̃Kr

(

m

m+K
+ α̃K

)

+ α̂Kr

(

m

m+K
+ α̂K

)]

=
1

γ
|Kr −K|Ez1,...,zm





1

K
(

#/i(−yi)

m+K−#/i(−yi)

)

+Kr

(

m

m+K
+

1

K

(

1−
#/i(−yi)

m+K

))





+
1

γ
|Kr −K|Ez1,...,zm





1

K
(

#/iyi

m+K−#/iyi

)

+Kr

(

m

m+K
+

1

K

(

1−
#/iyi

m+K

))





=
1

γ
|Kr −K|Eζ̃∼Bin(m−1,p−yi

)





1

K
(

ζ̃

m+K−ζ̃

)

+Kr

(

m

m+K
+

1

K

(

1−
ζ̃

m+K

))





+
1

γ
|Kr −K|E

ζ̂∼Bin(m−1,pyi
)







1

K
(

ζ̂

m+K−ζ̂

)

+Kr

(

m

m+K
+

1

K

(

1−
ζ̂

m+K

))







=:
1

γ
|Kr −K|Eζ̃∼Bin(m−1,p−yi

)F(ζ̃)+
1

γ
|Kr −K|E

ζ̂∼Bin(m−1,pyi
)
F(ζ̂).

Since the function F(ζ) is decreasing as ζ increases, then an upper bound is produced by using the

distribution Bin(m−1, py,min):

Ez1,...,zm

1

γ
|Kr −K|

[

α̃Kr

(

m

m+K
+ α̃K

)

+ α̂Kr

(

m

m+K
+ α̂K

)]

≤
2

γ
|Kr −K|Eζ∼Bin(m−1,py,min)F(ζ)

=
2

γ
|Kr −K|Eζ∼Bin(m−1,py,min)





1

K
(

ζ
m+K−ζ

)

+Kr

(

m

m+K
+

1

K

(

1−
ζ

m+K

))



 .

The following lemma is similar to the previous lemma, but specific to sequential event pre-

diction. It uses the support guarantee for the adjusted confidence algorithm (6) in order to bound

the terms of Lemma 17, which holds with the same proof when the loss ℓγ,Kr
is changed to the

new loss ℓnew
γ,Kr

and superscript “-” is replaced by “∗”. We define the analogy to ãzi
as ã∗zi

:=

min(#a∗SzitK
,#/ia∗

S/izitK
). The result below will immediately yield a proof of Theorem 12.

Lemma 20 (Support Thresholds for Adjusted Confidence, Sequential Event Prediction)

For specific basket zi, define:

αKr
:=

m+K −#zi,t+1

K(#zi,t+1 −1)+Kr(m+K −#zi,t+1)
and αK :=

1

K

(

1−
#zi,t+1 −1

m+K

)

.

It is true that:

1

ã∗zi
+Kr

≤ αKr
,

1

ã∗zi
+K

≤ αK ,
1

âzi
+Kr

≤ αKr
, and

1

âzi
+K

≤ αK .

3476



LEARNING THEORY ANALYSIS FOR ASSOCIATION RULES AND SEQUENTIAL EVENT PREDICTION

Proof Starting with (5), we know that a∗SzitK
> σ, where

σ := K

(

#zi,t+1 −1

m+K −#zi,t+1

)

.

We use the same type of argument as in (5), incorporating the fact that on S/i, the adjusted confi-

dence of the highest scoring rule a∗
S/izitK

→ b∗
S/izitK

exceeds that of the highest-scoring-correct rule

a+
S/izitK

→ zi,t+1, which exceeds that of the rule ∅→ zi,t+1,

#/ia∗
S/izitK

#/ia∗
S/izitK

+K
≥

#/i(a∗
S/izitK

∪b∗
S/izitK

)

#/ia∗
S/izitK

+K
≥

#/i(a+
S/izitK

∪ zi,t+1)

#/ia+
S/izitK

+K

≥
#/izi,t+1

m−1+K
=

#zi,t+1 −1

m−1+K
. (23)

Rearranging, we find that #/ia∗
S/izitK

> σ. Similarly for #a+SzitK
,

#a+SzitK

#a+SzitK
+K

≥
(#a+SzitK

∪ zi,t+1)

#a+SzitK
+K

≥
#zi,t+1

m+K

so #a+SzitK
≥ K

(

#zi,t+1

m+K−#zi,t+1

)

> σ. And again for #/ia+
S/izitK

using (23),

#/ia+
S/izitK

#/ia+
S/izitK

+K
≥

#/i(a+
S/izitK

∪ zi,t+1)

#/ia+
S/izitK

+K
≥

#zi,t+1 −1

m−1+K
.

so #/ia+
S/izitK

≥ σ. We now have ã∗zi
= min(#a∗SzitK

,#/ia∗
S/izitK

) ≥ σ, and also âzi
=

min(#a+SzitK
,#/ia+

S/izitK
) ≥ σ. Since σ is a lower bound on all the supports, it can be used to cre-

ate an upper bound for the reciprocals, as follows, using ã∗zi
as an example:

1

ã∗zi
+Kr

≤
1

σ+Kr

= αKr
and

1

ã∗zi
+K

≤
1

σ+K
= αK .

Proof (Of Theorem 12) First, all of the steps in the proof of Lemma 17 hold when we replace the

loss ℓγ,Kr
with the new loss ℓnew

γ,Kr
, replace cγ with cnew

γ , and ãzi
by ã∗zi

, so we obtain:

|ℓnew
γ,Kr

( fS,K ,zi)− ℓnew
γ,Kr

( fS/i,K ,zi)|

≤
1

γ

1

Tzi

Tzi
−1

∑
t=0

[

1

ã∗zi
+K

+ |Kr −K|

[

1

ã∗zi
+Kr

(

m

m+K
+

1

ã∗zi
+K

)]

+
1

âzi
+K

+ |Kr −K|

[

1

âzi
+Kr

(

m

m+K
+

1

âzi
+K

)]]

.

Combining this and Lemma 20, we have:

|ℓnew
γ,Kr

( fS,K ,zi)− ℓnew
γ,Kr

( fS/i,K ,zi)| ≤
2

γ

1

Tzi

Tzi
−1

∑
t=0

αK + |Kr −K|αKr

(

m

m+K
+αK

)

.
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To calculate the stability, we need an upper bound on the expectation of this quantity. Let us first

create an upper bound for the expectation of the first term, 2
γ

1
Tzi

∑
Tzi

−1

t=0 αK :

Ez1,...,zm

2

γ

1

Tzi

Tzi
−1

∑
t=0

αK = Ez1,...,zm

2

γ

1

Tzi

Tzi
−1

∑
t=0

1

K

(

1−
#zi,t+1 −1

m+K

)

= Ezi

2

γ

1

Tzi

Tzi
−1

∑
t=0

1

K

(

1−
Ez1,...,zi−1,zi+1,...,zm

#zi,t+1 −1

m+K

)

= Ezi

2

γ

1

Tzi

Tzi
−1

∑
t=0

1

K

(

1−
(m−1)pzi,t+1

m+K

)

≤ Ezi

2

γ

1

Tzi

Tzi
−1

∑
t=0

1

K

(

1−
(m−1)pmin

m+K

)

=
2

γ

1

K

(

1−
(m−1)pmin

m+K

)

.

The first line above uses the definition of αK , the second line uses the fact that each basket is chosen

independently, the third line uses that zi,t+1 is always contained in zi and also uses the fact that the

mean of the binomial distribution Bin(m−1, pzi,t+1
) is (m−1)pzi,t+1

. The fourth line uses that pzi,t+1

has the lower bound pmin, which no longer depends on zi.

We repeat this outline for the second term:

Ez1,...,zm

2

γ
|Kr −K|

1

Tzi

Tzi
−1

∑
t=0

αKr

(

m

m+K
+αK

)

= Ez1,...,zm

2

γ
|Kr −K|

1

Tzi

Tzi
−1

∑
t=0

1

K
(

#zi,t+1−1

m+K−#zi,t+1

)

+Kr

(

m

m+K
+

1

K

(

1−
#zi,t+1 −1

m+K

))

=
2

γ
|Kr −K|Ezi

1

Tzi

Tzi
−1

∑
t=0

Ez1,...,zi−1,zi+1,...,zm





1

K
(

#zi,t+1−1

m+K−#zi,t+1

)

+Kr

×

(

m

m+K
+

1

K

(

1−
#zi,t+1 −1

m+K

))]

=
2

γ
|Kr −K|Ezi

1

Tzi

Tzi
−1

∑
t=0

Eζ∼Bin(m−1,pzi,t+1
)

1

K
(

ζ+1−1

m+K−ζ−1

)

+Kr

(

m

m+K
+

1

K

(

1−
ζ+1−1

m+K

))

=:
2

γ
|Kr −K|Ezi

1

Tzi

Tzi
−1

∑
t=0

Eζ∼Bin(m−1,pzi,t+1
)F(ζ).
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Algorithm 4: Subroutine GenRules, simplest version that considers only “marginal” rules.

Input: (S,B,X ), that is, past orders S = {zi}i=1,...,m, zi ⊆ X , current basket B ⊂ X , set of

items X

Output: Set of all rules where a j is an item in the basket B (or the empty set) and b j is not in

B. That is, rules {a j → b j} j such that b j ∈ X \B and either a j ∈ B or a j =∅.

Since the function F is decreasing as ζ increases, then an upper bound is produced by using the

distribution Bin(m−1, pmin). Namely,

Ez1,...,zm

2

γ
|Kr −K|

1

Tzi

Tzi
−1

∑
t=0

αKr

(

m

m+K
+αK

)

≤
2

γ
|Kr −K|Ezi

1

Tzi

Tzi
−1

∑
t=0

Eζ∼Bin(m−1,pmin)F(ζ)

=
2

γ
|Kr −K|Eζ∼Bin(m−1,pmin)

1

K
(

ζ
m+K−ζ−1

)

+Kr

(

m

m+K
+

1

K

(

1−
ζ

m+K

))

.

In all of the theorems and proofs, the empirical loss and true loss are defined only for the case

where the algorithm only recommends one item (c = 1). It is possible to use a vector norm to

generalize to larger c.

6. Experiments

All data sets chosen for these experiments are publicly available from the UCI machine learning

repository (Bache and Lichman, 2013), and from the IBM Quest Market-Basket Synthetic Data

Generator (Agrawal and Srikant, 1994). To obtain formatted market-basket data, categorical data

were converted into binary features (one feature per category). Each feature represents an item,

and each example represents a basket. The feature value (0 or 1) indicates the presence of an item.

Training baskets and test baskets were chosen randomly without replacement from the full data set.

Since these data do not come naturally with a time ordering, items in the basket were randomly

permuted to attain an order. At each iteration, rules were formed from one item or the empty item

on the left, and one item on the right (See GenRules in Figure 4). Recommendations of one item

were made using the following 15 algorithms: highest support, highest confidence, highest adjusted

confidence for eight K levels, max confidence, min support algorithm for five support threshold

levels θ. All 15 algorithms were evaluated by the average fraction of correct recommendations

(AvgCorrect) per basket. As recommendations were made, it was common to have ties where

multiple items were equally good to recommend, in which case the tie was broken at random;

AvgCorrect is similar to ℓ0−1,K except for this way of dealing with ties.

The parameters of the experiment are: number of training baskets (20 in all cases), number of

test baskets (100 in all cases), values of K for the adjusted confidence algorithm (0.0001, 0.001,

0.01, 0.1, 1, 5, 10, 15), and values of θ for the max confidence, min support algorithm (1, 2, 3, 5,
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10). Note that two of these algorithms are the same: the max confidence algorithm is the same as

the max confidence, min support algorithm for θ=1. Data sets are: Car Evaluation (25 items, 1728

baskets), Chess King-Rook vs. King-Pawn, (75 items, 3196 baskets), MONK’s problems (19 items,

1711 baskets) Mushroom (119 items, 8124 baskets), Nursery (32 items, 12960 baskets), Plants (70

items, 34781 baskets), T20I18D10KN22CR50 (22 items, 10000 baskets).

Each experiment (training, test, evaluation for all 15 algorithms) was performed 100 times,

(totaling 100×100×15 = 150,000 test basket evaluations per data set, for each of 7 data sets). In

Figures 4 and 5, the distribution of AvgCorrect values for data sets Chess and Monk are shown

via boxplot, along with the mean and standard deviation of AvgCorrect values. Bold indicates that

the mean is not significantly different from that of the algorithm with the largest mean value; that

is, bold indicates the highest scores. The boxplots and means for the other data sets are shown in

Figures 7 through 11 in Appendix B.

Figure 6 summarizes the results of all of the experiments by totaling the number of data sets

for which each algorithm achieved one of the highest scores. The best performing algorithms were

K = 0.01 and K = 0.1, both algorithms achieving one of the top scores for 6 out of 7 of the data

sets. The single data set for which these algorithms did not achieve one the best scores was the very

dense data set T20I18D10KN22CR50, where the algorithms requiring a higher support (the max

support algorithm, and also the adjusted confidence algorithm for K = 5,10, and 15) achieved the

highest AvgCorrect score. In that case, the K = 0.01 and K = 0.1 algorithms still performed better

than the max confidence, min support algorithms for the parameters we tried.

The adjusted confidence algorithm with a very small K is similar to using the max confidence

algorithm, except that whenever there is a tie, the tie is broken in favor of the rule with largest

support. It seems that in most of the data sets we chose, this type of algorithm performed the best,

which indicates two things. First, that for some data sets, increasing K too much can have the same

effect as a too-large minimum support threshold, in that large values of K could potentially remove

the best rules, leading to too much bias, and where the algorithm cannot explain enough of the

variance in the data. Second, when comparing rules, it is important not to break ties at random as

in the max confidence, min support algorithm, but instead to use the support of the rules. Another

observation is that the performance levels of the adjusted confidence algorithm vary less than those

of the max confidence, min support algorithm. In other words, our experiments indicate that a less-

than-perfect choice of K for the adjusted confidence algorithm is likely to perform better than a

less-than-perfect choice of θ for the max confidence, min support algorithm.

7. Related Work

We provide background on related works within several fields: association rule mining and associa-

tive classification, decision lists, recommender systems, and Bayesian analysis. There is also a body

of literature on pattern mining in sequences, but not in the sequential event prediction setting de-

fined here. This type of work generally considers the order in which items are added, and often uses

a Markov assumption (see, for instance, Ayres et al., 2002; Berchtold and Raftery, 2002), whereas

in our work, subsets of items are used to predict the next item, possibly without regard to the order

in which they occurred, and a Markov assumption can be false. There is also work relating statis-

tics to pattern mining and sequence mining, (e.g., Chernoff bounds for the confidence, Jacquemont

et al., 2009). Our work also relates to multi-class classification, since there is a multi-class classifi-

cation step at each point in time t of each sequence. For a recent work on generalization bounds in
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Algorithm mean ± standard dev.

Support 0.0813 ± 0.0046

Confidence 0.0764 ± 0.0053

K=0.0001 0.0831 ± 0.0045

K=0.001 0.0832 ± 0.0048

K=0.01 0.0835 ± 0.0041

K=0.1 0.0831 ± 0.0049

K=1 0.0835 ± 0.0043

K=5 0.0821 ± 0.0049

K=10 0.0821 ± 0.004

K=15 0.0816 ± 0.0049

θ=1 0.0759 ± 0.0049

θ=2 0.0767 ± 0.0045

θ=3 0.078 ± 0.0049

θ=5 0.0794 ± 0.0052

θ=10 0.0813 ± 0.0046

Figure 4: Left: Boxplots of AvgCorrect values for Chess data set. Right: Means and standard

deviations for Chess data set.

Algorithm mean ± standard dev.

Support 0.0943 ± 0.0126

Confidence 0.1103 ± 0.0145

K=0.0001 0.1108 ± 0.0137

K=0.001 0.1109 ± 0.0147

K=0.01 0.1104 ± 0.0149

K=0.1 0.11 ± 0.0151

K=1 0.1081 ± 0.0148

K=5 0.0992 ± 0.0138

K=10 0.0947 ± 0.0133

K=15 0.0948 ± 0.012

θ=1 0.1098 ± 0.0138

θ=2 0.1095 ± 0.0146

θ=3 0.1092 ± 0.0146

θ=5 0.1054 ± 0.0143

θ=10 0.0944 ± 0.0129

Figure 5: Left: Boxplots of AvgCorrect values for MONK’s problems data set. Right: Means and

standard deviations for MONK’s problems data set.

multi-class classification see Shen and Wang (2007). Remember that in multi-class classification,

each example is a feature vector, whereas in sequential event prediction, each example is an event

sequence. Related work on generalization bounds includes those on algorithmic stability (Devroye

and Wagner, 1979; Bousquet and Elisseeff, 2002).

7.1 Mining Association Rules

Association rule mining has proven successful for many applications, including market basket anal-

ysis (cross selling, product placement, affinity promotion, see also Kohavi et al., 2004), mining gene

expression data (Jiang and Gruenwald, 2005), and weblog analysis (Huang et al., 2002). The ma-
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Algorithm Number of data sets

Support 1

Confidence 1

K=0.0001 4

K=0.001 5

K=0.01 6

K=0.1 6

K=1 2

K=5 2

K=10 2

K=15 2

θ=1 1

θ=2 1

θ=3 1

θ=5 0

θ=10 1

Figure 6: Summary of experiments: For each algorithm, the number of data sets where it performed

comparably with the best algorithm.

jority of literature on association rule mining concerns the design of efficient algorithms to address

the time-and-memory-consuming task of mining rules within very large databases. Discovering

rules is usually a two-step process. First, itemsets are mined that meet a predetermined minimum

support threshold. Then using this set, rules are formed and the strength of the rules is assessed

using “interestingness” measures, such as the confidence. Many “interestingness” measures have

been proposed in the literature (see Tan et al., 2002; Geng and Hamilton, 2007; McGarry, 2005).

It is clearly possible to use the adjusted confidence as an interestingness measure for database ex-

ploration. In that setting, the adjusted confidence would provide a ranking of rules in terms of their

ability to predict, including both “common sense rules” and “nuggets.”

Although association rule mining has proven successful for many applications, it is well-known

that the usefulness of association rules and their impact on even a wider range of practical applica-

tions remains limited due to problems arising from the minimum support threshold: first, the large

number of rules mined can be intractable to domain experts who analyze rules and act on them,

unless the minimum support threshold is set to a large value; second, the heuristic choice of the

minimum support threshold tends to over-prune the search space of association rules, disregarding

“nuggets” which can be very useful in many applications. Most prior work relies on the strong

requirement of the minimum support threshold; some exceptions include the works of Li et al.

(1999); Koh (2008) and DuMouchel and Pregibon (2001). Some recent work (Cohen et al., 2001;

Wang et al., 2001) attempts to avoid the support measure altogether. In our work, the use of the

adjusted confidence eliminates the need for the minimum support threshold.

When a set of rules is used to form a classifier, this is called “associative classification” (see, for

instance, Liu et al., 1998; Thabtah, 2007; Vanhoof and Depaire, 2010).

7.2 Decision Lists

A decision list is an ordered set of association rules that forms a classifier (Rivest, 1987). Usually

decision lists are formed the same way as decision trees are formed, which is by greedily splitting
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on each nodes to form the tree, and then pruning (as in for instance, Li et al., 2001; Yin and Han,

2003; Simon et al., 2011; Marchand and Sokolova, 2005). However, it is possible to mine a set of

rules, and order them to produce a classifier, as in the associative classification literature.

The work of Anthony (2004) contains a generalization bound for decision lists, but each rule in

the list requires a linear combination, which is problematic in the sequential setting by the reasoning

in Appendix A. (Similarly, there are many papers using a set of pre-computed rules as features for

supervised learning, where a linear combination of rules is constructed, rather than a decision list;

one recent example is by Friedman and Popescu 2008.)

In recent work, we have been learning the ordering of rules to form decision lists (Letham et al.,

2013c).

7.3 Recommender Systems

Association rule mining has proven to be particularly useful for finding “goes with” relationships be-

tween items purchased simultaneously. Lin et al. (2002) also construct a recommender system using

rules, having a minimum confidence threshold and then an adjustable minimum support threshold.

Their scoring system is essentially based on support × confidence, which is not an estimate of

P(b|a) for rule a → b. Lawrence et al. (2001) provide a recommender system for a grocery store,

but the setting differs entirely from ours in that they always recommend items that have never been

previously purchased.

In other work, we designed a Bayesian framework that estimates K for the adjusted confidence

by “borrowing strength” across both users and items (McCormick et al., 2012). We are also looking

at different approaches to the sequential event prediction problem, where we allow the predictions

to alter the sequence in which items are placed into the basket (Letham et al., 2013b). This work

uses a supervised learning framework for sequential event prediction.

We also note that a recommender system based on a weighted version of the adjusted confidence

won third place in the ECML Discovery Challenge in 2013 (Letham, 2013).

Often, item-based collaborative filtering is used for problems that are actually sequential event

prediction problems. There are several problems in applying standard item-based collaborative

filtering techniques in sequential event prediction, the first one being that standard item-based col-

laborative filtering requires us to compute a similarity measure between all “co-rated” items. The

similarity measure is often symmetric between two items, there is no distinguishing between P(a|b)
and P(b|a). Even if item b is always found when a is found, P(b|a) = 1, is it possible for b not to be

recommended when a is present, even with more than sufficient data to see the pattern. Further, for

an incomplete basket, we do not have the ratings for all “co-rated” items, since there is no natural

way to differentiate between items that have not yet been purchased in this transaction, and items

that will not be purchased in this transaction, as both have a “rating” of 0 at time t. Thus, the only

ratings that are available are ratings of “1” indicating that an item is in the basket. In other words,

where the association rule approach we present here is intrinsically sequential, it is unnatural to

force item-based collaborative filtering into a sequential framework. In general, item-based collab-

orative filtering is not based in a typical machine learning setting, in that it is not based on either loss

minimization or probabilistic modeling (as the association rule approach is). The work of Letham

et al. (2013b) also shows experimentally that item-based collaborative filtering can be worse than

the max-confidence association rule approach.
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7.4 Bayesian Analysis

DuMouchel and Pregibon (2001, “D&P”) present a Bayesian approach to the identification of in-

teresting itemsets. While not a rule mining algorithm per se, the approach could be extended to

produce rules. D&P consider the ratio of observed itemset frequencies to baseline frequencies

computed under a particular independence model. A prior distribution over the collection of such

ratios results in shrinkage estimates for the true ratios. The amount of shrinkage depends on the

observed frequency and tends to be more pronounced for less frequent itemsets. Our approach dif-

fers from D&P in several key regards. Most importantly we focus directly on Bayesian estimation

for rules rather than itemsets. Second, D&P use an empirical Bayes approach to choose the prior

hyperparameters. Since our approach requires just a single hyperparameter, K, we instead let the

user choose an appropriate value (the value might be determined by cross validation or empirical

Bayes). Finally, D&P perform a stratified analysis; one interesting future direction for our proposed

approach would be to incorporate stratification.

Breese et al. (1998) present a number of different algorithms for collaborative filtering, includ-

ing two Bayesian approaches. One of their Bayesian approaches clusters users while the other

constructs a Bayesian network. Condliff et al. (1999) present a hierarchical Bayesian approach to

collaborative filtering that “borrows strength” across users. Neither Breese et al. nor Condliff et al.

focus on repeated purchases but both present ideas and techniques that may have relevance to future

versions of our approach, especially the borrowing strength ideas.

Our recent work (McCormick et al., 2012; Letham et al., 2013c) uses Bayesian analysis to order

rules into decision lists.

8. Conclusion

This work synthesizes tools from several fields to analyze the use of association rules in a new su-

pervised learning framework. This analysis is necessarily different from that of classical supervised

learning analysis; as we have discussed, association rules provide two mechanisms for generaliza-

tion: first a large sample, and second, a minimum support of rules. We considered two simple

algorithms based on association rules: a max confidence, min support algorithm, and the Bayesian

adjusted confidence algorithm. Both algorithms have a parameter that creates a bound on the sup-

port, regulating a tradeoff between accuracy on the training set and generalization ability. We have

also demonstrated that the adjusted confidence introduced here has some advantages over the mini-

mum support threshold that is commonly considered in association rule mining: it allows rare rules

to be used while still encouraging generalization, and among rules with similar confidence, it prefers

those with larger support.
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Appendix A. Regression and the Sequential Event Prediction Problem

By using association rules to model conditional probabilities for the sequential event prediction

problem, we make a general assumption about the Markov chains governing our application, namely

that a subset of knowledge about the current state can be used to predict the most likely future state.

In this section we will address the suitability of two natural regression approaches that do not make

this assumption. Let Xi be an indicator variable that is 1 if item i is in the current basket and 0

otherwise.

A.1 First Regression Method

Apply regression (e.g., logistic regression) to create a model for each item separately. Consider the

model for the last item (item m), where the predictor variables will be Xi for i ∈ {1, . . . ,m−1}, and

Xm will be the response variable. This model would provide:

P(Xm = 1|X1 = x1, . . . ,Xm−1 = xm−1) =
1

1+ exp( f )
,

where f = ∑
m−1
i=1 λixi +λ0,m, with each xi ∈ {0,1}.

Because the data are being revealed sequentially, the correct application of this technique is not

straightforward. Only a partial basket is available when predictions need to be made. It is incorrect

to substitute the current state of the basket directly into the formula above. For instance, if the

current basket contains items 1 and 2, so X1 = 1 and X2 = 1, it is incorrect to write P(Xm|X1 = 1,X2 =
1) = 1

1+exp( f ) , where f = λ1 +λ2 +λ0,m. This statement would be equivalent to the expression:

P(Xm = 1|X1 = 1,X2 = 1) = P(Xm = 1|X1 = 1,X2 = 1,X3 = 0, . . . ,Xm−1 = 0),

which is clearly false in general. It is not that, for instance, X3 = 0, it is simply that X3 is not yet

realized.

On the other hand, it is possible to integrate in order to obtain conditional probability estimates:

P(Xm = 1|X1 = 1,X2 = 1) =

∑
x3={0,1},...,xm−1={0,1}

P(Xm = 1|X1 = 1,X2 = 1,X3 = x3 . . . ,Xm−1 = xm)×

P(X3 = x3, . . . ,Xm−1 = xm),

where estimates of P(X3 = x3, . . . ,Xm−1 = xm) would need to be made also for every one of the

2m−3 combinations of x3, . . .xm−1. Thus, this approach would rely on a large number of uncertain

estimates (given limited data, and even moderately large m), each introducing errors into the final

estimate. This is in contrast to the association rule approaches where a class of conditional proba-

bilities are directly estimated. Further, the regression method provided above would not be able to

be explained easily to customers or managers. In most circumstances, it would also require a large

amount of computation between recommendations. Finally, it is not clear how to incorporate the

order in which items are placed into the basket within this type of model, whereas it is trivial to

incorporate this into the association rule techniques as discussed in Section 2.2.
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A.2 Second Regression Method

Apply regression methods (e.g., logistic regression) for each item and at each timestep, in total

m× T regression models, where T is the size of the largest possible basket. This would give a

direct way to incorporate time into the predictions. If the current basket contains t items, one would

use only the models constructed using the first t items in each basket to predict the next item to be

added. However, this would be making an entirely different assumption than the one given by the

rule-mining approach. The rule-mining approach uses time only implicitly, and purchase patterns

are counted the same regardless of the exact time within the transaction when the pattern occurred.

In contrast, this regression approach would ignore all items added after time t in previous baskets.

If apples were always followed by oranges, but in the past apples and oranges were always added

after timestep t, then this approach would fail to recommend oranges when apples are added before

timestep t. Further, the models for each timestep t must be constructed from baskets at least as large

as t. This means that for very large baskets, there would only be a few past baskets that could be

used to construct the models. Further, if the current basket is larger than any of the past baskets, the

models would be trivial, since none of the past baskets can be used to construct them.

It may indeed be possible to use regression approaches for the sequential event prediction prob-

lem, but given the discussion above, it is not clear how this should be accomplished. We explore

other ways to solve the sequential event prediction problem using supervised ranking techniques in

another work (Letham et al., 2013b).

Appendix B. Additional Experimental Results

See Figures 7 - 11.

Algorithm mean ± standard dev.

Support 0.115 ± 0.0176

Conf. 0.1125 ± 0.0143

K=0.0001 0.1173 ± 0.0127

K=0.001 0.1163 ± 0.0122

K=0.01 0.1176 ± 0.0117

K=0.1 0.1177 ± 0.0109

K=1 0.1176 ± 0.0116

K=5 0.1204 ± 0.015

K=10 0.1199 ± 0.0172

K=15 0.1192 ± 0.0174

θ=1 0.1133 ± 0.0134

θ=2 0.1119 ± 0.0131

θ=3 0.114 ± 0.0118

θ=5 0.1161 ± 0.0143

θ=10 0.1205 ± 0.0191

Figure 7: Left: Boxplots of AvgCorrect values for Cars data set. Right: Means and standard devia-

tions for Cars data set.
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Algorithm mean ± standard dev.

Support 0.0996 ± 0.0051

Confidence 0.0902 ± 0.0075

K=0.0001 0.1164 ± 0.0061

K=0.001 0.1158 ± 0.0062

K=0.01 0.1161 ± 0.0061

K=0.1 0.116 ± 0.0058

K=1 0.1142 ± 0.0062

K=5 0.1069 ± 0.0052

K=10 0.1044 ± 0.0054

K=15 0.1024 ± 0.0053

θ=1 0.0909 ± 0.007

θ=2 0.0986 ± 0.0077

θ=3 0.1048 ± 0.0064

θ=5 0.1088 ± 0.0069

θ=10 0.1042 ± 0.0057

Figure 8: Left: Boxplots of AvgCorrect values for Mushroom data set. Right: Means and standard

deviations for Mushroom data set.

Algorithm mean ± standard dev.

Support 0.0619 ± 0.0098

Confidence 0.081 ± 0.0094

K=0.0001 0.0898 ± 0.0091

K=0.001 0.0902 ± 0.0093

K=0.01 0.0902 ± 0.0085

K=0.1 0.0903 ± 0.0095

K=1 0.0909 ± 0.0096

K=5 0.0869 ± 0.0139

K=10 0.0804 ± 0.0154

K=15 0.0747 ± 0.0154

θ=1 0.0811 ± 0.0088

θ=2 0.0819 ± 0.0094

θ=3 0.0858 ± 0.0095

θ=5 0.0883 ± 0.0137

θ=10 0.0654 ± 0.0111

Figure 9: Left: Boxplots of AvgCorrect values for Nursery data set. Right: Means and standard

deviations for Nursery data set.

Appendix C. Lemma 21

Lemma 21 For t ∼ Binomial(m, p) and K ≥ 0,

E

[

1

K + t

]

=
1

K +mp
+O

(

1

m2

)

.

The proof of this lemma for K = 0 is provided by Rempala (2003). The proof of this lemma for

K > 0 comes from Letham et al. (2013a), which we provide here for completeness. The proof of

the lemma uses the following result.
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Algorithm mean ± standard dev.

Algorithm mean pm standard dev.

Support 0.0983 ± 0.0494

Confidence 0.1187 ± 0.0465

K=0.0001 0.1271 ± 0.0448

K=0.001 0.1251 ± 0.0454

K=0.01 0.1255 ± 0.0446

K=0.1 0.1251 ± 0.0464

K=1 0.1235 ± 0.0454

K=5 0.1205 ± 0.0466

K=10 0.1141 ± 0.0464

K=15 0.1093 ± 0.0498

θ=1 0.1182 ± 0.0457

θ=2 0.1182 ± 0.0466

θ=3 0.118 ± 0.047

θ=5 0.11 ± 0.0511

θ=10 0.0981 ± 0.0496

Figure 10: Left: Boxplots of AvgCorrect values for Plants data set. Right: Means and standard

deviations for Plants data set.

Algorithm mean ± standard dev.

Support 0.1874 ± 0.0115

Confidence 0.1728 ± 0.0118

K=0.0001 0.1817 ± 0.012

K=0.001 0.1827 ± 0.0121

K=0.01 0.1821 ± 0.0124

K=0.1 0.183 ± 0.0125

K=1 0.1843 ± 0.0117

K=5 0.1857 ± 0.0119

K=10 0.1871 ± 0.0115

K=15 0.1867 ± 0.0116

θ=1 0.1722 ± 0.0126

θ=2 0.1716 ± 0.0128

θ=3 0.1748 ± 0.0131

θ=5 0.1742 ± 0.0125

θ=10 0.182 ± 0.0125

Figure 11: Left: Boxplots of AvgCorrect values for T20I18D10KN22CR50 data set. Right: Means

and standard deviations for T20I18D10KN22CR50 data set.

Lemma 22 Let X ∼ Binomial(m, p) and let µk = E
[

(X −E[X ])k
]

be the kth central moment. For

integer k ≥ 1, µ2k and µ2k+1 are O
(

mk
)

.

Proof We will use induction. For k = 1, the central moments are well known (e.g., Johnson et al.,

2005): µ2 =mp(1− p) and µ3 =mp(1− p)(1−2p), which are both O(m). We rely on the following

recursion formula (Johnson et al., 2005; Romanovsky, 1923):

µs+1 = p(1− p)

(

dµs

d p
+msµs−1

)

. (24)
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Because µ2 and µ3 are polynomials in p, their derivatives will also be polynomials in p. This

recursion makes it clear that for all s, µs is a polynomial in p whose coefficients include terms

involving m.

For the inductive step, suppose that the result holds for k = s. That is, µ2s and µ2s+1 are O(ms).
Then, by (24),

µ2(s+1) = p(1− p)

(

dµ2s+1

d p
+(2s+1)mµ2s

)

.

Differentiating µ2s+1 with respect to p yields a term that is O(ms). The term (2s+1)mµ2s is O(ms+1),
and thus µ2(s+1) is O(ms+1). Also,

µ2(s+1)+1 = p(1− p)

(

dµ2(s+1)

d p
+2(s+1)mµ2s+1

)

.

Here
dµ2(s+1)

d p
is O(ms+1) and 2(s+1)mµ2s+1 is O(ms+1), and thus µ2(s+1)+1 is O(ms+1).

This shows that if the result holds for k = s then it must also hold for k = s+1 which completes

the proof.

We can now prove Lemma 21.

Proof (Of Lemma 21) We expand 1
K+X

at X = mp:

E

[

1

K +X

]

= E

[

∞

∑
i=0

(−1)i (X −mp)i

(K +mp)i+1

]

=
∞

∑
i=0

(−1)i
E
[

(X −mp)i
]

(K +mp)i+1

=
1

K +mp
+

∞

∑
i=2

(−1)i µi

(K +mp)i+1
(25)

where µi is the ith central moment and we recognize that µ1 = 0. By Lemma 22,

µi

(K +mp)i+1
=

O
(

m⌊ i
2
⌋
)

O(mi+1)
= O

(

m⌊ i
2
⌋−i−1

)

.

The alternating sum in (25) can be split into two sums:

∞

∑
i=2

(−1)i µi

(K +mp)i+1
=

∞

∑
i=2

O
(

m⌊ i
2
⌋−i−1

)

=
∞

∑
i=2

O

(

1

mi

)

+
∞

∑
i=3

O

(

1

mi

)

.

These are, for m large enough, bounded by a geometric series that converges to O
(

1
m2

)

.
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Abstract

This paper comments on the published work dealing with robustness and regularization of support

vector machines (Journal of Machine Learning Research, Vol. 10, pp. 1485-1510, 2009) by H. Xu

et al. They proposed a theorem to show that it is possible to relate robustness in the feature space

and robustness in the sample space directly. In this paper, we propose a counter example that rejects

their theorem.

Keywords: kernel, robustness, support vector machine

1. Comment

Firstly, it must be stated that Xu et al. (2009) made a good study of robustness and regularization of

support vector machines. They proposed the following theorem to show that it is possible to relate

robustness in the feature space and robustness in the sample space directly:

Theorem (Xu et al., 2009) Suppose that the kernel function has the form k(x,x′) = f (‖x− x′‖),
with f : R+ → R a decreasing function. Denote by H the RKHS space of k(., .) and φ(.) the corre-

sponding feature mapping. Then we have any x ∈ Rn,w ∈ H and c > 0,

sup
‖δ‖≤c

〈w,φ(x−δ)〉= sup

‖δφ‖H≤
√

2 f (0)−2 f (c)

〈

w,φ(x)−δφ

〉

.

The following counter example rejects the mentioned theorem. However, this theorem is a

standalone result in the appendix of the paper of Xu et al. (2009), which is not used anywhere else

in the paper of Xu et al. (2009). Thus, the main result and all other results of Xu et al. (2009) are

not affected in any way.

Counter example. Let φ(.) be the feature mapping of Gaussian kernel function. We have ‖φ(x)‖H =
1. Let w = φ(x). Therefore, 〈w,φ(x)〉= ‖w‖H , and

sup
‖δ‖≤c

〈w,φ(x−δ)〉= ‖w‖H . (1)

∗. Also at Islamic Azad University, Mashhad Branch, Mashhad, IRAN.
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Moreover,

sup

‖δφ‖H≤
√

2 f (0)−2 f (c)

〈

w,φ(x)−δφ

〉

=

sup

‖δφ‖H≤
√

2 f (0)−2 f (c)

〈w,φ(x)〉+ sup

‖δφ‖H≤
√

2 f (0)−2 f (c)

〈

w,δφ

〉

=

‖w‖H + sup

‖δφ‖H≤
√

2 f (0)−2 f (c)

〈

w,δφ

〉

=

‖w‖H +‖w‖H

√

2 f (0)−2 f (c). (2)

According to Equation (1) and (2), and since f is a decreasing function, for any c > 0, we have

sup
‖δ‖≤c

〈w,φ(x−δ)〉 ≤ sup

‖δφ‖H≤
√

2 f (0)−2 f (c)

〈

w,φ(x)−δφ

〉

.

End of counter example.

The exact spot that the error has been occurred in the mentioned theorem is Equation (19) of the

paper of Xu et al. (2009). There it has been claimed that the image of the RKHS feature mapping is

dense, which unfortunately is not true. Indeed, because 〈φ(x),φ(x)〉= K(0) where K(.) is the kernel

function, the image of the feature mapping is in a ball of radius
√

K(0).
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Abstract

In this paper we establish that the Lovász ϑ function on a graph can be restated as a kernel learning

problem. We introduce the notion of SVM−ϑ graphs, on which Lovász ϑ function can be ap-

proximated well by a Support vector machine (SVM). We show that Erdös-Rényi random G(n, p)

graphs are SVM−ϑ graphs for
log4 n

n
≤ p < 1. Even if we embed a large clique of size Θ

(√
np

1−p

)

in a G(n, p) graph the resultant graph still remains a SVM−ϑ graph. This immediately suggests

an SVM based algorithm for recovering a large planted clique in random graphs. Associated with

the ϑ function is the notion of orthogonal labellings. We introduce common orthogonal labellings

which extends the idea of orthogonal labellings to multiple graphs. This allows us to propose

a Multiple Kernel learning (MKL) based solution which is capable of identifying a large common

dense subgraph in multiple graphs. Both in the planted clique case and common subgraph detection

problem the proposed solutions beat the state of the art by an order of magnitude.

Keywords: orthogonal labellings of graphs, planted cliques, random graphs, common dense sub-

graph

1. Introduction

In a general graph many problems, such as computing the size of the largest clique or determin-

ing the chromatic number, are NP hard (Garey and Johnson, 1979). The ϑ function, introduced by

Lovász (1979), is an extremely powerful tool for approximating such quantities in polynomial time.

In some cases one can compute ϑ on large graphs efficiently, for example by exploiting symmetry

(Bachoc et al., 2012), but in general efficient computation of ϑ function on large graphs remains

a challenge. Evaluating the ϑ function on a graph requires solving a Semidefinite Program (SDP).

c©2013 Vinay Jethava, Anders Martinsson, Chiranjib Bhattacharyya and Devdatt Dubhashi.
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Using interior point methods one can solve SDPs, albeit with a high computational complexity of

O(n6) (Boyd and Vandenberghe, 2004). Indeed numerical experiments show that computing ϑ on

graphs consisting of more than 5000 vertices, using off the shelf SDP solvers, is impractical. Con-

sider the problem of finding a large planted clique in a random graph. One could use an algorithm

based on ϑ function computation (Feige and Krauthgamer, 2000) to recover such a clique. Unfortu-

nately one cannot apply this algorithm to large graphs, say graphs of size more than 20,000 vertices,

due to high computational complexity of computing ϑ.

In this paper we establish that the ϑ function is equivalent to solving a kernel learning problem in

the one class SVM setting. This surprising connection opens up lot of opportunities between graph

theory and machine learning. Instead of trying to compute ϑ function exactly we show that by

judicious choice of a kernel function, one can compute an upper-bound on the ϑ function by solving

an SVM. We show that on random graphs this upper bound serves as a constant factor approximation

to the ϑ function. We study how this bound can be exploited to identify large dense subgraphs in

large graphs. In particular we study the problem of finding a common dense subgraph in multiple

graphs (Pardalos and Rebennack, 2010), a computationally challenging problem for large graphs.

We also study the problem of finding a hidden planted clique in a random graph. This is again an

instance of computationally challenging problem (Jerrum, 1992).

1.1 The Importance of Studying Dense Subgraphs

Finding dense subgraphs in large graphs is an important problem, which has many applications in

a variety of disciplines. In Computational Biology, mining for large dense subgraphs has important

consequences for function discovery (Hu et al., 2005). Many other problems in Computational Bi-

ology can be posed as that of finding dense subgraphs (see, e.g., Spirin and Mirny, 2003; Jiang and

Pei, 2009; Takahashi et al., 1987). In E-commerce one could find isolated submarkets, important

for advertising, by finding dense subgraphs (Lang and Andersen, 2007). Many problems in social

network analysis can also be posed as dense subgraph discovery problem (Newman et al., 2006).

Dense subgraph discovery can also be useful in designing more secure systems (Applebaum et al.,

2010). Recently a very interesting suggestion was made in Arora et al. (2010) where understanding

the complexity of financial derivatives was linked to finding dense subgraphs. A comprehensive re-

view of applications of dense subgraphs is beyond the scope of this paper and we refer the interested

reader to the survey by Lee et al. (2010).

In this paper we target two difficult versions of dense subgraph recovery problem. The prob-

lem of planted clique in a random graph is an instance of dense subgraph discovery in a random

graph. This problem is extensively studied by the Algorithms community. Though the focus of the

study is mainly theoretical it also has practical implications in several disciplines including Machine

Learning. To cite an example recently the problem of correlation detection was formulated as that

of finding a planted clique in a large random graph (Devroye et al., 2011). Inspired by several ap-

plications in Computational Biology (see, e.g., Podolyan and Karypis, 2009), we study the problem

of finding a large common dense subgraph in multiple graphs.

1.2 Contributions

In this paper we make several contributions. Lovász (1979) introduced the notion of orthogonal

labellings and used it to define the ϑ function. We show that for any orthogonal labelling one can

define a Kernel matrix, K. Using this matrix K, one can compute an upper-bound on the Lovász ϑ
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function by solving a SVM. Furthermore we show that

min
K∈K (G)

ω(K) = ϑ(G),

where ω(K) is the optimal SVM objective function. Finding a common dense region in multiple

graphs is known to be computationally difficult problem. One of the main contribution of this paper

is to show how the connection of ϑ to SVMs can be exploited to find a dense subgraph in multiple

graphs. We extend the idea of orthogonal labelling to multiple graphs by introducing the notion

of common orthogonal labelling. This allows us to use a formulation based on multiple kernel

learning for this problem. The proposed method beats existing methods by an order of magnitude.

Our results on the well-known benchmark DIMACS data set show that the proposed method can

identify dense graphs in large variety of settings, while state of the art method fails. An important

contribution of this paper is to introduce SVM− ϑ graphs, on which Lovász ϑ function can be

well approximated by SVM. It is interesting to note that G(n, p) graphs are SVM − ϑ graphs.

In many approximation algorithms, the ϑ function needs to be computed on G(n, p) graphs. An

immediate consequence of our result is that one does not need to solve an SDP to compute the ϑ

function but can potentially use an SVM to approximate it. An extremely difficult instance of dense

subgraph recovery problem is to pose the question of finding a hidden clique in a random graph.

State of the art approaches are not practical for large graphs as they use Lovász ϑ function (Feige

and Krauthgamer, 2000). Another key contribution of this paper is show that one can find a planted

clique by solving an SVM. In particular, we show that in a G(n,1− p) graph even if we embed a

clique of size k = Θ
(√

n(1− p)/p
)
, the resultant graph is a SVM−ϑ graph. Furthermore, even

if embed a sparse random subgraph in a large random graph, the resultant graph turns out to be

SVM− ϑ graph. In both cases one can prove that the SVM solution can be used to recover the

planted subgraph.

1.2.1 STRUCTURE OF THE PAPER

In Section 2 we review the definition of orthogonal labeling and establish a connection between

Lovász ϑ function and a kernel learning problem on one class problem. We extend the notion

of orthogonal labellings for single graphs to include multiple graphs. We introduce the notion of

common orthogonal labeling to multiple graphs in Section 3. This leads to a MKL based formulation

which is capable of finding a common dense region. Next we present one of the major contributions

of this paper. In Section 4 we establish that there exists graphs on which the Lovász ϑ function

can be well approximated by an SVM. Furthermore we show that the the graph associated with

the planted clique problem also satisfies this property. In Section 5 we empirically evaluate the

performance of the proposed algorithms on large variety of graphs.

1.2.2 NOTATION

We represent vectors using lower case bold letters a,b, . . ., etc., and matrices using upper case bold

letters A,B, . . . etc.; with ai referring to ith element of a, and similarly Ai j referring to (i, j)th entry

of matrix A. We use notation [n] to denote the set {1,2, . . . ,n}. For a vector in R
d , we denote the

Euclidean norm by ‖.‖ and the infinity norm by ‖.‖∞. The inequality a ≥ 0 is true if it the inequality

holds element-wise. Let S d−1 = {u ∈R
d−1 |‖u‖2 = 1} denote a (d−1) dimensional sphere. Let Sn

denote the set of n× n square symmetric matrices and S+
n denote n× n square symmetric positive

semidefinite matrices. For any matrix A ∈ R
n×n, we denote the eigenvalues λ1(A) ≥ . . . ≥ λn(A),
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and ‖A‖ =
√

λ1(A⊤A). diag(r) will denote a diagonal matrix with diagonal entries defined by

components of r.

Support vector machines (SVMs) have emerged as a powerful tool for binary classification

problems (Vapnik, 1995). SVMs are posed as a Convex Quadratic program (CQP) and can be

solved in linear time (Hush et al., 2006). In this paper we will extensively use a variation of the

SVM formulation, known as the one-class SVM (Schölkopf et al., 2001), and written as

ω(K) = max
αi≥0,i=1,...,n

f (α;K)

(

= 2
n

∑
i=1

αi −
n

∑
i, j=1

αiα jKi j

)

, (1)

where K ∈ S+
n is called the kernel matrix. This formulation can be solved in O(n2) time (Hush et al.,

2006). In the sequel, for the sake of brevity we will denote (1) as SVM formulation.

Let G = (V,E) be a graph of order n with vertex set V = [n] and edge set E ⊆V ×V . Let A ∈ Sn

denote the adjacency matrix of G where Ai j = 1 if edge (i, j) ∈ E, and 0 otherwise. Let Ḡ denote

the complement graph of G. The adjacency matrix of Ḡ is Ā = ee⊤− I−A, where e = [1,1, . . . ,1]⊤

is a vector of length n containing all 1’s, and I denotes the identity matrix. We denote the indicator

vector for some set S ⊆V as eS which is one for all i ∈ S and zero in other co-ordinates.

Let Ni(G) = { j : (i, j) ∈ E} denote the neighbourhood of node i ∈ V ; di(G) = |Ni(G)| denote

the degree of node i; and γ(G) = |E|/
(|V |

2

)
denote the density of graph G. Let GS = (S,ES) denote

the subgraph induced by S ⊆ V in graph G. An independent set in G (a clique in Ḡ) is a subset

of vertices S ⊆ V for which no (every) pair of vertices has an edge in G (in Ḡ). Our notations are

standard, see Bollobás (1998).

An event An holds with high probability if P(An) tends to 1 as n goes to ∞. The notations

O,o,Ω,Θ will denote the standard measures defined in asymptotic analysis (see, e.g., Cormen et al.,

2009, Chapter 3).

2. Lovász theta Function and Kernel Learning

Consider the problem of embedding a graph G = (V,E) on an unit sphere Sd−1. The study of this

problem was initiated by Lovász (1979) who introduced the idea of orthogonal labelling:

Definition 1 (Lovász, 1979) An orthogonal labelling of graph G = (V,E) with |V |= n, is a matrix

U = [u1, . . . ,un] ∈ R
d×n such that u⊤

i u j = 0 whenever (i, j) 6∈ E and ui ∈ S d−1 ∀ i ∈ [n].

Let Lab(G) denote the set of orthogonal labellings of graph G, given by:

Lab(G) := {U = [u1, . . . ,un] |ui ∈ S d−1, u⊤
i u j = 0 ∀ (i, j) 6∈ E}.

Using Lab(G), Lovász (1979) defined ϑ(G) as follows:

ϑ(G) = min
U∈Lab(G)

min
c∈S d−1

max
i

(
c⊤ui

)−2
.

In the sequel we will sometimes denote ϑ(G) by ϑ when the argument is clear from the context.

There exist several other equivalent definitions of ϑ function, for a comprehensive discussion see

monograph by Knuth (1994).
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It can be shown that ϑ serves as an upper-bound on the size of maximum independent set,

ALPHA(G),1 of a graph G (Lovász, 1979). Indeed for any graph G,

ALPHA(G)≤ ϑ(G).

Computing ALPHA(G) is a classic NP-hard problem (Garey and Johnson, 1979), which is further-

more known to be very hard even to approximate (Håstad, 1999). However ϑ(G), which can be

computed in polynomial time by solving an SDP, gives a polynomial time computable upper-bound

on ALPHA(G). Since then Lovász ϑ function has been extensively used in solving a variety of

algorithmic problems (see, e.g., Coja-Oghlan and Taraz, 2004; Krivelevich, 2002; Karger et al.,

1998).

2.1 The Relationship between SVMs and ϑ(G)

In this subsection we establish that the ϑ(G) function can be re-stated as a Kernel learning problem.

An interesting characterization of ϑ function involving convex quadratic program (CQP) was given

by Luz and Schrijver (2006), which we describe below:

Theorem 2 (Luz and Schrijver, 2006) For a graph G = (V,E) having n vertices, let C ∈ R
n×n be

an n×n matrix with Ci j = 0 whenever (i, j) 6∈ E. Then,

ϑ(G) = min
C

v(G,C), where

v(G,C) = max
x≥0

2x⊤e−x⊤
(

C

−λn(C)
+ I

)

x

︸ ︷︷ ︸

gG(x)

.

Proof See Luz and Schrijver (2006).

The above theorem can also be understood from a Kernel learning perspective in the SVM setting.

Observe that for every feasible choice of C, there exists an orthogonal labelling, U where U⊤U =
I+ C

−λn(C) . Taking a cue from this observation we state and prove the following theorem from first

principles.

Theorem 3 For an undirected graph G = (V,E), with |V |= n, let

K (G) := {K ∈ S+
n | Kii = 1, i ∈ [n],Ki j = 0,(i, j) 6∈ E}.

Then,

ϑ(G) = min
K∈K (G)

ω(K).

Proof We begin by noting that any K ∈ K (G) is positive semidefinite and hence there exists U ∈
R

d×n such that K = U⊤U. Note that Ki j = u⊤
i u j where ui is a column of U. Hence by inspection

it is clear that the columns of U define an orthogonal labelling on G, that is, bU ∈ Lab(G). Using

a similar argument we can show that for any U ∈ Lab(G), the matrix K = U⊤U, is an element

of K (G). The set of valid kernel matrices K (G) is thus equivalent to Lab(G). Note that if U

1. Usually in Algorithms literature, the size of the largest independent set in a graph G is denoted by α(G). We have

chosen to denote it by ALPHA(G) to avoid conflict with the notation αi for Support vectors.
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is a labelling then U = Udiag(ε) is also an orthogonal labelling for any ε⊤ = [ε1, . . . ,εn] where

εi ∈ {1,−1}∀ i ∈ [n]. It thus suffices to consider only those labellings for which c⊤ui ≥ 0∀ i ∈ [n]
holds. For a fixed c, one can rewrite

max
i

1

(c⊤ui)2
=

(

min
t

t2 s.t.
1

c⊤ui

≤ t ∀ i ∈ [n]

)

.

Setting w = 2tc yields the following relation

min
c∈S d−1

max
i

1

(c⊤ui)2
=

(

min
w∈Rd

‖w‖2

4
s.t. w⊤ui ≥ 2 ∀ i ∈ [n]

)

.

This establishes that given an orthogonal labelling U, the minimization of c is obtained by solving

a convex quadratic program (CQP) which is equivalent to solving a SVM. Application of strong

duality immediately leads to the claim

min
c∈S d−1

max
i

1

(c⊤ui)2
= ω(K)

where K = U⊤U and ω(K) is defined in (1). As there is a correspondence between each element of

Lab(G) and K minimization of ω(K) over K is equivalent to computing the ϑ(G) function.

Theorem 3 establishes a connection between ϑ(G) and ω(K), two well studied formulations in

Graph theory and Machine Learning. As a consequence this immediately opens up the possibility of

applying large-scale Kernel learning algorithms (see, e.g., Hu et al., 2011) for computing ϑ function.

In this paper we do not explore this direction further, leaving it for future study, but instead focus

on another important consequence of Theorem 3. The theorem establishes that if we choose not to

optimize over all possible labellings but instead fix an orthogonal labelling and then, one can easily

compute an upper-bound on ALPHA(G) by solving an SVM. See that for any graph G

ALPHA(G)≤ ϑ(G)≤ ω(K) ∀ K ∈ K (G).

As SVMs have linear time complexity (Hush et al., 2006) this could be an efficient alternative for

computing upper-bounds on size of the maximum independent set for any chosen labelling.

In Theorem 2, if we fix C = A, the adjacency matrix, we obtain a very interesting orthogonal

labelling, which we will refer to as LS labelling as it was first introduced by Luz and Schrijver

(2006). In Q graphs, introduced by Luz (1995), the LS labelling recovers ALPHA(G) by solving a

CQP. The CQP is obtained by setting C = A in Theorem 2.

Definition 4 (Luz, 1995) A graph G, with adjacency matrix A, is called a Q graph whenever

ALPHA(G) = v(G,A) where v(G,A) is defined in Theorem 2.

Indeed, on a Q graph, computation of the ϑ function reduces to computing the minimum eigenvalue

and solving a CQP, which in general has a complexity of O(n3). By Theorem 3, one can now state

that on Q graphs evaluating the ϑ function is equal to solving an SVM, a special case of CQP, which

can be solved in O(n2) time (Hush et al., 2006). Keeping computational advantages in mind it is

interesting to characterize Q graphs.
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Theorem 5 (Luz, 1995) For a simple unweighted graph G = (V,E), let A denote the adjacency

matrix , S be the largest independent set, v(G,A) and gG(x) be defined as in Theorem 2. The graph

G is a Q graph iff

−λn(A)≤ min
i∈V\S

|Ni(G)∩S|.

Furthermore v(G,A) = gG(eS), where eS is the indicator vector on S.

Proof See Theorem 4 in Luz (1995).

In Section 4 we will use this characterization to show that random graphs with planted cliques are

not Q graphs.

Inspired by the computational simplicity of the LS labelling, we study it more closely. As a

labelling is completely defined by the associated kernel matrix, we refer to the following matrix

K =
A

ρ
+ I where ρ ≥−λn(A) (2)

as the LS labelling. The KKT conditions for ω(K) in (1) are given by

αi +
1

ρ ∑
(i, j)∈E

Ai jα j = 1+µi, µiαi = 0, µi ≥ 0. (3)

Direct algebra yields

ω(K) =
n

∑
i=1

α∗
i (4)

when α∗ satisfies the KKT conditions.

2.2 On Regular Graphs

Before ending this section we would like to discuss the case of regular graphs. A graph is said to

be d−regular if all nodes haves the same degree d. For such graphs one can compute an upper-

bound, popularly known as Hoffman bound, on ALPHA(G) via the minimum eigenvalue of G.

More specifically,

Theorem 6 (Hoffman and Howes, 1970) For a d-regular graph, G, on n vertices and adjacency

matrix A,

ALPHA(G)≤ n

1− d
λn

where λn is the smallest eigenvalue of A.

Computation of this bound involves solving an eigenvalue problem, a significantly cheaper option

than computing the ϑ function. However ϑ yields a tighter bound than the Hoffman bound. It was

indeed proved (Lovász, 1979) that

ϑ(G)≤ n

1− d
λn

.

It is interesting to note that ω(K) equals the Hoffman bound on d-regular graphs. To this end we

have,
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Lemma 7 Let G = (V,E), be a d−regular graph with adjacency matrix A, and |V |= n. Then,

ω(K) =
n

1+ d
ρ

where K and ρ are defined by (2).

This was also derived in Luz (1995) as Corollary 1. To make the paper self-contained we give a

short proof.

Proof For any d-regular graph the largest eigenvalue is d and the corresponding eigenvector is e. It

is easy to verify that αi =
1

1+ d
ρ

satisfies KKT conditions (3) and hence by (4) the lemma is proved.

The lemma holds for any ρ ≥−λn and consequently, for regular graphs, ω(K) equals the Hoffman

bound whenever ρ =−λn.

Before we discuss the applicability of the results obtained here to random graphs we study the

interesting problem of finding a dense common subgraph in multiple graphs.

3. Finding Large Dense Regions in Multiple Graphs

The problem of finding a dense subgraph in a single graph is a computationally challenging problem

(Pardalos and Rebennack, 2010). In this section we attempt an even more difficult version of the

problem, namely that of finding a common large dense region in multiple graphs. Most methods

which apply to single graphs (Lee et al., 2010) do not extend to the case of multiple graphs. An

interesting method was proposed by Jiang and Pei (2009), which uses an enumerative strategy for

finding a common dense subgraph in multiple graphs. This section presents one of the main con-

tributions of this paper. It introduces the notion of common orthogonal labelling and proposes a

Multiple Kernel Learning (MKL) (Lanckriet et al., 2004) inspired formulation. Later on we will

see experimentally how this formulation achieves an order of magnitude scalability when compared

with Jiang and Pei (2009).

3.1 Dense Common Subgraph Detection

Jiang and Pei (2009) studied the problem of finding all possible common subgraphs in graphs

G(1), . . . ,G(m) for a given choice of parameters γ(1), . . . ,γ(m); such that the subgraphs have density

at least γ(l) in graph G(l) for all l ∈ {1, . . . ,m} respectively. The maximal quasiclique size depends

on the choice of parameters γ(1), . . . ,γ(m). In fact, if the parameters are not chosen properly the

algorithm may fail to return any solution at all. A different choice of parameters requires solving

the problem again. As a consequence one might have to run several iterations of the algorithm with

different parameter choices before obtaining a desired subgraph.

The approach is essentially enumerative in nature, and consequently, the space and time com-

plexity of the algorithm is exponential in the size of the largest possible clique, rendering it im-

practical for finding large dense regions. For example, finding subgraphs of size 60 requires 11.5
hours (see Figure 17 in Jiang and Pei, 2009). Clearly this algorithm is not suitable for finding large

subgraphs.

In practice one might wish to quickly find a single subset of vertices which is large (some

fraction of the overall graph) and which induces a dense subgraph in each of the original graphs
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G(l) ∈ G without fine tuning of parameters; or multiple runs of the algorithm. In other words, one

would like to have a subgraph finding algorithm which is parameter-less. To this extent, we define

the problem formally as follows:

Definition 8 (Problem definition) Let G := {G(1), . . . ,G(m)} be a set of simple, undirected graphs

G(l) = (V,E(l)) defined on vertex set V = {1, . . . ,n}. Find a common subgraph which is dense in all

the graphs.

The remainder of this section is organized as follows: we develop the notion of common or-

thogonal labelling and establish the connection to MKL formulation in Section 3.1.1. Section 3.1.2

presents our algorithm for recovery of large common dense subgraph from multiple graphs.

3.1.1 COMMON ORTHOGONAL LABELLING AND MKL FORMULATION

We begin by defining common orthogonal labelling below:

Definition 9 Given set of simple undirected graphs G on a common vertex set V = {1, . . . ,n}, the

common orthogonal labelling u1, . . . ,un is given by ui ∈ S d−1 such that u⊤
i u j = 0 if (i, j) /∈E(l) ∀l =

{1, . . . ,m}.
Let K (G) denote the set of common orthogonal labellings of G so that

K (G) =
{

K : K ∈ Sn
+, Ki j = 0 i f (i, j) /∈ E(l) ∀1 ≤ l ≤ m

}
.

The common orthogonal labellings of G is related to the union graph G∪ = (V,E∪) constructed

from G as follows: an edge (i, j) is present in the union graph G∪ if it is present in at least one

of the original graphs G(l) ∈ G, and absent otherwise, that is, (i, j) /∈ E∪ iff (i, j) /∈ E(l)∀l . By

construction, we see

K (G) = K (G∪).

Let ϒ(G) denote the size of the maximum common independent set, that is, subset of vertices CS⊆V

of maximum possible cardinality for which the subgraph G
(l)
CS induced by CS in graph G(l) is an

independent set for all G(l) ∈ G. It is immediate that ϒ(G) is equal to the size of the maximum

independent set in the union graph ALPHA(G∪). Following the arguments in Theorem 3, one can

show

ALPHA(G∪) = ϒ(G)≤ ϑ(G∪)≤ ω(K) ∀ K ∈ K (G). (5)

As noted in the previous section, the optimization problem in (5) is a SDP, which cannot be solved

for large graphs. Let K(l) = A(l)

ρ(l) + I and ρ(l) ≥−λn(A
(l)) be the LS labelling for graph G(l). In the

remainder of this section, we use the notation K := {K(1), . . . ,K(m)} to denote the set of orthogonal

labellings corresponding to the graphs G.

We consider the set of convex combinations of the labellings of the original graphs K such that

conv(K) :=
{

K : K =
m

∑
l=1

δ(l)K(l) withδ(l) ≥ 0,
m

∑
l=1

δ(l) = 1
}
.

Note that K
(l)
i j is zero whenever edge (i, j) is absent in G∪ for all graphs G(l) and consequently Ki j =

0. Thus K ∈ conv(K) is a common orthogonal labelling and the following is immediate

conv(K)⊆ K (G).
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Instead of solving the original problem, we consider the following problem

ψ(K) = min
K∈conv(K)

ω(K). (6)

An immediate advantage of this formulation over the SDP formulation is that it could be solved

efficiently by standard MKL solvers (Rakotomamonjy et al., 2008; Aflalo et al., 2011). The quantity,

ψ(K) also defines an upper bound on the size of the maximum common independent set. More

precisely

ϒ(G)≤ min
K∈K (G)

ω(K)≤ ψ(K).

Rewriting (6), we get

ψ(K) = min
K∈conv(K)

ω(K) = min
δ(l)≥0,∑δ(l)=1

ω
(

∑
l

δ(l)K(l)
)

= min
δ(l)≥0,∑δ(l)=1

max
α≥0

∑
l

δ(l) f (α;K(l))

= max
α≥0

min
δ(l)≥0,∑δ(l)=1

∑
l

δ(l) f (α;K(l)).

The optimization problem is linear in δ and strictly feasible in both δ and α. One can interchange

minδ maxα to maxα minδ, Sion (1958) yielding the last equality. For any vector, x = [x1, . . . ,xd]
⊤,

min
0≤δi≤1,∑d

i=1 δi=1
δ⊤x = min(x1, . . . ,xd) = max

t,xi≥t
t.

An alternative re-statement of (6) is

ψ(K) = max
t∈R,αi≥0

t s.t. f (α;K(l))≥ t ∀ 1 ≤ l ≤ m. (7)

The Lagrange dual of (7) is given by

L(t,α,λ,δ) = t +
m

∑
l=1

λl

(
f (α;K(l))− t

)
+

n

∑
i=1

δiαi,

where λ ∈ R
m
+ and δ ∈ R

n
+ denote the dual variables. The KKT conditions yield

2
m

∑
l=1

λ∗
l

(
1−α∗

i −
1

ρ(l) ∑
j

A
(l)
i j α∗

j

)
+δ∗i = 0, δ∗i α∗

i = 0, δ∗i ,α
∗
i ≥ 0∀ i ∈ [n], and (8)

λ∗
l ( f (α∗;K(l))− t∗) = 0, ∑

l

λ∗
l = 1, λ∗

l ≥ 0∀ l ∈ [m]. (9)

The above optimization can be readily solved by state of the art MKL solvers. The obvious question

that arises is when, or precisely, for which sets of graphs does solving (6) yield good approximation

to the original problem of computing ϒ(G).

In order to address this, we begin by defining the family of Common Quadratically-stable (CQ )

sets of graphs.
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Definition 10 A set of graphs G= {G(1), . . . ,G(m) : G(i) = (V,E(i))} having a common vertex set V

is Common Quadratically-stable if the optimal value ψ(K) in (6) is equal to the size of the maximum

common independent set ϒ(G), that is,

ϒ(G) = ψ(K), (10)

where K is the set of LS labellings of graphs G.

Remark 11 We use the notation G ∈ CQ to denote that the set of graphs G satisfies (10), that is, it

is Common Quadratically-stable.

Let Y ⊆ V denote the maximum common independent set in G; with indicator vector eY . We now

characterize CQ family (of sets of graphs having a common vertex set) in the following result.

Theorem 12 Given set of graphs G = {G(1), . . . ,G(m)} having common vertex set V and LS la-

bellings K(l) = A(l)

ρ(l) + I and ρ(l) ≥−λn(A
(l)) ∀ l ∈ [m]; the optimal value ψ(K) in (6) is equal to the

size of the maximum common independent set Y , that is, the set G is Common Quadratically-stable

(G ∈ CQ ) if there exists non-empty GQ ⊆G such that

ρ(l) ≤ min
i/∈CS

|Ni(G
(l))∩Y | ∀G(l) ∈GQ. (11)

Proof Let L := |GQ| denote the number of graphs which satisfy the property

ρ(l) ≤ min
i/∈Y

|Ni(G
(l))∩Y | ∀G(l) ∈GQ.

We consider primal solution α∗ = eY and dual solution given by

λ∗
l =

{
1
L

if l : G(l) ∈GQ

0 otherwise
, and δ∗i =

{ 0 if i ∈ Y

∑l 2λ∗
l (1−

|Ni(G
(l))∩Y |

ρ(l) ) otherwise
.

This solution satisfies the KKT conditions in (8) and (9). Further, the optimization in (7) is convex;

and the KKT conditions are sufficient for optimality. The optimal value is given by t∗ = ∑n
i=1 α∗

i

where α∗ = eY yielding ψ(K) = ϒ(G).

Recall as in (5) that minK∈K (G) ω(K) is equivalent to computing Lovász ϑ function of G∪. There-

fore, one can easily solve it whenever G∪ is a Q graph by solving ω(K∪) where K∪ = A∪
ρ + I and

ρ ≥−λn(A
∪) whenever ρ ≤ mini/∈Y |Ni(G

∪)∩Y |. It is of interest to find when G∪ is not a Q graph

yet G is Complex Quadratically-stable (G ∈ CQ ). One can easily see by construction of G∪ that

min
i/∈Y

|Ni(G
(l))∩Y | ≤ min

i/∈Y
|Ni(G

∪)∩Y | ∀G(l) ∈G.

However, the relationship between minimum eigenvalue ρ(l) =−λn(A
(l)) of original graphs G(l) ∈

G, and minimum eigenvalue ρ∪ =−λn(A
∪) of union graph G∪ is not clear, that is, ρ∪ can be greater

or less than ρ(l) (see, e.g., Brouwer and Haemers, 2012, 3.1-3.2). We illustrate this in the following

example.

Example 1 Consider the graphs G(1) and G(2) shown in Figure 1. The maximum common inde-

pendent set is Y = {a,b,d,e} and mini/∈Y |Ni ∩Y | = 2. One can show that G ∈ CQ since ρ(1) ≤
mini/∈Y |Ni ∩Y |, while the union graph G∪ is not a Q graph. Therefore, one can compute ϒ(G)
by solving the MKL optimization in (7) even though the maximum independent set problem in G∪

cannot be solved using QP. Thus, the MKL formulation is advantageous whenever that there exists

some graph G(l) ∈G which satisfies (11), even though G∪ is not a Q graph.
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a b c d e

f g

h

i j

(a) G(1) (ρ = 2)

a b c d e

f g

h

i j

(b) G(2) (ρ = 2.3429)

a b c d e

f g

h

i j

(c) G∪ (ρ = 2.5810)

Graph(s) ρ mini/∈Y |Ni ∩Y | ω(K) ψ(K)

G∪ 2.5810 2 4.3189 -

G - - - 4.0

Figure 1: Example of CQ set of graphs. Here G = {G(1),G(2)} and maximum common in-

dependent set is Y = {a,b,d,e} (highlighted in blue). The graph G(1) satisfies ρ ≤
mini/∈Y |Ni ∩Y | in (11); while G(2) and G∪ do not. Hence G ∈ CQ , while union graph

G∪ is not a Q graph. The MKL optimization yields ψ(K) = 4 which is equal to size of

maximum common independent set Y = {a,b,d,e}.

3.1.2 SUBGRAPH DETECTION BASED ON MULTIPLE GRAPHS

In the remainder of this section, we relate the optimal solution (support vectors) of ω(K) and the

density of related induced subgraph for the single graph case; which we later extend to multiple

graphs. We first recall an interesting property of optimal solution α∗ which maximizes f (α;K) in

(1) when G is a Q graph.

Remark 13 (Luz, 1995) Let G = (V,E) be a Q graph having unique maximum independent set

S ⊆V . Then, the optimal solution α∗ which maximizes objective f (α;K) in (1) is given by α∗ = eS,

that is,

α∗
i =

{

1 if i ∈ S

0 otherwise
.

The above claim follows from observing that α∗ satisfies the Karush-Kuhn-Tucker (KKT) condi-

tions, which is sufficient for optimality. The key idea here is that choosing the vertices having

support vectors with high numerical values yields a subgraph with low density (or more precisely,

independent set with zero density for Q graphs). We extend this notion to general graphs by relating

the density of the induced subgraph obtained by choosing vertices having “high” support through

the KKT conditions.

We now consider a general graph G = (V,E) with adjacency matrix A, and let α∗ be the optimal

solution of (1) when K = A
ρ + I with ρ ≥ −λn(A). We wish to relate the density of the subgraph

GSc
induced by the “high” support vectors Sc := {i : α∗

i ≥ c} for some threshold c ∈ (0,1).
Let ᾱ∗

i (S) denote the average of the support vectors α∗
j over the neighbourhood Ni(GS) of node

i in subgraph GS induced by S ⊆V in graph G; and ᾱ∗
S be the minimum ᾱ∗

i (S) over all i ∈ S, that is,

ᾱ∗
i (S) =

∑ j∈S Ai jα
∗
i

di(GS)
, and ᾱ∗

S = min
i∈S

ᾱ∗
i (S). (12)
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With the above notation, one can show the following:

Lemma 14 Let G = (V,E) be a simple graph with at least one edge. Let α∗ be the optimal solution

of (1) where K = (A
ρ + I) denotes the LS labelling of G and ρ ≥−λn(A). The set Sc = {i : α∗

i > c}
with cardinality nc induces a subgraph GSc

with density γ(GSc
) where

γ(GSc
)≤ ρ(1− c)

ᾱ∗
Sc
(nc −1)

≤ ρ(1− c)

c(nc −1)
.

Proof The Karush-Kuhn Tucker (KKT) conditions for (1) are given in (3). Using definition in (12),

one can obtain

ᾱ∗
Sc ∑

i∈Sc

di(GSc
)≤ ∑

i∈Sc

ᾱ∗
i (Sc)di(GSc

) = ∑
i, j∈Sc

Ai jα
∗
j ≤ ρ(nc − ∑

i∈Sc

α∗
i )≤ ρnc(1− c).

Observing that ∑i∈Sc
di(GSc

) = 2|ESc
|, and dividing by

(
nc

2

)
yields the desired result, that is,

γ(GSc
)≤ ρ(1− c)

ᾱ∗
Sc
(nc −1)

≤ ρ(1− c)

c(nc −1)
(∵ ᾱ∗

Sc
≥ c by defn. in (12)).

This result provides an upper bound on the density γ(GSc
) of the subgraph induced by set Sc in graph

G for general c. Two special cases of interest are the set of non-zero support vectors SV = {i : α∗
i >

0} and the set of support vectors with support one S1 := {i : α∗
i = 1} respectively.

Setting c = 0, one can show the set of (non-zero) support vectors SV = {i : α∗
i > 0} with car-

dinality nSV = |SV | induces a subgraph GSV having density γ(GSV ) at most ρ/ᾱ∗
SV (nSV −1), that

is,

γ(GSV )≤
ρ

ᾱ∗
SV (nSV −1)

.

This provides a simple procedure for finding a sparse subgraph by selection the subgraph GSV

induced by the set of non-zero support vectors SV . It also gives an upper bound on density.

Setting c arbitrarily close to 1, one can show the set S1 = {i : α∗
i = 1} of support vectors having

support 1 is an independent set in G. An extreme case is when G is a Q graph and all support

vectors are 1 over the maximum independent set and 0 otherwise.

We now consider the problem of common dense subgraph recovery from multiple graphs based

on the MKL formulation in (7). Let (α∗, t∗) be the optimal solution of (7). One can partition the set

G into two sets: active graphs GA ⊆G for which the constraint in (7) is tight, that is,

f (α∗,K(l)) = t∗ ∀ G(l) ∈Ga,

and inactive graphs Gi :=G\Ga, where the constraint is not tight. Consequently, the analysis in the

single graph case based on selection of support vector above certain threshold cannot be directly

extended to multiple graph case. In the remainder, we address this using a two step procedure.

Let SV := {i : α∗
i > 0} and Sc := {i : α∗

i > c} denote the set of support vectors, and the set of

support vectors having “high” support respectively for some appropriate choice of c ∈ [0,1). Let
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ᾱ
(l)
i (S) denote the average of the support vectors α∗

j over the neighbourhood Ni(G
(l)
S ) of node i in

subgraph G
(l)
S induced by S ⊆V in graph G(l); and ᾱ∗

S be the minimum ᾱ∗
i (S) over all i ∈ S, that is,

ᾱ
(l)
i (S) =

∑ j∈S Ai jα
∗
i

di(G
(l)
S )

, and, ᾱ
(l)
S = min

i∈S
ᾱ
(l)
i (S).

Notice that since ᾱ
(l)
S is minimum (over all vertices in the set S) of average value of support vectors

in the neighbourhood Ni(S) for a vertex i ∈ S, it is equal or greater than the minimum support vector

mini∈S α∗
i in S. Let αmin = mini∈SV α∗

i denote the minimum non-zero support vector. We define the

sets T (l) ⊆V and T ⊆V as

T (l) := T (l)(SV ) =
{

i ∈ SV : 1−αl −di(G
(l)
SV )ᾱ

(l)
SV/ρ(l) > 0

}
, T = ∩m

l=1T (l). (13)

Then, one can show the following

Lemma 15 Given set of graphs G = {G(l) : G(l) = (V,E(l))∀ l ∈ [m]} defined on common vertex

set V with LS labelling K where K(l) = A(l)

ρ(l) + I and ρ(l) ≥ −λn(A
(l)). Let (α∗, t∗) be the optimal

solution of (7), and T be defined as in (13). The set T with cardinality nT = |T | induces a subgraph

G
(l)
T in graph G(l) ∈G having density at most γ(G

(l)
T ) given by

γ(G
(l)
T )≤ (1−αmin)ρ

(l)

ᾱ
(l)
SV (nT −1)

∀G(l) ∈G.

Proof The KKT conditions in (8) and (9) yield λ∗
l = 0 for G(l) ∈Gi. Further,

0 =
n

∑
i=1

α∗
i

(

2
m

∑
l=1

λ∗
l

(
1−α∗

i −
1

ρ(l) ∑
j

A
(l)
i j α∗

j

)
+δ∗i

)

= ∑
l:G(l)∈Ga

λ∗
l ∑

i

α∗
i

(
1−α∗

i −
1

ρ(l) ∑
j

A
(l)
i j α∗

j

)
(∵ α∗

i δ∗i = 0∀i)

= ∑
l:G(l)∈Ga

λ∗
l (t

∗−∑
i

α∗
i ) = t∗−∑

i

α∗
i (∵ ∑

l

λ∗
l = 1).

This yields t∗ = ∑i α∗
i , that is, the objective is equal to sum of the support vectors. We can rewrite

feasibility condition f (α∗;K(l))≥ t∗ for all graphs G(l) ∈G :

0 ≤ ∑
i∈SV

α∗
i (2−α∗

i −∑
j 6=i

A
(l)
i j α∗

j)− t∗ = ∑
i∈SV

α∗
i (1−α∗

i −∑
j 6=i

A
(l)
i j α∗

j)

= ∑
i∈T

α∗
i

(
1−α∗

i −
di(G

(l)
SV )

ρ(l)
ᾱ
(l)
SV

)

︸ ︷︷ ︸

>0

+∑
i/∈T

α∗
i

(
1−α∗

i −
di(G

(l)
SV )

ρ(l)
ᾱ
(l)
SV

)

︸ ︷︷ ︸

<0

≤ ∑
i∈T

α∗
i

(
1−α∗

i −
di(G

(l)
SV )

ρ(l)
ᾱ
(l)
SV

)
≤ ∑

i∈T

α∗
i

(
1−α∗

i −
di(G

(l)
T )

ρ(l)
ᾱ
(l)
SV

)

≤ ∑
i∈T

α∗
i

(
1−αmin −

di(G
(l)
T )

ρ(l)
ᾱ
(l)
SV

)
≤ ∑

i∈T

(
1−αmin −

di(G
(l)
T )

ρ(l)
ᾱ
(l)
SV

)

≤ nT (1−αmin)−
ᾱ
(l)
SV

ρ(l) ∑
i∈T

di(G
(l)
T ) = nT (1−αmin)−

ᾱ
(l)
SV

ρ(l)
γ(G

(l)
T )nT (nT −1).
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Algorithm 1 T =CSS(G(1), . . . ,G(M))

Get α∗ using MKL solver to solve eqn. (7)

T = ∩m
l=1T (l) {eqn. (13)}

Return T

Dividing by
(

nT

2

)
and rewriting, we get

γ(G
(l)
T )≤ (1−αmin)ρ

(l)

ᾱ
(l)
SV (nT −1)

,

which completes the proof.

The above result allows us to build a parameter-less common sparse subgraph (CSS) algorithm

shown in Algorithm 1 having following advantages: it provides a theoretical bound on subgraph

density; and, it requires no parameters from the user beyond the set of graphs G.

The size of the induced subgraph nT is important in the overall quality of the solution. Ideally,

one would like nT to be some large fraction of the overall number of nodes N, typically nT/N ≤ 1/2.

However, if nT is very large, that is, nT/N ≃ 1, the density of the induced subgraph is close to the

average graph density. More generally, one might be interested in a trade-off between the subgraph

size nT and subgraph density γ(G
(l)
T ). Analogous to the simple graph case, we can improve the

subgraph density is obtained by choosing smaller region nodes Tc := {i ∈ T : α∗
i > c} ⊆ T . We

discuss this further in Section 5.2.

4. SVM−ϑ Graphs: Graphs Where ϑ(G) Can Be Approximated by SVM

Computing the Lovász function and related relaxations involves solving a semidefinite program.

Off the shelf SDP solvers are computationally very demanding and do not scale to graphs of more

than 5000 vertices. In this section we study Erdös-Rényi graphs, parametrized as G(n, p) where p

is probability of an edge and n is the number of vertices. As noted in Section 2, one can evaluate

the ϑ function in O(n3) on Q graphs. Further, we have equality ALPHA(G) = ϑ(G) = ω(K) for Q

graphs, where K is a LS labelling. It is well known that in G(n,1/2) graph, with high probability,

ALPHA(G) = Θ(logn) whereas ϑ(G) = Θ(
√

n) (Juhász, 1982; Coja-Oghlan, 2005). This immedi-

ately establishes a negative result that G(n,1/2) graphs are not Q graphs. In the following we will

show that despite the above negative result one can still obtain constant factor approximation to ϑ

function on random graphs by solving a SVM problem. We begin by introducing a class of graphs,

called SVM−ϑ graphs, where the gap between ϑ and ω(K) for K defined by (2) is not too large.

Subsequently we show that G(n, p) graphs and G(n, p) graphs with planted cliques are SVM−ϑ

graphs. This results immediately show that one can identify planted cliques or planted subgraphs.

Furthermore we prove a concentration result on ω(K) for G(n, p) graphs.

Definition 16 A family of graphs G = {G = (V,E)} is said to be SVM−ϑ graph family if there

exist a constant γ, such that for any graph G ∈ G with |V | ≥ n0, the following holds:

ω(K)≤ γϑ(G),

where ω(K) is defined in (1) and K is defined on G by (2).
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Such classes of graphs are interesting because of two reasons. Firstly on these class of graphs one

can approximate the Lovász function well without resorting to solving a SDP, and secondly the

ϑ function in turn can be used in the design and analysis of approximation algorithms. We will

demonstrate examples of such families of random graphs: the Erdös–Rényi random graph G(n, p)
and a planted variation. Here the relaxation ω(K) could be used in place of ϑ(G), resulting in

algorithms with the same quality guarantees but with faster running time—in particular, this will

allow the algorithms to be scaled to large graphs.

4.1 G(n, p) Graphs Are SVM−ϑ Graphs

In this section we show that G(n, p) graphs are indeed SVM−ϑ. We begin with some preliminaries.

4.1.1 PRELIMINARIES

The following lemma is well known (see Boyd and Vandenberghe, 2004, Section 9.1.2):

Lemma 17 A function g : C ⊂R
d →R is said to be strongly concave over C if there exists t > 0 such

that ∇2g(x)�−tI ∀ x ∈C. For such functions one can show that if p∗ = g(x∗) = maxx∈C g(x)<
∞ then

∀x ∈C :
t

2
‖x−x∗‖2 ≤ p∗−g(x) ≤ 1

2t
‖∇g(x)‖2.

The classical Erdös-Rényi random graph G(n, p) has n vertices and each edge (i, j) is present

independently with probability p. (In the closely related the G(n,M) model, a graph is chosen uni-

formly at random from the collection of all graphs which have n nodes and M edges, or, equivalently,

a set of M edges is chosen uniformly at random without replacement from the set of all possible
(

n
2

)
edges. With M =

(
n
2

)
p, the two models are essentially equivalent.) For many types of random

distributions, G(n, p) is considered a paradigm choice for input instances and hence both the combi-

natorial structure and the algorithmic theory of G(n, p) are of fundamental interest (Bollobás, 2001;

Janson et al., 2000; Frieze and McDiarmid, 1997). We list a few well known facts about G(n, p)
that will be used repeatedly.

Remark 18 For G(n, p) for any 0 ≤ p < 1,

• With probability 1−O(1/n), the degree of each vertex is in the range np±√
np logn.

• With probability 1 − e−nc

for some c > 0, the maximum eigenvalue is np(1 + o(1)). The

the minimum eigenvalue is in the range [−2
√

np(1− p),2
√

np(1− p)] (Füredi and Komlós,

1981),

• With high probability, ϑ(G(n, p)) = Θ(
√

n(1−p)
p

) [Coja-Oghlan, 2005; Juhász, 1982].

4.1.2 G(n, p) GRAPHS ARE SVM−ϑ

We are now ready to state our main result.

Theorem 19 Let G = G(n, p), with p(1− p) = Ω(n−1 log4 n). For every constant δ > 0,

ω(K)≤ (1+O(1))ϑ(G)

holds with probability 1−O(1/n), whenever K is defined in (2) with ρ = (1+δ)2
√

np(1− p).
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Proof By Remark 18 for all choices of δ > 0, the minimum eigenvalue of 1
ρ A+ I is, almost surely,

greater than 0 which implies that f (α,K) (see (1)) is strongly concave. As A is random we begin

by analyzing the KKT conditions (3) for E(A), the expectation of A. For G(n, p) graph E(A) =

p(ee⊤−I). For the given choice of ρ, the matrix K̃ = E(A)
ρ +I is positive definite. More importantly

f (α,K̃) is again strongly concave and attains maximum at a KKT point. By direct verification

α̂ = β̂e where β̂ = ρ
(n−1)p+ρ

satisfies the KKT conditions. More precisely

α̂+
1

ρ
E(A)α̂ = e. (14)

Thus α̂ is the optimal for the expected case with the optimal value, f̄ , given by

f̄ = max
α≥0

f (α,K̃) = 2
n

∑
i=1

α̂i − α̂⊤
(
E(A)

ρ
+ I

)

α̂ = nβ̂. (15)

By choice of ρ, for any p in the regime np ≥ 1 one notes that

β̂ =
ρ

(n−1)p+ρ
=

ρ

np
(1+o(1)) = 2(1+δ)

√

1− p

np
. (16)

The last equality holds by neglecting the o(1) term. Using the fact about degrees of vertices in

G(n, p), in the regime of interest,

a⊤i e = (n−1)p+∆i with |∆i| ≤
√

np logn, (17)

where a⊤i is the i th row of the adjacency matrix A. It is interesting to note that α̂ is an approximate

KKT point for (3). Indeed, for all i ∈ V , application of (17) and (16) alongwith the choice of ρ as

given in the statement of theorem we obtain

∣
∣
∣
∣
∣
α̂i +

1

ρ ∑
j

Ai jα̂ j −1

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

β̂

ρ
∆i

∣
∣
∣
∣
∣
≤
√

logn

np
. (18)

We would like to exploit this property to approximate the ω(K) for a random graph. To this end

note that

f (α̂;K) = α̂⊤e+
n

∑
i=1

α̂i

(

1− α̂i −
a⊤i e

ρ

)

= f̄ − β̂2

ρ

n

∑
i=1

∆i,

which on application of (18) and (16) yield

| f (α̂;K)− f̄ | ≤ β̂
n

∑
i=1

∣
∣
∣
∣
∣

β̂

ρ
∆i

∣
∣
∣
∣
∣
≤ nβ̂

√

logn

np
=

(

2(1+δ)

√

(1− p)

p

)√

logn

p
. (19)

As noted before the function f (α;K) is strongly concave with ∇2
α f (α;K)�− δ

1+δI for all feasible

α. Recalling a useful result from convex optimization, see Lemma 17, we obtain

ω(K)− f (α̂;K)≤ 1

2

(

1+
1

δ

)

‖∇ f (α̂;K)‖2. (20)
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Observing that ∇ f (α;K) = 2(e−α− A
ρ α) and using the relation between ‖ ·‖∞ and ‖.‖ along with

(18) and (17) gives ‖∇ f (α̂;K)‖ ≤ √
n‖∇ f (α̂;K)‖∞ ≤ 2

√
logn

p
. Plugging this estimate in (20) and

using equation (15) along with (19) we obtain

ω(K)≤ nβ̂+

(

1+
1

δ

)(
logn

p

)

+2(1+δ)

√

1− p

p

√

logn

p

= 2(1+δ)

√

n(1− p)

p
+O

(
logn

p

)

.

The second inequality is true because δ is constant. One notes that

for any p(1− p)≥ (logn)2

n
,

(
logn

p

)

≤
√

n(1− p)

p
(21)

holds. The result follows by dividing the first inequality by p2 and taking square roots. By choice

of p as stated in the theorem and for large enough n, one obtains

ω(K)≤ (1+O(1))

√

n(1− p)

p

and the theorem follows from Remark 18.

In the next section we show that when a large independent set is hidden in a random graph one can

still view it as a SVM−ϑ graph. This property can be very useful in detecting planted cliques in

dense graphs.

4.2 Finding Planted Cliques in Random Graphs

Finding large cliques or independent sets is a computationally difficult problem even in random

graphs. While it is known that the size of the largest clique or independent set in G(n,1/2) is 2 logn

with high probability, there is no known efficient algorithm to find a clique of size significantly larger

than logn - even a cryptographic application was suggested based on this (see the discussion and

references in the introduction of Feige and Krauthgamer, 2000). Motivated by this, the following

problem was introduced (Jerrum, 1992; Kucera, 1995).

Definition 20 (Hidden Planted Clique) A random G(n,q) graph is chosen first and then a clique

of size k is introduced in the first 1, . . . ,k vertices. The problem is to identify the clique.

The case of q = 1
2

is extensively studied in the literature. Kucera (1995) observed that if k =
Ω(

√
n logn), then the hidden clique can be easily discovered by examining the high degree vertices.

Alon et al. (1998) and Feige and Krauthgamer (2000) showed that if k = Ω(
√

n), then the hidden

clique can be discovered in polynomial time. No efficient algorithm is known to discover the hidden

clique if k = o(
√

n).

We consider the (equivalent) complement model Ḡ(n,1 − p,k) where an independent set is

planted on the first k vertices and apply the SVM based approach. We show that
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Theorem 21 For p(1− p) = Ω(n−1 log4 n), the graph G = Ḡ(n, 1− p, k) is a Q graph almost

surely if k = Ω
(

n2/3 p−1/3 ln1/3 n
)

.

Proof See Appendix B.1

The result shows that the SVM based formulation yields an integral solution for k ≥ c ·n2/3 ln1/3 n.

More precisely the optimal α for a given G has the property that αi = 1 whenever i ∈ {1, . . . ,k} oth-

erwise αi = 0 whenever k is in the stated regime. Unfortunately this is interesting but not very

competitive with state of the art. For p = 1
2

in the regime, k = Ω(
√

n logn), already the highest

degree vertices form a clique in the complement G(n,1/2,k) (Kucera, 1995). However, we show

next that in the regime k = Θ

(√
n(1−p)

p

)

, the graph Ḡ(n,1− p,k) is a SVM−ϑ graph. More-

over, we can identify the hidden independent set with high probability. In contrast to Feige and

Krauthgamer (2000), our algorithm does not involve a SDP and hence will scale to large problems.

In Feige and Krauthgamer (2000) the case of p = 1/2 was studied and it was conjectured that the re-

sults could possibly be extended for a general p ≤ 1
2
. In this paper we establish that for large planted

clique Ḡ(n,1− p,k) is indeed a SVM−ϑ graph. Moreover the proof motivates an algorithm capable

of recovering the clique.

To begin the investigation we will need to compute the ϑ function for Ḡ(n,1− p,k). For p= 1/2,

it was shown that the ϑ function is k (Feige and Krauthgamer, 2000). For a general p the ϑ function

is also the same as k. To this end we present the following theorem.

Theorem 22 Let G = Ḡ(n,1− p,k) where p satisfies p(1− p) = Ω(n−1 log4 n). If

k ≥ 2

√

(1− p)

p
n(1+o(1)),

then, with high probability, ϑ(G) = k.

Proof See Appendix B.2.

We study the planted clique problem where k is in the above regime. Indeed for such a choice of

k, the graph Ḡ(n,1− p,k) is a SVM−ϑ graph. One of the main contribution of this paper is the

following theorem.

Theorem 23 Let p(1− p)=Ω(n−1 log4 n) and δ> 0 be a given constant. For any G= Ḡ(n,1− p,k)

and k = 2t

√
n(1−p)

p
, for large enough constant t ≥ 1 with K as in (2) and

ρ =
(

2
√

np(1− p)+ kp
)

(1+δ),

the following holds:

ω(K)≤
(

1+
1

t
(1+δ)+δ

)

ϑ(G)+o(1), (22)

with probability at least 1−O(1/n).

Note that we need a stronger regime for p in the above theorem when compared to Theorem 19.

This is necessary in view of the conditions in Theorem 21 and Theorem 22.

As a preliminary, we need a bound on the minimum eigenvalue of Ḡ(n,1− p,k):
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Lemma 24 With high probability, the minimum eigenvalue of Ḡ(n,1− p,k) is bounded in absolute

value by 2
√

np(1− p)+ kp.

Proof We write the adjacency matrix A of Ḡ(n, p,k) as A′ =A+E where A′ is the adjacency matrix

of G(n,1− p) and observe that E is zero except for a k× k block where it is the adjacency matrix

of G(k,1− p). Using the Weyl perturbation inequality (Horn and Johnson, 1990), we deduce that

λn(A)≥ λn(A
′)−λ1(E). By Remark 18 we see that with high probability λn(A

′)≥−2
√

np(1− p)
and λ1(E) = kp

Proof (of Theorem 23) The proof is analogous to that of Theorem 19. Let A be the adjacency matrix

of G. By definition of ρ and by Lemma 24 we see that ρ = (1+δ)|λn(A)|. For any δ > 0, we see

that the minimum eigenvalue of 1
ρ A+ I is almost surely strictly greater than 0. As a consequence

the function f (α,K) (see (1)) is strongly concave for any instance of G. We begin by analysing the

KKT conditions, which are necessary and sufficient for optimising strongly concave problems. The

KKT conditions in (3) specialises to the graph G as follows

αi +
1
ρ ∑n

j=k+1 Ai jα j = 1+µi, µiαi = 0, µi ≥ 0 ∀1 ≤ i ≤ k; and

αi +
1
ρ ∑n

j=1 Ai jα j = 1+µi, µiαi = 0, µi ≥ 0 ∀k+1 ≤ i ≤ n.
(23)

Let us analyse the average case. By the conditions of the theorem, the expectation of A is defined

as follows

E(A)i j =

{
0 whenever 1 ≤ i, j ≤ k and i = j,
p otherwise.

By direct verification the matrix K̃ = E(A)
ρ + I is seen to be positive definite. More importantly

f (α,K̃) is again strongly concave and attains maximum at a KKT point. A KKT point for the

problem

max
α≥0

f (α,K̃)

is given by α̂ = [β1e⊤k β2e⊤(n−k)] where β1 and β2 satisfies

β1 +
(n− k)p

ρ
β2 = 1, and, β2 +

k

ρ
pβ1 +

(n− k−1)

ρ
pβ2 = 1;

which leads to

β1 =
1

1+ np
ρ (1− r)

, and, β2 =
1

1
1−r

+ np
ρ

.

For k and ρ as given, the value of r is defined as

r =
k

ρ
p =

t

(1+ t)(1+δ)
, 1− r ≈ 1

t +1
.

For small δ, the second approximation holds. Further noting that k = o(n) allows us to write

β1 =
(t +1)2

(t +1)2 + 1
2

√
np

1−p
1

1+δ

and β2 =
(t +1)

(t +1)+ 1
2

√
np

1−p
1

1+δ

. (24)

3514
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By construction α̂ is the optimal solution for the expected case and the optimal value, f̄ is given by

f̄ = kβ1 +(n− k)β2 ≤ o(k)+2
n(t +1)(1+δ)

√
np

1−p

=

(

1+δ+
1

t
(1+δ)+o(1)

)

k. (25)

As β1 < 1, the first term is o(k). The second inequality follows by noting that second term can

be upper-bounded by neglecting (t + 1)2 in the denominator of β2. The last equality follows from

definition of k. Now as in the case of G(n, p) graphs, we can indeed show that α̂ is an approximate

KKT solution for a random graph G.

Let deg(i,T ) = number of edges from i to T where T ⊂V . Since deg( j,S)∼ Bin(k, p) for any

j ∈ S̄(=V\S) random variable, we can deduce that

|deg( j,S)− kp| ≤
√

kp logk with probability at least 1−O(1/k)

by application of Chernoff bound. Similarly the following is true for any j ∈V

|deg( j, S̄)− (n− k)p| ≤
√

(n− k)p log(n− k)

with high probability. Using in α̂ in (23) we obtain

∀i ∈ S |β1 +
deg(i,S̄)

ρ β2 −1| ≤
√

(n− k)p log(n− k)

ρ
β2, and

∀i ∈ S̄ |β2 +
deg(i,S)

ρ β1 +
deg(i,S̄)

ρ −1| ≤
√

kp logk

ρ
β1 +

√

(n− k)p log(n− k)

ρ
β2.

Plugging in the values of β1 and β2, see (24), gives us the following claim.

Lemma 25 Let β1 and β2 be defined in (24). The vector ᾱ⊤ = [β1e⊤k β2e⊤n−k] satisfies the following

relationship with ε = O
(√

logn
np

)

.

1 ≤ i ≤ k |α̂i +
1

ρ

n

∑
j=k+1

Ai jα̂ j −1| ≤ ε, and

k+1 ≤ i ≤ n |α̂i +
1

ρ

n

∑
j=1

Ai jα̂ j −1| ≤ ε.

Proof By direct verification.

