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France Cheng Soon Ong, University of Melbourne, Australia Mark Reid, Australian National
University, Australia

JMLR Editorial Board
Naoki Abe, IBM TJ Watson Research Center, USA Yasemin Altun, Google Inc, Switzerland
Jean-Yves Audibert, CERTIS, France Jonathan Baxter, Australia National University, Australia
Richard K. Belew, University of California at San Diego, USA Kristin Bennett, Rensselaer Poly-
technic Institute, USA Christopher M. Bishop, Microsoft Research, Cambridge, UK Lashon
Booker, The Mitre Corporation, USA Henrik Boström, Stockholm University/KTH, Sweden Craig
Boutilier, University of Toronto, Canada Nello Cristianini, University of Bristol, UK Dennis De-
Coste, eBay Research, USA Thomas Dietterich, Oregon State University, USA Jennifer Dy,
Northeastern University, USA Saso Dzeroski, Jozef Stefan Institute, Slovenia Ran El-Yaniv, Tech-
nion, Israel Peter Flach, Bristol University, UK Emily Fox, University of Washington, USA Dan
Geiger, Technion, Israel Claudio Gentile, Università dell’Insubria, Italy Sally Goldman, Google
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Abstract

The variational Bayesian (VB) approximation is known to be a promising approach to Bayesian

estimation, when the rigorous calculation of the Bayes posterior is intractable. The VB approxima-

tion has been successfully applied to matrix factorization (MF), offering automatic dimensionality

selection for principal component analysis. Generally, finding the VB solution is a non-convex

problem, and most methods rely on a local search algorithm derived through a standard procedure

for the VB approximation. In this paper, we show that a better option is available for fully-observed

VBMF—the global solution can be analytically computed. More specifically, the global solution

is a reweighted SVD of the observed matrix, and each weight can be obtained by solving a quartic

equation with its coefficients being functions of the observed singular value. We further show that

the global optimal solution of empirical VBMF (where hyperparameters are also learned from data)

can also be analytically computed. We illustrate the usefulness of our results through experiments

in multi-variate analysis.

Keywords: variational Bayes, matrix factorization, empirical Bayes, model-induced regulariza-

tion, probabilistic PCA

1. Introduction

The problem of finding a low-rank approximation of a target matrix through matrix factorization

(MF) recently attracted considerable attention. In this paper, we consider fully-observed MF where

∗. This paper is a combined and extended version of our earlier conference papers (Nakajima et al., 2010, 2011).

c©2013 Shinichi Nakajima, Masashi Sugiyama, S. Derin Babacan and Ryota Tomioka.
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the observed matrix has no missing entry.1 This formulation includes multivariate analysis tech-

niques such as principal component analysis (Hotelling, 1933) and reduced rank regression (Rein-

sel and Velu, 1998). Canonical correlation analysis (Hotelling, 1936; Anderson, 1984; Hardoon

et al., 2004) and partial least-squares (Worsley et al., 1997; Rosipal and Krämer, 2006) are also

closely related to MF.

Singular value decomposition (SVD) is a classical method for MF, which gives the optimal

low-rank approximation to the target matrix in terms of the squared error. Regularized variants of

SVD have been studied for the Frobenius-norm penalty (i.e., singular values are regularized by the

ℓ2-penalty) (Paterek, 2007) or the trace-norm penalty (i.e., singular values are regularized by the ℓ1-

penalty) (Srebro et al., 2005). Since the Frobenius-norm penalty does not automatically produce a

low-rank solution, it should be combined with an explicit low-rank constraint, which is non-convex.

In contrast, the trace-norm penalty tends to produce sparse solutions, so a low-rank solution can be

obtained without explicit rank constraints. This implies that the optimization problem of trace-norm

MF is still convex, and thus the global optimal solution can be obtained. Recently, optimization

techniques for trace-norm MF have been extensively studied (Rennie and Srebro, 2005; Cai et al.,

2010; Ji and Ye, 2009; Tomioka et al., 2010).

Bayesian approaches to MF have also been actively explored. A maximum a posteriori (MAP)

estimation, which computes the mode of the posterior distributions, was shown (Srebro et al., 2005)

to be equivalent to the ℓ1-MF when Gaussian priors are imposed on factorized matrices (Salakhutdi-

nov and Mnih, 2008). The variational Bayesian (VB) method (Attias, 1999; Bishop, 2006), which

approximates the posterior distributions by decomposable distributions, has also been applied to

MF (Bishop, 1999; Lim and Teh, 2007; Ilin and Raiko, 2010). The VB-based MF method (VBMF)

was shown to perform well in experiments, and its theoretical properties have been investigated

(Nakajima and Sugiyama, 2011).

However, the optimization problem of VBMF is non-convex. In practice, the VBMF solution is

computed by the iterated conditional modes (ICM) algorithm (Besag, 1986; Bishop, 2006), where

the mean and the covariance of the posterior distributions are iteratively updated until convergence

(Lim and Teh, 2007; Ilin and Raiko, 2010). One may obtain a local optimal solution by the ICM

algorithm, but many restarts would be necessary to find a good local optimum.

In this paper, we show that, despite the non-convexity of the optimization problem, the global

optimal solution of VBMF can be analytically computed. More specifically, the global solution is a

reweighted SVD of the observed matrix, and each weight can be obtained by solving a quartic equa-

tion with its coefficients being functions of the observed singular value. This is highly advantageous

over the standard ICM algorithm since the global optimum can be found without any iterations and

restarts. We also consider an empirical VB scenario where the hyperparameters (prior variances)

are also learned from data. Again, the optimization problem of empirical VBMF is non-convex, but

we show that the global optimal solution of empirical VBMF can still be analytically computed.

The usefulness of our results is demonstrated through experiments.

Our analysis can be seen as an extension of Nakajima and Sugiyama (2011). The major progress

is twofold:

1. Weakened decomposability assumption.

1. This excludes the collaborative filtering setup, which is aimed at imputing missing entries of an observed matrix

(Konstan et al., 1997; Funk, 2006).
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Nakajima and Sugiyama (2011) analyzed the behavior of VBMF under the column-wise in-

dependence assumption (Ilin and Raiko, 2010), that is, the columns of the factorized matrices

are forced to be mutually independent in the VB posterior. This was one of the limitations

of the previous work, since the weaker matrix-wise independence assumption (Lim and Teh,

2007) is rather standard, and sufficient to derive the ICM algorithm. It was not clear how these

different assumptions affect the approximation accuracy to the Bayes posterior. In this paper,

we show that the VB solution under the matrix-wise independence assumption is column-

wise independent, meaning that the stronger column-wise independence assumption does not

degrade the quality of approximation accuracy.

2. Exact analysis for rectangular cases.

Nakajima and Sugiyama (2011) derived bounds of the VBMF solution (more specifically,

bounds of the weights for the reweighed SVD). Those bounds are tight enough to give the

exact analytic solution only when the observed matrix is square. In this paper, we conduct a

more precise analysis, which results in a quartic equation with its coefficients depending on

the observed singular value. Satisfying this quartic equation is a necessary condition for the

weight, and further consideration specifies which of the four solutions is the VBMF solution.

In summary, we derive the exact global analytic solution for general rectangular cases under the

standard matrix-wise independence assumption.

The rest of this paper is organized as follows. We first introduce the framework of Bayesian

matrix factorization and the variational Bayesian approximation in Section 2. Then, we analyze

the VB free energy, and derive the global analytic solution in Section 3. Section 4 is devoted to

explaining the relation between MF and multivariate analysis techniques. In Section 5, we show

practical usefulness of our analytic-form solutions through experiments. In Section 6, we derive

simple analytic-form solutions for special cases, discuss the relation between model pruning and

spontaneous symmetry breaking, and consider the possibility of extending our results to more gen-

eral problems. Finally, we conclude in Section 7.

2. Formulation

In this section, we first formulate the problem of probabilistic MF (Section 2.1). Then, we introduce

the VB approximation (Section 2.2) and its empirical variant (Section 2.3). We also introduce a

simplified variant (Section 2.4), which was analyzed in Nakajima and Sugiyama (2011) and will be

shown to be equivalent to the (non-simple) VB approximation in the subsequent section.

2.1 Probabilistic Matrix Factorization

Assume that we have an observation matrix V ∈ R
L×M, which is the sum of a target matrix U ∈

R
L×M and a noise matrix E ∈ R

L×M:

V =U +E .

In the matrix factorization model, the target matrix is assumed to be low rank, and expressed in the

following factorized form:

U = BA⊤,

3
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where A ∈ R
M×H and B ∈ R

L×H . Here, ⊤ denotes the transpose of a matrix or vector. Thus, the

rank of U is upper-bounded by H ≤ min(L,M).

We consider the Gaussian probabilistic MF model (Salakhutdinov and Mnih, 2008), given as

follows:

p(V |A,B) ∝ exp

(
− 1

2σ2
‖V −BA⊤‖2

Fro

)
, (1)

p(A) ∝ exp

(
−1

2
tr
(

AC−1
A A⊤

))
, (2)

p(B) ∝ exp

(
−1

2
tr
(

BC−1
B B⊤

))
, (3)

where σ2 is the noise variance. Here, we denote by ‖·‖Fro the Frobenius norm, and by tr(·) the trace

of a matrix. We assume that L ≤ M. If L > M, we may simply re-define the transpose V⊤ as V so

that L ≤ M holds. Thus this does not impose any restriction. We assume that the prior covariance

matrices CA and CB are diagonal and positive definite, that is,

CA = diag(c2
a1
, . . . ,c2

aH
),

CB = diag(c2
b1
, . . . ,c2

bH
),

for cah
,cbh

> 0,h = 1, . . . ,H. Without loss of generality, we assume that the diagonal entries of the

product CACB are arranged in the non-increasing order, that is, cah
cbh

≥ cah′ cbh′ for any pair h < h′.
Throughout the paper, we denote a column vector of a matrix by a bold small letter, and a row

vector by a bold small letter with a tilde, namely,

A = (a1, . . . ,aH) = (ã1, . . . , ãM)⊤ ∈ R
M×H ,

B = (b1, . . . ,bH) =
(
b̃1, . . . , b̃L

)⊤
∈ R

L×H .

2.2 Variational Bayesian Approximation

The Bayes posterior is written as

p(A,B|V ) =
p(V |A,B)p(A)p(B)

p(V )
, (4)

where p(V ) = 〈p(V |A,B)〉p(A)p(B) is the marginal likelihood. Here, 〈·〉p denotes the expectation

over the distribution p. Since the Bayes posterior (4) is computationally intractable, the VB approx-

imation was proposed (Bishop, 1999; Lim and Teh, 2007; Ilin and Raiko, 2010).

Let r(A,B), or r for short, be a trial distribution. The following functional with respect to r is

called the free energy:

F(r|V ) =

〈
log

r(A,B)

p(V |A,B)p(A)p(B)

〉

r(A,B)

=

〈
log

r(A,B)

p(A,B|V )

〉

r(A,B)

− log p(V ). (5)
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The first term in Equation (5) is the Kullback-Leibler (KL) distance from the trial distribution to

the Bayes posterior, and the second term is a constant. Therefore, minimizing the free energy (5)

amounts to finding the distribution closest to the Bayes posterior in the sense of the KL distance. In

the VB approximation, the free energy (5) is minimized over some restricted function space.

A standard constraint for the MF model is matrix-wise independence (Bishop, 1999; Lim and

Teh, 2007), that is,

rVB(A,B) = rVB
A (A)rVB

B (B). (6)

This constraint breaks the entanglement between the parameter matrices A and B, and leads to a

computationally-tractable iterative algorithm, called the iterated conditional modes (ICM) algo-

rithm (Besag, 1986; Bishop, 2006). The resulting distribution is called the VB posterior.

Using the variational method, we can show that the VB posterior minimizing the free energy (5)

under the constraint (6) can be written as

rVB(A,B) =
M

∏
m=1

NH(ãm; ˜̂am,ΣA)
L

∏
l=1

NH(b̃l;
˜̂
bl,ΣB), (7)

where the parameters satisfy

Â =
(
˜̂a1, . . . , ˜̂aM

)⊤
=V⊤B̂

ΣA

σ2
, (8)

B̂ =

(
˜̂
b1, . . . ,

˜̂
bL

)⊤
=V Â

ΣB

σ2
, (9)

ΣA = σ2
(

B̂⊤B̂+LΣB +σ2C−1
A

)−1

, (10)

ΣB = σ2
(

Â⊤Â+MΣA +σ2C−1
B

)−1

. (11)

Here, Nd(·;µ,Σ) denotes the d-dimensional Gaussian distribution with mean µ and covariance

matrix Σ. Note that, in the VB posterior (7), the rows {ãm} ({b̃l}) of A (B) are independent of each

other, and share a common covariance ΣA (ΣB) (Bishop, 1999).

The ICM for VBMF iteratively updates the parameters (Â, B̂,ΣA,ΣB) by Equations (8)–(11)

until convergence, allowing one to obtain a local minimum of the free energy (5). Finally, the VB

estimator of U is computed as

ÛVB = B̂Â⊤.

2.3 Empirical VB Approximation

The free energy minimization principle also allows us to estimate the hyperparameters CA and CB

from data. This is called the empirical Bayesian scenario. In this scenario, CA and CB are updated

in each iteration by the following formulas:

c2
ah
= ‖âh‖2/M+(ΣA)hh , (12)

c2
bh
= ‖b̂h‖2/L+(ΣB)hh . (13)
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When the noise variance σ2 is unknown, it can also be estimated based on the free energy

minimization. The update rule for σ2 is given by

σ2 =
‖V‖2

Fro − tr(2V⊤B̂Â⊤)+ tr
(
(Â⊤Â+MΣA)(B̂

⊤B̂+LΣB)
)

LM
, (14)

which should be applied in each iteration of the ICM algorithm.

2.4 SimpleVB Approximation

A simplified variant, called the SimpleVB approximation, assumes column-wise independence of

each matrix (Ilin and Raiko, 2010; Nakajima and Sugiyama, 2011), that is,

rSVB(A,B) =
H

∏
h=1

rSVB
ah

(ah)
H

∏
h=1

rSVB
bh

(bh). (15)

Note that the column-wise independence constraint (15) is stronger than the matrix-wise indepen-

dence constraint (6), that is, any column-wise independent distribution is matrix-wise independent.

The SimpleVB posterior can be written as

rSVB(A,B) =
H

∏
h=1

NM(ah; âSVB
h ,σ2 SVB

ah
IM)

H

∏
h=1

NL(bh; b̂SVB
h ,σ2 SVB

bh
IL),

where the parameters satisfy

âSVB
h =

σ2 SVB
ah

σ2

(
V − ∑

h′ 6=h

b̂SVB
h′ âSVB⊤

h′

)⊤

b̂SVB
h , (16)

b̂SVB
h =

σ2 SVB
bh

σ2

(
V − ∑

h′ 6=h

b̂SVB
h′ âSVB⊤

h′

)
âSVB

h , (17)

σ2 SVB
ah

= σ2
(
‖b̂SVB

h ‖2 +Lσ2 SVB
bh

+σ2c−2
ah

)−1

, (18)

σ2 SVB
bh

= σ2
(
‖âSVB

h ‖2 +Mσ2 SVB
ah

+σ2c−2
bh

)−1

. (19)

Here, Id denotes the d-dimensional identity matrix. The constraint (15) restricts the covariances ΣA

and ΣB in Equation (7) to be diagonal, and thus reduces necessary memory storage and computa-

tional cost (Ilin and Raiko, 2010).

Iterating Equations (16)–(19) until convergence, we can obtain a local minimum of the free

energy. Equations (14), (12), and (13) are similarly applied if the noise variance σ2 is unknown and

in the empirical Bayesian scenario, respectively.

The column-wise independence (15) also simplifies theoretical analysis. Thanks to this sim-

plification, Nakajima and Sugiyama (2011) showed that the SimpleVBMF solution is a reweighted

SVD, and successfully derived theoretical bounds of the weights. Their analysis revealed interest-

ing properties of VBMF, called model-induced regularization. However, it has not been clear how

restrictive the column-wise independence assumption is. In Section 3, we theoretically show that

the column-wise independence assumption has actually no effect, before deriving the exact global

analytic solution.
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3. Theoretical Analysis

In this section, we first prove the equivalence between VBMF and SimpleVBMF (Section 3.1).

After that, starting from a proposition given in Nakajima and Sugiyama (2011), we derive the global

analytic solution for VBMF (Section 3.2). Finally, we derive the global analytic solution for the

empirical VBMF (Section 3.3).

3.1 Equivalence between VBMF and SimpleVBMF

Under the matrix-wise independence constraint (6), the free energy (5) can be written as

FVB = 〈logrA(A)+ logrB(B)− log p(V |A,B)p(A)p(B)〉r(A)r(B)

=
‖V‖2

Fro

2σ2
+

LM

2
logσ2 +

M

2
log

|CA|
|ΣA|

+
L

2
log

|CB|
|ΣB|

+
1

2
tr
{

C−1
A

(
Â⊤Â+MΣA

)
+C−1

B

(
B̂⊤B̂+LΣB

)

+σ−2
(
−2Â⊤V⊤B̂+

(
Â⊤Â+MΣA

)(
B̂⊤B̂+LΣB

))}
+ const., (20)

where | · | denotes the determinant of a matrix. Note that Equations (8)–(11) together form the

stationarity condition of Equation (20) with respect to (Â, B̂,ΣA,ΣB).
We say that two points (Â, B̂,ΣA,ΣB) and (Â′, B̂′,Σ′

A,Σ
′
B) are equivalent if both give the same free

energy and B̂Â⊤ = B̂′Â′⊤ holds. We obtain the following theorem (its proof is given in Appendix A):

Theorem 1 When CACB is non-degenerate (i.e., cah
cbh

> cah′ cbh′ for any pair h < h′), any solution

minimizing the free energy (20) has diagonal ΣA and ΣB. When CACB is degenerate, any solution

has an equivalent solution with diagonal ΣA and ΣB.

The result that ΣA and ΣB become diagonal would be natural because we assumed the inde-

pendent Gaussian priors on A and B: the fact that any V can be decomposed into orthogonal sin-

gular components may imply that the observation V cannot convey any preference for singular-

component-wise correlation. Note, however, that Theorem 1 does not necessarily hold when the

observed matrix has missing entries.

Obviously, any VBMF solution (minimizer of the free energy (20)) with diagonal covariances is

a SimpleVBMF solution (minimizer of the free energy (20) under the constraint that the covariances

are diagonal). Theorem 1 states that, if CACB is non-degenerate, the set of VBMF solutions and the

set of SimpleVBMF solutions are identical. In the case when CACB is degenerate, the set of VBMF

solutions is the union of the set of SimpleVBMF solutions and the set of their equivalent solutions

with non-diagonal covariances. Actually, any VBMF solution can be obtained by rotating its equiv-

alent SimpleVBMF solution (VBMF solution with diagonal covariances) (see Appendix A.4). In

practice, it is however sufficient to focus on the SimpleVBMF solutions, since equivalent solutions

share the same free energy FVB and the same mean prediction B̂Â⊤. In this sense, we can conclude

that the stronger column-wise independence constraint (15) does not degrade approximation accu-

racy, and the VBMF solution under the matrix-wise independence (6) essentially agrees with the

SimpleVBMF solution.

Since we have shown the equivalence between VBMF and SimpleVBMF, we can use the results

obtained in Nakajima and Sugiyama (2011), where SimpleVBMF was analyzed, for pursuing the

global analytic solution for (non-simple) VBMF.

7
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3.2 Global Analytic Solution for VBMF

Here, we derive an analytic-form expression of the VBMF global solution. We denote by R
d
++ the

set of the d-dimensional vectors with positive elements, and by S
d
++ the set of d × d symmetric

positive-definite matrices. We solve the following problem:

Given (c2
ah
,c2

bh
) ∈ R

2
++ (∀h = 1, . . . ,H), σ2 ∈ R++,

min FVB(Â, B̂,ΣA,ΣB)

s.t. Â ∈ R
M×H , B̂ ∈ R

L×H , ΣA ∈ S
H
++, ΣB ∈ S

H
++,

where FVB(Â, B̂,ΣA,ΣB) is the free energy given by Equation (20). This is a non-convex optimiza-

tion problem, but we show that the global optimal solution can still be analytically obtained.

We start from the following proposition, which is obtained by summarizing Lemma 11,

Lemma 13, Lemma 14, Lemma 15, and Lemma 17 in Nakajima and Sugiyama (2011):

Proposition 2 (Nakajima and Sugiyama, 2011) Let γh (≥ 0) be the h-th largest singular value of

V , and let ωah
and ωbh

be the associated right and left singular vectors:

V =
L

∑
h=1

γhωbh
ω⊤

ah
.

Then, the global SimpleVB solution (under the column-wise independence (15)) can be expressed

as

ÛSVB ≡ 〈BA⊤〉rSVB(A,B) =
H

∑
h=1

γ̂SVB
h ωbh

ω⊤
ah
.

Let

γ̃h =

√√√√√(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

+

√√√√
(
(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

)2

−LMσ4.

When

γh ≤ γ̃h,

the SimpleVB solution for the h-th component is γ̂SVB
h = 0. When

γh > γ̃h, (21)

γ̂SVB
h is given as a positive real solution of

γ̂2
h +q1(̂γh) · γ̂h +q0 = 0, (22)

where

q1(̂γh) =

−(M−L)2(γh − γ̂h)+(L+M)

√
(M−L)2(γh − γ̂h)2 + 4σ4LM

c2
ah

c2
bh

2LM
,

q0 =
σ4

c2
ah

c2
bh

−
(

1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h.

8
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When Inequality (21) holds, Equation (22) has only one positive real solution, which lies in

0 < γ̂h < γh.

In Nakajima and Sugiyama (2011), it was shown that any SimpleVBMF solution is a stationary

point, and Equation (22) was derived from the stationarity condition (16)–(19). Bounds of γ̂SVB
h were

obtained by approximating Equation (22) with a quadratic equation (more specifically, by bounding

q1(̂γh) by constants). This analysis revealed interesting properties of VBMF, including the model-

induced regularization effect and the sparsity induction mechanism. Thanks to Theorem 1, almost

the same statements as Proposition 2 hold for VBMF (Lemma 8 in Appendix B).

In this paper, our purpose is to obtain the exact solution, and therefore, we should treat Equa-

tion (22) more precisely. If q1(̂γh) were a constant, Equation (22) would be quadratic with respect

to γ̂h, and its solutions could be easily obtained. However, Equation (22) is not even polynomial, be-

cause q1(̂γh) depends on the square root of γ̂h. With some algebra, we can convert Equation (22) to

a quartic equation, which has four solutions in general. By examining which solution corresponds

to the positive solution of Equation (22), we obtain the following theorem (the proof is given in

Appendix B):

Theorem 3 Let γ̂second
h be the second largest real solution of the following quartic equation with

respect to γ̂h:

f (̂γh) := γ̂4
h +ξ3γ̂3

h +ξ2γ̂2
h +ξ1γ̂h +ξ0 = 0, (23)

where the coefficients are defined by

ξ3 =
(L−M)2γh

LM
,

ξ2 =−
(

ξ3γh +
(L2 +M2)η2

h

LM
+

2σ4

c2
ah

c2
bh

)
,

ξ1 = ξ3

√
ξ0,

ξ0 =

(
η2

h −
σ4

c2
ah

c2
bh

)2

,

η2
h =

(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h.

Then, the global VB solution can be expressed as

ÛVB ≡ 〈BA⊤〉rVB(A,B) = B̂Â⊤ =
H

∑
h=1

γ̂VB
h ωbh

ω⊤
ah
,

where

γ̂VB
h =

{
γ̂second

h if γh > γ̃h,

0 otherwise.

9
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The coefficients of the quartic equation (23) are analytic, so γ̂second
h can also be obtained analyt-

ically, for example, by Ferrari’s method (Hazewinkel, 2002).2 Therefore, the global VB solution

can be analytically computed.3 This is a strong advantage over the standard ICM algorithm since

many iterations and restarts would be necessary to find a good solution by ICM.

Based on the above result, the complete VB posterior can be obtained analytically as follows

(the proof is also given in Appendix B):

Theorem 4 The VB posterior is given by

rVB(A,B) =
H

∏
h=1

NM(ah; âh,σ
2
ah

IM)
H

∏
h=1

NL(bh; b̂h,σ
2
bh

IL),

where, for γ̂VB
h being the solution given by Theorem 3,

âh =±
√

γ̂VB
h δ̂h ·ωah

,

b̂h =±
√

γ̂VB
h δ̂−1

h ·ωbh
,

σ2
ah
=

−
(
η̂2

h −σ2(M−L)
)
+
√
(η̂2

h −σ2(M−L))2 +4Mσ2η̂2
h

2M(̂γVB
h δ̂−1

h +σ2c−2
ah
)

,

σ2
bh
=

−
(
η̂2

h +σ2(M−L)
)
+
√
(η̂2

h +σ2(M−L))2 +4Lσ2η̂2
h

2L(̂γVB
h δ̂h +σ2c−2

bh
)

,

δ̂h =

(M−L)(γh − γ̂VB
h )+

√
(M−L)2(γh − γ̂VB

h )2 + 4σ4LM

c2
ah

c2
bh

2σ2Mc−2
ah

,

η̂2
h =





η2
h if γh > γ̃h,
σ4

c2
ah

c2
bh

otherwise.

3.3 Global Analytic Solution for Empirical VBMF

Solving the following problem gives the empirical VBMF solution:

Given σ2 ∈ R++,

min FVB(Â, B̂,ΣA,ΣB,{c2
ah
,c2

bh
;h = 1, . . . ,H}),

s.t. Â ∈ R
M×H , B̂ ∈ R

L×H , ΣA ∈ S
H
++, ΣB ∈ S

H
++,

(c2
ah
,c2

bh
) ∈ R

2
++ (∀h = 1, . . . ,H),

where FVB(Â, B̂,ΣA,ΣB,{c2
ah
,c2

bh
;h= 1, . . . ,H}) is the free energy given by Equation (20). Although

this is again a non-convex optimization problem, the global optimal solution can be obtained ana-

lytically. As discussed in Nakajima and Sugiyama (2011), the ratio cah
/cbh

is arbitrary in empirical

VB. Accordingly, we fix the ratio to cah
/cbh

= 1 without loss of generality.

2. In practice, one may solve the quartic equation numerically, for example, by the ‘roots’ function in MATLAB R©.

3. In our latest work on performance analysis of VBMF, we have derived a simpler-form solution, which does not

require to solve a quartic equation (Nakajima et al., 2012b).
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Nakajima and Sugiyama (2011) obtained a closed form solution of the optimal hyperparame-

ter value ĉah
ĉbh

for SimpleVBMF. Therefore, we can easily obtain the global analytic solution for

empirical VBMF. We have the following theorem (the proof is given in Appendix C):

Theorem 5 The global empirical VB solution is given by

ÛEVB =
H

∑
h=1

γ̂EVB
h ωbh

ω⊤
ah
,

where

γ̂EVB
h =

{
γ̆VB

h if γh > γ
h

and ∆h ≤ 0,

0 otherwise.

Here,

γ
h
= (

√
L+

√
M)σ, (24)

c̆2
ah

c̆2
bh
=

1

2LM

(
γ2

h − (L+M)σ2 +

√(
γ2

h − (L+M)σ2
)2 −4LMσ4

)
, (25)

∆h = M log
( γh

Mσ2
γ̆VB

h +1
)
+L log

( γh

Lσ2
γ̆VB

h +1
)
+

1

σ2

(
−2γhγ̆VB

h +LMc̆2
ah

c̆2
bh

)
, (26)

and γ̆VB
h is the VB solution for cah

cbh
= c̆ah

c̆bh
.

By using Theorem 3 and Theorem 5, the global empirical VB solution can be computed analyt-

ically. This is again a strong advantage over the standard ICM algorithm since ICM would require

many iterations and restarts to find a good local minimum. The calculation procedure for the em-

pirical VB solution is as follows: After obtaining {γh} by singular value decomposition of V , we

first check if γh > γ
h

holds for each h, by using Equation (24). If it holds, we compute γ̆VB
h by using

Equation (25) and Theorem 3. Otherwise, γ̂EVB
h = 0. Finally, we check if ∆h ≤ 0 holds by using

Equation (26).

When the noise variance σ2 is unknown, it may be estimated by minimizing the VB free energy

with respect to σ2. In practice, this single-parameter minimization may be carried out numerically

based on Equation (20) and Theorem 4.

4. Matrix Factorization for Multivariate Analysis

In this section, we explicitly describe the relation between MF and multivariate analysis techniques.

4.1 Probabilistic PCA

The relation to principal component analysis (PCA) (Hotelling, 1933) is straightforward. In proba-

bilistic PCA (Tipping and Bishop, 1999), the observation v ∈R
L is assumed to be driven by a latent

vector ã ∈ R
H in the following form:

v = Bã+ε.

Here, B ∈ R
L×H specifies the linear relationship between ã and v, and ε ∈ R

L is a Gaussian noise

subject to NL(0,σ
2IL). Suppose that we are given M observed samples V = (v1, . . . ,vM) generated

11
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Figure 1: Linear neural network.

from the latent vectors A⊤ = (ã1, . . . , ãM), and each latent vector is subject to ã∼ NH(0, IH). Then,

the probabilistic PCA model is written as Equations (1) and (2) with CA = IH .

If we apply Bayesian inference, the intrinsic dimension H is automatically selected without

predetermination (Bishop, 1999). This useful property is called automatic dimensionality selection

(ADS). It was shown that ADS originates from the model-induced regularization effect (Nakajima

and Sugiyama, 2011).

4.2 Reduced Rank Regression

Reduced rank regression (RRR) (Baldi and Hornik, 1995; Reinsel and Velu, 1998) is aimed at

learning a relation between an input vector x ∈ R
M and an output vector y ∈ R

L by using the

following linear model:

y = BA⊤x+ε, (27)

where A ∈ R
M×H and B ∈ R

L×H are parameter matrices, and ε ∼ NL(0,σ
′2IL) is a Gaussian noise

vector. This can be expressed as a linear neural network (Figure 1). Thus, we can interpret this

model as first projecting the input vector x onto a lower-dimensional latent subspace by A⊤ and

then performing linear prediction by B.

Suppose we are given n pairs of input and output vectors:

V n = {(xi,yi) | xi ∈ R
M,yi ∈ R

L, i = 1, . . . ,n}. (28)

Then, the likelihood of the RRR model (27) is expressed as

p(V n|A,B) ∝ exp

(
− 1

2σ′2

n

∑
i=1

‖yi −BA⊤xi‖2

)
. (29)

Let us assume that the samples are centered:

1

n

n

∑
i=1

xi = 0 and
1

n

n

∑
i=1

yi = 0.

Furthermore, let us assume that the input samples are pre-whitened (Hyvärinen et al., 2001), that is,

they satisfy

1

n

n

∑
i=1

xix
⊤
i = IM.

12
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Let

V = ΣXY =
1

n

n

∑
i=1

yix
⊤
i (30)

be the sample cross-covariance matrix, and

σ2 =
σ′2

n
(31)

be a rescaled noise variance. Then the likelihood (29) can be written as

p(V n|A,B) ∝ exp

(
− 1

2σ2
‖V −BA⊤‖2

Fro

)
exp

(
− 1

2σ2

(
1

n

n

∑
i=1

‖yi‖2 −‖V‖2
Fro

))
. (32)

The first factor in Equation (32) coincides with the likelihood of the MF model (1), and the second

factor is constant with respect to A and B. Thus, RRR is reduced to MF.

However, the second factor depends on the rescaled noise variance σ2, and therefore, should be

considered when σ2 is estimated based on the free energy minimization principle. Furthermore, the

normalization constant of the likelihood (29) is slightly different from that of the MF model. Taking

into account of these differences, the VB free energy of the RRR model (29) with the priors (2) and

(3) is given by

FVB−RRR =
〈
logrA(A)+ logrB(B)− log p(V n|A,B)p(A)p(B)

〉
r(A)r(B)

=
∑n

i=1 ‖yi‖2

2nσ2
+

nL

2
logσ2 +

M

2
log

|CA|
|ΣA|

+
L

2
log

|CB|
|ΣB|

+
1

2
tr
{

C−1
A

(
Â⊤Â+MΣA

)
+C−1

B

(
B̂⊤B̂+LΣB

)

+σ−2
(
−2Â⊤V⊤B̂+

(
Â⊤Â+MΣA

)(
B̂⊤B̂+LΣB

))}
+ const. (33)

Note that the difference from Equation (20) exists only in the first two terms. Minimizing Equa-

tion (33), instead of Equation (20), gives an estimator for the rescaled noise variance. For the

standard ICM algorithm, the following update rule should be substituted for Equation (14):

(σ2)RRR =
n−1 ∑n

i=1 ‖yi‖2 − tr(2V⊤B̂Â⊤)+ tr
(
(Â⊤Â+MΣA)(B̂

⊤B̂+LΣB)
)

nL
. (34)

Once the rescaled noise variance σ2 is estimated, Equation (31) gives the original noise variance σ′2

of the RRR model (29).

4.3 Partial Least-Squares

Partial least-squares (PLS) (Worsley et al., 1997; Rosipal and Krämer, 2006) is similar to RRR. In

PLS, the parameters A and B are learned so that the squared Frobenius norm of the difference from

the sample cross-covariance matrix (30) is minimized:

(A,B) := argmin
A,B

‖ΣXY −BA⊤‖2
Fro. (35)

Clearly, PLS can be seen as the maximum likelihood estimation of the MF model (1).

13
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4.4 Canonical Correlation Analysis

For paired samples (28), the goal of canonical correlation analysis (CCA) (Hotelling, 1936; Ander-

son, 1984) is to seek vectors a ∈ R
M and b ∈ R

L such that the correlation between a⊤x and b⊤y is

maximized. a and b are called canonical vectors.

More formally, given the first (h− 1) canonical vectors a1, . . . ,ah−1 and b1, . . . ,bh−1, the h-th

canonical vectors are defined as

(ah,bh) := argmax
a,b

a⊤ΣXYb√
a⊤ΣXXa

√
b⊤ΣYYb

,

s.t. a⊤ΣXXah′ = 0 and b⊤ΣYYbh′ = 0 for h′ = 1, . . . ,h−1,

where ΣXX and ΣYY are the sample covariance matrices of x and y, respectively, and ΣXY is the

sample cross-covariance matrix, defined in Equation (30), of x and y. The entire solution A =

(a1, . . . ,aH) and B = (b1, . . . ,bH) are given as the H largest singular vectors of Σ
−1/2
XX ΣXY Σ

−1/2
YY .

Let us assume that x and y are both pre-whitened, that is, ΣXX = IM and ΣYY = IL. Then the

solutions A and B are given as the singular vectors of ΣXY associated with the H largest singular

values. Since the solutions of Equation (35) are also given by the H dominant singular vectors of

ΣXY (Stewart, 1993), CCA is reduced to the maximum likelihood estimation of the MF model (1).

5. Experimental Results

In this section, we show experimental results on artificial and benchmark data sets, which illustrate

practical usefulness of our analytic solution.

5.1 Experiment on Artificial Data

We compare the standard ICM algorithm and the analytic solution in the empirical VB scenario

with unknown noise variance, that is, the hyperparameters (CA,CB) and the noise variance σ2 are

also estimated from observation. We use the full-rank model (i.e., H = min(L,M)), and expect the

ADS effect to automatically find the true rank H∗.

Figure 2 shows the free energy, the computation time, and the estimated rank over iterations for

an artificial (Artificial1) data set with the data matrix size L = 100 and M = 300, and the true rank

H∗ = 20. We randomly created true matrices A∗ ∈ R
M×H∗

and B∗ ∈ R
L×H∗

so that each entry of A∗

and B∗ follows N1(0,1). An observed matrix V was created by adding a noise subject to N1(0,1)
to each entry of B∗A∗⊤.

The standard ICM algorithm consists of the update rules (8)–(14). Initial values were set in the

following way: Â and B̂ are randomly created so that each entry follows N1(0,1). Other variables

are set to ΣA = ΣB = CA = CB = IH and σ2 = 1. Note that we rescale V so that ‖V‖2
Fro/(LM) = 1,

before starting iterations. We ran the standard ICM algorithm 10 times, starting from different

initial points, and each trial is plotted by a solid line (labeled as ‘ICM(iniRan)’) in Figure 2. The

analytic solution consists of applying Theorem 5 combined with a naive 1-dimensional search for

the estimation of noise variance σ2. The analytic solution is plotted by the dashed line (labeled as

‘Analytic’). We see that the analytic solution estimates the true rank Ĥ = H∗ = 20 immediately

(∼ 0.1 sec on average over 10 trials), while the ICM algorithm does not converge in 60 sec.

Figure 3 shows experimental results on another artificial data set (Artificial2) where L = 70,

M = 300, and H∗ = 40. In this case, all the 10 trials of the ICM algorithm are trapped at local

14
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Figure 2: Experimental results for Artificial1 data set, where the data matrix size is L = 100 and

M = 300, and the true rank is H∗ = 20.

minima. We empirically observed that the local minima problem tends to be more critical, when H∗

is large (close to H).

We also evaluated the ICM algorithm with different initialization schemes. The line labeled as

‘ICM(iniML)’ indicates the ICM algorithm starting from the maximum likelihood (ML) solution:

(âh, b̂h) = (
√

γ
h
ωah

,
√

γ
h
ωbh

). The initial values for other variables are the same as the random

initialization. Figures 2 and 3 show that the ML initialization generally makes convergence faster

than the random initialization, but suffers from the local minima problem more often.

We observed that starting from a small noise variance tends to alleviate the local minima prob-

lem at the expense of slightly slower convergence. The line labeled as ‘ICM(iniMLSS)’ indicates

the ICM algorithm starting from the ML solution with a small noise variance σ2 = 0.0001. We see

in Figures 2 and 3 that this initialization improves quality of solutions, and successfully finds the

true rank for these artificial data sets. However, we will show in Section 5.2 that this scheme still

suffers from the local minima problem on benchmark data sets.

5.2 Experiment on Benchmark Data

Figures 4–6 show the PCA results on the Glass, the Satimage, and the Spectf data sets available

from the UCI repository (Asuncion and Newman, 2007). Similar tendency to the artificial data

experiment (Figures 2 and 3) is observed: ‘ICM(iniRan)’ converges slowly, and is often trapped
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Figure 3: Experimental results for Artificial2 data set (L = 70, M = 300, and H∗ = 40).

at local minima with wrong ranks;4 ‘ICM(iniML)’ converges slightly faster but to worse local

minima; ‘ICM(iniMLSS)’ tends to give better solutions. Unlike in the artificial data experiment,

‘ICM(iniMLSS)’ fails to find the correct rank with these benchmark data sets. We also conducted

experiments on other benchmark data sets, and found that the ICM algorithm generally converges

slowly, and sometimes suffers from the local minima problem, while our analytic-form gives the

global solution immediately.

Finally, we applied VBMF to a reduced rank regression (RRR) (Reinsel and Velu, 1998) task,

and show the results in Figure 7. We centered the L = 3-dimensional outputs and the M = 7-

dimensional inputs of the Concrete Slump Test data set, and pre-whitened the inputs. We also

standardized the outputs so that the variance of each element is equal to one. Note that we have to

minimize Equation (33), instead of Equation (20), for estimating the noise variance in our proposed

method with the analytic solution, and use Equation (34), instead of Equation (14), for updating the

noise variance in the standard ICM algorithm.

Overall, the proposed global analytic solution is shown to be a useful alternative to the standard

ICM algorithm.

4. Since the true ranks of the benchmark data sets are unknown, we mean by a wrong rank a rank different from the one

given by the global ’Analytic’ solution.
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Figure 4: PCA results for the Glass data set (L = 9,M = 214).

6. Discussion

In this section, we first derive simple analytic-form solutions for special cases, where the model-

induced regularization and the prior-induced regularization can be clearly distinguished

(Section 6.1). Then, we discuss the relation between model pruning by VB and spontaneous sym-

metry breaking (Section 6.2). Finally, we consider possibilities of extending our results to more

general cases (Section 6.3).

6.1 Special Cases

Here, we consider two special cases, where simple-form solutions are obtained.

6.1.1 FLAT PRIOR

When cah
cbh

→ ∞ (i.e., the prior is almost flat), a simple-form exact solution for SimpleVBMF has

been obtained in Nakajima and Sugiyama (2011). Thanks to Theorem 1, the same applies to VBMF

under the standard matrix-wise independence assumption. This solution can be obtained also by

factorizing the quartic equation (23) as follows:

lim
cah

cbh
→∞

f (̂γh) =

(
γ̂h +

M

L

(
1−σ2L

γ2
h

)
γh

)(
γ̂h +

(
1−σ2M

γ2
h

)
γh

)

·
(

γ̂h −
(

1−σ2M

γ2
h

)
γh

)(
γ̂h −

M

L

(
1−σ2L

γ2
h

)
γh

)
= 0.
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Figure 5: PCA results for the Satimage data set (L = 36,M = 6435).
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Ĥ

 

 

Analytic
ICM(iniML)
ICM(iniMLSS)
ICM(iniRan)

(c) Estimated rank

Figure 6: PCA results for the Spectf data set (L = 44,M = 267).
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Figure 7: RRR results for the Concrete Slump Test data set (L = 3,M = 7).

Since Theorem 3 states that its second largest solution gives the VB estimator for

γh > limcah
cbh

→∞ γ̃h =
√

Mσ2, we have the following corollary:

Corollary 1 The global VB solution with the almost flat prior (i.e., cah
cbh

→ ∞) is given by

lim
cah

cbh
→∞

γ̂VB
h = γ̂PJS

h =





max

{
0,

(
1− Mσ2

γ2
h

)
γh

}
if γh > 0,

0 otherwise.

(36)

Equation (36) is the positive-part James-Stein (PJS) shrinkage estimator (James and Stein,

1961), operated on each singular component separately. This is actually the upper-bound of the

VB solution for arbitrary cah
cbh

> 0. The counter-intuitive fact—a shrinkage is observed even in

the limit of flat priors—can be explained by strong non-uniformity of the volume element of the

Fisher metric, that is, the Jeffreys prior (Jeffreys, 1946), in the parameter space. This effect is called

model-induced regularization (MIR), because it is induced not by priors but by the structure of the

model likelihood function (Nakajima and Sugiyama, 2011). MIR was shown to generally appear in

Bayesian estimation when the model is non-identifiable (i.e., the mapping between parameters and

distribution functions is not one-to-one) (Watanabe, 2009). The mechanism how non-identifiability

causes MIR and ADS in VBMF was explicitly illustrated in Nakajima and Sugiyama (2011).

6.1.2 SQUARE MATRIX

Also when L = M (i.e., the observation matrix V is square), a simple-form solution can be obtained.

Since ξ3 = ξ1 = 0 (see Theorem 3) in this case, the quartic equation (23) can be solved as a quadratic
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equation with respect to γ̂2
h (Nakajima and Sugiyama, 2011). We can also find the solution by

factorizing the quartic equation (23) for γh >
√

Mσ2 as follows:

f square(̂γh) =

(
γ̂h + γ̂PJS

h +
σ2

cah
cbh

)(
γ̂h + γ̂PJS

h − σ2

cah
cbh

)

·
(

γ̂h − γ̂PJS
h +

σ2

cah
cbh

)(
γ̂h − γ̂PJS

h − σ2

cah
cbh

)
= 0.

Using Theorem 3, we have the following corollary:

Corollary 2 When L = M, the global VB solution is given by

γ̂
VB−square
h = max

{
0, γ̂PJS

h − σ2

cah
cbh

}
. (37)

Equation (37) shows that, in this case, MIR and prior-induced regularization (PIR) can be com-

pletely decomposed—the estimator is equipped with the model-induced PJS shrinkage (̂γPJS
h ) and

the prior-induced trace-norm shrinkage (−σ2/(cah
cbh

)).
The empirical VB solution is also simplified in this case. The following corollary is obtained

simply by combining Theorem 1 in this paper and Corollary 2 in Nakajima and Sugiyama (2011):

Corollary 3 When L = M, the global empirical VB solution is given by

γ̂EVB
h =





(
1− Mσ2

γ2
h

−ρ−

)
γh if γh > γ

h
and ∆′

h ≤ 0,

0 otherwise,

where

γ
h
= 2

√
Mσ,

∆′
h = log

(
γ2

h

Mσ2
(1−ρ−)

)
− γ2

h

Mσ2
(1−ρ−)+

(
1+

γ2
h

2Mσ2
ρ2
+

)
,

ρ± =

√√√√1

2

(
1− 2Mσ2

γ2
h

±
√

1− 4Mσ2

γ2
h

)
.

By using Corollary 2 and Corollary 3, respectively, we can easily compute the VB and the

empirical VB solutions in this case without a quartic solver.

6.2 Model Pruning and Spontaneous Symmetry Breaking

Mackay (2001) pointed out that there are cases when VB prunes model components inappropriately,

giving a toy example of a mixture of Gaussians. There, appropriateness is measured in terms

of the similarity to the rigorous Bayesian estimation. He plotted the free energy of the mixture

of Gaussians as a function of hidden responsibility variables—the probabilities that each sample

belongs to each Gaussian component—and argued that VB sometimes favors simpler models too

much. In this case, degrees of freedom are pruned when spontaneous symmetry breaking occurs.
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Figure 8: Bayes posteriors (top row) and the VB posteriors (bottom row) of a scalar factorization

model (i.e., a MF model for L = M = H = 1) with σ2 = 1 and ca = cb = 100 (almost

flat priors), when the observed values are V = 0 (left), V = 1 (middle), and V = 2 (right),

respectively. In the top row, the asterisks indicate the MAP estimators, and the dashed

lines the ML estimators (the modes of the contour). In the bottom row, the asterisks

indicate the VB estimators. All graphs are quoted from Nakajima and Sugiyama (2011).

In VBMF, degrees of freedom are pruned when spontaneous symmetry breaking does not occur.

Figure 8 shows the Bayes posteriors (top row) and the VB posteriors (bottom row) of a scalar

factorization model (i.e., a MF model for L = M = H = 1) with σ2 = 1 and ca = cb = 100 (almost

flat priors). As we can see in the top row, the Bayes posterior has two modes unless V = 0, and

the distance between the two modes increases as |V | increases. Since the VB posterior tries to

approximate the Bayes posterior with a single uncorrelated distribution, it stays at the origin when

|V | is not sufficiently large. When |V | is large enough, the VB posterior approximates one of the

modes, as seen in the graphs in the right column (for the case when V = 2) of Figure 8 (note that

there also exists an equivalent VB solution located at (A,B)≈ (−
√

1.5,−
√

1.5)).

Equation (36) implies that symmetry breaking occurs when V > γ̃h ∼
√

Mσ2 = 1, which co-

incides with the average contribution of noise to the observed singular values over all singular

components. In this way, VBMF discards singular components dominated by noise. EVBMF has
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a different transition point, and tends to give a sparser solution (see Section 4 in Nakajima and

Sugiyama (2011) for further discussion).

Given that the rigorous Bayesian estimator in MF is not sparse (see Figure 10 in Nakajima

and Sugiyama, 2011), one might argue that the sparsity of VBMF is inappropriate. On the other

hand, given that model pruning by VB has been acknowledged as a practically useful property, one

might also argue that appropriateness should be measured in terms of performance. Motivated by

the latter idea, we have conducted performance analysis of EVBMF in our latest work (Nakajima

et al., 2012b), and shown that model pruning by EVBMF works perfectly under some condition.

Conducting performance analysis in other models would be our future work.

6.3 Extensions

In this paper, we derived the global analytic solution of VBMF, by fully making use of the assump-

tions that the likelihood and priors are both spherical Gaussian, and that the observed matrix has no

missing entry. They were necessary to solve the free energy minimization problem as a reweighted

SVD. In this subsection, we discuss possibilities to extend our results to more general problems.

6.3.1 ROBUST PCA

VBMF gives a low-rank solution, which can be seen as a singular-component-wise sparse solution.

We can extend our analysis so that a wider variety of sparsity can be handled.

Robust PCA (Candes et al., 2009) has recently gathered a great deal of attention. Equipped

with an element-wise sparse term in addition to a low-rank term, robust PCA separates the low

dimensional data structure from spiky noise. Its VB variant has also been proposed (Babacan et al.,

2012). To obtain the VB solution of robust PCA, we have proposed a novel algorithm where the

analytic VBMF solution is applied to partial problems (Nakajima et al., 2012a). Although the global

optimality is not guaranteed, this algorithm has been experimentally shown to give a better solution

than the standard ICM algorithm. In addition, our proposed algorithm can handle a variety of sparse

terms beyond robust PCA.

6.3.2 TENSOR FACTORIZATION

We have shown that the VB solution under matrix-wise independence essentially agrees with the

SimpleVB solution under column-wise independence. We expect that similar redundancy would

be found also in other models, for example, tensor factorization (Kolda and Bader, 2009; Carroll

and Chang, 1970; Harshman, 1970; Tucker, 1996). In our preliminary study so far, we saw that

the analytic VB solution for tensor factorization is not attainable, at least in the same way as MF.

However, we have found that the optimal solution has diagonal covariances for the core tensor

in Tucker decomposition (Nakajima, 2012), which would allow us to greatly simplify inference

algorithms and reduce necessary memory storage and computational costs.

6.3.3 CORRELATED PRIORS

Our analysis assumed uncorrelated priors. With correlated priors, the posterior is no longer uncor-

related and thus it is not straightforward in general to obtain the global solution from the results

obtained in this paper. One exception is the following: Suppose there exists an H ×H non-singular

matrix T such that both of C′
A = TCAT⊤ and C′

B = (T−1)⊤CBT−1 are diagonal. We can show that
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the free energy (20) is invariant under the following transformation for any T :

A → AT⊤, ΣA → T ΣAT⊤, CA → TCAT⊤,

B → BT−1, ΣB → (T−1)T ΣBT−1, CB → (T−1)⊤CBT−1.

Accordingly, the following procedure gives the global solution analytically: the analytic solution

given the diagonal (C′
A,C

′
B) is first computed, and the above transformation is then applied.

Handling priors correlated over rows of A and B is more challenging and remains as future

work. Such a prior allows model correlations in the observation space, and can capture useful

characteristics of data, for example, short-term correlation in time-series data and correlation among

neighboring pixels in image data.

6.3.4 MISSING ENTRIES PREDICTION

Missing entries prediction is another prototypical application of MF (Konstan et al., 1997; Funk,

2006; Lim and Teh, 2007; Ilin and Raiko, 2010; Salakhutdinov and Mnih, 2008), where finding the

global VBMF solution seems a very hard problem. However, one may use our analytic solution as

a subroutine, for example, in the soft-thresholding step of SOFT-IMPUTE (Mazumder et al., 2010).

Along this line, Seeger and Bouchard (2012) have recently proposed an algorithm, which tends to

give a better local solution than the standard ICM algorithm for missing entries prediction. They

also proposed a way to cope with non-Gaussian likelihood functions.

7. Conclusion

Overcoming the non-convexity of VB methods has been one of the important challenges in the

Bayesian machine learning community, since it sometimes prevented us from applying the VB

methods to highly complex real-world problems. In this paper, we focused on the matrix factor-

ization (MF) problem with no missing entry, and showed that this weakness could be overcome by

analytically computing the global optimal solution. We further derived the global optimal solution

analytically for the empirical VBMF method, where hyperparameters are also optimized based on

data samples. Since no hand-tuning parameter remains in empirical VBMF, our analytic-form solu-

tion is practically useful and computationally highly efficient. Numerical experiments showed that

the proposed approach is promising.

We discussed the possibility that our analytic solution can be used as a building block of novel

algorithms for more general problems. Tackling such possible extensions and conducting perfor-

mance analysis of those methods are our future work.
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Appendix A. Proof of Theorem 1

In the same way as in the analysis for the SimpleVB approximation (see the proof of Lemma 10

in Nakajima and Sugiyama, 2011), we can show that any minimizer of the free energy (20) is a

stationary point. Therefore, Equations (8)–(11) hold for any solution.

We consider the following three cases:

Case 1 When no pair of diagonal entries of CACB coincide.

Case 2 When all diagonal entries of CACB coincide.

Case 3 When (not all but) some pairs of diagonal entries of CACB coincide.

In the following, we prove that, in Case 1, ΣA and ΣB are diagonal for any solution (Â, B̂,ΣA,ΣB),
and that, in other cases, any solution has its equivalent solution with diagonal ΣA and ΣB.

Our proof relies on a technique related to the following proposition:

Proposition 6 (Ruhe, 1970) Let λh(Φ),λh(Ψ) be the h-th largest eigenvalues of positive-definite

symmetric matrices Φ,Ψ ∈ R
H×H , respectively. Then, it holds that

tr{Φ−1Ψ} ≥
H

∑
h=1

λh(Ψ)

λh(Φ)
.

We use the following lemma (its proof is given in Appendix D.1):

Lemma 7 Let Γ,Ω,Φ ∈ R
H×H be a non-degenerate diagonal matrix, an orthogonal matrix, and a

symmetric matrix, respectively. Let {Λ(k),Λ′(k) ∈ R
H×H ;k = 1, . . . ,K} be arbitrary diagonal matri-

ces. If

G(Ω) = tr

{
ΓΩΦΩ⊤+

K

∑
k=1

Λ(k)ΩΛ′(k)Ω⊤
}

(38)

is minimized (as a function of Ω, given Γ,Φ,{Λ(k),Λ′(k)}) when Ω = IH , then Φ is diagonal. Here,

K can be any natural number including K = 0 (when only the first term exists).

A.1 Proof for Case 1

Here, we consider the case when cah
cbh

> cah′ cbh′ for any pair h < h′. We will show that any

minimizer has diagonal covariances in this case.

Assume that (A∗,B∗,Σ∗
A,Σ

∗
B) is a minimizer of the free energy (20), and consider the following

variation from it with respect to an arbitrary H ×H orthogonal matrix Ω:

Â = A∗C−1/2

A Ω⊤C
1/2

A , (39)

B̂ = B∗C1/2

A Ω⊤C
−1/2

A , (40)

ΣA =C
1/2

A ΩC
−1/2

A Σ∗
AC

−1/2

A Ω⊤C
1/2

A , (41)

ΣB =C
−1/2

A ΩC
1/2

A Σ∗
BC

1/2

A Ω⊤C
−1/2

A . (42)
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Note that this variation does not change B̂Â⊤, and that (Â, B̂,ΣA,ΣB) = (A∗,B∗,Σ∗
A,Σ

∗
B) holds if

Ω = IH . Then, the free energy (20) can be written as a function of Ω:

FVB(Ω) =
1

2
tr
{

C−1
A C−1

B ΩC
1/2

A

(
B∗⊤B∗+LΣ∗

B

)
C

1/2

A Ω⊤
}
+ const. (43)

(the terms except the second term in the curly braces in Equation (20) are constant).

We define

Φ =C
1/2

A

(
B∗⊤B∗+LΣ∗

B

)
C

1/2

A ,

and rewrite Equation (43) as

FVB(Ω) =
1

2
tr
{

C−1
A C−1

B ΩΦΩ⊤
}
+ const. (44)

The assumption that (A∗,B∗,Σ∗
A,Σ

∗
B) is a minimizer requires that Equation (44) is minimized

when Ω = IH . Then, Lemma 7 (for K = 0) implies that Φ is diagonal.5 Therefore,

C
−1/2

A ΦC
−1/2

A (= ΦC−1
A ) = B∗⊤B∗+LΣ∗

B

is also diagonal. Consequently, Equation (10) implies that Σ∗
A is diagonal.

Next, consider the following variation with respect to an arbitrary H ×H orthogonal matrix Ω′,

Â = A∗C1/2
B Ω′⊤C

−1/2
B ,

B̂ = B∗C−1/2
B Ω′⊤C

1/2
B ,

ΣA =C
−1/2
B Ω′C1/2

B Σ∗
AC

1/2
B Ω′⊤C

−1/2
B ,

ΣB =C
1/2
B Ω′C−1/2

B Σ∗
BC

−1/2
B Ω′⊤C

1/2
B .

Then, the free energy as a function of Ω′ is given by

FVB(Ω′) =
1

2
tr
{

C−1
A C−1

B Ω′C1/2
B

(
A∗⊤A∗+MΣ∗

A

)
C

1/2
B Ω′⊤

}
+ const.

From this, we can similarly prove that Σ∗
B is also diagonal, which completes the proof for Case 1.

A.2 Proof for Case 2

Here, we consider the case when CACB = cIH for some positive c ∈ R. In this case, there exist

solutions with non-diagonal covariances. However, any of them belongs to an equivalent class

involving a solution with diagonal covariances.

We can easily show that the free energy (20) is invariant of Ω under the transformation (39)–

(42). This arbitrariness forms an equivalent class of solutions. Since there exists Ω that diagonalizes

any given Σ∗
A through Equation (41), each equivalent class involves a solution with diagonal ΣA. In

the following, we will prove that any solution with diagonal ΣA has diagonal ΣB.

5. Proposition 6 implies that the diagonal entries of Φ are arranged in non-increasing order.
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Assume that (A∗,B∗,Σ∗
A,Σ

∗
B) is a solution with diagonal Σ∗

A, and consider the following variation

from it with respect to an arbitrary H ×H orthogonal matrix Ω:

Â=A∗C−1/2

A Γ−1/2Ω⊤Γ1/2C
1/2

A ,

B̂=B∗C1/2

A Γ1/2Ω⊤Γ−1/2C
−1/2

A ,

ΣA=C
1/2

A Γ1/2ΩΓ−1/2C
−1/2

A Σ∗
AC

−1/2

A Γ−1/2Ω⊤Γ1/2C
1/2

A ,

ΣB=C
−1/2

A Γ−1/2ΩΓ1/2C
1/2

A Σ∗
BC

1/2

A Γ1/2Ω⊤Γ−1/2C
−1/2

A .

Here, Γ = diag(γ1, . . . ,γH) is an arbitrary non-degenerate (γh 6= γh′ for h 6= h′) positive-definite diag-

onal matrix. Then, the free energy can be written as a function of Ω:

FVB(Ω) =
1

2
tr
{

ΓΩΓ−1/2C
−1/2

A

(
A∗⊤A∗+MΣ∗

A

)
C
−1/2

A Γ−1/2Ω⊤

+c−1Γ−1ΩΓ1/2C
1/2

A

(
B∗⊤B∗+LΣ∗

B

)
C

1/2

A Γ1/2Ω⊤
}
. (45)

We define

ΦA = Γ−1/2C
−1/2

A

(
A∗⊤A∗+MΣ∗

A

)
C
−1/2

A Γ−1/2,

ΦB = c−1Γ1/2C
1/2

A

(
B∗⊤B∗+LΣ∗

B

)
C

1/2

A Γ1/2,

and rewrite Equation (45) as

FVB(Ω) =
1

2
tr
{

ΓΩΦAΩ⊤+Γ−1ΩΦBΩ⊤
}
. (46)

Since Σ∗
A is diagonal, Equation (10) implies that ΦB is diagonal. The assumption that

(A∗,B∗,Σ∗
A,Σ

∗
B) is a solution requires that Equation (46) is minimized when Ω = IH . Accordingly,

Lemma 7 implies that ΦA is diagonal. Consequently, Equation (11) implies that Σ∗
B is diagonal.

Thus, we have proved that any solution has its equivalent solution with diagonal covariances,

which completes the proof for Case 2.

A.3 Proof for Case 3

Finally, we consider the case when cah
cbh

= ca′h
cbh′ for (not all but) some pairs h 6= h′. First, in

the same way as for Case 1, we can prove that ΣA and ΣB are block diagonal where the blocks

correspond to the groups sharing the same cah
cbh

. Next, we can apply the proof for Case 2 to each

block, and show that any solution has its equivalent solution with diagonal ΣA and ΣB. Combining

these results completes the proof of Theorem 1.

A.4 General Expression

In summary, for any minimizer of Equation (20), the covariances can be written in the following

form:

ΣA =C
1/2

A ΘC
−1/2

A ΓΣA
C
−1/2

A Θ⊤C
1/2

A (=C
−1/2
B ΘC

1/2
B ΓΣA

C
1/2
B Θ⊤C

−1/2
B ), (47)

ΣB =C
−1/2

A ΘC
1/2

A ΓΣB
C

1/2

A Θ⊤C
−1/2

A (=C
1/2
B ΘC

−1/2
B ΓΣB

C
−1/2
B Θ⊤C

1/2
B ). (48)
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Here, ΓΣA
and ΓΣB

are positive-definite diagonal matrices, and Θ is a block diagonal matrix such

that the blocks correspond to the groups sharing the same cah
cbh

, and each block consists of an

orthogonal matrix. Furthermore, if there exists a solution with (ΣA,ΣB) written in the form of Equa-

tions (47) and (48) with a certain set of (ΓΣA
,ΓΣB

,Θ), then there also exist its equivalent solutions

with the same (ΓΣA
,ΓΣB

) for any Θ. Focusing on the solution with Θ = IH as the representative of

each equivalent class, we can assume that ΣA and ΣB are diagonal without loss of generality.

Appendix B. Proof of Theorem 3 and Theorem 4

Combining Theorem 1 and Proposition 2, we have the following lemma:

Lemma 8 Let γh (≥ 0) be the h-th largest singular value of V , and let ωah
and ωbh

be the associated

right and left singular vectors:

V =
L

∑
h=1

γhωbh
ω⊤

ah
.

Then, the global VB solution (under the matrix-wise independence (6)) can be expressed as

ÛVB ≡ 〈BA⊤〉rVB(A,B) =
H

∑
h=1

γ̂VB
h ωbh

ω⊤
ah
.

Let

γ̃h =

√√√√√(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

+

√√√√
(
(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

)2

−LMσ4. (49)

When

γh ≤ γ̃h,

the VB solution for the h-th component is γ̂VB
h = 0. When

γh > γ̃h, (50)

γ̂VB
h is given as a positive real solution of

γ̂2
h +q1(̂γh) · γ̂h +q0 = 0, (51)

where

q1(̂γh) =

−(M−L)2(γh − γ̂h)+(L+M)

√
(M−L)2(γh − γ̂h)2 + 4σ4LM

c2
ah

c2
bh

2LM
, (52)

q0 =
σ4

c2
ah

c2
bh

−
(

1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h. (53)

When Inequality (50) holds, Equation (51) has only one positive real solution, which lies in

0 < γ̂h < γh. (54)
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To obtain an analytic-form solution, we will find the positive solution of Equation (51) for

γh > γ̃h. Because q1(̂γh) depends on the square root of γ̂h, Equation (51) is not polynomial. However,

since it has only one non-polynomial term, we can easily convert it to a polynomial form in the

following way.

Substituting Equations (52) and (53), we can rewrite Equation (51) as

−(M2 +L2)

2LM
γ̂2

h+
(M−L)2γh

2LM
γ̂h+

√
ξ0=




(M+L)

√
{(M−L)(γh − γ̂h)}2

+ 4σ4ML

c2
ah

c2
bh

2LM


γ̂h. (55)

Squaring both sides of Equation (55) removes the square root in the right-hand side, and leads to

the quartic equation (23),

f (̂γh) := γ̂4
h +ξ3γ̂3

h +ξ2γ̂2
h +ξ1γ̂h +ξ0 = 0, (23)

where

ξ3 =
(L−M)2γh

LM
, (56)

ξ2 =−
(

ξ3γh +
(L2 +M2)η2

h

LM
+

2σ4

c2
ah

c2
bh

)
, (57)

ξ1 = ξ3

√
ξ0, (58)

ξ0 =

(
η2

h −
σ4

c2
ah

c2
bh

)2

, (59)

η2
h =

(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h. (60)

Since we derived Equation (23) from Equation (51), any solution satisfying Equation (51) satis-

fies Equation (23). However, the converse does not necessarily hold, because squaring both sides of

Equation (55) can create solutions that do not satisfy the original equation (51). By examining the

possible range of the positive solution of Equation (51), we obtain the following lemma (the proof

is given in Appendix D.2):

Lemma 9 Assume that Inequality (50) holds. Any positive solution of Equation (51) lying in the

range (54) satisfies the quartic equation (23), and lies in the following range:

0 < γ̂h < ξ
1/4

0 . (61)

Conversely, any positive solution of the quartic equation (23) lying in the range (61) satisfies Equa-

tion (51), and lies in the range (54).

Lemma 8 and Lemma 9 imply that finding the VB solution is achieved by finding a positive

solution of the quartic equation (23) lying in the range (61). Investigating the shape of the quar-

tic function f (̂γh), defined in Equation (23), we have the following lemma (the proof is given in

Appendix D.3):
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Lemma 10 Assume that Inequality (50) holds. The quartic equation (23) has two positive real

solutions. The smaller one lies in the range (61), and the larger one lies outside the range.

Combining Lemma 8, Lemma 9, and Lemma 10 completes the proof of Theorem 3.

The following lemma is obtained by summarizing Lemma 11, Lemma 12, Lemma 14, Lemma 15,

and Lemma 17 in Nakajima and Sugiyama (2011), and then combining with Theorem 1 in this pa-

per:6

Lemma 11 Let

(η̂2
h)

null =
σ4

c2
ah

c2
bh

,

(σ2
ah
)null =

−
(
(η̂2

h)
null −σ2(M−L)

)
+
√
((η̂2

h)
null −σ2(M−L))2 +4Mσ2(η̂2

h)
null

2Mσ2c−2
ah

,

(σ2
bh
)null =

−
(
(η̂2

h)
null +σ2(M−L)

)
+
√
((η̂2

h)
null +σ2(M−L))2 +4Lσ2(η̂2

h)
null

2L(̂γhδ̂h +σ2c−2
bh
)

.

When γh ≤ γ̃h, the means and the variances of the VB posterior for the h-th component are given by

(âh, b̂h,(ΣA)h,h,(ΣB)h,h) =
(
0,0,(σ2

ah
)null,(σ2

bh
)null
)
.

For γh > γ̃h, let

δ̂h =

(M−L)(γh − γ̂h)+

√
(M−L)2(γh − γ̂h)2 + 4σ4LM

c2
ah

c2
bh

2σ2Mc−2
ah

, (62)

σ2
ah
=

−
(
η̂2

h −σ2(M−L)
)
+
√
(η̂2

h −σ2(M−L))2 +4Mσ2η̂2
h

2M(̂γhδ̂−1
h +σ2c−2

ah
)

,

σ2
bh
=

−
(
η̂2

h +σ2(M−L)
)
+
√
(η̂2

h +σ2(M−L))2 +4Lσ2η̂2
h

2L(̂γhδ̂h +σ2c−2
bh
)

.

When γh > γ̃h, the means and the variances of the VB posterior for the h-th component are given by

(âh, b̂h,(ΣA)h,h,(ΣB)h,h) = (±
√

γ̂hδ̂hωah
,±
√

γ̂hδ̂−1
h ωbh

,σ2
ah
,σ2

bh
).

Combining Theorem 3 and Lemma 11 completes the proof of Theorem 4.

Appendix C. Proof of Theorem 5

Summarizing Lemma 22, Lemma 23, and Lemma 24 in Nakajima and Sugiyama (2011), and then

combining with Theorem 1 in this paper, we have the following lemma:

6. We also used Equation (147) in Nakajima and Sugiyama (2011), which is identical to Equation (62) in this paper.
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Lemma 12 If γh ≥ γ
h
, the VB free energy (20) can have two local minima, i.e., cah

cbh
→ 0 and

cah
cbh

= c̆ah
c̆bh

. Otherwise, cah
cbh

→ 0 is the only local minimum.

It was also shown in Nakajima and Sugiyama (2011) that the (scaled) free energy difference

between the two local minima is given by ∆h (the positive local minimum with cah
cbh

= c̆ah
c̆bh

gives

lower free energy than the null local minimum with cah
cbh

→ 0 if and only if ∆h ≤ 0).7 Thus, we

have the following lemma:

Lemma 13 The hyperparameter ĉah
ĉbh

that globally minimizes the VB free energy (20) is given by

ĉah
ĉbh

= c̆ah
c̆bh

if γh > γ
h

and ∆h ≤ 0. Otherwise ĉah
ĉbh

→ 0.

Combining Lemma 13 and Theorem 3 completes the proof of Theorem 5.

Appendix D. Proof of Lemmas

In this appendix, we prove lemmas used in the previous appendices.

D.1 Proof of Lemma 7

Let

Φ = Ω′Γ′Ω′⊤ (63)

be the eigenvalue decomposition of Φ. Let γ,γ ′,{λ(k)},{λ′(k)} be the vectors consist of the diago-

nal entries of Γ,Γ′,{Λ(k)},{Λ′(k)}, respectively, i.e,

Γ = diag(γ), Γ′ = diag(γ ′), Λ(k) = diag(λ(k)), Λ′(k) = diag(λ′(k)).

Then, Equation (38) can be written as

G(Ω) = tr

{
ΓΩΦΩ⊤+

K

∑
k=1

Λ(k)ΩΛ′(k)Ω⊤
}

= γ⊤Qγ ′+
K

∑
k=1

λ(k)⊤Rλ′(k), (64)

where

Q = (ΩΩ′)∗ (ΩΩ′), R = Ω∗Ω.

Here, ∗ denotes the Hadamard product.8

Using this expression, we will prove that Φ is diagonal if Ω = IH minimizes Equation (64). Let

us consider a bilateral perturbation Ω = ∆ such that the 2× 2 matrix ∆(h,h′) consisting of the h-th

and the h′-th columns and rows form an 2×2 orthogonal matrix

∆(h,h′) =

(
cosθ −sinθ

sinθ cosθ

)
,

7. Equation (26) was obtained as Equation (172) in Nakajima and Sugiyama (2011).

8. Note that Q as well as R is the Hadamard square of an orthogonal matrix, which is known to be doubly stochastic (i.e.,

any of the columns and the rows sums up to one) (Marshall et al., 2009). Therefore, it can be seen that Q reassigns

the components of γ to those of γ ′ when calculating the element-wise product in the first term of Equation (64). The

same applies to R and {λ(k),λ′(k)} in the second term. Naturally, rearranging the components of γ in non-decreasing

order and the components of γ ′ in non-increasing order minimizes γ⊤Qγ ′, which proves Proposition 6 (Ruhe, 1970;

Marshall et al., 2009).
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and the rest entries coincide with those of the identity matrix. Then, the elements of Q become

Qi, j =





(Ω′
h, j cosθ−Ω′

h′, j sinθ)2 if i = h,

(Ω′
h, j sinθ+Ω′

h′, j cosθ)2 if i = h′,

Ω′2
i, j otherwise,

and Equation (64) can be written as a function of θ:

G(θ) =
H

∑
j=1

{
γh(Ω

′
h, j cosθ−Ω′

h′, j sinθ)2 + γh′(Ω
′
h, j sinθ+Ω′

h′, j cosθ)2
}

γ′j

+
K

∑
k=1

(
λ
(k)
h λ

(k)
h′

)(
cos2 θ sin2 θ

sin2 θ cos2 θ

)(
λ
(k)
h

λ
(k)
h′

)
+ const.. (65)

Since Equation (65) is differentiable at θ = 0, our assumption that Equation (64) is minimized

when Ω = IH requires that θ = 0 is a stationary point of Equation (65) for any h 6= h′. Therefore, it

holds that

0 =
∂G

∂θ

∣∣∣∣
θ=0

= 2(γh′ − γh)∑
j

Ω′
h, jγ

′
jΩ

′
h′, j = 2(γh′ − γh)Φh,h′ . (66)

In the last equation, we used Equation (63). Since we assume that Γ is non-degenerate (γh 6= γh′ for

h 6= h′), Equation (66) implies that Φ is diagonal, which completes the proof of Lemma 7.

D.2 Proof of Lemma 9

Assume that Inequality (50) holds, i.e.,

γh > γ̃h. (50)

By using Equation (60), we have

η2
h −

σ4

c2
ah

c2
bh

=

(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h −
σ4

c2
ah

c2
bh

= γ−2
h

(
γ2

h − γ̃2
h

)(
γ2

h − γ́2
h

)
, (67)

where

γ́h =

√√√√√(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

−

√√√√
(
(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

)2

−LMσ4. (68)

Comparing Equations (49) and (68) leads to

γ̃h > γ́h,

and therefore, Equation (67) is positive, i.e.,

η2
h −

σ4

c2
ah

c2
bh

> 0. (69)
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Combining Equations (59) and (60), and Inequality (69) leads to

0 < ξ
1/4

0 < ηh < γh. (70)

Combining Equations (53), (59), and (60) leads to

q0 =−
√

ξ0. (71)

Let us first assume that we have a positive solution of Equation (51) lying in the range (54),

0 < γ̂h < γh. (54)

Since Equation (23) was derived from Equation (51), this solution naturally satisfies Equation (23).

For the solution, Equation (52) implies that

q1(̂γh)> 0.

Inequalities (70) and Equation (71) imply that

q0 < 0.

Therefore, by ignoring the positive second term in the left-hand side of Equation (51), we find that

the solution lies in the range (61),

0 < γ̂h <
√−q0 = ξ

1/4

0 . (61)

Here, we used Equation (71) in the last equality.

Conversely, assume that we have a positive solution of Equation (23) lying in the range (61).

Since Equation (23) was derived by squaring both sides of Equation (55), the solution satisfies

Equation (55) if the both sides of Equation (55) have the same sign. Clearly, the right-hand side of

Equation (55) is positive. We will show that the left-hand side of Equation (55),

g(̂γh) =−(M2 +L2)

2LM
γ̂2

h +
(M−L)2γh

2LM
γ̂h +

√
ξ0,

is also positive.

Note that g(̂γh) is strictly concave because it is a quadratic function with a negative coefficient

of the quadratic term. Since we are assuming that the solution lies in the range (61), the following

holds:

g(̂γh)> min
{

g(0),g(ξ
1/4

0 )
}

> min

{√
ξ0,

(M−L)2γh

2LM
ξ

1/4

0 (γh −ξ
1/4

0 )

}

> 0.

We used Inequalities (70) in the last inequality. Thus, we have shown that the left-hand side, g(̂γh),
of Equation (55) is also positive, and therefore, the solution satisfies Equation (55). This means that

the solution also satisfies its equivalent equation (51). Since Inequalities (70) imply that the range

(61) is included in the range (54), the solution trivially lies in the range (54), which completes the

proof of Lemma 9.
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D.3 Proof of Lemma 10

We will investigate the shape of the quartic function (23),

f (̂γh) := γ̂4
h +ξ3γ̂3

h +ξ2γ̂2
h +ξ1γ̂h +ξ0. (23)

Since the coefficient of the quartic term is positive (equal to one), f (̂γh) goes to infinity as

γ̂h →−∞ or γ̂h → ∞. Since Equation (59) implies that ξ0 > 0, it holds that f (0)> 0.

By using Equation (58), we have

f (ξ
1/4

0 ) = ξ0 +ξ3ξ
3/4

0 +ξ2

√
ξ0 +ξ1ξ

1/4

0 +ξ0

= ξ0 +ξ3ξ
3/4

0 +ξ2

√
ξ0 +ξ3ξ

3/4

0 +ξ0

=
√

ξ0

(
2
√

ξ0 +2ξ3ξ
1/4

0 +ξ2

)
.

By using Inequalities (70) and Equation (57), this can be bounded as

f (ξ
1/4

0 )<
√

ξ0

(
2η2

h +2ξ3ηh −ξ3γh −
(L2 +M2)η2

h

LM

)

=
√

ξ0

(
2ξ3ηh −ξ3γh −

(L−M)2η2
h

LM

)

=

√
ξ0ξ3

γh

(
2ηhγh − γ2

h −η2
h

)

=−
√

ξ0ξ3

γh

(γh −ηh)
2

< 0.

Here, we used Equation (56) in the third equality, and Inequalities (70) in the last inequality.

In summary, we have the following:

lim
γ̂h→−∞

f (̂γh) = ∞,

f (0)> 0, (72)

f (ξ
1/4

0 )< 0, (73)

lim
γ̂h→∞

f (̂γh) = ∞. (74)

Furthermore, since Equation (57) implies that ξ2 < 0, f (̂γh) has a negative curvature at the origin,

i.e., (∂2 f/∂2γ̂h)(0) < 0. This means that f (̂γh) has one inflection point each in the positive region

γ̂h > 0 and in the negative region γ̂h < 0. The shape of the quartic function f (̂γh) is shown in

Figure 9. Note that the points at which f (̂γh) crosses the horizontal axis are the solutions of the

quartic equation (23).

Inequality (73) and Equation (74) imply that at least one solution exists in the region

γ̂h > ξ
1/4

0 .

33



NAKAJIMA, SUGIYAMA, BABACAN AND TOMIOKA

f(γ̂h) := γ̂4

h
+ ξ3γ̂

3

h
+ ξ2γ̂

2

h
+ ξ1γ̂h + ξ0

γ̂h

Inflection points
γ̂
second

h

Figure 9: The shape of a quartic function f (̂γh) := γ̂4
h + ξ3γ̂3

h + ξ2γ̂2
h + ξ1γ̂h + ξ0, where ξ2 < 0,

ξ0(= f (0)) > 0, and f (ξ
1/4

0 ) < 0. The range 0 < γ̂h < ξ
1/4

0 , where the second largest

positive real solution γ̂second
h exists, is highlighted.

Inequalities (72) and (73) imply that at least one solution exists in the region

0 < γ̂h < ξ
1/4

0 .

Since f (̂γh) has only one inflection point in the positive region, it has no more solution in the

positive region without contradiction with Inequality (72) (see Figure 9), which completes the proof

of Lemma 10.
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Abstract

The present paper examines how the aggregation and feature randomization principles underlying

the algorithm RANDOM FOREST (Breiman, 2001) can be adapted to bipartite ranking. The ap-

proach taken here is based on nonparametric scoring and ROC curve optimization in the sense of

the AUC criterion. In this problem, aggregation is used to increase the performance of scoring rules

produced by ranking trees, as those developed in Clémençon and Vayatis (2009c). The present work

describes the principles for building median scoring rules based on concepts from rank aggregation.

Consistency results are derived for these aggregated scoring rules and an algorithm called RANK-

ING FOREST is presented. Furthermore, various strategies for feature randomization are explored

through a series of numerical experiments on artificial data sets.

Keywords: bipartite ranking, nonparametric scoring, classification data, ROC optimization, AUC

criterion, tree-based ranking rules, bootstrap, bagging, rank aggregation, median ranking, feature

randomization

1. Introduction

Aggregating decision rules or function estimators has now become a folk concept in machine learn-

ing and nonparametric statistics. Indeed, the idea of combining decision rules with an additional

randomization ingredient brings a dramatic improvement of performance in various contexts. These

ideas go back to the seminal work of Amit and Geman (1997), Breiman (1996), and Nemirovski

(2000). However, in the context of the “learning-to-rank” problem, the implementation of this idea

is still at a very early stage. In the present paper, we propose to take one step beyond in the program

of boosting performance by aggregation and randomization for this problem. The present paper

explores the particular case of learning to rank high dimensional observation vectors in presence

of binary feedback. This case is also known as the bipartite ranking problem, see Freund et al.

(2003), Agarwal et al. (2005), Clémençon et al. (2005). The setup of bipartite ranking is useful

when considering real-life applications such as credit-risk or medical screening, spam filtering, or

recommender systems. There are two major approaches to bipartite ranking: the preference-based

approach (see Cohen et al. 1999) and the scoring-based approach (in the spirit of logistic regres-

sion methods, see, e.g., Hastie and Tibshirani 1990, Hilbe 2009). The idea of combining ranking

c©2013 Stéphan Clémençon, Marine Depecker and Nicolas Vayatis.
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rules to learn preferences was introduced in Freund et al. (2003) with a boosting algorithm and the

consistency for this type of methods was proved in Clémençon et al. (2008) by reducing the bipar-

tite ranking problem to a classification problem over pairs of observations (see also Agarwal et al.

2005). Here, we will cast bipartite ranking in the context of nonparametric scoring and we will

consider the issue of combining randomized scoring rules. Scoring rules are real-valued functions

mapping the observation space with the real line, thus conveying an order relation between high

dimensional observation vectors.

Nonparametric scoring has received an increasing attention in the machine learning literature

as a part of the growing interest which affects ROC analysis. The scoring problem can be seen as

a learning problem where one observes input observation vectors X in a high dimensional space X

and receives only a binary feedback information through an output variable Y ∈ {−1,+1}. Whereas

classification only focuses on predicting the label Ỹ of a new observation X̃ , scoring algorithms

aim at recovering an order relation on X in order to predict the ordering over a new sample of

observation vectors X ′
1, . . . ,X

′
m so that there as many as possible positive instances at the top of

the list. From a statistical perspective, the scoring problem is more difficult than classification

but easier than regression. Indeed, in classification, the goal is to learn one single level set of the

regression function whereas, in scoring, one wants to recover the nested collection of all the level

sets of the regression function (without necessarily knowing the corresponding levels), but not the

regression function itself (see Clémençon and Vayatis 2009b). In previous work, we developed

a tree-based procedure for nonparametric scoring called TREERANK, see Clémençon and Vayatis

(2009c), Clémençon et al. (2010). The TREERANK algorithm and its variants produce scoring

rules expressed as partitions of the input space coupled with a permutation over the cells of the

partition. These scoring rules present the interesting feature that they can be stored in an oriented

binary tree structure, called a ranking tree. Moreover, their very construction actually implements

the optimization of the ROC curve which reflects the quality measure of the scoring rule for the

end-user.

The use of resampling in this context was first considered in Clémençon et al. (2009). A more

thorough analysis is developed throughout this paper and we show how to combine feature random-

ization and bootstrap aggregation techniques based on the ranking trees produced by the TREER-

ANK algorithm in order to increase ranking performance in the sense of the ROC curve. In the

classification setup, theoretical evidence has been recently provided for the aggregation of random-

ized classifiers in the spirit of random forests (see Biau et al. 2008). However, in the context of

ROC optimization, combining scoring rules through naive aggregation does not necessarily make

sense. Our approach builds on the advances in the rank aggregation problem. Rank aggregation was

originally introduced in social choice theory (see Barthélémy and Montjardet 1981 and the refer-

ences therein) and recently “rediscovered” in the context of internet applications (see Pennock et al.

2000). For our needs, we shall focus on metric-based consensus methods (see Hudry 2004 or Fagin

et al. 2006, and the references therein), which provide the key to the aggregation of ranking trees.

In the paper, we also discuss various aspects of feature randomization which can be incorporated

at various levels in ranking trees. Also a novel ranking methodology, called RANKING FOREST, is

introduced.

The article is structured as follows. Section 2 sets out the notations and shortly describes the

main notions for the bipartite ranking problem. Section 3 describes the elements from the theory of

rank aggregation and measures of consensus leading to the aggregation of scoring rules defined over

finite partitions of the input space. The next section presents the main theoretical results of the paper
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which are consistency results for scoring rules based on the aggregation of randomized piecewise

constant scoring rules. Section 5 presents RANKING FOREST, a new algorithm for nonparametric

scoring which implements the theoretical concepts developed so far. Section 6 presents an empirical

study of the RANKING FOREST algorithm with numerical results based on simulated data. Finally,

some concluding remarks are collected in Section 7. Reminders, technical details and proofs are

deferred to the Appendix.

2. Probabilistic Setup for Bipartite Ranking

ROC analysis is a popular way of evaluating the capacity of a given scoring rule to discriminate

between two populations, see Egan (1975). ROC curves and related performance measures such

as the AUC have now become of standard use for assessing the quality of ranking methods in a

bipartite framework. Throughout this section, we recall basic concepts related to bipartite ranking

from the angle of ROC analysis.

Modeling the data. The probabilistic setup is the same as in standard binary classification. The ran-

dom variable Y is a binary label, valued in {−1,+1}, while the random vector X = (X (1), . . . ,X (q))
models some multivariate observation for predicting Y , taking its values in a high-dimensional space

X ⊂ Rq, q ≥ 1. The probability measure on the underlying space is entirely described by the pair

(µ,η), where µ denotes the marginal distribution of X and η(x) = P{Y = +1 | X = x}, x ∈ X , the

posterior probability. With no restriction, here we assume that X coincides with the support of µ.

The scoring approach to bipartite ranking. An informal way of considering the ranking task under

this model is as follows. Given a a sample of independent copies of the pair (X ,Y ), the goal is to

learn how to order new data X1, . . . ,Xm without label feedback, so that positive instances are mostly

at the top of the resulting list with large probability. A natural way of defining a total order on

the multidimensional space X is to map it with the natural order on the real line by means of a

scoring rule, that is, a measurable mapping s : X → R. A preorder1 4s on X is then defined by:

∀(x,x′) ∈ X 2, x 4s x′ if and only if s(x)≤ s(x′).
Measuring performance. The capacity of a candidate s to discriminate between the positive and

negative populations is generally evaluated by means of its ROC curve (standing for “Receiver

Operating Characteristic” curve), a widely used functional performance measure which we recall

here.

Definition 1 (TRUE ROC CURVE) Let s be a scoring rule. The true ROC curve of s is the “probability-

probability” plot given by:

t ∈ R 7→ (P{s(X)> t | Y =−1} ,P{s(X)> t | Y = 1}) ∈ [0,1]2 .

By convention, when a jump occurs in the plot of the ROC curve, the corresponding extremities of

the curve are connected by a line segment, so that the ROC curve of s can be viewed as the graph

of a continuous mapping α ∈ [0,1] 7→ ROC(s,α).

We refer to Clémençon and Vayatis (2009c) for a list of properties of ROC curves (see the

Appendix section therein). The ROC curve offers a visual tool for assessing ranking performance

(see Figure 1): the closer to the left upper corner of the unit square [0,1]2 the curve ROC(s, .),
the better the scoring rule s. Therefore, the ROC curve conveys a partial order on the set of all

1. A preorder is a binary relation which is reflexive and transitive.
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Figure 1: ROC curves.

scoring rules: for all pairs of scoring rules s1 and s2, we say that s2 is more accurate than s1 when

ROC(s1,α) ≤ ROC(s2,α) for all α ∈ [0,1]. By a standard Neyman-Pearson argument, one may

establish that the most accurate scoring rules are increasing transforms of the regression function

which is equal to the conditional probability function η up to an affine transformation.

Definition 2 (OPTIMAL SCORING RULES) We call optimal scoring rules the elements of the set S ∗

of scoring functions s∗ such that ∀(x,x′) ∈ X 2, η(x)< η(x′)⇒ s∗(x)< s∗(x′).

The fact that the elements of S ∗ are optimizers of the ROC curve is shown in Clémençon and

Vayatis (2009c) (see Proposition 4 therein). When, in addition, the random variable η(X) is as-

sumed to be continuous, then S ∗ coincides with the set of strictly increasing transforms of η. The

performance of a candidate scoring rule s is often summarized by a scalar quantity called the Area

Under the ROC Curve (AUC) which can be considered as a summary of the ROC curve. In the

paper, we shall use the following definition of the AUC.

Definition 3 (AUC) Let s be a scoring rule. The AUC is the functional defined as:

AUC(s) = P{s(X1)< s(X2) | (Y1,Y2) = (−1,+1)}

+
1

2
P{s(X1) = s(X2) | (Y1,Y2) = (−1,+1)},

where (X1,Y1) and (X2,Y2) denote two independent copies of the pair (X ,Y ), for any scoring func-

tion s.

This functional provides a total order on the set of scoring rules and, equipped with the conven-

tion introduced in Definition 1, AUC(s) coincides with
∫ 1

0 ROC(s,α) dα (see, for instance, Propo-

sition 1 in Clémençon et al. 2011). We shall denote the optimal curve and the corresponding (maxi-

mum) value for the AUC criterion by ROC∗ =ROC(s∗, .) and AUC∗ =AUC(s∗), where s∗ ∈ S ∗. The
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statistical counterparts of ROC(s, .) and AUC(s) based on sampling data Dn = {(Xi,Yi) : 1 ≤ i ≤ n}
are obtained by replacing the class distributions by their empirical versions in the definitions. They

are denoted by R̂OC(s, .) and ÂUC(s) in the sequel.

Piecewise constant scoring rules. In the paper, we will focus on a particular subclass of scoring

rules.

Definition 4 (PIECEWISE CONSTANT SCORING RULE) A scoring rule s is piecewise constant if

there exists a finite partition P of X such that for all C ∈ P , there exists a constant kC ∈R such that

∀x ∈ C , s(x) = kC .

This definition does not provide a unique characterization of the underlying partition. The

partition P is minimal if, for any two of its elements C 6= C ′, we have kC 6= kC ′ . The scoring rule

conveys an ordering on the cells of the minimal partition.

Definition 5 (RANK OF A CELL) Let s be a scoring rule and P the associated minimal partition.

The scoring rule induces a ranking �s over the cells of the partition. For a given cell C ∈ P , we

define its rank R�s
(C ) ∈ {1, . . . , |P |} as the rank affected by the ranking �s over the elements of the

partition. By convention, we set rank 1 to correspond to the highest score.

The advantage of the class of piecewise constant scoring rules is that they provide finite rankings

on the elements of X and they will be the key for applying the aggregation procedure.

3. Aggregation of Scoring Rules

In recent years, the issue of summarizing or aggregating various rankings has been a topic of grow-

ing interest in the machine-learning community. This evolution was mainly motivated by practical

problems in the context of internet applications: design of meta-search engines, collaborative filter-

ing, spam-fighting, etc. We refer for instance to Pennock et al. (2000), Dwork et al. (2001), Fagin

et al. (2003) and Ilyas et al. (2002). Such problems have led to a variety of results, ranging from

the generalization of the mathematical concepts introduced in social choice theory (see Barthélémy

and Montjardet 1981 and the references therein) for defining relevant notions of consensus between

rankings (Fagin et al., 2006), to the development of efficient procedures for computing such “con-

sensus rankings” (Betzler et al., 2008; Mandhani and Meila, 2009; Meila et al., 2007) through the

study of probabilistic models over sets of rankings (Fligner and Verducci , Eds.; Lebanon and Laf-

ferty, 2003). Here we consider rank aggregation methods in the perspective of extending the bagging

approach to ranking trees.

3.1 The Case of Piecewise Constant Scoring Rules

The ranking rules considered in this paper result from the aggregation of a collection of piecewise

constant scoring rules. Since each of these scoring rules is related to a possibly different partition,

we are lead to consider a collection of partitions of X . Hence, the aggregated rule needs to be

defined on the least fine subpartition of this collection of partitions.

Definition 6 (SUBPARTITION OF A COLLECTION OF PARTITIONS) Consider a collection of B par-

titions of X denoted by Pb, b = 1, . . . ,B. A subpartition of this collection is a partition PB made
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of nonempty subsets C ⊂ X which satisfy the following constraint : for all C ∈ PB, there exists

(C1, . . . ,CB) ∈ P1 ×·· ·×PB such that

C ⊆
B⋂

b=1

Cb .

We denote P ∗
B =

⋂
b≤B Pb.

One may easily see that P ∗
B is a subpartition of any of the Pb’s, and the largest one in the sense

that any partition P which is a subpartition of Pb for all b ∈ {1, . . . ,B} is a subpartition of P ∗
B . The

case where the partitions are obtained from a binary tree structure is of particular interest as we

shall consider tree-based piecewise constant scoring rules later on. Incidentally, it should be noticed

that, from a computational perspective, the underlying tree structures considerably help in getting

the cells of P ∗
B explicitly. We refer to Appendix D for further details.

Now consider a collection of piecewise constant scoring rules sb, b = 1, . . . ,B, and denote their

associated (minimal) partitions by Pb. Each scoring rule sb naturally induces a ranking (or a pre-

order) �∗
b on the partition P ∗

B . Indeed, for all (C ,C ′) ∈ P ∗2
B , one writes by definition C �∗

b C ′

(respectively, C ≺∗
b C ′) if and only if Cb �∗

b C ′
b (respectively, Cb ≺∗

b C ′
b) where (Cb,C

′
b) ∈ P 2

b are

such that C ×C ′ ⊂ Cb ×C ′
b.

The collection of scoring rules leads to a collection of B rankings on P ∗
B . Such a collection

is called a profile in voting theory. Now, based on this profile, we would like to define a “central

ranking” or a consensus. Whereas the mean, or the median, naturally provides such a summary when

considering scalar data, various meanings can be given to this notion for rankings (see Appendix

B).

3.2 Probabilistic Measures of Scoring Agreement

The purpose of this subsection is to extend the concept of measures of agreement for rankings to

scoring rules defined over a general space X which is not necessarily finite. In practice, however,

we will only consider the case of piecewise constant scoring rules and we shall rely on the definition

of the probabilistic Kendall tau.

Notations. We already introduced the notation �s for the preorder relation over the cells of a parti-

tion P as induced by a piecewise scoring rule s. We shall use the ’curly’ notation for the preorder

relation 4s on X which is described through the following condition: ∀C ,C ′ ∈ P , we have x 4s x′,

∀x ∈ C , ∀x′ ∈ C ′, if and only if C �s C ′. This is also equivalent to s(x) ≤ s(x′), ∀x ∈ C , ∀x′ ∈ C ′.

We now introduce a measure of similarity for preorders on X induced by scoring rules s1 and s2.

We recall here the definition of the theoretical Kendall τ between two random variables.

Definition 7 (PROBABILISTIC KENDALL τ) Let (Z1,Z2) be two random variables defined on the

same probability space. The probabilistic Kendall τ is defined as

τ(Z1,Z2) = 1−2dτ(Z1,Z2) ,

with:

dτ(Z1,Z2) = P{(Z1 −Z′
1) · (Z2 −Z′

2)< 0}+
1

2
P{Z1 = Z′

1, Z2 6= Z′
2}

+
1

2
P{Z1 6= Z′

1, Z2 = Z′
2}.
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where (Z′
1,Z

′
2) is an independent copy of the pair (Z1,Z2).

As shown by the following result, whose proof is left to the reader, the Kendall τ for the pair

(s(X),Y ) is related to AUC(s).

Proposition 8 We use the notation p = P{Y = 1}. For any real-valued scoring rule s, we have:

1

2
(1− τ(s(X),Y )) = 2p(1− p)(1−AUC(s))+

1

2
P{s(X) 6= s(X ′) , Y = Y ′} .

For given scoring rules s1 and s2 and considering the probabilistic Kendall tau for random vari-

ables s1(X) and s2(X), we can set: dX(s1,s2) = dτ(s1(X),s2(X)). One may easily check that dX

defines a distance between the orderings 4s1
and 4s2

induced by s1 and s2 on the set X (which is

supposed to coincide with the support of the distribution of X). The following proposition shows

that the deviation between scoring rules in terms of AUC is controlled by a quantity involving the

probabilistic agreement based on Kendall tau.

Proposition 9 (AUC AND KENDALL τ) Assume p ∈ (0,1). For any scoring rules s1 and s2 on X ,

we have:

|AUC(s1)−AUC(s2)| ≤
dX(s1,s2)

2p(1− p)
=

1− τX(s1,s2)

4p(1− p)
.

The converse inequality does not hold in general. Indeed, scoring rules with same AUC may

yield to different rankings. However, the following result guarantees that a scoring rule with a nearly

optimal AUC is close to the optimal scoring rules in the sense of Kendall tau, under the additional

assumption that the noise condition introduced in Clémençon et al. (2008) is fulfilled.

Proposition 10 (KENDALL τ AND OPTIMAL AUC) Assume that the random variable η(X) is con-

tinuous and that there exist c < ∞ and a ∈ (0,1) such that:

∀x ∈ X , E
[
|η(X)−η(x)|−a

]
≤ c . (1)

Then, we have, for any scoring rule s and any optimal scoring rule s∗ ∈ S ∗:

1− τX(s
∗,s)≤C · (AUC∗−AUC(s))a/(1+a) ,

with C = 3 · c1/(1+a) · (2p(1− p))a/(1+a) .

Remark 11 (ON THE NOISE CONDITION) As shown in previous work, the condition (1) is rather

weak. Indeed, it is fulfilled for any a ∈ (0,1) as soon the probability density function of η(X) is

bounded (see Corollary 8 in Clémençon et al. 2008).

The next result shows the connection between the Kendall tau distance between preorders on X

induced by piecewise constant scoring rules s1 and s2 and a specific notion of distance between the

rankings �s1
and �s2

on P .

Lemma 12 Let s1, s2, two piecewise constant scoring rules. We have:

dX(s1,s2) = 2 ∑
1≤k<l≤K

µ(Ck)µ(Cl) ·Uk,l(�s1
,�s2

) , (2)
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where, for two orderings �, �′ on a partition of cells {Ck : k = 1, . . . ,K}, we have:

Uk,l(�,�′) = I{(R�(Ck)−R�(Cl))(R�′(Ck)−R�′(Cl))< 0}

+
1

2
I{R�(Ck) = s�(Cl), R�′(Ck) 6= R�′(Cl)}

+
1

2
I{R�′(Ck) = R�′(Cl), R�(Ck) 6= R�(Cl)} .

The proof is straightforward and thus omitted.