The above lemma establishes that α̂ is an ε-approximate KKT point. Indeed

| f (α̂;K)− f̄ | ≤ (kβ1 +(n− k)β2)ε = O(kε) = O

(

1√
p

√

(1− p)

p

√

logn

)

. (26)

The first equality follows by using Lemma 25, and the second equality follows from (25). The last

equality follows from definition of k and ε. Again using the strong concavity condition ∇2
α f (α;K)�

− δ
1+δI for all feasible α and using Lemma 17, we obtain

ω(K)− f (α̂;K)≤ 1

2

(

1+
1

δ

)

‖∇ f (α̂;K)‖2. (27)
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Algorithm 2 Input: A(Ḡ(n,1− p,k)),k Output: S ⊂ {1, . . . ,n}, |S|= k

α∗ = Use SVM solver to solve (1) with K as defined in Theorem 23

Return S = {i j| j = 1, . . . ,k α∗
i1
≥ α∗

i2
. . .≥ α∗

in
}

Recalling that ∇ f (α;K) = 2(e−α− A
ρ α) and using the relation between ‖ · ‖∞ and 2 norm along

with Lemma 25 gives ‖∇ f (α̂;K)‖ ≤ √
n‖∇ f (α̂;K)‖∞ ≤ O(

√
logn

p
). Plugging this estimate in (27)

and using equation (26) we obtain

ω(K)≤ f̂ +O

(
logn

p

)

+O

(

1√
p

√

(1− p)

p

√

logn

)

.

For the given choice of p one can use (21) to write

ω(K)≤
(

1+
1

t
(1+δ)+δ+o(1)

)

k.

By Theorem 22, ϑ(Ḡ(n,1− p,k) = k holds with high probability, proving (22).

The above theorem establishes that α̂ is a very good approximation for the optimal solution with

high probability.

We note that α̂i, for any vertex i in the independent set S = {1, . . . ,k}, is (t +1) times larger

than any other α̂ j /∈ S. Since α∗ is very close to α̂ one might expect to see the same property in α∗.

This motivates Algorithm 2 for finding planted clique in a random graph.

It is expected that with high probability the largest k values in the optimal solution would cor-

respond to nodes in the independent set. In a later section we will present empirical results which

show that the algorithm is extremely successful in recovering the clique. The runtime of this al-

gorithm is dependent on the availability of an efficient SVM solver. Current SVM solvers have

complexity less than O(n2), hence the proposed procedure is indeed scalable to large graphs. In

contrast the best known algorithm for solving Lovász ϑ has a runtime complexity of O(n5 logn)
(Chan et al., 2009). The algorithm in Feige and Krauthgamer (2000) is based on computation of the

ϑ function and hence will not scale well to large graphs.

4.3 Finding Planted Subgraphs in Random Graphs

The above results show that the SVM procedure can recover a planted independent set in a sparse

random graph, which is later exploited to solve the planted clique problem in a dense graph. More-

over we have also established that on random graphs the SVM objective function is tightly concen-

trated. This points to a more general question that of identifying a planted subgraph, which is much

sparser than the original graph.

Let G(n, p, p′,k) be a graph which has a planted G(k, p′) graph on the first k vertices of a random

G(n, p) graph. We consider the problem of recovering the planted subgraph.

An interesting property of ϑ function is that deletion of edges always results in an increases of

the ϑ function. As a consequence for any k

ϑ(Ḡ(n,1− p,k))≥ ϑ(G(n, p, p′,k))≥ ϑ(G(n, p))
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whenever p′ < p. By Remark 18 and by Theorem 22 we have ϑ(Ḡ(n,1− p,k)) and ϑ(G(n, p))

are both Θ

(√
n(1−p)

p

)

whenever k = Θ

(√
n(1−p)

p

)

. Indeed one can show that the graph with a

planted subgraph is also a SVM−ϑ graph. More formally

Theorem 26 Let G = G(n, p, p′,k) with p(1− p) = Ω(n−1 log4 n) and p′ < p. If

k = 2t

(√

n(1− p)

p

1−2p′

1− p′
p

)

,

then the graph G satisfies

ω(K)≤
(

1+
1

t
(1+δ)

)

ϑ(G),

with probability at least 1−O(1/n) where K as in (2) and ρ =
(

2
√

np(1− p)+ k(p− p′)
)

(1+δ)

for any constant δ > 0.

The proof can be constructed as in Theorem 23 so we do not repeat it here. Instead we make

some observations which would help to construct a formal proof by repeating the arguments in

Theorem 23. One would need to compute an upper-bound on λn(A) where A is the adjacency

matrix of G(n, p, p′,k). We write A′ = A+E where A′ is the adjacency matrix of G(n, p) graph.

The matrix E is defined as follows. Set all entries of E to be 0 except the first k× k submatrix. On

that block set

Ei j = 1 with probability s = p−p′

1−2p′ whenever Ai j = 0 for 1 ≤ i, j ≤ k,

otherwise Ei j = 0. By such a choice we see that E is the adjacency matrix of G(k,s) on the first

k× k block and 0 everywhere else. To check if P(A′
i j = 1) = p we note that all entries, except in

the leading k × k submatrix, are Ber(p) distributed. In the leading k × k submatrix we note that

A′
i j = 1 is the union of two mutually exclusive events, namely Ai j = 1,Ei j = 0 or Ai j = 0,Ei j = 1.

Substituting the value of s confirms

P(A′
i j = 1) = P(Ai j = 1)P(Ei j = 0)+P(Ai j = 0)P(Ei j = 1) = p′(1− s)+(1− p′)s = p.

Now by Weyl Perturbation (Horn and Johnson, 1990) we can write

λn(A)≥ λn(A
′)−λ1(E),

which leads to |λn(A)| ≤ 2
√

np(1− p) + k
p−p′

1−2p′ . This explains the choice of ρ. As before the

expected case analysis leads to the following equation

β1 +
kp′

ρ
β1 +

(n− k)p

ρ
β2 = 1 and β2 +

kp

ρ
β1 +

(n− k−1)p

ρ
β2 = 1.

The theorem follows by retracing the steps in the proof of Theorem 23. As in the planted clique

case the Algorithm 2 recovers the planted subgraph. The proofs in this section suggest that ω(K)
maybe concentrated. Before we close the section we would like to show that indeed this is the case.
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4.4 Concentration of ω(K)

The SVM objective function, computed on the random graphs in the previous sections, is also

highly concentrated. Using the celebrated Talagrand’s inequality (Talagrand, 1995), one can prove

the following theorem

Theorem 27 Let ω(K) be defined as in (1). Let G and ρ satisfy either of

• G = G(n, p), ρ = (1+δ)2
√

np(1− p)

• G = Ḡ(n, 1− p, k), ρ = (1+δ)(2
√

np(1− p)+ kp) where k = 2t

√
n(1−p)

p
,

where p(1− p) = Ω(n−1 log2 n). Then there exists a constant M such that

|ω(K))−M| ≤ O

√

ln3 n

np3(1− p)

with probability 1−O( 1
n
) whenever K is defined in (2).

Before we begin the proof we collect some results. Let ω(K) = f (α∗,K), see (1). For any graph G

satisfying the conditions of the theorem we can establish that

Lemma 28 For α∗ be defined as above we have ‖α∗‖= O
(√

logn
p

)

with probability 1− 1
O(n)

Proof For G(n, p) case, application of Lemma 17 allows us to rewrite (20)

1

2

δ

1+δ
‖α̂−α∗‖2 ≤ ω(K)− f (α̂;K)≤ 1

2

(

1+
1

δ

)

‖∇ f (α̂;K)‖2 ≤ O

(√

logn

p

)

where α̂ satisfies (14). Note that this holds with probability at least 1− 1
O(n) This yields the re-

sult ‖α̂ − α∗‖ ≤ O
(√

logn
p

)

and the lemma follows by noting that ‖α̂‖ = O(1). Similarly for

G = G(n,1− p,k), application of Lemma 17 to (27) yields the lemma.

We employ the following version of Talagrand’s inequality

Theorem 29 (Dubhashi and Panconesi, 2009) Let x = (x1, . . . , xd) where x1, . . . , xd are indepen-

dent random variables with xi ∈Ωi. Let f : Ω= (Ω1× . . .×Ωd)→R be a function with the property

that if for each x in the domain of f , there exists a vector c = c(x) such that ‖c‖ ≤ B and

f (x)≤ f (y)+ ∑
xi 6=yi

ci, ∀ y ∈ Ω,

then for any s > 0:

Pr[| f (x)−M|> Bs]≤ 4e−s2/4,

where M denotes the median of f .

Proof See Theorem 11.2 in Dubhashi and Panconesi (2009).

The application of the above theorem establishes the result
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Lemma 30 Let A be the adjacency matrix of G, as defined in Theorem 27. Let α∗ denote the

solution to the optimization problem

v(A) = max
α≥0

2eT α−αT

(

I +
A

ρ

)

α (28)

for some constant ρ. Then for any b > 0, there exists a constant M such that

Pr

[

|v(A)−M|>
√

2b2s

ρ

]

≤ 4e−s2/4 +Pr [‖α∗‖> b] (29)

for any s > 0.

Proof Let β∗ be the optimal solution of

f (A) := max
β≥0,‖β‖≤b

2eT β−βT

(

I +
A

ρ

)

β.

Since (28) can be seen as a relaxation of this, it follows that if α∗ is feasible, that is, ‖α∗‖ ≤ b, then

v(A) = f (A). For any D > 0, this means that if for some M, the inequality |v(A)−M| > D holds

then either | f (A)−M|> D or ‖α∗‖> b, so

Pr [|v(A)−M|> D]≤ Pr [| f (A)−M|> D]+Pr [‖α∗‖> b] . (30)

By the definition of f we know that for any adjacency matrix A′

f (A′)≥ 2eT β∗− (β∗)T

(

I+
A′

ρ

)

β∗

= f (A)+
1

ρ ∑
i, j

(Ai j −A′
i j)β

∗
i β∗

j

≥ f (A)− 1

ρ ∑
Ai j 6=A′

i j

2β∗
i β∗

j ,

where the last sum goes over all i > j. Let ci j =
2β∗

i β∗
j

ρ for i > j. We note that

∑
i> j

c2
i j ≤ 2

1

ρ2 ∑
i, j

(β∗
i )

2(β∗
j)

2 =
2‖β∗‖4

ρ2
≤ 2b4

ρ2
.

The function f is defined on Ai j, i < j a total of d =

(
n

2

)

Bernoulli random variables for the G(n, p)

case. For the planted clique case one needs to consider d =

(
n

2

)

−
(

k

2

)

random variables. Applying

Theorem 29 on f with ci j =
2β∗

i β∗
j

ρ for i > j and B =
√

2b2/ρ we get that there exists an M such that

for any s > 0

Pr

[

| f (A)−M|>
√

2b2s

ρ

]

≤ 4e−s2/4.
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Using this bound together with (30) where D =
√

2b2s/ρ implies (29).

Proof [Proof of Theorem 27.] By Lemma 28 With probability 1− 1
O(n) , for either one of G =

G(n, p) or G = Ḡ(n, 1− p, k), there exists a constant C > 0 such that ‖α∗‖ ≤ C
√

lnn
p

. Applying

Lemma 30 with b =C
√

lnn
p

and s = 2
√

lnn yields

Pr

[

|v(A)−M|>C′
√

ln3 n

ρp

]

= O

(
1

n

)

,

for some constant C′ > 0. By assumption ρ = Θ
(√

np(1− p)
)

, and hence the above equation es-

tablishes that |v(A)−M| ≤ O

√
ln3 n

np3(1−p)
with probability 1−O( 1

n
).

5. Experimental Evaluation

In Section 3 an algorithm was proposed which was capable of discovering a large common dense

subgraph in a collection of graphs. In Section 4.2 an algorithm for discovering a large planted

clique in a single graph was discussed. In this section we examine the performance of the proposed

algorithms. The code and data for the experiments reported here is available online at http://www.

cse.chalmers.se/˜jethava/svm-theta.html.

5.1 Common Dense Subgraph Detection

This subsection presents an experimental evaluation of the CSS algorithm for finding large dense

subgraphs across multiple graphs. We study an abstraction of the problem using the DIMACS’94

data set which consists of graphs motivated from a number of different practical problems (Johnson

and Trick, 1996). The key property of the algorithm is that it is parameter-less, and that it finds large

common dense regions - which was not possible using enumerative approach (Jiang and Pei, 2009).

We also investigate a thresholding heuristic which improves induced subgraph density at the cost of

subgraph size.

5.1.1 DATA SET

We evaluate our algorithm for finding large dense regions on the DIMACS Challenge graphs,2

which is a comprehensive benchmark for testing of clique finding and related algorithms. Each of

the graph families in DIMACS (brock, c-fat, p hat, san, sanr) is motivated by carefully selected real

world problems, for example, fault diagnosis (c-fat), etc.; thus covering a wide range of practical

scenarios (Johnson and Trick, 1996).

We evaluate the algorithm on following class of graphs c-fat graphs which are based on fault

diagnosis problems and are relatively sparse; and, p hat graphs which are generalizations of Erdös-

Rényi random graphs; and are characerized by wider degree spread compared to classical G(n, p)

2. The DIMACS benchmark data set is available online at ftp://dimacs.rutgers.edu/pub/challenge/graph/

benchmarks/clique/.
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model. For the families of dense graphs (brock, san, sanr), we focus on finding large dense region

in the complement of the original graphs.

5.1.2 EVALUATION

We run Algorithm 1 using off-the-shelf MKL solver SimpleMKL,3 to find large common dense

subgraph. In order to evaluate the performance of our algorithm, we compute ā = maxl a(l) and a =

minl a(l) where a(l) = γ(G
(l)
T )/γ(G(l)) is relative density of induced subgraph (compared to original

graph density); and nT/N is relative size of induced subgraph compared to original graph size. We

want a high value of nT/N; while a should not be lower than 1.

Graph family N M nSV nT ā a

c-fat200 200 3 100 90 2.3613 0.99165

c-fat500 500 4 152 140 3.8846 1.0182

brock200‡ 200 4 165 164 1.0704 0.9954

brock400‡ 400 4 397 349 1.0214 1.0084

brock800‡ 800 4 795 686 1.0129 1.0062

p hat300 300 3 158 157 1.5296 1.1456

p hat500 500 3 239 238 1.5551 1.1722

p hat700 700 3 313 312 1.5782 1.1818

p hat1000 1000 3 429 428 1.5976 1.1879

p hat1500 1500 3 574 573 1.6313 1.2011

san200‡ 200 5 200 185 1.0458 1.0029

san400‡ 400 3 359 358 1.0411 0.9947

sanr200‡ 200 2 157 156 1.1402 0.9949

sanr400‡ 400 2 343 342 1.0355 1.0017

Table 1: Common dense subgraph recovery on multiple graphs in DIMACS data set. Here ā and

a denote the maximum and minimum relative density of the induced subgraph (relative to

density of the original graph); nSV and nT denotes the number of support vectors and size

of subset T ⊆ SV returned by Algorithm 1. The enumerative algorithm does not run for

large dense regions (see Jiang and Pei, 2009, Figure 17).

Table 1 shows evaluation of Algorithm 1 on DIMACS data set. We note that our algorithm finds

a large subgraph (large nT/N) with higher density compared to original graph in all of DIMACS

graph classes making it suitable for finding large dense regions in multiple graphs. We note that

traditional set enumerative methods fail to handle dense subgraph recovery for the case when nT/N

is large. For example, finding quasicliques of size nT ≃ 60 requires 11.5 hours (see Jiang and Pei,

2009, Figure 17); in contrast to MKL-based approach which takes less than 1 minute.

The results in Table 1 show that in case of c-fat and p hat graph families, the induced subgraph

density is significantly improved (evidenced by high ā and a); and, the number of support vectors

nSV is a large fraction of N (nSV/N ≃ 1/2). Thus, the algorithm recovers a large common dense

subgraph.

3. The SimpleMKL solver is available online at http://asi.insa-rouen.fr/enseignants/˜arakotom/code/

mklindex.html.
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Graph family N M nT nSc
ā(T ) a(T ) ā(Sc) a(Sc)

brock200‡ 200 4 164 83 1.0704 0.9954 1.36 0.99

brock400‡ 400 4 349 199 1.0214 1.0084 1.15 1.05

brock800‡ 800 4 686 398 1.0129 1.0062 1.08 1.01

san200‡ 200 5 185 100 1.0458 1.0029 1.51 1.08

san400‡ 400 3 358 180 1.0411 0.9947 1.19 1.02

sanr200‡ 200 2 156 79 1.1402 0.9949 1.86 1.04

sanr400‡ 400 2 342 172 1.0355 1.0017 1.20 1.02

Table 2: Heuristic rule: If nSV ≥ 0.8n then choose c such that |Sc| = nSV/2. Here ā and a denote

the maximum and minimum relative density of the induced subgraph (relative to density

of the original graph). Induced subgraph density improves by choosing Sc instead of T ,

that is, ā(Sc)≥ ā(T ) and a(Sc)≥ a(T ) for all graphs.

On the other hand, for brock and san graph families, the number of support vectors is equal to

the overall graph size nSV ≃ N; and consequently the relative density is 1, that is, γ(G
(l)
SV ) = γ(G(l))

which is not interesting. In the following subsection, we discuss a heuristic for improving subgraph

detection performance when all nodes are support vectors.

5.2 Thresholding Heuristic

In this section, we discuss the impact of choosing support vectors with high support by choosing

some c > 0 and selecting the set Sc = {i : α∗
i > c}. Figure 2 shows the densities of the induced

subgraph γ(G
(l)
Sc
) relative to original graph density γ(G(l)) for all graphs G(l) ∈G, that is,

a(l) = γ(G
(l)
Sc
)/γ(G(l))∀G(l) ∈G

at different c thresholds varying between c = 0 (|Sc| = |SV |) and c = 1 (|Sc| = 0) (and correspond-

ingly different subgraph sizes |Sc| which is shown on x-axis).

Figure 2 shows the variation in density of the induced subgraph γ(G
(l)
Sc
) relative to original graph

density γ(G(l)) for all graphs G(l) ∈ G at increasing subgraph sizes for the largest graph (resp. c-

fat500, p hat1500, brock800, san400 and sanr400) in each graph family (resp. c-fat, p hat, brock,

san and sanr). Figure 5 in Appendix A presents the variation for other DIMACS graphs.

Notice that in case of c-fat and p hat graph families (Figures 2(a) and 2(c)), one can further

improve graph densities across all graphs G(l) ∈G by choosing a higher value of c (and correspond-

ingly, a smaller induced subgraph |Sc|). In the remaining examples, choosing a higher value of c

(and correspondingly lower |Sc|) improves the density in at least one G(l) ∈G.

Based on performance on the DIMACS data set, we suggest a simple rule for using the heuristic

whenever nSV ≥ 0.8n, then we choose c such that |Sc| = ⌈nSV/2⌉. Table 2 shows the improvement

by using the heuristic rule whenever nSV ≥ 0.8n. We note that minimum and maximum induced

subgraph density improves by choosing Sc instead of T , that is, ā(Sc)≥ ā(T ) and a(Sc)≥ a(T ) for

all graph families.

It can be seen from Figure 2 that the induced subgraph density is not strictly monotonic with

induced subgraph size |Sc|. However, for medium to large |Sc|, the subgraph density shows a general
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Figure 2: Common dense subgraph recovery. Figures (a)− (e) show the densities of the induced

subgraph γ(G
(l)
Sc
) relative to original graph density γ(G(l)) for all graphs G(l) ∈ G at dif-

ferent values of c ∈ [0,1] (i.e., different subgraph sizes |Sc|) for different DIMACS graph

families.

decreasing trend, that is, if |Sc|> |Sc′ |, then the induced subgraph density γ(G
(l)
Sc
)< γ(G

(l)
Sc′
) for some

regime c,c′ ∈ [cl,ch]. Thus, one can choose a smaller induced subgraph Sc having higher induced

subgraph density by selecting higher value of threshold c.

It is instructive to note that in all graph families, the graph with maximum relative density, for

example, c-fat500 in Figure 2(a) is the graph with minimum average density among all graph G. In

other words, MKL-based approach tries to find a dense region in the sparsest subgraph G(l) ∈ G

while making sure it is compatible with remaining graphs in G.

5.3 Planted Clique Recovery on Random Graphs

We consider the case for Erdos-Renyi graph with general p 6= 1/2 and planted clique of size k, that

is, G(n, p,k).

5.3.1 DATA SET

We generate ns = 100 random graphs based on Ḡ(n,1− p,k) with planted independent set of size

k = 2t
√

n(1− p)/p and p = 1
2
n−α where n = 20000 and α ≥ 0. We choose α = c/30 where c lies

in the set {0,1,2, . . . ,10}; and perform ns experiments for each c. Note that the case of α = 0 yields

the familiar planted clique model G(n,1/2,k) with k = 2t
√

n.
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Figure 3: (a) shows fr the fraction of graphs for which the hidden clique is recovered exactly;

and, the average F1-score measuring quality of recovered subset over ns trials at each t

(k = 2t
√

n). (b) shows ω(K)/k (blue) is bounded by (1+1/t) (red) (Theorem 23). This

allows approximation of Lovász ϑ function for large SVM−ϑ graphs without SDP.
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Figure 4: Approximation of Lovász ϑ function for general p. This figure shows ω(K)/k (blue)

is bounded by (1+ 1/t) (red) (Theorem 23). This allows approximation of Lovász ϑ

function for large SVM−ϑ graphs without SDP for general p.

5.3.2 EVALUATION

We consider the LS labelling K = A
ρ + I of G(n,1− p,k) for ρ = 2

√

np(1− p)+ kp as discussed

in Section 4.2. We solve ω(K) using libsvm solver,4 and return the top-k support vectors S̃k as

independent set as discussed in Algorithm 2.

In order to evaluate algorithm accuracy, we compute the fraction of graphs for which the in-

dependent set is recovered exactly using Algorithm 2, that is, fr = nr/ns where nr is the number

of graphs for which independent set is recovered exactly for each Ḡ(n,1− p,k). We also compute

the average (over ns trials) F1 score which measures how different is our solution S̃k to maximum

independent set S as: F1 =
2pr
p+r

, p = |S̃k∩S|
|S̃k|

, r = |S̃k∩S|
|S| .

4. LibSVM solver is available online at http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.

3524
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5.3.3 DISCUSSION

As predicted by Theorem 23, there exists some t0 > 0 for which Lovász ϑ function is bounded

by ω(K); and the planted clique can be recovered perfectly by selecting the top k support vectors

in sorted descending order of α∗
i . We find experimentally that this approach recovers the planted

clique exactly for t ≥ 2 for all c ∈ {0, . . . ,10}, that is, random graph Ḡ(n,1− p,k) with p = 1
2
n−α

and planted independent set of size k = 2t
√

n(1− p)/p.

In particular we discuss the case c = 0 which yields the Erdös-Rényi graph with p = 1/2 and

planted clique of size k = 2t
√

n. Figure 3(a) shows the fraction of graphs for which the hidden

clique is recovered exactly using above procedure. Figure 3(b) shows ω(K)/k (shown in blue), and

consequently ω(K)/ϑ(G) is bounded by (1+ 1/t) (shown in red) for G(n,1/2,k) case. Figure 4

shows that ω(K)/ϑ(G) is bounded by (1+ 1/t) for case when p 6= 1/2. Thus, one can use ω(K)
for approximating Lovász ϑ function for large SVM−ϑ graphs without solving a SDP problem.

6. Conclusion

The results in this paper establish that there is a close connection between the Lovász ϑ function,

well studied in graph theory and SVM formulation. This link allows us to design scalable algorithms

for computationally difficult problems. In particular we show that on random graphs, the Lovász ϑ

function can be well approximated by solving an SVM. Furthermore this property is not destroyed

even when one plants a large clique in such graphs, allowing extremely scalable algorithms for

identifying it. Using tools from MKL we further describe a algorithm for finding a common large

dense region in large graphs. This algorithm achieves an order of magnitude scalability compared

to state-of-the-art method based on exhaustive search of frequent quasi-cliques.
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Appendix A. Extended Results on DIMACS Graph Families

Figure 5 shows the densities of the induced subgraph γ(G
(l)
Sc
) relative to original graph density γ(G(l))

for all graphs G(l) ∈G at different values of c ∈ [0,1] (i.e., different subgraph sizes |Sc|) for remain-

ing graphs (other than those presented in Figure 2) in different DIMACS graph families.

Appendix B. Some Results Related to Ḡ(n,1− p,k)

In this section we derive two results related to the planted clique problem. In particular we derive

conditions when Ḡ(n,1− p,k) is a Q graph and we compute the ϑ function for the same graph.

B.1 When Is Ḡ(n,1− p,k) a Q Graph?

To prove Theorem 21 we will need a lower bound on the minimum eigenvalue of Ḡ. One can prove

the following
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Figure 5: Common dense subgraph recovery. Figures (a)− (i) show the densities of the induced

subgraph γ(G
(l)
Sc
) relative to original graph density γ(G(l)) for all graphs G(l) ∈G at differ-

ent values of c ∈ [0,1] (i.e., different subgraph sizes |Sc|) for remaining graphs in different

DIMACS graph families.

Lemma 31 Let A be the adjacency matrix of Ḡ(n, 1− p, k). Then with probability at least 1− 1
n
,

the following holds:

−λmin(A)≤ kp− 9k2 p

16n
+

‖A−EA‖2

kp
+
√

lnn+ p.

The proof is crucially dependent on the following result.

Lemma 32 Let A be the adjacency matrix of Ḡ(n, 1− p, k). For any fix x and any δ > 0 we have

Pr
[

x⊤ (A−EA)x ≤−δ‖x‖2
]

≤ e−δ2

.
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Proof Let Â = A−EA and consider the random variable

X =−x⊤Âx = ∑
i> j

−2xix jÂi j,

where we note that the sum goes over independent random variables. Since Âi j varies by at most by

1, the term 2xix jÂi j varies at most |2xix j| where

∑
i> j

(2xix j)
2 = 2∑

i6= j

x2
i x2

j ≤ 2‖x‖4.

Thus Hoeffding’s inequality (McDiarmid, 1998) applied on X states that for any t > 0

Pr[X ≥ t]≤ exp

(

− t2

‖x‖4

)

.

The statement is obtained by letting t = δ‖x‖2.

Proof [Proof of Lemma 31] Consider the matrix A′ = A+D where Di j = p if i = j /∈ S and 0

otherwise, that is, adding p to all diagonal elements not in S. We note that this perturbation gives

EA′ a 2-dimensional column space as all vectors in the column space are constant on S and S̄

respectively. Let x be any unit vector in the column space where we write sin t√
k

on S and cos t√
n−k

on

S̄. Since all eigenvectors corresponding to non-zero eigenvalues must be in this vector space, the

minimum eigenvalue of EA′ is either 0 or the minimum of

x⊤E[A′]x = 2
√

k(n− k)psin t cos t +(n− k)pcos2 t

=
(n− k)p

2
+
√

k(n− k)psin2t − (n− k)p

2
cos2t

≥ (n− k)p

2
− p

2

√

4k(n− k)+(n− k)2

≥ (n− k)p

2
− p

2

(

n+
2nk−3k2

2n

)

=−kp+
3k2 p

4n

where the last inequality follows by Taylor expansion of the square root at n2. Since the last ex-

pression is non-positive we conclude that λ̄ := −kp+ 3k2 p
4n

is a lower bound on the eigenvalues of

EA′.
Now, let v be a normalized eigenvector corresponding to the minimum eigenvalue of EA′ and

let u = x+ y be any unit vector, where x ‖ v and y ⊥ v. Since EA′ is a rank 2 matrix and clearly

Tr(EA′) ≥ 0, EA′ can at most have one negative eigenvalue and thus y⊤E[A′]y ≥ 0. Furthermore,

Lemma 32 states that v⊤Âv ≥−
√

lnn with probability at least
(
1− 1

n

)
. Thus,

λmin(A) = min
‖u‖=1

u⊤ (
EA′+ Â−D

)
u

≥ min
‖u‖=1

λ̄‖x‖2 +x⊤Âx+(2x+y)⊤Ây−u⊤Du

≥−
√

lnn− p+ min
x2

1+x2
2=1

(

λ̄x2
1 −‖Â‖

√

4x2
1 + x2

2 x2

)

,
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where we again use Â = A−EA. By substituting x2 =
2√
3

cos t in the last term we get

λ̄(1− x2
2)−‖Â‖

√

4−3x2
2 x2 =

λ̄

3
− 2

3

(

λ̄cos2t +
√

3‖Â‖sin2t
)

≥ λ̄

3
− 2

3

√

λ̄2 +3‖Â‖2

so by Taylor expanding the square root at k2 p2 we conclude that

min
x2

1+x2
2=1

(

λ̄x2
1 −‖Â‖

√

4x2
1 + x2

2 x2

)

≥ λ̄

3
− 2

3

(

kp+
λ̄2 +3‖Â‖2 − k2 p2

2kp

)

=−kp+
k2 p

n

(
3

4
− 3k

16n

)

− ‖Â‖
kp

.

Thus with probability at least
(
1− 1

n

)
, we get

λmin(A)≥−
√

lnn− p− kp+
k2 p

n

(
3

4
− 3k

16n

)

− ‖Â‖
kp

.

Before we prove the main theorem we will need one more ingredient, a bound on the norm of the

difference between the adjacency matrix and its expectation.

Lemma 33 If A is the adjacency matrix of Ḡ(n,1− p,k) and p(1− p) = Ω(n−1 log4 n), then almost

surely ‖A−EA‖= O(
√

np(1− p)).

Proof The Lemma is easily derived from Theorem 34, due to Vu (2007). In particular in the given

regime of p, one can choose R = A−EA, σ2 = p(1− p) and K = 1. For such a choice, one can

show C(Kσ)1/2n1/4 lnn = O(σ
√

n) and the lemma follows by direct application of following result

in Theorem 34.

We next state a Theorem, without proof, due to Vu (2007).

Theorem 34 (Vu, 2007) There are constants C and C′ such that the following holds. Let Ri j, 1 ≤
i ≤ j ≤ n be independent random variables, with E(Ri j) = 0, E(R2

i j) ≤ σ2, |Ri j| ≤ K and σ ≥
C′n−1/2K ln2 n. Then with probability tending to 1 as n → ∞

‖R‖ ≤ 2σ
√

n+C(Kσ)1/2n1/4 lnn.

We are now ready to begin the proof of the main result.

Proof [Proof of Theorem 21] According to Theorem 5, G is a Q graph if

−λmin(A)≤ |N(i)∩S| for all i 6∈ S, (31)

where S denotes a maximum independent set. We will prove that this equation is satisfied almost

surely for S denoting the planted independent set. In the specified parameter regime, one can argue

that the planted set is the maximum independent set almost surely. It should however be noted
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that this is strictly speaking not needed. As (31) is essentially reformulated optimality criteria, any

independent set satisfying the equation must be a maximum independent set.

For each i 6∈ S, |N(i)∩S| has Bin(k, p) distribution, so using Chernoff bound (Frieze and Reed,

1998) together with a union bound one obtains |N(i)∩S| ≥ kp−√
6kp lnn for all i 6∈ S with proba-

bility at least 1− 1
n
. Using this together with Lemma 31, we get that G is a Q graph with probability

1−O( 1
n
) if

kp− 9k2

16n
+

‖A−EA‖2

kp
+
√

lnn+ p ≤ kp−
√

6kp lnn.

Application of Lemma 33 yields ‖A−EA‖2 = O(np(1− p)). Clearly then almost surely G is a Q

graph if the following holds,

9k2 p

16n
≥
√

6kp lnn+
√

lnn+O
(n

k

)

. (32)

Next we note that for k ≥ 8
3
n2/3 p−1/3(lnn)1/3 the following holds

√

6kp lnn+
√

lnn+O
(n

k

)

=
√

6kp lnn

(

1+O

(
1

k1/2 p1/2
+

n

k3/2 p1/2

))

≤
√

6kp lnn

(

1+O(
1

n1/3 p1/3(lnn)1/6
+

1

(lnn)1/2
)

)

=
√

6kp lnn(1+o(1))

where np = Ω(log4 n) by assumption in the theorem. This means that equation (32) is satisfied for

k ≥ (1+o(1))
8

3
n2/3 p−1/3(lnn)1/3

and the theorem follows.

B.2 Computation of ϑ Function for Ḡ(n,1− p,k)

Proof [of Theorem 22] We will base the proof on the following definition of ϑ function (Knuth,

1994),

ϑ(G) = min
M

λ1(M)

where M goes over all symmetric n× n matrices such that Mi j = 1 whenever Ai j = 0, where A

denotes the adjacency matrix of G. For the given graph Ḡ we will construct a qualified guess of M

at optimality and use this to show a tight bound on ϑ(Ḡ). Specifically, let A be the adjacency matrix

of Ḡ and consider the matrix M defined by

Mi j =







1 if 1 ≤ i, j ≤ k

1− r jAi j if 1 ≤ i ≤ k < j ≤ n

1− riAi j if 1 ≤ j ≤ k < i ≤ n
1
p
(p−Ai j) if k < i, j ≤ n

(33)
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where ri is chosen such that ∑k
j=1 Mi j = 0 for all i > k. Equivalently, ri satisfies

k−Siri = 0 (34)

where Si is the number of neighbours of i which shares an edge with the planted independent set.

The case Si = 0 for some i > k may be resolved arbitrarily. We note that Si ∼ Bin(k, p).
Let ek denote the n-dimensional vector where the first k elements are 1 and the rest 0. Note

that we constructed M such that it has ek as an eigenvector with corresponding eigenvalue k. Using

Lemma 35 we see that this is the maximum eigenvalue almost surely. To conclude we note that since

there is an independent set of size k in Ḡ, k ≤ α(Ḡ) ≤ ϑ(Ḡ). As noted above, ϑ(Ḡ) ≤ λ1(M) = k

almost surely, so k ≤ ϑ(Ḡ)≤ k, and thus ϑ(Ḡ) = k almost surely.

Lemma 35 Let M be defined as in above. If k > 2

√
n(1−p)

p
(1+o(1)) and p(1− p) =Ω(n−1 log4 n),

then λ2(M)< k almost surely.

Let A, as before, denote the adjacency matrix of Ḡ. Consider the two matrices,

Ui j =







0 if 1 ≤ i, j ≤ k
1
p
(p−Ai j) if 1 ≤ i ≤ k < j ≤ n

1
p
(p−Ai j) if 1 ≤ j ≤ k < i ≤ n

1
p
(p−Ai j) if k < i, j ≤ n,

(35)

Vi j =







0 if 1 ≤ i, j ≤ k
(

r j − 1
p

)

(p−Ai j) if 1 ≤ i ≤ k < j ≤ n
(

ri − 1
p

)

(p−Ai j) if 1 ≤ j ≤ k < i ≤ n

0 if k < i, j ≤ n

(36)

where ri are the same as in (33).

The following corollary is a direct consequence of Theorem 34

Corollary 36 For any symmetric n× n matrix R with entries Ri j, independent with mean 0 and

variance bounded above by
1−p

p
and |Ri j| ≤ 1

p
the following holds

‖R‖ ≤ 2

√

n(1− p)

p
(1+o(1))

whenever p(1− p) = Ω(n−1 log4 n).

Proof The corollary follows by noticing that the matrix R satisfies the conditions of Theorem 34

with parameters σ2 = 1−p
p

and K = 1
p
.

We will use the corollary to obtain bounds on the largest eigenvalue of U and V.

Lemma 37 Let U be defined in (35), then if p(1− p) = Ω(n−1 log4 n)

λ1(U)≤ 2

√

n(1− p)

p
(1+o(1)) .
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Proof Let D be diagonal matrix with Dii = 0 whenever 1 ≤ i ≤ k and Dii = 1 whenever i = k+
1, . . . ,n. The matrix U−D satisfies the condition of Corollary 36 and hence

λ1(U)≤ ‖U−D‖+‖D‖ ≤ 2

√

n(1− p)

p
(1+o(1))+1

where we have used the fact that ‖D‖= 1.

Lemma 38 Let V be defined in (36), then if p(1− p) = Ω(n−1 log4 n) and k > 2

√
n(1−p)

p

λ1(V)≤ o

(√

n(1− p)

p

)

.

Proof Consider the n×n matrix V′ defined by

V ′
i j =







0 if 1 ≤ i, j ≤ k
1
p
(p−Ai j) if 1 ≤ i ≤ k < j ≤ n

1
p
(p−Ai j) if 1 ≤ j ≤ k < i ≤ n

0 if k < i, j ≤ n.

We can apply Corollary 36 to obtain ‖V′‖= O

√
n(1−p)

p
.

Let x be a unit eigenvector corresponding to the maximum eigenvalue of V. This means that

λ1(V) = x⊤Vx

= 2
n

∑
i=k+1

xi

(

ri −
1

p

)
k

∑
j=1

(p−Ai j)x j

and by Cauchy-Schwartz inequality

≤ 2





n

∑
i=k+1

x2
i ·

n

∑
i=k+1

(

ri −
1

p

)2
(

k

∑
j=1

(p−Ai j)x j

)2




1/2

≤ 2





n

∑
i=k+1

(pri −1)2

(
k

∑
j=1

1

p
(p−Ai j)x j

)2




1/2

= 2





n

∑
i=k+1

(pri −1)2

(
k

∑
j=1

V ′
i jx j

)2




1/2

≤ 2max
i

|pri −1| ·





n

∑
i=k+1

(
k

∑
j=1

V ′
i jx j

)2




1/2
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since V ′
i j = 0 for i, j > k

= 2max
i

|pri −1| ·





n

∑
i=k+1

(
n

∑
j=1

V ′
i jx j

)2




1/2

≤ 2max
i

|pri −1| ·





n

∑
i=1

(
n

∑
j=1

V ′
i jx j

)2




1/2

= 2max
i

|pri −1| · ‖V′x‖= max
i

|pri −1| ·O
(√

n(1− p)

p

)

,

where the last step follows from that ‖V′x‖ ≤ ‖V′‖ · ‖x‖= ‖V′‖.

By the definition of M, see (34), ri =
k
Si

, where Si ∼ Bin(k, p). For such random variables, we

have the following Chernoff bound

Lemma 39 (McDiarmid, 1998) For every 0 < a ≤ kp we have

Pr [|Si − kp| ≥ a]≤ 2e−a2/3kp.

Let a=
√

6kp lnn. Using the assumptions in the lemma it is easy to verify that kp> 2
√

np(1− p)≫
ln2 n ≫ lnn. Thus for large enough n we have a ≤ kp, so in that case we know that |Si −kp| ≥ a for

some i > k happens with at most probability n · e−2lnn = o(1). This means that, almost surely

max
i

|pri −1|= | kp

kp+O
√

kp lnn
−1|= O

√
kp lnn

kp+O
√

kp lnn
= O

√

lnn

kp
= o(1),

where we use that lnn ≪ kp as noted above. Thus λ1(V ) = o

√
n(1−p)

p
almost surely.

We are now in a position to begin the proof of Lemma 35.

Proof [Proof of Lemma 35] Let ek denote the n-dimensional vector where the first k elements are 1

and the rest 0. By the variational inequality

λ2(M) = min
v

max
‖x‖=1x⊥v

x⊤Mx

≤ max
‖x‖=1x⊥ek

x⊤Mx

≤ λ1(U)+λ1(V)+ max
|x|=1x⊥ek

x⊤(M−U−V)x.
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Recalling the definitions of M, U and V, see (33), (35), (36), we note that for all x ⊥ ek

x⊤(M−U−V)x

=
k

∑
i=1

k

∑
j=1

xi(Mi j −Ui j −Vi j)x j +2
n

∑
i=k+1

k

∑
j=1

xi(Mi j −Ui j −Vi j)x j

+
n

∑
i=k+1

n

∑
j=k+1

xi(Mi j −Ui j −Vi j)x j

=
k

∑
i=1

k

∑
j=1

xix j +2
n

∑
i=k+1

k

∑
j=1

xi

(

1− riAi j −
1

p
(p−Ai j)−

(

ri −
1

p

)

(p−Ai j)

)

x j

=
k

∑
i=1

k

∑
j=1

xix j +2
n

∑
i=k+1

k

∑
j=1

xi (1− pri)x j

=
k

∑
i=1

xi

(
k

∑
j=1

x j

)

︸ ︷︷ ︸

=0

+2
n

∑
i=k+1

xi (1− pri)

(
k

∑
j=1

x j

)

︸ ︷︷ ︸

=0

= 0

so max‖x‖=1,x⊥ek
x⊤(M−U−V)x = 0. Thus if we assume that k > 2

√
n(1−p)

p
, Lemmas 37 and 38

imply that

λ2(M)≤ λ1(U)+λ1(V)≤ 2

√

n(1− p)

p
(1+o(1)) .

The Lemma follows by letting k be strictly greater than the maximum of this value and 2

√
n(1−p)

p
.

References

J. Aflalo, A. Ben-Tal, C. Bhattacharyya, J.S. Nath, and S. Raman. Variable sparsity kernel learning.

Journal of Machine Learning Research, 12:565–592, 2011.

N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hidden clique in a random graph. Random

Structures and Algorithms, pages 457–466, 1998.

B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from different assumptions.

In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC ’10), pages 171–

180, 2010.

S. Arora, B. Barak, M. Brunnermeier, and R. Ge. Computational complexity and information asym-

metry in financial products (extended abstract). In First Symposium on Innovations in Computer

Science, ICS, pages 49–65, 2010.

C. Bachoc, D. Gijswijt, A. Schrijver, and F. Vallentin. Invariant semidefinite programs. In M. F. An-

jos and J. B. Lasserre, editors, Handbook on Semidefinite, Conic and Polynomial Optimization,

volume 166 of International Series in Operations Research & Management Science, pages 219–

269. Springer US, 2012.

3533



JETHAVA, MARTINSSON, BHATTACHARYYA AND DUBHASHI

B. Bollobás. Modern Graph Theory. Springer Verlag, 1998.

B. Bollobás. Random Graphs. Cambridge University Press, 2001.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

A. E. Brouwer and W. H. Haemers. Spectra of Graphs. Springer Verlag, 2012.

T.-H. H. Chan, K. L. Chang, and R. Raman. An sdp primal-dual algorithm for approximating the

lovász-theta function. In IEEE International Symposium on Information Theory, ISIT ’09, pages

2808–2812, 2009.

A. Coja-Oghlan. The lovász number of random graphs. Combinatorics, Probability & Computing,

14(4):439–465, 2005.

A. Coja-Oghlan and A. Taraz. Exact and approximative algorithms for coloring g(n, p). Random

Structures and Algorithms, 24(3):259–278, 2004.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,

3rd edition, 2009.

L. Devroye, A. György, G. Lugosi, and F. Udina. High-dimensional random geometric graphs and

their clique number. Electronic Journal of Probability, 16, 2011.

D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized Algo-

rithms. Cambridge University Press, 2009.

U. Feige and R. Krauthgamer. Finding and certifying a large hidden clique in a semirandom graph.

Random Structures and Algorithms, 16:195–208, 2000.

A. M. Frieze and C. McDiarmid. Algorithmic theory of random graphs. Random Structures and

Algorithms, 10(1-2):5–42, 1997.

A. M. Frieze and B. Reed. Probabilistic analysis of algorithms. In M. Habib, C. McDiarmid,

J. Ramirez-Alfonsin, and B. Reed, editors, Probabilistic Methods for Algorithmic Discrete Math-

ematics, volume 16 of Algorithms and Combinatorics, pages 36–92. Springer-Verlag, Berlin,

1998.
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Abstract

Standard models of language learning are concerned with weak learning: the learner, receiving as

input only information about the strings in the language, must learn to generalise and to generate

the correct, potentially infinite, set of strings generated by some target grammar. Here we define

the corresponding notion of strong learning: the learner, again only receiving strings as input, must

learn a grammar that generates the correct set of structures or parse trees. We formalise this using

a modification of Gold’s identification in the limit model, requiring convergence to a grammar that

is isomorphic to the target grammar. We take as our starting point a simple learning algorithm for

substitutable context-free languages, based on principles of distributional learning, and modify it

so that it will converge to a canonical grammar for each language. We prove a corresponding strong

learning result for a subclass of context-free grammars.

Keywords: context-free grammars, grammatical inference, identification in the limit, structure

learning

1. Introduction

We present an algorithm for inducing a context-free grammar from a set of strings; this algorithm

comes with a strong theoretical guarantee: it works in polynomial time, and for any grammar in

a certain class it will converge to a grammar which is isomorphic/strongly equivalent to the target

grammar. Moreover the convergence is rapid in a technical sense. This very strong guarantee

comes of course at a price: the class of grammars is small. In the first part of the paper we explain

the learning model we use which is an extension of the Gold identification in the limit model; and in

the second part we present an algorithm which learns a class of languages with respect to this model.

We have implemented this algorithm and we present some examples at the end which illustrate the

properties of this algorithm, testing on some simple example languages. As far as we are aware

this is the first nontrivial algorithm for learning trees from strings which has any sort of theoretical

guarantee of its convergence and correctness.

Our ultimate domain of application of these techniques is primarily in linguistics, where the

strings will be sequences of words in a natural language, but the techniques can be applied more

broadly to artificial languages, bioinformatics and other fields where the input data consists of

strings which have some hierarchical structure.

c©2013 Alexander Clark.
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We can contrast the approach here with the task of unsupervised parsing in computational lin-

guistics as exemplified by Cohn et al. (2010). Unsupervised parsers use a variety of heuristic ap-

proaches to extract a single tree for each sentence, taking as input a large natural language corpus,

and being evaluated against some linguistically annotated corpus. Here we are interested not in find-

ing the most likely parse, but in finding the set of allowable parses in a theoretically well-founded

way.

1.1 Linguistics

The notions of weak and strong generation are fundamental in the fields of mathematical and the-

oretical linguistics. A formal grammar weakly generates a set of strings, and strongly generates a

set of structures (Miller, 1999). We do not have the space for a full discussion of the rather subtle

methodological and indeed philosophical issues involved with which model is appropriate for study-

ing linguistics, which questions depend on what the subject matter of linguistics is taken to be; we

merely note that while mathematical attention has largely focused on the issues of weak generation,

many linguists are more concerned with the issues of strong generation and as a result take the weak

results to be largely irrelevant (Berwick et al., 2011). Indeed, taking a grammar as a model of human

linguistic competence, we are primarily interested in the set of structures generated. Unfortunately,

we have little or no direct evidence about the nature of these structures, notwithstanding recent ad-

vances in neuroimaging and psycholinguistics, and our sources of information are essentially only

about the set of strings that are weakly generated by the grammar, since these can be observed, and

our intuitions about the associated meanings.

We can define corresponding notions of weak and strong learning.1 Weak learning involves

merely learning a grammar that generates the right set of strings; strong learning involves learning

a grammar that generates the right set of structures (Wexler and Culicover, 1980, p. 58). Some

sentences are ambiguous and will require a grammar that generates more than one structure for a

particular sentence. We do not consider in this paper the problem of learning when the input to the

learner are trees; see for example Sakakibara (1990, 1992), Drewes and Högberg (2003) and López

et al. (2004). We consider only the problem where the learner has access to the flat strings alone,

but must infer an appropriate set of trees for each string in the language. Rather than observing the

derivation trees themselves, we observe only the yields of the trees.

Weak learning of context-free grammars and richer formalisms has made significant progress

in recent years (Clark and Eyraud, 2007; Yoshinaka, 2011; Yoshinaka and Kanazawa, 2011; Yoshi-

naka, 2012) but strong learning has received less attention. For CFGs this means that the hypothesis

needs to be isomorphic (assuming it is trim) or better yet, identical to the target grammar. We define

these notions of equivalence and the associated learning models in Section 3. Strong learning is

obviously impossible for the full class of context-free grammars since there are an infinite number

of structurally different context-free grammars that generate a given context-free language.

In this paper we work in a categorical model which assumes, unrealistically, a partition of the

strings into grammatical and ungrammatical, but probabilistically the situation is not better; given

a distribution defined by a probabilistic CFG (PCFG) there are infinitely many structurally different

CFGs that define the same set of distributions; in other words PCFGs are not identifiable from strings

(Hsu et al., 2013). This is in contrast to discrete HMMs which are (Petrie, 1969).

1. Note that this has nothing to do with strong and weak learners as those terms are used in the boosting literature in

machine learning (Schapire, 1999).
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The contributions of this paper are as follows. We first define an appropriate notion of strong

learning from strings, restricting ourselves to the case of CFGs for simplicity. We then show that ex-

isting learning algorithms for regular languages (Angluin, 1982) can be viewed as also being strong

learning algorithms, in a trivial sense. We then present a strong learning algorithm for some CFGs,

based on combining the polynomial algorithm for substitutable context-free languages defined in

Clark and Eyraud (2007), which we recall in Section 4, with a recent proposal for a formal notion

of syntactic structure (Clark, 2011) that we interpret as a form of canonical grammars. We spec-

ify the canonical grammars we target in Section 5, present an algorithm in Section 6, and prove

its correctness and efficiency in Section 7. Section 8 contains some examples, including one with

an ambiguous grammar. An appendix contains some detailed proofs of various technical lemmas

regarding the properties of the languages we consider in this paper.

2. Notation

Let Σ be a finite non-empty set of atomic symbols. Σ∗ is the set of all finite strings over Σ. We

denote the empty string by λ. The set of non-empty strings is Σ+ = Σ∗ \ {λ}. We write |u| for the

length of a string u, and for a finite set of strings X we define the size as ‖X‖= ∑w∈X |w|.
A language L is any subset of Σ∗. Given two languages M,N ⊆ Σ∗ we write M ·N or sometimes

just MN for the set {uv | u ∈ M,v ∈ N}. Note that this is just the normal concatenation of sets of

strings.

Given a language D, we define Sub(D) to be the set of non-empty substrings of elements of D:

Sub(D) = {u ∈ Σ+ | ∃(l,r) ∈ Σ∗×Σ∗
, lur ∈ D}.

Given a non-zero sequence of languages α = 〈X1, . . . ,Xn〉 we write ᾱ for the concatenation, that

is, ᾱ = X1 · · · · ·Xn. We shall assume an order ≺ or � on Σ which we shall extend to the length-

lexicographic order on Σ∗.

We define a context (l,r) to be an ordered pair of strings, an element of Σ∗×Σ∗. The distribution

of a string u ∈ Σ∗ with respect to a language L is defined to be

DL(u) = {(l,r) ∈ Σ∗×Σ∗ | lur ∈ L}.

We say that u ≡L v iff DL(u) = DL(v). This is the syntactic congruence, which is equivalent to

complete mutual substitutability of u and v.

We write [u]L for {v ∈ Σ∗ | DL(u) = DL(v)}. If we have a set of strings, X , that are all congruent

then we write [X ] for the congruence class containing them. Note that for any strings u,v, [uv] ⊇
[u][v] so if X ,Y are congruence classes we can write [XY ] and the result is well defined.

The unique congruence class [λ] is called the unit congruence class. The set {u | DL(u) = /0}
if it is non-empty is a congruence class, which is called the zero congruence class. A congruence

class in a language L is non-zero iff it is a subset of Sub(L). We are mostly concerned with non-zero

non-unit congruence classes in this paper.

Definition 1 We will be considering sequences of congruence classes: so if α is a sequence X1, . . . ,Xn

where each of the Xi is a congruence class, then we write ᾱ for the set of strings formed by concate-

nating all of the Xi. We write |α| for the length of the sequence, n in this case. Note that all of the

elements of ᾱ will be congruent: if u,v ∈ ᾱ then u ≡L v. We can therefore write without ambiguity

[ᾱ] for the congruence class of the strings in ᾱ.
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We say that u
.
=L v if there is some (l,r) such that lur ∈ L and lvr ∈ L. This is partial or weak

substitutability; u and v can be substituted for each other in the context (l,r). If u ≡L v and u,v have

a non-empty distribution then u
.
=L v, but the converse is clearly not true.

Definition 2 A language L is substitutable if for all u,v ∈ Σ+, u
.
=L v implies u ≡L v.

In other words, for any two non-empty strings u,v if DL(u)∩DL(v) 6= /0 then DL(u) = DL(v).
This language theoretic closure property allows us to define algorithms that generalise correctly,

even under pessimistic learning conditions.

2.1 Context-Free Grammars

A context-free grammar (CFG) G is a tuple G = 〈Σ,V, I,P〉 where V is a finite non-empty set of

nonterminals disjoint from Σ, I ⊆ V is a set of distinguished start symbols and P is a subset of

V × (V ∪Σ)+ called the set of productions. We write this as N → α. We do not allow productions

with a right hand side of length 0, and as a result the languages we consider will not contain the

empty string. We use GCFG for the class of all context-free grammars.

We define the standard notion of single-step derivation as ⇒ and define
∗
⇒ as the reflexive

transitive closure of ⇒; for all N ∈ V , L(G,N) = {w ∈ Σ∗ | N
∗
⇒ w}; and L(G) =

⋃
S∈I L(G,S).

Using a set of start symbols rather than a single start symbol does not change the generative capacity

of the formalism.

We say that a CFG is trim if for every nonterminal N there is a context (l,r) such that S
∗
⇒ lNr

for some S ∈ I and a string u such that N
∗
⇒ u: in other words every nonterminal can be used in the

derivation of some string.

We say that two CFGs, G and G′ are weakly equivalent if L(G) = L(G′).

Proposition 3 (Ginsburg, 1966) Given two CFGs, G and G′, it is undecidable whether L(G) =
L(G′).

Two CFGs are isomorphic if there is a bijection between the two sets of nonterminals which

extends to a bijection between the productions. In other words they are identical up to a relabeling

of nonterminals. We denote this by G ∼= G′. Clearly if two grammars are isomorphic then they are

weakly equivalent.

Proposition 4 Given two CFGs, G and G′, it is decidable whether G ∼= G′.

There is a trivial exponential time algorithm that involves searching through all possible bijec-

tions. This problem is GI-complete: as hard as the problem of graph isomorphism (Zemlyachenko

et al., 1985; Read and Corneil, 1977). We may not be able to do this efficiently for general CFGs.

3. Learning Models

We start by reviewing the basic theory of learnability using the Gold identification in the limit

paradigm (Gold, 1967). We consider only the model of given text—where the learner is provided

with positive data only. We assume a class of CFGs, G ⊆ GCFG.

A presentation of a language L is an infinite sequence of elements of Σ∗, w1,w2, . . . such that

L= {wi | i> 0}. Given a presentation T = 〈w1, . . .〉, we write Tn for the finite subsequence consisting
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of the first n elements. A polynomial learning algorithm is a polynomially computable function from

finite sequences of positive examples to GCFG.

Given a presentation T of some language L, we can apply A to the various prefixes of T , which

produces an infinite sequence of elements of GCFG, A(T1),A(T2), . . . . These are hypothesis gram-

mars; we will use Gi to refer to A(Ti), the ith hypothesis output by the learning algorithm.

Consider a target grammar G∗ ∈ G , and a sequence of hypothesized grammars G1,G2, . . . pro-

duced by a learning algorithm on a presentation T for L(G∗). There are various notions of conver-

gence of which we outline four, which vary on two dimensions: one dimension concerns whether

we are interested in weak or strong learning, and the other whether we are interested in controlling

the number of internal changes as well, or are only interested in the external behaviour.

Weak behaviorally correct learning (WBC)

There is an N such that for all n > N, L(Gn) = L(G∗).

Weak Gold learning (GOLD)

There is an N such that for all n > N, L(Gn) = L(G∗) and Gn = GN .

Strong behaviorally correct learning (SBC)

There is an N such that for all n > N, Gn
∼= G∗.

Strong Gold learning (SGOLD)

There is an N such that for all n > N, Gn
∼= G∗ and Gn = GN .

For each of these four notions of convergence, we have a corresponding notion of learnabil-

ity. We say that a learner, A, WBC/GOLD/SBC/SGOLD learns a grammar G∗, iff for every pre-

sentation of L(G∗), it WBC/GOLD/SBC/SGOLD converges on that presentation. Given a class of

CFGs, G , we say that A WBC/GOLD/SBC/SGOLD learns the class, iff for every G∗ in G the learner

WBC/GOLD/SBC/SGOLD learns G∗.

In the case of GOLD learning, this coincides precisely with the standard model of Gold iden-

tification in the limit from given text (positive data only) (Gold, 1967). WBC-learning is the stan-

dard model of behaviorally correct learning (Case and Lynes, 1982). We cannot in general turn a

WBC-learner into a GOLD-learner: see discussion in Osherson et al. (1986). The property of order-

independence as defined by Blum and Blum (1975), can be thought of as an even stronger version

of SGOLD learning.

However, a SBC-learner can be changed into a SGOLD-learner, if we can test whether two hy-

potheses are isomorphic. There does not seem to be a theoretically interesting difference between

SBC-learning and SGOLD-learning: the only difference, in the case of CFGs, is that the SBC learner

may occasionally pick different labels for the nonterminals after convergence, whereas the SGOLD

learner may not.

We can ask how can a GOLD learner differ from a SGOLD learner: how can a weak learner fail to

be a strong learner? The difference is that on different presentations of the same language, a weak

Gold learner may converge to different answers. That is to say we might have a learner which on

presentation T ′ of grammar G produces a grammar G′ and on presentation T ′′ of the same grammar,

produces a grammar G′′, where G′ and G′′ are weakly equivalent but not isomorphic.

Definition 5 We say that a class of context-free grammars is redundant if it contains two grammars

G1,G2 such that G1 6∼= G2 and L(G1) = L(G2).
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Proposition 6 Suppose that A is an algorithm which SGOLD-learns a class of grammars G . Then

G is not redundant.

The proof is immediate—any presentation for G1 is also a presentation for G2. In other words

if G contains two non-isomorphic grammars for the same language then it is not strongly learnable.

A simple corollary is then that the class of CFGs is not strongly identifiable in the limit even from

informed data, that is to say from labelled positive and negative examples, since there are an infinite

number of non-isomorphic grammars for every non-empty language.

One can therefore try to convert a weak learner to a strong learner by defining a canonical

form. If we can restrict the class so that there is only one structurally distinct grammar for each

language, and we can compute that, then we could find a strong learning algorithm. We formalise

this as follows. Suppose A is some learning algorithm that outputs grammars in a hypothesis class

HA ⊆ GCFG, and suppose that it can GOLD-learn the class of grammars G ⊆ HA . Suppose we have

some ‘canonicalisation’ function f from HA →GCFG such that for each G∈G , L(G)=L( f (G)) and

such that f (G) is not redundant. Then we can construct a learner A′ which outputs A′(Ti)= f (A(Ti)),
which will then be a SGOLD learner for G . Moreover, if A and f are both polynomially computable

then so will A′ be.

For example, suppose D is the class of all DFAs and f is the standard function for minimizing a

deterministic finite-state automaton (DFA), which can be done in polynomial time. Since all minimal

DFAs for a given regular language are isomorphic, f (D) is not redundant. Therefore any learner

for regular languages that outputs DFAs, such as the one in Angluin (1982), can be converted into

a strong learner using this technique. From the point of view of structural learning such results

are trivial in two important respects. The first is that each string in the language has exactly one

labelled structure, and the other is that every structure is uniformly right branching, whereas we

are interested in learning grammars which may assign more than one different structure to a given

string.

Moreover, it is easy to see that any SGOLD-learner for a class of grammars G will implicitly

define such a canonicalisation function for G . We can enumerate the strings in the language and

apply the learner to them, and the limit of the hypothesis grammars will then satisfy the conditions

given above, though this function may not be computable. There is therefore a close relationship

between canonicalisers and strong learners. There is much more that could be said about the learning

models, and further refinements of them, but this is enough for our purposes.

4. Weak Learning of Substitutable Languages

We recall the Clark and Eyraud (2007) result, using a simplified version of the algorithm (Yoshinaka,

2008), and explain why it is only a weak rather than a strong result.

Given a finite non-empty set of strings D = {w1, . . . ,wn} the learner constructs a grammar as

shown in Algorithm 1. We create a set of symbols in bijection with the elements of Sub(D) where we

write [[u]] for the symbol corresponding to the substring u: that is to say we have one nonterminal

for each substring of the observed data. The grammar Ĝ(D) is the CFG 〈Σ,V, I,PL ∪PB ∪PU〉 as

shown in the pseudocode in Algorithm 1. The sets PL,PB and PU are the sets of lexical, branching

and unary productions respectively.

Example 1 Given a set D = {c,acb}, we have Sub(D) = {a,b,c,ac,cb,acb}, and corresponding

sets: V = {[[a]], [[b]], [[c]], [[ac]], [[cb]], [[acb]]}, I = {[[c]], [[acb]]}, PL = {[[a]]→ a, [[b]]→ b, [[c]]→
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Algorithm 1 Grammar construction procedure

Data: A finite set of strings D = {w1,w2, . . . ,wn}
Result: A CFG G

V := Sub(D);
I := {[[u]] | u ∈ D};

PL := {[[a]]→ a | a ∈ Σ∩V};

PB := {[[uv]]→ [[u]][[v]] | u,v,uv ∈V};

PU := {[[u]]→ [[v]] | ∃(l,r)∧ lur ∈ D∧ lvr ∈ D};

output G = 〈Σ,V, I,PL ∪PB ∪PU〉

c}, PB = {[[ac]] → [[a]][[c]], [[cb]] → [[c]][[b]], [[acb]] → [[ac]][[b]], [[acb]] → [[a]][[cb]]} and PU =
{[[c]]→ [[acb]], [[acb]]→ [[c]]}. As can be verified this CFG defines the language {ancbn | n ≥ 0}.

There are two natural ways to turn this grammar construction procedure into a learning algo-

rithm. One is simply to apply this procedure to all of the available data. This will give a WBC-learner

for the class of substitutable CFGs.

Alternatively since we can parse with the grammars, we can convert this into a GOLD learner,

by only changing the hypothesis when the hypothesis is demonstrably too small. This means that

once we have a weakly correct hypothesis the learner will no longer change its output. This simple

modification gives a variant of the learner in Clark and Eyraud (2007). However this does not mean

that this is a strong learner, since it may converge to a different hypothesis for different presenta-

tions of the same language. For example if a presentation of the language from Example 1 starts

{a,acb, . . .} then the learner will converge in two steps to the grammar shown in Example 1. If

on the other hand, the presentation starts {acb,aacbb, . . .} then it will also converge in two steps,

but to a different, larger, grammar that includes nonterminals such as [[aa]] and has a larger set of

productions. This grammar is weakly equivalent to the former grammar, but it is not isomorphic

or structurally equivalent, as it will assign a larger set of parses to strings like aacbb. It is more

ambiguous. Indeed it is easy to see that this grammar will assign every possible binary branching

structure to any string that is part of the set that the grammar is constructed from. And of course,

the presentation could start with an arbitrarily long string—in which case the first grammar which

it generates could be arbitrarily large.

5. The Syntactic Structure of Substitutable Languages

In this section we use a modification of Clark (2011) as the basis for our canonical grammars;

in the case of substitutable languages the theory is quite simple so we will not present it in all

its generality. Each nonterminal/syntactic category will correspond to a congruence class. With

substitutable languages, we can show that the language itself, considered as a set of strings, has a

simple intrinsic structure that can be used to define a particular finite grammar.

We start with the following definition:

Definition 7 A congruence class X is prime if it is non-zero and non-unit and for any two congru-

ence classes Y,Z such that X =Y ·Z then either Y or Z is the unit. If a non-zero non-unit congruence

class is not prime then we say it is composite.
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In other words a class is not prime if it can be decomposed into the concatenation of two other

congruence classes. The stipulation that the unit and zero congruence classes are not prime is

analogous to the stipulation that 1 is not a prime number. We will not give a detailed exposition of

why the concept of a prime congruence class is important, but one intuitive reason is this. If we have

nonterminals that correspond to congruence classes, and a congruence class N is composite, then

that means that we can decompose N into two classes P,Q such that N = PQ. In that case we can

replace every occurrence of N on the right hand side of a rule by the sequence 〈P,Q〉; assuming that

P and Q can be represented adequately, nothing will be lost. Thus non-prime congruence classes

can always be replaced by a sequence of prime congruence classes, and we can limit our attention

to the primes which informally are those where “the whole is greater than the sum of the parts”.

More algebraically, we can think of the primes as representing the points where the concatenation

operations in the free monoid and the syntactic monoid differ in interesting ways.

Example 2 Consider the language L = {ancbn | n ≥ 0}. This language is not regular and therefore

has an infinite number of congruence classes of which three are prime. The congruence classes are

as follows:

• {λ} is a congruence class with just one element; this is the unit congruence class which is

not prime.

• The zero congruence class which consists of all strings that have empty distribution.

• L is a congruence class which is prime.

• [a] = {a} is prime as is [b] = {b}.

• We also have an infinite number of congruence classes of the form {ai} for any i > 1. These

are all composite as they can be represented as [a] · [ai−1]; similarly for {bi}.

• Similarly we have classes of the form [aic] = {ai+ jcb j | j ≥ 0} and [cbi] = {a jcbi+ j | j ≥ 0}
which again are composite.

L is not always prime as the following trivial example demonstrates.

Example 3 Consider the finite language L = {ab}. This language has 5 congruence classes:

[a], [b], [ab], [λ] and the zero congruence class. The first 4 are all singleton sets. [a] and [b] are

prime but [ab] = {ab}= [a][b], and so L is not prime.

Proposition 8 For every a ∈ Σ, for any language L, if [a] is non-zero and non-unit then [a] is prime.

Proof Let a be some letter in a language L and let [a] be its congruence class. Suppose there are

two congruence classes X ,Y such that XY = [a]. Since a ∈ [a], a must be in XY . Since we cannot

split a string of length 1 into two non-empty strings, one of X and Y must be the unit.

We can now define the class of languages that we target with our learning algorithm.

Definition 9 Let Lsc be the set of all languages which are substitutable, non-empty, do not contain

λ and have a finite number of prime congruence classes.
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Given that there are substitutable languages which are not CFLs—the MIX language (Kanazawa

and Salvati, 2012) being a good example—we need to restrict the class in some way. Here we

consider only languages where there are a finite number of prime congruence classes. This implies,

as we shall see later, that the language is a CFL. Every regular language of course has a finite

number of primes as it has a finite number of congruence classes. Not all substitutable context-free

languages have a finite number of primes, as this next example shows.

Example 4 Consider the language L = {cibaib | i > 0}∪{cideid | i > 0}. This is a substitutable

context-free language. The distribution of baib is the single context {(ci,λ)} which is the same as

that of deid. Therefore we have an infinite number of congruence classes of the form {baib,deid},

each of which is prime.

Definition 10 A prime decomposition of a congruence class X is a finite sequence of one or more

prime congruence classes α = 〈X1, . . . ,Xk〉 such that X = ᾱ.

Clearly any prime congruence class X has a trivial prime decomposition of length one, namely

〈X〉. We have a prime factorization lemma for substitutable languages; we can rather pompously call

this the ‘fundamental lemma’ by analogy with the fundamental lemma of arithmetic. This lemma

means that we can represent all of the congruence classes exactly using just concatenations of the

prime congruence classes.

Lemma 11 Every non-zero non-unit congruence class of a language in Lsc has a unique prime

factorisation.

For proof see Lemma 33 in the appendix. Note that this is not the case in general for languages

which are not substitutable, as the following example demonstrates.

Example 5 Let L = {abcd,apcd,bx}. Note that L is finite but not substitutable since p 6≡ b. Among

the congruence classes are {a},{b},{c} {ab,ap}, {bc, pc} and {abc,apc}. Clearly {ab,ap},

{bc, pc} are both prime but {abc,apc} is composite and has the two distinct prime decompositions

{ab,ap} · {c} and {a} · {bc, pc}.

If we restrict ourselves to languages in Lsc then we can assume without loss of generality that

the nonterminals of the generating grammar correspond to congruence classes. In a substitutable

language, a trim CFG cannot have a nonterminal that generates two strings that are not congruent.

Similarly, if the grammar had two distinct nonterminals that generated congruent strings, we could

merge them without altering the generated language.

Given that non-regular languages will have an infinite number of congruence classes, and that

CFGs have by definition only a finite number of nonterminals, we cannot have one nonterminal for

every congruence class. However in languages in Lsc there are only finitely many prime congru-

ence classes, and since every other congruence class can be represented perfectly as a sequence of

primes, it is sufficient to consider a grammar which has nonterminals that correspond to the primes.

Therefore we will consider grammars whose nonterminals correspond only to the prime congruence

classes of the grammar: we add one extra nonterminal S, a start symbol, which will not appear on

the right hand side of any rule.
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5.1 Productions

We now consider an abstract notion of a production where the nonterminals are the prime congru-

ence classes.

Definition 12 A correct branching production is of the form [ᾱ] → α where α is a sequence of at

least 2 primes and [ᾱ] is a prime congruence class. A correct lexical production is one of the form

[a]→ a where a ∈ Σ, and [a] is prime.

Example 6 Consider the language L = {ancbn | n ≥ 0}. This has primes [a], [c] and [b]. The correct

lexical productions are the three obvious ones [a] → a, [b] → b and [c] → c. The only correct

branching productions have [c] on the left hand side, and are [c]→ [a][c][b], [c]→ [a][a][c][b][b] and

so on.

Clearly in the previous example we want to rule out productions like [c]→ [a][a][c][b][b] since

the right hand sides are too long, and will make the derivation trees too flat. We want each pro-

duction to be as simple as possible. Informally we say that the right hand side of the production

[a][a][c][b][b] is too long since there is a proper subsequence [a][c][b] which generates strings in a

prime congruence class, and should be represented just by the prime [c].

Definition 13 We say that a sequence of primes α is pleonastic (too long) if α= γβδ for some γ,β,δ,

which are sequences of primes, such that |γ|+ |δ|> 0, [β̄] is a prime, and |β|> 1.

Definition 14 We say that a correct production N → α is pleonastic if α is pleonastic. A correct

production is valid if it is not pleonastic.

Note that a pleonastic production by definition must have a right hand side of length at least 3.

For any string w in a prime congruence class where w = a1 . . .an, ai ∈ Σ we can construct

a correct production [w] → [a1] . . . [an]. Such productions may in general be pleonastic because

there may be substrings that can be represented by prime congruence classes. From a structural

perspective, the local trees derived from these productions are too shallow as they flatten out relevant

parts of the structure of the string. Nonetheless we can find a set of valid productions that will

generate the string w from the nonterminal [w], as Lemma 18 below shows.

5.2 Canonical Grammars

We will now define canonical grammars for every language L in Lsc. Note that for every language

in Lsc, L is a congruence class.

First of all we need the following lemma to establish that the grammar will be finite: see proof

of Lemma 35 in the appendix.

Lemma 15 If L ∈ Lsc then there are a finite number of valid productions.

Definition 16 Let L be some language in Lsc. We define the following grammar, G∗(L). The non-

terminals are the prime congruence classes of L, together with an additional symbol S, which is the

start symbol. Let α(L) be the unique prime decomposition of L. We define the set of productions, P,

to have the following elements:
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• the single production containing the start symbol: S → α(L),

• all valid productions, of which there are only finitely many by Lemma 15,

• for each terminal symbol a that occurs in the language, the production [a]→ a.

This is a unique CFG for every language in Lsc. We now show that G∗(L) generates L.

Lemma 17 If L ∈ Lsc is a substitutable language, then for any prime congruence class X,

L(G∗(L),X)⊆ X.

Proof This is a simple induction on the length of the derivation. For X → a, we know that a ∈ X by

construction. Suppose Xi
∗
⇒ ui for all 1 ≤ i ≤ n and X0 → X1 . . .Xn is a production in the grammar.

Then by the inductive hypothesis ui ∈ Xi and by the correctness of the production, u1 . . .un ∈ X0.

Lemma 18 Suppose X → α is a correct production. Then X
∗
⇒G∗(L) α.

Proof By induction on the length of α. Base case: α is of length 2, in which case it cannot be

pleonastic, and so X → α is valid and in G∗(L), and therefore X
∗
⇒ α. Inductive step: consider a

correct production X → α where α is of length k. If it is not pleonastic, then it is valid, and so

X → α is a production in G∗(L), and so X
∗
⇒ α. Alternatively it is pleonastic and therefore α = βγδ

where γ is the right hand side of a correct production, Y → γ. Consider X → βY δ, and Y → γ. Both

βY δ and γ are shorter than α, and so by the inductive hypothesis X
∗
⇒ βY δ and Y

∗
⇒ γ so X

∗
⇒ α. So

the lemma follows by induction.

Lemma 19 Suppose X is a prime, and w ∈ X. Then X
∗
⇒G∗(L) w.

Proof If w is of length 1, then we have X → w. Let w = a1 . . .an be some string of length n > 1.

Let α = [a1] . . . [an]. So X → α is a correct production. Therefore by Lemma 18 X
∗
⇒ α. Since we

have the lexical rules [ai]→ ai we can also derive α
∗
⇒ w.

Proposition 20 For any L ∈ Lsc, L(G∗(L)) = L.

Proof Suppose L has prime factorisation A1 . . .An. S occurs on the left hand side of the single pro-

duction S → A1 . . .An. Since L(G∗(L),Ai) = Ai by Lemmas 17 and 19, L(G∗(L),S) = A1 . . .An = L.

Definition 21 We define Gsc to be the set of canonical context-free grammars for the languages in

Lsc:

Gsc = {G∗(L) | L ∈ Lsc}.

Lemma 22 Gsc is not redundant.

Proof Suppose we have two weakly equivalent grammars G1,G2 in this class; then G1 =
G∗(L(G1)) = G∗(L(G2)) = G2 and so they are isomorphic.
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6. An Algorithm for Strong Learning

We now present a strong learning algorithm. We then demonstrate in Section 7 that for all grammars

in Gsc the algorithm strongly converges in the SGOLD framework.

In outline, the algorithm works as follows; we accumulate all of the data that we have seen so

far into a finite set D. We start by using Algorithm 1 to construct a CFG Gw which will be weakly

correct for a sufficiently large input data. Using this observed data, together with the grammar

which is used for parsing, we can then compute the canonical grammar for the language as follows.

1. We partition Sub(D) into congruence classes, with respect to our learned grammar Gw.

2. We pick the lexicographically shortest string in each class as the label we will use for the

nonterminal.

3. We then test to see which of the congruence classes are prime.

4. Each class is decomposed uniquely into a sequence of primes.

5. A set of valid rules is constructed from the strings in the prime congruence classes.

6. We then eliminate pleonastic productions from this set of productions.

7. Finally, we return a grammar Gs constructed from these productions.

We can perform the first task efficiently, using the grammar and the substitutability property.

Given that each string in Sub(D) occurs in the sample D, for each substring u we have some context

(l,r) such that lur ∈ D. Given the substitutability condition, v is congruent to u iff lvr ∈ L(G∗).
Under the assumption that the grammar is correct we can test this by seeing whether lvr ∈ L(Gw),
using a standard polynomial parser, such as a CKY parser.

We now have a partition of Sub(D) into k classes C1, . . . ,Ck. We pick the lexicographically

shortest element of each class (with respect to ≺) which we denote by u1, . . . ,uk. Given a class,

we want to test whether it is prime or not. Take the shortest element w in the class. Test every

possible split of w into non-zero strings u,v such that uv = w. Clearly there are |w| − 1 possible

splits—for each split, identify the classes of u,v and test to see whether every element in the class

can be formed as a concatenation of these two. If there is some string that cannot be split, then we

know that the congruence class must be prime. If on the other hand we conclude that the class is not

prime, we might potentially be wrong: we might for example think that X =Y Z simply because we

have not yet observed one of the strings in X \Y Z. We present the pseudocode for this procedure in

Algorithm 2.

For all of the non-prime congruence classes, we now want to compute the unique decomposition

into primes. There are a number of obvious polynomial algorithms. We start by taking the shortest

string w in a class; suppose it is of length n consisting of a1 . . .an. We convert this into a sequence

of primes [a1] . . . [an]. We then greedily convert this into a unique shortest sequence of primes

by checking every proper subsequence of length at least 2, and seeing if that string is in a prime

congruence class. If it is then we replace that subsequence by the prime. We repeat until there are

no proper subsequences that are primes. Alternatively we can use a shortest path algorithm. We

create a graph which has one node for each 0,1, . . . ,n. We create an arc from i → j if the substring

spanning [i, j] is prime. We then take the shortest path from 0 to n; and read off the sequence of
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Algorithm 2 Testing for primality

Data: A set of strings X

Data: A partition of strings X = {X1, . . . ,Xn}, such that Sub(X)⊆
⋃

X
Result: True or false

Select shortest w ∈ X ;

for u,v ∈ Σ+ such that uv = w do

Xi ∈ X is the set such that u ∈ Xi;

X j ∈ X is the set such that v ∈ X j;

if X ⊆ XiX j then

return false;

end if

end for

return true;

primes by looking at the primes of the relevant segments. Note that since the lexical congruence

classes are all prime, we know there will be at least one such path; since the language is substitutable

we know this will be unique.

We then identify a set of valid productions. Every valid production will be of the form N → Mα

where N,M are primes and α is a prime decomposition of length at least 1. For any given N,M there

will be at most one such rule. Accordingly we loop through all triples of N and M,Q as follows:

for each prime N, for each prime M, for each class Q, take α to be the prime decomposition of Q,

and test to see if N → Mα is valid. We can test if it is correct easily by taking any shortest string

u from M and any shortest string v from α and seeing if uv ∈ N; if it does then the rule is correct.

Then we can test if it is valid by taking every proper prefix of Mα of length at least two and testing

if it corresponds to a prime. If no prefix does then the production is not pleonastic and is therefore

valid.

For the lexical productions, we simply add all productions of the form [a]→ a where a ∈ Σ. For

the initial symbol S, we identify the unique congruence class of strings in the language X . If it is

prime, then we add a rule S → X . If it is not prime, and α is its unique prime decomposition then

we add the rule S → α.

7. Analysis

We now proceed to the analysis of Algorithm 3, the learner ASGOLD. We want to prove three things:

first that the algorithm strongly learns a certain class; secondly, that the algorithm runs in polyno-

mial update time; finally that the algorithm converges rapidly, in the technical sense that it has a

polynomially sized characteristic set.

We now are in a position to state our main result. We have defined a learning model, SGOLD, an

algorithm ASGOLD and a class of grammars Gsc.

Theorem 23 ASGOLD SGOLD-learns the class of grammars Gsc.

In order to prove this we will show that for any presentation of a grammar in the class we will

converge strongly to a grammar isomorphic to the canonical grammar. In what follows we suppose

G∗ is a grammar in Gsc, and that L∗ = L(G∗). For a grammar G∗ ∈ Gsc, we define χ(G∗) to be
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Algorithm 3 ASGOLD Strong Gold Learning Algorithm

Data: A sequence of strings w1,w2, . . .

Data: Σ

Result: A sequence of CFGs G1,G2, . . .

let D :=∅;

for n = 1,2, . . . do

let D := D∪{wn};

Ĝ = Ĝ(D);
Let C be the partition of Sub(D) into classes;

Let Pr be the set of primes computed using Algorithm 2;

For each class N in C compute the prime decomposition α(N) ∈ Pr+;

Let V = {[[N]] | N ∈ Pr} be a set of nonterminals each labeled with the lexicographically

shortest element in its class;

Let S be a start symbol;

PL = {[[N]]→ a | [[N]] ∈V,a ∈ Σ∩N};

PI = {S → [[N]] | ∃w ∈ N,w ∈ D};

PB = /0;

for N ∈ Pr, M ∈ Pr, Q ∈C do

R = (N → Mα(Q));
if R is correct and valid then

PB = PB ∪{R};

end if

end for

output Gn := 〈Σ,V ∪{S},{S},PL ∪PB ∪PI〉;
end for

a sufficiently large, yet polynomially bounded set of strings from L(G∗) such that when the input

data includes this set, the weak grammar output will be correct (Clark and Eyraud, 2007) and which

contains the shortest string in each prime congruence class.

Definition 24 For a grammar G = 〈Σ,V, I,P〉 we define χ(G) as follows. For any α ∈ (Σ∪V )+ we

define w(α) ∈ Σ+ to be the smallest word, according to ≺, generated by α. Thus in particular for

any word u ∈ Σ+, w(u) = u. For each non-terminal N ∈ V define c(N) to be the smallest pair of

terminal strings (l,r) (extending ≺ from Σ∗ to Σ∗×Σ∗, in some way), such that S
∗
⇒ lNr. We now

define the characteristic set χ(G∗) = {lwr | (N → α) ∈ P,(l,r) = c(N),w = w(α)}.

We prove the correctness of the rest of the model under the assumption that the input data

contains χ(G∗) and as a result that Gw is weakly correct: L(Gw) = L(G∗). First, if Gw is correct,

then the partition of Sub(D) into congruence classes will be correct in the sense that two strings of

Sub(D) will be in the same class iff they are congruent.

Lemma 25 Suppose X1, . . . ,Xn is a correct partition of Sub(D) into congruence classes. Then if

Algorithm 2 returns true when applied to Xi, then [Xi] is in fact prime.

Proof Suppose [Xi] is not prime: then there are two congruence classes Y,Z such that [Xi] = Y Z.

Consider a string w ∈ Xi. There must be strings u,v such that w = uv and u ∈ Y,v ∈ Z. Since
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w ∈ Sub(D), u,v ∈ Sub(D). Since the partition of Sub(D) is correct, there must be sets X j,Xk such

that u ∈ X j,v ∈ Xk. Therefore, using again the correctness and the fact that Sub(D) is substring

closed, we have that Xi ⊆ X jXk, in which case Algorithm 2 will return false.

Lemma 26 Suppose X1, . . . ,Xn is a correct partition of Sub(D) into congruence classes, and D ⊇
χ(G∗). Then Algorithm 2 returns true when applied to Xi, iff [Xi] is in fact prime.

Proof Xi is a finite subset of Sub(D), and we assume that all of the elements of Xi are in fact con-

gruent. We already showed one direction, namely that if the algorithm returns true then [Xi] is prime

(Lemma 25). We now need to show that if [Xi] is prime, then the algorithm correctly returns true.

If [Xi] is prime, then it will correspond to some nonterminal in the canonical grammar G∗, say N.

There will be more than one production in G∗ with N on the left hand side, and so by the construc-

tion of χ(G∗), and the correctness of the weak grammar, we will have at least one string from each

production in Sub(D), which means that since it is a correct partition the algorithm cannot find any

pair of classes whose concatenation contains Xi.

As a consequence of this Lemma, we know that the algorithm will be able to correctly identify

the set of primes of the language, and as a result will converge to the right set of nonterminals.

Proposition 27 If the input data includes χ(G∗), then Gs ∼= G∗.

Proof We can verify that all and only the valid productions will be generated by the algorithm by

the construction of the characteristic set.

Suppose N → X1 . . .Xn is a valid production in the grammar. Then by the construction of the

characteristic set we will have a unique congruence class in the grammar corresponding to [X2 · · ·Xn].
If n > 2 then this will be composite, and if n = 2 this will be prime, but in any event it will have

a unique prime decomposition which will be exactly 〈X2, . . . ,Xn〉, by Lemma 33. Therefore this

production will be produced by the algorithm.

Secondly suppose the algorithm produces some production N → X1, . . .Xn. We know that this

will be valid since X2, . . .Xn is a prime decomposition and is thus not pleonastic, and we tested all

of the prefixes. We know that it will be correct, by the correctness of the weak learner and the fact

that the congruence classes are correctly divided. It is easy to verify that the lexical and initial rules

are also correctly extracted.

To conclude the proof of Theorem 23, we just need to observe that since the characteristic set

includes the shortest element of each prime congruence class, and so the labels for each nonterminal

will not change which means that the output grammars will converge exactly.

We now consider the efficiency of the algorithm. It is easy show that this algorithm runs in

polynomial time in the size of the data set ‖D‖, noting first that |Sub(D)| is polynomial in ‖D‖,

and that as a result the grammars generated are all of polynomial size. Moreover the characteristic

set has cardinality which is polynomial in the size of the grammar, and whose size is polynomially

bounded in the thickness (Wakatsuki and Tomita, 1993).
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S → NT0

NT1 → b

NT2 → a

NT0 → c

NT0 → NT2 NT0 NT1

S → NT0

NT3 → open

NT2 → close

NT4 → neg

NT4 → NT0 NT1

NT0 → a

NT0 → b

NT0 → c

NT0 → NT3 NT4 NT0 NT2

NT1 → and

NT1 → iff

NT1 → implies

NT1 → or

S → NT0

NT2 → NT2 NT0

NT2 → NT0 NT2

NT2 → a

NT0 → NT0 NT0

NT0 → NT2 NT1

NT0 → NT1 NT2

NT1 → b

NT1 → NT1 NT0

NT1 → NT0 NT1

Table 1: Output grammars for the three examples; on the left the grammar for {ancbn | n ≥ 0}, in

the middlem the language of propositional logic, and on the right, the ambiguous grammar

for {w ∈ {a,b}+ | |w|a = |w|b}.

8. Examples

We have implemented the algorithm presented here.2 We present the results of running this al-

gorithm on small data sets that illustrate the properties of the canonical grammars for the learned

languages. These examples are not intended to demonstrate the effectiveness of the algorithm but

merely as illustrative examples to help the reader understand the representational assumptions, and

as a result we have restricted ourselves to very simple languages which will be easy to understand.

Nonterminals in the output grammar are either S for the start symbol or NT followed by a digit for

the congruence classes that correspond to primes.

8.1 Trivial Context-Free Language

Consider the running example of {ancbn | n ≥ 0}. A characteristic set for this is just {c,acb}.

Given this input data, we get the grammar shown on the left of Table 1. This defines the correct

language; Figure 1 shows the parse trees for the three shortest strings in the language. This grammar

is unambiguous so every string has only one tree.

8.2 Propositional Logic

Our next example is the language of sentential logic, with a finite number of propositional symbols.

We have the alphabet {A1, . . . ,Ak,(,),¬,∨,∧,⇒,⇔}. We would standardly define this language

with the CFG: S → Ai, S → (¬S), S → (S ∨ S), S → (S ∧ S), S → (S ⇒ S) and S → (S ⇔ S).
Note that in this language the brackets are part of the object language not the meta-language—the

algorithm does not know that they are brackets or what their function is. We replace them with other

symbols in the experiment to emphasize this point. Thus the algorithm is given only flat sequences

2. A Java implementation will be made available on the author’s website.
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S

NT 0

c

S

NT 0

NT 2

a

NT 0

c

NT 1

b

S

NT 0

NT 2

a

NT 0

NT 2

a

NT 0

c

NT 1

b

NT 1

b

Figure 1: Example parse trees for the example {ancbn | n ≥ 0}.

of strings—there is implicitly structural information here, but the algorithm must discover it, as it

must discover that the correct grammar is unambiguous. Sentential logic is an interesting example

because it illustrates a case where the algorithm works but produces a different parse tree, but one

that is still adequate for semantic interpretation. The canonical structure does not look like the

ancestral tree we would see in a textbook presentation (Enderton, 2001).

Since (¬A) and (A∨A) are both in the language, ¬∼=A∨, so the parse tree for (A∨B) will look a

little strange: the canonical grammar has pulled out some more structure than the textbook grammar

does: see Figure 2 for example trees. Nonetheless this is still suitable for semantic interpretation

and the grammar is still unambiguous.

We fix some input data, replacing the symbols with strings to obtain input data of { a, b, c, open

a and b close, open a or b close, open a implies c close, open a iff c close, open neg a close }. This

produces the grammar shown in the middle of Table 1, which is weakly correct. This generates one

tree for each string in the language as shown in Figure 2.

8.3 An Ambiguous Language

The next example is the language which consists of equal numbers of a’s and b’s in any order:

{w ∈ {a,b}+ | |w|a = |w|b}. We give the input data: {ab,ba,abab,abba,baba,bbaa}. The resulting

grammar has 10 productions as shown on the right of Table 1.

In this case the grammar is ambiguous and the number of parses for each string varies, depending

on properties of the string that are more complex than just the length. For example, the string abab

has 5 parses, the string abba has 3 and the string aabb has only 2.

9. Discussion

Our goal in this paper is to take a small but theoretically well-founded step in a novel direction. This

is not merely a new learning result but a new type of learning result: a strong learning result for a

class of languages that includes non-regular languages. The main points of this paper are to define

the learning model, and to establish that it is possible to obtain such results for at least some CFGs

from positive strings alone. To the best of the author’s knowledge this is the first non-trivial learning

result of this type. There are of course trivial enumerative algorithms that can strongly learn any
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S

NT 0

a

S

NT 0

NT 3

open

NT 4

NT 0

a

NT 1

implies

NT 0

c

NT 2

close

S

NT 0

NT 3

open

NT 4

NT 0

c

NT 1

implies

NT 0

NT 3

open

NT 4

neg

NT 0

b

NT 2

close

NT 2

close

Figure 2: Example parse trees for the sentential logic example. Each example has only one parse

tree.

non-redundant finite class of CFGs from positive data given a list of the elements of the class ordered

by inclusion, and as mentioned before, the algorithm presented by Angluin (1982) can be viewed

also as a strong learner for deterministic regular grammars. The Gold learning model is too onerous

and as a result the class of languages that can be learned is very limited, but nonetheless includes

some interesting natural examples as we showed in the previous section.

Strong learning is hard—accordingly we decompose it into two subproblems of rather different

flavors. The first is a weak learning algorithm, and the second is a component that converts a weak

learner to a strong learner; the latter component can be thought of as the computation of a canonical

form. In general it will not be possible to compute a canonical form for an arbitrary grammar as this

will be undecidable; however we may be able to do this for the grammars output by weak learners

which will typically produce grammars in a restricted class.

In this paper, we have chosen to work using the simplest type of weak learner, and using only

CFGs. The algorithm we have obtained therefore lacks some important features of natural language;

notably lexical ambiguity and displacement. It also relies on an overly strong language theoretic

closure property (substitutability) that natural languages do not satisfy. It is natural therefore to

extend this in two ways. Firstly instead of using congruence classes as the basis for the nonterminals

in the grammar, we can use syntactic concepts (Clark, 2013) which can be used to represent all
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CFGs, and secondly we can move from CFGs to a much richer class of grammars—the class of

well-nested multiple context-free grammars (Seki et al., 1991). The fundamental lemma is a nice

technical result which simplifies the algorithm and the proof; however we will not have such a clean

property in the case of larger classes of languages. Nonetheless we can extend the notion of a prime

congruence class naturally to the richer mathematical structures that we need to model the more

complex grammar formalisms required for natural language syntax.
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Appendix A.

This appendix contains the proofs of some technical lemmas that we use earlier that are not impor-

tant from a learning theoretic point of view, but merely concern the algebraic properties of substi-

tutable languages and their congruence classes. In all of the lemmas that follow, we assume we have

a fixed language L ∈ Lsc.

Lemma 28 If X is a prime, and Y is a congruence class which is not equal to X, then there is a

string in X which does not start with an element of Y .

Proof Suppose every string in X starts with Y . Let x,x′ be strings in X ; then x = yv and x′ = y′v′ for

some y,y′ ∈ Y and some other strings v,v′. Then v ≡ v′ by substitutability so X = Y [v] and X is not

prime.

Lemma 29 Suppose α = A1 . . .Am and β = B1 . . .Bn are sequences of primes such that ᾱ ⊇ β̄ then

there is some j, 1 ≤ j ≤ n such that A1 ⊇ B1 . . .B j.

Proof If B1 = A1 then we are done. Alternatively pick some element b1 ∈ B1 which does not start

with an element of A1 (by Lemma 28). Now let w be some string in B2 . . .Bn. Since b1w ∈ ᾱ we

must have some a1, p1 such that a1 = b1 p1, where a1 ∈ A1. If p1 ∈ B2 then B1B2 ⊆ A1, so j = 2

and we are done. Otherwise take some element of B2 that does not start with an element of [p1],
say b2. By the same argument we must have some a2 ∈ A1 and a p2 such that a2 = b1b2 p2, and

where b2 p2 ∈ [p1]. We repeat the process, and if we do not find some suitable j then we will have

constructed a string in β̄ which does not start with A1 which contradicts the assumption that β̄ ⊆ ᾱ.

Therefore there must be some j such that B1 . . .B j ⊆ A1.

Lemma 30 Suppose X is a prime, and α,β are strings of primes such that Xᾱ ⊆ X β̄, where X β̄ ⊆
Sub(L), then ᾱ ⊆ β̄.
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Proof Suppose α = A1 . . .Am and β = B1 . . .Bn are sequences of primes that satisfy the conditions

of the lemma. Take some string in ᾱ, say a. Let x be a shortest string in X . xa is in the set Xᾱ so we

must have xa = x′b, for some x′ ∈ X ,b ∈ β̄. Now x is the shortest string so either x = x′ and a = b

in which case the lemma holds, or |x′| > |x| in which case we have xcb = xa = x′b, for some non-

empty string c. So xc = x′ and x′,x are both in X so xc ≡ x. Therefore xcb ≡ xccb and so b ≡ cb, by

substitutability. Now we can write b as a sequence of elements of β say b = b1 . . .bn, where bi ∈ Bi.

Since we have some context (l,r) such that lbr ∈ L therefore lcbr ∈ L by substitutability we will

have b1 ≡ cb1 so cb1 ∈ B1 since it is a congruence class. This means that cb ∈ β so a ∈ β since

a = cb. So ᾱ ⊆ β̄.

An immediate corollary is this:

Lemma 31 If X is a prime, and α,β are strings of primes such that Xᾱ = X β̄, where X β̄ ⊆ Sub(L),
then ᾱ = β̄.

Lemma 32 If α and β are non-empty sequences of prime congruence classes such that ᾱ = β̄ = [ᾱ],
and ᾱ ⊆ Sub(L), then α = β.

Proof By induction on the length of the shortest string w in ᾱ. If this is 1 then clearly α = [w] = β.

Inductive step: suppose α = 〈A1 . . .Am〉 and β = 〈B1, . . .Bn〉. Since ᾱ ⊆ β̄, we know by Lemma 29

that there must be some i such that A1 . . .Ai ⊆ B1 and similarly, since β̄ ⊆ ᾱ, there must be some j

such that B1 . . .B j ⊆A1. Consider the shortest string w∈ ᾱ. This means that w= a1 . . .am = b1 . . .bn,

where ak ∈ Ak,bk ∈ Bk. This means that all of the ak,bk are the shortest strings in their respective

classes.

Suppose a1 6= b1. Without loss of generality assume that |a1|> |b1|. This implies that a1 = b1s,

for some s. Now as we have seen, A1 ⊇ B1 . . .Bi, so s ≡ b2 . . .bi, by substitutability. If |s|> |b2 . . .bi|
then a′1 = sb2 . . .bi would be an even shorter element of A1. If |s| < |b2 . . .bi| then b1sbi+1 . . .bn

would be a shorter element of β̄ (using the fact that β̄ = [β̄]. So s = b2 . . .bi and a1 = b1 . . .bi. This

means that a2 . . .am = bi+1 . . .bm.

Pick an a′ ∈ A1 which does not start with an element of B1 (which exists by Lemma 28). Con-

sider w′ = a′a2 . . .am which must also be equal to b′1 . . .b
′
n, where b′k ∈ Bk as before.

So a′ must be a prefix of b′1 which means that a′a2 . . .a j = b′1 by substitutability and so a j+1 . . .am =
b′2 . . .b

′
n. So |b′2 . . .b

′
n| = |a j+1 . . .am| < |a2 . . .am| = |bi+1 . . .bn| < |b2 . . .bn|, which is a contradic-

tion since b2, . . .bn are the shortest strings in B2 . . .Bn. So a1 = b1 and A1 = B1. By Lemma 31 and

by induction this means that α = β.

We now prove the ‘fundamental lemma’ of substitutable languages.

Lemma 33 Every non-zero non-unit congruence class has a unique prime factorisation.

Proof We show that every congruence class can be represented as a product of primes; uniqueness

then follows immediately by Lemma 32. Base case: the shortest string in X of length 1. (X is not

the unit, so we know it is not of length 0). Then it is prime, and can be represented uniquely as a

product of 1 prime, itself. Inductive step: suppose X is a congruence class whose shortest string is

of length k. If X is prime, then again it is uniquely representable so suppose it is not prime, and there
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is at least one decomposition into two congruence classes Y,Z. Y,Z must contain strings of length

less than k and so by the inductive hypothesis, Y and Z are both decomposable into sequences of

prime congruence classes, Y = Y1 . . .Yi and Z = Z1 . . .Z j so X = Y1 . . .YiZ1 . . .Z j.

Lemma 34 Suppose N is a prime and α,γ are nonempty sequences of primes such that N → γα is

a valid production. Then α is the prime decomposition of [ᾱ].

Proof By induction on the length of α. The base case where α is of length 1 is trivial by the defi-

nition of a prime decomposition. Inductive step: Let β be the prime decomposition of [ᾱ]. Clearly

ᾱ ⊆ β̄ and so by Lemma 29 we know that there is some j such that A1 . . .A j ⊆ B1. If j > 1 then

this would mean that the rule was pleonastic and thus not valid, therefore j = 1 and so A1 = B1; the

result follows by induction.

Lemma 35 G∗(L) only has a finite number of valid productions.

Proof Let n is the number of primes in the language L. Suppose we have two valid productions

N → Aα and N → Aβ, where N,A are primes and α,β are sequences of primes. Therefore by

Lemma 34 α = β, which means that there can be at most one production for each pair of primes

N,A; therefore the total number of branching productions is at most n2.

References

D. Angluin. Inference of reversible languages. Journal of the ACM, 29(3):741–765, 1982.

R.C. Berwick, P. Pietroski, B. Yankama, and N. Chomsky. Poverty of the stimulus revisited. Cog-

nitive Science, 35:1207–1242, 2011.

L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information and

Control, 28(2):125–155, 1975.

J. Case and C. Lynes. Machine inductive inference and language identification. Automata, Lan-

guages and Programming, pages 107–115, 1982.

A. Clark. A language theoretic approach to syntactic structure. In Makoto Kanazawa, András

Kornai, Marcus Kracht, and Hiroyuki Seki, editors, The Mathematics of Language, pages 39–56.

Springer Berlin Heidelberg, 2011.