Notice that the term Uk,l(�s1
,�s2

) involved in Equation (2) is equal to 1 when the cells Ck and

Cl are not sorted in the same order by s1 and s2 (in absence of ties), to 1/2 when they are tied for one

ranking but not for the other, and to 0 otherwise. As a consequence, the agreement τX(s1,s2) may

be viewed as a “weighted version” of the rate of concordant pairs of the cells of P measured by the

classical Kendall τ (see the Appendix B). A statistical version of τX(s1,s2) is obtained by replacing

the values of µ(Ck) by their empirical counterparts in Equation (2). We thus set:

τ̂X(s1,s2) = 1−2d̂X(s1,s2), (3)

where d̂X(s1,s2) = 2/(n(n− 1))∑i< j K(Xi,X j) is a U-statistic of degree 2 with symmetric kernel

given by:

K(x,x′) = I{(s1(x)− s1(x
′)) · (s2(x)− s2(x

′))< 0}+
1

2
I{s1(x) = s1(x

′), s2(x) 6= s2(x
′)}

+
1

2
I{s1(x) 6= s1(x

′), s2(x) = s2(x
′)} .

Remark 13 Other measures of agreement between 4s1
and 4s2

could be considered alternatively.

For instance the definitions previously stated can easily be extended to the Spearman correlation

coefficient ρX(s1,s2) (see Appendix B), that is the linear correlation coefficient between the random

variables Fs1
(s1(X)) and Fs2

(s2(X)), where Fsi
denotes the cdf of si(X), i ∈ {1, 2}.

3.3 Median Rankings

The method for aggregating rankings we consider here relies on the so-called median procedure,

which belongs to the family of metric aggregation procedures (see Barthélémy and Montjardet

1981 for further details). Let d(., .) be some metric or dissimilarity measure on the set of rankings

on a finite set Z. By definition, a median ranking among a profile Π = {�k: 1 ≤ k ≤ K} with

respect to d is any ranking �med on Z that minimizes the sum ∆Π(�)
de f
= ∑K

k=1 d(�,�k) over the set

R(Z) of all rankings � on Z:

∆Π(�med) = min
�: ranking on Z

∆Π(�).

Notice that, when Z is of cardinality N < ∞, there are

#R(Z) =
N

∑
k=1

(−1)k
k

∑
m=1

(−1)m

(
k

m

)
mN

possible rankings on Z (that is the sum over k of the number of surjective mappings from {1, . . . ,N}
to {1, . . . ,k}) and in most cases, the computation of (metric) median rankings leads to NP-hard

46



RANKING FORESTS

combinatorial optimization problems (see Wakabayashi 1998, Hudry 2004, Hudry 2008 and the

references therein). It is worth noticing that a median ranking is far from being unique in general.

One may immediately check for instance that any ranking among the profile made of all rankings on

Z = {1, 2} is a median in Kendall sense, that is, for the metric dτ. From a practical perspective, ac-

ceptably good solutions can be computed in a reasonable amount of time by means of metaheuristics

such as simulated annealing, genetic algorithms or tabu search (see Spall 2003). The description of

these computational aspects is beyond the scope of the present paper (see Charon and Hudry 1998

or Laguna et al. 1999 for instance). We also refer to recent work in Klementiev et al. (2009).

When it comes to preorders on a set X of infinite cardinality, defining a notion of aggregation

becomes harder. Given a pseudo-metric such as dτ and B ≥ 1 scoring rules s1, . . . , sB on X , the

existence of s̄ in S such that ∑B
b=1 dτ(s̄,sb) = mins ∑B

b=1 dτ(s,sb) is not guaranteed in general. How-

ever, when considering piecewise constant scoring rules with corresponding finite subpartition P

of X , the corresponding preorders are in one-to-one correspondence with rankings on P and the

minimum distance is thus effectively attained.

Aggregation of piecewise constant scoring rules. Consider a finite collection of piecewise constant

scoring rules ΣB = {s1, . . . , sB} on X , with B ≥ 1.

Definition 14 (TRUE MEDIAN SCORING RULE). Let S be a collection of scoring rules. We call s̄B

a median scoring rule for ΣB with respect to S if

s̄B = argmin
s∈S

∆B(s),

where ∆B(s) = ∑B
b=1 dX(s,sb) for s ∈ S .

The empirical median scoring rule is obtained in a similar way, but the true distance dX is

replaced by its empirical counterpart dτ̂X
, see Equation (3).

The ordinal approach. Metric aggregation procedures are not the only way to summarize a profile of

rankings. The so-called “ordinal approach” provides a variety of alternative techniques for combin-

ing rankings (or, more generally, preferences), returning to the famous “Arrow’s voting paradox”.

The ordinal approach consists of a series of duels (i.e., pairwise comparisons) as in Condorcet’s

method or successive tournaments as in the proportional voting Hare system, see Fishburn (1973).

Such approaches have recently been the subject of a good deal of attention in the context of pref-

erence learning (also referred to as methods for ranking by pairwise comparison, see Hüllermeier

et al. 2008 for instance).

Ranks vs. Rankings. Let ΣB = {s1, . . . , sB}, B ≥ 1, be a collection of piecewise constant scoring

rules and X′(m) = {X ′
1, . . . ,X

′
m} a collection of m ≥ 1 i.i.d. copies of the input variable X . When

it comes to rank the observations X ′
i “consensually”, two strategies can be considered: (i) compute

a “median ranking rule” based on the B rankings of the cells for the largest subpartition and use

it for ranking the new data as previously described, or (ii) compute, for each scoring rule sb, the

related rank vector of the data set X′(m)
, and then a “median rank vector”, that is, a median ranking

on the set X′(m)
(data lying in a same cell of the largest subpartition being tied). Although they

are not equivalent, these two methods generally produce similar results, especially when m is large.

Indeed, considering medians in the sense of probabilistic Kendall τ, it is sufficient to notice that the

Kendall τ distance dτ between rankings on X′(m)
induced by two piecewise constant rules s1 and s2

can be viewed as an empirical estimate of dX(s1,s2) based on the data set X′(m)
. Now assume the
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collection ΣB is obtained from training data Dn. The difference between (i) and (ii) is that (i) does

not use the data to be ranked X′(m)
but only relies on training data Dn. However, when both the

size of the training sample Dn and of the test data set X′(m)
are large, the two approaches lead to the

optimization of related quantities.

4. Consistency of Aggregated Scoring Rules

We now provide statistical results for the aggregated scoring rules in the spirit of random forests

(Breiman, 2001). In the context of classification, consistency theorems were derived in Biau et al.

(2008). Conditions for consistency of piecewise constant scoring rules have been studied in

Clémençon and Vayatis (2009c) and Clémençon et al. (2011). Here, we address the issue of AUC

consistency of scoring rules obtained as medians over a profile of consistent randomized scoring

rules for the (probabilistic) Kendall τ distance. A randomized scoring rule is a random element of

the form ŝn(·,Z), depending on both the training sample Dn = {(X1,Y1), . . . , (Xn,Yn)} and a ran-

dom variable Z, taking values over a measurable space Z, independent of Dn, which describes the

randomization mechanism.

The AUC of a randomized scoring rule ŝn(·,Z) is given by:

AUC(ŝn(·,Z)) = P{ŝn(X ,Z)< ŝn(X
′,Z) | (Y,Y ′) = (−1,+1)}

+
1

2
P{ŝn(X ,Z) = ŝn(X

′,Z) | (Y,Y ′) = (−1,+1)},

where the conditional probabilities are taken over the joint probability of independent copies (X ,Y )
and (X ,Y ′) and Z, given the training data Dn.

Definition 15 (AUC-CONSISTENCY) The randomized scoring rule ŝn is said to be AUC-consistent

(respectively, strongly AUC-consistent) when the convergence

AUC(ŝn(·,Z))→ AUC∗ as n → ∞ ,

holds in probability (respectively, almost-surely).

Let B ≥ 1. Given Dn, one may draw B i.i.d. copies Z1, . . . , ZB of Z, yielding the collection Σ̂B

of scoring rules ŝn(·,Z j), 1 ≤ j ≤ B. Let S be a collection of scoring rules and suppose that s̄B is a

median scoring rule for the profile Σ̂B with respect to S in the sense of Definition 14. The next result

shows that AUC-consistency is preserved for a median scoring rule of AUC-consistent randomized

scoring rules.

Theorem 16 (CONSISTENCY AND AGGREGATION) Set B ≥ 1. Consider a class S of scoring rules.

Assume that:

• the assumptions on the distribution of (X ,Y ) in Proposition 10 are fulfilled.

• the randomized scoring rule ŝn(·,Z) is AUC-consistent (respectively, strongly AUC-consistent).

• for all n,B ≥ 1, and for any sample Dn, there exists a median scoring rule s̄B ∈ S for the

collection {ŝn(·,Z j),1 ≤ j ≤ B} with respect to S .
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• we have S ∗∩S 6= /0.

Then, the aggregated scoring rule s̄B is AUC-consistent (respectively, strongly AUC-consistent).

We point out that the last assumption which states that the class S of candidate median scoring

rules contains at least one optimal scoring function can be removed at the cost of an extra bias

term in the rate bound. Consistency results are then derived by picking the median scoring rule, for

each n, in a class Sn such that there exists a sequence s̃n ∈ Sn which fulfills AUC(s̃n) → AUC∗ as

n → ∞. This remark covers the special case where ŝn(·,Z) is a piecewise constant scoring rule with

a range of cardinality kn ↑ ∞ and the median is taken over the set Sn of scoring functions with range

of cardinality less than kB
n . The bias is then of order 1/k2B

n under mild smoothness conditions on

ROC∗, as shown by Proposition 7 in Clémençon and Vayatis (2009b).

From a practical perspective, median computation is based on empirical versions of the proba-

bilistic Kendall τ involved (see Equation (3)). The following result shows the existence of scoring

rules that are asymptotically median with respect to dX , provided that the class S over which the

median is computed is not too complex. Here we formulate the result in terms of a VC major class

of functions of finite dimension (see Dudley 1999 for instance). We first introduce the following

notation, for any s ∈ S :

∆̂B,m(s) =
B

∑
j=1

d̂X(s,s j) ,

where the estimate d̂X of dX is based on m ≥ 1 independent copies of X .

Theorem 17 (EMPIRICAL MEDIAN COMPUTATION) Fix B ≥ 1. Let ΣB = {s1, . . . , sB} be a finite

collection scoring rules and S a class of scoring rules which is a VC major class. We consider the

empirical median scoring rule s̃m = argmins∈S ∆̂B,m(s). Then, as m → ∞, we have

∆B(s̃m)→ min
s∈S

∆B(s) with probability one .

The empirical aggregated scoring rule we consider in the next result relies on two data samples.

The training sample Dn, completed by the randomization on Z, leads to a collection of scoring rules

which are instances of the randomized scoring rule. Then a sample X′(m) = {X ′
1, . . . ,X

′
m} is used

to compute the empirical median. Combining the two preceding theorems, we finally obtain the

consistency result for the aggregated scoring rule.

Corollary 18 Fix B ≥ 1 and S a VC major class of scoring rules. Consider a training sample Dn

of size n with i.i.d. copies of (X ,Y ) and a sample X′(m)
of size m with i.i.d. copies of X. We consider

the collection Σ̂B of randomized scoring rules ŝn(·,Z j) in S built out of Dn and we introduce the

empirical median of Σ̂B with respect to S obtained by using the test set X′(m)
. We denote this fully

empirical median scoring rule by ŝn,m. If the assumptions of Theorem 16 are satisfied, then we have:

AUC(ŝn,m)
P
−→ AUC∗ as n,m → ∞ .

The results stated above can be extended to any median scoring rule based on a pseudo-metric

d on the set of preorders on S which is equivalent to dX , that is, such that c1dX ≤ d ≤ c2dX , with

0< c1 ≤ c2 <∞. Moreover, other complexity assumptions about the class S over which optimization

is performed could be considered (see Clémençon et al. 2008). The present choice of VC major

classes captures the complexity of scoring rules which will be considered in the next section (see

Proposition 6 in Clémençon et al. 2011).
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5. Ranking Forests

In this section, we introduce an implementation of the principles described in the previous sections

for the aggregation of scoring rules. Here we focus on specific piecewise constant scoring rules

based on ranking trees (Clémençon and Vayatis, 2009c; Clémençon et al., 2011). We propose var-

ious schemes for randomizing the features of these trees. We eventually describe the RANKING

FOREST algorithm which extends to bipartite ranking the celebrated RANDOM FORESTS algorithm

(Breiman, 1996; Amit and Geman, 1997; Breiman, 2001).

5.1 Tree-structured Scoring Rules

We consider piecewise constant scoring rules which can be represented in a left-right oriented binary

tree. We recall that, in the context of classification, decision trees are very useful as they offer the

possibility of interpretation for the selected classification rule. In the presence of classification data,

one may entirely characterize a classification rule by means of a partition P of the input space X

and a training set Dn = {(Xi,Yi) : 1 ≤ i ≤ n} of i.i.d. copies of the pair (X ,Y ) through a majority

voting scheme. Indeed, a new instance x ∈ X would receive the label corresponding to the most

frequent one among the data points Xi within the cell C ∈ P such that x ∈ C . However, in bipartite

ranking, the notion of local majority vote makes no sense since the ranking problem is of global

nature. As a matter of fact, the issue is to rank the cells of the partition with respect to each other.

It is assumed that ties among the ordered cells can be observed in the subsequent analysis and the

usual MID-RANK convention is adopted. We refer to the Appendix A for a rigorous definition of the

notion of ranking in the case of ties. We also point out that the term partial ranking is often used in

this context (see Diaconis 1989, Fagin et al. 2006).

By restricting the search of candidates to the collection of piecewise constant scoring rules, the

learning problem boils down here to finding a partition P = {Ck}1≤k≤K of X , with 1 ≤ K < ∞,

together with a ranking �P of the Ck’s (i.e., a preorder on P ), so that the ROC curve of the scoring

rule given by

sP ,�P
(x) =

K

∑
k=1

(K −R�P
(Ck)+1) · I{x ∈ Ck}

be as close as possible of ROC∗, where R�P
(Ck) denotes the rank of Ck, 1 ≤ k ≤ K, among all cells

of P according to �P .

We now describe such scoring rules in the case where the partition arises from a tree structure.

For such a partition, a ranking of the cells can be simply defined by equipping the tree with a left-

right orientation. In order to describe how a ranking tree can be built so as to maximize AUC, further

concepts are required. By master ranking tree TD, here we mean a complete, left-right oriented,

rooted binary tree with depth D ≥ 1. At depth d = 0, the entire input space C0,0 = X forms its root.

Every non terminal node (d,k), with 0 ≤ d < D and 0 ≤ k < 2d , is in correspondence with a subset

Cd,k ⊂ X , and has two siblings, each one corresponding to a subcell obtained by splitting Cd,k: the

left sibling Cd+1,2k is related to the leaf (d+1,2k), while the right sibling Cd+1,2k+1 =Cd,k \Cd+1,2k

is related to the leaf (d+1,2k+1) in the tree structure. We point out that an asymmetry is introduced

at this point as the left sibling is assumed to have a lower rank (or higher score) than the right sibling

in the ranking of the partition’s cells. With this convention, it is easy to use any subtree T ⊂ TD

as a ranking rule. A ranking of the terminal cells naturally results from the left-right orientation of

the tree, the top of the list being represented by the cell in the bottom left corner of the tree, and is
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related to the scoring rule defined by: ∀x ∈ X ,

sT (x) = ∑
(d,k): terminal node of T

(2D −2D−dk) · I{x ∈Cd,k} .

The score value sT (x) can be computed in a top-down manner, using the underlying “heap” struc-

ture. Starting from the initial value 2D at the root node, at each subsequent inner node (d,k),
2D−(d+1) is subtracted to the current value of the score if x moves down to the right sibling (d +
1,2k+1), whereas one leaves the score unchanged if x moves down to the left sibling. The proce-

dure is depicted in Figure 2.

Figure 2: Ranking tree - the ranks can be read on the leaves of the tree from left (8 is the highest

rank/score) to right (1 corresponds to the smallest rank/score). In case of a pruned tree

(such as the one with leaves taken to be the shaded nodes), the orientation is conserved.

5.2 Feature Randomization in TREERANK

The concept of bagging (for bootstrap aggregating technique) was introduced in Breiman (1996).

The major novelty in the RANDOM FOREST method (Breiman, 2001) consisted in randomizing the

features used for recursively splitting the nodes of the classification/regression trees involved in the

committee-based prediction procedure. Our reference method for aggregating tree-based scoring

rules is the TREERANK procedure (we refer to the Appendix and the papers Clémençon and Vayatis

2009c, Clémençon et al. 2011 for a full description). Beyond the specific structure of the master

ranking tree, an additional ingredient in the growing stage is the splitting criterion. It turns out

that a natural choice is a data-dependent and cost-sensitive classification error functional and its

optimization can be performed with any binary classification method. This procedure for node

splitting is called LEAFRANK. We point out that LEAFRANK implements a classifier and when this
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classifier is chosen to be a decision tree, this permits an additional randomization step. We thus

propose two possible feature randomization schemes FT for TREERANK and FL for LEAFRANK.

FT : At each node (d,k) of the master ranking tree TD, draw at random a set of q0 ≤ q indexes

{i1, . . . , iq0
} ⊂ {1, . . . ,q}. Implement the LEAFRANK splitting procedure based on the de-

scriptor (X (i1), . . . ,X (iq0
)) to split the cell Cd,k.

FL: For each node (d,k) of the master ranking tree TD, at each node of the cost-sensitive clas-

sification tree describing the split of the cell Cd,k into two children, draw at random a set of

q1 ≤ q indexes { j1, . . . , jq1
}⊂ {1, . . . ,q} and perform an axis-parallel cut using the descriptor

(X ( j1), . . . ,X ( jq1
)).

We underline that, of course, the randomization strategy FT can be applied to the TREERANK

algorithm whatever the classification technique chosen for the splitting step. In addition, when the

latter is itself a tree-based method, these randomization procedures do not exclude each other. At

each node (d,k) of the ranking tree, one may first draw at random a collection Fd,k of q0 features

and then, when growing the cost-sensitive classification tree describing Cd,k’s split, divide each node

based on a sub-collection of q1 ≤ q0 features drawn at random among Fd,k.

5.3 The RANKING FOREST Algorithm

Now that the rationale behind the RANKING FOREST procedure has been given, we describe its

successive steps in detail. Based on a training sample Dn = {(X1,Y1), . . . ,(Xn,Yn)}, the algorithm is

performed in three stages, as follows.

RANKING FOREST

1. Parameters. B number of bootstrap replicates, n∗ bootstrap sample size, TREERANK

tuning parameters (depth D and presence/absence of pruning), (FT ,FL) feature random-

ization strategy, d pseudo-metric.

2. Bootstrap profile makeup.

(a) (RESAMPLING STEP.) Build B independent bootstrap samples D∗
1 , . . . , D∗

B, by

drawing with replacement n∗ ·B pairs among the original training sample Dn.

(b) (RANDOMIZED TREERANK.) For b = 1, . . . , B, run TREERANK combined with

the feature randomization method (FT ,FL) based on the sample D∗
b , yielding the

ranking tree T ∗
b , related to the partition P ∗

b of the space X .

3. Aggregation. Compute the largest subpartition partition P ∗ =
⋂B

b=1 P ∗
b . Let �∗

b be the

ranking of the cells of P ∗ induced by T ∗
b , b = 1, . . . , B. Compute a median ranking �∗

related to the bootstrap profile Π∗ = {�∗
b: 1 ≤ b ≤ B} with respect to the metric d on

R(P ∗):
�∗= argmin

�∈R(P ∗)

dΠ∗(�),

as well as the scoring rule s�∗,P ∗(x).
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Remark 19 (ON TUNING PARAMETERS.) As mentioned in 3.3, aggregating ranking rules is com-

putationally expensive. The empirical results displayed in Section 6 suggest to aggregate several

dozens of randomized ranking trees of moderate, or even small, depth built from bootstrap samples

of size n∗ ≤ n.

Remark 20 (“PLUG-IN” BAGGING.) As pointed out in Clémençon and Vayatis (2009c) (see Re-

mark 6 therein), given an ordered partition (P ,RP ) of the feature space X , a “plug-in” estimate of

the (optimal scoring) function S = Hη ◦η can be automatically deduced from any ordered partition

(or piecewise constant scoring rule equivalently) and the data Dn, where Hη denotes the condi-

tional cdf of η(X) given Y = −1. This scoring rule is somehow canonical in the sense that, given

Y = −1, H(X) is distributed as a uniform r.v. on [0,1], with H being the conditional distribution

of X. Considering a partition P = {Ck}1≤k≤K equipped with a ranking RP , the plug-in estimate is

given by

ŜP ,RP
(x) =

K

∑
k=1

α̂(Rk) · I{x ∈ Ck}, x ∈ X ,

where Rk =
⋃

l: R (k)≤R (l)Cl . Notice that, as a scoring rule, ŜP ,RP
yields the same ranking as sP ,RP

,

provided that α̂(Ck)> 0 for all k = 1, . . . , K. Adapting the idea proposed in Section 6.1 of Breiman

(1996) in the classification context, an alternative to the rank aggregation approach proposed here

naturally consists in computing the average of the piecewise-constant scoring rules S̃∗
T ∗

b
thus defined

by the bootstrap ranking trees and consider the rankings induced by the latter. This method we call

“plug-in bagging” is however less effective in many situations, due to the inaccuracy/variability of

the probability estimates involved.

Ranking stability. Let Θ = X ×{−1,+1}. From the view developed in this paper, a ranking algo-

rithm is a function S that maps any data sample Dn ∈ Θn, n ≥ 1, to a scoring rule ŝn. In the ranking

context, we will say that a learning algorithm is “stable” when the preorder on X it outputs is not

much affected by small changes in the training set. We propose a natural way of measuring ranking

(in)stability, through the computation of the following quantity:

Instabn(S) = E
(
dX

(
ŝn, ŝ

′
n

))
, (4)

where the expectation is taken over two independent training samples Dn and D ′
n, both made of n

i.i.d. copies of the pair (X ,Y ), and ŝn = S(Dn), ŝ′n = S(D ′
n). Incidentally, we highlight the fact that

the bootstrap stage of RANKING FOREST can be used for assessing the stability of the base ranking

algorithm. Indeed, set ŝ
(b)
n∗ = S(D∗

b ) and ŝ
(b′)
n∗ = S(D∗

b′) obtained from two bootstrap samples. Then,

the quantity:

Înstabn(S) =
2

B(B−1) ∑
1≤b<b′≤B

d̂X

(
ŝ
(b)
n∗ , ŝ

(b′)
n∗

)
,

can be possibly interpreted as a bootstrap estimate of (4).

We finally underline that the outputs of the RANKING FOREST can also be used for monitoring

ranking performance, in an analogous fashion to RANDOM FOREST in the classification/regression

context (see Section 3.1 in Breiman 2001 and the references therein). An out-of-bag estimate of

the AUC criterion can be obtained by considering, for all pairs (X ,Y ) and (X ′,Y ′) in the original

training sample, those ranking trees that are built from bootstrap samples containing neither of them,

avoiding this way the use of a test data set.
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6. Numerical Experiments

The purpose of this section is to measure the impact of aggregation with resampling and feature

randomization on the performance of the TREERANK/LEAFRANK procedure.

Data sets. We have considered artificial data sets where class-conditional distributions of X goven

Y =±1 are gaussian in dimensions 10 and 20. Three examples are considered here:

• RF 10 - class-conditional distributions have the same means (µ+ = µ− = 0) but different

covariance matrices (Σ+ = Id10 and Σ− = 1.023 · Id10); optimal AUC is AUC∗ = 0.76;

• RF 20 - class-conditional distributions have different mean vectors (||µ+− µ−|| = 0.9) and

covariance matrices (Σ+ = Id20 and Σ− = 1.23 · Id20); optimal AUC is AUC∗ = 0.77;

• RF 10 sparse - class-conditional distributions have a 6-dimensional marginal distribution in

common, and the regression function η(x) depends on four components of the input vector X

onlyoptimal AUC is AUC∗ = 0.89.

With these data sets, the series of experiments below capture the influence on ranking performance

of separability, dimension, and sparsity.

Sample sizes. In order to quantify the impact of bagging and random feature selection on the accu-

racy/stability of the resulting ranking rule, the algorithm has been run under various configurations

for each data set on 30 independent training samples for each sample size ranging from n = 250 to

n = 3000. The test sample was taken of size 3000 in all experiments.

Variants of TREERANK and parameters. In the intensive comparisons we have performed, we have

considered the following variants:

• Plain TREERANK/LEAFRANK - in this version, all input dimensions are involved in the split-

ting stage; the maximum depth of the master ranking tree is 10, and the maximum depth of

the ranking tree using orthogonal splits in the LEAFRANK procedure is 8 for the use case RF

10 sparse and also 10 for the two others.

• BAGGING RANKING TREES - the bagging version uses the plain TREERANK/LEAFRANK

as described above with bootstrap samples of size B = 20, B = 50, and B = 100.

• RANKING FORESTS - the forest version involves additional parameters for feature random-

ization which can affect both the master ranking tree (FT for TREERANK) and the splitting

rule (FL for LEAFRANK); these parameters indicate the number of dimensions randomly cho-

sen along which the best split is chosen ; we have tried six different sets of parameters (Cases

1 to 6) where FT takes values 3, 5, and 10 (or 20 for the data set RF 20), and FL takes values

1, 3, and 5 (plus 10 for the data set RF 20); bootstrap samples are chosen of size B = 1 (single

tree with feature randomization), B = 20, B = 50, and B = 100.

In the case of bagging and forests, aggregation is performed by taking the pointwise median value

of ranks for the collection of ranking trees which have been estimated on each bootstrap sample.

This choice allows for very fast evaluations of the aggregated scoring rule (see the last paragraph of

Section 3.3 for a justification).

Performance. For each variant and each set of parameters and sample size, we performed 30 repli-

cations using independent training sets. These replications are used to derive performance results

on a same test set. Performance is measured through a collection of indicators:
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• AUC and σ̂2 - Average AUC and standar type error are computed based on the test sample

results over the 30 replications;

• ∆Env - this indicator quantifies the accuracy of the variant through the relative improvement

of the envelope on the ROC curve over the 30 replications compared to the plain TREER-

ANK/LEAFRANK (e.g., if ∆Env=−30% for BAGGING it means that the envelope of the ROC

curve is 30% narrower than with TREERANK); the more negative the better the performance

accuracy;

• Instabτ - Instability measure applied to the ranking algorithm (e.g., Ranking Forest), estimate

of (4), which reproduces the quantity Înstabn(S) using the Kendal τ as a distance; the smaller

the quantity the more stable the method;

• DCG and AVE - the Discounted Cumulative Gain and the Average Precision provide mea-

sures which are sensitive to the top ranked instances; they can both be expressed as conditional

linear rank statistics (see Clémençon and Vayatis 2007 and Clémençon and Vayatis 2009a)

with score-generating function given by 1/(ln(1+ x)) (DCG) or 1/x (AP);

• HR@u% - the Hit Ratio at u% is a relative count of positive instances among a proportion u

of best scored instances.

These indicators capture the most important properties as far as quality assessment for scoring rules

is concerned: average and local performance, stability of the rule, accuracy of ROC performance.

Results and comments. Results are collected in a series of Tables 1, 2, 3, 4, 5, 6. We also report

enveloppes on ROC curves over the series of replications of the experiments with the same parame-

ters (see Figures 3 and 4). We study in particular the impact of mixed effects of randomization with

sample size (Tables 1, 2, 3) or aggregation (Tables 4, 5, 6). Our main observations are the following:

• The sample size of the training set has a moderate impact on performance of RANKING

FOREST while it helps significantly single trees in the plain TREERANK;

• In the case of small sample sizes, RANKING FOREST with little randomization (Cases 2 and

5) boost performance compared to the plain TREERANK;

• Increasing the amount of aggregation always improves performance and accuracy except in

some situations in the non-sparse data sets (little randomization FT = d, B large);

• BAGGING with B = 20 ranking trees already improves plain TREERANK dramatically;

• Randomization reveals its power in the sparse data set; when all input variables are relevant,

highly randomized strategies (Cases 4 and 6) may fail to capture good scoring rules unless a

large amount of ranking trees are aggregated (B above 50).

These empirical results aim at illustrating the effect of the combination of rank aggregation and

random feature selection on ranking accuracy/stability. A complete and detailed empirical analysis

of the merits and limitations of RANKING FOREST is beyond the scope of this paper and it will be

the object of future work.
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Figure 3: Comparison of envelopes on ROC curves - Results obtained with RANKING FORESTS

with B = 50 (blue, double dashed) and 100 (red, solid, dashed). The upper display shows

results on the data set RF 10 while the lower display corresponds to the curves obtained

on the data set RF 10 sparse. RANKING FORESTS used correspond to Case 3, training

size is 2000, and optimal ROC curve is in thick red.

7. Conclusion

The major contribution of the paper was to show how to apply the principles of the RANDOM FOR-

EST approach to the ranking/scoring task. Several ways of randomizing and aggregating ranking
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Figure 4: Comparison of envelopes on ROC curves - Results obtained with BAGGING (red, solid

and dashed) and RANKING FORESTS (blue, double dashed) with B = 50. The upper

display shows results on the data set RF 10 while the lower display corresponds to the

curves obtained on the data set RF 10 sparse. RANKING FORESTS used correspond to

Case 3, training size is 2000, and optimal ROC curve is in thick red.

trees, such as those produced by the TREERANK algorithm, have been rigorously described. We

proposed a specific notion of stability in the ranking setup and provided some preliminary back-

57
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RF 10 - AUC∗ = 0.756 - dependence on aggregation

FT FL B AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

TreeRank - - - 0.628 (±0.013) - 0.013 1.574 0.59 66% 64%

Bagging - -

20 0.678 (±0.010) −25% 0.010 1.708 0.64 77% 74%

50 0.686 (±0.008) −29% 0.009 1.745 0.64 78% 74%

100 0.689 (±0.009) −29% 0.009 1.819 0.65 78% 74%

1 0.508 (±0.027) +65% 0.016 1.563 0.50 49% 50%

Forest
5 5

20 0.550 (±0.026) +55% 0.015 2.059 0.53 57% 55%

Case 1
50 0.567 (±0.025) +46% 0.015 2.210 0.55 59% 57%

100 0.642 (±0.016) −7% 0.011 2.288 0.61 71% 67%

1 0.525 (±0.025) +68% 0.015 1.564 0.51 52% 52%

Forest
10 5

20 0.577 (±0.024) +22% 0.014 2.012 0.56 61% 59%

Case No. 2
50 0.615 (±0.020) +21% 0.013 2.187 0.58 67% 64%

100 0.585 (±0.025) +34% 0.014 2.357 0.56 62% 60%

1 0.512 (±0.024) +61% 0.016 1.564 0.50 49% 49%

Forest
5 3

20 0.546 (±0.024) +35% 0.015 2.047 0.53 56% 54%

Case 3
50 0.577 (±0.025) +35% 0.014 2.215 0.56 61% 59%

100 0.648 (±0.019) +23% 0.011 2.294 0.61 72% 68%

1 0.512 (±0.023) +51% 0.015 1.570 0.50 47% 49%

Forest
3 3

20 0.537 (±0.026) +27% 0.015 2.067 0.52 54% 53%

Case 4
50 0.563 (±0.028) +42% 0.015 2.249 0.54 58% 57%

100 0.595 (±0.019) 0% 0.014 2.345 0.57 64% 61%

1 0.516 (±0.029) +95% 0.016 1.564 0.51 51% 51%

Forest
10 3

20 0.582 (±0.022) +32% 0.014 2.016 0.56 62% 59%

Case 5
50 0.616 (±0.022) +11% 0.013 2.161 0.59 67% 64%

100 0.579 (±0.023) +30% 0.014 2.423 0.56 61% 59%

1 0.517 (±0.028) +81% 0.016 1.567 0.51 51% 52%

Forest
3 1

20 0.545 (±0.026) +38% 0.015 2.075 0.53 56% 55%

Case 6
50 0.565 (±0.024) +28% 0.015 2.224 0.55 59% 57%

100 0.647 (±0.016) +3% 0.011 2.306 0.61 70% 67%

Table 1: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with aggregation (B) on the data set RF 10

with training sample size n = 2000.

ground theory for ranking rule aggregation. Encouraging experimental results based on artificial

data have also been obtained, demonstrating how bagging combined with feature randomization

may significantly enhance ranking accuracy and stability both at the same time. Truth be told, the-

oretical explanations for the success of RANKING FOREST in these situations are left to be found.

Results obtained by Friedman and Hall (2007) or Grandvalet (2004) for the bagging approach in the

classification/regression context suggest possible lines of research in this regard. At the same time,

further experiments, based on real data sets in particular, will be carried out in a dedicated article in

order to determine precisely the situations in which RANKING FOREST is competitive compared to

alternative ranking methods.
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RF 20 - AUC∗ = 0.773 - dependence on aggregation

FT FL B AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

TreeRank - - - 0.613 (±0.013) - 0.013 1.614 0.59 67% 64%

Bagging - -
20 0.691 (±0.009) −32% 0.009 1.715 0.66 80% 75%

50 0.699 (±0.006) −43% 0.008 1.816 0.66 81% 76%

1 0.534 (±0.033) +120% 0.015 1.599 0.53 56% 56%

Forest
10 10

20 0.623 (±0.028) +78% 0.013 2.017 0.60 68% 65%

Case 1
50 0.667 (±0.021) +33% 0.011 2.017 0.63 73% 70%

100 0.726 (±0.011) −25% 0.007 2.160 0.67 80% 77%

1 0.551 (±0.033) +114% 0.015 1.599 0.54 58% 57%

Forest
20 10

20 0.673 (±0.019) +28% 0.011 1.989 0.64 73% 70%

Case 2
50 0.706 (±0.012) −15% 0.009 2.104 0.66 77% 74%

100 0.693 (±0.014) 0% 0.009 2.250 0.65 76% 73%

1 0.534 (±0.030) +100% 0.015 1.599 0.53 56% 55%

Forest
10 5

20 0.625 (±0.025) +64% 0.013 2.077 0.60 68% 65%

Case 3
50 0.675 (±0.013) −6% 0.011 2.179 0.64 75% 71%

100 0.726 (±0.009) −35% 0.007 2.171 0.67 80% 77%

1 0.516 (±0.038) +138% 0.016 1.599 0.52 53% 53%

Forest
5 5

20 0.585 (±0.030) +93% 0.014 2.050 0.57 63% 61%

Case 4
50 0.625 (±0.026) +50% 0.013 2.217 0.60 67% 65%

100 0.702 (±0.013) −16% 0.009 2.247 0.66 78% 74%

1 0.547 (±0.034) +123% 0.015 1.598 0.54 58% 56%

Forest
20 5

20 0.666 (±0.020) +25% 0.011 2.007 0.63 74% 70%

Case 5
50 0.705 (±0.011) −23% 0.009 2.128 0.66 78% 74%

100 0.658 (±0.021) +24% 0.011 2.329 0.62 71% 69%

1 0.510 (±0.040) +157% 0.016 1.597 0.51 52% 52%

Forest
5 1

20 0.574 (±0.035) +97% 0.015 2.120 0.56 61% 59%

Case 6
50 0.614 (±0.027) +64% 0.014 2.238 0.59 67% 64%

100 0.710 (±0.011) −19% 0.009 2.261 0.66 78% 75%

Table 2: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with aggregation (B) on the data set RF 20

with training sample size n = 2000.

Appendix A. Axioms for Ranking Rules

Throughout this paper, we call a ranking of the elements of a set Z any total preorder on Z, that is,

a binary relation � for which the following axioms are checked.

1. (TOTALITY) For all (z1,z2) ∈ Z2, either z1 � z2 or else z2 � z1 holds.

2. (TRANSITIVITY) For all (z1,z2,z3): if z1 � z2 and z2 � z3, then z1 � z3.

When the assertions z1 � z2 and z2 � z1 hold both at the same time, we write z1 ≍ z2 and z1 ≺ z2

when solely the first one is true. Assuming in addition that Z has finite cardinality #Z < ∞, the rank
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RF 10 sparse - AUC∗ = 0.89 - dependence on aggregation B

FT FL B AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

TreeRank - - - 0.826 (±0.007) - 0.007 1.622 0.70 84% 83%

Bagging - -

20 0.865 (±0.004) −30% 0.004 1.643 0.74 89% 88%

50 0.867 (±0.003) −35% 0.004 1.650 0.74 89% 88%

100 0.868 (±0.003) −36% 0.004 1.708 0.74 89% 88%

1 0.630 (±0.071) +502% 0.014 1.632 0.58 66% 63%

Forest
5 5

20 0.814 (±0.018) +61% 0.008 1.977 0.71 86% 84%

Case 1
50 0.832 (±0.012) +22% 0.006 2.163 0.72 88% 85%

100 0.858 (±0.006) −30% 0.004 2.110 0.74 90% 88%

1 0.636 (±0.083) +588% 0.014 1.598 0.59 71% 66%

Forest
10 5

20 0.845 (±0.010) −12% 0.005 1.893 0.73 89% 86%

Case 2
50 0.863 (±0.005) −43% 0.004 1.918 0.74 90% 88%

100 0.869 (±0.003) −51% 0.003 1.956 0.74 91% 89%

1 0.622 (±0.071) +553% 0.014 1.607 0.57 64% 60%

Forest
5 3

20 0.809 (±0.010) +72% 0.008 2.060 0.71 86% 83%

Case 3
50 0.844 (±0.009) −15% 0.005 2.089 0.73 89% 87%

100 0.859 (±0.005) −38% 0.004 2.133 0.74 90% 88%

1 0.580 (±0.083) +672% 0.015 1.612 0.55 61% 59%

Forest
3 3

20 0.772 (±0.036) +195% 0.010 2.056 0.68 83% 79%

Case 4
50 0.829 (±0.015) +39% 0.007 2.211 0.72 88% 85%

100 0.849 (±0.008) −10% 0.005 2.253 0.73 90% 87%

1 0.661 (±0.069) +480% 0.014 1.602 0.60 69% 66%

Forest
10 3

20 0.840 (±0.010) −9% 0.006 1.926 0.73 88% 86%

Case 5
50 0.863 (±0.005) −41% 0.004 1.974 0.74 90% 88%

100 0.868 (±0.010) −54% 0.003 1.990 0.74 91% 89%

1 0.593 (±0.073) +566% 0.015 1.611 0.55 63% 60%

Forest
3 1

20 0.745 (±0.036) +228% 0.011 2.162 0.66 79% 76%

Case 6
50 0.807 (±0.026) +108% 0.008 2.252 0.70 86% 83%

100 0.835 (±0.010) −6% 0.006 2.318 0.72 88% 85%

Table 3: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with aggregation (B) on the data set RF 10

sparse with training sample size n = 2000.

of any element z ∈ Z is given by

R�(z) = ∑
z′∈Z

{
I{z′ ≺ z}+

1

2
I{z′ ≍ z}

}
,

when using the standard MID-RANK convention (Kendall, 1945), that is, by assigning to tied ele-

ments the average of the ranks they cover.

Any scoring rule s : Z → R naturally defines a ranking �s on Z: ∀(z1,z2) ∈ Z2, z1 �s z2 iff

s(z1) ≤ s(z2). Equipped with these notations, it is clear that �R�
coincides with � for any ranking

� on a finite set Z.
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RF 10 - AUC∗ = 0.76 - dependence on sample size

FT FL n AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

250 0.573 (±0.024) - 0.014 1.673 0.54 60% 58%

500 0.576 (±0.018) - 0.014 1.607 0.54 59% 58%

TreeRank - - 1000 0.595 (±0.018) - 0.014 1.583 0.56 62% 60%

2000 0.628 (±0.013) - 0.013 1.574 0.59 66% 64%

3000 0.632 (±0.011) - 0.013 1.560 0.59 66% 65%

Bagging - -
2000 0.678 (±0.010) −25% 0.010 1.708 0.64 77% 74%

3000 0.678 (±0.010) −25% 0.010 1.708 0.64 77% 74%

250 0.546 (±0.023) −16% 0.015 2.034 0.53 56% 54%

500 0.544 (±0.028) +40% 0.015 2.032 0.53 56% 55%

Case 1 5 5 1000 0.547 (±0.026) +10% 0.015 2.009 0.53 57% 55%

2000 0.550 (±0.026) +55% 0.015 2.059 0.53 57% 55%

3000 0.549 (±0.019) +33% 0.015 2.034 0.53 55% 55%

250 0.571 (±0.025) +11% 0.015 1.990 0.55 60% 58%

500 0.571 (±0.030) +34% 0.015 1.984 0.55 60% 59%

Case 2 10 5 1000 0.578 (±0.028) +41% 0.014 1.999 0.56 60% 59%

2000 0.577 (±0.024) +22% 0.014 2.012 0.56 61% 59%

3000 0.585 (±0.028) +76% 0.014 1.998 0.56 62% 60%

250 0.546 (±0.031) +7% 0.015 2.049 0.53 56% 55%

500 0.556 (±0.029) +40% 0.015 1.993 0.54 58% 57%

Case 3 5 3 1000 0.563 (±0.023) +8% 0.015 2.024 0.54 58% 57%

2000 0.546 (±0.024) +35% 0.015 2.047 0.53 56% 54%

3000 0.549 (±0.019) +30% 0.015 2.026 0.53 56% 55%

250 0.546 (±0.023) +15% 0.015 2.090 0.53 55% 55%

500 0.536 (±0.028) +36% 0.015 2.071 0.52 54% 53%

Case 4 3 3 1000 0.540 (±0.027) +15% 0.015 2.075 0.53 55% 54%

2000 0.537 (±0.026) +27% 0.015 2.067 0.52 54% 53%

3000 0.536 (±0.022) +55% 0.015 2.063 0.52 54% 54%

250 0.588 (±0.027) +5% 0.014 1.984 0.56 62% 60%

500 0.570 (±0.030) +65% 0.015 1.970 0.55 59% 58%

Case 5 10 3 1000 0.587 (±0.023) +16% 0.014 1.971 0.56 63% 60%

2000 0.582 (±0.022) +32% 0.014 2.016 0.56 62% 59%

3000 0.587 (±0.026) +83% 0.014 1.991 0.57 63% 60%

250 0.546 (±0.028) +8% 0.015 2.085 0.53 56% 55%

500 0.543 (±0.024) +11% 0.015 2.077 0.53 55% 54%

Case 6 3 1 1000 0.549 (±0.026) +13% 0.015 2.066 0.53 56% 55%

2000 0.545 (±0.026) +38% 0.015 2.075 0.53 56% 55%

3000 0.546 (±0.026) +71% 0.015 2.065 0.53 56% 55%

Table 4: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with sample size (n) on the data set RF 10

for B = 20.

Appendix B. Agreement Between Rankings

The most widely used approach to the rank aggregation issue relies on the concept of measure of

agreement between rankings which uses pseudo-metrics. Since the seminal contribution of Kemeny
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RF 20 - AUC∗ = 0.77 - dependence on sample size

FT FL n AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

250 0.561 (±0.019) - 0.014 1.742 0.55 57% 58%

500 0.579 (±0.018) - 0.014 1.666 0.56 60% 59%

TreeRank - - 1000 0.593 (±0.014) - 0.014 1.626 0.57 63% 62%

2000 0.613 (±0.013) - 0.013 1.614 0.59 67% 65%

3000 0.621 (±0.013) - 0.013 1.597 0.59 67% 65%

Bagging - -
2000 0.691 (±0.009) −32% 0.009 1.715 0.66 80% 75%

3000 0.691 (±0.009) −32% 0.009 1.715 0.66 80% 75%

250 0.612 (±0.026) +25% 0.014 2.019 0.59 67% 64%

500 0.630 (±0.029) +41% 0.013 2.018 0.61 69% 66%

Case 1 10 10 1000 0.628 (±0.025) +44% 0.013 2.024 0.60 68% 66%

2000 0.623 (±0.028) +78% 0.013 2.017 0.60 68% 65%

3000 0.636 (±0.029) +54% 0.012 2.012 0.61 67% 65%

250 0.646 (±0.027) +27% 0.012 1.964 0.62 71% 68%

500 0.660 (±0.018) +6% 0.012 1.945 0.63 72% 69%

Case 2 20 10 1000 0.666 (±0.019) +23% 0.011 1.984 0.63 73% 70%

2000 0.673 (±0.019) +28% 0.011 1.989 0.64 73% 70%

3000 0.665 (±0.017) +17% 0.011 1.997 0.63 73% 70%

250 0.610 (±0.030) +69% 0.014 2.039 0.59 66% 63%

500 0.617 (±0.033) +56% 0.013 2.027 0.59 66% 64%

Case 3 10 5 1000 0.621 (±0.024) +44% 0.013 2.035 0.60 67% 65%

2000 0.625 (±0.025) +64% 0.013 2.077 0.60 68% 65%

3000 0.631 (±0.025) +55% 0.013 2.039 0.61 69% 66%

250 0.568 (±0.036) +82% 0.015 2.088 0.56 61% 59%

500 0.579 (±0.018) +47% 0.014 2.064 0.58 63% 61%

Case 4 5 5 1000 0.585 (±0.041) +155% 0.014 2.060 0.57 63% 61%

2000 0.585 (±0.030) +93% 0.014 2.050 0.57 63% 61%

3000 0.585 (±0.030) +88% 0.014 2.052 0.57 63% 61%

250 0.631 (±0.018) −4% 0.013 1.962 0.61 69% 67%

500 0.658 (±0.021) +4% 0.012 1.941 0.62 72% 69%

Case 5 20 5 1000 0.659 (±0.022) +25% 0.012 1.988 0.63 72% 69%

2000 0.666 (±0.020) +25% 0.011 2.007 0.63 74% 70%

3000 0.670 (±0.021) +46% 0.011 1.978 0.63 73% 70%

250 0.561 (±0.033) +57% 0.015 2.099 0.55 59% 57%

500 0.570 (±0.028) +32% 0.015 2.061 0.56 61% 59%

Case 6 5 1 1000 0.571 (±0.031) +119% 0.015 2.066 0.56 60% 59%

2000 0.574 (±0.035) +97% 0.015 2.120 0.56 61% 59%

3000 0.570 (±0.032) +88% 0.015 2.053 0.56 61% 60%

Table 5: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with sample size (n) on the data set RF 10

for B = 20.

(1959), numerous ways of measuring agreement have been proposed in the literature. Here we re-
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RF 10 sparse - AUC∗ = 0.89 - dependence on sample size

FT FL n AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

250 0.749 (±0.022) - 0.010 1.739 0.63 74% 74%

500 0.771 (±0.015) - 0.008 1.662 0.65 76% 76%

TreeRank - - 1000 0.806 (±0.009) - 0.008 1.637 0.68 80% 80%

2000 0.827 (±0.007) - 0.007 1.622 0.70 84% 83%

3000 0.836 (±0.006) - 0.007 1.602 0.70 85% 84%

Bagging - -
2000 0.865 (±0.004) −30% 0.004 1.643 0.74 89% 88%

3000 0.865 (±0.004) −30% 0.004 1.643 0.74 89% 88%

250 0.808 (±0.020) −28% 0.008 2.010 0.71 87% 36%

500 0.814 (±0.024) +32% 0.008 1.958 0.71 86% 83%

Case 1 5 5 1000 0.862 (±0.005) −49% 0.004 1.701 0.74 89% 88%

2000 0.814 (±0.018) +61% 0.008 1.977 0.71 86% 84%

3000 0.870 (±0.005) −19% 0.004 1.670 0.74 90% 88%

250 0.835 (±0.012) −57% 0.006 1.869 0.72 89% 86%

500 0.841 (±0.011) −36% 0.006 1.839 0.73 89% 86%

Case 2 10 5 1000 0.845 (±0.009) −30% 0.006 1.853 0.73 90% 86%

2000 0.845 (±0.010) −12% 0.005 1.893 0.73 89% 86%

3000 0.848 (±0.011) +12% 0.006 1.851 0.73 89% 86%

250 0.795 (±0.027) −13% 0.009 2.014 0.70 86% 82%

500 0.810 (±0.023) +17% 0.008 1.984 0.71 86% 83%

Case 3 5 3 1000 0.811 (±0.020) +40% 0.008 1.966 0.71 86% 83%

2000 0.809 (±0.020) +72% 0.008 2.060 0.71 86% 83%

3000 0.809 (±0.023) +110% 0.008 1.979 0.70 86% 83%

250 0.764 (±0.042) +27% 0.010 2.114 0.68 82% 78%

500 0.773 (±0.038) +115% 0.010 2.068 0.68 83% 79%

Case 4 3 3 1000 0.780 (±0.031) +105% 0.009 2.063 0.69 83% 80%

2000 0.772 (±0.036) +195% 0.010 2.056 0.68 83% 79%

3000 0.783 (±0.036) +280% 0.009 2.044 0.69 83% 80%

250 0.828 (±0.016) −48% 0.007 1.931 0.72 87% 85%

500 0.836 (±0.014) −21% 0.006 1.883 0.72 88% 86%

Case 5 10 3 1000 0.841 (±0.012) −9% 0.006 1.876 0.73 89% 86%

2000 0.840 (±0.010) +9% 0.006 1.926 0.73 88% 86%

3000 0.843 (±0.008) +5% 0.006 1.893 0.73 89% 86%

250 0.724 (±0.049) +32% 0.012 2.149 0.65 77% 74%

500 0.757 (±0.035) +76% 0.011 2.085 0.67 81% 78%

Case 6 3 1 1000 0.742 (±0.045) +198% 0.011 2.096 0.66 79% 76%

2000 0.745 (±0.036) +228% 0.011 2.162 0.66 79% 76%

3000 0.728 (±0.049) +350% 0.012 2.079 0.65 78% 75%

Table 6: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with sample size (n) on the data set RF 10

sparse for B = 20.

view three popular choices, originally introduced in the context of nonparametric statistical testing

(see Fagin et al. 2003 for instance).
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Let � and �′ be two rankings on a finite set Z = {z1, . . . , zK}. The notation R�(z) is used for

the rank of the element z according to the ranking �.

Kendall τ. Consider the quantity dτ(�,�′), obtained by summing up all the terms

Ui, j(�,�′) = I{(R�(zi)−R�(z j))(R�′(zi)−R�′(z j))< 0}

+
1

2
I{R�(zi) = s�(z j), R�′(zi) 6= R�′(z j)}

+
1

2
I{R�′(zi) = R�′(z j), R�(zi) 6= R�(z j)}

over all pairs (zi,z j) such that 1 ≤ i < j ≤ K. It counts, among the K(K −1) pairs of Z’s elements,

how many are “discording”, assigning the weight 1/2 when two elements are tied in one ranking

but not in the other. The Kendall τ is obtained by renormalizing this distance:

τ(�,�′) = 1−
4

K(K −1)
dτ(�,�′).

Large values of τ(�,�′) indicate agreement (or similarity) between � and �′: it ranges from

−1 (full disagreement) to 1 (full agreement). It is worth noticing that it can be computed in

O((K logK)/ log logK) time (see Bansal and Fernandez-Baca 2009).

Spearman footrule. Another natural distance between rankings is defined by considering the l1-

metric between the corresponding rank vectors:

d1(�, �′) =
K

∑
i=1

|R�(zi)−R�′(zi)|.

The affine transformation given by

F(�,�′) = 1−
3

K2 −1
d1(�, �′).

is known as the Spearman footrule measure of agreement and takes its values in [−1,+1].
Spearman rank-order correlation. Considering instead the l2-metric

d2(�, �′) =
K

∑
i=1

(R�(zi)−R�′(zi))
2

leads to the Spearman ρ coefficient:

ρ(�, �′) = 1−
6

K(K2 −1)
d2(�, �′).

Remark 21 (EQUIVALENCE.) It should be noticed that these three measures of agreement are

equivalent in the sense that:

c1

(
1−ρ(�, �′)

)
≤ (1−F(�, �′))2 ≤ c2

(
1−ρ(�, �′)

)
,

c3

(
1− τ(�, �′)

)
≤ 1−F(�, �′)≤ c4

(
1− τ(�, �′)

)
,

with c2 = K2/(2(K2 − 1)) = Kc1 and c4 = 3K/(2(K + 1)) = 2c3; see Theorem 13 in Fagin et al.

(2006).
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We point out that many fashions of measuring agreement or distance between rankings have

been considered in the literature, see Mielke and Berry (2001). Well-known alternatives to the

measures recalled above are the Cayley/Kemeny distance (Kemeny, 1959) and variants for top k-

lists (Fagin et al., 2006), in order to focus on the “best instances” (see Clémençon and Vayatis 2007).

Many other distances between rankings could naturally be deduced through suitable extensions of

word metrics on the symmetric groups on finite sets (see Howie 2000 or Deza and Deza 2009).

Appendix C. The TREERANK Algorithm

Here we briefly review the TREERANK method, on which the procedure we call RANKING FOREST

crucially relies. One may refer to Clémençon and Vayatis (2009c) and Clémençon et al. (2011)

for further details as well as rigorous statistical foundations for the algorithm. As for most tree-

based techniques, a greedy top-down recursive partitioning stage based on a training sample Dn =
{(Xi,Yi) : 1 ≤ i ≤ n} is followed by a pruning procedure, where children of a same parent node are

recursively merged until an estimate of the AUC performance criterion is maximized. A package

for R statistical software (see http://www.r-project.com) implementing TREERANK is available at

http://treerank.sourceforge.net (see Baskiotis et al. 2009).

C.1 Growing Stage

The goal is here to grow a master ranking tree of large depth D ≥ 1 with empirical AUC as large

as possible. In order to describe this first stage, we introduce the following quantities. Let C ⊂ X ,

consider the empirical rate of negative (respectively, positive) instances lying in the region C :

α̂(C ) =
1

n

n

∑
i=1

I{Xi ∈ C , Yi =−1} and β̂(C ) =
1

n

n

∑
i=1

I{Xi ∈ C , Yi =+1},

as well as n(C ) = n(α̂(C )+ β̂(C )) the number of data falling in C .

One starts from the trivial partition P0 = {X } at root node (0,0) (we set C0,0 = X ) and proceeds

recursively as follows. A tree-structured scoring rule s(x) described by an oriented tree, with outer

leaves forming a partition P of the input space, is refined by splitting a cell C ∈ P into two sub-

cells: C ′ denoting the left child and C ′′ = C \C ′ the right one. Let s′(x) be the scoring rule thus

obtained. From the perspective of AUC maximization, one seeks a subregion C ′ maximizing the

gain ∆
ÂUC

(C ,C ′) in terms of empirical AUC induced by the split, which may be written as:

ÂUC(s′)− ÂUC(s) =
1

2
{α̂(C )β̂(C ′)− β̂(C )α̂(C ′)}.

Therefore, taking the rate of positive instances within the cell C , p̂(C ) = α̂(C ) ·n/n(C ) namely, as

cost for the type I error (i.e., predicting label +1 when Y =−1) and 1− p̂(C ) as cost for the type II

error, the quantity 1−∆
ÂUC

(C ,C ′) may be viewed as the cost-sensitive empirical misclassification

error of the classifier C(X) = 2 · I{X ∈ C ′}−1 on C up to a multiplicative factor, 4 p̂(C )(1− p̂(C ))
precisely. Hence, once the local cost p̂(C ) is computed, any binary classification method can be

straightforwardly adapted in order to perform the splitting step. Here, splits are obtained using

empirical-cost sensitive versions of the standard CART algorithm with axis-parallel splits, this one-

step procedure for AUC maximization being called LEAFRANK in Clémençon et al. (2011). As

depicted by Figure 5, the growing stage appears as a recursive implementation of a cost-sensitive
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CART procedure with a cost updated at each node of the ranking tree, equal to the local rate of

positive instances within the node to split, see Section 3 of Clémençon et al. (2011).

C.2 Pruning Stage

The way the master ranking tree TD obtained at the end of the growing stage is pruned is entirely

similar to the one described in Breiman et al. (1984), the sole difference lying in the fact that here,

for any λ > 0, one seeks a subtree T ⊂ TD that maximizes the penalized empirical AUC

ÂUC(sT )−λ · |T |,

where |T | denotes the number of terminal leaves of T , the constant being next picked using N-fold

cross validation.

The fact that alternative complexity-based penalization procedures, inspired from recent non-

parametric model selection methods and leading to the concept of structural AUC maximization, can

be successfully used for pruning ranking trees has also been pointed up in Section 4.2 of Clémençon

et al. (2011). However, the resampling-based technique previously mentioned is preferred to such

pruning schemes in practice, insofar as it does not require, in contrast, to specify any tuning con-

stant. Following in the footsteps of Arlot (2009) in the classification setup, estimation of the ideal

penalty through bootstrap methods could arise as the answer to this issue. This question is beyond

the scope of the present paper but will soon be tackled.

C.3 Some Practical Considerations

Like other types of decision trees, ranking trees (based on perpendicular splits) have a number of

crucial advantages. Concerning interpretability first, it should be noticed that they produce ranking

rules that can be easily visualized through the binary tree graphic, see Figure 5, the rank/score of

an instance x ∈ X being obtained through checking of a nested combination of simple rules of the

form “X (k) ≥ t” or “X (k) < t”. In addition, ranking trees can adapt straightforwardly to situations

where some data are missing and/or some predictor variables are categorical and some monitoring

tools helping to evaluate the relative importance of each predictor variable X (k) or to depict the

partial dependence of the prediction rule on a subset of input variables are readily available. These

facets are described in section 5 of Clémençon et al. (2011). From a computational perspective now,

we also underline that the tree structure makes the computation of consensus rankings much more

tractable, we refer to Appendix D for further details.

Appendix D. On Computing the Largest Subpartition

We now briefly explain how to make crucial use of the fact that the partitions of X we consider

here are tree-structured to compute the largest subpartition they induce. Let P1 = {C
(1)
k }1≤k≤K1

and

P2 = {C
(2)
k }1≤k≤K2

be two partitions of X , related to (ranking) trees T1 and T2 respectively. For

any k ∈ {1, . . . ,K1}, the collection of subsets of the form C
(1)
k ∩C

(2)
l , 1 ≤ l ≤ K2, can be obtained

by extending the T1 tree structure the following way. At the T1’s terminal leave defining the cell

C
(1)
k , add a subtree corresponding to T2 with root C

(1)
k : the terminal nodes of the resulting subtree,

starting at the global root X , correspond to the desired collection of subsets (notice that some of

these can be empty), see Figure 6 below. Of course, this scheme can be iterated in order to recover
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Ranking tree output by TreeRank

Node split output by LeafRank

Figure 5: The TREERANK algorithm as a recursive implementation of cost-sensitive CART.

all the cells of the subpartition induced by B > 2 tree-structured partitions. For obvious reasons of

computational nature, one should start with the most complex tree and bind progressively less and

less complex trees as one goes along.

Figure 6: Characterizing the largest subpartition induced by tree-structured partitions.
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Appendix E. Proofs

This section contains the proofs of the theoretical results presented in the core of the paper.

E.1 Proof of Proposition 9

Recall that τX(s1,s2) = 1−2dX(s1,s2), where dX(s1,s2) is given by:

P{(s1(X)− s1(X
′)) · (s2(X)− s2(X

′))< 0}+
1

2
P{s1(X) = s1(x

′), s2(X) 6= s2(X
′)}

+
1

2
P{s1(X) 6= s1(x

′), s2(X) = s2(X
′)}.

Observe first that, for all s, AUC(s) may be written as:

P{(s(X) − s(X ′)) · (Y − Y ′) > 0}/(2p(1 − p)) + P{s(X) = s(X ′), Y 6= Y ′}/(4p(1 − p)).

Notice also that, using Jensen’s inequality, one easily obtain that 2p(1− p)|AUC(s1)−AUC(s2)| is

bounded by the expectation of the random variable

I{(s1(X)− s1(X
′)) · (s2(X)− s2(X

′))> 0}+
1

2
I{s1(X) = s1(X

′)} · I{s2(X) 6= s2(X
′)}+

1

2
I{s1(X) 6= s1(X

′)} · I{s2(X) = s2(X
′)},

which is equal to dX(s1,s2) = (1− τX(s1,s2))/2.

E.2 Proof of Proposition 10

Recall first that, for all s ∈ S , the AUC deficit 2p(1− p){AUC∗−AUC(s)} may be written as

E
[
|η(X)−η(X ′)| · I{(X ,X ′) ∈ Γs}

]
+P{s(X) = s(X ′), (Y,Y ′) = (−1,+1)},

with

Γs = {(x,x′) ∈ X 2 : (s(x)− s(x′)) · (η(x)−η(x′))< 0},

refer to Example 1 in Clémençon et al. (2008) for instance. Now, Hölder inequality combined with

noise condition (1) shows that P{(X ,X ′) ∈ Γs} is bounded by

(
E
[
|η(X)−η(X ′)| · I{(X ,X ′) ∈ Γs}

])a/(1+a)
× c1/(1+a).

Therefore, we have for all s∗ ∈ S ∗:

dX(4s,4s∗) = P{(X ,X ′) ∈ Γs}+
1

2
P{s(X) = s(X ′)}.

Notice that p(1− p)P{s(X) = s(X ′) | (Y,Y ′) = (−1,+1)} can be rewritten as

E[I{s(X) = s(X ′)} ·η(X ′)(1−η(X))] =
1

2
E[I{s(X) = s(X ′)} · (η(X ′)+η(X)−2η(X)η(X ′))],

which term can be easily shown to be larger than 1
2
E[I{s(X) = s(X ′)} · |η(X ′)−η(X)|]. Using the

same argument as above, we obtain that P{s(X) = s(X ′)} is bounded by

(
E
[
|η(X)−η(X ′)| · I{s(X) = s(X ′)}

])a/(1+a)
× c1/(1+a).

Combined withe the bound previously established, this leads to the desired result.
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E.3 Proof of Theorem 16

By virtue of Proposition 9, we have:

AUC∗−AUC(s̄B)≤
dX(s

∗, s̄B)

2p(1−p)
,

for any s∗ ∈ S ∗. Using now triangular inequality applied to the distance dX between preorders on

X , one gets

dX(s
∗, s̄B)≤ dX(s

∗, ŝn(.,Z j))+dX(ŝn(.,Z j), s̄B),

for all j ∈ {1, . . . , B}. Averaging then over j and using the fact that, if one chooses s∗ in S ,

B

∑
j=1

dX(ŝn(.,Z j), s̄B)≤
B

∑
j=1

dX(ŝn(.,Z j),s
∗),

one obtains that

dX(s
∗, s̄B)≤

2

B

B

∑
j=1

dX(ŝn(.,Z j),s
∗).

The desired result finally follows from Proposition 10 combined with the consistency assumption

of the randomized scoring rule.

Remark 22 Observe that, in the case where S is allowed to depend on n and one only assumes the

existence of s̃∗n ∈ Sn such that AUC(s̃∗n)→AUC∗ as n→∞ (relaxing thus the assumption S ∩S ∗ 6= /0),

the argument above leads to

AUC∗−AUC(s̄B)≤
1

2p(1−p)

{
2

B

B

∑
j=1

dX(̂sn(.,Zj),s
∗)+dX(s̃

∗
n,s

∗)

}
.

which shows that AUC consistency of the median still holds true.

E.4 Proof of Theorem 17

Observe that we have:

∆B(s̃m)−min
s∈S

∆B(s) ≤ 2 · sup
s∈S

|∆̂B,m(s)−∆B(s)|

≤ 2
B

∑
j=1

sup
s∈S

|d̂X(s,s j)−dX(s,s j)|.

Now, it results from the strong Law of Large Numbers for U-processes stated in Corollary 5.2.3 in

de la Pena and Giné (1999) that sups∈S |d̂X(s,s j)− dX(s,s j)| → 0 as N → ∞, for all j = 1, . . . , B.

The convergence rate OP(m
−1/2) follows from the Central Limit Theorem for U-processes given in

Theorem 5.3.7 in de la Pena and Giné (1999).
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E.5 Proof of Corollary 18

Reproducing the argument of Theorem 16, one gets:

dX(s
∗, ŝn,m)≤

1

B

B

∑
j=1

dX(ŝn(.,Z j),s
∗)+

1

B

B

∑
j=1

dX(ŝn(.,Z j), ŝn,m).

As in Theorem 17’s proof, we also have:

1

B

B

∑
j=1

{dX(ŝn(.,Z j), ŝn,m) − dX(ŝn(.,Z j), s̄B)} ≤ 2 · sup
(s,s′)∈S 2

|d̂X(s,s
′) − dX(s,s

′)|.

Using again Corollary 5.2.3 in de la Pena and Giné (1999), we obtain that the term on the right

hand side of the bound above vanishes as m → ∞. Now the desired result immediately follows from

Theorem 16.
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N. Baskiotis, S. Clémençon, M. Depecker, and N. Vayatis. R-implementation of the TreeRank

algorithm. Submitted for publication, 2009.

N. Betzler, M.R. Fellows, J. Guo, R. Niedermeier, and F.A. Rosamond. Computing kemeny rank-

ings, parameterized by the average kt-distance. In Proceedings of the 2nd International Workshop

on Computational Social Choice, 2008.

G. Biau, L. Devroye, and G. Lugosi. Consistency of Random Forests. J. Mach. Learn. Res., 9:

2039–2057, 2008.

L. Breiman. Bagging predictors. Machine Learning, 26:123–140, 1996.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth

and Brooks, 1984.

70



RANKING FORESTS

I. Charon and O. Hudry. Lamarckian genetic algorithms applied to the aggregation of preferences.

Annals of Operations Research, 80:281–297, 1998.
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S. Clémençon, G. Lugosi, and N. Vayatis. Ranking and empirical risk minimization of U-statistics.

The Annals of Statistics, 36(2):844–874, 2008.
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E. Hüllermeier, J. Fürnkranz, W. Cheng, and K. Brinker. Label ranking by learning pairwise pref-

erences. Artificial Intelligence, 172:1897–1917, 2008.

I. Ilyas, W. Aref, and A. Elmagarmid. Joining ranked inputs in practice. In Proceedings of the 28th

International Conference on Very Large Databases, pages 950–961, 2002.

J. G. Kemeny. Mathematics without numbers. Daedalus, (88):571–591, 1959.

M.G. Kendall. The treatment of ties in ranking problems. Biometrika, (33):239–251, 1945.

A. Klementiev, D. Roth, K. Small, and I. Titov. Unsupervised rank aggregation with domain-specific

expertise. In IJCAI’09: Proceedings of the 21st International Joint Conference on Artifical Intel-

ligence, pages 1101–1106, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

M. Laguna, R. Marti, and V. Campos. Intensification and diversification with elite tabu search

solutions for the linear ordering problem. Computers and Operations Research, 26(12):1217–

1230, 1999.

G. Lebanon and J. Lafferty. Conditional models on the ranking poset. In Proceedings of NIPS’03,

2003.

B. Mandhani and M. Meila. Tractable search for learning exponential models of rankings. In

Proceedings of AISTATS, Vol. 5 of JMLR:W&CP 5, 2009.

72



RANKING FORESTS

M. Meila, K. Phadnis, A. Patterson, and J. Bilmes. Consensus ranking under the exponential model.

In Conference on Artificial Intelligence (UAI), pages 729–734, 2007.

P.W. Mielke and K.J. Berry. Permutation Methods. Springer, 2001.

A. Nemirovski. Lectures on Probability Theory and Statistics, Ecole d’ete de Probabilities de Saint-

Flour XXVIII - 1998, chapter Topics in Non-Parametric Statistics. Number 1738 in Lecture Notes

in Mathematics. Springer, 2000.

D.M. Pennock, E. Horvitz, and C.L. Giles. Social choice theory and recommender systems: analysis

of the foundations of collaborative filtering. In National Conference on Artificial Intelligence,

pages 729–734, 2000.

J.C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Con-

trol. John Wiley & Sons, 2003.

Y. Wakabayashi. The complexity of computing medians of relations. Resenhas, 3(3):323–349,

1998.

73



 



Journal of Machine Learning Research 14 (2013) 75-109 Submitted 2/12; Revised 9/12; Published 1/13

Nested Expectation Propagation for Gaussian Process Classification

with a Multinomial Probit Likelihood
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Abstract

This paper considers probabilistic multinomial probit classification using Gaussian process (GP)

priors. Challenges with multiclass GP classification are the integration over the non-Gaussian pos-

terior distribution, and the increase of the number of unknown latent variables as the number of

target classes grows. Expectation propagation (EP) has proven to be a very accurate method for

approximate inference but the existing EP approaches for the multinomial probit GP classification

rely on numerical quadratures, or independence assumptions between the latent values associated

with different classes, to facilitate the computations. In this paper we propose a novel nested EP

approach which does not require numerical quadratures, and approximates accurately all between-

class posterior dependencies of the latent values, but still scales linearly in the number of classes.

The predictive accuracy of the nested EP approach is compared to Laplace, variational Bayes, and

Markov chain Monte Carlo (MCMC) approximations with various benchmark data sets. In the ex-

periments nested EP was the most consistent method compared to MCMC sampling, but in terms

of classification accuracy the differences between all the methods were small from a practical point

of view.

Keywords: Gaussian process, multiclass classification, multinomial probit, approximate infer-

ence, expectation propagation

1. Introduction

Gaussian process (GP) priors enable flexible model specification for Bayesian classification. In mul-

ticlass GP classification, the posterior inference is challenging because each target class increases

the number of unknown latent variables by the number of observations n. Typically, independent

GP priors are set for the latent values for each class and this is assumed throughout this paper.

Since all the latent values depend on each other through the likelihood, they become a posteriori

dependent, which can rapidly lead to computationally unfavorable scaling as the number of classes

c grows. A cubic scaling in c is prohibitive, and from a practical point of view, a desired complexity

is O(cn3) which is typical for the most existing approaches for multiclass GP classification. The

cubic scaling with respect to the number of data points is standard for full GP priors, and to reduce

this n3 complexity, sparse approximations can be used, but these are not considered in this paper.

c©2013 Jaakko Riihimäki, Pasi Jylänki and Aki Vehtari.
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As an additional challenge, the posterior inference is analytically intractable because the likelihood

term related to each observation is non-Gaussian and depends on multiple latent values (one for

each class).

A Markov chain Monte Carlo (MCMC) approach for multiclass GP classification with a softmax

likelihood (also called a multinomial logistic likelihood) was described by Neal (1998). Sampling

of the latent values with the softmax model is challenging because the dimensionality is often high

and standard methods such as the Metropolis-Hastings and Hamiltonian Monte Carlo algorithms

require tuning of the step size parameters. Later Girolami and Rogers (2006) proposed an alternative

approach based on the multinomial probit likelihood which can be augmented with auxiliary latent

variables. This enables a convenient Gibbs sampling framework in which the latent function values

are conditionally independent between classes and normally distributed. If the hyperparameters

are sampled, one MCMC iteration scales as O(cn3) which can become computationally expensive

for large n because thousands of posterior draws may be required to obtain uncorrelated posterior

samples, and strong dependency between the hyperparameters and latent values can cause slow

mixing of the chains.

To speed up the inference, Williams and Barber (1998) used the Laplace approximation (LA)

to approximate the non-Gaussian posterior distribution of the latent function values with a tractable

Gaussian distribution. Conveniently the LA approximation with the softmax likelihood leads to an

efficient representation of the approximative posterior covariance scaling as O((c+ 1)n3), which

facilitates considerably the predictions and gradient-based type-II maximum a posteriori (MAP) es-

timation of the covariance function hyperparameters. Later Girolami and Rogers (2006) proposed

a factorized variational Bayes approximation (VB) for the augmented multinomial probit model.

Assuming the latent values and the auxiliary variables a posteriori independent, a computation-

ally efficient posterior approximation scheme is obtained. If the latent processes related to each

class share the same fixed hyperparameters, VB requires only one O(n3) matrix inversion per iter-

ation step compared to LA in which c+ 1 such inverses are required in each iteration. Recently,

Chai (2012) proposed an alternative variational bounding approximation for the multinomial lo-

gistic likelihood, which results in O(c3n3) base scaling. To reduce the computational complexity,

sparse approximations were determined by active inducing set selection.

Expectation propagation (EP) is the method of choice in binary GP classification where it has

been found very accurate with a reasonable computational cost (Kuss and Rasmussen, 2005; Nick-

isch and Rasmussen, 2008). Two types of EP approximations have been considered for the mul-

ticlass setting; the first assuming the latent values from different classes a posteriori independent

(IEP) and the second assuming them fully correlated (Seeger and Jordan, 2004; Seeger et al., 2006;

Girolami and Zhong, 2007). Incorporating the full posterior couplings requires evaluating the non-

analytical moments of c-dimensional tilted distributions which Girolami and Zhong (2007) approx-

imated with Laplace’s method resulting in an approximation scheme known as Laplace propagation

described by Smola et al. (2004). Earlier Seeger and Jordan (2004) proposed an alternative approach

where the full posterior dependencies were approximated by enforcing a similar structure for the

posterior covariance as in LA using the softmax likelihood. This enables a posterior representa-

tion scaling as O((c+ 1)n3) but the proposed implementation requires a c-dimensional numerical

quadrature and double-loop optimization to obtain a restricted-form site covariance approximation

for each likelihood term (Seeger and Jordan, 2004).1 To reduce the computational demand of EP,

1. Seeger and Jordan (2004) achieve also a linear scaling in the number of training points but we omit sparse approaches

here.
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factorized posterior approximations were proposed by both Seeger et al. (2006) and Girolami and

Zhong (2007). Both approaches omit the between-class posterior dependencies of the latent values

which results in a posterior representation scaling as O(cn3). The approaches rely on numerical

two-dimensional quadratures for evaluating the moments of the tilted distributions with the main

difference being that Seeger et al. (2006) used fewer two-dimensional quadratures for computa-

tional speed-up.

A different EP approach for the multiclass setting was described by Kim and Ghahramani (2006)

who adopted the threshold function as an observation model. Each threshold likelihood term fac-

torizes into c−1 terms dependent on only two latent values. This property can be used to transform

the inference onto an equivalent non-redundant model which includes n(c−1) unknown latent val-

ues with a Gaussian prior and a likelihood consisting of n(c − 1) factorizing terms. It follows

that standard EP methodology for binary GP classification (Rasmussen and Williams, 2006) can

be applied for posterior inference but a straightforward implementation results in a posterior repre-

sentation scaling as O((c−1)3n3) and means to improve the scaling are not discussed by Kim and

Ghahramani (2006). Contrary to the usual EP approach of maximizing the marginal likelihood ap-

proximation, Kim and Ghahramani (2006) determined the hyperparameters by maximizing a lower

bound on the log marginal likelihood in a similar way as is done in the expectation maximization

(EM) algorithm. Recently Hernández-Lobato et al. (2011) introduced a robust generalization of

the multiclass GP classifier with a threshold likelihood by incorporating n additional binary indica-

tor variables for modeling possible labeling errors. Efficiently scaling EP inference is obtained by

making the IEP assumption.

In this paper, we focus on the multinomial probit model and describe an efficient quadrature-

free nested EP approach for multiclass GP classification that scales as O((c+1)n3). The proposed

EP method takes into account all the posterior covariances between the latent variables, and the

posterior computations scale as efficiently as in the LA approximation. We validate the proposed

nested EP algorithm with several experiments. First, we compare the nested EP algorithm to various

quadrature-based EP methods with respect to the approximate marginal distributions of the latent

values and class probabilities with fixed hyperparameter values, and show that nested EP achieves

similar accuracy in a computationally efficient manner. Using the nested EP algorithm, we study

visually the utility of the full EP approximation over IEP, and compare their convergence proper-

ties. Second, we compare nested EP and IEP to other Gaussian approximations (LA and VB). We

visualize the accuracy of the approximate marginal distributions with respect to MCMC, illustrate

the suitability of the respective marginal likelihood approximations for type-II MAP estimation of

the covariance function hyperparameters, and discuss their computational complexities. Finally, we

compare the predictive performance of all these methods with estimation of the hyperparameters

using several real-world data sets. Since LA is known to be fast, we also test whether the predic-

tive probability estimates of LA can be further improved using Laplace’s method as described by

Tierney and Kadane (1986).

2. Gaussian Processes for Multiclass Classification

We consider a classification problem consisting of d-dimensional input vectors xi associated with

target class labels yi ∈ {1, . . . ,c}, where c > 2, for i = 1, . . . ,n. All the class labels are collected in

the n× 1 target vector y, and all the covariate vectors are collected in the matrix X = [x1, . . . ,xn]
T

of size n× d. Given the latent function values fi =
[

f 1
i , f 2

i , . . . , f c
i

]T
= f(xi) at the observed input
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locations xi, the observations yi are assumed independently and identically distributed as defined

by the observation model p(yi|fi). The latent vectors related to all the observations are denoted by

f =
[

f 1
1 , . . . , f 1

n , f 2
1 , . . . , f 2

n , . . . , f c
1 , . . . , f c

n

]T
.

Our goal is to predict the class membership for a new input vector x∗ given the observed data

D = {X ,y}, which is why we need to make some assumptions on the unknown function f (x).
We set a priori independent zero-mean Gaussian process priors on the latent values related to each

class, which is the usual assumption in multiclass GP classification (see, for example, Williams

and Barber, 1998; Seeger and Jordan, 2004; Rasmussen and Williams, 2006; Girolami and Zhong,

2007). This specification results in the following zero-mean Gaussian prior for f:

p(f|X) = N (f|0,K),

where K is a cn× cn block-diagonal covariance matrix with matrices K1,K2, . . . ,Kc (each of size

n × n) on its diagonal. Element Kk
i, j of the k’th covariance matrix defines the prior covariance

between the function values f k
i and f k

j , which is defined by the covariance function κ(xi,x j), that

is, Kk
i, j = κ(xi,x j) = Cov

[

f k
i , f k

j

]

for the latent values related to class k. A common choice for the

covariance function is the squared exponential

κse(xi,x j|θ) = σ2 exp

(

−
1

2

d

∑
k=1

l−2
k (xi,k − x j,k)

2

)

,

where xi,k is the k’th component of xi, and θ = {σ2, l1, . . . , ld} collects the hyperparameters gov-

erning the smoothness properties of latent functions. The magnitude parameter σ2 controls the

overall variance of the unknown function values, and the lengthscale parameters l1, . . . , ld control

the smoothness of the latent function by defining how fast the correlation decreases in each input

dimension. The framework allows separate covariance functions or hyperparameters for different

classes but throughout this work, for simplicity, we use the squared exponential covariance function

with the same θ for all classes.

In this paper, we consider two different observation models: the softmax model

p(yi|fi) =
exp( f

yi

i )

∑c
j=1 exp( f

j
i )
, (1)

and the multinomial probit model

p(yi|fi) = Ep(ui)

{

c

∏
j=1, j 6=yi

Φ(ui + f
yi

i − f
j

i )

}

, (2)

where the auxiliary variable ui is distributed as p(ui) = N (ui|0,1), and Φ(x) denotes the cumulative

density function of the standard normal distribution. The softmax and multinomial probit models

are multiclass generalizations of the logistic and the probit models respectively.

By applying Bayes’ theorem, the conditional posterior distribution of the latent values can be

written as

p(f|D,θ) =
1

Z
p(f|X ,θ)

n

∏
i=1

p(yi|fi), (3)
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where Z = p(y|X ,θ) =
∫

p(f|X ,θ)∏n
i=1 p(yi|fi)df is known as the marginal likelihood of θ. Both

observation models result in an analytically intractable posterior distribution and therefore approx-

imate methods are needed for integration over the latent variables. Different approximate methods

are more suitable for a particular likelihood function because of the convenience of implementation:

the softmax is preferable for LA because of the efficient structure and computability of the partial

derivatives (Williams and Barber, 1998), while the multinomial probit is preferable for VB, EP and

Gibbs sampling because of the convenient auxiliary variable representations (Girolami and Rogers,

2006; Girolami and Zhong, 2007).

3. Approximate Inference Using Expectation Propagation

In this section, we first give a general description of EP for multiclass GP classification and review

some existing approaches. Then we present a novel nested EP approach for the multinomial probit

model.

3.1 Expectation Propagation for Multiclass GP Classification

Expectation propagation is an iterative algorithm for approximating integrals over functions that fac-

tor into simple terms (Minka, 2001b). Using EP the posterior distribution (3) can be approximated

with

qEP(f|D,θ) =
1

ZEP
p(f|X ,θ)

n

∏
i=1

t̃i(fi|Z̃i, µ̃i, Σ̃i), (4)

where t̃i(fi|Z̃i, µ̃i, Σ̃i) = Z̃iN (fi|µ̃i, Σ̃i) are local likelihood term approximations parameterized with

scalar normalization terms Z̃i, c× 1 site location vectors µ̃i, and c× c site covariances Σ̃i. In the

algorithm, first the site approximations are initialized, and then each site is updated in turns. The

update for the i’th site is done by first removing the site term from the marginal posterior which

gives the cavity distribution

q−i(fi) = N (fi|µ−i,Σ−i) ∝ q(fi|D,θ)t̃(fi)
−1.

The cavity distribution is then combined with the exact i’th likelihood term p(yi|fi) to form the

non-Gaussian tilted distribution

p̂(fi) = Ẑ−1
i q−i(fi)p(yi|fi), (5)

which is assumed to encompass more information about the true marginal distribution. Next a

Gaussian approximation q̂(fi) is determined for p̂(fi) by minimizing the Kullback-Leibler (KL)

divergence KL( p̂(fi)||q̂(fi)), which for a Gaussian q̂(fi) is equivalent to matching the first and second

moments of q̂(fi) with the corresponding moments of p̂(fi). Finally, the parameters of the i’th site

are updated so that the mean and covariance of q(fi) are consistent with q̂(fi). After updating the

site parameters, the posterior distribution (4) is updated. This can be done either in a sequential way,

where immediately after each site update the posterior is refreshed using a rank-c update, or in a

parallel way (see, for example, van Gerven et al., 2009), where the posterior is refreshed only after

all the site approximations have been updated once. This procedure is repeated until convergence,

that is, until all the marginal distributions q(fi) are consistent with p̂(fi).
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In binary GP classification, determining the moments of the tilted distribution requires solv-

ing only one-dimensional integrals, and assuming the probit likelihood function, these univariate

integrals can be computed efficiently without numerical quadratures. In the multiclass setting, the

problem is how to evaluate the multi-dimensional integrals which are required to determine the

moments of the tilted distributions (5). Girolami and Zhong (2007) approximated these moments

using the Laplace approximation which results in an algorithm called Laplace propagation (Smola

et al., 2004). The problem with the LA approach is that the mean is replaced with the mode of the

distribution and the covariance with the inverse Hessian of the log density at the mode. Because of

the skewness of the tilted distribution caused by the likelihood function, the LA method can lead to

inaccurate mean and covariance estimates in which case the resulting posterior approximation does

not correspond to the full EP solution. Seeger and Jordan (2004) estimated the tilted moments using

multi-dimensional quadratures, but this becomes computationally demanding when c increases, and

to achieve a posterior representation scaling linearly in c, they do an additional optimization step to

obtain a constrained site precision matrix for each likelihood term approximation.

Computations can be facilitated by using the IEP approximation where explicit between-class

posterior dependencies are omitted. This simplification enables posterior computations scaling lin-

early in c. The existing approaches for the multinomial probit rely on multiple numerical quadra-

tures for each site update; the implementation of Girolami and Zhong (2007) requires a total of

2c+1 two-dimensional numerical quadratures for each likelihood term, whereas Seeger et al. (2006)

described an alternative approach where only two two-dimensional and 2c − 1 one-dimensional

quadratures are needed. Later, we will demonstrate that compared to the full EP approximation,

IEP underestimates the uncertainty on the latent values and in practice it may require more iterations

than full EP for convergence especially if the hyperparameter setting results in strong between-class

posterior couplings.

3.2 Efficiently Scaling Quadrature-Free Implementation

In this section, we present a novel nested EP approach for multinomial probit classification that does

not require numerical quadratures or sampling for estimation of the tilted moments and predictive

probabilities. The method also leads simultaneously to low-rank site approximations which retain

all posterior couplings but results in linear computational scaling with respect to the number of

target classes c. Using the proposed nested EP approach a quadrature-free IEP approximation can

also be formed with similar computational complexity as the full EP approximation.

3.2.1 QUADRATURE-FREE NESTED EXPECTATION PROPAGATION

Here we use the multinomial probit as the likelihood function because its product form consisting

of cumulative Gaussian factors is computationally more suitable for EP than the sum of exponential

terms in the softmax likelihood. Given the mean µ−i and the covariance Σ−i of the cavity distribu-

tion, we need to determine the normalization factor Ẑi, mean vector µ̂i, and covariance matrix Σ̂i of

the tilted distribution

p̂(fi) = Ẑ−1
i N (fi|µ−i,Σ−i)

∫
N (ui|0,1)

(

c

∏
j=1, j 6=yi

Φ(ui + f
yi

i − f
j

i )

)

dui, (6)

which requires solving non-analytical (c+1)-dimensional integrals over fi and ui. Instead of quadra-

ture methods (Seeger and Jordan, 2004; Seeger et al., 2006; Girolami and Zhong, 2007), we use EP
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to approximate these integrals. At first, this approach may seem computationally very demanding

since individual EP approximations are required for each of the n sites. However, it turns out that

these inner EP approximations can be updated incrementally between the outer EP loops. This

scheme also leads naturally to an efficiently scaling representation for the site precisions Σ̃−1
i .

To form a computationally efficient EP algorithm for approximating the tilted moments, it is

helpful to consider the joint distribution of fi and the auxiliary variable ui arising from (6). Defining

wi = [fT
i ,ui]

T and removing the marginalization over ui results in the following augmented tilted

distribution:

p̂(wi) = Ẑ−1
i N (wi|µwi

,Σwi
)

c

∏
j=1, j 6=yi

Φ(wT
i b̃i, j), (7)

where µwi
= [µT

−i,0]
T and Σwi

is a block-diagonal matrix formed from Σ−i and 1. Denoting the j’th

unit vector of the c-dimensional standard basis by e j, the auxiliary vectors b̃i, j can be written as

b̃i, j = [(eyi
− e j)

T ,1]T . The normalization term Ẑi is the same for p̂(fi) and p̂(wi), and it is defined

by Ẑi =
∫

N (wi|µwi
,Σwi

)∏ j 6=yi
Φ(wT

i b̃i, j)dwi. The other quantities of interest, µ̂i and Σ̂i, are equal

to the marginal mean and covariance of the first c components of wi with respect to p̂(wi).
The augmented distribution (7) is of similar functional form as the posterior distribution result-

ing from a linear binary classifier with a multivariate Gaussian prior on the weights wi and a probit

likelihood function. Therefore, the moments of (7) can be approximated with EP similarly as in

linear classification (see, for example, Qi et al., 2004) or by applying the general EP formulation

for latent Gaussian models described by Cseke and Heskes (2011, Appendix C). For clarity, we

have summarized a computationally efficient implementation of the algorithm in Appendix A. The

augmented tilted distribution (7) is approximated with

q̂(wi) = Z−1
q̂i

N (wi|µwi
,Σwi

)
c

∏
j=1, j 6=yi

Z̃q̂i, jN (wT
i b̃i, j|α̃

−1
i, j β̃i, j, α̃

−1
i, j )dwi, (8)

where the cumulative Gaussian functions are approximated with scaled Gaussian site functions and

the normalization constant Ẑi is approximated with Zq̂i
. From now on the site parameters of q̂(wi)

in their natural exponential form are denoted by α̃i = [α̃i, j]
T
j 6=yi

and β̃i = [β̃i, j]
T
j 6=yi

.

Note that the probit terms in Equation (7) depend on the unknown latents fi only through the

linear transformation gi = B̃T
i wi, where B̃i = [b̃i, j] j 6=yi

, that is g
j
i = f

yi

i − f
j

i +ui. This relation implies

that the likelihood of fi increases as the latent value associated with the correct class yi increases

compared to the latents associated with the other classes. Integration over the auxiliary variable

ui results from the conic truncation of the latent variable representation of the multinomial probit

model (see, for example, Girolami and Rogers, 2006). This relationship between wi and gi has two

important computational consequences. First, the fully-coupled nested EP solution can be computed

by propagating scalar moments of g
j
i which requires solving only one-dimensional integrals because

each probit factor in the augmented tilted distribution depends only on the scalar g
j
i (see Appendix

A and references therein). Second, it can be shown that the exact mean and covariance of wi ∼
p̂(wi) can be solved from the respective moments of gi whose distribution is obtained by gi =
B̃T

i wi on Equation (7). Because the dimension of gi is c− 1 we can form computationally cheaper

quadrature-based estimates of the tilted moments as described in Section 3.3. We will also use the

approximate marginal moments of gi to visualize differences in the predictive accuracy of EP and

IEP approximations in Section 5.2.

81
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3.2.2 EFFICIENTLY SCALING REPRESENTATION

In this section we show that the approximation (8) leads to matrix computations scaling as O((c+
1)n3) in the evaluation of the moments of the approximate posterior (4). The idea is to show that the

site precision matrix Σ̃−1
i resulting from the EP update step with Σ̂i derived from (8) has a similar

structure with the Hessian matrix of log p(yi|fi) in the Laplace approximation (Williams and Barber,

1998; Seeger and Jordan, 2004; Rasmussen and Williams, 2006).

The approximate marginal covariance of fi derived from (8) is given by

Σ̂i = HT
(

Σ−1
wi

+ B̃iT̃iB̃
T
i

)−1
H, (9)

where the matrix T̃i = diag(α̃i) is diagonal,2 and HT =
[

Ic 0
]

picks up the desired components

of wi, that is, fi = HT wi. Using the matrix inversion lemma and denoting Bi = HT B̃i = eyi
1T −E−yi

,

where E−yi
= [e j] j 6=yi

and 1 is a (c−1)×1 vector of ones, we can write the tilted covariance as

Σ̂i = Σ−i −Σ−iBi(T̃
−1

i +11T +BT
i Σ−iBi)

−1BT
i Σ−i

= (Σ−1
−i +Bi(T̃

−1
i +11T )−1BT

i )
−1. (10)

Because in the moment matching step of the EP algorithm the site precision matrix is updated as

Σ̃−1
i = Σ̂−1

i −Σ−1
−i , we can write

Σ̃−1
i = Bi(T̃

−1
i +11T )−1BT

i = Bi(T̃i − α̃i(1+1T α̃i)
−1α̃T

i )B
T
i . (11)

Since Bi is a c×(c−1) matrix, we see that Σ̃−1
i is of rank c−1 and therefore a straightforward imple-

mentation based on (11) would result into O((c−1)3n3) scaling in the posterior update. However,

a more efficient representation can be obtained by simplifying (11) further. Writing Bi = −AiE−yi
,

where Ai = [Ic − eyi
1T

c ] and 1c is a c×1 vector of ones, we get

Σ̃−1
i = Ai

(

E−yi
T̃iE

T
−yi

−πi(1
T
c πi)

−1πT
i

)

AT
i ,

where we have defined πi = E−yi
α̃i + eyi

and used Biα̃i =−Aiπi. Since Aieyi
= 0 we can add eyi

eT
yi

to the first term inside the brackets to obtain

Σ̃−1
i = AiΠiA

T
i = Πi, where Πi = diag(πi)− (1T

c πi)
−1πiπ

T
i . (12)

The second equality can be explained as follows. Matrix Πi is of similar form with the precision

contribution of the i’th likelihood term, Wi = −∇2
fi

log p(yi|fi), in the Laplace algorithm (Williams

and Barber, 1998), and it has one eigenvector, 1c, with zero eigenvalue: Πi1c = 0. It follows that

AiΠi = (Ic − eyi
1T

c )Πi = Πi − eyi
0T = Πi and therefore Σ̃−1

i = Πi. Matrix Πi is also precisely of the

same form as the a priori constrained site precision block that Seeger and Jordan (2004) determined

by double-loop optimization of KL(q̂(fi)||q(fi)).
In a similar fashion, we can determine a simple formula for the natural location parameter

ν̃i = Σ̃−1
i µ̃i as a function of α̃i and β̃i. The marginal mean of fi with respect to q̂(wi) is given by

µ̂i = HT
i

(

Σ−1
wi

+ B̃iT̃iB̃
T
i

)−1 (
Σ−1

wi
µwi

+ B̃iβ̃i

)

, (13)

2. We use the following notation: diag(a) with a vector argument is a square matrix with a on the main diagonal, and

diag(A) with a matrix argument is a column vector containing the diagonal elements of the matrix A.
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which we can write using the matrix inversion lemma as

µ̂i = Σ̂iΣ
−1
−i µ−i +Σ−iBi(T̃

−1
i +11T +BT

i Σ−iBi)
−1T̃−1

i β̃i. (14)

Using the update formula ν̃i = Σ̂−1
i µ̂i −Σ−1

−i µ−i resulting from the EP moment matching step and

simplifying further with the matrix inversion lemma, the site location ν̃i can be written as

ν̃i = Bi

(

β̃i − α̃iai

)

= aiπi −E−yi
β̃i, (15)

where ai = (1T β̃i)/(1
T
c πi). The site precision vector ν̃i is orthogonal with 1c, that is, 1T

c ν̃i = 0,

which is congruent with (12). Note that with results (12) and (15), the mean and covariance of

the approximate posterior (4) can be evaluated using only α̃i and β̃i. It follows that the posterior

(predictive) means and covariances as well as the marginal likelihood can be evaluated with similar

computational complexity as with the Laplace approximation (Williams and Barber, 1998; Ras-

mussen and Williams, 2006). For clarity the main components are summarized in Appendix B. The

IEP approximation in our implementation is formed by matching the i’th marginal covariance with

diag(diag(Σ̂i)), and the corresponding mean with µ̂i.

3.2.3 EFFICIENT IMPLEMENTATION

Approximating the tilted moments using inner EP for each site may appear too slow for larger

problems because typically several iterations are required to achieve convergence. However, the

number of inner-loop iterations can be reduced by storing the site parameters α̃i and β̃i after each

inner EP run and continuing from the previous values in the next run. This framework where the

inner site parameters α̃i and β̃i are updated iteratively instead of µ̃i and Σ̃i, can be justified by

writing the posterior approximation (4) using the approximative site terms from (8):

q(f|D,θ) ∝ p(f|X ,θ)
n

∏
i=1

∫
N (ui|0,1)

c

∏
j=1, j 6=yi

Z̃q̂i, jN (ui + f
yi

i − f
j

i |α̃
−1
i, j β̃i, j, α̃

−1
i, j )dui. (16)

Calculating the Gaussian integral over ui leads to the same results for µ̃i and Σ̃i as derived earlier

(Equations 12 and 15). Apart from the integration over the auxiliary variables ui, Equation (16)

resembles an EP approximation where n(c− 1) probit terms of the form Φ(ui + f
yi

i − f
j

i ) are ap-

proximated with Gaussian site functions. In accordance with the standard EP framework we form

the cavity distribution q−i(fi) by removing c− 1 sites from (16) and subsequently refine α̃i and β̃i

using the mean and covariance of the tilted distribution (6). If we alternatively expand only the i’th

site approximation with respect to ui and write the corresponding marginal approximation as

q(fi|D,θ) ∝ q−i(fi)
∫

N (ui|0,1)
c

∏
j=1, j 6=yi

Z̃q̂i, jN (ui + f
yi

i − f
j

i |α̃
−1
i, j β̃i, j, α̃

−1
i, j )dui, (17)

we can consider updating only one of the approximative terms in (17) at a time. This is equiva-

lent to starting the inner EP iterations with the values of α̃i and β̃i from the previous outer-loop

iteration instead of a zero initialization which is customary to standard EP implementations. In our

experiments, only one inner-loop iteration per site was found sufficient for convergence with com-

parable number of outer-loop iterations, which results in significant computational savings in the

tilted moment evaluations.
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The previous interpretation of the algorithm is also useful for defining damping (Minka and Laf-

ferty, 2002), which is commonly used to improve the numerical stability and convergence of EP. In

damping the site parameters in their natural exponential forms are updated to a convex combination

of the old and new values. Damping cannot be directly applied on the site precision matrix Πi = Σ̃−1
i

because the constrained form of the site precision (12) is lost. Instead we damp the updates on α̃i

and β̃i which preserves the desired structure. This can be justified with the same arguments as in

the previous paragraph where we considered updating only one of the approximative terms in (17)

at a time. Convergence of the nested EP algorithm with full posterior couplings using this scheme

is illustrated with different damping levels in Section 5.4.

3.3 Quadrature-Based Full EP Implementation

A challenge in forming the fully-coupled EP approximation using numerical quadratures is how to

obtain a site precision structure, which results in efficiently scaling posterior computations. Seeger

and Jordan (2004) used c-dimensional Gauss-Hermite rules and determined a similar site preci-

sion matrix as in Equation (12) by optimizing KL( p̂i(fi)||q(fi)). In this section, we use the ideas

from Section 3.2 to form a simpler fully-coupled EP algorithm that uses similar approximate site

precision structures determined directly using (c− 1)-dimensional quadratures instead of separate

optimizations.

We use the previously defined transformation gi = B̃T
i wi, where wi ∼ p̂(wi), and denote the tilted

mean vector and covariance matrix of wi with µ̂wi
and Σ̂wi

. Analogously, we denote the correspond-

ing moments of gi resulting from the transformation with µ̂gi
and Σ̂gi

. Making the transformation

on (7) and differentiating twice with respect to µwi
, it can be shown that the following relation holds

between the exact covariance matrices of the random vectors wi and gi:

Σ̂gi
= B̃T

i Σ̂wi
B̃i = B̃T

i (Σ
−1
wi

+ B̃iΛiB̃
T
i )

−1B̃i, (18)

where Σwi
is the cavity covariance of wi. Solving Λi from (18) gives

Λi = Σ̂−1
gi

−Σ−1
gi
, (19)

where Σgi
= BT

i Σ−iBi + 11T , and Σ̂gi
can be estimated with a (c− 1)-dimensional quadrature rule.