A. Clark. The syntactic concept lattice: Another algebraic theory of the context-free languages?

Journal of Logic and Computation, 2013. doi: 10.1093/logcom/ext037.

A. Clark and R. Eyraud. Polynomial identification in the limit of substitutable context-free lan-

guages. Journal of Machine Learning Research, 8:1725–1745, August 2007.

T. Cohn, P. Blunsom, and S. Goldwater. Inducing tree-substitution grammars. Journal of Machine

Learning Research, 11:3053–3096, 2010.

3557



CLARK
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Abstract

We consider the problem of classifying a test sample given incomplete information. This problem

arises naturally when data about a test sample is collected over time, or when costs must be incurred

to compute the classification features. For example, in a distributed sensor network only a fraction

of the sensors may have reported measurements at a certain time, and additional time, power, and

bandwidth is needed to collect the complete data to classify. A practical goal is to assign a class

label as soon as enough data is available to make a good decision. We formalize this goal through

the notion of reliability—the probability that a label assigned given incomplete data would be the

same as the label assigned given the complete data, and we propose a method to classify incomplete

data only if some reliability threshold is met. Our approach models the complete data as a random

variable whose distribution is dependent on the current incomplete data and the (complete) training

data. The method differs from standard imputation strategies in that our focus is on determining the

reliability of the classification decision, rather than just the class label. We show that the method

provides useful reliability estimates of the correctness of the imputed class labels on a set of ex-

periments on time-series data sets, where the goal is to classify the time-series as early as possible

while still guaranteeing that the reliability threshold is met.

Keywords: classification, sensor networks, signals, reliability

1. Introduction

In many applications there is a cost associated with collecting or computing the features necessary

to classify a test sample. For example, in medical applications, there are costs to subjecting a patient

to additional tests. Or, in distributed networks, the cost of aggregating all of the test data is power or

bandwidth. In many applications, there is simply a CPU or bandwidth cost to getting and processing

c©2013 Nathan Parrish, Hyrum Anderson, Maya Gupta and Dun Yu Hsaio.
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raw data to produce a full set of classification features. Thus, it is desirable to know if one can make

a good decision without collecting all of the test data. Specifically, we wish to guarantee that a

decision made from incomplete test data has a high probability of being the same decision that

would be made given the complete test data.

In this paper, we focus on answering the question “With probability at least equal to τ, will the

classification decision from incomplete data be the same as that which would be made from the

complete data?” Our approach also makes it possible to answer the related question, “If we classify

based on the current incomplete data, what is the probability that the class decision will be the same

as classifying from the complete data?”

First, we propose optimal and practical decision rules for classifying incomplete data. In Sec-

tions 3, 4, and 5 we provide the details on how to efficiently and accurately implement the proposed

practical decision rule for classifiers that use linear or quadratic discriminants, such as linear sup-

port vector machines and linear or quadratic discriminant analysis (LDA and QDA). In Section 6,

we review related work on classifying with missing features and related work on early classification

of time-series data. Experiments in Section 7 show that the proposed incomplete decision rule con-

sistently provides enhanced reliability over the state of the art in classifying incomplete data. We

further discuss the results and some open questions in Section 8.

This paper significantly extends our prior work in the conference paper (Anderson et al., 2012),

where we tackled the same problem but proposed a more conservative decision rule. In this paper,

we propose a more tractable decision rule, show how it can be used with different kinds of classifiers,

show that our approach can be applied to different features, and provide substantially more analysis

and experimental results.

2. Incomplete Decision Rules

Let ĝ(x) be a classifier function that assigns a class label to test sample x. However, suppose that at

test time we do not have x, but instead have some incomplete information given as a vector z. We

wish to classify z if it gives us enough information about x to make a good decision, otherwise, we

delay making a decision until we have more information. To that end, we consider decision rules

that answer the question: “Can we classify z and know that we meet some minimum probability

threshold of making the same decision that we would make on x?” We use the term reliability to

mean the probability that the class label assigned to z matches that assigned to x.

To estimate reliability, we model the classification features derived from the complete data as a

random variable X , where X is jointly distributed with the random variable Z modeling the incom-

plete data. Given a desired reliability τ ∈ [0,1] and a realization of the incomplete information z, an

ideal incomplete decision rule is to classify as class g if

P(ĝ(X) = g|Z = z) =
∫

x s.t. ĝ(x)=g
p(x|z) dx

≥ τ, (1)

and otherwise to wait for more information. Figure 2 illustrates this rule.

The ideal rule given in (1) could be checked in several ways. A straightforward check would be

to compute the integral directly and see if it is greater than or equal to τ. An alternative check that we

find easier to approximate is to consider all sets A in the domain of X such that P(X ∈ A|Z = z)≥ τ,
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Figure 1: In this example, the available information is the incomplete time signal z, shown in green.

Assuming the complete signal is iid with the training signals, the complete signal can be

treated as a random signal (illustrated in pink), implying a conditional density on the

complete signal’s classification features, p(x|z). Given p(x|z) we can check whether or

not one can make a reliable classification.

and see if ĝ(x) maps all x in one such set to a single class g. In general, we expect both these checks

to be computationally intractable.

We propose that a more conservative, but computable, incomplete decision rule is to classify as

class g if

ĝ(x) = g for all x ∈ A for some set A such that P(X ∈ A|Z = z)≥ τ. (2)

Rule (2) differs from (1) in that only one set A that contains at least τ measure of X must be checked.

This rule is more conservative than (1) because it does not check all sets A, and thus (1) could be

satisfied without (2) being satisfied (but not vice-versa).

Implementing the proposed rule given in (2) requires three steps. First, we must estimate the

conditional density p(x|z). Second, we must construct an appropriate set A, and third, we must

check if the rule is satisfied. We first discuss the construction of a set A in Section 3, and show that

our construction only requires estimates of the first and second conditional moments of X . Then

in Section 4, we show how rule (2) can be efficiently checked for classifiers that have linear or

quadratic class discriminant functions. We delay the discussion of how to estimate the necessary

moments of X until Section 5.

3. Defining a Set A that Contains Measure τ of X

To implement the incomplete decision rule (2), one must be able to construct a set A that contains at

least τ measure of X given z. In this section we propose three ways to construct such a set A. Figure

3 compares these three constructions.

3.1 Chebyshev Construction for Set A

Suppose that we estimate only the first and second conditional moments of X , but make no assump-

tions about the distribution other than that it has finite first and second moments. Then a set A can
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Figure 2: Comparison of the ideal and proposed conservative but computable decision rule. Left:

A two-dimensional feature space and a linear class decision boundary. The probability

mass of X lies mostly to the left of the decision boundary. For desired reliability values τ

that are smaller than the probability mass of X that falls to the left of the decision bound-

ary, the ideal incomplete decision rule would choose to classify based on the incomplete

information z. Right: The entire probability mass of X falls on one side of the decision

boundary, and thus the ideal incomplete decision rule would choose to classify rather than

wait, for every value of τ. However, our computable incomplete decision rule constructs a

set A that captures a fraction τ of the mass of X and requires that entire set A to lie on one

side of the decision boundary. For the choice of A shown here in blue, the set A crosses

the decision boundary, and thus the computable decision rule would choose to wait for

more information before classifying.

be constructed using the multidimensional Chebyshev inequality, which states that for X ∈ R
d with

known mean m and covariance R, and any α > 0:

P
(

(X −m)T R−1(X −m)≤ α2
)

≥ 1− d

α2
.

Thus to satisfy P(X ∈ A|Z = z)≥ τ, define

A =

{

x s.t. (x−m)T R−1(x−m)≤ d

1− τ

}

. (3)

The set A defined by (3) is non-empty for τ ∈ (−∞,1], although τ ≤ 0 does not give a useful bound

for the incomplete classifier reliability.

3.2 Naive Bayes Constructions for Set A

The Chebyshev construction given in the previous section can be overly conservative, as it makes

no assumptions about the conditional distribution of X other than a finite mean and covariance. If

we assume more about the distribution, we can define a smaller constraint set A that results in a less

conservative decision rule, and therefore earlier classification for the same reliability requirement τ.
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Decision Boundary 

 

Conditional mean of X 

 

Chebyshev constraint set A 

 

Naïve Bayes constraint set A 

 

Naïve Bayes Box A 

Figure 3: Example sets that contain mass τ of the conditional p.d.f. of X formed by the three

different construction methods for A proposed Section 3.

For example, if we assume that the conditional distribution is Gaussian,1 then a quadratic set A that

covers τ measure of X is

A =
{

x s.t. (x−m)T R−1(x−m)≤ erf(τ)
}

, (4)

where one must compute the inverse cdf to determine the value erf(τ) to achieve a set A with

measure τ. For a multi-dimensional Gaussian, computing the inverse cdf for (4) is non-trivial. We

can simplify (4) by making the conservative näive Bayes assumption that the components of X are

independent, and thus R is diagonal. Then the quadratic function in (4) becomes ∑d
ℓ=1

(

x(ℓ)−m(ℓ)√
R(ℓ,ℓ)

)2

.

Under the independent Gaussian assumption, ∑d
ℓ=1

(

X(ℓ)−m(ℓ)√
R(ℓ,ℓ)

)2

is a chi-squared random variable

with d degrees of freedom; thus, the erf(τ) function in (4) is easily computed using the inverse cdf

of a chi-squared random variable.

A related option is to force the set A to be a box. Again, make the näive Bayes assumption that

elements of X are independent, then p(x|z) = ∏d
ℓ=1 p(x(ℓ)|z). Therefore, we can define a set

A = {x s.t. x(ℓ) ∈ [m(ℓ)− sτ(ℓ),m(ℓ)+ sτ(ℓ)] ∀ ℓ= 1, ...,d} , (5)

where sτ is a vector defining the width of the box in each dimension such that the total measure of

the box is τ. In this paper, we implement this constraint by assigning each dimension equal measure

τ1/d while assume that each marginal distribution X(ℓ) is Gaussian.

The two options (4) and (5) make the same two assumptions about the conditional distribution

of X , but (4) finds the ellipsoidal footprint of the Gaussian that has measure τ, while (5) treats the

dimensions completely independently, giving each of the marginals measure τ1/d .

1. The Gaussian assumption is often justified by a central limit theorem argument, a maximum entropy argument, or a

simplicity argument.
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4. Efficient Solutions for Linear or Quadratic Discriminants

In this section, we show that the incomplete data classification rule (2) with the constraint sets A

proposed in Section 3 can be computed efficiently for classifiers of the form

ĝ(x) = argmax
g

fg(x), (6)

where fg(x) is a linear or quadratic discriminant function for the gth class, and according to (6), the

classifier assigns x to the class with the maximum discriminant. For example, the linear support

vector machine (SVM) has a linear discriminant, while the quadratic discriminant analysis (QDA)

classifier has a quadratic discriminant (Hastie et al., 2001).

Nearest-neighbor classifiers using an Euclidean (or Mahalanobis) distance have a discriminant

that over the set x ∈ A requires taking the minimum of a set of quadratic discriminants:

fg(x) = min
xi:yi=g

(x− xi)
T (x− xi).

An optimal method for checking the incomplete decision rule (2) for this discriminant is an open

question. A conservative reliability decision can be made by treating each sample as its own class

in (6). That is, let fi(x) = (x− xi)
T (x− xi), solve (6) for the resulting quadratic discriminant, and

then classify as the class yi. A computationally simpler approach (but one that is not strictly con-

servative), is to only consider each class’s nearest neighbor to the posterior mean, which produces

one quadratic discriminant per class. In experiments, we do something similar to the latter approach

using a local QDA classifier.

We begin with the two-class problem, and then show how this rule can be extended to multi-class

problems.

4.1 Two-class Problems

We first consider a two-class problem, where the set of class labels is G = {1,2}. Let f1(x) and

f2(x) be the discriminants for classes one and two, and define

f (x) = f2(x)− f1(x).

We can define an equivalent classifier to (6) using only f (x) by noting that f (x) = 0 defines the

decision boundary between classes 1 and 2. Therefore, classification rule (6) is equivalent to

ĝ(x) =

{

1 if f (x)≤ 0

2 if f (x)> 0.

Then the proposed incomplete data decision rule (2) is implemented:

ĝ(z) =











1 if max
x∈A

f (x)≤ 0

2 if min
x∈A

f (x)> 0

no decision otherwise.

(7)

Note that the decision rule (7) is dependent on the incomplete data through the dependence of A on

z. The three different conditions in (7) are shown for a quadratic discriminant (and hence quadratic

decision boundary) and a quadratic construction of the set A in Figure 4.
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Figure 4: Three different scenarios for incomplete data classification. In the leftmost plot, the clas-

sifier withholds making a decision. In the center and rightmost plots, A lies completely on

a single side of the decision boundary, so the classifier assigns a label to the incomplete

data.

4.1.1 LINEAR DISCRIMINANTS

In order to efficiently check (7), we must be able to efficiently compute the maximum and minimum

of f (x) over the set x ∈ A. If f1(x) and f2(x) are linear discriminants, then f (x) is also linear.

Coupled with a quadratic set A, such as the Chebyshev or näive Bayes quadratic sets A given in

Section 3, finding the maximum and minimum are the linear programs with quadratic constraints:

max
x∈A

f (x) =max
x

βT x+b (8)

s.t. (x−m)T R−1(x−m)≤ δ

min
x∈A

f (x) =min
x

βT x+b (9)

s.t. (x−m)T R−1(x−m)≤ δ.

These optimizations have closed-form solutions:

Proposition 1: The solutions to (8) and (9) are, respectively

max
x∈A

f (x) = βT m+
√

δ ‖ R1/2β ‖2 +b

min
x∈A

f (x) = βT m−
√

δ ‖ R1/2β ‖2 +b.
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Figure 5: The left figure shows the time required by the SDP vs gradient descent solutions. The

right figure verifies that the solution for the methods is identical.

For a linear set A such as the näive Bayes box constraint set given in (5), the maximum and

minimum are:

max
x∈A

f (x) =max
x

βT x+b (10)

s.t. m(ℓ)− sτ(ℓ)≤ x ≤ m(ℓ)+ sτ(ℓ) ∀ ℓ= 1, ...,d

min
x∈A

f (x) =min
x

βT x+b (11)

s.t. m(ℓ)− sτ(ℓ)≤ x ≤ m(ℓ)+ sτ(ℓ) ∀ ℓ= 1, ...,d.

The solution of (10) is βT m+ |βT |sτ +b, and the solution of (11) is βT m−|βT |sτ +b.

4.1.2 QUADRATIC DISCRIMINANTS

If the class discriminant functions are quadratic, then f (x) = f2(x)− f1(x) will also be quadratic

and, thus, can be written

f (x) = (x− v)TV (x− v)+b. (12)

Since (12) is the difference of two quadratics, V will generally be indefinite even if f2(x) and f1(x)
are both positive semi-definite.

First consider finding the maximum and minimum of (12), as required by the incomplete deci-

sion rule (7), over a quadratic constraint set A. Since V is indefinite, this is a non-convex optimiza-

tion problem; however, strong duality holds for finding the minimum or maximum of a quadratic

function subject to quadratic constraints (see, e.g., Boyd and Vandenberghe, 2008). The dual prob-

lem is a semi-definite program (SDP), and can therefore be solved using convex optimization such

as an interior point method. However, in our experiments, we found the SDP solution to be pro-

hibitively slow. Therefore, we instead propose to use the two-step gradient descent approach de-

scribed in Appendix B. Martinez (1994) showed that there is at most one local non-global solution

to this non-convex problem. Also, since we need only know if the minimum or maximum of f (x)
is less than or greater than zero, we can often stop the gradient descent before convergence. Figure

(5) shows a run-time comparison between the SDP solution solved using Sedumi and the gradient-

descent solution.
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Now consider finding the maximum and minimum of (12) over the box set A. An efficient

solution is obtained by first performing a change of variables that diagonalizes V . Define y =V 1/2x

and w = V 1/2v, then f (x) = f (y) =‖ y−w ‖2 +b. After this change of variables, we can greatly

simplify the maximum and minimum computations required by the incomplete decision rule (7)

by making the näive Bayes assumption on the random variable Y = V 1/2X as opposed to on X .

Defining the mean of Y as my =V 1/2m,

max
x∈A

f (x) = max
y∈A

‖ y−w ‖2 +b (13)

min
x∈A

f (x) = min
y∈A

‖ y−w ‖2 +b, (14)

with

A = {y s.t. y(ℓ) ∈ [my(ℓ)− sτ(ℓ), my(ℓ)+ sτ(ℓ)], ∀ ℓ= 1, ...,d} ,
where the sτ(ℓ) are determined by the inverse cdf of Y (ℓ).

After this change of variables, the y that maximizes (13) is found by assigning each y(ℓ) to the

edge of the box that maximizes the distance from w(ℓ). Similarly, the y that minimizes (14) assigns

y(ℓ) = w(ℓ) if w(ℓ) ∈ [my(ℓ)− sτ(ℓ), my(ℓ)+ sτ(ℓ)]. Otherwise, y(ℓ) is assigned to the edge of the

box that minimizes the distance to w(ℓ).

4.2 Multi-class Classifiers

We now extend the results of the previous section to multi-class classifiers. For multi-class classi-

fiers, the classification rule (6) can be expressed:

ĝ(x) = c if fc(x)− fh(x)≥ 0 for all h 6= c.

The proposed incomplete data classification rule (2) can be written:

ĝ(z) =

{

c if min
x∈A

fc(x)− fh(x)≥ 0 for all h 6= c

no decision otherwise.
(15)

That is, classify z as class c if the set A lies completely within the decision region for some class c,

and do not decide at the requested reliability if the set A straddles a decision boundary.

If there are G total classes, then (15) implies 2
(

G
2

)

possible checks of the form minx∈A fc(x)−
fh(x) ≥ 0. However, we show in the next section that regardless of the construction of set A, one

must compute at most 2(G− 1) of these checks. Furthermore, if the set A contains the posterior

mean m (as it does in all of our proposed constructions for A), then a decision can be made with at

most G−1 checks using this two-step procedure:

Step 1 - Guess: Let c = argmax
g

fg(m).

Step 2 - Check: Sequentially check if minx∈A fc(x)− fh(x) ≥ 0 for h = 1,2, . . . ,G, h 6= c. If the

check fails for any h, stop, and output the result no decision. If the check holds for all h, then

classify early as class c.

4.3 General Multiclass Decision Process

We provide a provably efficient multi-class decision process for arbitrary constructions of the con-

straint set A. We say that class c dominates class h and that class h is dominated by c if fc(x)−
fh(x)≥ 0 for all x ∈ A. If neither class dominates the other one, then the two classes are called tied.

To classify the incomplete data z early as class c, class c must dominate all other classes.
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4.3.1 PROPOSED DECISION PROCESS

Initialize: Begin with all G classes labelled candidate.

Compare: Choose any two classes c and h that are labelled candidate and check if minx∈A fc(x)−
fh(x) ≥ 0. If yes, then label h as dominated. If no, then perform a second check to see if

minx∈A fh(x)− fc(x) ≥ 0, and if so then label c as dominated, and otherwise label both classes

as tied. Continue this process until fewer than two classes are labelled candidate. If no classes

remain that are labelled candidate, then output no decision. If one class is labelled candidate,

then proceed to the Final Comparison.

Final Comparison: Check if the last class labelled candidate dominates every class labelled tied.

If yes, classify the incomplete data as the class labelled candidate, if no, output no decision.

Proposition 2: The above decision process correctly determines the dominating class or that there

is no dominating class.

Proposition 3: Given G classes, the above decision process requires at most 2(G− 1) minimum

problem calculations evaluations, and at least G−⌊G/2⌋ pairwise evaluations.

5. Estimation of the Complete Test Data Distribution

In order to construct the sets A in Section 3, we must estimate the mean m and covariance R of the

complete test data X . We do this by leveraging the incomplete information about the test signal

that is currently available along with the prior knowledge of the structure of the test signal gained

from the training data using the standard assumption that the training and test features are IID.

We present two estimation methods: 1) joint Gaussian estimation, and 2) Gaussian mixture model

(GMM) estimation. These approaches are similar to those used in missing feature imputation, for

example in speech recognition as described by Raj and Stern (2005). However, our approach differs

from that of missing feature imputation in that the latter constructs only a point estimate of the

unknown data, whereas we construct estimates of the mean and covariance of the unknown data.

5.1 Joint Gaussian Estimation

For joint Gaussian estimation, we assume that the complete data X is distributed jointly Gaussian

with the incomplete data Z. Therefore, the model is

[

X

Z

]

∼ N

([

x̄

z̄

]

,

[

Σx,x Σx,z

Σz,x Σz,z

])

. (16)

We estimate the model parameters in (16) from the training data. The mean and covariance param-

eters of X conditioned on the realization of the partial information Z = z are

m = ˆ̄x+ Σ̂x,zΣ̂
−1
z,z (z− ˆ̄z)

R = Σ̂x,x − Σ̂x,zΣ̂
−1
z,z Σ̂z,x.

5.2 GMM Based Estimation

We assume that the joint distribution of the complete data, X , and the incomplete data, Z, is a

Gaussian mixture model, where the elements of the Gaussian mixture are the class-conditional
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distributions. Under these assumptions the model is

[

X

Z

]

∼ ∑
g∈G

w(g)P

([

X

Z

]

∣

∣

∣
g

)

, (17)

where w(g) is the weight of the class g Gaussian and

P

([

X

Z

]

∣

∣

∣
g

)

= N

([

x̄g

z̄g

]

,

[

Σx,x(g) Σx,z(g)
Σz,x(g) Σz,z(g)

])

.

We can again estimate the parameters of the model (the means, covariances, and weights), from the

training data.

Define

mg = ˆ̄xg + Σ̂x,z(g)Σ̂
−1
z,z (g)(z− ˆ̄zg),

Rg = Σ̂x,x(g)− Σ̂x,z(g)Σ̂
−1
z,z (g)Σ̂z,x(g),

p(g|z) = p(G = g |Z = z)

=
wg p(Z = z |G = g)

∑h∈G wh p(Z = z |G = h)
.

Given a realization Z = z, we can compute the mean m of X as:

m = E[X |z] = ∑
g∈G

E[X ,G |z] = ∑
g∈G

mg p(g|z).

Furthermore, as shown in Appendix C, the covariance of X is

R = ∑
g∈G

p(g|z)
(

Rg +mgmT
g

)

− ∑
q∈G

∑
h∈G

mqmT
h p(q|z)p(h|z).

6. Related Work

We detail the related work in early classification and missing features, then we contrast the proposed

with optimal stopping, feature selection, online and incremental learning, and sequential hypothesis

ratio testing.

6.1 Other Early Classification Work

Xing et al. (1998) considered the problem of making an early prediction on time-series data that

matches that of a full length one nearest-neighbor classifier. Suppose that the labelled training data

set is {(xi,gi)}n
i=1, where xi ∈R

d . Their approach, called early classification on time-series (ECTS),

is motivated by the idea of the minimum prediction length (MPL) of a training time-series xi. Define

xi(1 : t) ∈ R
t to be the first t samples of xi. Furthermore, define, RNN(xi(1 : t)) to be the reverse

nearest neighbors of xi(1 : t) which is the set of training samples that choose xi to be their nearest

neighbor at time t. The MPL of xi is the smallest time index k such that for all k ≤ ℓ ≤ d the

following holds RNN(xi(1 : ℓ)) = RNN(xi(1 : d)) 6= /0. By this definition, the MPL is the smallest

time index at which the reverse nearest neighbors of xi do not change as the rest of the time-series is
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revealed. At test time, a training point xi can be used to assign a label to a test sample x(1 : t) once

t ≥ MPL(xi), the minimum prediction length of xi.

The authors found that the above procedure was too conservative; therefore, they proposed a

slightly modified way to find the MPL for ECTS. They first clustered the training data using a

hierarchical clustering method and then selected the MPL for each training time-series depending on

its cluster membership. They also introduced a parameter to control the earliness of their approach

called minimum support—a ratio that varies between zero and one, with zero resulting in the earliest

classifier. However, the minimum support parameter is different from our τ parameter in that it does

not provide an explicit guarantee on the reliability of the early decision.

Xing et al. cite Rodriguez and Alonso (2002) as the only existing study mentioning early clas-

sification on time-series data. Rodriguez and Alonso (2002) propose to classify a time-series using

a literal based classifier, where a literal is a descriptor describing what happens during a specified

interval of the time-series. For example, the literal increases would be set to one if the time-series

increases during the specified interval, and would be set to zero otherwise. The authors mention

that for early classification of time-series some of the literals will not yet have a value because the

interval that they are measured in has not occurred yet. The authors propose to omit these literals

from the classifier in order to classifier early.

6.2 Related Work on Missing and Noisy Features

Another related body of work is imputing (estimating) missing features. If missing features occur in

the training data, then standard methods of classifier training cannot be used. One method of dealing

with this problem, called single imputation, is to fill in the missing features with their estimated

values. The missing features can be estimated using a multivariate regressor that is trained using

the subset of training data with no missing features. Schafer and Graham (2002) and Rogier et al.

(2006) review missing feature methods for training data.

When features are missing in the test data, there are three standard options (see, e.g., Saar-

Tsechansky and Provost, 2007): imputing a point estimate for the missing features, imputing a

distribution for the missing features, and the reduced-models approach. For the reduced models

approach, classifiers are trained for each set of potentially missing information (Friedman et al.,

1996; Schuurmans and Greiner, 2007; Saar-Tsechansky and Provost, 2007). Here, we do impute a

distribution over the missing features (conditioned on the given information about the test sample

and the training data statistics), but rather than just use that distribution to predict the best class label,

we use the distribution to measure the reliability of a classification decision with the incomplete data.

Thus, our contributions are in-part complementary to imputation methods, and different methods

than the ones we used in Section 5 can be easily substituted into the proposed approach.

If features are noisy rather than missing, then estimating the clean feature values can improve

test accuracy. This problem arises, for example, in automatic speech recognition (ASR) systems

when the test signal is masked by noise (Cooke et al., 2001; Raj et al., 2004; Raj and Stern, 2005).

Raj and Stern (2005) compare MAP estimates for noisy features in ASR systems using Gaussian

and GMM based estimators with models similar to those that we describe in Section 5.

6.3 Optimal Stopping Rules

Quoting Ferguson (2001), “The theory of optimal stopping is concerned with the problem of choos-

ing a time to take a given action based on sequentially observed random variables in order to maxi-
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mize an expected pay-off or to minimize an expected cost.” While the high-level goal is the same, the

optimal stopping perspective requires specification of misclassification costs and delay costs, which

are often difficult to specify. Given such costs, an optimal stopping rule approach would attempt to

estimate the probability of each class given the current incomplete information, and determine the

expected costs of making a decision or waiting.

6.4 Feature Selection

A related problem in classification is to determine the best subset of features to use in classifica-

tion. For example, the classic forward selection method sequentially adds in features based on their

marginal value. Different stopping rules have been proposed to decide when to stop sequentially

adding the features (Costanza and Afifi, 1979). Generally stopping rules are not applicable to the

problem we focus on because they assume that all increasing sets of features can be compared,

rather than that one only has the incomplete set of features and must make a decision. In addition,

stopping rules are based only on the training data statistics, and from our perspective are strictly

suboptimal in that they do not consider the current incomplete information.

6.5 Online and Incremental Learning

In this paper we assume that a fixed set of training data is given, and that incremental features of

a test sample become available. These assumptions differ from the usual set-up of online learning

(also known as incremental learning), which assumes that incrementally more training data becomes

available to train the classifier over time (e.g., Pang et al., 2005; Dredze et al., 2008; Crammer and

Singer, 2003). Also assuming the online learning set-up, Fu et al. (2005) propose a stopping rule

for deciding when enough training samples have been received to classify with confidence.

6.6 Sequential Hypothesis Testing

The sequential probability ratio test (SPRT) (Wald, 1947) is a greedy alternate to the proposed work,

designed for use with probabilistic models of two hypotheses. In the context of binary classification,

and a generative model p(y|xk), it accumulates the log-likelihood ratio:

Sk = Sk−1 + log p(y1|xk)− log(y2|xk), (18)

and if Sk exceeds a preset threshold t1, the signal would be called for class 1, and if Sk goes below a

preset negative threshold t2, the signal would be called for class 2. The thresholds are set to achieve

desired error levels on class 1 and class 2 respectively.

Armitage (1950) expanded SPRT for the multi-hypothesis case and applied it to linear discrim-

inant analysis classification (in which each class is assumed to be drawn from a distribution with

the same covariance matrix) for a different problem than the one treated here: given a sequence

of iid samples from one class, he prescribed how to use SPRT to give a rule for how and when to

determine the class.

A key difference between the proposed approach and the SPRT approach is that (18) is greedy:

new features do not change the contribution to the log-likelihood already made by previous features,

which stems from the standard SPRT assumption that successive observations are independent.

But the classifiers we consider in this paper are not trained to consider the features independently.

Further, we assume correlations between the features in order to estimate a probability distribution

over the unknown part of the feature vector, which we use to define a constraint set.
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Time-series Number of Training Test

Data set Length Classes Samples Samples

Chlorine Concentration 166 3 467 3840

Italy Power Demand 24 2 67 1029

Face (All) 131 14 560 1690

Medical Images 99 10 381 760

Non-Invasive Fetal ECG 1 750 42 1800 1965

Non-Invasive Fetal ECG 2 750 42 1800 1965

Starlight Curves 1024 3 1000 8236

Swedish Leaf 128 15 500 625

Synthetic Control 60 6 300 300

Two Patterns 128 4 1000 4000

U Wave Gesture Library X 315 8 896 3582

U Wave Gesture Library Y 315 8 896 3582

U Wave Gesture Library Z 315 8 896 3582

Wafer 152 2 1000 6174

Yoga 426 2 300 3000

Table 1: Time-series Data Sets

7. Experiments

Section 7.1 details the data sets, experimental set-up, and classifiers used. We first compare the

proposed methods to construct sets A of measure τ, reported in Section 7.2, and the proposed esti-

mation methods for the moments of PX |z, reported in Section 7.3. Then in Section 7.4, we show that

applying a dimensionality reduction method can greatly reduce the computation needed at test time.

Lastly, we compare our recommended reliable classifier to other approaches to early classification.

Research-grade code and the experimental data sets are available to download.2

7.1 Experimental Set-up and Details

We demonstrate performance using all of the time-series data sets available on the UCR Time-Series

Classification and Clustering Page (Keogh et al., 2006) that have at least five hundred test samples

and at least 15 training examples per class when this paper was written. We use the given training

and test splits, so all results can be reproduced. We also use the Synthetic Control data set from this

repository, a data set of Gaussian data that has only three hundred test samples, to further illustrate

the differences between the constraint sets and estimation methods that we have described for the

proposed incomplete decision rule. Table 1 gives details for the used data sets.

The time-series classification experiments are performed as follows. The test data set consists

of n sampled time-series vectors and corresponding labels {xi,gi}n
i=1, with xi ∈ R

d and g ∈ G . At

time t, the incomplete data for the ith test time-series is zi ∈ R
t , the first t samples of xi. At each

time t we check the proposed incomplete decision rule and classify zi if the reliability condition is

met for τ. We plot results for a set of choices of τ.

2. The code and data sets can be downloaded at http://www.mayagupta.org/publications/Early_

Classification_For_Web.zip.
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Local QDA Linear SVM

Chebyshev Quadratic Box Chebyshev Quadratic Box

Synthetic Control 1.8 0.7 0.4 0.4 0.3 0.3

Medical Images 27.1 2.7 1.4 1.9 1.0 0.8

Two Patterns 12.45 2.0 1.0 1.8 0.5 0.3

Table 2: Average test time per sample, in seconds, for the three different constraint sets.

Let ti(τ) be the minimum time at which the ith test signal can be classified with reliability

constraint τ, and let ĝ(zi(τ)) be the class label assigned to zi at this time. We measure the test

reliability as 1
n ∑n

i=1 I(ĝ(zi(τ)) = ĝ(xi)), where ĝ(xi) is the label assigned to the complete data and

I(·) is one if the argument is true and zero otherwise. We also measure the average classification time

as the mean of the ti(τ). Ideally, we would like to classify with the smallest average classification

time while still meeting reliability requirement τ.

We perform incomplete classification experiments with two different discriminant classifiers.

The first classifier is local QDA (Garcia et al., 2010). Local QDA learns the mean and covariance

for the class g discriminant function for test point x, fg(x), by estimating them using the k nearest

class g training points to test point x. We choose k ∈ {1, 2, 4, 8, 16, 32, 64, 128} by cross-validation

on the training data. In our implementation of local QDA, we use a diagonal covariance matrix, and

we regularize the covariance estimate by adding 10−4I, where I is the identity matrix. Since we do

not have the complete data x, we instead estimate the mean and covariance for fg(x) by finding the

nearest class g neighbors to the mean of X . The second classifier that we use is a linear SVM which

we implement using LibSVM (Chang and Lin, 2011) with default settings.

7.2 Comparison of Construction of Sets of Measure τ

We first compare the three set construction methods proposed Section 3, the Chebyshev set (3), the

Gaussian näive Bayes quadratic set (4), and the Gaussian näive Bayes box set (5).

We vary the reliability parameter between four values τ= [0.001, 0.1, 0.25, 0.9], and we perform

prediction using the jointly Gaussian model (16). Figure 6 plots the results for the Synthetic Control,

Medical Images, and Two Patterns data sets. In all cases, the empirical reliability rate exceeds

the reliability requirement τ. Additionally, these plots verify that the Chebyshev set is the most

conservative, as it waits the longest to classify the test data, and the näive Bayes quadratic set is the

least conservative.

Table 2 compares the average testing time per test sample for the three different constraint sets

when τ = 0.9. This table shows that the näive Bayes box set is the least computationally complex,

followed by the näive Bayes quadratic set, and finally the Chebyshev set.

7.3 Comparison of Estimation Methods

In this section we compare the performance of reliable incomplete classification using jointly Gaus-

sian estimation (16) to that using GMM estimation (17). We use the same classifiers and values for

τ as given in the previous section.

Figure 7 plots the average classification time vs. test reliability for the jointly Gaussian and

GMM estimation methods using the näive Bayes quadratic constraint set. The figure shows that on

the Synthetic Control and Medical Images data sets, the GMM method dominates the jointly Gaus-
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Figure 6: Average classification time vs test reliability for local QDA (left column) and linear SVM

(right column) using jointly Gaussian prediction. The symbols correspond to choices of

τ ∈ {0.001, 0.1, 0.25, 0.9}.
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Figure 7: Average classification time vs test reliability for local QDA (left column) and linear

SVM (right column) using the näive Bayes quadratic constraint set with τ varied between

[0.001, 0.1, 0.25, 0.9].
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Local QDA Linear SVM

Joint Gaussian GMM Joint Gaussian GMM

Synthetic Control 0.7 0.9 0.3 0.7

Medical Images 2.7 5.5 1.0 2.7

Two Patterns 2.0 3.4 0.5 0.8

Table 3: Average test time per sample, in seconds, for the two different estimation methods.

sian over all τ values for both classifiers. On the Two Patterns data set with local QDA classification,

the GMM method is not uniformly better than the jointly Gaussian method.

Table 3 compares the total testing time of the two approaches, and as expected, the GMM

method requires more test time than the simpler jointly Gaussian method.

7.4 Dimensionality Reduction Features

An advantage of our reliable incomplete classification approach is that it can use any features derived

from the data for which we can estimate the mean and covariance. As an example alternative to

using the time-series samples as the features, we select a smaller feature set by first preprocessing

the time-series using supervised linear dimensionality reduction. Linear dimensionality reduction

finds a matrix B ∈ R
ℓ× d , ℓ < d that maps the data from d-dimensional to ℓ-dimensional space.

Supervised dimensionality reduction uses the label information in the training data to find a reduced

space where the data is also separated by class. In the context of incomplete data classification, the

complete data becomes the vector Bx ∈ R
ℓ as opposed to x ∈ R

d .

Linear dimensionality reduction can provide two advantages over classifying the time-series

features. First, it can diminish the impact of noisy or non-discriminative features in the time-series

data, thus providing increased accuracy. Second, reducing the number of features reduces the com-

putational complexity. For a time-series with d samples, there are d − t unknown samples at time

t. Thus, if we simply use the time-series samples as the features for classification, the optimization

problem that the reliable incomplete classifier must solve has d − t free variables. For a long time

series, this can cause the computational complexity to become extreme when t is small. However,

performing linear dimensionality reduction reduces the number of unknowns to ℓ which can greatly

reduce the number of variables in the optimization for reliable classification.

We use local discriminative Gaussian (LDG) dimensionality reduction (Parrish and Gupta,

2012) to learn B. We choose LDG dimensionality reduction because 1) it can separate multi-modal

data, 2) the solution is fast, requiring only a maximal eigenvalue decomposition, and 3) it has been

shown to work well even when few training samples are provided and the input dimensionality is

large. Furthermore, we can choose the best input dimensionality by performing cross-validation

on the training data set to find a reduced space that is both small and accurate. Table 4 shows the

dimensionality of the training data after LDG dimensionality reduction. The table also compares

the testing time required to perform reliable local QDA classification with the näive Bayes quadratic

constraint set with jointly Gaussian estimation at time t = 1 with and without LDG dimensionality

reduction. On the data sets with more than three hundred time-series samples, using LDG dimen-

sionality reduction results in an orders of magnitude decrease in the testing time.
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Time-series Number of Test time LDG test time

Data set length LDG features at t=1 (ms) at t=1 (ms)

Chlorine Concentration 166 42 76 4

Italy Power Demand 24 2 2 1

Face (All) 131 30 40 2

Medical Images 99 11 18 2

Non-Invasive Fetal ECG 1 750 30 6,107 4

Non-Invasive Fetal ECG 2 750 23 5,789 3

Starlight Curves 1024 26 15,697 2

Swedish Leaf 128 20 35 2

Synthetic Control 60 7 9 1

Two Patterns 128 22 31 2

U Wave Gesture Library X 315 12 418 2

U Wave Gesture Library Y 315 6 382 1

U Wave Gesture Library Z 315 10 393 2

Wafer 152 17 55 2

Yoga 426 26 945 2

Table 4: Time-series length and the number of features after LDG dimensionality reduction as well

as a comparison of the testing time, in milliseconds, required to perform reliable local

QDA classification with the näive Bayes quadratic constraint set and jointly Gaussian es-

timation. The test time shown measures the average time, per test sample, to perform

reliable classification at time t = 1. Therefore, this is a worst case test time in terms of

real-time performance as the number of unknowns in the optimization problem for reliable

classification is maximized at time t = 1.

7.5 Comparison to Other Methods

In this section, we compare the performance of our reliable incomplete data classifier to ECTS

(Xing et al., 1998) and several baselines. For all experiments in this section, we use the näive Bayes

quadratic constraint set because it proved to be uniformly better than the box constraint set across

all experiments in Section 7.2, while not being as overly conservative as the Chebyshev set. We

also use the jointly Gaussian estimation method as it is faster to compute than the GMM method,

particularly for the long time-series with many classes (the three U Wave Gesture Library data sets

and two Non-Invasive Fetal ECG data sets). We also only show results for local QDA, as the reliable

local QDA classifier classified earlier than reliable SVM in all experiments of Sections 7.2 and 7.3.

ECTS trades off between the objectives of classifying early and ensuring that early labels meet

final labels by using a parameter that varies between zero and one, with zero resulting in the earliest

classification time. However, we emphasize that this parameter is not the same as our reliability

parameter τ, in that it provides no guarantee on reliability of the early predictions, but is instead a

knob that the user can tune to trade off between earliness and reliability. Xing et al. (1998) set this

parameter to 0 in the majority of their experiments. We compare to ECTS by varying this parameter

MS ∈ {0,0.05,0.1,0.2,0.4,0.8}.

3579



PARRISH, ANDERSON, GUPTA AND HSAIO

Chlorine Concentration Italy Power Demand

100 110 120 130 140 150 160 170
80

85

90

95

100

Average classification time

T
e
s
t 
R

e
lia

b
ili

ty

 

 

Rel. Class.

LDG Rel. Class.

ECTS

Fixed−time QDA

Fixed−time 1−NN

0 5 10 15 20 25
60

70

80

90

100

Average classification time

T
e
s
t 
R

e
lia

b
ili

ty

 

 

Rel. Class.

LDG Rel. Class.

ECTS

Fixed−time QDA

Fixed−time 1−NN

Face (All) Medical Images

100 110 120 130 140
80

85

90

95

100

Average classification time

T
e
s
t 
R

e
lia

b
ili

ty

 

 

Rel. Class.

LDG Rel. Class.

ECTS

Fixed−time QDA

Fixed−time 1−NN

65 70 75 80 85 90 95 100
75

80

85

90

95

100

Average classification time

T
e
s
t 
R

e
lia

b
ili

ty

 

 

Rel. Class.

LDG Rel. Class.

ECTS

Fixed−time QDA

Fixed−time 1−NN

Non-invasive Fetal ECG 1 Non-invasive Fetal ECG 2

620 640 660 680 700 720 740
80

85

90

95

100

Average classification time

T
e
s
t 
R

e
lia

b
ili

ty

 

 

LDG Rel. Class.

ECTS

Fixed−time QDA

Fixed−time 1−NN

600 650 700 750
85

90

95

100

Average classification time

T
e

s
t 

R
e

lia
b

ili
ty

 

 

LDG Rel. Class.

ECTS

Fixed−time QDA

Fixed−time 1−NN

Starlight Curves Swedish Leaf

800 850 900 950 1000 1050
92

94

96

98

100

Average classification time

T
e

s
t 

R
e

lia
b

ili
ty

 

 

LDG Rel. Class.

ECTS

Fixed−time QDA

Fixed−time 1−NN

80 90 100 110 120 130
75

80

85

90

95

100

Average classification time

T
e
s
t 
R

e
lia

b
ili

ty

 

 

Rel. Class.

LDG Rel. Class.

ECTS

Fixed−time QDA

Fixed−time 1−NN

Figure 8: Average classification time vs test reliability for reliable incomplete local QDA classifica-

tion (Rel. Class.), reliable incomplete local QDA classification with LDG features (LDG

Rel. Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.
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Figure 9: Average classification time vs test reliability for reliable incomplete local QDA classifica-

tion (Rel. Class.), reliable incomplete local QDA classification with LDG features (LDG

Rel. Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.

We also compare to the performance of two baseline methods that we call Fixed-time local QDA

and Fixed-time 1-NN. These methods use no predictive power, but instead classify all test signals at

some user specified time: t samples.

The reliability results are shown in Figures 8 and 9. Reliable incomplete local QDA classi-

fication and reliable incomplete local QDA classification with LDG features perform well across

all experiments. The only times that these methods do not dominate all other methods are when

τ = 0.001 on the Italy Power Demand, U Wave Gesture Library Y, and Wafer data sets. For the

Starlight Curves and Non-invasive Fetal ECG 1 and 2 data sets, the result of reliable local QDA

classification using the raw time-series samples as the features is not shown due to the excessive
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Figure 10: Average classification time vs test accuracy for reliable incomplete local QDA classi-

fication (Rel. Class.), reliable incomplete local QDA classification with LDG features

(LDG Rel. Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.
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Figure 11: Average classification time vs test accuracy for reliable incomplete local QDA classi-

fication (Rel. Class.), reliable incomplete local QDA classification with LDG features

(LDG Rel. Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.

run time. However, reliable classification with LDG features performs well on these data sets and

is fast, as shown in Table 4.

We also note that the leftmost pink circle in these plots is the earliest possible average classi-

fication time that ECTS can achieve, as MS = 0 is the smallest possible value for the minimum

support parameter. On the other hand, reliable early classification can achieve earlier times than

those shown in the figures by setting τ < 0.001 (in fact, setting τ = 0 would result in classifying

every signal at time one). Therefore, if someone wanted to set τ by cross-validation on the training

data set, the reliable incomplete classifier offers more flexibility than ECTS.
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Finally, Figures 10 and 11 plot the test accuracy of the various approaches. The accuracy plots

show that local QDA achieves higher accuracy than 1-NN on most of the data sets; therefore, ECTS

suffers in comparison to reliable local QDA due to the fact that it attempts to match a less accurate

classifier.

The accuracy plots also show that although ECTS is typically more reliable than fixed-time

1-NN, it is less accurate for at least one value of MS on twelve of the fourteen data sets. On the

other hand, reliable local QDA using the time-series samples as features is less accurate than fixed-

time local QDA on only the Medical Images and Chlorine Concentration data sets. However, on

the Chlorine Concentration data sets, reliable local QDA with LDG features greatly exceeds the

accuracy of fixed-time local QDA. Furthermore, although it is not shown in the figure, reliable local

QDA classification using GMM based estimation exceeds the accuracy of fixed-time local QDA on

the Medical Images data set. In fact, the proposed reliable classification approach can be used with

a wide variety of features, classifiers, and estimation methods in order to maximize accuracy for a

particular application.

8. Discussion and Some Open Questions

We have proposed a practical incomplete decision rule that is a conservative approximation of the

optimal rule. Experiments on a set of time-series data showed consistently earlier and more reliable

predictions on average than other approaches. We showed that for linear or quadratic classifiers the

proposed decision rule can be checked either with an analytic solution or using convex optimization.

We only touched on applying the proposed rule to nearest neighbor classifiers, and it is an open

question how to apply this approach efficiently to other classification strategies. In particular, we

suspect the proposed approach could also be implemented efficiently with decision trees that use a

cascade of linear discriminants.

This paper has focused on answering the question “With probability τ, will the classification

decision from this incomplete data be the same as from the complete data?” The presented tools

can also be used to answer the related question: “If we classify based on the current incomplete

data, what is the probability that assigned label will match that which would be chosen using the

complete data?” The answer can be computed by finding the largest τ that makes the first question a

“Yes,” which may require guessing a τ, solving the first question, refining τ up or down depending

on the answer, and iterating.

Another related question that can be answered is, “Can we reliably classify as class g with this

incomplete data?” That is, there may be only one class (or a subset of classes) which we would

like to identify with incomplete data. For example, in determining if a cyst is cancerous or benign,

doctors will often have a patient come back every few months to see how it changes over time.

There is generally no rush to call it benign, but one would like to classify it as cancerous as soon

as that is a reliable class label. This question can be answered by applying the incomplete decision

rule given in (2) only to the class of interest.
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Appendix A. Proofs

Proof of Proposition 1: For the minimum problem (9), the Lagrange dual function is g(λ) =

βT m− 1
4λ BT RB+ b− λδ, a concave function of λ, and g(λ) is maximized for λ∗ =

√

1
4δ BT RB.

Since λ∗ ≥ 0, it is dual feasible. Since the objective function is convex, strong duality holds, and

thus the maximum of the dual problem equals the minimum of the primal problem. A similar

analysis can be performed for the maximum problem.

Proof of Proposition 2: First, note that each pairwise check reduces the number of classes labelled

candidate by either two classes if the classes tie, or by one class (the loser) if one class dominates.

Second, once a class has tied with another class or has been dominated, it cannot be the correct

dominating class. Thus the proposed decision process eventually reduces the number of classes

labelled candidate to either zero or one. If there are zero classes left labelled candidate, then all

classes have either tied or been dominated, and the above process correctly chooses not to classify.

If there is one class remaining that is labelled candidate it must be compared to all the classes that

tied on their first comparison. It is not necessary to also compare to the classes labelled dominated

by the transitivity of the domination rule.

Proof of Proposition 3: We first note that in the Compare step, the pairwise comparison between

classes c and h requires a single minimum computation if c dominates h, and two computations if the

classes tie or if h dominates c. Furthermore, we define T to be the number of pairwise comparisons

that result in ties during the Compare step, and D as the number of pairwise comparisons that

do not result in a tie in the Compare step (such evaluations necessarily result in one class that

was labelled candidate being re-labelled dominated). Thus, the compare step requires at most

2T +2D minimum calculations.

On the other hand, each pairwise comparison in the Final Comparison check requires only a

single minimum computation.

There are two cases to consider

Case 1: Consider the case that the Compare step in the decision process results in one class left

labelled candidate. Immediately prior to the Final Comparison step, there are G− 1 classes that

have been re-labelled tied or dominated, and since each tie results in two classes being re-labelled

tied, it must be that

G−1 = D+2T. (19)

In the Final Comparison step, the Gth class must be compared to at most the 2T classes labelled

tied, each of which requires one minimum calculation. Thus the maximum number of calculations

needed is

2T +2D+2T = 2(G−1) by (19).

Conversely, the best case is that there are no ties, and that each pairwise check requires only a single

minimum calculation. This case requires G−1 minimum calculations.
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Case 2: The second case is that at the end of the Compare step there are zero classes labelled

candidate. Therefore,

G = D+2T, (20)

and the total number of comparisons required is

2T +2D = G+D by (20).

There can be at most G− 2 comparisons that result in one class dominating the other (otherwise,

one class would remain labelled candidate after the Compare step), so the maximum number of

minimum calculations is again 2(G−1).
Since it requires at least one minimum calculation change a class label from candidate to

dominated or tied, the minimum number of calculations is G.

Appendix B. Gradient Descent Solution for the Quadratic Min and Max Problems

The min problem with quadratic f (x) subject to a quadratic constraint set is written as

min
x∈A

f (x) =min
x

(x− v)TV (x− v)+b (21)

s.t. (x−m)R−1(x−m)≤ δ,

where V is indefinite and R is positive semi-definite. We propose to solve this problem using the

two-step gradient descent approach described in Tao and An (1997).

We first reformulate (21) as the trust region subproblem (TRSP). Define

z = R
−1
2 (x−m),

A = 2R
1
2 V R

1
2 ,

y = 2R
1
2 V (m− v),

btsrp = b+ vTV v+mTV m−2mTV v.

Then rewrite (21) as

min
x∈A

f (x) =min
z

1

2
zT Az+ yT z+btsrp (22)

s.t. ‖ z ‖≤
√

δ.

Let ρ equal the largest eigenvalue of A. The following two-step iteration converges to a z∗ that

is a local minimum of the TRSP (22):

Step 1 : zk+1 = zk −
1

ρ
(Azk + y),

Step 2 : zk+1 = min

[

zk+1,
‖ zk+1 ‖√

δ
zk+1

]

,

where Step 1 computes a gradient step, and Step 2 projects the zk+1 found in Step 1 onto the con-

straint set in (22).
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The TRSP has been shown to have at most one local minimum that is not also the global mini-

mum (Martinez, 1994), and thus the above algorithm has proven to be robust in finding the minimum

of (22).

Furthermore, for the incomplete data decision rule (7), it is not necessary to find the true mini-

mum over A of f (x), but it is instead sufficient to know only whether or not it is less than or equal

to zero. Therefore, the iteration can be stopped early if zT
k Azk + yT zk +btsrp ≤ 0.

Appendix C. Derivation of the Variance for GMM Based Estimation

Let mg = E[X |g,z], Rg = COV[X |g,z], and p(g|z) be defined as in Section 5.2.

R =
∫

x
(x−m)(x−m)T p(x|z) dx

=
∫

x
∑

g∈G

(x−m)(x−m)T p(x,g|z) dx

= ∑
g∈G

p(g|z)
∫

x
(x−m)(x−m)T p(x|g,z) dx

= ∑
g∈G

p(g|z)
∫

x

(

xxT −2x ∑
h∈G

mT
h p(h|z)+ ∑

q∈G
∑

h∈G

mqmT
h p(q|z)p(h|z)

)

p(x|g,z) dx

= ∑
g∈G

p(g|z)
(∫

x
xxT −2xmT

g +mgmT
g p(x|g,z) dx+

∫
x
2xmT

g −2x ∑
h∈G

mT
h p(h|z) p(x|g,z) dx

−mgmT
g + ∑

q∈G
∑

h∈G

mqmT
h p(q|z)p(h|z)

)

= ∑
g∈G

p(g|z)
(

Rg +2mgmT
g −2mg ∑

h∈G

mT
h p(h|z)−mgmT

g + ∑
q∈G

∑
h∈G

mqmT
h p(q|z)p(h|z)

)

= ∑
g∈G

p(g|z)
(

Rg +mgmT
g −2mg ∑

h∈G

mT
h p(h|z)

)

+ ∑
q∈G

∑
h∈G

mqmT
h p(q|z)p(h|z)

= ∑
g∈G

p(g|z)
(

Rg +mgmT
g

)

− ∑
q∈G

∑
h∈G

mqmT
h p(q|z)p(h|z).
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Abstract

Typically, one approaches a supervised machine learning problem by writing down an objective

function and finding a hypothesis that minimizes it. This is equivalent to finding the Maximum A

Posteriori (MAP) hypothesis for a Boltzmann distribution. However, MAP is not a robust statistic.

We present an alternative approach by defining a median of the distribution, which we show is both

more robust, and has good generalization guarantees. We present algorithms to approximate this

median.

One contribution of this work is an efficient method for approximating the Tukey median. The

Tukey median, which is often used for data visualization and outlier detection, is a special case

of the family of medians we define: however, computing it exactly is exponentially slow in the

dimension. Our algorithm approximates such medians in polynomial time while making weaker

assumptions than those required by previous work.

Keywords: classification, estimation, median, Tukey depth

1. Introduction

According to the PAC-Bayesian point of view, learning can be split into three phases. First, a prior

belief is introduced. Then, observations are used to transform the prior belief into a posterior belief.

Finally, a hypothesis is selected. In this study, we concentrate on the last step. This allows us to

propose methods that are independent of the first two phases. For example, the observations used to

form the posterior belief can be supervised, unsupervised, semi-supervised, or something entirely

different. The most commonly used method for selecting a hypothesis is to select the maximum a

posteriori (MAP) hypothesis. For example, many learning algorithms use the following evaluation

function (energy function):

E ( f ) =
n

∑
i=1

l ( f (xi) ,yi)+ r ( f ) , (1)

where l is a convex loss function, {(xi,yi)}n
i=1 are the observations and r is a convex regularization

term. This can be viewed as a prior P over the hypothesis class with density p( f ) = 1
Zp

e−r( f ) and

a posterior belief Q with density q( f ) = 1
Zq

e−E[ f ]. The common practice is then to select the hy-

pothesis that minimizes the evaluation function, that is, the MAP hypothesis. However, this choice

has two significant drawbacks. First, since it considers only the maximal point, it misses much of

the information encoded in the posterior belief. As a result it is straightforward to construct patho-

c©2013 Ran Gilad-Bachrach and Christopher J. C. Burges.
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logical examples: in Section 2.4 we give an example where the MAP classifier solution disagrees

with the Bayes optimal hypothesis on every point, and where the Bayes optimal hypothesis1 in fact

minimizes the posterior probability. Second, the MAP framework is sensitive to perturbations in

the posterior belief. That is, if we think of the MAP hypothesis as a statistic of the posterior, it

has a low breakdown point (Hampel, 1971): in fact, its breakdown point is zero as demonstrated in

Section 2.2.

This motivates us to study the problem of selecting the best hypothesis, given the posterior

belief. The goal is to select a hypothesis that will generalize well. Two well known methods for

achieving this are the Bayes optimal hypothesis, and the Gibbs hypothesis, which selects a random

classifier according to the posterior belief. However the Gibbs hypothesis is non-deterministic, and

in most cases the Bayes optimal hypothesis is not a member of the hypothesis class; these draw-

backs are often shared by other hypothesis selection methods. This restricts the usability of these

approaches. For example, in some cases, due to practical constraints, only a hypothesis from a given

class can be used; ensembles can be slow and can require large memory footprint. Furthermore

stochasticity in the predictive model can make the results non-reproducible, which is unacceptable

in many applications, and even when acceptable, makes the application harder to debug. Therefore,

in this work we limit the discussion to the following question: given a hypothesis class F distributed

according to a posterior belief Q, how can one select a hypothesis f ∈ F that will generalize well?

We further limit the discussion to the binary classification setting.

To answer this question we extend the notions of depth and the multivariate median, that are

commonly used in multivariate statistics (Liu et al., 1999), to the classification setting. The depth

function measures the centrality of a point in a sample or a distribution. For example, if Q is a

probability measure over R
d , the Tukey depth for a point x ∈ R

d , also known as the half-space

depth (Tukey, 1975), is defined as

TukeyDepthQ (x|Q) = inf
H s.t. x∈H and H is a halfspace

Q(H) . (2)

That is, the depth of a point x is the minimal measure of a half-space that contains it.2 The Tukey

depth also has a minimum entropy interpretation: each hyperplane containing x defines a Bernoulli

distribution by splitting the distribution Q in two. Choose that hyperplane whose corresponding

Bernoulli distribution has minimum entropy. The Tukey depth is then the probability mass of the

halfspace on the side of the hyperplane with the lowest such mass.

The depth function is thus a measure of centrality. The median is then simply defined as the

deepest point. It is easy to verify that in the univariate case, the Tukey median is indeed the standard

median. In this work we extend Tukey’s definition beyond half spaces and define a depth for any

hypothesis class which we call the predicate depth. We show that the generalization error of a

hypothesis is inversely proportional to its predicate depth. Hence, the median predicate hypothesis,

or predicate median, has the best generalization guarantee. We present algorithms for approximating

the predicate depth and the predicate median. Since the Tukey depth is a special case of the predicate

depth, our algorithms provide polynomial approximations to the Tukey depth and the Tukey median

as well. We analyze the stability of the predicate median and also discuss the case where a convex

evaluation function E ( f ) (see Equation (1)) is used to form the posterior belief. We show that in

1. The Bayes optimal hypothesis is also known as the Bayes optimal classifier. It performs a weighted majority vote on

each prediction according to the posterior.

2. Note that we can restrict the half spaces in (2) to those half spaces for which x lies on the boundary.
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Symbol Description

X a sample space

x an instance x ∈ X

µ a probability measure over X

S a sample of instances, S = {x1, . . . ,xu}.

F a function class. f ∈ F is a function f : X 7→ ±1.

f ,g functions in the function class F

P,Q,Q′ probability measures over F

T a sample of functions, T = { f1, . . . , fn}.

DQ ( f |x) The depth of the function f on the instance x with respect to the measure Q.

DQ ( f ) The depth of the function f with respect to the measure Q.

D
δ,µ
Q ( f ) The δ-insensitive depth of f with respect to Q and µ.

D̂T ( f |x) The empirical depth of f on the instance x with respect to the sample T

D̂S
T ( f ) The empirical depth of f with respect to the samples T and S.

ν A probability measure over X ×{±1}
S a sample {(xi,yi)}m

i=1 from (X ×{±1})m

Rν ( f ) The generalization error of f : Rν ( f ) = Pr(x,y)∼ν [ f (x) 6= y].

RS ( f ) The empirical error of f : RS ( f ) = Pr(x,y)∼S [ f (x) 6= y].

Table 1: A summary of the notation used in this work

this special case, the average hypothesis has a depth of at least 1/e, independent of the dimension.

Hence, it enjoys good generalization bounds.

In the first part of this work we introduce the notion of predicate depth. We discuss its prop-

erties and contrast them with the properties of the MAP estimator. In the second part we discuss

algorithmic aspects. We address both the issues of approximating depth and of approximating the

deepest hypothesis, that is, the predicate median. Table 1 contains a summery of the notation we

use.

2. The Predicate Depth: Definitions and Properties

In this study, unlike Tukey who used the depth function on the instance space, we view the depth

function as operating on the dual space, that is the space of classification functions. Moreover, the

definition here extends beyond the linear case to any function class. The depth function measures

the agreement of the function f with the weighted majority vote on x. A deep function is a function

that will always have a large agreement with its prediction among the class F .

Definition 1 Let F be a function class and let Q be a probability measure over F . The predicate

depth of f on the instance x ∈ X with respect to Q is defined as

DQ ( f |x) = Pr
g∼Q

[g(x) = f (x)] .

The predicate depth of f with respect to Q is defined as

DQ ( f ) = inf
x∈X

DQ ( f |x) = inf
x∈X

Pr
g∼Q

[g(x) = f (x)] .
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The Tukey-Depth is a special case of this definition as discussed in section 2.1. We can now

define the predicate median:

Definition 2 Let F be a function class and let Q be a probability measure over F . f ∗ is a predicate

median of F with respect to Q if

∀ f ∈ F , DQ ( f )≤ DQ ( f ∗) .

We show later, in Theorem 13, that if F is closed then the median always exists, for every

probability measure Q. The depth DQ ( f ) is defined as the infimum over all points x ∈ X . However,

for our applications, we can tolerate some instances x ∈ X which have small depth, as long as most

of the instances have large depth. Therefore, we define the δ-insensitive depth:

Definition 3 Let F be a function class and let Q be a probability measure over F . Let µ be a

probability measure over X and let δ ≥ 0. The δ-insensitive depth of f with respect to Q and µ is

defined as

D
δ,µ
Q ( f ) = sup

X ′⊆X ,µ(X ′)≤δ

inf
x∈X \X ′

DQ ( f |x) .

The δ-insensitive depth function relaxes the infimum in the depth definition. Instead of requiring

that the function f always have a large agreement in the class F , the δ-insensitive depth makes this

requirement on all but a set of the instances with probability mass δ.

With these definitions in hand, we next provide generalization bounds for deep hypotheses. The

first theorem shows that the error of a deep function is close to the error of the Gibbs classifier.

Theorem 4 Deep vs. Gibbs

Let Q be a measure on F . Let ν be a measure on X ×{±1} with the marginal µ on X . For every

f the following holds:

Rν ( f )≤ 1

DQ ( f )
Eg∼Q [Rν (g)] (3)

and

Rν ( f )≤ 1

D
δ,µ
Q ( f )

Eg∼Q [Rν (g)]+δ . (4)

Note that the term Eg∼Q [Rν (g)] is the expected error of the Gibbs classifier (which is not neces-

sarily the same as the expected error of the Bayes optimal hypothesis). Hence, this theorem proves

that the generalization error of a deep hypothesis cannot be large, provided that the expected error

of the Gibbs classifier is not large.

Proof For every x∗ ∈ X we have that

Pr
g∼Q,(x,y)∼ν

[g(x) 6= y |x = x∗]

≥ Pr
g∼Q,(x,y)∼ν

[ f (x) 6= yandg(x) = f (x) |x = x∗]

= Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗] Pr
g∼Q,(x,y)∼ν

[g(x) = f (x) |x = x∗ and f (x) 6= y]

= Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗] Pr
g∼Q,(x,y)∼ν

[g(x) = f (x) |x = x∗]

= Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗]DQ ( f |x∗)≥ Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗]DQ ( f ) .
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First we prove (4). Define the set Z =
{

x : DQ ( f |x) < D
δ,µ
Q ( f )

}

. Clearly µ(Z)≤ δ. By slight

abuse of notation, we define the function Z (x) such that Z (x) = 1 if x ∈ Z and Z (x) = 0 if x /∈ Z.

With this definition we have

1

D
δ,µ
Q ( f )

Eg∼Q [Rν (g)]+δ ≥ Ex∗∼µ

[

1

D
δ,µ
Q ( f )

Pr
g∼Q,(x,y)∼ν

[g(x) 6= y |x = x∗]+Z (x∗)

]

≥ Ex∗∼µ

[

1

D
δ,µ
Q ( f )

Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗]DQ ( f |x∗)+Z (x∗)

]

≥ Ex∗∼µ

[

Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗]

]

= Rν ( f ) .

(3) follows in the same way by setting both Z and δ to be zero.

Theorem Deep vs. Gibbs (Theorem 4) bounds the ratio of the generalization error of the Gibbs

classifier and the generalization error of a given classifier as a function of the depth of the given

classifier. For example, consider the Bayes optimal classifier. By definition, the depth of this clas-

sifier is at least one half; thus Theorem 4 recovers the well-known result that the generalization

error of the Bayes optimal classifier is at most twice as large as the generalization error of the Gibbs

classifier.

Next, we combine Theorem Deep vs. Gibbs (Theorem 4) with PAC-Bayesian bounds (McAllester,

1999) to bound the difference between the training error and the generalization error. We use the

version of the PAC-Bayesian bounds in Theorem 3.1. of Germain et al. (2009).

Theorem 5 Generalization Bounds

Let ν be a probability measure on X ×{±1}, let P be a fixed probability measure on F chosen

a priori, and let δ,κ > 0. For a proportion 1−δ of samples S∼νm,

∀Q, ∀ f , Rν ( f )≤ 1

(1− e−κ)DQ ( f )

(

κEg∼Q [RS (g)]+
1

m

[

KL(Q||P)+ ln
1

δ

])

.

Furthermore, for every δ′ > 0, for a proportion 1−δ of samples S∼νm,

∀Q, ∀ f , Rν ( f )≤ 1

(1− e−κ)D
δ′,µ
Q ( f )

(

κEg∼Q [RS (g)]+
1

m

[

KL(Q||P)+ ln
1

δ

])

+δ′ ,

where µ is the marginal of ν on X .

Proof Applying the bounds in Theorem 4 to the PAC-Bayesian bounds in Theorem 3.1 of Germain

et al. (2009) yields the stated results.

The generalization bounds theorem (Theorem 5) shows that if a deep function exists, then it is

expected to generalize well, provided that the PAC-Bayes bound for Q is sufficiently smaller than

the depth of f . This justifies our pursuit to find the deepest function, that is, the median. However,

the question remains: are there any deep functions? In the following section we show that this

indeed the case for linear classifiers.
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2.1 Depth for Linear Classifiers

In this section we discuss the special case where the hypothesis class consists of linear classifiers.

Our goal is to show that deep functions exist and that the Tukey depth is a special case of the

predicate depth. To that end we use a variant of linear classifiers called linear threshold functions.

We denote by S=
{

x ∈ R
d : ‖x‖= 1

}

the unit sphere. In this setting F =R
d and X = S×R such

that f ∈ F operates on x = (xv, xθ) ∈ X by f (x) = sign( f · xv − xθ).
3 One can think of an instance

x ∈ X as a combination of a direction, denoted by xv, and an offset xθ.

Theorem 6 Let X = S×R and F be the class of linear threshold functions over X . Let Q be

a probability measure over F with density function q( f ) such that q( f ) = 1
Z

exp(−E ( f )) where

E ( f ) is a convex function. Let f ∗ = E f∼Q [ f ]. Then DQ ( f ∗)≥ 1/e.

Proof From the definition of q( f ) it follows that it is log-concave. Borell (1975) proved that Q is

log-concave if and only if q is log-concave. Hence, in the setting of the theorem, Q is log concave.

The Mean Voter Theorem of Caplin and Nalebuff (1991) shows that if f is the center of gravity of

Q then for every x, DQ ( f |x)≥ 1/e and thus the center of gravity of Q has a depth of at least 1/e (e is

Euler’s number). Note that since F = R
d then the center of gravity is in F .

Recall that it is common practice in machine learning to use convex energy functions E ( f ). For

example, SVMs (Cortes and Vapnik, 1995) and many other algorithms use energy functions of the

form presented in (1) in which both the loss function and the regularization functions are convex,

resulting in a convex energy function. Hence, in all these cases, the median, that is the deepest point,

has a depth of at least 1/e.4 This leads to the following conclusion:

Conclusion 1 In the setting of Theorem 6, let f ∗ = E f∼Q [ f ]. Let ν be a probability measure on

X ×{±1}, let P be a probability measure of F and let δ,κ > 0. With a probability greater than

1−δ over the sample S sampled from νm:

Rν ( f ∗)≤ e

(1− e−κ)

(

κEg∼Q [RS (g)]+
1

m

[

KL(Q||P)+ ln
1

δ

])

.

Proof This results follows from Theorem 5 and Theorem 6.

We now turn to show that the Tukey depth is a special case of the predicate depth. Again, we

will use the class of linear threshold functions. Since F = R
d in this case we will treat f ∈ F both

as a function and as a point. Therefore, a probability measure Q over F is also considered as a

probability measure over Rd . The following shows that for any f ∈ F , the Tukey-depth of f and

the predicate depth of f are the same.

Theorem 7 If F is the class of threshold functions then for every f ∈ F :

DQ ( f ) = TukeyDepthQ ( f ) .

3. We are overloading notation here: f is treated as both a point in R
dand a function f (x) :S×R→±1.

4. Note that optimization in general finds the MAP, which can be very different from (and less robust than) the median

(see Section 2.4).
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Proof Every closed half-space H in R
d is uniquely identified by a vector zH ∈ S orthogonal to its

hyperplane boundary and an offset θH such that

H = {g : g · zH ≥ θH} .

In other words, there is a 1− 1 correspondence between half-spaces and points in S×R such that

H 7→ (zH ,θH) and such that

g ∈ H ⇔ g((zH ,θH))≡ sign(g · zH −θH) = 1 .

The Tukey depth of f is the infimum measure of half-spaces that contain f :

TukeyDepthQ ( f ) = inf
H: f∈H

Q(H) = inf
x: f (x)=1

Q{g : g(x) = 1}

= inf
x: f (x)=1

DQ ( f |x)

≥ DQ ( f ) .

Hence, the Tukey depth cannot be larger than the predicate depth.

Next we show that the Tukey depth cannot be smaller than the predicate depth for if the Tukey

depth is smaller than the predicate depth then there exists a half space H such that its measure is

smaller than the predicate depth. Let x = (zH ,θH). Since f ∈ H then f (x) = 1 and thus

DQ ( f )> Q(H) = Q{g : g(x) = 1}= DQ ( f |x)≥ DQ ( f )

which is a contradiction. Therefore, the Tukey depth can be neither smaller nor larger than the

predicate depth and so the two must be equal.

2.2 Breakdown Point

We now turn to discuss another important property of the hypothesis selection mechanism: the

breakdown point. Any solution to the hypothesis selection problem may be viewed as a statistic of

the posterior Q. An important property of any such statistic is its stability: that is, informally, by

how much must Q change in order to produce an arbitrary value of the statistic? This is usually

referred to as the breakdown point (Hampel, 1971). We extend the definition given there as follows:

Definition 8 Let Est be a function that maps probability measures to F . For two probability mea-

sures Q and Q′ let δ(Q,Q′) be the total variation distance:

δ
(

Q,Q′)= sup
{∣

∣Q(A)−Q′ (A)
∣

∣ : Ais measurable
}

.

For every function f ∈ F let d (Est,Q, f ) be the distance to the closest Q′ such that Est(Q′) = f :

d (Est,Q, f ) = inf
{

δ
(

Q,Q′) : Est
(

Q′)= f
}

.

The breakdown Est at Q is defined to be

breakdown(Est,Q) = sup
f∈F

d (Est,Q, f ) .
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This definition may be interpreted as follows; if s = breakdown(Est,Q) then for every f ∈ F ,

we can force the estimator Est to use f as its estimate by changing Q by at most s in terms of total

variation distance. Therefore, the larger the breakdown point of an estimator, the more stable it is

with respect to perturbations in Q.

As mentioned before, our definition of the breakdown point for an estimator stems from the work

of Hampel (1971) who was the first to introduce the concept. Since then, different modifications

have been suggested to address different scenarios. Davies and Gather (2005) discuss many of these

definitions. He (2005) noted that one can make the breakdown point trivial, for instance, if Est

is a fixed estimator that is not affected by its input, it has the best possible breakdown point of 1.

Moreover, it suffices to have a single function f that cannot be produced as the output of Est to

make the above definition trivial. To prevent these pathologies, Definition 8 should only be used

when Est is such that for every f there exists Q′ for which Est(Q′) = f which is the case for the

estimators we study here.

The following theorem lower bounds the stability of the median estimator as a function of its

depth.

Theorem 9 Let Q be a posterior over F . Let

X ′ = {x ∈ X s.t. ∀ f1, f2 ∈ F , f1 (x) = f2 (x)} and

p = inf
x∈X \X ′,y∈{±1}

Q{ f : f (x) = y} .

If d is the depth of the median for Q then breakdown(median,Q)≥ d−p
2
.

Proof Let ε > 0. There exists f̂ and x̂ such that Q
{

f : f (x̂) = f̂ (x̂)
}

< p+ε. Let f ∗ be the median

of Q. Let Q′ be such that f̂ is the median of Q′, so that

DQ′ ( f ∗)≤ DQ′
(

f̂
)

.

Note that for every f we have that

|DQ ( f )−DQ′ ( f )| ≤ δ
(

Q,Q′) .

This follows since

|DQ ( f )−DQ′ ( f )|=
∣

∣

∣
inf

x

(

Q
{

f ′ : f ′ (x) = f (x)
})

− inf
x

(

Q′{ f ′ : f ′ (x) = f (x)
})

∣

∣

∣

≤ δ
(

Q,Q′) .

Since DQ

(

f̂
)

< p+ ε then

d −δ
(

Q,Q′)≤ DQ′ ( f ∗)≤ DQ′
(

f̂
)

< p+ ε+δ
(

Q,Q′) .

Hence

δ
(

Q,Q′)>
d − p− ε

2

and thus

breakdown(median,Q)>
d − p− ε

2
.
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Since this is true for every ε > 0 it follows that

breakdown(median,Q)≥ d − p

2
.

2.3 Geometric Properties of the Depth Function

In this section we study the geometry of the depth function. We show that the level sets of the depth

functions are convex. We also show that if the function class F is closed then the median exists.

First, we define the term convex hull in the context of function classes:

Definition 10 Let F be a function class and let g, f1, . . . , fn ∈ F . We say that g is in the convex-hull

of f1, . . . , fn if for every x there exists j ∈ 1, . . . ,n such that g(x) = f j (x).

Theorem 11 Convexity

Let F be a function class with a probability measure Q. If g is in the convex-hull of f1, . . . , fn

then

DQ (g)≥ min
j

DQ ( f j) .

Furthermore, if µ is a measure on X and δ ≥ 0 then

D
δ,µ
Q (g)≥ min

j
D

δ
n
,µ

Q ( f j) .

Proof Let g be a function. If g is in the convex-hull of f1, . . . , fn then for every x there exists j such

that g(x) = f j (x) and hence

DQ (g |x) = DQ ( f j |x)≥ min
j

DQ( f j) ,

thus DQ (g)≥ min j DQ ( f j) . For δ > 0 let

∆ =
{

x : DQ (g |x)≤ D
δ,µ
Q (g)

}

and for j = 1, . . . ,n
∆ j =

{

x ∈ ∆ : f j (x) = g(x)
}

.

Since g is in the convex-hull of f1, . . . , fn implies that ∪ j∆ j = ∆ and therefore

∑
j

µ(∆ j)≥ µ(∆)≥ δ .

Hence, there exists j such that µ(∆ j)≥ δ/n which implies that

D
δ,µ
Q (g)≥ D

δ
n
,µ

Q ( f j)≥ min
j

D
δ
n
,µ

Q ( f j) .

Next we prove the existence of the median when the function class is closed. We begin with the

following definition:
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Definition 12 A function class F is closed if for every sequence f1, f2, . . . ∈ F there exists f ∗ ∈ F

such that for every x ∈ X , if limn→∞ fn (x) exists then f ∗ (x) = limn→∞ fn (x).

With this definition in hand we prove the following:

Theorem 13 If F is closed then the median of F exists with respect to any probability measure Q.

Proof Let D = sup f DQ ( f ) and let fn be such that DQ ( fn) > D− 1/n. Let f ∗ ∈ F be the limit of

the series f1, f2, . . .. We claim that DQ ( f ∗) = D. Since D is the supermum of the depth values, it

is clear that DQ ( f ∗) ≤ D. Note that from the construction of f ∗ we have that for every x ∈ X and

every N there exists n > N such that f ∗ (x) = fn (x). Therefore, if DQ ( f ∗) < D then there exists x

such that DQ ( f ∗ |x)< D. Hence, there is a subsequence nk → ∞ such that fnk
(x) = f ∗ (x) and thus

DQ ( fnk
)≤ DQ ( fnk

|x) = DQ ( f ∗ |x)< D .

But this is a contradiction since limk→∞ DQ ( fnk
) = D. Hence, for every x, DQ ( f ∗ |x)≥ D and thus

DQ ( f ∗)≥ D which completes the proof.

2.4 The Maximum A Posteriori Estimator

So far, we have introduced the predicate depth and median and we have analyzed their properties.

However, the common solution to the hypothesis selection problem is to choose the maximum a

posteriori estimator. In this section we point out some limitations of this approach. We will show

that in some cases, the MAP method has poor generalization. We also show that it is very sensitive

in the sense that the breakdown point of the MAP estimator is always zero.

2.4.1 LEARNING AND REGULARIZATION

The most commonly used method for selecting a hypothesis is to select the maximum a posteriori

(MAP) hypothesis. For example, in Support Vector Machines (Cortes and Vapnik, 1995), one can

view the objective function of SVM as proportional to the log-likelihood function of an exponential

probability. From this perspective, the regularization term is proportional to the log-likelihood of

the prior. SVM, Lasso (Tibshirani, 1994) and other algorithms use the following evaluation function

(energy function):

E ( f ) =
n

∑
i=1

l ( f (xi) ,yi)+ r ( f ) ,

where l is a convex loss function, {(xi,yi)}n
i=1 are the observations and r is a convex regularization

term. This can be viewed as if there is a prior P over the hypothesis class with a density function

p( f ) =
1

Zp

e−r( f ) ,

and a posterior belief Q with a density function

q( f ) =
1

Zq

e−E[ f ] .

The common practice in these cases is to select the hypothesis that minimizes the evaluation

function. Hence these methods select the MAP hypothesis.
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2.4.2 THE MAP ESTIMATOR CAN GENERALIZE POORLY

Since the MAP estimator looks only at the peak of the distribution it can be very misleading. Here

we give an example for which the MAP estimator disagrees with the Bayes optimal hypothesis on

every instance while the median hypothesis agrees with the Bayes optimal hypothesis everywhere.

Moreover, the Bayes optimal hypothesis happens to be a member of the hypothesis class. Therefore,

it is also the predicate median. Hence, in this case, the MAP estimator fails to represent the belief.

The rest of this sub-section is devoted to explaining the details of this example.

Assume that the sample space X is a set of N discrete elements indexed by integers 1, ...,N.
To simplify the exposition we will collapse notation and take X = {1, ...,N}. The function class F

consists of N+1 functions defined as follows: for every i ∈ {1, . . . ,N−1} the function fi is defined

to be

fi (x) =

{

1 ifx ≡ i or x ≡ i+1

0 otherwise
.

Additionally, F contains the constant functions f− and f+ that assign the values 0 and 1, respec-

tively, to every input. Furthermore, assume that there is ε random label noise in the system for

some 0 < ε < 1/2, and that no further information is available. Thus, the prior is the non-informative

uniform prior over the N +1 functions.

Assume that a training set consisting of just two examples is available, where the examples

are (x1 = 1,y1 = 1) and (x2 = 3,y2 = 1). Given the ε random label noise, the posterior is easily

computed as

Q{ f+}=
(1− ε)2

Z
, Q( f−) =

ε2

Z
, Q{ fi=1,2,3}=

ε(1− ε)

Z
, Q{ fi>3}=

ε2

Z

where Z is the partition function. Note that under this posterior, for every x,

Pr
f∼Q

[ f (x) = 1]≤ (1− ε)2 +2ε(1− ε)

Z
=

1− ε2

Z

while

Pr
f∼Q

[ f (x) = 0]≥ (N −2)ε2

Z
.

Therefore, if N > 1+ 1/ε2, for any x, the probability that it is assigned class 0 is larger than the

probability that it is assigned class 1. Therefore the Bayes classifier is the function f−. Since the

Bayes classifier is in the function class, it is also the predicate median. However, the MAP estimator

is the function f+. Thus in this case the MAP estimator disagrees with the Bayes optimal hypothesis

(and the predicate median) on the entire sample space. Note also that the Bayes optimal hypothesis

f0 has the lowest density in the distribution Q. Hence, in this case, the minimizer of the posterior is

a better estimator than the maximizer of the posterior.

2.4.3 THE BREAKDOWN POINT OF THE MAP ESTIMATOR

In Definition 8 we defined the breakdown point of an estimator. We showed in Theorem 9 that the

breakdown point of the median hypothesis is lower bounded by a function of its depth. We would

like to contrast this with the breakdown point of the MAP estimator. We claim that the breakdown

point of the MAP estimator is zero, for continuous concept classes.

3601



GILAD-BACHRACH AND BURGES

Algorithm 1 Depth Estimation Algorithm

Inputs:

• A sample S = {x1, . . . ,xu} such that xi ∈ X

• A sample T = { f1, . . . , fn} such that f j ∈ F

• A function f

Output:

• D̂S
T ( f ) - an approximation for the depth of f

Algorithm:

1. for i = 1, . . . ,u compute D̂T ( f |xi) =
1
n ∑ j 1 f j(xi)= f (xi)

2. return D̂S
T ( f ) = mini D̂( f |xi)

In order for the MAP estimator to be well defined, assume that Q is a Lebesgue measure such

that q is the density function of Q and q is bounded by some finite M. Let f0 ∈ F and consider

Q′with the density function:

q′ ( f ) =

{

M+1 if f = f0

q( f ) otherwise
.

While the total variation distance between Q and Q′ is zero, the MAP estimator for Q′ is f0.

Therefore, for every f0 we can introduce a zero measure change to Q that will make f0 the MAP

estimator. Hence, the breakdown point of the MAP estimator is zero.

3. Measuring Depth

So far, we have motivated the use of depth as a criterion for selecting a hypothesis. Finding the deep-

est function, even in the case of linear functions, can be hard but some approximation techniques

have been presented (see Section 4.5). In this section we focus on algorithms that measure the depth

of functions. The main results are an efficient algorithm for approximating the depth uniformly over

the entire function class and an algorithm for approximating the median.

We suggest a straightforward method to measure the depth of a function. The depth estimation

algorithm (Algorithm 1) takes as inputs two samples. One sample, S = {x1, . . . ,xu}, is a sample of

points from the domain X . The other sample, T = { f1, . . . , fn}, is a sample of functions from F .

Given a function f for which we would like to compute the depth, the algorithm first estimates its

depth on the points x1, . . . ,xu and then uses the minimal value as an estimate of the global depth.

The depth on a point xi is estimated by counting the fraction of the functions f1, . . . , fn that make

the same prediction as f on the point xi. Since samples are used to estimate depth, we call the value

returned by this algorithm, D̂S
T ( f ), the empirical depth of f .

Despite its simplicity, the depth estimation algorithm can provide good estimates of the true

depth. The following theorem shows that if the xi’s are sampled from the underlying distribution

over X , and the f j’s are sampled from Q, then the empirical depth is a good estimator of the true
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depth. Moreover, this estimate is uniformly good over all the functions f ∈ F . This will be an

essential building block when we seek to find the median in Section 3.1.

Theorem 14 Uniform convergence of depth

Let Q be a probability measure on F and let µ be a probability measure on X . Let ε,δ > 0. For

every f ∈ F let the function fδ be such that fδ (x) = 1 if DQ ( f |x)≤ D
δ,µ
Q ( f ) and fδ (x) =−1 other-

wise. Let Fδ = { fδ} f∈F .Assume Fδ has a finite VC dimension d < ∞ and define φ(d, k) = ∑d
i=0

(

k
i

)

if d < k, φ(d, k) = 2k otherwise. If S and T are chosen at random from µu and Qn respectively such

that u ≥ 8/δ then with probability

1−uexp
(

−2nε2
)

−φ(d, 2u)21−δu/2

the following holds:

∀ f ∈ F , DQ ( f )− ε ≤ D
0,µ
Q ( f )− ε ≤ D̂S

T ( f )≤ D
δ,µ
Q ( f )+ ε

where D̂S
T ( f ) is the empirical depth computed by the depth measure algorithm.

First we recall the definition of ε-nets of Haussler and Welzl (1986):

Definition 15 Let µ be a probability measure defined over a domain X . Let R be a collection of

subsets of X . An ε-net is a finite subset A ⊆ X such that for every r ∈ R, if µ(r)≥ ε then A∩ r 6= /0.

The following theorem shows that a random set of points forms an ε-net with high probability

if the VC dimension of R is finite.

Theorem 16 Haussler and Welzl, 1986, Theorem 3.7 therein Let µ be a probability measure de-

fined over a domain X . Let R be a collection of subsets of X with a finite VC dimension d. Let

ε > 0 and assume u ≥ 8/ε. A sample S = {xi}u
i=1 selected at random from µu is an ε-net for R with a

probability of at least 1−φ(d,2u)21−εu/2 .

Proof of Theorem 14

By a slight abuse of notation, we use fδ to denote both a function and a subset of X that includes

every x ∈ X for which DQ ( f |x) ≤ D
δ,µ
Q ( f ). From Theorem 16 it follows that with probability

≥ 1−φ(d,2u)21−δu/2 a random sample S = {xi}u
i=1 is a δ-net for { fδ} f∈F . Since for every f ∈ F

we have µ( fδ)≥ δ we conclude that in these cases,

∀ f ∈ F , ∃i ∈ [1, . . . ,u] s.t. xi ∈ fδ .

Note that xi ∈ fδ implies that DQ ( f |xi)≤D
δ,µ
Q ( f ). Therefore, with probability 1−φ(d,2u)21−δu/2

over the random selection of x1, . . . ,xu:

∀ f ∈ F , DQ ( f )≤ min
i

D( f |xi)≤ D
δ,µ
Q ( f ) .

Let f1, . . . , fn be an i.i.d. sample from Q. For a fixed xi, using Hoeffding’s inequality,

Pr
f1,..., fn

[∣

∣

∣

∣

1

n

∣

∣ f j : f j (xi) = 1
∣

∣−µ{ f : f (xi) = 1}
∣

∣

∣

∣

> ε

]

≤ 2exp
(

−2nε2
)

.
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Hence, with a probability of 1−uexp
(

−2nε2
)

,

∀i,

∣

∣

∣

∣

1

n

∣

∣ f j : f j (xi) = 1
∣

∣−µ{ f ∈ F : f (xi) = 1}
∣

∣

∣

∣

≤ ε .

Clearly, in the same setting, we also have that

∀i,

∣

∣

∣

∣

1

n

∣

∣ f j : f j (xi) =−1
∣

∣−µ{ f ∈ F : f (xi) =−1}
∣

∣

∣

∣

≤ ε .

Thus, with a probability of at least 1−uexp
(

−2nε2
)

−φ(d,2u)21−εu/2 over the random selection

of x1, . . . ,xu and f1, . . . , fn we have that

∀ f ∈ F , D̂S
T ( f )≤ D

δ,µ
Q ( f )+ ε .

Note also, that with probability 1 there will be no i in the sample such that DQ ( f |xi)< D
0,µ
Q ( f ).

Therefore, it is also true that

∀ f ∈ F , D
0,µ
Q ( f )− ε ≤ D̂S

T ( f )

while it is always true that DQ ( f )≤ D
0,µ
Q ( f ).

In Theorem 14 we have seen that the estimated depth uniformly converges to the true depth.

However, since we are interested in deep hypotheses, it suffices that the estimate is accurate for

these hypotheses, as long as “shallow” hypotheses are distinguishable from the deep ones. This is

the motivation for the next theorem:

Theorem 17 Let Q be a probability measure on F and let µ be a probability measure on X .

Let ε,δ > 0. Assume F has a finite VC dimension d < ∞ and define φ(d, k) as before. Let

D = sup f∈F DQ ( f ). If S and T are chosen at random from µu and Qn respectively such that u ≥ 8/δ

then with probability

1−uexp
(

−2nε2
)

−φ(d, 2u)21−δu/2

the following holds:

1. For every f such that D
δ,µ
Q ( f )< D we have that D̂T

S ( f )≤ D
δ,µ
Q ( f )+ ε

2. For every f we have that D̂T
S ( f )≥ D

0,µ
Q ( f )≥ DQ ( f )− ε

where D̂S
T ( f ) is the empirical depth computed by the depth measure algorithm.

The proof is very similar to the proof of Theorem 14. The key however, is the following lemma:

Lemma 18 Let D = sup f∈F DQ ( f ). For every f ∈ F let fδ be such that fδ (x) = 1 if DQ ( f |x)< D

and fδ (x) =−1 otherwise. Let Fδ be

Fδ = { fδ} f :D
δ,µ
Q ( f )<D

.

Then the VC dimension of Fδ is upper bounded by the VC dimension of F .
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Proof Assume that x1, . . . ,xm are shattered by Fδ. Therefore, for every sequence y ∈ {±1}m
there

exists f y such that f
y

δ induces the labels y on x1, . . . ,xm. We claim that for every y 6= y′, the function

f y and f y′ induce different labels on x1, . . . ,xm and hence this sample is shattered by F . Let y 6= y′

and assume, w.l.o.g. that yi = 1 and y′i =−1. Therefore xi is such that

DQ ( f y |xi)< D ≤ DQ

(

f y′ |xi

)

.

From the definition of the depth on the point xi, it follows that DQ ( f y |xi) 6= DQ

(

f y′ |xi

)

if and only

if f y (xi) 6= f y′ (xi). Therefore, the sample x1, . . . ,xm being shattered by Fδ implies that it is also

shattered by F . Hence, the VC dimension of Fδ is bounded by the VC dimension of F .

Proof of Theorem 17.

From the theory of ε-nets (see Theorem 16), and Lemma 18 it follows that with probability

1− φ(d,2u)21−δu/2 over the sample S, for every f ∈ F such that D
δ,µ
Q ( f ) < D there exists xi such

that

DQ ( f |xi)≤ D
δ,µ
Q ( f )< D .

Therefore, with probability greater than 1−φ(d,2u)21−δu/2, for every f such that D
δ,µ
Q ( f ) < D

we have that D̂T
S ( f )≤ D

δ,µ
Q ( f )+ ε.

To prove the second part, note that with probability 1, for every x and every f , DQ ( f |x) ≥
D

0,µ
Q ( f ). Thus if D̂T

S ( f ) < DQ ( f ) it is only because the inaccuracy in the estimation D̂T ( f |xi) =
1
n ∑ j 1 f j(xi)= f (xi). We already showed, in the proof of Theorem 14, that with probability of 1 −
uexp

(

−2nε2
)

over the sample T ,

∀i, f ,

∣

∣

∣

∣

∣

1

n
∑

j

1 f j(xi)= f (xi)−DQ ( f |x)
∣

∣

∣

∣

∣

< ε .

Hence,

∀ f , D̂T
S ( f )≥ D

0,µ
Q ( f )− ε .

3.1 Finding the Median

So far we discussed ways to measure the depth. We have seen that if the samples S and T are large

enough then with high probability the estimated depth is accurate uniformly for all functions f ∈ F .

We use these findings to present an algorithm which approximates the predicate median. Recall

that the predicate median is a function f which maximizes the depth, that is f = argmax f∈F DQ ( f ).
As an approximation, we will present an algorithm which finds a function f that maximizes the

empirical depth, that is f = argmax f∈F D̂S
T ( f ).

The intuition behind the algorithm is simple. Let S= {xi}u
i=1. A function that has large empirical

depth will agree with the majority vote on these points. However, it might be the case that such a

function does not exist. If we are forced to find a hypothesis that does not agree with the majority on
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Algorithm 2 Median Approximation (MA)

Inputs:

• A sample S = {x1, . . . ,xu} ∈ X u and a sample T = { f1, . . . , fn} ∈ F n.

• a learning algorithm A that given a sample returns a function consistent with it if such a

function exists.

Outputs:

• a function f ∈F which approximates the predicate median, together with its depth estimation

D̂S
T ( f )

Details:

1. Foreach i = 1, . . . ,u compute p+i = 1
n

∣

∣

{

j : f j (xi) = 1
}∣

∣ and qi = min
{

p+i ,1− p+i
}

.

2. Sort x1, . . . ,xu such that q1 ≥ q2 ≥ . . .≥ qm

3. Foreach i = 1, . . . ,u let yi = 1 if p+i ≥ 0.5 otherwise, let yi =−1.

4. Use binary search to find i∗, the smallest i for which A can find a consistent function f with

the sample Si = {(xk,yk)}u
k=i

5. If i∗ ≡ 1 return f and depth D̂ = 1−q1 else return f and depth D̂ = qi∗−1.

some instances, the empirical depth will be higher if these points are such that the majority vote on

them wins by a small margin. Therefore, we take a sample T =
{

f j

}n

j=1
of functions and use them

to compute the majority vote on every xi and the fraction qi of functions which disagree with the

majority vote. A viable strategy will first try to find a function that agrees with the majority votes on

all the points in S. If such a function does not exist, we remove the point for which qi is the largest

and try to find a function that agrees with the majority vote on the remaining points. This process

can continue until a consistent function5 is found. This function is the maximizer of D̂S
T ( f ). In

the Median Approximation algorithm, this process is accelerated by using binary search. Assuming

that the consistency algorithm requires O(uc) for some c when working on a sample of size u, then

the linear search described above requires O
(

nu+u log(u)+uc+1
)

operations while invoking the

binary search strategy reduces the complexity to O(nu+u log(u)+uc log(u)).

The Median Approximation (MA) algorithm is presented in Algorithm 2. One of the key advan-

tages of the MA algorithm is that it uses a consistency oracle instead of an oracle that minimizes the

empirical error. Minimizing the empirical error is hard in many cases and even hard to approximate

(Ben-David et al., 2003). Instead, the MA algorithm requires only access to an oracle that is capable

of finding a consistent hypothesis if one exists. For example, in the case of a linear classifier, finding

a consistent hypothesis can be achieved in polynomial time by linear programming while finding a

hypothesis which approximates the one with minimal empirical error is NP hard. The rest of this

section is devoted to an analysis of the MA algorithm.

5. A function is defined to be consistent with a labeled sample if it labels correctly all the instances in the sample.
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Theorem 19 The MA Theorem

The MA algorithm (Algorithm 2) has the following properties:

1. The algorithm will always terminate and return a function f ∈ F and an empirical depth D̂.

2. If f and D̂ are the outputs of the MA algorithm then D̂ = D̂S
T ( f ).

3. If f is the function returned by the MA algorithm then f = argmax f∈F D̂S
T ( f ).

4. Let ε,δ > 0 . If the sample S is taken from µu such that u ≥ 8/δ and the sample T is taken from

Qn then with probability of at least

1−uexp
(

−2nε2
)

−φ(d,2u)21−δu/2 (5)

the f returned by the MA algorithm is such that

D
δ,µ
Q ( f )≥ sup

g∈F

D
0,µ
Q (g)−2ε ≥ sup

g∈F

DQ (g)−2ε

where d is the minimum between the VC dimension of F and the VC dimension of the class

Fδ defined in Theorem 14.

To prove the MA Theorem we first prove a series of lemmas. The first lemma shows that the

MA algorithm will always find a function and will return it.

Lemma 20 The MA algorithm will always return a hypothesis f and a depth D̂

Proof It is sufficient to show that the binary search will always find i∗ ≤ u. Therefore, it is enough

to show that there exists i such that A will return a consistent function f with respect to Si. To

see that, recall that Su = {(xu,yu)}. Therefore, the sample contains a single point xu with the label

yu such that at least half of the functions in T are such that f j (xu) = yu. Therefore, there exists a

function f consistent with this sample.

The next lemma proves that the depth computed by the MA algorithm is correct.

Lemma 21 Let f be the hypothesis that MA returned and let D̂ be the depth returned. Then D̂ =
D̂S

T ( f ).

Proof For any function g, denote by Y (g) = {i : g(xi) = yi} the set of instances on which g agrees

with the proposed label yi. D̂S
T (g), the estimated depth of g, is a function of Y (g) given by:

D̂S
T (g) = min

(

min
i∈Y (g)

(1−qi) , min
i/∈Y (g)

qi

)

.

Since the qi’s are sorted, we can further simplify this term. Letting i∈ = min{i : i ∈ Y (g)} and

i/∈ = max{i : i /∈ Y (g)}, then

D̂S
T (g) = min

(

(1−qi∈) ,qi/∈

)

.
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In the above term, if Y (g) includes all i’s we consider the term qi/∈ to be one. Similarly, if Y (g)
is empty, we consider qi∈ to be zero.

Let f be the hypothesis returned by MA and let D̂ be the returned computed depth. If i∗is the

index that the binary search returned and if i∗ = 1 then Y ( f ) = [1, . . . ,u] and D̂S
T ( f ) = 1−q1 which

is exactly the value returned by MA. Otherwise, if i∗ > 1 then i∗−1 /∈ Y ( f ) but [i∗, . . . ,u]⊆ Y ( f ).
Since qi∗−1 ≤ 0.5 but for every i′ it holds that 1−qi′ ≥ 0.5 so we have that D̂S

T ( f ) = qi∗−1 which is

exactly the value returned by FMA.

The next lemma shows that the MA algorithm returns the maximizer of the empirical depth.

Lemma 22 Let f be the function that the MA algorithm returned. Then

f = argmax
f∈F

D̂S
T ( f ) .

In the proof of Lemma 21 we have seen that the empirical depth of a function is a function of

the set of points on which it agrees with the majority vote. We use this observation in the proof of

this lemma too.

Proof Let i∗ be the value returned by the binary search and let f be the function returned by the

consistency oracle. If i∗ = 1 then the empirical depth of f is the maximum possible. Hence we may

assume that i∗ > 1 and D̂S
T ( f ) = qi∗−1.

For a function g ∈ F , if there exists i > i∗ such that g(xi) 6= yi then D̂S
T (g) ≤ qi−1 ≤ qi∗−1 ≤

D̂S
T ( f ). However, if g(xi) = yi for every i ≥ i∗ it must be that g(xi∗−1) 6= yi∗−1 or else the binary

search phase in the MA algorithm would have found i∗ − 1 or a larger set. Therefore, D̂S
T (g) =

qi∗−1 = D̂S
T ( f ).

Finally we are ready to prove Theorem 19.