The marginal tilted covariance of fi can be computed from Σ̂wi
similarly as in Equations (9) and

(10), and the corresponding site precision matrix Σ̃−1
i can be computed as in Equation (11) with Λi

now in place of T̃i. This gives the following site precision structure

Σ̃−1
i = Bi(Λ

−1
i +11T )−1BT

i ,

which depends only on Λi. The form of the site precision is similar to nested EP, except that now Λi

is a full matrix, which would result in the unfavorable O((c− 1)3n3) posterior scaling. Therefore,

we approximate Λi with its diagonal to get the same structure as in Equation (12), where now

Λ̃i = diag(diag(Λi)) is used instead of T̃i. This results in posterior computations scaling linearly in

c similarly as with the full nested EP approach.

To estimate the site location parameter ν̃i using quadratures, we proceed in the same way as for

the site precision. Making the transformation on (7) and differentiating once with respect to µwi
, it

can be shown that the tilted means of wi and gi are related according to

µ̂gi
= B̃T

i µ̂wi
= B̃T

i (Σ
−1
wi

+ B̃iΛiB̃
T
i )

−1(Σ−1
wi
µwi

+ B̃iξi), (20)
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where µ̂wi
has similar form as in Equation (13). The vector ξi corresponds to β̃i in nested EP, and

we can solve it from (20), which results in

ξi = Σ̂−1
gi
µ̂gi

−Σ−1
gi
µgi

, (21)

where µgi
= BT

i µ−i, and µ̂gi
can be estimated using a (c− 1)-dimensional quadrature. If Λi is

approximated with its diagonal, we have to substitute Σ̂−1
gi

= Λ̃i+Σ−1
gi

in Equation (21), which results

from the diagonal approximation of Λi made in Equation (19). In the same way as in Equations

(13)-(15), we get the following expression for the site location

ν̃i = Bi(ξi − Λ̃i1(1+1T Λ̃i1)
−11Tξi),

which depends only on ξi and Λ̃i. This site location structure is similar to nested EP (15) with ξi

in place of β̃i. Using these results, a quadrature-based full EP algorithm can be implemented in the

same way as the outer-loop of nested EP. Later in Section 5.1, we validate this approximate (c−1)-
dimensional quadrature approach by comparing the tilted moments to those of a more expensive

straightforward (c+1)-dimensional full quadrature solution.

4. Other Approximations for Bayesian Inference

In this section we discuss all the other approximations considered in this paper for multiclass GP

classification. First we give a short description of the LA method. Then we show how it can

be improved upon by computing corrections to the marginal predictive densities using Laplace’s

method as described by Tierney and Kadane (1986). Finally, we briefly summarize the MCMC and

VB approximations.

4.1 Laplace Approximation

In the Laplace approximation a second order Taylor expansion of log p(f|D,θ) is made around the

posterior mode f̂ which can be determined using Newton’s method as described by Williams and

Barber (1998) and Rasmussen and Williams (2006). This results in the posterior approximation

qLA(f|D,θ) = N
(

f|f̂,(K−1 +W )−1
)

,

where W =−∇2
f log p(y|f)|f=f̂ and in which p(y|f) = ∏n

i=1 p(yi|fi). With the softmax likelihood (1),

the submatrix of W related to each observation will have a similar structure with Πi in (12), which

enables efficient posterior computations that scale linearly in c as already discussed in the case of

EP.

4.1.1 IMPROVING MARGINAL POSTERIOR DISTRIBUTIONS

In Gaussian process classification, the LA and EP methods can be used to efficiently form a mul-

tivariate Gaussian approximation for the posterior distribution of the latent values. Recently, mo-

tivated by the earlier ideas of Tierney and Kadane (1986), two methods have been proposed for

improving the marginal posterior distributions in latent Gaussian models; one based on subsequent

use of Laplace’s method (Rue et al., 2009), and one based on EP (Cseke and Heskes, 2011). Be-

cause in classification the focus is not on the predictive distributions of the latent values but on the

predictive probabilities related to a test input x∗, applying these methods would require additional
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numerical integration over the improved posterior approximation of the corresponding latent value

f∗ = f(x∗). In the multiclass setting integration over a multi-dimensional space is required which

becomes computationally demanding to perform, for example, in a grid if c is large. To avoid this

integration, we test computing the corrections directly for the predictive class probabilities follow-

ing another approach presented by Tierney and Kadane (1986). A related idea for approximating

the predictive distribution of linear model coefficients directly with a deterministic approximation

has been discussed by Snelson and Ghahramani (2005).

The posterior mean of a smooth and positive function h( f ) is given by

E[h( f )] =

∫
h( f )p(y| f )p( f )d f∫

p(y| f )p( f )d f
, (22)

where p(y| f ) is the likelihood function and p( f ) is the prior distribution. Tierney and Kadane

(1986) proposed to approximate both integrals in (22) separately with Laplace’s method. This

approach can be readily applied for approximating the posterior predictive probabilities p(y∗|x∗) of

class memberships y∗ ∈ {1, ...,c} which are given by

p(y∗|x∗,D) =
1

Z

∫∫
p(y∗|f∗)p(f∗|f,x∗,X)p(f|X)p(y|f)dfdf∗, (23)

where Z =
∫∫

p(f∗|f,x∗,X)p(f|X)p(y|f)dfdf∗ =
∫

p(f|X)p(y|f)df is the marginal likelihood. With a

fixed class label y∗ the integrals can be approximated by a straightforward application of either LA

or EP, which is already done for the marginal likelihood Z in the standard approximations. The LA

method can be used for smooth and positive functions such as the softmax whereas EP is applicable

for a wider range of models.

The integral on the right side of (23) is equivalent to the marginal likelihood resulting from a

classification problem with one additional training point y∗. To compute the predictive probabilities

for all classes, we evaluate this extended marginal likelihood consisting of n+1 observations with

y∗ fixed to one of the c possible class labels at a time. This is computationally demanding because

several marginal likelihood evaluations are required for each test input. Additional modifications,

for example, initializing the latent values to their predictive mean implied by standard LA, could be

done to speed up the computations. Since further approximations can only be expected to reduce

the accuracy of the predictions, we do not consider them in this paper, and focus only on the naive

implementation due to its ease of use. Since LA is known to be fast, we test the goodness of the

improved predictive probability estimates using only LA, and refer to the method as LA-TKP as an

extension to the naming used by Cseke and Heskes (2011).

4.2 Markov Chain Monte Carlo

Because MCMC estimates become exact in the limit of infinite sample size, we use MCMC as a gold

standard for measuring the performance of the other approximations. Depending on the likelihood,

we use two different sampling techniques; scaled Metropolis-Hastings sampling for the softmax

function, and Gibbs sampling for the multinomial probit function.

4.2.1 SCALED METROPOLIS-HASTINGS SAMPLING FOR SOFTMAX

To obtain samples from the posterior with the softmax likelihood, the following two steps are alter-

nated. Given the hyperparameter values, the latent values are drawn from the conditional posterior
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p(f|D,θ) using the scaled Metropolis-Hastings sampling (Neal, 1998). Then, the hyperparameters

can be drawn from the conditional posterior p(θ|f,D), for example, using the Hamiltonian Monte

Carlo (HMC) (Duane et al., 1987; Neal, 1996).

4.2.2 GIBBS SAMPLING FOR MULTINOMIAL PROBIT

Girolami and Rogers (2006) described how to draw samples from the joint posterior using the Gibbs

sampler. The multinomial probit likelihood (2) can be written in the form

p(yi|fi) =
∫

ψ(vyi

i > vk
i ∀k 6= yi)

c

∏
j=1

N (v
j
i | f

j
i ,1)dvi, (24)

where vi = [v1
i , ...,v

c
i ]

T is a vector of auxiliary variables, and ψ is the indicator function whose value

is one if the argument is true and zero otherwise. Gibbs sampling can then be employed by drawing

samples alternately for all i from p(vi|fi,yi) which is a conic truncation of the multivariate Gaussian

distribution, and from p(f|v,θ) which is a multivariate Gaussian distribution. Given v and f the

hyperparameters can be drawn, for example, using HMC.

4.3 Factorized Variational Approximation

A computationally convenient variational Bayesian approximation for p(f|D,θ) can be formed by

employing the auxiliary variable representation (24) of the multinomial probit likelihood. As shown

by Girolami and Rogers (2006), assuming f a posteriori independent of v (which contains all vi)

leads to the following approximation

qVB(v, f|D,θ) = q(v)q(f) =
n

∏
i=1

q(vi)
c

∏
j=1

q(f j),

where the latent values associated with the j’th class, f j, are independent. The posterior approxima-

tion q(f j) will be a multivariate Gaussian distribution, and q(vi) a conic truncation of the multivari-

ate Gaussian distribution (Girolami and Rogers, 2006). Given the hyperparameters, the parameters

of q(v) and q(f) can be determined iteratively by maximizing a variational lower bound on the

marginal likelihood. Each iteration step requires determining the expectations of vi with respect to

q(vi) which can be obtained by either one-dimensional numerical quadratures or sampling methods.

In our implementation, the hyperparameters θ are determined by maximizing the variational lower

bound with fixed q(v) and q(f) similarly as in the maximization step of the EM algorithm.

5. Experiments

This section is divided into five parts. In Section 5.1 we compare nested EP to quadrature-based

EP in cost and quality. In Section 5.2, we illustrate the differences of the nested EP and IEP ap-

proximations in a simple synthetic classification problem. In Section 5.3, we compare visually the

quality of the approximate marginal distributions of f, the marginal likelihood approximations and

the predictive class probabilities between EP, IEP, VB and LA using a three-class real-world data

set. In Section 5.4, we discuss the computational complexities of the different approximate meth-

ods, and in Section 5.5, we evaluate them in terms of predictive performance with estimation of the

hyperparameters using several benchmark data sets.
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5.1 Comparing Nested EP to Numerical Quadrature

In this section we first validate the accuracy of the inner EP approximation and the full quadrature

method described in Section 3.3 for estimation of the tilted moments. Then we compare the accuracy

and numerical cost of the nested EP approximation to several quadrature-based EP implementations.

In the comparisons, we use two different types of classification data: the Glass data set from the UCI

Machine Learning Repository (Frank and Asuncion, 2010), and the USPS 3 vs. 5 vs. 7 data set from

the US Postal Service (USPS) database (Hull, 1994). The USPS 3 vs. 5 vs. 7 data set is defined

as a three class sub-problem from the USPS repartitioned handwritten digits data by considering

classification of 3’s vs. 5’s vs. 7’s.3 The Glass data has six (c = 6) target classes but only a small

number of observations (n = 214), whereas the USPS 3 vs. 5 vs. 7 data has only three (c = 3) target

classes but a larger number of training points (n = 1157). See also Table 3.

In the first experiment, we examine the tilted moments after two parallel EP outer-loop iter-

ations when the parameters of the cavity distributions are clearly different from their initialized

values for all site terms. We fixed the hyperparameters of the squared exponential covariance func-

tion to log(σ2) = 1 and log(l) = 1, where the small value of the magnitude parameter leads to a

close-to-Gaussian posterior as will be discussed more in Section 5.3. The main reason for not us-

ing more difficult hyperparameter values (larger magnitude) in this experiment, was that we had

stability problems in the actual EP algorithm using quadratures. Stability could be improved by

increasing the number of quadrature points, but this became computationally too expensive with a

larger number of classes.

As a baseline approximation, we compute the normalization factors Ẑi, the mean vectors µ̂i,

and the covariance matrices Σ̂i of the tilted distribution (6) for all i = 1, . . . ,n using a (c + 1)-
dimensional Gauss-Hermite product rule with ten quadrature points in each dimension. We call

this quadrature method QF10. This provides us a reference by which inner EP and the following

four (c− 1)-dimensional Gauss-Hermite quadrature methods (see Section 3.3 for further details)

are assessed: Q5 using five and Q10 using ten quadrature points in each dimension with the full

matrix Λi, and QD5 using five and QD10 using ten quadrature points in each dimension with the

diagonal approximation Λ̃i. Note that implementing an EP algorithm using QF10, Q5 or Q10, we

would lose the linear posterior scaling in c. Figure 1 shows the pairwise differences of log Ẑi, and

all the entries of µ̂i and Σ̂i with respect to QF10. The mean values and the 95% intervals of the

differences are illustrated. The normalization, mean and covariance are well calibrated for all the

quadrature methods. Inner EP matches the mean and covariance accurately, but there is a small

bias in the normalization term, probably due to the skewed tilted distributions. Variations of the

pairwise differences are small with inner EP and the (c− 1)-dimensional quadratures as long as

there are enough quadrature points. Because QD10 agrees well with QF10, from now on, we use it

to compute the tilted moments in the full quadrature solution, and refer to this algorithm as QEP.

In the second experiment, we compare the nested and quadrature EP algorithms in accuracy and

computational cost. We use Gibbs sampling as a reference method by which nested EP and IEP,

QEP, and quadrature-based IEP (QIEP) are measured. Both nested EP algorithms are implemented

incrementally, so that only one inner-loop iteration per site is done at each outer-loop iteration step,

which results in computational savings (see Section 3.2.3). For QIEP we use the implementation

proposed by Seeger et al. (2006) with ten quadrature points for integration over the latent value

from each class. We compare the absolute differences of class probabilities and latent means and

3. We use the same data partition as discussed by Rasmussen and Williams (2006).
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Figure 1: A comparison of tilted moments after two parallel EP outer-loop iterations using the

Glass and USPS 3 vs. 5 vs. 7 data sets. Using a (c+ 1)-dimensional Gauss-Hermite

product rule with ten quadrature points in each dimension (QF10) as a baseline result,

we compare inner EP and the following (c− 1)-dimensional Gauss-Hermite quadrature

methods: five- and ten-dimensional product rules with full Λi (Q5 and Q10) and diagonal

Λ̃i (QD5 and QD10). The mean values and the 95% intervals of the pairwise differences

of Ẑi, and all the entries of µ̂i and Σ̂i with respect to QF10 are shown. See the text for

further details.

variances using the Glass and USPS 3 vs. 5 vs. 7 data sets with the same fixed hyperparameters

as earlier. We split the Glass data set randomly into training and test parts, and use the predefined

training and test parts for the USPS 3 vs. 5 vs. 7 data set. Table 1 reports the mean and maximum

values of the element-wise differences with respect to Gibbs sampling after 30 outer-loop iterations

of EP. Table 1 shows also the relative CPU times for training. From the table it can be seen that

the differences in accuracy between the methods are small. For the Glass data the fully-coupled EP

algorithms give slightly more accurate estimates for the mean and variances of the latents than the

IEP algorithms do, but the class probabilities are in practice the same across all the methods. The

main observation with the Glass data is that the CPU times of EP, IEP and QIEP are similar for

practical purposes, but QEP is clearly slower due to the unfavorable scaling in c. We acknowledge

that the performance differences in the relative CPU time are approximate and depend much on

the implementation, but to reduce these effects the same outer-loop implementation was used for

both nested and quadrature EP with the same fixed number of iterations. It is also worth to notice

that QEP and EP have practically the same CPU times with the USPS 3 vs. 5 vs. 7 data where

the number of target classes c is only three, but both of them are slower than the IEP algorithms

due to larger n and the additional n× n inversion needed in the posterior update with the fully-

coupled solutions (see also Section 5.4). We conclude that because the accuracy of nested and

quadrature EP are similar, and we experienced some stability problems with the quadrature solutions

in more difficult hyperparameter settings (larger values for the magnitude hyperparameter) and a
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Glass
Training Test

EP QEP IEP QIEP EP QEP IEP QIEP

Latent means
mean 0.048 0.047 0.058 0.067 0.043 0.043 0.055 0.058

max 0.181 0.186 0.190 0.217 0.176 0.177 0.193 0.181

Latent variances
mean 0.084 0.085 0.325 0.325 0.097 0.097 0.314 0.314

max 0.553 0.560 0.656 0.667 0.571 0.572 0.643 0.655

Class probabilities
mean 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.004

max 0.025 0.026 0.021 0.021 0.021 0.022 0.024 0.024

Relative CPU time 1.245 132.300 1.000 1.175

USPS 3 vs. 5 vs. 7
Training Test

EP QEP IEP QIEP EP QEP IEP QIEP

Latent means
mean 0.065 0.065 0.065 0.065 0.006 0.006 0.006 0.006

max 0.266 0.288 0.266 0.266 0.203 0.202 0.199 0.199

Latent variances
mean 0.167 0.167 0.167 0.167 0.215 0.215 0.216 0.215

max 0.724 0.724 0.723 0.731 1.021 1.021 1.021 1.021

Class probabilities
mean 0.008 0.008 0.013 0.013 0.001 0.001 0.001 0.001

max 0.040 0.043 0.059 0.058 0.022 0.024 0.035 0.035

Relative CPU time 2.542 2.602 1.000 1.001

Table 1: A comparison of nested and quadrature-based EP in terms of accuracy and cost using

the Glass and USPS 3 vs. 5 vs. 7 data sets. The table shows the element-wise mean and

maximum absolute differences of the latent means and variances and the class probabilities

for EP, QEP, IEP, and QIEP with respect to Gibbs sampling. See the text for further details.

small number of quadrature points (for example less than ten), from now on, we use nested EP and

IEP implementations due to their stability and good computational scaling.

5.2 Illustrative Comparison of EP and IEP with Synthetic Data

In this section, we study the properties of the proposed nested EP and IEP approximations in a

synthetic three-class classification problem with scalar inputs shown in Figure 2. The symbols x

(class 1), + (class 2), and o (class 3) indicate the positions of n = 15 training inputs generated

from three normal distributions with means -1, 2, and 3, and standard deviations 1, 0.5, and 0.5,

respectively. The left-most observations from class 1 can be better separated from the others but the

observations from classes 2 and 3 overlap more in the input space. We fixed the hyperparameters of

the squared exponential covariance function at the corresponding MCMC means: log(σ2) = 4.62

and log(l) = 0.26.

Figure 2(a) shows the predictive probabilities of all tree classes estimated with EP, IEP and

MCMC as a function of the input x. At the class boundaries, the methods give similar predictions

but elsewhere MCMC is the most confident while IEP seems more conservative. The performance

of EP is somewhere between MCMC and IEP, although the differences are small. To explain why
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Figure 2: A synthetic one-dimensional example of a three class classification problem, where the

MCMC, EP and IEP approximations are compared. The symbols x (class 1), + (class 2),

and o (class 3) in the bottom of the plots indicate the positions of n = 15 observations.

Plot (a) shows the predicted class probabilities, and (b) shows the predicted latent mean

values for all three classes. The symbols xi and x j indicate two example positions, where

the marginal distributions between the latent function values are illustrated in Figures 3

and 4. See the text for explanation.

the predictions differ, we look at the quality of the approximations made for the underlying f. Figure

2(b) shows the approximated latent mean values which are similar at all input locations.

To illustrate the approximate posterior uncertainties of f, we visualize two exemplary marginal

distributions at locations xi and x j marked in Figure 2. The MCMC samples of f 1
i and f 2

i (the

latents associated with classes 1 and 2 related to xi) together with a smoothed density estimate are

shown in Figure 3(a). The marginal distribution is non-Gaussian, and the latent values are more

likely larger for class 1 than for class 2 indicating a larger predictive probability for class 1. The

corresponding EP and IEP approximations are shown in Figures 3(b)-(c). EP captures the shape of

the true marginal posterior distribution better than IEP. To illustrate the effect of these differences

on the predictive probabilities, we show the unnormalized tilted distributions

p̂(gi|D,xi) = q(gi|D,xi)
c

∏
k=1,k 6=yi

Φ(gk
i ), (25)

where the random vector gi is defined in Section 3.2.1, and q(gi|D,xi) is the approximate marginal

obtained from q(fi|D,xi) by a linear transformation. Note that the marginal predictive probability

for class label yi with the multinomial probit model (2) can be obtained by appropriately forming

the transformation Bi and calculating the integral over gi in (25). Figures 3(d)-(f) show the contours

of the different approximations of p̂(gi|D,xi) for k ∈ {2,3}, which for MCMC are obtained using a

smoothed estimate of q(gi|D,xi) determined from transformed samples. The distributions are heav-

ily skewed by the probit factors elsewhere than the upper-right quadrant. Compared to the MCMC

estimate, IEP places more probability mass to the other quadrants, and therefore underestimates the

predictive probability for class 1 more than EP. The approximate predictive probabilities are 0.95

for MCMC, 0.88 for EP, and 0.82 for IEP.
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Figure 3: An example of a non-Gaussian marginal posterior distribution for the latent values related

to the input xi in the synthetic example shown in Figure 2. The first row shows the

distribution for the latents f 1
i and f 2

i . Plot (a) shows a scatter-plot of MCMC samples

drawn from the posterior and estimated density contour levels which correspond to the

areas that include approximately 95%, 90% 75%, 50%, and 25% of the probability mass.

Plots (b) and (c) show the equivalent contour levels of the EP and IEP approximations

(bold black lines) and the contour levels of the MCMC approximation (gray lines) for

comparison. Plots (d)-(f) show contours of p̂(gi|D,xi) for g2
i and g3

i . The probability for

class 1 is obtained by calculating the integral over gi, which results in approximately 0.95

for MCMC, 0.88 for EP, and 0.82 for IEP. See the text for explanation.

The second location x j is near the class boundary, where all the methods give similar predictive

probabilities, although the latent approximations can differ notably as shown in Figures 4(a)-(c),

which visualize the marginal approximations for f 2
j and f 3

j . EP is consistent with the MCMC

estimate but due to the independence constraint IEP underestimates the uncertainty of this close-to-

Gaussian but non-isotropic marginal distribution. Although Figures 4(d)-(f) show that IEP is more

inaccurate than EP, the integral over the tilted distribution of g j is in practice the same, since equal

amount of probability mass is distributed on both sides of the diagonal in Figure 4(c). The predictive

probability for class 2 is approximately 0.47 for all the methods.

5.3 Approximate Marginal Densities with Digit Classification Data

In this section, we compare the predictive performances and marginal likelihood approximations of

EP, IEP, VB and LA using the USPS 3 vs. 5 vs. 7 data set, which consists of 1157 training points
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Figure 4: An example of a close-to-Gaussian but non-isotropic marginal posterior distribution for

the latent values related to the input x j in the synthetic example shown in Figure 2. The

first row shows the distribution for the latents f 2
j and f 3

j . Plot (a) shows a scatter-plot

of MCMC samples drawn from the posterior and estimated density contour levels which

correspond to the areas that include approximately 95%, 90% 75%, 50%, and 25% of the

probability mass. Plots (b) and (c) show the equivalent contour levels of the EP and IEP

approximations (bold black lines) and the contour levels of the MCMC approximation

(gray lines) for comparison. Plots (d)-(f) show contours of p̂(g j|D,x j) for g1
j and g3

j . The

probability for class 2 is obtained by calculating the integral over g j, which results in

approximately 0.47 for all the methods. See the text for explanation.

and 1175 test points with 256 covariates. We fixed the hyperparameter values at log(σ2) = 4 and

log(l) = 2 which leads to skewed non-Gaussian marginal posterior distributions as will be illustrated

shortly.

Figure 5 shows the predictive probabilities of the true class labels for all the approximate meth-

ods plotted against the MCMC estimate. The first row shows the training and the second row the

test cases. Overall, EP gives the most accurate estimates while IEP slightly underestimates the prob-

abilities for the training cases but performs well for the test cases. Both VB and LA underestimate

the predictive probabilities for the test cases, but LA-TKP with the marginal corrections clearly

improves the estimates of the LA approximation. Note that the LA methods use a different obser-

vation model, and therefore they are compared to the scaled Metropolis-Hastings sampling with the

softmax model.

Figure 6 shows an example of the latent marginal posterior distributions for one training point

with the correct class label being 2. For each method, the latent pairs ( f 1
i , f 2

i ), ( f 1
i , f 3

i ), and ( f 2
i , f 3

i ),
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RIIHIMÄKI, JYLÄNKI AND VEHTARI

0 0.5 1
0

0.5

1
EP

(a)

0 0.5 1
0

0.5

1
IEP

(b)

0 0.5 1
0

0.5

1
VB

(c)

0 0.5 1
0

0.5

1
LA

(d)

0 0.5 1
0

0.5

1
LA−TKP

(e)

0 0.5 1
0

0.5

1
EP

(f)

0 0.5 1
0

0.5

1
IEP

(g)

0 0.5 1
0

0.5

1
VB

(h)

0 0.5 1
0

0.5

1
LA

(i)

0 0.5 1
0

0.5

1
LA−TKP

(j)

Figure 5: Class probabilities on the USPS 3 vs. 5 vs. 7 data. The MCMC estimates are shown

on the x-axis and EP, IEP, VB, LA, and LA-TKP on the y-axis. The first row shows

the predictive probabilities of the true class labels for the training points and the second

row for the test points. The symbols (x, +, o) corresponds to the handwritten digit target

classes 3, 5, and 7. The hyperparameters of the squared exponential covariance function

were fixed at log(σ2) = 4 and log(l) = 2.

are shown. The EP approximation agrees reasonably well with the MCMC samples. IEP under-

estimates the latent uncertainty, especially near the training inputs because of the skewing effect

of the likelihood. This seems to affect more the predictive probabilities of the training points in

Figure 5(b), which effect can also be seen in the previous example of Figure 2(a) further away from

the decision boundary near the input xi. Figure 6 shows that the VB method underestimates the

latent uncertainty. The independence assumption of VB leads to an isotropic approximate distribu-

tion, and although the predictive probabilities for the training cases are somewhat consistent with

MCMC, the predictions on the test data are less accurate (plots (c) and (h) in Figure 5). Note that

the specific hyperparameter values are not optimal for VB, and these values are not supported by

the marginal likelihood approximation of VB either, as will be visualized later in this section. The

LA approximation captures some of the dependencies between the latent variables associated with

different classes, but the joint mode of f is a poor estimate for the true mean, which causes inaccu-

rate predictive probabilities (plots (d) and (i) in Figure 5). The VB mean estimate is also closer to

LA than MCMC, although LA uses a different observation model.

Kuss and Rasmussen (2005) and Nickisch and Rasmussen (2008) discussed how a large value of

the magnitude hyperparameter σ2 can lead to a skewed posterior distribution in binary classification.

In the multiclass setting, similar behavior can be seen in the marginal distributions as illustrated in

Figures 3 and 6. A large σ2 leads to a more widely distributed prior which in turn is skewed more

strongly by the likelihood where it disagrees with the target class. In the previous comparison,

the hyperparameter values were chosen to produce non-Gaussian marginal posterior distributions
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Figure 6: Marginal posterior distributions for one training point with the true class label being 2

on the USPS 3 vs. 5 vs. 7 data. Each row corresponds to one of the latent pairs ( f 1
i , f 2

i ),

( f 1
i , f 3

i ), and ( f 2
i , f 3

i ). The first column shows a scatter-plot of MCMC samples drawn from

the posterior and estimated density contour levels which correspond to the areas that in-

clude approximately 95%, 90% 75%, 50%, and 25% of the probability mass. The rest of

the columns show the equivalent contour levels of the EP, IEP, VB, and LA approxima-

tions (bold black lines) and the contour levels of the MCMC approximation (gray lines)

for comparison. Note that the last column visualizes a different marginal distribution be-

cause LA uses the softmax likelihood. The hyperparameters of the squared exponential

covariance function were fixed at log(σ2) = 4 and log(l) = 2 to obtain a non-Gaussian

posterior distribution.

for demonstration purposes. However, usually the hyperparameters are estimated by maximizing

the marginal likelihood. Kuss and Rasmussen (2005) and Nickisch and Rasmussen (2008) studied

the suitability of the marginal likelihood approximations for selecting hyperparameters in binary

classification. They compared the calibration of predictive performance and the marginal likelihood

estimates on a grid of hyperparameter values. In the following, we extend these comparisons to

multiple classes with the USPS data set, for which similar considerations were done by Rasmussen

and Williams (2006) with the LA method.

The upper row of Figure 7 shows the log marginal likelihood approximations for EP, IEP, and

LA, and the lower bound on evidence for VB as a function of the log-lengthscale log(l) and log-

magnitude log(σ2) using the USPS 3 vs. 5 vs. 7 data. The middle row shows the log predictive

densities evaluated on the test set, and the bottom row shows the corresponding classification accu-
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Figure 7: Marginal likelihood approximations and predictive performances as a function of the log-

lengthscale log(l) and log-magnitude log(σ2) for EP, IEP, VB, and LA on the USPS 3

vs. 5 vs. 7 data. The first row shows the log marginal likelihood approximations, the

second row shows the log predictive densities in a test set, and the third row shows the

classification accuracies in a test set.

racies. The marginal likelihood approximations and predictive densities for EP and IEP appear to be

similar, but the maximum contour of the log marginal likelihood for IEP (the contour labeled with

-166 in plot (b) of Figure 7) does not coincide with the maximum contour of the predictive density

(the contour labeled with -76.5 in plot (f) of Figure 7), which is why a small bias can occur if the

approximate marginal likelihood is used for selecting the hyperparameter values. With EP there is

a good agreement between the maximum values in plots (a) and (e), and overall, the log predictive

densities are higher than with the other approximations. The log predictive densities of VB and LA

are small where log(σ2) is large (regions where q(f|D,θ) is likely to be non-Gaussian), but on the

other hand, also the marginal likelihood approximations favor the areas of smaller log(σ2) values.

There is a reasonable agreement with the marginal likelihood approximations and classification

accuracies with EP and IEP, although the maximum accuracies are slightly lower than with VB and

LA. The maximum accuracies are very high with VB, but the region of the highest accuracy does not

agree with the region of the highest estimate of the marginal likelihood. With LA the marginal like-
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lihood estimate is better calibrated in terms of classification accuracy, but the performance worsens

when the posterior distribution is skewed with large values of log(σ2).

5.4 Computational Complexity and Convergence

In this section we consider the computational complexities of the approximate methods for one

iteration with fixed hyperparameter values. Note that the following discussion is only approximate,

and that the practical efficiency of the algorithms depends much on implementations and the choices

of convergence criteria.

Table 2 summarizes the approximate scaling of the number of computations as a function of n

and c. EP and IEP refer to the fully-coupled and class-independent approximations, respectively, de-

termined with the proposed nested EP algorithm. QEP refers to the quadrature-based fully-coupled

solution using the diagonal approximation Λ̃i (see Section 3.3), QIEP refers to the quadrature-based

class-independent approximation proposed by Seeger et al. (2006), and MCMC refers to Gibbs sam-

pling with the multinomial probit model. The column Posterior complexity of Table 2 describes the

overall scaling of the mean and covariance calculations related to the approximate conditional pos-

terior of f. The base computational cost resulting from the full GP prior scales as O(n3) due to the

n× n matrix inversion (in practice computed using Cholesky decomposition), which is required c

times for IEP, QIEP and MCMC, and one additional time for EP, QEP and LA due to incorporation

of the between-class correlations. If the same prior covariance structure is used for all classes, VB

has the lowest cost, because only one matrix inversion is required per iteration.

The column Likelihood complexity of Table 2 approximates the scaling of the number of calcu-

lations that are required besides the posterior mean and covariance evaluations (mainly likelihood

related computations for one iteration). For both EP and IEP, this column describes the scaling

of the computations needed for the tilted moment approximations done with the inner EP algo-

rithm. For QEP the column summarizes the cost associated with a (c− 1)-dimensional quadrature

rule (denoted by nc−1
q ) required for the tilted moment evaluations, and for QIEP the cost of one-

and two-dimensional quadratures (denoted by nq and n2
q respectively) required under the indepen-

dence assumption. For LA the column shows the number of calculations required for evaluating

the first and second order derivatives of the softmax likelihood. Each VB iteration requires evalu-

ating the expectations of the auxiliary variables either by a quadrature or sampling, and the cost of

one such operation is denoted by nq (for example, the number of quadrature design points). Gibbs

sampling with the multinomial probit likelihood requires drawing from the conic truncation of a

c-dimensional normal distribution for each observation, and the cost of one draw is denoted by ns.

QEP scales inefficiently in c, and is therefore limited to cases with a moderate number of target

classes. The QIEP solution can be implemented efficiently because the same function evaluations

can be used in all of the 2c− 1 one-dimensional quadratures and the number of two-dimensional

quadratures does not depend on c. The cubic scaling in c−1 of the tilted moment evaluations in the

nested EP and IEP algorithms can be alleviated by reducing the number of inner-loop iterations nin

as discussed in Section 3.2.3.

Using the USPS 3 vs. 5 vs. 7 data set, we measured the CPU time required for the posterior

inference on f given nine different preselected hyperparameter values from the grid of Figure 7. With

our implementations, LA was the fastest, and EP and VB were about three times more expensive

than LA. Because of the efficient scaling (Table 2), VB should be much faster, and probably closer

to the running time of LA. One reason for the slow performance may be our implementation based
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Algorithm Posterior complexity Likelihood complexity

EP (c+1)n3 nnin(c−1)3

QEP (c+1)n3 nnc−1
q

IEP cn3 nnin(c−1)3

QIEP cn3 n((2c−1)nq +2n2
q)

VB n3 n(c−1)2nq

LA (c+1)n3 nc

MCMC (Gibbs sampling) cn3 ncns

Table 2: Approximate computational complexities of the various methods as a function of n and

c for one iteration with fixed hyperparameters. The column Posterior complexity sum-

marizes the scaling of the mean and covariance calculations related to the approximate

conditional posterior of f. The column Likelihood complexity approximates the scaling of

the number of calculations required for additional likelihood related computations. The

parameter nin refers to the number of inner EP iterations in nested EP, nc
q to the cost of a

c-dimensional numerical quadrature, and ns to the cost of sampling from a conic truncation

of a c-variate Gaussian distribution.

on importance sampling steps, which may result in slower convergence due to fluctuations. The

MCMC and LA-TKP approaches were overall very slow compared to LA. One iteration of MCMC

is relatively cheap, but in our experiments thousands of posterior samples were required to obtain

chains of sufficiently uncorrelated samples which is why MCMC was over hundred times slower

than LA. LA-TKP requires roughly c+1 times the CPU time of LA for computing the predictions

for each test input. Therefore, the computational cost of LA-TKP becomes quickly prohibitive as

the number of test points increases.

In the CPU time comparisons across the range of hyperparameter values producing variety of

skewed and non-isotropic posterior distributions, fully-coupled nested EP converged in fewer outer-

loop iterations than nested IEP if the same convergence criteria were used. Figure 8 illustrates the

difference in convergence with the USPS 3 vs. 5 vs. 7 and Glass data sets. We fixed the hyper-

parameters at log(σ2) = 8 and log(l) = 2.5 which results in good predictive performances on the

independent test data set with both methods for the USPS 3 vs. 5 vs. 7 data (see Figure 7). For both

methods, the negative log marginal likelihood approximation − logZEP and the mean log predic-

tive density (mlpd) in the test data set are shown after each iteration. Note that the converged EP

approximation satisfying the moment matching conditions between p̂(fi) and q(fi) corresponds to

stationary points of an objective function similar to − logZEP (Minka, 2001b; Opper and Winther,

2005). The convergence is illustrated with a small amount of damping (damping factor δ = 0.8) and

with a larger amount of damping (δ= 0.5). With the fully-coupled nested EP algorithm the damping

is applied on the inner-EP site parameters α̃i and β̃i, whereas with IEP the damping is applied on

the natural exponential site parameters ν̃i and Σ̃−1
i . In the columns denoted Standard in Figure 8,

the inner-loops of the nested EP and IEP algorithms are run until convergence at each outer-loop

iteration, whereas in the rest of the columns (Incremental) only one inner-loop iteration per site is

done at each outer-loop iteration. Recall from the previous discussion and from Table 2 that the
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Figure 8: A convergence comparison between EP and IEP using parallel updates in the outer EP

loop with the USPS 3 vs. 5 vs. 7 data (columns 1-3), and with the Glass data (columns

4-6). The first two rows show the negative log marginal likelihood estimates − logZEP

as a function of iterations for two different damping factors δ, and the bottom two rows

show the corresponding mean log predictive density (mlpd) evaluated using a separate

test data set. In the columns denoted Standard the inner-loops of the nested EP and IEP

algorithms are run until convergence at each outer-loop iteration, whereas in the rest of

the columns (Incremental) only one inner-loop iteration per site is done at each outer-loop

iteration. The hyperparameters of the squared exponential covariance function were fixed

at log(σ2) = 8 and log(l) = 2.5 which results in a non-Gaussian posterior distribution.

incremental updates (nin = 1) reduce the computational burden of the inner-loop of the nested EP

algorithm which scales as O(nin(c−1)3).

From Figure 8 it can be seen that the incremental updates require more damping than standard

updates, but both update schemes seem to converge into the same solution. There is a clear dif-

ference in the amplitude of oscillations between the nested EP and IEP algorithms with the same

damping level but this may be partly caused by the different parameterization. Compared to fully-

coupled EP, there is a slow drift in − logZEP and in the mlpd score even after 20 iterations with

IEP, and the drift is more visible with the Glass data. One explanation for this behavior can be that

the fully-coupled Gaussian distribution is more suitable approximating family for the true poste-

rior (Minka, 2005), which is strongly non-Gaussian because of the large magnitude hyperparameter

value, and has stronger between-class posterior dependencies induced through the likelihood terms

because of the relatively large lengthscale.

5.5 Predictive Performance Across Data Sets with Hyperparameter Estimation

In this section we assess the predictive performances with estimation of the hyperparameters. We

compare the performances of nested EP and IEP, VB, LA, LA-TKP, and Gibbs sampling with the

multinomial probit model (MCMC) on various benchmark data sets. All the methods are compared
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Data Set ntrain ntest Classes (c) Covariates (d) ARD

New-thyroid 215 215 (Ten-fold CV) 3 5 yes

Teaching 151 151 (Ten-fold CV) 3 5 yes

Glass 214 214 (Ten-fold CV) 6 9 yes

Wine 178 178 (Ten-fold CV) 3 13 yes

Image segmentation 210 2100 7 18 no

USPS 3 vs. 5 vs. 7 1157 1175 3 256 no

USPS 10-class 4649 4649 10 256 no

Table 3: Data sets used in the experiments.

using the USPS 3 vs. 5 vs. 7 data, and the following five UCI Machine Learning Repository (Frank

and Asuncion, 2010) data sets: New-thyroid, Teaching, Glass, Wine, and Image segmentation. The

comparisons are also done using the USPS 10-class data set, but only for EP, IEP, VB, and LA due

to the large n. The main characteristics of the data sets are summarized in Table 3.

For all the data sets, we standardize the covariates to zero mean and unit variance, and use the

squared exponential covariance function with the same hyperparameters for all classes. For the Im-

age segmentation and USPS data sets we use a common lengthscale parameter for all dimensions.

For other data sets we set individual lengthscale parameters for each input dimension (Automatic

Relevance Determination, ARD, see, for example, Rasmussen and Williams, 2006). To avoid un-

necessarily large hyperparameter values, we place a weakly informative prior on the lengthscale and

magnitude parameters by choosing a half Student-t distribution with four degrees of freedom and

variance equal to one hundred. With MCMC we sample the hyperparameters, and with the other

methods, we use gradient-based type-II MAP estimation to select the hyperparameter values. The

predictive performance is measured using a ten-fold cross-validation (CV) with four of the data sets,

and using predetermined training and test sets with three of the data sets (see Table 3).

The first and third column in Figure 9 visualize the mean log predictive densities and their ap-

proximate 95% central credible intervals for six data sets estimated using the Bayesian bootstrap

method as described by Vehtari and Lampinen (2002). To highlight the differences between the

methods more clearly, we compute the pairwise differences of the log posterior predictive densities

with respect to EP. The second and fourth column in Figure 9 show the mean values and the approx-

imate 95% central credible intervals of the pairwise differences. The comparisons reveal that EP

performs well when compared to MCMC; only in the Teaching and Image segmentation data sets

MCMC is significantly better. IEP performs worse than EP in all the data sets except Teaching and

Glass. The predictive densities of VB and LA are overall worse than EP, IEP or MCMC. LA-TKP

improves the performance of LA with all the data sets except Teaching.

The first and third column in Figure 10 visualize the mean classification accuracies and their

approximate 95% central credible intervals. The second and fourth column in Figure 10 show the

pairwise mean differences of the classification accuracies together with the approximate 95% central

credible intervals with respect to EP. Because the difference of the classification outcomes for each

observation is a discrete variable with three possible values (worse, same, or better than EP), we use

a multinomial model with a non-informative Dirichlet prior distribution for the comparison test. In

a case where the method has exactly the same predictions as EP, a small circle is plotted at the mean

value. The differences between all the methods are small. In the Teaching data set, where the overall
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Figure 9: The first and third column: The mean log predictive densities and their approximate 95%

credible intervals for six data sets (see Table 3) using EP, IEP, VB, LA, LA-TKP, and

MCMC with Gibbs sampling. The second and fourth column: The pairwise differences

of the log predictive densities with respect to EP (mean + approximate 95% credible

intervals). Values above zero indicate that a method is performing better than EP.

accuracy is the lowest, the MCMC estimate is significantly better than any other method. There is

no statistically significant difference between EP and IEP; IEP performs slightly better in the Wine

data set, but EP has a better accuracy in the Glass and Image segmentation data sets, which both

have more than three target classes, and in which the overall classification accuracies are among the

lowest. LA has a good classification accuracy, and performs better than EP in Image segmentation.

A possible explanation for this is the different shape of the softmax likelihood function used by LA.

If the classification accuracy is the only criterion, the LA-TKP correction seems unnecessary. VB

has the lowest classification performance and is significantly worse than the other methods in the

Image segmentation and USPS 3 vs. 5 vs. 7 data sets, which is probably caused by a worse estimate

of the hyperparameter values.

Finally, we summarize the mlpd scores and classification accuracies of EP, IEP, VB, and LA with

the USPS 10-class data set in Figure 11. Both EP approaches are significantly better than VB or

LA with both measures. Considering the EP approaches, fully-coupled EP achieves a slightly better
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Figure 10: The first and third column: The classification accuracies and their approximate 95%

credible intervals for six data sets (see Table 3) using EP, IEP, VB, LA, LA-TKP, and

MCMC with Gibbs sampling. The second and fourth column: The pairwise differences

of the classification accuracies with respect to EP (mean + approximate 95% credible

intervals). Values above zero indicate that a method is performing better than EP. A

small circle is plotted at the mean value if the predictions are exactly the same as with

EP.

mlpd score, whereas IEP is slightly better in terms of classification accuracy, but the differences are

not statistically significant.

6. Conclusions and Further Research

EP approaches for GP classification with the multinomial probit model have already been proposed

by Seeger et al. (2006) and Girolami and Zhong (2007). In this paper, we have complemented

their work with a novel quadrature-free nested EP algorithm that maintains all between-class pos-

terior dependencies but still scales linearly in the number of classes. Our comparisons with fixed

hyperparameters show that compared to quadrature-based EP algorithms, nested EP achieves sim-

ilar accuracy, and its computational cost is comparable with a class-independent approximation

whereas with full posterior couplings nested EP scales more efficiently. When the hyperparame-
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Figure 11: The mean log predictive densities (a) and classification accuracies (c) for the USPS 10-

class data set (see Table 3) using EP, IEP, VB, and LA. The pairwise differences of the

log predictive densities and the classification accuracies with respect to EP are shown

in plots (b) and (d), respectively. In plots (b) and (d) values above zero indicate that

a method is performing better than EP. In each plot, the mean values and approximate

95% central credible intervals are shown.

ters are determined by optimizing the marginal likelihood, nested EP is a consistent approximate

method compared to full MCMC. In terms of predictive density, nested EP is close to MCMC, and

more accurate compared to VB and LA, but if only the classification accuracy is concerned, all the

approximations perform similarly. LA-TKP improves the predictive density estimates of LA but the

computational cost becomes increasingly demanding if a larger number of predictions are needed.

In our comparisons the predictive accuracies of the full EP and IEP solutions obtained using

the nested EP algorithm are similar for practical purposes. However, our visualizations show that

the approximate marginal posterior distributions of the latent values provided by full EP are clearly

more accurate, although the full nested EP solution can be calculated with similar computational

burden as nested IEP. Because there is no convergence guarantee for the standard EP algorithm,

it is worth to notice the differences in the convergence properties of full EP and IEP observed in

our experiments. With the same hyperparameter values, nested IEP converged more slowly and

required more damping than full nested EP. This can be due to slower propagation of information

caused by the independence assumptions, and this behavior can get worse as the between-class

posterior couplings get stronger with certain hyperparameter values. Given all these observations,

we prefer full EP to IEP.

Models in which each likelihood term related to a certain observation depends on multiple

latent values, such as the multinomial probit, are challenging for EP because a straightforward

quadrature-based implementation may become computationally infeasible unless independence as-

sumptions between the latent values or some other simplifications are made. In the presented nested

EP approach, we have applied inner EP approximations for each likelihood term within an outer

EP framework in a computationally efficient manner. This approach could be applicable also for

other similar multi-latent models which involve integral representations consisting of simple factor-

ized functions each depending on linear transformations of the latent variables. For example, one

straightforward extension would be linear multinomial probit regression with Gaussian priors on

the weights.

A drawback with GP classifiers is the fundamental computational scaling O(n3) resulting from

the prior structure. To speed up the inference in multiclass GP classification, sparse approximations
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such as the informative vector machine (IVM) have been proposed (Seeger and Jordan, 2004; Giro-

lami and Rogers, 2006; Seeger et al., 2006). IVM uses the information provided by all observations

to form an active subset which is then used to form the posterior mean and covariance approxi-

mations. The presented EP approach could be extended to IVM in a similar fashion as described

by Seeger and Jordan (2004). The accurate marginal approximations of full EP could be useful in

determining the relative entropy measures used as a scoring criterion to select the active set. To

speed up the computations, the inner EP site parameters could be updated iteratively even for the

observations not in the active set in a similar fashion as described in Section 3.2. Recently, a similar

approach to IVM called predictive active set selection (PASS-GP) has been proposed by Henao and

Winther (2010) to lower the computational complexity in binary GP classification. PASS-GP uses

the approximate cavity and cavity predictive distributions of EP to determine a representative active

set. The proposed EP approach could prove useful when extending PASS-GP to multiple classes,

because it provides accurate marginal predictive density estimates.

The presented fully-coupled nested EP approach for approximate inference with Gaussian pro-

cess models is implemented in the free GPstuff software package and the code will be made avail-

able at http://becs.aalto.fi/en/research/bayes/gpstuff/.
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Appendix A. Approximating Tilted Moments Using EP

For convenience, we summarize the inner EP algorithm for approximating the tilted moments result-

ing from a multinomial probit likelihood. Essentially the same algorithm was presented by Minka

(2001a) for classification with the Bayes point machine and later by Qi et al. (2004) for the binary

probit classifier. To facilitate a computationally efficient implementation, the following algorithm

description is written with an emphasis to reduce the number of vector and matrix operations in a

similar fashion as in the general EP formulation presented by Cseke and Heskes (2011, Appendix

C).

We want to approximate the normalization, mean and covariance of the tilted distribution

p̂(wi) = Ẑ−1
i N (wi|µwi

,Σwi
)

c

∏
j=1, j 6=yi

Φ(wT
i b̃i, j).

This is done using the EP algorithm which results in the following Gaussian approximation

q̂(wi) = Z−1
q̂i

N (wi|µwi
,Σwi

)
c

∏
j=1, j 6=yi

Z̃ jN (wT
i b̃i, j|β̃i, jα̃

−1
i, j , α̃

−1
i, j ) = N (wi|µq̂i

,Σq̂i
),

where we have used the natural parameters α̃i, j (precision) and β̃i, j (location) for the site approxi-

mations. The index i denotes the i’th observation, and to clarify the notation below, we leave out

this index from the inner EP terms. In the first outer-loop, the site parameters α̃ and β̃ are initialized

to zero, µq̂i
to µwi

, and Σq̂i
to Σwi

. After the first outer-loop, these parameters are initialized to their
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last values from the previous outer-loop iteration for speed-up. The following steps are repeated for

all j = {1, . . . ,c| j 6= yi} until convergence.

1. Cavity evaluations:

v− j = (v−1
j − α̃ j)

−1,

m− j = v− j(v
−1
j m j − β̃ j),

where scalars v j = b̃T
i, jΣq̂i

b̃i, j and m j = b̃T
i, jµq̂i

correspond to the marginal distribution of latent

g
j
i = wT

i b̃i, j.

2. Tilted moments for g
j
i :

Ẑ j = Φ(z j),

m̂ j = ρ jv− j +m− j,

v̂ j = v− j − v2
− jγ j,

where z j = m− j(1+ v− j)
−1/2, ρ j =

N (z j|0,1)
Φ(z j)

(1+ v− j)
−1/2 and γ j = ρ2

j + z jρ j(1+ v− j)
−1/2.

3. Site updates with damping:

∆α̃ j = δ(v̂−1
j − v−1

j ),

∆β̃ j = δ(v̂−1
j m̂ j − v−1

j m j),

where δ ∈ (0,1] is the damping factor.

4. Rank-1 covariance update:

Σnew
q̂i

= Σq̂i
−φ j(1+∆α̃ jv j)

−1∆α̃ jφ
T
j ,

µnew
q̂i

= µq̂i
+φ j(1+∆α̃ jv j)

−1(∆β̃ j −∆α̃ jm j),

where φ j = Σq̂i
b̃i, j.

Alternatively, the rank-1 updates of step 4 could be replaced by only one parallel covariance update

after each sweep over the sites indexed by j.

After convergence, we evaluate the normalization Zq̂i
of the tilted distribution as

logZq̂i
=

1

2
µT

q̂i
Σ−1

q̂i
µq̂i

+
1

2
log |Σq̂i

|−
1

2
µT

wi
Σ−1

wi
µwi

−
1

2
log |Σwi

|+
c

∑
j=1, j 6=yi

log Ẑ j

+
1

2

c

∑
j=1, j 6=yi

(

m2
− jv

−1
− j + logv− j

)

−
1

2

c

∑
j=1, j 6=yi

(

m2
jv

−1
j + logv j

)

.
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Appendix B. Details of Posterior Computations

The site covariance can be written as T̃ = D−DR(RT DR)−1RT D, where D is a cn× cn diagonal

matrix D = diag
[

π1
1, . . . ,π

1
n,π

2
1, . . . ,π

2
n, . . . ,π

c
1, . . . ,π

c
n

]T
, and R is a cn×n matrix consisting of iden-

tity matrices In stacked c times vertically. To compute predictions related to a test point x∗, we need

to first evaluate the mean and covariance of f∗ =
[

f 1
∗ , f 2

∗ , . . . , f c
∗

]T
as

E[f∗] = K∗ν̃−K∗MKν̃, (26)

Cov[f∗] = K∗,∗−K∗MKT
∗ , (27)

where ν̃ contains all ν̃i in the same order with f, M = T̃ (Icn +KT̃ )−1, K∗ is a c× cn covariance

matrix between the test point and the training points, and K∗,∗ is a c× c covariance matrix for the

test point. The matrix M in Equations (26) and (27) can be evaluated using

M = B−BRP−1RT B,

where B = D1/2A−1D1/2, P = RT BR, and A = Icn +D1/2KD1/2. To evaluate expressions involving

M, we compute the Cholesky decompositions of P and the c diagonal blocks of A, which results in

the scaling O((c+ 1)n3). The predictive mean and covariance can be computed using the block-

diagonal structure of B and the sparse structure of K∗. Given E[f∗] and Cov[f∗], the integration over

the posterior uncertainty of f∗ required to compute the predictive class probabilities, is equivalent to

the tilted moment evaluation, and can be approximated using the algorithm described in Appendix

A.

To compute the marginal mean µi (a vector of length c) and covariance Σi (a matrix of size

c× c) of the training latent fi for all i during the posterior update step in the outer-loop iteration,

we replace K∗ and K∗,∗ with K in Equations (26) and (27), and compute only the required blocks

of the full posterior covariance matrix. After convergence of the outer EP algorithm, the marginal

likelihood approximation of EP can be computed as

logZEP =
1

2
ν̃Tµ−

1

2
log |Icn +KT̃ |+

n

∑
i=1

logZq̂i
+

1

2

n

∑
i=1

(

µT
−iΣ

−1
−i µ−i + log |Σ−i|

)

−
1

2

n

∑
i=1

(

µT
i Σ−1

i µi + log |Σi|
)

, (28)

where µ−i and Σ−i are the i’th cavity mean and covariance, and the posterior mean µ contains all

µi. The normalization terms Zq̂i
are obtained from the inner EP algorithm described in Appendix

A. Finally, the determinant term in (28) can be evaluated as

|Icn +KT̃ |= |A||RT DR|−1|P|.

The gradients of the log marginal likelihood with respect to θ can be obtained by calculating

only the explicit derivatives of the first two terms of (28). The implicit derivatives with respect

to the site parameters and cavity parameters (in their natural exponential forms) of the outer EP

cancel each other out in the convergence (Opper and Winther, 2005; Seeger, 2005). Since the

likelihood does not depend on any hyperparameters, the explicit derivatives of logZq̂i
are zero. Also

the implicit derivatives of logZq̂i
with respect to the inner EP parameters cancel out because these

terms are formed as marginal likelihood approximations with the inner EP, which also satisfies the

same cancellation property of the EP algorithm.
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Abstract

We present new measures of the causal direction, or direction of effect, between two non-Gaussian

random variables. They are based on the likelihood ratio under the linear non-Gaussian acyclic

model (LiNGAM). We also develop simple first-order approximations of the likelihood ratio and

analyze them based on related cumulant-based measures, which can be shown to find the correct

causal directions. We show how to apply these measures to estimate LiNGAM for more than two

variables, and even in the case of more variables than observations. We further extend the method

to cyclic and nonlinear models. The proposed framework is statistically at least as good as existing

ones in the cases of few data points or noisy data, and it is computationally and conceptually very

simple. Results on simulated fMRI data indicate that the method may be useful in neuroimaging

where the number of time points is typically quite small.

Keywords: structural equation model, Bayesian network, non-Gaussianity, causality, independent

component analysis

1. Introduction

Estimating structural equation models (SEMs), or linear Bayesian networks is a challenging prob-

lem with many applications in bioinformatics, neuroinformatics, and econometrics. If the data is

Gaussian, the problem is fundamentally ill-posed. Recently, it has been shown that using the non-

Gaussianity of the data, such models can be identifiable (Shimizu et al., 2006). This led to the

Linear Non-Gaussian Acyclic Model, or LiNGAM.

The original method for estimating LiNGAM was based on first applying independent compo-

nent analysis (ICA) to the data and then deducing the network connections from the results of ICA.

However, we believe that it may be possible to develop better methods for estimating LiNGAM

directly, without resorting to ICA algorithms.

c©2013 Aapo Hyvärinen and Stephen M. Smith.
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A framework called DirectLiNGAM was, in fact, proposed by Shimizu et al. (2011) to provide

an alternative to the ICA-based estimation. DirectLiNGAM was shown to give promising results

especially in the case where the number of observed data points is small compared to the dimension

of the data. It can also have algorithmic advantages because it does not need gradient-based iterative

methods. An essential ingredient in DirectLiNGAM is a measure of the causal direction between

two variables.

An alternative approach to estimating SEMs is to first estimate which variables have connec-

tions and then estimate the direction of the connection. While a rigorous justification for such an

approach may be missing, this is intuitively appealing especially in the case where the amount of

data is limited. Determining the directions of the connections can be performed by considering each

connection separately, which requires, again, analysis of the causal direction between two variables.

Such an approach was found to work best by Smith et al. (2011) which considered causal analysis

of simulated functional magnetic resonance imaging (fMRI) data, where the number of time points

is typically small. A closely related approach was proposed by Hoyer et al. (2008), in which the PC

algorithm was used to estimate the existence of connections, followed by a scoring of directions by

an approximate likelihood of the LiNGAM model; see also Ramsey et al. (2011).

Thus, we see that measuring pairwise causal directions is a central problem in the theory of

LiNGAM and related models. In fact, analyzing the causal direction between two non-Gaussian

random variables (with no time structure) is an important problem in its own right, and was consid-

ered in the literature before the advent of LiNGAM (Dodge and Rousson, 2001).

In this paper, we develop new measures of causal direction between two non-Gaussian random

variables, and apply them to the estimation of LiNGAM. The approach uses the ratio of the like-

lihoods of the models corresponding to the two directions of causal influence. A likelihood ratio

is likely to provide a statistically powerful method because of the general optimality properties of

likelihood. We further propose first-order approximations of the likelihood ratio which are easy

to compute and have simple intuitive interpretations. They are also closely related to higher-order

cumulants and may be more resistant to noise. The framework is also simple to extend to cyclic or

nonlinear models.

The paper is structured as follows. The measures of causal directions are derived in Section 2.

In Section 3 we show how to apply them to estimating the model with more than two variables.

The extension to cyclic models is proposed in Section 4 and an extension to a nonlinear model in

Section 5. We report simulations with comparisons to other methods in Section 6, experiments on

simulated brain imaging data in Section 7, and results on a publicly available benchmark data set in

Section 8. Section 9 concludes the paper. Preliminary results were published by Hyvärinen (2010).

2. Finding Causal Direction Between Two Variables

In this section, we present our main contribution: new measures of causal direction between two

random variables.

This section is structured as follows: We first define the problem in Section 2.1. We derive

the likelihood ratio in Section 2.2. We propose a general-purpose approximation for the likelihood

ratio in Section 2.3. The connection to mutual information is explained in Section 2.4. We derive

a particularly simple approximation for the likelihood ratio in Section 2.5, and propose an instance

for the case of sparse, symmetric densities. A theoretical analysis of the approximation based on

cumulants is given in Section 2.6. We give intuitive interpretations of the approximations in Sec-
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tion 2.7, and discuss their noise-tolerance in Section 2.8. Finally, we show how to use the likelihood

ratio approximations in the case of skewed variables in Section 2.9.

For the benefit of the reader, we have further created Table 3 in the Conclusion on page 150 that

lists the main new measures proposed in this paper.

2.1 Problem Definition

Denote the two observed random variables by x and y. Assume they are non-Gaussian, as well as

standardized to zero mean and unit variance. Our goal is to distinguish between two causal models.

The first one we denote by x → y and define as

y = ρx+d

where the disturbance d is independent of x, and the regression coefficient is denoted by ρ. The

second model is denoted by y → x and defined as

x = ρy+ e

where the disturbance e is independent of y. The parameter ρ is the same in the two models because

it is equal to the correlation coefficient. Note that these models belong to the LiNGAM family

(Shimizu et al., 2006) with two variables. In the following, we assume that x,y follow one of these

two models.

Note that in contrast to Dodge and Rousson (2001) or Dodge and Yadegari (2010), we do not

assume that d or e are normal, or have zero cumulants. We make no assumptions on their distribu-

tions. It is not even necessary to assume that they are non-Gaussian; it is enough that x and y are

non-Gaussian. (This is related to the identifiability theorem in ICA which says that one of the latent

variables can be non-Gaussian, see Comon, 1994).

2.2 Likelihood Ratio

An attractive way of deciding between the two models is to compute their likelihoods and their ratio.

Consider a sample (x1,y1), . . . ,(xT ,yT ) of data. The likelihood of the LiNGAM in which x → y was

given by Hyvärinen et al. (2010) as

logL(x → y) =

[

∑
t

Gx(xt)+Gd(
yt −ρxt
√

1−ρ2
)

]

−T log(1−ρ2)

where Gx(u) = log px(u), and Gd is the standardized log-pdf of the residual when regressing y on x.

The last term here is a normalization term due to the use of standardized log-pdf Gd . From this we

can compute the likelihood ratio, which we normalize by 1
T

for convenience:

R =
1

T
logL(x → y)− 1

T
logL(y → x)

=
1

T
∑

t

Gx(xt)+Gd(
yt −ρxt
√

1−ρ2
)−Gy(yt)−Ge(

xt −ρyt
√

1−ρ2
). (1)

We can thus compute R and decide based on it what the causal direction is. If R is positive, we

conclude x → y, and if it is negative, we conclude y → x.
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To use (1) in practice, we need to choose the G’s and estimate ρ. The statistically optimal way

of estimating ρ would be to maximize the likelihood, but in practice it may be better to estimate

it simply by the conventional least-squares solution to the linear regression problem. Nevertheless,

maximization of likelihood might be more robust against outliers, because log-likelihood functions

often grow more slowly than the squaring function when moving away from the origin.

Choosing the four log-pdf’s Gx,Gy,Gd,Ge could, in principle, be done by modelling the relevant

log-pdf’s by parametric (Karvanen and Koivunen, 2002) or non-parametric (Pham and Garrat, 1997)

methods, which will be discussed in more detail below. However, for small sample sizes such

modelling can be very difficult. In the following, we provide various parametric approximations.

2.3 Maximum Entropy Approximations of Likelihood Ratio

The likelihood ratio has a simple information-theoretic interpretation which also means we can use

well-known entropy approximations for its practical computation in the case where we do not want

to postulate functional forms for the G’s.

If we take the asymptotic limit of the likelihood ratio, we obtain

R −→−H(x)−H(d̂/σd)+H(y)+H(ê/σe) (2)

where we denote differential entropy by H, the estimated residuals by d̂ = y−ρx, ê = x−ρy, and

the variances of the estimated residuals by σ2
d ,σ

2
e .

Thus, we can approximate the likelihood ratio using any general, possibly non-parametric, ap-

proximations of differential entropy. For example, we can use the maximum entropy approxima-

tions by Hyvärinen (1998) which are computationally simple. In fact, we only need to approximate

one-dimensional differential entropies, which is much simpler than approximating two-dimensional

entropies.

One version of the approximations by Hyvärinen (1998) is given by

Ĥ(u) = H(ν)− k1[E{logcoshu}− γ]2 − k2[E{uexp(−u2/2)}]2 (3)

where H(ν) = 1
2
(1+ log2π) is the entropy of the standardized Gaussian distribution, and the other

constants are numerically evaluated as

k1 ≈ 79.047,

k2 ≈ 7.4129,

γ ≈ 0.37457.

This approximation is valid for standardized variables; in fact, all the variables in (2) are standard-

ized. The intuitive idea in this approximation is that since the Gaussian distribution has maximum

entropy among all distributions of unit variance, entropy can be approximated by a measure of non-

Gaussianity which is subtracted from H(ν). The sum of the second and third terms on the right-hand

side of (3) is a measure of non-Gaussianity (ignoring their negative signs) since the terms are the

squared differences of certain statistics from the corresponding values obtained for a Gaussian dis-

tribution. In fact, γ is defined as the expectation of logcosh for a standardized Gaussian distribution,

so the second term on the right-hand side is zero for a Gaussian distribution, just like the skewness-

like statistic measured by the last term.
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The expression in (2) also readily gives a simple intuitive interpretation of the estimation of

causal direction. The (negative) entropies can all be interpreted as measures of non-Gaussianity,

since the variables are standardized. Thus, in (2) we essentially compute the sum of the non-

Gaussianities of the explaining variable and the resulting residual, and compare them for the two

directions. The directions which leads to maximum non-Gaussianity is chosen.1

2.4 Connection to Mutual Information

It is also possible to give an information-theoretic interpretation which connects the likelihood ratios

to independence measures.

A widely-used independence measure is mutual information, defined for two variables x,y as

I(x,y) = H(x)+H(y)−H(x,y)

where H denotes differential entropy. For a linear transformation
(

u

v

)

= A

(

x

y

)

,

we have the entropy transformation formula

H(u,v) = H(x,y)+ log |detA|.
On the other hand, the transformation from x,y to x,d has unit determinant, since

(

x

y

)

=

(

1 0

a 1

)(

x

d

)

.

Thus, we have

H(x,d) = H(x,y)

and likewise for H(y,e). We can now consider the mutual information of the regressors and the

residuals in the two models, and in particular, compute the difference of the mutual informations to

see which one is smaller. In fact, the difference of the mutual informations is asymptotically equal

to the likelihood ratio R since

I(x,d)− I(y,e) = H(x)+H(d)−H(x,d)− (H(y)+H(e)−H(y,e))

= H(x)+H(d)−H(y)−H(e) = H(x)+H(
d

σd

)−H(y)−H(
e

σe

)− logσd + logσe

= H(x)+H(
d

σd

)−H(y)−H(
e

σe

)

where the joint entropies H(x,e) and H(y,d) as well as the variances of the residuals (which are

equal) cancel. Thus, our criterion is equivalent to evaluating the independence of x vs. d and y vs. e

using mutual information, and choosing the direction in which the regressor is more independent of

the residual.

Again, these developments show the important practical advantage that we only need to eval-

uate one-dimensional entropies, although the definition of mutual information contains a two-

dimensional entropy.

1. Note that this is not the same as the simple heuristic approach in which we only compute the non-Gaussianities of the

actual variables x,y and assume that direction must be from the more non-Gaussian variable to the less non-Gaussian

one.
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2.5 First-Order Approximation of Likelihood Ratio

Next we develop some simple approximations of the likelihood ratio. Our goal is to find causality

measures which are simpler (conceptually and possibly also computationally) than the likelihood

ratio or its general approximation given above.

Let us make a first-order approximation

G(
y−ρx

√

1−ρ2
) = G(y)−ρxg(y)+O(ρ2)

where g is the derivative of G, and likewise for the regression in the other direction. Then, we get

the approximation R̃:

R ≈ R̃ =
1

T
∑

t

G(xt)+G(yt)−ρxtg(yt)−G(yt)−G(xt)+ρytg(xt) =
ρ

T
∑

t

−xtg(yt)+g(xt)yt .

Pham and Garrat (1997) proposed a method for estimating the derivatives of log-pdf’s of random

variables. Their method could be directly used for estimating g. However, since our main goal here

is to find methods which work for small sample sizes, we try to avoid such estimation of the g’s

which has potentially a very large number of parameters. Instead, here we assume that we have

some prior knowledge on the distributions of the variables in the model. In fact, a result well-

known in the theory of ICA is that it does not matter very much how we choose the log-pdf’s in the

model as long as they are roughly of the right kind (Hyvärinen et al., 2001). This claim is partly

justified by the cumulant-based analysis and simulations below.

In particular, very good empirical results are usually obtained by modelling any sparse (i.e.,

super-Gaussian, or positively kurtotic), symmetric densities by either the logistic density

G(u) =−2logcosh(
π

2
√

3
u)+ const. (4)

or the Laplacian density

G(u) =−
√

2|u|+ const.

where the additive constants are immaterial. The Laplacian density is not very often used in ICA

because its derivative is discontinuous at zero which leads to problems in maximization of the ICA

likelihood. However, here we do not have such a problem so we can use the Laplacian density as

well.

Thus, if we approximate all the log-pdf’s by (4), we get the “non-linear correlation”

R̃sparse = ρÊ{x tanh(y)− tanh(x)y} (5)

where we have omitted the constant π
2
√

3
which is close to one, as well as a multiplicative scaling

constant. Here, Ê means the sample average. This is the quantity we would use to determine the

causal direction. Under x → y, this is positive, and under y → x, it is negative.

2.6 Cumulant-Based Approach

To get further insight into the likelihood ratio approximation in (5), we consider a cumulant-based

approach which can be analyzed exactly. The theory of ICA has shown that cumulant-based ap-

proaches can shed light into the convergence properties of likelihood-based approaches. However,
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cumulant-based methods tend to be very sensitive to outliers, so their utility is mainly in the theo-

retical analysis; for analysing real data, the measure in (5) is preferred.

Here, an approach based on fourth-order cumulants is possible by defining

R̃c4(x,y) = ρÊ{x3y− xy3} (6)

where the idea is that the third-order monomial analyzes the main nonlinearity in the nonlinear

correlation. In fact, we can approximate tanh by a Taylor expansion

tanh(u) = u− 1

3
u3 +O(u5). (7)

Then, first-order terms are immaterial because they produce terms like Ê{xy−xy} which cancel out,

and the third-order terms can be assumed to determine the qualitative behaviour of the nonlinearity.

Our main results of the cumulant-based approach is the following:

Theorem 1 If the causal direction is x → y, we have

R̃c4 = kurt(x)(ρ2 −ρ4) (8)

where kurt(x) = E{x4}−3 is the kurtosis of x. If the causal direction is the opposite, we have

R̃c4 = kurt(y)(ρ4 −ρ2). (9)

Proof Consider the fourth-order cumulant

C(x,y) = cum(x,x,x,y) = E{x3y}−3E{xy}

where we assume the two variables are standardized. We have kurt(x) = C(x,x) = cum(x,x,x,x).
The nonlinear correlation can be expressed using this cumulant as

R̃c4 = ρ[C(x,y)−C(y,x)]

since the linear correlation terms cancel out. We use next two well-known properties of cumulants.

First, the linearity property says that for any two random variables v,w and constants a,b we have

cum(v,v,v,av+bw) = acum(v,v,v,v)+bcum(v,v,v,w)

and second, cum(v,w,x,y) = 0 if any of the variables v,w,x,y is statistically independent of the

others. Thus, assuming the causal direction is x → y, that is, y = ρx+d with x and d independent,

we have

R̃c4 = ρ[cum(x,x,x,ρx+d)− cum(x,ρx+d,ρx+d,ρx+d)]

= ρ[ρcum(x,x,x,x)+ cum(x,x,x,d)

−ρ3cum(x,x,x,x)−3ρ2cum(x,x,x,d)−3ρcum(x,x,d,d)− cum(x,d,d,d)

= ρ[ρkurt(x)−ρ3kurt(x)] = kurt(x)[ρ2 −ρ4]

which proves (8). The proof of (9) is completely symmetric: exchanging the roles of x and y will

simply change the sign of the nonlinear correlation, and the kurtosis will be taken of y.
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The regression coefficient ρ is always smaller than one in absolute value, and thus ρ2 −ρ4 > 0.

Assuming that the relevant kurtosis is positive, which is very often the case for real data, the sign

of R̃c4 can be used to determine the causal direction in the same way as in the case of the likelihood

approximation R̃ in (5). Thus, the cumulant-based approach allowed us to prove rigorously that a

nonlinear correlation of the form (6) can be used to infer the causal direction, since it takes opposite

signs under the two models. Note that this nonlinear correlation has exactly the same algebraic

form as the likelihood ratio approximation (5); only the nonlinear scalar function is different. In

particular, this analysis shows that the exact form of the nonlinearity is not important: the cubic

nonlinearity is valid for all distributions of positive kurtosis.

If the relevant kurtosis is negative, a simple change of sign is needed. In general, we should thus

multiply R̃c4 by the sign of the kurtosis to obtain

R̃′
c4(x,y) = sign(kurt(x))ρÊ{x3y− xy3}.

Here, we get the complication that we have to choose whether we use the sign of the kurtosis of x

or y. Usually, however, the signs would be the same, and we might have prior information on their

sign, which is in most applications positive.2

Related cumulant-based measure were proposed by Dodge and Rousson (2001) and Dodge and

Yadegari (2010). Their fourth-order measures used the ratio of marginal kurtoses, as opposed to

the cross-cumulants we use here. They further assumed the disturbances to be Gaussian (or at least

to have zero cumulants), which makes their measures less general than ours. In fact, their method

relies on the fact that kurtosis is decreased by adding a Gaussian disturbance, but if the disturbance

is much more kurtotic than the regressor, the opposite can be the case.

2.7 Intuitive Interpretations

Next, we provide some intuitive interpretations of the obtained first-order approximations of the

likelihood ratio.

2.7.1 GRAPHICAL INTERPRETATION

The cumulants and nonlinear correlations have a simple intuitive intepretation. Let us consider the

cumulant first. The expectations E{x3y} or E{xy3} are basically measuring points where both x

and y have large values, but in contrast to ordinary correlation, they are strongly emphasizing large

values of the variable which is raised to the third power.

Assume the data follows x → y, and that both variables are sparse (super-Gaussian). Then, both

variables simultaneously have large values mainly in the cases where x takes a large value, making

y large as well. Now, due to regression towards the mean, that is, |ρ|< 1, the value of x is typically

larger than the value of y. Thus, E{x3y}> E{xy3}. This is why E{x3y}−E{xy3}> 0 under x → y.

The idea is illustrated in Figure 1.

2. In the general case where the (real) kurtoses of x and y are allowed to have different signs, we need to compute

two quantities: R̃′
c4(x,y) = sign(kurt(x))ρÊ{x3y− xy3} and R̃′

c4(y,x) = sign(kurt(y))ρÊ{y3x− yx3}. According to

the analysis above, the former quantity is positive if x → y, and the latter quantity is positive if y → x. However, in

practice, this does not lead to a simple decision rule since due to finite sample size, or violations of the model, it

could be that both of these quantities are positive, or none of them. In such cases, the decision rule should be defined

so as to indicate that the causal direction could not be decided.

118



PAIRWISE LIKELIHOOD RATIOS FOR NON-GAUSSIAN SEMS

y

x

Figure 1: Intuitive illustration of the nonlinear correlations. Here, x → y and the variables are very

sparse. The nonlinear correlation E{x3y} is larger than E{xy3} because when both vari-

ables are simultaneously large (the “arm” of the distribution on the right and the left), x

attains larger values than y due to regression towards the mean.

This interpretation is valid for the tanh-based nonlinear correlation as well, because we can use

the function h(u) = u− tanh(u) instead of tanh to measure the same correlations but with opposite

sign. In fact, we have

R̃sparse = ρÊ{h(x)y− xh(y)}

because the linear terms cancel each other. The function h is a soft thresholding function, and thus

has the same effect of emphasizing large values as the third power. Thus the same logic applies for

h and the third power.

2.7.2 INTERPRETATION AS IMPLICATION

Even if the data is not assumed to follow any particular model, the nonlinear correlation could be

interpreted as a logical implication. In general, if the existence of event A implies the existence of

event B, but there is no implication in the other direction, a causal influence from A to B might be

inferred. Since A ⇒ B is equivalent to ¬B ⇒¬A, there has to be some clear distinction between the

events and their negations for this interpretation to be meaningful. We assume here that the events

are rare, that is, have small probabilities.

Now, let us consider the events A, defined as “x takes a very large value” and B, defined as “y

takes a relatively large value of the same sign as x”. Notice that because the regression coefficient

is smaller than one, we cannot require y to take particularly large values. It is assumed here that the

thresholds for deciding when a value is large are chosen so that both of these events are rare.

To investigate implication, we can consider how to refute it. To refute A⇒B, we should consider

cases where x takes a very large value but y takes a value of the opposite sign. This can be measured

by Ex3(−y) where x3 looks at large values of x and the minus sign changes this into a measure of

how much large values of x coexist with y’s of opposite sign.
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Thus, Ex3y−Exy3 can be seen as measuring of how much evidence we have to refute y ⇒ x

(latter term) minus the evidence to refute x ⇒ y (negative of first term). If it is large, we accept the

implication x ⇒ y together with its causal interpretation.

It might be argued that the connection between causality and implication could also plausibly

be defined in the opposite direction: If A implies B as defined above, then B causes A. However,

we shall now argue that the interpretation we gave above follows naturally from the definition of a

SEM with two variables. Assume x → y and ρ > 0. If x is very large, y is likely to be large and of

the same sign, since it is not very probable that d would cancel out the effect of ax. Thus, we have

A ⇒ B when x causes y under the SEM framework.

2.8 Noise-Tolerance of the Nonlinear Correlations

An interesting point to note is that the cumulant in (6) is, in principle, immune to additive measure-

ment noise. Assume that instead of the real x,y, we observe noisy versions x̃ = x+n1 and ỹ = y+n2

where the noise variables are independent of each other and x and y. By the basic properties of

cumulants (see proof of Theorem 1), the nonlinear correlations are not affected by the noise at all in

the limit of infinite sample size. Thus, our method in not biased by noise. This is in stark contrast to

ICA algorithms which are strongly affected by additive noise; thus ICA-based LiNGAM (Shimizu

et al., 2006) would not yield consistent estimators in the presence of noise.

To be more precise, we have

E{x̃3ỹ}−E{x̃ỹ3}= cum(x̃, x̃, x̃, ỹ)− cum(x̃, ỹ, ỹ, ỹ)

= cum(x,x,x,y)− cum(x,y,y,y) = E{x3y}−E{xy3}

due to the independence of n1 and n2 of the other variables and each other.

On the other hand, the estimation of ρ is strongly affected by the noise. This implies that R̃c4 is

not immune to noise. Nevertheless, measurement noise would only decrease the absolute value of

ρ and not change its sign. Thus, the sign of R̃c4 is not affected by additive measurement noise in the

limit of infinite sample. This applies for both Gaussian and non-Gaussian noise.

The fact that the ρ is only a multiplicative scaling in the nonlinear correlations (6) or (5) must

be contrasted with its role in the likelihood ratio (1) where its effect is more complicated. Thus,

when ρ is underestimated due to measurement noise, it may have a stronger effect on the likelihood

ratio, while its effect on the nonlinear correlations is likely to be weaker. While this logic is quite

approximative, simulations below seem to support it.

On the other hand, the standardization of the variables is also affected by noise, in particular if

the noise variances are not equal. As long as the noise variances are equal, the error in standard-

ization will affect the measures by a multiplicative constant only, effectively making the cumulants

smaller. Thus, the noise-tolerance of the cumulants may be useful in practice only if the variances

of the noise variables are equal.

2.9 Skewed Variables

Above, the likelihood ratio approximations and cumulants were developed for sparse, typically

symmetrically-distributed variables. Here, we consider the extension to skewed variables. Again,

the underlying motivations is that if we know the distributions are skewed, we can use this prior

knowledge to obtain particularly simple measures of causal direction. The cumulant-based analysis
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is mainly for theoretical interest due to the sensitivity of cumulants to outliers; we provide a more

robust nonlinearity for analysing real data.

2.9.1 CUMULANT-BASED APPROACH

The cumulant-based approach allows for a very simple extension of the framework to skewed vari-

ables. As a simple analogue to (6), we can define a third-order cumulant-based statistic as follows

R̃c3(x,y) = ρÊ{x2y− xy2}. (10)

The justification for this definition is in the following theorem, which is the analogue of Theorem 1:

Theorem 2 If the causal direction is x → y, we have

R̃c3 = skew(x)(ρ2 −ρ3) (11)

and if the causal direction is the opposite, we have

R̃c3 = skew(y)(ρ3 −ρ2). (12)

Proof Consider the third-order cumulant

C(x,y) = cum(x,x,y) = Ex2y

where we assume the two variables are standardized. We have skew(x) = C(x,x) = cum(x,x,x).
The nonlinear correlation can be expressed using this cumulant as

R̃c3 = ρ[C(x,y)−C(y,x)].

Assuming the causal direction is x → y, we have

R̃c3 = ρ[cum(x,x,ρx+d)− cum(x,ρx+d,ρx+d)]

= ρ[ρcum(x,x,x)+ cum(x,x,d)−ρ2cum(x,x,x)−2ρcum(x,x,d)− cum(x,d,d)]

= ρ[ρskew(x)−ρ2skew(x)] = skew(x)[ρ2 −ρ3]

which proves (11). The proof of (12) is again completely symmetric.

To use the measure (10) in practice, we have to take into account the fact that we cannot assume,

in general, the skewnesses of the variables to have some particular sign. In some applications this is

possible: For example, in resting-state fMRI data it might be safe to assume that the skewnesses are

all positive because it is much more common that the signals obtain large values due to activation

than due to inhibition (however, this point needs to be confirmed by empirical investigations of

fMRI data).

In the general case, we propose that before computing these nonlinear correlations, the signs

of the variables are first chosen so that the skewnesses are all positive. This can be accomplished

simply by multiplying the variables by the signs of their skewnesses to get a new variable x∗

x∗ = sign(skew(x))x (13)
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HYVÄRINEN AND SMITH

and the same for y (this transformation has to be done before computing ρ). Now, we have a situation

similar to the previous measures: Under x → y, R̃′
c3(x,y) > 0. This is because again, |ρ| < 1, and

therefore ρ2 −ρ3 > 0 regardless of the sign of the coefficient. Likewise, for y → x, R̃′
c3(y,x)< 0.

Our measure is related to the directionality measure proposed by Dodge and Rousson (2001),

which in our notation would be:

R̃DR(x,y) = [Ê{x2y}]2 − [E{xy2}]2 (14)

which has the advantage of of being particularly simple, and does not require the skewnesses to be

of any particular sign. However, our measure is more closely related to likelihood ratios which may

give it some advantage in terms of statistical performance, as will be seen in the simulations below.

2.9.2 ROBUST, LIKELIHOOD-BASED APPROACH

The skewed case might also be approached by defining a skewed log-pdf and using the methods

in previous sections. Unfortunately, in the theory of ICA, general-purpose skewed densities can

hardly be found, and thus it is not clear how to define such densities and how generally they would

be applicable. Nevertheless, a likelihood-based approach is likely to be more robust against outliers

than the cumulant-based one (unless the model pdf has very light tails) which is why we develop

one here.

We propose the following nonlinearity:

gskew(x) = logcosh(max(x,0)) (15)

which can be justified as follows. Consider the following family of pdf’s, defined using the deriva-

tive of the log-pdf

(log p)′(x) = gskew(x)−βx−α (16)

where β and α are parameters. Let us take α and β so that we get a standardized pdf with zero

mean and unit variance. Numerical calculations show that this is obtained by values which are

approximately α0 = 0.188 and β0 = 1.32. The ensuing pdf is illustrated in Figure 2.

Further numerical calculations show that the higher-order cumulants of the standardized pdf are

both positive: Skewness is approximately 0.37 and kurtosis 0.47.

Now, we can add any linear function and/or constant to (log p)′ without changing the value of

the approximative likelihood ratio in (5). In particular, using the true derivative of log-pdf in (16) is

equivalent to using the algebraically simpler gskew.

Thus, we obtain the following approximation for the likelihood ratio:

R̃skrb(x,y) = ρÊ{gskew(x)y− xgskew(y)} (17)

with gskew defined in (15). Again, this applies for positively skewed variables only. If the skewnesses

are not known a priori, they can be made positive by (13).

3. Estimating a Network with More Than Two Variables

In this section, we consider the general case of more than two variables. We present two approaches:

First, we use the pairwise analysis in a DirectLiNGAM framework, and second, we present a two-

stage method where the possible connections in a sparse graph are first pruned using covariance

information.
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Figure 2: The pdf for robust modelling of skewed densities. Left: the pdf corresponding to the

derivative of log-pdf in (16) is plotted (solid curve) with α and β chosen so that the

density is standardized. For comparison, the Gaussian density of the same mean and

variance is plotted as well (dashed). Right: the logarithms of the same density functions.

3.1 Model Definition

Denote by x = (x1,x2, . . . ,xn)
T the vector of observed variables. The linear non-Gaussian acyclic

model (LiNGAM) proposed by Shimizu et al. (2006) can be expressed as

x = Bx+ e

where e is the vector of disturbances, and B is the matrix that describes the influences of the xi on

each other; the diagonal of B is defined to be zero.

It was shown by Shimizu et al. (2006) that the model is identifiable under the following as-

sumptions: a) the ei are non-Gaussian, b) the ei are mutually independent, and c) the matrix B

corresponds to a directed acyclic graph (DAG). It is well-known that the DAG property is equiv-

alent to an existence of an ordering of the variables xi (not necessarily unique) in which there are

only connections “forward” in the ordering; if the variables are re-ordered according to the causal

ordering, the matrix B has all zeros above the diagonal.

3.2 Using Pairwise Measures in the DirectLiNGAM Framework

The first way to use the pairwise analysis developed above to estimate LiNGAM which has more

than two variables is to use the DirectLiNGAM framework (Shimizu et al., 2011).

3.2.1 FINDING ROOT OF GRAPH

In the DirectLiNGAM approach, we first compute the likelihood ratios of all different pairs of

variables, and store the log-likelihood ratio for xi and x j as the (i, j)-th entry of a matrix M. Al-

ternatively, we can use the likelihood ratio approximations which can be all subsumed under the

algebraic form

M = C⊙E{xg(x)T −g(x)xT} (18)
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where ⊙ is element-wise multiplication. The nonlinearity g is typically chosen so that it is g(u) =
tanh(u) for symmetric sparse data and g(u) = −u2 or the function in (15) for skewed data. C is

the covariance matrix of the data; since the data is assumed standardized C equals the matrix of

correlation coefficients.

Now, for the variables xi which have no parents, all entries in the i-th row of M are non-negative,

neglecting random errors. (Note that there is no reason why there would be only one such “root”

variable.) This was shown to be exactly true for the cumulant-based approaches g(u) = −u3 and

g(u) = −u2 (assuming that the kurtoses or skewnesses, respectively, are positive) and is true as a

first-order approximation based on (7) for g(u) = tanh(u). The reverse also holds if we assume

faithfulness.3

Thus, we first find the row, say with index i∗, which is most likely to have all non-negative entries

(the actual estimation procedure is considered below). Then, we regress (“deflate”) the variable xi∗

out of all the other variables (Shimizu et al., 2011). We iterate this procedure by computing M

again for the deflated x. By locating the row which is most likely to have only non-negative entries

in the newly computed M, we thus find a variable which has no parents except for possibly the first

variable found in the previous step. Repeating this, we find variables which are next in the partial

order given by the DAG. Thus in the end we have the causal ordering of the variables.

After such estimation of the causal ordering, estimating the coefficients bi j is easy by just ordi-

nary least-squares estimation (Shimizu et al., 2006).

Alternatively, we could use a simple approximation which is very simple and computationally

efficient. Instead of carrying out deflation by regression as described above, we simply remove the

entries of the rows and columns corresponding to the already “found” variables in the matrix M, and

iterate the procedure. Thus, we obtain the causal ordering directly from a single matrix of nonlinear

correlations, without any deflation. This is an approximation with no rigorous justification (because

when removing the root we should also remove its effect on all the entries of M) and it is likely

to be inconsistent. However, in simulations reported below it works quite well. It has the benefit

of being computationally extremely simple, and it gives a simple conceptual link between causal

ordering and the nonlinear correlations and cumulants.

3.2.2 AGGREGATING PAIRWISE MEASURES

To use the method just described we have to solve the problem of aggregating the pairwise measures.

We need to find the row which is most likely to be all non-negative up to random errors. Obviously,

we could just take the sums of the entries in each row and locate the maximum sum but this is not

likely to be optimal. So, we next develop a more principled way of aggregation.

Consider the mi j, j = 1, . . . ,n for a fixed i, which are the estimates of pairwise likelihood ratios

or some approximations. Assume they are independent and have Gaussian distributions N(µi j,σ
2),

where the variances are assumed to be equal for simplicity. The variance σ2 is the estimation error

due to finite sample, and the µi j are the true values. The posterior of µi j given mi j is then Gaussian

3. For a variable x0 with no parents, any other variable is of the form x j = ax0 + d where a expresses the total effect

coming from x0, and d is a sum of the inputs from other external influences, which are, by definition, independent

of x0. Thus, the pairwise model holds with a d independent of x0 and the pairwise measure is non-negative. On the

other hand, consider xi which does have parents. Now, go backwards in the graph until you find a node x0 which has

no parents (in a DAG, such a variable is guaranteed to exist). According to the logic just given, we have xi = ax0 +d,

again with an independent d. By faithfulness, a 6= 0. Since changing the direction simply changes the sign of our

measures, there will be a negative entry in the i-th row, and it has to be non-zero.
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with mean mi j and variance σ. Thus, the posterior log-probability that all of the µi j, j = 1, . . . ,n are

positive can be calculated as

log∏
j

P(µi j > 0|mi j) = log∏
j

P(
µi j −mi j

σ
>−mi j

σ
|mi j) = ∑

j

logΦ(
mi j

σ
) (19)

where Φ is the cumulative distribution function of the standardized Gaussian distribution. Estimat-

ing σ is possible but we prefer to assume it is very small and make the following approximation:

logΦ(
mi j

σ
)≈− 1

2σ2
min(0,mi j)

2

which can be seen to be quite accurate by a simple numerical comparison, and avoids numerical

problems in computing the logarithm of Φ for large negative values. Now, σ is simply a multiplica-

tive scaling constant which can be ignored when comparing estimates of the log-probabilities in

(19).

Thus, we propose the following way of aggregating the pairwise likelihood ratios. Compute for

each row of M

mi =−∑
j

min(0, [M]i j)
2

which, intuitively speaking, punishes violations of the positivity. The index i∗ with maximum mi is

thus taken as the estimate of a variable with no parents, that is, a first variable in the causal ordering.

3.3 Two-Stage Approach to Estimating a Sparse Model

If the matrix B is known to be sparse, we can use a two-stage method in which we first estimate the

connections in an undirected sense, and then find their directions using our pairwise method. This

two-stage method is interesting from the viewpoint of clearly dividing the estimating problem into

two parts.

We first find undirected connections by using any known method for estimating a Gaussian

undirected model (Spirtes et al., 1993). In the simplest case, this can be based on the inverse

covariance matrix, or the precision matrix. As is well-known in the theory of Gaussian graphical

models, there is an intimate connection between the non-zero entries in the precision matrix and

the existence of connections in the SEM—although the connection is not quite simple, especially

for directed graphs. In contrast, the direction of a connection cannot be easily determined from the

covariances, and is often unidentifiable, which was of course the original motivation for introducing

non-Gaussian models (Shimizu et al., 2006). Nevertheless, as a first approximation, we can prune

the set of candidate connections using the inverse covariance matrix, and apply our pairwise analysis

only on those connections which this covariance-based analysis indicates to be present.

In an estimated inverse covariance matrix, there are of course no exact zeros. Thus, we use

bootstrapping to test if each entry is non-zero. That is, we draw bootstrap samples of the data,

and compute the inverse covariance for each such sample. The ratio of the mean and the standard

deviation of the bootstrap estimates of any given entry is then compared with the relevant quantile

of a standardized Gaussian distribution.4 The test is made separately for each non-diagonal entry of

the inverse covariance matrix.

4. In the simulations below, we also tried methods for sparse estimation of the inverse covariance matrix. However, we

found that this simple testing procedure works by far the best. The sparse inverse estimation methods are, in fact,

developed for the case of a very large number of variables, and thus may not be useful in our simulations where we

typically have 5-10 variables only.
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Depending on the goal of the analysis, it may or may not be necessary to do corrections for

multiple testing. If we do such corrections, we can actually claim that the connections found are

statistically significant. However, this is obtained at the cost of a large number of false negatives. On

the other hand, if we simply consider the existence of the connections as another set of parameters

to estimate, it may be more advantageous not to make such corrections to reduce the overall error

rate. In fact, a false negative (setting an existing connection to zero) could be considered quite a

serious error in this context, so we prefer to use a rather large α. In the simulations below, we thus

set the false positive rate α = 0.01 with no correction for multiple testing. Such corrections will of

course be needed if our aim were to claim that a particular connection exists, but if our goal here

is mainly the inference of the causal ordering, some false positives should not matter since they are

likely to correspond to small values of the coefficients anyway.

Then, for each of those significantly non-zero connections, we determine the direction of causal-

ity using our pairwise tests. There is no need to do any kind of deflation anymore. If we want to

convert the obtained estimates into a total ordering of the variables, we input those connections

which were not pruned to the ordering method presented by Shimizu et al. (2006).

4. Estimating Cyclic Models

An important generalization of the DAG framework would be to estimate cyclic models. Here, we

assume the following well-known generative model for the data. First, the external influences arrive

in the system at time t = 0

x(0) = e

where x(t) is value a hypothetical dynamic system at time point t. Then, at subsequent time steps,

the external influence is completemented by feedback as

x(t +1) = e+Bx(t)

where the matrix B has zero diagonal, which means we do not allow self-loops. Assuming that B

is stable in the sense that its largest eigenvalue is smaller than one in absolute value, we have in the

limit

x = ∑
k≥0

Bke = (I−B)−1e

and thus

x = Bx+ e (20)

where B is now allowed to be cyclic. This gives a simple interpretation of a model of the form

(20) in the case where B is allowed to be cyclic. As above, the ei are assumed independent and

non-Gaussian.

In fact, estimation of such a model by ICA is possible if B is small enough, namely if all its

entries are smaller than one in absolute value. Then, it is possible to estimate the model even by

ICA, since after estimating ICA, we can find the right permutation of the components based on

putting the largest entries of each row in the diagonal. Thus, the model is identifiable under these

assumptions. This is shown in detail in the following Theorem:

Theorem 3 Assume that the data follows the cyclic LiNGAM model in (21) with no self-loops.

Assume further that all the entries in the matrix B have absolute values smaller than one, and that
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the dominant eigenvalue of B is smaller than one in absolute value. Then, the model is uniquely

identifiable, that is, the matrix B can be estimated from the data without any ambiguity.

Proof: The data actually follows the ICA model as

x = (I−B)−1e. (21)

The ICA model is known to be identifiable up to a) the ordering of the components and b) a scalar

multiplier for each of the components (Comon, 1994). The unidentifiability of the scalar multiplier

disappears here because by definition, the diagonal of the inverse of the mixing matrix has all ones

due to the diagonal matrix in (21). Thus, it was shown by Shimizu et al. (2006) that this implies

the idenitifiability of the LiNGAM model if we can solve the indeterminacy of the permutation.

Acyclicity was used for this purpose by Shimizu et al. (2006). Here, we use the assumption of

absolute values smaller than one. In fact, consider the estimate of the inverse of the mixing matrix.

Normalize it by dividing each row by its maximum element. Then, it equals I−B up to a random

permutation of the rows. Due to our assumption of B, all non-diagonal entries in this matrix are

smaller than one in absolute value. Thus, the original (correct) permutation of the rows can be

found by locating on each row i the unique entry which is equal to one. Denoting its column index

by j(i), the original matrix is given by permuting the rows of the matrix to the ordering given by

j(i), that is, the ordering which puts the ones in the diagonal. �

This also suggests that we can estimate the model using the sparse graphs idea above. We

prune the inverse covariance matrix to find where there are (probably) connections, and then find

the directions of the connections using our pairwise measures. Using pairwise connections makes

sense if we further assume that there are no pairwise loops, that is, connections xi → x j and x j → xi

are not both non-zero. The main justification for this approach is that since the connections are

weak, one can assume that the cyclicity has little effect on local pairwise measures. However, an

exact convergence of such a method to the right parameter values does not seem possible to show

in general.

5. Estimation in Case of Nonlinear Relations

In this Section, we generalize our method to a nonlinear model.

5.1 Definition of Nonlinear Model

Another interesting extension of the linear causal models is obtained by considering nonlinearities

instead of non-Gaussianities (Hoyer et al., 2009). We define the two models as follows. The first

one, x → y, is given by

y = f (x)+d

where f is a nonlinear function, not necessarily invertible or even differentiable. The disturbance

d is again independent of x. Both x and y are standardized to unit variance. The second model is

denoted by y → x and defined as

x = g(y)+ e

where g is another nonlinear function, and e is a disturbance variable. Other approaches to infer-

ring the causal direction with nonlinear relations were introduced by Zhang and Hyvärinen (2009),

Daniušis et al. (2010) and Mooij et al. (2010).
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5.2 Likelihood Ratio for Nonlinear Model

The likelihood of the model x → y can be obtained as the sum of the log-prior of the variable x and

the log-likelihood of the residual:

log p(x,y) = log px(x)+ log pd(y− f (x)) = Gx(x)+Gd(
d̂

σd

)− logσd

where we denote, like above, the variance of the standardized residual by σ2
d , the log-pdf of the

standardized residual by Gd , and the log-pdf of x by Gx. Thus, like in the linear case, we obtain

R =

[

1

T
∑

t

Gx(xt)+Gd(
yt − f (xt)

σd

)−Gy(yt)−Ge(
xt −g(yt)

σe

)

]

− logσd + logσe. (22)

An important difference to the linear case is that the variances of the residuals need not be equal,

σd 6= σe, so they do not cancel. In an information-theoretic formulation, we obtain asymptotically

R −→−H(x)−H(d̂/σd)+H(y)+H(ê/σe)− logσd + logσe. (23)

We can approximate R using the same maximum entropy approximations (Hyvärinen, 1998) as

in the linear case in Section 2.3. The only difference is that we need to add the log-variances of the

residuals to the expression. Thus, an important advantage of our approach is that we do not need any

measures of independence per se; estimation of one-dimensional differential entropies is sufficient.

On the other hand, it may be advantageous to adapt the approximation to the nonlinear case.

First, it does not seem useful to consider the prior non-Gaussianities of the variables, since a non-

linear mixing can change non-Gaussianities in completely unpredictable ways. This is unlike in the

case of ICA, where a linear mixing decreases non-Gaussianity. Second, we can assume that the

residuals tend to be sparse, and model them as Laplacian. This has the further advantage of making

the measure more robust to outliers.

Now, for a Laplacian variable, the scale parameter σ is most naturally estimated as the mean

absolute deviation (MAD), which is the maximum likelihood estimate. If we plug this estimate in

the likelihood ratio, and omit the priors on x and y, we have

R =

[

1

T
∑

t

−
√

2|yt − f (xt)|
σ̂d

)+

√
2|xt −g(yt)|

σ̂e

]

− log σ̂d + log σ̂e

=−
√

2
σ̂d

σ̂d

+
√

2
σ̂e

σ̂e

− log σ̂d + log σ̂e

which gives finally the following objective

R̃mad =− log Ê{|d̂|}+ log Ê{|ê|} (24)

where Ê denotes the sample average, and thus Ê{|.|} denotes the MAD. In other words, we have an

objective which simply compares the mean absolute deviations in the two cases.

The likelihood ratio depends on the estimated nonlinearities f ,g. The estimation of f and g can

be done with classic least-squares estimation methods independently of any developments in this

paper. A large number of non-parametric methods have been developed in the literature, see, for

example, Hoyer et al. (2009) for an example.
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5.3 Connection to Independence-Based Nonlinear Methods

In fact, our method has a close connection to the independence-based method by Hoyer et al. (2009),

generalizing the connection shown in Section 2.4. Using basic information-theoretic properties, we

have under x → y

H(x,y) = H(x)+H(y|x) = H(x)+H(y− f (x)|x) = H(x)+H(d|x) = H(x,d)

and likewise, this is equal to for H(y,e). Now, just like in the linear case, we can consider the

difference between the mutual informations of the regressors and residuals in the two directions,

and obtain

I(x,d)− I(y,e) = H(x)+H(d)−H(y)−H(e) = H(x)+H(
d

σd

)−H(y)−H(
e

σe

)+ logσd − logσe

where two terms equal to h(x,y) cancel. Here, we see that asymptotically, our objective derived from

the likelihood ratio is equal to the difference of the two mutual informations (with sign reversed).

Its sign tells which mutual information is larger, and in particular, in which direction the residual of

the regression is more independent. Thus, using the likelihood ratio is equivalent to using mutual

information as independence measure in the methods by Hoyer et al. (2009).

The developments given above thus show that when comparing independencies of the residuals

like Hoyer et al. (2009), it is not necessary to explicitly estimate mutual information; estimation of

one-dimensional entropies leads to an equivalent result.

6. Simulations

We conducted simulations comparing the different methods proposed in this paper, as well as previ-

ously proposed LiNGAM estimation methods. In all the simulations, we emphasize difficult condi-

tions. In most of the simulations, this means the case where the number of observations is small; the

exception being the simulations with added measurement noise. We also take weakly non-Gaussian

disturbances according to the logistic distribution in Equation (4), with the same aim of simulating

difficult conditions.

The methods were compared with three previously published methods:

• LiNGAM estimated using ICA, as proposed in the original paper introducing LiNGAM by

Shimizu et al. (2006).5

• DirectLiNGAM, specifically the kernel-based version proposed by Shimizu et al. (2011).6

• In case of skewed data, we used the measure proposed by Dodge and Rousson (2001), given

in Equation (14).

The LiNGAM methods were implemented using the software found on the authors’ web sites.

We computed different performance indices for the methods. For acyclic models, we computed

5. Since basic FastICA, which is an integral part of the method, has convergence problems with the basic tanh nonlin-

earity in the case of a small sample size, we used the stabilized version by Hyvärinen (1999) obtained in the standard

FastICA package by the option “stabilize”. For skewed data, we used the skewness as a measure of non-Gaussianity.

6. We did not include the earliest version of DirectLiNGAM proposed by Shimizu et al. (2009) in the comparison

because in later simulations by Sogawa et al. (2010); Hyvärinen (2010), its performance was found clearly inferior

to that of the kernel-based version of DirectLiNGAM.
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1. The Spearman rank-correlation coefficient between the causal ordering given by the method

and the true ordering.

2. The percentage of connections for which a method correctly estimated the direction, consid-

ering only connections existing in the data-generating process. Here, the point was to look at

the abilities of the methods to find the directions locally, and thus the global ordering given

by the method was not used (except for DirectLiNGAM which essentially only computes a

global ordering and derives local ordering from that). For the ICA-based LiNGAM, we com-

puted the measure sign(|bi j|− |b ji|) and used it in the same way as the signs of the pairwise

measures.

3. The percentage of data sets for which a method correctly estimated the first variable in the

causal ordering, that is, the variable with no parents.

For cyclic models, the comparison was based on the second measure only, since the other two are

not well-defined. Furthermore, we computed the CPU time needed for the computations.

Unless otherwise mentioned, the connection matrices were generated completely randomly, giv-

ing a fully connected DAG. The non-zero coefficients in the acyclic B had a uniform distribution in

the union of the intervals [−0.6,−0.2] and [0.2,0.6].

6.1 Simulation 1: Sparse Influences

In the first, basic simulation, sample size and data dimension were varied so that there were in total

four different scenarios:

1. n = 5, T = 100, fully connected DAG

2. n = 2, T = 100, fully connected DAG

3. n = 5, T = 200, fully connected DAG

4. n = 5, T = 400, fully connected DAG

The disturbances had logistic distributions, with standard deviations equal to one. 2,000 data sets

were generated for each scenario; however, for DirectLiNGAM and ICA-LiNGAM only 1,000 were

used due to excessive computational demands.

To estimate the model, we used the following methods proposed above. First, the maximum

entropy approximation to the likelihood ratio in (3) was used in DirectLiNGAM with deflation.

Second, the LR first-order approximation matrix (18) was used in DirectLiNGAM with the non-

linearity g(u) = tanh(u) and with deflation. Third, the nonlinear correlations in (18) were used to

estimate the causal ordering without any deflation, simply by locating the minimum of the row sums

of that matrix, removing the corresponding rows and columns, and so on, as described at the end of

section 3.

See Figure 3 for the results. Typically, the tanh-based likelihood ratio approximation (“tanh”)

with deflation was the best. The method without deflation (“nodf”) gives, by definition, the same re-

sult for the total causal directions correct and first variable found, but looking at the rank-correlations,

we see that it is typically the second best. The maximum entropy approximation is usually the third

best. ICA-based LiNGAM is usually fourth but when there is more data, it can have very good
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performance. The (kernel-based) DirectLiNGAM (“kdir”) is typically last, although not necessarily

worse than ICA-based LiNGAM.

Regarding computational load, the methods proposed here are one to two orders of magnitude

faster than the others.

6.2 Simulation 2: Sparse Influences with Noise

In the second simulation, we tested the noise-tolerance of the algorithms. The data dimension was

varied from n = 2 to n = 8 and fully connected DAGs were used as above. The sample size was set

to T = 10,000, which means we are now analyzing the statistical consistency7 of the method only

and neglecting random effects by taking a very large sample size. The noise was Gaussian and had

unit variance. The performance indices and algorithms are as in the first simulation. The results are

shown in Figure 4. We can see that the tanh-based approximation is clearly the best, as predicted

by our cumulant-based analysis. ICA-based LiNGAM, the maximum entropy approximations, and

especially kernel-based DirectLiNGAM seem to be more sensitive to noise.

6.3 Simulation 3: Skewed Influences

In the third simulation, we tested the performance of the methods with skewed data. We used the

nonlinear correlation based on the third order cumulant (“skew”), introduced in Section 2.9, as well

as the robust measure in Equation (15), denoted by “skw2”.

We used two different skewed distributions for the disturbances. In both cases, the data was

obtained from a Gaussian mixture. One of the Gaussian distributions in the mixture had zero mean

and unit variance, while the other had mean equal to three and unit variance. The two distributions

we generated were distinguished by the amount of data points drawn from the two Gaussians. In

the first case (“pdf 1”), the “outlying” distribution with mean three generated 20% of the data, while

in the second case (“pdf 2”), it generated only 5%. Thus, pdf 2 was quite sparse whereas pdf 1 was

not. We would then expect sparsity-based methods to work well with pdf 2 but not very well with

pdf 1. The data dimension were to n = 2,n = 5 and sample sizes T = 100,200, respectively. DAGs

were generated to be fully connected.

The results are shown in Figure 5. We see that all the methods have very similar performance,

except the Dodge-Rousson measure which was somewhat worse. However, the computational loads

are very different, our two likelihood ratio approximations being faster than the earlier LiNGAM

methods by at least an order of magnitude.

6.4 Simulation 4: Skewed Influences with Noise

We further conducted a simulation with observational noise added to the skewed data. Again, we

fixed the sample size to T = 10,000 and the noise variance to two (larger than above since these

methods seem to be more tolerant to Gaussian noise), while the dimension and the skew data distri-

bution were varied. We used only the skewed and sparse pdf 2. The results are in Figure 6. Here,

we start seeing clear differences in the statistical performances of the methods. In line with our

theoretical analysis, the skewness cumulant-based method is the most resistant to noise. The robust

skewed LR approximation in Section 2.9.2 is second.

7. That is, convergence in the limit of infinite sample.

131
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Figure 3: Simulation 1. Results of basic simulation with sparse, non-skewed data without noise.

Top left: Mean of rank-correlation coefficients between the estimated causal ordering

and the true ordering. The error bars are standard errors of the mean. Top right: The

proportion of (really existing) connections for which the method estimated the direction

correctly (chance level is 50%). Bottom left: The proportion of data sets for which the

method estimated the first variable in the causal ordering correctly, that is, the variable

with no parents. Bottom right: Computation times of one run of the different algorithms

in milliseconds; note the logarithmic scale. Different colours are different data-generating

scenarios. The algorithms used are as follows:

“tanh”: LR approximations in (18) based on tanh nonlinearity, combined with deflation

in DirectLiNGAM;

“nodf”: no deflation in likelihood ratio approximations, that is, ordering based on the LR

approximation matrix in (18) without any recomputation of the matrix;

“mxnt”: maximum entropy approximation in (3) for likelihood ratios;

“ICA”: LiNGAM estimated by ICA;

“kdir”: kernel-based DirectLiNGAM.
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Figure 4: Simulation 2, with noise. Legend as in Figure 3, and with T = 10,000. The noise standard

deviations were all equal to one.

6.5 Simulations 5 and 6: Two-Stage Approach and Sparse Graphs

Next we investigated the utility of the two-stage approach of Section 3.3. We generated sparse

graphs only. The graphs were based on a simple “serial” structure x1 → x2 → . . . → xn with a

random connection strength in the same range as above. We further added 0, 1, or 2 connections

in random locations in the graph (preserving the DAG structure), the number of connections having

equal probabilities for the three values. The data sizes were 500, 900, 900, 900 and the number

of variables 5, 9, 15, 20, respectively. We used higher dimensions than above because otherwise

the networks could not be very sparse. In the testing for the existence of connections, we set the

false-positive rate to α = 0.01 without correction for multiple testing, as motivated above.

In Simulation 5, we used sparse, non-skewed (logistic) influences, and in Simulation 6, skewed

influences as in Simulation 3. To add more realism to the simulations, we also added noise to the

data. The noise standard deviations were 0.2 in Simulation 5 and 0.6 in Simulation 6.

The results for Simulation 5 are shown in Figure 7. We can see that the two-stage method has

a performance which compares quite favourably with the other methods: ICA-LiNGAM and Di-

rectLiNGAM perform quite badly with these combinations of sample size and dimension. Note that
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Figure 5: Simulation 3, with skewed data. Legend as in Figure 3, with the following new algo-

rithms:

“skew”: cumulant-based LR approximation in (10), combined with deflation in Di-

rectLiNGAM;

“skw2”: the robust LR approximation proposed in Section 2.9.2; and

“D-R”: the measure by Dodge and Rousson (2001).

for “total causal directions correct”, the two-stage method has, by definition, the same performance

as “tanh” and “nodf”. In fact, if our interest in only to discover the directions without bothering to

estimate which variables are connected, or we are given perfect prior knowledge on which variables

are connected, there is in fact no need to do the pruning in the first stage of the method.

So, the utility of the new method (“icth”) is mainly seen in the mean rank correlations plot:

There is a modest improvement. The point here is that knowledge of which variables are connected

improves the estimation of the causal ordering (DAG structure) by showing which directionalities

should be used when pooling their information together, and which directionalities should be dis-

carded (because the variables are not connected at all).
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Figure 6: Simulation 4, with skewed data with noise. Legend as in Figure 5.

Interestingly, all the methods proposed in this paper are clearly superior to the methods pro-

posed earlier (ICA-based LiNGAM and kernel-based DirectLiNGAM). Thus, the main utility of

the present framework may indeed be in estimating directionality in sparse networks.

We carried out the same simulation for skewed influences using the skewed pdf 1. Results are

in Figure 8. When looking at methods using the same causality measure (“skew” vs. “icsk”, and

“skw2” vs. “ics2”), we see that the pruning methods are better in terms of the mean rank correlations.

However, the maximum entropy method without pruning is actually the best.

6.6 Overview of Simulations 1–6

To provide a succinct overview of the simulations reported above, we averaged the performance

indices over the different scenarios (taking into account only scenarios in which the algorithm took

part). Furthermore, we divided the simulations into three groups: basic data (simulations 1 and 2),

skewed data (simulations 3 and 4) and sparse connections either with sparse data (simulation 5) or

skewed data (simulation 6). We further averaged the performance indices inside these groups.

The results are shown in Figure 9.
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Figure 7: Simulation 5, with the two-stage pruning method and only sparse graphs. Legend as in

Figure 3, but now including the new algorithm “icth” which prunes the graph based on

inverse covariance and then estimates the directions using the same method as “tanh”.

(Note that only “icth” uses information on the pruned inverse covariance, other methods

are as in Simulation 1.)

6.7 Simulation 7: More Variables than Observations

Next, we considered the case where there are more variables than observations, or at least the

number of variables is equal to the number of observations. We considered four scenarios, with n

ranging from 100 to 200 and T ranging from 100 to 400. In preliminary simulations, it turned out

that the problem was too difficult for logistic disturbances, so we used Laplacian disturbances here.

We only attempted to estimate the first two variables and not the whole causal ordering. The

very first variables in the causal ordering can be considered to be the exogenous ones and thus

finding them is of special interest (Sogawa et al., 2011). We only used three of the new proposed

methods because none of implementations of the existing LiNGAM methods was such that it could

readily be used for this case.

The results are shown in Figure 10. While the performance of the methods is not very good, it

is very much above chance level (which would be 0.01 or less for finding the first variable). It is
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Figure 8: Simulation 6, with skewed data, the two-stage pruning method and only sparse graphs.

Legend as in Figure 5, but now including the new algorithm “icsk” which prunes the

graph based on inverse covariance and estimates the directions based on the skewness

cumulant, and “ics2” which uses the robust skewness measure.

interesting to note that here the first-order approximation of likelihood is more than 100 times faster

than the maximum entropy approximation.

6.8 Simulation 8: Cyclic Graphs

To test the new framework in the case of cyclic graphs, we created cyclic graphs by a simple ring

structure: x1 → x2, . . . ,xn → x1. Further connections (0, 1, or 2) were added in random locations as

in Simulation 5 above. Such data were created according to the generating model in Section 4. We

further added noise with standard deviation 0.2. The dimensions of the data and the sample sizes

were as in Simulations 5 and 6. The influences had logistic distributions.

The only methods we compared were ICA-based LiNGAM and our two-stage pruning methods,

since the DirectLiNGAM methods cannot be used in the cyclic case. The results are shown in

Figure 11. The first observation is that both methods performed relatively well, obtaining 70%-

90% percent of the directions right. Our new method is slightly better than ICA-based LiNGAM.
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Figure 9: Overview of Simulations 1–6. Median correlations (blue, solid) and average directions

correct (green, dashed) are plotted averaged over different scenarios and similar simula-

tions.

It should be emphasized here that our method assumes that there are no self-loops, so there is no

indeterminacy in the results, as shown in Section 4.

6.9 Simulation 9: Nonlinear Relations

Finally, we performed simulations on the nonlinear model. We generated data from a model

x2 = αsign(x1)|x1|γ +d (25)

where both x1 and d were standardized Gaussian. The exponents γ were given values 0.5 and 2, and

the parameter α was randomly drawn between 0.5 and 1.5. The sample sizes were either T = 200

or T = 500.

We then fitted the nonlinearity of the same functional form (25), that is, using the parameters α

and γ, to the data with a least-squares fit, and estimated the causal direction using the criterion in

(22), or the criterion in (24). (Thus, we did not use a nonparametric model of the nonlinearity. See

Section 8 for estimation with non-parametric nonlinearities.) For comparison, we used the methods
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Figure 10: Simulation 7, with more variables than observations. Legend as in Figure 3. Rank

correlations and causal directions correct are omitted because we only computed the

first two variables for lack of computation time.

tanh and maxent introduced above in a purely linear way (i.e., not fitting the nonlinear function

above, but just a linear function exactly as in previous simulations), to see if linear methods are able

to cope with this data.

Furthermore, we used the criterion of the original method by Hoyer et al. (2009), based on the

HSIC independence test by Gretton et al. (2008) of x (resp. y) and the residual in the regression of

y on x (resp. of x on y). This was implemented by code provided by A. Gretton,8 using the default

setting for the kernel width.

The results are shown in Figure 12. Our likelihood ratio methods both performed relatively

well, although the independence-based method by Hoyer et al. (2009) was arguably better than our

maximum entropy method. However, the HSIC-based method was 10-100 times slower due to the

use of kernel methods. The linear methods did not perform well at all.

8. Downloaded from http://www.gatsby.ucl.ac.uk/˜gretton/indepTestFiles/indep.htm.
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Figure 11: Simulation 8, with cyclic sparse graphs. Legend (sample sizes and dimensions) as in

Figure 7.
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Figure 12: Simulation 9, with nonlinear model. The new algorithms are “nlme”, the proposed

likelihood ratio method extended to the nonlinear case using maximum entropy approx-

imation in (22); “mad”, a simplified and robustified approximation of the likelihood

ratio in (24); “hsic”, the original nonlinear method using independence (Hoyer et al.,

2009). Blue: γ = 0.5,T = 200, Green: γ = 2,T = 200, Red: γ = 0.5,T = 500, Cyan:

γ = 2,T = 500.

6.10 Simulation 10: Misspecified Disturbances

We further performed simulations in which the model is misspecified. First, we considered Simula-

tion 1 with the following change: the disturbances generating the data had Laplacian distributions.

Everything else was identical to Simulation 1, including the assumed log-pdf’s and nonlinearities.

Thus, the distribution of the disturbances was not exactly known, and was misspecified in the esti-

mation. We also added the basic skewness method in the set of algorithms.
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Figure 13: Simulation 10. Like Simulation 1 but with Laplacian disturbances used in generating

the data, and the “skew” method added.

The results are in Figure 13. We see that the performance of most methods is actually better.

This was expected in light of the theory of ICA, where it is well-known that if the actual data is more

non-Gaussian than assumed in the estimation method, this is not a problem for most methods, and

only increases the performance of the method compared to the case of less non-Gaussian data. In

fact, the reason why we used the logistic distribution in generating data in many of the simulations

above was in order to make the problem more difficult. On the other hand, the reason for using the

logistic distribution in the algorithms is that it is widely used in ICA and has been empirically found

to work well, partly due to the fact that its log-pdf is smooth, unlike many other super-Gaussian

log-pdf’s including the Laplacian.

Of course, if the non-Gaussianity is completely misspecified in the estimation method, estima-

tion with fixed nonlinearities will inevitably fail. This is why the skewness method was hardly above

chance level.
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6.11 Simulation 11: Latent Variables

We conducted a further simulation to gain some insight into the robustness of the different methods

to the existence of latent variables. We first created data x0 as in Simulation 1, with n = 4,T = 500.

Then, we added a latent variable to the data as

x = x0 +αbs̃

where s̃ is a latent variable with a standardized logistic distribution, b is a weight vector with ele-

ments drawn from a standardized Gaussian distribution, and α is the general strength of the latent

variable, which took the values [0,0.25,0.5,1] in the different scenarios. (The value of α = 0 effec-

tively means no latent variables and is provided for comparison.) The latent variable s̃ violates the

assumption of LiNGAM of having only one (independent) external input for each variable xi.

The results are in Figure 14. Basically, we see that the latent variable deteriorates the perfor-

mance of all the algorithms quite uniformly. It does not seem that any of the algorithms would be

more resistant, or more sensitive, to latent variables than the others.

Recently, the framework presented here was generalized to a model including Gaussian latent

variables by Chen and Chan (2012).

7. Experiments on Simulated fMRI Data

Since causal discovery experiments on real data are very difficult to validate, we use here brain imag-

ing data which has been simulated using state-of-the-art biophysical models (Smith et al., 2011).

7.1 Simulation of fMRI Data

The simulations are described in detail by Smith et al. (2011); here we give a short summary.

Networks of varied complexity were used to simulate fMRI timeseries. The simulations were based

upon the dynamic causal modelling (DCM) forward model (Friston et al., 2003). DCM uses the

nonlinear balloon model (Buxton et al., 1998) for the vascular dynamics, that is, the connection

between the neural activities and the measured signal, sitting above a simple neural network model

of the neural dynamics. Estimating causality from fMRI data is particularly challenging as the

signal-to-noise ratio is relatively poor, fMRI timeseries are fairly Gaussian, and the number of

timepoints is generally in the low hundreds.

We defined a number of nodes, which corresponded to brain regions. First, we generated the

external inputs to the nodes, ui, which are not quite the same as the external influences in the SEM,

although related. They were binary (activity is “up” or “down”) and generated using a Poisson

process that controls the likelihood of switching the state. Neural noise of standard deviation 1/20

of the difference in height between the two states was added. The mean durations of the states

were 2.5s (up) and 10s (down), with the asymmetry representing longer average “rest” than “firing”

durations.

The neural activities zi were then simulated using the DCM neural network model, as defined

by

ż = σAz+Mu

where A is the matrix defining network dynamics and M contains the weights controlling how

the external inputs feed into the network (often just the identity matrix). The off-diagonal terms
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Figure 14: Simulation 11. Like Simulation 1, with n = 4,T = 500, but with a latent variable added.

The four scenarios (curves) correspond to different strengths of the latent variable, start-

ing with zero strength in blue curve.

in A determine the network connections between nodes, and the diagonal elements are all set to

-1, to model within-node temporal decay; thus σ controls both the within-node (neural) temporal

inertia/smoothing and the neural lag between nodes.

A central problem in fMRI is that the measured signal does not directly correspond to z. To sim-

ulate this, each node’s neural timeseries zi was fed through the nonlinear balloon model for vascular

dynamics responding to changing neural demand. The balloon model parameters were in general

set according to the prior means in DCM. However, it is known that the haemodynamic processes

vary across brain areas and subjects, resulting in different lags between the neural processes and the

BOLD data, with variations of up to at least 1s (Handwerker et al., 2004; Chang et al., 2008). We

therefore added randomness into the balloon model parameters at each node, resulting in variations

in HRF (haemodynamic response function) delay of standard deviation 0.5s. Finally, thermal white

(measurement) noise of standard deviation 0.1–1% (of mean signal level) was added.
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Thus, we obtained the measured fMRI signals. They were sampled with a sampling interval

of 3s (in most simulations), corresponding to a typical time of repetition (TR) in brain imaging

literature.

The simulations comprised 50 separate realisations (or “subjects”), all using the same simulation

parameters, except for having independently generated external inputs and different HRF parameters

at each node (as described above); furthermore, the connection strengths were slightly perturbated

for each subject. Each “subject’s” data was a 10-minute fMRI session (200 timepoints) in many of

the simulations.

For a summary of the specifications for the 28 simulations see Table 1.

Sim n length TR noise HRF std other factors

(mins) (s) (%) (s)

1 5 10 3.00 1.0 0.5

2 10 10 3.00 1.0 0.5

3 15 10 3.00 1.0 0.5

4 50 10 3.00 1.0 0.5

5 5 60 3.00 1.0 0.5

6 10 60 3.00 1.0 0.5

7 5 250 3.00 1.0 0.5

8 5 10 3.00 1.0 0.5 shared inputs

9 5 250 3.00 1.0 0.5 shared inputs

10 5 10 3.00 1.0 0.5 global mean confound

11 10 10 3.00 1.0 0.5 timeseries mixed with each other

12 10 10 3.00 1.0 0.5 new random timeseries mixed in

13 5 10 3.00 1.0 0.5 backwards connections

14 5 10 3.00 1.0 0.5 cyclic connections

15 5 10 3.00 0.1 0.5 stronger connections

16 5 10 3.00 1.0 0.5 more connections

17 10 10 3.00 0.1 0.5

18 5 10 3.00 1.0 0.0

19 5 10 0.25 0.1 0.5 neural lag=100ms

20 5 10 0.25 0.1 0.0 neural lag=100ms

21 5 10 3.00 1.0 0.5 2-group test

22 5 10 3.00 0.1 0.5 nonstationary connection strengths

23 5 10 3.00 0.1 0.5 stationary connection strengths

24 5 10 3.00 0.1 0.5 only one strong external input

25 5 5 3.00 1.0 0.5

26 5 2.5 3.00 1.0 0.5

27 5 2.5 3.00 0.1 0.5

28 5 5 3.00 0.1 0.5

Table 1: Summary of the 28 fMRI simulations’ specifications (from Smith et al., 2011)
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7.2 Estimation Methods for Simulated fMRI Data

We used pairwise measures with three different nonlinearities: tanh, skewness, and the robust mea-

sure of skewness. We did not estimate the existence of connections at all since that is not the main

topic of the paper: We only looked at the estimated directionalities for those connections which

really existed in the simulated data.

Since the skewness of the data was mainly positive, we used this prior information of positive

skewness skewness-based measures. In other words, we skipped the skewness correction in (13).

For comparison, we used two methods by Patel et al. (2006) which were the most successful

of the many methods tested by Smith et al. (2011), as well as basic ICA-based LiNGAM (Shimizu

et al., 2006) which was applied on the whole data (not pairwise).

7.3 Results on Simulated fMRI Data

The goal is thus to recover the directionalities defined by the non-zero entries of the neural dynamics

matrix A by estimating the directionalities given by B in our SEM. We evaluated the results using

the same measures as Smith et al. (2011) to allow for direct comparison.

Our evaluations looked at the distribution of correctly estimated connections over the 50 simu-

lated subjects. We concentrate here on evaluating methods for single subject (single session) data

sets, and only utilise multiple subjects’ data sets in order to characterise variability of results across

multiple random instantiations of the same underlying network simulation. This is in contrast to the

approach by Ramsey et al. (2011) who estimated the network over random subsets of 10 subjects,

which is an easier task, at least if the subjects are not very different.

The raw connection strengths bi j were converted into z-scores in order to make the plots more

qualitatively interpretable, as the connection strengths are then more comparable across the different

methods. The conversion from raw connection strengths to z-scores was achieved by using a null

distribution of connection strengths, obtained by feeding in truly null timeseries data into each of the

estimation methods. The null data was created by testing for connections between timeseries from

different subjects’ data sets, which have no causal connections between them (i.e., we randomly

shuffled the subject labels for each node in the network). See Smith et al. (2011) for details. To

specifically look at estimated directionalities, we use the higher of the two directions’ measures to

be the estimated connection strength.

The results are shown in Figs 15-16. The distributions are over all 50 simulated “subjects” and

over all correct network edges; higher is better. Note, however, that this plot does not take into

account the false positives, that is, the values estimated in the network matrix that should be empty,

and concentrates exclusively on the estimation of causal directions. The plots, known as “violin

plots”, are simply (vertically-oriented) smoothed histograms, reflected in the vertical axis for better

visualisation.

We see that the pairwise methods perform much better than Patel’s measures or ICA-based

LiNGAM on all the simulations. (The comparison to ICA-based LiNGAM may not be entirely fair

since it estimates more than just directionalities.) In fact, our methods perform extremely well in

most simulations. In all the simulations, the pairwise measures are the best, although in two cases

the performances of all methods are so close to chance level that any comparison is difficult. The

results are not very good in the following cases:

• Simulation 13 which has backwards connections (i.e., both x → y and y → x) which is not sur-

prising since it is against the basic philosophy of our modelling. However, the performance is
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Caption for Figs. 15 and 16 on pages 147 and 148: The z-scores of the different measures used to

determine the directionality, computed over subjects and connections, are shown as violin plots (i.e.,

histograms rotated to be horizontal and made symmetric). If the directions are found completely

correctly, the violin plots are concentrated at the top. The blue dots show the the percentage of

correctly estimated directions. First, we have three pairwise methods, and for comparison, two

methods by Patel, as well as ICA-based LiNGAM. Each panel is one simulation.

clearly better than chance, which shows that our method is able to find the dominant direction

some of the time.

• Simulation 22 which has nonstationary connection strengths, which violates another basic

assumption of the model.

• Simulation 24 in which one of the inputs is strongly dominant. This is presumably because

the effective signal-to-noise ratio is too poor for many of the connections.

• Simulations 25-27 in which the number of data points is smaller (recording length is shorter),

performance being close to chance level for all methods.

Among the pairwise measures, there is no clear winner. However, the robust skewness measure

is most often the best (in those cases where a clear difference can be seen), and never much worse

then the other two.

8. Nonlinear Causal Discovery on Real Data

Finally, we applied our nonlinear methods on the Tübingen-UCI cause-effect data set9 which con-

sists of real measurements in which the true direction of causation in known. We used a total of 81

data sets, consisting of the subset of those data that had exactly two variables. In addition to our

two new nonlinear methods, we applied the original HSIC-based methods by Hoyer et al. (2009),

as well as the linear likelihood ratio with maximum negentropy approximation of Section 2.3. The

relations in this data set are often quite nonlinear, and the linear methods are hardly above chance

level (results not shown except for one method below), so we concentrate on the nonlinear methods

here.

The nonlinear regression was performed by first fitting a least-squares regression curve using a

Gaussian process as implemented in the fit gp package by J. Mooij, based on code by C. E. Ras-

mussen and H. Nickisch. We used only the first 1,000 data points due to the excessive computational

complexity of HSIC.

The results are shown in Table 2. The linear method, as well as our basic nonlinear method

using maximum entropy were hardly better than chance. The method by Hoyer et al. (2009) was

close to 62%. On the other hand, our simplest approximation using mean absolute deviation was

69% correct.

Presumably, one reason for the weak performance of our nonlinear method using maximum

entropy approximations was that many of the data sets have strong outliers. The MAD-based objec-

tive in Equation (24) is quite robust against them (although the nonlinear regression method was not

9. Data set can be found at http://webdav.tuebingen.mpg.de/cause-effect/.
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Simulation 1  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 2  (10 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 3  (15 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 4  (50 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 5  (5 nodes, 60 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 6  (10 nodes, 60 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 7  (5 nodes, 250 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 8  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , shared inputs)
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Simulation 9  (5 nodes, 250 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , shared inputs)
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Simulation 10  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , global mean confound)
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Simulation 11  (10 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , bad ROIs (timeseries mixed with each other))
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Simulation 12  (10 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , bad ROIs (new random timeseries mixed in))
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Simulation 13  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , backwards connections)
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Simulation 14  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , cyclic connections)
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Simulation 15  (5 nodes, 10 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s , stronger connections)
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Figure 15: Results on simulated fMRI data, first half. See page 146 for caption.
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Simulation 16  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , more connections)
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Simulation 17  (10 nodes, 10 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s )
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Simulation 18  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.0s )
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Simulation 19  (5 nodes, 10 minute sessions, TR=0.25s, noise=0.1%,
HRFstd=0.5s , neural lag=100ms)
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Simulation 20  (5 nodes, 10 minute sessions, TR=0.25s, noise=0.1%,
HRFstd=0.0s , neural lag=100ms)
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Simulation 21  (5 nodes, 10 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s , 2−group test)
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Simulation 22  (5 nodes, 10 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s , nonstationary connection strengths)
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Simulation 23  (5 nodes, 10 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s , stationary connection strengths)
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Simulation 24  (5 nodes, 10 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s , only one strong external input)
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Simulation 25  (5 nodes, 5 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )
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Simulation 26  (5 nodes, 2.5 minute sessions, TR=3.00s, noise=1.0%,
HRFstd=0.5s )

P
W

−
LR

 s
ke

w

P
W

−
LR

 ta
nh

P
W

−
LR

 r
 s

ke
w

P
at

el
’s

 t

P
at

el
’s

 t 
bi

n.
75

IC
A

−
Li

N
G

A
M

0

25

50

75

100

%
 d

ire
ct

io
ns

 c
or

re
ct

−10

−5

0

5

10

ca
us

al
ity

  (
Z

rig
ht

 −
 Z

w
ro

ng
)

Simulation 27  (5 nodes, 2.5 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s )
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Simulation 28  (5 nodes, 5 minute sessions, TR=3.00s, noise=0.1%,
HRFstd=0.5s )
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Figure 16: Results on simulated fMRI data, second half. See page 146 for caption.
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Method % correct

mxnt 50.6

hsic 61.7

nlme 53.1

mad 69.1

Table 2: Nonlinear models applied on the Tübingen-UCI data set. The algorithms are “nlme”,

the nonlinear likelihood ratio with maximum entropy approximation; “mad”, the approx-

imation using mean absolute deviations. For comparison: “hsic”, the original nonlinear

method using the HSIC measure of independence (Hoyer et al., 2009); and “mxnt”, the

linear method using the maximum entropy approximation.

made robust). The maximum entropy approximation might be greatly improved if the estimation of

the variances used in the maximum entropy objective were made robust against outliers. Further-

more, both of our methods might be improved if the nonlinear fitting used a robust criterion instead

of least squares.

9. Conclusion

We proposed very simple measures of the pairwise causal direction based on likelihood ratio tests

and their approximations. We started with general measures based on entropy approximation which

can accommodate different kinds of distributions, in Equations (2) and (3). Assuming that prior

knowledge is available, we can develop more specific methods; for sparse variables we propose (5)

and for skewed variables (17). We further showed how the measures can be extended to cyclic and

nonlinear models. The different measures are recapitulated in Table 3.

We also showed how the pairwise measures can be used to estimate the whole Bayesian network

in two ways. This is possible either in the DirectLiNGAM framework, or by a two-stage method

based on first estimating the existence of the connections and then orienting them using the pairwise

measures.

We also proposed a cumulant-based version of the nonlinear correlations. It was shown that

the cumulant gives the correct pairwise direction. This shows the utility of using cumulants in

theoretical analysis, and gives an intuitive interpretation of a new kind of cumulant. The cumulant-

based analysis also indicated the noise-robustness of the nonlinear correlation methods, which was

confirmed in the simulations. However, in practice the cumulant-based methods may suffer from

sensitivity to outliers and thus their utility may be mainly in theoretical analysis.

The proposed measures seem to be particularly useful in the case where the number of data

points is small compared to the dimension of the data, or the data is noisy. In such a case, the statis-

tical performance of our methods is clearly superior to ICA-based LiNGAM and, to a lesser extent,

DirectLiNGAM. The new methods are also computationally much faster than DirectLiNGAM. The

importance of estimating causal networks with few data points has been recently highlighted by

Smith et al. (2011) in the context of brain imaging. In fact, applied to the simulations by Smith et al.

(2011), the new pairwise measures were clearly better then the methods originally tested.
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Proposed measures for linear acyclic model (LiNGAM)

Assumptions on non-Gaussianity None Sparse Skewed

Equation for main new pairwise measure (2) with (3) (5) (17)

Equation for previous measure by Dodge and Rousson — — (14)

Proposed measures for extensions of LiNGAM

Extension type Cyclic case Nonlinear case

Equation for new pairwise measure Any LiNGAM measure (23) with (3); or (24)

Table 3: The pairwise measures proposed in this paper recapitulated. The new cumulant-based

approximations (Equations 6 and 10) have been omitted since they are mainly for theo-

retical analysis and not for practical use. Some of the measures by Dodge and Rousson

(2001); Dodge and Yadegari (2010) would otherwise fit the “sparse” category but they as-

sume the disturbances to be Gaussian and are thus less general. In the cyclic case, no new

pairwise measures were introduced and it was merely proposed that the LiNGAM mea-

sures can be directly used even in the cyclic case. Of the measures highlighted above, the

sparse-LiNGAM measure in Equation (5) was proposed in an earlier report on this work

(Hyvärinen, 2010) while all others are new.

Thus, when estimating the LiNGAM model, it may be important to choose a suitable algorithm

depending on data dimension, sample size, noise level, the distributions of the external influences,

and other relevant factors.

Basic code for the pairwise measures is distributed on the Internet.10
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S. Shimizu, T. Inazumi, Y. Sogawa, A. Hyvärinen, Y. Kawahara, T. Washio, P. O. Hoyer, and

K. Bollen. DirectLiNGAM: A direct method for learning a linear non-gaussian structural equa-

tion model. J. of Machine Learning Research, 12:1225–1248, 2011.

S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann, T. E. Nichols, J. D.

Ramsey, and M. W. Woolrich. Network modelling methods for fMRI. NeuroImage, 54:875–891,

2011.

Y. Sogawa, S. Shimizu, Y. Kawahara, and T. Washio. An experimental comparison of linear non-

gaussian causal discovery methods and their variants. In Proc. Int. Joint Conf. on Neural Networks

(IJCNN2010), Barcelona, Spain, 2010.

Y. Sogawa, S. Shimizu, A. Hyvärinen, T. Washio, T. Shimamura, and S. Imoto. Estimating exoge-

nous variables in data with more variables than observations. Neural Networks, 24(8):875–880,

2011.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Springer-Verlag, 1993.

K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model. In Proc.

25th Conference on Uncertainty in Artificial Intelligence (UAI2009), pages 647–655, Montréal,
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Abstract

In supervised learning problems, global and local learning algorithms are used. In contrast to global

learning algorithms, the prediction of a local learning algorithm in a testing point is only based on

training data which are close to the testing point. Every global algorithm such as support vector

machines (SVM) can be localized in the following way: in every testing point, the (global) learning

algorithm is not applied to the whole training data but only to the k nearest neighbors (kNN) of

the testing point. In case of support vector machines, the success of such mixtures of SVM and

kNN (called SVM-KNN) has been shown in extensive simulation studies and also for real data sets

but only little has been known on theoretical properties so far. In the present article, it is shown

how a large class of regularized kernel methods (including SVM) can be localized in order to get a

universally consistent learning algorithm.

Keywords: machine learning, regularized kernel methods, localization, SVM, k-nearest neigh-

bors, SVM-KNN

1. Introduction

In a supervised learning problem, the goal is to predict the value y of an unobserved output vari-

able Y after observing the value x of an input variable X . A predictor is a function f which maps

the observed input value x (called testing data point) to a prediction f (x) of the unobserved out-

put value y. Choosing a predictor f = fDn
is done on base of previously observed data Dn =

(

(x1,y1), . . . ,(xn,yn)
)

(called trainig data). A learning algorithm is a function Dn 7→ fDn
which

maps training data Dn to a predictor fDn
. Among the learning algorithms commonly used in ma-

chine learning, there are local and global algorithms. The most prominent example of a local algo-

rithm is k-nearest neighbors (kNN). In case of a local algorithm Dn 7→ fDn
, the prediction fDn

(x) in

a testing data point x is not based on the whole training data but only on those training data points

(xi,yi) which are close to x. In case of a global algorithm, choosing a predictor fDn
is based on a

global criterion—such as (penalized) empirical risk minimization—and, accordingly, the prediction

fDn
(x) in a point x can also be based on training data points (xi,yi) which are not close to x. Typi-

cal examples of global algorithms are regularized kernel methods such as support vector machines

(SVM).

Global algorithms have disadvantages if the complexity of the optimal predictor varies for dif-

ferent areas of the input space. For example, in one part of the the input space, an optimal predictor

might be a very simple function and, in another part, it might be a highly complex and volatile func-
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tion. This is a problem for global algorithms because the complexity of the selected predictor fDn

is usually regularized by one or several hyperparameters which are fixed for the whole input space.

One way to overcome this problem is to separate the input space into several parts in a first step and

to separately use a global algorithm for each of the separated parts. For example, the input space

is separated by use of decision trees and then SVMs are separately applied on the separated parts

of the input space; see, for example, Bennett and Blue (1998), Wu et al. (1999), and Chang et al.

(2010). Another possibility is to “localize” a global algorithm. This can be done in the following

way: (1) select a few training data points which are close to the testing data point, (2) determine

a predictor based on the selected training data points by use of a (global) learning algorithm, and

(3) calculate the prediction in the testing data point. A number of algorithms which have been sug-

gested in the literature can be described in this way. These algorithms only differ in the way how

data points are selected in (1) and which learning algorithm is used in (2). An early investigation

of such methods is Bottou and Vapnik (1992) and Vapnik and Bottou (1993). A number of recent

articles apply such an approach to support vector machines (SVM). That is, SVM is used in (2),

but there are differences in (1): In Zhang et al. (2006), data points are selected in the same way as

for kNN. That is, the prediction in a testing point x is given by that SVM which is calculated based

on the kn training points which are nearest to x; the natural number kn acts as a hyperparameter.

In order to decide which training points are the kn closest ones to x, a metric on the input space

is needed. Zhang et al. (2006) considers different metrics. As this approach is a mixture between

kNN and SVM, it is called SVM-KNN. Independently, a similar approach has been developed by

E. Blanzieri and others. The main difference to Zhang et al. (2006) is that distances (for select-

ing the kn nearest neighbors) are not measured in the input space but in the feature space (i.e., in

the RKHS associated with the kernel of the SVM). This approach has been extensively studied in

experimental comparisons in Blanzieri and Bryl (2007a), Blanzieri and Bryl (2007b), Segata and

Blanzieri (2009) and Blanzieri and Melgani (2008) where the latter publication also derives a local

bound on the generalization error. Another slightly different approach is developed in Cheng et al.

(2007) and Cheng et al. (2010). There, data points are not selected according to a fixed number kn

of nearest neighbors as in kNN; instead, those training data points are selected which are contained

in a fixed neighborhood about the testing point x. That is, not the number of testing points in the

neighborhood is fixed (as in kNN), but the area of the neighborhood is fixed. In addition, it is also

possible to downweight testing points depending on their distance to the testing point x.

Though all of these approaches have been extensively studied on simulated and real-world data

and their success has experimentally been shown, only little is known on theoretical properties so

far. In this article, it is shown that some SVM-KNN approaches are universally consistent. Though

the above cited approaches only consider SVMs for classification (using the hinge loss) and linear

kernels, the following theoretical investigation allows for a large class of loss functions and kernels.

That is, not only SVMs but also general regularized kernel methods are considered for classification

and regression as well. Here, kn nearest neighbors are selected by use of the ordinary Euclidean

metric on the input space X ⊂R
p so that this approach is closest to Zhang et al. (2006). All methods

based on a kNN approach are faced with the problem of distance ties. This means that, in general,

the set of the kn nearest neighbors to a testing point x is not necessarily unique because different

testing points might have the same distance to x. In case of distance ties, a number of tie-breaking

strategies have been suggested in the literature; see, for example, Devroye et al. (1994, § 1). E.g.

a simple tie-breaking strategy is to generate artificial additional covariates U1, . . . ,Un i.i.d. from the

uniform distribution on [0,ε] for some small ε > 0. Then, for the new input variables X ′
i := (Xi,Ui),
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Figure 1: Neighborhood (dotted circle) determined by the k nearest neighbors of a testing point

(empty point) for k = 3. The left figure shows a situation without distance ties at the bor-

der of the neighborhood (dotted circle). The right figure shows a situation with distance

ties at the border of the neighborhood (empty point): only one of the two data points

(filled points) at the border may belong to the k = 3 nearest neighbors; choosing between

these two candidates is done by randomization here.

distance ties only occur with zero probability. The drawback of this method is that ε has to be chosen

in advance and, in particular if ε is not small enough, this tie-breaking strategy changes the results

even if there are no distance ties. Therefore, we use a different strategy where, in case of a distance

tie, the k nearest neigbors are chosen by randomization; see Figure 1. Technically, this is done by

artificially generated covariates U1, . . . ,Un i.i.d. from the uniform distribution on [0,1] where—in

contrast to the simple tie-breaking strategy mentioned above—Ui is only taken into account in case

of a distance tie in Xi.

It has to be pointed out that the approach of this article differs from the one in Zakai and Ri-

tov (2009); see also Zakai (2008). There, it is shown that every consistent learning algorithm is

in a sense localizable. On the one hand, this is of great theoretical importance because, roughly

speaking, it says that global methods as SVMs asymptotically act like local methods. On the other

hand, this also shows that any consistent method can be localized in a way so that the local version

is again consistent. By a superficial inspection of these results, one might suggest that, essentially,

this would already show consistency of any localized method such as SVM-KNN. However, this is

not the case and these results cannot be used offhand in order to prove consistency of SVM-KNN:

Firstly, the way how the methods are localized completely differ. In Zakai and Ritov (2009), lo-

calizing is not done by fixed numbers kn of nearest neighbors (as in kNN and SVM-KNN) but by

fixed sizes (radii) Rn of neighborhoods (similar as in Cheng et al. (2010)). Using fixed sizes (radii)

of neighborhoods is more convenient for theoretical investigations because whether a data point xi0

lies in such a neighborhood only depends on this data point; that is, variables indicating whether data

points belong to such a neighborhood are i.i.d. In contrast, whether a data point xi0 belongs to the

kn nearest neighbors depends on the whole sample; that is, the corresponding indicator variables are

not independent and one has to work with random sets of indexes. In particular, the kNN-approach

leads to random sizes of neighborhoods which depend on the testing point x while Zakai and Ritov

(2009) deal with deterministic sequences of radii Rn which do not depend on the testing point x.

155



HABLE

Secondly, due to the generality of the investigation in Zakai and Ritov (2009), it is only shown there

that a (deterministic) sequence of radii Rn exists such that a suitably,1 localized method is consistent.

This indicates that looking for consistent localized methods may be promising; however, for prac-

tical purposes, mere existence is not enough and one also has to know how to choose such entities

like Rn in order to get a consistent method. In the special case of SVM-KNN, the main result of

the present article precisely specifies possible choices of all involved entities (hyperparameters etc.)

which guarantee consistency.

For kNN, consistency requires that the number of selected neighbors kn goes to infinity but not too

fast for n → ∞. Clearly, this will also be crucial for SVM-KNN but, now, an additional difficulty

arises: the calculation of the SVM (or any other regularized kernel method) depends on a regular-

ization parameter λn which determines to what extend the complexity of a predictor is penalized

(in order to avoid overfitting). Consistency of SVMs is only guaranteed if λn converges to 0 but

not too fast. Accordingly, in case of SVM-KNN, the interplay between the convergence of kn and

the convergence of λn is crucial. Theorem 1 below gives precise conditions on kn and λn which

guarantee consistency of SVM-KNN. In Therorem 1, it is assumed that kn, n ∈N, is a predefined

deterministic sequence. The regularization parameters λn = λDn,x are based on the training data and

can, to some extend, also be chosen in a data-driven way, for example, by cross-validation. In addi-

tion, the choice of the regularization parameter is local, that is, depends on the testing point x. This

enables a local regularization of the complexity of the predictor which is an important motivation

for localizing a global algorithm as already stated above.

Local approaches such as SVM-KNN are computationally very efficient if the number of testing

points is small. However, if the number of testing points is large, then such methods are burdened

with high computational costs of the testing phase. Therefore, variants of SVM-KNN have been

proposed in Cheng et al. (2007) and Segata and Blanzieri (2010). For example, in Segata and

Blanzieri (2010), the computational complexity is reduced by the following modification: the SVM

is not calculated on base of the k-nearest neighbors of the testing point but on base of the k-nearest

neighbors of a certain training point which is close to the testing point. In this way, only a relatively

small number of SVMs has to be calculated. If k is reasonable small (and fixed), then training scales

as O(n log(n)) and testing scales as O(log(n)) in the number of training points.

The article is organized as follows: Section 2 recalls the precise mathematical definitions of

kNN, regularized kernel methods (in particular, SVM) and SVM-KNN as investigated here. Section

3 contains the main result, that is, consistency of SVM-KNN, Section 4 investigates an illustrative

example and Section 5 contains some concluding remarks. All proofs and auxiliary results are given

in the Appendix.

2. Setup: kNN, SVM and SVM-KNN

Let (Ω,A ,Q) be a probability space, let X be an open subset of Rd , and let Y be a closed subset of

R. For any (topological) space W , its Borel-σ-algebra is denoted by BW . Let

X1, . . . ,Xn : (Ω,A ,Q) −→
(

X ,BX

)

and Y1, . . . ,Yn : (Ω,A ,Q) −→
(

Y ,BY

)

be random variables such that (X1,Y1), . . . ,(Xn,Yn) are independent and identically distributed ac-

cording to some unknown probability measure P on
(

X ×Y ,BX×Y

)

. In order to find a prediction

1. In Zakai and Ritov (2009), localizing also involves a smoothing operation around the testing point.
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y = f (ξ) for a point ξ ∈ X , a kNN-rule is based on the kn nearest neighbors of ξ. The kn nearest

neighbors of ξ ∈ R
p within x1, . . . ,xn ∈ R

p are given by an index set I ⊂ {1, . . . ,n} such that

♯(I ) = kn and max
i∈I

|xi −ξ| < min
j 6∈I

|x j −ξ| . (1)

However, in case of distance ties, some observations xi and x j have the same distance to ξ (i.e.,

|xi−ξ|= |x j−ξ|) so that the kn nearest neighbors are not unique and an index set I as defined above

does not exist. In order to break distance ties, we use randomization (see also Figure 1) as done in

(Devroye et al., 1994, p. 1373f): We artificially generate data from random variables U1, . . . ,Un

which are uniformly distributed on (0,1) and such that (X1,Y1), . . . ,(Xn,Yn),U1, . . . ,Un are inde-

pendent. Define Zi := (Xi,Ui) for every i ∈ {1, . . . ,n}. That is, we observe (Z1,Y1), . . . ,(Zn,Yn) now.

Define

Dn :=
(

(Z1,Y1), . . . ,(Zn,Yn)
)

∀n ∈N .

We say that zi = (xi,ui) is (strictly) closer to ζ = (ξ,u) ∈ X × (0,1) than z j = (x j,u j) if |xi − ξ| <
|x j − ξ|; and, in case of a distance tie |xi − ξ| = |x j − ξ|, we say that zi = (xi,ui) is (strictly) closer

to ζ = (ξ,u) than z j = (x j,u j), if |ui − u| < |u j − u|. That is, we use some kind of a lexicographic

order which guarantees that nothing changes if there are no distance ties. Note that there can also

be distance ties for the ui but these only occur with zero probability. The following is a precise

definition of “nearest neighbors” which also takes into account distance ties in the xi and the ui. For

n ∈ N, let kn ∈ {1, . . . ,n}. Take any z1 = (x1,u1), . . . ,zn = (xn,un),ζ = (ξ,u) ∈ R
p × (0,1) such

that there is a τn(z1, . . . ,zn,ζ) = I ⊂ {1, . . . ,n} such that

♯(I ) = kn , max
i∈I

|xi −ξ| ≤ min
i6∈I

|xi −ξ| and max
j∈I∩J

|u j −u| < min
j∈J \I

|u j −u| (2)

where

J =
{

j ∈ {1, . . . ,n}
∣

∣

∣
|x j −ξ|= max

i∈I
|xi −ξ|

}

. (3)

If such a set τn(z1, . . . ,zn,ζ) = I exists, it is unique. If it does not exist, there are also distance ties

in the ui and we arbitrarily define τn(z1, . . . ,zn,ζ) := {1, . . . ,kn} in this case. Since distance ties in

the ui occur with zero probability, the definition of τn(z1, . . . ,zn,ζ) is meaningless in this case; it is

only important to assure measurability of τn : (z1, . . . ,zn,ζ) 7→ τn(z1, . . . ,zn,ζ); see Appendix B. So,

definition (2) and (3) is a modification of (1) in order to deal with distance ties in the xi. Note that,

due to the lexicographic order, the values ui and u are only relevant in case of distance ties (at the

border of the neighborhood given by the kn nearest neighbors).

Next, define

In,ζ(ω) := τn

(

Z1(ω), . . . ,Zn(ω),ζ
)

∀ω ∈ Ω , ∀ζ ∈R
p × (0,1) . (4)

That is, In,ζ contains the indexes of the kn-nearest neighbors of ζ. Let i1 < i2 < .. . < ikn
be the

(ordered) elements of In,ζ. Then, the vector of the kn-nearest neighbors is

Dn,ζ :=
(

(Zi1 ,Yi1), . . . ,(Zikn
,Yikn

)
)

. (5)

The prediction of the ordinary kNN-rule in ξ is given by the mean

1

kn
∑

i∈In,ζ

Yi .
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The SVM-KNN method replaces the mean by an SVM. To this end, we recall the definition of

SVMs; here, the term “SVM” is used in a wide sense which covers many regularized kernel-based

learning algorithms for classification and regression as well; see, for example, Steinwart and Christ-

mann (2008) for these methods.

A measurable map L : Y ×R→ [0,∞) is called loss function. A loss function L is called convex

loss function if it is convex in its second argument, that is, t 7→ L(y, t) is convex for every y ∈ Y .

The risk of a measurable function f : X →R is defined by

RP( f ) =
∫

X×Y
L
(

y, f (x)
)

P
(

d(x,y)
)

.

The goal is to estimate a function f : X →R which minimizes this risk. The estimates obtained from

the method of support vector machines are elements of so-called reproducing kernel Hilbert spaces

(RKHS) H. An RKHS H is a certain Hilbert space of functions f : X →R which is generated by a

kernel K : X ×X →R . See, for example, Schölkopf and Smola (2002) or Steinwart and Christmann

(2008) for details about these concepts.

Let H be such an RKHS. Then, the regularized risk of an element f ∈ H is defined to be

RP,λ( f ) = RP( f ) + λ‖ f‖2
H , where λ ∈ (0,∞) .

An element f ∈ H is called a support vector machine (SVM) and denoted by fP,λ if it minimizes

the regularized risk in H . That is,

RP( fP,λ) + λ‖ fP,λ‖2
H = inf

f∈H

(

RP( f ) + λ‖ f‖2
H

)

. (6)

The empirical SVM fDn,λDn
is that function f ∈ H which minimizes

1

n

n

∑
i=1

L
(

yi, f (xi)
)

+ λDn
‖ f‖2

H

in H for the data Dn =((x1,y1), . . . ,(xn,yn)) ∈ (X ×Y )n and a regularization parameter λDn
∈ (0,∞)

which is chosen in a data-driven way (e.g., by cross-validation) in applications so that it typically

depends on the data. The empirical support vector machine fDn,λDn
uniquely exists for every λDn

∈
(0,∞) and every data-set Dn ∈ (X ×Y )n if t 7→ L(y, t) is convex for every y ∈ Y .

The prediction of the SVM-KNN learning algorithm in ζ = (ξ,u) ∈ X × (0,1) is given by

fDn,ζ,Λn,ζ
(ξ) with

fDn,ζ,Λn,ζ
= argmin

f∈H

(

1

kn
∑

i∈In,ζ

L
(

Yi, f (Xi)
)

+ Λn,ζ‖ f‖2
H

)

(7)

where ω 7→ Λn,ζ(ω) is a random regularization parameter depending on n and ζ. That is, the method

calculates the empirical SVM fDn,ζ,Λn,ζ
for the kn nearest neighbors (given by the index set In,ζ) and

uses the value fDn,ζ,Λn,ζ
(ξ) for the prediction in ζ. The empirical SVM minimizes the regularized

empirical risk where the regularization is done in order to avoid overfitting. Note that—unlike most

theoretical investigations on SVMs—the regularization parameter Λn,ζ is random and, here, also the

index set In,ζ is random, that is, a set-valued random variable. We will assume that Y ⊂ [−M,M] for

158



UNIVERSAL CONSISTENCY OF LOCALIZED VERSIONS OF REGULARIZED KERNEL METHODS

some M so that the SVM-KNN can be clipped. The clipped version of the SVM-KNN is denoted

by

a
fDn,ζ,Λn,ζ

(ξ) =











M fDn,ζ,Λn,ζ
(ξ) > M

fDn,ζ,Λn,ζ
(ξ) if fDn,ζ,Λn,ζ

(ξ) ∈ [−M,M]

−M fDn,ζ,Λn,ζ
(ξ) < −M

. (8)

This means that we change the prediction to M (or −M) if fDn,ζ,Λn,ζ
(ξ) is larger (or smaller) than M

(or −M). As we will assume that Y ⊂ [−M,M], predictions exceeding [−M,M] are not sensible

and, in these cases, clipping obviously improves the accuracy of our predictions.

3. Main Result

This section contains the main result, namely universal consistency of SVM-KNN where the term

“SVM” is used in a broad sense. Instead of just SVMs in the original sense (i.e., classification using

the hinge loss), a large class of regularized kernel methods for classification and regression as well

is covered. However, as already mentioned in the introduction, not any combination of SVM and

kNN is possible. In order to get consistency, the choice of the number of neighbors kn and the data-

driven local choice of the regularization parameter λ=Λn,ξ needs some care. The following settings

guarantee consistency of SVM-KNN. Possible choices for kn and λn are, for example, kn = b ·n0.75

for b ∈ (0,1] and λn = a ·n−0.15 for a ∈ (0,∞), n ∈N.

Settings: Choose a sequence kn ∈N, n ∈N, such that

k1 ≤ k2 ≤ k3 ≤ . . . ≤ lim
n→∞

kn = ∞ and
kn

n
ց 0 for n → ∞ ,

and a sequence λn ∈ (0,∞), n ∈N, such that

lim
n→∞

λn = 0 and lim
n→∞

λ
3
2
n · kn√

n
= ∞ (9)

and a constant c ∈ (0,∞), and a sequence cn ∈ [0,∞) such that limn→∞ cn/
√

λn = 0. For every

ζ = (ξ,u) ∈ X × (0,1), define

Λ̃n,ζ =
1

kn
∑

i∈In,ζ

|Xi −ξ| 3
2

and choose random regularization parameters Λn,ζ such that

X × (0,1)×Ω → (0,∞), (ξ,u,ω) = (ζ,ω) 7→ Λn,ζ(ω)

is measurable and

c ·max
{

λn, Λ̃n,ζ

}

≤ Λn,ζ ≤ (c+ cn) ·max
{

λn, Λ̃n,ζ

}

∀ζ ∈ X × (0,1) . (10)

Let the kernel K : X ×X →R be continuously differentiable, bounded, and such that its RKHS H

is non-degenerated in the following sense:

for every x ∈ X there is an f ∈ H such that f (x) 6= 0 . (11)
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Theorem 1 Let X ⊂ R
p be an open subset and let Y ⊂ [−M,M] be closed. Let L : [−M,M]×

R → [0,∞) be a convex loss function with the following local Lipschitz property: there are some

b0,b1 ∈ (0,∞) and q ∈ [0,1] such that, for every a ∈ (0,∞),

sup
y∈[−M,M]

∣

∣L(y, t1)−L(y, t2)
∣

∣ ≤ |L|a,1 · |t1 − t2| ∀ t1, t2 ∈ [−a,a] (12)

for |L|a,1 = b0 + b1aq. In addition, assume that there is an increasing function ℓ : [0,∞) → [0,∞)
such that lims→0 ℓ(s) = 0 and

sup
t∈[−M,M]

∣

∣L(y1, t)−L(y2, t)
∣

∣ ≤ ℓ
(

|y1 − y2|
)

∀y1,y2 ∈ [−M,M] . (13)

Assume that (X1,Y1), . . . ,(Xn,Yn) are independent and identically distributed according to some

unknown probability measure P on
(

X ×Y ,BX×Y

)

and let U1, . . . ,Un be uniformly distributed on

(0,1) such that (X1,Y1), . . . ,(Xn,Yn),U1, . . . ,Un are independent.

Then, every SVM-KNN defined by (7,8) according to the above settings and clipped at M,

fDn
: ζ = (ξ,u) 7→ a

fDn,ζ,Λn,ζ
(ξ)

is risk-consistent, that is,

RP

(

fDn

)

−−−→
n→∞

inf
f :X→R

measurable

RP( f ) =: R ∗
P in probability.

Essentially all commonly used loss functions satisfy assumptions (12) and (13): for example,

the hinge loss and the logistic loss for classification, the ε-insensitive loss, the least squares loss,

the absolute deviation loss, and the Huber loss for regression, and the pinball loss for quantile

regression.

The property (11) of a nowhere degenerated RKHS H is a very weak property and replaces

strong denseness properties of H which are typically needed in order to assure universal consistency

of SVMs.

The settings include a data-driven local choice of the regularization parameter λ = Λn,ζ. Here,

“local” means that Λn,ζ depends on the testing point ζ. This is preferable because, in this way, it is

possible to allow for different degrees of complexity on different areas of the input space. As already

mentioned in the introduction, this is an important motivation for “localizing” a global algorithm.

A simple rule of thumb for choosing Λn,ζ is to predefine a fixed c ∈ (0,∞) and use

Λn,ζ = c ·max
{

λn, Λ̃n,ζ

}

. (14)

The deterministic λn prevents the regularization parameters from decreasing to 0 too fast and (9)

controls the interplay between kn and λn. (Recall that it is well known that classical SVMs are

not consistent if the regularization parameters decrease to 0 too fast.) Note that the calculation of

Λ̃n,ζ is computationally fast as In,ζ (the index set of the kn nearest neighbors) has to be calculated

anyway. The behavior of Λ̃n,ζ is reasonable: if the kn nearest neighbors are relatively close to the

testing point ζ, then Λ̃n,ζ is relatively small which is favorable because this means that relatively

many training points are close to ζ so that the predictor should be allowed to be relatively complex

around ζ. Nevertheless, the rule of thumb suggested in (14) will not satisfactorily capture different
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degrees of complexity in most cases. Then, it is possible to choose the regularization parameter on

base of a (restricted) cross-validation or any other method for selecting the hyperparameter: choose

a (very) small c ∈ (0,∞) and a (very) large C ∈ (0,∞), define cn :=C
√

λn/ ln(n) and make sure that

your selection method (e.g., cross validation) only picks a value from the interval

[

c ·max
{

λn, Λ̃n,ζ

}

, (c+ cn) ·max
{

λn, Λ̃n,ζ

}

]

.

As it is assumed in Theorem 1 that limn→∞ kn/n = 0 (i.e., the fraction of data points in the neighbor-

hood diminishes), this SVM-KNN approach is rather a kNN-approach in which the simple (local)

constant fitting is replaced by a more advanced (local) SVM fitting. That is, we follow a local

modeling paradigm (see Györfi et al., 2002, § 2.1) just as done, for example, when generalizing the

Nadaraya-Watson kernel estimator (constant fitting) to the local polynomial kernel estimator (poly-

nomial fitting); for local polynomial fitting and the advantages of generalizing local constant fitting,

see, for example, Fan and Gijbels (1996). In case of SVM-KNN, the advantage of generalizing con-

stant fitting (kNN), has been demonstrated in extensive simulation studies in Zhang et al. (2006),

Blanzieri and Bryl (2007a), Blanzieri and Bryl (2007b), Segata and Blanzieri (2009), and Blanzieri

and Melgani (2008).

Instead, it would also be possible to assume that limn→∞ kn/n = 1 so that the method (asymp-

totically) acts as an ordinary SVM. If convergence of the fraction kn/n to 1 is fast enough, then

universal consistency of such a method follows from universal consistency of SVM.

4. An Illustrative Example

It is commonly accepted in machine learning that there is no universally consistent learning algo-

rithm which is always better than all other universally consistent learning algorithms and, for two

different learning algorithms, there is always a situation in which one learning algorithm is better

than the other one and there is also a situation in which it is the other way round; see, for example,

(Devroye et al., 1996, § 1). The goal of this section is to illustrate where localizing SVMs provides

some gain and where it does not. It has to be pointed out here that it is not the goal of this article or

this section to empirically show the success of the SVM-KNN approach. This has previously been

done; see the references cited in the introduction. The aim of this article is the proof of universal

consistency and this section is only for illustrative purposes.

Let us consider the following model

Yi = f j(Xi)+ εi , i ∈ {1, . . . ,n} (15)

where, in the first scenario ( j = 1), the regression function is given by

f1(x) = 10(|x|−1)2 · sign(x) , x ∈ [−1,1]

and, in the second scenario ( j = 2), the regression function is given by

f2(x) = 10x2 · sign(x) , x ∈ [−1,1] .

As illustrated in Figure 2, the difference between f1 and f2 is that the parts of the functions on

(−1,0) and (0,1) are interchanged. In both cases, X1, . . . ,Xn are i.i.d. drawn from the uniform

distribution on [−1,1] and ε1, . . . ,εn are i.i.d. drawn from N (0,σ2) for σ = 0.5.

161



HABLE

−1.0 −0.5 0.0 0.5 1.0

−
10

−
5

0
5

10

f_1

x

y

−1.0 −0.5 0.0 0.5 1.0

−
10

−
5

0
5

10

f_1

x

y

−1.0 −0.5 0.0 0.5 1.0

−
10

−
5

0
5

10

f_2

x

y

Figure 2: Graph of the regression functions f1(x) = 10(|x|−1)2 · sign(x) and f2(x) = 10x2 · sign(x)
in model (15)

Classical SVMs, the localized version SVM-KNN, and classical kNN are applied to simulated

data sets of size n = 200 for both scenarios each with 500 runs. In case of classical SVMs, the

Gaussian RBF kernel Kγ(x,x
′) = exp(−γ(x−x′)2) and the ε-insensitive loss for ε = 0.001 are used.

The hyperparameter γ is chosen by a five-fold cross validation among

0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 15, 20, 30, 50, 75, 100, 150, 200, 250, 300, 350, 400, 500

and the regularization parameter is equal to λn = a · n−0.45 where a is chosen by a five-fold cross

validation among

0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1,

The choice λn = a ·n−0.45 is motivated by the fact that classical SVMs with the ε-insensitive loss are

consistent if limn→∞ λn = 0 and limn→∞ λ2
nn = ∞; see (Christmann and Steinwart, 2007, Theorem

12). In case of SVM-KNN, the number of nearest neighbors is equal to kn =
⌈

b · n0.75
⌉

where the

hyperparameter b is chosen by a five-fold cross validation among

0.15, 0.2 ,0.3 ,0.4 ,0.5 ,0.6 ,0.7 ,0.8 ,0.9 ,1 .

The exponent 0.75 for the definition of kn is in accordance with the settings in Section 3. Choosing

kn =
⌈

b · n0.75
⌉

would also guarantee universal consistency of classical kNN; see, for example,

(Györfi et al., 2002, Theorem 6.1). For each testing point ξ, the prediction is calculated by a local

SVM on the kn nearest neighbor. For each local SVM, the polynomial kernel K(x,x′) = (x · x′+1)3

with degree 3 and the ε-insensitive loss for ε = 0.001 are used. In accordance with the settings in

Section 3, the regularization parameter is equal to Λn,ξ = Cn,ξ max
{

0.01k−0.2
n , 1

kn
∑i∈In,ξ

|xi − ξ|1.5
}

where, for every ξ, the hyperparameter Cn,ξ is chosen by a five-fold cross validation among
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0.01, 0.1, 1, 10, 100, 1000, 10000, 100000 .

Similarly to the case of SVM-KNN, the number of nearest neighbors in the classical kNN method is

equal to kn =
⌈

c ·n0.5
⌉

where the hyperparameter c is chosen by a five-fold cross validation among

0.1, 0.2 ,0.3 ,0.4 ,0.5 ,0.6 ,0.7 ,0.8 ,0.9 ,1 .

The evaluation of the estimates is done on a test data set which consists of 1001 equidistant grid

points ξi on [−1,1]. For every run r ∈ {1, . . . ,500}, the mean absolute error (MAE) is calculated

MAE j,r( f⋆) =
1

1001

1001

∑
i=1

∣

∣ f⋆(xi)− f j(xi)
∣

∣ for f⋆ ∈
{

f SVM

j,r , f SVM-KNN

j,r , f kNN

j,r

}

where f SVM

j,r denotes the SVM-estimate, f SVM-KNN

j,r denotes the SVM-KNN-estimate, and f kNN

j,r denotes the

kNN-estimate in the r-th run of scenario j. For every scenario j and every learning algorithm, the

values MAE j,r( f⋆), r ∈ {1, . . . ,500}, are shown in a boxplot in Figure 3. In addition, Table 1 shows

the average of MAE j,r( f⋆) over the 500 runs:

MAE j( f⋆) =
1

500

500

∑
r=1

MAE j,r( f⋆) for f⋆ ∈
{

f SVM

j,r , f SVM-KNN

j,r

}

.

scenario j = 1 scenario j = 2

SVM 0.453 0.115

SVM-KNN 0.331 0.216

kNN 0.348 0.189

Table 1: The average MAE j of the mean absolute error over the 500 runs for classical SVMs and

SVM-KNN for scenarios j = 1 and j = 2

It turns out that SVM-KNN is clearly better than classical SVM in scenario 1 while classical

SVM is clearly better than SVM-KNN in scenario 2. In both examples, the performance of SVM-

KNN is similar to that of classical kNN. Function f2 in scenario 2 is a smooth function and classical

SVMs are typically very successful for learning such smooth functions. Function f1 in scenario 1

nearly coincides with f2 in scenario 2 in the sense that the parts of the functions on (−1,0) and (0,1)
are just interchanged. However, this leads to a considerable jump at x = 0 which provides some

difficulty for classical SVMs. Such jumps can be managed by classical SVMs if the hyperparameter

γ and the regularization parameter λ are suitably chosen, namely, if γ is large and/or λ is small.

However, such a choice increases the danger of overfitting in those parts of the input space in which

the unknown regression function is a simple, smooth function. This problem is avoided by localized

learners such as SVM-KNN, which is a main motivation for localizing global learning algorithms.

In particular, the difference of the performance between scenario 1 and 2 is much smaller in case of

SVM-KNN than in case of classical SVM. Figure 4 shows in a boxplot which values of γ are selected

by the cross validation in the 500 runs for each scenario. Obviously, the jump in x = 0 leads to large

values of γ in scenario 1 compared to scenario 2. This in turn facilitates that the SVM-estimate is

too volatile in those parts of the input space in which f1 is relatively simple, for example, in the

interval [−1,−0.5]. This tendency is exemplarily illustrated in Figure 5 which shows the estimates

on the interval [−1,0] of the input space in the first 9 runs of the simulation in case of scenario 1.
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Figure 3: Boxplots of the mean absolute errors MAE j,r in the runs r ∈ {1, . . . ,500} for classical

SVMs and SVM-KNN for scenarios j = 1 and j = 2
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Figure 4: Values of the hyperparameter γ selected by cross validation for the classical SVM in the

500 runs for each scenario

5. Conclusions

Learning algorithms which are defined in a global manner typically can have difficulties if the com-

plexity of the optimal predictor varies for different areas of the input space. One way to overcome

this problem is to localize the learning algorithm. That is, the learning algorithm is not applied to

the whole training data but only to those training data which are close to the testing point. In a num-
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Figure 5: Estimates on the interval [−1,0] in the first nine runs in scenario 1: true function f1

(dashed black line), SVM (solid black line), SVM-KNN (solid gray line)

ber of recent articles such localizations of support vector machines have been suggested and their

success has empirically been shown in extensive simulation studies and on real data sets but only

little has been known on theoretical properties. In this article, it has been shown for a large class

of regularized kernel methods (including SVM) that suitably localized versions (called SVM-KNN)

are universally consistent.

Instead of localizing support vector machines, it would also be possible in principle to local-

ize any other learning algorithm, for example, boosting. If this is done suitably, then localizing a

learning algorithm will often lead to an algorithm which is again universally consistent. This article

presents one way how this can be done in the special case of regularized kernel methods. However,

it is a topic of further research if it is possible to derive a general scheme of localizing learning algo-

rithms which, in combination with properties of the learning algorithm, always guarantees universal

consistency.
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Appendix A. Preparations

Let PX denote the distribution of the covariates Xi. For every ζ = (ξ,u) ∈ X × (0,1), there is a

smallest rn,ξ ∈ [0,∞] such that Q
(

|Xi −ξ| ≤ rn,ξ

)

≥ kn

n
and there is an sn,ζ ∈ [0,∞) such that

Q
(

|Xi −ξ|< rn,ξ or
(

|Xi −ξ|= rn,ξ, |Ui −u|< sn,ζ

)

)

=
kn

n
.

For every ζ= (ξ,u)∈X ×(0,1), r ∈ [0,∞), and s∈ [0,∞), define the open balls Br(ξ) = {x∈X | |x−
ξ|< r} and Bs(u) = {v ∈ (0,1)| |v−u|< s}, and define the boundary ∂Br(ξ) = {x ∈ X | |x−ξ|= r}.

Define

Bn,ζ =
(

Brn,ξ
(ξ)× (0,1)

)

∪
(

∂Brn,ξ
(ξ)×Bsn,ζ

(u)
)

Roughly spoken, Bn,ζ is a neighborhood around ζ = (ξ,u) with probability kn/n which is in line

with our tie-breaking strategy. Then,

PX ⊗Unif(0,1)
(

Bn,ζ

)

= Q
(

Zi ∈ Bn,ζ

)

=
kn

n

where Unif(0,1) denotes the uniform distribution on (0,1). Let Pn,ζ be the conditional distribution of

Zi given Zi ∈ Bn,ζ, that is,

Pn,ζ(B) =
Q
(

Zi ∈ B∩Bn,ζ

)

Q
(

Zi ∈ Bn,ζ

) =
n

kn

Q
(

Zi ∈ B∩Bn,ζ

)

∀B ∈BX×(0,1).

Let x 7→P(·|x) be any regular version of the factorized conditional distribution of Yi given Xi = x; see,

for example, (Dudley, 2002, § 10.2). Due to independence of Ui, this coincides with the conditional

distribution of Yi given Zi = z (i.e., given (Xi,Ui) = (x,u)) and, accordingly, we write P(·|z) = P(·|x).
Let QZ,Y denote the joint distribution of (Zi,Yi) and define Z := X × (0,1). Then, for every ζ ∈ Z,

n ∈N, and every integrable g : Z ×Y →R,

n

kn

∫
Z×Y

IBn,ζ
(z)g(z,y)QZ,Y

(

d(z,y)
)

=
∫

Z

∫
Y

g(z,y)P(dy|z)Pn,ζ(dz) . (16)

When this does not lead to confusion, the conditional distribution of the pair of random variables

(Zi,Yi) given Zi ∈ Bn,ζ is also denoted by Pn,ζ. That is, we will also write

n

kn

∫
Z×Y

IBn,ζ
(z)g(z,y)QZ,Y

(

d(z,y)
)

=
∫

Z×Y
g(z,y)Pn,ζ

(

d(z,y)
)

. (17)

The following lemma is an immediate consequence of the definitions and well known facts

about the support of measures, see, for example, Parthasarathy (1967, II. Theorem 2.1). It says that,

for almost every ξ ∈ X , the radii rn,ξ decrease to 0.

Lemma 2 Define

B0 :=
{

ξ ∈ X
∣

∣ 6 ∃r ∈ (0,∞) such that PX (Br(ξ)) = 0
}

.

Then, PX (B0) = 1.

Furthermore, for every ξ ∈ B0,

∞ ≥ r1,ξ ≥ r2,ξ ≥ r3,ξ ≥ . . . ≥ lim
n

rn,ξ = 0 .
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Similarly to the definition of In,ζ and Dn,ζ in (4) and (5), we define the modifications I ⋆
n,ζ and

D⋆
n,ζ: For every n ∈N, ζ = (ξ,u) ∈ X × (0,1) and ω ∈ Ω, define

I ⋆
n,ζ(ω) :=

{

i ∈ {1, . . . ,n}
∣

∣ Zi(ω) ∈ Bn,ζ

}

.

Fix any n ∈N, ζ = (ξ,u)∈ X × (0,1) and ω ∈ Ω and let i1 < i2 < .. . < im be the (ordered) elements

of I ⋆
n,ζ(ω). Then, define

D⋆
n,ζ(ω) =

(

(

Zi1(ω),Yi1(ω)
)

, . . . ,
(

Zim(ω),Yim(ω)
)

)

.

That is, I ⋆
n,ζ consists of all those indexes i ∈ {1, . . . ,n} and D⋆

n,ζ consists of all those data points

(Zi,Yi) such that Zi ∈ Bn,ζ . This means: while the the sets In,ζ and Dn,ζ consist of a fixed num-

ber of nearest neighbors, the sets I ⋆
n,ζ and D⋆

n,ζ consist of all those neighbors which lie in a fixed

neighborhood.

As the probability that Zi ∈ Bn,ζ is kn/n, we expect that, for large n, the index sets In,ζ and

I ⋆
n,ζ and the vectors of data points Dn,ζ and D⋆

n,ζ are similar. However, working with I ⋆
n,ζ is more

comfortable because, whether i ∈ I ⋆
n,ζ, only depends on Zi but, whether i ∈ In,ζ, depends on all

Z1, . . . ,Zn.

If a real-valued function f is clipped at M, then the clipped version is denoted by
a
f , that is,

a
f (x) = f (x) if −M ≤ f (x)≤M, and

a
f (x) =−M if f (x)<−M, and

a
f (x) =M if M < f (x). Note that,

for every f1, f2 : X →R and ξ ∈ X , it follows that
∣

∣

a
f1(ξ)−

a
f2(ξ)

∣

∣≤
∣

∣ f1(ξ)− f2(ξ)
∣

∣. Furthermore,

since K is bounded, every f ∈H fulfills | f (ξ)| ≤ ‖K‖∞ ·‖ f‖H ; see (Steinwart and Christmann, 2008,

Lemma 4.23). In combination with (12), this implies that, for every ξ ∈ X and for every f1, f2 ∈ H,

∣

∣

∣

∣

∣

∫
L
(

y,
a
f1(ξ)

)

P(dy|ξ)−
∫

L
(

y,
a
f2(ξ)

)

P(dy|ξ)
∣

∣

∣

∣

∣

≤ |L|M,1·‖K‖∞·‖ f1− f2‖H . (18)

Define ‖L(·,0)‖∞ = supy∈[−M,M]

∣

∣L(y,0)
∣

∣. Then, for every probability measure P0,

RP0
(0) =

∫
L(y,0)P0

(

d(x,y)
)

≤ ‖L(·,0)‖∞

(13)
< ∞ . (19)

The following lemma is one of the main tools; it is an application of Hoeffding’s inequality and

will be used several times for V = H and V =R.

Lemma 3 Let V be a separable Hilbert space and, for every n ∈ N, let Ψn : Z ×Y → V be a

Borel-measurable function such that for every bounded subset B ⊂ Z,

sup
n∈N

sup
z∈B,y∈Y

∥

∥Ψn(z,y)
∥

∥

H
< ∞ .

Then, for every ζ ∈ X ,

λ
− 3

2
n

n

kn

(

1

n

n

∑
i=1

Ψn(Zi,Yi)IBn,ζ
(Zi) −

∫
Ψn(z,y)IBn,ζ

(z)QZ,Y

(

d(z,y)
)

)

−−−→
n→∞

0

in probability.
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Note that the integral in Lemma 3 is an integral over a Hilbert-space-valued function and, accord-

ingly, is a Bochner integral; see, for example, (Denkowski et al., 2003, § 3.10) for such integrals.

Proof The proof is done by an application of Hoeffding’s inequality for functions with values in a

separable Hilbert space. According to Lemma 2, there is an n0 ∈N such that Bn0,ζ is bounded and

Bn,ζ ⊂ Bn0,ζ for every n ≥ n0. Hence, there is a constant b ∈ (0,∞) such that, for every n ≥ n0,

sup
(z,y)∈Z×Y

∥

∥Ψn(z,y)IBn,ζ
(z)
∥

∥

V
≤ b .

For every n ≥ n0 and τ ∈ (0,∞), define an,τ := 2b·
(
√

τn−1 +
√

n−1 + τn−1
)

and

An,τ =

{

∥

∥

∥

∥

1

n

n

∑
i=1

Ψn(Zi,Yi)IBn,ζ
(Zi)−

∫
ΨnIBn,ζ

dQZ,Y

∥

∥

∥

∥

V

< an,τ

}

.

Then, by Hoeffding’s inequality for separable Hilbert spaces (e.g., Steinwart and Christmann, 2008,

Corollary 6.15),

Q
(

An,τ

)

≥ 1− e−τ ∀n ≥ n0 , ∀τ ∈ (0,∞) . (20)

Define τn := λ
3
2
n knn−

1
2 and εn := λ

− 3
2

n nk−1
n an,τn

for every n ≥ n0. Then, for every ω ∈ An,τ,

λ
− 3

2
n

n

kn

∥

∥

∥

∥

∥

1

n

n

∑
i=1

Ψn(Zi(ω),Yi(ω))IBn,ζ
(Zi(ω))−

∫
ΨnIBn,ζ

dQZ,Y

∥

∥

∥

∥

∥

V

< εn.

According to (9),

εn =
n·an,τn

λ
3
2
n kn

=
2bn

λ
3
2
n kn

(

√

λ
3
2
n kn√
nn

+

√

1

n
+

λ
3
2
n kn√
nn

)

= 2b ·
(
√ √

n

λ
3
2
n kn

+

√
n

λ
3
2
n kn

+
1√
n

)

−−−→
n→∞

0.

Hence, for every ε > 0, there is an nε ∈N such that ε > εn for every n ≥ nε and, therefore,

Q

(

λ
− 3

2
n

n

kn

∥

∥

∥

∥

1

n

n

∑
i=1

Ψn(Zi,Yi)IBn,ζ
(Zi)−

∫
ΨnIBn,ζ

dQZ,Y

∥

∥

∥

∥

V

> ε

)

≤ Q
(

∁An,τn

) (20)

≤ e−τn .

The last expression converges to 0 because limn→∞ τn = ∞ due to (9),

Appendix B. Measurability

Measurability is an issue and needs some care because the SVM-KNN is based on a subsample

which is randomly chosen. It is not possible to ignore measurability by turning over to outer prob-

abilities here because the final step of the proof of the main theorem is based on an application of

Fubini’s Theorem and, therefore, heavily relies on (product) measurability.
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Lemma 4

(a) The following maps are measurable with respect to the product-σ-algebra B
p ⊗B(0,1)⊗A

and the respective Borel-σ-Algebra:

(i) R
p × (0,1)×Ω → R

(p+1)kn , (ξ,u,ω) = (ζ,ω) 7→ Dn,ζ(ω)

(ii) R
p × (0,1)×Ω → R , (ξ,u,ω) = (ζ,ω) 7→ Rn,ζ(ω) := maxi∈In,ζ

∣

∣Xi(ω)−ξ
∣

∣ .

(iii) R
p × (0,1)×Ω → R , (ξ,u,ω) = (ζ,ω) 7→ Λ̃n,ζ(ω) .

(b) Let Λ : Rp × (0,1)×Ω → (0,∞) be measurable with respect to B
p ⊗B(0,1) ⊗A and the

Borel-σ-Algebra. Then,

R
p × (0,1)×Ω → R , (ξ,u,ω) = (ζ,ω) 7→ fDn,ζ(ω),Λ(ζ,ω)

(ξ)

is measurable with respect to B
p ⊗B(0,1)⊗A and B.

(c) For every ζ = (ξ,u)∈R
p×(0,1) and every Λ : Ω → (0,∞) measurable with respect to A and

the Borel-σ-Algebra, the map

Ω → R , ω 7→ fD⋆
n,ζ

(ω),Λ(ω)(ξ)

is measurable with respect to A and B.

Proof For every ζ = (ξ,u) ∈R
p × (0,1) and ω ∈ Ω, define In,ζ(ω) as in Section 2. Let Indn denote

the set of all subsets of {1, . . . ,n} with kn elements. First, it is shown that

τ̃n : Ω×R
p × (0,1) → Indn, (ω,ξ,u) 7→ In,(ξ,u)(ω)

is measurable with respect to A ⊗B
p⊗B(0,1) and 2Indn : Take any I ∈ Indn such that I 6= {1, . . . ,kn}

and, for every J ⊂ {1, . . . ,n}, define

B
(1)
J :=

{

(ω,ξ,u) ∈ Ω×R
p × (0,1)

∣

∣

∣
max
i∈I

|Xi(ω)−ξ| ≤ min
ℓ 6∈I

|Xℓ(ω)−ξ|
}

B
(2)
J :=

{

(ω,ξ,u) ∈ Ω×R
p × (0,1)

∣

∣

∣
|X j(ω)−ξ|= max

i∈I
|Xi(ω)−ξ| ∀ j ∈ J

}

B
(3)
J :=

{

(ω,ξ,u) ∈ Ω×R
p × (0,1)

∣

∣

∣
|Xℓ(ω)−ξ| 6= max

i∈I
|Xi(ω)−ξ| ∀ℓ 6∈ J

}

B
(4)
J :=

{

(ω,ξ,u) ∈ Ω×R
p × (0,1)

∣

∣

∣
max
i∈J∩I

|Ui(ω)−u|< min
j∈J \I

|U j(ω)−u|
}

.

The set B
(1)
J says that no Xℓ is closer to ξ than the kn nearest neighbors. The sets B

(2)
J and B

(3)
J states

that J specifies all those X j which lie at the border of the neighborhood given by the nearest neigh-

bors. The set B
(4)
J is concerned with all data points which lie at the border: the nearest neighbors

among them have strictly smaller |Ui −u| than those which do not belong to the nearest neighbors.

Accordingly, the inverse image τ̃−1
n ({I}) equals

τ̃−1
n ({I}) =

⋃
J⊂{1,...,n}

(

B
(1)
J ∩B

(2)
J ∩B

(3)
J ∩B

(4)
J

)

.

169



HABLE

Since B
(t)
J is measurable for every t ∈ {1,2,3,4} and J ⊂ {1, . . . ,n}, this shows that τ̃−1

n ({I}) is

measurable for every I 6= {1, . . . ,kn}. Hence, τ̃n is measurable. For every I = {i1, . . . , ikn
} such that

i1 < i2 < · · ·< ikn
and every Dn =

(

(z1,y1), . . . ,(zn,yn)
)

∈ ((Rp × (0,1))×R)n define

ϕn(I ,Dn) =
(

(zi1 ,yi1), . . . ,(zikn
,yikn

)
)

.

The map ϕn : Indn × ((Rp × (0,1))×R)n → ((Rp × (0,1))×R)kn is continuous (where Indn is

endowed with the discrete topology). Since

Dn,ζ(ω) = ϕn

(

τ̃n(ω,ξ,u) , Dn(ω)
)

for ζ = (ξ,u) ,

statement (i) follows from measurability of τ̃n and ϕn. Next, (ii) follows from measurability of

(xi1 , . . . ,xikn
,ξ) 7→ max j∈{1,...,kn} |xi j

−ξ| and (iii) follows from

Λ̃n,ζ =
1

kn

n

∑
i=1

|Xi −ξ| 3
2 I[0,∞)(Rn,ζ −Xi) .

Now, we can prove part (b) and (c): For every I ⊂{1,2, . . . ,n} and every D=
(

(x1,y1), . . . ,(xn,yn)
)

∈
((Rp × (0,1))×R)n, denote DI =

(

(xi,yi)
)

i∈I
. Then, it follows from Lemma 9 (a) and (Steinwart

and Christmann, 2008, Lemma 4.23) that the map

2{1,2,...,n}× ((Rp × (0,1))×R)n ×X → H , (I ,D,ξ) 7→ fDI ,λ(ξ)

is continuous for every λ > 0 (where 2{1,2,...,n} is endowed with the discrete topology). Since

λ 7→ fDI ,λ(ξ) is continuous for every fixed (I ,D,ξ) according to (Steinwart and Christmann, 2008,

Corollary 5.19 and Lemma 4.23), the map
(

(I ,D,ξ),λ
)

7→ fDI ,λ(ξ) is a Caratheodory function

and, therefore, measurable; see, for example, Denkowski et al. (2003, Definition 2.5.18 and Theo-

rem 2.5.22). Then, (b) follows from (a), and (c) follows from measurability of τ̃∗
n,ζ : ω 7→ I ∗

n,ζ(ω)

for every fixed ζ = (ξ,u). Measurability of τ̃∗
n,ζ follows from

τ̃∗n,ζ
−1(I ) =

⋂
i∈I

Z−1
i (Bn,ζ)∩

⋂
i6∈I

Z−1
i (∁Bn,ζ) ∀I ∈ 2{1,2,...,n} .

Appendix C. Proof of Theorem 1

In the main part of the proof, it is shown that for PX ⊗Unif(0,1) - almost every ζ = (ξ,u)∈ X ×(0,1),

0 ≤
∫

L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ζ) − inf
t∈R

∫
L(y, t)P(dy|ζ) −−−→

n→∞
0 (21)

in probability. Then, statement (21) implies Theorem 1 as follows:

Since, for every fixed ζ = (ξ,u), the maps

ω 7→
∫

L
(

y,
a
fDn,ζ(ω),Λn,ζ(ω)(ξ)

)

P(dy|ζ) − inf
t∈R

∫
L(y, t)P(dy|ζ) , n ∈N,
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are uniformly bounded, convergence in probability for PX ⊗Unif(0,1) - almost every ζ = (ξ,u) ∈
X × (0,1) implies

EQ

(∫
L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ζ) − inf
t∈R

∫
L(y, t)P(dy|ζ)

)

−−−→
n→∞

0

for PX ⊗Unif(0,1) - almost every ζ = (ξ,u) ∈ X × (0,1). Since the maps

ζ = (ξ,u) 7→ EQ

(∫
L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ζ) − inf
t∈R

∫
L(y, t)P(dy|ζ)

)

, n ∈N,

are uniformly bounded again, PX ⊗Unif(0,1) - almost sure convergence implies

∫∫
EQ

(∫
L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ζ)− inf
t∈R

∫
L(y, t)P(dy|ζ)

)

PX (dξ)Unif(0,1)(du)−→ 0 (22)

for n→∞. Note that ζ 7→ inft∈R
∫

L(y, t)P(dy|ζ) is measurable, because the assumptions on L imply

continuity of t 7→ ∫
L(y, t)P(dy|ζ), hence, inft∈R

∫
L(y, t)P(dy|ζ) = inft∈Q

∫
L(y, t)P(dy|ζ) for every

ζ ∈ X × (0,1). Next, recall that fDn
(ζ) =

a
fDn,ζ,Λn,ζ

(ξ) and P(·|ξ) = P(·|ζ) for every ζ = (ξ,u). By a

slight abuse of notation, we write

RP( fDn
) = RP⊗Unif(0,1)( fDn

) =
∫∫

L
(

y, fDn
(ξ,u)

)

P
(

d(ξ,y)
)

Unif(0,1)(du) .

Then, applying Fubini’s Theorem in (22) yields

0 ≤ EQ

(

RP

(

fDn

)

−
∫

inf
t∈R

∫
L(y, t)P(dy|ξ)PX (dξ)

)

−−−→
n→∞

0 . (23)

For every measurable f : X →R,

∫
L
(

y, f (ξ)
)

P(dy|ξ) ≥ inf
t∈R

∫
L(y, t)P(dy|ξ) ∀ξ ∈ X .

Hence,

R ∗
P ≥

∫
inf
t∈R

∫
L(y, t)P(dy|ξ)PX (dξ)

and, therefore, (23) implies

EQ

(

RP

(

fDn

)

− R ∗
P

)

−−−→
n→∞

0

and, as RP

(

fDn

)

≥ R ∗
P ,

EQ

∣

∣RP

(

fDn

)

− R ∗
P

∣

∣ −−−→
n→∞

0 .

In particular, this also implies

RP

(

fDn

)

−−−→
n→∞

R ∗
P in probability.
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That is, it only remains to prove (21). To this end, note that, for every ζ = (ξ,u) ∈ X × (0,1),
we have P(·|ζ) = P(·|ξ) and

0 ≤
∫

L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ζ) − inf
t∈R

∫
L(y, t)P(dy|ζ) ≤

≤
∣

∣

∣

∣

∫
L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ξ)−
∫

L
(

y,
a
fD⋆

n,ζ
,Λn,ζ

(ξ)
)

P(dy|ξ)
∣

∣

∣

∣

(24)

+

∣

∣

∣

∣

∫
L
(

y,
a
fD⋆

n,ζ
,Λn,ζ

(ξ)
)

P(dy|ξ)−
∫

L
(

y,
a
fPn,ζ,Λn,ζ

(ξ)
)

P(dy|ξ)
∣

∣

∣

∣

(25)

+

∣

∣

∣

∣

∫
L
(

y,
a
fPn,ζ,Λn,ζ

(ξ)
)

P(dy|ξ)−
∫∫

L
(

y,
a
fPn,ζ,Λn,ζ

(x)
)

P(dy|x)Pn,ζ(d(x,v))

∣

∣

∣

∣

(26)

+

(∫∫
L
(

y,
a
fPn,ζ,Λn,ζ

(x)
)

P(dy|x)Pn,ζ(d(x,v))− inf
t∈R

∫
L(y, t)P(dy|ξ)

)

∨0 (27)

where a ∨ 0 = max{a,0}. Therefore, it suffices to prove convergence in probability of each of

these four summands. This is done in the following four subsections but, first, we need some more

preparations:

Lemma 5 Fix any ζ = (ξ,u) ∈ B0 × (0,1) where B0 is defined as in Lemma 2. Let PDn,ζ
and PD⋆

n,ζ

denote the empirical measure corresponding to Dn,ζ and D⋆
n,ζ respectively. It follows that

λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

−−−→
n→∞

0 in probability , (28)

λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

♯(I ⋆
n,ζ
)

−−−→
n→∞

0 in probability , (29)

λ
− 3

2
n

∥

∥

∥
PDn,ζ

−PD⋆
n,ζ

∥

∥

∥

TV
−−−→

n→∞
0 in probability , (30)

Rn,ζ := max
i∈In,ζ

|Xi −ξ| −−−→
n→∞

0 in probability , (31)

and, for every β ∈ (0,∞),

λ
− 3

2
n

∣

∣

∣

∣

1

kn
∑

i∈In,ζ

|Xi −ξ|β −
∫

|x−ξ|β Pn,ζ(d(x,v))

∣

∣

∣

∣

−−−→
n→∞

0 in probability. (32)

Proof Statement (28) follows from Lemma 3 because the definitions imply

λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

= λ
− 3

2
n

n

kn

∣

∣

∣

∣

∣

1

n

n

∑
i=1

IBn,ζ
(Zi) −

∫
IBn,ζ

(z)QZ,Y

(

d(z,y)
)

∣

∣

∣

∣

∣

.
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In order to prove (29) note that (28) implies that ♯(I ⋆
n,ζ)/kn → 1 in probability and, therefore, also

kn/♯(I
⋆

n,ζ) → 1 in probability. Hence, (28) implies (29) because

λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

♯(I ⋆
n,ζ
)

= λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

· kn

♯(I ⋆
n,ζ
)
.

In order to prove (30) note that the definitions imply for almost every ω ∈ Ω

In,ζ(ω) ⊂ I ⋆
n,ζ(ω) or I ⋆

n,ζ(ω) ⊂ In,ζ(ω) . (33)

(Only in case of distance ties in the Ui(ω), statement (33) is not true.) Therefore,

♯
(

In,ζ \ I ⋆
n,ζ

)

≤
∣

∣♯(I ⋆
n,ζ)− kn

∣

∣ and ♯
(

I ⋆
n,ζ \ In,ζ

)

≤
∣

∣♯(I ⋆
n,ζ)− kn

∣

∣ . (34)

almost surely. Then, almost surely,

sup
C∈BZ×Y

∣

∣PDn,ζ
(C)−PD⋆

n,ζ
(C)
∣

∣ =

= sup
C

∣

∣

∣

∣

1

kn

(

∑
i∈In,ζ∩I ⋆

n,ζ

IC(Zi,Yi)+ ∑
i∈In,ζ\I ⋆

n,ζ

IC(Zi,Yi)
)

−

− 1

♯
(

I ⋆
n,ζ
)

(

∑
i∈I ⋆

n,ζ
∩In,ζ

IC(Zi,Yi)+ ∑
i∈I ⋆

n,ζ
\In,ζ

IC(Zi,Yi)
)

∣

∣

∣

∣

≤

≤ sup
C

∣

∣

∣

1

kn

− 1

♯
(

I ⋆
n,ζ
)

∣

∣

∣ ∑
i∈In,ζ∩I ⋆

n,ζ

IC(Zi,Yi) +

+
1

kn

sup
C

∑
i∈In,ζ\I ⋆

n,ζ

IC(Zi,Yi) +
1

♯
(

I ⋆
n,ζ
)

sup
C

∑
i∈I ⋆

n,ζ
\In,ζ

IC(Zi,Yi) ≤

(34)

≤
∣

∣

∣

1

kn

− 1

♯
(

I ⋆
n,ζ
)

∣

∣

∣
kn +

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

+

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

♯(I ⋆
n,ζ
)

.

Therefore, (30) follows from (28) and (29).

In order to prove (31), fix any ε > 0. As ξ ∈ B0, we have PX

(

Bε(ξ)
)

> 0 and, therefore,

PX

(

Bε(ξ)
)

− kn/n > 1
2
PX

(

Bε(ξ)
)

> 0 for n large enough (see Lemma 2). Then, (31) follows from

Q
(

Rn,ζ > ε
)

= Q
(

♯
{

i ∈ {1, . . . ,n}
∣

∣ Xi ∈ Bε(ξ)
}

< kn

)

= Q

(

1

n

n

∑
i=1

IBε(ξ)(Xi)<
kn

n

)

= Q

(

PX

(

Bε(ξ)
)

− 1

n

n

∑
i=1

IBε(ξ)(Xi) > PX

(

Bε(ξ)
)

− kn

n

)

≤

≤ Q

(

PX

(

Bε(ξ)
)

− 1

n

n

∑
i=1

IBε(ξ)(Xi) >
1

2
PX

(

Bε(ξ)
)

)

and the law of large numbers.

Now, statement (32) will be proven. An application of Lemma 3 for Ψn

(

(x,v),y
)

= |x−ξ|β and

(16) yield that it suffices to prove

λ
− 3

2
n

∣

∣

∣

∣

1

kn
∑

i∈In,ζ

|Xi −ξ|β − 1

kn

n

∑
i=1

|Xi −ξ|βIBn,ζ
(Zi)

∣

∣

∣

∣

−−−→
n→∞

0 (35)
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in probability in order to prove statement (32).