Proof of the MA Theorem (Theorem 19)

Parts 1, 2 and 3 of the theorem are proven by Lemmas 20, 21 and 22 respectively. Therefore,

we focus here on the last part.

Let f be the maximizer of D̂S
T ( f ) and let D= sup f D

0,µ
Q ( f ). From Theorems 14 and 17 it follows

that if d is at least the smaller of the VC dimension of F and the VC dimension of Fδ, then with the

probability given in (5) we have that

D̂S
T ( f )≥ max

g
D̂S

T (g)≥ sup
g

D
0,µ
Q (g)− ε = D− ε .

Moreover, if D
δ,µ
Q ( f )< D then D̂S

T ( f )≤ D
δ,µ
Q ( f )+ ε. Therefore, either

D
δ,µ
Q ( f )≥ D

or

D
δ,µ
Q ( f )≥ D̂S

T ( f )− ε ≥ D−2ε

which completes the proof.
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3.2 Implementation Issues

The MA algorithm is straightforward to implement provided that one has access to three oracles:

(1) An oracle capable of sampling unlabeled instances x1, . . . ,xu. (2) An oracle capable of sampling

hypotheses f1, . . . , fn from the belief distribution Q. (3) A learning algorithm A that returns a

hypothesis consistent with the sample of instances (if such a hypothesis exists).

The first requirement is usually trivial. In a sense, the MA algorithm converts the consistency

algorithm A to a semi-supervised learning algorithm by using this sample. The third requirement is

not too restrictive. In a sense, many learning algorithms would be much simpler if they required a

hypothesis which is consistent with the entire sample as opposed to a hypothesis which minimizes

the number of mistakes (see, for example, Ben-David et al., 2003). The second requirement, that is

sampling hypotheses, is challenging.

Sampling from continuous hypothesis classes is hard even in very restrictive cases. For ex-

ample, even if Q is uniform over a convex body, sampling from it is challenging but theoretically

possible (Fine et al., 2002). A closer look at the MA algorithm and the depth estimation algo-

rithm reveals that these algorithms use the sample of functions in order to estimate the marginal

Q [Y = 1|X = x] = Prg∼Q [g(x) = 1]. In some cases, it is possible to directly estimate this value.

For example, many learning algorithms output a real value such that the sign of the output is the

predicted label and the amplitude is the margin. Using a sigmoid function, this can be viewed as

an estimate of Q [Y = 1|X = x]. This can be used directly in the above algorithms. Moreover, the

results of Theorem 14 and Theorem 19 apply with ε = 0. Note that the algorithm that is used for

computing the probabilities might be infeasible for run-time applications but can still be used in the

process of finding the median.

Another option is to sample from a distribution Q′ that approximates Q (Gilad-Bachrach et al.,

2005). The way to use a sample from Q′ is to reweigh the functions when computing D̂T ( f |x).
Note that computing D̂T ( f |x) such that it is close to DQ ( f |x) is sufficient for estimating the depth

using the depth measure algorithm (Algorithm 1) and for finding the approximated median using

the MA algorithm (Algorithm 2). Therefore, in this section we will focus only on computing the

empirical conditional depth D̂T ( f |x). The following definition provides the estimate for DQ ( f |x)
given a sample T sampled from Q′:

Definition 23 Given a sample T and the relative density function dQ
dQ′ we define

D̂
T, dQ

dQ′
( f ) =

1

n
∑

j

dQ( f j)

dQ′ ( f j)
1 f j(x)= f (x) .

To see the intuition behind this definition, recall that DQ ( f |x)= Prg∼Q [g(x) = f (x)] and D̂T ( f |x)=
1
n ∑ j 1 f j(x)= f (x) where T =

{

f j

}n

j=1
. If T is sampled from Qn we have that

ET∼Qn

[

D̂T ( f |x)
]

=
1

n
∑

j

E
[

1 f j(x)= f (x)

]

=
1

n
∑

j

Pr [ f j (x) = f (x)] = DQ ( f |x) .

Therefore, we will show that D̂
T, dQ

dQ′
( f ) is an unbiased estimate of DQ ( f |x) and that it is con-

centrated around its expected value.

Theorem 24 Let Q and Q′ be probability measures over F . Then:
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1. For every f , ET∼Q′n

[

D̂
T, dQ

dQ′
( f )

]

= DQ ( f |x)

2. If dQ
dQ′ is bounded such that dQ

dQ′ ≤ c then

Pr
T∼Q′n

[∣

∣

∣

∣

D̂
T, dQ

dQ′
( f )−DQ ( f |x)

∣

∣

∣

∣

> ε

]

< 2exp

(

−2nε2

c2

)

.

Proof To prove the first part we note that

ET∼Q′n

[

D̂
T, dQ

dQ′
( f )

]

= ET∼Q′n

[

1

n
∑

j

dQ( f j)

dQ′ ( f j)
1 f j(x)= f (x)

]

= Eg∼Q′

[

dQ(g)

dQ′ (g)
1g(x)= f (x)

]

=

ˆ

g

dQ(g)

dQ′ (g)
1g(x)= f (x)dQ′ (g)

=

ˆ

g

1g(x)= f (x)dQ(g) = DQ ( f |x) .

The second part is proved by combining Hoeffding’s bound with the first part of this theorem.

3.3 Tukey Depth and Median Algorithms

To complete the picture we demonstrate how the algorithms presented here apply to the problems

of computing Tukey’s depth function and finding the Tukey median. In section 2.1 we showed how

to cast the Tukey depth as a special case of the predicate depth. We can use this reduction to use

Algorithm 1 and Algorithm 2 to compute the Tukey depth and approximate the median respectively.

To compute these values, we assume that one has access to a sample of points in R
d , which we

denote by f1, . . . , fn. We also assume that one has access to a sample of directions and biases of

interest. That is, we assume that one has access to a sample of xi’s such that xi ∈ S×R where S

is the unit sphere. Hence, we interpret xi as a combination of a d-dimensional unit vector xv
i and

an offset term xθ
i . Algorithm 3 shows how to use these samples to estimate the Tukey depth of a

point f ∈ R
d . Algorithm 4 shows how to use these samples to approximate the Tukey median. The

analysis of these algorithms follows from Theorems 17 and 19 recalling that the VC dimension of

this problem is d.

Computing the Tukey depth requires finding the infimum over all possible directions. As other

approximation algorithm do (see Section 4.5) the algorithm presented here finds a minimum over

a sample of possible directions represented by the sample S. When generating this sample, it is

natural to select xv
i uniformly from the unit sphere. According to the algorithms presented here

one should also select xθ
i at random. However, for the special case of the linear functions we study

here, it is possible to find the minimal depth over all possible selections of xθ
i once xv

i is fixed. This

can be done by counting the number of f j’s such that f j · xv
i > f · xv

i and the number of f j’s such

that f j · xv
i < f · xv

i and taking the minimal value between these two. We use this in the algorithm

presented here.

Algorithm 4 selects a set of random directions x1, . . . ,xu. The median f should be central in

every direction. That is, if we project f1, . . . , fn and f on xi then the projection of f should be close
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Algorithm 3 Tukey Depth Estimation

Inputs:

• A sample S = {x1, . . . ,xu} such that xi ∈ S

• A sample T = { f1, . . . , fn} such that f j ∈ R
d

• A point f ∈ R
d

Output:

• D̂S
T ( f ) - an approximation for the depth of f

Algorithm:

1. for i = 1, . . . ,u compute D̂T ( f |xi) =
1
n

min
(∣

∣ f j : f j · xi > f · xi

∣

∣ ,
∣

∣ f j : f j · xi < f · xi

∣

∣

)

2. return D̂S
T ( f ) = mini D̂( f |xi)

Algorithm 4 Tukey Median Approximation

Inputs:

• A sample S = {x1, . . . ,xu} such that xi ∈ S

• A sample T = { f1, . . . , fn} such that f j ∈ R
d

• A linear programs solver A that given a set of linear constraints finds a point that is consistent

with the constraints if such a point exists.

Outputs:

• A point f ∈ R
d and its depth estimation D̂S

T ( f )

Details:

1. Foreach i = 1, . . . ,u and j = 1, . . . ,n compute f j · xi

2. Let s1
i , . . .s

n
i be the sorted values of f j · xi.

3. Use binary search to find the smallest k = 0, . . . , n/2 for which A can find f such that

∀i s
⌊ n

2⌋−k

i ≤ f · xi < s
⌈ n

2⌉+k

i

4. Return the f that A found for the smallest k in (3).
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to the median of the projection, that is, it should have high one dimensional depth. Therefore, we

can start by seeking f with the highest possible depth in every direction. If such f does not exist we

can weaken the depth requirement in each direction and try again until we can find a candidate f .

Algorithm 4 accelerates this process by using binary search. Note that since the above procedures

use only inner products, kernel versions are easily constructed.

4. Relation to Previous Work

In this section we survey the relevant literature. Since depth plays an important role in multivariate

statistics it has been widely studied, see Liu et al. (1999), for example, for a comprehensive intro-

duction to statistical depth and its applications in statistics and the visualization of data. We focus

only on the part that is related to the work presented here. To make this section easier to follow, we

present each related work together with its contexts. Note however that the rest of this work does

not build upon information presented in this section and thus a reader can skip this section if he

wishes to do so.

4.1 Depth for Functional Data

López-Pintado and Romo (2009) studied depth for functions. The definitions of depth used therein

is closer in spirit to the simplicial depth in the multivariate case (Liu, 1990). As a consequence it is

defined only for the case where the measure over the function space is an empirical measure over

a finite set of functions. Zuo (2003) studied the projection based depth. For a point x in R
d and a

measure ν over Rd ×R, the depth of x with respect to ν is defined to be

Dν (x) =

(

1+ sup
‖u‖=1

φ(u,x,ν)

)−1

where

φ(u,x,ν) ≡ |u · x−µ(ν|x)|
σ(ν|x)

where µ is a measure of dislocation and σ is a measure of scaling. The functional depth we present

in this work can be presented in similar form by defining, for a function f ,

D( f ,ν) =

(

1+ sup
x∈X

φ( f ,x,ν)

)−1

where

φ( f ,x,ν) = | f (x)−Eg∼ν [g(x)]| .

Fraiman and Muniz (2001) introduced an extension of univariate depth to function spaces. For

a real function f , the depth of f is defined to be Ex [D( f (x))] where D(·) is the univariate depth

function. It is not clear how to use this definition in the binary classification setting. Since the range

of the functions contains only two possible values, the univariate rank is of limited utility. However,

if we choose the rank function such that the rank of a value is the probability that a function will

assign this value, we arrive at a similar definition to the one we propose. The main difference is that

Fraiman and Muniz (2001) define the depth as an average over all x’s, while in our setting we take

the infimum. This plays a key role in our analysis.
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4.2 Depth and Classification

Ghosh and Chaudhuri (2005a) used depth for classification purposes. Given samples of data from

the different classes, one creates depth functions for each of the classes. At inference time, the depth

of a point x is computed with respect to each of the samples. The algorithm associates an instance x

with the class in which x is deepest. Ghosh and Chaudhuri (2005a) prove generalization bounds in

the case in which each class has a elliptic distribution. Cuevas et al. (2007) used a similar approach

and compared the performance of different depth functions empirically. Jörnsten (2004) used a

similar approach with an L1 based depth function. Billor et al. (2008) proposed another variant of

this technique.

Ghosh and Chaudhuri (2005b) introduced two variants of depth functions to be used for learning

linear classifiers. Let {(xi,yi)}n
i=1 be the training data such that xi ∈ R

d and yi ∈ ±1. In the first

variant, the depth of a linear classifier α ∈ R
d is defined to be

U (α) =
1

n+n− ∑
i:yi=1

∑
j:y j=−1

I [α · (xi − x j)> 0]

where n+ and n− are the numbers of positive (and negative) examples, and I is the indicator function.

The regression based depth function is defined to be

∆(α,β) =
π+

n+
∑

i:yi=1

I [α · xi +β > 0]+
π−

n− ∑
i:yi=−1

I [α · xi +β < 0]

where π+ and π− are positive scalars that sum to one. It is easy to see that the regression based depth

defined here is the balanced misclassification probability. The authors showed that as the sample

size goes to infinity, the maximal depth classifier is the optimal linear classifier. However, since

minimizing this quantity is known to be hard, the authors suggesting using the logistic function as

a surrogate to the indicator function. Therefore, these methods are very close (and in some cases

identical) to logistic regression.

Gilad-Bachrach et al. (2004) used the Tukey depth to analyze the generalization performance of

the Bayes Point Machine (Herbrich et al., 2001). This work uses depth in a similar fashion to the

way we use it in the current study. However, the definition of the Bayes depth therein compares the

generalization error of a hypothesis to the Bayes classifier in a way that does not allow the use of

the PAC-Bayes theory to bound the gap between the empirical error and the generalization error. As

a result the analysis in Gilad-Bachrach et al. (2004) was restricted to the realizable case in which

the empirical error is zero.

4.3 Regression Depth

Rousseeuw and Hubert (1999) introduced the notion of regression depth. They discussed linear

regression but their definition can be extended to general function classes in the following way: Let

F = { f : X 7→ R} be a function class and let S = {(xi,yi)}n
i=1 be a sample such that xi ∈ X and

yi ∈ R. We say that the function f ∈ F has depth zero (“non-fit” in Rousseeuw and Hubert, 1999)

if there exists g ∈ F that is strictly better than f on every point in S. That is, for every point (xi,yi)
one of the following applies:

i. f (xi)< g(xi)≤ yi

ii. f (xi)> g(xi)≥ yi .
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A function f ∈ F is said to have a depth d if d is the minimal number of points that should be

removed from S to make f a non-fit.

Christmann (2006) applied the regression depth to the classification task. He used the logit

function to convert the classification task to a regression problem. He showed that in this setting

the regression depth is closely related to the logistic regression problem and the well known risk

minimization technique.

4.4 An Axiomatic Definition of Depth

Most of the applications of depth for classification define the depth of a classifier with respect

to a given sample. This is true for the regression depth as well. In that respect, the empirical

accuracy of a function is a viable definition of depth. However, in this study we define the depth of

a function with respect to a probability measure over the function class. Following Zuo and Serfling

(2000) we introduce a definition of a depth function for the classification setting. Our definition has

four conditions, or axioms. The first condition is an invariance requirement, similar to the affine

invariance requirement in multivariate depth functions. In our setting, we require that if there is a

symmetry group acting on the hypothesis class then the same symmetry group acts on the depth

function too. The second condition is a symmetry condition: it requires that if the Bayesian optimal

hypothesis happens to be a member of the hypothesis class then the Bayesian optimal hypothesis is

the median hypothesis. The third condition is the monotonicity condition. This requires that if f1

and f2 are two hypotheses such that f1 is strictly closer to the Bayesian optimal hypothesis than f2,
then f1 is deeper than f2. The final requirement is that the depth function is not trivial, that is, that

the depth is not a constant value.

Definition 25 Let F = { f : X 7→ ±1} and let Q be a probability measure over F . DQ : F 7→ R
+

is a depth function if it has the following properties:

1. Invariance: If σ : X 7→ X is a symmetry of F in the sense that for every f ∈ F there exists

fσ ∈ F such that f (σ(x)) = fσ (x) then for every Q and f : DQ ( f ) = DQσ ( fσ). Here, Qσ is

such that for every measurable set A ⊆ F we let Aσ = { fσ : f ∈ A} and have that Q(A) =
Qσ (Aσ).

2. Symmetry: if there exists f ∗ ∈F such that ∀x∈X , Q{ f : f (x) = f ∗ (x)}≥ 1/2 then DQ ( f ∗)=
sup f DQ ( f ).

3. Monotonicity: if there exists f ∗ ∈ F such that DQ ( f ∗) = sup f DQ ( f ) then for every f1, f2 ∈
F , if f1 (x) 6= f ∗ (x) =⇒ f2 (x) 6= f ∗ (x) then DQ ( f1)≥ DQ ( f2).

4. Non-trivial: for every f ∈ F , there exist Q such that f is the unique maximizer of DQ.

Our definition attempts to capture the same properties that Zuo and Serfling (2000) considered,

with a suitable adjustment for the classification setting. It is a simple exercise to verify that the

predicate depth meets all of the above requirements.

4.5 Methods for Computing the Tukey Median

Part of the contribution of this work is the proposal of algorithms for approximating the predicate

depth and the predicate median. The Tukey depth is a special case of the predicate depth and there-

fore we survey the existing literature for computing the Tukey median here. Chan (2004) presented
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optimal algorithms for computing the Tukey median. Chan presented a randomized algorithm that

can find the Tukey median for a sample of n points with expected computational complexity of

O(n logn) when the data is in R
2 and O

(

nd−1
)

when the data is in R
d for d > 2. It is conjectured

that these results are optimal for finding the exact median. Massé (2002) analyzed the asymptotic be-

havior of the empirical Tukey depth. The empirical Tukey depth is the Tukey depth function when it

is applied to an empirical measure sampled from the true distribution of interest. He showed that the

empirical depth converges uniformly to the true depth with probability one. Moreover, he showed

that the empirical median converges to the true median at a rate that scales as 1/
√

n. Cuesta-Albertos

and Nieto-Reyes (2008) studied the random Tukey depth. They proposed picking k random direc-

tions and computing the univariate depth of each candidate point for each of the k directions. They

defined the random Tukey depth for a given point to be the minimum univariate depth of this point

with respect to the k random directions. In their study, they empirically searched for the number

of directions needed to obtain a good approximation of the depth. They also pointed out that the

random Tukey depth uses only inner products and hence can be computed in any Hilbert space.

Note that the empirical depth of Massé (2002) and the random Tukey depth of Cuesta-Albertos

and Nieto-Reyes (2008) are different quantities. In the empirical depth, when evaluating the depth

of a point x, one considers every possible hyperplane and evaluates the measure of the corresponding

half-space using only a sample. On the other hand, in the case of random depth, one evaluates only

k different hyperplanes. However, for each hyperplane it is assumed that the true probability of

the half-space is computable. Therefore, each one of these approaches solves one of the problems

involved in computing the Tukey depth. However, in reality, both problems need to be solved

simultaneously. That is, since scanning all possible hyperplanes is computationally prohibited, one

has to find a subset of representative hyperplanes to consider. At the same time, for each hyperplane,

computing the measure of the corresponding half-space is prohibitive for general measures. Thus,

an approximation is needed here as well. The solution we present addresses both issues and proves

the convergence of the outcome to the Tukey depth, as well as giving the rate of convergence.

Since finding the deepest point is hard, some studies focus on just finding a deep point. Clarkson

et al. (1996) presented an algorithm for finding a point with depth Ω(1/d2) in polynomial time.

For the cases in which we are interested, this could be insufficient. When the distribution is log-

concave, there exists a point with depth 1/e, independent of the dimension (Caplin and Nalebuff,

1991). Moreover, for any distribution there is a point with a depth of at least 1/d+1 (Carathèodory’s

theorem).

4.6 PAC-Bayesian Bounds

Our works builds upon the PAC-Bayesian theory that was first introduced by McAllester (1999).

These results were further improved in a series of studies (see, for example, Seeger, 2003; Am-

broladze et al., 2007; Germain et al., 2009). These results bound, with high probability, the gap

between the empirical error of a stochastic classifier based on a posterior Q to the expect error of

this classifier in terms of the KL-divergence between Q and the prior P. Some of these studies

demonstrate how this technique can be applied to the class of linear classifier and how to improve

the bounds by using parts of the training data to learn a prior P to further tighten the generalization

bounds.

In the current study we use different approaches which result in different type of bounds. The-

orem 4 shows a multiplicative bound on the error of a classifier with respect to the error of the
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Gibbs classifier. For example, if the posterior is log-concave and the hypothesis is the mean of the

posterior, then the multiplicative factor is e ∼= 2.71. This bound contains no additive components,

therefore, if the generalization error of the Gibbs classifier is small, this new bound may be supe-

rior compared to bounds which have additive components (Ambroladze et al., 2007; Germain et al.,

2009). The structure of this bound is closer to the consistency bounds for the Nearest Neighbor

algorithm (Fix and Hodges Jr, 1951). However, unlike consistency bounds, the bound of Theorem 4

applies to any sample size and any method of obtaining the data.

Another aspect of Theorem 4 is that the bound applies to any classification function. That means

that it does not assume that the classifier comes from the same class on which the Gibbs classifier

is defined, neither does it make any assumptions on the training process. For example, the training

error does not appear in this bound.

Theorem 5 uses the PAC-Bayesian theory to relate the training error of the Gibbs classifier to

the generalization error of a deep classifier. In Ambroladze et al. (2007) and Germain et al. (2009)

the posterior Q is chosen to be a unit variance Gaussian around the linear classifier of interest.

Using the same posterior in Theorem 5 will result in inferior results since there is an extra penalty

of factor 2 due to the 1/2 depth of the center of the Gaussian. However, our bound provides more

flexibility in choosing the posterior Q in the tradeoff between the empirical error, the KL divergence

and the depth. It is left as an open problem to determine if one can derive better bounds by using

this flexibility.

5. Discussion

In this study we addressed the hypothesis selection problem. That is, given a posterior belief over

the hypothesis class, we examined the problem of choosing the best hypothesis. To address this

challenge, we defined a depth function for classifiers, the predicate depth, and showed that the gen-

eralization of a classifier is tied to its predicate depth. Therefore, we suggested that the deepest

classifier, the predicate median, is a good candidate hypothesis to select. We analyzed the break-

down properties of the median and showed it is related to the depth as well. We contrasted these

results with the more commonly used maximum a posteriori classifier.

In the second part of this work we discussed the algorithmic aspects of our proposed solution.

We presented efficient algorithms for uniformly measuring the predicate depth and for finding the

predicate median. Since the Tukey depth is a special case of the depth presented here, it also

follows that the Tukey depth and the Tukey median can be approximated in polynomial time by our

algorithms.

Our discussion was limited to the binary classification case. It will be interesting to see if this

work can be extended to other scenarios, for example, regression, multi-class classification and

ranking. These are open problems at this point.
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Abstract

We consider in this paper the problem of noisy 1-bit matrix completion under a general non-uniform

sampling distribution using the max-norm as a convex relaxation for the rank. A max-norm con-

strained maximum likelihood estimate is introduced and studied. The rate of convergence for the

estimate is obtained. Information-theoretical methods are used to establish a minimax lower bound

under the general sampling model. The minimax upper and lower bounds together yield the op-

timal rate of convergence for the Frobenius norm loss. Computational algorithms and numerical

performance are also discussed.

Keywords: 1-bit matrix completion, low-rank matrix, max-norm, trace-norm, constrained opti-

mization, maximum likelihood estimate, optimal rate of convergence

1. Introduction

Matrix completion, which aims to recover a low-rank matrix from a subset of its entries, has been

an active area of research in the last few years. It has a range of successful applications. In some

real-life situations, however, the observations are highly quantized, sometimes even to a single bit

and thus the standard matrix completion techniques do not apply. Take the Netflix problem as an

example, the observations are the ratings of movies, which are quantized to the set of integers from 1

to 5. In the more extreme case such as recommender systems, only a single bit of rating standing for

a “thumbs up” or “thumbs down” is recorded at each occurrence. Another example of applications

is targeted advertising, such as the relevance of advertisements on Hulu. Each user who is watching

TV shows on Hulu is required to answer yes/no to the question“Is this ad relevant to you?”. Noise

effect should be considered since there are users who just click no to all the advertisements. In

general, people would prefer to have advertisement catered to them, rather than to endure random

advertisement. Targeted marketing that uses customer needs tends to serve better than random,

scattershot advertisements. Similar idea has already been employed in mail system (Goldberg et al.,

1992). Other examples from recommender systems include rating music on Pandora and posts on

Reddit or MathOverflow, in which each observation consists of a single bit representing a positive
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or negative rating. Similar problem also arises in analyzing incomplete survey designs containing

simple agree/disagree questions in the analysis of survey data, and distance matrix recovery in

multidimensional scaling that incorperates binary responses with incomplete data (Green and Wind,

1973; Spence and Demoney, 1974). See Davenport et al. (2012) for more discussions on potential

applications.

Motivated by these applications, Davenport et al. (2012) considered the 1-bit matrix completion

problem of recovering an approximately low-rank matrix M∗ ∈ R
d1×d2 from a set of n noise cor-

rupted sign (1-bit) measurements. In particular, they proposed a trace-norm constrained maximum

likelihood estimator to estimate M∗, based on a small number of binary samples observed according

to a probability distribution determined by the entries of M∗. It was also shown that the trace-norm

constrained optimization method is minimax rate-optimal under the uniform sampling model. This

problem is closely connected to and in some respects more challenging than the 1-bit compressed

sensing, which was introduced and first studied in Boufounos and Baraniuk (2008). The 1-bit mea-

surements are meant to model quantization in the extreme case, and a surprising fact is that when the

signal-to-noise ratio is low, empirical evidence demonstrates that such extreme quantization can be

optimal when constrained to a fixed bit budget (Laska and Baraniuk, 2012). See Plan and Vershynin

(2013a) for the recent results and references on 1-bit compressed sensing.

To be more specific, consider an arbitrary unknown d1 ×d2 target matrix M∗ with rank at most

r. Suppose a subset S = {(i1, j1), ...,(in, jn)} of entries of a binary matrix Y is observed, where the

entries of Y depend on M∗ in the following way:

Yi, j =

{
+1, if M∗

i, j +Zi, j ≥ 0,

−1, if M∗
i, j +Zi, j < 0.

Here Z = (Zi j) ∈ R
d1×d2 is a general noise matrix. This latent variable matrix model can been

seen as a direct analogue to the usual 1-bit compressed sensing model, in which only the signs of

measurements are observed. It is known that an s-sparse signal can still be approximately recovered

from O(s log(d/s)) random linear measurements. See, for example, Jacques et al. (2011), Plan and

Vershynin (2013a), Plan and Vershynin (2013b) and Ai et al. (2013).

Contrary to the standard matrix completion model and many other statistical problems, random

noise turns out to be helpful and has a positive effect in the 1-bit case, since the problem is ill-

posed in the absence of noise as described in Davenport et al. (2012). In particular, when Z = 0

and M∗ = uvT for some vectors u ∈ R
d1 ,v ∈ R

d2 having no zero coordinates, then the radically

disparate matrix M̃ = sign(u)signT (v) will lead to the same observations Y . Thus M and M̃ are

indistinguishable. However, it has been surprisingly noticed that the problem may become well-

posed when there are some additional stochastic variations, that is, Z 6= 0 is an appropriate random

noise matrix. This phenomenon can be regarded as a “dithering” effect brought by random noise.

Although the trace-norm constrained optimization method has been shown to be minimax rate-

optimal under the uniform sampling model, it remains unclear that the trace-norm is the best convex

surrogate to the rank. A different convex relaxation for the rank, the matrix max-norm, has been duly

noted in machine learning literature since Srebro et al. (2005), and it was shown to be empirically

superior to the trace-norm for collaborative filtering problems. Regarding a real d1 × d2 matrix as

an operator that maps from R
d2 to R

d1 , its rank can be alternatively expressed as the smallest integer

k, such that it is possible to express M = UV T , where U ∈ R
d1×k and V ∈ R

d2×k. In terms of the

matrix factorization M = UV T , we would like U and V to have a small number of columns. The

number of columns of U and V can be relaxed in a different way from the usual trace-norm by the
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so-called max-norm (Linial et al., 2007), which is defined by

‖M‖max = min
M=UV T

{
‖U‖2,∞‖V‖2,∞

}
, (1)

where the infimum is over all factorizations M = UV T with ‖U‖2,∞ being the operator norm of

U : ℓk
2 → ℓd1

∞ and ‖V‖2,∞ the operator norm of V : ℓk
2 → ℓd2

∞ (or, equivalently, V T : ℓd2

1 → ℓk
2) and

k = 1, ...,min(d1,d2). It is not hard to check that ‖U‖2,∞ is equal to the largest ℓ2 norm of the rows

in U . Since ℓ2 is a Hilbert space, ‖·‖max indeed defines a norm on the space of operators between ℓd2

1

and ℓd1
∞ . Comparably, the trace-norm has a formulation similar to (1), as given below in Section 2.1.

Foygel and Srebro (2011) first used the max-norm for matrix completion under the uniform

sampling distribution. Their results are direct consequences of a recent bound on the excess risk for

a smooth loss function, such as the quadratic loss, with a bounded second derivative (Srebro et al.,

2010). Matrix completion under a non-degenerate random sampling model was studied in Cai and

Zhou (2013), where it was shown that the max-norm constrained minimization method is rate-

optimal and it yields a more stable approximate recovery guarantee, with respect to the sampling

distributions, than trace-norm based approaches.

Davenport et al. (2012) analyzed 1-bit matrix completion under the uniform sampling model,

where observed entries are assumed to be sampled randomly and uniformly. In such a setting, the

trace-norm constrained approach has been shown to achieve minimax rate of convergence. However,

in certain application such as collaborative filtering, the uniform sampling model is over idealized.

In the Netflix problem, for instance, the uniform sampling model is equivalent to assuming all users

are equally likely to rate every movie and all movies are equally likely to be rated by any user.

In practice, inevitably some users are more active than others and some movies are more popular

and thus rated more frequently. Therefore, the sampling distribution is in fact non-uniform. In

this scenario, Salakhutdinov and Srebro (2010) showed that the standard trace-norm relaxation can

behave very poorly, and suggested to use a weighted variant of the trace-norm, which takes the

sampling distribution into account. Since the true sampling distribution is most likely unknown

and can only be estimated based on the locations of those entries that are revealed in the sample,

what commonly used in practice is the empirically-weighted trace norm. Foygel et al. (2011) pro-

vided rigorous recovery guarantees for learning with the standard weighted, smoothed weighted and

smoothed empirically-weighted trace-norms. In particular, they gave upper bounds on excess error,

which show that there is no theoretical disadvantage of learning with smoothed empirical marginals

as compared to learning with smoothed true marginals.

In this paper, we study matrix completion based on noisy 1-bit observations under a general

(non-degenerate) sampling model using the max-norm as a convex relaxation for the rank. The

rate of convergence for the max-norm constrained maximum likelihood estimate is obtained. A

matching minimax lower bound is established under the general non-uniform sampling model using

information-theoretical methods. The minimax upper and lower bounds together yield the optimal

rate of convergence for the Frobenius norm loss. As a comparison with the max-norm constrained

optimization approach, we also analyze the recovery guarantee of the weighted trace-norm con-

strained method in the setting of non-uniform sampling distributions. Our result includes an addi-

tional logarithmic factor, which might be an artifact of the proof technique. The numerical results in

Section 5 show that, even when the sampling distribution is uniform, the max-norm based regular-

ization might slightly outperform the corresponding trace-norm method. To sum up, the max-norm

regularized approach indeed provides a unified and stable approximate recovery guarantee with re-
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spect to the sampling distributions, while previously used approaches are based on different variants

of the trace-norm which may sometimes seem artificial to practitioners.

When the noise distribution is Gaussian or more generally log-concave, the negative

log-likelihood function for M, given the measurements, is convex, hence computing the max-norm

constrained maximum likelihood estimate is a convex optimization problem. The computational

effectiveness of this method is also studied, based on a first-order algorithm developed in Lee et al.

(2010) for solving convex programs involving a max-norm constraint, which outperforms the semi-

definite programming method used in Srebro et al. (2005). It will be shown in Section 4 that the

convex optimization problem can be implemented in polynomial time as a function of the sample

size and the matrix dimensions.

The rest of the paper is organized as follows. Section 2 begins with the basic notation and def-

initions, and then states a collection of useful results on the matrix norms, Rademacher complexity

and distances between matrices that will be needed throughout the paper. Section 3 introduces the

1-bit matrix completion model and the estimation procedure and investigates the theoretical proper-

ties of the estimator. Both minimax upper and lower bounds are established. The results show that

the max-norm constraint maximum likelihood estimator is rate-optimal over the parameter space.

Section 3 also gives a comparison of our results with previous work. Computational algorithms

are discussed in Section 4, and numerical performance of the proposed algorithm is presented in

Section 5. The paper is concluded with a brief discussion in Section 6, and the proofs of the main

results are given in Section 7.

2. Notations and Preliminaries

In this section, we introduce basic notation and definitions that will be used throughout the paper,

and state some known results on the max-norm, trace-norm and Rademacher complexity that will

be used repeatedly later.

2.1 Notation

For any positive integer d, we use [d] to denote the set of integers {1,2, ...,d}. For any pair of real

numbers a and b, set a∨b := max(a,b) and a∧b := min(a,b). For a vector u ∈ R
d and 0 < p < ∞,

denote its ℓp-norm by ‖u‖p = (∑d
i=1 |ui|p)1/p. In particular, ‖u‖∞ = maxi=1,...,d |ui| is the ℓ∞-norm.

For a matrix M = (Mk,l) ∈ R
d1×d2 , let ‖M‖F =

√
∑

d1

k=1 ∑
d2

l=1 M2
k,l be the Frobenius norm and let

‖M‖∞ = maxk,l |Mk,l| denote the elementwise ℓ∞-norm. Given two norms ℓp and ℓq on R
d1 and

R
d2 respectively, the corresponding operator norm ‖ · ‖p,q of a matrix M ∈ R

d1×d2 is defined by

‖M‖p,q = sup‖x‖p=1 ‖Mx‖q. It is easy to verify that ‖M‖p,q = ‖MT‖q∗,p∗ , where (p, p∗) and (q,q∗)

are conjugate pairs, that is, 1
p
+ 1

p∗ = 1 and 1
q
+ 1

q∗ = 1. In particular, ‖M‖ = ‖M‖2,2 is the spectral

norm and ‖M‖2,∞ = maxk=1,...,d1

√
∑

d2

l=1 M2
k,l is the maximum row norm of M.
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2.2 Max-Norm and Trace-Norm

For any matrix M ∈R
d1×d2 , its trace-norm is defined to be the sum of the singular values of M (that

is, the roots of the eigenvalues of MMT ), and can also equivalently written as

‖M‖∗ = inf

{
∑

j

|σ j| : M = ∑
j

σ ju jv
T
j , u j ∈ R

d1 ,v j ∈ R
d2 satisfying ‖u j‖2 = ‖v j‖2 = 1

}
.

Recall the definition (1) of the max-norm, the trace-norm can be analogously defined in terms of

matrix factorization as

‖M‖∗ = min
M=UV T

{
‖U‖F‖V‖F

}
=

1

2
min

U,V :M=UV T

(
‖U‖2

F +‖V‖2
F

)
.

Since the ℓ1-norm of a vector is bounded by the product of its ℓ2-norm and the number of non-zero

coordinates, we have the following relationship between the trace-norm and Frobenius norm

‖M‖F ≤ ‖M‖∗ ≤
√

rank(M) · ‖M‖F .

By the elementary inequality ‖Mm×n‖F ≤√
m‖Mm×n‖2,∞, we see that

‖M‖∗√
d1d2

≤ ‖M‖max. (2)

Furthermore, as was noticed in Lee et al. (2010), the max-norm, which is defined in (1), is compa-

rable with a trace-norm more precisely in the following sense (Jameson, 1987):

‖M‖max (3)

≈ inf

{
∑

j

|σ j| : M = ∑
j

σ ju jv
T
j , u j ∈ R

d1 ,v j ∈ R
d2 satisfying ‖u j‖∞ = ‖v j‖∞ = 1

}
,

where the factor of equivalence is KG ∈ (1.67,1.79), denoting the Grothendieck’s constant. What

may be more surprising is the following bounds for the max-norm, in connection with element-wise

ℓ∞-norm (Linial et al., 2007):

‖M‖∞ ≤ ‖M‖max ≤
√

rank(M) · ‖M‖1,∞ ≤
√

rank(M) · ‖M‖∞. (4)

2.3 Rademacher Complexity

Considering matrices as functions from index pairs to entry values, a technical tool used in our proof

involves data-dependent estimates of the Rademacher complexity of the classes that consist of low

trace-norm and low max-norm matrices. We refer to Bartlett and Mendelson (2002) for a detailed

introduction of this concept.

Definition 1 Let P be a probability distribution on a set X . Suppose that X1, ...,Xn are independent

samples drawn from X according to P , and set S = {X1, ...,Xn}. For a class F of functions mapping

from X to R, its empirical Rademacher complexity over the sample S is defined by

R̂S(F ) =
2

|S|Eε

[
sup
f∈F

∣∣∣
n

∑
i=1

εi f (Xi)
∣∣∣
]
,
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where ε = (ε1, ...,εn) is a Rademacher sequence. The Rademacher complexity with respect to the

distribution P is the expectation, over a sample S of |S| points drawn i.i.d. according to P , denoted

by

R|S|(F ) = ES∼P [R̂S(F )].

The following properties regarding R̂S(F ) are useful.

Proposition 2 We have

1. If F ⊆ G , R̂S(F )≤ R̂S(G).

2. R̂S(F ) = R̂S(conv(F )) = R̂S(absconv(F )), where conv(F ) is the class of convex combina-

tions of functions from F , and absconv(F ) denotes the absolutely convex hull of F , that is,

the class of convex combinations of functions from F and −F .

3. For every c ∈ R, R̂S(cF ) = |c|R̂S(F ), where cF ≡ {c f : f ∈ F }.

In particular, we are interested in calculating the Rademacher complexities of the trace-norm

and max-norm balls. To this end, define for any radius R > 0 that

B∗(R) :=
{

M ∈ R
d1×d2 : ‖M‖∗ ≤ R

}
and

Bmax(R) :=
{

M ∈ R
d1×d2 : ‖M‖max ≤ R

}
.

First, recall that any matrix with unit trace-norm is a convex combination of unit-norm rank-one

matrices, and thus

B∗(1) = conv(M1), where M1 :=
{

uvT : u ∈ R
d1 ,v ∈ R

d2 ,‖u‖2 = ‖v‖2 = 1
}
. (5)

Then R̂S(B∗(1)) = R̂S(M1). A sharp bound on the worst-case Rademacher complexity, defined

as the supremum of R̂S(·) over all sample sets S with size |S| = n, is 2√
n

(See, expression (4) on

page 551, Srebro and Shraibman, 2005). This bound, unfortunately, is barely useful in developing

generalization error bounds. However, when the index pairs of a sample S are drawn uniformly at

random from [d1]× [d2] (with replacement), Srebro and Shraibman (2005) showed that the expected

Rademacher complexity is low, and Foygel and Srebro (2011) have improved this result by reducing

the logarithmic factor. In particular, they proved that for a sample size n ≥ d = d1 +d2,

E
S∼unif,|S|=n

[
R̂S(B∗(1))

]
≤ K√

d1d2

√
d log(d)

n
,

where K > 0 denotes a universal constant.

The unit max-norm ball, on the other hand, can be approximately characterized as a convex hull.

Due to the Grothendieck’s inequality, it was shown in Srebro and Shraibman (2005) that

conv(M±)⊂ Bmax(1)⊂ KG · conv(M±),

where M± := {M ∈ {±1}d1×d2 : rank(M) = 1} is the class of rank-one sign matrices, and KG ∈
(1.67,1.79) is the Grothendieck’s constant. It is easy to see that M± is a finite class with cardinality

3624



1-BIT MATRIX COMPLETION

|M±|= 2d−1, d = d1 +d2. For any d1,d2 > 2 and any sample of size 2 < |S| ≤ d1d2, the empirical

Rademacher complexity of the unit max-norm ball is bounded by

R̂S

(
Bmax(1)

)
≤ 12

√
d

|S| . (6)

In other words, supS:|S|=n R̂S(Bmax(1))≤ 12

√
d
n
.

2.4 Discrepancy

In order to get both upper and lower prediction error bounds on the weighted squared Frobenius

norm between the proposed estimator, given by (13) below, and the target matrix described via

model (9), we will need the following two concepts of discrepancies between matrices as well as

their connections. In particular, we will focus on element-wise notion of discrepancy between two

d1 ×d2 matrices P and Q.

First, for two matrices P, Q : [d1]× [d2]→ [0,1]d1×d2 , their Hellinger distance is given by

d2
H(P;Q) =

1

d1d2
∑
(k,l)

d2
H(Pk,l;Qk,l),

where d2
H(p;q) = (

√
p−√

q)2 +(
√

1− p−√
1−q)2 for p,q ∈ [0,1]. Next, the Kullback-Leibler

divergence between two matrices P, Q : [d1]× [d2]→ [0,1]d1×d2 is defined by

K(P‖Q) =
1

d1d2
∑
(k,l)

K(Pk,l‖Qk,l),

where K(p‖q) = p log( p
q
)+ (1− p) log( 1−p

1−q
), for p,q ∈ [0,1]. Note that K(P‖Q) is not a distance;

it is sufficient to observe that it is not symmetric.

The relationship between the two “distances” is as follows. For any two scalars p,q ∈ [0,1], we

have

d2
H(p;q)≤ K(p‖q), (7)

which in turn implies that, for any two matrices P, Q : [d1]× [d2]→ [0,1]d1×d2 ,

d2
H(P;Q)≤K(P‖Q). (8)

The proof of (7) is based on the Jensen’s inequality and an elementary inequality that 1−x≤− logx

for any x > 0.

3. Max-Norm Constrained Maximum Likelihood Estimate

In this section, we introduce the max-norm constrained maximum likelihood estimation procedure

for 1-bit matrix completion and investigates the theoretical properties of the estimator. The results

are also compared with other results in the literature.
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3.1 Observation Model

We consider 1-bit matrix completion under a general random sampling model. The unknown low-

rank matrix M∗ ∈ R
d1×d2 is the object of interest. Instead of observing noisy entries M∗

i, j + Zi, j

directly in unquantized matrix completion, now we only observe with error the sign of a random

subset of the entries of M∗. More specifically, assume that a random sample

S =
{
(i1, j1),(i2, j2), ...,(in, jn)

}
⊆
(
[d1]× [d2]

)n

of the index set is drawn i.i.d. with replacement according to a general sampling distribution Π =
{πkl} on [d1]× [d2]. That is, P{(it , jt) = (k, l)} = πkl , for all t and (k, l). Suppose that a (random)

subset S of size |S| = n of entries of a sign matrix Y is observed. The dependence of Y on the

underlying matrix M∗ is as follows:

Yi, j =

{
+1, if M∗

i, j +Zi, j ≥ 0,

−1, if M∗
i, j +Zi, j < 0,

(9)

where Z = (Zi, j) ∈R
d1×d2 is a matrix consisting of i.i.d. noise variables. Let F(·) be the cumulative

distribution function of −Z1,1, then the above model can be recast as

Yi, j =

{
+1, with probability F(M∗

i, j),

−1, with probability 1−F(M∗
i, j),

(10)

and we observe noisy entries {Yit , jt}n
t=1 indexed by S. More generally, we consider the model

(10) with an arbitrary differentiable function F : R → [0,1]. Particular assumptions on F will be

discussed below.

Instead of assuming the uniform sampling distribution as in Davenport et al. (2012), here we al-

low a general sampling distribution Π = {πkl}, satisfying ∑(k,l)∈[d1]×[d2] πkl = 1, according to which

we make n independent random choices of entries. The drawback of the setting is that, with fairly

high probability, some entries will be sampled multiple times. Intuitively it would be more practical

to assume that entries are sampled without replacement, or equivalently, to sample n of the d1d2 bi-

nary entries observed with noise without replacing. Due to the requirement that the drawn entries be

distinct, the n samples are not independent. This dependence structure turns out to impede the tech-

nical analysis of the learning guarantees. To avoid this complication, we will use the i.i.d. approach

as a proxy for sampling without replacement throughout this paper. As has been noted in Gross and

Nesme (2010) and Foygel and Srebro (2011), between sampling with and without replacement both

in a uniform sense, that is, making n independent uniform choices of entries versus choosing a set

S of entries uniformly at random over all subsets that consist of exactly n entries, the latter can be

theoretically as good as the former. See Section 7.4 below for more details.

Next we list three natural choices for F , or equivalently, for the distribution of {Zi, j}.

3.1.1 EXAMPLES

1. (Logistic regression/Logistic noise): The logistic regression model is described by (10) with

F(x) =
ex

1+ ex
,

and equivalently by (9) with Zi, j i.i.d. following the standard logistic distribution.
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2. (Probit regression/Gaussian noise): The probit regression model is described by (10) with

F(x) = Φ
( x

σ

)
,

where Φ denotes the cumulative distribution function of N(0,1), and equivalently by (9) with

Zi, j i.i.d. following N(0,σ2).

3. (Laplacian noise): Another interesting case is that the noise Zi, j are i.i.d. drawn from a

Laplacian distribution Laplace(0,b), with

F(x) =

{
1
2

exp(x/b), if x < 0,

1− 1
2

exp(−x/b), if x ≥ 0,

where b > 0 is the scale parameter.

Davenport et al. (2012) have focused on approximately low-rank matrices recovery by consid-

ering the following class of matrices

K∗(α,r) =
{

M ∈ R
d1×d2 : ‖M‖∞ ≤ α,

‖M‖∗√
d1d2

≤ α
√

r
}
, (11)

where 1 ≤ r ≤ min(d1,d2) and α > 0 is a free parameter to be determined. Clearly, any matrix M

with rank at most r satisfying ‖M‖∞ ≤ α belongs to K∗(α,r). Alternatively, using max-norm as

a convex relaxation for the rank, we consider recovery of matrices with ℓ∞-norm and max-norm

constraints defined by

Kmax(α,R) :=
{

M ∈ R
d1×d2 : ‖M‖∞ ≤ α, ‖M‖max ≤ R

}
. (12)

Here both α > 0 and R > 0 are free parameters to be determined. If M∗ is of rank at most r and

‖M∗‖∞ ≤ α, then by (2) and (4) we have M∗ ∈ Bmax(α
√

r) and hence

M∗ ∈ Kmax(α,α
√

r)⊂ K∗(α,r).

3.2 Max-norm Constrained Maximum Likelihood Estimate

Now, given a collection of observations YS = {Yit , jt}n
t=1 from the observation model (10), the nega-

tive log-likelihood function can be written as

ℓS(M;Y ) =
n

∑
t=1

[
1{Yit , jt =1} log

( 1

F(Mit , jt )

)
+1{Yit , jt =−1} log

( 1

1−F(Mit , jt )

)]
.

Then we consider estimating the unknown M∗ ∈ Kmax(α,R) by maximizing the empirical likelihood

function subject to a max-norm constraint:

M̂max = argmin
M∈Kmax(α,R)

ℓS(M;Y ). (13)

The optimization procedure requires that all the entries of M0 are bounded in absolute value by a

pre-defined constant α. This condition is reasonable while also critical in approximate low-rank
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matrix recovery problems by controlling the spikiness of the solution. Indeed, the measure of the

“spikiness” of matrices is much less restrictive than the incoherence conditions imposed in exact

low-rank matrix recovery. See, for example, Koltchinskii et al. (2011), Negahban and Wainwright

(2012), Klopp (2012) and Cai and Zhou (2013).

As has been noted in Srebro et al. (2005), a large gap between the max-complexity (related to

max-norm) and the dimensional-complexity (related to rank) is possible only when the underlying

low-rank matrix has entries of vastly varying magnitudes. Also, in view of (3), the max-norm

promotes low-rank decomposition with factors in ℓ∞ (ℓ2 for the trace-norm). Motivated by these

features, max-norm regularization is expected to be reasonably effective for uniformly bounded

data.

When the noise distribution is log-concave so that the log-likelihood is a concave function, the

max-norm constrained minimization problem (13) is a convex program and we recommend a fast

and efficient algorithm developed in Lee et al. (2010) for solving large-scale optimization problems

that incorporate the max-norm. We will show in Section 4 that the convex optimization problem

(13) can indeed be implemented in polynomial time as a function of the sample size n and the matrix

dimensions d1 and d2.

3.3 Upper Bounds

To establish an upper bound on the prediction error of estimator M̂max given by (13), we need the

following assumption on the unknown matrix M∗ as well as the regularity conditions on the function

F in (10).

3.3.1 CONDITION U

Assume that there exist positive constants R and α such that

(U1) M∗ ∈ Kmax(α,R);

(U2) F and F ′ are non-zero in [−α,α], and

(U3) both

Lα := sup
|x|≤α

|F ′(x)|
F(x)(1−F(x))

, and βα := sup
|x|≤α

F(x)(1−F(x))

(F ′(x))2
(14)

are finite.

In particular, under condition (U2), the quantity

Uα := sup
|x|≤α

log

(
1

F(x)(1−F(x))

)
,

is well-defined. As prototypical examples, we specify below the quantities Lα, βα and Uα in the

cases of Logistic, Gaussian and Laplacian noise:

1. (Logistic regression/Logistic noise): For F(x) = ex/(1+ ex), we have

Lα ≡ 1, βα =
(1+ eα)2

eα
and Uα = 2log(eα/2 + e−α/2).
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2. (Probit regression/Gaussian noise): For F(x) = Φ(x/σ), straightforward calculations show

that

Lα ≤ 4

σ

(α

σ
+1

)
, βα ≤ πσ2 exp{α2/(2σ2)} and Uα ≤

(α

σ
+1

)2

. (15)

3. (Laplacian noise): For a Laplace(0,b) distribution function, we have

Lα =
2

b
, βα = b

(
2exp(α/b)−1

)
and Uα ≤ 2

(α

b
+ log2

)
.

Now we are ready to state our main results concerning the recovery of an approximately low-

rank matrix M∗ using the max-norm constrained maximum likelihood estimate. We write hereafter

d = d1 +d2 for brevity.

Theorem 3 Suppose that Condition U holds and assume that the training set S follows a general

weighted sampling model according to the distribution Π. Then there exists an absolute constant C

such that, for a sample size 2 < n ≤ d1d2 and for any δ > 0, the minimizer M̂max of the optimization

program (13) satisfies

‖M̂max −M∗‖2
Π =

d1

∑
k=1

d2

∑
l=1

πkl{M̂max −M∗}2
k,l ≤Cβα

{
LαR

√
d

n
+Uα

√
log(4/δ)

n

}
, (16)

with probability at least 1− δ. Here and below ‖ · ‖Π denotes the weighted Frobenius norm with

respect to Π, that is,

‖M‖Π =

√√√√ d1

∑
k=1

d2

∑
l=1

πklM
2
k,l for all M ∈ R

d1×d2 .

Remark 4 (i) While using the trace-norm to study this general weighted sampling model, it is

common to assume that each row and column is sampled with positive probability (Klopp,

2012; Negahban and Wainwright, 2012), though in some applications this assumption does

not seem realistic. More precisely, assume that there exists a positive constant µ ≥ 1 such that

πkl ≥
1

µd1d2

, for all (k, l) ∈ [d1]× [d2]. (17)

Then, under condition (17) and the conditions of Theorem 3,

1

d1d2

‖M̂max −M∗‖2
F ≤Cµβα

{
LαR

√
d

n
+Uα

√
log(d)

n

}
(18)

holds with probability at least 1−4/d, where C > 0 denotes an absolute constant.

(ii) Klopp (2012) studied the problem of standard matrix completion with noise, also in the case

of general sampling distribution, using the trace-norm penalized approach. However, the

Assumption 1 therein requires that the distribution πkl over entries is bounded from above,

which is quite restrictive especially in the Netflix problem. It is worth noticing that this upper

bound condition on sampling distribution is not required in both results (16) and (18).
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It is noteworthy that above results are directly comparable to those obtained in the case of ap-

proximately low-rank recovery from unquantized measurements, also using max-norm regularized

approach (Cai and Zhou, 2013). Let Z = (Zi, j) be a noise matrix consisting of i.i.d. N(0,σ2) entries

for some σ > 0, and assume we have observations on a (random) subset S = {(i1, j1), ...,(in, jn)} of

entries of Ỹ = M∗+Z. Cai and Zhou (2013) studied the unquantized problem under a general sam-

pling model using max-norm as a convex relaxation for the rank. In particular, for the max-norm

constrained least squares estimator

M̃max = argmin
M∈Kmax(α,R)

1

n

n

∑
t=1

(Ỹit , jt −M∗
it , jt )

2,

for Kmax(α,R) as in (12), it was shown that for any δ ∈ (0,1) and a sample size 2 < n ≤ d1d2,

‖M̃max −M∗‖2
Π ≤C′

{
(α∨σ)R

√
d

n
+

α2 log(2/δ)

n

}
(19)

holds with probability greater than 1− exp(−d)−δ, where C′ > 0 is a universal constant.

In 1-bit observations case when Zi, j
i.i.d.∼ N(0,σ2), it is equivalent that the function F in model

(10) is given by F(·) = Φ(·/σ). According to (15), we have

‖M̂max −M∗‖2
Π ≤C exp

( α2

2σ2

){
(α+σ)R

√
d

n
+(α+σ)2

√
log(4/δ)

n

}
(20)

holds with probability at least 1−δ.

Comparing the upper bounds in (19) and (20) and note that α∨σ ≤ α+σ ≤ 2(α∨σ), we see

that there is no essential loss of recovery accuracy by discretizing to binary measurements as long

as α
σ is bounded by a constant (Davenport et al., 2012). On the other hand, as the signal-to-noise

ratio α
σ ≥ 1 increases, the error bounds deteriorate significantly. In fact, the case α ≫ σ essentially

amounts to the noiseless setting, in which it is impossible to recover M∗ based on any subset of the

signs of its entries.

3.4 Information-Theoretic Lower Bounds

We now establish minimax lower bounds by using information-theoretic techniques. The lower

bounds given in Theorem 5 below show that the rate attained by the max-norm constrained maxi-

mum likelihood estimator is optimal up to constant factors.

Theorem 5 Assume that F ′(x) is decreasing and
F(x)(1−F(x))

(F ′(x))2 is increasing for x > 0, and let S be

any subset of [d1]× [d2] with cardinality n. Then, as long as the parameters (R,α) satisfy

max

(
2,

4

(d1 ∨d2)1/2

)
≤ R

α
≤ (d1 ∧d2)

1/2

2
,

the minimax risk for estimating M over the parameter space Kmax(α,R) satisfies

inf
M̂

max
M∈Kmax(α,R)

{
1

d1d2

E‖M̂−M‖2
F

}
≥ 1

512
min

{
α2,

√
βα/2

2
R

√
d

n

}
. (21)
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Remark 6 In fact, the lower bound (21) is a special case of the following general result, which will

be proved in Sect. 7.2. Let γ∗ > 0 be the solution of the following equation

γ∗ = min

{
1

2
,

R1/2

α

(
β(1−γ∗)α

32
· d1 ∨d2

n

)1/4}
(22)

and assume that

max

(
2,

4

(d1 ∨d2)1/2

)
≤ R

α
≤ (d1 ∧d2)

1/2γ∗. (23)

Then the minimax risk for estimating M over the parameter space Kmax(α,R) satisfies

inf
M̂

max
M∈Kmax(α,R)

{
1

d1d2

E‖M̂−M‖2
F

}
≥ 1

512
min

{
α2,

√
β(1−γ∗)α

2
R

√
d

n

}
. (24)

To see the existence of γ∗ defined above, setting

h(γ) = γ and g(γ) = min

{
1

2
,

R1/2

α

(
β(1−γ)α

32
· d1 ∨d2

n

)1/4}
,

then it is easy to see that h(γ) is strictly increasing and g(γ) is decreasing for γ ∈ (0,1) with h(0) = 0

and g(0)> 0. Therefore, equation (22) has a unique solution γ∗ ∈ (0, 1
2
] so that h(γ∗) = g(γ∗).

Assume that µ and α are bounded above by universal constants and let the function F be fixed,

so that both Lα and βα in (14) are bounded. Also notice that β(1−γ∗)α ≥ βα/2 since γ∗ ≤ 1/2.

Then comparing the lower bound (24) with the upper bound (18) shows that if the sample size

n ≥ R2βα/2

4α4 (d1 +d2), the optimal rate of convergence is R

√
d1+d2

n
:

inf
M̂

sup
M∈Kmax(α,R)

1

d1d2

E‖M̂−M‖2
F ≍ R

√
d1 +d2

n
,

and the max-norm constrained maximum likelihood estimate (13) is rate-optimal. If the target

matrix M∗ is known to have rank at most r, we can take R = α
√

r, such that the requirement here on

the sample size n≥ βα/2

4α2 r(d1+d2) is weak and the optimal rate of convergence becomes α

√
r(d1+d2)

n
.

3.5 Comparison to Prior Work

In this paper, we study a matrix completion model proposed in Davenport et al. (2012), in which

it is assumed that a binary matrix is observed at random from a distribution parameterized by an

unknown matrix which is (approximately) low-rank. It is noteworthy that some earlier papers on

collaborative filtering or matrix completion, including Srebro et al. (2005) and references therein,

also dealt with binary observations that are assumed to be noisy versions of the underlying matrix,

in Logistic or Bernoulli conditional model. The goal there is to predict directly the quantized values,

or equivalently, to reconstruct the sign matrix, instead of the underlying real values, therefore the

non-identifiability issue could be avoided.

We next turn to a detailed comparison of our results for 1-bit matrix completion to those obtained

in Davenport et al. (2012), also for approximately low-rank matrices. Using the trace-norm as
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a proxy to rank, Davenport et al. (2012) have studied 1-bit matrix completion under the uniform

sampling distribution over the parameter space K∗(α,r) as given in (11), for some α > 0 and r ≤
min{d1,d2} is a positive integer. To recover the unknown M∗ ∈ K∗(α,r), given a collection of

observations YS where S follows a Bernoulli model, that is, every entry (k, l)∈ [d1]× [d2] is observed

independently with equal probability n
d1d2

, they propose the following trace-norm constrained MLE

M̂tr = argmin
M∈K∗(α,r)

ℓS(M;Y )

and prove that for a sample size n ≥ d log(d), d = d1 +d2, with high probability,

1

d1d2

‖M̂tr −M∗‖2
F . βαLαα

√
rd

n
. (25)

Comparing to (18) with R = α
√

r, it is easy to see that under the uniform sampling model, the

error bounds in (rescaled) Frobenius norm for the two estimates M̂max and M̂tr are of the same

order. Moreover, Theorem 3 in Davenport et al. (2012) and Theorem 5, respectively, provide lower

bounds showing that both M̂tr and M̂max achieve the minimax rate of convergence for recovering

approximately low-rank matrices over the parameter spaces K∗(α,r) and Kmax(α,R) respectively.

As mentioned in the introduction, the uniform sampling distribution assumption is restrictive

and not valid in many applications including the well-known Netflix problem. When the sampling

distribution is non-uniform, it was shown in Salakhutdinov and Srebro (2010) that the standard

trace-norm regularized method might fail, specifically in the setting where the row and column

marginal distributions are such that certain rows or columns are sampled with very high probabil-

ities. Moreover, it was proposed to use a weighted variant of the trace-norm, which incorporates

the knowledge of the true sampling distribution in its construction, and showed experimentally that

this variant indeed leads to superior performance. Using this weighted trace-norm, Negahban and

Wainwright (2012) provided theoretical guarantees on approximate low-rank matrix completion in

general sampling case while assuming that each row and column is sampled with positive probabil-

ity (see condition (17)). In addition, requiring that the probabilities to observe an element from any

row or column are of order O((d1 ∧ d2)
−1), Klopp (2012) analyzed the performance of the trace-

norm penalized estimators, and provided near-optimal (up to a logarithmic factor) bounds which are

similar to the bounds in this paper.

Next we provide an analysis of the performance of the weighted trace-norm in 1-bit matrix

completion. Given the knowledge of the true sampling distribution, we establish an upper bound on

the error in recovering M∗, which comparing to (25), includes an additional log1/2(d) factor. We do

not rule out the possibility that this logarithmic factor might be an artifact of the technical tools used

in proof described below. The proof in Davenport et al. (2012) for the trace-norm regularization in

uniform sampling case may also be extended to the weighted trace-norm method under the general

sampling model, by using the matrix Bernstein inequality instead of Seginer’s theorem. The extra

logarithmic factor, however, is still inevitable based on this argument. We will not pursue the details

in this paper.

Given a sampling distribution Π = {πkl} on [d1]× [d2], define its row- and column-marginals as

πk· =
d2

∑
l=1

πkl and π·l =
d1

∑
k=1

πkl ,
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respectively. Under the condition (17), we have

πk· ≥
1

µd1

, π·l ≥
1

µd2

, for all (k, l) ∈ [d1]× [d2]. (26)

As in Salakhutdinov and Srebro (2010), consider the following weighted trace-norm with respect to

the distribution Π:

‖M‖w,∗ := ‖Mw‖∗ =
∥∥diag(

√
π1·, ...,

√
πd1·) ·M ·diag(

√
π·1, ...,

√
π·d2

)
∥∥
∗, (27)

where (Mw)k,l :=
√

πk·π·lMk,l . Notice that if M has rank at most r and ‖M‖∞ ≤ α, then

‖M‖w,∗ ≤
√

r‖M‖F =
√

r

( d1

∑
k=1

d2

∑
l=1

πk·π·lM
2
k,l

)1/2

≤ α
√

r.

Analogously to the previous studied class K∗(α,r), as given in (11), containing the low trace-norm

matrices, define

KΠ,∗ ≡ KΠ,∗(r,α) =
{

M ∈ R
d1×d2 : ‖M‖w,∗ ≤ α

√
r,‖M‖∞ ≤ α

}

and consider estimating the unknown M∗ ∈ KΠ,∗ by solving the following optimization problem:

M̂w,tr = argmin
M∈KΠ,∗

ℓS(M;Y ). (28)

The following theorem states that the weighted trace-norm regularized approach can be nearly as

good as the max-norm regularized estimator (up to logarithmic and constant factors), under a general

sampling distribution that is not too far from uniform. The theoretical performance of the weighted

trace-norm is first studied by Foygel et al. (2011) in the standard matrix completion problems under

arbitrary sampling distributions.

Theorem 7 Suppose that Condition U holds but with M∗ ∈ KΠ,∗, and assume that the training set

S follows a general weighted sampling model according to the distribution Π satisfying (17). Then

there exists an absolute constant C > 0 such that, for a sample size n ≥ µmin{d1,d2} log(d) and

any δ > 0, the minimizer M̂w,tr of the optimization program (28) satisfies

‖M̂w,tr −M∗‖2
Π ≤Cβα

{
Lαα

√
µrd log(d)

n
+Uα

√
log(4/δ)

n

}
, (29)

with probability at least 1−δ.

Since the construction of weighted trace-norm ‖ · ‖w,∗ highly depends on the underlying sam-

pling distribution which is typically unknown in practice, the constraint M∗ ∈ KΠ,∗ seems to be

artificial. The max-norm constrained approach, on the contrary, does not require the knowledge of

the exact sampling distribution and the error bound in weighted Frobenius norm, as shown in (16),
holds even without prior assumption on Π, for example, condition (17). Moreover, to ensure that

the weighted trace-norm regularized method performs well, it is necessary that the marginals are

not too small or equivalently that

µ = max

{
1

d1πk·
∨ 1

d2π·l
: k, l ∈ [d1]× [d2]

}
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is not too large. Otherwise, both the error bounds in (29) and the sample complexity

µmin{d1,d2} log(d) would grow larger with µ when the marginals were far from uniform. We

conjecture that the factor µ would also appear in the results that are extended from those in Daven-

port et al. (2012). As evident in Theorem 3, using the max-norm based regularization does not lead

to a deterioration in either the error bounds or the sample complexity when the sampling distribution

was far from uniform.

To clarify the major difference between the principles behind (25) and (29), we remark that

one of the key technical tools used in Davenport et al. (2012) is a bound of Seginer (2000) on

the spectral norm of a random matrix with i.i.d. zero mean entries (corresponding to the uniform

sampling distribution), that is, for any h ≤ 2log(max{d1,d2}),

E[‖A‖h]≤ Kh
(
E

[
max

k=1,...,d1

‖ak·‖h
2

]
+E

[
max

j=1,...,d2

‖a·l‖h
2

])
,

where ak· (resp. a·l) denote the rows (resp. columns) of A and K is a universal constant. Under

the non-uniform sampling model, we will deal with a matrix with independent entries that are

not necessarily identically distributed, to which case an alternative result of Latala (2005) can be

applied, that is,

E[‖A‖]≤ K′
(

max
k=1,...,d1

E‖ak·‖2 + max
j=1,...,d2

E‖a·l‖2 +
(
∑
k,l

Ea4
kl

)1/4])
,

or instead, resorting to the matrix Bernstein inequality. Using either inequality would thus bring an

additional logarithmic factor, appeared in (29).
It is also worth noticing that though the sampling distribution is not known exactly in practice,

its empirical analogues are expected to be stable enough as an alternative. According to Foygel et al.

(2011), given a random sample S = {(it , jt)}n
t=1, consider the empirical marginals

π̂r(i) =
#{t : it = i}

n
, π̂c( j) =

#{t : jt = j}
n

and π̂i j = π̂r(i)π̂c( j),

as well as the smoothed empirical marginals

π̌r(i) =
1

2
(π̂r(i)+1/d1), π̂c( j) =

1

2
(π̂c( j)+1/d2) and π̌i j = π̌r(i)π̌c( j).

The smoothed empirically-weighted trace-norm ‖ · ‖w̌,∗ can be defined in the same spirit as in the

definition (27) of weighted trace-norm, only with {πi j} replaced by {π̌i j}. Then the unknown

matrix can be estimated via regularization on the π̌-weighted trace-norm, that is,

M̌w̌,tr = argmin
{
ℓS(M;Y ) : ‖M‖∞ ≤ α, ‖M‖w̌,∗ ≤ α

√
r
}
.

Adopting Theorem 4 in Foygel et al. (2011) to the current 1-bit problem will lead to a learning

guarantee similar to (29).

4. Computational Algorithm

Problems of the form (13) can now be solved using a variety of algorithms, including interior

point method (Srebro et al., 2005), Frank-Wolfe-type algorithm (Jaggi, 2013) and projected gradient
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method (Lee et al., 2010). The first two are convex methods with guaranteed convergence rates to

the global optimum, though can be slow in practice and might not scale to matrices with hundreds

of rows or columns. We describe in this section a simple first order method due to Lee et al. (2010),

which is a special case of a projected gradient algorithm for solving large-scale convex programs

involving the max-norm. This method is non-convex, but as long as the size of the problem is

large enough, it is guaranteed that each local minimum is also a global optimum, due to Burer and

Monteiro (2003).

We start from rewriting the original problem as an optimization over factorizations of a matrix

M ∈R
d1×d2 into two terms M =UV T , where U ∈R

d1×k and V ∈R
d2×k for some 1≤ k ≤ d = d1+d2.

More specifically, for any 1 ≤ k ≤ d fixed, define

Mk(R) :=
{

UV T : U ∈ R
d1×k,V ∈ R

d2×k,max{‖U‖2
2,∞,‖V‖2

2,∞} ≤ R
}
.

Then the global optimum of (13) is equal to that of

minimize ℓ(M;Y )

subject to M ∈ Mk(R), ‖M‖∞ ≤ α. (30)

Here we write ℓ(M;Y ) = 1
|S|ℓS(M;Y ) for brevity. This problem is non-convex, come with no guaran-

teed convergence rates to the global optimum. A surprising fact is that when k ≥ 1 is large enough,

this problem has no local minimum (Burer and Monteiro, 2003). Notice that ℓ(·;Y ) is differentiable

with respect to the first argument, then (30) can be solved iteratively via the following updates:

[
U(τ)
V (τ)

]
=

[
U t − τ√

t
·∇ f (U t(V t)T ;Y )V t

V t − τ√
t
·∇ f (U t(V t)T ;Y )TU t

]
,

where τ > 0 is a stepsize parameter and t = 0,1,2, .... Next, we project (U(τ),V (τ)) onto Mk(R)
according to [

Ũ t+1

Ṽ t+1

]
= PR

([
U(τ)
V (τ)

])
.

This orthogonal projection can be computed by re-scaling the rows of the current iterate whose ℓ2-

norms exceed R so that their norms become exactly R, while rows with norms already less than R

remain unchanged. If ‖Ũ t+1(Ṽ t+1)T‖∞ > α, we replace

[
Ũ t+1

Ṽ t+1

]
with

√
α

‖Ũ t+1(Ṽ t+1)T‖1/2
∞

[
Ũ t+1

Ṽ t+1

]
,

otherwise we keep it still. The resulting update is then denoted by (U t+1,V t+1).
It is important to note that the choice of k must be large enough, at least as big as the rank of M∗.

Suppose that, before solving (13), we know that the target matrix M∗ has rank at most r∗. Then it

is best to solve (30) for k = r∗+1 in the sense that, if we choose k ≤ r∗, then (30) is not equivalent

to (13), and if we take k > r∗+ 1, then we would be solving a larger program than necessary. In

practice, we do not know the exact value of r∗ in advance. Nevertheless, motivated by Burer and

Monteiro (2003), we suggest the following scheme to solve the problem which avoids solving (30)
for r ≫ r∗:
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(1) Choose an initial small k and compute a local minimum (U,V ) of (30), using above projected

gradient method.

(2) Use an optimization technique to determine whether the injections Û of U into R
d1×(k+1) and

V̂ of V into R
d2×(k+1) comprise a local minimum of (30) with the size increased to k+1.

(3) If (Û ,V̂ ) is a local minimum, then we can take M = UV T as the final solution; otherwise

compute a better local minimum (Ũ ,Ṽ ) of (30) with size k + 1 and repeat step (2) with

(U,V ) = (Ũ ,Ṽ ) and k = k+1.

It was also suggested in Lee et al. (2010) that when dealing with extremely large data sets with

S consisting of hundreds of millions of index pairs, one may consider using a stochastic gradient

method based on the following decomposition for ℓ, that is,

ℓ(UV T ;Y ) =
1

|S| ∑
(i, j)∈S

g(uT
i v j;Yi, j) with

g(t;y) = 1{y=1} log

(
1

F(t)

)
+1{y=−1} log

(
1

1−F(t)

)
,

where S ⊂ [d1]× [d2] is a training set of row-column indices, ui and v j denote the i-th row of U

and j-th row of V, respectively. The stochastic gradient method says that at t-th iteration, we only

need to pick one training pair (it , jt) at random from S, then update g(uT
it

v jt ;Yit , jt ) via the previous

procedure. More precisely, if ‖uit‖2
2 > R, we project it back so that ‖uit‖2

2 = R, otherwise we do not

make any change (do the same for v jt ). Next, if |uT
it

v jt |> α, replace uit and vit with
√

αuit/|uT
it

v jt |1/2

and
√

αvit/|uT
it

v jt |1/2 respectively, otherwise we keep everything still. At the t-th iteration, we do

not need to consider any other rows of U and V . This simple algorithm could be computationally as

efficient as optimization with the trace-norm.

5. Numerical Results

In this section, we report the simulation results for low-rank matrix recovery based on 1-bit observa-

tions. In all cases presented below, we solved the convex program (30) by using our implementation

in MATLAB of the projected gradient algorithm proposed in Section 4 for a wide range of values

of the step-size parameter τ.

We first consider a rank-2, d × d target matrix M∗ with eigenvalues {d/
√

2,d/
√

2,0, ...,0},

so that ‖M∗‖F/d = 1. We choose to work with the Gaussian conditional model under uniform

sampling. Let YS be the noisy binary observations with S = {(i1, j1), ...,(it , jt)}, that is, for (i, j)∈ S,

Yi, j =

{
+1, with probability Φ(M∗

i, j/σ),

−1, with probability 1−Φ(M∗
i, j/σ),

and the objective function is given by

ℓS(M;Y ) =
1

|S|

{
∑

(i, j)∈Ω+

log
[ 1

Φ(Mi, j/σ)

]
+ ∑

(i, j)∈Ω−
log

[ 1

1−Φ(Mi, j/σ)

]}
,

where Ω+ = {(i, j) ∈ S : Yi, j = 1} and Ω− = {(i, j) ∈ S : Yi, j = −1}. In Figure 1, averaging the

results over 20 repetitions, we plot the squared Frobenius norm of the error (normalized by the
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Figure 1: Plot of the average Frobenius error ‖M̂ −M∗‖2
F/d2 versus the sample size s for three

different matrix sizes d ∈ {80,120,160}, all with rank r = 2.

dimension) ‖M̂ −M∗‖2
F/d2 versus a range of sample sizes s = |S|, with the noise level σ taken to

be α/2, for three different matrix sizes, d ∈ {80,120,160}. Naturally, in each case, the Frobenius

error decays as s increases, although larger matrices require larger sample sizes, as reflected by the

upward shift of the curves as d is increased.

Next, we compare the performance of the max-norm based regularization with that of the trace-

norm using the same criterion as in Davenport et al. (2012). More specifically, the target matrix M∗

is constructed at random by generating M = LRT , where L and R are d×r matrices with i.i.d. entries

drawn from Uniform [−1/2,1/2], so that rank(M∗) = r. It is then scaled such that ‖M∗‖∞ = 1,

while in the last case, M∗ is formed such that ‖M∗‖F/d = 1. As before, we focus on the Gaussian

conditional model but with noise level σ varies from 10−3 to 10, and set d = 500, r = 1 and s =
0.15d2, which is exactly the same case studied in Davenport et al. (2012). We plot in Figure 2 the

squared Frobenius norm of the error (normalized by the norm of the underlying matrix M∗) over a

range of different values of noise level σ on a logarithmic scale. As evident in Figure 2, the max-

norm based regularization performs slightly but consistently better than the trace-norm, except on

the one point where σ = log10(0.25). Also, we see that for both methods, the performance is poor

when the noise is either too little or too much.

In the third experiment, we consider matrices with dimension d = 200 and choose a moderate

level of noise, that is, σ = log10(−0.75), according to previous experiences. Figure 3 plots the

relative Frobenius norm of the error versus the sample size s for three different matrix ranks, r ∈
{3,5,10}. Indeed, larger rank means larger intrinsic dimension of the problem, and thus increases

the difficulty of any reconstruction procedure.
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Figure 2: Plot of the relative Frobenius error ‖M̂ −M∗‖2
F/‖M∗‖2

F versus the noise level σ on a

logarithmic scale, with rank r = 1, using both max-norm and trace-norm constrained

methods.
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Figure 3: Plot of the relative Frobenius error versus the rescaled sample size s/d2 for three different

ranks r ∈ {3,5,10}, all with matrix size d = 200.
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6. Discussion

This paper studies the problem of recovering a low-rank matrix based on highly quantized (to a

single bit) noisy observation of a subset of entries. The problem was first formulated and analyzed

by Davenport et al. (2012), where the authors consider approximately low-rank matrices in terms

that the singular values belong to a scaled Schatten-1 ball. When the infinity norm of the unknown

matrix M∗ is bounded by a constant and its entries are observed uniformly in random, they show

that M∗ can be recovered from binary measurements accurately and efficiently.

Our theory, on the other hand, focuses on approximately low-rank matrices in the sense that

unknown matrix belongs to certain max-norm ball. The unit max-norm ball is nearly the convex hull

of rank-1 matrices whose entries are bounded in magnitude by 1, thus is a natural convex relaxation

of low-rank matrices, particularly with bounded infinity norm. Allowing for non-uniform sampling,

we show that the max-norm constrained maximum likelihood estimation is rate-optimal up to a

constant factor, and that the corresponding convex program may be solved efficiently in polynomial

time. An interesting question naturally arises that whether it is possible to push the theory further

to cover exact low-rank matrix completion from noisy binary measurements.

The numerical study in Section 5 provides some evidence of the efficiency of the max-norm

constraint approach in 1-bit matrix completion problem. More extensive experimental studies, ap-

plications to real data, and numerical comparisons with empirically weighted trace-norm method in

a non-uniform scenario will be left as future work.

In our previous work (Cai and Zhou, 2013), we suggest to use max-norm constrained least

square estimation to study standard matrix completion (from observations where additive noise is

present) under a general sampling model. Similar error bounds are obtained, which are tight to

within a constant. Comparing both results in the case of Gaussian noise demonstrates that as long

as the signal-to-noise ratio remains constant, almost nothing is lost by quantizing to a single bit.

7. Proofs

We provide the proofs of the main results in this section.

7.1 Proof of Theorem 3

The proof of Theorem 3 is based on general excess risk bounds developed in Bartlett and Mendelson

(2002) for empirical risk minimization when the loss function is Lipschitz. We regard matrix recov-

ery as a prediction problem, that is, consider a matrix M ∈ R
d1×d2 as a function: [d1]× [d2] → R,

that is, M(k, l) = Mk,l . Moreover, define a function g(x;y) R×{±1} 7→ R, which can be seen as a

loss function:

g(x;y) = 1{y=1} log

(
1

F(x)

)
+1{y=−1} log

(
1

1−F(x)

)
.

For a subset S = {(i1, j1), ...,(in, jn)} ⊆ ([d1]× [d2])
n of the observed entries of Y , let DS(M;Y ) =

1
n ∑n

t=1 g(Mit , jt ;Yit , jt ) =
1
n
ℓS(M;Y ) be the average empirical likelihood function, where the training

set S is drawn i.i.d. according to Π (with replacement) on [d1]× [d2]. Then we have

DΠ(M;Y ) := ES∼Π[g(Mit , jt ;Yit , jt )] = ∑
(k,l)∈[d1]×[d2]

πkl ·g(Mk,l;Yk,l).
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Under condition (U3), we can consider g as a function: [−α,α]×{±1}→ R, such that for any

y ∈ {±1} fixed, g(·;y) is essentially an Lα-Lipschitz loss function. Also notice that in the current

case, Yi, j take ±1 values and appear only in indicator functions, 1{Yi, j = 1} and 1{Yi, j = −1}.

Therefore, a combination of Theorem 8, (4) of Theorem 12 from Bartlett and Mendelson (2002) as

well as the upper bound (6) on the Rademacher complexity of the unit max-norm ball yields that,

for any δ > 0, the following inequality holds with probability at least 1−δ over choosing a training

set S of 2 < n ≤ d1d2 index pairs according to Π:

sup
M∈Kmax(α,R)

(
EY DΠ(M;Y )−EY DS(M;Y )

)

≤ 17LαR

√
d

n
+Uα

√
8log(2/δ)

n
:= Rn(α,r;δ). (31)

Since M̂max is optimal and M∗ is feasible to the optimization problem (13), we have

DS(M̂max;Y )≤ DS(M
∗;Y ) =

1

n

n

∑
t=1

g(M∗
it , jt ;Yit , jt ).

Because M∗ has a fixed value which does not depend on S, the empirical likelihood term DS(M
∗;Y )

is an unbiased estimator of DΠ(M
∗;Y ), that is,

ES∼Π[DS(M
∗;Y )] = DΠ(M

∗;Y ).

Next, we will derive an upper bound on the deviation DS(M
∗;Y )−DΠ(M

∗;Y ) that holds with high

probability. To do this, let A1, ...,An be independent random variables taking values in [d1]× [d2]
according to Π, that is, P[At = (k, l)] = πkl , t = 1, ...,n, such that DS(M

∗;Y ) = 1
n ∑n

t=1 g(MAt
;YAt

)
and

DS(M
∗;Y )−DΠ(M

∗;Y ) =
1

n

n

∑
t=1

(
g(M∗

At
;YAt

)−E[g(M∗
At

;YAt
)]
)
.

Then we apply the Hoeffding’s inequality to the random variables ZAt
:= g(M∗

At
;YAt

)−E[g(M∗
At

;YAt
)],

conditionally on Y . Observe that 0 ≤ g(M∗
At

;YAt
)≤Uα almost surely for all 1 ≤ t ≤ n, therefore for

any u > 0, we have

PS∼Π

{
DS(M

∗;Y )−DΠ(M
∗;Y )> u

}
≤ exp

(
− 2nu2

U2
α

)
, (32)

which in turn implies that that with probability at least 1−δ over choosing a subset S according to

Π,

DS(M
∗;Y )−DΠ(M

∗;Y )≤Uα

√
log(1/δ)

2n
. (33)

Putting pieces together, we get

EY

[
DΠ(M̂max;Y )−DΠ(M

∗;Y )
]

= EY

[
DΠ(M̂max;Y )−DS(M

∗;Y )
]
+EY

[
DS(M

∗;Y )−DΠ(M
∗;Y )

]

≤ EY

[
DΠ(M̂max;Y )−DS(M̂max;Y )

]
+EY

[
DS(M

∗;Y )−DΠ(M
∗;Y )

]

≤ sup
M∈Kmax(α,R)

{
EY [DΠ(M;Y )]−EY [DS(M;Y )]

}
(34)

+EY

[
DS(M

∗;Y )−DΠ(M
∗;Y )

]
.
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Moreover, observe that the left-hand side of (34) is equal to

EY

[
DΠ(M̂max;Y )−DΠ(M

∗;Y )
]

= ∑
(k,l)∈[d1]×[d2]

πkl

[
F(M∗

k,l) log

(
F(M∗

k,l)

F((M̂max)k,l)

)
+(F̄(M∗

k,l)) log

(
F̄(M∗

k,l)

F̄((M̂max)k,l)

)]
,

which is the weighted Kullback-Leibler divergence between matrices F(M) and F(M̂max), denoted

by KΠ(F(M)‖F(M̂max)), where

F̄(·) := 1−F(·) and F(M) := (F(Mk,l))d1×d2
.

This, combined with (31), (33) and (34) imply that for any δ > 0, the following inequality holds

with probability at least 1−δ over S:

KΠ(F(M∗)‖F(M̂max))≤ Rn(α,r;δ/2)+Uα

√
log(2/δ)

2n
. (35)

Together, (8), (35) and Lemma 8 below establish (16).

Lemma 8 (Lemma 2, Davenport et al., 2012) Let F be an arbitrary differentiable function, and

s, t are two real numbers satisfying |s|, |t| ≤ α. Then

d2
H(F(s);F(t))≥ inf

|x|≤α

(F ′(x))2

8F(x)(1−F(x))
· (s− t)2

The proof of Theorem 3 is now completed.

7.2 Proof of Theorem 5

The proof for the lower bound follows an information-theoretic method based on Fano’s inequality

(Cover and Thomas, 1991), as used in the proof of Theorem 3 in Davenport et al. (2012). To begin

with, we have the following lemma which guarantees the existence of a suitably large packing set

for Kmax(α,R) in the Frobenius norm. The proof follows from Lemma 3 of Davenport et al. (2012)

with a simple modification, see, for example, the proof of Lemma 3.1 in Cai and Zhou (2013).

Lemma 9 Let r = (R/α)2 and γ ≤ 1 be such that r ≤ γ2 min(d1,d2) is an integer. There exists a

subset S(α,γ)⊆ Kmax(α,R) with cardinality

|S(α,γ)|=
[

exp

(
r max(d1,d2)

16γ2

)]
+1

and with the following properties:

(i) For any N ∈ S(α,γ), rank(N)≤ r
γ2 and Nk,l ∈ {±γα/2}, such that

‖N‖∞ =
γα

2
,

1

d1d2

‖N‖2
F =

γ2α2

4
.
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(ii) For any two distinct Nk,Nl ∈ S(α,γ),

1

d1d2

‖Nk −Nl‖2
F >

γ2α2

8
.

Then we construct the packing set M by letting

M =
{

N +α(1− γ/2)Ed1,d2
: N ∈ S(α,γ)

}
, (36)

where Ed1,d2
∈ R

d1×d2 is such that the (d1,d2)
th entry equals one and others are zero. Clearly,

|M |= |S(α,γ)|. Moreover, for any M ∈ M , Mk,l ∈ {α,(1− γ)α} by the construction of S(α,γ) and

(36), and

‖M‖max = ‖N +α(1− γ/2)Ed1,d2
‖max ≤

α
√

r

2
+α(1− γ/2)≤ α

√
r,

provided that r ≥ 4. Therefore, M is indeed a δ-packing of Kmax(α,R) in the Frobenius metric with

δ2 =
α2γ2d1d2

8
,

that is, for any two distinct M,M′ ∈ M , we have ‖M−M′‖F ≥ δ.

Next, a standard argument (Yang and Barron, 1999; Yu, 1997) yields a lower bound on the

‖ · ‖F -risk in terms of the error in a multi-way hypothesis testing problem. More concretely,

inf
M̂

max
M∈Kmax(α,R)

E‖M̂−M‖2
F ≥ δ2

4
min

M̃

P(M̃ 6= M⋆),

where the random variable M⋆ ∈ R
d1×d2 is uniformly distributed over the packing set M , and the

minimum is carried out over all estimators M̃ taking values in M . Applying Fano’s inequality

(Cover and Thomas, 1991) gives the lower bound

P(M̃ 6= M⋆)≥ 1− I(M⋆;YS)+ log2

log |M | , (37)

where I(M⋆;YS) denotes the mutual information between the random parameter M⋆ in M and the

observation matrix YS. Following the proof of Theorem 3 in Davenport et al. (2012), we could bound

I(M⋆;YS) as follows:

I(M⋆;YS)≤ max
M,M′∈M ,M 6=M′

K(YS|M‖YS|M′)

= max
M,M′∈M ,M 6=M′ ∑

(k,l)∈S

K(Yk,l|Mk,l‖Yk,l |M′
k,l)

≤ n[F(α)−F((1− γ)α)]2

F((1− γ)α)[1−F((1− γ)α)]
≤ nα2γ2

β(1−γ)α
,

where the last inequality holds provided that F ′(x) is decreasing on (0,∞). Substituting this into the

Fano’s inequality (37) yields

P(M̃ 6= M⋆)≥ 1−
( nα2γ2

β(1−γ)α
+ log2

)/(r(d1 ∨d2)

16γ2

)
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Recall that γ∗ > 0 solves the equation (22):

γ∗ = min

{
1

2
,

R1/2

α

(
β(1−γ∗)α(d1 ∨d2)

32n

)1/4}
.

Requiring

64log(2)(γ∗)2

d1 ∨d2

≤ r ≤ (d1 ∧d2)(γ
∗)2,

which is guaranteed by (23), to ensure that this probability is least 1/4. Consequently, we have

inf
M̂

max
M∈Kmax(α,R)

E‖M̂−M‖2
F ≥ α2(γ∗)2d1d2

128
,

which in turn implies (24).

7.3 Proof of Theorem 7

The proof of Theorem 7 modifies the proof of Theorem 3, therefore we only summarize the key

steps in the following. Let {A1, ...,An} = {(i1, j1), ...,(in, jn)} be independent random variables

taking values in [d1]× [d2] according to Π, and recall that

ℓS(M;Y ) =
s

∑
t=1

[
1{YAt =1} log

( 1

F(MAt
)

)
+1{YAt =−1} log

( 1

1−F(MAt
)

)]
.

According to Srebro et al. (2005) and the proof of Theorem 3, it suffices to derive an upper bound

on

∆ := E

[
sup

M∈KΠ,∗

n

∑
t=1

εt√
πit ·π· jt

(Mw)At

]
= E

[
sup

M∈K∗(α,r)

n

∑
t=1

εt√
πit ·π· jt

MAt

]
,

where εt are i.i.d. Rademacher random variables. Then it follows from (5) that

∆ ≤ α
√

r ·E
[

sup
‖u‖2=‖v‖2=1

n

∑
t=1

εt√
πit ·π· jt

uit v jt

]

= α
√

r ·E
[

sup
‖u‖2=‖v‖2=1

∑
i, j

(
∑

t:(it , jt)=(i, j)

εt√
πit ·π· jt

)
uiv j

]

= α
√

r ·E
[∥∥∥

n

∑
t=1

εt

eit e
T
jt√

πit ·π· jt

∥∥∥
]
.

An upper bound on the above spectral norm has been derived in Foygel et al. (2011) using a

recent result of Tropp (2012). Let Qt = εt
eit eT

jt√
πit ·π· jt

∈ R
d1×d2 be i.i.d. random matrices with zero-

mean, then the problem reduces to estimate E‖∑s
t=1 Qt‖. Following the the proof of Foygel et al.

(2011), we see that, under condition (26)

E

∥∥∥
n

∑
t=1

Qt

∥∥∥≤C
(

σ1

√
log(d)+σ2 log(d)

)

3643



CAI AND ZHOU

with

σ1 = n ·max

{
max

k
∑

l

πkl

πk·π·l
, max

l
∑
k

πkl

πk·π·l

}
≤ µnmax{d1,d2},

σ2 = max
k,l

1√
πk·π·l

≤ µ
√

d1d2.

Putting above estimates together, we conclude that

∆ ≤Cα
√

r
(√

µnmax{d1,d2} log(d)+µ
√

d1d2 log(d)
)
,

which in turn yields that for any δ ∈ (0,1), inequality

KΠ(F(M∗)‖F(M̂w,tr))

≤ C

{
Lαα

√
µr max{d1,d2} log(d)

n
+Uα

√
log(4/δ)

n

}

holds with probability at least 1−δ, provided that n ≥ µmin{d1,d2} log(d).

7.4 An Extension to Sampling Without Replacement

In this paper, we have focused on sampling with replacement. We shall show here that in the

uniform sampling setting, the results obtained in this paper continue to hold if the (binary) entries

are sampled without replacement. Recall that in the proof of Theorem 3, we let A1, ...,An be random

variables taking values in [d1]× [d2], S = {A1, ...,An} and assume the At’s are distributed uniformly

and independently, that is, S ∼ Π = {πkl} with πkl ≡ 1
d1d2

. The purpose now is to prove that the

arguments remain valid when the At’s are selected without replacement, denoted by S ∼ Π0. In this

notation, we have

DS =
1

n
∑

(i, j)∈S

g(Mi, j;Yi, j) and DΠ0
= ES∼Π0

[DS] =
1

d1d2
∑
(k,l)

g(Mk,l;Yk,l).

By Lemma 3 in Foygel and Srebro (2011) and (31), for any δ > 0,

sup
M∈Kmax(α,R)

(
EY DΠ0

(M;Y )−EY DS(M;Y )
)
≤ 17LαR

√
d

n
+Uα

√
8(log(4n)+ log(2/δ))

n

holds with probability at least 1− δ over choosing a training set S of 2 < n ≤ d1d2 index pairs

according to Π0. Next, observe that the large deviation bound (32) for the sum of independent

bounded random variables is a direct consequence of Hoeffding’s inequality. To see how inequality

(32) may be extended to the current case, we start with a more general problem. Let C be a finite

set with cardinality N. For 1 ≤ n ≤ N, let X1, ...,Xn be independent random variables taking values

in C uniformly at random, such that (X1, ...,Xn) is a C n-valued random vector modeling sampling

with replacement from C . On the other hand, let (Y1, ...,Yn) be a C n-valued random vector sampled

uniformly without replacement. Assume that Xi is centered and bounded, and write SX = ∑n
i=1 Xi,

SY = ∑n
i=1Yi. Then a large deviation bound holds for SX by Hoeffding’s inequality. In the proof, the

tail probability is bounded from above in terms of the moment-generating function, say, mX(λ) =
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Eexp(λSX). According to the notion of negative association (Joag-Dev and Proschan, 1983), it is

well-known that mY (λ) = Eexp(λSY )≤ mX(λ), which in turn gives a similar large deviation bound

for SY . Therefore, inequalities (32) and (33) are still valid if Π is replaced by Π0. Keep all other

arguments the same, we get the desired result.
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Abstract

We present NrSample, a framework for program synthesis in inductive logic programming. NrSam-

ple uses propositional logic constraints to exclude undesirable candidates from the search. This is

achieved by representing constraints as propositional formulae and solving the associated constraint

satisfaction problem. We present a variety of such constraints: pruning, input-output, functional

(arithmetic), and variable splitting. NrSample is also capable of detecting search space exhaustion,

leading to further speedups in clause induction and optimality. We benchmark NrSample against

enumeration search (Aleph’s default) and Progol’s A∗ search in the context of program synthesis.

The results show that, on large program synthesis problems, NrSample induces between 1 and 1358

times faster than enumeration (236 times faster on average), always with similar or better accuracy.

Compared to Progol A∗, NrSample is 18 times faster on average with similar or better accuracy

except for two problems: one in which Progol A∗ substantially sacrificed accuracy to induce faster,

and one in which Progol A∗ was a clear winner. Functional constraints provide a speedup of up

to 53 times (21 times on average) with similar or better accuracy. We also benchmark using a

few concept learning (non-program synthesis) problems. The results indicate that without strong

constraints, the overhead of solving constraints is not compensated for.

Keywords: inductive logic programming, program synthesis, theory induction, constraint satis-

faction, Boolean satisfiability problem

1. Introduction

Inductive logic programming (ILP) is a branch of machine learning that represents knowledge as

first-order horn clauses. By using its expressive relational representation, it can overcome limi-

tations inherent in propositional representations (Russell et al., 1996). ILP can be used for both

concept learning and program synthesis, as the knowledge representation is at the same time declar-

ative and procedural (Blackburn et al., 2006; Sterling and Shapiro, 1994).1 In other words, induced

solutions can both be regarded as human readable descriptions and as executable programs. An-

other advantage of ILP is its rigorous foundation in logic, making it suitable for theoretical analysis

(Nienhuys-Cheng and de Wolf, 1997; Plotkin, 1970, 1971). A comprehensive survey of the ILP

research field and its applications can be found in Muggleton et al. (2012).

1. In this paper, we use the term concept learning to refer to non-program synthesis problems, although program syn-

thesis problems could also be considered concept learning problems.

c©2013 John Ahlgren and Shiu Yin Yuen.
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State-of-the-art ILP systems such as Progol and Aleph use the technique of inverse entailment to

induce theories (Muggleton, 1995; Srinivasan, 2001). Inverse entailment works by first constructing

a bottom clause, from which all clauses that subsume it (or are supersets of it) become candidates.

The search space hence becomes a lattice structure with a partial generality order, with the bodyless

clause as top element and bottom clause as bottom element.

Mode declarations, as introduced in Muggleton (1995), may be used to constrain the search

space further by specifying which variables are input and output, as well as requiring variables to

be of a certain type. This input-output specification implicitly defines a logical constraint on the

chaining of literals as the clause is computed from left to right. We describe mode declarations in

Section 2.2.1. Mode declarations can be user provided or automatically constructed by analyzing

the examples (McCreath and Sharma, 1995).

Inverse entailment is the method of constructing a lower bound on the search space. How-

ever, it does not force a certain ordering on the search. Thus various search strategies exist; some

well known ones are Progol’s A∗ search (Muggleton, 1995), QG/GA (Muggleton and Tamaddoni-

Nezhad, 2008), Aleph’s enumeration (its default) (Srinivasan, 2001), and simulated annealing (Ser-

rurier et al., 2004). What all these methods share in common is that the candidate generation mech-

anism employed is not adapted to avoid creation of candidates that violate the mode declarations.

The mode declaration types are automatically handled by the bottom clause construction algorithm,

but correct input-output chaining may be violated since candidates contain a subset of the bottom

clause’s literals. Such candidates are intended to be omitted by the syntactic bias a user provides us-

ing mode declarations, and should hence be considered redundant. One approach, taken by Aleph’s

enumeration, is to check input-output validity of the candidate before evaluation, but this still incurs

the overhead of having to construct the candidate. Another approach, taken by algorithms using

refinement operators, such as Progol’s A∗, is to be indifferent about input-output violated candi-

dates, evaluating all generated candidates. This is due to the fact that top-down (or bottom-up)

searches may have to expand undesirable candidates in order to reach desirable ones. Both these

approaches suffer from wasted computations as candidates in the search space violating the given

mode declarations are still generated (and even evaluated).

In this paper, we present NrSample (“Non-redundant Sampling Algorithm”), a general con-

straint satisfaction framework for ILP that ensures only candidates that conform to mode declara-

tions are generated. NrSample is implemented (along side other algorithms we use in our bench-

marks) in our ILP system Atom.2 This is to be contrasted with the aforementioned approaches,

whereby a candidate is first generated and then tested for mode declaration correctness. We shall

refer to candidates that are correct with respect to their mode declarations as mode conformant.

We achieve mode conformance by representing the input-output logic given by the mode dec-

larations as propositional clauses (Russell et al., 1996). By solving the accompanying Boolean

satisfiability problem (SAT), we obtain new candidates that by construction necessarily satisfy all

constraints, and thus are mode conformant.

Moreover, other constraints naturally arise as a result of pruning the search space. Whenever

a candidate is consistent (covers no negative examples), so are all specializations. Whenever a

candidate is inconsistent (covers at least one negative example), so are all generalizations. As

we will show, such pruning constraints are also easily represented as propositional clauses. More

conventional approaches may use memorization to avoid evaluating candidates more than once, but

2. Source code available at http://ahlgren.info/research/atom, mirror available at

http://www.ee.cityu.edu.hk/~syyuen/Public/Code.html.
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the candidates may still be constructed multiple times. We shall refer to candidates that violate the

constraints (mode declarations, pruning, or any other constraints) as invalid, and the rest as valid.

We represent our constraints as propositional clauses. Any SAT solver may then be used to solve

the constraints and obtain a model representing a valid candidate. For efficiency, we use the Chaff

algorithm (Moskewicz et al., 2001), which forms the basis of many state-of-the-art DPLL-based

algorithms (Davis-Putnam-Logemann-Loveland algorithm) (Davis et al., 1962). Various selection

strategies may be used within the SAT solver to guide the search into interesting regions early. By

using a complete SAT solver (all DPLL-based algorithms are complete), any search strategy is also

guaranteed to terminate as soon as all non-redundant candidates have been explored.

A survey and discussion of program synthesis in ILP can be found in Flener and Yılmaz (1999).

Constraints have been used in ILP before, although not to constrain the bottom clause literals.