According to Lemma 2, there is an n0 ∈N such that rn,ξ ≤ 1 for every n ≥ n0. Then, for every

ε > 0 and every n ≥ n0,

Q

(

λ
− 3

2
n

∣

∣

∣

∣

1

kn
∑

i∈In,ζ

|Xi −ξ|β − 1

kn

n

∑
i=1

|Xi −ξ|βIBn,ζ
(Zi)

∣

∣

∣

∣

> ε

)

≤

≤ Q

(

λ
− 3

2
n

∥

∥

∥
PDn,ζ

− ♯(I ⋆
n,ζ)

kn
PD⋆

n,ζ

∥

∥

∥

TV
> ε, Rn,ζ ≤ 1

)

+ Q
(

Rn,ζ > 1
)

≤ Q

(

λ
− 3

2
n

∥

∥

∥
PDn,ζ

−PD⋆
n,ζ

∥

∥

∥

TV
>

ε

2

)

+Q

(

λ
− 3

2
n

|♯(I ⋆
n,ζ)− kn|

kn

>
ε

2

)

+Q
(

Rn,ζ > 1
)

so that (35) follows from (30), (28), and (31).

Lemma 6 For every PX -integrable h : X →R, there is a set Bh ∈BX such that PX (Bh) = 1 and

lim
n→∞

∫
∣

∣h(x)−h(ξ)
∣

∣Pn,ζ

(

d(x,v)
)

= 0 ∀ζ = (ξ,u) ∈ Bh × (0,1). (36)

Proof Define

γn,ξ :=
1

PX

(

Brn,ξ
(ξ)
)

∫
Brn,ξ

(ξ)

∣

∣h(x)−h(ξ)
∣

∣PX (dx)

and, analogously, define γn,ξ where the open ball Brn,ξ
(ξ) is replaced by the closed ball Brn,ξ

(ξ)
around ξ with radius rn,ξ. According to Besicovitch’s Density Theorem, there is a set Bh ∈BX such

that PX (Bh) = 1 and, for every ξ ∈ Bh, limn→∞ γn,ξ = limn→∞ γn,ξ = 0; for γn,ξ, see, for example,

(Fremlin, 2006, Theorem 472D(b)); for γn,ξ, this follows from (Krantz and Parks, 2008, Theorem

4.3.5(2)) (exactly in the same way as Fremlin, 2006, Theorem 472D(b) follows from Fremlin, 2006,

Theorem 472D(a)). Recall from Appendix A that Bn,ζ =
(

Brn,ξ
(ξ)× (0,1)

)

∪
(

∂Brn,ξ
(ξ)×Bsn,ζ

(u)
)

and define αn,ζ := Q
(

Ui ∈ Bsn,ζ
(u)
)

, βn,ξ := PX

(

Brn,ξ
(ξ)
)

and βn,ξ := PX

(

Brn,ξ
(ξ)
)

. Then,

kn

n
= Q

(

Zi ∈ Bn,ζ

)

= βn,ξ +αn,ζ

(

βn,ξ −βn,ξ

)

(37)

and ∫
∣

∣h(x)−h(ξ)
∣

∣Pn,ζ

(

d(x,v)
)

=

=
n

kn

(∫
Brn,ξ

(ξ)

∣

∣h(x)−h(ξ)
∣

∣PX (dx) + αn,ζ

∫
∂Brn,ξ

(ξ)

∣

∣h(x)−h(ξ)
∣

∣PX (dx)

)

=
n

kn

(

βn,ξγn,ξ + αn,ζ

(

βn,ξγn,ξ −βn,ξγn,ξ

)

)

=

=
n

kn

(

βn,ξ +αn,ζ

(

βn,ξ −βn,ξ

)

)

γn,ξ +
n

kn

(1−αn,ζ)βn,ξ(γn,ξ − γn,ξ) ≤
(37)

≤ γn,ξ + 1 ·
∣

∣γn,ξ − γn,ξ

∣

∣ −−−→
n→∞

0
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C.1 Convergence of the First Summand (24)

Fix any ζ = (ξ,u)∈ B0×(0,1) where B0 is defined as in Lemma 2. Again let PDn,ζ
and PD⋆

n,ζ
denote

the empirical measure corresponding to Dn,ζ and D⋆
n,ζ respectively. It follows from (18), (19), and

(51) that

∣

∣

∣

∣

∫
L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ξ)−
∫

L
(

y,
a
fD⋆

n,ζ
,Λn,ζ

(ξ)
)

P(dy|ξ)
∣

∣

∣

∣

≤

≤ |L|M,1‖K‖2
∞

(

b0Λ−1
n,ζ

+b1‖K‖q
∞RP1

(0)
q
2 Λ

− q
2
−1

n,ζ

)

·
∥

∥PDn,ζ
−PD⋆

n,ζ

∥

∥

TV
≤

(10)

≤ |L|M,1‖K‖2
∞

(

b0(cλn)
−1 +b1‖K‖q

∞

∥

∥L(·,0)
∥

∥

q
2

∞
(cλn)

− q
2
−1
)

·
∥

∥PDn,ζ
−PD⋆

n,ζ

∥

∥

TV
.

Therefore, convergence in probability follows from (30) in Lemma 5 and q ∈ [0,1].

C.2 Convergence of the Second Summand (25)

Fix any ζ = (ξ,u) ∈ B0 × (0,1).

Lemma 7 For every n ∈N, define

λ̃n,ζ =
∫

|x−ξ| 3
2 Pn,ζ

(

d(x,v)
)

and λn,ζ := c ·max
{

λn, λ̃n,ζ

}

.

Then,
|Λn,ζ −λn,ζ|
Λn,ζ

√

λn,ζ

−−−→
n→∞

0 in probability .

Proof For a1,a2,b ∈ R, denote a1 ∨a2 = max{a1,a2} and note that |a1 ∨b−a2 ∨b| ≤ |a1 −a2|.
For every n, the definitions and (10) imply

|Λn,ζ −λn,ζ|
Λn,ζ

√

λn,ζ

≤
∣

∣Λn,ζ − c·
(

λn∨Λ̃n,ζ

)∣

∣+ c·
∣

∣λn∨Λ̃n,ζ −λn∨λ̃n,ζ

∣

∣

c
3
2 ·
(

λn ∨ Λ̃n,ζ

)√
λn

≤ cn

c
3
2

√
λn

+

∣

∣Λ̃n,ζ − λ̃n,ζ

∣

∣

√
cλn

√
λn

.

Hence, the statement follows from the assumption that limn→∞ cn/
√

λn = 0 and from (32) in Lemma

5.

According to (18), it suffices to show

∥

∥ fD⋆
n,ζ

,Λn,ζ
− fPn,ζ,Λn,ζ

∥

∥

H
−−−→

n→∞
0 in probability

in order to prove convergence to 0 of the the second summand (25). To this end, note that

∥

∥ fD⋆
n,ζ

,Λn,ζ
− fPn,ζ,Λn,ζ

∥

∥

H
≤

≤
∥

∥ fD⋆
n,ζ

,Λn,ζ
− fD⋆

n,ζ
,λn,ζ

∥

∥

H
+
∥

∥ fD⋆
n,ζ

,λn,ζ
− fPn,ζ,λn,ζ

∥

∥

H
+
∥

∥ fPn,ζ,λn,ζ
− fPn,ζ,Λn,ζ

∥

∥

H

and that
∥

∥ fD⋆
n,ζ

,Λn,ζ
− fD⋆

n,ζ
,λn,ζ

∥

∥

H
and

∥

∥ fPn,ζ,λn,ζ
− fPn,ζ,Λn,ζ

∥

∥

H
converge in probability to 0 according

to part (i) of Lemma 9 (b), (19), and Lemma 7. Note that boundedness of the kernel K means that
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supx∈X ‖Φ(x)‖H = ‖K‖∞. By defining f (x,v)= f (x) for every z=(x,v)∈X ×(0,1)=Z and f ∈H,

the RKHS H consisting of functions f : X →R can also be identified with an RKHS (again denoted

by H) which consists of functions f : Z →R; the kernel of this RKHS is given by K(z,z′) = K(x,x′)
for every z = (x,v),z′ = (x′,u′) ∈ X × (0,1) = Z; see, for example, the proof of (Christmann and

Hable, 2012, Theorem 2). Fix a = b0 + b1‖K‖q
∞

∥

∥L(·,0)
∥

∥

q/2

∞
c−q/2 and n0 ∈N such that λn ≤ 1 for

every n ≥ n0. According to the definition of λn,ζ, we have λ
−q/2

n,ζ
≤ c−q/2λ

−q/2
n ≤ c−q/2λ

−1/2
n for

every n ≥ n0. According to part (ii) of Lemma 9 (b) and (19), for every n ≥ n0, there is a measurable

function hn,ζ : Z ×Y →R such that ‖hn,ζ‖∞ ≤ aλ
− 1

2
n and

∥

∥ fD⋆
n,ζ

,λn,ζ
− fPn,ζ,λn,ζ

∥

∥

H
≤

≤ λ−1
n,ζ

∥

∥

∥

∥

∥

1

♯(I ⋆
n,ζ
) ∑

i∈I ⋆
n,ζ

hn,ζ(Zi,Yi)Φ(Xi)−
∫

hn,ζΦdPn,ζ

∥

∥

∥

∥

∥

H

≤

≤ c−1λ−1
n

∣

∣

∣

∣

1

♯(I ⋆
n,ζ
)
− 1

kn

∣

∣

∣

∣

∑
i∈I ⋆

n,ζ

∥

∥

∥
hn,ζ(Zi,Yi)Φ(Xi)

∥

∥

∥

H
+

+ c−1λ−1
n

∥

∥

∥

∥

∥

1

kn
∑

i∈I ⋆
n,ζ

hn,ζ(Zi,Yi)Φ(Xi)−
∫

hn,ζΦdPn,ζ

∥

∥

∥

∥

∥

H

≤

(17)

≤ λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

·ac−1‖K‖∞ +

+ λ−1
n

n

kn

∥

∥

∥

∥

∥

1

n

n

∑
i=1

hn,ζ(Zi,Yi)Φ(Xi)IBn,ζ
(Zi)−

∫
hn,ζΦIBn,ζ

dQZ,Y

∥

∥

∥

∥

∥

H

· c−1.

It follows from (28) that

λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

−−−→
n→∞

0 in probability

and it follows from Lemma 3 for Ψn(z,y) = λ
1
2
n hn,ζ(z,y)Φ(x), z = (x,v), that

λ−1
n

n

kn

∥

∥

∥

∥

∥

1

n

n

∑
i=1

hn,ζ(Zi,Yi)Φ(Xi)IBn,ζ
(Zi)−

∫
hn,ζΦIBn,ζ

dQZ,Y

∥

∥

∥

∥

∥

H

−−−→
n→∞

0 in probability.

C.3 Convergence of the Third Summand (26)

For every m ∈N, define

αm(y) =
mM

∑
j=−mM

j

m
I( j−1

m
, j

m
](y) , y ∈R . (38)

That is, αm

(

Y
)

⊂
{

j
m

∣

∣ j ∈ {−mM, . . . ,mM}
}

and

∣

∣αm(y)− y
∣

∣ < 1
m

∀y ∈ Y . (39)
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According to Lemma 6, there is a set B1 ∈BX such that PX (B1) = 1 and such that, for all maps

h : X → R , x 7→ P
(

(

j−1
m

, j
m

]

∣

∣

∣
x
)

, j ∈ {−mM, . . . ,mM} , m ∈N ,

(36) is fulfilled with Bh = B1. Fix any ζ = (ξ,u) ∈ X × (0,1) such that ξ ∈ B0 ∩B1. It follows from

(13) and (39) that, for every m ∈N,

sup
t∈[−M,M]

x∈X

∣

∣

∣

∣

∫
L(y, t)P(dy|x) −

∫
L(αm(y), t)P(dy|x)

∣

∣

∣

∣

≤ ℓ( 1
m
) .

Since limm→∞ ℓ( 1
m
) = 0, it is enough to show that, for every m ∈N,

∣

∣

∣

∣

∫
L
(

αm(y),
a
fPn,ζ,Λn,ζ

(ξ)
)

P(dy|ξ)−
∫∫

L
(

αm(y),
a
fPn,ζ,Λn,ζ

(x)
)

P(dy|x)Pn,ζ

(

d(x,v)
)

∣

∣

∣

∣

converges to 0 in probability for n → ∞ . Next, it follows from

∫
L
(

αm(y), t
)

P(dy|x) (38)
=

mM

∑
j=−mM

L( j
m
, t) ·P

(

(

j−1
m

, j
m

]

∣

∣

∣
x
)

∀ t ∈R ∀x ∈ X

that it suffices to show that, for every j ∈ {−mM, . . . ,mM} and m ∈N,

∣

∣

∣

∣

L
(

j
m
,
a
fPn,ζ,Λn,ζ

(ξ)
)

P
((

j−1
m

, j
m

]∣

∣ξ
)

−
∫

L
(

j
m
,
a
fPn,ζ,Λn,ζ

(x)
)

P
((

j−1
m

, j
m

]∣

∣x
)

Pn,ζ

(

d(x,v)
)

∣

∣

∣

∣

converges to 0 in probability for n → ∞ . The latter statement is shown in the following:

∣

∣

∣

∣

L
(

j
m
,
a
fPn,ζ,Λn,ζ

(ξ)
)

P
((

j−1
m

, j
m

]∣

∣ξ
)

−
∫

L
(

j
m
,
a
fPn,ζ,Λn,ζ

(x)
)

P
((

j−1
m

, j
m

]∣

∣x
)

Pn,ζ

(

d(x,v)
)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫
L
(

j
m
,
a
fPn,ζ,Λn,ζ

(ξ)
)

(

P
((

j−1
m

, j
m

]∣

∣ξ
)

−P
((

j−1
m

, j
m

]∣

∣x
)

)

Pn,ζ

(

d(x,v)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫
(

L
(

j
m
,
a
fPn,ζ,Λn,ζ

(ξ)
)

−L
(

j
m
,
a
fPn,ζ,Λn,ζ

(x)
)

)

P
((

j−1
m

, j
m

]∣

∣x
)

Pn,ζ

(

d(x,v)
)

∣

∣

∣

∣

≤ sup
t,y∈[−M,M]

L(y, t) ·
∫
∣

∣

∣
P
((

j−1
m

, j
m

]∣

∣ξ
)

−P
((

j−1
m

, j
m

]∣

∣x
)

∣

∣

∣
Pn,ζ

(

d(x,v)
)

(40)

+ |L|M,1

∫
∣

∣

a
fPn,ζ,Λn,ζ

(ξ)−a
fPn,ζ,Λn,ζ

(x)
∣

∣Pn,ζ

(

d(x,v)
)

(41)

As rn,ξ ց 0 (Lemma 2), it follows from the above definition of B1 and ξ ∈ B1 that the summand

in (40) converges to 0 (in R) for n → ∞. In order to prove convergence (in probability) of the

summand in (41), note that, according to the mean value theorem in several variables and Steinwart
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and Christmann (2008, Corollary 4.36 and Equation (5.4)),

∫
∣

∣

a
fPn,ζ,Λn,ζ

(ξ)−a
fPn,ζ,Λn,ζ

(x)
∣

∣Pn,ζ

(

d(x,v)
)

≤

≤
∫
∣

∣ fPn,ζ,Λn,ζ
(ξ)− fPn,ζ,Λn,ζ

(x)
∣

∣Pn,ζ

(

d(x,v)
)

≤

≤
∫

sup
x′∈Brn,ξ

(ξ)

∣

∣

∣

∂

∂x
fPn,ζ,Λn,ζ

(x′)
∣

∣

∣
· |x−ξ|Pn,ζ

(

d(x,v)
)

≤

≤
∥

∥ fPn,ζ,Λn,ζ

∥

∥

H
·
(

sup
x∈Brn,ξ

(ξ)

√

∂1,1K(x,x)

)

·
∫

|x−ξ|Pn,ζ

(

d(x,v)
)

≤

≤
(

sup
x∈Brn,ξ

(ξ)

√

∂1,1K(x,x)

)

·
√

RPn,ζ
(0) ·

∫ |x−ξ|Pn,ζ

(

d(x,v)
)

√

Λn,ζ

where Brn,ξ
(ξ) denotes the closed ball around ξ with radius rn,ξ. As

RPn,ζ
(0)≤ sup

y∈[−M,M]

L(y,0)< ∞ and lim
n→∞

sup
x∈Brn,ξ

(ξ)

√

∂1,1K(x,x) =
√

∂1,1K(ξ,ξ) ,

it remains to show that∫ |x−ξ|Pn,ζ

(

d(x,v)
)

√

Λn,ζ

−−−→
n→∞

0 in probability . (42)

In order to prove (42), note that
∫ |x−ξ|Pn,ζ

(

d(x,v)
)

√

Λn,ζ

≤

≤
1
kn

∑i∈In,ζ
|Xi −ξ|

√

Λn,ζ

+

∣

∣

∣

1
kn

∑i∈In,ζ
|Xi −ξ|− ∫ |x−ξ|Pn,ζ

(

d(x,v)
)

∣

∣

∣

√

Λn,ζ

≤

(10)

≤
1
kn

∑i∈In,ζ
|Xi −ξ|

√

c 1
kn

∑i∈In,ζ
|Xi −ξ| 3

2

+ (43)

+ c−
1
2 λ

− 1
2

n

∣

∣

∣

1

kn
∑

i∈In,ζ

|Xi −ξ|−
∫

|x−ξ|Pn,ζ

(

d(x,v)
)

∣

∣

∣
. (44)

The summand in (44) converges to 0 in probability according to (32). The summand in (43) con-

verges to 0 in probability because, by convexity of z 7→ z
3
2 and ♯(In,ζ) = kn, we get

1
kn

∑i∈In,ζ
|Xi −ξ|

√

c 1
kn

∑i∈In,ζ
|Xi −ξ| 3

2

≤
1
kn

∑i∈In,ζ
|Xi −ξ|

√

c
(

1
kn

∑i∈In,ζ
|Xi −ξ|

)
3
2

=

= c−
1
2

( 1

kn
∑

i∈In,ζ

|Xi −ξ|
)

1
4 ≤ c−

1
2 R

1
4

n,ζ
−−−→

n→∞
0 in probability

according to (31).
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C.4 Convergence of the Fourth Summand (27)

Let M1(X ×Y ) be the set of all probability measures on X ×Y . For every f ∈ H, define the map

A f : M1(X ×Y )× [0,∞)→R by

A f (P0,λ) =
∫

L
(

y, f (x)
)

P0

(

d(x,y)
)

+ λ‖ f‖2
H (45)

for every P0 ∈ M1(X ×Y ) and λ ∈ [0,∞). For every f ∈ H, the map (x,y) 7→ L
(

y, f (x)
)

is contin-

uous and bounded on X ×Y and, therefore, A f is continuous with respect to weak convergence of

probability measures (and the ordinary topology on R and [0,∞)). Hence,

(P0,λ) 7→ inf
f∈H

A f (P0,λ) is upper semi-continuous (46)

see, for example, (Denkowski et al., 2003, Prop. 1.1.36).

Let Cc(X ×Y ) be the set of all continuous functions g : X ×Y → R with compact support.

According to Denkowski et al. (2003, Theorem 2.6.24), there is a countable dense subset S ⊂
Cc(X ×Y ) (with respect to uniform convergence).

According to Lemma 6, there is a set B2 ∈BX such that PX (B2) = 1 and such that, for all maps

h : X → R , x 7→
∫

g(x,y)P(dy|x) , g ∈ S ,

(36) is fulfilled with Bh = B2. Fix any ζ = (ξ,u) ∈ X × (0,1) such that ξ ∈ B0 ∩B1 ∩B2.

Lemma 8 Let (Λn j,ζ) j∈N be a subsequence of (Λn,ζ)n∈N which converges to zero Q-a.s. for j → ∞.

Then, Q - a.s.,

(∫ ∫
L
(

y,
a
fPn j ,ζ

,Λn j ,ζ
(x)
)

P(dy|x)Pn j,ζ

(

d(x,v)
)

− inf
t∈R

∫
L(y, t)P(dy|ξ)

)

∨0 −−−→
j→∞

0 .

Proof For every n ∈N, let P̃n,ζ denote the conditional distribution of (X ,Y ) given Z ∈ Bn,ζ. Then,

for every integrable g : X ×Y →R,

∫
g(x,y)P̃n,ζ

(

d(x,y)
)

=
∫

g(x,y)Pn,ζ

(

d(x,v,y)
)

=
∫

Z

∫
Y

g(x,y)P(dy|x)Pn,ζ

(

d(x,v)
)

and, according to the definitions (45) and (6),

inf
f∈H

A f (P̃n,ζ,λ) =
∫

L
(

y, fPn,ζ,λ(x)
)

Pn,ζ

(

d(x,v,y)
)

+ λ
∥

∥ fPn,ζ,λ

∥

∥

2

H
(47)

for every λ ∈ (0,∞) and n ∈N. Analogously to the definition of P̃n,ζ ∈ M (X ×Y ), define P̃0,ζ ∈
M (X ×Y ) by

∫
g(x,y) P̃0,ζ

(

d(x,y)
)

=
∫

Y
g(ξ,y)P(dy|ξ) for every integrable g : X ×Y →R .

First, it is shown that

P̃n,ζ −−−→
n→∞

P̃0,ζ weakly in M (X ×Y ) . (48)
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According to Bauer (2001, Theorem 30.8), we have to show that
∫

gdP̃n,ζ −−−→
n→∞

∫
gdP̃0,ζ ∀g ∈ Cc(X ×Y ) . (49)

Fix any g∈ Cc(X ×Y ). Then, for every ε> 0, there is a gε ∈ S such that supx,y

∣

∣g(x,y)−gε(x,y)|< ε

and, therefore,
∣

∣

∣

∣

∫
gdP̃n,ζ −

∫
gdP̃0,ζ

∣

∣

∣

∣

≤
∫
|g−gε|dP̃n,ζ +

∣

∣

∣

∣

∫
gε dP̃n,ζ −

∫
gε dP̃0,ζ

∣

∣

∣

∣

+
∫
|g−gε|dP̃0,ζ ≤

≤ 2ε +
∫

Z

∣

∣

∣

∣

∫
Y

gε(x,y)P(dy|x)−
∫

Y
gε(ξ,y)P(dy|ξ)

∣

∣

∣

∣

Pn,ζ

(

d(x,v)
)

The second summand converges to 0 for n → ∞ because of ξ ∈ B2, gε ∈ S , and the definition of B2.

As ε > 0 can be arbitrarily close to 0, this shows (49) and, therefore, (48).

Next, fix any ω ∈ Ω such that γ j := Λn j,ξ(ω)−→ 0 for j → ∞. Then,

limsup
j→∞

∫∫
L
(

y,
a
fPn j ,ζ

,Λn j ,ζ
(ω)(x)

)

P(dy|x)Pn j,ζ

(

d(x,v)
)

≤

≤ limsup
j→∞

∫∫
L
(

y, fPn j ,ζ
,γ j
(x)
)

P(dy|x)Pn j,ζ

(

d(x,v)
)

+ γ j

∥

∥ fPn j ,ζ
,γ j

∥

∥

2

H
=

(47)
= limsup

j→∞
inf
f∈H

A f (P̃n j,ζ,γ j)
(46,48)

≤ inf
f∈H

A f (P̃0,ζ,0) =

= inf
f∈H

∫
L
(

y, f (ξ)
)

P(dy|ξ) = inf
t∈R

∫
L(y, t)P(dy|ξ) .

By use of the above lemma, we can complete the proof of part 4 now. The definition of Λn,ζ and

(31) imply that Λn,ξ → 0 in probability for n → ∞. Then, via the characterization of convergence in

probability by use of subsequences and almost sure convergence, it follows from Lemma 8 that
(∫∫

L
(

y,
a
fPn,ζ,Λn,ζ

(x)
)

P(dy|x)Pn,ζ

(

d(x,v)
)

− inf
t∈R

∫
L(y, t)P(dy|ξ)

)

∨0 −−−→
n→∞

0

in probability.

Appendix D. Stability Properties of Support Vector Machines

Part (a) of the following Lemma 9 shows: in order to ensure that empirical SVMs are continuous in

the data, continuity of the loss function L is enough. This result strengthens (Steinwart and Christ-

mann, 2008, Lemma 5.13) which assumes differentiability and also (Hable and Christmann, 2011,

Corollary 3.5) which assumes Lipschitz-(equi-)continuity. Next, part (i) of Lemma 9 (b) consid-

erably strengthens (Steinwart and Christmann, 2008, Corollary 5.19) in the sense that it quantifies

the continuity of the map λ 7→ fP0,λ. Finally, parts (ii) and (iii) of Lemma 9 (b) are just simple

applications of the stability results in (Steinwart and Christmann, 2008, § 5.3).

Lemma 9 Let X0 be a separable metric space and let Y0 ⊂R be closed. Let K : X0 ×X0 →R be a

continuous and bounded kernel with RKHS H and canonical feature map Φ. Let L : Y0×R→ [0,∞)
be a convex loss function.
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(a) If L : Y0 ×R→ [0,∞) is continuous, then the map

(X0 ×Y0)
n → H , D 7→ fD,λ

is continuous for every λ > 0 and n ∈N.

(b) Assume that L has the local Lipschitz-property that, for every a ∈ (0,∞), there is an |L|a,1 ∈
(0,∞) such that

sup
y∈Y0

∣

∣L(y, t1)−L(y, t2)
∣

∣ ≤ |L|a,1 · |t1 − t2| ∀ t1, t2 ∈ [−a,a] .

(i) Then, for every probability measure P0 on (X0 ×Y0,BX0×Y0
) such that RP0

(0)< ∞ and

for every λ0,λ1 ∈ (0,∞), it holds that

∥

∥ fP0,λ1
− fP0,λ0

∥

∥

H
≤ |λ1 −λ0|

λ1

√
λ0

2

√

RP0
(0) .

(ii) If there are some b0,b1 ∈ (0,∞) and q ∈ [0,∞) such that, for every a ∈ (0,∞), |L|a,1 =
b0 + b1aq, then: for every probability measures P1 on (X0 × Y0,BX0×Y0

) such that

RP1
(0) < ∞ and for every λ ∈ (0,∞), there is a measurable hP1,λ : X0 ×Y0 → R such

that

∣

∣hP1,λ(x,y)
∣

∣ ≤ b0 +b1‖K‖q
∞

(

RP1
(0)

λ

)
q
2

(50)

and such that, for every P2 on (X0 ×Y0,BX0×Y0
) with RP2

(0)< ∞,

∥

∥ fP1,λ − fP2,λ

∥

∥

H
≤ λ−1

∥

∥

∥

∥

∫
hP1,λΦdP1 −

∫
hP1,λΦdP1

∥

∥

∥

∥

H

=

= λ−1 sup
f∈H

‖ f‖H≤1

∣

∣EP1
hP1,λ f −EP2

hP1,λ f
∣

∣ .

(iii) If there are some b0,b1 ∈ (0,∞) and q ∈ [0,∞) such that, for every a ∈ (0,∞), |L|a,1 =
b0 + b1aq, then: for every probability measures P1 and P2 on (X0 ×Y0,BX0×Y0

) such

that RP1
(0)< ∞ and RP2

(0)< ∞ and for every λ ∈ (0,∞),

∥

∥ fP1,λ − fP2,λ

∥

∥

H
≤ ‖K‖∞

(

b0λ−1 +b1‖K‖q
∞RP1

(0)
q
2 λ−

q
2
−1
)

∥

∥P1 −P2

∥

∥

TV
. (51)

Proof In order to prove (a) by contradiction, assume that D 7→ fD,λ is not continuous. Then, there

is an ε > 0 and a sequence, such that

D(m) −−−−→
m→∞

D(0) and
∥

∥ fD(m),λ − fD(0),λ

∥

∥

H
≥ ε ∀m ∈N . (52)

Define RD( f ) = 1
n ∑n

i=1 L(yi, f (xi)) for every D =
(

(x1,y1), . . . ,(xn,yn)
)

∈ (X0 ×Y0)
n and f ∈ H.

According to (Steinwart and Christmann, 2008, (5.4)) and due to continuity of L,

sup
m∈N

∥

∥ fD(m),λ

∥

∥

H
≤ sup

m∈N

√

λ−1RD(m)(0) < ∞ . (53)

181



HABLE

Hence, there is a subsequence such that f
D(mℓ) weakly converges to some f0 ∈ H in the Hilbert space

H for ℓ → ∞; see, for example, (Dunford and Schwartz, 1958, Corollary IV.4.7). That is, there is

also a sequence which fulfills (52) and such that, in addition, fD(m),λ weakly converges to f0 in H

for some f0 ∈ H. This implies

lim
m→∞

fD(m),λ(x) = lim
m→∞

〈

fD(m),λ,Φ(x)
〉

H =
〈

f0,Φ(x)
〉

H = f0(x) ∀x ∈ X0

and, for x(m) → x(0) in X0,

lim
m→∞

∣

∣ fD(m),λ(x
(m))− f0(x

(0))
∣

∣ ≤

≤ lim
m→∞

∣

∣

〈

fD(m),λ ,Φ(x(m))−Φ(x(0))
〉

H

∣

∣ + lim
m→∞

∣

∣ fD(m),λ(x
(0))− f0(x

(0))
∣

∣

≤ lim
m→∞

∥

∥ fD(m),λ

∥

∥

H
·
∥

∥Φ(x(m))−Φ(x(0))
∥

∥

H
= 0

where the last equality follows from (53) and continuity of the kernel K. Hence, it follows that

lim
m→∞

RD(m)

(

fD(m),λ

)

= RD(0)

(

f0

)

. (54)

Therefore, lower semi-continuity of the H-norm with respect to weak convergence in H (e.g., Con-

way, 1985, Exercise V.1.9) implies

liminf
m→∞

RD(m)

(

fD(m),λ

)

+λ
∥

∥ fD(m),λ

∥

∥

2

H
≥ RD(0)

(

f0

)

+λ
∥

∥ f0

∥

∥

2

H
. (55)

Recall that the point-wise infimum of a familiy of continuous functions yields an upper semi-

continuous function; see, for example, (Denkowski et al., 2003, Prop. 1.1.36). Then, the definition

of fD(m),λ and continuity of D 7→ RD( f )+λ‖ f‖2
H for every f ∈ H imply

RD(0)

(

f0

)

+λ
∥

∥ f0

∥

∥

2

H
≥ inf

f∈H

(

RD(0)( f )+λ‖ f‖2
H

)

≥

≥ limsup
m→∞

inf
f∈H

(

RD(m)( f )+λ‖ f‖2
H

)

= limsup
m→∞

RD(m)

(

fD(m),λ

)

+λ
∥

∥ fD(m),λ

∥

∥

2

H
≥

≥ liminf
m→∞

RD(m)

(

fD(m),λ

)

+λ
∥

∥ fD(m),λ

∥

∥

2

H

(55)

≥ RD(0)

(

f0

)

+λ
∥

∥ f0

∥

∥

2

H
.

Hence, it follows that f0 = fD(0),λ and

lim
m→∞

RD(m)

(

fD(m),λ

)

+λ
∥

∥ fD(m),λ

∥

∥

2

H
= RD(0)

(

fD(0),λ

)

+λ
∥

∥ fD(0),λ

∥

∥

2

H
. (56)

Then, f0 = fD(0),λ, (54), and (56) imply that limm→∞ ‖ fD(m),λ‖H = ‖ fD(0),λ‖H . Since weak conver-

gence in the Hilbert space H and this convergence of the H-norms imply norm convergence in

H (see, e.g., Conway, 1985, Exercise V.1.8), we have shown that limm→∞ ‖ fD(m),λ − fD(0),λ‖H = 0,

which is a contradiction to (52).

The following proof of part (i) of Lemma 9 (b) is essentially a variant of the proof of (Steinwart

and Christmann, 2008, Theorem 5.9) even though the statements are quite different. Let ∂L(y, t0)
denote the subdifferential of the convex map t 7→ L(y, t) at the point t0. According to (Steinwart and
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Christmann, 2008, Corollary 5.10), there is a bounded measurable map h :∈ X0 ×Y0 →R such that

h(x,y) ∈ ∂L
(

y, fP0,λ0
(x)
)

for every (x,y) ∈ X0 ×Y0 and

fP0,λ0
= − 1

2λ0

∫
hΦdP0 . (57)

The definition of the subdifferential implies

h(x,y)
(

fP0,λ1
(x)− fP0,λ0

(x)
)

≤ L
(

y, fP0,λ1
(x)
)

−L
(

y, fP0,λ0
(x)
)

for every (x,y) ∈ X0 ×Y0 and integrating with respect to P0 yields

∫
h(x,y)

(

fP0,λ1
(x)− fP0,λ0

(x)
)

P0

(

d(x,y)
)

≤ R ( fP0,λ1
)−R ( fP0,λ0

) .

The reproducing property of the canonical feature map Φ and the property of the Bochner integral

(Denkowski et al., 2003, Theorem 3.10.16) imply

∫
h(x,y)

(

fP0,λ1
(x)− fP0,λ0

(x)
)

P0

(

d(x,y)
)

=

=
∫
〈

fP0,λ1
− fP0,λ0

, h(x,y)Φ(x)
〉

H P0

(

d(x,y)
)

=

=
〈

fP0,λ1
− fP0,λ0

,
∫

hΦdP0

〉

H
(57)
=
〈

fP0,λ1
− fP0,λ0

,−2λ0 fP0,λ0

〉

H .

That is,

〈

fP0,λ1
− fP0,λ0

,−2 λ0

λ1
fP0,λ0

〉

H ≤ 1
λ1

(

RP0
( fP0,λ1

)−RP0
( fP0,λ0

)
)

. (58)

An elementary calculation with 〈 , 〉H shows that

2
〈

fP0,λ1
− fP0,λ0

, fP0,λ0

〉

H +
∥

∥ fP0,λ1
− fP0,λ0

∥

∥

2

H
=
∥

∥ fP0,λ1

∥

∥

2

H
−
∥

∥ fP0,λ0

∥

∥

2

H
. (59)

Calculating (58)+(59) yields

〈

fP0,λ1
− fP0,λ0

, 2(1− λ0

λ1
) fP0,λ0

〉

H +
∥

∥ fP0,λ1
− fP0,λ0

∥

∥

2

H
≤

≤ 1
λ1

(

RP0
( fP0,λ1

)−RP0
( fP0,λ0

)
)

+
∥

∥ fP0,λ1

∥

∥

2

H
−
∥

∥ fP0,λ0

∥

∥

2

H
=

= 1
λ1

(

RP0,λ1
( fP0,λ1

)−RP0,λ1
( fP0,λ0

)
)

≤ 0 .

Hence,

∥

∥ fP0,λ1
− fP0,λ0

∥

∥

2

H
≤

∣

∣

∣

〈

fP0,λ1
− fP0,λ0

, 2(1− λ0

λ1
) fP0,λ0

〉

H

∣

∣

∣
≤

≤
∥

∥ fP0,λ1
− fP0,λ0

∥

∥

H
·2
∣

∣1− λ0

λ1

∣

∣ ·
∥

∥ fP0,λ0

∥

∥

H
.

Since
∥

∥ fP0,λ0

∥

∥

H
≤
√

λ−1
0 RP0

(0) (see, e.g., Steinwart and Christmann, 2008, (5.4)), this implies

statement (i) of Lemma 9 (b).

In order to prove (ii) and (iii) of Lemma 9 (b), note that the properties of the Bochner-Integral

(see, e.g., Denkowski et al., 2003, Theorem 3.10.16) imply 〈∫ hΦdP, f 〉H =
∫

h f dP for every inte-

grable function h : X0×Y0 →R because of the reproducing property 〈Φ(x), f 〉H = f (x). Due to the
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assumptions on L, it follows from (Steinwart and Christmann, 2008, Corollary 5.10) that there is a

measurable function hP1,λ : X0 ×Y0 →R which fulfills (50) and

∥

∥ fP1,λ − fP2,λ

∥

∥

H
≤ 1

λ

∥

∥

∥

∥

∫
hP1,λΦdP1 −

∫
hP1,λΦdP2

∥

∥

∥

∥

H

=

= sup
f∈H

‖ f‖H≤1

1

λ

〈∫
hP1,λΦdP1 −

∫
hP1,λΦdP2 , f

〉

H

= sup
f∈H

‖ f‖H≤1

1

λ

∣

∣

∣

∣

∫
hP1,λ f dP1 −

∫
hP1,λ f dP2

∣

∣

∣

∣

.

That is, we have shown (ii). Then, (iii) follows from (ii) and ‖ f‖∞ ≤ ‖K‖∞‖ f‖H .
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6 Avenue Blaise Pascal

77455 Champs-sur-Marne, France

Editor: Nicolo Cesa-Bianchi

Abstract

This paper is devoted to regret lower bounds in the classical model of stochastic multi-armed bandit.

A well-known result of Lai and Robbins, which has then been extended by Burnetas and Katehakis,

has established the presence of a logarithmic bound for all consistent policies. We relax the notion

of consistency, and exhibit a generalisation of the bound. We also study the existence of logarithmic

bounds in general and in the case of Hannan consistency. Moreover, we prove that it is impossible

to design an adaptive policy that would select the best of two algorithms by taking advantage of the

properties of the environment. To get these results, we study variants of popular Upper Confidence

Bounds (UCB) policies.

Keywords: stochastic bandits, regret lower bounds, consistency, selectivity, UCB policies

1. Introduction and Notations

Multi-armed bandits are a classical way to illustrate the difficulty of decision making in the case

of a dilemma between exploration and exploitation. The denomination of these models comes

from an analogy with playing a slot machine with more than one arm. Each arm has a given (and

unknown) reward distribution and, for a given number of rounds, the agent has to choose one of

them. As the goal is to maximize the sum of rewards, each round decision consists in a trade-off

between exploitation (i.e., playing the arm that has been the more lucrative so far) and exploration

(i.e., testing another arm, hoping to discover an alternative that beats the current best choice). One

possible application is clinical trial: a doctor wants to heal as many patients as possible, the patients

arrive sequentially, and the effectiveness of each treatment is initially unknown (Thompson, 1933).

Bandit problems have initially been studied by Robbins (1952), and since then they have been

applied to many fields such as economics (Lamberton et al., 2004; Bergemann and Valimaki, 2008),

games (Gelly and Wang, 2006), and optimisation (Kleinberg, 2005; Coquelin and Munos, 2007;

Kleinberg et al., 2008; Bubeck et al., 2009).

∗. Also at Willow, CNRS/ENS/INRIA - UMR 8548.

c©2013 Antoine Salomon, Jean-Yves Audibert and Issam El Alaoui.
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1.1 Setting

In this paper, we consider the following model. A stochastic multi-armed bandit problem is defined

by:

• a number of rounds n,

• a number of arms K ≥ 2,

• an environment θ = (ν1, · · · ,νK), where each νk (k ∈ {1, · · · ,K}) is a real-valued measure

that represents the distribution reward of arm k.

The number of rounds n may or may not be known by the agent, but this will not affect the present

study.

We assume that rewards are bounded. Thus, for simplicity, each νk is a probability on [0,1].
Environment θ is initially unknown by the agent but lies in some known set Θ. For the problem

to be interesting, the agent should not have great knowledges of its environment, so that Θ should

not be too small and/or only contain too trivial distributions such as Dirac measures. To make it

simple, we may assume that Θ contains all environments where each reward distribution is a Dirac

distribution or a Bernoulli distribution. This will be acknowledged as Θ having the Dirac/Bernoulli

property. For technical reason, we may also assume that Θ is of the form Θ1 × . . .×ΘK , meaning

that Θk is the set of possible reward distributions of arm k. This will be acknowledged as Θ having

the product property.

The game is as follows. At each round (or time step) t = 1, · · · ,n, the agent has to choose an

arm It in the set {1, · · · ,K}. This decision is based on past actions and observations, and the agent

may also randomize his choice. Once the decision is made, the agent gets and observes a reward

that is drawn from νIt independently from the past. Thus a policy (or strategy) can be described by

a sequence (σt)t≥1 (or (σt)1≤t≤n if the number of rounds n is known) such that each σt is a mapping

from the set {1, . . . ,K}t−1× [0,1]t−1 of past decisions and rewards into the set of arm {1, . . . ,K} (or

into the set of probabilities on {1, . . . ,K}, in case the agent randomizes his choices).

For each arm k and all time step t, let Tk(t) = ∑t
s=11Is=k denote the sampling time, that is, the

number of times arm k was pulled from round 1 to round t, and Xk,1,Xk,2, . . . ,Xk,Tk(t) the correspond-

ing sequence of rewards. We denote by Pθ the distribution on the probability space such that for

any k ∈ {1, . . . ,K}, the random variables Xk,1,Xk,2, . . . ,Xk,n are i.i.d. realizations of νk, and such that

these K sequences of random variables are independent. Let Eθ denote the associated expectation.

Let µk =
∫

xdνk(x) be the mean reward of arm k. Introduce µ∗ = maxk∈{1,...,K} µk and fix an arm

k∗ ∈ argmaxk∈{1,...,K} µk, that is, k∗ has the best expected reward. The agent aims at minimizing its

regret, defined as the difference between the cumulative reward he would have obtained by always

drawing the best arm and the cumulative reward he actually received. Its regret is thus

Rn =
n

∑
t=1

Xk∗,t −
n

∑
t=1

XIt ,TIt (t)
.

As most of the publications on this topic, we focus on the expected regret, for which one can check

that:

EθRn =
K

∑
k=1

∆kEθ[Tk(n)], (1)
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where ∆k is the optimality gap of arm k, defined by ∆k = µ∗ − µk. We also define ∆ as the gap

between the best arm and the second best arm, that is, ∆ := mink:∆k>0 ∆k.

Other notions of regret exist in the literature. One of them is the quantity

max
k

n

∑
t=1

Xk,t −XIt ,TIt (t)
,

which is mostly used in adversarial settings. Results and ideas we want to convey here are more

suited to expected regret, and considering other definitions of regret would only bring some more

technical intricacies.

1.2 Consistency and Regret Lower Bounds

Former works have shown the existence of lower bounds on the expected regret of a large class of

policies: intuitively, to perform well the agent has to explore all arms, and this requires a significant

amount of suboptimal choices. In this way, Lai and Robbins (1985) proved a lower bound of order

logn in a particular parametric framework, and they also exhibited optimal policies. This work has

then been extended by Burnetas and Katehakis (1996). Both papers deal with consistent policies,

meaning that they only consider policies such that:

∀a > 0, ∀θ ∈ Θ, Eθ[Rn] = o(na). (2)

Let us detail the bound of Burnetas and Katehakis, which is valid when Θ has the product property.

Given an environment θ = (ν1, · · · ,νK) and an arm k ∈ {1, . . . ,K}, define:

Dk(θ) := inf
ν̃k∈Θk:E[ν̃k]>µ∗

KL(νk, ν̃k),

where KL(ν,µ) denotes the Kullback-Leibler divergence of measures ν and µ. Now fix a consistent

policy and an environment θ ∈ Θ. If k is a suboptimal arm (i.e., µk 6= µ∗) such that 0 < Dk(θ)< ∞,

then

∀ε > 0, lim
n→+∞

P

[

Tk(n)≥
(1− ε) logn

Dk(θ)

]

= 1.

This readily implies that:

liminf
n→+∞

Eθ[Tk(n)]

logn
≥ 1

Dk(θ)
.

Thanks to Formula (1), it is then easy to deduce a lower bound of the expected regret.

One contribution of this paper is to generalize the study of regret lower bounds, by consid-

ering weaker notions of consistency: α-consistency and Hannan consistency. We will define α-

consistency (α ∈ [0,1)) as a variant of Equation (2), where equality Eθ[Rn] = o(na) only holds for

all a > α. We show that the logarithmic bound of Burnetas and Katehakis still holds, but coefficient
1

Dk(θ)
is turned into 1−α

Dk(θ)
. We also prove that the dependence of this new bound with respect to the

term 1−α is asymptotically optimal when n →+∞ (up to a constant).

We will also consider the case of Hannan consistency. Indeed, any policy achieves at most an

expected regret of order n: because of the equality ∑K
k=1 Tk(n) = n and thanks to Equation (1), one

can show that EθRn ≤ nmaxk ∆k. More intuitively, this comes from the fact that the average cost

of pulling an arm k is a constant ∆k. As a consequence, it is natural to wonder what happens when
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dealing with policies whose expected regret is only required to be o(n), which is equivalent to Han-

nan consistency. This condition is less restrictive than any of the previous notions of consistency.

In this larger class of policy, we show that the lower bounds on the expected regret are no longer

logarithmic, but can be much smaller.

Finally, even if no logarithmic lower bound holds on the whole set Θ, we show that there nec-

essarily exist some environments θ for which the expected regret is at least logarithmic. The latter

result is actually valid without any assumptions on the considered policies, and only requires a

simple property on Θ.

1.3 Selectivity

As we exhibit new lower bounds, we want to know if it is possible to provide optimal policies

that achieve these lower bounds, as it is the case in the classical class of consistent policies. We

answer negatively to this question, and for this we solve the more general problem of selectivity.

Given a set of policies, we define selectivity as the ability to perform at least as good as the policy

that is best suited to the current environment θ. Still, such an ability can not be implemented. As

a by-product it is not possible to design a procedure that would specifically adapt to some kinds

of environments, for example by selecting a particular policy. This contribution is linked with

selectivity in on-line learning problem with perfect information, commonly addressed by prediction

with expert advice (see, e.g., Cesa-Bianchi et al., 1997). In this spirit, a closely related problem is the

one of regret against the best strategy from a pool studied by Auer et al. (2003). The latter designed

an algorithm in the context of adversarial/nonstochastic bandit whose decisions are based on a given

number of recommendations (experts), which are themselves possibly the rewards received by a set

of given policies. To a larger extent, model selection has been intensively studied in statistics, and

is commonly solved by penalization methods (Mallows, 1973; Akaike, 1973; Schwarz, 1978).

1.4 UCB Policies

Some of our results are obtained using particular Upper Confidence Bound algorithms. These al-

gorithms were introduced by Lai and Robbins (1985): they basically consist in computing an index

for each arm, and selecting the arm with the greatest index. A simple and efficient way to design

such policies is as follows: choose each index as low as possible such that, conditional to past ob-

servations, it is an upper bound of the mean reward of the considered arm with high probability

(or, say, with high confidence level). This idea can be traced back to Agrawal (1995), and has been

popularized by Auer et al. (2002), who notably described a policy called UCB1. In this policy, each

index Bk,s,t is defined by an arm k, a time step t, an integer s that indicates the number of times arm

k has been pulled before round t, and is given by:

Bk,s,t = X̂k,s +

√

2log t

s
,

where X̂k,s is the empirical mean of arm k after s pulls, that is, X̂k,s =
1
s ∑s

u=1 Xk,u.

To summarize, UCB1 policy first pulls each arm once and then, at each round t > K, selects an

arm k that maximizes Bk,Tk(t−1),t . Note that, by means of Hoeffding’s inequality, the index Bk,Tk(t−1),t

is indeed an upper bound of µk with high probability (i.e., the probability is greater than 1−1/t4).

Another way to understand this index is to interpret the empiric mean X̂k,Tk(t−1) as an ”exploitation”
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term, and the square root
√

2log t/s as an ”exploration” term (because the latter gradually increases

when arm k is not selected).

Policy UCB1 achieves the logarithmic bound (up to a multiplicative constant), as it was shown

that:

∀θ ∈ Θ, ∀n ≥ 3, Eθ[Tk(n)]≤ 12
logn

∆2
k

and EθRn ≤ 12
K

∑
k=1

logn

∆k

≤ 12K
logn

∆
.

Audibert et al. (2009) studied some variants of UCB1 policy. Among them, one consists in changing

the 2log t in the exploration term into ρ log t, where ρ > 0. This can be interpreted as a way to

tune exploration: the smaller ρ is, the better the policy will perform in simple environments where

information is disclosed easily (for example when all reward distributions are Dirac measures). On

the contrary, ρ has to be greater to face more challenging environments (typically when reward

distributions are Bernoulli laws with close parameters).

This policy, that we denote UCB(ρ), was proven by Audibert et al. to achieve the logarithmic

bound when ρ > 1, and the optimality was also obtained when ρ > 1
2

for a variant of UCB(ρ).

Bubeck (2010) showed in his PhD dissertation that their ideas actually enable to prove optimality

of UCB(ρ) for ρ > 1
2
. Moreover, the case ρ = 1

2
corresponds to a confidence level of 1

t
(because

of Hoeffding’s inequality, as above), and several studies (Lai and Robbins, 1985; Agrawal, 1995;

Burnetas and Katehakis, 1996; Audibert et al., 2009; Honda and Takemura, 2010) have shown that

this level is critical.

We complete these works by a precise study of UCB(ρ) when ρ ≤ 1
2
. We prove that UCB(ρ)

is (1− 2ρ)-consistent and that it is not α-consistent for any α < 1− 2ρ (in view of the definition

above, this means that the expected regret is roughly of order n1−2ρ). Thus it does not achieve the

logarithmic bound, but it performs well in simple environments, for example, environments where

all reward distributions are Dirac measures.

Moreover, we exhibit expected regret bounds of general UCB policies, with the 2log t in the

exploration term of UCB1 replaced by an arbitrary function. We give sufficient conditions for such

policies to be Hannan consistent and, as mentioned before, find that lower bounds need not be

logarithmic any more.

1.5 Outline

The paper is organized as follows: in Section 2, we give bounds on the expected regret of general

UCB policies and of UCB(ρ) (ρ ≤ 1
2
), as preliminary results. In Section 3, we focus on α-consistent

policies. Then, in Section 4, we study the problem of selectivity, and we conclude in Section 5 by

general results on the existence of logarithmic lower bounds.

Throughout the paper ⌈x⌉ denotes the smallest integer not less than x whereas ⌊x⌋ denotes the

largest integer not greater than x, 1A stands for the indicator function of event A, Ber(p) is the

Bernoulli law with parameter p, and δx is the Dirac measure centred on x.

2. Preliminary Results

In this section, we estimate the expected regret of UCB policies. This will be useful for the rest of

the paper.
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2.1 Bounds on the Expected Regret of General UCB Policies

We first study general UCB policies, defined by:

• Draw each arm once,

• then, at each round t, draw an arm

It ∈ argmax
k∈{1,...,K}

Bk,Tk(t−1),t ,

where Bk,s,t is defined by Bk,s,t = X̂k,s +
√

fk(t)
s

and where functions fk (1 ≤ k ≤ K) are in-

creasing.

This definition is inspired by popular UCB1 algorithm, for which fk(t) = 2log t for all k.

The following lemma estimates the performances of UCB policies in simple environments, for

which reward distributions are Dirac measures.

Lemma 1 Let 0 ≤ b < a ≤ 1 and n ≥ 1. For θ = (δa,δb), the random variable T2(n) is uniformly

upper bounded by 1
∆2 f2(n) + 1. Consequently, the expected regret of UCB is upper bounded by

1
∆ f2(n)+1.

Proof In environment θ, best arm is arm 1 and ∆ = ∆2 = a−b. Let us first prove the upper bound

of the sampling time. The assertion is true for n = 1 and n = 2: the first two rounds consists in

drawing each arm once, so that T2(n)≤ 1 ≤ 1
∆2 f2(n)+1 for n ∈ {1,2}. If, by contradiction, the as-

sertion is false, then there exists t ≥ 3 such that T2(t)>
1

∆2 f2(t)+1 and T2(t −1)≤ 1
∆2 f2(t −1)+1.

Since f2(t) ≥ f2(t − 1), this leads to T2(t) > T2(t − 1), meaning that arm 2 is drawn at round t.

Therefore, we have a +
√

f1(t)
T1(t−1) ≤ b +

√

f2(t)
T2(t−1) , hence a − b = ∆ ≤

√

f2(t)
T2(t−1) , which implies

T2(t −1) ≤ 1
∆2 f2(t) and thus T2(t) ≤ 1

∆2 f2(t)+1. This contradicts the definition of t, and this ends

the proof of the first statement. The second statement is a direct consequence of Formula (1).

Remark: throughout the paper, we will often use environments with K = 2 arms to provide bounds

on expected regrets. However, we do not lose generality by doing so, because all corresponding

proofs can be written almost identically to suit to any K ≥ 2, by simply assuming that the distribution

of each arm k ≥ 3 is δ0.

We now give an upper bound of the expected sampling time of any arm such that ∆k > 0. This

bound is valid in any environment, and not only those of the form (δa,δb).

Lemma 2 For any θ ∈ Θ and any β ∈ (0,1), if ∆k > 0 the following upper bound holds:

Eθ[Tk(n)]≤ u+
n

∑
t=u+1

(

1+
log t

log( 1
β)

)

(

e−2β fk(t)+ e−2β fk∗ (t)
)

,

where u =
⌈

4 fk(n)

∆2
k

⌉

.
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An upper bound of the expected regret can be deduced from this lemma thanks to Formula 1.

Proof The core of the proof is a peeling argument and the use of Hoeffding’s maximal inequality

(see, e.g., Cesa-Bianchi and Lugosi, 2006, section A.1.3 for details). The idea is originally taken

from Audibert et al. (2009), and the following is an adaptation of the proof of an upper bound of

UCB(ρ) in the case ρ > 1
2

which can be found in S. Bubeck’s PhD dissertation.

First, let us notice that the policy selects an arm k such that ∆k > 0 at time step t ≤ n only if at

least one of the three following equations holds:

Bk∗,Tk∗ (t−1),t ≤ µ∗, (3)

X̂k,t ≥ µk +

√

fk(t)

Tk(t −1)
, (4)

Tk(t −1)<
4 fk(n)

∆2
k

. (5)

Indeed, if none of the equations is true, then:

Bk∗,Tk∗ (t−1),t > µ∗ = µk +∆k ≥ µk +2

√

fk(n)

Tk(t −1)
> X̂k,t +

√

fk(t)

Tk(t −1)
= Bk,Tk(t−1),t ,

which implies that arm k can not be chosen at time step t.

We denote respectively by ξ1,t ,ξ2,t and ξ3,t the events corresponding to Equations (3), (4) and

(5).

We have:

Eθ[Tk(n)] = Eθ

[

n

∑
t=1

1It=k

]

= Eθ

[

n

∑
t=1

1{It=k}∩ξ3,t

]

+Eθ

[

n

∑
t=1

1{It=k}\ξ3,t

]

.

Let us show that the sum ∑n
t=11{It=k}∩ξ3,t

is almost surely lower than u := ⌈4 fk(n)/∆2
k⌉. We assume

by contradiction that ∑n
t=11{It=k}∩ξ3,t

> u. Then there exists m < n such that ∑m−1
t=1 1{It=k}∩ξ3,t

<

4 fk(n)/∆2
k and ∑m

t=11{It=k}∩ξ3,t
= ⌈4 fk(n)/∆2

k⌉. Therefore, for any s > m, we have:

Tk(s−1)≥ Tk(m) =
m

∑
t=1

1{It=k} ≥
m

∑
t=1

1{It=k}∩ξ3,t
=

⌈

4 fk(n)

∆2
k

⌉

≥ 4 fk(n)

∆2
k

,

so that 1{Is=k}∩ξ3,s
= 0. But then

n

∑
t=1

1{It=k}∩ξ3,t
=

m

∑
t=1

1{It=k}∩ξ3,t
=

⌈

4 fk(n)

∆2
k

⌉

≤ u,

which is the contradiction expected.

We also have ∑n
t=11{It=k}\ξ3,t

= ∑n
t=u+11{It=k}\ξ3,t

: since Tk(t − 1) ≤ t − 1, event ξ3,t always

happens at time step t ∈ {1, . . . ,u}.

And then, since event {It = k} is included in ξ1,t ∪ξ2,t ∪ξ3,t :

Eθ

[

n

∑
t=u+1

1{It=k}\ξ3,t

]

≤ Eθ

[

n

∑
t=u+1

1ξ1,t∪ξ2,t

]

≤
n

∑
t=u+1

Pθ(ξ1,t)+Pθ(ξ2,t).
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It remains to find upper bounds of Pθ(ξ1,t) and Pθ(ξ2,t). To this aim, we apply the peeling argument

with a geometric grid over the time interval [1, t]:

Pθ(ξ1,t) = Pθ

(

Bk∗,Tk∗ (t−1),t ≤ µ∗
)

= Pθ

(

X̂k∗,Tk∗ (t−1)+

√

fk∗(t)

Tk∗(t −1)
≤ µ∗

)

≤ Pθ

(

∃s ∈ {1, · · · , t}, X̂k∗,s +

√

fk∗(t)

s
≤ µ∗

)

≤

⌊

log t

log(1/β)

⌋

∑
j=0

Pθ

(

∃s : {β j+1t < s ≤ β jt}, X̂k∗,s +

√

fk∗(t)

s
≤ µ∗

)

≤

⌊

log t

log(1/β)

⌋

∑
j=0

Pθ

(

∃s : {β j+1t < s ≤ β jt},
s

∑
l=1

(Xk∗,l −µ∗)≤−
√

s fk∗(t)

)

≤

⌊

log t

log(1/β)

⌋

∑
j=0

Pθ

(

∃s : {β j+1t < s ≤ β jt},
s

∑
l=1

(Xk∗,l −µ∗)≤−
√

β j+1t fk∗(t)

)

=

⌊

log t

log(1/β)

⌋

∑
j=0

Pθ

(

max
β j+1t<s≤β jt

s

∑
l=1

(µ∗−Xk∗,l)≥
√

β j+1t fk∗(t)

)

≤

⌊

log t

log(1/β)

⌋

∑
j=0

Pθ

(

max
s≤β jt

s

∑
l=1

(µ∗−Xk∗,l)≥
√

β j+1t fk∗(t)

)

.

As the range of the random variables (Xk∗,l)1≤l≤s is [0,1], Hoeffding’s maximal inequality gives:

Pθ(ξ1,t) ≤

⌊

log t

log(1/β)

⌋

∑
j=0

exp






−

2
(

√

β j+1t fk∗(t)
)2

β jt






≤
(

log t

log(1/β)
+1

)

e−2β fk∗ (t).

Similarly, we have:

Pθ(ξ2,t)≤
(

log t

log(1/β)
+1

)

e−2β fk(t),

and the result follows from the combination of previous inequalities.

2.2 Bounds on the Expected Regret of UCB(ρ), ρ ≤ 1
2

We study the performances of UCB(ρ) policy, with ρ ∈ (0, 1
2
]. We recall that UCB(ρ) is the UCB

policy defined by fk(t) = ρ log(t) for all k, that is, Bk,s,t = X̂k,s +
√

ρ log t

s
. Small values of ρ can be

interpreted as a low level of experimentation in the balance between exploration and exploitation.

Precise regret bound orders of UCB(ρ) when ρ ∈ (0, 1
2
] are not documented in the literature.

We first give an upper bound of expected regret in simple environments, where it is supposed to

perform well. As stated in the following proposition (which is a direct consequence of Lemma 1),

the order of the bound is
ρ logn

∆ .
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Lemma 3 Let 0 ≤ b < a ≤ 1 and n ≥ 1. For θ = (δa,δb), the random variable T2(n) is uniformly

upper bounded by
ρ

∆2 log(n)+1. Consequently, the expected regret of UCB(ρ) is upper bounded by
ρ
∆ log(n)+1.

One can show that the expected regret of UCB(ρ) is actually equivalent to
ρ logn

∆ as n goes to

infinity. These good performances are compensated by poor results in more complex environments,

as showed in the following theorem. We exhibit an expected regret upper bound which is valid for

any θ ∈ Θ, and which is roughly of order n1−2ρ. We also show that this upper bound is asymptot-

ically optimal. Thus, with ρ ∈ (0, 1
2
), UCB(ρ) does not perform enough exploration to achieve the

logarithmic bound, as opposed to UCB(ρ) with ρ ∈ ( 1
2
,+∞).

Theorem 4 For any ρ ∈ (0, 1
2
], any θ ∈ Θ and any β ∈ (0,1), one has

Eθ[Rn]≤ ∑
k:∆k>0

4ρ logn

∆k

+∆k +2∆k

(

logn

log(1/β)
+1

)

n1−2ρβ

1−2ρβ
.

Moreover, if Θ has the Dirac/Bernoulli property, then for any ε > 0 there exists θ ∈ Θ such that

lim
n→+∞

Eθ[Rn]

n1−2ρ−ε
=+∞.

The value ρ = 1
2

is critical, but we can deduce from the upper bound of this theorem that UCB( 1
2
)

is consistent in the classical sense of Lai and Robbins (1985) and of Burnetas and Katehakis (1996).

Proof We set u =
⌈

4ρ logn

∆2
k

⌉

. By Lemma 2 we get:

Eθ[Tk(n)] ≤ u+2
n

∑
t=u+1

(

log t

log(1/β)
+1

)

e−2βρ log(t)

= u+2
n

∑
t=u+1

(

log t

log(1/β)
+1

)

1

t2ρβ

≤ u+2

(

logn

log(1/β)
+1

)

n

∑
t=1

1

t2ρβ

≤ u+2

(

logn

log(1/β)
+1

)

(

1+
n

∑
t=2

1

t2ρβ

)

≤ u+2

(

logn

log(1/β)
+1

)(

1+
∫ n−1

1

1

t2ρβ
dt

)

≤ u+2

(

logn

log(1/β)
+1

)

n1−2ρβ

1−2ρβ
.

As usual, the upper bound of the expected regret follows from Formula (1).

Now, let us show the lower bound. The result is obtained by considering an environment θ of the

form
(

Ber( 1
2
),δ 1

2
−∆

)

, where ∆ lies in (0, 1
2
) and is such that 2ρ(1+

√
∆)2 < 2ρ+ε. This notation is

obviously consistent with the definition of ∆ as an optimality gap. We set Tn := ⌈ρ logn

∆ ⌉, and define

the event ξn by:

ξn =

{

X̂1,Tn
<

1

2
− (1+

1√
∆
)∆

}

.
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When event ξn occurs, one has for any t ∈ {Tn, . . . ,n}

X̂1,Tn
+

√

ρ log t

Tn

≤ X̂1,Tn
+

√

ρ logn

Tn

<
1

2
− (1+

1√
∆
)∆+

√
∆

≤ 1

2
−∆,

so that arm 1 is chosen no more than Tn times by UCB(ρ) policy. Consequently:

Eθ [T2(n)]≥ Pθ(ξn)(n−Tn).

We will now find a lower bound of the probability of ξn thanks to Berry-Esseen inequality. We

denote by C the corresponding constant, and by Φ the c.d.f. of the standard normal distribution. For

convenience, we also define the following quantities:

σ :=

√

√

√

√

E

[

(

X1,1 −
1

2

)2
]

=
1

2
, M3 := E

[

∣

∣

∣

∣

X1,1 −
1

2

∣

∣

∣

∣

3
]

=
1

8
.

Using the fact that Φ(−x) = e
− x2

2√
2πx

β(x) with β(x)−−−−→
x→+∞

1, we have:

Pθ(ξn) = Pθ

(

X̂1,Tn
− 1

2

σ

√
Tn ≤−2

(

1+
1√
∆

)

∆
√

Tn

)

≥ Φ
(

−2(∆+
√

∆)
√

Tn

)

− CM3

σ3
√

Tn

≥
exp
(

−2(∆+
√

∆)2Tn

)

2
√

2π(∆+
√

∆)
√

Tn

β
(

2(∆+
√

∆)
√

Tn

)

− CM3

σ3
√

Tn

≥
exp
(

−2(∆+
√

∆)2(ρ logn

∆ +1)
)

2
√

2π(∆+
√

∆)
√

Tn

β
(

2(∆+
√

∆)
√

Tn

)

− CM3

σ3
√

Tn

≥ n−2ρ(1+
√

∆)2

√
Tn

exp
(

−2(∆+
√

∆)2
)

2
√

2π(∆+
√

∆)
β
(

2(∆+
√

∆)
√

Tn

)

− CM3

σ3
√

Tn

.

Previous calculations and Formula (1) give

Eθ[Rn] = ∆Eθ[T2(n)]≥ ∆Pθ(ξn)(n−Tn),

so that we finally obtain a lower bound of Eθ[Rn] of order n1−2ρ(1+
√

∆)2√
logn

. Therefore,
Eθ[Rn]
n1−2ρ−ε is at least

of order n2ρ+ε−2ρ(1+
√

∆)2√
logn

. Since 2ρ+ ε− 2ρ(1+
√

∆)2 > 0, the numerator goes to infinity, faster than√
logn. This concludes the proof.
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3. Bounds on the Class α-consistent Policies

In this section, our aim is to find how the classical results of Lai and Robbins (1985) and of Burnetas

and Katehakis (1996) can be generalised if we do not restrict the study to consistent policies. As a

by-product, we will adapt their results to the present setting, which is simpler than their parametric

frameworks.

We recall that a policy is consistent if its expected regret is o(na) for all a> 0 in all environments

θ ∈ Θ. A natural way to relax this definition is the following.

Definition 5 A policy is α-consistent if

∀a > α, ∀θ ∈ Θ, Eθ[Rn] = o(na).

For example, we showed in the previous section that, for any ρ∈ (0, 1
2
], UCB(ρ) is (1−2ρ)-consistent

and not α-consistent if α < 1−2ρ.

Note that the relevant range of α in this definition is [0,1): the case α = 0 corresponds to the

standard definition of consistency (so that throughout the paper the term ”consistent” also means

”0-consistent”), and any value α ≥ 1 is pointless as any policy is then α-consistent. Indeed, the

expected regret of any policy is at most of order n. This also lead us to wonder what happens if we

only require the expected regret to be o(n):

∀θ ∈ Θ, Eθ[Rn] = o(n).

This requirement corresponds to the definition of Hannan consistency. The class of Hannan consis-

tent policies includes consistent policies and α-consistent policies for any α ∈ [0,1). Some results

about this class will be obtained in Section 5.

We focus on regret lower bounds on α-consistent policies. We first show that the main result of

Burnetas and Katehakis can be extended in the following way.

Theorem 6 Assume that Θ has the product property. Fix an α-consistent policy and θ ∈ Θ. If

∆k > 0 and if 0 < Dk(θ)< ∞, then

∀ε > 0, lim
n→+∞

Pθ

[

Tk(n)≥ (1− ε)
(1−α) logn

Dk(θ)

]

= 1.

Consequently

liminf
n→+∞

Eθ[Tk(n)]

logn
≥ 1−α

Dk(θ)
.

Remind that the lower bound of the expected regret is then deduced from Formula (1), and that

coefficient Dk(θ) is defined by:

Dk(θ) := inf
ν̃k∈Θk:E[ν̃k]>µ∗

KL(νk, ν̃k),

where KL(ν,µ) denotes the Kullback-Leibler divergence of measures ν and µ.

Note that, as opposed to Burnetas and Katehakis (1996), there is no optimal policy in general

(i.e., a policy that would achieve the lower bound in all environment θ). This can be explained

intuitively as follows. If by contradiction there existed such a policy, its expected regret would be

of order logn and consequently it would be (0-)consistent. Then the lower bounds in the case of
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0-consistency would necessarily hold. This can not happen if α > 0 because 1−α
Dk(θ)

< 1
Dk(θ)

.
Nevertheless, this argument is not rigorous because the fact that the regret would be of order logn

is only valid for environments θ such that 0 < Dk(θ)< ∞. The non-existence of optimal policies is

implied by a stronger result of the next section (yet, only if α > 0.2).

Proof We adapt Proposition 1 in Burnetas and Katehakis (1996) and its proof. Let us denote

θ = (ν1, . . . ,νK). We fix ε > 0, and we want to show that:

lim
n→+∞

Pθ

(

Tk(n)

logn
<

(1− ε)(1−α)

Dk(θ)

)

= 0.

Set δ > 0 and δ′ > α such that 1−δ′
1+δ > (1− ε)(1−α). By definition of Dk(θ), there exists ν̃k such

that E[ν̃k]> µ∗ and

Dk(θ)< KL(νk, ν̃k)< (1+δ)Dk(θ).

Let us set θ̃ = (ν1, . . . ,νk−1, ν̃k,νk+1, . . . ,νK). Environment θ̃ lies in Θ by the product property and

arm k is its best arm. Define Iδ = KL(νk, ν̃k) and

Aδ′
n :=

{

Tk(n)

logn
<

1−δ′

Iδ

}

, Cδ′′
n :=

{

logLTk(n) ≤
(

1−δ′′
)

logn
}

,

where δ′′ is such that α < δ′′ < δ′ and Lt is defined by logLt = ∑t
s=1 log

(

dνk

dν̃k
(Xk,s)

)

.

Now, we show that Pθ(A
δ′
n ) = Pθ(A

δ′
n ∩Cδ′′

n )+Pθ(A
δ′
n \Cδ′′

n )−−−−→
n→+∞

0.

On the one hand, one has:

Pθ(A
δ′
n ∩Cδ′′

n ) ≤ n1−δ′′
Pθ̃(A

δ′
n ∩Cδ′′

n ) (6)

≤ n1−δ′′
Pθ̃(A

δ′
n ) = n1−δ′′

Pθ̃

(

n−Tk(n)> n− 1−δ′

Iδ
logn

)

≤ n1−δ′′
Eθ̃[n−Tk(n)]

n− 1−δ′

Iδ logn
(7)

=
n−δ′′

Eθ̃

[

∑K
l=1 Tℓ(n)−Tk(n)

]

n− 1−δ′

Iδ

logn
n

≤ ∑ℓ 6=k n−δ′′
Eθ̃[Tℓ(n)]

1− 1−δ′

Iδ

logn
n

−−−−→
n→+∞

0. (8)

Equation (6) results from a partition of Aδ′
n into events {Tk(n) = a}, 0≤ a<

⌈

1−δ′

Iδ logn
⌉

. Each event

{Tk(n) = a}∩Cδ′′
n equals {Tk(n) = a}∩

{

∏a
s=1

dνk

dν̃k
(Xk,s)≤ n1−δ′′

}

and is measurable with respect

to Xk,1, . . . ,Xk,a and to Xℓ,1, . . . ,Xℓ,n (ℓ 6= k). Thus, 1{Tk(n)=a}∩Cδ′′
n

can be written as a function f of

the latter r.v. and we have:

Pθ

(

{Tk(n) = a}∩Cδ′′
n

)

=
∫

f
(

(xk,s)1≤s≤a,(xℓ,s)ℓ 6=k,1≤s≤n

)

∏
ℓ 6= k

1 ≤ s ≤ n

dνℓ(xℓ,s) ∏
1≤s≤a

dνk(xk,s)

≤
∫

f
(

(xk,s)1≤s≤a,(xℓ,s)ℓ 6=k,1≤s≤n

)

∏
ℓ 6= k

1 ≤ s ≤ n

dνℓ(xℓ,s)n
1−δ′′ ∏

1≤s≤a

dν̃k(xk,s)

= n1−δ′′
Pθ̃

(

{Tk(n) = a}∩Cδ′′
n

)

.
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Equation (7) is a consequence of Markov’s inequality, and the limit in (8) is a consequence of

α-consistency.

On the other hand, we set bn := 1−δ′

Iδ logn, so that

Pθ(A
δ′
n \Cδ′′

n ) ≤ P

(

max
j≤⌊bn⌋

logL j > (1−δ′′) logn

)

≤ P

(

1

bn

max
j≤⌊bn⌋

logL j > Iδ 1−δ′′

1−δ′

)

.

This term tends to zero, as a consequence of the law of large numbers.

Now that Pθ(A
δ′
n ) tends to zero, the conclusion results from

1−δ′

Iδ
>

1−δ′

(1+δ)Dk(θ)
≥ (1− ε)(1−α)

Dk(θ)
.

The previous lower bound is asymptotically optimal with respect to its dependence in α, as

claimed in the following proposition.

Proposition 7 Assume that Θ has the Dirac/Bernoulli property. There exist θ ∈ Θ and a constant

c > 0 such that, for any α ∈ [0,1), there exists an α-consistent policy such that:

liminf
n→+∞

Eθ[Tk(n)]

(1−α) logn
≤ c,

for any k satisfying ∆k > 0.

Proof In any environment of the form θ = (δa,δb) with a 6= b, Lemma 3 implies the following

estimate for UCB(ρ):

liminf
n→+∞

EθTk(n)

logn
≤ ρ

∆2
,

where k 6= k∗.

Because 1−α
2

∈ (0, 1
2
) and since UCB(ρ) is (1− 2ρ)-consistent for any ρ ∈ (0, 1

2
] (Theorem 4), we

obtain the result by choosing the α-consistent policy UCB( 1−α
2

) and by setting c = 1
2∆2 .

4. Selectivity

In this section, we address the problem of selectivity. By selectivity, we mean the ability to adapt to

the environment as and when rewards are observed. More precisely, a set of two (or more) policies

is given. The one that performs the best depends on environment θ. We wonder if there exists an

adaptive procedure that, given any environment θ, would be as good as any policy in the given set.

Two major reasons motivate this study.

On the one hand this question was answered by Burnetas and Katehakis within the class of

consistent policies. They exhibits an asymptotically optimal policy, that is, that achieves the regret
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lower bounds they have proven. The fact that a policy performs as best as any other one obviously

solves the problem of selectivity.

On the other hand, this problem has already been studied in the context of adversarial bandit by

Auer et al. (2003). Their setting differs from our not only because their bandits are nonstochastic,

but also because their adaptive procedure takes only into account a given number of recommen-

dations, whereas in our setting the adaptation is supposed to come from observing rewards of the

chosen arms (only one per time step). Nevertheless, one can wonder if an ”exponentially weighted

forecasters” procedure like EXP4 could be transposed to our context. The answer is negative, as

stated in the following theorem.

To avoid confusion, we make the notations of the regret and of sampling time more precise by

adding the considered policy: under policy A , Rn and Tk(n) will be respectively denoted Rn(A) and

Tk(n,A).

Theorem 8 Let Ã be a consistent policy and let ρ be a real number in (0,0.4). If Θ has the

Dirac/Bernoulli property and the product property, there is no policy which can both beat Ã and

UCB(ρ), that is:

∀A , ∃θ ∈ Θ, limsup
n→+∞

Eθ[Rn(A)]

min(Eθ[Rn(Ã)],Eθ[Rn(UCB(ρ))])
> 1.

Thus the existence of optimal policies does not hold when we extend the notion of consistency.

Precisely, as UCB(ρ) is (1− 2ρ)-consistent, we have shown that there is no optimal policy within

the class of α-consistent policies, with α > 0.2. Consequently, there do not exist optimal policies in

the class of Hannan consistent policies either.

Moreover, Theorem 8 shows that methods that would be inspired by related literature in adver-

sarial bandit can not apply to our framework. As we said, this impossibility may come from the fact

that we can not observe at each time step the decisions and rewards of more than one algorithm. If

we were able to observe a given set of policies from step to step, then it would be easy to beat them

all: it would be sufficient to aggregate all the observations and simply pull the arm with the greater

empiric mean. The case where we only observe decisions (and not rewards) of a set of policies may

be interesting, but is left outside of the scope of this paper.

Proof Assume by contradiction that

∃A , ∀θ ∈ Θ, limsup
n→+∞

un,θ ≤ 1,

where un,θ =
Eθ[Rn(A)]

min(Eθ[Rn(Ã)],Eθ[Rn(UCB(ρ))])
.

For any θ, we have

Eθ[Rn(A)] =
Eθ[Rn(A)]

Eθ[Rn(Ã)]
Eθ[Rn(Ã)]≤ un,θEθ[Rn(Ã)], (9)

so that the fact that Ã is a consistent policy implies that A is also consistent. Consequently the lower

bound of Theorem 6 also holds for policy A .

For the rest of the proof, we focus on environments of the form θ = (δ0,δ∆) with ∆ > 0. In this

case, arm 2 is the best arm, so that we have to compute D1(θ). On the one hand, we have:

D1(θ) = inf
ν̃1∈Θ1:E[ν̃1]>µ∗

KL(ν1, ν̃1) = inf
ν̃1∈Θ1:E[ν̃1]>∆

KL(δ0, ν̃1) = inf
ν̃1∈Θ1:E[ν̃1]>∆

log

(

1

ν̃1(0)

)

.
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As E[ν̃1]≤ 1− ν̃1(0), we get:

D1(θ)≥ inf
ν̃1∈Θ1:1−ν̃1(0)≥∆

log

(

1

ν̃1(0)

)

≥ log

(

1

1−∆

)

.

One the other hand, we have for any ε > 0:

D1(θ)≤ KL(δ0,Ber(∆+ ε)) = log

(

1

1−∆− ε

)

Consequently D1(θ) = log
(

1
1−∆

)

, and the lower bound of Theorem 6 reads:

liminf
n→+∞

Eθ[T1(n,A)]

logn
≥ 1

log
(

1
1−∆

) .

Just like Equation (9), we have:

Eθ[Rn(A)]≤ un,θEθ[Rn(UCB(ρ))].

Moreover, Lemma 3 provides:

Eθ[Rn(UCB(ρ))]≤ 1+
ρ logn

∆
.

Now, by gathering the three previous inequalities and Formula (1), we get:

1

log
(

1
1−∆

) ≤ liminf
n→+∞

Eθ[T1(n,A)]

logn
= liminf

n→+∞

Eθ[Rn(A)]

∆ logn

≤ liminf
n→+∞

un,θEθ[Rn(UCB(ρ))]

∆ logn
≤ liminf

n→+∞

un,θ

∆ logn

(

1+
ρ logn

∆

)

≤ liminf
n→+∞

un,θ

∆ logn
+ liminf

n→+∞

ρun,θ

∆2
=

ρ

∆2
liminf
n→+∞

un,θ ≤
ρ

∆2
limsup
n→+∞

un,θ

≤ ρ

∆2
.

This means that ρ has to be lower bounded by ∆2

log( 1
1−∆)

, but this is greater than 0.4 if ∆ = 0.75, hence

the contradiction.

Note that this proof gives a simple alternative to Theorem 4 to show that UCB(ρ) is not consistent

(if ρ ≤ 0.4). Indeed if it were consistent, then in environment θ = (δ0,δ∆) the same contradiction

between the lower bound of Theorem 6 and the upper bound of Lemma 3 would hold.

5. General Bounds

In this section, we study lower bounds on the expected regret with few requirements on Θ and on

the class of policies. With a simple property on Θ but without any assumption on the policy, we

show that there always exist logarithmic lower bounds for some environments θ. Then, still with a
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simple property on Θ, we show that there exists a Hannan consistent policy for which the expected

regret is sub-logarithmic for some environment θ.

Note that the policy that always pulls arm 1 has a 0 expected regret in environments where arm

1 has the best mean reward, and an expected regret of order n in other environments. So, for this

policy, expected regret is sub-logarithmic in some environments. Nevertheless, this policy is not

Hannan consistent because its expected regret is not always o(n).

5.1 The Necessity of a Logarithmic Regret in Some Environments

The necessity of a logarithmic regret in some environments can be explained by a simple sketch

proof. Assume that the agent knows the number of rounds n, and that he balances exploration and

exploitation in the following way: he first pulls each arm s(n) times, and then selects the arm that

has obtained the best empiric mean for the rest of the game. Denote by ps(n) the probability that the

best arm does not have the best empiric mean after the exploration phase (i.e., after the first Ks(n)
rounds). The expected regret is then of the form

c1(1− ps(n))s(n)+ c2 ps(n)n. (10)

Indeed, if the agent manages to match the best arm then he only suffers the pulls of suboptimal arms

during the exploration phase. That represents an expected regret of order s(n). If not, the number

of pulls of suboptimal arms is of order n, and so is the expected regret.

Now, let us approximate ps(n). It has the same order as the probability that the best arm gets

an empiric mean lower than the second best mean reward. Moreover,
Xk∗,s(n)−µ∗

σ

√

s(n) (where σ is

the variance of Xk∗,1) has approximately a standard normal distribution by the central limit theorem.

Therefore, we have:

ps(n) ≈ Pθ(Xk∗,s(n) ≤ µ∗−∆) = Pθ

(

Xk∗,s(n)−µ∗

σ

√

s(n)≤−∆
√

s(n)

σ

)

≈ 1√
2π

σ

∆
√

s(n)
exp



−1

2

(

∆
√

s(n)

σ

)2




≈ 1√
2π

σ

∆
√

s(n)
exp

(

−∆2s(n)

2σ2

)

.

It follows that the expected regret has to be at least logarithmic. Indeed, to ensure that the second

term c2 ps(n)n of Equation (10) is sub-logarithmic, s(n) has to be greater than logn. But then first

term c1(1− ps(n))s(n) is greater than logn.

Actually, the necessity of a logarithmic regret can be written as a consequence of Theorem 6.

Indeed, if we assume by contradiction that limsupn→+∞
EθRn

logn
= 0 for all θ (i.e., EθRn = o(logn)),

the considered policy is consistent. Consequently, Theorem 6 implies that

limsup
n→+∞

EθRn

logn
≥ liminf

n→+∞

EθRn

logn
> 0.

Yet, this reasoning needs Θ having the product property, and conditions of the form 0 < Dk(θ)< ∞

also have to hold.

The following proposition is a rigorous version of our sketch, and it shows that the necessity of

a logarithmic lower bound can be based on a simple property on Θ.
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Proposition 9 Assume that there exist two environments θ= (ν1, . . . ,νK)∈Θ, θ̃= (ν̃1, . . . , ν̃K)∈Θ,

and an arm k ∈ {1, . . . ,K} such that

1. k has the best mean reward in environment θ,

2. k is not the winning arm in environment θ̃,

3. νk = ν̃k and there exists η ∈ (0,1) such that

∏
ℓ 6=k

dνℓ

dν̃ℓ
(Xℓ,1)≥ η Pθ̃ −a.s. (11)

Then, for any policy, there exists θ̂ ∈ Θ such that

limsup
n→+∞

Eθ̂Rn

logn
> 0.

Let us explain the logic of the three conditions of the proposition. If νk = ν̃k, and in case νk

seems to be the reward distribution of arm k, then arm k has to be pulled often enough for the

regret to be small if the environment is θ. Nevertheless, one has to explore other arms to know

whether the environment is actually θ̃. Moreover, Inequality (11) makes sure that the distinction

between θ and θ̃ is tough to make: it ensures that pulling any arm ℓ 6= k gives a reward which is

likely in both environments. Without such an assumption the problem may be very simple, and

providing a logarithmic lower bound is hopeless. Indeed, the distinction between any pair of tricky

environments (θ, θ̃) may be solved in only one pull of a given arm ℓ 6= k, that would almost surely

give a reward that is possible in only one of the two environments.

The third condition can be seen as an alternate version of condition 0 < Dk(θ)< ∞ in Theorem

6, though there is no logical connection with it. Finally, let us remark that one can check that any

set Θ that has the Dirac/Bernoulli property satisfies the conditions of Proposition 9.

Proof The proof consists in writing a proper version of Expression (10). To this aim we compute a

lower bound of Eθ̃Rn, expressed as a function of EθRn and of an arbitrary function g(n).

In the following, ∆̃k denotes the optimality gap of arm k in environment θ̃. As event
{

∑ℓ 6=k Tℓ(n)≤ g(n)
}

is measurable with respect to Xℓ,1, . . . ,Xℓ,⌊g(n)⌋ (ℓ 6= k) and to Xk,1, . . . ,Xk,n,

we also introduce the function q such that

1{∑ℓ 6=k Tℓ(n)≤g(n)} = q
(

(Xℓ,s)ℓ 6=k, s=1..⌊g(n)⌋,(Xk,s)s=1..n

)

.
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We have:

Eθ̃Rn ≥ ∆̃kEθ̃[Tk(n)]≥ ∆̃k(n−g(n))Pθ̃ (Tk(n)≥ n−g(n)) (12)

= ∆̃k(n−g(n))Pθ̃

(

n− ∑
ℓ 6=k

Tℓ(n)≥ n−g(n)

)

= ∆̃k(n−g(n))Pθ̃

(

∑
ℓ 6=k

Tℓ(n)≤ g(n)

)

= ∆̃k(n−g(n))
∫

q
(

(xℓ,s)ℓ 6=k, s=1..⌊g(n)⌋,(xk,s)s=1..n

)

∏
ℓ 6= k

s = 1..⌊g(n)⌋

dν̃ℓ(xℓ,s)∏
s=1..n

dν̃k(xk,s)

≥ ∆̃k(n−g(n))
∫

q
(

(xℓ,s)ℓ 6=k, s=1..⌊g(n)⌋,(xk,s)s=1..n

)

η⌊g(n)⌋∏
ℓ 6= k

s = 1..⌊g(n)⌋

dνℓ(xℓ,s)∏
s=1..n

dνk(xk,s) (13)

≥ ∆̃k(n−g(n))ηg(n)
∫

q
(

(xℓ,s)ℓ 6=k, s=1..⌊g(n)⌋,(xk,s)s=1..n

)

∏
ℓ 6= k

s = 1..⌊g(n)⌋

dνℓ(xℓ,s)∏
s=1..n

dνk(xk,s)

= ∆̃k(n−g(n))ηg(n)
Pθ

(

∑
ℓ 6=k

Tℓ(n)≤ g(n)

)

= ∆̃k(n−g(n))ηg(n)

(

1−Pθ

(

∑
ℓ 6=k

Tℓ(n)> g(n)

))

≥ ∆̃k(n−g(n))ηg(n)

(

1− Eθ

(

∑ℓ 6=k Tℓ(n)
)

g(n)

)

(14)

≥ ∆̃k(n−g(n))ηg(n)

(

1− Eθ

(

∑ℓ 6=k ∆ℓTℓ(n)
)

∆g(n)

)

(15)

≥ ∆̃k(n−g(n))ηg(n)

(

1− EθRn

∆g(n)

)

,

where the first inequality of (12) is a consequence of Formula (1), the second inequality of (12)

and inequality (14) come from Markov’s inequality, Inequality (13) is a consequence of (11), and

Inequality (15) results from the fact that ∆ℓ ≥ ∆ for all ℓ.

Now, let us conclude. If EθRn

logn
−−−−→
n→+∞

0, we set g(n) = 2EθRn

∆ , so that

g(n)≤ min
(

n
2
, − logn

2logη

)

for n large enough. Then, we have:

Eθ̃Rn ≥ ∆̃k

n−g(n)

2
ηg(n) ≥ ∆̃k

n

4
η

− logn
2logη = ∆̃k

√
n

4
.

In particular,
Eθ̃Rn

logn
−−−−→
n→+∞

+∞, and the result follows.
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5.2 Hannan Consistency

We will prove that there exists a Hannan consistent policy such that there can not be a logarithmic

lower bound for every environment θ of Θ. To this aim, we make use of general UCB policies again

(cf. Section 2.1). Let us first give sufficient conditions on the fk for UCB policy to be Hannan

consistent.

Proposition 10 Assume that fk(n) = o(n) for all k ∈ {1, . . . ,K}. Assume also that there exist γ > 1
2

and N ≥ 3 such that fk(n)≥ γ log logn for all k ∈ {1, . . . ,K} and for all n ≥ N. Then UCB is Hannan

consistent.

Proof Fix an arm k such that ∆k > 0 and choose β ∈ (0,1) such that 2βγ > 1. By means of Lemma

2, we have for n large enough:

Eθ[Tk(n)]≤ u+2
n

∑
t=u+1

(

1+
log t

log( 1
β)

)

e−2βγ log log t ,

where u =
⌈

4 fk(n)

∆2
k

⌉

.

Consequently, we have:

Eθ[Tk(n)]≤ u+2
n

∑
t=2

(

1

(log t)2βγ
+

1

log( 1
β)

1

(log t)2βγ−1

)

. (16)

Sums of the form ∑n
t=2

1
(log t)c with c > 0 are equivalent to n

(logn)c as n goes to infinity. Indeed, on

the one hand we have
n

∑
t=3

1

(log t)c
≤

∫ n

2

dx

(logx)c
≤

n

∑
t=2

1

(log t)c
,

so that ∑n
t=2

1
(log t)c ∼

∫ n
2

dx
(logx)c . On the other hand, we have

∫ n

2

dx

(logx)c
=

[

x

(logx)c

]n

2

+ c

∫ n

2

dx

(logx)c+1
.

As both integrals are divergent we have
∫ n

2
dx

(logx)c+1 = o
(∫ n

2
dx

(logx)c

)

, so that
∫ n

2
dx

(logx)c ∼ n
(logn)c .

Combining the fact that ∑n
t=2

1
(log t)c ∼ n

(logn)c with Equation (16), we get the existence of a

constant C > 0 such that

Eθ[Tk(n)]≤
⌈

4 fk(n)

∆2

⌉

+
Cn

(logn)2βγ−1
.

Since fk(n) = o(n) and 2βγ− 1 > 0, the latter inequality shows that Eθ[Tk(n)] = o(n). The result

follows.

We are now in the position to prove the main result of this section.

Theorem 11 If Θ has the Dirac/Bernoulli property, there exist Hannan consistent policies for which

the expected regret can not be lower bounded by a logarithmic function in all environments θ.
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Proof If f1(n) = f2(n) = log logn for n ≥ 3, UCB is Hannan consistent by Proposition 10. Accord-

ing to Lemma 1, the expected regret is then of order log logn in environments of the form (δa,δb),
a 6= b. Hence the conclusion on the non-existence of logarithmic lower bounds.

Thus we have obtained a lower bound of order log logn. This order is critical regarding the

methods we used. Yet, we do not know if this order is optimal.
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Abstract

Gestures for interfaces should be short, pleasing, intuitive, and easily recognized by a computer.

However, it is a challenge for interface designers to create gestures easily distinguishable from

users’ normal movements. Our tool MAGIC Summoning addresses this problem. Given a specific

platform and task, we gather a large database of unlabeled sensor data captured in the environments

in which the system will be used (an “Everyday Gesture Library” or EGL). The EGL is quantized

and indexed via multi-dimensional Symbolic Aggregate approXimation (SAX) to enable quick

searching. MAGIC exploits the SAX representation of the EGL to suggest gestures with a low

likelihood of false triggering. Suggested gestures are ordered according to brevity and simplicity,

freeing the interface designer to focus on the user experience. Once a gesture is selected, MAGIC

can output synthetic examples of the gesture to train a chosen classifier (for example, with a hidden

Markov model). If the interface designer suggests his own gesture and provides several examples,

MAGIC estimates how accurately that gesture can be recognized and estimates its false positive rate

by comparing it against the natural movements in the EGL. We demonstrate MAGIC’s effectiveness

in gesture selection and helpfulness in creating accurate gesture recognizers.

Keywords: gesture recognition, gesture spotting, false positives, continuous recognition

1. Introduction

The success of the Nintendo Wii, Microsoft Kinect, and Google’s and Apple’s mobile devices

demonstrates the popularity of gesture-based interfaces. Gestural interfaces can be expressive,

quick to access, and intuitive (Guimbretière and Winograd, 2000; Pirhonen et al., 2002; Starner

et al., 1998; Witt, 2007). Yet gesture-based interfaces may trigger functionality incorrectly, confus-

ing normal movement with a command. For example, the Apple iPod’s “shake-to-shuffle” gesture,

which is intended to signal when the user wants to skip a song and randomly select another, tends

to trigger falsely while the user is walking (see Figure 1a). Part of the difficulty is that the rec-

ognizer must constantly monitor an accelerometer to determine if the gesture is being performed.

Some accelerometer or gyro-based interfaces constrain the problem by requiring the user to seg-

ment the gesture by pressing a button. For example, in Nintendo’s Wii Bowling the player presses

the “B” trigger when beginning to swing his arm and releases the trigger at the end of the swing

to release the virtual bowling ball. Such a push-to-gesture approach is similar to the push-to-talk

method that speech recognition researchers use to improve performance. Yet such mechanisms can

slow interactions, confuse users, and limit the utility of gesture interaction. For example, the fast,

c©2013 Daniel Kyu Hwa Kohlsdorf and Thad E. Starner.
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easy-to-access nature of the shake-to-shuffle gesture would be impeded if the user needed to hold a

button to perform the gesture. Ideally, such free-space “motion gestures” (Ashbrook, 2009) should

be short, pleasing to perform, intuitive, and easily recognized by a computer against a background

of the user’s normal movements.

Touchpad gesture shortcuts, which upon execution can start an affiliated application on a laptop

or mobile phone (Ouyang and Li, 2012), are another example of command gestures that must be

differentiated from everyday motions. Fortunately, these gestures are naturally isolated in time from

each other since most touchpad hardware does not even provide data to the operating system when

no touches are being sensed. However, an interface designer must still create gesture commands

that are not easily confused with normal click or drag and drop actions (see Figure 1b).

Figure 1: Top: A “shake-to-shuffle” gesture (left) can be confused with normal up-and-down move-

ment while walking (right). Bottom: A touchpad shortcut gesture (left) can be confused

with normal cursor movement (right).

Many “direct manipulation” (Hutchins et al., 1985) gestures such as pointing gestures and pinch-

to-zoom gestures are used in modern interfaces. These gestures provide the user continuous feed-

back while the gesture is occurring, which allows the user to adjust to sensing errors or cancel the

interaction quickly. However, representational gestures that are intended to trigger a discrete action
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are less common. We posit that their relative scarcity relates to the difficulty of discovering ap-

propriate gestures for the task. Our previous studies have shown that designing command gestures

that do not trigger accidentally during normal, everyday use is difficult for both human computer

interaction (HCI) and pattern recognition experts (Ashbrook and Starner, 2010). In addition, the

current process to determine the viability of a gesture is challenging and expensive. Gestures are

often found to be inappropriate only after the system has entered user testing. If a gesture is found

to trigger accidentally during testing, the gesture set has to be changed appropriately, and the testing

has to be repeated. Such an iterative design cycle can waste a month or more with each test. Thus,

we posit the need for a tool to help designers quickly judge the suitability of a gesture from a pattern

recognition perspective while they focus on the user experience aspects of the gestural interface.

Several gesture design tools have been described in the HCI literature (Dannenberg and Amon,

1989; Long, 2001; Fails and Olsen, 2003; Maynes-Aminzade et al., 2007; Dey et al., 2004), yet

none address the issue of false positives. Similarly, most gesture recognition toolkits in the pattern

recognition and related literature focus on isolated gestures (Wobbrock et al., 2007; Lyons et al.,

2007) or the recognition of strings of gestures, such as for sign language (Westeyn et al., 2003).

Rarely do such tools focus on gesture spotting (Yang et al., 2009) for which the critical metric is

false positives per hour.

Ashbrook and Starner (2010) introduced the Multiple Action Gesture Interface Creation (MAGIC)

Toolkit. A MAGIC user could specify gesture classes by providing examples of each gesture.

MAGIC provided feedback on each example and each gesture class by visualizing intra- and inter-

class distances and estimating the prototype recognizer’s accuracy by classifying all provided ges-

ture examples in isolation. Unlike the above tools, MAGIC could predict whether a query gesture

would tend to trigger falsely by comparing the gesture to a database of movements recorded in the

everyday lives of users. Primarily designed as an HCI Tool, the system used a nearest neighbor

method with a dynamic time warping (DTW) distance measure (Fu et al., 2008).

One shortcoming of this work was that the relative false positive rates predicted in user studies

were not compared to the actual false positive rates of a gesture recognizer running in the field.

Another shortcoming was the long time (up to 20 minutes) needed to search for potential hits in a

database of everyday user movements (an “Everyday Gesture Library” or EGL) even while using

approximations like scaling with matching (Fu et al., 2008). MAGIC was designed as an interactive

tool, yet due to the delay in feedback, gesture interaction designers waited until all gestures were

designed before testing them against the EGL. Often, when doing an EGL test in batch, the interface

designers discovered that many of their gestures were poor choices. Designers “learned to fear the

EGL.” Faster feedback would allow designers to compare candidate gestures to the EGL as they

perform each example, speeding the process and allowing more exploration of the space of accept-

able gestures. Another result from previous studies is that users were frustrated by encountering too

many false positives in the Everyday Gesture Library (Ashbrook and Starner, 2010). In other words,

many designed gestures are rejected since the number of predicted false positives is too high.

Here, we focus on the pattern recognition tasks needed to create MAGIC Summoning, a com-

pletely new, web-based MAGIC implementation designed to address the needs discovered from

using the original. Section 2 introduces the basic operation of the tool. Section 3 describes an

indexing method for the EGL using a multi-dimensional implementation of indexable Symbolic

Aggregate approXimation (iSAX) that speeds EGL comparisons by an order of magnitude over the

DTW implementation. While not as accurate as DTW or other methods such as HMMs, our sys-

tem’s speed allows interface designers to receive feedback after every gesture example input instead

211



KOHLSDORF AND STARNER

of waiting to test the gesture set in batch. We compare the iSAX approach to linear searches of the

EGL with HMMs and DTW to show that our approach, while returning fewer matches, does predict

the relative suitability of different gestures. Section 4.4 continues this comparison to show that the

predictions made by MAGIC match observations made when the resulting gesture recognizers are

tested in a real continuous gesture recognition setting. Sections 5 and 6 provide additional details.

The first describes a method of using the EGL to create a null (garbage) class that improves the

performance of a HMM classifier and a DTW classifier when compared to a typical thresholding

method. The second demonstrates the stability of our method by examining its sensitivity to its

parameters and provides a method capable of learning reasonable defaults for those parameters in

an unsupervised manner. These sections expand significantly upon previous work published in Face

and Gesture (Kohlsdorf et al., 2011), while the remaining sections represent unpublished concepts.

Section 7 may be of the most interest to many readers. This section describes how MAGIC

Summoning suggests novel gestures that are predicted to have a low probability of false positives.

While the capability may be surprising at first, the technique follows directly from the iSAX in-

dexing scheme. In Section 7.2 we show that the suggested gestures have low false positive rates

during a user study in a real life setting. In our tests, the space of gestures that are not represented in

EGLs tends to be large. Thus, there are many potential gestures from which to choose. Section 7.3

describes our attempts at finding metrics that enable ordering of the suggested gestures with regard

to brevity, simplicity, and “quality.”

2. MAGIC Summoning Web-based Toolkit

MAGIC Summoning is a web-based toolkit that helps users design motion-based gestural com-

mands (as opposed to static poses) that are expected not to trigger falsely in everyday usage (Kohls-

dorf, 2011; Kohlsdorf et al., 2011). All MAGIC experiments described in this paper focus on cre-

ating user-independent recognizers. This choice reflects our interest in creating useful gesture

interfaces and is also due to practicality; collecting large data sets for the EGL from a single user is

time consuming and onerous. To ground the discussion with a practical problem, we focus on the

challenge of designing gestures performed by moving an Android phone in one’s hand. We assume

a three-axis accelerometer, which is always included in modern Android phones. The goal is to

create gestures (and an appropriate classifier) that, when recognized, trigger functions like “open

mailbox” or “next song.” Without a push-to-gesture trigger, such gestures are highly susceptible to

false positives (Ashbrook, 2009), which emphasizes the need for the MAGIC tool.

2.1 Creating Gesture Classes And Testing For Confusion Between Classes

MAGIC Summoning has two software components: a gesture recorder running on the Android de-

vice and the MAGIC web application. The first step in gesture creation is to start a new project in

the web service. The interface designer specifies the set of gestures through collecting training data

for each of the gestures using the recorder. In order to record a training example, the interaction

designer opens the recorder on his smart phone and performs the gesture. The recorder automati-

cally estimates when the gesture starts and when it ends using the method described by Ashbrook

(2009). Specifically, the recorder tracks the variance of the accelerometer data in a sliding window.

If the variance is above a user-defined threshold, recording starts. If it falls below the threshold,

then recording ends.
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After the example is recorded, the designer is asked to associate the example with an appropriate

gesture label, and the recorder uploads the example to the web. The designer evaluates the gesture

in the web application to determine how well it can be distinguished from other gestures. All

gestures and their examples are listed in MAGIC Summoning’s sidebar (see Figure 2). Examples

marked with a red cross are misclassified given the current model, and instances marked with a green

circle indicate correct classification. By default, MAGIC Summoning uses a one nearest neighbor

classifier with dynamic time warping (NN-DTW) to classify gestures, although other classifiers such

as a hidden Markov model (HMM) could be substituted. By clicking on an instance, the designer

can see the raw sensor data plotted for that example as well as the predicted number of false positives

in the EGL (the method used to calculated this number is explained in Section 3).

Figure 2: Magic Summoning showing the gesture classes, their examples, and the number of EGL

hits (lower numbers are better).

Clicking on a gesture in the sidebar opens a view with statistics about it. One statistic is the

goodness of the gesture. The goodness is defined as the harmonic mean of precision and recall

(Ashbrook, 2009):

goodness = 2∗
precision∗ recall

precision+ recall
.
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Similar to the original work by Ashbrook (2009), MAGIC Summoning provides users with

information about the inter-class distance and the intra-class distance of the gesture. Both are vi-

sualized using a mean and standard deviation plot. In an intra-class distance plot we calculate the

means and standard deviations of the distances from all examples in a class to all other examples

in that class and visualize the result as a box plot (see Figure 3). In an inter-class distance plot we

calculate the means and standard deviations from one class to all the others in the training set. The

distance between two classes is the mean distance of all examples of one class to all examples of

another. These statistics and visualizations help designers find inconsistencies in the examples of a

given gesture class as well as unintentional similarities between classes.

2.2 Android Phone Accelerometer Everyday Gesture Library

We collected a large EGL (> 1.5 million seconds or 19 days total) using six participants’ Android

phones in Bremen, Germany. The age of the participants ranged from 20 to 30 years. We im-

plemented a background process that wrote the three-axis accelerometer data to the phone’s flash

memory. Unfortunately, the sampling frequency varied as the models of Android phones we used

return samples only when the change in the accelerometer reading exceeds a factory-defined thresh-

old. The phones used are the Motorola Droid, the Samsung Galaxy, HTC Nexus One, the HTC

Legend, and the HTC Desire. Other EGLs loadable in MAGIC include movements sensed with a

Microsoft Kinect and gestures made on trackpads. We focus mostly on our EGL created with An-

droid phones, but readers interested in experiments with other sensors can refer to Kohlsdorf (2011)

for more information.

2.3 Testing For False Positives With The EGL

The original Macintosh-based MAGIC tool displayed a timeline that showed which candidate ges-

ture matched the EGL and at which time. However, gesture designers did not care when or why a

given gesture showed a given false positive in the EGL; they just wished to know how many “hits”

occurred in the EGL so that they could accept or reject the gesture (Ashbrook, 2009). Thus, we

omitted the timeline for simplicity in the web-based application. In the following section we will

describe our accelerated method for testing a gesture for potential false positives against the EGL.

This method enables rapid iteration on different gesture sets by the interaction designer.

If a user is displeased by the results after testing, he can delete gestures suspected of high false

positive rates or misclassification errors and design new gestures. When the user is satisfied with

the gesture set, MAGIC Summoning can train a classifier based on hidden Markov models (HMMs)

or the default NN-DTW method. The user can then download the trained recognizer. Note that we

do not suggest using the iSAX method used to search the EGL as a gesture recognizer as we have

tuned the method for speed, not accuracy.

3. False Positive Prediction

When testing a gesture set against the EGL, the original MAGIC calculates the DTW distance

for every example of each candidate gesture, sliding a window through time across the EGL and

allowing the window to grow or shrink to better match the example when a potential close match

is discovered. If the resulting distance is above a certain user-defined threshold it counts as a false
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Figure 3: Mean and standard deviation of the distance between each example in a class and of the

class as a whole in relation to other classes.

positive “hit.” Ashbrook and Starner (2010) assert that the sum of the hits predicts how well the

gesture will perform in everyday life (an assertion supported by our experiments described later).

In optimizing the speed of the EGL comparison, Ashbrook (2009) observed that not all regions

of the EGL need checking. Since we are interested in motion-based gestures instead of static poses,

parts of the EGL with low variance in their signal need not be examined. Thus, we pre-process

the EGL to find “interesting” regions where the average variance over all dimensions in the sensor

data in a region defined by a sliding window over 10 samples exceeds a given threshold (see Figure

4).1 Eliminating regions from the EGL that can not possibly match candidate gestures significantly

speeds EGL search. Note that a similar technique was described earlier to segment gestures when

the interface designer is creating examples of candidate gestures. All experiments in this paper will

use these techniques.

1. Word spotting algorithms in speech recognition perform similar checks, rejecting regions of “silence” before em-

ploying more computationally intensive comparisons.
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var

th

Figure 4: When finding start and stop points of a gesture or finding interesting regions in the EGL,

we run a sliding window over the raw recorded time series and calculate the sample

variance in that window when a new sample is inserted. If the variance is above a certain

threshold, the gesture or interesting region starts. It stops when the variance falls below

that threshold.

Searching the EGL parallelizes well, as each processor can be devoted to different regions of

the EGL. However, even on a high-end, eight-core Macintosh workstation, searches were too slow

for an interactive system. For a small, five-hour EGL with three-axis accelerometer data sampled at

40Hz, each example required between 5-25 seconds to check. Thus, one gesture with 10 examples

could require minutes to search in the EGL. This slowness causes interface designers to create

gestures in batch and then check them against the EGL. Testing a set of eight gestures with all their

examples could take up to 20 minutes, leading to a relatively long and frustrating development cycle

for the designer (Ashbrook and Starner, 2010). In the following sections, we describe a method to

speed the EGL search using iSAX. We start with an overview of our method and our assumptions.

We then provide the specific methods we used to adapt iSAX to our problem.

3.1 Overview Of EGL Search Method And Assumptions

In MAGIC Summoning, we first segment the EGL into interesting regions as defined previously.

Each region is divided into four even subregions to form a “word” of length four. The region is

then encoded into a string of symbols using the standard SAX quantization method. The string is

entered into an iSAX tree representing the EGL. The iSAX tree is initialized with cardinality two

but quickly grows as many regions hash to the same leaf on the suffix tree and the leaf needs to be

split (Shieh and Keogh, 2008). As each region is encoded into the iSAX tree, its location in the EGL

is recorded in the leaf. Once the EGL is completely encoded into an iSAX tree, we can perform

“approximate search” using a gesture example as a query (Shieh and Keogh, 2008). The query is

split into four regions and SAX-encoded in much the same way as the interesting regions of the

EGL. An approximate search to determine the number of matches between the query and the EGL

becomes a simple matter of matching the query string to the appropriate branch of the iSAX suffix

tree and returning the number of strings contained in that branch.

One failing of this approach is that the interesting regions may be significantly larger or smaller

than the candidate gestures. Regions significantly smaller than the command gestures are not of

concern as they will never falsely match a command gesture in practice. We can eliminate such

regions out-of-hand from the comparison. However, regions of movement that might match the

query gesture may be hidden within longer regions in the EGL.

A key insight, which will be used repeatedly, is that we need not recover every region of the

EGL that might cause a false match with the query. We are not intending iSAX to be used as a
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gesture recognizer. Instead, our goal is to allow the designer to compare the suitability of a gesture

relative to other candidates quickly. As long as the movement occurs repeatedly in the EGL at

isolated times as well as in longer regions, the iSAX method will report a number of “hits,” which

will be sufficient to warn the interaction designer of a problem.

A second insight is that users of gesture interfaces often pause before and after they perform a

command gesture. Gesture recognizers exploit this behavior and use these pauses to help identify

the command gesture. Movements that look like command gestures embedded in long regions of

user motion are unlikely to be matched in practice by these recognizers. However, short everyday

user motions that are similar to a command gesture are a particular worry for false positives. Thus,

the iSAX encoding scheme of the EGL above seems suitable for our needs. However, if the goal

of the interaction designer is to create gestures that can be chained together to issue a series of

commands quickly, these longer regions in the EGL will need to be encoded more formally using

constraints on how long a section can be encoded in each symbol. Such constraints can be derived

from the length of expected command gestures (usually between 1-4 seconds in our experience),

and the length of SAX word defined by the system.

A final insight is that a more precise comparison against the EGL can be made at the end of

the gesture design process with the gesture recognizer that is output by MAGIC. During gesture

design, all we require of the EGL search method is that it is fast enough to be interactive and that

it provides an early warning when a given gesture may be susceptible to false triggering. Given the

above operational scenario, we tune our iSAX implementation to provide fast feedback to the user.

Details on the implementation follow below.

3.2 SAX Encoding

SAX quantizes time series in both time and value and encodes them into a string of symbols (Lin

et al., 2007). For example, the time series in Figure 5 is divided into four equal portions (for a

“word” length of four) and converted into a string using a four symbol vocabulary (a “cardinality”

of four).

To be more precise, we first normalize the time series to have a zero mean and standard deviation

of one. Assuming the original time series T = t1, ..., t j, ....tn has n samples, we want to first quantize

the time series into a shorter time series T̄ = t̄1, ..., t̄i, ...t̄w of word length w. The ith element of T̄

can be calculated by

t̄i =
w

n

n
w

i

∑
k=( n

w
(i−1)+1)

tk.

Given the values in the compressed time series, we next convert them into symbols using a small

alphabet of size (cardinality) a. Imagine the y-axis divided into an arbitrary number of regions

bounded by a− 1 breakpoints. Each of these regions is assigned to a symbol from the alphabet.

Since we wish each symbol in the vocabulary to be used approximately the same amount, we place

a normal Gaussian curve centered at 0 on the y-axis and place the breakpoints such that the area

under the Gaussian for each section is equal. By performing the SAX process on the EGL and each

gesture example separately, we are able to compare the changes in the signals through time without

concern regarding their offsets from zero or relative amplitudes.

One convenience of the SAX representation is that there exists a distance calculation between

two strings, defined as MINDIST by Lin et al. (2007), that is a lower bound on the Euclidean
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Figure 5: SAX process used to convert a time series to a string. The raw data is segmented into a

user-specified word length, in this case four. Then each segment is replaced by a symbol

associated with that region on the y-axis, based on the average value. The resulting string

is represented by the string of symbols with superscripts indicating the number of symbols

used to quantize each region: b4a4a4a4.

distance between the original two time series. Thus, we can search the EGL for possible false

positives with some measure of confidence.

Another convenience of the representation is that the cardinality of each separate region can be

increased whenever more precision is needed. For example, suppose we increase the cardinality

of the first region in Figure 5 to eight (thus, the vocabulary would include letters a-h). The string

might then be d8a4a4a4, as the region of the y-axis formerly covered by symbols a and b would now

be covered by symbols a, b, c, and d. We can compare strings with regions of different cardinality

by observing that we know that each time series is normalized before SAX encoding and that the

regions are defined by a normal Gaussian centered at zero with all regions having an equal area

under the Gaussian’s curve. Thus, we still know the minimal distance possible between each region,

and we can still use MINDIST to determine a lower bound on the Euclidean distance between the

original two time series. This capability will be useful in our upcoming discussion on iSAX and its

application to the EGL.

3.3 Multi-Dimensional iSAX Indexing And EGL Search

iSAX is a tree-based method for time series indexing introduced in Shieh and Keogh (2008). For

encoding the EGL, our goal is create an iSAX tree that can be traversed quickly when searching

for a match to a SAX-encoded example of a gesture. Each leaf of the tree contains the number of

occurrences of that string in the EGL as well as the position of each occurrence. To begin, assume

we are searching an EGL represented by the simple iSAX tree in Figure 6 with a query represented

by a2a2b2b2 (for the sake of argument, assume we decided to represent the example gesture crudely,

with regions of cardinality two). Immediately, we see that there is no branch of the tree with an a2 in
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the first position, and we return no matches in the EGL. Now assume that we are searching the EGL

for a query of b2b2b2b2. We find that there is a node of the EGL that contains that string, and that

node has children (that is, the node is an “internal node”). Looking at the children in that branch, we

see that we need to re-code the query gesture to have cardinality three in the first region. Re-coding

reveals that the query gesture is better represented by the sequence c3b2b2b2, which matches one of

the terminal leaves in the tree. The number of sequences from the EGL stored in that leaf is returned

as the number of “hits” in the EGL.

Figure 6: iSAX tree with three leaves. On the first level all symbols’ cardinalities are equal. The

node b2b2b2b2 is an internal node. For the children under this node, the cardinality of the

first region is increased by one.

Next we describe how to encode a one-dimensional EGL into an iSAX tree. First, we find all the

“interesting” regions in the EGL using the variance method discussed earlier. We divide the regions

evenly into four sections and encode them using SAX with cardinality two, allowing for sixteen

possible strings. Note that each node in an iSAX tree holds a hash table mapping child nodes to

an iSAX word. Thus, when inserting a region into the iSAX tree, we compare the region’s SAX

string to the hash table in the root node. If there is no match, we create a child node and enter it

into the hash table using its SAX string. If the SAX string is found, we examine the node to see if

it is a terminal leaf. Each leaf points to a file (called a “bucket”) stored on disk holding all of the

regions that have mapped to it. The leaf also contains the position of each of the regions in the EGL

and a count of the number of regions contained in the leaf. If the number of regions in the bucket

exceeds a user specified size (called the “bucket size”), it is deleted, and the cardinality of the iSAX

word is increased at one position (picked by round robin). At the deleted node’s position we insert

a new internal node. All the time series of the deleted node are inserted into the new node but with

a higher cardinality. Children of the internal node are created as needed, effectively splitting the

previous leaf into several new leaves. When we encounter a internal node during the insertion of

a region, we search the node’s hash table for children that match and proceed normally, creating a

new leaf node if no matching child exists.

Note that this method of creating the iSAX tree dynamically adjusts the size of the vocabulary

to better distinguish similar regions in the EGL. Given a bigger vocabulary, the SAX word will fit

more exactly to the region. In other words, this method of encoding devotes more bits to describing
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similar movements that are repeated often in the EGL. Thus, when a query gesture is compared to

the EGL iSAX tree, MAGIC will quickly return with no or few hits (depending on the specified

bucket size) if the query is very distinct from the EGL. If the query is similar to motions in the EGL,

the search process will traverse deeper in the tree, examining finer and finer distinctions between

the query and the regions contained in the EGL.

The above discussion assumed that the data was one-dimensional. For multi-dimensional data,

such as is used in the experiments described below, we create n iSAX trees, one for each dimension

of the recorded data. We index all dimensions separately and join those n trees under one new root

node (see Figure 7).

Figure 7: A multi-dimensional iSAX tree. Under the root node there is a dimension layer. Each

node in this layer is the root node for a one-dimensional iSAX tree. During search, we

search all iSAX trees, one for each dimension.

We query the EGL iSAX tree (constructed from the EGL) in all n dimensions. The result of that

search is n files, one for each dimension. The number of hits can then be calculated by counting

the number of places where each hit from each dimension overlap for all dimensions. Comparing

the timestamps can be costly, so we introduced an approximation based on the observation that

there can never be more overlapping time series than the number in the dimension with the lowest

number of matches. For example, consider the result of a search in three dimensions (x, y, z) where

the number of hits in the EGL are x = 4, y = 20 and z = 6. There can never be more then four

hits total if we require that hits must overlap in all dimensions. The overall EGL testing method is

summarized in Table 1.

Upon reflection, the EGL search procedure described above raises several questions and possi-

bilities. What are reasonable values for the bucket size, word size, and cardinalities used in encoding

the EGL, and how sensitive is MAGIC to these parameters? This question will be examined in detail

in Section 6. A nice side effect of EGL search is that we can use the matches found to train a class

of gestures that a recognizer should ignore (a “garbage” or NULL class). Section 5 will explore this

option. Searching for which SAX strings are not contained in the EGL tree can suggest which ges-

tures are not made during everyday movement. In Section 7, we exploit this attribute to recommend

gestures to the interaction designer. However, first we will provide evidence that searching the EGL

does indeed predict the number of false positives during the usage of a gesture interface.
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T e s t p r e p a r a t i o n :

0 ) C o l l e c t a l a r g e d a t a base o f u s e r movements i n advance .

1 ) F ind i n t e r e s t i n g r e g i o n s by a p p l y i n g v a r i a n c e t h r e s h o l d i n g .

2 ) B u i l d an n d i m e n s i o n a l iSAX t r e e .

G e s t u r e t e s t i n g :

0 ) F ind s t a r t and end p o i n t o f g e s t u r e .

1 ) S e a r c h t h e iSAX t r e e i n a l l n d i m e n s i o n s .

2 ) R e t u r n t h e number o f t ime s e r i e s i n t h e minimum f i l e .

Table 1: Testing gestures for potential false positives against a database of pre-recorded device

usage.

4. Experimental Verification

In the following section we describe two experiments that suggest that an iSAX search of the EGL

is a viable means to predict false positives. Our first goal is to show that false positive prediction

using iSAX is correlated with the previous method of searching the EGL linearly using dynamic

time warping (Ashbrook, 2009). We will also conduct an experiment in which we will show that

the EGL is able to predict the relative number of false positives when using a gesture interface in

everyday life. We describe the data used for the experiments and our experimental method before

presenting our findings.

4.1 EGLs And Gestures Used In Evaluations

We use three different data sets to serve as EGL databases. The first is our Android accelerometer

data set as described earlier. Before indexing the recorded data, we extracted the interesting regions,

applying a threshold of th= 0.001 (triggering at almost any movement) and a window size of N = 10

(0.25 sec at 40Hz). The average duration of the interesting regions is 11,696ms. The second EGL

is based on the Alkan database2 of everyday movements collected with an iPhone (Hattori et al.,

2011). The third data set is another collection of everyday movements collected on Android phones

for a different project at Georgia Tech. These two latter EGLs were processed in the same manner

as the first.

We collected a reference data set of gestures for evaluation purposes. We acted as interaction

designers and designed four gestures by performing them while holding a smart phone. For each

gesture we collected 10 examples, resulting in 40 examples total. The four gestures are: drawing

a circle in the air, touching your shoulder, shaking the phone up and down, and hacking (a motion

similar to swinging an ax). The average duration of the gestures is between one and two seconds.

4.2 Comparison Conditions: NN-DTW And HMMs

When comparing the dynamic time warping EGL search method to a search in iSAX index space

we will use the following procedure. The DTW method compares each interesting region from the

EGL to each gesture example (Ashbrook, 2009). We calculate the dynamic time warping distance

2. Alkan web site can be found at: http://alkan.jp/.
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of a new gesture to all examples in the EGL and apply a threshold chosen empirically. All regions

for which the distance is below this threshold for any example count as a false positive (in keeping

with MAGIC’s ability to output a one nearest neighbor classifier for live gesture recognition).

For yet another comparison, we use hidden Markov models to search the EGL for false positives.

For the experiments in this paper, we use a six-state HMM (ignoring initial and end states) with one

skip transition and one Gaussian output probability per state per dimension (see Figure 8). We

collect all the examples for our gesture set first and then train a HMM for each of the gestures. We

classify each region in the EGL and apply a threshold based on maximum likelihood to determine

if a region in the EGL is close enough to the gesture to count as a false positive. We chose both the

maximum likelihood threshold as well as the distance threshold so that classifier accuracy stayed

high (93% for NN-DTW and 100% for HMM).

Figure 8: The topology of the left-right, six-state HMM used in our experiments. The first state is

the start state, and the eighth state is the end state. Each internal state transitions to itself

and its successor. We include a skip transition to help recognize shorter gestures.

4.3 Comparison Of iSAX To NN-DTW And HMM In Searching EGLs

We wish to compare our iSAX EGL search method to the more conventional NN-DTW and HMM

techniques described above. When selecting between two candidate gestures, the interaction de-

signer wishes to choose the one with a lower number of predicted false positives. Thus, if a first

gesture has few hits when NN-DTW or HMMs are used and a second gesture has many hits, that

same trend should be shown with iSAX. The absolute number of EGL hits does not matter, but there

should be a strong correlation between the relative number of hits returned by iSAX and the other

two techniques when run on the same set of gestures. We use the Pearson correlation coefficient as

a metric to compare the techniques.

Regardless of the search method used, we store the number of hits in a vector. Each entry of

that vector corresponds to the overall number of false positives for a given gesture. For iSAX and

NN-DTW, the overall number of false positives for a gesture is calculated by searching the EGL

for each example of that gesture and summing the resulting numbers of hits. For HMM models,

thresholding on the log likelihood probability is used. For our set of four test gestures, testing

returns three vectors (one for each method) of four elements (one for each gesture). We calculate

the Pearson correlation coefficient between the iSAX vector and the NN-DTW vector and between

the iSAX vector and the HMM vector.

To reassure ourselves that this technique produces a meaningful metric, we performed Monte

Carlo simulation experiments. Indeed, the correlation of random vectors with four elements show

low r values.
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First, we compare the search methods on the EGL from Bremen. We chose the iSAX parameters

empirically:

word length: 4

base cardinality: 2

bucket: 6000.

Figure 9 compares the number of hits per hour returned by each method. The hits per hour

metric reflects the number of matches found in the EGL divided by the original time required to

record the EGL. One can see that our iSAX search approximation returns many fewer hits than NN-

DTW or HMMs. However, the magnitude of the iSAX values correlate strongly with the NN-DTW

(r = 0.96) and HMM (r = 0.97) results. Thus, a high number of hits returned by iSAX on the EGL

(high compared to other gestures tested with iSAX) is a good indicator for when a gesture should

be discarded. The remaining gestures are suitable candidates for user testing.

We also measured the time needed to complete the search for each method on a 2.0GHz Intel

Core Duo T2500 Macbook with 2GB of RAM. The NN-DTW and HMM methods require more

then 10 minutes to complete the search on all 40 gesture examples whereas iSAX search required

22 seconds, a 27X increase in speed. With such speed, each of the gesture examples could have been

checked as it was entered by the interaction designer. In fact, the EGL search would require less than

a second for each gesture example, which is less than the amount of time required to check a new

example for confusion against all the other gesture examples with NN-DTW when creating a eight

gesture interface (Ashbrook, 2009). Thus, we have obtained our goal of maintaining interactivity

during gesture design.

EGL hits / h NN hits / h HMM hits / h

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

40

35

30

25

20

15

10

5

0

EGL hits / h

Circle Shake Shoulder Hack

Figure 9: Left: The hits per hour in the EGL based on iSAX search. Right: A comparison of the

number of hits per hour returned by iSAX, NN-DTW, and HMMs from the EGL.
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We were curious as to how much EGL data is needed to predict poor command gestures. We

generated three random subsets of the EGL by picking 100, 200 and 500 interesting regions at

random from the data set and comparing the correlation coefficient between iSAX and NN-DTW.

The correlation between the results remained surprisingly high, even with an EGL containing only

100 regions:

• n = 100: r = 0.89

• n = 200: r = 0.93

• n = 500: r = 0.93.

As later experiments show, more data is better, but even a relatively small EGL can help the

interaction designer avoid choosing troublesome gestures. We also compared iSAX versus NN-

DTW in the Alkan and Georgia Tech EGLs, with similar results to the original Bremen EGL:

• Alkan: r = 0.94

• Georgia Tech: r = 0.99.

Our results suggest that the results of an iSAX search on the EGL correlate highly with those

of the slower EGL search methods. Even though the absolute number of hits found by the iSAX

method are significantly fewer than the other methods, the relative number of hits can be used to

compare the desirability of one candidate gesture versus another.

4.4 Comparison Of iSAX Predictions To HMM And NN-DTW Gesture Recognizer Use In

Practice

Next, we examine whether our iSAX EGL search method is able to predict false positives in every-

day life. In fact, this experiment is the first to verify that any EGL search is able to predict false

positive rates of a gesture recognizer in practice.

We exported NN-DTW and HMM recognizers from MAGIC Summoning for the four gestures

trained during the process described in the previous experiment. We integrated the HMM classifier

into an interactive system. Next, we recruited four Android phone users who had not contributed to

the EGLs nor the training of the gestures.

In order to understand how difficult it was to perform the gestures correctly, we asked the users to

perform each gesture 10 times without feedback. The HMM classifier performed at 60% accuracy,

which is not surprising given the gestures and testing procedure. Next we allowed the users to train

with the HMM recognizer to become more familiar with how to perform the gestures so that they

could be more easily recognized. This way of learning can be found in commercial systems like

the Nintendo Wii, which uses avatars to help users learn control gestures. Not surprisingly, the four

users’ average accuracy with the HMM recognizer improved to 95% after training.

After the users completed their training, we installed a software application on their phones that

notified the users when to perform one randomly selected gesture, once every hour. Otherwise, the

users performed their normal activities, and the application records all the users’ movements. We

searched the recorded data for the intended gestures. The HMM classifier found 50%−70% of the

intentional gestures whereas NN-DTW search found all of them. However, the NN-DTW classifier
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Figure 10: The EGL hits per hour found during deployment. Left: The EGL hits for NN-DTW

search per gesture. Right: The EGL hits for HMM search per gesture. The EGL hits for

a gesture are the average hits over all four users. The bars correspond to one standard

deviation.

had lower precision than the HMMs. Given that we specifically allowed gestures that were known

to be poor (from EGL testing) and that the system did not provide feedback to the users, such poor

performance is to be expected (and desired from the point of the experiment).

Figure 10 shows the false positive rates for each gesture and recognizer. We observed a high

correlation (r = 0.84) between the relative false positive rates predicted by the iSAX search on the

original EGL and the actual, tested NN-DTW performance on the users’ data. The correlation was

even higher (r = 0.97) for the HMM classifier. These results support our hypothesis that MAGIC

Summoning can be used to predict gestures at risk of having many false positives when deployed in

gesture recognizers in practice.

5. Improving Recognition Through A NULL Class Created From EGL Search

In the experiments in the previous section, we needed to specify a threshold to avoid false positives

when distinguishing the four gestures from our four users’ everyday motions. For NN-DTW, the

threshold was a distance, while with HMMs it was a probability. Setting this threshold requires

more pattern recognition experience than an interaction designer may possess, and often gestures

are not separable from everyday movements with a simple threshold. Another option is to create

a NULL (garbage) class, which attempts to capture all the motion not matching the gestures of

interest. With this technique, the recognizer runs continually but does not return a result when the

sensor data matches the NULL class.

Here, we use EGL data to train a NULL class automatically so that a user-defined threshold

is not needed. Multi-dimensional iSAX search of the EGL returns time series similar to a query
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gesture. Thus, it is a simple matter to collect the EGL hits from all examples of all gestures in the

gesture interface to train a NULL gesture (using either technique).

The following experiment is based on the data collected while our four users performed the four

requested gestures during their daily activities. We adjusted the thresholds upward for the HMM and

NN-DTW recognizers to avoid misclassifications in the EGL while still detecting the gestures from

the training set. We also trained NULL classes for both recognizers. Figure 11 shows the results of

all four recognizers running on the user study data. Using the EGL NULL class method resulted in

a statistically significant improvement of both the NN-DTW (p << 0.0001) and HMM (p < 0.05)

recognizers. Both avoided more false positives using the NULL class instead of a threshold. Gesture

recognition accuracy and correlation to the iSAX EGL hits remained consistent with the experiment

in the previous section. The results suggest that training a NULL class based on EGL hits can be

a successful way to improve performance and reduce complexity for the interaction designer. Note

that many variations of this technique are possible and might further improve results. For example,

a different NULL class could be trained for each gesture.

1          2         3         4 1          2         3         4

16

14

12

10

8

6

4

2

0

35

30

25

20

15

10

5

0

Gesture Gesture

EGL hits avoided / hour EGL hits avoided / hour

NN with threshold on distance

NN with null class HMM with null class

HMM with threshold on likelihood

Figure 11: Left: The false positives per hour avoided using a NULL class for each gesture based on

EGL hits versus the simple threshold. Right: The false positives per hour avoided for

HMMs using the NULL class versus the simple threshold.

6. iSAX Parameter Sensitivity Experiments

In Section 4.4, iSAX was able to predict the relative performance of a gesture during continuous

recognition. However, the process required setting several parameters: word length, bucket size, and

initial cardinality. In addition, we compared the false positive predictions to that of the NN-DTW

method, which itself required a distance threshold (when a NULL class is not used). How sensitive
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is our method to these parameters? We use the same four test gestures (circle, shake, shoulder, hack)

and EGL as in our user study to explore this issue.

Observe that the cardinality of the sequences is automatically adjusted during the creation of the

EGL iSAX tree, quickly changing from its initial minimal setting of two. Effectively, this parameter

is not set by the user, and we can remove it from the following experiments on parameter sensitivity

by holding it at a reasonable value. We choose a base cardinality of four (card = 4), given that

this level of complexity was judged sufficient from observations in the original iSAX experiments

(Shieh, 2010; Shieh and Keogh, 2008) and in our own work (Kohlsdorf et al., 2011).

In the experiments below, we compare the iSAX results, while varying the bucket size and

word length, to the NN-DTW method using the correlation method described above. We also tried

comparing the iSAX method to NN-DTW with different reasonable distance thresholds (3.3, 5,

10), but we found little change in the results. For example, the bottom of Figure 12 shows graphs

comparing iSAX word length to correlation with NN-DTW at each of the distance thresholds. The

graphs are very similar, indicating that the comparison with NN-DTW is relatively stable with

respect to the distance threshold used. Thus, we turn our attention to word length and bucket size.

In the first part of the experiment we test the correlation of the EGL searches using NN-DTW

and iSAX trees constructed with different iSAX word lengths (4,5,6, ... ,13) and bucket sizes (1000,

2000, ... , 10000). Figure 12 plots the results. Changes in bucket size cause minor variations in

correlation; however, word length has significant effects.

Since the performance of our method seems mostly dependent on one parameter, we propose an

automatic parameter tuning method that does not require any data except a pre-recorded EGL. The

central concept is to choose random regions from the EGL to serve as a gesture training set and to

tune the iSAX parameters to that set using hill climbing.

We require the user to specify the number of gestures in the data set (N), how many examples

we want to collect for each gesture (M), and a threshold on the dynamic time warping distance

over which two time series are distinct. We pick N regions of motion (“interesting” regions) at

random from the EGL to serve as “reference gestures.” For those N reference gestures we extract M

examples from the EGL where the DTW distance to the reference gesture is smaller than a threshold.

Then we compute the false positives for this gesture set using the NN-DTW method. In order to

find the appropriate word length we use hill climbing in the iSAX parameter space. At each step,

we perform false positive prediction using iSAX and compare the results to the NN-DTW results

using the Pearson correlation coefficient as an objective function.

We ran an experiment to test this hill-climbing technique, allowing the procedure to set the word

length automatically and comparing the results to NN-DTW. We started the word length at 4 and

increased it to 13. If the observed correlation at a given word length is followed by a smaller one

when the next word length is tried, the algorithm stops and returns the last word length. As one can

see in Figure 12, after 3 iterations iSAX finds a local maximum. However, this sequential method

is not optimal. For example, if the word length which maximizes the correlation is 9 and the local

maximum at the word length 6 is smaller, we would stop too early. However, this problem can be

solved by including simulated annealing or stochastic gradient descent in the future.

In this chapter, we showed that the iSAX EGL search relies on several parameters but that the

parameters can be tuned automatically. Word length seems the primary parameter that needs to be

tuned.

227



KOHLSDORF AND STARNER

Figure 12: Top: correlation to NN-DTW vs. iSAX word length vs iSAX bucket size. Bottom:

iSAX word length vs. correlation to NN-DTW for distance thresholds of 3.3, 5, and 10,

respectively.

7. MAGIC Summoning: Suggesting Gestures With Low Probability Of False

Positives During Use

To this point, we have focused on efficient gesture testing. However, when using MAGIC to design

gestures in previous studies, our participants wished to have MAGIC suggest potential gestures

instead of creating their own. Often the gestures designed by the participants showed high false

positive rates when tested against the EGL, leading to frustration. MAGIC users said they would
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rather select from a set of gestures that were “known good” than experiment blindly with constraints

they did not understand (Ashbrook, 2009).

In the next section, we describe a method for suggesting gestures based on a pre-recorded EGL.

We then perform an experiment where we test suggested gestures for false positives during normal

device usage by naive subjects. Finally, we examine different possible metrics to order the sug-

gestions for easier selection by the designer. While we have mostly used accelerometers in our

experiments to date, here we concentrate on capacitive trackpads, specifically those used on Ap-

ple’s laptops. Data from inertial sensors are hard to visualize for an interaction designer without a

inverse kinematic system to map the sensor readings into limb movement. While such systems are

now feasible with adequate accuracy, we wished to avoid the additional complexity for these first

experiments. Trackpads provide two dimensional data that are easy to visualize for an interaction

designer, and trackpads are commonly used in everyday office work. In addition, industry has begun

to include more complex command gestures in their trackpad-based products (Li, 2010).

7.1 Synthesizing And Visualizing Gestures

We introduce a method for proposing gestures that do not collide with every day movements using

four steps, briefly outlined here. First, we collect an EGL that is representative of the usage of the

device or sensor. Next, we build an iSAX tree based on the EGL. We systematically enumerate

the possible SAX strings and check for those which are NOT contained in the tree. Finally, we

visualize these gestures and present them to the interaction designer. Once the designer selects a

set of gestures for his interface, MAGIC Summoning can train a recognizer for the gestures using

synthesized data.

7.1.1 COLLECTING AN EGL

Collecting a representative EGL is often time-consuming and is best done by someone familiar both

with the specific sensor involved and pattern recognition in general. Fortunately, the process is only

necessary once for the device of interest and then can be used for different interface designers and

tasks. Mostly, the EGL will be collected across multiple people to ensure that the resulting gestures

can be user independent. Ideally, the EGL should be collected across every situation and physical

context where the device might be used (for example, sitting at a desk or driving) to make sure

that incidental motions are well represented. If the resulting gesture recognizer is intended to work

across different devices (for example, across multiple version of Android phones), the EGL should

be collected from a representative sample of those devices.

7.1.2 REPRESENTING THE EGL AND GENERATING GESTURES

Next, we convert the EGL into a simplified iSAX tree structure. Unlike the work above, here we

only care that a given string occurred in the EGL instead of how many times it occurred. Thus,

we can use a simpler indexing method that will allow easier gesture building later. We convert

interesting regions from the EGL to SAX words and build the set of all strings observed in the EGL.

Since the sensor input is multivariate, we build the SAX word in each dimension and concatenate the

words. Thus, for n dimensions and a word length of w, the indexing key grows to n∗w. Given the

cardinalities in the word, discovering gestures that are not represented in the EGL is a simple matter

of combinatorics. We generate all possible gestures and store the gesture as a viable candidate if it

is not contained in the EGL.
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7.1.3 VISUALIZING CANDIDATE GESTURES AND TRAINING GESTURE RECOGNIZERS

In order for the interface designer to select between the different candidate gestures, we must visual-

ize them. Specifically, we need to convert the candidate gesture from a SAX string into a real valued

time series. For each SAX symbol, we know that valid values are somewhere between the upper

and lower breakpoint of the area assigned to the symbol. We choose a random point between these

breakpoints for each symbol. We then use spline interpolation or re-sampling to fit a curve through

the resulting values from each SAX symbol. We used an exponential moving average to smooth the

resulting curve. The overall process is shown in Figure 13. Note that by repeating this process we

can generate a synthetic set of time series that could have generated the SAX word. This synthetic

data is used to visualize acceptable versions of the trackpad gesture to the interaction designer. We

will also use this synthetic data to train a recognizer for the gesture if it is selected (see below).

1) Compressed Gesture: 2) Randomize Points: 

3) Interpolate: 4) repeat 3) and 2)

Figure 13: Converting a SAX word to example gestures.

Figure 14 shows MAGIC Summoning’s user interface for gesture suggestion. In the center of

the window we display a synthesized gesture. The color of the lines indicates the time course of the

gesture as it is performed on the trackpad (from dark to light). Many synthetic examples of a given

SAX word are drawn to give the interaction designer a sense of the possible shapes of the gesture.

New suggestions are displayed periodically, effectively creating a movie of potential gestures. In

our first implementation, gesture suggestions were selected randomly, keeping a list of previously

viewed gestures so as to avoid repetition. If the interaction designer sees a desirable gesture, he

stops the presentation with a key press.

If other gestures have already been selected by the user, the similarity of the currently displayed

gesture to the already selected gestures is shown in a bar plot in a window at the bottom left. Based

on these similarity scores, the user can retain the gesture or continue searching other suggestions.

In this case, we decided to use the $1 Recognizer (Wobbrock et al., 2007) both for generating
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Figure 14: The MAGIC Summoning gesture suggestion interface.

similarity scores and for gesture recognition. To train the gesture recognizer, we simply used the

synthetic examples generated during the visualization process.

7.1.4 $1 RECOGNIZER

Since the $1 Recognizer is widely used in HCI research (Belatar and Coldefy, 2010; Dang and

André, 2010) but is not necessarily known to machine learning researchers, we give a quick overview

here. The recognizer is optimized for single stroke gestures and can be considered instance-based

learning. Each instance or template is re-sampled to be of equal length with all others and then

rotated, scaled, and translated to a canonical form before being used. During recognition the query

gesture is compared to all the stored templates using an angular distance metric. In continuous

recognition we can apply a threshold on that distance, and the rest of the recognition process is

similar to the dynamic time warping approach described earlier. The authors report recognition

accuracies of 99%, which is comparable to DTW implementations on the same data sets. The

method is simple, fast to compute, and understandable by pattern recognition novices. Thus, the

algorithm is well-suited for experimentation by interface designers. With MAGIC Summoning, in-

teraction designers do not need to collect any training data for the recognizer. The training data is

produced synthetically from the EGL as described above. Note that we can use the $1 Recognizer

as a distance measure for EGL search (albeit slowly compared to iSAX), which will be useful for

comparison experiments below.

7.2 Testing Suggested Gestures And Recognizers In Practice

We collected an EGL consisting of ten participants using their personal Mac laptops for one week.

Figure 15 visualizes the EGL. While indexing the EGL, we set the SAX word length to four. For
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a two dimensional touchpad, the length doubles to eight. Setting the cardinality to four leads to a

total number of 65536 (48) possible strings.

Figure 15: Bottom: The touch pad EGL. Top: An excerpt from the EGL showing five false positives

during testing of a gesture, indicated as colored bubbles.

We observed 1222 unique strings in the collected EGL. The space is surprisingly sparse; there

are 64314 strings not found in the EGL, suggesting that there are a large number of gestures that

could be made with a low probability of false positives.

We performed an experiment to evaluate if the proposed suggestion and selection process de-

scribed in the previous section can produce gestures that show a low false positive rate in everyday

life. In addition, we were concerned as to whether synthetic data would be sufficient to train a high

accuracy recognizer for this domain. We acted as an interaction designer and selected six gestures

using the visualization tool above (see Figure 16). We preferred gestures that were simple and

memorable. Figure 17 demonstrates 70 other gestures suggested by the system that were not used.

We trained a $1 Recognizer for each of the six gestures selected using synthetic data generated by

MAGIC.

We designed a six user study with users who did not contribute to the EGL. As in the false pos-

itive prediction experiments from the previous section, we asked users to practice with the recog-

nition system so that they could perform the gestures with confidence. Users were able to improve

their performance from ≈ 46% to ≈ 90% quickly. Afterward, the users worked on their computers

for four hours while all touchpad movements were recorded. Every 10 minutes we sent a notifica-

tion to the users asking them to perform one of the six gestures, resulting in four examples of each

gesture for each participant. Thus, we collected 24 hours of data and 144 gesture examples.

The gesture recognizer was able to recognize 98% of the performed gestures. Even though

synthetic data was use to train the recognizer, these findings are similar to those of Wobbrock et al.

(2007), who reported a 99% accuracy in their experiments. The false positive rates of the gestures

232



MAGIC SUMMONING

Figure 16: The six gestures used in the study. Gestures are drawn from dark to light.

are low except for one gesture (see Figure 18). Thus, the experiment supports the hypothesis that

MAGIC Summoning can suggest gestures and aid the interaction designer in creating a gesture

system that results in low false positives. However, several questions remain. Can we order the

suggestions so as to present the “best” gestures first? Also, the experiment as described has no

control condition. What would have been the result if we had tried suggesting random gestures

from the 64,314 available?

7.3 Ordering Gesture Suggestions

In this section we will explore possible ways of ordering gestures such that users can quickly find

desirable gestures from the large number of possibilities. Our intuition is that users prefer simple

gestures since they can be accessed quickly and are easy to memorize.

Our first approach is defining the complexity of a gesture as the entropy of its SAX word

(Mitchell, 1997):

H(word) =−
card

∑
i=0

p(symboli)∗ log(symboli).

However, if we want to prefer simpler gestures, we should check to determine if false positive

rates in real usage are correlated with simplicity. Otherwise, proposing simpler gestures first could

be counterproductive. Intuitively, one would think that simpler gestures would trigger more often in

everyday life. To investigate this question we trained the $1 Recognizer with 100 randomly chosen

gestures and searched the EGL with it. For each gesture we calculated the entropy and compared

the false positive rate to the entropy and found no correlation (r2 ≈ 0.04). Thus, there seems to be

little additional risk to suggesting lower entropy gestures first.
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Figure 17: 70 generated gestures with potential low false positive rates. Gestures ordered from

left-to-right and from top-to-bottom with increasing entropy.

The above heuristic seems logical for ordering suggestions. Low entropy gestures would seem

to be simpler and easier to perform. To confirm this intuition we ran a small user study. We

generated 100 gestures and sorted them using the above score. We examined the 20 best-ranked

gestures and rejected ones that required significant overlap of the strokes (see Figure 19) as the

static visualization of the strokes could confuse subjects. For each of the 10 remaining gestures we

asked six users to perform the gesture in the air, on the table or on their touchpad and asked them

to assign a score of performability between 1 and 10. All participants received the same gestures.

Interestingly, we were not able to find a correlation between the entropy of a gesture’s SAX word

and the users’ ratings (r2 = 0.09).

Given the above result, we desire gestures not in the EGL but that are known to be performable.

With a trackpad, all suggested gestures should be physically possible, but in future work with inertial

sensors the suggestions could become impossible without constraining the system in some manner.

We decided to prefer gesture suggestions where the substrings of the SAX word representing

the candidate gesture are represented in the EGL, but the gesture string itself was not present. We

will assume one dimension for ease of illustration. If a gesture ACBD is not in the EGL, but the

subcomponents AC, CB, and BD or ACB and CBD were well represented in the EGL, we might

conclude that ACBD is possible for the user to perform. In other words, we will prefer gestures

where the most n-grams from the EGL are included in the suggested gesture’s string. Intuitively,

though, such a heuristic causes concern that such gestures might have a higher chance of false

triggering.
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Figure 18: Results of the trackpad gesture user study in false positives per hour. All but one of the

gestures suggested by MAGIC Summoning show a low false positive rate.

Figure 19: MAGIC Summoning gestures with significant overlap of the strokes were rejected to

avoid user confusion.

To investigate this possibility, we extracted bi-grams and tri-grams from the EGL, created can-

didate gestures from them, and tried to find a correlation between the false positives in the EGL and

the number of n-grams in the gesture’s string. Note that this method of composition creates gestures

with a variety of properties: ones common in the EGL, rare in the EGL, and not present in the EGL.
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A correlation would indicate an increased risk with this method of ordering the suggestions, but we

did not find one, giving a modicum of assurance in the method:

Bi-grams r2 = 0.000676

Tri-grams r2 = 0.000256.

Beside low false positives, another criteria for a good gesture system is that there should be a

low chance of confusion between gestures. If the user is creating a control system with six gestures

and has already selected five of them, we should prefer suggestions that are distinct from the five

gestures already chosen. We measure the distinguishably of a gesture using the Hamming distance

(Hamming, 1950) of the gesture’s SAX word. Thus, when ordering gestures, we sort using a score

defined as

score(word) =
dist(word)

(1+ entropy(word))

where the distance of the word is the average Hamming distance to all other gestures in the gesture

set. This metric provides a high distance to the other gestures and a low entropy. Note that we use

(1+entropy(word)) to avoid unreasonably high or infinite scores when the entropy value is near 0.

Given the results of the above experiments, we are now tuning MAGIC Summoning to generate

gestures composed from parts of the EGL and to suggest gestures that are most dissimilar to each

other. We intend to test this ordering system in our future work with suggesting gestures for use

with inertial sensors.

7.4 How Selective Are MAGIC Summoning’s Suggestions?

In the above user study, we selected six gestures by hand from MAGIC Summoning’s suggestions

and tested the $1 Recognizer that MAGIC output for both accuracy and false triggering. However,

there were many possible gestures that the system could have output instead. In this last section we

will investigate if suggesting gestures based on our method is better generated ones by chance.

As we have seen previously, using iSAX results in fewer hits being identified in an EGL than

those found by typical gesture recognizers (HMM, NN-DTW, $1 Recognizer, etc.). The sole reason

to use iSAX is that it quickly returns whether or not a candidate gesture is worthwhile to investigate

further. However, we do not need to generate gesture suggestions in real time. In fact, as soon as an

EGL is collected, the same “overnight” process that generates the EGL’s iSAX tree representation

for prediction could track the gestures not represented in the EGL. Once these gestures are known,

the recognizer of choice could be trained with synthetic data of the gesture, and the recognizer

could be run on the EGL for a more precise estimate of the expected hits. The number of false

positives returned should allow a finer discrimination between candidate gestures. In the following

experiment, we use this new procedure to generate suggested gestures and test ones with the lowest

number of false positives on the test data collected from subjects not represented in the EGL.

In this experiment, we generated 2000 random gestures from SAX strings not in the EGL. For

each of the gestures we synthesized 40 examples and trained a $1 recognizer with them. We used

this recognizer to test search the EGL in the classic way, that is testing each interesting region using

the trained recognizer. We used a typical threshold (th = .85) for the $1 score. All results above that

threshold count as a hit with the EGL. Figure 20 orders the gestures by least to most number of hits

per hour in the EGL. Clearly the $1 Recognizer identifies many potential false positives, yet most

of the gestures still have low rates.
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Figure 20: Number of false positives identified in the EGL using the $1 Recognizer for each of

2000 gestures synthesized from SAX strings not represented in the EGL. Gestures with

more than 2 hits per hour are not graphed to preserve scale.

Figure 21, top, shows another view of this data. Note that over 35% of the 2000 gestures have

0 - 0.0001 false positives/hour. Compare this rate to that of Figure 21, bottom. This graph was

generated using all the SAX strings represented in the EGL. Less than 12% of these gestures have

such low false positive rates. Clearly, the SAX representation does have considerable predictive

power on which suggested gestures are least likely to trigger falsely using the $1 Recognizer in the

EGL. In fact, better than one in three of the gestures suggested by choosing SAX strings not in the

EGL will be candidates for very low false positive rates with the synthetically trained $1 Recognizer.

The above observation suggests a relatively efficient method for creating gesture candidates for

the interaction designer. First, randomly choose a unrepresented SAX string in the EGL. Train the

desired recognizer using synthetic data. Run the recognizer on the EGL. If the rate of false positives

per hour is less than 0.0001, keep the gesture. Otherwise, discard it. Generate as many gesture

suggestions as is possible given time constraints. (Approximately 25 minutes is required to generate

100 gesture suggestions using a modern laptop, but such a process is highly parallelizable and can

be run in batch before the interaction designer approaches the system.) Order the suggestions as

described above and present them to the interaction designer for selection.

We conducted an experiment evaluating this algorithm. We split the collected EGL for touchpad

gestures into two subsets. Each subset contains randomly chosen, distinct time series from the

original EGL. The intersection between the subsets is empty. We used the first subset to generate

100 randomly chosen, distinct gestures candidates that show less then 0.0001 false positives per hour

using the $1 Recognizer. We used these recognizers to then search the data in the second subset. On

average we found the gestures to trigger 0.0022 times per hour, with a standard deviation of 0.003.

These rates correspond to an average time between false triggerings of 455 hours, or approximately

one month assuming usage 16 hours/day. Thus, this method of choosing gestures to suggest to an

interaction designer seems desirable as well as practical.
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Figure 21: Histogram demonstrating the percentages of the number of false positives per hour for

gestures with SAX representations not in the EGL (top) and all gestures with SAX

representations in the EGL (bottom).

8. Future Work

To date, the task for most gesture recognition systems has been to optimize accuracy given a set of

gestures to be recognized. In this paper, we have reversed the problem, seeking to discover which

gestures might be most suitable for recognition.

However, improved suggestion ordering is an area for improvement. Performability might be

improved by modeling how gestures are produced (Cao and Zhai, 2007) and prioritizing those ges-

tures with least perceived effort. For domains where the coupling between sensor data and limb

movement are not as apparent, such as accelerometer-based motion gestures, inverse kinematic

models and 3D avatars seem appropriate both for prioritizing suggestions and for visualizing the
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gesture for the interaction designer. For situations with many degrees of freedom, such as whole

body movement as tracked by the Microsoft Kinect c©, the space of potential gestures may be ex-

tremely large. Physical and behavioral constraints might be applied to reduce the search space for

the interaction designer. While MAGIC and MAGIC Summoning have been applied to multiple

domains, we have only applied the gesture suggestion functions to trackpads. We are eager to

investigate MAGIC Summoning’s usefulness and usability in other domains.

9. Conclusion

We have described two pattern recognition tasks that can be used to help interaction designers cre-

ate gesture interfaces: testing a user-defined gesture (and its classifier) against a previously captured

database of typical usage sensor data to determine its tendency to trigger falsely and suggesting

gestures automatically to the designer. We have shown that iSAX can be used to provide near

immediate feedback to the user as to whether a gesture is inappropriate. While this method is ap-

proximate and recovers only a fraction of the total false positives in the EGL, MAGIC Summoning’s

results correlate strongly with those of HMMs, DTW, and the $1 Recognizer and can thus be used to

provide guidance during training. We showed that MAGIC Summoning and the EGL could be used

to create a null class of close false matches that increase the performance of the chosen classifier.

To suggest gestures to the interaction designer that may have low chance of triggering falsely,

we exploited the SAX representation used to index the EGL. MAGIC Summoning generates all

the strings not in the EGL, converts the SAX strings back into a gesture visualization, and sug-

gests appropriate gestures to the designer. MAGIC Summoning also outputs classifiers for the ges-

ture, trained on synthetic data generated from the SAX string. Using the task of finding command

gestures for Mac trackpads, we showed that the gestures generated by MAGIC Summoning have

generally low false positive rates when deployed and that the classifiers output by the system were

adequate to the task of spotting the gesture.

Even if iSAX search of an EGL is not a perfect predictor for the false positives of a gesture

in every day usage, we find that the approximations are sufficient to speed interface design signifi-

cantly. MAGIC’s methods are not intended to replace user testing with the final device. However,

we believe that the tool will decrease the number of iterations needed to build a fast and stable

gesture recognition interface.
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Abstract

Let (X,Y ) be a random pair taking values in R
p ×R. In the so-called single-index model, one has

Y = f ⋆(θ⋆T X)+W , where f ⋆ is an unknown univariate measurable function, θ⋆ is an unknown vec-

tor in R
d , and W denotes a random noise satisfying E[W |X] = 0. The single-index model is known

to offer a flexible way to model a variety of high-dimensional real-world phenomena. However, de-

spite its relative simplicity, this dimension reduction scheme is faced with severe complications as

soon as the underlying dimension becomes larger than the number of observations (“p larger than

n” paradigm). To circumvent this difficulty, we consider the single-index model estimation prob-

lem from a sparsity perspective using a PAC-Bayesian approach. On the theoretical side, we offer

a sharp oracle inequality, which is more powerful than the best known oracle inequalities for other

common procedures of single-index recovery. The proposed method is implemented by means of

the reversible jump Markov chain Monte Carlo technique and its performance is compared with

that of standard procedures.

Keywords: single-index model, sparsity, regression estimation, PAC-Bayesian, oracle inequality,

reversible jump Markov chain Monte Carlo method

1. Introduction

Let Dn = {(X1,Y1), . . . ,(Xn,Yn)} be a collection of independent observations, distributed as a generic

independent pair (X,Y ) taking values in R
p ×R and satisfying EY 2 < ∞. Throughout, we let P be

the distribution of (X,Y ), so that the sample Dn is distributed according to P⊗n. In the regres-

sion function estimation problem, the goal is to use the data Dn in order to construct an estimate

rn : Rp → R of the regression function r(x) = E[Y |X = x]. In the classical parametric linear model,

one assumes

Y = θ⋆T X+W,

∗. Also at DMA, Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France.

c©2013 Pierre Alquier and Gérard Biau.
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where θ⋆ = (θ⋆
1, . . . ,θ

⋆
p)

T ∈ R
p and E[W |X] = 0. Here

r(x) = θ⋆T x =
p

∑
j=1

θ⋆
jx j

is a linear function of the components of x = (x1, . . . ,xp)
T . More generally, we may define

Y = f ⋆(θ⋆T X)+W, (1)

where f ⋆ is an unknown univariate measurable function. This is the celebrated single-index model,

which is recognized as a particularly useful variation of the linear formulation and can easily be

interpreted: The model changes only in the direction θ⋆, and the way it changes in this direction

is described by the function f ⋆. This model has applications to a variety of fields, such as discrete

choice analysis in econometrics and dose-response models in biometrics, where high-dimensional

regression models are often employed. There are too many references to be included here, but the

monographs of McCullagh and Nelder (1983) and Horowitz (1998) together with the references

Härdle et al. (1993), Ichimura (1993), Delecroix et al. (2006), Dalalyan et al. (2008) and Lopez

(2009) will provide the reader with good introductions to the general subject area.

One of the main advantages of the single-index model is its supposed ability to deal with the

problem of high dimension (Bellman, 1961). It is known that estimating the regression function is

especially difficult whenever the dimension p of X becomes large. As a matter of fact, the optimal

mean square convergence rate n−2k/(2k+p) for the estimation of a k-times differentiable regression

function converges to zero dramatically slowly if the dimension p is large compared to k. This

leads to an unsatisfactory accuracy of estimation for moderate sample sizes, and one possibility to

circumvent this problem is to impose additional assumptions on the regression function. Thus, in

particular, if r(x) = f ⋆(θ⋆T x) holds for every x∈R
p, then the underlying structural dimension of the

model is 1 (instead of p) and the estimation of r can hopefully be performed easier. In this regard,

it is shown in Gaı̈ffas and Lecué (2007) that the optimal rate of convergence over the single-index

model class is n−2k/(2k+1) (instead of n−2k/(2k+p)), thereby answering a conjecture of Stone (1982).

Nevertheless, practical estimation of the link function f ⋆ and the index θ⋆ still requires a de-

gree of statistical smoothing. Perhaps the most common approach to reach this goal is to use a

nonparametric smoother (for instance, a kernel or a local polynomial method) to construct an ap-

proximation f̂n of f ⋆, then substitute f̂n into an empirical version Rn(θ) of the mean square error

R(θ) = E[Y − f (θT X)]2, and finally choose θ̂n to minimize Rn(θ) (see, e.g., Härdle et al., 1993;

Delecroix et al., 2006, where the procedure is discussed in detail). The rationale behind this type of

two-stage approach, which is asymptotic in spirit, is that it produces a
√

n-consistent estimate of θ,

thereby devolving the difficulty to the simpler problem of computing a good estimate for the one-

dimensional function f ⋆. However, the relative simplicity of this strategy is accompanied by severe

difficulties (overfitting) when the dimension p becomes larger than the number of observations n.

Estimation in this setting (called “p larger than n” paradigm) is generally acknowledged as an im-

portant challenge in contemporary statistics, see, for example, the recent monograph of Bühlmann

and van de Geer (2011). In fact, this drawback considerably reduces the ability of the single-index

model to behave as an effective dimension reduction technique.

On the other hand, there is empirical evidence that many signals in high-dimensional spaces ad-

mit a sparse representation. As an example, wavelet coefficients of images often exhibit exponential

decay, and a relatively small subset of all wavelet coefficients allow for a good approximation of
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the original image. Such signals have few nonzero coefficients and can therefore be described as

sparse in the signal domain (see, for instance, Bruckstein et al., 2009). Similarly, recent advances

in high-throughput technologies—such as array comparative genomic hybridization—indicate that,

despite the huge dimensionality of problems, only a small number of genes may play a role in deter-

mining the outcome and be required to create good predictors (van’t Veer et al., 2002, for instance).

Sparse estimation is playing an increasingly important role in the statistics and machine learning

communities, and several methods have recently been developed in both fields, which rely upon the

notion of sparsity (e.g., penalty methods like the Lasso and Dantzig selector, see Tibshirani, 1996;

Candès and Tao, 2005; Bunea et al., 2007; Bickel et al., 2009, and the references therein).

In the present document, we consider the single-index model (1) from a sparsity perspective,

that is, we assume that θ⋆ has only a few coordinates different from 0. In the dimension reduction

scenario we have in mind, the ambient dimension p can be very large, much larger than the sample

size n, but we believe that the representation is sparse, that is, that very few coordinates of θ⋆ are

nonzero. This assumption is helpful at least for two reasons: If p is large and the number of nonzero

coordinates is small enough, then the model is easier to interpret and its efficient estimation becomes

possible. Our setting is close in spirit of the approach of Cohen et al. (2012), who study approxi-

mation from queries of functions of the form f (θT x), where θ is approximately sparse (in the sense

that it belongs to a weak-ℓp space). However, these authors do not provide any statistical study of

their model. Our modus operandi will rather rely on the so-called PAC-Bayesian approach, origi-

nally developed in the classification context by Shawe-Taylor and Williamson (1997), McAllester

(1998) and Catoni (2004, 2007). This strategy was further investigated for regression by Audibert

(2004) and Alquier (2008) and, more recently, worked out in the sparsity framework by Dalalyan

and Tsybakov (2008, 2012) and Alquier and Lounici (2011). The main message of Dalalyan and

Tsybakov (2008, 2012) and Alquier and Lounici (2011) is that aggregation with a properly chosen

prior is able to deal nicely with the sparsity issue. Contrary to procedures such as the Lasso, the

Dantzig selector and other penalized least square methods, which achieve fast rates under rather

restrictive assumptions on the Gram matrix associated to the predictors, PAC-Bayesian aggregation

requires only minimal assumptions on the model. Besides, it is computationally feasible even for a

large p and exhibits good statistical performance.

The paper is organized as follows. In Section 2, we first set out some notation and introduce

the single-index estimation procedure. Then we state our main result (Theorem 2), which offers a

sparsity oracle inequality more powerful than the best known oracle inequalities for other common

procedures of single-index recovery. Section 3 is devoted to the practical implementation of the

estimate via a reversible jump Markov chain Monte Carlo (MCMC) algorithm, and to numerical

experiments on both simulated and real-life data sets. In order to preserve clarity, proofs have been

postponed to Section 4 and the description of the MCMC method in its full length is given in the

Appendix Section 5.

Note finally that our techniques extend to the case of multiple-index models, of the form

Y = f ⋆(θ⋆T
1 X, . . . ,θ⋆T

m X)+W,

where the underlying structural dimension m is supposed to be larger than 1 but substantially smaller

than p. However, to keep things simple, we let m = 1 and leave the reader the opportunity to adapt

the results to the more general situation m ≥ 1.
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2. Sparse Single-index Estimation

We start this section with some notation and basic requirements.

2.1 Notation

Throughout the document, we suppose that the recorded data Dn is generated according to the

single-index model (1). More precisely, for each i = 1, . . . ,n,

Yi = f ⋆(θ⋆T Xi)+Wi,

where f ⋆ is a univariate measurable function, θ⋆ is a p-variate vector, and W1, . . . ,Wn are inde-

pendent copies of W . We emphasize that it is implicitly assumed that the observations are drawn

according to the true model under study.

Recall that, in model (1), E[W |X] = 0 and, consequently, that EW = 0. However, the distribution

of W (in particular, the variance) may depend on X. We shall not precisely specify this dependence,

and will rather require the following condition on the distribution of W .

Assumption N. There exist two positive constants σ and L such that, for all integers k ≥ 2,

E

[

|W |k |X
]

≤ k!

2
σ2Lk−2.

Observe that Assumption N holds in particular if W = Φ(X)ε, where ε is a standard Gaussian

random variable independent of X and Φ(X) is almost surely bounded.

Let ‖θ‖1 denote the ℓ1-norm of the vector θ = (θ1, . . . ,θp)
T , that is, ‖θ‖1 = ∑

p
j=1 |θ j|. Without

loss of generality, it will be assumed throughout the document that the index θ⋆ belongs to S p
1,+,

where S p
1,+ is the set of all θ ∈ R

p such that ‖θ‖1 = 1 and the first nonzero coordinate of θ is

positive.

Denoting by ‖X‖∞ the supremum norm of X, we will also require that the random variable

‖X‖∞ is almost surely bounded by a constant which, without loss of generality, can be taken equal

to 1. Moreover, it will also be assumed that the link function f ⋆ is bounded by some known positive

constant C. Thus, letting ‖ f ⋆‖∞ be the functional supremum norm of f ⋆ over [−1,1], we set:

Assumption B. The condition ‖X‖∞ ≤ 1 holds almost surely and there exists a positive constant C

larger than 1 such that ‖ f ⋆‖∞ ≤C.

Remark 1 To keep a sufficient degree of clarity, no attempt was made to optimize the constants.

In particular, the requirement C ≥ 1 is purely technical. It is always satisfied by taking C =
max(‖ f ⋆‖∞,1).

In order to approximate the link function f ⋆, we shall use the vector space F spanned by a given

countable dictionary of measurable functions {ϕ j}∞
j=1. Put differently, the approximation space F

is the set of (finite) linear combinations of functions of the dictionary. Each ϕ j of the collection is

assumed to be defined on [−1,1] and to take values in [−1,1]. To avoid getting into too much tech-

nicalities, we will also assume that each ϕ j is differentiable and such that, for some positive constant

ℓ, ‖ϕ′
j‖∞ ≤ ℓ× j. This assumption is satisfied by the (non-normalized) trigonometric system

ϕ1(t) = 1, ϕ2 j(t) = cos(π jt), ϕ2 j+1(t) = sin(π jt), j = 1,2, . . .
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Finally, for any measurable f : Rp → R and θ ∈ S p
1,+, we let

R(θ, f ) = E

[

(

Y − f (θT X)
)2
]

and denote by

Rn(θ, f ) =
1

n

n

∑
i=1

(

Yi − f (θT Xi)
)2

the empirical counterpart of R(θ, f ) based on the sample Dn.

2.2 Estimation Procedure

We are now in a position to describe our estimation procedure. The method which is presented here

is inspired by the approach developed by Catoni (2004, 2007). It strongly relies on the choice of

a probability measure π on S p
1,+×F , called the prior, which in our framework should enforce the

sparsity properties of the target regression function. With this objective in mind, we first let

dπ(θ, f ) = dµ(θ)dν( f ),

that is, we assume that the distribution over the indexes is independent of the distribution over the

link functions. With respect to the parameter θ, we put

dµ(θ) =

p

∑
i=1

10−i ∑
I⊂{1,...,p},|I|=i

(

p

i

)−1

dµI(θ)

1− ( 1
10
)p

, (2)

where |I| denotes the cardinality of I and dµI(θ) is the uniform probability measure on the set

S p
1,+(I) = {θ = (θ1, . . . ,θp) ∈ S p

1,+ : θ j = 0 if and only if j /∈ I}.

We see that S p
1,+(I) may be interpreted as the set of “active” coordinates in the single-index re-

gression of Y on X, and note that the prior on S p
1,+ is a convex combination of uniform probability

measures on the subsets S p
1,+(I). The weights of this combination depend only on the size of the

active coordinate subset I. As such, the value |I| characterizes the sparsity of the model: The smaller

|I|, the smaller the number of variables involved in the model. The factor 10−i penalizes models of

high dimension, in accordance with the sparsity idea.

The choice of the prior ν on F is more involved. To begin with, we define, for any positive

integer M ≤ n and all Λ > 0,

BM(Λ) =

{

(β1, . . . ,βM) ∈ R
M :

M

∑
j=1

j|β j| ≤ Λ and βM 6= 0

}

.

Next, we let FM(Λ)⊂ F be the image of BM(Λ) by the map

ΦM : RM → F
(β1, . . . ,βM) 7→ ∑M

j=1 β jϕ j.
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It is worth pointing out that, roughly, Sobolev spaces are well approximated by FM(Λ) as M grows

(more on this in Section 2.3). Finally, we define νM(d f ) on the set FM(C+ 1) as the image of the

uniform measure on BM(C+1) induced by the map ΦM, and take

dν( f ) =

n

∑
M=1

10−MdνM( f )

1− ( 1
10
)n

. (3)

Some comments are in order here. First, we note that the prior π is defined on S p
1,+×Fn(C + 1)

endowed with its canonical Borel σ-field. The choice of C+ 1 instead of C in the definition of the

prior support is essentially technical. This bound ensures that when the target f ⋆ belongs to Fn(C),
then a small ball around it is contained in Fn(C+ 1). It could be safely replaced by C+ un, where

{un}∞
n=1 is any positive sequence vanishing sufficiently slowly as n → ∞. Next, the integer M should

be interpreted as a measure of the “dimension” of the function f —the larger M, the more complex

the function—and the prior ν adapts again to the sparsity idea by penalizing large-dimensional

functions f . The coefficients 10−i and 10−M which appear in (2) and (3) show that more complex

models have a geometrically decreasing influence. Note however that the value 10, which has been

chosen because of its good practical results, is somehow arbitrary. It could be, in all generality,

replaced by a more general coefficient α at the price of a more technical analysis (and with no

consequences on the rates of convergence). Finally, we observe that, for each f = ∑M
j=1 β jϕ j ∈

FM(C+1),

‖ f‖∞ ≤
M

∑
j=1

|β j| ≤C+1.

Now, let λ be a positive real number, called the inverse temperature parameter hereafter. The

estimates θ̂λ and f̂λ of θ⋆ and f ⋆, respectively, are simply obtained by randomly drawing

(θ̂λ, f̂λ)∼ ρ̂λ,

where ρ̂λ is the so-called Gibbs posterior distribution over S p
1,+×Fn(C+1), defined by the proba-

bility density
dρ̂λ

dπ
(θ, f ) =

exp [−λRn(θ, f )]∫
exp [−λRn(θ, f )]dπ(θ, f )

.

[The notation dρ̂λ/dπ means the density of ρ̂λ with respect to π.] The estimate (θ̂λ, f̂λ) has a simple

interpretation. Firstly, the level of significance of each pair (θ, f ) is assessed via its least square error

performance on the data Dn. Secondly, a Gibbs distribution with respect to the prior π enforcing

those pairs (θ, f ) with the most empirical significance is assigned on the space S p
1,+×Fn(C+ 1).

Finally, the resulting estimate is just a random realization (conditional to the data) of this Gibbs

posterior distribution.

2.3 Sparsity Oracle Inequality

For any I ⊂ {1, . . . , p} and any positive integer M ≤ n, we set

(

θ⋆
I,M, f ⋆I,M

)

∈ arg min
(θ, f )∈S p

1,+(I)×FM(C)
R(θ, f ).
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At this stage, it is very important to note that, for each M, the infimum f ⋆I,M is defined on FM(C),
whereas the prior charges a slightly bigger set, namely FM(C+1).

The main result of the paper is the following theorem. Here and everywhere, the wording

“with probability 1−δ” means the probability evaluated with respect to the distribution P⊗n of the

data Dn and the conditional probability measure ρ̂λ. Recall that ℓ is a positive constant such that

‖ϕ′
j‖∞ ≤ ℓ× j.

Theorem 2 Assume that Assumption N and Assumption B hold. Set

w = 8(2C+1)max[L,2C+1]

and take

λ =
n

w+2 [(2C+1)2 +4σ2]
. (4)

Then, for all δ ∈ ]0,1[, with probability at least 1−δ we have

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

{

R(θ⋆
I,M, f ⋆I,M)−R(θ⋆, f ⋆)

+
M log(Cn)+ |I| log(pn)+ log

(

2
δ

)

n

}

,

where Ξ is a positive constant, depending on L, C, σ and ℓ only.

Remark 3 Interestingly enough, analysis of the estimate (θ̂λ, f̂λ) is still possible when Assumption

N is not satisfied. Indeed, even if Bernstein’s inequality (see Lemma 5) is not valid, a recent pa-

per by Seldin et al. (2011) provides us with a nice alternative inequality assuming less restrictive

assumptions. However, we would then suffer a loss in the upper bound of Theorem 2. It is also in-

teresting to note that recent results by Audibert and Catoni (2011) allow the study of PAC-Bayesian

estimates without Assumption N. However, the results of these authors are valid for linear models

only, and it is therefore not clear to what extent their technique can be transposed to our setting.

Theorem 2 can be given a simple interpretation. Indeed, we see that if there is a “small” I and

a “small” M such that R(θ⋆
I,M, f ⋆I,M) is close to R(θ⋆, f ⋆), then R(θ̂λ, f̂λ) is also close to R(θ⋆, f ⋆)

up to terms of order 1/n. However, if no such I or M exists, then one of the terms M log(Cn)/n

and |I| log(pn)/n starts to dominate, thereby deteriorating the general quality of the bound. A good

approximation with a “small” I is typically possible when θ⋆ is sparse or, at least, when it can be

approximated by a sparse parameter. On the other hand, a good approximation with a “small” M is

possible if f ⋆ has a sufficient degree of regularity.

To illustrate the latter remark, assume for instance that {ϕ j}∞
j=1 is the (non-normalized) trigono-

metric system and suppose that the target f ⋆ belongs to the Sobolev ellipsoid, defined by

W

(

k,
6C2

π2

)

=

{

f ∈ L2([−1,1]) : f =
∞

∑
j=1

β jϕ j and
∞

∑
j=1

j2kβ2
j ≤

6C2

π2

}

for some unknown regularity parameter k ≥ 2 (see, e.g., Tsybakov, 2009). Observe that, in this

context, the approximation sets FM(C+1) take the form

FM(C+1) =

{

f ∈ L2([−1,1]) : f =
M

∑
j=1

β jϕ j,
M

∑
j=1

j|β j| ≤C+1 and βM 6= 0

}

.
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It is important to note that the regularity parameter k is assumed to be unknown, and this casts our

results in the so-called adaptive setting. The following additional assumption will be needed:

Assumption D. The random variable θ⋆T X has a probability density on [−1,1], bounded from

above by a positive constant B.

Last, we let I⋆ be the set I such that θ⋆ ∈ S p
1,+(I) and set ‖θ⋆‖0 = |I⋆|.

Corollary 4 Assume that Assumption N, Assumption B and Assumption D hold. Suppose also that

f ⋆ belongs to the Sobolev ellipsoid W (k,6C2/π2), where the real number k ≥ 2 is an (unknown)

regularity parameter. Set w = 8(2C+1)max[L,2C+1] and take λ as in (4). Then, for all δ ∈ ]0,1[,
with probability at least 1−δ we have

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ′
{

(

log(Cn)

n

) 2k
2k+1

+
‖θ⋆‖0 log(pn)

n
+

log
(

2
δ

)

n

}

, (5)

where Ξ′ is a positive constant, depending on L, C, σ, ℓ and B only.

As far as we are aware, all existing methods achieving rates of convergence similar to the ones

provided by Corollary 4 are valid in an asymptotic setting only (p fixed and n → ∞). The strength

of Corollary 4 is to provide a finite sample bound and to show that our estimate still behaves well in

a nonasymptotic situation if the intrinsic dimension (i.e., the sparsity) is small with respect to n. To

understand this remark, just assume that p is a function of n such that p → ∞ as n → ∞. Whereas

a classical asymptotic approach cannot say anything useful about this situation, our bounds still

provide some information, provided the model is sparse enough (i.e., ‖θ⋆‖0 is sufficiently small

with respect to n).

We see that, asymptotically (p fixed and n → ∞), the leading term on the right-hand side of

inequality (5) is (log(n)/n)
2k

2k+1 . This is the minimax rate of convergence over a Sobolev class, up

to a log(n) factor. However, when n is “small” and θ⋆ is not sparse (i.e., ‖θ⋆‖0 is not “small”), the

term ‖θ⋆‖0 log(pn)/n starts to emerge and cannot be neglected. Put differently, in large dimension,

the estimation of θ⋆ itself is a problem—this phenomenon is not taken into account by asymptotic

studies.

It is worth mentioning that the approach developed in the present article does not offer any guar-

antee on the point of view of variable (feature) selection. To reach this objective, an interesting route

to follow is the sufficient dimension reduction (SDR) method proposed by Chen et al. (2010), which

can be applied to the single-index model to estimate consistently the parameter θ⋆ and perform vari-

able selection in a sparsity framework. Note however that such results require strong assumptions

on the distribution of the data.

Finally, it should be stressed that the choice of λ in Theorem 2 and Corollary 4 is not the best

possible and may eventually be improved, at the price of a more technical analysis however.

3. Implementation and Numerical Results

A series of experiments was conducted, both on simulated and real-life data sets, in order to assess

the practical capabilities of the proposed method and compare its performance with that of standard

procedures. Prior to analysis, we first need to discuss its concrete implementation, which has been

carried out via a Markov Chain Monte Carlo (MCMC) method.
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3.1 Implementation via Reversible Jump MCMC

The use of MCMC methods has become a popular way to compute Bayesian estimates. For an

introduction to the domain, one should refer to the comprehensive monograph of Marin and Robert

(2007) and the references therein. Importantly, in this computational framework, an adaptation of

the well-known Hastings-Metropolis algorithm to the case where the posterior distribution gives

mass to several models of different dimensions was proposed by Green (1995) under the name Re-

versible Jump MCMC (RJMCMC) method. In the PAC-Bayesian setting, MCMC procedures were

first considered by Catoni (2004), whereas Dalalyan and Tsybakov (2008, 2012) and Alquier and

Lounici (2011) explore their practical implementation in the sparse context using Langevin Monte

Carlo and RJMCMC, respectively. Regarding the single-index model, MCMC algorithms were used

to compute Bayesian estimates by Antoniadis et al. (2004) and, more recently, by Wang (2009), who

develop a fully Bayesian method to analyze the single-index model. Our implementation technique

is close in spirit to the one of Wang (2009).

As a starting point for the approximate computation of our estimate, we used the RJMCMC

method of Green (1995), which is in fact an adaptation of the Hastings-Metropolis algorithm to

the case where the objective posterior probability distribution (here, ρ̂λ) assigns mass to several

different models. The idea is to start from an initial given pair (θ(0), f (0)) ∈ S p
1,+×Fn(C+ 1) and

then, at each step, to iteratively compute (θ(t+1), f (t+1)) from (θ(t), f (t)) via the following chain of

rules:

• Sample a random pair (τ(t),h(t)) according to some proposal conditional density

kt( . |(θ(t), f (t))) with respect to the prior π;

• Take

(θ(t+1), f (t+1)) =

{

(τ(t),h(t)) with probability αt

(θ(t), f (t)) with probability 1−αt ,

where

αt = min

(

1,

dρ̂λ

dπ
(τ(t),h(t))× kt

(

(θ(t), f (t))|(τ(t),h(t))
)

dρ̂λ

dπ
(θ(t), f (t))× kt

(

(τ(t),h(t))|(θ(t), f (t))
)

)

.

This protocol ensures that the sequence {(θ(t), f (t))}∞
t=0 is a Markov chain with invariant probability

distribution ρ̂λ (see, e.g., Marin and Robert, 2007). A usual choice is to take kt ≡ k, so that the

Markov chain is homogeneous. However, in our context, it is more convenient to let kt = k1 if t

is odd and kt = k2 if t is even. Roughly, the effect of k1 is to modify the index θ(t) while k2 will

essentially act on the link function f (t). While the ideas underlying the proposal densities k1 and k2

are quite simple, a precise description in its full length turns out to be more technical. Thus, in order

to preserve the readability of the paper, the explicit construction of k1 and k2 has been postponed to

the Appendix Section 5.

From a theoretical point of view, it is clear that the implementation of our method requires

knowledge of the constant C (the upper bound on ‖ f ⋆‖∞). A too small C will result in a smaller

model, which is unable to perform a good approximation. On the other hand, a larger C induces

a poor bound in Theorem 2.1. In practice, however, the influence of C turns out to be secondary

compared to the impact of the parameter λ. Indeed, it was found empirically that a very large

choice of C (e.g., C = 10100) does not deteriorate the overall quality of the results, as soon as λ is

appropriately chosen. This is the approach that was followed in the experimental testing process.
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Besides, the time for the Markov chains to converge depends strongly on the ambient dimension

p and the starting point of the simulations. When the dimension is small (typically, p ≤ 10), the

chains converge fast and any value may be chosen as a starting point. In this case, we let the

MCMC run 1000 steps and obtained satisfying results. On the other hand, when the dimension is

larger (typically, p > 10), the convergence is very slow, in the sense that Rn(θ
(t), f (t)) takes a very

long time to stabilize. However, using as a starting point for the chains the preliminary estimate

θ̂HHI (see below) significantly reduces the number of steps needed to reach convergence—we let

the chains run 5000 steps in this context. Nevertheless, as a general rule, we encourage the users to

inspect the convergence of the chains by checking if Rn(θ
(t), f (t)) is stabilized, and to run several

chains starting from different points to avoid their attraction into local minima.

3.2 Simulation Study

In this subsection, we illustrate the finite sample performance of the presented estimation method on

three synthetic data sets and compare its predictive capabilities with those of three standard statis-

tical procedures. In all our experiments, we took as dictionary the (non-normalized) trigonometric

system {ϕ j}∞
j=1 and denote accordingly the resulting regression function estimate defined in Section

2 by F̂Fourier. In accordance with the order of magnitude indicated by the theoretical results, we set

λ = 4n. This choice can undoubtedly be improved a bit but, as the numerical results show, it seems

sufficient for our procedure to be fairly competitive.

The tested competing methods are the Lasso (Tibshirani, 1996), the standard regression kernel

estimate (Nadaraya, 1964, 1970; Watson, 1964; Tsybakov, 2009), and the estimation strategy dis-

cussed in Härdle et al. (1993). While the procedure of Härdle et al. (1993) is specifically tailored

for single-index models, the Lasso is designed to deal with the estimation of sparse linear models.

On the other hand, the nonparametric kernel method is one of the best options when no obvious

assumption (such as the single-index one) can be made on the shape of the targeted regression

function.

We briefly recall that, for a linear model of the form Y = θ⋆T X+W , the Lasso estimate takes

the form F̂Lasso(x) = θ̂T
Lassox, where

θ̂Lasso ∈ arg min
θ∈Rp

{

1

n

n

∑
i=1

(

Yi −θT Xi

)2
+ξ

p

∑
j=1

|θ j|
}

and ξ > 0 is a regularization parameter. Theoretical results (see, e.g., Bunea et al., 2007) indicate

that ξ should be of the order ξ⋆ = σ
√

log(p)/n. Throughout, σ is assumed to be known, and we let

ξ = ξ⋆/3, since this choice is known to give good practical results. The Nadaraya-Watson kernel

estimate will be denoted by F̂NW. It is defined by

F̂NW(x) =
∑n

i=1YiKh(x−Xi)

∑n
i=1 Kh(x−Xi)

for some nonnegative kernel K on R
p and Kh(z) = K(z/h)/h. In the experiments, we let K be the

Gaussian kernel K(z) = exp(−zT z) and chose the smoothing parameter h via a classical leave-one-

out procedure on the grid G = {0.75k,k = 0, . . . ,⌊log(n)⌋}, see, for example, Györfi et al. (2002)

(notation ⌊.⌋ stands for the floor function). Finally, the estimation procedure advocated in Härdle
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et al. (1993) takes the form

F̂HHI(x) =
∑n

i=1YiGĥ

(

θ̂T
HHI(x−Xi)

)

∑n
i=1 Gĥ

(

θ̂T
HHI(x−Xi)

)

for some kernel G on R, with Gh(z) = G(z/h)/h and

(

ĥ, θ̂HHI

)

∈ arg min
h>0,θ∈Rp

n

∑
i=1

[

Yi −
∑ j 6=iYjGh

(

θT (X j −Xi)
)

∑ j 6=i Gh (θT (X j −Xi))

]2

.

All calculations were performed with the Gaussian kernel. We used the grid G for the optimiza-

tion with respect to h, whereas the best search for θ was implemented via a pathwise coordinate

optimization.

The various methods were tested for the general regression model

Yi = F(Xi)+Wi, i = 1, . . . ,n,

for three different choices of F (single-index or not) and two values of n, namely n= 50 and n= 100.

In each of these models, the observations Xi take values in R
p, with p = 10 and p = 50, and

have independent components uniformly distributed on [−1,1]. The noise variables W1, . . . ,Wn are

independently distributed according to a Gaussian N (0,σ2), with σ = 0.2. It is worth pointing

out that for n = 50 and p = 50, p and n are of the same order, which means that the setting is

nonasymptotic. It is essentially in this case that the use of estimates tailored to sparsity, which

reduce the variance, is expected to improve the performance over generalist methods. On the other

hand, the situation n = 100 and p = 10 is less difficult and mimics the asymptotic setting.

The three examined functions F(x), for x = (x1, . . . ,xp), were the following ones:

[Model 1] A linear model FLinear(x) = 2θ⋆T x.

[Model 2] A single-index function FSI(x) = 2(θ⋆T x)2 +θ⋆T x.

[Model 3] A purely nonparametric model FNP(x) = 2|x2|
√

|x1|− x3
3,

where, in the first and second model, θ⋆ = (0.5,0.5,0, . . . ,0)T . Thus, in [Model 1] and [Model 2],

even if the ambient dimension is large, the intrinsic dimension of the model is in fact equal to 2.

For each experiment, a learning set of size n was generated to compute the estimates and their

performance, in terms of mean square prevision error, was evaluated on a separate test set of the

same size. The results are shown in Table 1 (p = 10) and Table 2 (p = 50). As each experiment

was repeated 20 times, these tables report the median, the mean and the standard deviation (s.d.) of

the prevision error of each procedure.

Some comments are in order. First, we note without surprise that:

1. The Lasso performs well in the linear setting [Model 1].

2. The single-index methods F̂Fourier and F̂HHI are the best ones when the targeted regression

function really involves a single-index model [Model 2].

3. The kernel method gives good results in the purely nonparametric setting [Model 3].
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n = 50 p = 10 F̂Fourier F̂HHI F̂Lasso F̂NW

FLinear median 0.061 0.063 0.046 0.293

mean 0.061 0.063 0.047 0.290

s.d. 0.016 0.014 0.011 0.063

FSI median 0.050 0.067 0.307 0.198

mean 0.069 0.080 0.338 0.208

s.d. 0.081 0.057 0.082 0.072

FNP median 0.375 0.405 0.830 0.354

mean 0.402 0.407 0.890 0.336

s.d. 0.166 0.110 0.176 0.006

n = 100 p = 10 F̂Fourier F̂HHI F̂Lasso F̂NW

FLinear median 0.053 0.051 0.042 0.227

mean 0.056 0.050 0.043 0.237

s.d. 0.011 0.006 0.004 0.044

FSI median 0.047 0.052 0.332 0.209

mean 0.049 0.053 0.337 0.218

s.d. 0.009 0.012 0.063 0.045

FNP median 0.305 0.343 0.793 0.333

mean 0.321 0.338 0.833 0.324

s.d. 0.092 0.042 0.145 0.041

Table 1: Numerical results for the simulated data, with n = 50 and n = 100, p = 10. The characters

in bold indicate the best performance.

Interestingly, F̂Fourier provides slightly better results than the single-index-tailored estimate F̂HHI,

especially for p = 50. This observation can be easily explained by the fact that F̂HHI does not

integrate any sparsity information regarding the parameter θ⋆, whereas F̂Fourier tries to focus on the

dimension of the active coordinates, which is equal to 2 in this simulation. As a general finding, we

retain that F̂Fourier is the most robust of all the tested procedures.

3.3 Real Data

The real-life data sets used in this second series of experiments are from two different sources. The

first one, called AIR-QUALITY data (n = 111, p = 3), has been first used by Chambers et al.

(1983) and has been later considered as a benchmark in the study and comparison of single-index

models (see, for example, Antoniadis et al., 2004; Wang, 2009, , among others). This data set

originated from an environmental study relating n = 111 ozone concentration measures at p = 3

meteorological variables, namely wind speed, temperature and radiation. The data is available as

a package in the software R (R Development Core Team, 2008), which we employed in all the

numerical experiments. The programs are available upon request from the authors.

The second category of data arises from the UC Irvine Machine Learning Repository

http://archive.ics.uci.edu/ml, where the following packages have been downloaded from:

• AUTO-MPG (Quinlan, 1993, n = 392, p = 7).
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n = 50 p = 50 F̂Fourier F̂HHI F̂Lasso F̂NW

FLinear median 0.057 1.156 0.060 0.507

mean 0.095 1.124 0.066 0.533

s.d. 0.143 0.241 0.026 0.081

FSI median 0.050 0.502 0.795 0.308

mean 0.051 0.539 0.776 0.326

s.d. 0.011 0.200 0.208 0.109

FNP median 0.358 0.788 1.910 0.374

mean 0.504 0.771 1.931 0.391

s.d. 0.320 0.168 0.468 0.101

n = 100 p = 50 F̂Fourier F̂HHI F̂Lasso F̂NW

FLinear median 0.053 0.092 0.050 0.519

mean 0.054 0.100 0.050 0.508

s.d. 0.007 0.026 0.006 0.026

FSI median 0.047 0.242 0.503 0.329

mean 0.070 0.267 0.502 0.339

s.d. 0.099 0.111 0.106 0.073

FNP median 0.361 0.736 1.968 0.418

mean 0.557 0.765 2.045 0.406

s.d. 0.519 0.226 0.546 0.076

Table 2: Numerical results for the simulated data, with n = 50 and n = 100, p = 50. The characters

in bold indicate the best performance.

• CONCRETE (Yeh, 1998, n = 1030, p = 8).

• HOUSING (Harrison and Rubinfeld, 1978, n = 508, p = 13).

• SLUMP-1, SLUMP-2 and SLUMP-3, which correspond to the concrete slump test data

introduced by Yeh (2007) (n = 51, p = 7). Since there are 3 different output variables Y in

the original data set, we created a single experiment for each of these variables (1 refers to the

output “slump”, 2 to the output “flow” and 3 to the output “28-day Compressive Strength”).

• WINE-RED and WINE-WHITE (Cortez et al., 2009, n = 1599, n = 4898, p = 11).

We refer to the above-mentioned references for a precise description of the meaning of the variables

involved in these data sets. For homogeneity reasons, all data were normalized to force the input

variables to lie in [−1,1]—in accordance with the setting of our method—and to ensure that all

output variables have standard deviation 0.5. In two data sets (AIR-QUALITY and AUTO-MPG)

there were some missing values and the corresponding observations were simply removed.

For each method and each of the nine data sets, we randomly split the observations in a learning

and a test set of equal sizes, computed the estimate on the learning set, evaluated the prediction error

on the test set, and repeated this protocol 20 times. The results are summarized in Table 3.

We see that all the tested methods provide reasonable results on most data sets. The Lasso is

very competitive, especially in the nonasymptotic framework. The estimation procedure F̂Fourier
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Data set F̂Fourier F̂HHI F̂Lasso F̂NW

AIR QUALITY median 0.117 0.099 0.107 0.129

n = 111 mean 0.128 0.096 0.113 0.130

p = 3 s.d. 0.044 0.029 0.029 0.035

AUTO-MPG median 0.044 0.049 0.070 0.068

n = 392 mean 0.051 0.050 0.072 0.069

p = 7 s.d. 0.017 0.006 0.011 0.009

CONCRETE median 0.089 0.087 0.106 0.094

n = 1030 mean 0.091 0.087 0.107 0.094

p = 8 s.d. 0.008 0.003 0.005 0.004

HOUSING median 0.074 0.059 0.086 0.086

n = 508 mean 0.076 0.061 0.085 0.088

p = 11 s.d. 0.015 0.013 0.012 0.016

SLUMP-1 median 0.289 0.171 0.201 0.208

n = 51 mean 0.244 0.187 0.213 0.226

p = 7 s.d. 0.062 0.050 0.049 0.047

SLUMP-2 median 0.219 0.196 0.172 0.215

n = 51 mean 0.216 0.194 0.171 0.213

p = 7 s.d. 0.053 0.025 0.019 0.022

SLUMP-3 median 0.065 0.070 0.053 0.116

n = 51 mean 0.073 0.079 0.052 0.126

p = 7 s.d. 0.033 0.027 0.010 0.026

WINE-RED median 0.173 0.171 0.183 0.171

n = 1599 mean 0.174 0.170 0.174 0.183

p = 11 s.d. 0.009 0.008 0.007 0.010

WINE-WHITE median 0.191 0.187 0.185 0.184

n = 4898 mean 0.202 0.188 0.186 0.185

p = 11 s.d. 0.045 0.003 0.004 0.004

Table 3: Numerical results for the real-life data sets. The characters in bold indicate the best per-

formance.

offers outcomes which are similar to the ones of F̂HHI, with a slight advantage for the latter method

however. Altogether, F̂Fourier and F̂HHI provide the best performance in terms of prediction error in

6 out of 9 experiments. Besides, when it is not the best, the method F̂Fourier is close to the best one,

as for example in SLUMP-3 and WINE-RED. As an illustrative example, the plot of the resulting

fit of our procedure to the data set AUTO-MPG is shown in Figure 1.

Clearly, all data sets under study have a dimension p which is small compared to n. To correct

this situation, we ran the same series of experiments by adding some additional irrelevant dimen-

sions to the data. Specifically, the observations were embedded into a space of dimension p×4 by

letting the new fake coordinates follow independent uniform [0,1] random variables. The results

are shown in Table 4. In this nonasymptotic framework, the method F̂HHI—which is not designed
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Figure 1: AUTO-MPG example: Estimated link function by the method F̂Fourier.

for sparsity—collapses, whereas F̂Fourier takes a clear advantage over its competitors. In fact, it

provides the best results in 3 out of 9 experiments (AUTO-MPG, CONCRETE and HOUSING).

Besides, when it is not the best, the method F̂Fourier is very close to the best one, as for example in

SLUMP-3 and WINE-RED.

Thus, as a general conclusion to this experimental section, we may say that our PAC-Bayesian

oriented procedure has an excellent predictive ability, even in nonasymptotic/high-dimensional situ-

ations. It is fast, robust, and exhibits performance at the level of the gold standard Lasso. Moreover,

as seen in the artificial data analysis, it is expected to perform better than the Lasso if the data cannot

be explained approximately by a linear model.

4. Proofs

We start with some preliminary results that will play an important role throughout this section.

4.1 Preliminary Results

Throughout this section, we let π be the prior probability measure on R
p×Fn(C+1) equipped with

its canonical Borel σ-field. Recall that Fn(C+ 1) ⊂ F and that, for each f ∈ Fn(C+ 1), we have

‖ f‖∞ ≤C+1.
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Augmented data set F̂Fourier F̂HHI F̂Lasso F̂NW

AIR QUALITY median 0.172 0.272 0.164 0.281

n = 111 mean 0.244 0.291 0.163 0.291

p = 12 s.d. 0.163 0.116 0.038 0.046

AUTO-MPG median 0.043 0.062 0.085 0.202

n = 392 mean 0.044 0.072 0.086 0.203

p = 28 s.d. 0.009 0.018 0.008 0.014

CONCRETE median 0.087 0.093 0.113 0.245

n = 1030 mean 0.087 0.094 0.112 0.094

p = 32 s.d. 0.007 0.008 0.005 0.009

HOUSING median 0.071 0.199 0.092 0.226

n = 508 mean 0.075 0.181 0.095 0.227

p = 44 s.d. 0.023 0.084 0.013 0.018

SLUMP-1 median 0.270 0.426 0.276 0.271

n = 51 mean 0.290 0.409 0.274 0.262

p = 28 s.d. 0.101 0.079 0.055 0.042

SLUMP-2 median 0.276 0.332 0.195 0.253

n = 51 mean 0.285 0.349 0.198 0.254

p = 28 s.d. 0.075 0.063 0.043 0.034

SLUMP-3 median 0.079 0.371 0.061 0.372

n = 51 mean 0.082 0.361 0.058 0.279

p = 28 s.d. 0.025 0.079 0.013 0.031

WINE-RED median 0.178 0.222 0.172 0.245

n = 1599 mean 0.176 0.226 0.174 0.246

p = 44 s.d. 0.085 0.033 0.006 0.029

WINE-WHITE median 0.199 0.239 0.187 0.252

n = 4898 mean 0.204 0.256 0.188 0.260

p = 44 s.d. 0.091 0.041 0.005 0.019

Table 4: Numerical results for the real-life data sets augmented with noise variables. The characters

in bold indicate the best performance.

Besides, since E[Y |X] = f ⋆(θ⋆T X) almost surely, we note once and for all that for all (θ, f ) ∈
S p

1,+×Fn(C+1),

R(θ, f )−R(θ⋆, f ⋆) = E
[

Y − f (θT X)
]2 −E

[

Y − f ⋆(θ⋆T X)
]2

= E
[

f (θT X)− f ⋆(θ⋆T X)
]2

(Pythagora’s theorem). We start with four technical lemmas. Lemma 5 is a version of Bernstein’s

inequality, whose proof can be found in Massart (2007, Chapter 2, inequality (2.21)). Lemma 6 is

a classical result, whose proof can be found, for example, in Catoni (2007, page 4). For a random

variable Z, the notation (Z)+ means the positive part of Z.
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Lemma 5 Let T1, . . . ,Tn be independent real-valued random variables. Assume that there exist two

positive constants v and w such that, for all integers k ≥ 2,

n

∑
i=1

E

[

(Ti)
k
+

]

≤ k!

2
vwk−2.

Then, for any ζ ∈ ]0,1/w[,

E

[

exp

(

ζ
n

∑
i=1

[Ti −ETi]

)]

≤ exp

(

vζ2

2(1−wζ)

)

.

Given a measurable space (E,E) and two probability measures µ1 and µ2 on (E,E), we denote

by K (µ1,µ2) the Kullback-Leibler divergence of µ1 with respect to µ2, defined by

K (µ1,µ2) =







∫
log

(

dµ1

dµ2

)

dµ1 if µ1 ≪ µ2,

∞ otherwise.

(Notation µ1 ≪ µ2 means “µ1 is absolutely continuous with respect to µ2”.) In the next lemma,

notation ◦ stands for the function composition operator.

Lemma 6 Let (E,E) be a measurable space. For any probability measure µ on (E,E) and any

measurable function h : E → R such that
∫
(exp◦h)dµ < ∞, we have

log

∫
(exp◦h)dµ = sup

m

(∫
hdm−K (m,µ)

)

, (6)

where the supremum is taken over all probability measures on (E,E) and, by convention, ∞−∞ =
−∞. Moreover, as soon as h is bounded from above on the support of µ, the supremum with respect

to m on the right-hand side of (6) is reached for the Gibbs distribution g given by

dg

dµ
(e) =

exp [h(e)]∫
(exp◦h)dµ

, e ∈ E.

Lemma 7 Assume that Assumption N holds. Set w = 8(2C+1)max[L,2C+1] and take

λ ∈
]

0,
n

w+[(2C+1)2 +4σ2]

[

.