Constraint logic programming with ILP (Sebag and Rouveirol, 1996) turns negative examples into

constraints, primarily as a means of dealing with numerical constraints. Theta-subsumption with

constraint satisfaction (Maloberti and Sebag, 2004) uses constraints to speed up theta-subsumption

testing (during coverage). Condensed representations (De Raedt and Ramon, 2004) are used to deal

with redundancies in frequent Datalog queries. In the context of theory induction, schemata may

be used to guide the construction of logic programs (Flener et al., 2000). Our framework differs

from all the above in that the constraints specify which of a bottom clause’s literals must be (or may

not be) present in any candidate. The constraints are thus propositional in nature, and relative to a

computed bottom clause. Our approach attempts to minimize the amount of redundant candidates

constructed.

This paper is organized as follows. First, we describe propositional constraints and candidate

generation in Section 2. Next, Section 3 describes our search algorithm that uses these constraints.

In Section 4, we perform benchmarks to test our hypothesis that NrSample can outperform generate-

and-test methods, in particular when the search space is large. Finally, Section 5 concludes the

paper.

2. Propositional Constraints and SAT Solving

Although our framework enables the use of arbitrary propositional constraints to define redundan-

cies during an ILP search for candidates, we will present two common instances of such constraints.

Firstly, NrSample constrains candidate generation to only those that conform to the mode dec-

larations. Secondly, it prunes too general or specific solutions after each evaluation: which depends

on whether the candidate is consistent or inconsistent.

NrSample achieves non-redundancy by storing all the constraints as propositional formulae.

Candidate solutions during a search contain a subset of the bottom clause’s literals (for the subsump-

tion order, we discuss variable splitting in Section 2.4). Hence, each candidate can be represented

as a bit string where bit bi signifies occurrence of body literal at position i or lack thereof. Seen

from a slightly different perspective, we represent the occurrence or non-occurrence of a literal at

position i in the bottom clause by a propositional variable bi and ¬bi, respectively. With respect

to a bottom clause, there is thus a one-to-one correspondence between each Boolean assignment

and candidate solution. The propositional constraints correspond to the syntactic bias induced by

the user generated mode declarations and the search lattice pruning. The idea is that a solution

is evaluated for coverage if and only if it corresponds to a propositional model for the constraints

(a variable assignment that makes all constraints true). This enables us to invoke a SAT solver to
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retrieve models for the constraints, which are then easily converted into candidate solutions. After

each candidate is evaluated, pruning constraints related to generality order redundancies are added.

In the following sections, we describe how we create new constraints and retrieve models from

the constraint database.

2.1 Clauses and Propositional Formulae

We start by defining the notion of a search space candidate.

Definition 1 Let B be a definite clause (a clause with a head). A clause C is a candidate from B if

and only if C’s head is the same as B’s head, and C’s body is a subsequence of B’s body.

Here, B is intended to be the bottom clause, and C a clause that is created by possibly removing body

literals of B. Note that B itself is a candidate from B. Usually, we are only interested in candidates

from a specific bottom clause, in which case we omit the reference to B. Note also that the definition

of subsequence forces the body literals of C to appear in the same order as those of B.

Example 1 With bottom clause B = h(X ,Y ) ← q1(X ,Z),q2(Z,Y ),q3(X ,Y,Z), the clause

C = h(X ,Y ) ← q1(X ,Z),q3(X ,Y,Z) is a candidate from B since they have the same head and

(q1(X ,Z),q3(X ,Y,Z)) is a subsequence of (q1(X ,Z),q2(Z,Y ),q3(X ,Y,Z)). D = h(X ,Y ) ←
q3(X ,Y,Z),q1(X ,Z) is however not a candidate from B, since the sequence (q3(X ,Y,Z),q1(X ,Z))
is not a subsequence of (q1(X ,Y ),q2(Y,Z),q3(X ,Y,Z)).

Definition 1 defines a search space lattice of candidates spanned by subset order.3 The more

general subsumption order can be explored using variable splitting, as discussed in Section 2.4.

To create a one-to-one correspondence between first-order horn clauses and propositional for-

mulae with respect to a bottom clause, we represent each literal of the bottom clause from left to

right as propositional variables b1,b2, . . . ,bn, where n is the number of literals in the body of the

bottom clause. Given a clause C which has some of the body literals in B, the propositional formula

for C is then the conjunction of all propositional variables in B with positive sign if they occur in C

and negative sign otherwise.

Definition 2 Let C be a candidate from B, where B has n body literals. The propositional formula

for C is PB
C =

∧n
i=1 li, where li = bi if C contains the ith literal in B, and li = ¬bi otherwise. We write

PC when there is no confusion about which bottom clause we are referring to.

Note that PC is a conjunction of all literals b1, . . . ,bn, where n is the number of body literals

in B. In particular, non-occurrence of a literal has to be specified with its corresponding negative

propositional literal. This way, each propositional formula has precisely one model, corresponding

to the candidate itself.

Example 2 Continuing from our previous example, PB
C = b1∧¬b2∧b3 and PB

B = b1∧b2∧b3.

The purpose of representing clauses as propositional formulae (with respect to some bottom clause)

is that we can solve the formulae to acquire a model, which can then trivially be converted into a

candidate.

3. Technically, by subsequence order, but as we do not consider re-orderings, there is no risk of confusion.
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Definition 3 Let B be a clause with n body literals, FB a propositional formula containing a subset

of the propositional variables {b1, . . . ,bn}, and M a model for FB. The propositional formula (from

B) generated by M is:

PB
M =

n∧

i=1

li, where li =

{

bi if M(bi) = true

¬bi if M(bi) = f alse
.

If M generates the propositional formula PC, C is the candidate (from B) generated by M.

Example 3 Let B be defined as in Example 1 and FB = b1∧ (b2∨b3). Then M = {b1 = true,b2 =
f alse,b3 = true} is a model for FB. The propositional formula generated by M is b1 ∧¬b2 ∧ b3.

The candidate generated by M is h(X ,Y )← q1(X ,Z),q3(X ,Y,Z).

Usually, we are not only interested in what candidate a specific model generates, but rather, all

candidates generated by all models of a propositional formula.

Definition 4 Let B be a clause with n body literals and FB a propositional formula. The propo-

sitional formulae generated by FB are the propositional formulae generated by all models of FB.

The candidates (from B) generated by FB are the candidates corresponding to those propositional

formulae.

Example 4 Let B and FB be as in the previous example. In all models of FB, b1 is true, and at least

one of b2,b3 is true. This gives 3 models for FB, and the propositional formulae generated by FB

are b1∧ b2∧¬b3, b1∧¬b2∧ b3, and b1∧ b2∧ b3. The candidates generated by FB are h(X ,Y )←
q1(X ,Z),q2(Z,Y ), h(X ,Y )← q1(X ,Z),q3(X ,Y,Z), and h(X ,Y )← q1(X ,Z),q2(Z,Y ),q3(X ,Y,Z),
respectively. Intuitively, the formula FB tells us that a candidate must have the first literal (q1(X ,Z))
and at least one of the two that follow it. By looking at all models for FB, we can retrieve these

candidates explicitly.

Our constraints are represented as a propositional formula (more specifically, a conjunction of

clauses, as we will see later). The constraints represent which candidates are allowed, so we start

with the constraint true to allow any candidate from B. To retrieve an allowed (non-redundant)

candidate, we compute a model for the constraints using our SAT solver. This model then generates

our candidate solution as of Definition 3. The set of all allowed candidates are those generated by

our constraints as of Definition 4.

Example 5 As an example of how constraints work, assume we want an algorithm that never gener-

ates a previously evaluated candidate. For each candidate C, PC is the corresponding propositional

formula. Since our constraints specify the set of allowed candidates through its models, adding ¬PC

will prevent candidate C (and only C) from being generated again.

Now we show which constraints to add in order to prevent mode violations and redundancies

that occur due to the generality order. The latter includes blocking out already visited candidates as

in the example above, but prunes more of the search space.
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2.2 Mode Declaration Constraints

Intuitively, mode declarations show where the inputs and outputs of a literal are located, and which

types it takes. The bottom clause is then constructed using the mode declarations so that no literal

is introduced until all its inputs have been instantiated by previous literals. Here we briefly explain

mode declarations, referring the reader to Muggleton (1995) for a more general description.

2.2.1 MODE DECLARATIONS EXPLAINED

A mode declaration is a specification that limits the usage of variables (in the literals of clauses) to

some specific type (for example, numbers or lists) and specify whether they will be used as input or

output. Input variables need to be instantiated (computed) by a previous literal in the sequence of

body literals, or by the head. Output variables occurring in body literals do not have any restrictions:

they may or may not have been previously instantiated. Output variables in the head need to be

instantiated by the body, or by an input variable to the head.

Mode declarations are used to restrict the number of literals in the bottom clause—by requiring

input-instantiation—as well as providing computational speedup, by restricting attention to only the

relevant data types. These aspects are being taken care of by the bottom clause construction algo-

rithm. We introduce the syntax and semantics of mode declarations using an example of program

synthesis.

Example 6 Consider the mode declaration modeh(∗,member(−constant,+list)). modeh refers to

the head of a clause, as opposed to an atom used in the body. The first argument to modeh—where

the asterisk is located—is where the maximum number of query answers is specified. This is known

as the recall. The asterisk specifies that there is no upper limit (infinitely many), which is clearly

the case for list membership, as there is no bound on the number of elements it may contain. When

querying for the parents of a person, clearly the recall can be set to two (and for grandparents, to

four). Recall does not interfere with our constraint framework: they can be used or ignored, and

we will therefore make no further mention of them in this paper. The mode declaration declares a

predicate member/2 (the 2 specifies the arity), and when it is used in the head of a clause, it outputs

a constant (indicated by the minus sign) and requires a list as input (indicated by the plus sign).

Thus we expect member(E, [3,5]) to be a valid query, since the list [3,5] is used as input. On the

other hand, the query member(3,L) is invalid, since L is not instantiated.

Now consider adding the mode declaration modeb(∗,+list = [−constant|− list]). This declares

=/2 as a body literal (modeb) with a list on the left hand side as input, to obtain the head and tail of

the list as outputs on the right hand side. Intuitively, this mode declaration introduces a predicate

useful for splitting a list into its head and tail.

In conjunction with the modeh declaration above, we may now generate the mode conformant

clause member(E,L)← L = [E|T ], which is the proper base case definition of list membership. The

occurrence of L in the head is as input (given by the modeh declaration), so L is already instantiated

in the body literal as required. Also, E in the head is required to be output, a requirement fulfilled

by the body literal as it instantiates E.

An example of a clause that is not mode conformant is member(E,L)← X = [E|T ], since X is

not an input type (it has not previously been instantiated). Another example of a non-conformant

clause is member(E,L)← L = [H|T ], this time because E is declared to be an output variable, but

never instantiated (we obtain no meaningful answer to a query such as member(E, [2]), since E is

never computed in the clause).
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Mode declarations can also be used to restrict the search itself, since candidates, by containing

subsequences of the bottom clause’s literals, may break an input-output chain. The next example

illustrates this.

Example 7 Assume we have computed bottom clause

member(A,B)← B = [C|D],member(A,D),member(C,B)

from an example. The mode declarations are

modeh(∗,member(+const,+clist)),
modeb(∗,+clist = [−const|− clist]),and

modeb(∗,member(+const,+clist)).

In this case, A and B are both already instantiated in the head, as specified by the mode declarations

(the plus signs).

The clause member(A,B)← member(A,D) is a candidate, albeit not a mode conformant one,

since D is never instantiated before appearing in the body literal (as required by the third mode

declaration). We would need to include the bottom clause literal B = [C|D] first, as it is the only

literal that would instantiate D. Including both, we would then have the proper recursive clause for

list membership:

member(A,B)← B = [C|D],member(A,D).

In this case we get a simple rule of the form “if the bottom clause’s second body literal is included

in a candidate, so must the first”. In general we may have more than one possible instantiation,

and literals may contain more than one input variable, making the rules more complex. In the next

section, we work through the logic of mode declarations in detail.

2.2.2 MODE DECLARATIONS AS PROPOSITIONAL CLAUSES

A candidate is obtained from the bottom clause by taking a subsequence of the bottom clause’s

body literals and copying the head. As we have seen in Example 7, there is no guarantee that a

randomly chosen candidate will respect the mode declarations. A common solution to this is to

check for validity before evaluating a candidate. Our goal is to avoid the generation of unnecessary

candidates in the first place.

For our purposes, there are two aspects of input-output chaining that affect the constraints:

1. Each body literal input must be instantiated from previous body literal outputs or from inputs

to the head (inputs to the head are instantiated by the query).

2. The head outputs must be instantiated from head inputs or body literal outputs.

Definition 5 Let C be a clause with n body literals. Let Ii and Oi be the set of input and output

variables of the ith literal, respectively (as defined by the mode declarations). Denote the input and

output variables of h by Ih and Oh, respectively. C is input-instantiated if and only if for all v ∈ Ii,

we have v ∈ Ih or v ∈ Ok for some k < i. C is output-instantiated if and only if, for all v ∈ Oh,

we have v ∈ Ih or v ∈ Ok for some k. C is mode conformant if and only if C is both input- and

output-instantiated.
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Example 8 With mode declarations modeh(∗,h(+any,−any)), modeb(∗,q1(+any,−any)) and

modeb(∗,q2(+any,−any)), the clause C = h(X ,Z)← q1(X ,Y ),q2(Y,X) is input-instantiated, since

X in q1(X ,Y ) grabs its input from the head input, and Y in q2(Y,X) grabs its input from the out-

put of q1(X ,Y ) (which appears before q2(Y,X)). It is however not output-instantiated, since the

head output Z does not grab output from any output of the body literals (and is not in the head

as input). Essentially, this means that in a query such as h(5,Ans), the 5 will be “propagated”

through all literals (C is input-instantiated), but our query variable Ans will not be bound (C is not

output-instantiated). The clause D = h(X ,Z)← q1(Y,Z) is output-instantiated since Z in the head

grabs output from q1(Y,Z), but not input-instantiated since Y in q1(Y,Z) is not instantiated. The

clause E = h(X ,Z)← q1(X ,Y ),q2(Y,Z) is both input- and output-instantiated, and hence mode

conformant. Finally, F = h(X ,Z)← q1(A,B) is neither input- nor output-instantiated.

Lemma 6 Given mode declarations, a bottom clause is always input-instantiated but not necessarily

output-instantiated.

Proof Input-instantiation is a direct consequence of the way in which the bottom clause is con-

structed: we only add body literals when all their inputs have been instantiated by the head or

previous body literals. To see that a bottom clause may not be output-instantiated, it is enough

to consider a mode head declaration in which the output does not correspond to any body lit-

eral outputs: modeh(∗,h(+type1,−type2)), modeb(∗,b(+type1,−type1)). With type definitions

type1(a)∧ type2(b), example h(a,b) and background knowledge b(a,a), we get the bottom clause

B = h(X ,Y )← b(X ,X). B is indeed input-instantiated (X is instantiated in the head), but not output-

instantiated since Y has no instantiation.

Our implementation of mode constraints is straightforward. We simply mimic the logic behind

Definition 5. Informally, for each input variable v of a literal qi(. . .), we require that it appears in at

least one previous literal (as output) or the head (as input). Since the bottom clause head is always

present in a candidate, no constraints apply when an input can be caught from the head. For each

output variable v of the head that is not also an input to the head, we require that it appears in at

least one output variable in a body literal.

Definition 7 Let B be a bottom clause with n body literals. Let Ii and Oi be the input and output

variables of body literal i (as given by the mode declarations), respectively. Similarly, denote by Ih

and Oh the input and output variables of the head (as given by the modeh declaration), respectively.

The mode constraints F of bottom clause B is a conjunction of clauses, constructed as follows:

1. For each v ∈ Ii, v 6∈ Ih, include clause {¬bi}∪{b j : j < i,v ∈ O j}.

2. For each v ∈ Oh, v 6∈ Ih, include clause {b j : v ∈ O j, j ∈ {1, . . . ,n}}.

3. No other clauses are included.

Note that if an output variable of B’s head cannot be instantiated by any body literals, F will contain

the empty clause (generated by the second rule) and therefore be inconsistent. This is correct, since

no candidate from B will be output-instantiated.

The following theorem, which we prove in Appendix A, shows that our mode constraints are

sound and complete.
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Theorem 8 Let F be a propositional formula for the mode constraints of B. Let C be a candidate

from B. F generates C if and only if C is mode conformant.

Proof See Appendix A.

2.3 Pruning Constraints

A candidate solution C is typically evaluated by comparing it against the set of all positive and

negative examples. If the candidate covers a negative example, it is said to be inconsistent, otherwise

consistent. Since our search lattice defines a subset order on the literals, where the top element is the

empty clause and the bottom element is the bottom clause, the generality order is the subset order

for body literals.

Definition 9 Let C and D be candidates from B. We say that C is more general than D (with respect

to B) if and only if C’s body is a subsequence of D’s body. We write C ⊆B D, omitting B whenever

the bottom clause is clear from context. If C is more general than D, D is more specific than C.

The following is a trivial consequence of the subset relation.

Lemma 10 Let G and S be candidates. If G⊆ S, then G =⇒ S. The converse does not necessarily

hold.

Proof The subset relation is a special case of subsumption, for which the implication is well known

(Nienhuys-Cheng and de Wolf, 1997). An application of self-resolution to any recursive clause

demonstrates that the converse does not hold.

It follows that if G ⊆ S, G covers at least as many examples as S. In particular, if S covers a nega-

tive example and is thus inconsistent, all generalizations also cover that negative example, and are

therefore also inconsistent. Since inconsistent solutions are of no interest to us, all generalizations

of an inconsistent clause are redundant. On the other hand, if G covers no negative examples (G is

consistent) and p positive examples, no specialization S can cover more than p positive examples.

Hence the specializations of a consistent clause are redundant.

We would like to store information about which regions have been pruned during our search, so

there will never be any redundant evaluation with respect to the subset order. To achieve this, we

need to know what the pruning formulae look like. We start with an example.

Example 9 Let us say that B = h(X)← q1(X),q2(X),q3(X),q4(X) and C = h(X)← q3(X),q4(X).
If C is inconsistent, all generalizations will also be inconsistent. We can represent C by the bit

string 0011, where a 0 or 1 at position i indicates absence or presence of literal i, respectively.

All generalizations of C are given by clauses that do not contain q1(X) and q2(X), so we can

represent them using the schema 00∗∗. Logically, this corresponds to ¬b1 ∧¬b2. Conversely, all

specializations of C are given by clauses that contain q3(X) and q4(X), so their schema is ∗∗11.

Logically, this is the propositional formula b3 ∧ b4. This suggests the conjunction of all literals in

C give all specializations, whereas the negated conjunction of all literals missing in C gives all

generalizations.

Next, we define such formulae.
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Definition 11 Let C be a candidate from B. For any candidate X from B, let VX be all the proposi-

tional variables corresponding to the first-order body literals of B that occur in X. The propositional

formula for all generalizations of C is

PB
↑C =

∧

bi∈VB−VC

¬bi.

The propositional formula for all specializations of C is

PB
↓C =

∧

bi∈VC

bi.

We may then prove that our informal derivations are sound and complete.

Theorem 12 Let C be a candidate from B.

1. ¬P↑C generates G if and only if G is not a generalization of C.

2. ¬P↓C generates S if and only if S is not a specialization of C.

Proof See Appendix B.

The theorem is used in the following way: After evaluating a candidate C for coverage, we

know whether it is consistent or inconsistent. If C is inconsistent, we prune all generalizations P↑C.

This is done by inserting the requirement that no candidate generated by P↑C is allowed: ¬P↑C =∨
b j∈VB−VC

b j. Similarly, if C is consistent, we add ¬P↓C =
∨

bi∈VC
¬bi. Note that the constraints are

always propositional clauses.

Example 10 If B = h(X)← q1(X),q2(X),q3(X),q4(X) and C = h(X)← q2(X),q3(X), all gen-

eralizations of C are given by ¬b1 ∧¬b4 and all specializations by b2 ∧ b3. If C turns out to be

inconsistent, all generalizations are also inconsistent, so we add the constraint b1 ∨ b4. In partic-

ular, since any model either sets b1 or b4 to true, both C and the empty clause (top element) are

excluded. If C turns out to be consistent, all specializations cover no more positive examples, so we

add the constraint ¬b2 ∨¬b3. Any model now sets b2 or b3 to f alse, which, for example, blocks

both C and the bottom clause.

2.4 Variable Splitting Constraints

Atom’s and Progol’s bottom clause construction assumes that equivalent ground terms are related

when lifting instances. For example, when lifting

h(x,z)← b1(x,y),b2(y,z)

the two occurrences of y are assumed to be more than a coincidence:

h(X ,Z)← b1(X ,Y ),b2(Y,Z).

Most of the time, this is not a problem since there will eventually be an example that reveals

the coincidentally linked terms. However, Tamaddoni-Nezhad and Muggleton (2009) provide an

example of a half adder, which cannot be induced with this restriction. Progol’s A* solves this by
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variable splitting during its search, but this method does not work when we represent clauses as

binary strings, or, as in our case, propositional formulae. The solution, also taken by the Aleph

ILP system (Srinivasan, 2001), is then to let the bottom clause represent these equality assumptions

(variable splitting may also add many more literals to the bottom clause, but this will not affect our

constraints).

As an optimization, we can ensure that no redundant candidates are generated due to these

equalities, so we add constraints requiring that a variable splitting equality is used in at least one

other literal. Since an added equality X = Y matters only if both X and Y occur in the formula, we

get the following variable splitting constraints.

Definition 13 Let C be a candidate from B with a (possibly empty) prefix subsequence of k variable

splitting equalities Vi =Wi, i = 1, . . . ,k (Vi is a different variable from Wi). Let BVi
,BWi

be the set of

variables corresponding to literals in C that are not variable splitting equalities (i > k) and contain

Vi and Wi, respectively. For each bi, i = 1, . . . ,k, we add two variable splitting constraints:

1. {¬bi}∪BVi
, and

2. {¬bi}∪BWi
.

Note that input- and output-instantiation constraints will be added to the constraint database in the

form of mode constraints; the equality constraints need only specify when equalities are redundant.

Example 11 Let B be the bottom clause

h(X ,Y )←V =W,q2(X ,V ),q3(Y,W ),q4(X ,Y ).

If C is a candidate from B containing the literal V = W, we require that both the variables V and

W occur in C (other than as equalities generated from bottom clause construction). V occurs in the

second literal and W in the third, so our propositional constraints are {¬b1,b2} and {¬b1,b3}.

For instance, this prevents the candidate h(X ,Z)← X = Y,b2(X ,A),b3(A,Z) from being gen-

erated, as the equality is redundant since Y is never used. Instead, only the logically equivalent

candidate obtained by removing the equality will be generated: h(X ,Z)← b2(X ,A),b3(A,Z).

2.5 Functional Constraints

Many predicates have the property that their truth value does not matter, only what they compute

as output. We call such predicates functional. In particular, when chaining arithmetic operations as

predicates, we are not concerned with their truth values, but only about obtaining a numeric output

from inputs. (The predicate must also be pure, that is, free of any side effects, at least as far as can

be measured by other predicates in use.)

The idea is that for functional predicates, we require that at least one of its output variables

occur in another literal.

Example 12 The is/2 operator computes an arithmetic expression given by its second argument

and unifies the result with its first argument. With mode declaration

modeb(1, is(−Real,+Expr), [ f unctional])
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we declare it functional. Then,

average(X ,Y,A)← S is X +Y,Ais S/2

is a viable candidate to evaluate since the output S is used to compute the average of X and Y , and

A is used as the final answer that is instantiated by the head. However,

average(X ,Y,A)← S isX +Y,DisY −X ,Ais S/2

is logically equivalent but should not be a viable candidate, since the output D is never used (it

occurs only as a singleton). Since the is-operator is always true when the left hand side variable

is uninstantiated, ‘DisY −X’ is a useless operation and the redundant candidate may safely be

blocked from consideration.

Definition 14 Let B be a bottom clause with n literals. A modeb declaration for a predicate can

declare it a functional predicate. If the ith literal of B is declared a functional predicate, and none of

its outputs occur in the head (as input or output), we define its corresponding functional constraint

to be the propositional clause:

{¬bi}∪{bx : x ∈ {1,2, . . . ,n}∧ x 6= i∧Oi∩ (Ix∪Ox) 6= /0}.

If one or more of the ith literal’s outputs occur in the head, no constraint is generated (clearly the

predicate is always useful then).

Essentially, functional predicates filter out clauses which only have an effect through their pred-

icate’s truth value. Note that functional predicates are not required to have an effect on literals

appearing later: its outputs may also be compared with previous known values, whether it may

be inputs or outputs. Note that a functional predicate always generates at most one propositional

clause, since we only require that at least one of its output variables occurs in another literal.

Example 13 Elaborating more on Example 12, consider the bottom clause

B = average(X ,Y,A)← S isX +Y,DisY −X ,Ais D+X ,Ais S/2.

If we declare the predicate is/2 as functional, one constraint we would obtain is {¬b2,b3}. In-

tuitively, the constraint reflects the fact that if the second literal is used (DisY −X), then D must

appear elsewhere since otherwise the literal does nothing useful in functional terms. The only other

occurrence of D is in the third literal, so b2 −→ b3. With this constraint, our candidate C from the

previous example would never be generated, since the model for C sets b2 to true and b3 to f alse.

Another constraint we would get is {¬b1,b4}. This constraint is due to the output S in the first

literal, which must be used in its only other occurrence, the fourth literal. This one does however

not prevent C, as b4 is true in C’s model.

We do not get any constraints from the third and fourth literal output A; this is because A already

occurs in the head.
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3. NrSample: Constraint-Based Induction

NrSample’s search algorithm is simple: after a bottom clause has been constructed, the mode con-

straints are generated. The SAT solver is then invoked to acquire a valid candidate, which is then

evaluated. Pruning constraints are then added based on the candidate’s consistency/inconsistency.

The procedure of invoking the SAT solver to obtain candidates proceeds until a termination crite-

rion is triggered (usually the maximum number of nodes to explore) or the search space is exhausted

with respect to the constraints (no model can be acquired).

The induction procedure follows a sequential covering algorithm: The first available example is

used to construct a bottom clause, leading to a space of possible candidates. If a viable candidate

can be found from this search space, all positive examples it covers are removed. If no candidate is

found, the example itself is moved to the generalized theory. This process repeats until all positive

examples are covered. The bottom clause construction algorithm is equivalent to Progol’s and is

somewhat involved; we refer the reader to Muggleton (1995) for a detailed description. Briefly, it

uses the mode declarations to compute the set of ground truths and lift them to variable instances.

Each ground truth then becomes a body literal in the bottom clause. Pseudo-code for NrSample is

given in Algorithm 1.

1. While there is a positive example available:

2. Generate bottom clause from the example.

3. Generate mode constraints.

4. While no termination criterion is satisfied:

5. Call SAT solver to retrieve a model for the constraints.

6. If no model can be retrieved, terminate search (exhaustion).

7. Convert model into a (valid) candidate.

8. Evaluate candidate (using any evaluation function).

9. Update best-so-far candidate.

10. Generate pruning constraints based on evaluation.

11. Pick best candidate, remove cover (sequential covering).

Algorithm 1: NrSample’s Search Algorithm.

In the following sections we focus on important details of SAT solving, search order, and maxi-

mum clause lengths (step 5), as well as efficient candidate evaluation (step 8).

3.1 Solving the Constraint Database

Note that all the constraints presented in Section 2 are in disjunctive form; in other words, they

are propositional clauses. Each constraint represents a logical requirement for what needs to be

satisfied, so our constraint database is a conjunction of clauses. Hence our database is in conjunctive

normal form (CNF), which allows us to invoke many well studied SAT solvers without the need for

CNF conversion (Russell et al., 1996).

For the general case, the Boolean satisfiability problem is known to be NP-complete (Cook,

1971). It may however not be clear that our SAT problems are NP-complete since the constraints

contain regularities not assumed in the general case. By Definition 7, all mode declarations have

at most one negative literal (that is, they are dual horn clauses). Satisfiability is hence decidable
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in linear time (Dowling and Gallier, 1984). The pruning constraints, on the other hand, have all

positive or all negative literals by Definition 11, leading to NP-completeness (Schaefer, 1978).

In practice, SAT has been extensively researched and high performance algorithms for quickly

solving real world cases of the Boolean satisfiability problem exist. Chaff (Moskewicz et al., 2001)

is a well known algorithm upon which many modern state-of-the-art SAT solvers are based, claiming

to be able to solve problems with millions of variables.4

To ensure termination within a reasonable amount of time, we also provide a maximum number

of literal assignments for the SAT solver. Our default value is 50000.

We will address the issue of SAT overhead from an empirical point of view in Section 4, but

there is a point to be made about the NP-completeness of pruning constraints. The fact that finding

a non-redundant candidate solution is NP-complete is not a flaw of our approach, but expresses

the difficulty of constructing non-redundant solutions in ILP (with respect to pruning). Although

not always true, insofar as this difficulty translates into low probabilities of randomly sampling a

non-redundant candidate, algorithms that are indifferent about pruning constraints are no better off.

In such cases, then, our algorithm would simply stop searching (due to the literal assignment limit,

by default 50000), whereas other algorithms are likely to sample redundant candidates, therefore

wasting time.5

3.2 Selection Strategies and Traversal Order

Since our approach relies on using a SAT solver to retrieve valid candidates, the search strategy—

that is, the traversal order for candidate generation—is itself embedded into the SAT solver’s model

construction.

A model is a (propositional) assignment of truth values to all literals which satisfies all con-

straints. DPLL-based SAT solvers are a class of complete model builders (Russell et al., 1996;

Davis et al., 1962). They construct models by first selecting an unassigned literal and assigning it

either to true or false (according to some selection strategy), then propagating the effects of this

assignment to all propositional clauses in the database. Propagation of an assignment bi = true

works as follows: all clauses containing the literal bi are removed (since they are now covered),

and all clauses containing its negation ¬bi will have that literal removed (since that literal is not

covered). When assigning bi = f alse, the role of bi and ¬bi are simply interchanged. Clauses that

now only contain one literal—called unit clauses—indicate a definite assignment, so its effects are

also propagated to all clauses.

When no more propagations are possible, either all literals have been assigned and we have a

model, or we have reached a new choice point where any unassigned literal may be assigned true or

false (again, this is handled by a selection strategy).

In what follows, we will assume that the DPLL-based algorithm follows the traditional tech-

nique of backtracking to the first literal that has not been tried both ways (that is, has not previously

been assigned both to true and false). This is known as chronological backtracking; the case of

non-chronological backtracking will be treated later.

Propagation may produce an empty clause, signifying a contradiction. This triggers a process

of backtracking through the stack of assignments, searching for the most recent assigned literal that

4. This claim is made on Chaff’s official webpage, http://www.princeton.edu/~chaff/zchaff.html. Visited on

2012-08-14.

5. The argument that DPLL-based SAT solvers can get stuck in entire subtrees with no solution, whereas the solution is

readily available in a sibling branch, is not valid when random restarts are employed.
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has not been tried with both assignments. This literal’s assignment is then flipped, and we re-enter

the process of propagating, backtracking, and selecting literals.

Freedom to pick any unassigned literal and assign it either true or false corresponds to choosing

a literal from the bottom clause and deciding whether to include it or not (recall that a proposi-

tional literal bi correspond to the ith first-order literal of the bottom clause). The restriction imposed

by DPLL-based solvers comes from the fact that, if our choices of literals fail to satisfy the con-

straints, we may not change the assignments arbitrarily, but rather, must let the SAT solver flip all

assignments (in reverse chronological order) that have not been tried both ways first.

Example 14 Consider making the sequence of assignments (b3 = true,b1 = f alse,b8 = true), upon

which the database is inconsistent (the empty clause was generated at the point where we assigned

b8 = true). This corresponds to choosing that the third and eighth literal of the bottom clause

should be included in the candidate, whereas the first should not. The remaining literals have

yet to be specified for inclusion/exclusion. If we had full freedom to choose any search strategy,

we may for example want to start from scratch and exclude the third literal, not caring about the

first and eighth. DPLL’s backtracking algorithm prevents us from doing so however: it will first

attempt to flip the last made assignment b8 = true into b8 = f alse, thus producing the sequence

(b3 = true,b1 = f alse,b8 = f alse). This makes it clear that we have no say in what the third,

first, and eighth literal should be until the DPLL algorithm has backtracked to those choice points.

Propagation may also force certain assignments, but this is desirable since it is this mechanism

that excludes invalid candidates. After propagation, we are free to select any of the remaining

unassigned literals in our next choice point, and assign it to either true or false.

Example 14 is a simplification, as modern DPLL-based algorithms do not necessarily flip the

last literal not tried both ways. Instead, they may go back further, to an older choice point and flip

its literal, known as non-chronological backtracking or backjumping. This affects the predictability

of the search (the example above is no longer valid), but it remains true that we have full freedom to

select an assignment when, and only when, a choice point is reached. Chaff (Moskewicz et al., 2001)

uses backjumping, but for a predictable search order, our algorithm uses chronological backtracking.

Some simple selection strategies include randomly assigning a literal, or always selecting the

literal that occurs the most often in the database. Chaff introduced an efficient selection strategy

known as VSIDS (Variable State Independent Decaying Sum) (Moskewicz et al., 2001). Which

strategy would do best for ILP depends on the problem domain.

As we will see later, our benchmarks compare NrSample’s performance against an algorithm

that emulates its traversal path without using propositional constraints. Hence it must be reason-

ably easy for the emulation to also emulate the selection strategy without such constraints. This

excludes VSIDS, as it explicitly depends on counting occurrences of propositional literals in the

constraint database. Our selection strategy is to assign the literals in reverse order, to false first:

(bn = f alse,bn−1 = f alse, . . . ,b1 = f alse). This way, we always start with the top element, and

backtracking starts flipping b1 before b2, b2 before b3, and so on.

Example 15 If we assume that no backtracking occurs until the last assignment, we can visualize

the sequence of candidates generated according to the aforementioned selection strategy (assigning

literals to falsehood in reverse order). In bit string notation (0 signifies false and 1 true), with a

bottom clause containing 3 literals, this sequence is: (000,100,010,110,001,101,011,111). The

first candidate, 000, comes from assigning the literals to false in reverse order: (b3 = 0,b2 =
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0,b1 = 0). We then backtrack, flipping the last made assignment b1 = 0 into b1 = 1. This gives the

assignment (b3 = 0,b2 = 0,b1 = 1), that is, the candidate 100. Next, b1 has been tried both ways,

so we remove the assignment. b2 is now flipped, so we have the partial assignment (b3 = 0,b2 = 1).
Since we always start by assigning to falsehood, we then add b1 = 0, obtaining the assignment

(b3 = 0,b2 = 1,b1 = 0), and thus the candidate 010. This process continues until all candidates

have been tried. Note that in practice, the assignments are unlikely to always reach the last literal

before backtracking occurs due to the presence of constraints.

Note that the restrictions imposed by DPLL-based SAT solvers are due to its backtracking mech-

anism, which is used to ensure completeness. It is also possible to use non-DPLL-based SAT solvers

(Selman et al., 1995) with NrSample, for which no restrictions are imposed regarding literal selec-

tion strategy. However, care must be taken to ensure termination when no model is available: a

timeout may be used when a solution cannot be found after a certain amount of time has elapsed or

a maximum number of literal assignments tried. This ensures termination but not completeness.

That we can never have full control of search order traversal using our propositional constraints

is clear, since the very reason for using them is to prevent certain candidates from being generated.

However, it is in part possible to overcome limitations of DPLL-based backtracking by directing

the search to desirable regions. This can be achieved by inserting a constraint to specify that re-

gion. When all candidates have been depleted, we negate this constraint, which forces the SAT

solver to explore the complement region. This process can be done recursively, further partitioning

subregions. We call such temporary constraints regional constraints.

Example 16 Assume we want to start by exploring all candidates containing only a subset of the

first 3 literals. The regional constraint is then ¬b4 ∧¬b5 ∧ . . .∧¬bn, which translates into propo-

sitional clauses {¬b4},{¬b5}, . . . ,{¬bn}. Once the search space has been exhausted, we negate

this formula to obtain the complement region: b4∨ b5∨ . . .∨ bn. While exploring any of these two

regions, we can apply the same principle to further partition regions into subregions.

Care must be taken to treat regional constraints differently, as failure to satisfy them does not nec-

essarily mean that no valid candidate exists: it only specifies that this subregion has been fully

explored; what remains is now the complement region.

3.3 Maximum Clause Lengths

ILP systems give users the option to alter default parameters related to theory induction. For exam-

ple, Progol allows users to set a limit on the number of iterations in the bottom clause construction,

as well as on the maximum number of candidates to be evaluated (per bottom clause). These limits

do not interfere with NrSample’s constraint framework, since bottom clause construction is sepa-

rated from search.

However, it is useful to also restrict the number of body literals allowed in any candidate solu-

tion during the search.6 Although this restriction could be implemented as propositional constraints

in NrSample, it is tedious to do so as each combination that is not allowed has to be specified explic-

itly. For example, with a bottom clause containing n = 4 body literals, the following formulae are

needed to restrict all its candidates to at most c = 2 of those: {¬b1,¬b2,¬b3}∧{¬b1,¬b2,¬b4}∧

6. This is achieved using the query set(c,N) in Progol and set(clauselength,N) in Aleph.
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{¬b1,¬b3,¬b4}∧{¬b2,¬b3,¬b4}. In general, we need to specify that no clause with c+ 1 liter-

als is allowed, so we get
(

n
c+1

)

constraints. A more efficient way to implement this restriction is

to do so in the SAT solver itself. Since the Chaff algorithm works by assigning a truth value to a

propositional variable and unit propagating the implied assignments, we keep track of the number of

variables assigned true at all times. Whenever the limit is exceeded, backtracking occurs, ensuring

that we never generate a solution with more than c positive assignments. As this is a non-standard

feature of DPLL solvers, we have embedded our own implementation of the Chaff algorithm into

NrSample.

Moreover, we generalize this technique so that our algorithm stores a mapping of which literals

were generated from what mode declarations during bottom clause construction, and then keep

track of how many times a mode declaration has been used during SAT solving. This enables us to

specify upper bounds on the number of times a certain mode may be used in a candidate solution,

a feature which is particularly useful to prevent large number of recursive literals in a predicate.

This is implemented by using an extended mode declaration modeb(Recall,Atom,Max_Occurs) in

which the third argument Max_Occurs specifies the maximum number of times a literal generated

from this mode can occur in any candidate solution. Note that the bottom clause may still contain

more occurrences, although not all of them may be used at the same time in a candidate. A search

strategy based on this idea was proposed in Camacho (2000), where the number of occurrences of a

predicate is progressively incremented.

3.4 Lexicographic Evaluation Function

The quality of a candidate is computed using an evaluation function. Different evaluation functions

are possible. For example, if the number of positive and negative examples covered is P and N

respectively, and L is the number of literals in the body of the candidate, Progol’s A∗ computes the

fitness as P−N − L−E, where E is the fewest literals needed to get an input-output connected

clause.7 By default, Aleph uses the evaluation function P/T , where T is the total number of exam-

ples to be evaluated.

NrSample’s default evaluation function assumes that our quality measure obeys a lexicographic

ordering for (P,−L). That is, (P1,−L1)< (P2,−L2) if and only if P1 < P2 or P1 = P2 and L2 < L1.

Intuitively, this states that (consistent) candidates are first compared by coverage, and only when

they cover equally much are they compared by number of literals (fewer literals is better). We

never insert an inconsistent candidate into the knowledge base, regardless of search algorithm. If no

consistent candidate is found, we add the example itself to the knowledge base.

With respect to our quality measure, there are two observations that will reduce the number of

examples evaluated.

First, consistency of a candidate is defined solely in terms of negative example coverage; there

is hence no need to evaluate any positive examples to determine consistency. Since we never add an

inconsistent candidate, there is no need to evaluate positive example coverage when the candidate

is inconsistent. Thus all candidates should first be evaluated for negative coverage, and never for

positive whenever they turn out to be inconsistent. Negative coverage evaluation can stop as soon

as we detect one covered negative example.8

7. This corresponds to the number of positive assignments in a minimal model for the mode constraints.

8. More generally, with noise tolerance T , we stop after covering T negative examples. For T = 0 we have the noise

free setting.
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Second, we may safely abort positive coverage computation when there are not enough positive

examples left for a candidate to beat the best-so-far. For example, if we have a best-so-far candidate

that covers 20 out of 50 positive examples, and our candidate under evaluation covers 3 out of the

first 34 examples, we may safely abort the last 16 examples since, even if they were all covered, it

would still only amount to 3+ 16 = 19 which is less than the already 20 previously covered. This

optimization is possible since we need not consider clause lengths when two clauses have different

coverage.

4. Experimental Results

Our benchmarks have two purposes.

First, we want to directly measure the effects of using propositional constraints in NrSample.

Put differently, we would like to know whether producing, storing, and solving propositional con-

straints provides any real benefit over simply generating each candidate and then checking whether

it conforms to the input-output specification and is logically non-redundant. To this end, we use

an algorithm called emulate_nrsample, which searches for candidates in exactly the same order as

NrSample, but without using constraints. Since both NrSample and emulate_nrsample traverse the

search space in identical ways, comparing their execution time effectively measures the performance

difference between solving the constraints and discarding invalid candidates.

Second, we want to measure NrSample with well established algorithms. Here we turn to the

more general question of how useful NrSample is as an induction algorithm. To answer this, we

compare NrSample against Progol’s A∗ and Aleph’s enumeration search. For a fair comparison, all

algorithms are implemented in our ILP system Atom, using the same libraries and backend.

4.1 The Search Algorithms

Progol’s A∗ is best-first search applied to ILP using the evaluation function P−N−L−T where

P and N are the number of positive and negative examples covered, respectively, L the number of

body literals in the clause, and T the minimum number of literals needed to get an output instantiated

candidate.

Enumeration search constructs the candidates of the search lattice level by level starting from

the top. First, the top element is created, followed by all candidates with one body literal, then all

candidates with two body literals, and so on. Seen as bit strings (si)
n
1, where 1s indicate that literal

bi from the bottom clause is used, we start with the candidate corresponding to bit string “11. . . 00”,

the number of 1s corresponding to the current level as described above, and take previous permuta-

tions until we reach “00. . . 11”. In other words, in each layer we start by generating the candidate

containing all leftmost literals of the bottom clause (as many as the depth we are considering), and

cycle through all permutations until we reach the candidate that has all right-most literals.

Enumeration search uses the same evaluation function as NrSample, with all optimizations as

described in Section 3. Progol’s A∗ cannot use any of these optimization as the heuristic needs to

know the precise number of positive and negative examples covered in order to decide which nodes

to expand.

The search strategy used by NrSample assigns right-most literals to false first (that is, in the

sequence bn,bn−1, . . . ,b1), so that the top element is explored first. It will then start flipping assign-

ments in reverse order, so that b1 will be assigned true first, then b2, etc. For details, see Section 3.2,

and, in particular, Example 15. We use no random restarts, making our algorithm deterministic.
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emulate_nrsample generates each candidate in turn and then checks for mode and input-output

conformance. When all invalid candidates have been discarded, the traversal order is the same as

that of NrSample. Thus emulate_nrsample avoids the overhead of solving constraints, at the expense

of potentially generating a large amount of unnecessary candidates.9

4.2 Test Problems and Data Sets

All comparisons are done using a set of well known ILP problems.

Three concept learning problems are used: ANIMALS, GRAMMAR, and TRAIN. These are taken

from the data set in the Progol 4.4 distribution.10

ANIMALS is a classification problem: a list of animals is to be divided into mammals, fishes,

reptiles, and birds. GRAMMAR presents examples of well formed and ill formed sentences, as well

as a tiny dictionary of words grouped by word classes. The goal is to learn phrase structure rules.

TRAIN is a binary classification problem: trains are either eastbound or westbound, depending on

properties of their cars. The goal is to determine these dependencies.

Our remaining tests are program synthesis problems: MEMBER, SORTED, REVERSE, LENGTH,

ADD, APPEND, SUBLIST.11 MEMBER learns conventional Prolog list membership. SORTED is

a unary predicate determining whether a list is sorted or not. REVERSE is true if and only if its

second argument—a list—is a reversed form of its first (the relation is symmetric, but this is not

exploited). LENGTH determines the number of elements in a list. The lists contain integers, which

confuses the learning algorithms as it is not clear that the integer value of the list elements have

nothing to do with the list length. This makes the problem significantly harder to solve. ADD

defines formal addition in Peano arithmetic between two natural numbers. They are represented

using the successor function (for example, integer 3 is represented as s(s(s(0)))). APPEND defines

list concatenation. Finally, SUBLIST defines the ordered subset relation for lists: sublist([],A),
sublist([A|B], [A|C])← sublist(B,C), sublist(A, [B|C])← sublist(A,C).

Each of the program synthesis problems come in two variants. In the first variant, we use a set

of predicates that is particularly well suited to each concept. For example, for APPEND, this would

be operations to construct and deconstruct lists. Tables 8 and 9 in Appendix C shows the number

of positive and negative examples, as well as mode declarations, for all problems. We refer to

these problems—including the concept learning problems ANIMALS, GRAMMAR, and TRAIN—as

the small problems.

In the second variant, we use a fixed set of predicates across all program synthesis problems.

That is, we include mode declarations that allow for constructing and deconstructing lists, compar-

ing/ordering integers, and performing elementary arithmetic on numbers. The precise definition of

this primitive set of predicates is given in Appendix D. We refer to these problems as the large prob-

lems, and distinguish them from the small problems by using a prefix “L:”. For example, MEMBER

refers to the small problem and L:MEMBER to the large problem. As the primitive set is primarily

9. From a technical point of view, emulate_nrsample does not actually generate candidates as clauses, but rather, as a

set representing which literals from the bottom clause each candidate is made up of. This is enough to check whether

it is mode and input-output conformant. If the candidate is valid, the full candidate is generated and checked for

coverage. This improves the performance of emulate_nrsample. The same optimization is used for enumeration.

Progol’s A∗ does not check for input-output conformance of candidates, as it may need to expand invalid nodes to

reach valid ones.

10. Available in the distribution of Progol 4.4 at

http://www.doc.ic.ac.uk/~shm/Software/progol4.4/progol4_4.tar.gz. Visited on 2012-08-14.

11. Distributed with Atom’s source code, see previous footnote.
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intended for list and integer manipulation, the concept learning problems are not included in the

large problems.

As the large problems use a fixed set of predicates—of which many predicates are intended for

arithmetic computations, and thus functional in nature—we take the opportunity to test NrSample

with functional constraints (NrSFun) against NrSample without functional constraints (NrS). Func-

tional predicates are described in Section 2.5, and all functional predicates in the primitive set (see

Appendix D) have the keyword “functional” in their modeb declaration. For NrSFun, this generates

functional constraints, whereas NrS simply ignores the keyword.

The large amount of primitive predicates causes a combinatorial explosion of possibilities,

thereby creating very large bottom clauses. We believe these large data sets better correspond to

practical use of program synthesis, as the primitive predicates are general enough to induce all

aforementioned concepts without any tweaking.

For each program synthesis problem, we generate 10 data sets. Each has its own (independently

generated) positive and negative examples. We now describe how the examples in each of these

data sets are generated.

All tests except ADD involve lists. Thus we need an algorithm to sample lists. We assume the

lists hold a finite number of constants as elements. First, we note that the sample space is infinite, as

lists can get arbitrarily long. Second, except for a finite subset, lists of increasing sizes necessarily

must have diminishing probabilities.12 This is also reasonable, since we expect simple observations

(short lists) to be more common than elaborate ones. We first define the length L of a sampled list

to be geometrically distributed with success probability 0.25: P(L = k) = 0.75k ·0.25. This makes

sampling short lists more likely than long lists but puts no upper bound on the length of a list. For

each of the L positions, we uniformly sample for a single digit constant ({0,1, . . . ,9}).

With our list generator, the positive examples are generated in the obvious way: for a positive

example of MEMBER, sample a list and randomly pick an element of the list. For a negative ex-

ample, sample a list not containing all domain elements and randomly pick an element not in the

list. For APPEND, randomly sample two lists, and then append them to obtain the appended list.

For a negative example, randomly sample three lists, and verify that the third is not obtained by

appending the first and second. Also, we ensure no duplicate examples are generated.

For the ADD problem, we sample uniformly from {0,1,2,3,4}, providing the first 5 · 5 = 25

ground instances as positive examples. The reason for limiting formal addition to small examples is

due to a depth limit of h = 30 when performing queries: each application of the successor function

requires one call, so the largest number that can be handled by queries is 30. Such computational

limits are necessary to make ILP problems tractable; all limits used in our benchmarks are listed in

Section 4.3. L:ADD is different from ADD in that it does not represent numbers using the successor

function but using lists of zeros. The length of the list is the number to be represented, that is, 3 is

represented as [0,0,0]. This is because the primitive set in the large problems was primarily chosen

with list manipulation in mind.

The concept learning data sets—ANIMALS, GRAMMAR, and TRAIN—are taken from Progol

without modifications. For each of these three problems, we consider 10 different random orderings

of the examples. Since the greedy sequential covering algorithm depends on the order of the positive

examples, this affects the results.

12. Give the lists an enumeration and let pn be the probability of sampling list n. ∑ pn = 1, which implies pn→ 0.
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4.3 Cross Validation

We consider two measures of the quality of an algorithm: how accurate the solution is, and the

time it takes to generate a solution (execution time). Our benchmarks are performed using cross

validation.

On the concept learning problems—ANIMALS, GRAMMAR, and TRAIN—which contain few

positive examples, we perform leave-one-out experiments.

On the program synthesis problems, we use hold-out validation with 10 different data sets.

Accuracy is computed as the fraction of all correct predictions among all predictions made.

For the sake of tractability, we also impose some computational limits to all benchmarked algo-

rithms. During bottom clause construction, a maximum of i = 3 iterations are performed. For each

bottom clause constructed, a maximum of n = 1000 (valid) candidates are explored. Candidates are

restricted to a maximum clause length of c = 4. For each query, we use a recursion depth limit of

h = 30 and maximum resolution limit of r = 10000. A time limit of t = 600 seconds is imposed on

any induction. Upon reaching this time limit, the entire induction aborts, although post processing

is still necessary to ensure all remaining examples are put back into the knowledge base. Except

for the time limit, these restrictions are commonly used in Progol and Aleph (the values, of course,

depend on the problem domain).

Progol A∗ evaluates all candidates, regardless of mode declarations—this is necessary in order

to choose the best node to expand in the search lattice. Aleph’s enumeration explicitly states that the

invalid candidates are to be ignored, as the following quotation from the Aleph homepage shows:

With these directives Aleph ensures that for any hypothesised clause

of the form H:- B1, B2, ..., Bc:

Input variables.

Any input variable of type T in a body literal Bi appears

as an output variable of type T in a body literal that appears before Bi,

or appears as an input variable of type T in H.

Output variables.

Any output variable of type T in H appears as an output variable

of type T in Bi.

Without the time limit t, this algorithm may thus end up stuck in almost infinite generate-and-

test loops when the number of valid candidates is small.

NrSample also needs a limit to ensure tractability while solving its propositional constraints: we

set a limit of 50000 literal assignments per model constructed (equivalently: for each constructed

candidate). When this limit is reached, the algorithm simply gives up the current bottom clause

search, adds the example, and resumes sequential covering.

All benchmarks are performed on an Intel Core i7 (4× 2.4 GHz) with 8 GB of RAM. All

displayed numerical results are rounded to 3 decimals. For easier readability, trailing zeros are not

shown (that is, we write “1” rather than “1.000”).
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Test ANrS AEm AA∗ AE AEm/ANrS AA∗/ANrS AE/ANrS

ANIMALS 0.9 0.9 0.952 0.971 1 1.058 1.079

GRAMMAR 0.981 0.981 0.952 1 1 0.970 1.019

TRAIN 1 1 0.9 1 1 0.9 1

MEMBER 0.983 0.983 0.935 0.983 1 0.951 1

SORTED 0.911 0.911 0.894 0.911 1 0.981 1

REVERSE 0.818 0.818 0.816 0.818 1 0.998 1

LENGTH 0.672 0.672 0.665 0.672 1 0.990 1

ADD 0.922 0.691 0.778 0.928 0.749 0.844 1.007

APPEND 0.804 0.411 0.783 0.590 0.511 0.974 0.734

SUBLIST 0.891 0.891 0.836 0.887 1 0.938 0.996

Table 1: Accuracy for Small Data Sets.

4.4 Results for Small Data Sets

Table 1 displays the accuracy of each algorithm as well as comparative ratios. A denotes Accuracy

(defined in Section 4.3), with index NrS for NrSample, Em for emulate_nrsample, A∗ for Progol’s

A∗, and E for enumeration. Since higher accuracy is better, the ratios compare favorably to Nr-

Sample when they are less than 1. Table 2 displays execution time—denoted T and measured in

seconds—as well as comparative ratios. As lower execution time is better, a ratio larger than 1 is

favorable to NrSample.

It is also interesting to know how often NrSample exhausts all valid candidates from search

spaces. NrSample manages to exhaust all search spaces except REVERSE (95% exhausted), ADD

(80%), and APPEND (60%). This suggests that—at least for NrSample—APPEND is the most diffi-

cult problem, followed by ADD and REVERSE.

As expected, NrSample has the same accuracy as emulate_nrsample on all small data sets ex-

cept APPEND and ADD, where the latter times out. This is due to the fact that emulate_nrsample

explores the same candidates as NrSample, provided no time out occurs. For the tests where emu-

late_nrsample did not time out, it sometimes completed the induction slightly faster than NrSample

(ANIMALS, MEMBER, SORTED, LENGTH, and, most notably, TRAIN). On the tests with largest

search spaces—APPEND, ADD, and REVERSE—NrSample performed substantially better than its

emulated counterpart: 33, 4.5, and 9.4 times better, respectively.

As NrSample relies on input-output constraints, it is informative to divide the experimental

results into concept learning—ANIMALS, GRAMMAR, and TRAIN—and program synthesis (all

other problems).

On the concept learning problems, NrSample does not display any notable improvements over

Progol A∗ and enumeration. In particular, NrSample is substantially slower than both on the TRAIN

problem: 1/0.07≈ 14 times slower than Progol’s A∗ although with better accuracy, and 1/0.016≈
63 times slower than enumeration with same accuracy. On the other hand, NrSample is 63 times

faster than Progol’s A∗ on GRAMMAR; indeed, it is the fastest algorithm on this problem, with

comparable accuracy.

We note that accuracy on the concept learning problems is not always perfect (with any algo-

rithm), despite their relative simplicity. This is because there are too few examples to always induce

the correct definitions, even with leave-one-out. For example, in one instance of ANIMALS, all def-
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Test TNrS TEm TA∗ TE TEm/TNrS TA∗/TNrS TE/TNrS

ANIMALS 0.021 0.018 0.057 0.018 0.857 2.714 0.857

GRAMMAR 0.018 0.021 1.133 0.021 1.167 62.944 1.167

TRAIN 2.575 1.438 0.18 0.04 0.558 0.070 0.016

MEMBER 0.163 0.156 28.637 0.156 0.957 175.687 0.957

SORTED 0.134 0.129 47.667 0.128 0.963 355.724 0.955

REVERSE 0.135 0.127 4.228 0.356 9.407 31.319 2.637

LENGTH 1.161 1.098 256.512 1.101 0.946 220.941 0.948

ADD 131.979 600.003 215.898 59.742 4.546 1.636 0.453

APPEND 18.088 600.019 43.082 600.027 33.172 2.382 33.173

SUBLIST 26.232 50.538 376.864 23.499 1.927 14.367 0.896

Table 2: Execution Time in seconds for Small Data Sets.

initions are correct except one, which is too general: class(A, f ish)←− has_legs(A,0). The correct

definition cannot be induced as the (only) example we need is being held out for validation.

Comparing NrSample against Progol A∗ and enumeration on the program synthesis problems,

we see that NrSample has better accuracy on all tests (except a tiny difference in favor of enumer-

ation on ADD). It is also substantially faster than Progol’s A∗ on all problems, ranging from 1.6
to 356 times faster. It is slightly slower than enumeration on most tests: the exceptions are ADD,

where enumeration is 1/0.453 = 2.2 times faster, REVERSE, where NrSample is 2.6 times faster,

and APPEND, where NrSample is 33 times faster.

4.5 Results for Large Data Sets

The large data sets test five algorithms: NrSample with functional constraints (NrSFun), NrSample

without functional constraints (NrS), Emulated NrSample (Em), Progol’s A∗ (A∗), and enumeration

E.

Table 3 shows accuracy on all problems, Table 4 shows accuracies compared with NrSFun.

Since higher accuracy is better, lower values are in favor of NrSFun. Table 5 shows execution time,

and Table 6 shows execution time compared with NrSFun. Since lower execution time is better,

higher values are in favor of NrSFun.

The proportions of search spaces fully exhausted by NrSFun and NrS are given in Table 7.

As pointed out earlier, NrSample detects exhaustion due to the unsatisfiability of its constraints,

saving execution time. The results suggest that the most difficult problem in this regard is APPEND,

followed by SUBLIST. SORTED and LENGTH are relatively difficult for NrS, which exhaust 60%

and 70% respectively, whereas NrsFun fully exhaust all search spaces of both those problems.

As can be seen, NrSample with functional constraints induces with similar or better time perfor-

mance compared to NrSample without functional constraints: on average 21 times faster. Notably,

NrSFun is 11 times faster on MEMBER, 53 times faster on LENGTH, and 80 times faster on SORTED.

All performance gains come without any accuracy penalty: accuracy is similar or better on all prob-

lems. Moreover, NrSFun is substantially more accurate on SUBLIST: 80% versus 48%.

Next, we note that emulate_nrsample times out on all data sets. As a result, it has worse execu-

tion time and accuracy compared to NrSample on all problems, demonstrating that the propositional

framework is necessary for efficient constraint solving.
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Test ANrSFun ANrS AEm AA∗ AE

L:MEMBER 0.99 0.981 0.333 0.935 0.472

L:SORTED 0.834 0.827 0.027 0.397 0.72

L:REVERSE 0.555 0.555 0.349 0.562 0.411

L:LENGTH 0.665 0.663 0.335 0.413 0.366

L:ADD 0.83 0.808 0.676 0.784 0.83

L:APPEND 0.932 0.942 0.333 0.708 0.372

L:SUBLIST 0.803 0.478 0.352 0.826 0.517

Table 3: Accuracy for Large Data Sets.

Test ANrS/ANrSFun AEm/ANrSFun AA∗/ANrSFun AE/ANrSFun

L:MEMBER 0.991 0.336 0.944 0.477

L:SORTED 0.992 0.032 0.476 0.863

L:REVERSE 1 0.629 1.013 0.741

L:LENGTH 0.997 0.504 0.621 0.55

L:ADD 0.973 0.814 0.945 1

L:APPEND 1.011 0.357 0.76 0.399

L:SUBLIST 0.595 0.438 1.029 0.644

Table 4: Relative Accuracy for Large Data Sets.

Continuing, NrSFun is approximately as accurate or better than Progol A∗ on all problems.

NrSFun is substantially faster, with a speedup of between 7 and 45 times on all problems except

APPEND and SUBLIST. On APPEND, A∗ substantially sacrificed accuracy (71% versus 93%) to

induce 8 times faster. Only on SUBLIST is the advantage uncontested, as A∗ has both better execution

time and slightly better accuracy (3.6 times faster with 83% versus 80% accuracy). On average,

NrSFun is 18 times faster than A∗.

Finally, NrSFun has substantially better accuracy than enumeration on all problems except ADD,

where they are tied. NrSFun also has substantially better performance, ranging from 1 to 1358 times

faster. On average, NrSFun is 236 times faster than enumeration.

Test TNrSFun TNrS TEm TA∗ TE

L:MEMBER 5.432 61.345 600.009 123.998 575.604

L:SORTED 4.964 397.797 600.012 109.236 251.13

L:REVERSE 0.442 0.43 600.016 3.258 600.02

L:LENGTH 4.427 232.445 600.01 197.314 571.642

L:ADD 8.843 25.73 600.004 256.356 20.817

L:APPEND 171.736 169.064 600.018 21.267 600.019

L:SUBLIST 584.989 600.031 600.012 160.673 600.017

Table 5: Execution Time in Seconds for Large Data Sets.
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Test TNrS/TNrSFun TEm/TNrSFun TA∗/TNrSFun TE/TNrSFun

L:MEMBER 11.293 110.458 22.827 105.965

L:SORTED 80.136 120.873 22.006 50.59

L:REVERSE 0.973 1357.502 7.371 1357.511

L:LENGTH 52.506 135.534 44.571 129.126

L:ADD 2.91 67.851 28.99 2.354

L:APPEND 0.984 3.494 0.124 3.494

L:SUBLIST 1.026 1.026 0.275 1.026

Table 6: Relative Time Execution for Large Data Sets.

Test NrSFun NrS

L:MEMBER 0.9 0.85

L:SORTED 1 0.6

L:REVERSE 0.95 0.95

L:LENGTH 1 0.7

L:ADD 1 1

L:APPEND 0 0

L:SUBLIST 0.05 0

Table 7: Proportion Search Spaces Fully Exhausted.

5. Conclusions

We have provided a novel framework for non-redundant candidate construction in inductive logic

programming (ILP), using propositional constraints relative to a bottom clause. In particular, we

have treated the case of using search space pruning constraints, mode constraints (input-output

constraints), and functional constraints, showing substantial speedups in program synthesis. Other

algorithms embed pruning in some form, either implicitly through their search method—typically

using refinement operators (Nienhuys-Cheng and de Wolf, 1997)—or explicitly, such as through

memorization. However, they lack a mechanism to directly construct valid candidate solutions

based on such constraints, leading to significant overhead in trial-and-error candidate generation.

We compared NrSample to Progol’s A∗ and Aleph’s enumeration search. On the small program

synthesis tests, NrSample outperformed both Progol A∗ and enumeration on accuracy. Enumeration

was marginally faster than NrSample on most tests; the exceptions are ADD, where enumeration was

2.2 times faster, REVERSE, where NrSample was 2.6 times faster, and APPEND, where NrSample

was 33 times faster. NrSample was also substantially faster than A∗, ranging from 1.6 to 356 times

faster.

On the large program synthesis tests, NrSample with functional constraints (NrSFun) always

outperformed enumeration—ranging from 1 to 1358 times faster—as its naive search space traver-

sal is often unable to find good solutions (it times out). NrSFun is on average 236 times faster, with

substantially better accuracy on all large problems. Progol’s A∗ also has severe difficulties keeping

up with NrSample in induction speed: NrSFun is on average 18 times faster than Progol’s A∗, al-

ways with similar or better accuracy. Progol’s A∗ is only faster on two tests: APPEND and SUBLIST.

However, on APPEND, Progol’s A∗ substantially trades accuracy for faster induction speed: accu-
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racy is 71% versus 93%, for a performance gain of 8 times faster. SUBLIST is the only test in which

it is a clear winner: it is 3.6 times faster with similar accuracy.

On the concept learning problems, NrSample does not seem to offer any advantage over more

conventional algorithms. This is expected, as there are fewer input-output constraints to exploit.

Therefore, NrSample’s overhead of using a SAT solver is never compensated for. Input-output

constraints can however occur in concept learning problems, and the TRAIN problem is an example

as to how: it specifies that we may only attach cars in one direction, that is, from train name to its

cars, not from cars to train name. With more such constraints, NrSample may offer an advantage.

Moreover, it is possible to automatically generate mode declarations by inspecting the examples

(McCreath and Sharma, 1995). This may create artificial but useful input-output constraints that

speedup induction for arbitrary problems.

We also showed that NrSample’s constraint mechanism is not easily replaced without a SAT

solver: NrSample always has at least as good accuracy as its emulated counterpart, emulate_nrsample.

In particular, emulate_nrsample is unable to keep up with NrSample on the large problems, consis-

tently timing out on every data set.

Functional constraints (see Section 2.5) provide a significant performance advantage: NrSFun

is always similar or faster than NrS, with similar or better accuracy. On average, NrSFun is 21

times faster than NrS.

We have shown that mode constraints are linear time solvable, whereas pruning constraints are

NP-complete (see Section 3.1). Most SAT instances are—despite their NP-completeness—easy to

solve in practice. As we have previously argued, the difficulty of finding non-redundant solutions is

not limited to our algorithm, but rather, an inherent property of non-redundancy. Any algorithm not

considering constraints may in such cases be unlikely to stumble upon a non-redundant solution.

We have shown how regional constraints—constraints used to direct the search to certain re-

gions of the search space before others—allow for control over search order within our constraint

framework (see Section 3.2).

Our constraint satisfaction approach is generalizable to problems with noise by simply modi-

fying the definition of consistency so as to allow it to cover a user specified number of negative

examples (instead of 0).

Our SAT solver is deterministic. In applications where this is undesirable, it is possible to use

a non-deterministic selection strategy (for example, random literal assignment). Another source of

randomness comes from setting a non-zero probability for random restarts. In both cases, pruning

constraints still ensure that no redundant candidate is generated.
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Appendix A. Proof of Mode Constraint Correctness

In this appendix we prove Theorem 8, which establishes that the mode constraints reflect Defini-

tion 5.
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First, we show that the mode constraints only generate mode conformant candidates (sound-

ness).

Theorem 15 Let F be a propositional formula for the mode constraints of B. Let C be a candidate

from B. If F generates C, then C is mode conformant.

Proof Assume C is not mode conformant. Let PB = l1∧ . . .∧ ln where li = bi or li = ¬bi. We have

two cases: (1) C is not input-instantiated, or (2) C is not output-instantiated.

(1) A literal bi in C has an uninstantiated input variable v. However, B is input-instantiated by

Lemma 6, so v ∈ Ih, or v ∈ Ok for some k < i and bk is not a body literal of C (since otherwise v

would be instantiated). Now, v ∈ Ih is impossible because then C would have v instantiated by its

head input, as C and B have the same head. Let k1, . . . ,ks be the indices for body literals in B for

which v ∈ Oks
, ks < i. By Definition 7, F contains a clause c = {¬bi,bk1

, . . . ,bks
}. Since C contains

bi but none of the preceding bk j
, the model MC for C has MC(bi) = true and MC(bk j

) = f alse for all

bk j
, j = 1, . . . ,s, so MC does not satisfy c. Hence MC is not a model for F .

(2) The head of C has an uninstantiated output variable v. Partition b1, . . . ,bn into two sets: Bv

for the bk’s that satisfy v ∈ Ok, and B¬v for the rest. All literals of PC are in B¬v, so PC is a conjunc-

tion of literals where each literal of Bv is negative. Hence for the model MC for PC, MC(bi) = f alse

for all bi ∈ Bv. But by Definition 7, F contains the clause
∨

bi∈Bv
bi, so MC is not a model for F .

Next, we show that the mode constraints can generate any mode conformant candidate (complete-

ness).

Theorem 16 Let F be a propositional formula for the mode constraints of B. Let C be a candidate

from B. If C is mode conformant, then F generates C.

Proof Assume C is mode conformant and let MC be the model for PC = ls1
∧ . . .∧ lsk

. Then

MC(lsi
) = true for all i = 1, . . . ,k. Let f be a clause in F . Either f has the form {¬bn,bx1

,bx2
, . . .}

or {bx1
,bx2

, . . .}.
The first form appears when bn has an input variable v that is not an output of B’s head. bx j

are

the literals preceding bn (x j < n) in which v appears as output. If bn does not appear in C, MC(bn) =
f alse and the clause is satisfied. If bn appears in C, we note that since C is mode conformant, v

appears in a previous body literal or the head. But it cannot appear in the head of C, since it is the

same as the head of B. So v must be the output of a literal in C that appears before bn, that is, one of

the bx j
. Hence MC(bx j

) = true for this particular j, and the clause is satisfied.

The second form appears when the head of B has an output variable v. If the clause is empty, B

has no body literal that outputs v, so no candidate from B is mode conformant either, contradicting

our assumption that C is mode conformant. Now v appears in the head of C, again because it is

the same as the head of B. Let bx1
, . . . ,bxk

be the literals of the non-empty clause. Since C is mode

conformant, v appears as output in a literal bx j
, j = 1, . . . ,k, and hence MC(bx j

) = true. Therefore

the clause is satisfied.

Appendix B. Proof of Pruning Constraint Correctness

In this appendix, we prove Theorem 12, establishing the correctness of NrSample’s pruning con-

straints.

The next lemma will be needed in our correctness proof.
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Lemma 17 Let C and D be candidates from B. If C ⊆D, all the negative literals of PD occur in PC.

Proof If C ⊆ D, all the body literals of C occur in D, so b j ∈ PC =⇒ b j ∈ PD . Let ¬bi ∈ PD. If

bi ∈ PC, then bi ∈ PD, a contradiction. Since PC contains all literals of b1, . . . ,bn, we have ¬bi ∈ PC.

The following theorem shows that ¬P↑C and ¬P↓C block the intended regions and no more.

Theorem 18 Let C be a candidate from B.

1. ¬P↑C generates G if and only if G is not a generalization of C.

2. ¬P↓C generates S if and only if S is not a specialization of C.

Proof (1) Assume G⊆C. If PC has no negative literal, ¬P↑C = f alse, and the claim follows trivially.

So assume PC has negative literals c̄1, . . . c̄k. Since G ⊆ C, c̄1, . . . c̄k are negative literals in PG by

Lemma 17. The model for G thus has MG(ci) = f alse for all i = 1, . . . ,k. But ¬P↑C = {c1, . . . ,ck},
so it is false in MG. For the converse, assume G 6⊆ C. Then there is a positive literal b ∈ PG with

¬b ∈ PC. Let MG be the model for PG: for all gi ∈ PG, MG(gi) = true, and for all negative ḡ j ∈ PG,

MG(g j) = f alse. Note that MG(b) = true. Since ¬P↑C is a clause containing b , it is true under MG.

(2) Assume C ⊆ S. If PC has no positive literal, ¬P↓C = f alse, and the claim follows trivially.

So assume PC has positive literals c1, . . . ,ck. Assume MS is a model for PS. Since C ⊆ S, c1, . . . ,ck

are also in PS, so MS(ci) = true for all i = 1, . . . ,k. But ¬P↓C = {¬c1, . . . ,¬ck}, so it is false in MS.

For the converse, assume C 6⊆ S. Then there is a positive literal b ∈ PC with ¬b ∈ PS. Let MS be the

model for PS: for all positive si ∈ PS, MS(si) = true, and for each negative ¬s j ∈ PS, MS(s j) = f alse.

Note that MS(b) = f alse. Since ¬P↓C contains ¬b , MS is a model for ¬P↓C.

Appendix C. Small Data Sets Details

Table 8 and 9 show the number of examples and mode declarations used in concept learning and

program synthesis problems, respectively. Note that the number of examples in each data set is

not necessarily indicative of complexity. For example, TRAIN has only 5 positive and 5 negative

examples, but is harder to learn than Animals and Grammar. The complexity of a problem depends

mainly on the mode declarations used for the body, as they give the set of all possible predicates to

be used when constructing the bottom clause.

Appendix D. Primitive Set of Predicates

What follows are the definitions of the primitive set used in the large data set experiments (those

prefixed by “L:”).

:- modeb(1,nil(+list))?

:- modeb(1,+list = [-nonlist|-list],[functional])?

:- modeb(1,-list = [+nonlist|+list],[functional])?

:- modeb(1,listify(+nonlist,-list),[functional])?

listify(X,[X]).
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Data Set P N Mode Declarations

animal 16 42

modeh(1,class(+animal,#class))
modeb(1,has_milk(+animal))
modeb(1,has_gills(+animal))
modeb(1,has_covering(+animal,#covering))
modeb(1,has_legs(+animal,#nat))
modeb(1,homeothermic(+animal))
modeb(1,has_eggs(+animal))
modeb(1,not has_milk(+animal))
modeb(1,not has_gills(+animal))
modeb(∗,habitat(+animal,#habitat))
modeb(1,class(+animal,#class))

grammar 14 7

modeh(1,s(+wlist,−wlist))
modeb(1,det(+wlist,−wlist))
modeb(∗,np(+wlist,−wlist))
modeb(∗,vp(+wlist,−wlist))
modeb(1, prep(+wlist,−wlist))
modeb(1,noun(+wlist,−wlist))
modeb(1,verb(+wlist,−wlist))

train 5 5

modeh(1,eastbound(+train))
modeb(100,has_car(+train,−car))
modeb(1,notopen(+car))
modeb(1,notlong(+car))
modeb(1, long(+car))
modeb(1,open(+car))
modeb(1,double(+car))
modeb(1, jagged(+car))
modeb(1,shape(+car,−shape))
modeb(1, load(+car,−shape,−int1))
modeb(1,wheels(+car,−int1))
modeb(1, in f ront(+car,−car))

Table 8: Concept Learning Data Sets.
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Data Set P N Mode Declarations

member 100 50

modeh(∗,member(+const,+clist))
modeb(1,+any = #any)
modeb(1,+clist = [−const|− clist])
modeb(∗,member(+const,+clist))

sorted 100 50

modeh(1,sorted(+clist))
modeb(1,+const =<+const)
modeb(1,+clist = [−const|− clist])
modeb(1,+clist = [])
modeb(1,sorted(+clist))

reverse 100 50

modeh(1,reverse(+clist,−clist))
modeb(1,reverse(+clist,−clist))
modeb(1,+clist = [−const|− clist])
modeb(1,+clist = [])
modeb(1,append(+clist, [+const],−clist))

length 100 50

modeh(1, length(+clist,+int))
modeh(1, length(+clist,−int))
modeb(1,−intis+ int +1)
modeb(1,+intis#int)
modeb(1, length(+clist,−int))
modeb(1,+int = 0)
modeb(1,+clist = [])
modeb(1,+clist = [−const|− clist])

add 25 50

modeh(∗,add(+snum,+snum,−snum))
modeb(1,+snum = 0)
modeb(1,−snum =+snum)
modeb(1,dec(+snum,−snum))
modeb(1, inc(+snum,−snum))
modeb(1,add(+snum,+snum,−snum))

append 100 50

modeh(1,append(+list,+list,−list))
modeb(1,+list = [])
modeb(1,+const =+const)
modeb(1,+list = [−const|− list])
modeb(1,−list = [+const|+ list])
modeb(1,append(+list,+list,−list))

sublist 100 50

modeh(1,sublist(+clist,+clist))
modeb(1,+clist = [−const|− clist])
modeb(1,+clist = [])
modeb(1,sublist(+clist,+clist))

Table 9: Program Synthesis Data Sets.
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nil([]).

nonlist(X) :- constant(X), X \= [].

list([]).

list([H|T]) :- nonlist(H), list(T).

:- modeb(1,inc(+number,-number),[functional])?

:- modeb(1,-number is +number + +number,[functional])?

:- modeb(1,neg(+number,-number),[functional])?

:- modeb(1,inv(+number,-number),[functional])?

:- _ is X+Y prevents _ is Y+X?

:- prevent neg(X,X)?

:- prevent inv(X,X)?

inc(X,Y) :- Y is X+1.

neg(X,Y) :- Y is -X.

inv(X,Y) :- Y is 1/X.

:- modeb(1,+number =:= +number)?

:- modeb(1,+number =\= +number)?

:- modeb(1,+number < +number)?

:- modeb(1,+number =< +number)?

:- prevent X =:= X? % reflexivity

:- X =:= Y prevents Y =:= X? % symmetry

:- prevent X =\= X?

:- X =\= Y prevents Y =\= X?

:- prevent X =< X?

We explain the operators prevent/1 and prevents/2 with examples. They are used during bottom

clause construction, and are thus not specific to our benchmarked algorithms. Both operators are

intended to prevent certain ground truths from occurring in the bottom clause (or their corresponding

lifted instances). Example 17 illustrates its use. Similar ideas can be found in Fonseca et al. (2004).

Example 17 The clause ‘prevent p(X ,X)’ ensures that no bottom clause of the form p(X ,X) oc-

curs, where matching is done so that X unifies with ground terms. So p(a,b) is not allowed with

this rule, but p(a,a) is. The instance prevent X =< X simply prevents trivial comparisons.

As a matter of technicality, when using lifted bottom clauses, that is, with mode declarations,

variables in the bottom clause must be treated as ground terms. For example, the prevent rule X = X

should not match with bottom clause literal Y = 0, as what we have in mind is to prevent trivial

unifications of identical terms. By treating unlifted bottom clause literals (that is, ground truths),

this problem does not arise.

Example 18 With the rule ‘prevent p(X ,X)’ from Example 17, the literal p(A,B) is fails to match,

since it is first grounded to p(cA,cB), and unification then fails. Thus the literal p(A,B) will not

be prevented from appearing. On the other hand, p(A,A) will be prevented, since it is treated as

p(cA,cA).
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Example 19 The clause ‘p(X ,Y ) prevents q(Y,X)’ ensures that the literal q(Y,X) does not occur

if p(X ,Y ) occurs as a previous literal in the bottom clause. Again, unification is used for matching,

so that repeated variable occurrences matter. The instance used in our primitive set:

_ is X+Y prevents _ is Y+X

simply exploits the commutativity of addition: if we have X +Y (we do not care about the output

variable), we do not need the addition Y +X in the bottom clause.
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Abstract

Supervised learning from high-dimensional data, for example, multimedia data, is a challenging

task. We propose an extension of slow feature analysis (SFA) for supervised dimensionality reduc-

tion called graph-based SFA (GSFA). The algorithm extracts a label-predictive low-dimensional set

of features that can be post-processed by typical supervised algorithms to generate the final label

or class estimation. GSFA is trained with a so-called training graph, in which the vertices are the

samples and the edges represent similarities of the corresponding labels. A new weighted SFA op-

timization problem is introduced, generalizing the notion of slowness from sequences of samples

to such training graphs. We show that GSFA computes an optimal solution to this problem in the

considered function space and propose several types of training graphs. For classification, the most

straightforward graph yields features equivalent to those of (nonlinear) Fisher discriminant anal-

ysis. Emphasis is on regression, where four different graphs were evaluated experimentally with

a subproblem of face detection on photographs. The method proposed is promising particularly

when linear models are insufficient as well as when feature selection is difficult.

Keywords: slow feature analysis, feature extraction, classification, regression, pattern recogni-

tion, training graphs, nonlinear dimensionality reduction, supervised learning, implicitly super-

vised, high-dimensional data, image analysis

1. Introduction

Supervised learning from high-dimensional data has important applications in areas such as multi-

media processing, human-computer interfaces, industrial quality control, speech processing, robotics,

bioinformatics, image understanding, and medicine. Despite constant improvements in computa-

tional resources and learning algorithms, supervised processing, for example, for regression or clas-

sification, of high-dimensional data is still a challenge largely due to insufficient data and several

phenomena referred to as the curse of dimensionality. This limits the practical applicability of

supervised learning.

Unsupervised dimensionality reduction, including algorithms such as principal component anal-

ysis (PCA) or locality preserving projections (LPP, He and Niyogi, 2003), can be used to attenuate

these problems. After dimensionality reduction, typical supervised learning algorithms can be ap-

plied. Frequent benefits include a lower computational cost and better robustness against overfitting.
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However, since the final goal is to solve a supervised learning problem, this approach is inherently

suboptimal.

Supervised dimensionality reduction is more appropriate in this case. Its goal is to compute a

low-dimensional set of features from the high-dimensional input samples that contains predictive

information about the labels (Rish et al., 2008). One advantage is that dimensions irrelevant for

the label estimation can be discarded, resulting in a more compact representation and more accu-

rate label estimations. Different supervised algorithms can then be applied to the low-dimensional

data. A widely known algorithm for supervised dimensionality reduction is Fisher discriminant

analysis (FDA) (Fisher, 1936). Sugiyama (2006) proposed local FDA (LFDA), an adaptation of

FDA with a discriminative objective function that also preserves the local structure of the input

data. Later, Sugiyama et al. (2010) proposed semi-supervised LFDA (SELF) bridging LFDA and

PCA and allowing the combination of labeled and unlabeled data. Tang and Zhong (2007) in-

troduced pairwise constraints-guided feature projection (PCGFP), where two types of constraints

are allowed. Must-link constraints denote that a pair of samples should be mapped closely in the

low-dimensional space, while cannot-link constraints require that the samples are mapped far apart.

Later, Zhang et al. (2007) proposed semi-supervised dimensionality reduction (SSDR), which is

similar to PCGFP and also supports semi-supervised learning.

Slow feature analysis (SFA) (Wiskott, 1998; Wiskott and Sejnowski, 2002) is an unsupervised

learning algorithm inspired by the visual system and based on the slowness principle. SFA has been

applied to classification in various ways. Franzius et al. (2008) extracted the identity of animated

fish invariant to pose (including a rotation angle and the fish position) with SFA. A long sequence of

fish images was rendered from 3D models in which the pose of the fish changed following a Brown-

ian motion, and in which the probability of randomly changing the fish identity was relatively small,

making identity a feature that changes slowly. This result confirms that SFA is capable of extracting

categorical information. Klampfl and Maass (2010) introduced a particular Markov chain to gen-

erate a sequence used to train SFA for classification. The transition probability between samples

from different object identities was proportional to a small parameter a. The authors showed that

in the limit a→ 0 (i.e., only intra-class transitions), the features learned by SFA are equivalent to

the features learned by Fisher discriminant analysis (FDA). The equivalence of the discrimination

capability of SFA and FDA in some setups was already known (compare Berkes, 2005a, and Berkes,

2005b) but had not been rigorously shown before. In the two papers by Berkes, hand-written digits

from the MNIST database were recognized. Several mini-sequences of two samples from the same

digit were used to train SFA. The same approach was also applied more recently to human gesture

recognition by Koch et al. (2010) and a similar approach to monocular road segmentation by Kuhnl

et al. (2011). Zhang and Tao (2012) proposed an elaborate system for human action recognition, in

which the difference between delta values of different training signals was amplified and used for

discrimination.

SFA has been used to solve regression problems as well. Franzius et al. (2008) used standard

SFA to learn the position of animated fish from images with homogeneous background. The same

training sequence used for learning fish identities was used, thus the fish position changed continu-

ously over time. However, a different supervised post-processing step was employed consisting of

linear regression coupled with a nonlinear transformation.

In this article, we introduce a supervised extension of SFA called graph-based SFA (GSFA)

specifically designed for supervised dimensionality reduction. We show that GSFA computes the

slowest features possible according to the GSFA optimization problem, a weighted extension of the
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SFA problem, generalizing the concept of signal slowness. The objective function of the GSFA

problem is a weighted sum of squared output differences and is therefore similar to the underlying

objective functions of, for example, FDA, LFDA, SELF, PCGFP, and SSDR. However, in general

the optimization problem solved by GSFA differs at least in one of the following elements: a) the

concrete coefficients of the objective function, b) the constraints, or c) the feature space consid-

ered. Although nonlinear or kernelized versions of the algorithms above can be defined, one has

to overcome the difficulty of finding a good nonlinearity or kernel. In contrast, SFA (and GSFA)

was conceived from the beginning as a nonlinear algorithm without resorting to kernels (although

there exist versions with a kernel: Bray and Martinez, 2003; Vollgraf and Obermayer, 2006; Böhmer

et al., 2012), with linear SFA being just a less used special case. Another difference to various algo-

rithms above is that SFA (and GSFA) does not explicitly attempt to preserve the spatial structure of

the input data. Instead, it preserves the similarity structure provided, which leaves room for better

optimization towards the labels.

Besides the similarities and differences outlined above, GSFA is strongly connected to some

algorithms in specific cases. For instance, features equivalent to those of FDA can be obtained if a

particular training graph is given to GSFA. There is also a close relation between SFA and Laplacian

eigenmaps (LE), which has been studied by Sprekeler (2011). GSFA and LE basically have the

same objective function, but in general GSFA uses different edge-weight (adjacency) matrices, has

different normalization constraints, supports node-weights, and uses function spaces.

There is also a strong connection between GSFA and LPP. In Section 7.1 we show how to

use GSFA to extract LPP features and vice versa. This is a remarkable connection because GSFA

and LPP originate from different backgrounds and are typically used for related but different goals.

Generalized SFA (Sprekeler, 2011; Rehn, 2013), being basically LPP on nonlinearly expanded data,

is also closely connected to GSFA.

One advantage of GSFA over many algorithms for supervised dimensionality reduction is that it

is designed for both classification and regression (using appropriate training graphs), whereas other

algorithms typically focus on classification only.

Given a large number of high-dimensional labeled data, supervised learning algorithms can

often not be applied due to prohibitive computational requirements. In such cases we propose the

following general scheme based on GSFA/SFA, illustrated in Figure 1 (left):

1. Transform the labeled data to structured data, where the label information is implicitly en-

coded in the connections between the data points (samples). This permits using unsupervised

learning algorithms, such as SFA, or its extension GSFA.

2. Use hierarchical processing to reduce the dimensionality, resulting in low-dimensional data

with component similarities strongly dependent on the graph connectivity. Since the label

information is encoded in the graph connectivity, the low-dimensional data are highly pre-

dictive of the labels. Hierarchical processing (Section 2.4) is an efficient divide-and-conquer

approach for high-dimensional data with SFA and GSFA.

3. Convert the (low-dimensional) data back to labeled data by combining the low-dimensional

data points with the original labels or classes. This now constitutes a data set suitable for

standard supervised learning methods, because the dimensionality has become manageable.
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4. Use standard supervised learning methods on the low-dimensional labeled data to estimate

the labels. The unsupervised hierarchical network plus the supervised direct method together

constitute the classifier or regression architecture.

In the case of GSFA, the structured training data is called training graph, a weighted graph

that has vertices representing the samples, node weights specifying a priori sample probabilities,

and edge weights indicating desired output similarities, as derived from the labels. Details are

given in Section 3. This structure permits us to extend SFA to extract features from the data points

that tend to reflect similarity relationships between their labels without the need to reproduce the

labels themselves. A concrete example of the application of the method to a regression problem is

illustrated in Figure 2. Various important advantages of GSFA are inherited from SFA:

• It allows hierarchical processing, which has various remarkable properties, as described in

Section 2.4. One of them, illustrated in Figure 1 (right), is that the local application of

SFA/GSFA to lower-dimensional data chunks typically results in less overfitting than non-

hierarchical SFA/GSFA.

• SFA has a complexity of O(N) in the number of samples N and O(I3) in the number of dimen-

sions I (possibly after a nonlinear expansion). Hierarchical processing greatly reduces the lat-

ter complexity down to O(I). In practice, processing 100,000 samples of 10,000-dimensional

input data can be done in less than three hours by using hierarchical SFA/GSFA without

resorting to parallelization or GPU computing.

• Typically no expensive parameter search is required. The SFA and GSFA algorithms them-

selves are almost parameter free. Only the nonlinear expansion has to be defined. In hierar-

chical SFA, the structure of the network has several parameters, but the choice is usually not

critical.

In the next sections, we first recall the standard SFA optimization problem and algorithm. Then,

we introduce the GSFA optimization problem, which incorporates the information contained in

a training graph, and propose the GSFA algorithm, which solves this optimization problem. We

recall how classification problems have been addressed with SFA and propose a training graph

for doing this task with GSFA. Afterwards, we propose various graph structures for regression

problems offering great computational efficiency and good accuracy. Thereafter, we experimentally

evaluate and compare the performance of four training graphs to other common supervised methods

(e.g., PCA+SVM) w.r.t. a particular regression problem closely related to face detection using real

photographs. A discussion section concludes the article.

2. Standard SFA

In this section, we begin by introducing the slowness principle, which has inspired SFA. Afterwards,

we recall the SFA optimization problem and the algorithm itself. We conclude the section with a

brief introduction to hierarchical processing with SFA.

2.1 The Slowness Principle and SFA

Perception plays a crucial role in the interaction of animals or humans with their environment.

Although processing of sensory information appears to be done straightforwardly by the nervous
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Figure 1: (Left) Transformation of a supervised learning problem on high-dimensional data into a

supervised learning problem on low-dimensional data by means of unsupervised hierar-

chical processing on structured data, that is, without labels. This construction allows the

solution of supervised learning problems on high-dimensional data when the dimension-

ality and number of samples make the direct application of many conventional supervised

algorithms infeasible. (Right) Example of how hierarchical SFA (HSFA) is more robust

against overfitting than standard SFA. Useless data consisting of 25 random i.i.d. samples

is processed by linear SFA and linear HSFA. Both algorithms reduce the dimensionality

from 24 to 3 dimensions. Even though the training data is random, the direct applica-

tion of SFA extracts the slowest features theoretically possible (optimal free responses),

which is possible due to the number of dimensions and samples, permitting overfitting.

However, it fails to provide consistent features for test data (e.g., standard deviations

σtraining = 1.0 vs. σtest = 6.5), indicating lack of generalization. Several points even fall

outside the plotted area. In contrast, HSFA extracts much more consistent features (e.g.,

standard deviations σtraining = 1.0 vs. σtest = 1.18) resulting in less overfitting. Counter-

intuitively, this result holds even though the HSFA network used has 7×6×3 = 126 free

parameters, many more than the 24×3 = 72 free parameters of direct SFA.

system, it is a complex computational task. As an example, consider the visual perception of a

driver watching pedestrians walking on the street. As the car advances, his receptor responses
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Figure 2: Illustration of the application of GSFA to solve a regression problem. (a) The input sam-

ples are 128×128-pixel images with labels indicating the horizontal position of the center

of the face. (b) A training graph is constructed using the label information. In this ex-

ample, only images with most similar labels are connected resulting in a linear graph.

(c) The data dimensionality is reduced with GSFA, yielding in this case 3-dimensional

feature vectors plotted in the first two dimensions. (d) The application of standard regres-

sion methods to the slow features (e.g., linear regression) generates the label estimates.

In theory, the labels can be estimated from y1 alone. In practice, performance is usually

improved by using not one, but a few slow features.

typically change quite quickly, and are especially sensitive to the eye movement and to variations

in the position or pose of the pedestrians. However, a lot of information, including the position

and identity of the pedestrians, can still be distinguished. Relevant abstract information derived

from the perception of the environment typically changes on a time scale much slower than the

individual sensory inputs. This observation inspires the slowness principle, which explicitly requires

the extraction of slow features. This principle has probably first been formulated by Hinton (1989),

and online learning rules were developed shortly after by Földiák (1991) and Mitchison (1991).

The first closed-form algorithm has been developed by Wiskott and is referred to as Slow feature

analysis (SFA, Wiskott, 1998; Wiskott and Sejnowski, 2002). The concise formulation of the SFA

optimization problem also permits an extended mathematical treatment so that its properties are well

understood analytically (Wiskott, 2003; Franzius et al., 2007; Sprekeler and Wiskott, 2011). SFA

has the advantage that it is guaranteed to find an optimal solution within the considered function

space. It was initially developed for learning invariances in a model of the primate visual system
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(Wiskott and Sejnowski, 2002; Franzius et al., 2011). Berkes and Wiskott (2005) subsequently

used it for learning complex-cell receptive fields and Franzius et al. (2007) for place cells in the

hippocampus. Recently, researchers have begun using SFA for various technical applications (see

Escalante-B. and Wiskott, 2012, for a review).

2.2 Standard SFA Optimization Problem

The SFA optimization problem can be stated as follows (Wiskott, 1998; Wiskott and Sejnowski,

2002; Berkes and Wiskott, 2005). Given an I-dimensional input signal x(t) = (x1(t), . . . ,xI(t))
T ,

where t ∈ R, find an instantaneous vectorial function g : RI → R
J within a function space F , that

is, g(x(t)) = (g1(x(t)), . . . ,gJ(x(t)))
T , such that for each component y j(t)

def
= g j(x(t)) of the output

signal y(t)
def
= g(x(t)), for 1≤ j ≤ J, the objective function

∆(y j)
def
= 〈ẏ j(t)

2〉t is minimal (delta value) (1)

under the constraints

〈y j(t)〉t = 0 (zero mean), (2)

〈y j(t)
2〉t = 1 (unit variance), (3)

〈y j(t)y j′(t)〉t = 0,∀ j′ < j (decorrelation and order). (4)

The delta value ∆(y j) is defined as the time average (〈·〉t) of the squared derivative of y j and is

therefore a measure of the slowness (or rather fastness) of the signal. The constraints (2–4) assure

that the output signals are normalized, not constant, and represent different features of the input

signal. The problem can be solved iteratively beginning with y1 (the slowest feature extracted) and

finishing with yJ (an algorithm is described in the next section). Due to constraint (4), the delta

values are ordered, that is, ∆(y1)≤ ∆(y2)≤ ·· · ≤ ∆(yJ). See Figure 3 for an illustrative example.

0 2 4 6 8 10 12 14

2

1

0

1

2

Figure 3: Illustrative example of feature extraction from a 10-dimensional (discrete time) input

signal. Four arbitrary components of the input (left) and the four slowest outputs (right)

are shown. Notice that feature extraction is an instantaneous operation, even though the

outputs are slow over time. This example was designed such that the features extracted

are the slowest ones theoretically possible.

In practice, the function g is usually restricted to a finite-dimensional space F , for example,

to all quadratic or linear functions. Highly complex function spaces F should be avoided because
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they result in overfitting. In extreme cases one obtains features such as those in Figure 3 (right)

even when the hidden parameters of the input data lack such a precise structure. The problem

is then evident when one extracts unstructured features from test data, see Figure 1 (right). An

unrestricted function space is, however, useful for various theoretical analyses (e.g., Wiskott, 2003)

because of its generality and mathematical convenience.

2.3 Standard Linear SFA Algorithm

The SFA algorithm is typically nonlinear. Even though kernelized versions have been proposed

(Bray and Martinez, 2003; Vollgraf and Obermayer, 2006; Böhmer et al., 2012), it is usually im-

plemented more directly with a nonlinear expansion of the input data followed by linear SFA in

the expanded space. In this section, we recall the standard linear SFA algorithm (Wiskott and Se-

jnowski, 2002), in which F is the space of all linear functions. Discrete time, t ∈ N, is used for the

application of the algorithm to real data. Also the objective function and the constraints are adapted

to discrete time. The input is then a single training signal (i.e., a sequence of N samples) x(t), where

1 ≤ t ≤ N, and the time derivative of x(t) is usually approximated by a sequence of differences of

consecutive samples: ẋ(t)
def
≈ x(t +1)−x(t), for 1≤ t ≤ N−1.

The output components take the form g j(x) = wT
j (x− x̄), where x̄

def
= 1

N ∑N
t=1 x(t) is the average

sample, which is subtracted, so that the output has zero-mean to conform with (2). Thus, in the

linear case, the SFA problem reduces to finding an optimal set of weight vectors {w j} under the

constraints above, and it can be solved by linear algebra methods, see below.

The covariance matrix is approximated by the sample covariance matrix

C =
1

N−1

N

∑
t=1

(x(t)− x̄)(x(t)− x̄)T ,

and the derivative second-moment matrix 〈ẋẋT 〉t is approximated as

Ċ =
1

N−1

N−1

∑
t=1

(x(t +1)−x(t))(x(t +1)−x(t))T .

Then, a sphered signal z
def
= ST x is computed, such that ST CS = I for a sphering matrix S.

Afterwards, the J directions of least variance in the derivative signal ż are found and represented

by an I × J rotation matrix R, such that RT ĊzR = Λ, where Ċz
def
= 〈żżT 〉t and Λ is a diagonal

matrix with diagonal elements λ1 ≤ λ2 ≤ ·· · ≤ λJ . Finally the algorithm returns the weight matrix

W = (w1, . . . ,wJ), defined as W = SR, the features extracted y = WT (x− x̄), and ∆(y j) = λ j, for

1 ≤ j ≤ J. The linear SFA algorithm is guaranteed to find an optimal solution to the optimization

problem (1–4) in the linear function space, for example, the first component extracted is the slowest

possible linear feature. A more detailed description of the linear SFA algorithm is provided by

Wiskott and Sejnowski (2002).

The complexity of the linear SFA algorithm described above is O(NI2 + I3) where N is the

number of samples and I is the input dimensionality (possibly after a nonlinear expansion), thus for

high-dimensional data standard SFA is not feasible.1 In practice, it has a speed comparable to PCA,

even though SFA also takes into account the temporal structure of the data.

1. The problem is still feasible if N is small enough so that one might apply singular value decomposition methods.

However, a small number of samples N < I usually results in pronounced overfitting.
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2.4 Hierarchical SFA

To reduce the complexity of SFA, a divide-and-conquer strategy to extract slow features is usually

effective (e.g., Franzius et al., 2011). For instance, one can spatially divide the data into lower-

dimensional blocks of dimension I′ ≪ I and extract J′ < I′ local slow features separately with

different instances of SFA, the so-called SFA nodes. Then, one uses another SFA node in a next

layer to extract global slow features from the local slow features. Since each SFA node performs

dimensionality reduction, the input dimension of the top SFA node is much less than I. This strategy

can be repeated iteratively until the input dimensionality at each node is small enough, resulting in

a multi-layer hierarchical network. Due to information loss before the top node, this does not

guarantee optimal global slow features anymore. However it has shown to be effective in many

practical experiments, in part because low-level features are spatially localized in most real data.

Interestingly, hierarchical processing can also be seen as a regularization method, as shown in

Figure 1 (right), leading to better generalization. An additional advantage is that the nonlinearity

accumulates across layers, so that even when using simple expansions the network as a whole can

realize a complex nonlinearity (Escalante-B. and Wiskott, 2011).