Then, for all δ ∈ ]0,1[ and any data-dependent probability measure ρ̂ absolutely continuous with

respect to π we have, with probability at least 1−δ,

R(θ̂, f̂ )−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

(

Rn(θ̂, f̂ )−Rn(θ
⋆, f ⋆)+

log
(

dρ̂
dπ(θ̂, f̂ )

)

+ log
(

1
δ

)

λ

)

,

where the pair (θ̂, f̂ ) is distributed according to ρ̂.
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Proof Fix θ ∈ S p
1,+ and f ∈ Fn(C + 1). The proof starts with an application of Lemma 5 to the

random variables

Ti =−
(

Yi − f (θT Xi)
)2

+
(

Yi − f ⋆(θ⋆T Xi)
)2
, i = 1, . . . ,n.

Note that these random variables are independent, identically distributed, and that

n

∑
i=1

ET 2
i =

n

∑
i=1

E

{

[

2Yi − f (θT Xi)− f ⋆(θ⋆T Xi)
]2 [

f (θT Xi)− f ⋆(θ⋆T Xi)
]2
}

=
n

∑
i=1

E

{

[

2Wi + f ⋆(θ⋆T Xi)− f (θT Xi)
]2 [

f (θT Xi)− f ⋆(θ⋆T Xi)
]2
}

≤
n

∑
i=1

E

{

[

4W 2
i +(2C+1)2

][

f (θT Xi)− f ⋆(θ⋆T Xi)
]2
}

(since E[Wi|Xi] = 0).

Thus, by Assumption N,

n

∑
i=1

ET 2
i ≤

[

(2C+1)2 +4σ2
]

n

∑
i=1

E
[

f (θT Xi)− f ⋆(θ⋆T Xi)
]2

≤ v,

where we set

v = 2n[(2C+1)2 +4σ2] [R(θ, f )−R(θ⋆, f ⋆)] . (7)

More generally, for all integers k ≥ 3,

n

∑
i=1

E

[

(Ti)
k
+

]

≤
n

∑
i=1

E

{

∣

∣2Yi − f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

k ∣
∣ f (θT Xi)− f ⋆(θ⋆T Xi)

∣

∣

k
}

=
n

∑
i=1

E

{

∣

∣2Wi + f ⋆(θ⋆T Xi)− f (θT Xi)
∣

∣

k ∣
∣ f (θT Xi)− f ⋆(θ⋆T Xi)

∣

∣

k
}

≤ 2k−1
n

∑
i=1

E

{[

2k|Wi|k +(2C+1)k
]

(2C+1)k−2
∣

∣ f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

2
}

.

In the last inequality, we used the fact that |a+b|k ≤ 2k−1(|a|k + |b|k) together with

∣

∣ f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

k
=
∣

∣ f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

k−2 ×
∣

∣ f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

2

≤ (2C+1)k−2
∣

∣ f (θT Xi)− f ⋆(θ⋆T Xi)
∣

∣

2
.
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Therefore, by Assumption N,

n

∑
i=1

E

[

(Ti)
k
+

]

≤
n

∑
i=1

[

22k−2k!σ2Lk−2 +2k−1(2C+1)k
]

(2C+1)k−2 [R(θ, f )−R(θ⋆, f ⋆)]

= v×
[

22k−2k!σ2Lk−2 +2k−1(2C+1)k
]

(2C+1)k−2

[(2C+1)2 +4σ2]

≤ v× 8k−2k!max
[

Lk−2,(2C+1)k−2
]

(2C+1)k−2

2

=
k!

2
vwk−2,

with w = 8(2C+1)max[L,2C+1].

Thus, for any inverse temperature parameter λ ∈ ]0,n/w[, taking ζ = λ/n, we may write by

Lemma 5

E

{

exp [λ(R(θ, f )−R(θ⋆, f ⋆)−Rn(θ, f )+Rn(θ
⋆, f ⋆))]

}

≤ exp

(

vλ2

2n2(1− wλ
n
)

)

.

Therefore, using the definition of v, we obtain

E

{

exp

[(

λ− λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ, f )−R(θ⋆, f ⋆))

+λ(−Rn(θ, f )+Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]}

≤ δ.

Next, we use a standard PAC-Bayesian approach (Catoni, 2004, 2007; Audibert, 2004; Alquier,

2008). Let us remind the reader that π is a prior probability measure on the set S p
1,+×Fn(C+ 1).

We have

∫
E

{

exp

[(

λ− λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ, f )−R(θ⋆, f ⋆))

+λ(−Rn(θ, f )+Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]}

dπ(θ, f )≤ δ

and consequently, using Fubini’s theorem,

E

{∫
exp

[(

λ− λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ, f )−R(θ⋆, f ⋆))

+λ(−Rn(θ, f )+Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]

dπ(θ, f )

}

≤ δ.
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Therefore, for any data-dependent posterior probability measure ρ̂ absolutely continuous with re-

spect to π, adopting the convention ∞×0 = 0,

E

{∫
exp

[(

λ− λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ, f )−R(θ⋆, f ⋆))

+λ(−Rn(θ, f )+Rn(θ
⋆, f ⋆))

− log

(

dρ̂

dπ
(θ, f )

)

− log

(

1

δ

)

]

dρ̂(θ, f )

}

≤ δ.

Recalling that P⊗n stands for the distribution of the sample Dn, the latter inequality can be more

conveniently written as

EDn∼P⊗nE(θ̂, f̂ )∼ρ̂

{

exp

[(

λ− λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(

R(θ̂, f̂ )−R(θ⋆, f ⋆)
)

+λ
(

−Rn(θ̂, f̂ )+Rn(θ
⋆, f ⋆)

)

− log

(

dρ̂

dπ
(θ̂, f̂ )

)

− log

(

1

δ

)

]}

≤ δ.

Thus, using the elementary inequality exp(λx)≥ 1R+(x) we obtain, with probability at most δ,

(

1− λ
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(

R(θ̂, f̂ )−R(θ⋆, f ⋆)
)

≥ Rn(θ̂, f̂ )−Rn(θ
⋆, f ⋆)

+
log
(

dρ̂

dπ
(θ̂, f̂ )

)

+ log
(

1
δ

)

λ
,

where the probability is evaluated with respect to the distribution P⊗n of the data Dn and the condi-

tional probability measure ρ̂. Put differently, letting

λ ∈
]

0,
n

w+[(2C+1)2 +4σ2]

[

,

we have, with probability at least 1−δ,

R(θ̂, f̂ )−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

(

Rn(θ̂, f̂ )−Rn(θ
⋆, f ⋆)+

log
(

dρ̂

dπ
(θ̂, f̂ )

)

+ log
(

1
δ

)

λ

)

.

This concludes the proof of Lemma 7.
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Lemma 8 Under the conditions of Lemma 7 we have, with probability at least 1−δ,
∫

Rn(θ, f )dρ̂(θ, f )−Rn(θ
⋆, f ⋆)

≤
(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)

(∫
R(θ, f )dρ̂(θ, f )−R(θ⋆, f ⋆)

)

+
K (ρ̂,π)+ log

(

1
δ

)

λ
.

Proof The beginning of the proof is similar to the one of Lemma 7. More precisely, we apply

Lemma 5 with Ti = (Yi − f (θT Xi))
2 − (Yi − f ⋆(θ⋆T Xi))

2 and obtain, for any inverse temperature

parameter λ ∈ ]0,n/w[,

E

{

exp [λ(R(θ⋆, f ⋆)−R(θ, f )−Rn(θ
⋆, f ⋆)+Rn(θ, f ))]

}

≤ exp

(

vλ2

2n2(1− wλ
n
)

)

(see (7) for the definition of v). Thus, using the definition of v,

E

{

exp

[(

λ+
λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ⋆, f ⋆)−R(θ, f ))

+λ(Rn(θ, f )−Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]}

≤ δ.

Integrating with respect to π leads to

∫
E

{

exp

[(

λ+
λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ⋆, f ⋆)−R(θ, f ))

+λ(Rn(θ, f )−Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]}

dπ(θ, f )≤ δ

whence, by Fubini’s theorem,

E

{∫
exp

[(

λ+
λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ⋆, f ⋆)−R(θ, f ))

+λ(Rn(θ, f )−Rn(θ
⋆, f ⋆))− log

(

1

δ

)

]

dπ(θ, f )

}

≤ δ.

Thus, for any data-dependent posterior probability measure ρ̂ absolutely continuous with respect to

π,

E

{∫
exp

[(

λ+
λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ⋆, f ⋆)−R(θ, f ))

+λ(Rn(θ, f )−Rn(θ
⋆, f ⋆))

− log

(

dρ̂

dπ
(θ, f )

)

− log

(

1

δ

)

]

dρ̂(θ, f )

}

≤ δ.
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Therefore, by Jensen’s inequality,

E

{

exp

∫ [(
λ+

λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(R(θ⋆, f ⋆)−R(θ, f ))

+λ(Rn(θ, f )−Rn(θ
⋆, f ⋆))

− log

(

dρ̂

dπ
(θ, f )

)

− log

(

1

δ

)

]

dρ̂(θ, f )

}

= E

{

exp

[(

λ+
λ2
[

(2C+1)2 +4σ2
]

n(1− wλ
n
)

)

(

R(θ⋆, f ⋆)−
∫

R(θ, f )dρ̂(θ, f )

)

+λ

(∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

)

−K (ρ̂,π)− log

(

1

δ

)

]}

≤ δ.

Consequently, by the elementary inequality exp(λx) ≥ 1R+(x), we obtain, with probability at most

δ,

∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

≥
(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)

(∫
R(θ, f )dρ̂(θ, f )−R(θ⋆, f ⋆)

)

+
K (ρ̂,π)+ log

(

1
δ

)

λ
.

Equivalently, with probability at least 1−δ,

∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

≤
(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)

(∫
R(θ, f )dρ̂(θ, f )−R(θ⋆, f ⋆)

)

+
K (ρ̂,π)+ log

(

1
δ

)

λ
.

264



SPARSE SINGLE-INDEX MODEL

4.2 Proof of Theorem 2

The proof starts with an application of Lemma 7 with ρ̂ = ρ̂λ (the Gibbs distribution) as posterior

distribution. More precisely, we know that, with probability larger than 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

(

Rn(θ̂λ, f̂λ)−Rn(θ
⋆, f ⋆)

+
log
(

dρ̂λ

dπ
(θ̂λ, f̂λ)

)

+ log
(

1
δ

)

λ

)

,

where the probability is evaluated with respect to the distribution P⊗n of the data Dn and the condi-

tional probability measure ρ̂λ. Observe that

log

(

dρ̂λ

dπ
(θ̂λ, f̂λ)

)

= log







exp
[

−λRn(θ̂λ, f̂λ)
]

∫
exp [−λRn(θ, f )]dπ(θ, f )







=−λRn(θ̂λ, f̂λ)− log

∫
exp [−λRn(θ, f )]dπ(θ, f ).

Consequently, with probability at least 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ 1

λ
(

1− λ[(2C+1)2+4σ2]
n−wλ

)

(

− log

∫
exp [−λRn(θ, f )]dπ(θ, f )

−λRn(θ
⋆, f ⋆)+ log

(

1

δ

)

)

.

Next, using Lemma 6 we deduce that, with probability at least 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
ρ̂

{∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

+
K (ρ̂,π)+ log

(

1
δ

)

λ

}

,

where the infimum is taken over all probability measures on S p
1,+×Fn(C+1). In particular, letting

M (I,M) be the set of all probability measures on S p
1,+(I)×FM(C+1), we have, with probability at

least 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

inf
ρ̂∈M (I,M)

{∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

+
K (ρ̂,π)+ log

(

1
δ

)

λ

}

.
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Next, observe that, for ρ̂ ∈ M (I,M),

K (ρ̂,π) = K (ρ̂,µ⊗ν) = K (ρ̂,µI ⊗νM)+ log





(

1−
(

1
10

)p
)(

1−
(

1
10

)n
)

(

p
|I|
)

10−|I|−M





≤ K (ρ̂,µI ⊗νM)+ log

[ (

p
|I|
)

10−|I|−M

]

. (8)

Therefore, with probability at least 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

inf
ρ̂∈M (I,M)

{∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

+

K (ρ̂,µI ⊗νM)+ log

[

( p
|I|)

10−|I|−M

]

+ log
(

1
δ

)

λ

}

. (9)

By Lemma 8 and inequality (8), for any data-dependent distribution ρ̂ ∈ M (I,M), with probability

at least 1−δ,

∫
Rn(θ, f )dρ̂(θ, f )−Rn(θ

⋆, f ⋆)

≤
(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)

(∫
R(θ, f )dρ̂(θ, f )−R(θ⋆, f ⋆)

)

+

K (ρ̂,µI ⊗νM)+ log

[

( p
|I|)

10−|I|−M

]

+ log
(

1
δ

)

λ
. (10)

Thus, combining inequalities (9) and (10), we may write, with probability at least 1−2δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

inf
ρ̂∈M (I,M)

{

(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)

(∫
R(θ, f )dρ̂(θ, f )−R(θ⋆, f ⋆)

)

+2

K (ρ̂,µI ⊗νM)+ log

[

( p
|I|)

10−|I|−M

]

+ log
(

1
δ

)

λ

}

. (11)

For any subset I of {1, . . . , p}, any positive integer M ≤ n and any η,γ ∈ ]0,1/n], let the probability

measure ρI,M,η,γ be defined by

dρI,M,η,γ(θ, f ) = dρ1
I,M,η(θ)dρ2

I,M,γ( f ),
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with
dρ1

I,M,η

dµI

(θ) ∝ 1[‖θ−θ⋆I,M‖1≤η]

and
dρ2

I,M,γ

dνM

( f ) ∝ 1[‖ f− f ⋆I,M‖M≤γ]

where, for f = ∑M
j=1 β jϕ j ∈ FM(C+1), we put

‖ f‖M =
M

∑
j=1

j|β j|.

With this notation, inequality (11) leads to

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

inf
η,γ>0

{

(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)(∫
R(θ, f )dρI,M,η,γ(θ, f )−R(θ⋆, f ⋆)

)

+2

K (ρI,M,η,γ,µI ⊗νM)+ log

[

( p
|I|)

10−|I|−M

]

+ log
(

1
δ

)

λ

}

. (12)

To finish the proof, we have to control the different terms in (12). Note first that

log

(

p

|I|

)

≤ |I| log

(

pe

|I|

)

and, consequently,

log

[ (

p
|I|
)

10−|I|−M

]

≤ |I| log

(

pe

|I|

)

+(|I|+M) log10. (13)

Next,

K (ρI,M,η,γ,µI ⊗νM) = K (ρ1
I,M,η ⊗ρ2

I,M,γ,µI ⊗νM)

= K (ρ1
I,M,η,µI)+K (ρ2

I,M,γ,νM).

By technical Lemma 9, we know that

K (ρ1
I,M,η,µI)≤ (|I|−1) log

(

max

[

|I|, 4

η

])

.

Similarly, by technical Lemma 10,

K (ρ2
I,M,γ,νM) = M log

(

C+1

γ

)

.
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Putting all the pieces together, we are led to

K (ρI,M,η,γ,µI ⊗νM)≤ (|I|−1) log

(

max

[

|I|, 4

η

])

+M log

(

C+1

γ

)

. (14)

Finally, it remains to control the term

∫
R(θ, f )dρI,M,η,γ(θ, f ).

To this aim, we write

∫
R(θ, f )dρI,M,η,γ(θ, f )

=
∫

E

[

(

Y − f (θT X)
)2
]

dρI,M,η,γ(θ, f )

=
∫

E
[(

Y − f ⋆I,M(θ⋆T
I,MX)+ f ⋆I,M(θ⋆T

I,MX)− f (θ⋆T
I,MX)

+ f (θ⋆T
I,MX)− f (θT X)

)2]
dρI,M,η,γ(θ, f )

= R(θ⋆
I,M, f ⋆I,M)

+
∫

E

[

(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)2

+
(

f (θ⋆T
I,MX)− f (θT X)

)2

+2
(

Y − f ⋆I,M(θ⋆T
I,MX)

)(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)

+2
(

Y − f ⋆I,M(θ⋆T
I,MX)

)(

f (θ⋆T
I,MX)− f (θT X)

)

+2
(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)(

f (θ⋆T
I,MX)− f (θT X)

)

]

dρI,M,η,γ(θ, f )

:= R(θ⋆
I,M, f ⋆I,M)+A+B+C+D+E.

4.2.1 COMPUTATION OF C

By Fubini’s theorem,

C = E

[∫
2
(

Y − f ⋆I,M(θ⋆T
I,MX)

)(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)

dρI,M,η,γ(θ, f )

]

= E

{∫ [
2
(

Y − f ⋆I,M(θ⋆T
I,MX)

)

×
∫
(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)

dρ2
I,M,γ( f )

]

dρ1
I,M,η(θ)

}

.

By the triangle inequality, for f = ∑M
j=1 β jϕ j and f ⋆I,M = ∑M

j=1(β
⋆
I,M) jϕ j, it holds

M

∑
j=1

j|β j| ≤
M

∑
j=1

j
∣

∣β j − (β⋆
I,M) j

∣

∣+
M

∑
j=1

j
∣

∣(β⋆
I,M) j

∣

∣ .
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Since f ⋆I,M ∈ FM(C), we have ∑M
j=1 j|(β⋆

I,M) j| ≤ C, so that ∑M
j=1 j|β j| ≤ C + 1 as soon as ‖ f −

f ⋆I,M‖M ≤ 1. This shows that the set

{

f =
M

∑
j=1

β jϕ j : ‖ f − f ⋆I,M‖M ≤ γ

}

is contained in the support of νM. In particular, this implies that ρ2
I,M,γ is centered at f ⋆I,M and,

consequently,

∫
(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)

dρ2
I,M,γ( f ) = 0.

This proves that C = 0.

4.2.2 CONTROL OF A

Clearly,

A ≤
∫

sup
y∈R

(

( f ⋆I,M(y)− f (y)
)2

dρ2
I,M,γ( f )≤ γ2.

4.2.3 CONTROL OF B

We have

B =
∫

E

[

(

f (θ⋆T
I,MX)− f (θT X)

)2
]

dρI,M,η,γ(θ, f )

≤
∫

E

[

(

ℓ(C+1)(θ⋆T
I,M −θT )X

)2
]

dρ1
I,M,η(θ)

(by the mean value theorem)

≤ ℓ2(C+1)2
E
[

‖X‖2
∞

]

∫
‖θ⋆

I,M −θ‖2
1dρ1

I,M,η(θ)

≤ ℓ2(C+1)2η2

(by Assumption D).
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4.2.4 CONTROL OF E

Write

|E| ≤ 2

∫
E

[

∣

∣ f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
∣

∣

×
∣

∣ f (θ⋆T
I,MX)− f (θT X)

∣

∣

]

dρI,M,η,γ(θ, f )

≤ 2

∫
E

[

∣

∣ f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
∣

∣

× ℓ(C+1)
∣

∣(θ⋆T
I,M −θT )X

∣

∣

]

dρI,M,η,γ(θ, f )

≤ 2

(∫
E

[

(

f ⋆I,M(θ⋆T
I,MX)− f (θ⋆T

I,MX)
)2
]

dρI,M,η,γ(θ, f )

) 1
2

(∫
E

[

(

ℓ(C+1)(θ⋆T
I,M −θT )X

)2
]

dρI,M,η,γ(θ, f )

) 1
2

(by the Cauchy-Schwarz inequality)

≤ 2
(

γ2
)

1
2
(

ℓ2(C+1)2η2
)

1
2

= 2ℓ(C+1)γη.

4.2.5 CONTROL OF D

Finally,

D = 2

∫
E
[(

Y − f ⋆I,M(θ⋆T
I,MX)

)(

f (θ⋆T
I,MX)− f (θT X)

)]

dρI,M,η,γ(θ, f )

= 2

∫
E
[(

Y − f ⋆I,M(θ⋆T
I,MX)

)(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)]

dρ1
I,M,η(θ)

(since

∫
f dρ2

I,M,γ( f ) = f ⋆I,M)

= 2E

[

(

Y − f ⋆I,M(θ⋆T
I,MX)

)

∫
(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)

dρ1
I,M,η(θ)

]

≤ 2

√

E

[

(

Y − f ⋆I,M(θ⋆T
I,MX)

)2
]

×

√

E

[∫
(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)

dρ1
I,M,η(θ)

]2

(by the Cauchy-Schwarz inequality)

= 2
√

R(θ⋆
I,M, f ⋆I,M)

√

E

[∫
(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)

dρ1
I,M,η(θ)

]2

.

The inequality
∣

∣ f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

∣

∣≤ ℓ(C+1)
∣

∣(θ⋆T
I,M −θT )X

∣

∣

≤ ℓ(C+1)‖θ⋆
I,M −θ‖1
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leads to

[∫
(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)

dρ1
I,M,η(θ)

]2

≤ ℓ2(C+1)2

[∫
‖θ⋆

I,M −θ‖1dρ1
I,M,η(θ)

]2

.

Consequently,

[∫
(

f ⋆I,M(θ⋆T
I,MX)− f ⋆I,M(θT X)

)

dρ1
I,M,η(θ)

]2

≤ ℓ2(C+1)2η2,

and therefore

D ≤ 2ℓ(C+1)η
√

R(0,0)/2

≤
√

2ℓ(C+1)η
√

C2 +σ2.

Thus, taking η = γ = 1/n and putting all the pieces together, we obtain

A+B+C+D+E ≤ Ξ1

n
,

where Ξ1 is a positive constant, depending on C, σ and ℓ. Combining this inequality with (12)-(14)

yields, with probability larger than 1−2δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

{(

1+
λ
[

(2C+1)2 +4σ2
]

n−wλ

)(

R(θ⋆
I,M, f ⋆I,M)

−R(θ⋆, f ⋆)+
Ξ1

n

)

+2
M log(10(C+1)n)+ |I| log(40epn)+ log

(

1
δ

)

λ

}

.

Choosing finally

λ =
n

w+2 [(2C+1)2 +4σ2]
,

we obtain that there exists a positive constant Ξ2, function of L, C, σ and ℓ such that, with probability

at least 1−2δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ2 inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

{

R(θ⋆
I,M, f ⋆I,M)−R(θ⋆, f ⋆)

+
M log(10Cn)+ |I| log(40epn)+ log

(

1
δ

)

n

}

.

This concludes the proof of Theorem 2.
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4.3 Proof of Corollary 4

We already know, by Theorem 2, that with probability at least 1−δ,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ inf
I ⊂ {1, . . . , p}

1 ≤ M ≤ n

{

R(θ⋆
I,M, f ⋆I,M)−R(θ⋆, f ⋆)

+
M log(Cn)+ |I| log(pn)+ log

(

2
δ

)

n

}

.

By definition, for all (θ, f ) ∈ S p
1,+(I)×FM(C),

R(θ⋆
I,M, f ⋆I,M)≤ R(θ, f ).

In particular, if I⋆ is such that θ⋆ ∈ S p
1,+(I

⋆), then

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ inf
1 ≤ M ≤ n

f ∈ FM(C)

{

R(θ⋆, f )−R(θ⋆, f ⋆)

+
M log(Cn)+ |I⋆| log(pn)+ log

(

2
δ

)

n

}

. (15)

Observe that, for any f ∈ FM(C),

R(θ⋆, f )−R(θ⋆, f ⋆) =
∫
Rp

[

f
(

θ⋆T x
)

− f ⋆
(

θ⋆T x
)]2

dP(x,y)

≤ B2

∫ 1

−1
[ f (t)− f ⋆ (t)]2 dt.

Since f ⋆ ∈ L2 ([−1,1]), we may write

f ⋆ =
∞

∑
j=1

β⋆
jϕ j

and apply (15) with

f =
M

∑
j=1

β⋆
jϕ j.

In order to do so, we just need to check that f ∈ FM(C), that is

M

∑
j=1

j|β⋆
j | ≤C.

But, by the Cauchy-Schwarz inequality,

M

∑
j=1

j|β⋆
j |=

M

∑
j=1

jk|β⋆
j | j1−k

≤

√

√

√

√

M

∑
j=1

j2k(β⋆
j)

2

√

√

√

√

M

∑
j=1

j2−2k.
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Thus,

M

∑
j=1

j|β⋆
j | ≤

π√
6

√

√

√

√

M

∑
j=1

j2k(β⋆
j)

2

(since, by assumption, k ≥ 2)

≤C

(since f ⋆ ∈ W (k,6C2/π2)).

Next, with this choice of f , ∫ 1

−1
[ f (t)− f ⋆ (t)]2 dt ≤ ΛM−2k

for some positive constant Λ depending only on k and C (see, for instance, Tsybakov, 2009). There-

fore, inequality (15) leads to

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)≤ Ξ inf
1≤M≤n

{

ΛM−2k +
M log(Cn)+ |I⋆| log(pn)+ log

(

2
δ

)

n

}

. (16)

Letting ⌈.⌉ be the ceiling function and choosing M = ⌈(n/ log(Cn))
1

2β+1 ⌉ in (16) concludes the proof.

4.4 Some Technical Lemmas

Lemma 9 For any subset I of {1, . . . , p}, any positive integer M ≤ n and any η ∈ ]0,1/n], let the

probability measure ρ1
I,M,η be defined by

dρ1
I,M,η

dµI

(θ) ∝ 1[‖θ−θ⋆I,M‖1≤η].

Then

K (ρ1
I,M,η,µI)≤ (|I|−1) log

(

max

[

|I|, 4

η

])

.

Proof For simplicity, we assume that I = {1, . . . , |I|}. Up to a permutation of the coordinates, the

proof remains valid for any subset I of {1, . . . , p}. Still for simplicity, we let θ̃ denote θ⋆
I,M. By a

symmetry argument, it can be assumed that θ̃ has nonnegative coordinates—this just means that θ̃

is arbitrarily fixed in one of the 2|I|−1 faces of S p
1,+(I). We denote by F A this face and note that

F A =

{

θ ∈ (R+)
|I|×{0}p−|I| :

|I|

∑
j=1

θ j = 1

}

.

Finally, without loss of generality, we suppose that the largest coordinate in θ̃ is θ̃1, and let χ be the

uniform probability measure on F A , defined by

dχ

dµI

(θ) = 2|I|−11[θ∈F A ].
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Set u = min(1/|I|,η/2), and let

T2 = (θ̃1 −u, θ̃2 +u, θ̃3, . . . , θ̃|I|,0, . . . ,0),
T3 = (θ̃1 −u, θ̃2, θ̃3 +u, . . . , θ̃|I|,0, . . . ,0),
...

...

T|I| = (θ̃1 −u, θ̃2, θ̃3, . . . , θ̃|I|+u,0, . . . ,0).

Note that u ≤ 1/|I| ≤ θ̃1. Therefore, for each j, all the coordinates of Tj are nonnegative. Obviously

‖Tj‖1 = 1, so that, for all j, Tj ∈ F A . Denoting by K the convex hull of the set {θ̃,T2, . . . ,T|I|}, we

also have K ⊂ F A . Next, observe that ‖Tj − θ̃‖1 = 2u ≤ η, which implies K ⊂ {θ ∈R
p : ‖θ− θ̃‖1 ≤

η}.

Clearly,

K (ρ1
I,M,η,µI) = log







1∫
1[‖θ−θ⋆I,M‖1≤η]dµI(θ)







≤ log







1∫
1[θ∈F A ]1[‖θ−θ⋆I,M‖1≤η]dµI(θ)






.

Thus,

K (ρ1
I,M,η,µI)≤ log







2|I|−1∫
1[‖θ−θ⋆I,M‖1≤η]dχ(θ)







≤ log







2|I|−1∫
1[θ∈K]dχ(θ)






.

Observe that K is homothetic to F A , by a factor of u. This means that
∫

1[θ∈K]dχ(θ) = u|I|−1.

Consequently, we obtain

K (ρ1
I,M,η,µI)≤ log

(

(

2

u

)|I|−1
)

≤ (|I|−1) log

(

max

[

|I|, 4

η

])

.

Lemma 10 For any subset I of {1, . . . , p}, any positive integer M ≤ n and any γ ∈ ]0,1/n], let the

probability measure ρ2
I,M,γ be defined by

dρ2
I,M,γ

dνM

( f ) ∝ 1[‖ f− f ⋆I,M‖M≤γ]
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where, for f = ∑M
j=1 β jϕ j ∈ FM(C+1), we put

‖ f‖M =
M

∑
j=1

j|β j|.

Then

K (ρ2
I,M,γ,νM) = M log

(

C+1

γ

)

.

Proof Observe that

K (ρ2
I,M,γ,νM) =

∫
log

(

dρ2
I,M,γ

dνM

( f )

)

dρ2
I,M,γ( f ).

Now,
dρ2

I,M,γ

dνM

( f ) =
1[‖ f− f ⋆I,M‖M≤γ]( f )

ζ
,

where ζ =
∫

1[‖ f− f ⋆I,M‖M≤γ]( f )dνM( f ). It easily follows, using the fact that the support of ρ2
I,M,γ is

included in the set { f ∈ FM(C+1) : ‖ f − f ⋆I,M‖ ≤ γ}, that

K (ρ2
I,M,γ,νM) = log(1/ζ).

Note that

ζ =
∫

1[‖ f− f ⋆I,M‖M≤γ]( f )dνM( f )

=

∫
1[∑M

j=1 j|β j−(β⋆
I,M) j|≤γ](β)1[∑M

j=1 j|β j|≤C+1](β)dβ
∫

1[∑M
j=1 j|β j|≤C+1](β)dβ

,

where the second equality is true since νM is (the image of) the uniform probability measure on

{β ∈ R
M : ∑M

j=1 j|β j| ≤C+1}. This implies

K (ρ2
I,M,γ,νM) = log







∫
1[∑M

j=1 j|β j|≤C+1](β)dβ
∫

1[∑M
j=1 j|β j−(β⋆

I,M) j|≤γ](β)1[∑M
j=1 j|β j|≤C+1](β)dβ






.

By the triangle inequality,

M

∑
j=1

j|β j| ≤
M

∑
j=1

j
∣

∣β j − (β⋆
I,M) j

∣

∣+
M

∑
j=1

j
∣

∣(β⋆
I,M) j

∣

∣ .

Since f ⋆I,M ∈ FM(C), we have ∑M
j=1 j|(β⋆

I,M) j| ≤C, so that

1[∑M
j=1 j|β j|≤C+1] ≥ 1[∑M

j=1 j|β j−(β⋆
I,M) j|≤γ]

as soon as γ ≤ 1. We conclude that

K (ρ2
I,M,γ,νM) = log







∫
1[∑M

j=1 j|β j|≤C+1]dβ
∫

1[∑M
j=1 j|β j−(β⋆

I,M) j|≤γ]dβ






= M log

(

C+1

γ

)

.
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5. Annex: Description of the MCMC Algorithm

This annex is intended to make thoroughly clear the specification of the proposal conditional densi-

ties k1 and k2 introduced in Section 3.

5.1 Notation

In order to provide explicit formulas for the conditional densities k1((τ,h)|(θ, f )) and k2((τ,h)|(θ, f )),
we first set

f =
m f

∑
j=1

β f , jϕ j and h =
mh

∑
j=1

βh, jϕ j,

where it is recalled that {ϕ j}∞
j=1 denotes the (non-normalized) trigonometric system. We let I

(respectively, J) be the set of nonzero coordinates of the vector θ (respectively, τ), and denote

finally by θI (respectively, τJ) the vector of dimension |I| (respectively, |J|) which contains the

nonzero coordinates of θ (respectively, |τ|). Recall that all densities are defined with respect to the

prior π, which is made explicit in Section 2.2.

For a generic h ∈ Fmh
(C+ 1), given τ ∈ S p

1,+ and s > 0, we let the density denss(h|τ,mh) with

respect to π be defined by

denss(h|τ,mh) ∝ exp

[

− 1

2s2

mh

∑
j=1

(

βh, j − β̃ j(τ,mh)
)2

]

1

[

mh

∑
j=1

j|βh, j| ≤C+1

]

,

where the β̃ j(τ,mh) are the empirical least square coefficients given by

{

β̃ j(τ,mh)
}

j=1,...,mh

∈ arg min
b∈Rmh

n

∑
i=1

(

Yi −
mh

∑
j=1

b jϕ j(τ
T Xi)

)2

.

In the experiments, we fixed s = 0.1. Note that simulating with respect to denss(h|τ,mh) is an

easy task, since one just needs to compute a least square estimate and then draw from a truncated

Gaussian distribution.

5.2 Description of k1

We take

k1 (·|(θ, f )) =
2k1,= (·|(θ, f ))+ k1,+ (·|(θ, f ))

3
1[|I|=1]

+
k1,− (·|(θ, f ))+2k1,= (·|(θ, f ))+ k1,+ (·|(θ, f ))

4
1[1<|I|<p]

+
k1,− (·|(θ, f ))+2k1,= (·|(θ, f ))

3
1[|I|=p].

Roughly, the idea is that k1,− tries to remove one component in θ, k1,= keeps the same number of

components, whereas k1,+ adds one component. The density k1,= takes the form

k1,= ((τ,h)|(θ, f )) = k1,=(τ|θ)denss(h|τ,m f ).
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The density k1,=(.|θ) is the density of τ when J = I and

τI =
θI +E

‖θI +E‖1

sgn
(

(θI +E) j(θI+E)

)

,

where E = (E1, . . . ,E|I|) and the Ei are independent random variables uniformly distributed in

[−δ,δ]. Throughout, the value of δ was fixed at 0.5. It is noteworthy that when we change the

parameter from θ to τ, then we also change the function from f to h. Thus, with this procedure, the

link function h is more “adapted” to τ and the subsequent move is more likely to be accepted in the

Hastings-Metropolis algorithm.

In the case where we are to remove one component, k1,− is given by

k1,− ((τ,h)|(θ, f )) = ∑
j∈I

c j1[τ=θ− j]denss(h|τ,m f ),

where θ− j is just obtained from θ by setting the j-th component to 0 and by renormalizing the

parameter in order to have ‖θ− j‖1 = 1. We set

c j =
exp(−|θ j|)1[|θ j|<δ]

∑ℓ∈I exp(−|θℓ|)1[|θℓ|<δ]
.

The idea is that smaller components are more likely to be removed than larger ones. Finally, the

density k1,+ takes the form

k1,+ ((τ,h)|(θ, f )) = ∑
j/∈I

c′j1[τ− j=θ]

1[|τ j|<δ]

2δ
denss(h|τ,m f ).

We set

c′j =
exp
(∣

∣∑n
i=1

(

Yi − f (θT Xi)
)

(Xi) j

∣

∣

)

∑ℓ/∈I exp(|∑n
i=1 (Yi − f (θT Xi))(Xi)ℓ|)

where (Xi) j denotes the j-th component of Xi. In words, the idea is that a new nonzero coordinate

in θ is more likely to be interesting in the model if the corresponding feature is correlated with the

current residual.

5.3 Description of k2

In the same spirit, we let the conditional density k2 be defined by

k2 (·|(θ, f )) =
2k2,= (·|(θ, f ))+ k2,+ (·|(θ, f ))

3
1[m f=1]

+
k2,− (·|(θ, f ))+2k2,= (·|(θ, f ))+ k2,+ (·|(θ, f ))

4
1[1<m f<n]

+
k2,− (·|(θ, f ))+2k2,= (·|(θ, f ))

3
1[m f=n].

We choose

k2,= ((τ,h)|(θ, f )) = 1[τ=θ]denss(h|τ,m f )

and

k2,+ ((τ,h)|(θ, f )) = 1[τ=θ]denss(h|τ,m f +1).
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With this choice, mh = m f +1, which means that the proposal density tries to add one coefficient in

the expansion of h, while leaving θ unchanged. Finally

k2,− ((τ,h)|(θ, f )) = 1[τ=θ]denss(h|τ,m f −1),

and the proposal tries to remove one coefficient in h.
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Abstract

We present a fully automated framework to estimate derivatives nonparametrically without esti-

mating the regression function. Derivative estimation plays an important role in the exploration of

structures in curves (jump detection and discontinuities), comparison of regression curves, analy-

sis of human growth data, etc. Hence, the study of estimating derivatives is equally important as

regression estimation itself. Via empirical derivatives we approximate the qth order derivative and

create a new data set which can be smoothed by any nonparametric regression estimator. We derive

L1 and L2 rates and establish consistency of the estimator. The new data sets created by this tech-

nique are no longer independent and identically distributed (i.i.d.) random variables anymore. As a

consequence, automated model selection criteria (data-driven procedures) break down. Therefore,

we propose a simple factor method, based on bimodal kernels, to effectively deal with correlated

data in the local polynomial regression framework.

Keywords: nonparametric derivative estimation, model selection, empirical derivative, factor rule

1. Introduction

The next section describes previous methods and objectives for nonparametric derivative estimation.

Also, a brief summary of local polynomial regression is given.

1.1 Previous Methods And Objectives

Ever since the introduction of nonparametric estimators for density estimation, regression, etc. in

the mid 1950s and early 1960s, their popularity has increased over the years. Mainly, this is due to

the fact that statisticians realized that pure parametric thinking in curve estimations often does not

∗. Bart De Moor and Jos De Brabanter are with IBBT-KU Leuven Future Health Department, Kasteelpark Arenberg 10,
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meet the need for flexibility in data analysis. Many of their properties have been rigorously inves-

tigated and are well understood, see, for example, Fan and Gijbels (1996), Györfi et al. (2002) and

Tsybakov (2009). Although the importance of regression estimation is indisputable, sometimes the

first or higher order derivatives of the regression function can be equally important. This is the case

in the exploration of structures in curves (Chaudhuri and Marron, 1999; Gijbels and Goderniaux,

2004) (jump detection and discontinuities), inference of significant features in data, trend analysis

in time series (Rondonotti et al., 2007), comparison of regression curves (Park and Kang, 2008),

analysis of human growth data (Müller, 1988; Ramsay and Silverman, 2002), the characterization

of submicroscopic nanoparticles from scattering data (Charnigo et al., 2007) and inferring chemical

compositions. Also, estimation of derivatives of the regression function is required for plug-in band-

width selection strategies (Wand and Jones, 1995) and in the construction of confidence intervals

(Eubank and Speckman, 1993).

It would be tempting to differentiate the estimated nonparametric estimate m̂(x) w.r.t. the in-

dependent variable to obtain the first order derivative of the regression function. However, such a

procedure can only work well if the original regression function is extremely well estimated. Other-

wise, it can lead to wrong derivative estimates when the data is noisy. Therefore, it can be expected

that straightforward differentiation of the regression estimate m̂(x) will result in an accumulation of

errors which increase with the order of the derivative.

In the literature there are two main approaches to nonparametric derivative estimation: Regres-

sion/smoothing splines and local polynomial regression. In the context of derivative estimation,

Stone (1985) has shown that spline derivative estimators can achieve the optimal L2 rate of con-

vergence. Asymptotic bias and variance properties and asymptotic normality have been established

by Zhou and Wolfe (2000). In case of smoothing splines, Ramsay (1998) noted that choosing the

smoothing parameter is tricky. He stated that data-driven methods are generally poor guides and

some user intervention is nearly always required. In fact, Wahba and Wang (1990) demonstrated

that the smoothing parameter for a smoothing spline depends on the integer q while minimizing

∑n
i=1(m̂

(q)(xi)−m(q)(xi))
2. Jarrow et al. (2004) suggested an empirical bias bandwidth criterion to

estimate the first derivative via semiparametric penalized splines.

Early works discussing kernel based derivative estimation include Gasser and Müller (1984)

and Härdle and Gasser (1985). Müller et al. (1987) and Härdle (1990) proposed a generalized

version of the cross-validation technique to estimate the first derivative via kernel smoothing using

difference quotients. Their cross-validation technique is related to modified cross-validation for

correlated errors proposed by Chu and Marron (1991). Although the use of difference quotients

may be natural, their variances are proportional to n2 in case of equispaced design. Therefore, this

type of cross-validation will be spoiled due to the large variability. In order to improve on the

previous methods, Müller et al. (1987) also proposed a factor method to estimate a derivative via

kernel smoothing. A variant of the factor method was also used by Fan and Gijbels (1995).

In case of local polynomial regression (Fan and Gijbels, 1996), the estimation of the qth deriva-

tive is straightforward. One can estimate m(q)(x) via the intercept coefficient of the qth derivative

(local slope) of the local polynomial being fitted at x, assuming that the degree p is larger or equal

to q. Note that this estimate of the derivative is, in general, not equal to the qth derivative of the

estimated regression function m̂(x). Asymptotic properties as well as asymptotic normality were

established by Fan and Gijbels (1996). Strong uniform consistency properties were shown by Dele-

croix and Rosa (2007).
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As mentioned before, two problems inherently present in nonparametric derivative estimation

are the unavailability of the data for derivative estimation (only regression data is given) and band-

width or smoothing selection. In what follows we investigate a new way to compute derivatives of

the regression function given the data (x1,Y1), . . . ,(xn,Yn). This procedure is based on the creation

of a new data set via empirical derivatives. A minor drawback of this approach is the fact the data

are correlated and hence poses a threat to classical bandwidth selection methods. In order to deal

with correlated data we extend our previous work (De Brabanter et al., 2011) and derive a factor

method based on bimodal kernels to estimate the derivatives of the unknown regression function.

This paper is organized as follows. Next, we give a short introduction to local polynomial fitting.

Section 2 illustrates the principle of empirical first order derivatives and their use within the local

polynomial regression framework. We derive bias and variance of empirical first order derivatives

and establish pointwise consistency. Further, the behavior at the boundaries of empirical first order

derivatives is described. Section 3 generalizes the idea of empirical first order derivatives to higher

order derivatives. Section 4 discusses the problem of bandwidth selection in the presence of cor-

related data. In Section 5 we conduct a Monte Carlo experiment to compare the proposed method

with two often used methods for derivative estimation. Finally, Section 6 states the conclusions.

1.2 Local Polynomial Regression

Consider the bivariate data (x1,Y1), . . . ,(xn,Yn) which form an independent and identically dis-

tributed (i.i.d) sample from a population (x,Y ) where x belongs to X ⊆ R and Y ∈ R. If X de-

notes the closed real interval [a,b] then xi = a+(i−1)(b−a)/(n−1). Denote by m(x) = E[Y ] the

regression function. The data is regarded to be generated from the model

Y = m(x)+ e, (1)

where E[e] = 0, Var[e] = σ2 <∞, x and e are independent and m is twice continuously differentiable

on X . Suppose that (p+ 1)th derivative of m at the point x0 exists. Then, the unknown regression

function m can be locally approximated by a polynomial of order p. A Taylor expansion yields, for

x in a neighborhood of x0,

m(x)≈
p

∑
j=0

m( j)(x0)

j!
(x− x0)

j ≡
p

∑
j=0

β j(x− x0)
j. (2)

This polynomial is fitted locally by the following weighted least squares regression problem:

min
β j∈R

n

∑
i=1

{

Yi −
p

∑
j=0

β j (xi − x0)
j
}2

Kh(xi − x0), (3)

where β j are the solutions to the weighted least squares problem, h is the bandwidth controlling the

size of the local neighborhood and Kh(·) = K(·/h)/h with K a kernel function assigning weights

to each point. From the Taylor expansion (2) it is clear that m̂(q)(x0) = q!β̂q is an estimator for

m(q)(x0), q = 0,1, . . . , p. For local polynomial fitting p− q should be taken to be odd as shown in

Ruppert and Wand (1994) and Fan and Gijbels (1996). In matrix notation (3) can be written as:

min
β
{(y−Xβ)T W(y−Xβ)},
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where y = (Y1, . . . ,Yn)
T , β = (β0, . . . ,βp)

T and

X =







1 (x1 − x0) · · · (x1 − x0)
p

...
...

...

1 (xn − x0) · · · (xn − x0)
p






,

and W the n×n diagonal matrix of weights

W = diag{Kh(xi − x0)}.

The solution vector is given by least squares theory and yields

β̂ = (XT WX)−1 XT Wy .

2. Derivative Estimation

In this section we first illustrate the principle of empirical first order derivatives and how they can

be used within the local polynomial regression framework to estimate first order derivatives of the

unknown regression function.

2.1 Empirical Derivatives And Its Properties

Given a local polynomial regression estimate (3), it would be tempting to differentiate it w.r.t. the

independent variable. Such a procedure can lead to wrong derivative estimates when the data is

noisy and will deteriorate quickly when calculating higher order derivatives. A possible solution to

avoid this problem is by using the first order difference quotient

Y
(1)
i =

Yi −Yi−1

xi − xi−1

as a noise corrupted version of m′(xi) where the superscript (1) signifies that Ŷ
(1)
i is a noise corrupted

version of the first (true) derivative. Such an approach has been used by Müller et al. (1987) and

Härdle (1990) to estimate first order derivatives via kernel smoothing. Such an approach produces

a very noisy estimate of the derivative which is of the order O(n2) and as a result it will be difficult

to estimate the derivative function. For equispaced design yields

Var(Y
(1)
i ) =

1

(xi − xi−1)2
(Var(Yi)+Var(Yi−1)) =

2σ2

(xi − xi−1)2
=

2σ2(n−1)2

d(X )2
,

where d(X ) := supX − infX . In order to reduce the variance we use a variance-reducing linear

combination of symmetric (about i) difference quotients

Y
(1)
i = Y (1)(xi) =

k

∑
j=1

w j ·
(

Yi+ j −Yi− j

xi+ j − xi− j

)

, (4)

where the weights w1, . . . ,wk sum up to one. The linear combination (4) is valid for k+1 ≤ i ≤ n−k

and hence k ≤ (n−1)/2. For 2≤ i≤ k or n−k+1≤ i≤ n−1 we define Y
(1)
i by replacing ∑k

j=1 in (4)

by ∑
k(i)
j=1 where k(i)=min{i−1,n− i} and replacing w1, . . . ,wk(i) by w1/∑

k(i)
j=1 w j, . . . ,wk(i)/∑

k(i)
j=1 w j.
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Finally, for i = 1 and i = n we define Y
(1)
1 and Y

(1)
n to coincide with Y

(1)
2 and Y

(1)
n−1. The proportion

of indices i falling between k + 1 and n− k approaches 1 as n increases, so this boundary issue

becomes smaller as n becomes larger. Alternatively, one may just leave Y
(1)
i undefined for indices i

not falling between k+1 and n− k. This latter approach will be used in the remaining of the paper,

except in Figure 1 where we want to illustrate the boundary issues.

Linear combinations such as (4) are frequently used in finite element theory and are useful

in the numerical solution of differential equations (Iserles, 1996). However, the weights used for

solving differential equations are not appropriate here because of the random errors in model (1).

Therefore, we need to optimize the weights so that minimum variance is attained. This result is

stated in Proposition 1.

Proposition 1 Assume model (1) holds with equispaced design and let ∑k
j=1 w j = 1. Then, for

k+1 ≤ i ≤ n− k, the weights

w j =
6 j2

k(k+1)(2k+1)
, j = 1, . . . ,k

minimize the variance of Y
(1)
i in (4).

Proof: see Appendix A. �

Figure 1a displays the empirical first derivative for k ∈ {2,5,7,12} generated from model (1)

with m(x) =
√

x(1− x)sin((2.1π)/(x + 0.05)), x ∈ [0.25,1] for 300 equispaced points and e ∼
N (0,0.12). For completeness the first order difference quotient is also shown. Even for a small

k, it can be seen that the empirical first order derivatives are noise corrupted versions of the true

derivative m′. In contrast, difference quotients produce an extreme noisy version of the true deriva-

tive (Figure 1b). Also, note the large amplitude of the signal constructed by difference quotients.

When k is large, empirical first derivatives are biased near local extrema of the true derivative (see

Figure 1f). Further, the boundary issues are clearly visible in Figure 1d through Figure 1f for

i ∈ [1,k+1]∪ [n− k,n].
The next two theorems give asymptotic results on the bias and variance and establish pointwise

consistency of the empirical first order derivatives.

Theorem 2 Assume model (1) holds with equispaced design and m is twice continuously differen-

tiable on X ⊆R. Further, assume that the second order derivative m(2) is finite on X . Then the bias

and variance of the empirical first order derivative, with weights assigned by Proposition 1, satisfy

bias(Y
(1)
i ) = O(n−1k) and Var(Y

(1)
i ) = O(n2k−3)

uniformly for k+1 ≤ i ≤ n− k.

Proof: see Appendix B. �

Theorem 3 (Pointwise consistency) Assume k→∞ as n→∞ such that nk−3/2 →0 and n−1k → 0.

Further assume that m is twice continuously differentiable on X ⊆ R . Then, for the minimum

variance weights given in Proposition 1, we have for any ε > 0

P
(

|Y (1)
i −m′(xi)| ≥ ε

)

→ 0.

Proof: see Appendix C. �
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(b) difference quotient
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(c) empirical derivative (k = 2)
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(d) empirical derivative (k = 5)
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(e) empirical derivative (k = 7)
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(f) empirical derivative (k = 12)

Figure 1: (a) Simulated data set of size n = 300 equispaced points from model (1) with m(x) =
√

x(1− x)sin((2.1π)/(x+0.05)) and e ∼ N (0,0.12); (b) first order difference quotients

which are barely distinguishable from noise. As a reference, the true derivative is also

displayed (full line); (c)-(f) empirical first derivatives for k ∈ {2,5,7,12}.

According to Theorem 2 and Theorem 3, the bias and variance of the empirical first order derivative

tends to zero and k → ∞ faster than O(n2/3) but slower than O(n). The optimal rate at which k → ∞

such that the mean squared error (MSE) of the empirical first order derivatives will tend to zero at

the fastest possible rate is a direct consequence of Theorem 2. This optimal L2 rate is achieved for

k = O(n4/5) and consequently, the MSE(Y
(1)
i ) = E(Y

(1)
i −m′(xi))

2 = O(n−2/5 + n−1/5). Similar,

one can also establish the rate of the mean absolute deviation (MAD) or L1 rate of the estimator,

that is, E |Y (1)
i −m′(xi)|. By Jensen’s inequality

E |Y (1)
i −m′(xi)| ≤ E |Y (1)

i −E(Y
(1)
i )|+ |E(Y (1)

i )−m′(xi)|

≤
√

Var(Y
(1)
i )+bias(Y

(1)
i ) = O(n−1/5),

for the optimal L1 rate of k = O(n4/5) (equal to the optimal L2 rate). Under the same conditions

as Theorem 3, it is easy to show that E |Y (1)
i −m′(xi)| → 0. Even though we know the optimal

asymptotic order of k, the question still remains how to choose k in practice. In many data analyses,

one would like to get a quick idea what the value of k should be. In such a case a rule of thumb

can be very suitable. Such a rule can be somewhat crude but it possesses simplicity and is easily

computable. In order to derive a suitable expression for the MSE, we start from the bias and variance

expressions for the empirical derivatives. An upperbound for the MSE is given by (see also the proof
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of Theorem 2)

MSE(Y
(1)
i ) = bias2(Y

(1)
i )+Var(Y

(1)
i )

≤ 9k2(k+1)2B2d(X )2

16(n−1)2(2k+1)2
+

3σ2(n−1)2

k(k+1)(2k+1)d(X )2
, (5)

where B = supx∈X |m(2)(x)|. Setting the derivative of (5) w.r.t. k to zero yields

3B2d(X )4k3(1+ k)3(1+2k+2k2) = 8(1+8k+18k2 +12k3)(n−1)4σ2. (6)

Solving (6), with the constraint that k > 0, can be done by means of any root finding algorithm and

will result in the value k for which the MSE is lowest. However, a much simpler rule of thumb and

without much loss of accuracy is obtained by only considering the highest order terms yielding

k =

(

16σ2

B2 d(X )4

)1/5

n4/5.

The above quantity contains some unknown quantities and need to be estimated. The error variance

σ2 can be estimated by means of Hall’s
√

n-consistent estimator (Hall et al., 1990)

σ̂2 =
1

n−2

n−2

∑
i=1

(0.809Yi −0.5Yi+1 −0.309Yi+2)
2.

For the second unknown quantity B one can use the local polynomial regression estimate of order

p = 3 leading to the following (rough) estimate of the second derivative m̂(2)(x0) = 2β̂2 (see also

Section 1). Consequently, a rule of thumb selector for k is given by

k̂ =

(

16 σ̂2

(supx0∈X |m̂(2)(x0)|)2 d(X )4

)1/5

n4/5. (7)

The result of the rule of thumb (7) is a value for k which is real. In practice we round the obtained

k value closest to the next integer value. As an alternative, one could also consider cross-validation

or complexity criteria in order to find an optimal value for k.

2.2 Behavior At The Boundaries

Recall that for the boundary region (2 ≤ i ≤ k and n− k+1 ≤ i ≤ n−1) the weights in the deriva-

tive (4) and the range of the sum are slightly modified. Such a modification allows for an automatic

bias correction at the boundaries. This can be seen as follows. Let the first (q+1) derivatives of m

be continuous on X . Then a Taylor series of m in a neighborhood of xi yields

m(xi+ j) = m(xi)+
q

∑
l=1

1

l!

(

jd(X )

n−1

)l

m(l)(xi)+O
(

( j/n)q+1
)

and

m(xi− j) = m(xi)+
q

∑
l=1

1

l!

(− jd(X )

n−1

)l

m(l)(xi)+O
(

( j/n)q+1
)

.
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From the above series it follows that

E(Y
(1)
i ) =

k

∑
j=1

w j

m(xi+ j)−m(xi− j)

xi+ j − xi− j

=
n−1

2d(X )

k

∑
j=1

w j

∑
q

l=1
1
l!

(

jd(X )
n−1

)l

m(l)(xi)−∑
q

l=1
1
l!

(

− jd(X )
n−1

)l

m(l)(xi)+O
(

( j/n)q+1
)

j
.

By noticing that all even orders of the derivative cancel out, the previous result can be written as

E(Y
(1)
i ) =

n−1

2d(X )

k

∑
j=1

w j

j

[

2 jd(X )

n−1
m′(xi)+

q

∑
l=3,5,...

2

l!

(

jd(X )

n−1

)l

m(l)(xi)+O
(

( j/n)q+1
)

]

= m′(xi)
k

∑
j=1

w j +
q

∑
l=3,5,...

m(l)(xi)
k

∑
j=1

w j

l!

jl−1d(X )l−1

(n−1)l−1
+O

(

( j/n)q
)

.

For 2≤ i≤ k, the sum in the first term is not equal to 1. This immediately follows from the definition

of the derivative in (4). Therefore, the length of the sum k has to be replaced with k(i) = i−1. Let

0 ≤ κ = ∑
k(i)
j=1 w j < 1 for 2 ≤ i ≤ k. Then, the bias of the derivative (4) is given by

bias(Y
(1)
i ) = (κ−1)m′(xi)+

q

∑
l=3,5,...

m(l)(xi)
k

∑
j=1

w j

l!

jl−1d(X )l−1

(n−1)l−1
+O

(

n−q/5
)

,

where ∑k
j=1

w j

l!

jl−1d(X )l−1

(n−1)l−1 = O(n−(l−1)/5) since k = O(n4/5). However, in order to obtain an auto-

matic bias correction at the boundaries, we can make κ = 1 by normalizing the sum leading to the

following estimator

Y
(1)
i =

k(i)

∑
j=1

w j

∑
k(i)
j=1 w j

(

Yi+ j −Yi− j

xi+ j − xi− j

)

(8)

at the boundaries. Also notice that the bias at the boundaries is of the same order as in the interior.

Unfortunately, this bias correction comes at a prize, that is, increased variance at the boundaries.

The variance of (8), for k(i) = i−1, is given by

Var(Y
(1)
i ) =

σ2(n−1)2

2d(X )2

k(i)

∑
j=1

w2
j

(

∑
k(i)
j=1 w j

)2

1

j2
=

3σ2(n−1)2

d(X )2

1

i(i−1)(2i−1)
.

Then, at the boundary (for 2 ≤ i ≤ k), it follows that an upper bound for the variance is given by

Var(Y
(1)
i )≤ σ2(n−1)2

2d(X )2

and a lower bound by

Var(Y
(1)
i ) ≥ 3σ2(n−1)2

d(X )2

1

k(k−1)(2k−1)

≥ 3σ2(n−1)2

d(X )2

1

k(k+1)(2k+1)
.
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Hence, the variance will be largest (but limited) for i = 2 and will decrease for growing i till i = k.

Also, from the last inequality it follows that variance at the boundaries will always be larger or equal

than the variance of the interior. An analogue calculation shows the same result for n− k+1 ≤ i ≤
n−1 by setting k(i) = n− i.

3. Higher Order Empirical Derivatives

In this section, we generalize the idea of first order empirical derivatives to higher order derivatives.

Let q denote the order of the derivative and assume further that q ≥ 2, then higher order empirical

derivatives can be defined inductively as

Y
(l)
i =

kl

∑
j=1

w j,l ·
(

Y
(l−1)
i+ j −Y

(l−1)
i− j

xi+ j − xi− j

)

with l ∈ {2, . . . ,q}, (9)

where k1,k2, . . . ,kq are positive integers (not necessary equal), the weights at each level l sum up to

one and Y
(0)
i = Yi by definition. As with the first order empirical derivative, a boundary issue arises

with expression (9) when i < ∑
q

l=1 kl + 1 or i > n−∑
q

l=1 kl . Similar to (4), a boundary correction

can be used. Although, the qth order derivatives are linear in the weights at level q, they are not

linear in the weights at all levels. As such, no simple formulas for variance minimizing weights

exist. Fortunately, simple weight sequences exist which control the asymptotic bias and variance

quite well assuming that k1, . . . ,kq increase appropriately with n (see Theorem 4).

Theorem 4 Assume model (1) holds with equispaced design and let ∑
kl

j=1 w j,l = 1. Further assume

that the first (q+ 1) derivatives of m are continuous on the interval X . Assume that there exist

λ ∈ (0,1) and cl ∈ (0,∞) such that kln
−λ → cl for n → ∞ and l ∈ {1,2, . . . ,q}. Further, assume that

w j,1 =
6 j2

k1(k1 +1)(2k1 +1)
for j = 1, . . . ,k1,

and

w j,l =
2 j

kl(kl +1)
for j = 1, . . . ,kl and l ∈ {2, . . . ,q}.

Then the asymptotic bias and variance of the empirical qth order derivative are given by

bias(Y
(q)
i ) = O(nλ−1) and Var(Y

(q)
i ) = O(n2q−2λ(q+1/2))

uniformly for ∑
q

l=1 kq +1 < i < n−∑
q

l=1 kq.

Proof: see Appendix C. �

An interesting consequence of Theorem 4 is that the order of the bias of the empirical derivative

estimator does not depend on the order of the derivative q. The following two corollaries are a direct

consequence of Theorem 4. Corollary 5 states that the L2 rate of convergence (and L1 rate) will be

slower for increasing orders of derivatives q, that is, higher order derivatives are progressively more

difficult to estimate. Corollary 5 suggests that the MSE of the qth order empirical derivative will

tend to zero for λ ∈ ( 2q
2q+1

,1) prescribing, for example, kq = O(n2(q+1)/(2q+3)). Similar results can

be obtained for the MAD. Corollary 6 proves L2 and L1 consistency.
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Corollary 5 Under the assumptions of Theorem 4, for the weight sequences defined in Theorem 4,

the asymptotic mean squared error and asymptotic mean absolute deviation are given by

E(Y
(q)
i −m(q)(xi))

2 = O(n2(λ−1)+n2q−2λ(q+1/2)) and E |Y (q)
i −m(q)(xi)|= O(nλ−1+nq−λ(q+1/2)).

Corollary 6 Under the assumptions of Theorem 4, for the weight sequences defined in Theorem 4

and λ ∈ ( 2q
2q+1

,1), it follows that

E(Y
(q)
i −m(q)(xi))

2 → 0 and E |Y (q)
i −m(q)(xi)| → 0, n → ∞.

4. Bandwidth Selection For Correlated Data

From (4), it is clear that for the newly generated data set the i.i.d. assumption is no longer valid

since it is a weighted sum of differences of the original data set. In such cases, it is known that data-

driven bandwidth selectors and plug-ins break down (Opsomer et al., 2001; De Brabanter et al.,

2011). In this paper we extend the idea of De Brabanter et al. (2011) and develop a factor rule

based on bimodal kernels to determine the bandwidth. They showed, under mild conditions on the

kernel function and for equispaced design, that by using a kernel satisfying K(0) = 0 the correlation

structure is removed without any prior knowledge about its structure. Further, they showed that

bimodal kernels introduce extra bias and variance yielding in a slightly wiggly estimate. In what

follows we develop a relation between the bandwidth of a unimodal kernel and the bandwidth of a

bimodal kernel. Consequently, the estimate based on this bandwidth will be smoother than the one

based on a bimodal kernel.

Assume the following model for the qth order derivative

Y (q)(x) = m(q)(x)+ ε

and assume that m has two continuous derivatives. Further, let Cov(εi,εi+l) = γl < ∞ for all l and

assume that ∑∞
l=1 l|γl|< ∞. Then, if h → ∞ and nh → ∞ as n → ∞, the bandwidth h that minimizes

the mean integrated squared error (MISE) of the local polynomial regression estimator (3) with p

odd under correlation is given by (Simonoff, 1996; Fan and Gijbels, 1996)

ĥ =Cp(K)

[

(σ2 +2∑∞
l=1 γl)d(X )

∫ {m(p+1)(u)}2 du

]1/(2p+3)

n−1/(2p+3), (10)

where

Cp(K) =

[

{(p+1)!}2
∫

K⋆2
p (u)du

2(p+1){∫ up+1K⋆
p(u)du}2

]1/(2p+3)

and K⋆
p denotes the equivalent kernel defined as

K⋆
p(u) = (1 0 · · · 0)











µ0 µ1 · · · µp

µ1 µ2 · · · µp+1

...
...

. . .
...

µp µp+1 · · · µ2p











−1









1

u
...

up











K(u),
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with µ j =
∫

u jK(u)du. Since the bandwidth hb based on a symmetric bimodal kernel K has a similar

expression as (10) for a unimodal kernel, one can express h as a function of hb resulting into a factor

method. It is easily verified that

ĥ =Cp(K,K)ĥb,

where

Cp(K,K) =

[∫
K⋆2

p (u)du{∫ up+1K
⋆
p(u)du}2

∫
K
⋆2
p (u)du{∫ up+1K⋆

p(u)du}2

]1/(2p+3)

.

The factor Cp(K,K) is easy to calculate and Table 1 lists some of these factors for different uni-

modal kernels and for various odd orders of polynomials p. We take K(u) = (2/
√

π)u2 exp(−u2)
as bimodal kernel.

p Gaussian Uniform Epanechnikov Triangular Biweight Triweight

1 1.16231 2.02248 2.57312 2.82673 3.04829 3.46148

3 1.01431 2.45923 2.83537 2.98821 3.17653 3.48541

5 0.94386 2.79605 3.09301 3.20760 3.36912 3.62470

Table 1: The factor Cp(K,K) for different unimodal kernels and for various odd orders of polyno-

mials p with K(u) = (2/
√

π)u2 exp(−u2) as bimodal kernel.

5. Simulations

In what follows, we evaluate the proposed method for derivative estimation with several other meth-

ods used in the literature.

5.1 First Order Derivative Estimation

We evaluate the proposed method for derivative estimation with several other methods used in the

literature, that is, via the local slope in local polynomial regression with p = 3 (R package locpol

(Cabrera, 2009)) and penalized smoothing splines (R package pspline (Ramsey and Ripley, 2010)).

For the latter we have used quintic splines (Newell and Einbeck, 2007) to estimate the first order

derivative. All smoothing parameters were determined by weighted generalized cross-validation

(WGCV(q)) defined as

WGCV(q) =
1

n

n

∑
i=1

si

(

Y
(q)
i − m̂

(q)
n (xi)

1− trace(L)/n

)2

,

with si = 1{∑
q

l=1 kl +1 ≤ i ≤ n−∑
q

l=1 kl} and let L be the smoother matrix of the local polynomial

regression estimate. The Gaussian kernel has been used for all kernel methods. The proposed

method uses K(u) = (2/
√

π)u2 exp(−u2) as bimodal kernel. The corresponding sets of bandwidths

of the bimodal kernel hb were {0.04,0.045, . . . ,0.095} and k1 was determined in each run by (7).

Consider the following two functions

m(x) = sin2(2πx)+ log(4/3+ x) for x ∈ [−1,1] (11)
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and

m(x) = 32e−8(1−2x)2

(1−2x) for x ∈ [0,1], (12)

In a first simulation we show a typical result for the first order derivative (q = 1) of (11) and (12), its

first order empirical derivative (see Figure 2). The data sets are of size n = 1000 and are generated

from model (1) with e ∼ N(0,σ2) for σ = 0.03 (regression function (11)) and σ = 0.1 (regression

function (12)). To smooth the noisy derivative data we have chosen a local polynomial regression

estimate of order p = 3. For the Monte Carlo study, we constructed data sets size with n = 500 and
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Figure 2: Illustration of the noisy empirical first order derivative (data points), smoothed empirical

first order derivative based on a local polynomial regression estimate of order p = 3 (bold

line) and true derivative (bold dashed line). (a) First order derivative of regression func-

tion (11) with k1 = 7; (b) First order derivative of regression function (12) with k1 = 12.

generated the function

m(x) =
√

x(1− x)sin

(

2.1π

x+0.05

)

for x ∈ [0.25,1]

100 times according to model (1) with e ∼ N(0,σ2) and σ = 0.1. As measure of comparison we

chose the adjusted mean absolute error defined as

MAEadjusted =
1

481

490

∑
i=10

|m̂′
n(xi)−m′(xi)|.

This criterion was chosen to ignore boundary effects in the estimation for the three methods. The

result of the Monte Carlo study for (12) is given in Figure 3. From the Monte Carlo experiment, it

is clear that all three methods yield similar results and no method supersedes the other.

5.2 Second Order Derivative Estimation

As before, all smoothing parameters were determined by weighted generalized cross-validation

(WGCV(q)) for q = 2. A typical result for the second order derivative (q = 2) of (11) and (12) and
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Figure 3: Result of the Monte Carlo study for the proposed method and two other well-known

methods for first order derivative estimation.

its second order empirical derivative is shown in Figure 4. To smooth the noisy derivative data we

have chosen a local polynomial regression estimate of order p = 3. The question that arises is the

following: How to tune k1 and k2 for second order derivative estimation? Consider a set of candidate

values of k1 and k2, for example, {5,. . . ,40}. Note that, according to Corollary 5, the order of kq

should increase with q. The size of the set is determined both by the computational time that one

is willing to invest and by the maximum fraction of the observation weights s1, . . . ,sn that one is

willing to set to 0 in order to circumvent the aforementioned boundary issues. In order to have a

fair comparison among the values of k1 and k2, one should use the same observation weights for

all candidate values. Therefore, the largest value determines the weights. To choose the value k1

and k2 from the candidate set, we can take k1 and k2 that minimize WGCV(2). A similar strategy

can be used to determine kq. We have chosen to tune k1 according to the way described above and

not via (7) because the optimal k1 for first derivatives is not necessarily the optimal one to be used

for estimating second derivatives. From the simulations, it is clear that the variance is larger for

increasing q for λ ∈ ( 2q
2q+1

,1) (the order of the bias remains the same). This was already confirmed

by Theorem 4.

For the Monte Carlo study, we constructed data sets are of size n = 1500 and generated the

function

m(x) = 8e−(1−5x)3(1−7x) for x ∈ [0,0.5]

100 times according to model (1) with e ∼ N(0,σ2) and σ = 0.1. As measure of comparison we

chose the adjusted mean absolute error defined as

MAEadjusted =
1

1401

1450

∑
i=50

|m̂(2)
n (xi)−m(2)(xi)|.

This criterion was chosen to ignore boundary effects in the estimation. We evaluate the proposed

method for derivative estimation with the local slope in local polynomial regression with p = 5 and

penalized smoothing splines. For the latter we have used septic splines (Newell and Einbeck, 2007)

to estimate the second order derivative. The result of the Monte Carlo study is shown in Figure 5.

As before, all three methods perform equally well and show similar variances.
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Figure 4: Illustration of the noisy empirical second order derivative (data points), smoothed em-

pirical second order derivative based on a local polynomial regression estimate of order

p = 3 (bold line) and true derivative (bold dashed line). (a) Second order derivative of re-

gression function (11) with k1 = 6 and k2 = 10; (b) Second order derivative of regression

function (12) with k1 = 3 and k2 = 25.
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Figure 5: Result of the Monte Carlo study for the proposed method and two other well-known

methods for second order derivative estimation.

6. Conclusion

In this paper we proposed a methodology to estimate derivatives nonparametrically without estimat-

ing the regression function. We derived L1 and L2 rates and established consistency of the estimator.

The newly created data sets based on empirical derivatives are no longer independent and identi-

cally distributed (i.i.d.) random variables. In order to effectively deal with the non-i.i.d. nature of
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the data, we proposed a simple factor method, based on bimodal kernels, for the local polynomial

regression framework. Further, we showed that the order bias of the empirical derivative does not

depend on the order of the derivative q and that slower rates of convergence are to be expected for

increasing orders of derivatives q. However, our technique has also a drawback w.r.t. the design as-

sumptions. All our results have been derived for equispaced design. In many practical applications

and data coming from industrial sensors (e.g., process industry, robotics, nanoparticles, growth data)

equispaced data is often available since sensors are measuring at predefined times, see, for example,

Charnigo et al. (2007) and Patan (2008). However, our approach does not cover all possible appli-

cations, that is, application with inherent random design. In this case the weight sequence would

depend on the design density, which in practice has to be estimated.
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Appendix A. Proof Of Proposition 1

Using the fact that xi+ j − xi− j = 2 j(n−1)−1d(X ), where d(X ) := supX − infX , yields

Var(Y
(1)
i ) = Var

(

k

∑
j=1

w j ·
(

Yi+ j −Yi− j

xi+ j − xi− j

)

)

= Var

(

(

1−
k

∑
j=2

w j

)

Yi+1 −Yi−1

xi+1 − xi−1

+
k

∑
j=2

w j ·
(

Yi+ j −Yi− j

xi+ j − xi− j

)

)

=
σ2(n−1)2

2d(X )2

{

(

1−
k

∑
j=2

w j

)2

+
k

∑
j=2

w2
j

j2

}

.

Setting the partial derivatives to zero gives

2

(

1−
k

∑
j=2

w j

)

=
2w j

j2
, j = 2, . . . ,k,
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and hence j2w1 = w j. Normalizing such that the weights sum up to one yields

w j =
j2

∑k
i=1 i2

=
6 j2

k(k+1)(2k+1)
j = 1, . . . ,k.

Appendix B. Proof Of Theorem 2

Since m is twice continuously differentiable, the following Taylor expansions are valid for m(xi+ j)
and m(xi− j) round xi:

m(xi+ j) = m(xi)+(xi+ j − xi)m
′(xi)+

(xi+ j − xi)
2

2
m(2)(ζi,i+ j)

and

m(xi− j) = m(xi)+(xi− j − xi)m
′(xi)+

(xi− j − xi)
2

2
m(2)(ζi− j,i),

where ζi,i+ j ∈]xi,xi+ j[ and ζi− j,i ∈]xi− j,xi[. Using the above Taylor series and the fact that xi+ j −
xi− j = 2 j(n− 1)−1d(X ) and (xi+ j − xi) =

1
2
(xi+ j − xi− j), it follows that the absolute value of the

bias of Y
(1)
i is given by

∣

∣

∣

∣

∣

k

∑
j=1

w j

m(xi+ j)−m(xi− j)

xi+ j − xi− j

−m′(xi)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k

∑
j=1

w j

(xi+ j − xi− j)[m
(2)(ζi,i+ j)−m(2)(ζi− j,i)]

8

∣

∣

∣

∣

∣

≤ sup
x∈X

|m(2)(x)|
∣

∣

∣

∣

∣

k

∑
j=1

w j

(xi+ j − xi− j)

4

∣

∣

∣

∣

∣

=
supx∈X |m(2)(x)|(n−1)−1d(X )

2

k

∑
j=1

j3

∑k
i=1 i2

=
3k(k+1)supx∈X |m(2)(x)|d(X )

4(n−1)(2k+1)

= O(kn−1)

uniformly over i. Using Proposition 1, the variance of Y
(1)
i yields

Var(Y
(1)
i ) =

σ2(n−1)2

2d(X )2

{

(

1−
k

∑
j=2

w j

)2

+
k

∑
j=2

w2
j

j2

}

=
σ2(n−1)2

2d(X )2

k

∑
j=1

w2
j

j2

=
σ2(n−1)2

2d(X )2

k

∑
j=1

36 j2

k2(k+1)2(2k+1)2

=
3σ2(n−1)2

k(k+1)(2k+1)d(X )2
= O(n2k−3)

uniformly over i.
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Appendix C. Proof of Theorem 3

Due to Chebyshev’s inequality, it suffices to show that the mean squared error (MSE) goes to zero,

that is,

lim
n→∞

MSE(Y
(1)
i )→ 0. (13)

Under the conditions k → ∞ as n → ∞ such that n−1k → 0 and nk−3/2 → 0, the bias and variance go

to zero (see Theorem 2). Hence, condition (13) is fulfilled.

Appendix D. Proof Of Theorem 4

The first step is to notice that there exist λ ∈ (0,1) and c1 ∈ (0,∞) (see Theorem 3) so that the

bias and variance of the first order empirical derivative can be written as bias(Y
(1)
i ) = O(nλ−1) and

Var(Y
(1)
i ) = O(n2−3λ) uniformly over i for k1n−λ → c1 as n → ∞. Next, we continue the proof by

induction. For the bias, assume that the first (q+1) derivatives of m are continuous on the compact

interval X . Hence, all O(·)-terms are uniformly over i. For any l ∈ {0,1, . . . ,q}, a Taylor series

yields

m(l)(xi± j) = m(l)(xi)+
q−l

∑
p=1

(

± jd(X )
n−1

)p

p!
m(p+l)(xi)+O

(

( j/n)q−l+1
)

. (14)

The expected value of the first order empirical derivative is given by (see Section 2)

E(Y
(1)
i ) = m′(xi)+

q

∑
p=3,5,...

m(p)(xi)
k1

∑
j=1

w j,1

p!

jp−1d(X )p−1

(n−1)p−1
+O

(

nq(λ−1)
)

,

with

θp,1 =
k1

∑
j=1

w j,1

p!

jp−1d(X )p−1

(n−1)p−1
= O

(

n(p−1)(λ−1)
)

,

for k1n−λ → c1 as n → ∞. Suppose that for l ∈ {2, . . . ,q} and kln
−λ → cl , where cl ∈ (0,∞), as

n → ∞

E(Y
(l−1)
i ) = m(l−1)(xi)+

q

∑
p=l+1,l+3,...

θp,l−1m(p)(xi)+O
(

n(q−l+2)(λ−1)
)

(15)

for θp,l−1 = O
(

n(p−l+1)(λ−1)
)

. We now prove that

E(Y
(l)
i ) = m(l)(xi)+

q

∑
p=l+2,l+4,...

θp,lm
(p)(xi)+O

(

n(q−l+1)(λ−1)
)
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for θp,l = O
(

n(p−l)(λ−1)
)

. Using (14) and (15) yields for ∆ = E(Y
(l−1)
i+ j )−E(Y

(l−1)
i− j )

∆ = m(l−1)(xi+ j)+
q

∑
p=l+1,l+3,...

θp,l−1m(p)(xi+ j)−m(l−1)(xi− j)−
q

∑
p=l+1,l+3,...

θp,l−1m(p)(xi− j)+O
(

n(q−l+2)(λ−1)
)

=
q−l+1

∑
p=1

(

jd(X )
n−1

)p

p!
m(p+l−1)(xi)+O

(

( j/n)q−l+2
)

+
q

∑
p=l+1,l+3,...

θp,l−1



m(p)(xi)+
q−p

∑
s=1

(

jd(X )
n−1

)s

s!
m(p+s)(xi)+O

(

( j/n)q−p+1
)





−
q−l+1

∑
p=1

(

− jd(X )
n−1

)p

p!
m(p+l−1)(xi)+O

(

( j/n)q−l+2
)

−
q

∑
p=l+1,l+3,...

θp,l−1



m(p)(xi)+
q−p

∑
s=1

(

− jd(X )
n−1

)s

s!
m(p+s)(xi)+O

(

( j/n)q−p+1
)



+O
(

n(q−l+2)(λ−1)
)

.

Rearranging and grouping term gives

∆

xi+ j − xi− j

= m(l)(xi)+
q−l+1

∑
p=3,5,...

(

jd(X )
n−1

)p−1

p!
m(p+l−1)(xi)+O

(

( j/n)q−l+1
)

+
q

∑
p=l+1,l+3,...

θp,l−1







q−p

∑
s=1,3,...

(

jd(X )
n−1

)s−1

s!
m(p+s)(xi)+O

(

( j/n)q−p
)







+
n−1

2 jd(X )
O
(

n(q−l+2)(λ−1)
)

.
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Multiplying all the above terms by w j,l =
j

∑
kl

i=1 i
and summing over j = 1,2, . . . ,kl results in

E(Y
(l)
i ) = m(l)(xi)

+
kl

∑
j=1

j

∑
kl

i=1 i

q−l+1

∑
p=3,5,...

(

jd(X )
n−1

)p−1

p!
m(p+l−1)(xi) (16)

+
kl

∑
j=1

j

∑
kl

i=1 i
O
(

( j/n)q−l+1
)

(17)

+
kl

∑
j=1

j

∑
kl

i=1 i

q

∑
p=l+1,l+3,...

θp,l−1

q−p

∑
s=1,3,...

(

jd(X )
n−1

)s−1

s!
m(p+s)(xi) (18)

+
kl

∑
j=1

j

∑
kl

i=1 i

q

∑
p=l+1,l+3,...

θp,l−1O
(

( j/n)q−p
)

(19)

+
kl

∑
j=1

j

∑
kl

i=1 i

n−1

2 jd(X )
O
(

n(q−l+2)(λ−1)
)

. (20)

The terms (17), (19) and (20) all yield O(n(q−l+1)(λ−1)) for θp,l−1 = O(n(p−l+1)(λ−1)). Similar,

the terms (16) and (18) yield ∑
q

p=l+2,l+4,...θp,lm
(p)(xi) for θp,l = O

(

n(p−l)(λ−1)
)

for kln
−λ → cl as

n → ∞. As a consequence, the bias of Y
(l)
i is given by

bias(Y
(l)
i ) = E(Y

(l)
i )−m(l)(xi) =

q

∑
p=l+2,l+4,...

θp,l m(p)(xi)+O(n(λ−1)) = O(nλ−1).

For the variance, we proceed in a similar way. Note that Var(Y
(1)
i ) = O(n2−3λ) uniformly over

i. Assume that Var(Y
(l−1)
i ) = O(n2(l−1)−2λ(l−1/2)) uniformly over i for l ∈ {2,3, . . . ,q}. The proof

will be complete if we show that Var(Y
(l)
i ) = O(n2l−2λ(l+1/2)). The variance of Y

(l)
i is given by

Var(Y
(l)
i ) =

(n−1)2

4d(X )2
Var

(

kl

∑
j=1

w j,l

j

(

Y
(l−1)
i+ j −Y

(l−1)
i− j

)

)

≤ (n−1)2

2d(X )2

[

Var

(

kl

∑
j=1

w j,l

j
Y
(l−1)
i+ j

)

+Var

(

kl

∑
j=1

w j,l

j
Y
(l−1)
i− j

)]

.

For a j ∈ N\{0}, j = 1, . . . ,kl , the variance is upperbounded by

Var(Y
(l)
i )≤ (n−1)2

d(X )2

(

kl

∑
j=1

a j

w2
j,l

j2

)

O(n2(l−1)−2λ(l−1/2)).

As in the proof of the bias, the choice of the weights become clear. If we choose w j,l =
j

∑
kl
i=1 i

for

l ≥ 2 then ∑
kl

j=1 a j
w2

j,l

j2 = O(n−2λ). Then, for kln
−λ → cl as n → ∞, it readily follows that Var(Y

(l)
i ) =

O(n2l−2λ(l+1/2)).
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Abstract

Sorting networks are an interesting class of parallel sorting algorithms with applications in multi-

processor computers and switching networks. They are built by cascading a series of comparison-

exchange units called comparators. Minimizing the number of comparators for a given number of

inputs is a challenging optimization problem. This paper presents a two-pronged approach called

Symmetry and Evolution based Network Sort Optimization (SENSO) that makes it possible to scale

the solutions to networks with a larger number of inputs than previously possible. First, it uses the

symmetry of the problem to decompose the minimization goal into subgoals that are easier to solve.

Second, it minimizes the resulting greedy solutions further by using an evolutionary algorithm to

learn the statistical distribution of comparators in minimal networks. The final solutions improve

upon half-century of results published in patents, books, and peer-reviewed literature, demonstrat-

ing the potential of the SENSO approach for solving difficult combinatorial problems.

Keywords: symmetry, evolution, estimation of distribution algorithms, sorting networks, combi-

natorial optimization

1. Introduction

A sorting network of n inputs is a fixed sequence of comparison-exchange operations (comparators)

that sorts all inputs of size n (Knuth, 1998). Since the same fixed sequence of comparators can sort

any input, it represents an oblivious or data-independent sorting algorithm, that is, the sequence

of comparisons does not depend on the input data. The resulting fixed pattern of communication

makes them desirable in parallel implementations of sorting, such as those on graphics processing

units (Kipfer et al., 2004). For the same reason, they are simple to implement in hardware and are

useful as switching networks in multiprocessor computers (Batcher, 1968; Kannan and Ray, 2001;

Baddar, 2009).

Driven by such applications, sorting networks have been the subject of active research since

the 1950’s (Knuth, 1998). Of particular interest are minimal-size networks that use a minimal

number of comparators. Designing such networks is a hard combinatorial optimization problem,

first investigated in a U.S. Patent by O’Connor and Nelson (1962) for 4 ≤ n ≤ 8. Their networks

had the minimal number of comparators for 4, 5, 6, and 8 inputs, but required two extra comparators

for 7 inputs. This result was improved by Batcher (1968), whose algorithmic construction produces

provably minimal networks for n ≤ 8 (Knuth, 1998).

©2013 Vinod K. Valsalam and Risto Miikkulainen.
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Figure 1: A 4-input sorting network. The input values {x1,x2,x3,x4} at the left side of the horizontal

lines pass through a sequence of comparison-exchange operations, represented by vertical

lines connecting pairs of horizontal lines. Each such comparator sorts its two values,

resulting in the horizontal lines containing the sorted output values {y1 ≤ y2 ≤ y3 ≤ y4}
at right. This network is minimal in terms of the number of comparators. Such minimal

networks are not known in general for input sizes larger than 8 and designing them is a

challenging optimization problem.

Still today, provably minimal networks are known only for n ≤ 8. Finding the minimum num-

ber of comparators for n > 8 is thus a challenging open problem. It has been studied by various

researchers using specialized techniques, often separately for each value of n (Knuth, 1998; Koza

et al., 1999). Their efforts during the last few decades have improved the size of the networks for

9 ≤ n ≤ 16. For larger values of n, all best known solutions are simply merges of smaller net-

works; the problem is so difficult that it has not been possible to improve on these straightforward

constructions (Baddar, 2009).

This paper presents a two-pronged approach to this problem, using symmetry and evolutionary

search, which makes it possible to scale the problem to larger number of inputs. This approach,

called Symmetry and Evolution based Network Sort Optimization (SENSO), learns the compara-

tor distribution of minimal networks from a population of candidate solutions and improves them

iteratively through evolution. Each such solution is generated by sampling comparators from the

previous distribution such that the required network symmetry is built step-by-step, thereby focus-

ing evolution on more likely candidates and making search more effective. This approach was able

to discover new minimal networks for 17, 18, 19, 20, 21, and 22 inputs. Moreover, for the other

n ≤ 23, it discovered networks that have the same size as the best known networks. These results

demonstrate that the approach makes the problem more tractable and suggests ways in which it can

be scaled further and applied to other similarly difficult combinatorial problems.

This paper is organized as follows. Section 2 begins by describing the problem of finding mini-

mal sorting networks in more detail and reviews previous research on solving it. Section 3 presents

the SENSO approach, based on symmetry and evolution. Section 4 discusses the experimental

setup for evaluating the approach and presents the results. Section 5 concludes with an analysis

of the results and discussion of ways to make the approach even more effective and general in the

future.

2. Background

Figure 1 illustrates a 4-input sorting network. The horizontal lines of the network receive the input

values {x1,x2,x3,x4} at left. Each vertical line represents a comparison-exchange operation that
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Batcher 0 1 3 5 9 12 16 19 26 31 37 41 48 53 59 63

Best 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

Table 1: The fewest number of comparators known to date for sorting networks of input sizes

n ≤ 16. These networks have been studied extensively, but the best results have been

proven to be minimal only for n ≤ 8 (shown in bold; Knuth, 1998). Such small networks

are interesting because they optimize hardware resources in implementations such as mul-

tiprocessor switching networks.

takes two values and exchanges them if necessary such that the larger value is on the lower line. As

a result of these comparison-exchanges, the output values appear at the right side of the network in

sorted order: {y1 ≤ y2 ≤ y3 ≤ y4}.

Sorting networks with n ≤ 16 have been studied extensively with the goal of minimizing their

sizes. The smallest sizes of such networks known to date are listed in Table 1 (Knuth, 1998).

The number of comparators has been proven to be minimal only for n ≤ 8 (Knuth, 1998). These

networks can be constructed using Batcher’s algorithm for odd-even merging networks (Batcher,

1968). The odd-even merge builds larger networks iteratively from smaller networks by merging

two sorted lists. The odd and even indexed values of these two lists are first merged separately using

small merging networks. Comparison-exchange operations are then applied to the corresponding

values of the resulting small sorted lists to obtain the full sorted list.

Finding the minimum number of comparators required for n > 8 remains an open problem. The

results in Table 1, for these values of n, improve on the number of comparators used by Batcher’s

method. For example, the 16-input case, for which Batcher’s method requires 63 comparators, was

improved by Shapiro who found a 62-comparator network in 1969. Soon afterwards, Green (1972)

found a network with 60 comparators (Figure 2), which still remains the best in terms of the number

of comparators.

In Green’s construction, comparisons made after the first four levels (i.e., the first 32 compara-

tors) are difficult to understand, making his method hard to generalize to larger values of n. For

such values, Batcher’s method can be extended with more complex merging strategies to produce

significant savings in the number of comparators (Van Voorhis, 1974; Drysdale and Young, 1975).

For example, the best known 256-input sorting network due to Van Voorhis requires only 3651

comparators, compared to 3839 comparators required by Batcher’s method (Drysdale and Young,

1975; Knuth, 1998). Asymptotically, the methods based on merging require O(n log2 n) compara-

tors (Van Voorhis, 1974). In comparison, the AKS network by Ajtai et al. (1983) produces better

upper bounds, requiring only O(n logn) comparators. However, the constants hidden in its asymp-

totic notation are so large that these networks are impractical. Although still not practical, Leighton

and Plaxton (1990) showed that small constants are actually possible in networks that sort all but a

superpolynomially small fraction of the n! input permutations.

Since better algorithms are not known for constructing networks that sort all n! input permu-

tations, Batcher’s or Van Voorhis’ algorithms are often used in practice for large values of n, de-

spite their non-optimality. For example, these algorithms were used to obtain the networks for

17≤ n≤ 32 listed in Table 2 by merging the outputs of smaller networks from Table 1 (Van Voorhis,

1971; Baddar, 2009).
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Figure 2: The 16-input sorting network found by Green. This network has 60 comparators, which

is the fewest known for 16 inputs (Green, 1972; Knuth, 1998). The comparators in such

hand-designed networks are often symmetrically arranged about a horizontal axis through

the middle of the network. This observation has been used by some researchers to bias

evolutionary search on this problem (Graham and Oppacher, 2006) and is also used as a

heuristic to augment the symmetry-building approach described in Section 3.

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Best 73 79 88 93 103 110 118 123 133 140 150 156 166 172 180 185

Table 2: The fewest number of comparators known to date for sorting networks of input sizes

17 ≤ n ≤ 32. Networks for these values of n were obtained by merging the outputs of

smaller networks from Table 1 using the non-optimal Batcher’s or Van Voorhis’ algorithms

(Van Voorhis, 1971; Baddar, 2009). The methods used to optimize networks for n ≤ 16 are

intractable for these larger values of n because of the explosive growth in the size of the

search space. The approach presented in this paper mitigates this problem by constraining

search to promising solutions and improves these results for input sizes 17, 18, 19, 20, 21,

and 22.

The difficulty of finding such minimal sorting networks prompted researchers to attack the prob-

lem using evolutionary techniques. In one such study by Hillis (1991), a 16-input network having

61 comparators was evolved. He facilitated the evolutionary search by initializing the population

with the first four levels of Green’s network, so that evolution would need to discover only the re-

maining comparators. This (host) population of sorting networks was co-evolved with a (parasite)

population of test cases that were scored based on how well they made the sorting networks fail.

The purpose of the parasitic test cases is to nudge the solutions away from getting stuck on local

optima.

Juillé (1995) improved on Hillis’ results by evolving 16-input networks that are as good as

Green’s network (60 comparators), from scratch without specifying the first 32 comparators. More-

over, Juillé’s method discovered 45-comparator networks for the 13-input problem, which was an

improvement of one comparator over the previously known best result. His method, based on the

Evolving Non-Determinism (END) model, constructs solutions incrementally as paths in a search
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tree whose leaves represent valid sorting networks. The individuals in the evolving population are

internal nodes of this search tree. The search proceeds in a way similar to beam search by assigning

a fitness score to internal nodes and selecting nodes that are the most promising. The fitness of an

internal node is estimated by constructing a path incrementally and randomly to a leaf node. This

method found good networks with the same number of comparators as in Table 1 for all 9 ≤ n ≤ 16.

Motivated by observations of symmetric arrangement of comparators in many sorting networks

(Figure 2), Graham and Oppacher (2006) used symmetry explicitly to bias evolutionary search.

They compared evolutionary runs on populations initialized randomly with either symmetric or

asymmetric networks for the 10-input sorting problem. The symmetric networks were produced us-

ing symmetric comparator pairs, that is, pairs of comparators that are vertical mirror images of each

other. Although evolution was allowed to disrupt the initial symmetry through variation operators,

symmetric initialization resulted in higher success rates compared to asymmetric initialization. A

similar heuristic is used to augment the SENSO approach discussed in this paper.

Evolutionary approaches must verify that the solution network sorts all possible inputs correctly.

A naive approach is to test the network on all n! permutations of n distinct numbers. A better

approach requiring far fewer tests uses the zero-one principle (Knuth, 1998) to reduce the number

of test cases to 2n binary sequences. According to this principle, if a network with n input lines

sorts all 2n binary sequences correctly, then it will also sort any arbitrary sequence of n non-binary

numbers correctly. However, the increase in the number of test cases remains exponential and is

a bottleneck in fitness evaluations. Therefore, some researchers have used FPGAs to mitigate this

problem by performing the fitness evaluations on a massively parallel scale (Koza et al., 1998;

Korenek and Sekanina, 2005). In contrast, this paper develops a Boolean function representation of

the zero-one principle for fitness evaluation, as discussed next.

3. Approach

This section presents the new SENSO approach based on symmetry and evolutionary search to min-

imize the number of comparators in sorting networks. It begins with a description of how the sorting

network outputs can be represented as monotone Boolean functions, exposing the symmetries of the

network. This representation makes it possible to decompose the problem into subgoals, which are

easier to solve. Each subgoal constitutes a step in building the symmetries of the network with

as few comparators as possible. The resulting greedy solutions are optimized further by using an

evolutionary algorithm to learn the distribution of comparators that produce minimal networks.

3.1 Boolean Function Representation

The zero-one principle (Section 2) can be used to express the inputs of a sorting network as Boolean

variables and its outputs as functions of those variables. It simplifies the sorting problem to counting

the number of inputs that have the value 1 and setting that many of the lowermost outputs to 1 and

the remaining outputs to 0. In particular, the function fi(xi, . . . ,xn) at output i takes the value 1 if

and only if at least n+1− i inputs are 1. That is, fi is the disjunction of all conjunctive terms with

exactly n+1− i variables.

Since these functions are implemented by the comparators in the network, the problem of de-

signing a sorting network can be restated as the problem of finding a sequence of comparators that

compute its output functions. Each comparator computes the conjunction (upper line) and disjunc-

tion (lower line) of their inputs. As a result, a sequence of comparators computes Boolean functions
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Figure 3: Boolean output functions of a 4-input sorting network. The zero-one principle can be used

to represent the inputs of the network as Boolean variables. Each comparator produces

the conjunction of its inputs on its upper line and their disjunction on its lower line. As

a result, the functions at the outputs of the network are compositions of conjunctions

and disjunctions of the input variables, that is, they are monotone Boolean functions. In

particular, the output function fi at line i is the disjunction of all conjunctive terms with

exactly n+ 1− i variables. Therefore, a sorting network is a sequence of comparators

that compute all its output functions from its input variables. This representation makes

it possible to express network symmetry, which turns out to be useful in constructing

minimal networks.

that are compositions of conjunctions and disjunctions of the input variables (Figure 3). Since the

number of terms in these functions can grow combinatorially as comparators are added, it is nec-

essary to use a representation that makes it efficient to compute them and to determine whether all

output functions have been computed.

Such functions computed using only conjunctions and disjunctions without any negations are

called monotone Boolean functions (Korshunov, 2003). For example, the functions for the 4-input

sorting network in Figure 3 are all monotone Boolean functions. Such a function f on n binary

variables has the property that f (a) ≤ f (b) for any distinct binary n-tuples a = a1, . . . ,an and b =
b1, . . . ,bn such that a ≺ b, where a ≺ b if ai ≤ bi for 1 ≤ i ≤ n. The set of all 2n binary n-tuples

ordered by ≺ is a partially ordered set called a Boolean lattice, which makes it possible to represent

monotone Boolean functions conveniently. The Boolean lattice for n = 4 is illustrated in Figure 4 as

an undirected graph (Hasse diagram) of 24 = 16 nodes. Any two nodes in the lattice are comparable

and are connected by a path if they can be ordered by ≺. A subset of nodes that are pair-wise

incomparable is called an antichain. A subset X of nodes is said to be bounded above by the node y

if x ≺ y for all x ∈ X . The term bounded below is defined in a similar manner. These concepts are

used to characterize monotone Boolean functions in sorting networks.

For any monotone Boolean function f , the subset of lattice nodes at which it takes the value

1 are bounded above by the topmost node in the lattice and are bounded below by an antichain of

nodes corresponding to the conjunctive terms in its disjunctive normal form. That is, the nodes in

this antichain form a boundary in the lattice, separating the nodes at which f takes the value 1 from

those at which it takes the value 0. Therefore, it is sufficient to specify the antichain of boundary

nodes to define a monotone Boolean function. Moreover, nodes in the same level i (numbered from

the top of the lattice) form an antichain of boundary nodes because they all have the same number

n+ 1− i of 1s in their binary representations and are therefore incomparable. In fact, they are

the boundary nodes of function fi at output i of the sorting network since they correspond to the
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(b) f (x1,x2,x3,x4) = x1 ∨ (x2 ∧ x3)

Figure 4: Representation of monotone Boolean functions on four variables in the Boolean lattice.

The 24 = 16 nodes of the lattice are organized in levels (numbered on the left), each

containing the binary value assignments to the 4-tuple x1x2x3x4 with the same number

of 1s. The truth table for any Boolean function f (x1,x2,x3,x4) can be represented in

this lattice by shading all the nodes for which f takes the value 1. Furthermore, a node

b1b2b3b4 has a path to a lower node a1a2a3a4 if ai ≤ bi for 1 ≤ i ≤ 4. As a result, if node

a1a2a3a4 is shaded for a monotone function f , then all higher nodes reachable from it

are also shaded, that is, f is defined completely by the nodes in the lower boundary of its

shaded region. This set of nodes (shown by bold outline) corresponds to the conjunctive

terms in the disjunctive normal form of f . For example, it contains just the node 1000 for

f = x1 and two nodes 1000 and 0110 for f = x1 ∨ (x2 ∧ x3). This representation makes it

possible to compute monotone Boolean functions more efficiently.

disjunction of all conjunctive terms with exactly n+1− i variables. Thus, levels 1 to n of the lattice

have a one-to-one correspondence with the output functions of the n-input network. Moreover, it is

possible to efficiently determine whether fi has been computed at output i just by verifying whether

it takes the value 1 at all level i boundary nodes.

Monotone Boolean functions can thus be represented by their antichain of boundary nodes in

the Boolean lattice. In a lattice of size 2n, the maximum size of this representation is equal to the

size of the longest antichain, which is only
(

n
⌈n/2⌉

)

nodes (by Stirling’s approximation,
(

n
⌈n/2⌉

)

=

O
(

2n√
n

)

). However, computing conjunctions and disjunctions using this representation produces

combinatorially more redundant, non-boundary nodes that have to be removed (Gunter et al., 1996).