3. Graph-Based SFA (GSFA)

In this section, we first present a generalized representation of the training data used by SFA called

training graph. Afterwards, we propose the GSFA optimization problem, which is defined in terms

of the nodes, edges and weights of such a graph. Then, we present the GSFA algorithm and a

probabilistic model for the generation of training data, connecting SFA and GSFA.

3.1 Organization of the Training Samples in a Graph

Learning from a single (multi-dimensional) time series (i.e., a sequence of samples), as in standard

SFA, is motivated from biology, because the input data is assumed to originate from sensory per-

ception. In a more technical and supervised learning setting, the training data need not be a time

series but may be a set of independent samples. However, one can use the labels to induce structure.

For instance, face images may come from different persons and different sources but can still be

ordered by, say, age. If one arranges these images in a sequence of increasing age, they would form

a linear structure that could be used for training much like a regular time series.

The central contribution of this work is the consideration of a more complex structure for train-

ing SFA called training graph. In the example above, one can then introduce a weighted edge

between any pair of face images according to some similarity measure based on age (or other crite-

ria such as gender, race, or mimic expression), with high similarity resulting in large edge weights.

The original SFA objective then needs to be adapted such that samples connected by large edge

weights yield similar output values.

In mathematical terms, the training data is represented as a training graph G= (V,E) (illustrated

in Figure 4) with a set V of vertices x(n) (each vertex/node being a sample), and a set E of edges

(x(n),x(n′)), which are pairs of samples, with 1≤ n,n′ ≤ N. The index n (or n′) substitutes the time

variable t. The edges are undirected and have symmetric weights

γn,n′ = γn′,n (5)
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that indicate the similarity between the connected vertices; also each vertex x(n) has an associated

weight vn > 0, which can be used to reflect its importance, frequency, or reliability. For instance,

a sample occurring frequently in an observed phenomenon should have a larger weight than a rare

sample. This representation includes the standard time series as a special case in which the graph

has a linear structure and all node and edge weights are identical (Figure 4.b). How exactly edge

weights are derived from label values will be elaborated later.

Figure 4: (a) Example of a training graph with N = 7 vertices. (b) A regular sample sequence

(time-series) represented as a linear graph suitable for GSFA.

3.2 GSFA Optimization Problem

We extend the concept of slowness, originally conceived for sequences of samples, to data structured

in a training graph making use of its associated edge weights. The generalized optimization problem

can then be formalized as follows. For 1 ≤ j ≤ J, find features y j(n), where 1 ≤ n ≤ N, such that

the objective function

∆ j
def
=

1

R
∑
n,n′

γn,n′(y j(n
′)− y j(n))

2 is minimal (weighted delta value) (6)

under the constraints

1

Q
∑
n

vny j(n) = 0 (weighted zero mean), (7)

1

Q
∑
n

vn(y j(n))
2 = 1 (weighted unit variance), and (8)

1

Q
∑
n

vny j(n)y j′(n) = 0, for j′ < j (weighted decorrelation), (9)

with

R
def
= ∑

n,n′
γn,n′ , (10)

Q
def
= ∑

n

vn. (11)
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Compared to the original SFA problem, the vertex weights generalize the normalization con-

straints, whereas the edge weights extend the objective function to penalize the difference between

the outputs of arbitrary pairs of samples. Of course, the factor 1/R in the objective function is not

essential for the minimization problem. Likewise, the factor 1/Q can be dropped from (7–9). These

factors, however, provide invariance to the scale of the edge weights as well as to the scale of the

node weights, and serve a normalization purpose.

By definition (see Section 3.1), training graphs are undirected and have symmetric edge weights.

This does not cause any loss of generality and is justified by the GSFA optimization problem above.

Its objective function (6) is insensitive to the direction of an edge because the sign of the output

difference cancels out during the computation of ∆ j. It therefore makes no difference whether we

choose γn,n′ = 2 and γn′,n = 0 or γn,n′ = γn′,n = 1, for instance. We note also that γn,n multiplies with

zero in (6) and only enters into the calculation of R. The variables γn,n are kept only for mathematical

convenience.

3.3 Linear Graph-Based SFA Algorithm (Linear GSFA)

Similarly to the standard linear SFA algorithm, which solves the standard SFA problem in the lin-

ear function space, here we propose an extension that computes an optimal solution to the GSFA

problem within the same space. Let the vertices V = {x(1), . . . ,x(N)} be the input samples with

weights {v1, . . . ,vN} and the edges E be the set of edges (x(n),x(n′)) with edge weights γn,n′ . To

simplify notation we introduce zero edge weights γn,n′ = 0 for non-existing edges (x(n),x(n′)) /∈ E.

The linear GSFA algorithm differs from the standard version only in the computation of the matrices

C and Ċ, which now take into account the neighbourhood structure (samples, edges, and weights)

specified by the training graph.

The sample covariance matrix CG is defined as:

CG
def
=

1

Q
∑
n

vn(x(n)− x̂)(x(n)− x̂)T =
1

Q
∑
n

(
vnx(n)(x(n))T

)
− x̂x̂T , (12)

where

x̂
def
=

1

Q
∑
n

vnx(n) (13)

is the weighted average of all samples. The derivative second-moment matrix ĊG is defined as:

ĊG
def
=

1

R
∑
n,n′

γn,n′
(
x(n′)−x(n)

)(
x(n′)−x(n)

)T
. (14)

Given these matrices, the computation of W is the same as in the standard algorithm (Sec-

tion 2.3). Thus, a sphering matrix S and a rotation matrix R are computed with

ST CGS = I , and (15)

RT ST ĊGSR = Λ , (16)

where Λ is a diagonal matrix with diagonal elements λ1 ≤ λ2 ≤ ·· · ≤ λJ . Finally the algorithm

returns ∆(y1), . . . ,∆(yJ), W and y(n), where

W = SR , and (17)

y(n) = WT (x(n)− x̂) . (18)
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3.4 Correctness of the Graph-Based SFA Algorithm

We now prove that the GSFA algorithm indeed solves the optimization problem (6–9). This proof

is similar to the optimality proof of the standard SFA algorithm (Wiskott and Sejnowski, 2002). For

simplicity, assume that CG and ĊG have full rank.

The weighted zero mean constraint (7) holds trivially for any W, because

∑
n

vny(n)
(18)
= ∑

n

vnWT (x(n)− x̂)

= WT

(

∑
n

vnx(n)−∑
n′

vn′ x̂

)

(13,11)
= WT (Q x̂−Q x̂) = 0 .

We also find

I = RT IR (since R is a rotation matrix),

(15)
= RT (ST CGS)R ,

(17)
= WT CGW ,

(12)
= WT 1

Q
∑
n

vn(x(n)− x̂)(x(n)− x̂)T W ,

(18)
=

1

Q
∑
n

vny(n)(y(n))T ,

which is equivalent to the normalization constraints (8) and (9).

Now, let us consider the objective function

∆ j
(6)
=

1

R
∑
n,n′

γn,n′
(
y j(n

′)− y j(n)
)2

(14)
= wT

j ĊGw j

(17)
= rT

j ST ĊGSr j

(16)
= λ j ,

where R = (r1, . . . ,rJ). The algorithm finds a rotation matrix R solving (16) and yielding increas-

ing λs. It can be seen (cf. Adali and Haykin, 2010, Section 4.2.3) that this R also achieves the

minimization of ∆ j, for j = 1, . . . ,J, hence, fulfilling (6).

3.5 Probabilistic Interpretation of Training Graphs

In this section, we give an intuition for the relationship between GSFA and standard SFA. Readers

less interested in this theoretical excursion can safely skip it. This section is inspired in part by the

Markov chain introduced by Klampfl and Maass (2010).

Given a training graph, we construct below a Markov chain M for the generation of input data

such that training standard SFA with such data yields the same features as GSFA does with the
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graph. Contrary to the graph introduced by Klampfl and Maass (2010), the formulation here is not

restricted to classification, accounting for any training graph irrespective of its purpose, and there

is one state per sample rather than one state per class. In order for the equivalence of GSFA and

SFA to hold, the vertex weights ṽn and edge weights γ̃n,n′ of the graph must fulfil the following

normalization restrictions:

∑
n

ṽn = 1 , (19)

∑
n′

γ̃n,n′/ṽn = 1 ∀n , (20)

(5)
⇐⇒ ∑

n′

γ̃n′,n/ṽn = 1 ∀n , (21)

∑
n,n′

γ̃n,n′
(20,19)
= 1 . (22)

Restrictions (19) and (22) can always be assumed without loss of generality, because they can be

achieved by a constant scaling of the weights (i.e., ṽn← ṽn/Q, γ̃n,n′← γ̃n,n′/R) without affecting the

outputs generated by GSFA. Restriction (20) is fundamental because it limits the graph connectivity,

and indicates (after multiplying with ṽn) that each vertex weight should be equal to the sum of the

weights of all edges originating from such a vertex.

The Markov chain is then a sequence Z1,Z2,Z3, . . . of random variables that can assume states

that correspond to different input samples. Z1 is drawn from the initial distribution p1, which is

equal to the stationary distribution π, where

πn = p1(n)
def
= Pr(Z1 = x(n))

def
= ṽn , (23)

and the transition probabilities are given by

Pnn′
def
= Pr(Zt+1 = x(n′)|Zt = x(n))

def
= (1− ε)γ̃n,n′/ṽn + εṽn′ =

limε→0

γ̃n,n′/ṽn , (24)

(23)
=⇒ Pr(Zt+1 = x(n′),Zt = x(n)) = (1− ε)γ̃n,n′+ εṽnṽn′ =

limε→0

γ̃n,n′ , (25)

(for Zt stationary) with 0 < ε≪ 1. Due to the ε-term all states of the Markov chain can transition to

all other states including themselves, which makes the Markov chain irreducible and aperiodic, and

therefore ergodic. Thus, the stationary distribution is unique and the Markov chain converges to it.

The normalization restrictions (19), (20), and (22) ensure the normalization of (23), (24), and (25),

respectively.

It is easy to see that π = {ṽn}
N
n=1 is indeed a stationary distribution, since for pt(n) = ṽn

pt+1(n) = Pr(Zt+1 = x(n)) = ∑
n′

Pr(Zt+1 = x(n)|Zt = x(n′))Pr(Zt = x(n′))

(23,24)
= ∑

n′

((1− ε)(γ̃n′,n/ṽn′)+ εṽn) ṽn′

(21,19)
= (1− ε)ṽn + εṽn = ṽn = pt(n) . (26)
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The time average of the input sequence is

µZ
def
= 〈Zt〉t

= 〈Z〉π (since M is ergodic)

(26)
= ∑

n

ṽnx(n)

(13)
= x̂ , (27)

and the covariance matrix is

C
def
= 〈(Zt −µZ)(Zt −µZ)

T 〉t
(27)
= 〈(Z− x̂)(Z− x̂)T 〉π (since M is ergodic)

(26)
= ∑

n

ṽn(x(n)− x̂)(x(n)− x̂)T

(12)
= CG ,

whereas the derivative covariance matrix is

Ċ
def
= 〈ŻtŻ

T
t 〉t

= 〈ŻŻT 〉π (since M is ergodic)

(25)
= ∑

n,n′
((1− ε)γ̃n,n′+ εṽnṽn′)(x(n

′)−x(n))(x(n′)−x(n))T , (28)

where Żt
def
= Zt+1−Zt . Notice that limε→0 Ċ

(28)
= γ̃n,n′(x(n

′)− x(n))(x(n′)− x(n))T (14)
= ĊG. There-

fore, if a graph fulfils the normalization restrictions (19)–(22), GSFA yields the same features as

standard SFA on the sequence generated by the Markov chain, in the limit ε→ 0.

3.6 Construction of Training Graphs

One can, in principle, construct training graphs with arbitrary connections and weights. However,

when the goal is to solve a supervised learning task, the graph created should implicitly integrate

the label information. An appropriate structure of the training graphs depends on whether the goal

is classification or regression. In the next sections, we describe each case separately. We have pre-

viously implemented the proposed training graphs, and we have tested and verified their usefulness

on real-world data (Escalante-B. and Wiskott, 2010; Mohamed and Mahdi, 2010; Stallkamp et al.,

2011; Escalante-B. and Wiskott, 2012).

4. Classification with SFA

In this section, we show how to use GSFA to profit from the label information and solve classifica-

tion tasks more efficiently and accurately than with standard SFA.
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4.1 Clustered Training Graph

To generate features useful for classification, we propose the use of a clustered training graph

presented below (Figure 5). Assume there are S identities/classes, and for each particular identity

s = 1, . . . ,S there are Ns samples xs(n), where n = 1, . . . ,Ns, making a total of N = ∑s Ns samples.

We define the clustered training graph as a graph G = (V,E) with vertices V = {xs(n)}, and edges

E = {(xs(n),xs(n′))} for s = 1, . . . ,S, and n,n′ = 1, . . . ,Ns. Thus all pairs of samples of the same

identity are connected, while samples of different identity are not connected. Node weights are

identical and equal to one, that is, ∀s,n : vs
n = 1. In contrast, edge weights, γs

n,n′ = 1/Ns ∀n,n′,

depend on the cluster size.2 Otherwise identities with a large Ns would be over-represented because

the number of edges in the complete subgraph for identity s grows quadratically with Ns. These

weights directly fulfil the normalization restriction (20). As usual, a trivial scaling of the node and

edge weights suffices to fulfil restrictions (19) and (22), allowing the probabilistic interpretation of

the graph. The optimization problem associated to this graph explicitly demands that samples from

the same object identity should be typically mapped to similar outputs.

Figure 5: Illustration of a clustered training graph used for a classification problem. All samples be-

longing to the same object identity form fully connected subgraphs. Thus, for S identities

there are S complete subgraphs. Self-loops not shown.

4.2 Efficient Learning Using the Clustered Training Graph

At first sight, the large number of edges, ∑s Ns(Ns + 1)/2, seems to introduce a computational

burden. Here we show that this is not the case if one exploits the symmetry of the clustered training

graph. From (12), the sample covariance matrix of this graph using the node weights vs
n = 1 is

(notice the definition of Πs and x̂s):

Cclus
(12)
=

1

Q

(

∑
s

Ns

∑
n=1

xs(n)(xs(n))T

︸ ︷︷ ︸
def
= Πs

−Q
( 1

Q
∑

s

def
= Nsx̂

s

︷ ︸︸ ︷

Ns

∑
n=1

xs(n)

︸ ︷︷ ︸

(13)
= x̂

)( 1

Q
∑

s

Ns

∑
n=1

xs(n)
)T

)

, (29)

=
1

Q

(

∑
s

Πs−Qx̂(x̂)T
)

, (30)

2. These node and edge weights assume that the classification of all samples is equally important. In the alternative case

that classification over every cluster is equally important, one can set vs
n = 1/Ns and ∀n,n′ : γs

n,n′ = (1/Ns)
2 instead.
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where Q
(11)
= ∑s ∑

Ns

n=1 1 = ∑s Ns = N.

From (14), the derivative covariance matrix of the clustered training graph using edge weights

γs
n,n′ = 1/Ns is:

Ċclus
(14)
=

1

R
∑

s

1

Ns

Ns

∑
n,n′=1

(xs(n′)−xs(n))(xs(n′)−xs(n))T , (31)

=
1

R
∑

s

1

Ns

Ns

∑
n,n′=1

(

xs(n′)(xs(n′))T +xs(n)(xs(n))T −xs(n′)(xs(n))T −xs(n)(xs(n′))T
)

,

(29)
=

1

R
∑

s

1

Ns

(

Ns

Ns

∑
n=1

xs(n)(xs(n))T +Ns

Ns

∑
n′=1

xs(n′)(xs(n′))T −2Nsx̂
s(Nsx̂

s)T

)

,

(29)
=

2

R
∑

s

(
Πs−Nsx̂

s(x̂s)T
)
, (32)

where R
(10)
= ∑s ∑n,n′ γ

s
n,n′ = ∑s ∑n,n′ 1/Ns = ∑s(Ns)

2/Ns = ∑s Ns = N.

The complexity of computing Cclus using (29) or (30) is the same, namely O(∑s Ns) (vector)

operations. However, the complexity of computing Ċclus can be reduced from O(∑s N2
s ) operations

directly using (31) to O(∑s Ns) operations using (32). This algebraic simplification allows us to

compute Ċclus with a complexity linear in N (and Ns), which constitutes an important speedup

since, depending on the application, Ns might be larger than 100 and sometimes even Ns > 1000.

Interestingly, one can show that the features learned by GSFA on this graph are equivalent to

those learned by FDA (see Section 7).

4.3 Supervised Step for Classification Problems

Consistent with FDA, the theory of SFA using an unrestricted function space (optimal free re-

sponses) predicts that, for this type of problem, the first S−1 slow features extracted are orthogonal

step functions, and are piece-wise constant for samples from the same identity (Berkes, 2005a).

This closely approximates what has been observed empirically, which can be informally described

as features that are approximately constant for samples of the same identity, with moderate noise.

When the features extracted are close to the theoretical predictions (e.g., their ∆-values are

small), their structure is simple enough that one can use even a modest supervised step after SFA,

such as a nearest centroid or a Gaussian classifier (in which a Gaussian distribution is fitted to each

class) on S−1 slow features or less. We suggest the use of a Gaussian classifier because in practice

we have obtained better robustness when enough training data is available. While a more powerful

classification method, such as an SVM, might also be used, we have found only a small increase in

performance at the cost of longer training times.

5. Regression with SFA

The objective in regression problems is to learn a mapping from samples to labels providing the

best estimation as measured by a loss function, for example, the root mean squared error (RMSE)

between the estimated labels, ℓ̂, and their ground-truth values, ℓ. We assume here that the loss

function is an increasing function of |ℓ̂− ℓ| (e.g., contrary to periodic functions useful to compare

angular values, or arbitrary functions of ℓ̂ and ℓ).
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Regression problems can be address with SFA through multiple methods. The fundamental idea

is to treat labels as the value of a hidden slow parameter that we want to learn. In general, SFA

will not extract the label values exactly. However, optimization for slowness implies that samples

with similar label values are typically mapped to similar output values. After SFA reduces the

dimensionality of the data, a complementary explicit regression step on a few features solves the

original regression problem.

In this section, we propose four SFA-based methods that explicitly use available labels. The first

method is called sample reordering and employs standard SFA, whereas the remaining ones employ

GSFA with three different training graphs called sliding window, serial, and mixed (Sections 5.1–

5.4). The selection of the explicit regression step for post-processing is discussed in Section 5.5.

5.1 Sample Reordering

Let X′ = (x′(1), . . . ,x′(N)) be a sequence of N data samples with labels ℓ′ = (ℓ′1, . . . , ℓ
′
N). The data

is reordered by means of a permutation π(·) in such a way that the labels become monotonically

increasing. The reordered samples are X= (x(1), . . . ,x(N)), where x(n) = x′(π(n)), and their labels

are ℓ = (ℓ1, . . . , ℓN) with ℓl ≤ ℓl+1. Afterwards the sequence X is used to train standard SFA using

the regular single-sequence method (Figure 6).

Figure 6: Sample reordering approach. Standard SFA is trained with a reordered sample sequence,

in which the hidden labels are increasing.

Since the ordered label values only increase, they change very slowly and should be found by

SFA (or actually some increasing/decreasing function of the labels that also fulfils the normalization

conditions). Clearly, SFA could only extract this information if the samples indeed intrinsically

contain information about the labels such that it is possible to extract the labels from them. Due to

limitations of the feature space considered, insufficient data, noise, etc., one typically obtains noisy

and distorted versions of the predicted signals.

In this basic approach, the computation of the covariance matrices takes O(N) operations. Since

this method only requires standard SFA and is the most straightforward to implement, we recom-

mend its use for first experiments. If more robust outputs are desired, the methods below based on

GSFA are more appropriate.
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5.2 Sliding Window Training Graph

This is an improvement over the method above in which GSFA facilitates the consideration of

more connections. Starting from the reordered sequence X as defined above, a training graph is

constructed, in which each sample x(n) is connected to its d closest samples to the left and to

the right in the order given by X. Thus, x(n) is connected to the samples x(n−d), . . . ,x(n−1),
x(n+1), . . . ,x(n+d) (Figure 7.a). In this graph, the vertex weights are constant, that is, vn = 1,

and the edge weights typically depend on the distance of the samples involved, that is, ∀n,n′ : γn,n′ =
f (|n′−n|), for some function f (·) that specifies the shape of a “weight window”. The simplest case

is a square weight window defined by γn,n′ = 1 if |n′− n| ≤ d and γn,n′ = 0 otherwise. For the

experiments in this article, we employ a mirrored sliding window with edge weights

γn,n′ =







2, if n+n′ ≤ d +1 or n+n′ ≥ 2N−1 ,

1, if |n′−n| ≤ d, n+n′ > d +1 and n+n′ < 2N−1 ,

0, otherwise .

These weights compensate the limited connectivity of the few first and last samples (which are

connected by d to 2d−1 edges) in contrast to intermediate samples (connected by 2d edges). Pre-

liminary experiments suggest that such compensation slightly improves the quality of the extracted

features, as explained below.

Figure 7: (a) A mirrored square sliding window training graph with a half-width of d = 2. Each

vertex is thus adjacent to at most 4 other vertices. (b) Illustration of the edge weights of

an intermediate node x(n) for an arbitrary window half-width d. (c) Edge weights for a

node x(n) close to the left extreme (n < d). Notice that the sum of the edge weights is

also approximately 2d for extreme nodes.

GSFA is guaranteed to find functions that minimize (6) within the function space considered.

However, whether such a solution is suitable for regression largely depends on how one has defined

the weights of the training graph. For instance, if there is a sample with a large node weight that

has only weak connections to the other samples, an optimal but undesired solution might assign a

high positive value to that single sample and negative small values to all other samples. This can

satisfy the zero mean and unit variance constraint while yielding a small ∆-value, because the large

differences in output value only occur at the weak connections. Thus, this is a good solution in terms

of the optimization problem but not a good one to solve the regression problem at hand, because

the samples with small values are hard to discriminate. We refer to such solutions as pathological.

Pathological solutions have certain similarities to the features obtained for classification, which are

approximately constant for each cluster (class) but discontinuous among them.
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The occurrence of pathological solutions depends on the concrete data samples, feature space,

and training graph. A necessary condition is that the graph is connected because, as discussed in

Section 4, for disconnected graphs GSFA has a strong tendency to produce a representation suitable

for classification rather than regression. After various experiments, we have found useful to enforce

the normalization restriction (20) at least approximately (after node and edge weights have been

normalized). This ensures that the samples are connected sufficiently strongly to the other ones,

relative to their own node weight. Of course, one should not resort to self-loops γn,n 6= 0 to trivially

fulfil the restriction.

The improved continuity of the features appears to also benefit performance after the supervised

step. This is the reason why we make the node weights of the first and last groups of samples in the

serial training graph weaker, the intra-group connections of the first and last groups of samples in

the mixed graph stronger, and introduced mirroring for the square sliding window graph.

In the sliding window training graph with arbitrary window, the computation of CG and ĊG

requires O(dN) operations. If the window is square (mirrored or not), the computation can be

improved to O(N) operations by using accumulators for sums and products and reusing intermediate

results. While larger d implies more connections, connecting too distant samples is undesired. The

selection of d is non-crucial and done empirically.

5.3 Serial Training Graph

The serial training graph is similar to the clustered training graph used for classification in terms of

construction and efficiency. It results from discretizing the original labels ℓ into a relatively small

set of discrete labels of size L, namely {ℓ1, . . . , ℓL}, where ℓ1 < ℓ2 < · · ·< ℓL. As described below,

faster training is achieved if L is small, for example, 3≤ L≪ N.

In this graph, the vertices are grouped according to their discrete labels. Every sample in the

group with label ℓl is connected to every sample in the groups with label ℓl+1 and ℓl−1 (except the

samples in the first and last groups, which can only be connected to one neighbouring group). The

only existing connections are inter-group connections, no intra-group connections are present.

The samples used for training are denoted by xl(n), where the index l (1 ≤ l ≤ L) denotes the

group (discrete label) and n (1 ≤ n ≤ Nl) denotes the sample within such a group. For simplicity,

we assume here that all groups have the same number Ng of samples: ∀l : Nl = Ng. Thus the total

number of samples is N = LNg. The vertex weight of xl(n) is denoted by vl
n, where vl

n = 1 for

l ∈ {1,L} and vl
n = 2 for 1 < l < L. The edge weight of the edge (xl(n),xl+1(n′)) is denoted by

γ
l,l+1
n,n′ , and we use the same edge weight for all connections: ∀n,n′, l : γ

l,l+1
n,n′ = 1. Thus, all edges

have a weight of 1, and all samples are assigned a weight of 2 except for the samples in the first and

last groups, which have a weight of 1 (Figure 8). The reason for the different weights in the first and

last groups is to improve feature quality by enforcing the normalization restriction (20) (after node

and edge weight normalization). Notice that since any two vertices of the same group are adjacent

to exactly the same neighbours, they are likely to be mapped to similar outputs by GSFA.

The sum of vertex weights is Q
(11)
= Ng + 2Ng(L− 2)+Ng = 2Ng(L− 1) and the sum of edge

weights is R
(10)
= (L−1)(Ng)

2, which is also the number of connections considered. Unsurprisingly,

the structure of the graph can be exploited to train GSFA efficiently. Similarly to the clustered

training graph, define the average of the samples from the group l as x̂l def
= ∑n xl(n)/Ng, the sum of

the products of samples from group l as Πl = ∑n xl(n)(xl(n))T , and the weighted sample average
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Figure 8: Illustration of a serial training graph with L discrete labels. Even though the original

labels of two samples might differ, they will be grouped together if they have the same

discrete label. In the figure, a bigger node represents a sample with a larger weight, and

the ovals represent the groups.

as:

x̂
def
=

1

Q
∑
n

(

x1(n)+xL(n)+2
L−1

∑
l=2

xl(n)

)

=
1

2(L−1)

(

x̂1 + x̂L +2
L−1

∑
l=2

x̂l

)

. (33)

From (12), the sample covariance matrix accounting for the weights vl
n of the serial training

graph is:

Cser
(12,33)
=

1

Q

(

∑
n

x1(n)(x1(n))T +2
L−1

∑
l=2

∑
n

xl(n)(xl(n))T +∑
n

xL(n)(xL(n))T −Qx̂(x̂)T

)

=
1

Q

(

Π1 +ΠL +2
L−1

∑
l=2

Πl−Qx̂′(x̂′)T

)

.

From (14), the matrix ĊG using the edges γ
l,l+1
n,n′ defined above is:

Ċser
(14)
=

1

R

L−1

∑
l=1

∑
n,n′

(xl+1(n′)−xl(n))(xl+1(n′)−xl(n))T (34)

=
1

R

L−1

∑
l=1

∑
n,n′

(

xl+1(n′)(xl+1(n′))T +xl(n)(xl(n))T −xl(n)(xl+1(n′))T −xl+1(n′)(xl(n))T
)

=
1

R

L−1

∑
l=1

(

∑
n′

(
Πl+1 +Πl

)
−
(

∑
n

xl(n)
)(

∑
n′

xl+1(n′)
)T
−
(

∑
n′

xl+1(n′)
)(

∑
n

xl(n)
)T
)

=
Ng

R

L−1

∑
l=1

(

Πl+1 +Πl−Ngx̂l(x̂l+1)T −Ngx̂l+1(x̂l)T
)

. (35)

By using (35) instead of (34), the slowest step in the computation of the covariance matrices,

which is the computation of Ċser, can be reduced in complexity from O(L(Ng)
2) to only O(N)

operations (N = LNg), which is of the same order as the computation of Cser. Thus, for the same

number of samples N, we obtain a larger speed-up for larger group sizes.
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Discretization introduces some type of quantization error. While a large number of discrete

labels L results in a smaller quantization error, having too many of them is undesired because fewer

edges would be considered, which would increase the number of samples needed to reduce the

overall error. For example, in the extreme case of Ng = 1 and L = N, this method does not bring any

benefit because it is almost equivalent to the sample reordering approach (differing only due to the

smaller weights of the first and last samples).

5.4 Mixed Training Graph

The serial training graph does not have intra-group connections, and therefore the output differences

of samples with the same label are not explicitly being minimized. One argument against intra-

group connections is that if two vertices are adjacent to the same set of vertices, their corresponding

samples are already likely to be mapped to similar outputs. However, in some cases, particularly

for small numbers of training samples, additional intra-group connections might indeed improve

robustness. We thus conceived the mixed training graph (Figure 9), which is a combination of the

serial and clustered training graph and fulfils the consistency restriction (20). In the mixed training

graph, all nodes and edges have a weight of 1, except for the intra-group edges in the first and last

groups, which have a weight of 2. As expected, the computation of the covariance matrices can also

be done efficiently for this training graph (details omitted).

Figure 9: Illustration of the mixed training graph. Samples having the same label are fully con-

nected (intra-group connections, represented with vertical edges) and all samples of ad-

jacent groups are connected (inter-group connections). All vertex and edge weights are

equal to 1 except for the intra-group edge weights of the first and last groups, which are

equal to 2 as represented by thick lines.

5.5 Supervised Step for Regression Problems

There are at least three approaches to implement the supervised step on top of SFA to learn a

mapping from slow features to the labels. The first one is to use a method such as linear or nonlinear

regression. The second one is to discretize the original labels to a small discrete set {ℓ̃1, . . . , ℓ̃L̃}
(which might be different from the discrete set used by the training graphs). The discrete labels are

then treated as classes, and a classifier is trained to predict them from the slow features. One can

then output the predicted class as the estimated label. Of course, an error due to the discretization

of the labels is unavoidable. The third approach improves on the second one by using a classifier

that also estimates class membership probabilities. Let P(Cℓ̃l
|y) be the estimated class probability
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that the input sample x with slow features y = g(x) belongs to the group with (discretized) label ℓ̃l .

Class probabilities can be used to provide a more robust estimation of a soft (continuous) label ℓ,
better suited to the particular loss function. For instance, one can use

ℓ
def
=

L̃

∑
l=1

ℓ̃l ·P(Cℓ̃l
|y) (36)

if the loss function is the RMSE, where the slow features y might be extracted using any of the four

SFA-based methods for regression above. Other loss functions, such as the Mean Average Error

(MAE), can be addressed in a similar way.

We have tested these three approaches in combination with supervised algorithms such as lin-

ear regression, and classifiers such as nearest neighbour, nearest centroid, Gaussian classifier, and

SVMs. We recommend using the soft labels computed from the class probabilities estimated by a

Gaussian classifier because in most of our experiments this method has provided best performance

and robustness. Of course, other classifiers providing class probabilities could also be used.

6. Experimental Evaluation of the Methods Proposed

In this section, we evaluate the performance of the supervised learning methods based on SFA pre-

sented above. We consider two concrete image analysis problems using real photograph databases,

the first one for classification and the second one for regression.

6.1 Classification

For classification, we have proposed the clustered training graph. As mentioned in Section 4.2,

when this graph is used, the outputs of GSFA are equivalent to those of FDA. Since FDA has been

used and evaluated exhaustively, here we only verify that our implementation of GSFA generates

the expected results when trained with such a graph.

The German Traffic Sign Recognition Benchmark (Stallkamp et al., 2011) was chosen for the

experimental test. This was a competition with the goal of classifying photographs of 43 different

traffic signs taken on German roads under uncontrolled conditions with variations in lighting, sign

size, and distance. No detection step was necessary because the true position of the signs was

included as annotations, making this a pure classification task and ideal for our test. We participated

in the online version of the competition, where 26,640 labeled images were provided for training

and 12,569 images without label for evaluation (classification rate was computed by the organisers,

who had ground-truth data).

Two-layer nonlinear cascaded (non-hierarchical) SFA was employed. To achieve good perfor-

mance, the choice of the nonlinear expansion function is crucial. If it is too simple (e.g., low-

dimensional), it does not solve the problem; if it is too complex (e.g., high-dimensional), it might

overfit to the training data and not generalize well to test data. In all the experiments done here, a

compact expansion that only doubles the data dimension was employed, xT 7→ xT ,(|x|0.8)T , where

the absolute value and exponent 0.8 are computed component-wise. We refer to this expansion as

0.8Exp. Previously, Escalante-B. and Wiskott (2011) have reported that it offers good generaliza-

tion and competitive performance in SFA networks, presumably due to its robustness to outliers and

certain properties regarding the approximation of higher frequency harmonics.
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Our method, complemented by a Gaussian classifier on 42 slow features, achieved a recognition

rate of 96.4% on test data.3 This, as expected, was similar to the reported performance of various

methods based on FDA participating in the same competition. For comparison, human performance

was 98.81%, and a convolutional neural network gave top performance with a 98.98% recognition

rate.

6.2 Regression

The remaining training graphs have all been designed for regression problems and were evaluated

with the problem of estimating the horizontal position of a face in frontal face photographs, an

important regression problem because it can be used as a component of a face detection system,

as we proposed previously (see Mohamed and Mahdi, 2010). In our system, face detection is

decomposed into the problems of the estimation of the horizontal position of a face, its vertical

position, and its size. Afterwards, face detection is refined by locating each eye more accurately

with the same approach applied now to the eyes instead of to the face centers. Below, we explain

this regression problem, the algorithms evaluated, and the results in more detail.

6.2.1 PROBLEM AND DATA SET DESCRIPTION

To increase image variability and improve generalization, face images from several databases were

used, namely 1,521 images from BioID (Jesorsky et al., 2001), 9,030 from CAS-PEAL (Gao et al.,

2008), 5,479 from Caltech (Fink et al.), 9,113 from FaceTracer (Kumar et al., 2008), and 39,328

from FRGC (Phillips et al., 2005) making a total of 64,471 images, which were automatically pre-

processed through a pose-normalization and a pose-reintroduction step. In the first step, each image

was converted to greyscale and pose-normalized using annotated facial points so that the face is cen-

tered,4 has a fixed eye-mouth-triangle area, and the resulting pose-normalized image has a resolution

of 256×192 pixels. In the second step, horizontal and vertical displacements were re-introduced,

as well as scalings, so that the center of the face deviates horizontally at most ±45 pixels from the

center of the image. The vertical position and the size of the face were randomized, so that ver-

tically the face center deviates at most ±20 pixels, and the smallest faces are half the size of the

largest faces (a ratio of at most 1 to 4 in area). Interpolation (e.g., needed for scaling and sub-pixel

displacements) was done using bicubic interpolation. At last, the images were cropped to 128×128

pixels.

Given a pre-processed input image, as described above, with a face at position (x,y) w.r.t. the

image center and size z, the regression problem is then to estimate the x-coordinate of the center

of the face. The range of the variables x,y and z is bounded to a box, so that one does not have

to consider extremely small faces, for example. To assure a robust estimation for new images,

invariance to a large number of factors is needed, including the vertical position of the face, its size,

the expression and identity of the subject, his or her accessories, clothing, hair style, the lighting

conditions, and the background.

3. Interestingly, GSFA did not provide best performance directly on the pixel data, but on precomputed HOG features.

Ideally, pre-processing is not needed if SFA has an unrestricted feature space. In practice, knowing a good low-

dimensional set of features for the particular data is beneficial. Applying SFA to such features, as commonly done

with other machine learning algorithms, can reduce overfitting.

4. The center of a face was defined here as 1
4 LE+ 1

4 RE+ 1
2 M, where LE, RE and M are the coordinates of the centers

of the left eye, right eye and mouth, respectively. Thus, the face center is the midpoint between the mouth and the

midpoint of the eyes.
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Figure 10: Example of a pose-normalized image (left), and various images after pose was reintro-

duced illustrating the final range of vertical and horizontal displacements, as well as the

face sizes (right).

The pose-normalized images were randomly split in three data sets of 30,000, 20,000 and 9,000

images. The first data set was used to train the dimensionality reduction method, the second one

to train the supervised post-processing step, and the last one for testing. To further exploit the

images available, the pose-normalized images of each data set were duplicated, resulting in two

pose-reintroduced images per input image, that is, a single input image exclusively belongs to one

of the three data sets, appearing twice in it with two different poses. Hence, the final size of the data

sets is 60,000, 40,000 and 18,000 pre-processed images, respectively.

6.2.2 DIMENSIONALITY-REDUCTION METHODS EVALUATED

The resolution of the images and their number make it less practical to directly apply SFA and the

majority of supervised methods, such as an SVM, and unsupervised methods, such as PCA/ICA/LLE,

to the raw images. We circumvent this by using three efficient dimensionality reduction methods,

and by applying supervised processing on the lower-dimensional features extracted. The first two

methods are efficient hierarchical implementations of SFA and GSFA (referred to as HSFA without

distinction). The nodes in the HSFA networks first expand the data using the 0.8Exp expansion

function (see Section 6.1) and then apply SFA/GSFA to it, except for the nodes in the first layer in

which additionally PCA is applied before the expansion preserving 13 out of 16 principal compo-

nents. For comparison, we use a third method, a hierarchical implementation of PCA (HPCA), in

which all nodes do pure PCA. The structure of the hierarchies for the HSFA and PCA networks is

described in Table 1. In contrast to other works (e.g., Franzius et al., 2007), weight-sharing was not

used at all, improving feature specificity at the lowest layers. The input to the nodes (fan-in) comes

mostly from two nodes in the previous layer. This small fan-in reduces the computational cost be-

cause the input dimensionality is minimized. This also results in networks with a large number of

layers potentiating the accumulation of non-linearity across the network. Non-overlapping receptive

fields were used because in previous experiments with similar data they showed good performance

at a smaller computational cost.

The following dimensionality-reduction methods were evaluated (one based on SFA, four based

on GSFA, and one based on PCA).

• SFA using sample reordering (reordering).

• GSFA with a mirrored sliding window graph with d = 32 (MSW32).
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Layer size
node output dim. output dim.

fan-in per HSFA node per HPCA node

0 (input image) 128×128 pixels — — —

1 32×32 nodes 4×4 13 13

2 16×32 nodes 2×1 20 20

3 16×16 nodes 1×2 35 35

4 8×16 nodes 2×1 60 60

5 8×8 nodes 1×2 60 100

6 4×8 nodes 2×1 60 120

7 4×4 nodes 1×2 60 120

8 2×4 nodes 2×1 60 120

9 2×2 nodes 1×2 60 120

10 1×2 nodes 2×1 60 120

11 (top node) 1×1 nodes 1×2 60 120

Table 1: Structure of the SFA and PCA deep hierarchical networks. The networks only differ in

the type of processing done by each node and in the number of features preserved. For

HSFA an upper bound of 60 features was set, whereas for HPCA at most 120 features

were preserved. A node with a fan-in of a×b is driven by a rectangular array of nodes (or

pixels for the first layer) with such a shape, located in the preceding layer.

• GSFA with a mirrored sliding window graph with d = 64 (MSW64).

• GSFA with a serial training graph with L = 50 groups of Ng = 600 images (serial).

• GSFA with a mixed graph and the same number of groups and images (mixed).

• A hierarchical implementation of PCA (HPCA).

It is impossible to compare GSFA against all the dimensionality reduction and supervised learn-

ing algorithms available, and therefore we made a small selection thereof. We chose HPCA for

efficiency reasons and because it is likely to be a good dimensionality reduction algorithm for the

problem at hand since principal components code well the coarse structure of the image including

the silhouette of the subjects, allowing for a good estimation of the position of the face. Thus, we

believe that HPCA (combined with various supervised algorithms) is a fair point of comparison,

and a good representative among generic machine learning algorithms for this problem. For the

data employed, 120 HPCA features at the top node explain 88% of the data variance, suggesting

that HPCA is indeed a good approximation to PCA in this case.

The evolution across the hierarchical network of the two slowest features extracted by HSFA is

illustrated in Figure 11.

6.2.3 SUPERVISED POST-PROCESSING ALGORITHMS CONSIDERED

On top of the dimensionality reduction methods, we employed the following supervised post-

processing algorithms.
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Figure 11: Evolution of the slow features extracted from test data after layers 1, 4, 7 and 11 of a

GSFA network trained with the serial training graph. A central node was selected from

each layer, and three plots are provided, that is, y2 vs y1, n vs y1, and y2 vs n. Hierarchical

processing results in progressively slower features as one moves from the first to the top

layer. The solid line in the plots of the top node represents the optimal free responses,

which are the slowest possible features one can obtain using an unrestricted mapping,

as predicted theoretically (Wiskott, 2003). Notice how the features evolve from being

mostly unstructured in the first layer to being similar to the free responses at the top

node, indicating success at finding the hidden parameter changing most slowly for these

data (i.e., the horizontal position of the faces).

• A nearest centroid classifier (NCC).

• Labels estimated using (36) and the class membership probabilities given by a Gaussian clas-

sifier (Soft GC).

• A multi-class (one-versus-one) SVM (Chang and Lin, 2011) with a Gaussian radial basis

kernel, and grid search for model selection.

• Linear regression (LR).
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To train the classifiers, the images of the second data set were grouped in 50 equally large classes

according to their horizontal displacement x, −45≤ x≤ 45.

6.2.4 RESULTS

We evaluated all the combinations of a dimensionality reduction method (reordering, MSW32,

MSW64, serial, mixed and HPCA) and a supervised post-processing algorithm (NCC, Soft GC,

SVM, LR). Their performance was measured on test data and reported in terms of the RMSE. The

labels estimated depend on three parameters: the number of features passed to the supervised post-

processing algorithm, and the parameters C and γ in the case of the SVM. These parameters were

determined for each combination of algorithms using a single trial, but the RMSEs reported here

were averaged over 5 trials.

The results are presented in Table 2, and analyzed focusing on four aspects: the dimensionality-

reduction method, the number of features used, the supervised methods, and the training graphs.

For any choice of the post-processing algorithm and training graph, GSFA resulted in an RMSE 5%

to 13% smaller than when using the basic reordering of samples employing standard SFA. In turn,

reordering resulted in an RMSE at least 10% better for this data set than when using HPCA.

Dim. reduction NCC # of Soft GC # of SVM # of LR # of

method (RMSE) feat. (RMSE) feat. (RMSE) feat. (RMSE) feat.

Reordering/SFA 6.16 6 5.63 4 6.00 14 10.23 60

MSW32 (GSFA) 5.78 5 5.25 4 5.52 18 9.74 60

MSW64 (GSFA) 5.69 5 5.15 4 5.38 18 9.69 60

Serial (GSFA) 5.58 4 5.03 5 5.23 15 9.68 60

Mixed (GSFA) 5.63 4 5.12 4 5.40 19 9.54 60

HPCA 29.68 118 6.17 54 8.09 50 19.24 120

Table 2: Performance (RMSE) of the dimensionality reduction algorithms measured in pixels in

combination with various supervised algorithms for the post-processing step. The RMSE

at chance level is 25.98 pixels. Each entry reports the best performance achievable using a

different number of features and parameters in the post-processing step. Largest standard

deviation of 0.21 pixels. Clearly, linear regression benefited from all the SFA and PCA

features available.

Taking a look at the number of features used by each supervised post-processing algorithm, one

can observe that considerably fewer HSFA-features are used than HPCA-features (e.g., 5 vs. 54

for Soft GC). This can be explained because PCA is sensitive to many factors that are irrelevant

to solve the regression problem, such as the vertical position of the face, its scale, the background,

lighting, etc. Thus, the information that encodes the horizontal position of a face is mixed with other

information and distributed over many principal components, whereas it is more concentrated in the

slowest components of SFA.

If one focuses on the post-processing methods, one can observe that linear regression performed

poorly confirming that a linear supervised step is too weak, particularly when the dimensionality

reduction is also linear (e.g., HPCA). The nearest centroid classifier did modestly for HSFA, but
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even worse than the chance level for HPCA. The SVMs were consistently better, but the error can

be further reduced by 4% to 23% by using Soft GC, the soft labels derived from the Gaussian

classifier.

Regarding the training graphs, we expected that the sliding window graphs, MSW32 and MSW64,

would be more accurate than the serial and mixed graphs, even when using a square window, be-

cause the labels are not discretized. Surprisingly, the mixed and serial graphs were the most accurate

ones. This might be explained in part by the larger number of connections in these graphs. Still,

MSW32 and MSW64 were better than the reordering approach, the wider window being superior.

The RMSE of the serial graph was smaller than the one of the mixed graph by less than 2% (for Soft

GC), making it uncertain for statistical reasons which one of these graphs is better for this problem.

A larger number of trials, or even better, a more detailed mathematical analysis of the graphs might

be necessary to determine which one is better.

7. Discussion

In this paper, we propose the graph-based SFA (GSFA) optimization problem, an extension of the

standard SFA optimization problem that takes into account the information contained in a structure

called training graph, in which the vertices are the training samples and the edges represent connec-

tions between samples. Edge weights allow the specification of desired output similarities and can

be derived from label or class information. The GSFA optimization problem generalizes the notion

of slowness defined originally for a plain sequence of samples to such a graph.

We also propose the GSFA algorithm, an implicitly supervised extension of the (unsupervised)

SFA algorithm, and prove that GSFA solves the new optimization problem in the function space

considered. The main goal of GSFA is to solve supervised learning problems by reducing the

dimensionality of the data to a few very label-predictive features.

We call GSFA implicitly supervised because the labels themselves are never provided to it, but

only the training graphs, which encode the labels through their structure. While the construction

of the graph is a supervised operation, GSFA works in an unsupervised fashion on structured data.

Hence, GSFA does not search for a fit to the labels explicitly but instead fully concentrates on the

generation of slow features according to the topology defined by the graph.

Several training graphs for classification or regression are introduced in this paper. We have

designed them aiming at a balance between speed and accuracy. These graphs offer a significant

advantage in terms of speed, for example, over other similarity matrices typically used with LPP.

Conceptually, such a speed-up can be traced back to two factors that originate from the highly reg-

ular structure of the graphs (Sections 4 and 5). First, determining the edges and edge weights is a

trivial operation because they are derived from the labels in a simple manner. In contrast, this op-

eration can be quite expensive if the connections are computed using nearest neighbour algorithms.

Second, as we have shown, linear algebra can be used to optimize the computation of Ċ, which is

needed during the training phase. The resulting complexity for training is linear in the number of

samples, even though the number of connections considered is quadratic. The experimental results

demonstrate that the larger number of connections considered by GSFA indeed provides a more

robust learning than standard SFA, making it superior to SFA in supervised learning settings.

When solving a concrete supervised learning problem, the features extracted by unsupervised

dimensionality reduction algorithms are often suboptimal. For instance, PCA does not yield good

features for age estimation from adult face photographs because features revealing age (e.g., skin
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textures) have higher spatial frequencies and do not belong to the main principal components. Su-

pervised dimensionality reduction algorithms, including GSFA, are specially promising when one

does not know a good set of features for the particular data and problem at hand, and one wants to

improve performance by generating features adapted to the specific data and labels.

One central idea of this paper, shown in Figure 1 (left), is the following. If one has a large

number of high-dimensional labeled data, supervised learning algorithms can often not be applied

due to high computational requirements. In such cases we suggest to transform the labeled data to

structured data, where the label information is implicitly encoded in the connections between data

points. Then, unsupervised learning algorithms, such as SFA, or its implicitly supervised extension

GSFA, can be used. This permits hierarchical processing for dimensionality reduction, an operation

that is frequently more difficult with supervised learning algorithms. The resulting low-dimensional

data has an intrinsic structure that reflects the graph topology. These data can then be transformed

back to labeled data by adding the labels, and standard supervised learning algorithms can be applied

to solve the original supervised learning problem.

7.1 Related Optimization Problems and Algorithms

Recently, Böhmer et al. (2012) introduced regularized sparse kernel SFA. The algorithm was applied

to solve a classification problem by reducing the data dimensionality. In the discussion section, var-

ious extensions similar to the GSFA optimization problem were briefly presented without empirical

evaluation. For classification, the authors propose an objective function equivalent to (6), with edge

weights γn,n′ = δcncn′
, where cn and cn′ are the classes of the respective samples, and δcncn′

is the Kro-

necker delta. If all classes C1, . . . ,CS are equally represented by Ns samples, such edge weights are

equivalent to those specified by the clustered graph. However, if Ns is not the same for all classes,

the binary edge weights (either 1 or 0, as given by the Kronecker delta) are less appropriate in our

view because larger classes are overrepresented by the quadratic number of edges Ns(Ns +1)/2 for

class s. The authors also consider transitions with variable weights. For this purpose, they use an

importance measure p(xt+1,xt)≥ 0 with high values for transitions within the desired subspace and

propose the objective function

min s′(yi)
def
=

1

n−1

n−1

∑
t=1

(yi(t +1)− yi(t))
2

p(xt+1,xt)
,

with yi(t)
def
= φi(x(t)). This accounts for arbitrary edge weights γn,n+1 in a linear graph, which could

be easily generalized to arbitrary graphs. It is not clear to us why the importance measure p has been

introduced as a quotient instead of as a factor. The authors also propose an importance measure q(x)
for the samples, which plays exactly the same role as the node weights {vn}n. The unit variance and

decorrelation constraints are adapted to account for q(x) and become fully equivalent to constraints

(8–9) of GSFA. The remaining zero-mean constraint was not explicitly adapted.

Zhang et al. (2009) propose a framework for the systematic analysis of several dimensionality

reduction algorithms, such as LLE, LE, LPP, PCA and LDA, to name just a few. Such a framework

is useful for comparing linear SFA and GSFA to other algorithms from a mathematical point of

view, regardless of their typical usage and application areas.

The authors show that LPP is a linearization of LE. In turn, linear SFA can be seen as a spe-

cial case of LPP, where the weight matrix has a special form (see Sprekeler, 2011). Consider the
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following LPP optimization problem (He and Niyogi, 2003):

arg min
y

yT Dy=1

1

2
∑
i, j

(yi− y j)
2Wi j = yT Ly ,

where W is a symmetric weight matrix, D is a diagonal matrix with diagonal Dii
def
= ∑ j Wi j, L

def
= D−

W is the Laplacian matrix, and the output features y
def
= aT x are linear in the input. The equivalence

to linear SFA is achieved if one sets W as Wi j =
1
2
(δi,1δ j,1+δi,Nδ j,N +δ j,i+1+δi, j+1). The objective

function then becomes the same as in SFA, and D becomes the identity matrix, yielding the same

restrictions as in SFA. The zero-mean constraint is implicit and achieved by discarding a constant

solution with eigenvalue zero. Notice that leaving out the terms δi,1δ j,1 + δi,Nδ j,N results in D =
diag(1/2,1,1, . . . ,1,1/2) being slightly different from the identity and the equivalence would only

be approximate.

Sprekeler (2011) studied the relation between SFA and LE and proposed the combination of

the neighbourhood relation used by LE and the functional nature of SFA. The resulting algorithm,

called generalized SFA, computes a functional approximation to LE with a feature space spanned

by a set of basis functions. Linear generalized SFA is equivalent to linear LPP (Rehn, 2013), and in

general it can be regarded as LPP on the data expanded by such basis functions.

Also the strong connection between LPP and linear GSFA is evident from the optimization

problem above. In this case, the elements Dii play the role of the node weights vi, and the elements

Wi j play the role of the edge weights γi, j. One difference between LPP and GSFA is that the addi-

tional normalization factors Q and R of GSFA provide invariance to the scale of the edge and node

weights specifying a particular feature and objective function normalization. A second difference

is that for GSFA the node weights, fundamental for feature normalization, can be chosen indepen-

dently from the edge weights (unless one explicitly enforces (20)), whereas for LPP the diagonal

elements Dii
def
= ∑ j Wi j are derived from the edge weights.

We show now how one can easily compute LPP features using GSFA. Given a similarity matrix

Wi j and diagonal matrix D with diagonal elements Dii
def
= ∑ j Wi j, one solves a GSFA problem defined

over a training graph with the same samples, edge weights γi, j =Wi j, and node weights vi =Dii. The

optimization problem solved by GSFA is then equivalent to the LPP problem, except for the scale of

the objective function and the features. If the features extracted from a particular sample are denoted

as yGSFA, one can match the feature scales of LPP simply by applying a scaling y = Q−1/2yGSFA,

where Q
(11)
= ∑i vi.

It is also possible to use LPP to compute GSFA features. Given a training graph with edge

weights γi, j and node weights vi, we can define the following similarity matrix:

Wi j =

{

2γi, j/R, for i 6= j, with R as defined in (10) ,

vi/Q−∑ j′ 6=iWi j′ , for i = j, with Q as defined in (11) .

The similarity matrix W above ensures the same objective function as in GSFA, and also that Dii
def
=

∑ j Wi j = vi/Q, resulting in the same constraints. In practice, using self-loops Wii 6= 0 is unusual for

LPP, but they are useful in this case.

3712



HOW TO SOLVE CLASSIFICATION AND REGRESSION PROBLEMS WITH SFA

7.2 Remarks on Classification with GSFA

Both classification and regression tasks can be solved with GSFA. We show that a few slow features

allow for an accurate solution to the supervised learning problem, requiring only a small post-

processing step that maps the features to labels or classes.

For classification problems, we propose a clustered training graph, which yields features having

the discrimination capability of FDA. The results of the implementation of this graph confirm the

expectations from theory. Training with the clustered graph is equivalent to considering all tran-

sitions between samples of the same identity and no transition between different identities. The

computation, however, is more efficient than the direct method of Berkes (2005a), where a large

number of transitions have to be considered explicitly.

The Markov chain generated through the probabilistic interpretation of this graph is equal to the

Markov chain defined by Klampfl and Maass (2010). These Markov chains are parameterized by

vanishing parameters ε and a, respectively. The parameter a influences the probability Pi j = aN j/N

of transitioning from a class ci to a different class c j, where N j is the number of samples of class

c j and N is the total number of samples. Thus, in the limit a→ 0 all transitions lie within the

same class. However, the Markov chain and ε are introduced here for analytical purposes only. In

practice, GSFA directly uses the graph structure, which is deterministic and free of ε. This avoids

the less efficient training of SFA with a very long sequence of samples generated with the Markov

chain, as done by Klampfl and Maass (2010). (Even though the set of samples is finite, as the

parameter a approaches 0, an infinite sequence is required to properly capture the data statistics of

all identities).

Klampfl and Maass (2010) have proven that if a→ 0 the features learned by SFA from the data

generated are equivalent to the features learned by FDA. From the equality of the two Markov chains

above, the features extracted by GSFA turn out to be also equivalent to those of FDA. Thus, the fea-

tures extracted with GSFA from the clustered graph are not better or worse than those extracted with

FDA. However, this equivalence is an interesting result because it allows a different interpretation of

FDA from the point of view of the generation of slow signals. Moreover, advances in generic meth-

ods for SFA, such as hierarchical network architectures or robust nonlinearities, result in improved

classification rates over standard FDA.

It is possible to design other training graphs for classification without the equivalence to FDA,

for example, by using non-constant sample weights, or by incorporating input similarity informa-

tion or other criteria in the edge-weight matrix. This idea has been explored by Rehn (2013) using

generalized SFA, where various adjacency graphs (i.e., edge weights) were proposed for classifi-

cation inspired by the theory of manifold learning. Instead of using full-class connectivity, only

samples within the same class among the first nearest neighbours are connected. Less susceptibility

to outliers and better performance have been reported.

7.3 Remarks on Regression with GSFA

To solve regression problems, we propose three training graphs for GSFA that resulted in a reduction

of the RMSE of up to 11% over the basic reordering approach using standard SFA, an improvement

caused by the higher number of similarity relations considered even though the same number of

training samples is used.

First extensions of SFA for regression (i.e., GSFA) were employed by Escalante-B. and Wiskott

(2010) to estimate age and gender from frontal static face images of artificial subjects, created with
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special software for 3D face modelling and rendering. Gender estimation was treated as a regression

problem, because the software represents gender as a continuous variable (e.g., −1.0=typical mas-

culine face, 0.0=neutral, 1.0=typical feminine face). Early, undocumented versions of the mixed

and serial training graphs were employed. Only three features extracted were passed to an explicit

regression step based on a Gaussian classifier (Section 5.5). In both cases, good performance was

achieved, with an RMSE of 3.8 years for age and 0.33 units for gender on test data, compared to a

chance level of 13.8 years and 1.73 units, respectively.

With a system similar to the one presented here, we participated in a face detection competition

successfully (Mohamed and Mahdi, 2010). We estimated the x-position, y-position and scale of

a face within an image. Using three separate SFA networks, one for each parameter, faces can

be pose-normalized. A fourth network can be trained to estimate the quality of the normalization,

again as a continuous parameter, and to indicate whether a face is present at all. These four networks

together were used to detect faces. Performance of the resulting face detection system on various

image databases was competitive and yielded a detection rate on greyscale photographs within the

range from 71.5% to 99.5% depending on the difficulty of the test images. An increase in the image

variability in the training data can be expected to result in further improvements.

The serial and mixed training graphs have provided the best accuracy for the experiments in this

article, with the serial one being slightly more accurate but not to a significant level. These graphs

have the advantage over the sliding window graph that they are also suitable for cases in which

the labels are discrete from the beginning, which occurs frequently due to the finite resolution in

measurements or due to discrete phenomena (e.g., when learning the number of red blood cells in a

sample, or a distance in pixels).

Since the edge weights supported by GSFA are arbitrary, it is tempting to use a complete weight

matrix continuous in the labels (e.g., γn,n′ =
1

|ℓn′−ℓn|+k
, for k> 0, or γn,n′ = exp(−

(ℓn′−ℓn)
2

σ2 )). However,

this might affect the training time markedly. Moreover, one should be aware that imbalances in

the connectivity of the samples might result in pathological solutions or less useful features than

expected.

In this work, we have focused on supervised dimensionality reduction towards the estimation

of a single label. However, one can estimate two or more labels simultaneously using appropri-

ate training graphs. In general, using such graphs might reduce the performance of the method

compared to the separate estimation of the labels. However, if the labels are intrinsically related,

performance might actually improve. For instance, using another algorithm, the estimation of age

from face images has been reported to improve when also gender and race labels are estimated (Guo

and Mu, 2011). This is justified because gender and race are two factors that strongly influence the

aging process.

The features extracted by GSFA strongly depend on the labels, even though label information

is only provided implicitly by the graph connectivity. Ideally, the slowest feature extracted is a

monotonic function of the hidden label, and the remaining features are harmonics of increasing fre-

quency of the first one. In practice, noisy and distorted versions of these features are found, but still

providing an approximate, redundant, and concentrated coding of the labels. Their simple struc-

ture permits the use of simple supervised algorithms for the post-processing step saving time and

computer resources. For the estimation of the x-position of faces, all the nonlinear post-processing

algorithms, including the nearest centroid classifier, provided good accuracy. Although a Gaussian

classifier is a less powerful classifier than an SVM, the estimation based on the class membership
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probabilities of the Gaussian classifier (Soft GC) is more accurate because it reduces the effect of

miss-classifications.

7.4 Other Considerations

Locality preserving projections and GSFA come from very different backgrounds. On the one hand,

LPP is motivated from unsupervised learning and was conceived as a linear algorithm. The sim-

ilarity matrices used are typically derived from the training samples, for example, using a heat

kernel function. Later, weight matrices accounting for label information have been proposed, par-

ticularly for classification. On the other hand GSFA is motivated from supervised learning, and

was conceived as an extension of SFA designed for supervised non-linear dimensionality reduction

specifically targeting regression and classification problems. Although the motivation behind LPP

and GSFA, as well as their typical applications, are different, these algorithms are strongly con-

nected. Therefore, it might be worth not only to unify their formalism, but also the conceptual roots

that have inspired them.

Although supervised learning is less biologically plausible, GSFA being implicitly supervised

is still closely connected to feasible unsupervised biological models through the probabilistic inter-

pretation of the graph. If we ensure that the graph fulfils the normalization restrictions, the Markov

chain described in Section 3.5 can be constructed, and learning with GSFA and such graph becomes

equivalent to learning with standard (unsupervised) SFA as long as the training sequence originates

from the Markov chain. From this perspective, GSFA uses the graph information to simplify a

learning procedure that could also be done unsupervised.

We do not claim that GSFA is better or worse than other supervised learning algorithms, it is

actually equivalent to other algorithms under specific conditions. We only show that it is better for

supervised learning than SFA, and believe that it is a very interesting and promising algorithm. Of

course, specialized algorithms might outperform GSFA for particular tasks. For instance, algorithms

for face detection can outperform the system presented here, but a fundamental advantage of GSFA

is that it is general purpose. Moreover, various improvements to GSFA (not discussed here) are

under development, which will increase its performance and narrow the gap to special-purpose

algorithms.

One limitation of hierarchical processing with GSFA or SFA (i.e., HSFA) is that the features

should be spatially localized in the input data. For instance, if one randomly shuffles the pixels in

the input image, performance would decrease considerably. This limits the applicability of HSFA

for scenarios with heterogeneous independent sources of data, but makes it well suited, for example,

for images.

Although GSFA makes a more efficient use of the samples available than SFA, it can still over-

fit in part because these algorithms lack an explicit regularization parameter. Hence, for a small

number of samples data randomization techniques are useful. Interestingly, certain expansions and

hierarchical processing can be seen as implicit regularization measures. In fact, less overfitting com-

pared to standard SFA is one of the central advantages of using HSFA. A second central advantage

of HSFA is that HSFA networks can be trained in a feed-forward manner layer by layer, resulting in

a very efficient training. Due to accumulation of nonlinearities across the network, the features at

the top node can be highly nonlinear w.r.t. the input, potentially spanning a rich feature space.

Most of this work was originally motivated by the need to improve generalization of our learning

system. Of course, if the amount of training data and computation time were unrestricted, overfit-
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ting would be negligible, and all SFA training methods would approximately converge to the same

features and provide similar performance. For finite data and resources, the results demonstrate that

GSFA does provide better performance than SFA (reordering method) using the same amount of

training data. Another interpretation is that GSFA demands less training data to achieve the same

performance, thus, indeed contributing to our pursuit of generalization.
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Abstract

The cluster assumption had a significant impact on the reasoning behind semi-supervised classi-

fication methods in graph-based learning. The literature includes numerous applications where

harmonic functions provided estimates that conformed to data satisfying this well-known assump-

tion, but the relationship between this assumption and harmonic functions is not as well-understood

theoretically. We investigate these matters from the perspective of supervised kernel classification

and provide concrete answers to two fundamental questions. (i) Under what conditions do semi-

supervised harmonic approaches satisfy this assumption? (ii) If such an assumption is satisfied then

why precisely would an observation sacrifice its own supervised estimate in favor of the cluster?

First, a harmonic function is guaranteed to assign labels to data in harmony with the cluster as-

sumption if a specific condition on the boundary of the harmonic function is satisfied. Second, it

is shown that any harmonic function estimate within the interior is a probability weighted average

of supervised estimates, where the weight is focused on supervised kernel estimates near labeled

cases. We demonstrate that the uniqueness criterion for harmonic estimators is sensitive when the

graph is sparse or the size of the boundary is relatively small. This sets the stage for a third con-

tribution, a new regularized joint harmonic function for semi-supervised learning based on a joint

optimization criterion. Mathematical properties of this estimator, such as its uniqueness even when

the graph is sparse or the size of the boundary is relatively small, are proven. A main selling point

is its ability to operate in circumstances where the cluster assumption may not be fully satisfied

on real data by compromising between the purely harmonic and purely supervised estimators. The

competitive stature of the new regularized joint harmonic approach is established.

Keywords: harmonic function, joint training, cluster assumption, semi-supervised learning

1. Introduction

The problem under consideration is semi-supervised learning in the graph-based setting. Observa-

tions are vertices on a graph, and edges provide similarity associations between vertices. Classifi-

cation is required if vertices are labeled and the goal is to design a function to predict the labels.

Local classifiers like k-NN or more generally kernel regression are ideal in the graph-based set-

ting since they can operate directly on the similarity matrix and do not require X-data support

(Chapelle et al., 2006b; Lafferty and Wasserman, 2007). On the other hand, methods of predic-

tion for observations without labels are arguably more complicated and less understood than those

from classical supervised settings. A vertex corresponding to an observation without a label pro-

vides connections through it which are meaningful to the data structure, and unlabeled data increase
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performance if used during training (Culp et al., 2009). The need to extend locally smooth func-

tions into this graph-based setting is an important problem (Chapelle et al., 2006b; Abney, 2008).

Applications of graph-based learning include text classification (McCallum et al., 2000), protein

interaction (Yamanishi et al., 2004; Kui et al., 2002), chemogenomics in pharmaceuticals (Bredel

and Jacoby, 2004), biology and chemistry networks (Lundblad, 2004; Culp et al., 2009), and web

data/email (Koprinska et al., 2007). There are also applications where the edges of the graph were

constructed using a similarity function generated from feature data (Carreira-Perpiñán and Zemel,

2005; Chapelle et al., 2006b; Jebara et al., 2009).

Harmonic functions provide a natural solution to the problem of extending local classifiers into

semi-supervised learning. The definition of a harmonic function depends on two key terms, that

is, the boundary (observed labels) and the interior (unlabeled). The boundary choice defines the

harmonic function. With a given function estimate on the boundary, the harmonic solution achieves

an equilibrium on the interior. Each interior case is an average of its and its neighbors’ estimates,

so an estimate for an interior observation does not change if averaged a second time. Currently, the

authors are aware of only one harmonic approach in the semi-supervised literature. This estimator,

referred to as the clamped harmonic estimator, sets the boundary equal to its observed labeling.

The clamped harmonic estimator in semi-supervised learning was studied and applied to energy op-

timization (Chapelle et al., 2006b; Abney, 2008), graph-based smoothing (Culp et al., 2009), Gaus-

sian processes (Zhu, 2008), iterative algorithms with large data (Subramanya and Bilmes, 2011),

stability methods for transductive learning (Cortes et al., 2008), and other areas (Zhu and Goldberg,

2009).

The clamped harmonic estimator has known shortcomings. First, its performance degradation

due to sensitivity to noise in either the support or labeling is well-known. Also, there is no way

to estimate a residual, which renders the smoothing technique impossible to use for any inferential

analysis, outlier detection, or descriptive analysis. Recent work suggests that the clamped harmonic

solution also suffers in circumstances where the size of the boundary is much smaller than that of

the interior. The main argument is that the harmonic solution converges to the zero function with

spikes within the boundary as the size of the interior grows (Nadler et al., 2009; von Luxburg et al.,

2010).

Applications where semi-supervised learning has solid performance as well as an abstraction of

such applications into a set of mathematical assumptions is of recent interest (Lafferty and Wasser-

man, 2007; Azizyan et al., 2013). It is fairly well understood in semi-supervised learning that if two

points x1, x2 are close in the intrinsic geometry of the probability distribution of X then learning can

occur if the conditional probability distributions of y | x1 and y | x2 are similar. Such a characteriza-

tion is commonly assumed in semi-supervised learning and often referred to as the cluster assump-

tion (Chapelle et al., 2006b). Optimization problems involving minimax error bounds under the

cluster and other similar smoothness assumptions is of recent interest (Rigollet, 2007; Lafferty and

Wasserman, 2007; Singh et al., 2008). Lafferty and Wasserman (2007) further note the importance

of separating semi-supervised smoothness assumptions from other seemingly similar assumptions

in manifold learning (Hein et al., 2005; Aswani et al., 2010). The clamped harmonic estimator has

been empirically validated to satisfy the cluster assumption, but this, to our knowledge, has not been

established rigorously. A key contribution of this work is a condition on the boundary for when any

harmonic function is guaranteed to satisfy the cluster assumption.

How semi-supervised approaches compare to supervised alternatives is a looming and important

question. In the case of harmonic functions, we are primarily interested in articulating how these
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approaches compare to supervised local smoothing classifiers. A significant contribution of this

work is extensive analysis and development of harmonic functions in this capacity. In this regard,

we show that any harmonic function, no matter how the boundary estimator is generated, can be de-

composed as the reweighted average of soft local supervised estimates consisting only of unlabeled

predictions. Specifically, the estimate for an interior observation is a weighted average of all the

interior local supervised estimates. This work further establishes that interior observations nearest

to the boundary carry the weight in the prediction of interior cases.

Harmonic functions and supervised local estimators each use two types of information that de-

scribe relationships between the boundary states (labeled) and the interior states (unlabeled). The

first type, which we term labeled adjacent, involves direct kernel weighted distances from an unla-

beled observation to each labeled observation/case. Local supervised approaches essentially form

a weighted average of this labeled adjacent information even when an unlabeled case has small ad-

jacency to each labeled case. The second type of information, which we term labeled connective,

exploits interconnectivity within unlabeled cases to find other unlabeled cases that have stronger

adjacency to labeled cases. Harmonic functions propagate the local supervised estimates from un-

labeled cases with strong adjacency to some labeled cases to the other unlabeled cases. In short,

harmonic functions in semi-supervised learning are purely labeled connective, while local super-

vised approaches are purely labeled adjacent.

Another key contribution of this work is a new harmonic function approach based off of a joint

optimization criterion. The novel use of the joint optimization criterion allows for regularization

within semi-supervised learning. Settings of a single regularization parameter can reproduce the

extremes, that is, a labeled connective harmonic function estimator or the labeled adjacent soft local

supervised estimator, but can also be tuned to any one of a continuum of semi-supervised estimators

to compromise between the extremes. It is the only estimator to our knowledge that has been shown

to balance between supervised learning and semi-supervised learning in this manner. The benefits

of regularization in joint harmonic estimation are empirically assessed with strong results.

The paper is organized as follows. After a brief description of notational conventions in Section

2, the problem is formulated in Section 3. Care is taken to succinctly describe semi-supervised

block matrix results in terms of their supervised counterparts, so the stage is set for our main contri-

butions. General results on harmonic functions with regard to the cluster assumption and supervised

learning are in Section 4. Section 5 includes the definition of the new regularized joint harmonic

function approach and characterization of its mathematical properties. Sections 6 and 7 include

empirical tests of the new approach. Section 8 has concluding remarks, and a proof of each Lemma,

Proposition, and Theorem is in Appendix A.

2. Notational Conventions

It is common to let Ai j represent the entry of a matrix A in row i and column j. A generalization of

this Ai j notation that is particularly useful in semi-supervised learning is to replace i and j with a

list of rows and columns to represent the corresponding sub matrix, so if matrix A is n×n and sets

L = {1,2, . . . , l} and U = {l +1, l +2, . . . ,n}, then

A=

(
ALL ALU

AUL AUU

)
. (1)
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The usefulness of Partitioning (1) will become clear when attention turns back to discussion of the

sets of labeled L and unlabeled U cases in the semi-supervised learning context of Section 3. Denote

A∗
LL =ALL −ALUA

−1
UUAUL (AUU Block Schur Complement of A). (2)

Note the important distinction between ALL in Display (1) and A∗
LL in Display (2). Schur comple-

ments and some of their most basic properties given in Remark 1 play a key role in the methods to

come as well as in the Appendix A proofs. Table 1 summarizes all of our matrix algebra conventions

for future reference.

Notation Definition

N (A) Null space of matrix A.

A≥ 0 Matrix A with all nonnegative entries (> for positive).

A� 0 Positive semi-definite symmetric matrix A (≻ for positive definite).

ρ(i)(A) ith largest modulus of the eigenvalues of a square matrix A.

ρ(A) Spectral radius of a square matrix A, that is, ρ(A) = ρ(1)(A).
ALL Upper-left sub matrix in Partitioning (1) of a square matrix A.

A∗
LL AUU Block Schur Complement (2) of matrix A with Partitioning (1).

Table 1: List of notational conventions.

Remark 1 Based on the Partitioning (1), it is well known that if AUU is invertible then A is in-

vertible if and only if A∗
LL is invertible. In the case that A � 0 (i.e., A is symmetric and positive

semi-definite), this result becomes if AUU ≻ 0 then A≻ 0 if and only if A∗
LL ≻ 0.

3. Problem Set-Up

In graph-based semi-supervised learning, partially labeled data are in the form of a weighted graph.

Vertices {1, · · · ,n} represent the n observations, and edges the values of a correspondence between

each pair of observations. The n× n symmetric matrix W with Wi j ≥ 0 is the adjacency matrix

of the weighted graph ({1, · · · ,n},W ) or graph W for brevity. For this particular weighted graph,

additionally assume Wi j ≤ 1 and Wii = 1. In some applications, W must be constructed from an

n× p data matrix X , for example,

Wi j = Kλ(xi,x j),

where kernel function Kλ(xi,x j) is applied to each pair of rows of X to form W . Experimental

Sections 6 and 7 include examples of each type, that is, W observed directly and W generated

from X . For now, simply assume that the symmetric matrix W is in hand.

The training response is

Y (YU) =

(
YL

YU

)
∈ IRn, where YU ∈ IR|U |, (3)

and the data partition into two observed subsets {1, · · · ,n} = L ∪U . Subset L is the set of all

boundary states, whereas U is that for interior states. The subsets are distinguished by the labeling
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function. The boundary states have an observed labeling vector YL, while the labelings for the

interior states go unobserved. We assert the missing at random assumption and assume that L was

initially a random subset of {1, · · · ,n}, but for ease of notation, the data were subsequently sorted so

that boundary observations are first in the indexing. The vector of latent variables YU is comprised

of the unknown labelings for the interior. Our joint optimization based method defined later in

Section 5 involves the training response. The solution to this joint optimization problem provides

the capacity for transductive or semi-supervised learning as will be illustrated later in Section 7.

Next, general graph theory results are discussed and applied to graph W . In particular, Lapla-

cian and stochastic smoother matrices corresponding to graph W are defined, and the relationships

between these three matrices are discussed briefly. It is fundamental to think about the general idea

being applied to graph W because later they will be applied to a particular graph with vertex set L

in each of the Sections 3.1-3.3. These three graphs on L to be introduced in Sections 3.1-3.3 help

one understand a semi-supervised technique through a decomposition of L to L connectivities in the

larger graph W on L∪U .

The Laplacian of W is ∆ = D−W , where D = diag(W~1) is the degree matrix of W .

Proposition 7 is a well-known result on ∆ (Belkin et al., 2006).

Proposition 7 Laplacian ∆� 0.

The square matrix S =D−1W is a stochastic smoother, that is, S ≥ 0 and S~1 =~1, so 1 is an

eigenvalue of S. Proposition 8 further establishes that ρ(S) = 1.

Proposition 8 If W � 0 then each eigenvalue of S =D−1W is an element of [0,1].

The identity ∆=D (I−S) helps demonstrate that

∆ν =~0 ⇐⇒ Sν = ν, (4)

that is, N (∆) equals the eigenspace of S corresponding to eigenvalue 1. An eigenvalue decom-

position of ∆ or S provides a way to compute the number of connected components in graph W .

One simply counts the multiplicity of eigenvalue 0 for ∆ by Remark 2 or equivalently eigenvalue 1

for S by Display (4).

The graphs in Sections 3.1-3.3 are based on partitioning the adjacency, stochastic smoother, and

Laplacian matrices of graph W by L and U . Using Section 2 notation and Display (1) in particular,

this is

W =

(
WLL WLU

WUL WUU

)
, S =

(
SLL SLU

SUL SUU

)
, ∆=

(
∆LL ∆LU

∆UL ∆UU

)
. (5)

The entries of WLL and WUU are similarities within the boundary and interior, respectively, while

WLU = W T
UL contain the similarities between boundary and interior observations. Analogous in-

terpretations extend to the other matrices partitioned in Display (5). For the diagonal degree matrix

D ≥ 0, define the |L|× |L| diagonal matrices D̃LL = diag(WLL
~1)≥ 0 and D̃LU = diag(WLU

~1)≥ 0

and the |U |× |U | diagonal matrices D̃UU = diag(WUU
~1)≥ 0 and D̃UL = diag(WUL

~1)≥ 0, so that

D =

(
DLL 000

000 DUU

)
=

(
D̃LL +D̃LU 000

000 D̃UL +D̃UU

)
.

Next, supervised, offset, and semi-supervised weighted graphs are studied in Sections 3.1-3.3 to

assist in a deep understanding of a semi-supervised boundary estimation method.
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Remark 2 Vertices i and j are adjacent in graph W if Wi j > 0, and are connected if there exists

a sequence of vertices starting with i and ending with j such that consecutive vertices throughout

the sequence are adjacent. The concept of connectedness partitions the vertices into some number

of connected components, and each vertex in a connected component is connected to any other

vertex in that component. Basic structure of a weighted graph includes the number of connected

components and whether or not any given pair of vertices is in the same connected component.

Both of these properties are encoded in particular eigenvectors of the graph’s Laplacian matrix and

stochastic smoother. Just take the binary vector in IRn that indicates observations in a connected

component of W . The set of all such binary vectors over all connected components is an orthog-

onal basis for N (∆), so the dimension of N (∆) equals the number of connected components.

Furthermore, it is obvious that the vectors in this basis sum to~1 ∈ N (∆).

3.1 The Supervised Case

The supervised local kernel smoother at any point xi is

f̃ (i) =
∑ j∈L Kλ(xi,x j)y j

∑ j∈L Kλ(xi,x j)
≈ E[Yi | Xi = xi]

and is often called a Nadaraya-Watson kernel regression estimator (Hastie et al., 2001, Chapter 6).

When applied to L∪U , this estimator is

f̃ =

(
f̃L

f̃U

)
=

(
S̃LL

S̃UL

)
YL =

(
D̃−1

LL DLLSLL

D̃−1
ULDUUSUL

)
YL, (6)

where S̃LL = D̃−1
LL WLL and S̃UL = D̃−1

ULWUL.

The supervised boundary estimator f̃L = S̃LLYL in Display (6) is based on the supervised graph

(L,WLL). The supervised graph is the subgraph of W on L and has

∆̃LL = D̃LL −WLL =∆LL −DLL (Supervised Laplacian),

S̃LL = D̃−1
LL WLL (Supervised Stochastic Smoother).

The supervised smoothed value f̃i for i ∈ L is the probability weighted average of YL with weights

from the ith row of S̃LL, so f̃i is based on relative strength of adjacencies within L, which might

be depicted by L → L. The supervised graph incorporates neither non-adjacent vertices nor U .

Estimator f̃L is also the solution to

min
fL

(YL − fL)
TWLL(YL − fL)+ f T

L ∆̃LL fL.

Supervised predictions of the interior from Display (6) are f̃U = S̃ULYL. If D̃ULii
= 0 for some

i ∈U then this supervised estimator is not defined for interior observation i, so this estimator exists

for all i ∈U if and only if D̃UL ≻ 0, that is,

νTD̃ULν > 0 for any non-zero ν ∈ IR|U |. (7)

Condition (7) holds if and only if each unlabeled observation is adjacent to a labeled observation.

This adjacency condition is a stringent requirement, especially when the proportion of labeled obser-

vations |L|/n is small, and one might correctly guess that such a rigid requirement is not necessary

if a semi-supervised harmonic function approach from Section 4 is taken.
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3.2 The Offset Case

In this section, three |L|×|L| matrices WLUL, ∆LUL, and SLUL are defined, and it is shown that they

correspond to the adjacency, Laplacian, and stochastic smoother matrices of a weighted graph on

vertex set L, which we call the offset graph. These matrices are

WLUL = ∆LU∆
−1
UU∆UL (Offset Graph with Vertex Set L),

∆LUL = D̃LU −∆LU∆
−1
UU∆UL (Offset Laplacian),

SLUL = D̃−1
LU∆LU∆

−1
UU∆UL (Offset Stochastic Smoother).

Recall the necessary and sufficient adjacency condition in Display (7) for the uniqueness of the

supervised estimator for all n observations. An intuitive condition for the uniqueness of a semi-

supervised estimator for all n observations is that each connected component of W includes an

observation from L, that is,

νTD̃ULν > 0 for any non-zero ν ∈ N
(
D̃UU −WUU

)
. (8)

Apply Remark 2 to subgraph (U,WUU) to justify this practical interpretation of Condition (8). The

connectedness to L condition in Display (8) is less restrictive than the adjacency to L condition in

Display (7), and Condition (8) implies that W has at most |L| connected components. Proposition

10 establishes that Condition (8) is equivalent to the existence of ∆−1
UU , a matrix involved in the

definition of the offset graph.

Proposition 10 If W � 0 then the following conditions are equivalent.

(a) ∆UU ≻ 0.

(b) ρ(SUU)< 1.

(c) νTD̃ULν > 0 for any non-zero ν ∈ N (D̃UU −WUU).

Condition (b) from Proposition 10 guarantees the convergence of the geometric matrix series

with terms Sℓ
UU =OD

ℓ
O

−1, where ODO
−1 is the eigendecomposition of SUU , so

D−1
LL WLUL =D−1

LL ∆LU∆
−1
UU∆UL = SLU (I−SUU)

−1
SUL =

∞

∑
ℓ=0

SLUS
ℓ
UUSUL ≥ 0, (9)

where the inequality holds because SLUS
ℓ
UUSUL ≥ 0 for each ℓ = 0,1, . . .. Thus, WLUL ≥ 0 is a

valid weighted graph on L, since it’s symmetric by definition. By the Laplacian property ∆~1 =~0
and Partitioning (5), ∆UL

~1 = −∆UU
~1 and ∆LU

~1 = −D̃LU
~1, so the degree matrix of WLUL is

diag(WLUL
~1) = D̃LU . Thus, the Laplacian and stochastic smoother of offset graph WLUL are also

established as matrices ∆LUL and SLUL defined earlier.

The geometric matrix series in Display (9) provides a clear interpretation of each adjacency

in offset graph WLUL. A pair of labeled observations is adjacent in WLUL if and only if they are

connected in W through a sequence of unlabeled observations; this type of connectedness might

be depicted by L →U ↔U → L. The offset boundary estimator is (SLULYL)i for i ∈ L, that is, the

probability weighted average of YL with weights from the ith row of SLUL. The probability weight

on YL j
for j ∈ L is SLULi j

, and this weight will be relatively large if i has “strong” adjacencies to

vertices in a “strongly adjacent” U network that is “strongly adjacent” to j. These are the only types

of connectivity that matter in the offset case. For example, the adjacency between i and j simply

does not factor into the offset based estimator.
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3.3 The Semi-Supervised Case

The semi-supervised adjacency matrix is simply the sum of those from the supervised and offset

cases, that is,

WLL +WLUL (Semi-Supervised Graph with Vertex Set L).

The semi-supervised Laplacian is thus the sum of positive semi-definite Laplacians

∆
⋆
LL =

Supervised
Laplacian︷ ︸︸ ︷

D̃LL −WLL+

Offset Laplacian︷ ︸︸ ︷
D̃LU −∆LU∆

−1
UU∆UL (Semi-Supervised Laplacian) (10)

=∆LL −∆LU∆
−1
UU∆UL (∆UU Block Schur Complement of ∆).

Refer to Section 2 and Display (2) for Schur complements.

The semi-supervised stochastic smoother is MLL = D−1
LL (WLL +WLUL). For more insight,

first define the diagonal matrix QL =D−1
LL D̃LL ≻ 0, which stores the proportion of each case’s total

similarities over all cases L∪U that is within L, that is,

QLii
=

∑ j∈LWi j

∑ j∈L∪U Wi j

.

Matrix QL provides the case-by-case probability weighted average compromise between the super-

vised and offset stochastic smoothers that is the semi-supervised stochastic smoother

MLL =QLS̃LL +(I−QL)SLUL (Semi-Supervised Stochastic Smoother).

More factorization produces yet another equivalent form

MLL = SLL +SLU (I−SUU)
−1

SUL (SUU Stochastic Complement of S). (11)

Adjacencies accumulate in semi-supervised graph WLL +∆LU∆
−1
UU∆UL due to exactly two

types of connectedness among the labeled observations in graph W : (i) supervised L → L and

(ii) offset L → U ↔ U → L. The prediction for a case i ∈ L puts more weight on the supervised

prediction for large QLii
and on the offset prediction for large 1−QLii

, so MLL is always a practical

probability weighted average of the estimators based on graphs WLL and WLUL. The connectedness

of labeled vertices in the semi-supervised graph is the same as that in the full graph W , but types

of connectedness outside (i) and (ii) don’t get incorporated into semi-supervised predictions (see

Remark 3).

The decomposition of the semi-supervised graph into supervised and offset graphs is displayed

concisely in Figure 1. While it is not too hard to compute the Laplacian or stochastic smoother

from the weighted graph, no other offset or semi-supervised representation can be fully recovered

from just the Laplacian or just the smoother. However, it is possible to recover W from S because

Wii = 1 is known.

Additional insight into the inter-workings of the semi-supervised smoother is gleaned through

analytical eigenvalue results. First, ∆⋆
LL =DLL(I−MLL), so

∆
⋆
LLν =~0 ⇐⇒ MLLν = ν
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Labeled Structure Decomposition

S̃LL

WLL

∆̃LL

Supervised

L → L

SLUL

WLUL

∆LUL

Offset

L →U ↔U → L

MLL

WLL +WLUL

∆
⋆
LL

Semi-Supervised

{L → L}∪{L →U ↔U → L}

Figure 1: Matrix representations of weighted graphs each with vertex set L: adjacency (top),

stochastic smoother (bottom left), and Laplacian (bottom right). Each semi-supervised

labeled representation is a linear combination of the corresponding supervised and offset

representations. Harpoons indicate that the representation after the barb can be computed

from that on the other end.

provides a second example of the general relationship between a smoother and its Laplacian (refer-

ence Display (4) for that between ∆ and S). To analytically break down N (∆⋆
LL) (and hence the

eigenspace of MLL corresponding to eigenvalue 1), first recall the decomposition of Laplacian ∆
⋆
LL

in Equation (10) as the sum of positive semi-definite Laplacians. Thus,

N (∆⋆
LL) = N

(
∆̃LL

)
∩N (∆LUL)⊆ IR|L|.

Certainly~1 ∈ N (∆⋆
LL), and a particular orthogonal basis of binary vectors for N (∆⋆

LL) is given by

Remark 2. Each basis vector indicates vertices in a connected component of the semi-supervised

graph, and so they partition L and sum to~1. Similarly, partitions of L corresponding to the connected

components of the supervised and offset graphs correspond to orthogonal bases of binary vectors for

N (∆̃LL) and N (∆LUL). The operation of intersecting N (∆̃LL) and N (∆LUL) can never increase

the dimension of the resulting N (∆⋆
LL) and is equivalent to increasing connectivity by producing the

coarsest possible partition of L that can be made by both partitions (of L corresponding to N (∆̃LL)
and N (∆LUL)) via unions of their respective subsets.

Supervised graph WLL is a subgraph of W . They have the same adjacencies in L, but WLL can

only reduce connectivity in L relative to that in W . The addition of the offset WLUL to WLL achieves

the same level of connectedness in L as W , but more importantly introduces offset adjacencies in

the semi-supervised graph not found in the supervised graph. It is the adjacencies in the semi-

supervised graph that determine non-zero smoother weights (see Remark 3). In spite of this, the

connectedness structure of the semi-supervised graph is still important so that one understands the

smoother properties via its eigenvalue decomposition. If a condition from Proposition 10 holds,

then each connected component of W includes a vertex from L. In this case, the dimension of

N (∆⋆
LL) ⊆ IR|L| equals the dimension of N (∆) ⊆ IR|L∪U |. Intuitively, we view MLL as a labeled

stochastic smoother with respect to the observed response YL, while S is a stochastic smoother with

respect to the training response Y (YU).
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Remark 3 Semi-supervised graph WLL +WLUL on L keeps the meaningful connectedness struc-

ture of the full graph W on L ∪U. A pair of labeled observations are in the same connected

component of one of these graphs if and only if the same is true in the other graph. This follows

because adjacent boundary vertices in WLL +WLUL are connected in W via either a sequence of

labeled vertices (supervised) or a sequence of unlabeled vertices (offset), and sequences of these

two types of connectivities in W can build any type connectivity that exists in W from an i ∈ L to

j ∈ L. It follows that

ν =

(
νL

νU

)
∈ N (∆)⊆ IR|L∪U | =⇒ νL ∈ N (∆⋆

LL)⊆ IR|L| (12)

(refer to Remark 2).

Let i ∈ L and j ∈ L. Probability weight MLLi j
is that for YL j

in the semi-supervised smoothed

value for YLi
. It should come as no surprise that a sufficient condition for MLLi j

= 0 is that boundary

vertices i and j are not in the same connect component of W , but this condition is not necessary.

The necessary and sufficient condition for MLLi j
> 0 is that i and j are adjacent in at least one

graph WLL or WLUL. The hypothetical situation where i and j are in the same connect component

of W and MLLi j
= 0 is possible if boundary vertices i and j are connected in the full graph W but

not through a pure sequence of all boundary (or of all interior) vertices.

4. Harmonic Functions in Semi-Supervised Learning

Harmonic functions form the basis for the connection between electrical networks and random

walks (Doyle and Snell, 1984). The use of harmonic estimation in semi-supervised learning is

discussed extensively in its relation to random walks, electrical networks, and energy optimization

(Zhu et al., 2003).

A function h : V → IR is harmonic with respect to a stochastic matrix S if

fi = ∑
ℓ∈L∪U

Siℓ fℓ for each i ∈U, (13)

where fi = h(i) (Zhu et al., 2003; Abney, 2008). In matrix form, the implication of Equation (13)

on a resulting harmonic estimator f ∈ IRn is

S f =

(
SLL fL +SLU fU
SUL fL +SUU fU

)
=

(
(S f )L

fU

)
. (14)

In the case of a harmonic estimator in Display (14), it follows by Display (12) that (S f )L = fL if

and only if fL ∈ N (∆⋆
LL). In other words, S f = f holds for a harmonic estimator f if and only if

fL is constant within the connected components of W . This precise concept of when S f = f is in

tandem with the practical application of a judiciously chosen harmonic estimator under the cluster

assumption studied further in Section 4.1.

A question not addressed in the above discussion is the existence and uniqueness of a harmonic

estimator f . This mathematical matter is solved in two cases ρ(SUU) < 1 and ρ(SUU) = 1, which

are collectively exhaustive by Lemma 9 in Appendix A. First, consider the case of ρ(SUU)< 1 (or

any other equivalent condition from Proposition 10), so that (I−SUU)
−1

exists. In this case, the

unique estimator for the interior fU = (I−SUU)
−1

SUL fL is a linear transformation of the boundary
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estimate. If one uses this unique solution for the interior as well as the stochastic complement

representation of MLL from Equation (11), then Equation (14) simplifies to

S f =

(
(S f )L

fU

)
=

(
MLL

(I−SUU)
−1

SUL

)
fL. (15)

The left of Equation (15) is an n×n times n×1 matrix multiplication, whereas the right is an n×|L|
times an |L|×1. Next, the case of ρ(SUU) = 1 implies that at least one connected component in W

contains all interior observations, that is, Condition (8) does not hold. So with given estimate fL,

a harmonic estimate fU exists, but is not unique because there is an arbitrary choice for a constant

labeling within each pure interior connected component. The assumption ρ(SUU)< 1 used through-

out most of Sections 3 and 4 avoids this arbitrary nature of harmonic estimators when ρ(SUU) = 1.

The subtlety in the case of ρ(SUU) = 1 is directly overcome by methods of regularization presented

later in Section 5.

The maximum principle states that a harmonic solution is bounded above and below by the

boundary estimate (Doyle and Snell, 1984). The uniqueness principle, which applies in the case of

ρ(SUU) < 1, states that if two harmonic functions are applied with the same boundary estimate fL

then they must produce the same interior estimate fU . One thing that is clear from each of these

principles is that a harmonic estimate fU of the interior is a function of the boundary estimate fL.

While the semi-supervised boundary estimator fL = MLLYL was thoroughly developed in Section

3, the plethora of competing boundary estimators is a focus of Section 4.1.

4.1 The Cluster Assumption and Boundary Estimation

The cluster assumption states that observations close in proximity should have similar labels. Our

main objective is to understand how this concept relates to classifiers. Let ψ be an arbitrary classifier

trained with weighted graph W and arbitrary response YL. We say that ψ is a cluster assumption

classifier if ψ is guaranteed to satisfy

ψ ∈ N (∆) and ψL = YL ⇐⇒ YL ∈ N (∆⋆
LL). (16)

Suppose the response is constant within the connected components of W . Condition (16) guar-

antees that a cluster assumption classifier classifies each interior observation with the unique label

observed within its connected component (refer to Remarks 2 and 3).

Let f be a harmonic function trained from the weighted graph W and response YL. In order for

f to also be a cluster assumption classifier, the boundary must be estimated with fL =YL for any YL ∈
N (∆⋆

LL), that is, YL ∈ N (∆⋆
LL) =⇒ S f = f and f ∈ N (∆). Harmonic functions that are cluster

assumption classifiers are also useful in circumstances when W has only one connected component.

Suppose there are weak adjacencies less than some small ε/n > 0 between clusters, and pairs within

clusters are connected by an edge path with adjacencies exceeding ε. Then decomposition W =
Wweak +Wstrong, where Wweaki j

= min{ε/n,Wi j}, produces connected components in the strong

graph that correspond to clusters. The cluster assumption holds on the strong graph. Now, for any

f ∈ N (∆strong), S f ≈ Sstrong f ∈ N (∆strong) because the smoother S is a row wise probability

weighted average of the strong and weak smoothers that puts a low weight on the weak smoother.

If fL = YL ∈ N
(
∆

⋆
LLstrong

)
such that YLi

= 1 on a connected component of Wstrong and YLi
= −1

elsewhere, then sign(S f ) ∈ N (∆strong), so the hard labels classify in accordance with the cluster
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assumption, which is consistent with the empirical evidence in the literature (Chapelle et al., 2006b;

Abney, 2008).

The simplest boundary estimate for a harmonic estimator is the clamped harmonic estimator

fL = YL (Zhu et al., 2003; Abney, 2008). The clamped harmonic estimator can be motivated as

solving

min
fL

(YL − fL)
T (YL − fL)

to obtain the boundary estimator fL = YL and then enforcing Equation (15) to define a harmonic

estimator by setting fU = (I−SUU)
−1

SUL fL.

This is not the only possible harmonic estimator because one can use any boundary estimator to

develop a harmonic estimator. For example, consider

min
f
(YL − fL)

T (WLL +WLUL)(YL − fL)+ f T
∆ f , (17)

where the loss function is based off of the semi-supervised graph developed in Section 3. The so-

lution to Optimization (17) is a harmonic function with the boundary estimate fL = MLLYL from

Section 3.3. The reason why Optimization (17) produces a harmonic function can be seen by study-

ing the optimization of a generalized labeled loss function with penalty

min
f

L(YL, fL)+η f T
∆ f , (18)

where L(YL,YL) ≤ L(YL, fL) for any fL. Since this loss function is independent of fU , the optimal

estimate for the interior for any η > 0 is

argmin
fU

f T
∆ f = (I−SUU)

−1
SUL fL,

which is harmonic. For any harmonic function f ,

f T
∆ f = f T

L ∆LL fL +2 f T
L ∆LU fU + f T

U ∆UU fU

= f T
L ∆LL fL −2 f T

L ∆LU∆
−1
UU∆UL fL + f T

L ∆LU∆
−1
UU∆UL fL

= f T
L ∆

⋆
LL fL,

so Optimization (18) produces a harmonic function with boundary solving

min
fL

L(YL, fL)+η f T
L ∆

⋆
LL fL, (19)

or equivalently

min
fL

L(YL, fL)+η f T
L ∆̃LL fL︸ ︷︷ ︸

Supervised Objective

+η f T
L ∆LUL fL︸ ︷︷ ︸
Offset

.

Furthermore, under Optimization (19) with a finite loss L(·, ·), the clamped estimate of fL = YL is

optimal for all η > 0 if and only if YL ∈ N (∆⋆
LL). In general, the clamped harmonic estimator is not

necessarily optimal among harmonic estimators.
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Cluster Simulation
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Figure 2: A “two moons” data set with |L|= 6 and |U |= 200. Label  =−1 and �= 1.

4.2 Impact of Supervised Kernel Smoothing on Harmonic Estimators

Further examination of the cluster assumption is had by comparing the supervised kernel smoother

(Section 3.1) to the semi-supervised harmonic estimator (Section 3.3). A goal is to understand

why an observation i ∈ U would sacrifice its own supervised estimate in favor of the cluster. Take

the “two moons” example in Figure 2 that includes supervised and semi-supervised boundaries

(see Remark 5). Focus on observation 38 in the downward pointing horn on right. According

to the supervised rule this observation is � with probability 1. The semi-supervised prediction

fU38
= −0.42 is  with probability 0.7, so the supervised estimate is overturned in favor of the

cluster.

Any harmonic estimator with boundary fL has the form fU = (I−SUU)
−1

SUL fL. Assume

D̃UL ≻ 0, so the supervised estimator exists (see Remark 4). Also, generalize the supervised pre-

dictions to f̃U = S̃UL fL, which we refer to as soft supervised estimates. Matrix (I−SUU)
−1

SUL is

the product of the |U |× |U | stochastic matrix (I−SUU)
−1

D−1
UUD̃UL and the |U |× |L| supervised

prediction matrix S̃UL = D̃−1
ULWUL, that is,

fU = (I−SUU)
−1

SUL fL (20)

= (I−SUU)
−1

D−1
UUD̃ULS̃UL fL

= (I−SUU)
−1

D−1
UUD̃UL f̃U . (21)

Equation (21) shows that any semi-supervised harmonic function is a probability weighted average

of the soft supervised estimators of U , that is,

fUi
= ∑

j∈U

Pi j f̃ j,

where the weights come from the stochastic matrix

P = (I−SUU)
−1

D−1
UUD̃UL. (22)
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Determining which soft supervised predictions f̃U get the larger probability weights in the semi-

supervised predictions fU makes practical sense. Such a determination is possible if one relates the

stochastic matrix P in Equation (22) to an absorbing Markov chain probability model (Doyle and

Snell, 1984).

Consider the |U |+1 state Markov chain with transition matrix

(
SUU (I−SUU)~1
~0T ~1

)
.

Boundary L is treated as an absorbing state, and the harmonic estimator of the interior is

fUi
= eT

i fU =

(
∞

∑
k=0

eT
i S

k
UUD

−1
UUD̃UL

)
f̃U with elementary vector ei. (23)

Each term in geometric series from Display (23) is the probability of a particular sequence of tran-

sitions with a given starting point in the absorbing Markov Chain probability model.

1: The first transition absorption to L starting from i ∈U is the 1×|U | row vector eT
i D

−1
UUD̃UL,

which has one non-zero entry. This non-zero, column i entry is the probability that a chain

starting at unlabeled state i is absorbed into L at the first transition. This probability is large

if unlabeled case i ∈U has more total similarity with cases in L than that with cases in U .

2: The second transition absorption to L from j ∈ U starting from i ∈ U is the row vector

eT
i SUUD

−1
UUD̃UL. Its jth column entry is the probability that a chain starting at unlabeled

state i goes to unlabeled state j at first transition and is absorbed into L at the second transi-

tion.

· · ·

k: The k’th transition absorption to L from j ∈ U starting from i ∈ U is the jth column entry

of row vector eT
i S

k−1
UU D−1

UUD̃UL. It is the probability that a chain starting at i ∈U goes k−1

transitions in U ending at some state j ∈U before being absorbed into L at the kth transition.

By Equation (23), the probability weight on soft supervised prediction j ∈ U in semi-supervised

prediction i ∈U is just the probability that a chain starting at i ∈U is absorbed from j ∈U . There-

fore, the soft supervised predictions for j ∈U that are “strongly adjacent” to observations in L carry

the majority of the weight.

Back to Figure 2 for case 38. The top ten cases, that is, 72, 129, 84, 69, 74, 71, 36, 108, 20,

and 59, carry 68% of the weight in the semi-supervised prediction of case 38, and each is close to a

labeled observation. This “top ten” provides the approximation ∑200
i=1P38, j f̃U j

≈ ∑10
i=1P38( j) f̃U( j)

=
−0.38 of the semi-supervised estimate, where ( j) is the column of P containing its jth largest value

in the 38th row. Hence the label prediction for observation 38 is already determined as −1 from this

“top 10” because the combined weight of the other 190 cases at 32% is not enough to reverse the

sign −0.38 given a ±1 labeling. Furthermore, the supervised estimate for observation 38 is 68’th in

the order with weight of only 0.002 or 0.2% in its very own semi-supervised prediction.

Remark 4 “Assumption” D̃UL ≻ 0 is not necessary. If D̃UL 6≻ 0, there exists i ∈ U such that

D̃ULii
= 0, and the supervised estimate does not exist for such i. This does not affect Equation
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(20), but is required in Factorization (21). Let D̃+
UL be the diagonal generalized inverse of D̃UL

with the same number of zero entries. If D̃+
UL is substituted in place of the nonexistent D̃−1

UL so that

nonexistent soft supervised estimators are set to f̃Ui
=
(
D̃+

ULWUL fL

)
i
= 0, Factorization (21) and

its ensuing interpretation hold.

5. Regularized Joint Harmonic Functions

Briefly consider the case when the response y is observed for all n observations. The Nadaraya-

Watson kernel estimator f = Sy results if functional (y− f )TW (y− f )+ f T
∆ f is minimized. In

the semi-supervised setting when YU is missing, we replace y with the training response Y (YU) from

Display (3) and jointly optimize for both f and YU . In particular, the regularized joint harmonic

estimator is the solution to

min
YU , f

(Y (YU)− f )TW (Y (YU)− f )+ f T
∆ f + γY T

U YU (Joint Optimization Problem). (24)

The regularized joint harmonic estimator, given in Proposition 12, includes an estimator for both YU

and f . The form of the f portion of this estimator is established as harmonic when γ = 0 in Section

5.1. Discussion of the stabilizing effect due to the additional term γY T
U YU in the context of the Joint

Optimization Problem (24) when γ > 0 is deferred until Section 5.2.

Proposition 12 Let W � 0. Assume (∆S)UU ≻ 0 when one selects γ = 0; this additional as-

sumption is not required when one selects some γ > 0. The unique solution to the Joint Harmonic

Optimization Problem (24) is (YU , f ) =
(
ŶUγ ,SY

(
ŶUγ

))
, where

ŶUγ =−((∆S)UU + γI)−1 (∆S)UL YL.

Matrix ∆S has many of the properties of ∆ from Section 3, for example, ∆~1 =~0 and ∆S~1 =~0.

Moreover, it is easy to verify that N (∆S) = N (∆). Proposition 11 establishes a result for the

positive semi-definiteness of ∆S, which is analogous to ∆ and Proposition 7.1

Proposition 11 If W � 0 then ∆S � 0.

By Proposition 11, W � 0 is a sufficient condition for the uniqueness of the joint harmonic estimator

when γ> 0, but the added condition (∆S)UU ≻ 0 from Proposition 12 is needed if γ= 0. Case γ= 0

is discussed further in Section 5.1, and case γ > 0 in Section 5.2.

Remark 5 The prediction of a novel case given its nonnegative similarities (w1, · · · ,wn) and re-

sponse estimate ŶUγ is computed from the Nadaraya-Watson kernel based function

h̆(w1, · · · ,wn) =
∑i∈L∪U wiYi

(
ŶUγ

)

∑i∈L∪U wi

,

where h̆ : IRn → IR. Finding the points in IRn that satisfy h̆(w1, · · · ,wn) = 0 is how one finds bound-

aries like those superimposed on Figure 2.

1. Proposition 11 is used to prove Proposition 12 in Appendix A, but order was reversed here for presentation.
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5.1 Joint Harmonic Estimator γ = 0

Here the joint harmonic function requires (∆S)UU ≻ 0 for its uniqueness (see Proposition 12).

Results to come later in this section show that its boundary estimator is built on the unlabeled-

unlabeled Schur complements of W and ∆ (refer to Section 2). First, Proposition 16 establishes an

equivalence between these Schur complements and (∆S)UU ≻ 0.

Proposition 16 If W � 0 then

(∆S)UU ≻ 0 ⇐⇒ WUU ≻ 0, ∆UU ≻ 0, and (W ⋆
LL +∆

⋆
LL)≻ 0.

Conditions from Proposition 16 are necessary and sufficient for the existence of the smoother

ΓLL = (W ⋆
LL +∆

⋆
LL)

−1W ⋆
LL (Joint Harmonic Smoother), (25)

and Theorem 18 states that smoother ΓLL is that for the joint harmonic estimator.

Theorem 18 Let W � 0, and assume that ΓLL exists. The solution to the Joint Harmonic Opti-

mization Problem (24) with γ = 0 has

f =

(
fL

(I−SUU)
−1

SUL fL

)
=

(
ΓLL

(I−SUU)
−1

SULΓLL

)
YL,

so f is in-fact harmonic.

The work connecting the interior of a harmonic estimator to supervised estimators in Section 4.2

now applies to the joint harmonic estimator, that is, in particular recall fU = PS̃ULΓLLYL with

P from Display (22). One can view ΓLL as a filter between the response YL and the supervised

prediction smoother S̃UL, which provides additional robustness for misspecified responses over that

of using YL directly to form supervised predictions.

The boundary estimator is equivalently expressed as the solution to

min
fL

(YL − fL)
TW ⋆

LL(YL − fL)+ f T
L ∆

⋆
LL fL. (26)

Optimization (26) provides an interesting example of the labeled loss optimization problem from

Display (18), where W ⋆
LL allows unlabeled data to influence the weighted squared error loss func-

tional independent of fU . Hence, the harmonic result for labeled loss is still preserved, but the

loss function is not independent of the unlabeled data. This also shows how this estimator gen-

eralizes the supervised case by replacing WLL with W ⋆
LL and ∆̃LL with ∆

⋆
LL. Furthermore, since

ΓLL = I− (W ⋆
LL +∆

⋆
LL)

−1
∆

⋆
LL,

∆
⋆
LLν =~0 ⇐⇒ ΓLLν = ν,

so the joint harmonic estimator is a cluster assumption classifier (refer to Section 4.1). Proposition

19 provides further insight on the smoothing properties of ΓLL.

Proposition 19 If W � 0 and ΓLL exists then each eigenvalue of ΓLL is an element of [0,1].
The above results for smoother ΓLL are weaker than those for the stochastic semi-supervised smoother

MLL from Figure 1. In general, ΓLL is not stochastic, although it was stochastic in nearly every

numerical example we considered. In cases when ΓLL is stochastic, the stronger condition that

|eT
i fU | ≤ |eT

i YL| holds, by the maximum principle of harmonic functions (Doyle and Snell, 1984).
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In applications such as those in Sections 6 and 7, assumptions for the uniqueness of the γ = 0

joint harmonic estimator are not likely to be satisfied. These assumptions are especially sensitive to

circumstances where W is generated from X with a kernel function set to small λ. The breakdown

tends to worsen when |L|/n is small. On the other hand, the γ > 0 regularized joint harmonic

estimators in Section 5.2 elegantly relax these assumptions by modifying the Schur complements

on the right of Display (25).

5.2 Regularized Joint Harmonic Estimators γ > 0

If the Joint Optimization Problem (24) is regularized with some γ > 0, the resulting joint estimator

is unique. This estimator is built off of “regularized Schur complements”

W ⋆
LLγ

= WLL −WLUW
−

UUγ
WUL, (27)

∆
⋆
LLγ

= ∆LL −∆LU∆
−
UUγ

∆UL, (28)

where the “regularized inverses”

W−
UUγ

= (∆UUSUU + γI)−1 (I−SUU)
T , (29)

∆
−
UUγ

= (∆UUSUU + γI)−1
ST

UU . (30)

If γ = 0, ρ(SUU)< 1, and ρ(I−SUU)< 1, then W−
UU0

=W−1
UU and ∆

−
UU0

=∆
−1
UU , so regularized

Schur complements in Displays (27) and (28) simplify to the Schur complements on the right of

Display (25). It is also easily verified that

ΓLLγ =
(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

W ⋆
LLγ

(Regularized Joint Smoother)

exists for any γ > 0. Theorem 21 extends Theorem 18 from γ = 0 to γ > 0.

Theorem 21 Let W � 0. Let fγ denote the solution to the Joint Harmonic Optimization Problem

(24) with γ > 0. Then

fγ =




ΓLLγ

−
(
∆

−
UUγ

)T

∆ULΓLLγ +

(
I−

(
∆

−
UUγ

)T

∆UU

)
SUL


YL.

The Theorem 21 decomposition is a compromise between the semi-supervised harmonic estimator

(labeled connective) and supervised kernel estimator (labeled adjacent)

fUγ =−
(
∆

−
UUγ

)T

∆UL fLγ

︸ ︷︷ ︸
Harmonic Part

+

(
I−

(
∆

−
UUγ

)T

∆UU

)
SULYL

︸ ︷︷ ︸
Supervised Part

.

In the case of γ = 0, the harmonic part reduces to the harmonic estimator, and the supervised part

equals zero. On the other extreme, as γ → ∞, the harmonic part converges to zero, while the super-

vised part has limit

fγ → f∞ = SY
(
~0
)
=

(
SLL

SUL

)
YL =

(
QLS̃LL

(I−QU) S̃UL

)
YL =

(
QL f̃L

(I−QU) f̃U

)
, (31)
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Regularized Joint Harmonic
 Spectrum Boundary Plot

12

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17
1819

20

21

2223

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42 43

44
45

46

47

48

49
50

51

52

53

54

5556

57

58

59

60

61

62

63

64
65

66

67

68

69

70

71

72

73

74

75
76

77

78

79

80

81

82

83

84

85
86

87

88

89

90

91 92

93

94

95

96
97

98
99

100

101

102

103

104

105

106

107

108 109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134
135

136

137

138

139

140

141142

143

144

145

146

147

148

149

150

151

152

153

154

155
156

157

158

159

160

161

162

163

164

165

166
167168

169

170

171

172

173

174

175
176

177
178

179

180
181

182

183184

185

186

187

188

189

190
191

192

193

194

195196

197

198
199

200

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Cluster Simulation

Noise Variation

U
n

la
b

e
le

d
 E

rr
o

r

 Degredation Performance Plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Joint Harmonic Estimator

Supervised Estimator

✛

❄

Figure 3: The “two moons” data from Figure 2 with regularized joint harmonic classification

boundary curves on left. Noise degradation study on right. Black: gamma = 0 (harmonic

extreme). Gray: γ = ∞ (supervised extreme). Rainbow spectrum: ordered by γ ∈ (0,∞).

where diagonal matrix QU has QUii
= ∑ j∈U Wi j/∑ j∈L∪U Wi j for i ∈ U and QL is defined anal-

ogously on L (apply Remark 4 when entries in f̃U do not exist). Each estimator is a multiple of

the supervised case by the right of Equation (31), so limγ→∞ sign( fγi
) = sign( f̃i) for every i in the

context of a classification problem with YL ∈ {−1,1}|L|.

The “two moons” data from Figure 2 are now revisited in Figure 3. The black joint harmonic

function (γ = 0) and the gray supervised extreme (γ = ∞) borders in the left panel of Figure 3

correspond to the harmonic and supervised borders in Figure 2 as expected. The rainbow spectrum

of borders rely less on the interior network and more on local supervised estimates as γ increases.

Now, suppose the “two moons” data were instead observed with noise around each observation.

Independent random samples from N(0,σ2) were added to each coordinate after scaling each axis

in the left panel to sample standard deviation one. The regularized joint harmonic estimate was

computed for each γ and σ over a grid, and unlabeled errors were recorded over this grid assuming

the “truth” of a constant labeling by moon in the σ = 0 noiseless data on left. This was repeated 50

times, and average unlabeled error rates versus noise variation σ are plotted by γ in the right panel

of Figure 3. While the joint harmonic function and the supervised solution are optimal for small

and large σ, compromise solutions are best for data with an intermediate level of noise. Overall,

the regularized joint harmonic estimator is a compromise between the harmonic estimator (which

emphasizes unlabeled connectivity to labeled cases) and the supervised estimator (which requires

unlabeled adjacency to labeled cases).
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Figure 4: Regularized joint harmonic analyses of the protein data. Left: Uniqueness condition (top)

and performance measure (bottom) versus regularization parameter log(γ) with a labeled

set of size |L| = 100. Right: Uniqueness measure (top) and performance (bottom) for

each of 50 replicates at each |L| tested.

5.3 Joint Training Connections

The regularized joint harmonic estimator is the solution to a particular version of a generalized joint

training optimization problem

min
YU , f

L(Y (YU), f )+ηJ1( f )+ γJ2(YU) (32)

with L(y, f ) a loss function, J1( f )≥ 0 a penalty term independent of YU with η ≥ 0, and J2(YU)≥ 0

a penalty term independent of f with γ ≥ 0. It is clear how to choose L(·, ·), J1(·), and J2(·) so

that the generalized problem from Display (32) simplifies to the problem in Display (24). The

S3V M (Chapelle et al., 2006a) is approximated by setting L(·, ·) as a diagonally weighted hinge loss

function with L(Y (YU), f ) = c1 ∑i∈L(1+Yi fi)++ c2 ∑i∈U(1+Yi fi)+ for c1,c2 ∈ IR+, optimizing YU

in a binary space, setting J1( f ) as a quadratic ambient penalty, and forcing γ = 0. In this case,

∑i∈U(1+Yi fi)+ is referred to as an interplay penalty between YU and fU . The SSVM and SPSI al-

gorithms are also construed as approximations of Optimization (32) (Wang and Shen, 2007). Lastly,

linear joint training was proposed in Culp (2013) to extend the elastic net and other linear approaches

into the semi-supervised setting.

6. Protein Interaction Data

Data on n = 1237 proteins from yeast organisms were collected. Each of 13 systems was used to

detect the presence of protein-to-protein interactions (Kui et al., 2002). Adjacencies in W are taken
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to be the proportion of systems detecting an interaction, so

Wi j =

{
1

13 ∑s I{system s detected an interaction between proteins i, j} i 6= j

1 i = j.

An important yet difficult problem is to classify whether or not a protein is located on the nucleus

of a cell (Yamanishi et al., 2004). A number of analyses of W using the regularized joint har-

monic estimator are presented in Figure 4. All 1237 proteins were included in each analysis, but the

definition of the boundary was altered. The clamped harmonic and joint harmonic approaches are

singular in each of these analyses, whereas the regularization strategy posed for the joint harmonic

estimator provides the practical benefit of a well-defined classifier with a unique solution. Further-

more, the protein interaction graph W was observed directly, so there is no tuning parameter for

either harmonic estimator.

Boundary L is 100 randomly selected proteins in the left panels of Figure 4. Since ρ(SUU) = 1,

any harmonic estimator is singular. On the other hand, the regularized joint harmonic estimator is

applicable with large enough γ so that (∆S)UU + γI is invertible, that is, when ρ(|U |)((∆S)UU +
γI)> 0 in the top panel. The corresponding unlabeled error performance as a function of log(γ) is

plotted in the bottom panel.

Consider now the analyses in the right panels of Figure 4. Proportion |L|/n was varied from

0.1 to 0.9 by 0.1, and an analysis like that on the left was run for each of 50 randomly selected

boundary sets at each |L|. The top right panel shows that the spectral radius uniqueness assumption

was violated for any harmonic estimator, for example, the clamped or γ = 0, whereas regularization

of the joint harmonic approach identified a well-defined classifier. The corresponding testing errors

indicate a trend toward improved performance as the size of the labeled set increases in the bottom

panel.

7. Machine Learning Data Sets

A comparison of procedures was based on three data sets from the UCI repository (Frank and

Asuncion, 2010), that is, the ionosphere data set with n = 351 observations, thyroid data n = 215,

and breast cancer data n = 699, and a publicly available pharmaceutical solubility data set with n =
5631 (Izenman, 2008). Missing values within the solubility data were handled by mean imputation.

The |L∪U | × |L∪U | matrix W was computed from X feature data using the Gaussian kernel

function, that is, Wi j = Kλ(xi,x j). Five-fold cross-validation was used to estimate (λ̂, γ̂) for the

regularized joint harmonic function and λ̂ for the clamped harmonic estimator. A semi-supervised

SVM (S3V M) with a linear kernel was also fit; its cost and gamma parameters were estimated using

cross-validation with the svm.tune function from R library e1071 (R Core Team, 2012; Meyer et al.,

2012).

A transductive comparison is provided by Figure 5. The ionosphere and thyroid data were each

randomly partitioned into L and U sets 50 times for each |L|= 10,20,30,40,50, and the techniques

were all run on the same L and U partitions. The top and middle panels of Figure 5 summarize

a particular example with |L| = 20 from the corresponding bottom panel. The clamped harmonic

estimator is computationally singular and cannot be computed when ρ(SUU) ≈ 1 (see Remark 6).

This occurs for any λ < 0.3, that is, log(λ) < −1.2, in the ionosphere application and for any

λ < 0.2, that is, log(λ) < −1.6, in the thyroid application. The joint harmonic estimator (γ = 0)

requires the more stringent assumption (∆S)UU ≻ 0, and it was singular for all λ in the ionosphere
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Figure 5: Transductive results for the ionosphere (left) and thyroid (right) data sets. Uniqueness

measure (top) and unlabeled error performance (middle) each versus kernel parameter

log(λ) for a particular analysis with |L|= 20 from the bottom panels. Unlabeled error rate

performance (bottom) of the regularized joint harmonic, clamped harmonic, and S3V M

estimators for 50 randomly selected labeled sets L of each size |L|= 10,20,30,40,50.

application. However, estimates γ̂ = 0.5 and γ̂ = 0.04 in the ionosphere and thyroid applications

were obtainable with the regularized joint harmonic estimator. Its access to a wider range of values

λ, especially small λ, may yield substantial improvement in performance in other applications,

like that seen in the bottom panels of Figure 5. As expected, a substantial performance gap exists

between the regularized joint harmonic estimator and the clamped harmonic estimator. The S3V M

also outperformed the clamped harmonic estimator.

A semi-supervised comparison is provided by Figure 6. The data were first randomly partitioned

into “seen” (25%) and “unseen” (75%) cases. The seen cases L∪U were then randomly partitioned

into sets L and U of each size |L| = 10,20,30,40,50. The techniques were all run on the same
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Figure 6: Semi-supervised out-of-sample error rate performance of the regularized joint harmonic

and S3V M estimators on four publicly available data sets. Each randomly obtained out-of-

sample extension was 75% of cases. The other 25% were treated as L∪U . Labeled sets L

of each size |L|= 10,20,30,40,50 were also obtained randomly prior to cross-validation.

This entire process was repeated 50 times.

“unseen,” L, and U partitions, and the entire process was repeated 50 times. The clamped harmonic

estimator is no longer applicable. Semi-supervised performance comparisons (Figure 6) of the

regularized joint harmonic approach to the S3V M are consistent with the transductive case (Figure

5), and the variability of the error measure increased in the out-of-sample extension as expected.

In short, Figures 5 and 6 include real, low labeled sample size, transductive and semi-supervised

applications, and the competitive stature of our proposed regularized joint harmonic estimator holds.

Remark 6 Assumptions for the uniqueness of the clamped harmonic and the regularized joint har-

monic approaches depend on the denseness or sparseness of the WUL component of similarity graph

W . Sparseness makes the needed eigenvalue conditions more difficult to satisfy. One might expect a
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more sparse WUL component when the labeled set size |L| is small relative to the unlabeled set size

|U |. As kernel parameter λ decreases, the off-diagonal elements of W approach 0, and this forces

computational zeros in matrix WUL leading to less stable estimators for any harmonic estimator.

This follows since S~1 =~1, and so if SUL
~1 ≈~0, then SUU

~1 ≈~1. Hence, ρ(SUU) ≈ 1 in the sparse

case. On the other hand, larger values of λ allow the potential for a denser WUL component which

potentially makes the eigenvalue assumptions less stringent. The parameter λ is estimated using

five-fold cross-validation, which does not account for assumptions on WUL. Regularization within

the joint harmonic approach has the key advantage of a unique estimator for any λ > 0.

8. Conclusion

Semi-supervised harmonic estimation for graph-based semi-supervised learning was examined the-

oretically and empirically. A cluster assumption classifier was also defined, and it was shown that

such classifiers assign labels to data that conform to the cluster assumption in the logical manner.

Harmonic functions with a well-chosen boundary are examples of cluster assumption classifiers. In

addition, harmonic functions were shown to be weighted averages of local supervised estimators

applied to the interior. This work further established that harmonic estimators rely primarily on

connectivity within the unlabeled network to form predictions using local supervised estimators;

supervised estimates near labeled cases are up-weighted while supervised estimates deep within the

network are down-weighted. Another key contribution, the development of the regularized joint

harmonic function approach, used a joint optimization criterion with regularization to automate the

trade-off between labeled connectivity versus labeled adjacency. Empirical results demonstrated the

practical benefit gained by regularization of joint harmonic estimation.
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Appendix A. Proofs

Proofs of Lemmas, Propositions, and Theorems follow.

A.1 Problem Set-Up

Proposition 7 Laplacian ∆� 0.

Proof Matrix ∆ satisfies ∆ii = ∑n
k=1WikI{i6=k} ≥Wi j = −∆i j ≥ 0 for each i 6= j, and such sym-

metric, diagonally dominant Z-matrices are positive semi-definite.

Proposition 8 If W � 0 then each eigenvalue of S =D−1W is an element of [0,1].

3743



CULP AND RYAN

Proof Matrices S and D−1/2WD−1/2 � 0 have the same eigenvalues, so the eigenvalues of S

are bounded below by 0. Proposition 7 implies D−1/2
∆D−1/2 = I−D−1/2WD−1/2 � 0, so the

eigenvalues of D−1/2WD−1/2 and hence S are also bounded above by 1.

Lemma 9 If W � 0 then each eigenvalue of SUU is an element of [0,1].

Proof Define IU = diag
(
1{i∈U}

)
based on the binary vector 1{i∈U} ∈ IR|L∪U |. Matrices SUU and(

D−1/2WD−1/2
)

UU
= IUD

−1/2WD−1/2IU � 0 have the same eigenvalues, so

ρ(SUU) = ρ
(
IUD

−1/2WD−1/2IU

)
≤ ρ

(
D−1/2WD−1/2

)
≤ 1,

where the second inequality was justified during the proof of Proposition 8.

Proposition 10 If W � 0 then the following conditions are equivalent.

(a) ∆UU ≻ 0.

(b) ρ(SUU)< 1.

(c) νTD̃ULν > 0 for any non-zero ν ∈ N (D̃UU −WUU).

Proof [(a) ⇐⇒ (b)]: This equivalence follows by taking inverses of ∆UU =DUU (I−SUU). Con-

dition (a) implies N (∆UU) =
{
~1
}

, so condition (b) follows because the Lemma 9 upper bound

of 1 for the largest eigenvalue of SUU cannot be achieved. Condition (b) implies the existence of

(I−SUU)
−1 by a geometric matrix series, and so condition (a) follows.

[(a) ⇐⇒ (c)]: Proposition 7 implies ∆UU � 0, so if ν ∈ N
(
D̃UU −WUU

)
,

νT
∆UU ν = νTD̃ULν+νT

(
D̃UU −WUU

)
ν > 0 ⇐⇒ νTD̃ULν > 0.

A.2 Regularized Joint Harmonic Functions

Proposition 11 If W � 0 then ∆S � 0.

Proof Define the matrix

V =

(
W W

W D

)
, and let ν =

(
ν1

ν2

)
∈ IR2|L∪U | with ν 6=~0. (33)

Since νTV ν = νT
1 W ν1+νT

1 W ν2+νT
2 W ν1+νT

2 Dν2 = (ν1+ν2)
TW (ν1+ν2)+νT

2 ∆ν2 ≥ 0, the

D block Schur complement of V is positive semi-definite, that is, W −WD−1W =∆S � 0.
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Proposition 12 Let W � 0. Assume (∆S)UU ≻ 0 when one selects γ = 0; this additional as-

sumption is not required when one selects some γ > 0. The unique solution to the Joint Harmonic

Optimization Problem (24) is (YU , f ) =
(
ŶUγ ,SY

(
ŶUγ

))
, where

ŶUγ =−((∆S)UU + γI)−1 (∆S)UL YL.

Proof The solution is unique if the scores of the quadratic in (YU , f ) objective function are non-

degenerate. After some rearrangement, the scores with respect to YU and f are

SUU(ŶUγ − fU)+SUL(YL − fL)+ γD−1
UUŶUγ = ~0 (34)

f (YU) = SY (YU), (35)

and plugging the fU portion of Vector (35) into Unlabeled Score (34) produces

D−1
UU (γI+∆UUSUU +∆ULSLU)ŶUγ = −D−1

UU (∆UUSUL +∆ULSLL)YL

ŶUγ = −((∆S)UU + γI)−1 (∆S)UL YL.

Matrix (∆S)UU + γI ≻ 0 by Proposition 11 when γ > 0 and by assumption when γ = 0, so its

inverse exists. Substitution of YU = ŶUγ into Equation (35) results in f = SY
(
ŶUγ

)
.

A.3 Joint Harmonic Estimator γ = 0

Lemma 13 If W � 0 then ∆UUSUU =DUU (I−SUU)SUU � 0. In addition,

∆UUSUU ≻ 0 ⇐⇒ ρ(SUU)< 1 and ρ(I−SUU)< 1.

Proof In Display (33), substitute WUU for W and DUU for D and take ν ∈ IR2|U |. Then

∆UUSUU � 0 ⇐⇒ (ν1 +ν2)
TWUU(ν1 +ν2)+νT

2 ∆UU ν2 ≥ 0. (36)

One can set ν2 =~0 or ν1 +ν2 =~0 such that ν 6=~0, so both inequalities in Display (36) are strict if

and only if ∆UU ≻ 0 and WUU ≻ 0. Furthermore, ∆UU ≻ 0 ⇐⇒ ρ(SUU)< 1 by Proposition 10,

and WUU ≻ 0 ⇐⇒ ρ(I−SUU)< 1 by Lemma 9.

Lemma 14 Let W � 0. Also, assume ∆UUSUU ≻ 0, so A= SLUS
−1
UU (I−SUU)

−1
SUL exists by

Lemma 13. Then each eigenvalue of A is an element of [0,1].

Proof Each eigenvalue of SUU is an element of (0,1) by Lemma 9, since WUU ≻ 0 rules out

eigenvalues of 0 and ∆UU ≻ 0 eigenvalues of 1 by Proposition 10. Furthermore, the UU block

Schur complements ∆⋆
LL and W ⋆

LL are each positive semi-definite, so

B1 =D
−1/2
LL (W ⋆

LL +∆
⋆
LL)D

−1/2
LL � 0. (37)

By assumption (and application of Lemma 13), DUU (I−SUU)
−1

S−1
UU ≻ 0, so since a row of WUL

could be all zeros,

B2 =D
−1/2
LL WLU (∆UUSUU)

−1
WULD

−1/2
LL � 0.
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Although tedious to establish, there is a simple relationship between B1 and B2; that is,

B2 = D
−1/2
LL WLUS

−1
UU (I−SUU)

−1
SULD

−1/2
LL

= D
−1/2
LL WLUS

−1
UUSULD

−1/2
LL +D

−1/2
LL WLU (I−SUU)

−1
SULD

−1/2
LL (38)

= D
−1/2
LL WLUW

−1
UUWULD

−1/2
LL +D

−1/2
LL ∆LU∆

−1
UU∆ULD

−1/2
LL

= I−D
−1/2
LL

((
DLL −WLL −∆LU∆

−1
UU∆UL

)
+
(
WLL −WLUW

−1
UUWUL

))
D

−1/2
LL

= I−B1,

where equality holds in Display (38) because S−1
UU (I−SUU)

−1 = S−1
UU +(I−SUU)

−1
.

The eigenvalues of B2 are bounded below by 0 because B2 � 0 and bounded above by 1 be-

cause B1 � 0 and B2 = I−B1 � 0. This proof concludes by noting that B2 and A have the same

eigenvalues since B2φ = λφ ⇐⇒ Aφ̆ = λφ̆, where φ̆ =D
−1/2
LL φ.

Lemma 15 If W � 0 then the following conditions are equivalent.

(a) (∆S)UU ≻ 0.

(b) ρ(SUU)< 1, ρ(I−SUU)< 1, and ρ(A)< 1, where A= SLUS
−1
UU (I−SUU)

−1
SUL.

(c) WUU ≻ 0, ∆UU ≻ 0, and (W ⋆
LL +∆

⋆
LL)≻ 0.

(d) ΓLL = (W ⋆
LL +∆

⋆
LL)

−1W ⋆
LL exists.

Proof [(a) ⇐⇒ (b)]: Matrix (∆S)UU � 0 by Proposition 11. Also,

(∆S)UU =∆UUSUU −WULD
−1
LL WLU

is the DLL block Schur complement of

V2 =

(
DLL WLU

WUL ∆UUSUU

)
,

so condition (a) ⇐⇒ V2 ≻ 0. Hence, it suffices to show V2 ≻ 0 ⇐⇒ condition (b). This follows

because V2 ≻ 0 ⇐⇒ the ∆UUSUU block Schur complement of V2 is positive definite, that is,(
DLL −WLU (∆UUSUU)

−1
WUL

)
= DLL(I −A) ≻ 0. Recall (∆UUSUU)

−1 ⇐⇒ ρ(SUU) < 1

and ρ(I−SUU) < 1 by Lemma 13. Furthermore, the existence of (I −A)−1 ⇐⇒ ρ(A) < 1 by

Lemma 14 because Aν = λν ⇐⇒ (I−A)ν = (1−λ)ν.

[(b) ⇐⇒ (c)]: By Lemma 13, ρ(SUU) < 1 and ρ(I−SUU) < 1 ⇐⇒WUU ≻ 0 and ∆UU ≻ 0.

Either set of these equivalent conditions implies

DLL (I−A) = DLL

(
I−SLUS

−1
UU (I−SUU)

−1
SUL

)

= DLL

(
I−SLUS

−1
UUSUL −SLU (I−SUU)

−1
SUL

)

= DLL

(
I−SLU (I−SUU)

−1
SUL −SLL

)
+DLL

(
SLL −SLUS

−1
UUSUL

)
(39)

=
(
∆LL −∆LU∆

−1
UU∆UL

)
+
(
WLL −WLUW

−1
UUWUL

)

= W ⋆
LL +∆

⋆
LL,

3746



JOINT HARMONIC FUNCTIONS

so (W ⋆
LL +∆

⋆
LL)

−1
exists ⇐⇒ ρ(A)< 1.

[(c) ⇐⇒ (d)]: This follows automatically.

Proposition 16 If W � 0 then

(∆S)UU ≻ 0 ⇐⇒ WUU ≻ 0, ∆UU ≻ 0, and (W ⋆
LL +∆

⋆
LL)≻ 0.

Proof This is a special case of Lemma 15.

Lemma 17 Let W � 0, and assume that ΓLL exists. An equivalent form to that in Proposition 12

for the labeled solution to the joint training problem in Display (24) with γ = 0 is fL = ΓLLYL.

Proof By Proposition 12 with γ = 0, the joint training labeled estimator is

fL =
(
SLL −SLU (∆S)−1

UU (∆S)UL

)
YL. (40)

Now, it follows from some matrix algebra that

−(∆S)−1
UU (∆S)UL = ((I−SUU)SUU −SULSLU)

−1 (SULSLL − (I−SUU)SUL)

= (I−F )−1 (E−S−1
UUSUL), (41)

where

E = S−1
UU (I−SUU)

−1
SULSLL,

F = S−1
UU (I−SUU)

−1
SULSLU .

Further simplification is based on an identity involving A from Lemma 14 and F , that is,

SLU (I−F )−1 = SLU

(
∞

∑
ℓ=0

(
S−1

UU (I−SUU)
−1

SULSLU

)ℓ
)

(42)

=

(
∞

∑
ℓ=0

(
SLUS

−1
UU (I−SUU)

−1
SUL

)ℓ
)
SLU (43)

= (I−A)−1SLU .

The geometric matrix series in Display (43) converges because ρ(A) < 1 by Lemma 15. Since

F ν = λν =⇒ASLU ν = λSLU ν and νTA= λνT =⇒ νTSLUF = λνTSLU , F and A have the same

non-zero eigenvalues, so the infinite series in Display (42) is also well-defined.

Substitutions of Display (41) and SLU (I−F )−1 = (I−A)−1
SLU produce

SLL −SLU (∆S)−1
UU (∆S)UL = SLL +SLU (I−F )−1 (E−S−1

UUSUL)

= SLL +(I−A)−1 (SLUE−SLUS
−1
UUSUL)

= SLL +(I−A)−1 (ASLL −SLUS
−1
UUSUL)

=
(
I+(I−A)−1

A
)
SLL − (I−A)−1

SLUS
−1
UUSUL

= (I−A)−1
S⋆

LL.
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Therefore, the equivalent form fL = ΓLLYL = (W ⋆
LL +∆

⋆
LL)

−1
W ⋆

LLYL for Equation (40) is estab-

lished using DLL (I−A) =W ⋆
LL +∆

⋆
LL from Display (39) and S⋆

LL =D−1
LL W

⋆
LL.

Theorem 18 Let W � 0, and assume that ΓLL exists. The solution to the Joint Harmonic Opti-

mization Problem (24) with γ = 0 has

f =

(
fL

(I−SUU)
−1

SUL fL

)
=

(
ΓLL

(I−SUU)
−1

SULΓLL

)
YL,

so f is in-fact harmonic.

Proof The optimal ŶU satisfies the derivative score in Display (34) with γ = 0, so

ŶU = fU −S−1
UUSUL (YL − fL)

after rearrangement. Finally, since the optimal f satisfies f = SY (ŶU), fU satisfies

fU = SULYL +SUUŶU

= SULYL +SUU fU −SUL (YL − fL)

= (I−SUU)
−1

SUL fL,

and the optimal fL satisfies fL = ΓLLYL by Lemma 17.

Proposition 19 If W � 0 and ΓLL exists then each eigenvalue of ΓLL is an element of [0,1].

Proof Since WUU ≻ 0 by Lemma 15, W � 0 ⇐⇒W ⋆
LL � 0, so it is well-defined to set

V3 =

(
I W ⋆

LL
1/2

W ⋆
LL

1/2 W ⋆
LL +∆

⋆
LL

)
.

The I block Schur complement of V3 is ∆⋆
LL � 0, so the other block is positive semi-definite, that

is,

I−W ⋆
LL

1/2 (W ⋆
LL +∆

⋆
LL)

−1
W ⋆

LL
1/2 � 0,

and ΓLL and W ⋆
LL

1/2 (W ⋆
LL +∆

⋆
LL)

−1
W ⋆

LL
1/2 � 0 have the same eigenvalues.

A.4 Regularized Joint Harmonic Estimators γ > 0

Lemma 20 Let W � 0 and γ > 0 and define

ΓLLγ =
(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

W ⋆
LLγ

.

The labeled solution to the Joint Optimization Problem (24) is equivalently given by fLγ = ΓLLγYL.
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Proof The sum of “regularized inverses” in Displays (29) and (30)

Cγ =W−
UUγ

+∆
−
UUγ

= (∆UUSUU + γI)−1

is positive definite by Proposition 11, and

((∆S)UU + γI)−1 (∆S)UL = Gγ +Hγ, (44)

where

Gγ =
(
I−CγWULSLU

)−1
Cγ∆ULSLL,

Hγ =
(
I−CγWULSLU

)−1
Cγ∆UUSUL.

Thus, by Proposition 12, labeled estimator fL depends on

SLL −SLU ((∆S)UU + γI)−1 (∆S)UL = SLL −SLUGγ −SLUHγ. (45)

Simplification of terms on the right of Equation (45) is based on

(
I−SLUCγWUL

)−1
D−1

LL =
(
DLL −WLUCγWUL

)−1

=
(
DLL −∆LU∆

−
UUγ

∆UL −WLUW
−

UUγ
WUL

)−1

=
(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

and on

SLU

(
I−CγWULSLU

)−1
=
(
I−SLUCγWUL

)−1
SLU

if ρ
(
SLUCγWUL

)
< 1 by a geometric matrix series argument similar to that used to establish Dis-

plays (42) and (43). Because γ > 0 is shrinking the eigenvalues of Cγ, ρ
(
SLUCγWUL

)
< 1 as

a consequence of a generalization of Lemma 14 since B1 is unique even if arbitrary generalized

inverses are used to compute the Schur complements in Display (37). Now, terms on the right of

Equation (45) reduce to

SLL −SLUGγ =
(
I+SLU

(
I−CγWULSLU

)−1
CγWUL

)
SLL

=
(
I+

(
I−SLUCγWUL

)−1
SLUCγWUL

)
SLL

=
(
I−SLUCγWUL

)−1
D−1

LL WLL

=
(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

WLL (46)

and

SLUHγ = SLU

(
I−CγWULSLU

)−1
Cγ∆UUSUL

=
(
I−SLUCγWUL

)−1
SLUCγ (I−SUU)

T
WUL

=
(
I−SLUCγWUL

)−1
D−1

LL

(
WLUW

−
UUγ

WUL

)

=
(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

WLUW
−

UUγ
WUL. (47)

The right of Equation (45) simplifies to ΓLLγ based on Equations (46) and (47).
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Theorem 21 Let W � 0. Let fγ denote the solution to the Joint Harmonic Optimization Problem

(24) with γ > 0. Then

fγ =




ΓLLγ

−
(
∆

−
UUγ

)T

∆ULΓLLγ +

(
I−

(
∆

−
UUγ

)T

∆UU

)
SUL


YL.

Proof Matrix definitions and techniques from the proof of Lemma 20 are used here. Let

Rγ =
(
∆

−
UUγ

)T

WUL

(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

WLUW
−

UUγ
WUL

=
(
∆

−
UUγ

)T {
WUL

(
I−SLUCγWUL

)−1
SLUCγ

}
(I−SUU)

T
WUL

=
(
∆

−
UUγ

)T {(
I−WULSLUCγ

)−1
WULSLUCγ

}
∆UUSUL. (48)

Then

SUUGγ = SUU

(
I−CγWULSLU

)−1
Cγ∆ULSLL

= SUUCγ∆UL

(
I−SLUCγWUL

)−1
SLL

=
(
∆

−
UUγ

)T

∆UL

(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

WLL

=
(
∆

−
UUγ

)T

∆UL

(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

W ⋆
LL +Rγ

=
(
∆

−
UUγ

)T

∆ULΓLLγ +Rγ. (49)

Equation (48) and SUUHγ =
(
∆

−
UUγ

)T {(
I−WULSLUCγ

)−1
}
∆UUSUL imply

SUL −
(
SUUHγ +Rγ

)
=

(
I−

(
∆

−
UUγ

)T

{I}∆UU

)
SUL. (50)

Proposition 12 and Equation (44) result in the unlabeled estimator smoother

SUL −SUU(Gγ +Hγ) = SUL −
(
SUUHγ +Rγ

)
− (SUUGγ −Rγ), (51)

and substitutions based on Equations (49) and (50) into the right of Equation (51) produce its de-

sired form. The labeled estimator smoother ΓLLγ is given by Lemma 20.
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Abstract

A kernel method for realizing Bayes’ rule is proposed, based on representations of probabilities

in reproducing kernel Hilbert spaces. Probabilities are uniquely characterized by the mean of the

canonical map to the RKHS. The prior and conditional probabilities are expressed in terms of

RKHS functions of an empirical sample: no explicit parametric model is needed for these quan-

tities. The posterior is likewise an RKHS mean of a weighted sample. The estimator for the

expectation of a function of the posterior is derived, and rates of consistency are shown. Some rep-

resentative applications of the kernel Bayes’ rule are presented, including Bayesian computation

without likelihood and filtering with a nonparametric state-space model.

Keywords: kernel method, Bayes’ rule, reproducing kernel Hilbert space

1. Introduction

Kernel methods have long provided powerful tools for generalizing linear statistical approaches to

nonlinear settings, through an embedding of the sample to a high dimensional feature space, namely

a reproducing kernel Hilbert space (RKHS) (Schölkopf and Smola, 2002). Examples include sup-

port vector machines, kernel PCA, and kernel CCA, among others. In these cases, data are mapped

via a canonical feature map to a reproducing kernel Hilbert space (of high or even infinite dimen-

sion), in which the linear operations that define the algorithms are implemented. The inner product

between feature mappings need never be computed explicitly, but is given by a positive definite

kernel function unique to the RKHS: this permits efficient computation without the need to deal

explicitly with the feature representation.

The mappings of individual points to a feature space may be generalized to mappings of prob-

ability measures (e.g., Berlinet and Thomas-Agnan, 2004, Chapter 4). We call such mappings the

c©2013 Kenji Fukumizu, Le Song and Arthur Gretton.
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kernel means of the underlying random variables. With an appropriate choice of positive definite

kernel, the kernel mean on the RKHS uniquely determines the distribution of the variable (Fukumizu

et al., 2004, 2009a; Sriperumbudur et al., 2010), and statistical inference problems on distributions

can be solved via operations on the kernel means. Applications of this approach include homo-

geneity testing (Gretton et al., 2007; Harchaoui et al., 2008; Gretton et al., 2009a, 2012), where

the empirical means on the RKHS are compared directly, and independence testing (Gretton et al.,

2008, 2009b), where the mean of the joint distribution on the feature space is compared with that

of the product of the marginals. Representations of conditional dependence may also be defined in

RKHS, and have been used in conditional independence tests (Fukumizu et al., 2008; Zhang et al.,

2011).

In this paper, we propose a novel, nonparametric approach to Bayesian inference, making use

of kernel means of probabilities. In applying Bayes’ rule, we compute the posterior probability of x

in X given observation y in Y ;

q(x|y) = p(y|x)π(x)
qY (y)

, (1)

where π(x) and p(y|x) are the density functions of the prior and the likelihood of y given x, re-

spectively, with respective base measures νX and νY , and the normalization factor qY (y) is given

by

qY (y) =
∫

p(y|x)π(x)dνX (x).

Our main result is a nonparametric estimate of posterior kernel mean, given kernel mean represen-

tations of the prior and likelihood. We call this method kernel Bayes’ rule.

A valuable property of the kernel Bayes’ rule is that the kernel posterior mean is estimated

nonparametrically from data. The prior is represented by a weighted sum over a sample, and the

probabilistic relation expressed by the likelihood is represented in terms of a sample from a joint

distribution having the desired conditional probability. This confers an important benefit: we can

still perform Bayesian inference by making sufficient observations on the system, even in the ab-

sence of a specific parametric model of the relation between variables. More generally, if we can

sample from the model, we do not require explicit density functions for inference. Such situations

are typically seen when the prior or likelihood is given by a random process: Approximate Bayesian

Computation (Tavaré et al., 1997; Marjoram et al., 2003; Sisson et al., 2007) is widely applied in

population genetics, where the likelihood is expressed as a branching process, and nonparametric

Bayesian inference (Müller and Quintana, 2004) often uses a process prior with sampling methods.

Alternatively, a parametric model may be known, however it might be of sufficient complexity to

require Markov chain Monte Carlo or sequential Monte Carlo for inference. The present kernel

approach provides an alternative strategy for Bayesian inference in these settings. We demonstrate

consistency for our posterior kernel mean estimate, and derive convergence rates for the expectation

of functions computed using this estimate.

An alternative to the kernel mean representation would be to use nonparametric density esti-

mates for the posterior. Classical approaches include kernel density estimation (KDE) or distribu-

tion estimation on a finite partition of the domain. These methods are known to perform poorly

on high dimensional data, however. In addition, computation of the posterior with KDE requires

importance weights, which may not be accurate in low density areas. By contrast, the proposed

kernel mean representation is defined as an integral or moment of the distribution, taking the form

of a function in an RKHS. Thus, it is more akin to the characteristic function approach (see, e.g.,
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Kankainen and Ushakov, 1998) to representing probabilities. A well conditioned empirical estimate

of the characteristic function can be difficult to obtain, especially for conditional probabilities. By

contrast, the kernel mean has a straightforward empirical estimate, and conditioning and marginal-

ization can be implemented easily, at a reasonable computational cost.

The proposed method of realizing Bayes’ rule is an extension of the approach used by Song

et al. (2009) for state-space models. In this earlier work, a heuristic approximation was used, where

the kernel mean of the new hidden state was estimated by adding kernel mean estimates from the

previous hidden state and the observation. Another relevant work is the belief propagation approach

in Song et al. (2010a, 2011), which covers the simpler case of a uniform prior.

This paper is organized as follows. We begin in Section 2 with a review of RKHS terminology

and of kernel mean embeddings. In Section 3, we derive an expression for Bayes’ rule in terms

of kernel means, and provide consistency guarantees. We apply the kernel Bayes’ rule in Section

4 to various inference problems, with numerical results and comparisons with existing methods in

Section 5. Our proofs are contained in Section 6 (including proofs of the consistency results of

Section 3).

2. Preliminaries: Positive Definite Kernels and Probabilities

Throughout this paper, all Hilbert spaces are assumed to be separable. For an operator A on a Hilbert

space, the range is denoted by R (A). The linear hull of a subset S in a vector space is denoted by

SpanS.

We begin with a review of positive definite kernels, and of statistics on the associated reproduc-

ing kernel Hilbert spaces (Aronszajn, 1950; Berlinet and Thomas-Agnan, 2004; Fukumizu et al.,

2004, 2009a). Given a set Ω, a (R-valued) positive definite kernel k on Ω is a symmetric kernel

k : Ω×Ω → R such that ∑n
i, j=1 cic jk(xi,x j) ≥ 0 for arbitrary number of points x1, . . . ,xn in Ω and

real numbers c1, . . . ,cn. The matrix (k(xi,x j))
n
i, j=1 is called a Gram matrix. It is known by the

Moore-Aronszajn theorem (Aronszajn, 1950) that a positive definite kernel on Ω uniquely defines a

Hilbert space H consisting of functions on Ω such that the following three conditions hold:

(i) k(·,x) ∈ H for any x ∈ Ω,

(ii) Span{k(·,x) | x ∈ Ω} is dense in H ,

(iii) 〈 f ,k(·,x)〉 = f (x) for any x ∈ Ω and f ∈ H (the reproducing property), where 〈·, ·〉 is the

inner product of H .

The Hilbert space H is called the reproducing kernel Hilbert space (RKHS) associated with k, since

the function kx = k(·,x) serves as the reproducing kernel 〈 f ,kx〉= f (x) for f ∈ H .

A positive definite kernel on Ω is said to be bounded if there is M > 0 such that k(x,x)≤ M for

any x ∈ Ω.

Let (X ,BX ) be a measurable space, X be a random variable taking values in X with distribution

PX , and k be a measurable positive definite kernel on X such that E[
√

k(X ,X)]< ∞. The associated

RKHS is denoted by H . The kernel mean mk
X (also written mk

PX
) of X on the RKHS H is defined by

the mean of the H -valued random variable k(·,X). The existence of the kernel mean is guaranteed

by E[‖k(·,X)‖] = E[
√

k(X ,X)] < ∞. We will generally write mX in place of mk
X for simplicity,

where there is no ambiguity. By the reproducing property, the kernel mean satisfies the relation

〈 f ,mX〉= E[ f (X)] (2)
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for any f ∈ H . Plugging f = k(·,u) into this relation,

mX(u) = E[k(u,X)] =
∫

k(u, x̃)dPX (x̃), (3)

which shows the explicit functional form. The kernel mean mX is also denoted by mPX
, as it depends

only on the distribution PX with k fixed.

Let (X ,BX ) and (Y ,BY ) be measurable spaces, (X ,Y ) be a random variable on X ×Y with

distribution P, and kX and kY be measurable positive definite kernels with respective RKHS HX

and HY such that E[kX (X ,X)] < ∞ and E[kY (Y,Y )] < ∞. The (uncentered) covariance operator

CY X : HX → HY is defined as the linear operator that satisfies

〈g,CYX f 〉HY
= E[ f (X)g(Y )]

for all f ∈ HX ,g ∈ HY . This operator CY X can be identified with m(Y X) in the product space HY ⊗
HX , which is given by the product kernel kY kX on Y × X (Aronszajn, 1950), by the standard

identification between the linear maps and the tensor product. We also define CXX for the operator

on HX that satisfies 〈 f2,CXX f1〉 = E[ f2(X) f1(X)] for any f1, f2 ∈ HX . Similarly to Equation (3),

the explicit integral expressions for CY X and CXX are given by

(CY X f )(y) =
∫

kY (y, ỹ) f (x̃)dP(x̃, ỹ) and (CXX f )(x) =
∫

kX (x, x̃) f (x̃)dPX (x̃), (4)

respectively.

An important notion in statistical inference with positive definite kernels is the characteristic

property. A bounded measurable positive definite kernel k on a measurable space (Ω,B) is called

characteristic if the mapping from a probability Q on (Ω,B) to the kernel mean mk
Q ∈ H is in-

jective (Fukumizu et al., 2009a; Sriperumbudur et al., 2010). This is equivalent to assuming that

EX∼P[k(·,X)] = EX ′∼Q[k(·,X ′)] implies P=Q: probabilities are uniquely determined by their kernel

means on the associated RKHS. With this property, problems of statistical inference can be cast as

inference on the kernel means. A popular example of a characteristic kernel defined on Euclidean

space is the Gaussian RBF kernel k(x,y) = exp(−‖x− y‖2/(2σ2)). A bounded measurable positive

definite kernel on a measurable space (Ω,B) with corresponding RKHS H is characteristic if and

only if H +R is dense in L2(P) for arbitrary probability P on (Ω,B), where H +R is the direct

sum of two RKHSs H and R (Aronszajn, 1950). This implies that the RKHS defined by a char-

acteristic kernel is rich enough to be dense in L2 space up to the constant functions. Other useful

conditions for a kernel to be characteristic can be found in Sriperumbudur et al. (2010), Fukumizu

et al. (2009b), and Sriperumbudur et al. (2011).

Throughout this paper, when positive definite kernels on a measurable space are discussed, the

following assumption is made:

(K) Positive definite kernels are bounded and measurable.

Under this assumption, the mean and covariance always exist for arbitrary probabilities.

Given i.i.d. sample (X1,Y1), . . . ,(Xn,Yn) with law P, the empirical estimators of the kernel mean

and covariance operator are given straightforwardly by

m̂
(n)
X =

1

n

n

∑
i=1

kX (·,Xi), Ĉ
(n)
Y X =

1

n

n

∑
i=1

kY (·,Yi)⊗ kX (·,Xi),
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where Ĉ
(n)
Y X is written in tensor form. These estimators are

√
n-consistent in appropriate norms,

and
√

n(m̂
(n)
X −mX) converges to a Gaussian process on HX (Berlinet and Thomas-Agnan, 2004,

Section 9.1). While we may use non-i.i.d. samples for numerical examples in Section 5, in our

theoretical analysis we always assume i.i.d. samples for simplicity.

3. Kernel Expression of Bayes’ Rule

We review Bayes’ rule and the notion of kernel conditional mean embeddings in Section 3.1. We

demonstrate that Bayes’ rule may be expressed in terms of these conditional mean embeddings. We

provide consistency results for the empirical estimators of the conditional mean embedding for the

posterior in Section 3.2.

3.1 Kernel Bayes’ Rule

We first review Bayes’ rule in a general form without using density functions, since the kernel

Bayes’ rule can be applied to situations where density functions are not available.

Let (X ,BX ) and (Y ,BY ) be measurable spaces, (Ω,A ,P) a probability space, and (X ,Y ) : Ω →
X ×Y be a (X ×Y -valued) random variable with distribution P. The marginal distribution of X

is denoted by PX . Suppose that Π is a probability measure on (X ,BX ), which serves as a prior

distribution. For each x ∈ X , let PY |x denote the conditional probability of Y given X = x; namely,

PY |x(B) = E[IB(Y )|X = x], where IB is the indicator function of a measurable set B ∈ BY .1 We

assume that the conditional probability PY |x is regular; namely, it defines a probability measure on

Y for each x. The prior Π and the family {PY |x | x ∈ X } defines the joint distribution Q on X ×Y

by

Q(A×B) =
∫

A
PY |x(B)dΠ(x) (5)

for any A ∈ BX and B ∈ BY , and its marginal distribution QY by

QY (B) = Q(X ×B).

Let (Z,W ) be a random variable on X ×Y with distribution Q. For y ∈ Y , the posterior probability

given y is defined by the conditional probability

QX |y(A) = E[IA(Z)|W = y] (A ∈ BX ). (6)

If the probability distributions have density functions with respect to a measure νX on X and νY on

Y , namely, if the p.d.f. of P and Π are given by p(x,y) and π(x), respectively, Equations (5) and

(6) are reduced to the well known form Equation (1). To make Bayesian inference meaningful, we

make the following assumption:

(A) The prior Π is absolutely continuous with respect to the marginal distribution PX .

1. The BX -measurable function PY |x(B) is always well defined. In fact, the finite measure µ(A) :=∫
{ω∈Ω|X(ω)∈A} IB(Y )dP on (X ,BX ) is absolutely continuous with respect to PX . The Radon-Nikodym theorem then

guarantees the existence of a BX -measurable function η(x) such that
∫
{ω∈Ω|X(ω)∈A} IB(Y )dP =

∫
A η(x)dPX (x). We

can define PY |x(B) := η(x). Note that PY |x(B) may not satisfy the σ-additivity in general. For details on conditional

probability, see, for example, Shiryaev (1995, §9).
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The conditional probability PY |x(B) can be uniquely determined only almost surely with respect to

PX . It is thus possible to define Q appropriately only if assumption (A) holds.

In ordinary Bayesian inference, we need only the conditional probability density (likelihood)

p(y|x) and prior π(x), and not the joint distribution P. In kernel methods, however, the information

on the relation between variables is expressed by covariance, which leads to finite sample estimates

in terms of Gram matrices, as we see below. It is then necessary to assume the existence of the

variable (X ,Y ) on X ×Y with probability P, which gives the conditional probability PY |x by con-

ditioning on X = x.

Let kX and kY be positive definite kernels on X and Y , respectively, with respective RKHS HX

and HY . The goal of this subsection is to derive an estimator of the kernel mean of posterior mQX |y.

The following theorem is fundamental to discuss conditional probabilities with positive definite

kernels.

Theorem 1 (Fukumizu et al., 2004) If E[g(Y )|X = ·] ∈ HX holds2 for g ∈ HY , then

CXX E[g(Y )|X = ·] =CXY g.

The above relation motivates to introduce a regularized approximation of the conditional expectation

(
CXX + εI)−1CXY g,

which is shown to converge to E[g(Y )|X = ·] in HX under appropriate assumptions, as we will see

later.

Using Theorem 1, we have the following result, which expresses the kernel mean of QY , and

implements the Sum Rule in terms of mean embeddings.

Theorem 2 (Song et al., 2009, Equation 6) Let mΠ and mQY
be the kernel means of Π in HX and

QY in HY , respectively. If CXX is injective,3 mΠ ∈ R (CXX), and E[g(Y )|X = ·] ∈ HX for any

g ∈ HY , then

mQY
=CY XC−1

XX mΠ, (7)

where C−1
XX mΠ denotes the function mapped to mΠ by CXX .

Proof Take f ∈ HX such that CXX f = mΠ. It follows from Theorem 1 that for any g ∈ HY ,

〈CY X f ,g〉= 〈 f ,CXY g〉= 〈 f ,CXX E[g(Y )|X = ·]〉= 〈CXX f ,E[g(Y )|X = ·]〉= 〈mΠ,E[g(Y )|X = ·]〉=
〈mQY

,g〉, which implies CY X f = mQY
.

As discussed by Song et al. (2009), we can regard the operator CY XC−1
XX as the kernel expression

of the conditional probability PY |x or p(y|x). Note, however, that the assumptions mΠ ∈ R (CXX)
and E[g(Y )|X = ·] ∈ HX may not hold in general; we can easily give counterexamples for the latter

in the case of Gaussian kernels.4 A regularized inverse (CXX + εI)−1 can be used to remove this

2. The assumption “E[g(Y )|X = ·] ∈ HX ” means that a version of the conditional expectation E[g(Y )|X = x] is included

in HX as a function of x.

3. Noting 〈CXX f , f 〉 = E[ f (X)2], it is easy to see that CXX is injective if X is a topological space, kX is a continuous

kernel, and Supp(PX ) = X , where Supp(PX ) is the support of PX .

4. Suppose that HX and HY are given by Gaussian kernel, and that X and Y are independent. Then, E[g(Y )|X = x] is

a constant function of x, which is known not to be included in a RKHS given by a Gaussian kernel (Steinwart and

Christmann, 2008, Corollary 4.44).
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strong assumption. An alternative way of obtaining the regularized conditional mean embedding

is as the solution to a vector-valued ridge regression problem, as proposed by Grünewälder et al.

(2012) and Grünewälder et al. (2013). A connection between conditional embeddings and ridge

regression was noted independently by Zhang et al. (2011, Section 3.5). Following Grünewälder

et al. (2013, Section 3.2), we seek a bounded linear operator F : HY → HX that minimizes the loss

Ec[F] = sup
‖h‖HY

≤1

E
(
E[h(Y )|X ]−〈Fh,kX (X , ·)〉HX

)2
,

where we take the supremum over the unit ball in HY to ensure worst-case robustness. Using the

Jensen and Cauchy-Schwarz inequalities, we may upper bound this as

Ec[F]≤ Eu[F] := E‖kY (Y, ·)−F∗[kX (X , ·)]‖2
HY

,

where F∗ denotes the adjoint of F . If we stipulate that5 F∗ ∈ HY ⊗HX , and regularize by the

squared Hilbert-Schmidt norm of F∗, we obtain the ridge regression problem

argmin
F∗∈HY ⊗HX

E‖kY (Y, ·)−F∗[kX (X , ·)]‖2
HY

+ ε‖F∗‖2
HS,

which has as its solution the regularized kernel conditional mean embedding. In the following, we

nonetheless use the unregularized version to derive a population expression of Bayes’ rule, use it as

a prototype for defining an empirical estimator, and prove its consistency.

Equation (7) has a simple interpretation if the probability density function or Radon-Nikodym

derivative dΠ/dPX is included in HX under Assumption (A). From Equation (3) we have mΠ(x) =∫
kX (x, x̃)dΠ(x̃) =

∫
kX (x, x̃)(dΠ/dPX )(x̃)dPX (x̃), which implies C−1

XX mΠ = dΠ/dPX from Equa-

tion (4) under the injective assumption of CXX . Thus Equation (7) is an operator expression of the

obvious relation

∫ ∫
kY (y, ỹ)dPY |x(ỹ)dΠ(x̃) =

∫
kY (y, ỹ)

( dΠ

dPX

)
(x̃)dP(x̃, ỹ).

In many applications of Bayesian inference, the probability conditioned on a particular value

should be computed. By plugging the point measure at x into Π in Equation (7), we have a popula-

tion expression6

E[kY (·,Y )|X = x] =CY XCXX
−1kX (·,x), (8)

or more rigorously we can consider a regularized inversion

E
reg
ε [kY (·,Y )|X = x] :=CY X(CXX + εI)−1kX (·,x) (9)

as an approximation of the conditional expectation E[kY (·,Y )|X = x]. Note that in the latter ex-

pression we do not need to assume kX (·,x) ∈ R (CXX), which is too strong in many situations. We

5. Note that more complex vector-valued RKHS are possible; see, for example, Micchelli and Pontil (2005).

6. The expression Equation (8) has been considered in Song et al. (2009, 2010a) as the kernel mean of the conditional

probability. It must be noted that for this case the assumption mΠ = k(·,x) ∈ R (CXX ) in Theorem 2 may not hold in

general. Suppose CXX hx = kX (·,x) were to hold for some hx ∈ HX . Taking the inner product with kX (·, x̃) would then

imply kX (x, x̃) =
∫

hx(x
′)kX (x̃,x

′)dPX (x
′), which is not possible for many popular kernels, including the Gaussian

kernel.
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will show in Theorem 8 that under some mild conditions a regularized empirical estimator based on

Equation (9) is a consistent estimator of E[kY (·,Y )|X = x].
To derive kernel realization of Bayes’ rule, suppose that we know the covariance operators CZW

and CWW for the random variable (Z,W ) ∼ Q, where Q is defined by Equation (5). The condi-

tional probability E[kX (·,Z)|W = y] is then exactly the kernel mean of the posterior distribution for

observation y ∈ Y . Equation (9) gives the regularized approximate of the kernel mean of posterior;

CZW (CWW +δI)−1kY (·,y), (10)

where δ is a positive regularization constant. The remaining task is thus to derive the covariance

operators CZW and CWW . This can be done by recalling that the kernel mean mQ =m(ZW ) ∈HX ⊗HY

can be identified with the covariance operator CZW : HY → HX by the standard identification of a

tensor ∑i fi ⊗ gi ( fi ∈ HX and gi ∈ HY ) and a Hilbert-Schmidt operator h 7→ ∑i gi〈 fi,h〉HX
. From

Theorem 2, the kernel mean mQ is given by the following tensor representation:

mQ =C(Y X)XC−1
XX mΠ ∈ HY ⊗HX ,

where the covariance operator C(Y X)X : HX →HY ⊗HX is defined by the random variable ((Y,X),X)
taking values on (Y ×X )×X . We can alternatively and more generally use an approximation by the

regularized inversion m
reg
Q = C(Y X)X(CXX + δ)−1mΠ, as in Equation (9). This expression provides

the covariance operator CZW . Similarly, the kernel mean m(WW ) on the product space HY ⊗HY is

identified with CWW , and the expression

m(WW ) =C(YY )XC−1
XX mΠ

gives a way of estimating the operator CWW .

The above argument can be rigorously implemented, if empirical estimators are considered. Let

(X1,Y1), . . . ,(Xn,Yn) be an i.i.d. sample with law P. Since we need to express the information in the

variables in terms of Gram matrices given by data points, we assume the prior is also expressed in

the form of an empirical estimate, and that we have a consistent estimator of mΠ in the form

m̂
(ℓ)
Π =

ℓ

∑
j=1

γ jkX (·,U j),

where U1, . . . ,Uℓ are points in X and γ j are the weights. The data points U j may or may not be a

sample from the prior Π, and negative values are allowed for γ j. Such negative weights may appear

in successive applications of the kernel Bayes rule, as in the state-space example of Section 4.3.

Based on Equation (9), the empirical estimators for m(ZW ) and m(WW ) are defined respectively by

m̂(ZW ) = Ĉ
(n)
(Y X)X

(
Ĉ
(n)
XX + εnI

)−1
m̂
(ℓ)
Π , m̂(WW ) = Ĉ

(n)
(YY )X

(
Ĉ
(n)
XX + εnI

)−1
m̂
(ℓ)
Π ,

where εn is the coefficient of the Tikhonov-type regularization for operator inversion, and I is the

identity operator. The empirical estimators ĈZW and ĈWW for CZW and CWW are identified with

m̂(ZW ) and m̂(WW ), respectively. In the following, GX and GY denote the Gram matrices (kX (Xi,X j))
and (kY (Yi,Yj)), respectively, and In is the identity matrix of size n.

3760



KERNEL BAYES’ RULE

Proposition 3 The Gram matrix expressions of ĈZW and ĈWW are given by

ĈZW =
n

∑
i=1

µ̂ikX (·,Xi)⊗ kY (·,Yi) and ĈWW =
n

∑
i=1

µ̂ikY (·,Yi)⊗ kY (·,Yi),

respectively, where the common coefficient µ̂ ∈ R
n is

µ̂ =
(1

n
GX + εnIn

)−1

m̂Π, m̂Π,i = m̂Π(Xi) =
ℓ

∑
j=1

γ jkX (Xi,U j). (11)

The proof is similar to that of Proposition 4 below, and is omitted. The expressions in Proposition 3

imply that the probabilities Q and QY are estimated by the weighted samples {((Xi,Yi), µ̂i)}n
i=1 and

{(Yi, µ̂i)}n
i=1, respectively, with common weights. Since the weight µ̂i may be negative, the operator

inversion (ĈWW +δnI)−1 in Equation (10) may be impossible or unstable. We thus use another type

of Tikhonov regularization,7 resulting in the estimator

m̂QX |y := ĈZW

(
Ĉ2

WW +δnI
)−1

ĈWW kY (·,y). (12)

Proposition 4 For any y ∈ Y , the Gram matrix expression of m̂QX |y is given by

m̂QX |y = kT
X RX |Y kY (y), RX |Y := ΛGY ((ΛGY )

2 +δnIn)
−1Λ, (13)

where Λ = diag(µ̂) is a diagonal matrix with elements µ̂i in Equation (11), and kX ∈ HX
n

:= HX ×
·· ·×HX (n direct product) and kY ∈ HY

n
:= HY ×·· ·×HY are given by

kX = (kX (·,X1), . . . ,kX (·,Xn))
T and kY = (kY (·,Y1), . . . ,kY (·,Yn))

T .

Proof Let h= (Ĉ2
WW +δnI)−1ĈWW kY (·,y), and decompose it as h=∑n

i=1 αikY (·,Yi)+h⊥ =αT kY +

h⊥, where h⊥ is orthogonal to Span{kY (·,Yi)}n
i=1. Expansion of (Ĉ2

WW +δnI)h = ĈWW kY (·,y) gives

kT
Y (ΛGY )

2α+δnkT
Y α+δnh⊥ = kT

Y ΛkY (y). Taking the inner product with kY (·,Yj), we have

(
(GY Λ)2 +δnIn

)
GY α = GY ΛkY (y).

The coefficient ρ in m̂QX |y = ĈZW h = ∑n
i=1 ρikX (·,Xi) is given by ρ = ΛGY α, and thus

ρ = Λ
(
(GY Λ)2 +δnIn

)−1
GY ΛkY (y) = ΛGY

(
(ΛGY )

2 +δnIn

)−1
ΛkY (y).

We call Equations (12) and (13) the kernel Bayes’ rule (KBR). The required computations are

summarized in Figure 1. The KBR uses a weighted sample to represent the posterior; it is similar in

this respect to sampling methods such as importance sampling and sequential Monte Carlo (Doucet

et al., 2001). The KBR method, however, does not generate samples of the posterior, but updates

the weights of a sample by matrix computation. Note also that the weights in KBR may take

negative values. The interpretation as a probability is then not straightforward, hence the mean

7. An alternative thresholding approach is proposed by Nishiyama et al. (2012), although its consistency remains to be

established.
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Input: (i) {(Xi,Yi)}n
i=1: sample to express P. (ii) {(U j,γ j)}ℓj=1: weighted sample to express the

kernel mean of the prior m̂Π. (iii) εn,δn: regularization constants.

Computation:

1. Compute Gram matrices GX = (kX (Xi,X j)), GY = (kY (Yi,Yj)), and a vector m̂Π =
(∑ℓ

j=1 γ jkX (Xi,U j))
n
i=1.

2. Compute µ̂ = n(GX +nεnIn)
−1m̂Π.

[If the inversion fails, increase εn by εn := cεn with c > 1.]

3. Compute RX |Y = ΛGY ((ΛGY )
2 +δnIn)

−1Λ, where Λ = diag(µ̂).
[If the inversion fails, increase δn by δn := cδn with c > 1.]

Output: n×n matrix RX |Y .

Given conditioning value y, the kernel mean of the posterior q(x|y) is estimated by the

weighted sample {(Xi,ρi)}n
i=1 with weights ρ = RX |Y kY (y), where kY (y) = (kY (Yi,y))

n
i=1.

Figure 1: Algorithm for Kernel Bayes’ Rule

embedding viewpoint should take precedence (i.e., even if some weights are negative, we may still

use result of KBR to estimate posterior expectations of RKHS functions). We will give experimental

comparisons between KBR and sampling methods in Section 5.1.

If our aim is to estimate the expectation of a function f ∈ HX with respect to the posterior, the

reproducing property of Equation (2) gives an estimator

〈 f , m̂QX |y〉HX
= fT

X RX |Y kY (y), (14)

where fX = ( f (X1), . . . , f (Xn))
T ∈ R

n.

3.2 Consistency of the KBR Estimator

We now demonstrate the consistency of the KBR estimator in Equation (14). We first show consis-

tency of the estimator, and next the rate of consistency under stronger conditions.

Theorem 5 Let (X ,Y ) be a random variable on X ×Y with distribution P, (Z,W ) be a random

variable on X ×Y such that the distribution is Q defined by Equation (5), and m̂
(ℓn)
Π be a consistent

estimator of mΠ in HX norm. Assume that CXX is injective and that E[kY (Y,Ỹ )|X = x, X̃ = x̃] and

E[kX (Z, Z̃)|W = y,W̃ = ỹ] are included in the product spaces HX ⊗HX and HY ⊗HY , respectively,

as a function of (x, x̃) and (y, ỹ), where (X̃ ,Ỹ ) and (Z̃,W̃ ) are independent copies of (X ,Y ) and

(Z,W ), respectively. Then, for any sufficiently slow decay of the regularization coefficients εn and

δn, we have for any y ∈ Y ∥∥kT
X RX |Y kY (y)−mQX |y

∥∥
HX

→ 0

in probability as n → ∞, where kT
X RX |Y kY (y) is the KBR estimator given by Equation (13) and

mQX |y = E[kX (·,Z)|W = y] is the kernel mean of posterior given W = y.

It is obvious from the reproducing property that this theorem also guarantees the consistency

of the posterior expectation in Equation (14). The rate of decrease of εn and δn depends on the

convergence rate of m̂
(ℓn)
Π and other smoothness assumptions.
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Next, we show convergence rates of the KBR estimator for the expectation with posterior under

stronger assumptions. In the following two theorems, we show only the rates that can be derived

under certain specific assumptions, and defer more detailed discussions and proofs to Section 6. We

assume here that the sample size ℓ = ℓn for the prior goes to infinity as the sample size n for the

likelihood goes to infinity, and that m̂
(ℓn)
Π is nα-consistent in RKHS norm.

Theorem 6 Let f be a function in HX , (X ,Y ) be a random variable on X ×Y with distribution P,

(Z,W ) be a random variable on X ×Y with the distribution Q defined by Equation (5), and m̂
(ℓn)
Π be

an estimator of mΠ such that ‖m̂
(ℓn)
Π −mΠ‖HX

= Op(n
−α) as n → ∞ for some 0 < α ≤ 1/2. Assume

that the Radon Nikodym derivative dΠ/dPX is included in R (C
1/2
XX ), and E[ f (Z)|W = ·]∈R (C2

WW ).

With the regularization constants εn = n−
2
3

α and δn = n−
8
27

α, we have for any y ∈ Y

fT
X RX |Y kY (y)−E[ f (Z)|W = y] = Op(n

− 8
27

α), (n → ∞),

where fT
X RX |Y kY (y) is given by Equation (14).

It is possible to extend the covariance operator CWW to one defined on L2(QY ) by

C̃WW φ =
∫

kY (y,w)φ(w)dQY (w), (φ ∈ L2(QY )). (15)

If we consider the convergence on average over y, we have a slightly better rate on the consistency

of the KBR estimator in L2(QY ).

Theorem 7 Let f be a function in HX , (Z,W ) be a random vector on X ×Y with the distribution

Q defined by Equation (5), and m̂
(ℓn)
Π be an estimator of mΠ such that ‖m̂

(ℓn)
Π −mΠ‖HX

= Op(n
−α)

as n → ∞ for some 0 < α ≤ 1/2. Assume that the Radon Nikodym derivative dΠ/dPX is included

in R (C
1/2
XX ), and E[ f (Z)|W = ·] ∈ R (C̃2

WW ). With the regularization constants εn = n−
2
3

α and δn =

n−
1
3

α, we have

∥∥fT
X RX |Y kY (W )−E[ f (Z)|W ]

∥∥
L2(QY )

= Op(n
− 1

3
α), (n → ∞).

The condition dΠ/dPX ∈ R (C
1/2
XX ) requires the prior to be sufficiently smooth. If m̂

(ℓn)
Π is a

direct empirical mean with an i.i.d. sample of size n from Π, typically α = 1/2, with which the

theorems imply n4/27-consistency for every y, and n1/6-consistency in the L2(QY ) sense. While

these might seem to be slow rates, the rate of convergence can in practice be much faster than the

above theoretical guarantees.

While the convergence rates shown in the above theorems do not depend on the dimensionality

of original spaces, the rates may not be optimal. In fact, in the case of kernel ridge regression,

the optimal rates are known under additional information on the spectrum of covariance opera-

tors (Caponnetto and De Vito, 2007). It is also known (Eberts and Steinwart, 2011) that, given

the target function is in the Sobolev space of order α, the convergence rates is arbitrary close to

Op(n
−2α/(2α+d)), the best rate for any linear estimator (Stone, 1982), where d is the dimensionality

of the predictor. Similar convergence rates for KBR incorporating the information on eigenspec-

trum or smoothness will be interesting future works, in the light of the equivalence of the condi-

tional mean embedding and operator-valued regression shown by Grünewälder et al. (2012) and

Grünewälder et al. (2013).
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4. Bayesian Inference with Kernel Bayes’ Rule

We discuss problem settings for which KBR may be applied in Section 4.1. We then provide notes

on practical implementation in Section 4.2, including a cross-validation procedure for parameter

selection and suggestions for speeding computation. In Section 4.3, we apply KBR to the filtering

problem in a nonparametric state-space model. Finally, in Section 4.4, we give a brief overview of

Approximate Bayesian Computation (ABC), a widely used sample-based method which applies to

similar problem domains.

4.1 Applications of Kernel Bayes’ Rule

In Bayesian inference, we are usually interested in finding a point estimate such as the MAP solu-

tion, the expectation of a function under the posterior, or other properties of the distribution. Given

that KBR provides a posterior estimate in the form of a kernel mean (which uniquely determines the

distribution when a characteristic kernel is used), we now describe how our kernel approach applies

to problems in Bayesian inference.

First, we have already seen that under appropriate assumptions, a consistent estimator for the

expectation of f ∈ HX can be defined with respect to the posterior. On the other hand, unless

f ∈ HX holds, there is no theoretical guarantee that it gives a good estimate. In Section 5.1, we

discuss experimental results observed in these situations.

To obtain a point estimate of the posterior on x, Song et al. (2009) propose to use the preimage

x̂ = argminx ‖kX (·,x)−kT
X RX |Y kY (y)‖2

HX
, which represents the posterior mean most effectively by

one point. We use this approach in the present paper when point estimates are sought. In the case

of the Gaussian kernel exp(−‖x− y‖2/(2σ2)), the fixed point method

x(t+1) =
∑n

i=1 Xiρi exp(−‖Xi − x(t)‖2/(2σ2))

∑n
i=1 ρi exp(−‖Xi − x(t)|2/(2σ2))

,

where ρ = RX |Y kY (y), can be used to optimize x sequentially (Mika et al., 1999). This method

usually converges very fast, although no theoretical guarantee exists for the convergence to the

globally optimal point, as is usual in non-convex optimization.

A notable property of KBR is that the prior and likelihood are represented in terms of samples.

Thus, unlike many approaches to Bayesian inference, precise knowledge of the prior and likelihood

distributions is not needed, once samples are obtained. The following are typical situations where

the KBR approach is advantageous:

• The probabilistic relation among variables is difficult to realize with a simple parametric

model, while we can obtain samples of the variables easily. We will see such an example in

Section 4.3.

• The probability density function of the prior and/or likelihood is hard to obtain explicitly, but

sampling is possible:

– In the field of population genetics, Bayesian inference is used with a likelihood ex-

pressed by branching processes to model the split of species, for which the explicit

density is hard to obtain. Approximate Bayesian Computation (ABC) is a popular

method for approximately sampling from a posterior without knowing the functional

form (Tavaré et al., 1997; Marjoram et al., 2003; Sisson et al., 2007).
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– In nonparametric Bayesian inference (Müller and Quintana, 2004 and references therein),

the prior is typically given in the form of a process without a density form. In this case,

sampling methods are often applied (MacEachern, 1994; West et al., 1994; MacEach-

ern et al., 1999, among others). Alternatively, the posterior may be approximated using

variational methods (Blei and Jordan, 2006).

We will present an experimental comparison of KBR and ABC in Section 5.2.

• Even if explicit forms for the likelihood and prior are available, and standard sampling meth-

ods such as MCMC or sequential MC are applicable, the computation of a posterior estimate

given y might still be computationally costly, making real-time applications infeasible. Using

KBR, however, the expectation of a function of the posterior given different y is obtained

simply by taking the inner product as in Equation (14), once fT
X RX |Y has been computed.

4.2 Discussions Concerning Implementation

When implementing KBR, a number of factors should be borne in mind to ensure good performance.

First, in common with many nonparametric approaches, KBR requires training data in the region

of the new “test” points for results to be meaningful. In other words, if the point on which we

condition appears in a region far from the sample used for the estimation, the posterior estimator

will be unreliable.

Second, when computing the posterior in KBR, Gram matrix inversion is necessary, which

would cost O(n3) for sample size n if attempted directly. Substantial cost reductions can be achieved

if the Gram matrices are replaced by low rank matrix approximations. A popular choice is the

incomplete Cholesky factorization (Fine and Scheinberg, 2001), which approximates a Gram matrix

in the form of ΓΓT with n×r matrix Γ (r ≪ n) at cost O(nr2). Using this and the Woodbury identity,

the KBR can be approximately computed at cost O(nr2), which is linear in the sample size n. It is

known that in some typical cases the eigenspectram of a Gram matrix decays fast (Widom, 1963,

1964; Bach and Jordan, 2002). We can therefore expect that the incomplete Cholesky factorization

to reduce the computational cost effectively without much degrading estimation accuracy.

Third, kernel choice or model selection is key to effective performance of any kernel method.

In the case of KBR, we have three model parameters: the kernel (or its parameter, e.g., the band-

width), and the regularization parameters εn, and δn. The strategy for parameter selection depends

on how the posterior is to be used in the inference problem. If it is to be applied in regression or

classification, we can use standard cross-validation. In the filtering experiments in Section 5, we

use a validation method where we divide the training sample in two.

A more general model selection approach can also be formulated, by creating a new regression

problem for the purpose. Suppose the prior Π is given by the marginal PX of P. The posterior QX |y
averaged with respect to PY is then equal to the marginal PX itself. We are thus able to compare

the discrepancy of the empirical kernel mean of PX and the average of the estimators m̂QX |y=Yi
over

Yi. This leads to a K-fold cross validation approach: for a partition of {1, . . . ,n} into K disjoint

subsets {Ta}K
a=1, let m̂

[−a]
QX |y

be the kernel mean of posterior computed using Gram matrices on data

{(Xi,Yi)}i/∈Ta
, and based on the prior mean m̂

[−a]
X with data {Xi}i/∈Ta

. We can then cross validate by

minimizing ∑K
a=1

∥∥ 1
|Ta| ∑ j∈Ta

m̂
[−a]
QX |y=Yj

− m̂
[a]
X

∥∥2

HX
, where m̂

[a]
X = 1

|Ta| ∑ j∈Ta
kX (·,X j).

3765



FUKUMIZU, SONG AND GRETTON

4.3 Application to a Nonparametric State-Space Model

We next describe how KBR may be used in a particular application: namely, inference in a general

time invariant state-space model,

p(X ,Y ) = π(X1)
T+1

∏
t=1

p(Yt |Xt)
T

∏
t=1

q(Xt+1|Xt),

where Yt is an observable variable, and Xt is a hidden state variable. We begin with a brief review of

alternative strategies for inference in state-space models with complex dynamics, for which linear

models are not suitable. The extended Kalman filter (EKF) and unscented Kalman filter (UKF,

Julier and Uhlmann, 1997) are nonlinear extensions of the standard linear Kalman filter, and are well

established in this setting. Alternatively, nonparametric estimates of conditional density functions

can be employed, including kernel density estimation or distribution estimates on a partitioning of

the space (Monbet et al., 2008; Thrun et al., 1999). Kernel density estimates converges more slowly

in L2 as the dimension d of the space increases, however: for an optimal bandwidth choice, this

error drops as O(n−4(4+d)) (Wasserman, 2006, Section 6.5). If the goal is to take expectations of

smooth functions (i.e., RKHS functions), rather than to obtain consistent density estimates, then

we can expect better performance. We show our posterior estimate of the expectation of an RKHS

function converges at a rate independent of d. Most relevant to this paper are Song et al. (2009) and

Song et al. (2010b), in which the kernel means and covariance operators are used to implement a

nonparametric HMM.

In this paper, we apply the KBR for inference in the nonparametric state-space model. We do

not assume the conditional probabilities p(Yt |Xt) and q(Xt+1|Xt) to be known explicitly, nor do we

estimate them with simple parametric models. Rather, we assume a sample (X1,Y1, . . . ,XT+1,YT+1)
is given for both the observable and hidden variables in the training phase. The conditional prob-

ability for observation process p(y|x) and the transition q(xt+1|xt) are represented by the empirical

covariance operators as computed on the training sample,

ĈXY =
1

T

T

∑
i=1

kX (·,Xi)⊗ kY (·,Yi), ĈX+1X =
1

T

T

∑
i=1

kX (·,Xi+1)⊗ kX (·,Xi), (16)

ĈYY =
1

T

T

∑
i=1

kY (·,Yi)⊗ kY (·,Yi), ĈXX =
1

T

T

∑
i=1

kX (·,Xi)⊗ kX (·,Xi).

While the sample is not i.i.d., it is known that the empirical covariances converge to the covari-

ances with respect to the stationary distribution as T → ∞, under a mixing condition.8 We therefore

use the above estimator for the covariance operators.

Typical applications of the state-space model are filtering, prediction, and smoothing, which are

defined by the estimation of p(xs|y1, . . . ,yt) for s = t, s > t, and s < t, respectively. Using the KBR,

any of these can be computed. For simplicity we explain the filtering problem in this paper, but the

remaining cases are similar. In filtering, given new observations ỹ1, . . . , ỹt , we wish to estimate the

current hidden state xt . The sequential estimate for the kernel mean of p(xt |ỹ1, . . . , ỹt) can be derived

via KBR. Suppose we already have an estimator of the kernel mean of p(xt |ỹ1, . . . , ỹt) in the form

m̂xt |ỹ1,...,ỹt
=

T

∑
s=1

α
(t)
s kX (·,Xs),

8. One such condition to guarantee the central limit theorem for Markov chains in separable Hilbert spaces is geometri-

cal ergodicity. See, for example, Merlevéde et al. (1997) and Stachurski (2012) for details.
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where α
(t)
i = α

(t)
i (ỹ1, . . . , ỹt) are the coefficients at time t. We wish to derive an update rule to obtain

α(t+1)(ỹ1, . . . , ỹt+1).
For the forward propagation p(xt+1|ỹ1, . . . , ỹt) =

∫
q(xt+1|xt)p(xt |ỹ1, . . . , ỹt)dxt , based on Equa-

tion (9) the kernel mean of xt+1 given ỹ1, . . . , ỹt is estimated by

m̂xt+1|ỹ1,...,ỹt
= ĈX+1X(ĈXX + εT I)−1m̂xt |ỹ1,...,ỹt

= kT
X+1

(GX +T εT IT )
−1GX α(t),

where kT
X+1

= (kX (·,X2), . . . ,kX (·,XT+1)). Using the similar estimator with

p(yt+1|ỹ1, . . . , ỹt) =
∫

p(yt+1|xt+1)p(xt+1|ỹ1, . . . , ỹt)dxt , we have an estimate for the kernel mean of

the prediction p(yt+1|ỹ1, . . . , ỹt),

m̂yt+1|ỹ1,...,ỹt
= ĈY X(ĈXX + εT I)−1m̂xt+1|ỹ1,...,ỹt

=
T

∑
i=1

µ̂
(t+1)
i kY (·,Yi),

where the coefficients µ̂(t+1) = (µ̂
(t+1)
i )T

i=1 are given by

µ̂(t+1) =
(
GX +T εT IT

)−1
GXX+1

(
GX +T εT IT

)−1
GX α(t). (17)

Here GXX+1
is the “transfer” matrix defined by

(
GXX+1

)
i j
= kX (Xi,X j+1). From

p(xt+1|ỹ1, . . . , ỹt+1) =
p(yt+1|xt+1)p(xt+1|ỹ1, . . . , ỹt)∫

q(yt+1|xt+1)p(xt+1|ỹ1, . . . , ỹt)dxt+1

,

the kernel Bayes’ rule with the prior p(xt+1|ỹ1, . . . , ỹt) and the likelihood q(yt+1|xt+1) yields

α(t+1) = Λ(t+1)GY

(
(Λ(t+1)GY )

2 +δT IT

)−1
Λ(t+1)kY (ỹt+1), (18)

where Λ(t+1) = diag(µ̂
(t+1)
1 , . . . , µ̂

(t+1)
T ). Equations (17) and (18) describe the update rule of

α(t)(ỹ1, . . . , ỹt).
If the prior π(x1) is available, the posterior estimate at x1 given ỹ1 is obtained by the kernel

Bayes’ rule. If not, we may use Equation (8) to get an initial estimate ĈXY (ĈYY + εnI)−1kY (·, ỹ1),
yielding α(1)(ỹ1) = T (GY +T εT IT )

−1kY (ỹ1).
In sequential filtering, a substantial reduction in computational cost can be achieved by low

rank matrix approximations, as discussed in Section 4.2. Given an approximation of rank r for the

Gram matrices and transfer matrix, and employing the Woodbury identity, the computation costs

just O(Tr2) for each time step.

4.4 Bayesian Computation Without Likelihood

We next address the setting where the likelihood is not known in analytic form, but sampling is pos-

sible. In this case, Approximate Bayesian Computation (ABC) is a popular method for Bayesian

inference. The simplest form of ABC, which is called the rejection method, generates an approxi-

mate sample from Q(Z|W = y) as follows: (i) generate a sample Xt from the prior Π, (ii) generate a

sample Yt from P(Y |Xt), (iii) if D(y,Yt) < τ, accept Xt ; otherwise reject, (iv) go to (i). In step (iii),

D is a distance measure of the space X , and τ is tolerance to acceptance.

In the same setting as ABC, KBR gives the following sampling-based method for computing

the kernel posterior mean:
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1. Generate a sample X1, . . . ,Xn from the prior Π.

2. Generate a sample Yt from P(Y |Xt) (t = 1, . . . ,n).

3. Compute Gram matrices GX and GY with (X1,Y1), . . . ,(Xn,Yn), and RX |Y kY (y).

Alternatively, since (Xt ,Yt) is an sample from Q, it is possible to use simply Equation (8) for the

kernel mean of the conditional probability q(x|y). As in Song et al. (2009), the estimator is given by

n

∑
t=1

ν jkX (·,Xt), ν = (GY +nεnIn)
−1kY (y). (19)

The distribution of a sample generated by ABC approaches to the true posterior if τ goes to zero,

while empirical estimates via the kernel approaches converge to the true posterior mean embedding

in the limit of infinite sample size. The efficiency of ABC, however, can be arbitrarily poor for small

τ, since a sample Xt is then rarely accepted in Step (iii).

The ABC method generates a sample, hence any statistics based on the posterior can be ap-

proximated. Given a posterior mean obtained by one of the kernel methods, however, we may only

obtain expectations of functions in the RKHS, meaning that certain statistics (such as confidence

intervals) are not straightforward to compute. In Section 5.2, we present an experimental evaluation

of the trade-off between computation time and accuracy for ABC and KBR.

5. Experimental Results

This section demonstrates experimental results with the KBR estimator. In addition to the basic

comparison with kernel density estimation, we show simple experiments for Bayesian inference

without likelihood and filtering with nonparametric hidden Markov models. More practical applica-

tions are discussed in other papers; Nishiyama et al. (2012) propose a KBR approach to reinforce-

ment learning in partially observable Markov decision processes, Boots et al. (2013) apply KBR to

reinforcement learning with predictive state representations, and Nakagome et al. (2013) consider a

KBR-based method for problems in population genetics.

5.1 Nonparametric Inference of Posterior

The first numerical example is a comparison between KBR and a kernel density estimation (KDE)

approach to obtaining conditional densities. Let (X1,Y1), . . . ,(Xn,Yn) be an i.i.d. sample from P

on R
d ×R

r. With probability density functions KX (x) on R
d and KY (y) on R

r, the conditional

probability density function p(y|x) is estimated by

p̂(y|x) = ∑n
j=1 KX

hX
(x−X j)K

Y
hY
(y−Yj)

∑n
j=1 KX

h (x−X j)
,

where KX
hX
(x) = h−d

X KX (x/hX) and K
Y
hY
(x) = h−r

Y KY (y/hY ) (hX ,hY > 0). Given an i.i.d. sample

U1, . . . ,Uℓ from the prior Π, the particle representation of the posterior can be obtained by impor-

tance weighting (IW). Using this scheme, the posterior q(x|y) given y ∈ R
r is represented by the

weighted sample (Ui,ζi) with ζi = p̂(y|Ui)/∑ℓ
j=1 p̂(y|U j).

We compare the estimates of
∫

xq(x|y)dx obtained by KBR and KDE + IW, using Gaussian

kernels for both the methods. We should bear in mind, however, that the function f (x) = x does not
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Figure 2: Comparison between KBR and KDE+IW.

belong to the Gaussian kernel RKHS, hence the consistency result of Theorem 6 does not apply to

this function. In our experiments, the dimensionality was given by r = d ranging from 2 to 64. The

distribution P of (X ,Y ) was N((0,1T
d )

T ,V ) with V = AT A+ 2Id , where 1d = (1, . . . ,1)T ∈ R
d and

each component of A was randomly generated as N(0,1) for each run. The prior Π was N(0,VXX/2),
where VXX is the X-component of V . The sample sizes were n= ℓ= 200. The bandwidth parameters

hX ,hY in KDE were set hX = hY , and chosen over the set {2 ∗ i | i = 1, . . . ,10} in two ways: least

squares cross-validation (Rudemo, 1982; Bowman, 1984) and the best mean performance. For the

KBR, we chose σ in e−‖x−x′‖2/(2σ2) in two ways: the median over the pairwise distances in the data

(Gretton et al., 2008), and the 10-fold cross-validation approach described in Section 4.2. In the

latter, σx for kX is first chosen with σy for kY set as the median distances, and then σy is chosen

with the best σx. Figure 2 shows the mean square errors (MSE) of the estimates over 1000 random

points y ∼ N(0,VYY ). KBR significantly outperforms the KDE+IW approach. Unsurprisingly, the

MSE of both methods increases with dimensionality.

5.2 Bayesian Computation Without Likelihood

We compare ABC and the kernel methods, KBR and conditional mean, in terms of estimation

accuracy and computational time, since they have an obvious tradeoff. To compute the estimation

accuracy rigorously, the ground truth is needed: thus we use Gaussian distributions for the true prior

and likelihood, which makes the posterior easy to compute in closed form. The samples are taken

from the same model used in Section 5.1, and
∫

xq(x|y)dx is evaluated at 10 different values of y.

We performed 10 runs with different randomly chosen parameter values A, representing the “true”

distributions.

For ABC, we used only the rejection method; while there are more advanced sampling schemes

(Marjoram et al., 2003; Sisson et al., 2007), their implementation is dependent on the problem being

solved. Various values for the acceptance region τ are used, and the accuracy and computational

time are shown in Fig. 3 together with total sizes of the generated samples. For the kernel methods,

the sample size n is varied. The regularization parameters are given by εn = 0.01/n and δn = 2εn

for KBR, and εn = 0.01/
√

n for the conditional kernel mean. The kernels in the kernel methods
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Figure 3: Comparison of estimation accuracy and computational time with KBR and ABC for

Bayesian computation without likelihood. COND reprensents the method based on Equa-

tion (19). The numbers at the marks are the sample sizes generated for computation.

are Gaussian kernels for which the bandwidth parameters are chosen by the median of the pairwise

distances on the data (Gretton et al., 2008). The incomplete Cholesky decomposition with tolerance

0.001 is employed for the low-rank approximation. The resulting ranks are, for instance, around

30 for N = 200 and around 50 for N = 6000 in the case of KBR dimension 2; around 180 for

N = 200 and 1200 for N = 6000 in the case of dimension 6. This implies considerable reduction of

computational time especially in the case of large sample sizes. The experimental results indicate

that kernel methods achieve more accurate results than ABC at a given computational cost. The

conditional kernel mean yields the best results, since in this instance, it is not necessary to correct for

a difference in distribution between Π and PX . In the next experiment, however, this simplification

can no longer be made.

5.3 Filtering Problems

We next compare the KBR filtering method (proposed in Section 4.3) with EKF and UKF on syn-

thetic data.

KBR has the regularization parameters εT ,δT , and kernel parameters for kX and kY (e.g., the

bandwidth parameter for an RBF kernel). Under the assumption that a training sample is available,

cross-validation can be performed on the training sample to select the parameters. By dividing

the training sample into two, one half is used to estimate the covariance operators Equation (16)

with a candidate parameter set, and the other half to evaluate the estimation errors. To reduce the

search space and attendant computational cost, we used a simpler procedure, setting δT = 2εT , and

Gaussian kernel bandwidths βσX and βσY , where σX and σY were the median of pairwise distances

in the training samples (Gretton et al., 2008). This left only two parameters β and εT to be tuned.

We applied the KBR filtering algorithm from Section 4.3 to two synthetic data sets: a simple

nonlinear dynamical system, in which the degree of nonlinearity could be controlled, and the prob-

lem of camera orientation recovery from an image sequence. In the first case, the hidden state was
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Figure 4: Comparisons with the KBR Filter and EKF. (Average MSEs and standard errors over 30

runs.) (a): dynamics with weak nonlinearity (b): dynamics with strong nonlinearity.
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Figure 5: Example of data (b) (Xt , N = 300)

Xt = (ut ,vt)
T ∈ R

2, and the dynamics were given by

(
ut+1

vt+1

)
= (1+bsin(Mθt+1))

(
cosθt+1

sinθt+1

)
+ζt , θt+1 = θt +η (mod 2π),

where η > 0 is an increment of the angle and ζt ∼ N(0,σ2
hI2) is independent process noise. Note

that the dynamics of (ut ,vt) were nonlinear even for b = 0. The observation Yt was

Yt = (ut ,vt)
T +ξt , ξt ∼ N(0,σ2

oI),

where ξt was independent noise. The two dynamics were defined as follows: (a) rotation with noisy

observations η = 0.3, b = 0, σh = σo = 0.2; (b) oscillatory rotation with noisy observations η = 0.4,

b = 0.4, M = 8, σh = σo = 0.2. (See Fig.5). We assumed the correct dynamics were known to the

EKF and UKF.

Results are shown in Fig. 4. In all cases, the EKF and UKF show an indistinguishably small

difference. The dynamics in (a) are weakly nonlinear, and KBR has slightly worse MSE than EKF

and UKF. For data set (b), which has strong nonlinearity, KBR outperforms the nonlinear Kalman

filter for T ≥ 200.

In our second synthetic example, we applied the KBR filter to the camera rotation problem

used in Song et al. (2009). The angle of a camera, which was located at a fixed position, was a
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KBR (Gauss) KBR (Tr) Kalman (9 dim.) Kalman (Quat.)

σ2 = 10−4 0.210±0.015 0.146±0.003 1.980±0.083 0.557±0.023

σ2 = 10−3 0.222±0.009 0.210±0.008 1.935±0.064 0.541±0.022

Table 1: Average MSE and standard errors for camera angle estimation (10 runs).

hidden variable, and movie frames recorded by the camera were observed. The data were generated

virtually using a computer graphics environment. As in Song et al. (2009), we were given 3600

downsampled frames of 20×20 RGB pixels (Yt ∈ [0,1]1200), where the first 1800 frames were used

for training, and the second half were used to test the filter. We made the data noisy by adding

Gaussian noise N(0,σ2) to Yt .

Our experiments covered two settings. In the first, we did not use that the hidden state St

was included in SO(3), but only that it was a general 3× 3 matrix. In this case, we formulated

the Kalman filter by estimating the relations under a linear assumption, and the KBR filter with

Gaussian kernels for St and Xt as Euclidean vectors. In the second setting, we exploited the fact that

St ∈ SO(3): for the Kalman filter, St was represented by a quanternion, which is a standard vector

representation of rotations; for the KBR filter the kernel k(A,B) = Tr[ABT ] was used for St , and St

was estimated within SO(3). Table 1 shows the Frobenius norms between the estimated matrix and

the true one. The KBR filter significantly outperforms the EKF, since KBR is able to extract the

complex nonlinear dependence between the observation and the hidden state.

6. Proofs

This section includes the proofs of the theoretical results in Section 3.2. The proof ideas are similar

to Caponnetto and De Vito (2007) and Smale and Zhou (2007), in which the basic techniques are

taken from the general theory of regularization (Engl et al., 2000). Before stating the main proofs,

we provide a proof of consistency of the empirical counterparts in Proposition 3 to the kernel Sum

rule (Theorem 2). We then proceed to the proofs of Theorems 5 and 6, covering the consistency of

the KBR procedure in RKHS, followed by a proof of Theorem 7 for consistency in L2.

6.1 Consistency of the Kernel Sum Rule

We show consistency of an empirical estimate of mQY
in Theorem 2. The same proof also applies

in establishing consistency for the empirical estimates Ĉ
(n)
WW and Ĉ

(n)
WZ in Proposition 3.

Theorem 8 Assume that CXX is injective, m̂Π is a consistent estimator of mΠ in HX norm, and

that E[kY (Y,Ỹ )|X = x, X̃ = x̃] is included in HX ⊗HX as a function of (x, x̃), where (X̃ ,Ỹ ) is an

independent copy of (X ,Y ). Then, if the regularization coefficient εn decays to zero sufficiently

slowly, ∥∥Ĉ
(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1
m̂Π −mQY

∥∥
HY

→ 0

in probability as n → ∞.

Proof The assertion is proved if, as n → ∞,

‖Ĉ
(n)
Y X(Ĉ

(n)
XX + εnI)−1m̂Π −CY X(CXX + εnI)−1mΠ‖HY

→ 0 (20)
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in probability and

‖CY X(CXX + εnI)−1mΠ −mQY
‖HY

→ 0 (21)

with an appropriate choice of εn.

By using the fact that B−1 −A−1 = B−1(A−B)A−1 holds for any invertible operators A and B,

the left hand side of Equation (20) is upper bounded by

∥∥Ĉ
(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1(
m̂Π −mΠ

)∥∥
HY

+
∥∥(Ĉ(n)

Y X −CY X

)(
CXX + εnI

)−1
mΠ

∥∥
HY

+
∥∥Ĉ

(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1(
CXX −Ĉ

(n)
XX

)(
CXX + εnI

)−1
mΠ

∥∥
HY

. (22)

By the decomposition

Ĉ
(n)
Y X = Ĉ

(n)1/2
YY Ŵ

(n)
Y X Ĉ

(n)1/2
XX

with ‖Ŵ
(n)

Y X ‖ ≤ 1 (Baker, 1973), we have

‖Ĉ
(n)
Y X(Ĉ

(n)
XX + εnI)−1‖ ≤ ‖Ĉ

(n)1/2
YY Ŵ

(n)
Y X (Ĉ

(n)
XX + εnI)−1/2‖= Op(ε

−1/2
n ),

which implies the first term is of Op(ε
−1/2
n ‖m̂Π −mΠ‖HX

). From the
√

n-consistency of the co-

variance operators, the second and third terms are of the order Op(n
−1/2ε−1

n ) and Op(n
−1/2ε

−3/2
n ),

respectively. If εn is taken so that εn ≫ n−1/3 and εn ≫‖m̂
(n)
Π −mΠ‖2

HX
, Equation (20) converges to

zero in probability.

For Equation (21), first note

‖CY X(CXX + εnI)−1mΠ −mQY
‖2

HY

= ‖CY X(CXX + εnI)−1mΠ‖2
HX

−2〈CY X(CXX + εnI)−1mΠ,mQY
〉HY

+‖mQY
‖2

HY
.

Let θ(x, x̃) := E[kY (Y,Ỹ )|X = x, X̃ = x̃]. The third term in the right hand side is

〈mQY
,mQY

〉HY
=

∫ ∫
mQY

(y)dPY |x(y)dΠ(x)

=
∫ ∫

〈mQY
,kY (·,y)〉HY

dPY |x(y)dΠ(x) =
∫ ∫

θ(x, x̃)dΠ(x)dΠ(x̃).

From the assumption θ ∈ HX ⊗HX and the fact E[mQY
(Y )|X = ·] = ∫

θ(·, x̃)dΠ(x̃), Lemma 9 below

shows E[mQY
(Y )|X = ·] ∈ HX . It follows from Theorem 1 that CXY mQY

= CXX E[mQY
(Y )|X = ·]

and thus

〈CY X(CXX + εnI)−1mΠ,mQY
〉HY

= 〈mΠ,(CXX + εnI)−1CXY mQY
〉HX

= 〈mΠ,(CXX + εnI)−1CXX E[mQY
(Y )|X = ·]〉HX

,

which converges to

〈mΠ,E[mQY
(Y )|X = ·]〉HX

=
∫ ∫

θ(x, x̃)dΠ(x)dΠ(x̃)

from Lemma 10 below.
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Note that

‖CY X f‖2
HY

= 〈CY X f ,CYX f 〉HX
= E[ f (X)(CYX f )(Y )]

= E[ f (X)E[kY (Y,Ỹ ) f (X̃)]] = E[ f (X) f (X̃)θ(X , X̃)]

for any f ∈ HX , where (X̃ ,Ỹ ) is an independent copy of (X ,Y ). By taking f = (CXX + εnI)−1mΠ,

the first term is given by

E
[
θ(X , X̃)((CXX + εnI)−1mΠ)(X)((CXX + εnI)−1mΠ)(X̃)

]

= E
[
θ(X , X̃) f (X) f (X̃)

]

=
〈
θ,(CXX ⊗CXX) f ⊗ f )

〉
HX ⊗HX

=
〈
θ,(CXX(CXX + εnI)−1mΠ)⊗ (CXX(CXX + εnI)−1mΠ)

〉
HX ⊗HX

,

which, by Lemma 10, converges to

〈θ,mΠ ⊗mΠ〉HX ⊗HX
=

∫ ∫
θ(x, x̃)dΠ(x)dΠ(x̃).

This completes the proof.

Lemma 9 Let HX and HY be RKHS’s on X and Y , respectively. If a function θ on X ×Y is in

HX ⊗HY (product space), then for any fixed y ∈ Y the function θ(·,y) of the first argument is in

HX .

Proof Let {φi}I
i=1 and {ψ j}J

j=1 be complete orthonormal bases of HX and HY , respectively, where

I,J ∈ N∪{∞}. Then θ is expressed as

θ =
I

∑
i=1

J

∑
j=1

αi jφiψ j

with ∑i, j |αi j|2 < ∞ (e.g., Aronszajn, 1950). We have θ(·,y) = ∑I
i=1 βiφi with βi = ∑J

j=1 αi jψ j(y).
Since

∑
i

|βi|2 = ∑
i

∣∣∣∑
j

αi jψ j(y)
∣∣∣
2

≤ ∑
i

∑
j

|αi j|2 ∑
j

|ψ j(y)|2 = ∑
i j

|αi j|2 ∑
j

〈ψ j,kY (·,y)〉2
HY

= ∑
i j

|αi j|2‖kY (·,y)‖2
HY

< ∞,

we have θ(·,y) ∈ HX .

Lemma 10 Let H be a separable Hilbert space and C be a positive, injective, self-adjoint, compact

operator on H . then, for any f ∈ H ,

((C+ εI)−1C f → f , (ε →+0).
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Proof By the assumptions, there exist an orthonormal basis {φi} for H and positive eigenvalues λi

such that

C f = ∑
i

λi〈 f ,φi〉H φi.

Then, we have

‖(C+ εI)−1C f − f‖2
H = ∑

i

∣∣∣ ε

λi + ε

∣∣∣
2

|〈 f ,φi〉H |2.

Since
∣∣(ε/λi+ε)

∣∣2 ≤ 1 and ∑i |〈 f ,φi〉H |2 = ‖ f‖2
H
<∞, the dominated convergence theorem ensures

lim
ε→+0

‖(C+ εI)−1C f − f‖2
H = ∑

i

lim
ε→+0

∣∣∣ ε

λi + ε

∣∣∣
2

|〈 f ,φi〉H |2 = 0,

which completes the proof.

6.2 Consistency Results in RKHS Norm

We first prove Theorem 5.

Proof [Proof of Theorem 5] By replacing Y 7→ (X ,Y ) and Y 7→ (Y,Y ), it follows from Theorem 8

that Ĉ
(n)
ZW and Ĉ

(n)
WW are consistent estimators of CZW and CWW , respectively, in operator norm. For

the proof, it then suffices to show

∥∥Ĉ
(n)
ZW

((
Ĉ
(n)
WW

)2
+δnI

)−1
Ĉ
(n)
WW kY (·,y)−CZW (C2

WW +δnI)−1CWW kY (·,y)
∥∥

HX
→ 0

in probability and ∥∥CZW (C2
WW +δnI)−1CWW kY (·,y)−mQX |y

∥∥
HX

→ 0

with an appropriate choice of δn. The proof of the first convergence is similar to the proof of

Equation (20) in Theorem 8, and we omit it. The proof of the second convergence is also similar to

Theorem 8. The square of the left hand side is decomposed as

∥∥CZW (C2
WW +δnI

)−1
CWW kY (·,y)

∥∥2

HX

−2
〈
CZW (C2

WW +δnI)−1CWW kY (·,y),mQX |y

〉
HX

+
∥∥mQX |y

∥∥2

HX
.

Let ξ ∈ HY ⊗HY be defined by ξ(y, ỹ) := E[kX (Z, Z̃)|W = y,W̃ = ỹ], where (Z̃,W̃ ) be an indepen-

dent copy of (Z,W ). The third term is then equal to

ξ(y,y) = E[kX (Z, Z̃)|W = y,W̃ = y].

For the second term, by the same argument as the proof of Theorem 8, we have

ξ(y, ·) = E[kX (Z, Z̃)|W = y,W̃ = ·] ∈ HY

via Lemma 9, and

CWZmQX |y =CWW E[kX (Z, Z̃)|W = ·,W̃ = y] =CWW ξ(·,y) ∈ HY .
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We then obtain
〈
CZW (C2

WW +δnI)−1CWW kY (·,y),mQX |y

〉
HX

=
〈
kY (·,y),(C2

WW +δnI)−1C2
WW ξ(·,y)

〉
HX

,

which converges to ξ(y,y).
Finally, defining ϕδ := (C2

WW +δI)−1CWW kY (·,y), the first term is equal to

E
[
ϕδ(W )ϕδ(W̃ )E[kX (Z, Z̃)|W,W̃ ]

]
=
〈
CZW ϕδ,CZW ϕδ

〉
HX

= E
[
ϕδ(W )

[
CZW ϕδ

]
(Z)

]

= E
[
k(Z,Z′)ϕδ(W )ϕδ(W̃ )

]
= E

[
ξ(W,W̃ )ϕδ(W )ϕδ(W̃ )

]

= 〈(CWW ⊗CWW )ϕδ ⊗ϕδ,ξ〉HY ⊗HY
= 〈(CWW ϕδ)⊗ (CWW ϕδ),ξ〉HY ⊗HY

,

which converges to 〈kY (·,y)⊗ kY (·,y),ξ〉HY ⊗HY
= ξ(y,y). This completes the proof.

We next show the convergence rate of expectation (Theorem 6) under stronger assumptions. The

first result is a rate of convergence for the mean transition in Theorem 2. In the following, R (C0
XX)

means HX .

Theorem 11 Assume that the Radon-Nikodym derivative dΠ/dPX is included in R (C
β
XX) for some

β ≥ 0, and let m̂
(n)
Π be an estimator of mΠ such that ‖m̂

(n)
Π −mΠ‖HX

= Op(n
−α) as n → ∞ for some

0 < α ≤ 1/2. Then, with εn = n
−max{ 2

3
α, α

1+β}, we have

∥∥Ĉ
(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1
m̂
(n)
Π −mQY

∥∥
HY

= Op(n
−min{ 2

3
α, 2β+1

2β+2
α}
), (n → ∞).

Proof Take η ∈ HX such that dΠ/dPX =C
β
XX η. Then, we have

mΠ =
∫

kX (·,x)
( dΠ

dPX

)
(x)dPX (x) =C

β+1
XX η. (23)

First we show the rate of the estimation error:
∥∥Ĉ

(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1
m̂
(n)
Π −CY X

(
CXX + εnI

)−1
mΠ

∥∥
HY

= Op

(
n−αε

−1/2
n

)
, (24)

as n → ∞. The left hand side of Equation (24) is upper bounded by

∥∥Ĉ
(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1(
m̂
(n)
Π −mΠ

)∥∥
HY

+
∥∥(Ĉ(n)

Y X −CY X

)(
CXX + εnI

)−1
mΠ

∥∥
HY

+
∥∥Ĉ

(n)
Y X

(
Ĉ
(n)
XX + εnI

)−1(
CXX −Ĉ

(n)
XX

)(
CXX + εnI

)−1
mΠ

∥∥
HY

.

In a similar manner to derivation of the bound of Equation (22), we obtain Equation (24).

Next, we show the rate for the approximation error

∥∥CY X

(
CXX + εnI

)−1
mΠ −mQY

∥∥
HY

= O(ε
min{(1+2β)/2,1}
n ) (n → ∞). (25)

Let CY X =C
1/2
YY WY XC

1/2
XX be the decomposition with ‖WY X‖ ≤ 1. It follows from Equation (23) and

the relation

mQY
=

∫ ∫
kY (·,y)dPY |x(y)dΠ(x) =

∫ ∫
k(·,y)

( dΠ

dPX

)
(x)dPY |x(y)dPX (x)

=
∫ ∫

k(·,y)
( dΠ

dPX

)
(x)dP(x,y) =CY XC

β
XX η
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that the left hand side of Equation (25) is upper bounded by

‖C
1/2
YY WY X‖‖

(
CXX + εnI

)−1
C
(2β+3)/2
XX η−C

(2β+1)/2
XX η‖HX

≤ εn‖C
1/2
YY WY X‖‖(CXX + εnI)−1C

β+1/2
XX ‖‖η‖HX

.

For β ≥ 1/2, it follows from

εn‖(CXX + εnI)−1C
β+1/2
XX ‖ ≤ εn‖(CXX + εnI)−1CXX‖‖C

β−1/2
XX ‖

that the left hand side of Equation (25) converges to zero in O(εn). If 0 ≤ β < 1/2, we have

εn‖(CXX + εnI)−1C
β+1/2
XX ‖
= ε

β+1/2
n ‖ε

1/2−β
n (CXX + εnI)−(1/2−β)‖‖(CXX + εnI)−β−1/2C

β+1/2
XX ‖ ≤ ε

β+1/2
n ,

which proves Equation (25).

With the order of εn to balance Equations (24) and (25), the asserted rate of consistency is ob-

tained.

The following theorem shows the convergence rate of the estimator used in the second step of

KBR.

Theorem 12 Let f be a function in HX , and (Z,W ) be a random variable taking values in X ×Y .

Assume that E[ f (Z)|W = ·] ∈ R (Cν
WW ) for some ν ≥ 0, and that Ĉ

(n)
WZ : HX → HY and Ĉ

(n)
WW : HY →

HY are bounded operators such that ‖Ĉ
(n)
WZ −CWZ‖ = Op(n

−γ) and ‖Ĉ
(n)
WW −CWW‖ = Op(n

−γ) for

some γ > 0. Then, for a positive sequence δn = n−max{ 4
9

γ, 4
2ν+5

γ}, we have as n → ∞

∥∥Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
Ĉ
(n)
WZ f −E[ f (Z)|W = ·]

∥∥
HY

= Op(n
−min{ 4

9
γ, 2ν

2ν+5
γ}).

Proof Let η ∈ HX such that E[ f (Z)|W = ·] =Cν
WW η. First we show

∥∥Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
Ĉ
(n)
WZ f −CWW (C2

WW +δnI)−1CWZ f
∥∥

HY
= Op(n

−γδ
−5/4
n ). (26)

The left hand side of Equation (26) is upper bounded by

∥∥Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
(Ĉ

(n)
WZ −CWZ) f

∥∥
HY

+
∥∥(Ĉ(n)

WW −CWW )(C2
WW +δnI)−1CWZ f

∥∥
HY

+
∥∥Ĉ

(n)
WW ((Ĉ

(n)
WW )2 +δnI

)−1(
(Ĉ

(n)
WW )2 −C2

WW

)(
C2

WW +δnI
)−1

CWZ f
∥∥

HY
.

For A = Ĉ
(n)
WW , we have

‖A(A2 +δnI)−1‖= ‖{A2(A2 +δnI)−1}1/2(A2 +δnI)−1/2‖ ≤ δ
−1/2
n ,
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and thus the first term of the above bound is of Op(n
−γδ

−1/2
n ). A similar argument to CWW combined

with the decomposition CWZ = C
1/2
WWUWZC

1/2
ZZ with ‖UWZ‖ ≤ 1 shows that the second term is of

Op(n
−γδ

−3/4
n ). From the fact

‖(Ĉ(n)
WW )2 −C2

WW‖ ≤ ‖Ĉ
(n)
WW (Ĉ

(n)
WW −CWW )‖+‖(Ĉ(n)

WW −CWW )CWW‖= Op(n
−γ),

the third term is of Op(n
−γδ

−5/4
n ). This implies Equation (26).

From E[ f (Z)|W = ·] =Cν
WW η and CWZ f =CWW E[ f (Z)|W = ·] =Cν+1

WW η, the convergence rate

∥∥CWW (C2
WW +δnI)−1CWZ f −E[ f (Z)|W = ·]

∥∥
HY

= O(δ
min{1, ν

2
}

n ). (27)

can be proved in the same way as Equation (25).

Finally, combining Equations (26) and (27) proves the assertion.

6.3 Consistency Results in L2

Recall that C̃WW is the integral operator on L2(QY ) defined by Equation (15). The following the-

orem shows the convergence rate on average. Here R (C̃0
WW ) means L2(QY ). In the following the

canonical mapping from HY to L2(QY ) is denoted by JY . The mapping JX : HX → L2(QX ) is

defined similarly.

Theorem 13 Let f be a function in HX , and (Z,W ) be a random variable taking values in X ×Y

with distribution Q. Assume that E[ f (Z)|W = ·] ∈ HY and JY E[ f (Z)|W = ·] ∈ R (C̃ν
WW ) for some

ν > 0, and that Ĉ
(n)
WZ : HX → HY and Ĉ

(n)
WW : HY → HY are bounded operators such that ‖Ĉ

(n)
WZ −

CWZ‖ = Op(n
−γ) and ‖Ĉ

(n)
WW −CWW‖ = Op(n

−γ) for some γ > 0. Then, for a positive sequence

δn = n−max{ 1
2

γ, 2
ν+2

γ}, we have as n → ∞

∥∥JY Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
Ĉ
(n)
WZ f − JY E[ f (Z)|W = ·]

∥∥
L2(QY )

= Op(n
−min{ 1

2
γ, ν

ν+2
γ}),

where QY is the marginal distribution of W.

Proof Note that for f ,g ∈ HX we have (J f ,Jg)L2(QY ) = E[ f (W )g(W )] = 〈 f ,CWW g〉HX
. It follows

that the left hand side of the assertion is equal to

∥∥C
1/2
WW

{
Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
Ĉ
(n)
WZ f −E[ f (Z)|W = ·]

}∥∥
HY

.

First, by a similar argument to the proof of Equation (26), it is easy to show that the rate of the

estimation error is given by

∥∥C
1/2
WW

{
Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 +δnI

)−1
Ĉ
(n)
WZ f −CWW (C2

WW +δnI)−1CWZ f
}∥∥

HY
= Op(n

−γδ−1
n ).

It suffices then to prove

∥∥JY CWW (C2
WW +δnI)−1CWZ f − JY E[ f (Z)|W = ·]

∥∥
L2(QY )

= O(δ
min{1, ν

2
}

n ).
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Let ξ ∈ L2(QY ) such that JY E[ f (Z)|W = ·] = C̃ν
WW ξ. In a similar way to Theorem 1,

C̃WW JY E[ f (Z)|W = ·] = C̃WZJX f holds, where C̃WZ is the extension of CWZ to an operator from

L2(QX ) to L2(QY ), and thus JY CWZ f = C̃ν+1
WW ξ. If follows from JY CWW = C̃WW JY that the left hand

side of the above equation is equal to

∥∥C̃WW (C̃2
WW +δnI)−1C̃ν+1

WW ξ−C̃ν
WW ξ

∥∥
L2(QY )

.

A similar argument to the proof of Equation (27) shows the assertion.

The convergence rate of KBR follows by combining the above theorems.

Theorem 14 Let f be a function in HX , (Z,W ) be a random variable that has the distribution

Q defined by Equation (5), and m̂
(n)
Π be an estimator of mΠ such that ‖m̂

(n)
Π −mΠ‖HX

= Op(n
−α)

(n → ∞) for some 0 < α ≤ 1/2. Assume that the Radon Nikodym derivative dΠ/dPX is in R (C
β
XX)

with β ≥ 0, and E[ f (Z)|W = ·] ∈ R (Cν
WW ) for some ν ≥ 0. For the regularization constants εn =

n
−max{ 2

3
α, 1

1+β α}
and δn = n−max{ 4

9
γ, 4

2ν+5
γ}, where γ = min{ 2

3
α, 2β+1

2β+2
α}, we have for any y ∈ Y

fT
X RX |Y kY (y)−E[ f (Z)|W = y] = Op(n

−min{ 4
9

γ, 2ν
2ν+5

γ}), (n → ∞),

where fT
X RX |Y kY (y) is given by Equation (13).

Theorem 15 Let f be a function in HX , (Z,W ) be a random variable that has the distribution

Q defined by Equation (5), and m̂
(n)
Π be an estimator of mΠ such that ‖m̂

(n)
Π −mΠ‖HX

= Op(n
−α)

(n → ∞) for some 0 < α ≤ 1/2. Assume that the Radon Nikodym derivative dΠ/dPX is in R (C
β
XX)

with β ≥ 0, E[ f (Z)|W = ·] ∈ HY , and JY E[ f (Z)|W = ·] ∈ R (C̃ν
WW ) for some ν > 0. With the

regularization constants εn = n
−max{ 2

3
α, 1

1+β α}
and δn = n−max{ 1

2
γ, 2

ν+2
γ}, where γ = min{ 2

3
α, 2β+1

2β+2
α},

we have ∥∥fT
X RX |Y kY (W )−E[ f (Z)|W ]

∥∥
L2(QY )

= Op(n
−min{ 1

2
γ, ν

ν+2
γ}),

as n goes to infinity.
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Abstract

Any learner with the ability to predict the future of a structured time-varying signal must maintain a

memory of the recent past. If the signal has a characteristic timescale relevant to future prediction,

the memory can be a simple shift register—a moving window extending into the past, requiring

storage resources that linearly grows with the timescale to be represented. However, an indepen-

dent general purpose learner cannot a priori know the characteristic prediction-relevant timescale

of the signal. Moreover, many naturally occurring signals show scale-free long range correlations

implying that the natural prediction-relevant timescale is essentially unbounded. Hence the learner

should maintain information from the longest possible timescale allowed by resource availabil-

ity. Here we construct a fuzzy memory system that optimally sacrifices the temporal accuracy of

information in a scale-free fashion in order to represent prediction-relevant information from expo-

nentially long timescales. Using several illustrative examples, we demonstrate the advantage of the

fuzzy memory system over a shift register in time series forecasting of natural signals. When the

available storage resources are limited, we suggest that a general purpose learner would be better

off committing to such a fuzzy memory system.

Keywords: temporal information compression, forecasting long range correlated time series

1. Introduction

Natural learners face a severe computational problem in attempting to predict the future of time

varying signals. Rather than being presented with a large training set of examples, they must com-

pute on-line using a continuously evolving representation of the recent past. A basic question arises

here—how much of the recent past is required to generate future predictions? Maintaining past

information in memory comes with a metabolic cost; we would expect a strong evolutionary pres-

sure to minimize the resources required. A shift register can accurately represent information from

the recent past up to a chosen timescale, while consuming resources that grow linearly with that

timescale. However, the prediction-relevant timescale of the signal is generally unknown prior

to learning. Moreover there are many examples of naturally occurring signals with scale-free long

range correlations (Voss and Clarke, 1975; Mandelbrot, 1982; Field, 1987; Torralba and Oliva, 2003;

Linkenkaer-Hansen et al., 2001; Baillie, 1996; Gilden, 2001; Van Orden et al., 2003; Wagenmakers

et al., 2004), commonly known as 1/ f signals, making the natural prediction-relevant timescale

essentially unbounded. Our focus is on the following question: If an independent general purpose

learner is to forecast long range correlated natural signals, what is the optimal way to represent the

past information in memory with limited resources?

c©2013 Karthik H. Shankar and Marc W. Howard.
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We argue that the solution is to construct a memory that reflects the natural scale-free temporal

structure associated with the uncertainties of the world. For example, the timing of an event that

happened 100 seconds ago does not have to be represented as accurately in memory as the timing of

an event that happened 10 seconds ago. Sacrificing the temporal accuracy of information in memory

leads to tremendous resource conservation, yielding the capacity to represent information from ex-

ponentially long timescales with linearly growing resources. Moreover, by sacrificing the temporal

accuracy of information in a scale-free fashion, the learner can gather the relevant statistics from

the signal in a way that is optimal if the signal contains scale-free fluctuations. To mechanistically

construct such a memory system, it is imperative to keep in mind that the information represented

in memory should self sufficiently evolve in real time without relying on any information other than

the instantaneous input and what is already represented in memory; reliance on any external in-

formation would require additional storage resources. In this paper we describe a Fuzzy (meaning

temporally inaccurate) memory system that (i) represents information from very long timescales

under limited resources, (ii) optimally sacrifices temporal accuracy while maximally preserving the

prediction-relevant information from the past, and (iii) evolves self sufficiently in real time.1

The layout of the paper is as follows. In Section 2, based on some general properties of long

range correlated signals, we derive the criterion for optimally sacrificing the temporal accuracy so

that the prediction relevant information from exponentially long time scales is maximally preserved

in the memory with finite resources. However, it is non-trivial to construct such a memory in a

self sufficient way. In Section 3, we describe a strategy to construct a self sufficient scale-free

representation of the recent past. This strategy is based on a neuro-cognitive model of internal

time, TILT (Shankar and Howard, 2012), and is mathematically equivalent to encoding the Laplace

transform of the past and approximating its inverse to reconstruct a fuzzy representation of the

past. With an optimal choice of a set of memory nodes, this representation naturally leads to a

self-sufficient fuzzy memory system. In Section 4, we illustrate the utility of the fuzzy memory

with some simple time series forecasting examples. We show that the fuzzy memory enhances the

ability to predict the future in comparison to a shift register with equal number of nodes. Optimal

representation of the recent past in memory does not by itself guarantee the ability to successfully

predict the future, for it is crucial to learn the prediction-relevant statistics underlying the signal with

an efficient learning algorithm. The choice of the learning algorithm is however largely modular to

the choice of the memory system. Here we entirely sidestep the problem of learning, and only

focus on the memory. As a place holder for a learning algorithm, we use linear regression in the

demonstrations of time series forecasting.

2. Optimal Accuracy-Capacity Tradeoff

Suppose a learner needs to learn to predict a real valued time series with long range correlations. Let

V = {vn : n ∈ (1,2,3...∞)} represent all past values of the time series relative to the present moment

at n = 0. Let V be a stationary series with zero mean and finite variance. Ignoring any higher order

correlations, let the two point correlation be
〈

vnvm

〉

≃ 1/|n−m|α. When α ≤ 1, the series will be

long range correlated (Beran, 1994). The goal of the learner is to successfully predict the current

value vo at n = 0. Figure 1 shows a sample time series leading up to the present moment. The y-axis

corresponds to the present moment and to its right lies the unknown future values of the time series.

The x-axis labeled as shift register denotes a memory buffer wherein each vn is accurately stored in

1. Fuzzy temporal memory is not related to fuzzy logic.
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Figure 1: A sample time series V with power-law two-point correlation is plotted w.r.t. time(n) with the

current time step taken to be n = 0. The figure contrasts the way in which the information is

represented in a shift register and the fuzzy buffer. Each node of the fuzzy buffer linearly combines

information from a bin containing multiple shift register nodes. The dashed curve shows the

predictive information content from each time step that is relevant for predicting the future value

of the time series.

a unique node. As we step forward in time, the information stored in each node will be transferred

to its left-neighbor and the current value vo will enter the first node. The shift register can thus self

sufficiently evolve in real time. The longest time scale that can be represented with the shift register

is linearly related to the number of nodes.

Given a limited number of memory nodes, what is the optimal way to represent V in the memory

so that the information relevant to prediction of vo is maximally preserved? We will show that this

is achieved in the fuzzy buffer shown in Figure 1. Each node of the fuzzy buffer holds the average

of vns over a bin. For the fuzzy buffer, the widths of the bins increase linearly with the center of

the bin; the bins are chosen to tile the past time line. Clearly, the accuracy of representing V is

sacrificed in the process of compressing the information in an entire bin into a real number, but

note that we attain the capacity to represent information from exponentially long timescales. With

some analysis, we will show that sacrificing the accuracy with bin widths chosen in this way leads

to maximal preservation of prediction-relevant information.

It is clear that the fuzzy buffer shown in Figure 1 cannot evolve self sufficiently in real time;

information lost during compression of a bin at any moment is required at the next moment to

recompute the bin average. At each moment we would explicitly require all the vns to correctly

update the values in the fuzzy buffer. Even though such a fuzzy buffer is not self sufficient, we

shall analyze it to derive the optimal binning strategy that maximally preserves prediction-relevant

information from the past . The reader who is willing to take the optimality of linearly-increasing

bin widths on faith can skip ahead to Section 3 where we construct a self-sufficient memory system

with that property.
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2.1 Deriving the Optimal Binning Strategy

To quantify the prediction relevant information contained in V , let us first review some general

properties of the long range correlated series. Since our aim here is only to represent V in memory

and not to actually understand the generating mechanism underlying V , it is sufficient to consider

V as being generated by a generic statistical algorithm, the ARFIMA model (Granger and Joyeux,

1980; Hosking, 1981; Wagenmakers et al., 2004). The basic idea behind the ARFIMA algorithm

is that white noise at each time step can be fractionally integrated to generate a time series with

long range correlations.2 Hence the time series can be viewed as being generated by an infinite

auto-regressive generating function. In other words, vo can be generated from the past series V and

an instantaneous Gaussian white noise input ηo.

vo = ηo +
∞

∑
n=1

a(n)vn. (1)

The ARFIMA algorithm specifies the coefficients a(n) in terms of the exponent α in the two point

correlation function.

a(n) =
(−1)n+1Γ(d +1)

Γ(n+1)Γ(d −n+1)
, (2)

where d is the fractional integration power given by d = (1−α)/2. The time series is stationary

and long range correlated with finite variance only when d ∈ (0,1/2) or α ∈ (0,1) (Granger and

Joyeux, 1980; Hosking, 1981). The asymptotic behavior of a(n) for large n can be obtained by

applying Euler’s reflection formula and Stirling’s formula to approximate the Gamma functions in

Equation 2. It turns out that when either d is small or n is large,

a(n)≃
[

Γ(d +1)sin(πd)

π

]

n−(1+d). (3)

For the sake of analytic tractability, the following analysis will focus only on small values of d.

From Equation 1, note that a(n) is a measure of the relevance of vn in predicting vo, which we shall

call the P I C -Predictive Information Content of vn. Taylor expansion of Equation 3 shows that each

a(n) is linear in d up to the leading order. Hence in small d limit, any vn is a stochastic term ηn plus

a history dependent term of order O(d). Restricting to linear order in d, the total P I C of vn and vm

is simply the sum of their individual P I C s, namely a(n)+a(m). Thus in the small d limit, P I C is

a simple measure of predictive information that is also an extensive quantity.

When the entire V is accurately represented in an infinite shift register, the total P I C contained

in the shift register is the sum of all a(n). This is clearly the maximum attainable value of P I C in

any memory buffer, and it turns out to be 1.

P I C max =
∞

∑
n=1

a(n) = 1.

In a shift register with Nmax nodes, the total P I C is

P I C
SR
tot =

Nmax

∑
n=1

a(n) = 1−
∞

∑
Nmax

a(n) ≃ 1− sin(πd)Γ(d +1)

πd
N−d

max,

d → 0−−→ d lnNmax. (4)

2. The most general model ARFIMA(p,d,q) can generate time series with both long and short range structures. Here we

choose p = q = 0 to ignore the short range structures.
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For any fixed Nmax, when d is sufficiently small P I C
SR
tot will be very small. For example, when

Nmax = 100 and d = 0.1, P I C
SR
tot ≃ 0.4. For smaller values of d, observed in many natural signals,

P I C
SR
tot would be even lower. When d = 0.01, for Nmax as large as 10000, the P I C

SR
tot is only 0.08.

A large portion of the predictive information lies in long timescales. So the shift register is ill-suited

to represent information from a long range correlated series.

The P I C tot for a memory buffer can be increased if each of its nodes stored a linear combination

of many vns rather than a single vn as in the shift register. This can be substantiated through informa-

tion theoretic considerations formulated by the Information Bottleneck (I B) method (Tishby et al.,

1999). A multi-dimensional Gaussian variable can be systematically compressed to lower dimen-

sions by linear transformations while maximizing the relevant information content (Chechik et al.,

2005). Although V is a unidimensional time series in our consideration, at any moment the entire

V can be considered as an infinite dimensional Gaussian variable since only its two point correla-

tions are irreducible. Hence it heuristically follows from I B that linearly combining the various

vns into a given number of combinations and representing each of them in separate memory nodes

should maximize the P I C tot. By examining Equation 1, it is immediately obvious that if we knew

the values of a(n), the entire V could be linearly compressed into a single real number ∑a(n)vn

conveying all of the prediction relevant information. However, such a single-node memory buffer

is not self sufficient: at each moment we explicitly need the entire V to update the value in that

node. As an unbiased choice that does not require a priori knowledge of the statistics of the time

series, we simply consider uniform averaging over a bin. Uniform averaging over a bin discards

separate information about the time of the values contributing to the bin. Given this consideration,

how should we space the bins to maximize the P I C tot?

Consider a bin ranging between n and n+∆n. We shall examine the effect of averaging all

the vms within this bin and representing it in a single memory node. If all the vms in the bin are

individually represented, then the P I C of the bin is ∑m a(m). Compressing all the vms into their

average would however lead to an error in prediction of vo; from Equation 1 this error is directly

related to the extent to which the a(m)s within the bin are different from each other. Hence there

should be a reduction in the P I C of the bin. Given the monotonic functional form of a(n), the

maximum reduction can only be ∑m |a(m)−a(n)|. The net P I C of the memory node representing

the bin average is then

P I C =
n+∆n

∑
m=n

a(m) −
n+∆n

∑
m=n

|a(n)−a(m)|,

≃ na(n)

d

[

2−2

(

1+
∆n

n

)−d

− d ∆n

n

]

.

The series summation in the above equation is performed by approximating it as an integral in the

large n limit. The bin size that maximizes the P I C can be computed by setting the derivative of

P I C w.r.t. ∆n equal to zero. The optimal bin size and the corresponding P I C turns out to be

∆opt
n =

[

21/(1+d)−1
]

n, P I C
opt ≃ na(n)

d

[

2+d − (1+d)21/(1+d)
]

. (5)

When the total number of nodes Nmax is finite, and we want to represent information from

the longest possible timescale, the straightforward choice is to pick successive bins such that they

completely tile up the past time line as schematically shown by fuzzy buffer in Figure 1. If we label
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the nodes of the fuzzy buffer by N, ranging from 1 to Nmax, and denote the starting point of each bin

by nN , then

nN+1 = (1+ c)nN =⇒ nN = n1(1+ c)(N−1), (6)

where 1+ c = 21/(1+d). Note that the fuzzy buffer can represent information from timescales of the

order nNmax
, which is exponentially large compared to the timescales represented by a shift register

with Nmax nodes. The total P I C of the fuzzy buffer, P I C
FB
tot , can now be calculated by summing

over the P I C s of each of the bins. Focusing on small values of d so that a(n) has the power law

form for all n, applying Equations 3 and 5 yields

P I C
FB
tot ≃

Nmax

∑
N=1

sin(πd)Γ(d +1)

πd

[

2+d − (1+d)21/(1+d)
]

n−d
N .

Taking n1 = 1 and nN given by Equation 6,

P I C
FB
tot ≃ sin(πd)Γ(d +1)

πd

[

2+d − (1+d)21/(1+d)
]

[

1− (1+ c)−d Nmax

1− (1+ c)−d

]

,

d → 0−−→ [ln4−1]d Nmax. (7)

Comparing Equations 4 and 7, note that when d is small, the P I C
FB
tot of the fuzzy buffer grows

linearly with Nmax while the P I C
SR
tot of the shift register grows logarithmically with Nmax. For

example, with Nmax = 100 and d = 0.01, the P I C
FB
tot of the fuzzy buffer is 0.28, while the P I C

SR
tot

of the shift register is only 0.045. Hence when Nmax is relatively small, the fuzzy buffer represents

a lot more predictive information than a shift register.

The above description of the fuzzy buffer corresponds to the ideal case wherein the neighboring

bins do not overlap and uniform averaging is performed within each bin. Its critical property of

linearly increasing bin sizes ensures that the temporal accuracy of information is sacrificed optimally

and in a scale-free fashion. However, this ideal fuzzy buffer cannot self sufficiently evolve in real

time because at every moment all vns are explicitly needed for its construction. In the next section,

we present a self sufficient memory system that possesses the critical property of the ideal fuzzy

buffer, but differs from it by having overlapping bins and non-uniform weighted averaging within

the bins. To the extent the self sufficient fuzzy memory system resembles the ideal fuzzy buffer,

we can expect it to be useful in representing long range correlated signals in a resource-limited

environment.

3. Constructing Self Sufficient Fuzzy Memory

In this section, we first describe a mathematical basis for representing the recent past in a scale-free

fashion based on a neuro-cognitive model of internal time, TILT (Shankar and Howard, 2012). We

then describe several critical considerations necessary to implement this representation of recent

past into a discrete set of memory nodes. Like the ideal fuzzy buffer described in the Section 2, this

memory representation will sacrifice temporal accuracy to represent prediction-relevant information

over exponential time scales. But unlike the ideal fuzzy buffer, the resulting memory representation

will be self sufficient, without requiring additional resources to construct the representation.

Let f(τ) be a real valued function presented over real time τ. Our aim now is to construct

a memory that represents the past values of f(τ) as activity distributed over a set of nodes with
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Figure 2: The scale-free fuzzy representation - Each node in the t column is a leaky integrator with

a specific decay constant s that is driven by the functional value f at each moment. The

activity of the t column is transcribed at each moment by the operator L-1
k to represent the

past functional values in a scale-free fuzzy fashion in the T column.

accuracy that falls off in a scale-free fashion. This is achieved using two columns of nodes t and T

as shown in Figure 2. The T column estimates f(τ) up to the present moment, while the t column

is an intermediate step used to construct T. The nodes in the t column are leaky integrators with

decay constants denoted by s. Each leaky integrator independently gets activated by the value of f

at any instant and gradually decays according to

d t(τ,s)

dτ
=−st(τ,s)+ f(τ). (8)

At every instant, the information in the t column is transcribed into the T column through a

linear operator L-1
k .

T(τ,
∗
τ) =

(−1)k

k!
sk+1t(k)(τ,s) : where s =−k/

∗
τ. (9)

T ≡ L-1
k

[

t
]

.

Here k is a positive integer and t(k)(τ,s) is the k-th derivative of t(τ,s) with respect to s. The nodes

of the T column are labeled by the parameter
∗
τ and are in one to one correspondence with the nodes

of the t column labeled by s. The correspondence between s and
∗
τ is given by s = −k/

∗
τ. We refer

to
∗
τ as internal time; at any moment τ, a

∗
τ node estimates the value of f at a time τ+

∗
τ in the past.

The range of values of s and
∗
τ can be made as large as needed at the cost of resources, but for

mathematical idealization we let them have an infinite range.

The mathematical inspiration of this approach comes from the fact that t(τ,s) encodes the

Laplace transform of the entire history of the function f up to time τ, and the operator L-1
k ap-

proximately inverts the Laplace transform (Post, 1930). As k → ∞, T(τ,
∗
τ) becomes a faithful
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past time

internal time

Figure 3: Taking the present moment to be τ = 0, a sample f(τ) is plotted in the top, and the mo-

mentary activity distributed across the T column nodes is plotted in the bottom.

reconstruction of the history of f from −∞ to τ, that is T(τ,
∗
τ)≃ f(τ+

∗
τ) for all values of

∗
τ from 0 to

−∞. When k is finite T(τ,
∗
τ) is an inaccurate reconstruction of the history of f. For example, taking

the current moment to be τ = 0, Figure 3 illustrates an f that is briefly non-zero around τ =−7 and

τ = −23. The reconstructed history of f in the T column shows two peaks approximately around
∗
τ = −7 and

∗
τ = −23 . The value of f at any particular moment in the past is thus smeared over

a range of
∗
τ values, and this range of smearing increases as we go deeper into the past. Thus, the

more distant past is reconstructed with a lesser temporal accuracy.

Furthermore, it turns out that the smear is precisely scale invariant. To illustrate this, consider

f(τ) to be a Dirac delta function at a moment τo in the past, f(τ) = δ(τ− τo), and let the present

moment be τ = 0. Applying Equations 8 and 9, we obtain

T(0,
∗
τ) =

1

|τo|
kk+1

k!

(

τo

∗
τ

)k+1

e−k(τo/
∗
τ). (10)

In the above equation both τo and
∗
τ are negative. T(0,

∗
τ) is the fuzzy reconstruction of the delta

function input. T(0,
∗
τ) is a smooth peaked function whose height is proportional to 1/|τo|, width

is proportional to |τo|, and the area is equal to 1. Its dependence on the ratio (τo/
∗
τ) ensures scale

invariance—for any τo we can linearly scale the
∗
τ values to hold the shape of the function fixed. In

this sense, T represents the history of f with a scale invariant smear. To quantify how much smear

is introduced, we can estimate the width of the peak as the standard deviation σ of T(0,
∗
τ) from the
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above equation, which for k > 2 turns out to be

σ[T(0,
∗
τ)] =

|τo|√
k−2

[

k

k−1

]

. (11)

Note that k is the only free parameter that affects the smear; k indexes the smear in the representa-

tion. The larger the k the smaller the smear. In the limit k → ∞, the smear vanishes and the delta

function input propagates into the T column exactly as delta function without spreading, as if T

were a shift register.

Though we took f to be a simple delta function input to illustrate the scale invariance of the T

representation, we can easily evaluate the T representation of an arbitrary f from Equations 8 and 9.

T(0,
∗
τ) =

∫ 0

−∞

[

1

|∗τ|
kk+1

k!

(

τ′
∗
τ

)k

e−k(τ′/
∗
τ)

]

f(τ′)dτ′. (12)

The f values from a range of past times are linearly combined and represented in each
∗
τ node.

The term in the square brackets in the above equation is the weighting function of the linear com-

bination. Note that it is not a constant function over a circumscribed past time bin, rather it is a

smooth function peaked at τ′ =
∗
τ, with a spread proportional to |∗τ|. Except for the fact that this

weighting function is not uniform, the activity of a
∗
τ node has the desired property mimicking a bin

of the ideal fuzzy buffer described in Section 2.

3.1 Self Sufficient Discretized Implementation

Although it appears from Equation 12 that the T representation requires explicit information about

the f values over the past time, recall that it can be constructed from instantaneous t representation.

Since Equation 8 is a local differential equation, the activity of each t node will independently

evolve in real time, depending only on the present value of the node and the input available at that

moment. Hence any discrete set of t nodes also evolves self sufficiently in real time. To the extent

the activity in a discrete set of T nodes can be constructed from a discrete set of t nodes, this memory

system as a whole can self sufficiently evolve in real time. Since the activity of each
∗
τ node in the T

column is constructed independently of the activity of other
∗
τ nodes, we can choose any discrete set

of
∗
τ values to form our memory system. In accordance with our analysis of the ideal fuzzy buffer in

Section 2, we shall pick the following nodes.

∗
τmin ,

∗
τmin(1+ c) ,

∗
τmin(1+ c)2 , . . .

∗
τmin(1+ c)(Nmax−1) =

∗
τmax. (13)

Together, these nodes form the fuzzy memory representation with Nmax nodes. The spacing in

Equation 13 will yield several important properties.

Unlike the ideal fuzzy buffer described in Section 2, it is not possible to associate a circum-

scribed bin for a node because the weighting function (see Equation 12) does not have compact

support. Since the weighting function associated with neighboring nodes overlap with each other, it

is convenient to view the bins associated with neighboring nodes as partially overlapping. The over-

lap between neighboring bins implies that some information is redundantly represented in multiple

nodes. We shall show in the forthcoming subsections that by appropriately tuning the parameters k

and c, this information redundancy can be minimized and equally spread in a scale-free fashion.
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3.1.1 DISCRETIZED DERIVATIVE

Although any set of
∗
τ nodes could be picked to form the memory buffer, their activity is ultimately

constructed from the nodes in the t column whose s values are given by the one to one correspon-

dence s =−k/
∗
τ. Since the L-1

k operator has to take the k-th derivative along the s axis, L-1
k depends

on the way the s-axis is discretized.

For any discrete set of s values, we can define a linear operator that implements a discretized

derivative. For notational convenience, let us denote the activity at any moment t(τ,s) as simply

t(s). Since t is a column vector with the rows labeled by s, we can construct a derivative matrix [D]
such that

t(1) = [D]t =⇒ t(k) = [D]kt.

The individual elements in the square matrix [D] depends on the set of s values. To compute these el-

ements, consider any three successive nodes with s values s−1,so,s1. The discretized first derivative

of t at so is given by

t(1)(so) =
t(s1)− t(so)

s1 − so

[

so − s−1

s1 − s−1

]

+
t(so)− t(s−1)

so − s−1

[

s1 − so

s1 − s−1

]

.

The row in [D] corresponding to so will have non-zero entries only in the columns corresponding

to s−1, so and s1. These three entries can be read out as coefficients of t(s−1), t(so) and t(s1)
respectively in the r.h.s of the above equation. Thus the entire matrix [D] can be constructed from

any chosen set of s values. By taking the k-th power of [D], the L-1
k operator can be straightforwardly

constructed and the activity of the chosen set of
∗
τ nodes can be calculated at each moment.3 This

memory system can thus self sufficiently evolve in real time.

When the spacing between the nodes (controlled by the parameter c) is small, the discretized

k-th derivative will be accurate. Under uniform discretization of the s axis, it can be shown that the

relative error in computation of the k-th derivative due to discretization is of the order O(kδ2
s/24),

where δs is the distance between neighboring s values (see appendix B of Shankar and Howard,

2012). Based on the s values corresponding to Equation 13, it turns out that the relative error in

the construction of the activity of a
∗
τ node is O(k3c2/96

∗
τ

2

). For large
∗
τ the error is quite small

but for small
∗
τ the error can be significant. To curtail the discretization error, we need to hold

∗
τmin

sufficiently far from zero. The error can also be controlled by choosing small c for large k and

vice versa. If for practical purposes we require a very small
∗
τmin, then ad hoc strategies can be

adopted to control the error at low
∗
τ nodes. For example, by relaxing the requirement of one to one

correspondence between the t and T nodes, we can choose a separate set of closely spaced s values

to exclusively compute the activity of each of the small
∗
τ nodes.

Finally, it has to be noted that the discretization error induced in this process should not be con-

sidered as an error in the conventional sense of numerical solutions to differential equations. While

numerically evolving differential equations with time-varying boundary conditions, the discretiza-

tion error in the derivatives will propagate leading to large errors as we move farther away from the

boundary at late times. But in the situation at hand, since the activity of each
∗
τ node is computed

independently of others, the discretization error does not propagate. Moreover, it should be noted

3. Note that we need k extra nodes in the top and bottom of the t column in addition to those that come from one to one

correspondence with the chosen
∗
τ values.
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that the effect of discretization can be better viewed as coarse-graining the k-th derivative rather than

as inducing an error in computing the k-th derivative. The fact that each
∗
τ node ultimately holds a

scale-free coarse-grained value of the input function (see Equation 12), suggests that we wouldn’t

need the exact k-th derivative to construct its activity. To the extent the discretization is scale-free

as in Equation 13, the T representation constructed from the coarse-grained k-th derivative will

represent some scale free coarse grained value of the input; however the weighting function would

not exactly match that in Equation 12. In other words, even if the discretized implementation does

not accurately match the continuum limit, it still accurately satisfies the basic properties we require

from a fuzzy memory system.

3.1.2 SIGNAL-TO-NOISE RATIO WITH OPTIMALLY-SPACED NODES

The linearity of Equations 8 and 9 implies that any noise in the input function f(τ) will exactly be

represented in T without any amplification. However when there is random uncorrelated noise in

the t nodes, the discretized L-1
k operator can amplify that noise, more so if c is very small. It turns

out that choice of nodes according to Equation 13 results in a constant signal-to-noise ratio across

time scales.

If uncorrelated noise with standard deviation η is added to the activation of each of the t nodes,

then the L-1
k operator combines the noise from 2k neighboring nodes leading to a noisy T represen-

tation. If the spacing between the nodes neighboring a s node is δs, then the standard deviation of

the noise generated by the L-1
k operator is approximately η

√
2ksk+1/δk

sk!. To view this noise in an

appropriate context, we can compare it to the magnitude of the representation of a delta function

signal at a past time τo =−k/s (see Equation 10). The magnitude of the T representation for a delta

function signal is approximately kke−ks/k!. The signal to noise ratio (SNR) for a delta function

signal is then

SNR = η−1

(

k[δs/s]√
2e

)k

. (14)

If the spacing between neighboring nodes changes such that [δs/s] remains a constant for all s, then

the signal to noise ratio will remain constant over all timescales. This would however require that

the nodes are picked according to Equation 13, making SNR = η−1(kc/
√

2e)k. Any other set of

nodes would make the signal to noise ratio zero either at large or small timescales.

This calculation however does not represent the most realistic situation. Because the t nodes are

leaky integrators (Equation 8), the white noise present across time will accumulate and hence nodes

with long time constants should have a higher value of η. In fact, the standard deviation of white

noise in the t nodes should go down with s according to η ∝ 1/
√

s. From Equation 14, we can then

conclude that the SNR of large
∗
τ nodes should drop down to zero as 1/

√

|∗τ|. However, because

each
∗
τ node represents a weighted temporal average of the past signal, it is not appropriate to use an

isolated delta function signal to estimate the signal to noise ratio. It is more appropriate to compare

temporally averaged noise to a temporally spread signal. We consider two such signals. (i) Suppose

f(τ) itself is a temporally uncorrelated white noise like signal. The standard deviation in the activity

of a
∗
τ node in response to this signal is proportional to 1/

√

|∗τ| (see Equation 16 in the appendix).

The SNR for this temporally-extended signal is a constant over all
∗
τ nodes. (ii) Consider a purely

positive signal where f(τ) is a sequence of delta function spikes generated by a Poisson process.
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The total expected number of spikes that would be generated in the timescale of integration of a
∗
τ

node is simply

√

|∗τ|. Consequently, the expectation value of the activity of a
∗
τ node in response to

this signal would be

√

|∗τ| multiplied by the magnitude of representation of a single delta function.

The SNR for this signal is again a constant over all
∗
τ nodes. So, we conclude that for any realistic

stationary signal spread out in time, the SNR will be a constant over all timescales as long as the

nodes are chosen according to Equation 13.

3.2 Information Redundancy

The fact that a delta function input in f is smeared over many
∗
τ nodes implies that there is a re-

dundancy in information representation in the T column. In a truly scale-free memory buffer, the

redundancy in information representation should be equally spread over all time scales represented

in the buffer. The information redundancy can be quantified in terms of the mutual information

shared between neighboring nodes in the buffer. In the appendix, it is shown that in the presence of

scale free input signals, the mutual information shared by any two neighboring buffer nodes can be

a constant only if the
∗
τ nodes are distributed according to Equation 13. Consequently information

redundancy is uniformly spread only when the
∗
τ nodes are given by Equation 13.

The uniform spread of information redundancy can be intuitively understood by analyzing how

a delta function input spreads through the buffer nodes as time progresses. Figure 4 shows the

activity of the buffer nodes at three points in time following the input. In Figure 4a where the
∗
τ values of the buffer nodes are chosen to be equidistant, the activity is smeared over more and

more number of nodes as time progresses. This implies that the information redundancy is large

in the nodes representing long timescales. In Figure 4b where the
∗
τ values of the buffer nodes

are chosen according to Equation 13, the activity pattern does not smear, instead the activity as a

whole gets translated with an overall reduction in size. The translational invariance of the activity

pattern as it passes through the buffer nodes explains why the information redundancy between any

two neighboring nodes is a constant. The translational invariance of the activity pattern can be

analytically established as follows.

Consider two different values of τo in Equation 10, say τ1 and τ2. Let the corresponding T

activities be T1(0,
∗
τ) and T2(0,

∗
τ) respectively. If the

∗
τ value of the N-th node in the buffer is

given by
∗
τN , then the pattern of activity across the nodes is translationally invariant if and only if

T1(0,
∗
τN) ∝ T2(0,

∗
τN+m) for some constant integer m. For this to hold true, we need the quantity

T1(0,
∗
τN)

T2(0,
∗
τN+m)

=

(

τ1

τ2

)k
[ ∗

τN+m

∗
τN

]k+1

e
k

[

τ1∗
τN

− τ2∗
τN+m

]

to be independent of N. This is possible only when the quantity inside the power law form and

the exponential form are separately independent of N. The power law form can be independent of

N only if
∗
τN ∝ (1+ c)N , which implies the buffer nodes have

∗
τ values given by Equation 13. The

exponential form is generally dependent on N except when its argument is zero, which happens

whenever (1+c)m = τ2/τ1 for some integer m. For any given τ1, there are infinitely many τ2 values

for which the condition holds. Moreover when c is small, the condition will approximately hold for
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a b

Figure 4: Activity of the fuzzy memory nodes in response to a delta function input at three dif-

ferent times with (a) uniformly spaced nodes and (b) nodes chosen in accordance with

Equation 13.

any τ2. Hence, the translational invariance of the activity pattern holds only when the
∗
τ values of

the buffer nodes conform to Equation 13.

3.3 Balancing Information Redundancy and Information Loss

We have seen that the choice of
∗
τ nodes in accordance with Equation 13 ensures that the information

redundancy is equally distributed over the buffer nodes. However, equal distribution of information

redundancy is not sufficient; we would also like to minimize information redundancy. It turns out

that we cannot arbitrarily reduce the information redundancy without creating information loss. The

parameters k and c have to be tuned in order to balance information redundancy and information

loss. If k is too small for a given c, then many nodes in the buffer will respond to input from any

given moment in the past, resulting in information redundancy. On the other hand, if k is too large

for a given c, the information from many moments in the past will be left unrepresented in any of

the buffer nodes, resulting in information loss. So we need to match c with k to simultaneously

minimize both information redundancy and information loss.

This can be achieved if the information from any given moment in the past is not distributed

over more than two neighboring buffer nodes. To formalize this, consider a delta function input at

a time τo in the past and let the current moment be τ = 0. Let us look at the activity induced by this

input (Equation 10) in four successive buffer nodes, N − 1, N and N + 1 and N + 2. The
∗
τ values

of these nodes are given by Equation 13, for instance
∗
τN =

∗
τmin(1+c)N−1 and

∗
τN+1 =

∗
τmin(1+c)N .

From Equation 10, it can be seen that the N-th node attains its maximum activity when τo =
∗
τN

and the (N + 1)-th node attains its maximum activity when τo =
∗
τN+1, and for all the intervening

times of τo between
∗
τN and

∗
τN+1, the information about the delta function input will be spread over

both N-th and the (N + 1)-th nodes. To minimize the information redundancy, we simply require

that when τo is in between
∗
τN and

∗
τN+1, all the nodes other than the N-th and the (N +1)-th nodes

should have almost zero activity.
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Figure 5: a. The activity of four successive fuzzy memory nodes N − 1, N, N + 1, and N + 2 in

response to a delta function input at a past moment τo that falls right in between the

timescales of the N-th and the (N + 1)-th nodes. The nodes are chosen according to the

distribution given by Equation 13 with c = 1. b. The sum of activity of the N-th and

(N+1)-th nodes in response to a delta function input at various times τo ranging between

the timescales of N-th and (N +1)-th nodes. For each k, the activities are normalized to

have values in the range of 0 to 1.

Figure 5a plots the activity of the four successive nodes with c = 1, when τo is exactly in the

middle of
∗
τN and

∗
τN+1. For each value of k, the activity is normalized so that it lies between 0 and 1.

The four vertical lines represent the 4 nodes and the dots represent the activity of the corresponding

nodes. Note that for k = 2 the activity of all 4 nodes is substantially different from zero, implying a

significant information redundancy. At the other extreme, k = 100, the activity of all the nodes are

almost zero, implying that the information about the delta function input at time τo = (
∗
τN +

∗
τN+1)/2

has been lost. To minimize both the information loss and the information redundancy, the value of

k should be neither too large nor too small. Note that for k = 12, the activities of the (N −1)-th and

the (N +2)-th nodes are almost zero, but activities of the N-th and (N +1)-th nodes are non-zero.

For any given c, a rough estimate of the appropriate k can be obtained by matching the difference

in the
∗
τ values of the neighboring nodes to the smear σ from Equation 11.

σ =
|∗τN+1|√

k−2

[

k

k−1

]

≃ |∗τN+1 −
∗
τN | ⇒ k

(k−1)
√

k−2
≃ c

1+ c
. (15)

This condition implies that a large value of k will be required when c is small and a small value of

k will be required when c is large. In particular, Equation 15 suggests that k ≃ 8 when c = 1, which

will be the parameters we pick for the demonstrations in Section 4.

To further illustrate the information loss at high values of k, Figure 5b shows the sum of activity

of the N-th and the (N + 1)-th nodes for all values of τo between
∗
τN and

∗
τN+1. For each k, the

activities are normalized so that the N-th node attains 1 when τo =
∗
τN . Focusing on the case of

k = 100 in Figure 5b, there is a range of τo values for which the total activity of the two nodes

is very close to zero. The input is represented by the N-th node when τo is close to
∗
τN , and is

represented by the (N + 1)-th node when τo is close to
∗
τN+1, but at intermediate values of τo the

input is not represented by any node. One way to avoid such information loss is to require that the
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total activity of the two nodes not have a local minimum—in other words the minimum should be

at the boundary, at τo =
∗
τN+1. This is apparent in Figure 5b for k =4, 8 and 12. For c = 1, it turns

out that there exists a local minimum in the summed activity of the two nodes only for values of

k greater than 12. For any given c, the appropriate value of k that simultaneously minimizes the

information redundancy and information loss is the maximum value of k for which a plot similar to

Figure 5b will not have a local minimum.

In summary, the fuzzy memory system is the set of T column nodes with
∗
τ values given by

Equation 13, with the value of k appropriately matched with c to minimize information redundancy

and information loss.

4. Time Series Forecasting

We compare the performance of the self-sufficient fuzzy memory to a shift register in time series

forecasting with a few simple illustrations. Our goal here is to illustrate the differences between a

simple shift register and the self-sufficient fuzzy memory. Because our interest is in representation

of the time series and not in the sophistication of the learning algorithm, we use simple linear

regression algorithm to learn and forecast these time series.

We consider three time series with different properties. The first was generated by fractionally

integrating white noise (Wagenmakers et al., 2004) in a manner similar to that described in Section 2.

The second and third time series were obtained from the online library at http://datamarket.com. The

second time series is the mean annual temperature of the Earth from the year 1781 to 1988. The

third time series is the monthly average number of sunspots from the year 1749 to 1983 measured

from Zurich, Switzerland. These three time series are plotted in the top row of Figure 6. The

corresponding two point correlation function of each series is plotted in the middle row of Fig-

ure 6. Examination of the two point correlation functions reveal differences between the series.

The fractionally-integrated noise series shows long-range correlations falling off like a power law.

The temperature series shows correlations near zero (but modestly positive) over short ranges and

weak negative correlation over longer times. The sunspots data has both strong positive short-range

autocorrelation and a longer range negative correlation, balanced by a periodicity of 130 months

corresponding to the 11 year solar cycle.

4.1 Learning and Forecasting Methodology

Let Nmax denote the total number of nodes in the memory representation and let N be an index

corresponding to each node ranging from 1 to Nmax. We shall denote the value contained in the

nodes at any time step i by Bi[N]. The time series was sequentially fed into both the shift register

and the self-sufficient fuzzy memory and the representations were evolved appropriately at each

time step. The values in the shift register nodes were shifted downstream at each time step as

discussed Section 2. At any instant the shift register held information from exactly Nmax time steps

in the past. The values in the self-sufficient fuzzy memory were evolved as described in Section 3,

with
∗
τ values taken to be 1, 2, 4, 8, 16, 32,...2(Nmax−1), conforming to Equation 13 with

∗
τmin = 1,

c = 1 and k = 8.

At each time step i, the value from each of the nodes Bi[N] was recorded along with the value

of the time series at that time step, denoted by Vi. We used a simple linear regression algorithm to

extract the intercept I and the regression coefficients RN so that the predicted value of the time series
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Figure 6: (a) Simulated time series with long range correlations based on ARFIMA model with

d = 0.4, and white noise of standard deviation 0.01. (b) Average annual temperature of

the Earth from the year 1781 to 1988. (c) Monthly average number of sunspots from the

year 1749 to 1983. (d,e,f) Two point correlations of the series in a, b and c. (h,i,j) Error

in forecasting the series a, b and c using either the fuzzy memory or the the shift register.
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at each time step Pi and the squared error in prediction Ei are

Pi = I +
Nmax

∑
N=1

RNBi[N], Ei = [Pi −Vi]
2.

The regression coefficients were extracted by minimizing the total squared error E = ∑i Ei. For this

purpose, we used a standard procedure lm() in the open source software R.

The accuracy of forecast is inversely related to the total squared error E. To get an absolute

measure of accuracy we have to factor out the intrinsic variability of the time series. In the bottom

row of Figure 6, we plot the mean of the squared error divided by the intrinsic variance in the time

series Var[Vi]. This quantity would range from 0 to 1; the closer it is to zero, the more accurate the

prediction.

4.1.1 LONG RANGE CORRELATED SERIES

The long range correlated series (Figure 6a) is by definition constructed to yield a two point corre-

lation that decays as a power law. This is evident from its two point correlation in Figure 6d that is

decaying, but always positive. Since the value of the series at any time step is highly correlated with

its value at the previous time step, we can expect to generate a reasonable forecast using a single

node that holds the value from the previous time step. This can be seen from Figure 6h, where the

error in forecast is only 0.46 with a single node. Adding more nodes reduces the error for both

the shift register and the self-sufficient fuzzy memory. But for a given number of nodes, the fuzzy

memory always has a lower error than the shift register. This can be seen from Figure 6h where the

curve corresponding to the fuzzy memory falls below that of the shift register.

Since this series is generated by fractionally integrating white noise, the mean squared error

cannot in principle be lower than the variance of the white noise used for construction. That is,

there is a lower bound for the error that can be achieved in Figure 6h. The dotted line in Figure 6h

indicates this bound. Note that the fuzzy memory approaches this bound with a smaller number of

nodes than the shift register.

4.1.2 TEMPERATURE SERIES

The temperature series (Figure 6b) is much more noisy than the long range correlated series, and

seems structureless. This can be seen from the small values of its two point correlations in Figure 6e.

This is also reflected in the fact that with a small number of nodes, the error is very high. Hence it

can be concluded that no reliable short range correlation exist in this series. That is, knowing the

average temperature during a given year does not help much in predicting the average temperature

of the subsequent year. However, there seems to be a weak negative correlation at longer scales

that could be exploited in forecasting. Note from Figure 6i that with additional nodes the fuzzy

memory performs better at forecasting and has a lower error in forecasting than a shift register. This

is because the fuzzy memory can represent much longer timescales than the shift register of equal

size, and thereby exploit the long range correlations that exist.

4.1.3 SUNSPOTS SERIES

The sunspot series (Figure 6c) is less noisy than the other two series considered, and it has an

oscillatory structure of about 130 month periodicity. It has high short range correlations, and hence
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Figure 7: Forecasting the distant future. The sunspots time series of length 2820 is extrapolated for

500 time steps in the future using (a) shift register with 8 nodes, and (b) fuzzy memory

with 8 nodes. The solid tick mark on the x-axis at 2820 corresponds to the point where

the original series ends and the predicted future series begins.

even a single node that holds the value from the previous time step is sufficient to forecast with an

error of 0.15, as seen in Figure 6j. As before, with more nodes, the fuzzy memory consistently has

a lower error in forecasting than the shift register with equal number of nodes. Note that when the

number of nodes is increased from 4 to 8, the shift register does not improve in accuracy while the

fuzzy memory continues to improve in accuracy.

With a single node, both fuzzy memory and shift register essentially just store the information

from the previous time step. Because most of the variance in the series can be captured by the

information in the first node, the difference between the fuzzy memory and the shift register with

additional nodes is not numerically overwhelming when viewed in Figure 6j. However, there is

a qualitative difference in the properties of the signal extracted by the two memory systems. In

order to successfully learn the 130 month periodicity, the information about high positive short

range correlations is not sufficient, it is essential to also learn the information about the negative

correlations at longer time scales. From Figure 6f, note that the negative correlations exist at a

timescale of 50 to 100 months. Hence in order to learn this information, these timescales have to be

represented. A shift register with 8 nodes cannot represent these timescales but the fuzzy memory

with 8 nodes can.

To illustrate that it is possible to learn the periodicity using the fuzzy memory, we forecast the

distant future values of the series. In Figure 7, we extend the sunspots series by predicting it for

a future of 500 months. The regression coefficients RN and the intercept I are extracted from the

original series of length 2820. For the next 500 time steps, the predictions Pi are treated as actual

values Vi, and the memory representations are evolved. Figure 7a shows the series generated using

shift register with 8 nodes. The solid tick mark on the x-axis at 2820 represents the point at which
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Figure 8: a. Testing error in forecasting. The regression coefficients were extracted from the first

half of the sunspot series and testing was performed on the second half of the series. b.

Forecasting error of the fuzzy memory, shift register and subsampled shift register with a

node spacing of 5 and 10.

the original series ends and the predicted future series begins. Note that the series forecasted by the

shift register immediately settles on the mean value without oscillation. This is because the time

scale at which the oscillations are manifest is not represented by the shift register with 8 nodes.

Figure 7b shows the series generated by the fuzzy memory with 8 nodes. Note that the series

predicted by the fuzzy memory continues in an oscillating fashion with decreasing amplitude for

several cycles eventually settling at the mean value. This is possible because the fuzzy memory

represents the signal at a sufficiently long time scale to capture the negative correlations in the

two-point correlation function.

Of course, a shift register with many more nodes can capture the long-range correlations and

predict the periodic oscillations in the signal. However the number of nodes necessary to describe

the oscillatory nature of the signal needs to be of the order of the periodicity of the oscillation, about

130 in this case. This would lead to overfitting the data. At least in the case of the simple linear

regression algorithm, the number of regression coefficients to be extracted from the data increases

with the number of nodes, and extracting a large number of regression coefficients from a finite data

set will unquestionably lead to overfitting the data. Hence it would be ideal to use the least number

of nodes required to span the relevant time scale.

In order to ensure that the extracted regression coefficients has not overfitted the data, we split

the sunspots time series into two halves. We extracted the regression coefficients by using only

the first half for training and used the second half for testing the predictions generated by those

coefficients. Figure 8a plots this testing error, and should be compared to the training error plotted

in Figure 6j. Other than the noticeable fact that the testing error is slightly higher than the training

error, the shape of the two plots are very similar for both fuzzy memory and the shift register.

If our goal was to only capture the oscillatory structure of the sunspot series within a small

number of regression coefficients, then we could subsample from a lengthy shift register so that
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information from both positive and negative correlations can be obtained. Although the subsampled

shift register contains relatively few nodes, it cannot self sufficiently evolve in real time; we would

need the resources associated with the complete shift register in order to evolve the memory at each

moment. By subsampling 8 equidistantly spaced nodes of the shift register 1,11,21,31,...81, and

extracting the corresponding regression coefficients, it is possible to extend the series to have an

oscillatory structure analogous to Figure 7b. However it turns out that the forecasting error for the

subsampled shift register is significantly higher than the forecasting error from the fuzzy memory.

Figure 8b shows the forecasting error for subsampled shift register with equidistant node spacing

of 5 and 10. Even though the subsampled shift register with a node spacing of 10 extends over

a similar temporal range as the fuzzy memory, and captures the oscillatory structure in the data,

the fuzzy memory outperforms it with a lower error. The advantage of the fuzzy memory over the

subsampled shift register comes from the property of averaging over many previous values at long

time scales rather than picking a single noisy value and using that for prediction. This property

helps to suppress unreliable fluctuations that could lead to overfitting the data.

5. Discussion

The fuzzy memory holds more predictively relevant information than a shift register with the same

number of nodes for long-range correlated signals, and hence performs better in time series fore-

casting such signals. However, learning the relevant statistics from a lengthy time series is not the

same as learning from very few learning trials. To learn from very few learning trials, a learner must

necessarily make some generalizations based on some built-in assumptions about the environment.

Since the fuzzy memory discards information about the precise time of a stimulus presentation, the

temporal inaccuracy in memory can help the learner make such a generalization. Suppose it is use-

ful for a learner to learn the temporal relationship between two events, say A and B. Let the statistics

of the world be such that B consistently follows A after a delay period, which on each learning trial

is chosen from an unknown distribution. After many learning trials, a learner relying on a shift

register memory would be able to sample the entire distribution of delays and learn it precisely. But

real world learners may have to learn much faster. Because the fuzzy memory system represents the

past information in a smeared fashion, a single training sample from the distribution will naturally

let the learner make a scale-free temporal generalization about the distribution of delays between

A and B. The temporal profile of this generalization will not in general match the true distribution

that could be learned after many learning trials, however the fact that it is available after a single

learning trial provides a tremendous advantage for natural learners.

It then seems natural to wonder if human and animal memory resembles the fuzzy memory

system. After all, animals have evolved in the natural world where predicting the imminent future is

crucial for survival. Numerous behavioral findings on animals and humans are consistent with them

having a memory system with scale-free representation of past events (Balsam and Gallistel, 2009;

Gallistel and Gibbon, 2000). In human memory studies, the forgetting curve is usually observed to

follow a scale invariant power law function (Donkin and Nosofsky, 2012). When humans are asked

to reproduce or discriminate time intervals, they exhibit a characteristic scale-invariance in the errors

they produce (Rakitin et al., 1998; Wearden and Lejeune, 2008). This is not just a characteristic

feature in humans, but in a wide variety of animals like rats, rabbits and pigeons (Roberts, 1981;

Smith, 1968). These findings across behavioral tasks and species suggest that a scale-free memory

is an adaptive response to a world with structure at many temporal scales.
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5.1 Neural Networks with Temporal Memory

Let us now consider the fuzzy memory system in the context of neural networks with temporal

memory. It has been realized that neural networks with generic recurrent connectivity can have

sufficiently rich dynamics to hold temporal memory of the past. Analogous to how the ripple pat-

terns on a liquid surface contains information about the past perturbations, the instantaneous state

of the recurrent network holds the memory of the past which can be simply extracted by training

a linear readout layer. Such networks can be implemented either with analog neurons-echo state

networks (Jaeger, 2001), or with spiking neurons-liquid state machines (Maass et al., 2002). They

are known to be non-chaotic and dynamically stable as long as their spectral radius or the largest

eigenvalue of the connectivity matrix has a magnitude less than one. Abstractly, such networks with

fixed recurrent connectivity can be viewed as a reservoir of nodes and can be efficiently used for

computational tasks involving time varying inputs, including time series prediction (Wyffels and

Schrauwen, 2010).

The timescale of these reservoirs can be tuned up by introducing leaky integrator neurons in

them (Jaeger et al., 2007). However, a reservoir with finite nodes cannot have memory from infinite

past. In fact the criterion for dynamical stability of the reservoir is equivalent to requiring a fading

memory (Jaeger, 2002). If we define a memory function of the reservoir to be the precision with

which inputs from each past moment can be reconstructed, it turns out that the net memory, or

the area under the memory function over all past times, is bounded by the number of nodes in the

reservoir Nmax. The exact shape of the memory function will however depend on the connectivity

within reservoir. For a simple shift register connectivity, the memory function is a step function

which is 1 up to Nmax time steps in the past and zero beyond Nmax. But for a generic random

connectivity the memory function decays smoothly, sometimes exponentially and sometimes as a

power law depending on the spectral radius (Ganguli et al., 2008). For linear recurrent networks,

it turns out that the memory function is analytically tractable at least in some special cases (White

et al., 2004; Hermans and Schrauwen, 2010), while the presence of any nonlinearity seems to reduce

the net memory (Ganguli et al., 2008). By increasing the number of nodes in the reservoir, the net

memory can be increased. But unless the network is well tailored, as in orthogonal networks (White

et al., 2004) or a divergent feed-forward networks (Ganguli et al., 2008), the net memory grows

very slowly and sub-linearly with the number of nodes. Moreover, analysis of trajectories in the

state-space of a randomly connected network suggests that the net memory will be very low when

the connectivity is dense (Wallace et al., 2013).

The self-sufficient fuzzy memory can be viewed as a special case of a linear reservoir with a

specific, tailored connectivity. The t nodes effectively have a diagonal connectivity matrix making

them leaky integrators, and the L-1
k is the linear readout weights that approximately extracts the past

inputs. For a white noise input signal, the memory function decays as a power law with exponent

-1, and the net memory grows linearly with the number of nodes. However, as described above, the

accuracy of reconstruction of the past is not the relevant quantity of interest here, it is the predictive

information from the past that is of interest. Scale-free fluctuations in natural world imply that it

isn’t necessary to be accurate; in fact sacrificing accuracy in a scale-free fashion lets us represent

predictive information from exponentially long timescales.
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5.2 Unaddressed Issues

Two basic issues essential to real-world machine learning applications have been ignored in this

work for the sake of theoretical simplicity. First is that we have simply focused on a scalar time

varying signal, while any serious learning problem would involve multidimensional signals. When

unlimited storage resources are available, each dimension can be separately represented in a lengthy

shift register. To conserve storage resources associated with the time dimension, we could replace

the shift register with the self-sufficient fuzzy memory. This work however does not address the

issue of conserving storage resources by compressing the intrinsic dimensionality of the signal. In

general, most of the information relevant for future prediction is encoded in few combinations of

the various dimensions of the signal, called features. Techniques based on information bottleneck

method (Creutzig and Sprekeler, 2008; Creutzig et al., 2009) and slow feature analysis (Wiskott

and Sejnowski, 2002) can efficiently extract these features. The strategy of representing the time

series in a scale invariantly fuzzy fashion could be seen as complementary to these techniques.

For instance, slow feature analysis (Wiskott and Sejnowski, 2002) imposes the slowness principle

where low-dimensional features that change most slowly are of interest. If the components of a time

varying high dimensional signal is represented in a temporally fuzzy fashion rather than in a shift

register, then we could potentially extract the slowly varying parts in an online fashion by examining

differences in the activities of the largest two
∗
τ nodes.

The second issue is that we have ignored the learning and prediction mechanisms while simply

focusing on the memory representation. For simplicity we used the linear regression predictor in

Section 4. Any serious application should involve the ability to learn nonlinearities. Support vector

machines (SVM) adopt an elegant strategy of using nonlinear kernel functions to map the input data

to a high dimensional space where linear methods can be used (Vapnik, 1998; Müller et al., 1997).

The standard method for training SVMs on time series prediction requires feeding in the data from a

sliding time window, in other words providing shift registers as input. It has recently been suggested

that rather than using standard SVM kernels on sliding time window, if we used recurrent kernel

functions corresponding to infinite recurrent networks, performance can be improved on certain

tasks (Hermans and Schrauwen, 2012). This suggests that the gradually fading temporal memory of

the recurrent kernel functions is more effective than the step-function memory of shift register used

in standard SVMs for time series prediction. Training SVMs with standard kernel functions along

with fuzzy memory inputs rather than shift register inputs is an alternative strategy for approaching

problems involving signals with long range temporal correlations. Moreover, since t nodes contain

all the temporal information needed to construct the fuzzy memory, directly training the SVMs with

inputs from t nodes could also be very fruitful.

Finally, it should be noted that if our aim is to build an autonomous agent we need both learning

and prediction to happen in an online fashion. Many widely-used machine learning algorithms like

SVM (Vapnik, 1998) and deep learning networks (Hinton et al., 2006), rely on batch processing

which requires the availability of the entire data set prior to learning. Autonomous agents with

limited memory resources cannot adopt such learning strategies. The learning mechanism cannot

rely on information other than what is instantaneously available in the memory. An online learning

algorithm tailored to act on the fuzzy memory representation could potentially be very useful for

autonomous agents with finite memory resources.
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6. Conclusion

Signals with long-range temporal correlations are found throughout the natural world. Such signals

present a distinct challenge to machine learners that rely on a shift-register representation of the time

series. Here we have described a method for constructing a self-sufficient scale-free representation

of temporal history. The nodes are chosen in a way that minimizes information redundancy and in-

formation loss while equally distributing them over all time scales. Although the temporal accuracy

of the signal is sacrificed, predictively relevant information from exponentially long timescales is

available in the fuzzy memory system when compared to a shift register with the same number of

nodes. This could be an extremely useful way to represent time series with long-range correlations

for use in machine learning applications.
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Appendix A. Information Redundancy Across Nodes

The information redundancy in the memory representation can be quantified by deriving expressions

for mutual information shared between neighboring nodes. When the input signal is uncorrelated or

has scale-free long range correlations, it will be shown that the information redundancy is equally

spread over all nodes only when the
∗
τ values of the nodes are given by Equation 13.

Taking f(τ) to be a stochastic signal and the current moment to be τ = 0, the activity of a
∗
τ node

in the T column is (see Equation 12)

T(0,
∗
τ) =

kk+1

k!

∫ 0

−∞

1

|∗τ|

(

τ′
∗
τ

)k

e
−k

(

τ′
∗
τ

)

f(τ′)dτ′.

The expectation value of this node can be calculated by simply averaging over f(τ′) inside the

integral, which should be a constant if it is generated by a stationary process. By defining z = τ′/
∗
τ,

we find that the expectation of T is proportional to the expectation of f.

〈

T(0,
∗
τ)
〉

=
〈

f
〉kk+1

k!

∫ ∞

0
zke−kzdz.

To understand the information redundancy in terms of correlations among the nodes, we calculate

the correlations among the T nodes when f(τ) is either a white noise or a long-range correlated

signal.
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A.1 White Noise Input

Let f(τ) to be white noise, that is
〈

f
〉

= 0 and
〈

f(τ)f(τ′)
〉

∼ δ(τ− τ′). The variance in the activity

of each
∗
τ node is then given by

〈

T2(0,
∗
τ)
〉

=

(

kk+1

k!

)2 ∫ 0

−∞

∫ 0

−∞

1

|∗τ|2

(

τ
∗
τ

)k

e
−k

(

τ
∗
τ

)

(

τ′
∗
τ

)k

e
−k

(

τ′
∗
τ

)

〈

f(τ)f(τ′)
〉

dτdτ′,

=
1

|∗τ|

(

kk+1

k!

)2 ∫ ∞

0
z2ke−2kz dz. (16)

As expected, the variance of a large |∗τ| node is small because the activity in this node is constructed

by integrating the input function over a large timescale. This induces an artificial temporal correla-

tion in that node’s activity which does not exist in the input function. To see this more clearly, we

calculate the correlation across time in the activity of one node, at time τ and τ′. With the definition

δ = |τ− τ′|/|∗τ|, it turns out that

〈

T(τ,
∗
τ) T(τ′,

∗
τ)
〉

= |∗τ|−1

(

kk+1

k!

)2

e−kδ
k

∑
r=0

δk−r k!

r!(k− r)!

∫ ∞

0
zk+re−2kz dz. (17)

Note that this correlation is nonzero for any δ > 0, and it decays exponentially for large δ. Hence

even a temporally uncorrelated white noise input leads to short range temporal correlations in a
∗
τ

node. It is important to emphasize here that such temporal correlations will not be introduced in

a shift register. This is because, in a shift register the functional value of f at each moment is just

passed on to the downstream nodes without being integrated, and the temporal autocorrelation in

the activity of any node will simply reflect the temporal correlation in the input function.

Let us now consider the instantaneous correlation in the activity of two different nodes. At any

instant, the activity of two different nodes in a shift register will be uncorrelated in response to a

white noise input. The different nodes in a shift register carry completely different information,

making their mutual information zero. But in the T column, since the information is smeared across

different
∗
τ nodes, the mutual information shared by different nodes is non-zero. The instantaneous

correlation between two different nodes
∗
τ1 and

∗
τ2 can be calculated to be

〈

T(0,
∗
τ1) T(0,

∗
τ2)

〉

= |∗τ2|−1

(

kk+1

k!

)2 ∫ ∞

0
z2k(

∗
τ1/

∗
τ2)

ke−kz(1+
∗
τ1/

∗
τ2) dz,

∝
(
∗
τ1

∗
τ2)

k

(|∗τ1|+ |∗τ2|)2k+1
.

The instantaneous correlation in the activity of the two nodes
∗
τ1 and

∗
τ2 is a measure of the mutual

information represented by them. Factoring out the individual variances of the two nodes, we have

the following measure for the mutual information.

I (
∗
τ1,

∗
τ2) =

〈

T(0,
∗
τ1) T(0,

∗
τ2)

〉

√

〈

T2(0,
∗
τ1)

〉〈

T2(0,
∗
τ2)

〉

∝





√

∗
τ1/

∗
τ2

(1+
∗
τ1/

∗
τ2)





2k+1

.
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This quantity is high when
∗
τ1/

∗
τ2 is close to 1. That is, the mutual information shared between

neighboring nodes will be high when their
∗
τ values are very close.

The fact that the mutual information shared by neighboring nodes is non-vanishing implies that

there is redundancy in the representation of the information. If we require the information redun-

dancy to be equally distributed over all the nodes, then we need the mutual information between any

two neighboring nodes to be a constant. If
∗
τ1 and

∗
τ2 are any two neighboring nodes, then in order

for I (
∗
τ1,

∗
τ2) to be a constant,

∗
τ1/

∗
τ2 should be a constant. This can happen only if the

∗
τ values of the

nodes are arranged in the form given by Equation 13.

A.2 Long Range Correlated Input

Now consider f(τ) such that
〈

f(τ)f(τ′)
〉

∼ 1/|τ− τ′|α for large values of |τ− τ′|. Reworking the

calculations analogous to those leading to Equation 17, we find that the temporal correlation is

〈

T(τ,
∗
τ) T(τ′,

∗
τ)
〉

=
|∗τ|−α

2.4k

(

kk+1

k!

)2 k

∑
r=0

Cr

∫ ∞

−∞

|v|k−r

|v+δ|α e−k|v| dv.

Here δ = |τ− τ′|/|∗τ| and Cr =
k!k+r)!
r!(k−r)!

2k−r

(k)k+r+1 . The exact value of Cr is unimportant and we only

need to note that it is a positive number.

For α > 1, the above integral diverges at v = −δ, however we are only interested in the case

α < 1. When δ is very large, the entire contribution to the integral comes from the region |v| ≪ δ

and the denominator of the integrand can be approximated as δα. In effect,

〈

T(τ,
∗
τ) T(τ′,

∗
τ)
〉

∼ |∗τ|−αδ−α = |τ− τ′|−α

for large |τ− τ′|. The temporal autocorrelation of the activity of any node should exactly reflect the

temporal correlations in the input when |τ− τ′| is much larger than the time scale of integration of

that node (
∗
τ). As a point of comparison, it is useful to note that any node in a shift register will also

exactly reflect the correlations in the input.

Now consider the instantaneous correlations across different nodes. The instantaneous correla-

tion between two nodes
∗
τ1 and

∗
τ2 turns out to be

〈

T(0,
∗
τ1) T(0,

∗
τ2)

〉

= |∗τ2|−α

(

kk+1

k!

)2 k

∑
r=0

Xr

βk−r(1+βr−α+1)

(1+β)2k−r+1
. (18)

Here β = |∗τ1|/|
∗
τ2| and each Xr is a positive coefficient. By always choosing |∗τ2| ≥ |∗τ1|, we note two

limiting cases of interest, β ≪ 1 and β ≃ 1. When β ≪ 1, the r = k term in the summation of the

above equation yields the leading term, and the correlation is simply proportional to |∗τ2|−α, which

is approximately equal to |∗τ2 −
∗
τ1|−α. In this limit where |∗τ2| ≫ |∗τ1|, the correlation between the

two nodes behaves like the correlation between two shift register nodes. When β ≃ 1, note from

Equation 18 that the correlation will still be proportional to |∗τ2|−α. Now if
∗
τ1 and

∗
τ2 are neighboring

nodes with close enough values, we can evaluate the mutual information between them to be

I (
∗
τ1,

∗
τ2) =

〈

T(0,
∗
τ1) T(0,

∗
τ2)

〉

√

〈

T2(0,
∗
τ1)

〉〈

T2(0,
∗
τ2)

〉

∝ |∗τ2/
∗
τ1|−α/2.
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Reiterating our requirement from before that the mutual information shared by neighboring

nodes at all scales should be the same, we are once again led to choose
∗
τ2/

∗
τ1 to be a constant which

is possible only when the
∗
τ values of the nodes are given by Equation 13.
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Abstract

We present BudgetedSVM, an open-source C++ toolbox comprising highly-optimized implemen-

tations of recently proposed algorithms for scalable training of Support Vector Machine (SVM) ap-

proximators: Adaptive Multi-hyperplane Machines, Low-rank Linearization SVM, and Budgeted

Stochastic Gradient Descent. BudgetedSVM trains models with accuracy comparable to LibSVM

in time comparable to LibLinear, solving non-linear problems with millions of high-dimensional

examples within minutes on a regular computer. We provide command-line and Matlab interfaces

to BudgetedSVM, an efficient API for handling large-scale, high-dimensional data sets, as well as

detailed documentation to help developers use and further extend the toolbox.

Keywords: non-linear classification, large-scale learning, SVM, machine learning toolbox

1. Introduction

Support Vector Machines (SVMs) are among the most popular and best performing classification

algorithms. Kernel SVMs deliver state-of-the-art accuracies on non-linear problems, but are char-

acterized by linear growth in the number of support vectors with data size, which may prevent

learning from truly large data. In contrast, linear SVMs cannot capture non-linear concepts, but are

very scalable and allow learning from large data with limited resources. Aimed at bridging the rep-

resentability and scalability gap between linear and non-linear SVMs, recent advances in large-scale

learning resulted in powerful algorithms that enable scalable training of non-linear SVMs, such as

Adaptive Multi-hyperplane Machines (AMM) (Wang et al., 2011), Low-rank Linearization SVM

(Zhang et al., 2012), and Budgeted Stochastic Gradient Descent (BSGD) (Wang et al., 2012). With

accuracies comparable to kernel SVM, the algorithms are scalable to millions of examples, having

training and inference times comparable to linear and orders of magnitude shorter than kernel SVM.

We present BudgetedSVM, an open-source C++ toolbox for scalable non-linear classification.

The toolbox provides an Application Programming Interface (API) for efficient training and testing

of non-linear classifiers, supported by data structures designed for handling data which cannot fit in

memory. BudgetedSVM can be seen as a missing link between LibLinear and LibSVM (Hsieh et al.,

2008; Chang and Lin, 2011), combining the efficiency of linear with the accuracy of kernel SVM.

c©2013 Nemanja Djuric, Liang Lan, Slobodan Vucetic and Zhuang Wang.
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We also provide command-line and Matlab interfaces, providing users with an efficient, easy-to-use

tool for large-scale non-linear classification.

2. Non-linear Classifiers for Large-scale Data

Before taking a closer look at the implementation and usage details of the BudgetedSVM toolbox,

in this section we give a brief description of the implemented algorithms.

2.1 Adaptive Multi-hyperplane Machines (AMM)

Wang et al. (2011) proposed a classifier that captures non-linearity by assigning a number of linear

hyperplanes to each of C classes from a set Y . Given a D-dimensional example x, the AMM multi-

class classifier has the following form,

f (x) = argmax
i∈Y

g(i,x), where g(i,x) = max
j=1,...,bi

wT
i jx, (1)

where the ith class is assigned bi weight vectors with the total budget B = ∑i bi. AMM is learned via

Stochastic Gradient Descent (SGD). The hyper-parameters include a regularization parameter λ, the

number of training epochs e, the maximum number of non-zero weights per class Blim, bi ≤ Blim,

and weight pruning parameters k (pruning frequency) and c (pruning aggressiveness). As an initial

guideline to the users, we experimentally found that for most data sets the values e = 5 (or e = 1

for very large data), Blim = 50, k = 10,000, and c = 10 are appropriate choices, leaving only λ to be

determined by cross-validation.

When b1, . . . ,bC are fixed to 1, the AMM model reduces to linear multi-class SVM (Crammer

and Singer, 2002), and the learning algorithm is equivalent to Pegasos, a popular linear SVM solver

(Shalev-Shwartz et al., 2007). As it is a widely-used linear SVM solver, we also provide the Pegasos

algorithm directly as a shortcut in the BudgetedSVM toolbox.

2.2 Low-rank Linearization SVM (LLSVM)

Zhang et al. (2012) proposed to approximate kernel SVM optimization by a linear SVM using

low-rank decomposition of the kernel matrix. The approximated optimization is solved via Dual

Coordinate-Descent (DCD) (Hsieh et al., 2008). The binary classifier has the form

f (x) = sign
(

wT(M ·g(x))
)

,

where g(x) = [k(x,z1), . . . ,k(x,zB)]
T, {zi}i=1,...,B is a set of landmark points of size B, k(x,zi) is a

kernel function, w defines a separating hyperplane in the linearized kernel space (found using the

DCD method), and M is a B×B mapping matrix. The hyper-parameters include kernel parameters,

regularization parameter λ, and the number of landmark points B. Parameter B controls a trade-off

between speed and accuracy, while kernel parameters and λ are best determined by cross-validation.

2.3 Budgeted Stochastic Gradient Descent (BSGD)

Wang et al. (2012) proposed a budgeted algorithm which maintains a fixed number of support vec-

tors in the model, and incrementally updates them during the SGD training. The multi-class BSGD
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Pegasos AMM LLSVM BSGD RBF-SVM

Training time O(NCS) O(NSB) O(NSB2 +NSB) O
(

N(C+S)B
)

O(INCS)

Prediction time O(CS) O(SB) O(SB2 +SB) O
(

(C+S)B
)

O(NCS)
Model size O(CD) O(DB) O(DB+B2) O

(

(C+D)B
)

O(NCS)

Table 1: Time and space complexities of the classification algorithms

classifier has the same form as (1), but with g(i,x) defined as

g(i,x) =
B

∑
j=1

αi jk(x,z j),

where {z j} j=1,...,B is the support vector set, and αi j is a class-specific parameter associated with

the jth support vector. We implemented Pegasos-style training, where the budget is maintained

through either merging (where RBF kernel is used) or random removal of support vectors. The

hyper-parameters include the number of epochs e, kernel parameters, regularization parameter λ,

and budget size B. Parameters B and e control a speed-accuracy trade-off, while kernel parameters

and λ are best determined by cross-validation.

2.4 Time and Space Complexity

Time and space complexities of the algorithms are summarized in Table 1, where N is the number

of training examples, C is the number of classes, D is the data dimensionality, data sparsity S is

the average number of non-zero features, and B is the model size for AMM, BSGD, and LLSVM.

Parameter I for SVM with RBF kernel (RBF-SVM) denotes a number of training iterations, empir-

ically shown to be super-linear in N (Chang and Lin, 2011).

3. The Software Package

BudgetedSVM can be found at http://www.dabi.temple.edu/budgetedsvm/. The software

package provides a C++ API, comprising functions for training and testing of non-linear models

described in Section 2. Each model can be easily trained and tested by calling the corresponding

train/predict function, defined in mm algs.h, bsgd.h, and llsvm.h header files. The API also

provides functions for handling large-scale, high-dimensional data, defined in budgetedSVM.h file.

BudgetedSVM sequentially loads data chunks into memory to allow large-scale training, storing

to memory only indices and values of non-zero features as a linked list. Furthermore, implementa-

tion of sparse vectors is optimized for high-dimensional data, allowing faster kernel computations

and faster updates of hyperplanes and support vectors than linked list (e.g., as in LibSVM) or array

implementation of vectors (e.g., as in MSVMpack by Lauer and Guermeur, 2011) used for regular-

scale problems, where either time or memory costs can become prohibitively large during training

in a large-scale setting. In particular, vectors are split into disjoint chunks where pointers to each

chunk are stored in an array, and memory for a chunk is allocated only if one of its elements is non-

zero. While significantly reducing time costs, we empirically found that this approach incurs very

limited memory overhead even for data with millions of features. Consequently, BudgetedSVM

vector reads and writes are performed memory-efficiently in constant time. Moreover, by stor-

ing and incrementally updating support vector ℓ2-norms after each training step, time to compute

popular kernels (e.g., linear, Gaussian, polynomial) scales only linearly with sparsity S. Further

implementation details can be found in a comprehensive developer’s guide.
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Pegasos AMM LLSVM BSGD RBF-SVM

Data set e.r. t.t. e.r. B t.t. e.r. B t.t. e.r. B t.t. e.r. t.t.

webspam 3.46 500 2.5m 2.04 500 2.0m

N = 280,000 7.94 0.5s 4.74 9 3s 2.60 1,000 6.1m 1.72 1,000 3.9m 0.77 4.0h

D = 254 1.99 3,000 0.5h 1.49 3,000 0.2h (#SV: 26,447)

rcv1 4.97 500 0.2h 3.33 500 0.8h

N = 677,399 2.73 1.5s 2.39 19 9s 4.23 1,000 0.5h 2.92 1,000 1.5h 2.17 20.2h

D = 47,236 3.05 3,000 2.2h 2.53 3,000 4.4h (#SV: 50,641)

mnist8m-bin 6.84 500 1.6h 2.23 500 2.3h

N = 8,000,000 22.71 1.1m 3.16 18 4m 4.59 1,000 3.8h 1.92 1,000 4.9h 0.43 N/A1

D = 784 2.59 3,000 15h 1.62 3,000 16.1h

Table 2: Error rates (e.r.; in %) and training times2(t.t.) on benchmark data sets

We also provide command-line and Matlab interfaces for easier use of the toolbox, which follow

the user-friendly format of LibSVM and LibLinear. For example, we can type budgetedsvm-train

-A 1 a9a train.txt a9a model.txt in the command prompt to train a classifier on the adult9a

data set. The -A 1 option specifies that we use the AMM algorithm, while the data is loaded from

a9a train.txt file and the trained model is stored to the a9a model.txt file. Similarly, we type

budgetedsvm-predict a9a test.txt a9a model.txt a9a output.txt to evaluate the trained

model, which loads the testing data from a9a test.txt file, the model from a9a model.txt file,

and stores the predictions to a9a output.txt file. We also provide a short tutorial which outlines

the basic steps for using the BudgetedSVM interfaces.

3.1 Performance Comparison

The BudgetedSVM toolbox can learn an accurate model even for data with millions of examples and

features, with training times orders of magnitude faster than RBF-SVM trained using LibSVM. For

illustration, in Table 2 we give comparison of error rates and training times on binary classification

tasks using several large-scale data sets (Wang et al., 2011). On webspam and rcv1 it took LibSVM

hours to train RBF-SVM, while BudgetedSVM algorithms with much smaller budgets achieved high

accuracy within minutes, and even seconds in the case of AMM. Similarly, RBF-SVM training on

large-scale mnist8m-bin could not be completed in a reasonable time on our test machine, while the

implemented algorithms were trained within a few hours on extremely limited budgets to achieve

low error rates. More detailed analysis of the BudgetedSVM algorithms can be found in their

respective papers.

4. Conclusion and Future Work

BudgetedSVM implements four large-scale learners. Using optimized functions and data structures

as a basis, through our and community efforts we plan to add more classifiers, such as Tighter

Perceptron (Wang and Vucetic, 2009) and BPA (Wang and Vucetic, 2010), to make BudgetedSVM

a more inclusive toolbox of budgeted SVM approximations.
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