A more efficient representation is based on storing the values of the function in its entire truth table

as a bit-vector of length 2n. Its values are grouped according to the levels in the Boolean lattice

so that values for any level can be retrieved easily. This representation also allows computing

conjunctions and disjunctions efficiently as the bitwise AND and bitwise OR of the bit-vectors,

respectively. Moreover, efficient algorithms for bit-counting can be used to determine if a given

sorting network is valid by checking if its function at output i has the value 1 at all level i nodes for

1 ≤ i ≤ n, which is the case when all output functions fi are computed correctly.
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DNF CNF

f1 x1 ∧ x2 ∧ x3 ∧ x4 x1 ∧ x2 ∧ x3 ∧ x4

f2 (x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2 ∧ x4)∨ . . . (x1 ∨ x2)∧ (x1 ∨ x3)∧ . . .

f3 (x1 ∧ x2)∨ (x1 ∧ x3)∨ . . . (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x4)∧ . . .

f4 x1 ∨ x2 ∨ x3 ∨ x4 x1 ∨ x2 ∨ x3 ∨ x4

Table 3: Symmetries of the 4-input sorting network in terms of its output functions. Writing the

Boolean output functions of the sorting network in both the disjunctive normal form (DNF)

and in the conjunctive normal form (CNF) is a good way to visualize the symmetries of

the output functions. For example, swapping the conjunctions ∧ and disjunctions ∨ in the

DNF form of either function f2 or f3 yields the CNF form of the other function. Therefore,

for the operation of swapping ∧ and ∨ in both f2 and f3 and also swapping their row

positions in the table, the resulting table of functions remains the same as the original

table. Moreover, this assertion holds for any pair of functions fi and f5−i, not just for f2

and f3. Such an operation that preserves the output functions of the network is called a

symmetry. These symmetries can be used to minimize the number of comparators in the

network.

Finding a minimum sequence of comparators that computes all the output functions is a chal-

lenging combinatorial problem. It can be made more tractable by using the symmetries of the

network, represented in terms of the symmetries of its output functions, as will be described next.

3.2 Sorting Network Symmetries

A sorting network symmetry is an operation on the ordered set of network output functions that

leaves the functions invariant, that is, the resulting network outputs remain unchanged. For example,

swapping the outputs of all comparators of a network to reverse its sorting order and then flipping the

network vertically to restore its original sorting order is a symmetry operation. Swapping the com-

parator outputs swaps the conjunctions ∧ and disjunctions ∨ in the output functions. The resulting

reversal of the network sorting order can be expressed as fi(xi, . . . ,xn,∧,∨)= fn+1−i(xi, . . . ,xn,∨,∧)
for all 1 ≤ i ≤ n, that is, the output function fn+1−i can be obtained from fi by swapping its ∧ and

∨, and vice versa. Therefore, in addition to swapping ∧ and ∨, if the dual functions fi and fn+1−i

are also swapped, then the network outputs remain the same. This type of symmetry is illustrated in

Table 3 for the 4-input sorting network.

It is thus possible to define symmetry operations σi for 1 ≤ i ≤
⌈

n
2

⌉

that act on the ordered set of

network output functions by swapping the function fi and its dual fn+1−i and swapping their ∧ and

∨. The compositions of these symmetry operations are also symmetries because σi and σ j operate

independently on different pairs of output functions. That is, this set of operations are closed under

composition, and they are associative. Moreover, each operation is its own inverse, producing the

identity when applied twice in a row. Thus they satisfy all the axioms of a group for representing

symmetries mathematically. Since every element of this group can be expressed as the composition

of finitely many elements of the set Σ = {σ1, . . . ,σ⌈ n
2⌉}, the group is said to be generated by Σ and

is denoted 〈Σ〉.
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Similarly, the subgroups of 〈Σ〉, that is, subsets that satisfy the group axioms, can be used

to represent the symmetries of partial networks created in the process of constructing a full sorting

network. In particular, computing pairs of dual output functions produces symmetries corresponding

to a subgroup of 〈Σ〉 (Figure 5). Since each symmetry element in Σ operates on disjoint pairs of

dual functions, any such subgroup can be written as 〈Γ〉, where Γ is a subset of Σ.

Initially, before any comparators have been added, each line i in the network has the trivial

monotone Boolean function xi. As a result, the network does not have any symmetries, that is,

Γ = {}. Adding comparators to compute the output function fi and its dual fn+1−i yields Γ = {σi}
for the resulting partial network. Adding more comparators to compute both f j and its dual fn+1− j

creates a new partial network with Γ = {σi,σ j}, that is, the new partial network is more symmetric.

Continuing to add comparators until all output functions have been constructed produces a complete

sorting network with Γ = Σ.

Thus adding comparators to the network in a particular sequence builds its symmetry in a corre-

sponding sequence of increasingly larger subgroups. Conversely, building symmetry in a particular

sequence constrains the comparator sequences that are possible. Symmetry can therefore be used to

constrain the search space for designing networks with desired properties. In particular, a sequence

of subgroups can represent a sequence of subgoals for minimizing the number of comparators in the

network. Each subgoal in this sequence is defined as the subgroup that can be produced from the

previous subgoal by adding the fewest number of comparators.

Applying this heuristic to the initial network with symmetry Γ = {}, the first subgoal is defined

as the symmetry that can be produced from the input variables by computing a pair of dual output

functions with the fewest number of comparators (Figure 6). The functions f1 = x1 ∧ . . .∧ xn and

fn = x1 ∨ . . .∨ xn have the fewest number of variable combinations and can therefore be computed

by adding fewer comparators than any other pair of dual output functions. Thus the first subgoal is

to produce the symmetry Γ = {σ1} using as few comparators as possible.

After computing f1 and fn, the next pair of dual output functions with the fewest number of

variable combinations are f2 and fn−1. Therefore, the second subgoal is to compute them and

produce the symmetry Γ = {σ1,σ2}. In this way, the number of variable combinations in the output

functions continues to increase from the outer lines to the middle lines of the network. Therefore,

from any subgoal that adds the symmetry σk to Γ, the next subgoal adds the symmetry σk+1 to Γ.

This sequence of subgoals continues until all the output functions are computed, producing the final

goal symmetry Γ = {σ1, . . . ,σ⌈ n
2⌉}.

Although this subgoal sequence specifies the order in which to compute the output functions, it

does not specify an optimal combination of comparators for each subgoal. However, it is easier to

minimize the number of comparators required for each subgoal than for the entire network, as will

be described next.

3.3 Minimizing Comparator Requirement

In order to reach the first subgoal, the same comparator can compute a conjunction for f1 and

also a disjunction for fn simultaneously (Figure 6). Sharing the same comparator to compute dual

functions in this manner reduces the number of comparators required in the network. However,

such sharing between dual functions of the same subgoal is possible only in some cases. In other

cases, it may still be possible to share a comparator with the dual function of a later subgoal. Thus,
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Figure 5: Symmetries of 4-input sorting networks. The numbers below the comparators indicate

the sequence in which the comparators are added during network construction. The last

comparator touching horizontal line i completes computing the output function fi for that

line. Functions fi and fn+1−i form a dual, and computing them both gives the network

the symmetry σi. In network (a), adding comparator 3 completes computing f1 and when

comparator 4 is added to complete computing its dual f4, the network gets the symme-

try σ1. Adding comparator 5 then completes computing both f2 and its dual f3, giving

the network its second symmetry σ2. Network (b) also produces the same sequence of

symmetries and has the same number of comparators. In network (c), adding comparator

5 completes computing both f3 and f4, but not their duals f1 and f2. Only when com-

parator 6 is added to complete computing f1 and f2 does it get both its symmetries σ1

and σ2. Network (d) is similar to (c), and they both require one more comparator than

networks (a) and (b). Thus the sequence in which the comparators are added determines

the sequence in which the network gets its symmetries. Conversely, a preferred sequence

of symmetries can be specified to constrain the sequence in which comparators are added

and to minimize the number of comparators required.

minimizing the number of comparators requires determining which comparators can be shared and

then adding those comparators that maximize sharing.
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Figure 6: Subgoals for constructing a minimal 4-input sorting network. The final goal is to produce

the symmetry Γ = {σ1,σ2} by computing all four output functions fi while using the

minimum number of comparators. This goal can be decomposed into a sequence of

subgoals specified as subgroups of the final symmetry group 〈Γ〉. At any stage in the

construction, the next subgoal is the subgroup that can be produced by adding the fewest

number of comparators. Initially, the network does not have any symmetries, that is,

Γ = {}. The dual functions f1 and f4 are the easiest to compute, having fewer variable

combinations and therefore requiring fewer comparators than f2 and f3. Hence the first

subgoal is to produce the symmetry Γ = {σ1}. Notice that comparators 1 and 2 compute

parts of both f1 and f4 to achieve this subgoal with the minimum number of comparators.

The second subgoal is to produce the symmetry Γ = {σ1,σ2} by computing the functions

f2 and f3. Adding comparator 5 completes this subgoal since comparators 3 and 4 have

already computed f2 and f3 partially. Optimizing the number of comparators required

to reach each subgoal separately in this way makes it possible to scale the approach to

networks with more inputs.

The Boolean lattice representation of functions discussed in Section 3.1 can be used to determine

whether or not sharing a comparator for computing parts of two functions simultaneously is possible

(Figure 7). Assume that the current subgoal is to compute the output function fi and its dual fn+1−i.

That is, functions for outputs less than i and greater than n+1− i have already been fully computed,

implying that each of these functions f j has the value 1 at all nodes in levels less than or equal to

j and the value 0 everywhere else. Moreover, the functions for the remaining outputs have been

partially computed. In particular, each of these intermediate functions are guaranteed to have the

value 1 at all nodes in levels less than or equal to i and the value 0 at all nodes in levels greater than

n+1− i. If that was not the case, it will be impossible to compute at least one of the remaining output

functions by adding more comparators since conjunctions preserve 0s and disjunctions preserve 1s

of the intermediate functions they combine.

The current subgoal of computing function fi requires setting its value at all nodes in level i

to 1 and its value at all nodes in level i+ 1 to 0, thus defining its node boundary in the lattice.

Its monotonicity then implies that it has the value 1 at all nodes in levels less than i and the value

0 at all nodes in levels greater than i+ 1. Moreover, since the intermediate functions f ′j on lines

i ≤ j ≤ n+1− i already have the value 1 at all nodes in levels less than or equal to i, computing fi

from them will retain that value at those nodes automatically. Therefore, fi can be computed just by

setting its value at all nodes in level i+1 to 0.
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(d) x1 ∨ x2

Figure 7: Comparator sharing to compute dual output functions in a 4-input sorting network. This

figure illustrates the Boolean lattice representation of the functions computed by com-

parator 1 in Figure 6. The levels of the lattices are numbered on the left and the nodes

at which the function takes the value 1 are shaded. Comparator 1 computes the conjunc-

tion (c) and the disjunction (d) of the functions (a) and (b) for the subgoal of computing

the output functions f1 = x1 ∧ x2 ∧ x3 ∧ x4 and f4 = x1 ∨ x2 ∨ x3 ∨ x4. Function f1 can be

computed by using conjunctions to set its value at all nodes in level 2 of the lattice to 0.

Similarly, f4 can be computed by using disjunctions to set its value at all nodes in level 4

to 1. Thus, comparator 1 contributes to computing both f1 and f4 by setting the values at

two nodes in level 2 of its conjunction to 0 and the values at two nodes in level 4 of its

disjunction to 1. Sharing comparators in this manner reduces the number of comparators

required to construct the sorting network.

The value of fi at a node in level i+ 1 can be set to 0 by adding a comparator that computes

its conjunction with another function that already has the value 0 at that node, thus increasing the

number of 0-valued nodes. The disjunction that this comparator also computes has fewer 0-valued

nodes than either of its input functions and is therefore not useful for computing fi. However, the

disjunction will be used to compute the other remaining output functions, implying that it has the

value 1 at all nodes in level i+1 as required by those functions. Since the disjunction does not have

any 0-valued nodes in level i+ 1, its inputs do not have any common 0-valued nodes in that level.

That is, exactly one of the intermediate functions f ′j has the value 0 for any particular node in level
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i+1. Adding a comparator between a pair of such functions collects the 0-valued nodes from both

functions in their conjunction. Repeating this process recursively collects the 0-valued nodes in

level i+1 from all functions to the function on line i, thus producing fi. Similarly, its dual function

fn+1−i can be computed from the functions f ′j by using disjunctions instead of conjunctions to set

its values at all nodes in level n+1− i to 1.

The leaves of the resulting binary recursion tree for fi are the functions f ′j that have 0-valued

nodes in level i+1 and its internal nodes are the conjunctive comparator outputs. Since the number

of nodes of degree two in a binary tree is one less than the number of leaves (Mehta and Sahni,

2005), the number of comparators required depends only on the number of functions with which the

recursion starts, that is, it is invariant to the order in which the recursion pairs the leaves. However,

the recursion trees for fi and fn+1−i may have common leaves, making it possible to use the same

comparator to compute a conjunction for fi and a disjunction for fn+1−i. Maximizing such sharing

of comparators between the two recursion trees minimizes the number of comparators required for

the current subgoal.

It may also be possible to share a comparator with a later subgoal, for example, when it computes

a conjunction for fi and a disjunction for fn+1−k, where i < k ≤
⌈

n
2

⌉

. In order to prioritize subgoals

and determine which comparators maximize sharing, each pair of lines where a comparator can

potentially be added is assigned a utility. Comparators that contribute to both fi and fn+1−i for the

current subgoal get the highest utility. Comparators that contribute to an output function for the

current subgoal and an output function for the next subgoal get the next highest utility. Similarly,

other comparators are also assigned utilities based on the output functions to which they contribute

and the subgoals to which those output functions belong. Many comparators may have the same

highest utility; therefore, one comparator is chosen randomly from that set and it is added to the

network. Repeating this process produces a sequence of comparators that optimizes sharing within

the current subgoal and between the current subgoal and later subgoals.

Optimizing for each subgoal separately in this manner constitutes a greedy algorithm that pro-

duces minimal-size networks with high probability for n ≤ 8. However, for larger values of n, the

search space is too large for this greedy approach to find a global optimum reliably. In such cases,

stochastic search such as evolution can be used to explore the neighborhood of the greedy solutions

for further optimization, as will be described next.

3.4 Evolving Minimal-Size Networks

The most straightforward approach is to initialize evolution with a population of solutions that the

greedy algorithm produces. The fitness of each solution is the negative of its number of comparators

so that improving fitness will minimize the number of comparators. In each generation, two-way

tournament selection based on this fitness measure is used to select the best individuals in the popu-

lation for reproduction. Reproduction mutates the parent network, creating an offspring network in

two steps: (1) a comparator is chosen from the network randomly and the network is truncated after

it, discarding all later comparators, and (2) the greedy algorithm is used to add comparators again,

reconstructing a new offspring network. Since the greedy algorithm chooses a comparator with the

highest utility randomly, this mutation explores a new combination of comparators that might be

more optimal than the parent.

This straightforward approach restricts the search to the space of comparator combinations sug-

gested by the greedy algorithm and assumes that it contains a globally minimal network. In some
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Figure 8: State representation of the function x1 ∧ x2 used in the EDA. The state (shown on the

right) is a bit-string with two bits for each level of the Boolean lattice. The first bit is 1

only if the value of the function for all nodes in that level is 0 and the second bit is 1 only

if its value for all nodes in that level is 1. This condensed representation of the function

is based on the information used by the symmetry-building greedy algorithm and it is

therefore useful for constructing minimal-size sorting networks.

cases, however, the globally minimal networks may use comparators that are different from those

suggested by the greedy algorithm. Therefore, a more powerful (but still brute force) approach is

to let evolution use such comparators as well: with a probability determined empirically, the sug-

gestions of the greedy algorithm are ignored and instead the next comparator to be added to the

network is selected randomly from the set of all potential comparators.

A more effective way to combine evolution with such departures from the greedy algorithm

is to use an Estimation of Distribution Algorithm (EDA) (Bengoetxea et al., 2001; Alden, 2007;

Mühlenbein and Höns, 2005). The idea is to estimate the probability distribution of comparator

combinations in the smallest networks evolved thus far and to use this distribution to generate com-

parator suggestions for the next generation. The EDA is initialized as before with a population of

networks generated by the greedy algorithm. In each generation, a set of networks with the highest

fitness are selected from the population. These networks are used in three ways: (1) to estimate the

distribution of comparators for a generative model of small networks, (2) as elite networks, passed

unmodified to the next generation, and (3) as parent networks, from which new offspring networks

are created for the next generation.

The generative model of the EDA specifies the probability P(C|S) of adding a comparator C

to an n-input partial network with state S. The state of a partial network is defined in terms of

the n Boolean functions that its comparators compute. These functions determine the remaining

comparators that are needed to finish computing the output functions, making them a good repre-

sentation of the partial network. However, storing the state as the concatenation of the n functions

is computationally intractable since each function is represented as a vector of 2n bits. Therefore, a

condensed state representation is computed based on the observation that the greedy algorithm does

not use the actual function values for the nodes in the Boolean lattice; it only checks whether the

values in a given level are all 0s or all 1s. This information, encoded as 2(n+1) bits (Figure 8), is

suitable as the state representation for the model as well.
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Since the model is estimated from the set of the smallest networks in the population, it is likely

to generate small networks as well. Although it can generate new networks from scratch, it is

used as part of the above reproduction mechanism to reconstruct a new offspring network from the

truncated parent network, that is, it is used in Step 2 of reproduction instead of the greedy algorithm.

In this step, some comparators are also chosen randomly from the set of all potential comparators

to encourage exploration of comparator combinations outside the model. Moreover, if the model

does not generate any comparators for the current state, then the reconstruction step falls back to

the greedy algorithm for adding a comparator.

As discussed in Section 3.3, the greedy algorithm chooses the comparator to be added to the

network randomly from those that have the highest utility (Variant 1). This random choice can

be modified slightly to prefer comparators that are symmetric with respect to another comparator

that is already in the network (Variant 2). Doing so makes the arrangement of comparators more

bilaterally symmetric about a horizontal axis through the middle of the network. This heuristic was

motivated by Graham and Oppacher (2006), who found that biasing evolutionary search using such

symmetric comparator pairs was beneficial. The EDA works well with both of these variants of the

greedy algorithm, learning to find smaller sorting networks than previous results, as demonstrated

next.

4. Results

SENSO was run with a population size of 200 for 500 generations to evolve minimal-size networks

for different input sizes. In each generation, the top half of the population (i.e., 100 networks with

the fewest number of comparators) was selected for estimating the model. The same set of networks

was copied to the next generation without modification. Each of them also produced an offspring

network to replace those in the bottom half of the population. A Gaussian probability distribution

was used to select the comparator from which to truncate the parent network. This Gaussian distri-

bution was centered at the middle of its comparator sequence with a standard deviation of one-fourth

of its number of comparators. As a result, parent networks were more likely to be truncated near

the middle than near the ends. When reconstructing the truncated network, the next comparator to

be added to the network was generated either by the estimated model (with probability 0.5) or was

selected randomly from the set of all potential comparators (with probability 0.5). Results were

insensitive to small changes in these probabilities. The SENSO source code to run this experiment

is available from the website http://nn.cs.utexas.edu/?sorting-code.

The above experiment was repeated 20 times for each variant of the greedy algorithm and for

each input size n ≤ 23, each time with a different random number seed. The smallest network found

in each set of 20 runs was recorded as the result for that particular combination of algorithmic

variant and input size. This procedure was repeated 25 times for each set of 20 runs to determine

which of the two variants produced smaller networks. According to the Mann-Whitney U-test, the

median number of comparators in the smallest networks found by variant 2 was significantly fewer

for input sizes 13, 15, 18, 20, 22 (p < 0.02, one-tailed). There was no significant difference between

the two variants for the other input sizes. That is, the symmetry heuristic used in variant 2 makes it

better or as good as variant 1 for finding small networks.

The fewest number of comparators found for each input size is listed in Table 4. For input sizes

n ≤ 11, the initial population of SENSO already contained networks with the smallest-known sizes,

that is, the greedy algorithm was sufficient to find the smallest-known networks. For input sizes 12
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n 12 13 14 15 16 17 18 19 20 21 22 23

Previous best
Hand-design and END Batcher’s and Van Voorhis’ merge

39 45 51 56 60 73 79 88 93 103 110 118

SENSO 39 45 51 56 60 71 78 86 92 102 108 118

Table 4: Sizes of the smallest networks for different input sizes found by SENSO. For input sizes

n ≤ 11, networks with the smallest-known sizes (Section 2) were already found in the

initial population of SENSO, that is, the greedy algorithm using symmetry was sufficient.

These sizes are therefore omitted from this table. For larger input sizes, evolution found

networks that matched previous best results (indicated in italics) or improved them (in-

dicated in bold). Appendix A lists examples of these networks. These results demon-

strate that the SENSO approach is effective at designing minimal-size sorting networks.

Prospects of extending these results to input sizes greater than 23 will be discussed in

Section 5.

to 16, and 23, SENSO evolved networks that have the same size as the best known networks. For 15

inputs, networks matching previous best results were obtained indirectly by removing the bottom

line of the evolved 16-input networks and all comparators touching that line (Knuth, 1998). Most

importantly, SENSO improved the previous best results for input sizes 17, 18, 19, 20, 21, and 22 by

one or two comparators. Examples of these networks are listed in Appendix A.

For 23 inputs, SENSO required about 4GB of memory and 46 hours to complete 500 generations

on a Xeon X5440 processor running at 2.83GHz. These requirements approximately double for

every unit increase in the number of inputs due to the O(2n) complexity of the algorithm. Prospects

for mitigating the effects of this exponential growth and for extending the results to n> 23, including

to larger power-of-two networks, will be discussed in Section 5.

The previous best results for input sizes 12 through 16 were obtained either by hand design or

by the END evolutionary algorithm (Knuth, 1998; Juillé, 1995; Van Voorhis, 1971; Baddar, 2009).

The END algorithm improved a 25-year old result for the 13-input case by one comparator and

matched the best known results for other input sizes up to 16. However, it is a massively parallel

search algorithm, requiring very large computational resources, for example, a population size of

65,536 on 4096 processors to find minimal-size networks for 13 and 16 inputs (Table 5). In contrast,

the SENSO approach finds such networks with much less resources (e.g., population size of 200 on

a single processor in a similar number of generations), making it promising for larger problems, as

will be discussed in the next section.

5. Discussion and Future Work

Previous results on designing minimal-size networks automatically by search have been limited to

small input sizes (n ≤ 16) because the number of valid sorting networks near the optimal size is

very small compared to the combinatorially large space that has to be searched (Juillé, 1995). The

symmetry-building approach presented in Section 3 mitigates this problem by using symmetry to

focus the search on the space of networks near the optimal size. As a result, it was possible to

search for minimal-size networks with more inputs (n ≤ 23), improving the previous best results in

five cases.
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END SENSO (variant 2)

Processor family MasPar MP-2 Xeon X5440

Number of processors used 4,096 @ 17Gop/s 1 @ 2.83GHz

Memory used unknown 37MB

Population size 65,536 200

Runs that produced 60 comparators 2 out of 3 18 out of 20

Number of generations 300 to 500 500

Execution time for each run 48 to 72 hours 15 min

Table 5: Performance metrics of END and SENSO for the 16-input problem. This table compares

the performance of SENSO with the END algorithm (Juillé, 1995) for finding 16-input

networks with 60 comparators, which is the best known result for that input size. In con-

trast to the massively parallel END algorithm, SENSO finds such networks using much

less computational resources.

These improvements can be transferred to larger values of n by using Batcher’s or Van Voorhis’

merge to construct such larger networks from the improved smaller networks (Knuth, 1998). The

resulting networks accumulate the combined improvement of the smaller networks. For example,

since the 22-input network has been improved by two comparators, two copies of it can be merged

to construct a 44-input network with four fewer comparators than previous results. This merging

procedure can be repeated to construct even larger networks, doubling the improvement in each step.

Such networks are useful in massively parallel applications such as sorting in GPUs with hundreds

of cores (Kipfer and Westermann, 2005).

It should be possible to improve these results further by extending SENSO in the following

ways. First, the greedy algorithm for adding comparators can be improved by evaluating the sharing

utility of groups of one or more comparators instead of single comparators. Such groups that have

the highest average utility will then be preferred.

Second, the greedy algorithm can be made less greedy by considering the impact of current

comparator choices on the number of comparators that will be required for later subgoals. This

analysis will make it possible to optimize across subgoals, potentially producing smaller networks

at the cost of additional computations.

Third, the state representation that the EDA algorithm uses contains only sparse information

about the functions computed by the comparators. Extending it to include more relevant information

should make it possible for the EDA to disambiguate overlapping states and therefore to model

comparator distribution more accurately.

Fourth, in some cases, good n-input networks can be obtained from n+ 1-input networks by

simply removing its bottom line and all comparators touching that line (Knuth, 1998), as was done in

the 15-input case in this paper. This observation suggests that a potentially more powerful approach

is to augment the information contained in the state representation of the EDA with the comparator

distribution for multiple input sizes.

Fifth, the EDA generates comparators to add to the network only if the state of the network

matches a state in the generative model exactly. Making this match graded, based on some similarity

measure, may produce better results by exploring similar states when an exact match is not found.
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Sixth, evolutionary search can be parallelized, for example, using the massively parallel END

algorithm that has been shown to evolve the best known network sizes for n ≤ 16 (Juillé, 1995).

Conversely, using the symmetry-building approach to constrain the search space should make it

possible to run the END algorithm on networks with more inputs.

Seventh, the symmetry-building approach itself can be improved. For example, it uses only the

symmetries resulting from the duality of the output functions. It may be possible to extend this

approach by also using the symmetries resulting from the permutations of the input variables.

Eighth, large networks can be constructed from smaller networks by merging the outputs of the

smaller networks. Since smaller networks are easier to optimize, they can be evolved first and then

merged by continuing evolution to add more comparators. This approach is similar to constructing

minimal networks for n > 16 by merging smaller networks (Batcher, 1968; Van Voorhis, 1974).

In addition to finding minimal-size networks, the SENSO approach can also be used to find

minimal-delay networks. Instead of minimizing the number of comparators, it would now minimize

the number of parallel steps into which the comparators are grouped. Both these objectives can be

optimized simultaneously as well, either by preferring one objective over the other in the fitness

function or by using a multi-objective optimization algorithm such as NSGA-II (Deb et al., 2000).

Moreover, this approach can potentially be extended to design comparator networks for other

related problems such as rank-order filters (Chakrabarti and Wang, 1994; Hiasat and Hasan, 2003;

Chung and Lin, 1997). A rank order filter with rank r selects the rth largest element from an input

set of n elements. Such filters are widely used in image and signal processing applications, for

example, to reduce high-frequency noise while preserving edge information. Since these filters are

often implemented in hardware, minimizing their comparator requirement is necessary to minimize

their chip area. More generally, similar symmetry-based approaches may be useful for designing

stack filters, that is, circuits implementing monotone Boolean functions, which are also popular

in signal processing applications (Hiasat and Hasan, 2003; Shmulevich et al., 1995). Furthermore,

such approaches can potentially be used to design rearrangeable networks for switching applications

(Seo et al., 1993; Yeh and Feng, 1992).

6. Conclusion

Minimizing the number of comparators in a sorting network is a challenging optimization problem.

This paper presented an approach called SENSO that simplifies it by converting it into the problem

of building the symmetry of the network optimally. The resulting structure makes it possible to

construct the network in steps and to minimize the number of comparators required for each step

separately. However, the networks constructed in this manner may be sub-optimal greedy solutions,

and they are optimized further by an evolutionary algorithm that learns to anticipate the distribution

of comparators in minimal networks. This approach focuses the solutions on promising regions of

the search space, thus finding smaller networks more effectively than previous methods.
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Appendix A. Evolved Minimal-Size Sorting Networks

This appendix lists examples of minimal-size sorting networks evolved by SENSO. For each exam-

ple, the sequence of comparators is illustrated in a figure and also listed as pairs of horizontal lines

numbered from top to bottom.

Figure 9: Evolved 9-input network with 25 comparators: [3, 7], [1, 6], [2, 5], [8, 9], [1, 8], [2, 3],

[4, 6], [5, 7], [6, 9], [2, 4], [7, 9], [1, 2], [5, 6], [3, 8], [4, 8], [4, 5], [6, 7], [2, 3], [2, 4],

[7, 8], [5, 6], [3, 5], [6, 7], [3, 4], [5, 6].

Figure 10: Evolved 10-input network with 29 comparators: [2, 5], [8, 9], [3, 4], [6, 7], [1, 10],

[3, 6], [1, 8], [9, 10], [4, 7], [5, 10], [1, 2], [1, 3], [7, 10], [4, 6], [5, 8], [2, 9], [4, 5],

[6, 9], [7, 8], [2, 3], [8, 9], [2, 4], [3, 6], [5, 7], [3, 4], [7, 8], [5, 6], [4, 5], [6, 7].

Figure 11: Evolved 11-input network with 35 comparators: [1, 10], [3, 9], [4, 8], [5, 7], [2, 6],

[2, 4], [3, 5], [7, 11], [8, 9], [6, 10], [1, 7], [2, 3], [9, 11], [10, 11], [1, 2], [6, 8], [4, 5],

[7, 9], [3, 7], [2, 6], [8, 9], [5, 10], [3, 4], [9, 10], [2, 3], [5, 7], [4, 6], [7, 8], [8, 9], [3, 4],

[5, 7], [6, 7], [4, 5], [7, 8], [5, 6].
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Figure 12: Evolved 12-input network with 39 comparators: [1, 6], [3, 8], [5, 11], [4, 7], [9, 12],

[2, 10], [6, 7], [2, 9], [1, 4], [3, 5], [10, 12], [8, 11], [8, 10], [11, 12], [2, 3], [7, 12],

[1, 2], [5, 9], [6, 9], [2, 5], [4, 8], [3, 6], [8, 11], [7, 10], [3, 4], [5, 7], [9, 11], [2, 3],

[10, 11], [7, 9], [4, 5], [9, 10], [3, 4], [6, 8], [5, 6], [7, 8], [8, 9], [6, 7], [4, 5].

Figure 13: Evolved 13-input network with 45 comparators: [5, 9], [1, 10], [4, 8], [3, 6], [7, 12],

[2, 13], [1, 7], [3, 5], [6, 9], [8, 13], [2, 4], [11, 12], [10, 12], [1, 2], [9, 13], [9, 11],

[3, 9], [12, 13], [1, 3], [8, 10], [6, 10], [4, 7], [4, 6], [2, 9], [5, 7], [5, 8], [11, 12], [7, 10],

[4, 5], [2, 3], [10, 12], [2, 4], [7, 11], [3, 5], [3, 4], [10, 11], [7, 9], [6, 8], [6, 7], [8, 9],

[4, 6], [9, 10], [5, 6], [7, 8], [6, 7].

Figure 14: Evolved 14-input network with 51 comparators: [1, 7], [3, 4], [9, 13], [5, 6], [2, 11],

[8, 14], [10, 12], [4, 7], [5, 8], [6, 14], [2, 9], [11, 13], [1, 3], [12, 13], [1, 10], [2, 5],

[7, 14], [13, 14], [1, 2], [3, 8], [4, 6], [10, 11], [4, 9], [8, 11], [6, 9], [3, 10], [7, 12], [5, 7],

[9, 13], [2, 4], [11, 12], [3, 5], [12, 13], [2, 3], [9, 11], [4, 10], [4, 5], [3, 4], [11, 12],

[6, 8], [8, 9], [7, 10], [6, 7], [5, 6], [9, 10], [7, 8], [10, 11], [4, 5], [6, 7], [8, 9], [7, 8].
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Figure 15: Evolved 15-input network with 56 comparators: [13, 14], [6, 8], [4, 12], [3, 11], [5, 10],

[7, 9], [2, 15], [12, 15], [2, 4], [8, 11], [1, 13], [5, 7], [3, 6], [9, 10], [1, 3], [10, 15],

[2, 5], [1, 2], [6, 7], [8, 9], [12, 14], [4, 13], [6, 12], [10, 11], [9, 13], [3, 5], [7, 14],

[4, 8], [3, 4], [13, 15], [11, 14], [2, 6], [14, 15], [2, 3], [4, 6], [11, 13], [13, 14], [3, 4],

[9, 12], [5, 10], [11, 12], [7, 8], [6, 7], [5, 9], [8, 10], [5, 6], [10, 12], [12, 13], [4, 5],

[7, 9], [8, 11], [10, 11], [6, 7], [8, 9], [9, 10], [7, 8].

Figure 16: Evolved 16-input network with 60 comparators: [13, 14], [6, 8], [4, 12], [3, 11], [1, 16],

[5, 10], [7, 9], [2, 15], [12, 15], [2, 4], [8, 11], [1, 13], [5, 7], [3, 6], [9, 10], [14, 16],

[11, 16], [1, 3], [10, 15], [2, 5], [1, 2], [15, 16], [6, 7], [8, 9], [12, 14], [4, 13], [6, 12],

[10, 11], [9, 13], [3, 5], [7, 14], [4, 8], [3, 4], [13, 15], [11, 14], [2, 6], [14, 15], [2, 3],

[4, 6], [11, 13], [13, 14], [3, 4], [9, 12], [5, 10], [11, 12], [7, 8], [6, 7], [5, 9], [8, 10],

[5, 6], [10, 12], [12, 13], [4, 5], [7, 9], [8, 11], [10, 11], [6, 7], [8, 9], [9, 10], [7, 8].
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Figure 17: Evolved 17-input network with 71 comparators: [6, 12], [5, 10], [8, 13], [1, 15], [3, 17],

[2, 16], [4, 9], [7, 14], [4, 11], [9, 14], [5, 8], [10, 13], [1, 3], [15, 17], [2, 7], [11, 16],

[4, 6], [12, 14], [1, 5], [13, 17], [2, 4], [14, 16], [1, 2], [16, 17], [3, 10], [8, 15], [6, 11],

[7, 12], [6, 8], [7, 9], [9, 11], [3, 4], [9, 15], [10, 12], [13, 14], [5, 7], [11, 15], [5, 6],

[8, 10], [12, 14], [2, 3], [15, 16], [2, 9], [14, 16], [2, 5], [3, 6], [12, 15], [14, 15], [3, 5],

[7, 13], [10, 13], [4, 11], [4, 9], [7, 8], [11, 13], [4, 7], [4, 5], [13, 14], [11, 12], [6, 7],

[12, 13], [5, 6], [8, 9], [9, 10], [7, 9], [10, 12], [6, 8], [7, 8], [10, 11], [9, 10], [8, 9].

Figure 18: Evolved 18-input network with 78 comparators: [5, 13], [6, 14], [1, 8], [11, 18], [3, 4],

[15, 16], [7, 9], [10, 12], [2, 17], [3, 7], [12, 16], [2, 10], [9, 17], [5, 11], [8, 14], [4, 13],

[6, 15], [1, 3], [16, 18], [2, 5], [14, 17], [1, 6], [13, 18], [1, 2], [17, 18], [4, 8], [11, 15],

[7, 10], [9, 12], [3, 16], [4, 9], [10, 15], [5, 6], [13, 14], [7, 11], [3, 7], [8, 12], [2, 5],

[14, 17], [15, 16], [3, 4], [12, 16], [16, 17], [2, 3], [12, 15], [4, 7], [14, 15], [4, 5],

[15, 16], [3, 4], [6, 7], [12, 13], [8, 10], [9, 11], [10, 11], [8, 9], [6, 12], [7, 13], [11, 13],

[6, 8], [13, 15], [4, 6], [11, 14], [5, 8], [13, 14], [5, 6], [9, 10], [7, 10], [9, 12], [10, 13],

[6, 9], [7, 8], [11, 12], [7, 9], [10, 12], [8, 11], [10, 11], [8, 9].
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Figure 19: Evolved 19-input network with 86 comparators: [5, 11], [4, 13], [1, 17], [8, 15], [9, 12],

[7, 14], [16, 18], [2, 6], [10, 19], [3, 6], [12, 17], [8, 10], [2, 3], [7, 16], [11, 13], [4, 5],

[14, 18], [1, 9], [15, 19], [6, 17], [4, 8], [18, 19], [2, 7], [5, 16], [1, 2], [13, 17], [1, 4],

[17, 19], [3, 12], [10, 11], [14, 15], [7, 9], [8, 14], [3, 10], [12, 16], [2, 8], [6, 11],

[13, 18], [9, 15], [5, 7], [11, 15], [4, 5], [16, 17], [2, 3], [15, 18], [2, 4], [17, 18], [6, 8],

[7, 14], [6, 7], [11, 16], [3, 5], [15, 16], [3, 6], [12, 13], [16, 17], [3, 4], [9, 10], [8, 14],

[10, 13], [9, 12], [10, 11], [14, 15], [6, 9], [13, 15], [15, 16], [4, 6], [5, 7], [11, 14], [5, 9],

[5, 6], [14, 15], [8, 12], [7, 12], [7, 10], [8, 9], [12, 13], [7, 8], [13, 14], [6, 7], [10, 11],

[11, 12], [12, 13], [9, 10], [8, 9], [10, 11].

Figure 20: Evolved 20-input network with 92 comparators: [3, 12], [9, 18], [1, 11], [10, 20], [5, 6],

[15, 16], [4, 7], [14, 17], [2, 13], [8, 19], [4, 15], [6, 17], [1, 2], [19, 20], [5, 14], [7, 16],

[8, 10], [11, 13], [3, 9], [12, 18], [5, 8], [13, 16], [1, 4], [17, 20], [1, 3], [18, 20], [1, 5],

[16, 20], [2, 15], [6, 19], [9, 11], [10, 12], [7, 14], [6, 10], [11, 15], [2, 4], [17, 19],

[7, 9], [12, 14], [3, 8], [13, 18], [2, 6], [2, 3], [15, 19], [5, 7], [14, 16], [18, 19], [16, 19],

[2, 5], [4, 10], [11, 17], [3, 4], [17, 18], [14, 18], [3, 7], [16, 18], [3, 5], [8, 9], [12, 13],

[6, 11], [10, 15], [9, 13], [8, 12], [4, 8], [13, 17], [4, 6], [15, 17], [16, 17], [4, 5], [6, 7],

[14, 15], [15, 16], [5, 6], [11, 12], [9, 10], [12, 13], [8, 9], [8, 11], [10, 13], [6, 8],

[13, 15], [10, 14], [7, 11], [7, 8], [11, 12], [13, 14], [9, 10], [10, 12], [12, 13], [9, 11],

[8, 9], [10, 11].
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Figure 21: Evolved 21-input network with 102 comparators: [6, 10], [12, 16], [2, 20], [3, 15],

[7, 19], [1, 18], [4, 21], [5, 9], [13, 17], [8, 14], [2, 8], [14, 20], [3, 12], [10, 19], [5, 13],

[9, 17], [4, 6], [16, 18], [1, 11], [11, 21], [1, 7], [15, 21], [3, 4], [18, 19], [2, 5], [17, 20],

[1, 2], [20, 21], [1, 3], [19, 21], [8, 9], [13, 14], [10, 11], [5, 12], [6, 7], [15, 16], [11, 12],

[6, 13], [9, 16], [7, 14], [8, 15], [17, 18], [2, 4], [5, 10], [6, 8], [14, 16], [12, 19], [18, 20],

[2, 3], [19, 20], [5, 6], [2, 5], [16, 20], [14, 18], [3, 8], [12, 18], [10, 15], [5, 6], [16, 19],

[18, 19], [3, 5], [7, 11], [9, 17], [4, 13], [11, 15], [13, 17], [4, 9], [7, 10], [15, 17], [9, 13],

[4, 7], [5, 6], [16, 17], [17, 18], [4, 5], [12, 14], [6, 8], [14, 16], [7, 8], [16, 17], [5, 6],

[11, 12], [10, 12], [9, 10], [12, 13], [13, 15], [9, 11], [7, 9], [15, 16], [6, 7], [13, 14],

[14, 15], [7, 9], [8, 10], [11, 12], [8, 11], [8, 9], [10, 14], [12, 13], [10, 13], [10, 12],

[10, 11].
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Figure 22: Evolved 22-input network with 108 comparators: [11, 12], [3, 9], [14, 20], [4, 16],

[7, 19], [2, 17], [6, 21], [1, 18], [5, 22], [8, 10], [13, 15], [1, 5], [18, 22], [4, 13], [10, 19],

[2, 3], [20, 21], [8, 14], [9, 15], [6, 7], [16, 17], [6, 8], [15, 17], [2, 11], [12, 21], [1, 4],

[19, 22], [1, 6], [17, 22], [1, 2], [21, 22], [7, 9], [14, 16], [3, 5], [18, 20], [10, 12],

[11, 13], [3, 8], [15, 20], [4, 10], [13, 19], [7, 14], [9, 16], [5, 12], [11, 18], [6, 11],

[12, 17], [4, 7], [16, 19], [2, 3], [20, 21], [2, 4], [19, 21], [2, 6], [17, 21], [3, 7], [16, 20],

[12, 19], [3, 6], [17, 20], [4, 11], [3, 4], [19, 20], [10, 13], [5, 15], [8, 18], [9, 14],

[13, 18], [5, 10], [14, 15], [8, 9], [5, 8], [15, 18], [5, 6], [17, 18], [18, 19], [4, 5], [7, 11],

[12, 16], [6, 7], [16, 17], [5, 6], [17, 18], [10, 13], [9, 14], [11, 14], [9, 12], [8, 10],

[13, 15], [8, 9], [14, 15], [15, 17], [6, 8], [10, 11], [12, 13], [7, 10], [13, 16], [15, 16],

[7, 8], [9, 12], [11, 14], [9, 10], [13, 14], [8, 9], [14, 15], [11, 12], [12, 13], [10, 11].
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Figure 23: Evolved 23-input network with 118 comparators: [2, 21], [3, 22], [6, 14], [10, 18],

[1, 8], [16, 23], [5, 12], [7, 13], [11, 17], [9, 19], [15, 20], [4, 9], [5, 15], [12, 19],

[3, 7], [17, 21], [1, 10], [14, 23], [6, 16], [8, 18], [2, 11], [13, 22], [9, 20], [18, 23],

[1, 6], [21, 22], [2, 3], [19, 20], [4, 5], [22, 23], [1, 2], [20, 23], [1, 4], [13, 14], [10, 11],

[7, 16], [8, 17], [9, 12], [12, 15], [5, 12], [7, 9], [15, 17], [18, 21], [3, 6], [10, 13],

[11, 14], [16, 19], [11, 12], [5, 8], [21, 22], [2, 3], [8, 16], [4, 10], [14, 20], [17, 19],

[9, 15], [5, 7], [19, 22], [2, 5], [20, 22], [2, 4], [10, 11], [12, 14], [3, 7], [17, 21], [5, 10],

[14, 19], [20, 21], [3, 4], [19, 21], [3, 5], [6, 18], [13, 15], [9, 13], [6, 8], [16, 18], [6, 9],

[15, 18], [4, 6], [18, 20], [4, 5], [19, 20], [7, 11], [12, 17], [14, 17], [7, 10], [17, 18],

[6, 7], [5, 6], [8, 10], [18, 19], [13, 16], [15, 16], [9, 13], [8, 9], [14, 16], [16, 18], [6, 8],

[10, 11], [11, 15], [7, 12], [15, 17], [16, 17], [7, 8], [11, 12], [10, 13], [12, 14], [14, 15],

[9, 10], [8, 9], [15, 16], [10, 11], [9, 10], [13, 15], [12, 13], [13, 14], [11, 12], [12, 13].
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Abstract

Gaussian process (GP) predictors are an important component of many Bayesian approaches to

machine learning. However, even a straightforward implementation of Gaussian process regression

(GPR) requires O(n2) space and O(n3) time for a data set of n examples. Several approximation

methods have been proposed, but there is a lack of understanding of the relative merits of the

different approximations, and in what situations they are most useful. We recommend assessing

the quality of the predictions obtained as a function of the compute time taken, and comparing

to standard baselines (e.g., Subset of Data and FITC). We empirically investigate four different

approximation algorithms on four different prediction problems, and make our code available to

encourage future comparisons.

Keywords: Gaussian process regression, subset of data, FITC, local GP

1. Introduction

Gaussian process (GP) predictors are widely used in non-parametric Bayesian approaches to super-

vised learning problems (Rasmussen and Williams, 2006). They can also be used as components

for other tasks including unsupervised learning (Lawrence, 2004), and dependent processes for a

variety of applications (e.g., Sudderth and Jordan 2009; Adams et al. 2010). The basic model on

which these are based is Gaussian process regression (GPR), for which a standard implementation

requires O(n2) space and O(n3) time for a data set of n examples (e.g., Rasmussen and Williams,

2006, Chapter 2). Several approximation methods have now been proposed, as detailed below. Typ-

ically the approximation methods are compared to the basic GPR algorithm. However, as there are

now a range of different approximations, the user is faced with the problem of understanding their

relative merits, and in what situations they are most useful.

∗. This research was carried out when KC was a student at the University of Edinburgh.
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Most approximation algorithms have a tunable complexity parameter, which we denote as m.

Our key recommendation is to study the quality of the predictions obtained as a function of the com-

pute time taken as m is varied, as times can be compared across different methods. New approxima-

tion methods should be compared against current baselines like Subset of Data and FITC (described

in Sections 2.1–2.2). The time decomposes into that needed for training the predictor (including

setting hyperparameters), and test time; the user needs to understand which will dominate in their

application. We illustrate this process by studying four different approximation algorithms on four

different prediction problems. We have published our code in order to encourage comparisons of

other methods against these baselines.

The structure of the paper is as follows: In Section 2 we outline the complexity of the full

GP algorithm and various approximations, and give some specific details needed to apply them

in practice. Section 3 outlines issues that should be considered when selecting or developing a

GP approximation algorithm. Section 4 describes the experimental setup for comparisons, and the

results of these experiments. We conclude with future directions and a discussion.

2. Approximation Algorithms for Gaussian Process Regression (GPR)

A regression task has a training set D ={xi,yi}
n
i=1 with D-dimensional inputs xi and scalar outputs

yi. Assuming that the outputs are noisy observations of a latent function f at values fi = f (xi), the

goal is to compute a predictive distribution over the latent function value f∗ at a test location x∗.

Assuming a Gaussian process prior over functions f with zero mean, and covariance or kernel

function k(·, ·), and Gaussian observations, yi = fi + εi where εi ∼ N (0,σ2), gives Gaussian pre-

dictions p( f∗ |x∗,D)=N ( f ∗,V[ f∗]), with predictive mean and variance (see, e.g., Rasmussen and

Williams, 2006, Section 2.2):

f ∗ = k⊤(x∗)(K +σ2I)−1y
def
= k⊤(x∗)α, (1)

V[ f∗] = k(x∗,x∗)−k⊤(x∗)(K +σ2I)−1k(x∗), (2)

where K is the n×n matrix with Ki j = k(xi,x j), k(x∗) is the n×1 column vector with the ith entry

being k(x∗,xi), y is the column vector of the n target values, and α= (K +σ2I)−1y.

The log marginal likelihood of the GPR model is also available in closed form:

L = log p(y|X) =− 1
2

y⊤(K +σ2
nI)−1y− 1

2
log |K +σ2I|− n

2
log2π. (3)

Typically L is viewed as a function of a set of parameters θ that specify the kernel. Below we assume

that θ is set by numerically maximizing L with a routine like conjugate gradients. Computation of

L and the gradient ∇θL can be carried out in O(n3). Optimizing L is a maximum-likelihood type II

or ML-II procedure for θ; alternatively one might sample over p(θ|D) using, for example, MCMC.

Equations 1–3 form the basis of GPR prediction.

We identify three computational phases in carrying out GPR:

hyperparameter learning: The hyperparameters are learned, by for example maximizing the log

marginal likelihood. This is often the most computationally expensive phase.

training: Given the hyperparameters, all computations that do not involve test inputs are per-

formed, such as computing α above, and/or computing the Cholesky decomposition of K +
σ2

nI. This phase was called “precomputation” by Quiñonero-Candela et al. (2007, Section 9.6).
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Method Storage Training Mean Variance

Full O(n2) O(n3) O(n) O(n2)
SoD O(m2) O(m3) O(m) O(m2)
FITC O(mn) O(m2n) O(m) O(m2)
Local O(mn) O(m2n) O(m) O(m2)

Table 1: A comparison of the space and time complexity of the Full, SoD, FITC and Local meth-

ods, ignoring the time taken to select the m subset/inducing points/clusters from the n

datapoints. Training: the time required for preliminary computations before the test point

x∗ is known, for each hyperparameter setting considered. Mean (resp. variance): the time

needed to compute the predictive mean (variance) at test point x∗.

testing: Only the computations involving the test inputs are carried out, those which could not

have been done previously. This phase may be significant if there is a very large test set, or if

deploying a trained model on a machine with limited resources.

Table 1 lists the computational complexity of training and testing full GPR as a function of n.

Evaluating the marginal likelihood L and its gradient takes more operations than ‘training’ (i.e.,

computing the parts of (1) and (2) that do not depend on x∗), but has the same scaling with n.

Hyperparameter learning involves evaluating L for all values of the hyperparameters θ that are

searched over, and so is more expensive than training for fixed hyperparameters.

These complexities can be reduced in special cases, for example, for stationary covariance func-

tions and grid designs, as may be found, for example, in geoscience problems. In this case the

eigenvectors of K are the Fourier basis, and matrix inversions etc can be computed analytically.

See, for example, Wikle et al. (2001), Paciorek (2007) and Fritz et al. (2009) for more details.

Common methods for approximate GPR include Subset of Data (SoD), where data points are

simply thrown away; inducing point methods (Quiñonero-Candela and Rasmussen, 2005), where

K is approximated by a low-rank plus diagonal form; Local methods where nearby data is used to

make predictions in a given region of space; and fast matrix-vector multiplication (MVM) methods,

which can be used with iterative methods to speed up the solution of linear systems. We discuss

these in turn, so as to give coverage to the wide variety methods that have been proposed. We use the

Fully Independent Training Conditional (FITC) method as it is recommended over other inducing

point methods by Quiñonero-Candela et al. (2007), and the Improved Fast Gauss Transform (IFGT)

of Yang et al. (2005) as a representative of fast MVM methods.

2.1 Subset of Data

The simplest way of dealing with large amounts of data is simply to ignore some or most of it. The

‘Subset of Data (SoD) approximation’ simply applies the full GP prediction method to a subset of

size m < n. Therefore the computational complexities of SoD result from replacing n with m in

the expressions for the full method (Table 1). Despite the ‘obvious’ nature of SoD, most papers on

approximate GP methods only compare to a GP applied to the full data set of size n.

To complete the description of the SoD method we must also specify how the subset is selected.

We consider two of the possible alternatives: 1) Selecting m points randomly costs O(m) if we need

335



CHALUPKA, WILLIAMS AND MURRAY

not look at the other points. 2) We select m cluster centres from a Farthest Point Clustering (FPC,

Gonzales 1985) of the data set; using the algorithm proposed by Gonzales this has computational

complexity of O(mn). In theory, FPC can be sped up to O(n logm) using suitable data structures

(Feder and Greene, 1988), although in practice the original algorithm can be faster for machine

learning problems of moderate dimensionality. FPC has a random aspect as the first point can

be chosen randomly. Our SoD implementation is based on gp.m in the MATLAB gpml toolbox:

http://www.gaussianprocess.org/gpml/code/matlab/doc/.

Rather than selecting the subset randomly, it is also possible to make a more informed choice.

For example Lawrence et al. (2003) came up with a fast selection scheme (the “informative vec-

tor machine”) that takes only O(m2n). Keerthi and Chu (2006) also proposed a matching pursuit

approach which has similar asymptotic complexity, although the associated constant is larger.

2.2 Inducing Point Methods: FITC

A number of GP approximation algorithms use alternative kernel matrices based on inducing points,

u, in the D-dimensional input space (Quiñonero-Candela and Rasmussen, 2005). Here we restrict

the m inducing points to be a subset of the training inputs. The Subset of Regressors (SoR) kernel

function is given by kSoR(xi,x j) = k(xi,u)K
−1
uu k(u,x j), and the Fully Independent Training Condi-

tional (FITC) method uses

kFITC(xi,x j) = kSoR(xi,x j)+δi j[k(xi,x j)− kSoR(xi,x j)].

FITC approximates the matrix K as a rank-m plus diagonal matrix. An attractive property of FITC,

not shared by all approximations, is that it corresponds to exact inference for a GP with the given

kFITC kernel (Quiñonero-Candela et al., 2007). Other inducing point approximations (e.g., SoR,

deterministic training conditionals) have similar complexity but Quiñonero-Candela et al. (2007)

recommend FITC over them. Since then there have been further developments (Titsias, 2009;

Lázaro-Gredilla et al., 2010), which would also be interesting to compare.

To make predictions with FITC, and to evaluate its marginal likelihood, simply substitute kFITC

for the original kernel in Equations 1–3. This substitution gives a mean predictor of the form

f ∗ = ∑m
i=1 βik(x∗,xi), where i = 1, . . . ,m indexes the selected subset of training points, and the βs

are obtained by solving a linear system. Snelson (2007, pp 60-62) showed that in the limit of zero

noise FITC reduces to SoD.

We again choose a set of inducing points of size m from the training inputs either randomly or

using FPC, and use the FITC implementation from the gpml toolbox.

It is possible to “mix and match” the SoD and FITC methods, adapting the hyperparameters

to optimize the SoD approximation to the marginal likelihood, then using the FITC algorithm to

make predictions using the same data subset and the SoD-trained hyperparameters. We refer to this

procedure as the Hybrid method.1 We expect that saving time on the hyperparameter learning phase,

O(m3) instead of O(m2n), will come at the cost of reducing the predictive performance of FITC for

a given m.

2.3 Local GPR

The basic idea here is of divide-and-conquer, although without any guarantees of correctness. We

divide the n training points into k = ⌈ n
m
⌉ clusters each of size m, and run GPR in each cluster,

1. We thank one of the anonymous reviewers for suggesting this method.
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ignoring the training data outside of the given cluster. At test time we assign a test input x∗ to

the closest cluster. This method has been discussed by Snelson and Ghahramani (2007). The hard

cluster boundaries can lead to ugly discontinuities in the predictions, which are unacceptable if a

smooth surface is required, for example in some physical simulations.

One important issue is how the clustering is done. We found that FPC tended to produce clusters

of very unequal size, which limited the speedups obtained by Local GPR. Thus we devised a method

we call Recursive Projection Clustering (RPC), which works as follows. We start off with all the

data in one cluster C. Choose two data points at random from C, draw a line through these points

and calculate the orthogonal projection of all points from C onto the line. Split C into two equal-

sized subsets CL and CR depending on whether points are to the left or right of the median. Now

repeat recursively in each cluster until the cluster size is no larger than m. In our implementation

we make use of MATLAB’s sort function to find the median value, taking time O(n logn) for n

datapoints, although it is possible to reduce median finding to O(n) (Blum et al., 1973). Thus

overall the complexity of RPC is O(ns logn), where s = ⌈log2(n/m)⌉. A test point x∗ is assigned to

the appropriate cluster by descending the tree of splits constructed by RPC.

Another issue concerns hyperparameter learning. L is approximated by the sum of terms like

Equation 3 over all clusters. Hyperparameters can either be tied across all clusters (“joint” training),

or unique to each cluster (“separate” training). Joint training is likely to be useful for small m. We

implemented Local GPR using the gpml toolbox with small modifications to sum gradients for joint

training.

2.4 Iterative Methods and IFGT Matrix-Vector Multiplies

The Conjugate Gradients (CG) method (e.g., Golub and Van Loan 1996) can be used at training time

to solve the linear system (K +σ2I)α= y. Indeed, all GPR computations can be based on iterative

methods (Gibbs, 1997). CG and several other iterative methods (e.g., Li et al. 2007; Liberty et al.

2007) for solving linear systems require the ability to multiply a matrix of kernel values with an

arbitrary vector.

Standard dense matrix-vector multiplication (MVM) costs O(n2). It has been argued (e.g., Gibbs

1997; Li et al. 2007) that iterative methods alone provide a cost saving if terminated after k ≪ n

matrix-vector multiplies. Papers often do not state how CG was terminated (e.g., Shen et al., 2006;

Freitas et al., 2006), although some are explicit about using a small fixed number of iterations

based on preliminary runs (e.g., Gray, 2004). Ad-hoc termination rules, or those using the ‘relative

residual’ (Golub and Van Loan, 1996) (see Section 4.1) do not necessarily give the best trade-off

between time and test-error. In Section 4.1 we examine the progression of test error throughout

training, to see what error/time trade-offs might be achieved by different termination rules.

Iterative methods are not used routinely for dense linear system solving, they are usually only

recommended when the cost of MVMs is reduced by exploiting sparsity or other matrix structure.

Whether iterative methods can provide a speedup for GPR or not, fast MVM methods will certainly

be required to scale to huge data sets. Firstly, while other methods can be made linear in the size of

the data set size (O(m2n), see Table 1), a standard MVM costs O(n2). Most importantly, explicitly

constructing the K matrix uses O(n2) memory, which sets a hard ceiling on data set size. Storing

the kernel elements on disk, or reproducing the kernel computations on the fly, is prohibitively

expensive. Fast MVM methods potentially reduce the storage required, as well as the computation

time of the standard dense implementation.
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We have previously demonstrated some negative results concerning speeding up MVMs (Mur-

ray, 2009): 1) if the kernel matrix were approximately sparse (i.e., many entries near zero) it would

be possible to speed up MVMs using sparse matrix techniques, but in the hyperparameter regimes

identified in practice this does not usually occur; 2) the piecewise constant approximations used by

simple kd-tree approximations to GPR (Shen et al., 2006; Gray, 2004; Freitas et al., 2006) cannot

safely provide meaningful speedups.

The Improved Fast Gauss Transform (IFGT) is a MVM method that can be applied when using

a squared-exponential kernel. The IFGT is based on a truncated multivariate Taylor series around a

number of cluster centres. It has been applied to kernel machines in a number of publications, for

example, Yang et al. (2005); Morariu et al. (2009). Our experiments use the IFGT implementation

from the Figtree C++ package with MATLAB wrappers available from http://www.umiacs.umd.

edu/˜morariu/figtree/. This software provides automatic choices for a number of parameters

within IFGT. The time complexity of IFGT depends on a number of factors as described in Morariu

et al. (2009), and we focus below on empirical results.

There are open problems with making iterative methods and fast MVMs for GPR work rou-

tinely. Firstly, unlike standard dense linear algebra routines, the number of operations depends on

the hyperparameter settings. Sometimes the programs can take a very long time, or even crash due

to numerical problems. Methods to diagnose and handle these situations automatically are required.

Secondly, iterative methods for GPR are usually only applied to mean prediction, Equation 1; find-

ing variances V[ f∗] would require solving a new linear system for each k(x∗). In principle, an

iterative method could approximately factorize (K +σ2I) for variance prediction. To our knowl-

edge, no one has demonstrated the use of such a method for GPR with good scaling in practice.

2.5 Comparing the Approximation Methods

Above we have reviewed the SoD, FITC, Hybrid, Local and Iterative MVM methods for speeding up

GP regression for large n. The space and time complexities for the SoD, FITC, and Local methods

are given in Table 1; as explained above there are open problems with making iterative methods and

fast MVMs work routinely for GPR, see also Sections 4.1 and 4.2.

Comparing FITC to SoD, we note that the mean predictor contains the same basis functions as

the SoD predictor, but that the coefficients are (in general) different as FITC has “absorbed” the

effect of the remaining n−m datapoints. Hence for fixed m we might expect FITC to obtain better

results. Comparing Local to SoD, we might expect that using training points lying nearer to the test

point would help, so that for fixed m Local would beat SoD. However, both FITC and Local have

O(m2n) training times (although the associated constants may differ), compared to O(m3) for SoD.

So if equal training time was allowed, a larger m could be afforded for SoD than the others. This is

the key to the comparisons in Section 4.3 below. The Hybrid method has the same hyperparameter

learning time as SoD by definition, but the training phase will take longer than SoD with the same

m, because of the need for a final O(m2n) phase of FITC training, as compared to the O(m3) for

SoD. However, as per the argument above, we would expect the FITC predictions to be superior to

the SoD ones, even if the hyperparameters have not been optimized explicitly for FITC prediction;

this is explored experimentally in Section 4.3.

At test time Table 1 shows that the SoD, FITC, Hybrid and Local approximations are O(m)
for mean prediction, and O(m2) for predictive variances. This means that the method which has

obtained the best “m-size” predictor will win on test-time performance.
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3. A Basis for Comparing Approximations

For fixed hyperparameters, comparing an approximate method to the full GPR is relatively straight-

forward: we can evaluate the predictive error made by the approximate method, and compare that

against the “gold standard” of full GPR. The ‘best’ method could be the approximation with best

predictions for a given computational cost, or alternatively the smallest computational cost for a

given predictive performance. However, there are still some options, for example, different perfor-

mance criteria to choose from (mean squared error, mean predictive log likelihood). Also there are

different possible relevant computational costs (hyperparameter learning, training, testing) and def-

initions of cost itself (CPU time, ‘flops’ or other operation counts). It should also be borne in mind

that any error measure compresses the predictive mean and variance functions into a single num-

ber; for low-dimensional problems visualizing these functions can illustrate the differences between

approximations (e.g., Quiñonero-Candela et al., 2007, Figure 9.4).

It is rare that the appropriate hyperparameters are known for a given problem, unless it is a syn-

thetic problem drawn from a GP. For real-world data we are faced with two alternatives: (i) compare

approximate methods using the same set of hyperparameters as obtained by full GPR, or (ii) allow

the approximate methods freedom to determine their own hyperparameters, for example, by using

approximate marginal likelihoods consistent with the approximations. Below we follow the sec-

ond approach as it is more realistic, although it does complicate comparisons by changing both the

approximation method and the hyperparameters.

In terms of computational cost we use the CPU time in seconds, based on MATLAB implemen-

tations of the algorithms (except for the IFGT where the Figtree C++ code is used with MATLAB

wrappers). The core GPR calculations are well suited to efficient implementation in MATLAB. Our

SoD, FITC, Hybrid and Local GP implementations are all derived from the standard gpml toolbox

of Rasmussen and Nickisch.

Before making empirical comparisons on particular data sets, we identify aspects of regression

problems, models and approximations that affect the appropriateness of using a particular method:

The nature of the underlying problem: We usually standardize the inputs to have zero mean and

unit variance on each dimension. Then clearly we would expect to require more datapoints to pin

down accurately a higher frequency (more “wiggly”) function than a lower frequency one.

For multivariate input spaces there will also be issues of dimensionality, either wrt the intrinsic

dimensionality of x (for example if the data lies on a manifold of lower dimensionality) or the

apparent dimensionality. Note that if there are irrelevant inputs these can potentially be detected by

a kernel equipped with “Automatic Relevance Determination” (ARD) (Neal, 1996; Rasmussen and

Williams, 2006, p. 106).

Another factor is the noise level on the data. An eigenanalysis of the problem (see, e.g., Ras-

mussen and Williams 2006, Section 2.6) shows that it is more difficult to discover low-amplitude

components in the underlying function if there is high noise. It is relatively easy to get an upper

bound on the noise level by computing the variance of the y’s around a given x location (or an

average of such calculations), particularly if the lengthscale of variation of function is much larger

than inter-datapoint distances (i.e., high sampling density); this provides a useful sanity check on

the noise level returned during hyperparameter optimization.

The choice of kernel function: Selecting an appropriate family of kernel functions is an impor-

tant part of modelling a particular problem. For example, poor results can be obtained when using

an isotropic kernel on a problem where there are irrelevant input dimensions, while an ARD param-
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eterization would be a better choice. Some approximation methods (e.g., the IFGT) have only been

derived for particular kernel functions. For simplicity of comparison we consider only the SE-ARD

kernel (Rasmussen and Williams, 2006, p. 106), as that is the kernel most widely used in practice.

The practical usability of a method: Finally, some more mundane issues contribute significantly

to the usability of a method, such as: (a) Is the method numerically robust? If there are problems

it should be clear how to diagnose and deal with them. (b) Is it clear how to set tweak parameters,

for example, termination criteria? Difficulties with these issues do not just make it difficult to

make fair comparisons, but reflect real difficulties with using the methods. (c) Does the method

work efficiently for a wide range of hyperparameter settings? If not, hyperparameter searching

must be performed much more carefully and one has to ask if the method will work well on good

hyperparameter settings.

4. Experiments

Data sets: We use four data sets for comparison. The first two are synthetic data sets, SYNTH2

and SYNTH8, with D = 2 and D = 8 input dimensions. The inputs were drawn from a N(0, I)
Gaussian, and the function was drawn from a GP with zero mean and isotropic SE kernel with

unit lengthscale. There are 30,543 training points and 30,544 test points in each data set.2 The

noise variance is 10−6 for SYNTH2, and 10−3 for SYNTH8. The CHEM data set is derived from

physical simulations relating to electron energies in molecules (Malshe et al., 2007).3 The input

dimensionality is 15, and the data is split into 31,535 training cases and 31,536 test cases. Additional

results on this data set have been reported by Manzhos and Carrington Jr. (2008). The SARCOS data

set concerns the inverse kinematics of a robot arm, and is used, for example, in Rasmussen and

Williams (2006, Section 2.5). It has 21 input dimensions, 44,484 training cases and 4,449 test

cases (the split used by Rasmussen and Williams 2006). The SARCOS data set is already publicly

available from http://www.gaussianprocess.org. All four data sets are included in the code

and data tarfile associated with this paper.

Error measures: We measured the accuracy of the methods’ predictions on the test sets using the

Standardized Mean Squared Error (SMSE), and Mean Standardized Log Loss (MSLL), as defined

in (Rasmussen and Williams, 2006, Section 2.5). The SMSE is the mean squared error normalized

by the MSE of the dumb predictor that always predicts the mean of the training set. The MSLL is

obtained by averaging − log p(y∗|D,x∗) over the test set and subtracting the same score for a trivial

model which always predicts the mean and variance of the training set. Notice that MSLL involves

the predictive variances while SMSE does not.

Each experiment was carried out on a 3.47 GHz core with at least 10 GB available memory,

except for Section 4.1 which used 3 GHz cores with 12 GB memory. Approximate log marginal

likelihoods were optimized wrt θ using Carl Rasmussen’s minimize.m routine from the gpml tool-

box, using a maximum of 100 iterations. The code and data used to run the experiments is available

from http://homepages.inf.ed.ac.uk/ckiw/code/gpr_approx.html .

In Section 4.1 we provide results investigating the efficacy of iterative methods for GPR. In

Section 4.2 we investigate the utility of IFGT to speed up MVMs. Section 4.3 compares the SoD,

FITC and Local approximations on the four data sets, and Section 4.4 compares predictions made

with the learned hyperparameters and the generative hyperparameters on the synthetic data sets.

2. We thank Carl Rasmussen for providing these data sets.

3. We thank Prof. Lionel Raff of Oklahoma State University and colleagues for permission to distribute this data.
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Figure 1: Experiments with 16,384 training points. Legend abbreviations: CG: conjugate gradients;

DD: ‘domain decomposition’ with 16 randomly chosen clusters; CG-init: CG initialized

with one iteration of DD (CG’s starting point of zero is not responsible for bad early

behaviour); DD-RPC: clusters were chosen with recursive projection clustering (Sec-

tion 2.3). The horizontal lines give test performance for SoD with 4,096, 8,192 and

16,384 training points. Crosses on these lines also show the time taken.

4.1 Results for Iterative Methods

Most attempts to use iterative methods for Gaussian processes have used conjugate gradient (CG)

methods (Gibbs, 1997; Gray, 2004; Shen et al., 2006; Freitas et al., 2006). However, Li et al.

(2007) introduced a method, which they called Domain Decomposition (DD), that over 50 iterations

appeared to converge faster than CG. We have compared CG and DD for training a GP mean

predictor based on 16,384 points from the SARCOS data, with the same fixed hyperparameters used

by Rasmussen and Williams (2006).

Figure 1a) plots the ‘relative residual’, ‖(K+σ2I)αt −y‖/‖y‖, the convergence diagnostic used

by Li et al. (2007, Figure 2), against iteration number for both their method and CG, where αt is

the approximation to α obtained at iteration t. We reproduce the result that CG gives higher and

fluctuating residuals for early iterations. However, by running the simulation for longer, and plotting

on a log scale, we see that CG converges, according to this measure, much faster at later iterations.

Figure 1a) is not directly useful for choosing between the methods however, because we do not

know how many iterations are required for a competitive test-error.

Figure 1b) instead plots test-set SMSE, and adds reference lines for the SMSEs obtained by

subsets with 4,096, 8,192 and 16,384 training points. We now see that 50 iterations are insufficient

for meaningful convergence on this problem. Figure 1c) plots the SMSE against computer time

taken on our machine.4 SoD performs better than the iterative methods.

These results depend on the data set and hyperparameters. Figure 1d) shows the test-set SMSE

progression against time for 16,384 points from SYNTH8 using the true hyperparameters. Here CG

takes a similar time to direct Cholesky solving. However, there is now a part of the error-time plot

where the DD approach has better SMSEs at smaller times than either CG or SoD.

The timing results are heavily implementation and architecture dependent. For example, the

results reported so far were run on a single 3 GHz core. On our machines, the iterative methods

scale less well when deployed on multiple CPU cores. Increasing the number of cores to four (using

4. The time per iteration was measured on a separate run that was not slowed down by storing the intermediate results

required for these plots.
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Figure 2: Plot of time vs lengthscale using IFGT for matrix-vector multiplication (MVM) on the

four data sets. The Auto method was introduced in Raykar and Duraiswami (2007) as a

way to speed up IFGT in some regimes.

MATLAB, which uses Intel’s MKL), the time to perform a 16384×16384 Cholesky decomposition

decreased by a factor of 3.1, whereas a matrix vector multiply improved by only a factor of 1.7.

4.2 Results for IFGT

We focus here on whether the IFGT provides fast MVMs for the data sets in our comparison. We

used the isotropic squared-exponential kernel (which has one lengthscale parameter shared over all

dimensions). For each of the four data sets we randomly chose 5000 datapoints to construct a kernel

matrix, and a 5000-element random vector (with elements sampled from U [0,1]). Figure 2 shows

the MVM time as a function of lengthscale. For SYNTH2 and SYNTH8 the known lengthscale is 1.

For the two other problems, and indeed many standardized regression problems, lengthscales of ≈1

(the width of the input distribution) are also appropriate. Figure 2 shows that useful MVM speedups

over a direct implementation are only obtained for SYNTH2. The result on SARCOS is consistent

with Raykar and Duraiswami (2007)’s result that IFGT does not accelerate GPR on this data set.

4.3 Comparison of SoD, FITC, Hybrid and Local GPR

All of the experiments below used the squared exponential kernel with ARD parameterization (Ras-

mussen and Williams, 2006, p. 106). The test times given below include computation of the predic-

tive variances.

SoD was run with m ascending in powers of 2 from 32,64 . . . up to 4096. FITC was run with m

ranging from 8 to 512 in powers of two; this is smaller than for SoD as FITC is much more memory

intensive. Local was run with m ranging from 16 to 2048 in powers of two. For all experiments the

selection of the subset/inducing points/clusters has a random aspect, and we performed five runs.

In Figure 3 we plot the test set SMSE against hyperparameter training time (left column), and

test time (right column) for the four methods on the four data sets. Figure 4 shows similar plots

for the test set MSLL. When there are further choices to be made (e.g., subset selection methods,

joint/separate estimation of hyperparameters), we generally present the best results obtained by the

method; these choices are detailed at the end of this section for each data set individually. Further

details including tables of learned hyperparameters are provided by Chalupka (2011), although the

experiments were re-run for this paper, so there are some differences between the two.
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The empirical times deviate from theory (Table 1) most for the Local method for small m. There

is overhead due to the creation of many small matrices in MATLAB, so that (for example) m = 32 is

always slower (on our four data sets) than m = 64 and m = 128. This effect has been demonstrated

explicitly by Chalupka (2011, Figure 4.1), and accounts for the bending back observed in the plots

for Local. (The effect is present with all four data sets, but can be difficult to see in some of the

plots.)

Looking at the hyperparameter training plots (left column), it is noticeable that SoD and FITC

reduce monotonically with increasing time, and that SoD outperforms FITC on all data sets (i.e., for

the same amount of time, the SoD performance is better). On the test time plots (right column) the

pattern between SoD and FITC is reversed, with FITC being superior. These results are consistent

with theoretical scalings (Table 1): at training time FITC has worse scaling, at test time its scaling

is the same,5 and it turns out that its more sophisticated approximation does give better results.

Comparing Hybrid to SoD for hyperparameter learning, we note a general improvement in

performance for very similar time; this is because the additional cost of one FITC training step at the

end is small relative to the time taken to optimize the hyperparameters using the SoD approximation

of the marginal likelihood. At test time the Hybrid results are inferior to FITC for the same m as

expected, but the faster hyperparameter learning time means that larger subset sizes can be used

with Hybrid.

For Local, the most noticeable pattern is that the run time does not change monotonically with

m. We also note that for small m the other methods can make faster approximations than Local

can for any value of m. For Local there is a general trend for larger m to produce better results,

although on SARCOS the error actually increases with m, and for SYNTH2 the SMSE error rises for

m = 1024, 2048. However, Local often gives better performance than the other methods in the time

regimes where it operates.

We now comment on the specific data sets:

SYNTH2: This function was fairly easy to learn and all methods were able to obtain good per-

formance (with SMSE close to the noise level of 10−6) for sufficiently large m. For SoD and FITC,

it turned out that FPC gave significantly better results than random subset selection. FPC distributes

the inducing points in a more regular fashion in the space, instead of having multiple close by in

regions of high density. For Local, the joint estimation of hyperparameters was found to be signif-

icantly better than separate; this result makes sense as the target function is actually drawn from

a single GP. For FITC and Hybrid the plots are cut off at m = 128 and m = 256 respectively, as

numerical instabilities in the gpml FITC code for larger m values gave larger errors.

SYNTH8: This function was difficult for all methods to learn, notice the slow decrease in error

as a function of time. The SMSE obtained is far above the noise level of 10−3. Both SoD and FITC

did slightly better when selecting the inducing points randomly. For the Local method, again joint

estimation of hyperparameters was found to be superior, as for SYNTH2. For both SYNTH2 and

SYNTH8 we note that the lengthscales learned by the FITC approximation did not converge to the

true values even for the largest m, while convergence was observed for SoD and Local; full details

are available (Chalupka, 2011, Appendix 1).

5. In fact, careful comparison of the test time plots show that FITC takes longer than SoD; this constant-factor per-

formance difference is due to an implementation detail in gpml, which represents the FITC and SoD predictors

differently, although they could be manipulated into the same form.
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CHEM: Both SoD and FITC did slightly better when selecting the inducing points randomly.

Local with joint and separate hyperparameter training gave similar results. We report results on the

joint method, for consistency with the other data sets.

SARCOS: For SoD and FITC, FPC gave very slightly better results than random. Local with

joint hyperparameter training did better than separate training.

4.4 Comparison with Prediction using the Generative Hyperparameters

For the SYNTH2 and SYNTH8 data sets it is possible to compare the results with learned hyperpa-

rameters against those obtained with hyperparameters fixed to the true generative values. We refer

to these as the learned and fixed hyperparameter settings.

For the SoD and Local methods there is good agreement between the learned and fixed settings,

although for SoD the learned setting generally performs worse on both SMSE and MSLL for small

m, as would be expected given the small data sizes. The learned and fixed settings are noticeably

different for SoD for m ≤ 128 on SYNTH2, and m ≤ 512 on SYNTH8.

For FITC there is also good agreement between the learned and fixed settings, although on

SYNTH8 we observed that the learned model slightly outperformed the fixed model by around 0.05

nats for MSLL, and by up to 0.05 for SMSE. This may suggest that for FITC the hyperparameters

that produce optimal performance may not be the generative ones.

5. Future Directions

We have seen that Local GPR can sometimes make better predictions than the other methods for

some ranges of available computer time. However, our implementation suffers from unusual scaling

behaviour at small m due to the book-keeping overhead required to keep track of thousands of

small matrices. More careful, lower-level programming than our MATLAB code might reduce these

problems.

It is possible to combine the SoD with other methods. As a data set’s size tends to infinity, SoD

(with random selection) will always beat the other approximations that we have considered, as SoD

is the only method with no n-dependence (Table 1). Of course the other approximate methods, such

as FITC, could also be run on a subset. Investigating how to simultaneously choose the data set size

to consider, n, and the control parameter of an approximation, m, has received no attention in the

literature to our knowledge.

Some methods will have more choices than a single control parameter m. For example, Snelson

and Ghahramani (2006) optimized the locations of the m inducing points, potentially improving

test-time performance at the expense of a longer training time. A potential future area of research is

working out how to intelligently balance the computer time spent on selecting and moving inducing

points, while performing hyperparameter training, and choosing a subset size. Developing methods

that work well in a wide variety of contexts without tweaking might be challenging, but success

could be measured using the framework of this paper.

6. Conclusions

We have advocated the comparison of GPR approximation methods on the basis of prediction qual-

ity obtained vs compute time. We have explored the times required for the hyperparameter learning,

training and testing phases, and also addressed other factors that are relevant for comparing approx-
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Figure 3: SMSE (log scale) as a function of time (log scale) for the four data sets. Left: hyperpa-

rameter training time. Right: test time per test point (including variance computations,

despite not being needed to report SMSE). Points give the result for each run; lines

connect the means of the 5 runs at each m.
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Figure 4: MSLL as a function of time (log scale) for the four data sets. Left: hyperparameter

training time. Right: test time per test point. Points give the result for each run; lines

connect the means of the 5 runs at each m.
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imations. We believe that future evaluations of GP approximations should consider these factors

(Section 3), and compare error-time curves with standard approximations such as SoD and FITC.

To this end we have made our data and code available to facilitate comparisons. Most papers that

have proposed GP approximations have not compared to SoD, and on trying the methods it is often

difficult to get appreciably below SoD’s error-time curve for the learning phase. Yet these methods

are often more difficult to run and more limited in applicability than SoD.

On the data sets we considered, SoD and Hybrid dominate FITC in terms of hyperparameter

learning. However, FITC (for as long as we ran it) gave better accuracy for a given test time. SoD,

Hybrid and FITC behaved monotonically with subset/inducing-set size m, making m a useful con-

trol parameter. The Local method produces more varied results, but can provide a win for some

problems and cluster sizes. Comparison of the iterative methods, CG and DD, to SoD revealed that

they should not be run for a small fixed number of iterations, and that performance can be compa-

rable with simpler, more stable approaches. Faster MVM methods might make iterative methods

more compelling, although the IFGT method only provided a speedup on the SYNTH2 problem out

of our data sets. Assuming that hyperparameter learning is the dominant factor in computation time,

the results presented above point to the very simple Subset of Data method (or the Hybrid variant)

as being the leading contender. We hope this will act as a rallying cry to those working on GP

approximations to beat this “dumb” method. This can be addressed both by empirical evaluations

(as presented here), and by theoretical work.

Many approximate methods require choosing subsets of partitions of the data. Although farthest

point clustering (FPC) improved SoD and FITC on the low-dimensional (easiest) problem, simple

random subset selection worked similarly or better on all other data sets. Random selection also

has better scaling (no n-dependence) for the largest-scale problems. The choice of partitioning

scheme was important for Local regression: Our preliminary experiments showed that performance

was severely hampered by many small clusters produced by FPC; we recommend our recursive

partitioning scheme (RPC).
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Abstract

Lévy processes refer to a class of stochastic processes, for example, Poisson processes and Brow-

nian motions, and play an important role in stochastic processes and machine learning. Therefore,

it is essential to study risk bounds of the learning process for time-dependent samples drawn from

a Lévy process (or briefly called learning process for Lévy process). It is noteworthy that samples

in this learning process are not independently and identically distributed (i.i.d.). Therefore, results

in traditional statistical learning theory are not applicable (or at least cannot be applied directly),

because they are obtained under the sample-i.i.d. assumption. In this paper, we study risk bounds of

the learning process for time-dependent samples drawn from a Lévy process, and then analyze the

asymptotical behavior of the learning process. In particular, we first develop the deviation inequal-

ities and the symmetrization inequality for the learning process. By using the resultant inequalities,

we then obtain the risk bounds based on the covering number. Finally, based on the resulting risk

bounds, we study the asymptotic convergence and the rate of convergence of the learning process

for Lévy process. Meanwhile, we also give a comparison to the related results under the sample-

i.i.d. assumption.

Keywords: Lévy process, risk bound, deviation inequality, symmetrization inequality, statistical

learning theory, time-dependent

1. Introduction

In statistical learning theory, one of the major concerns is the risk bound, which explains the asymp-

totic behavior of the probability that a function produced by an algorithm has a sufficiently small

error. Generally, there are three essential parts in the process of obtaining risk bounds: devia-

tion or concentration inequalities, symmetrization inequalities and complexity measures of func-

tion classes. For example, Van der Vaart and Wellner (1996) showed risk bounds based on the

Rademacher complexity and the covering number by using Hoeffding’s inequality. Vapnik (1998)

gave risk bounds based on the annealed Vapnik-Chervonenkis (VC) entropy and the VC dimension,

respectively. In Vapnik (1998), Vapnik applied some classical inequalities, for example, Cher-

noff’s inequality and Hoeffding’s inequality, but also developed specific concentration inequalities

∗. This work was partly completed when the author was with the School of Computer Engineering, Nanyang Techno-

logical University, 639798, Singapore.
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to study the asymptotic behavior of the i.i.d. empirical process. Bartlett et al. (2005) proposed

the local Rademacher complexity and obtained a sharp risk bound for a particular function class

{ f ∈ F |E f 2 < βE f ,β > 0} by using Talagrand’s inequality. Moreover, there are also other investi-

gations to statistical learning theory (see Cesa-Bianchi and Gentile, 2008; Mendelson, 2008, 2002;

Koltchinskii, 2001). However, all of these results are built under the sample-i.i.d. assumption.

Samples are not always i.i.d. in practice, for example, some financial and physical behaviors are

temporally dependent, and the aforementioned research results are not applicable (or at least cannot

be applied directly) to most cases. Thus, it is essential to study the risk bounds in the scenario of

non-i.i.d. samples. The scenario of non-i.i.d. samples contains a wide variety of cases and it is

impossible to find a unified form to cover all the cases. Instead, one feasible scheme is to find some

representative processes, such as the Lévy process and the mixing process that cover several useful

cases in the scenario of non-i.i.d. samples, and then we study the theoretical properties of each

process individually.

Recently, Mohri and Rostamizadeh (2010) obtained risk bounds for stationary β-mixing se-

quences based on the Rademacher complexity. Mixing sequences can be deemed as a transition

between the i.i.d. scenario and the non-i.i.d. scenario, where the dependence between samples di-

minishes along time. Especially, by adopting a technique of independent blocks (Yu, 1994), samples

drawn from a β-mixing sequence can be transformed to an i.i.d. scenario and thus some classical

results under the sample-i.i.d. assumption can be applied to obtain the risk bounds. Jiang (2009) ex-

tended Hoeffding’s inequality to handle the situations with unbounded loss and dependent data, and

then provided probability bounds for uniform deviations in a general framework involving discrete

decision rules, unbounded loss and a dependence structure. Moreover, there are also some works

about the uniform laws for dependent processes (Nobel and Dembo, 1993).

Lévy processes are the stochastic processes with stationary and independent increments and

cover a large class of stochastic processes, for example, Brownian motions, Poisson processes,

stable processes and subordinators (see Kyprianou, 2006). Moreover, Lévy processes have been

regarded as prototypes of semimartingales and Feller-Markov processes (Applebaum, 2004b; Sato,

2004). Lévy processes have been successfully applied to practical applications in finance (Cont and

Tankov, 2006), physics (Applebaum, 2004a), signal processing (Duncan, 2009), image processing

(Pedersen et al., 2005) and actuarial science (Barndorff-Nielsen et al., 2001). Figueroa-López and

Houdré (2006) used projection estimators to estimate the Lévy density, and then gave a bound to

exhibit the discrepancy between a projection estimator and the orthogonal projection by using the

concentration inequalities for functionals of Poisson integrals. In this paper, we extend the existing

works on the infinitely divisible distribution (see Houdré, 2002; Houdré et al., 1998) to develop

the deviation inequalities for Lévy processes and then obtain the risk bounds by using the resulted

deviation inequalities. Next, we summarize the main results of this paper.

1.1 Overview of Main Results

This paper is mainly concerned with the theoretical analysis of the learning process for the time-

dependent samples drawn from a Lévy process. There are four major concerns in this paper: the

deviation inequality for Lévy process; the symmetrization inequality of the learning process; the

risk bounds and the asymptotical behavior of the learning process.

Generally, in order to obtain the risk bounds of a certain learning process, it is necessary to first

obtain the corresponding concentration (or deviation) inequalities for the learning process. Thus, we
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extend the previous works (Houdré, 2002; Houdré et al., 1998) to develop the deviation inequalities

for the Lévy process, which are suitable for the sequence of random variables at different time

points. We then present the symmetrization inequality of the learning process for Lévy process. By

applying the derived deviation and symmetrization inequalities, we obtain the risk bounds of the

learning process, which is based on the covering number. Finally, we use the resulted risk bounds to

analyze the asymptotical convergence and the rate of convergence of the learning process for Lévy

process, respectively. Meanwhile, we also give a comparison with the learning process for i.i.d.

samples.

Zhang and Tao (2010) discussed risk bounds for Lévy process with zero Gaussian component,

but their results are based on some specific assumptions to function classes. The current results do

not require any conditions of function classes except the boundedness and the Lipschitz continuity

and are valid for a more general scenario where the considered Lévy process has non-zero Gaussian

component, so they are more general than the previous results.

1.2 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we formalize the main research of

this paper. Section 3 introduces some preliminaries of the infinitely divisible (ID) distribution and

the Lévy process. We present the deviation inequalities and the symmetrization inequality of the

learning process for Lévy process in Section 4. Section 5 gives the risk bounds of the learning

process. In Section 6, we analyze the asymptotic behavior of the learning process and the last section

concludes the paper. The proofs of main results are given in the appendices including Theorem 8,

Theorem 11, Theorem 12 and Theorem 15.

2. Problem Setup

Denote X ⊂R
I as an input space and Y ⊂R

J as its corresponding output space. Let Z = (X ,Y )⊂
R

K (K = I + J) and {Zt}t≥0 be an undetermined Lévy process. Assume that Z = {Zt}t≥0 with

Zt = (xt ,yt). Let G ⊂ Y X be a function class with the domain X and the range Y . Given a loss

function ℓ : Y 2 → R and a time interval [T1,T2], it is expected to find a function g∗ ∈ G : X → Y
that minimizes the expected risk

E(ℓ◦g) :=
1

T

∫ T2

T1

∫
ℓ(g(xt),yt)dPtdt, g ∈ G , (1)

where T = T2 −T1, Pt stands for the distribution of Zt = (xt ,yt) at time t and ℓ(g(x),y) is denoted

as (ℓ◦g)(x,y).
Generally, if Pt (t ∈ [T1,T2]) are unknown, the target function g∗ usually cannot be directly

obtained by minimizing (1). Instead, we can apply the empirical risk minimization (ERM) principle

to handle this issue. Given a function class G and a sample set ZN
1 := {Ztn}N

n=1 drawn from Z in the

time interval [T1,T2] with T1 ≤ t1 < · · ·< tN ≤ T2, we define the empirical risk of g ∈ G as

EN(ℓ◦g) :=
1

N

N

∑
n=1

ℓ(g(xtn),ytn), (2)

which is considered as an approximation to the expected risk (1). Let gN ∈ G be the function that

minimizes the empirical risk (2) over G and we deem gN as an estimate to g∗ with respect to ZN
1 .

353



ZHANG AND TAO

It is noteworthy that such learning process covers many kinds of practical applications, for

example, the predicting for time series (Mukherjee et al., 1997; Kim, 2003) and the estimation of

channel state information (Biguesh and Gershman, 2006; Love et al., 2008; Tulino et al., 2005). We

take the estimation of channel state information for example.

In the estimation of channel state information, x ∈ X ⊂ R
I and y ∈ Y ⊂ R

J are regarded as the

transmit and the receive vectors, respectively. The following are the reasons why we suppose that Z

is a segment of an undetermined Lévy process:

• In fact, the tasks of the estimation of channel state information are time-dependent and can

be regarded as the approximation to unknown stochastic processes.

• The Lévy process is one of representative processes and covers a large body of stochastic pro-

cesses, that is, Brownian motions, Poisson processes, compound Poisson processes, Gamma

processes and inverse Gaussian processes (see Kyprianou, 2006).

• Many kinds of signals have the Poisson property, the martingale property or both of them.

One of the most frequently used models is y = Hx+n, where H and n are the channel matrix

and the noise vector, respectively (see Love et al., 2008; Tulino et al., 2005). The corresponding

function class G can be formalized as G := {x 7→ Hx+n : H ∈R
J ×R

I, n ∈R
J}. The loss function

ℓ is selected as the mean square error function, and then the least-square estimation is used to

find the function that minimizes the empirical risk (2). Moreover, there are also other ERM-based

methods proposed for the estimation of channel state information (see Sanchez-Fernandez et al.,

2004; Sutivong et al., 2005).

In the aforementioned learning process, we are mainly interested in the asymptotic behavior

of the quantity (E(ℓ◦g∗)−EN(ℓ◦gN)), when the sample number N goes to the infinity. Since

EN(ℓ◦g∗)−EN(ℓ◦gN)≥ 0, we have

E(ℓ◦gN) =E(ℓ◦gN)−E(ℓ◦g∗)+E(ℓ◦g∗)

≤EN(ℓ◦g∗)−EN(ℓ◦gN)+E(ℓ◦gN)−E(ℓ◦g∗)+E(ℓ◦g∗)

≤2 sup
g∈G

∣∣E(ℓ◦g)−EN(ℓ◦g)
∣∣+E(ℓ◦g∗),

and thus

0 ≤ E(ℓ◦gN)−E(ℓ◦g∗)≤ 2 sup
g∈G

∣∣E(ℓ◦g)−EN(ℓ◦g)
∣∣.

The supremum

sup
g∈G

∣∣E(ℓ◦g)−EN(ℓ◦g)
∣∣ (3)

is the so-called risk bound of the learning process for a Lévy process {Zt}t≥0.

Then, we define the loss function class

F := {Z 7→ ℓ(g(x),y) : g ∈ G}, (4)

and call F the function class in the rest of this paper. Given a sample set {Ztn}N
n=1 drawn from

{Zt}t≥0, we shortly denote for any f ∈ F ,

Et f :=
∫

f (Z)dPt , t > 0, (5)
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and

EN f :=
1

N

N

∑
n=1

f (Ztn), (6)

where Et stands for the expectation taken with respect to Zt .

According to (3), (4), (5) and (6), we have

sup
f∈F

|E f −EN f |

= sup
g∈G

∣∣E(ℓ◦g)−EN(ℓ◦g)
∣∣

= sup
g∈G

∣∣∣ 1

T

∫ T2

T1

∫
ℓ(g(xt),yt)dPtdt − 1

N

N

∑
n=1

ℓ(g(xtn),ytn)
∣∣∣

≤2 sup
g∈G

t∈[T1,T2]

∣∣∣
∫

ℓ(g(xt),yt)dPt −
1

N

N

∑
n=1

ℓ(g(xtn),ytn)
∣∣∣

=2 sup
f∈F

t∈[T1,T2]

∣∣∣Et f −EN f

∣∣∣.

Therefore, the supremum

sup
f∈F

t∈[T1,T2]

∣∣∣Et f −EN f

∣∣∣

plays an important role in studying the risk bound sup f∈F |E f −EN f | of the learning process for

Lévy process.

3. Infinitely Divisible Distributions and Lévy Processes

Since the infinitely divisible (ID) distribution is strongly related to the Lévy process, this section

first introduces the ID distribution and then briefs the Lévy process for the subsequent discussion.

3.1 ID Distributions

A probability distribution is said to be infinitely divisible if and only if it can be represented by

the distribution of the sum of an arbitrary number of i.i.d. random variables. Many probability

distributions have the infinite divisibility, for example, Poisson, geometric, lognormal, noncentral

chi-square, exponential, Gamma, Pareto and Cauchy (see Bose et al., 2002). The ID distribution

can be defined based on the characteristic function.

Definition 1 Let φ(θ) be the characteristic function of a random variable Z, that is

φ(θ) := E
{

eiθZ
}
=

∫ +∞

−∞
eiθZdP(Z). (7)

Then, the distribution of Z is infinitely divisible if and only if for any N ∈ N, there exists a charac-

teristic function φN(θ) such that

φ(θ) = φN(θ)∗ · · · ∗φN(θ)︸ ︷︷ ︸
N

,
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where “∗” stands for multiplication.

By (7), given a characteristic function φ(θ), we define the corresponding characteristic exponent

as

ψ(θ) := lnφ(θ) = ln
(

EeiθZ
)
.

Afterward, we will show that the characteristic exponent of any ID distribution has a unified form

(see Sato, 2004). Before the formal presentation, we need to give a definition of the Lévy measure

(see Applebaum, 2004a).

Definition 2 Let ν be a Borel measure defined on R
K \{0}. This ν will be a Lévy measure if

∫
RK\{0}

min{‖u‖2,1}ν(du)< ∞,

and ν({0}) = 0.

The Lévy measure describes the expected number of a certain height jump in a time interval of

the unit length. Define the indicator function for the event E as

1E =

{
1, the event E appears;

0, otherwise,

and for any ID random variable, its characteristic exponent takes the following form (see Sato,

2004).

Theorem 3 (Lévy-Khintchine) A Borel probability measure µ of a random variable Z ∈ R
K is in-

finitely divisible if and only if there exists a triplet (a,A,ν) such that for all θ∈R
K , the characteristic

exponent ψµ is of the form

ψµ(θ) =i〈a,θ〉− 1

2
〈θ,Aθ〉+

∫
RK\{0}

(
ei〈θ,u〉−1− i〈θ,u〉1‖u‖≤1

)
ν(du), (8)

where a ∈ R
K , A is a K ×K positive-definite symmetric matrix, ν is a Lévy measure on R

K \ {0},

and 〈·, ·〉 and ‖ · ‖ stand for the inner product and the norm in R
K , respectively.

Theorem 3 shows that an ID distribution can be completely determined by a triplet (a,A,ν),
where a is a drift, A is a Gaussian component and ν is a Lévy measure. Thus, we call (a,A,ν) the

generating triplet of an ID distribution.

3.2 Lévy Processes

First, we give a rigorous definition of Lévy processes.

Definition 4 A stochastic process {Zt}t≥0 on R
K is a Lévy process if it satisfies the following con-

ditions:

1. Z0 = 0, almost surely.
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2. For any n ≥ 1 and 0 ≤ t0 ≤ t1 ≤ ·· · ≤ tn, the random variables

Zt0 ,Zt1 −Zt0 , · · · ,Ztn −Ztn−1

are independent.

3. The increments are stationary, that is, the distribution of Zs+t −Zs is independent of s.

4. The process is right continuous, that is, for any 0 ≤ t ≤ s and ε > 0, we have

lim
s→t

Pr
{
|Zt −Zs|> ε

}
= 0.

According to Theorem 7.10 of Sato (2004), a Lévy process {Zt}t≥0 can be distinguished by the

distribution of Z1, which has an ID distribution with the generating triplet (a1,A1,ν1), and at any

time t > 0, Zt ∈ {Zt}t≥0 has an ID distribution with the generating triplet (at ,At ,νt). Therefore, we

call (a1,A1,ν1) the characteristic triplet of the Lévy process {Zt}t≥0. For any t > 0, there also holds

that

(at ,At ,νt) := (a1t,A1t,ν1t).

Next, we introduce the Lévy-Ito decomposition to discuss the relationship between the path of a

Lévy process and its characteristic triplet (a1,A1,ν1). The details are referred to Kyprianou (2006);

Sato (2004).

Theorem 5 (Lévy-Ito Decomposition) Consider a triplet (a1,A1,ν1) where a1 ∈ R
K , A1 is a K ×

K positive-definite symmetric matrix, ν1 is a Lévy measure on R
K \ {0}. Then, there exist four in-

dependent Lévy processes, L(1), L(2), L(3) and L(4), where L(1) is a constant drift, L(2) is a Brownian

motion, L(3) is a compound Poisson process and L(4) is a square integrable (pure jump) martingale

with an a.s. countable number of jumps of magnitude less than 1 on each finite time interval. Tak-

ing L = L(1)+L(2)+L(3)+L(4), there then exists a Lévy process L = {Zt}0≤t≤T with characteristic

exponent in the form of (8).

The proof of this theorem has been given by Chapter 4 in Sato (2004) or Chapter 2 in Kyprianou

(2006), so we omit it here. We only go through some steps of the proof to reveal the relationship

between the path of a Lévy process and its characteristic triplet (a1,A1,ν1). Recalling (8), we can

split the characteristic exponent ψ into four parts:

ψ = ψ(1)+ψ(2)+ψ(3)+ψ(4)

with

ψ(1)(θ) = i〈a1,θ〉; ψ(2)(θ) =−1

2
〈θ,A1θ〉;

ψ(3)(θ) =
∫
‖u‖≥1

(
ei〈θ,u〉−1

)
ν1(du);

ψ(4)(θ) =
∫
‖u‖<1

(
ei〈θ,u〉−1− i〈θ,u〉

)
ν1(du),

which correspond to L(1), L(2), L(3) and L(4), respectively. We also refer to Jacobsen (2005) for the

knowledge on jump processes as well as Lévy processes. At the end of this section, we give two

examples of Lévy processes in addition to the corresponding Lévy-Khintchine representations and

Lévy-Ito decompositions:
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• A Poisson process {Nt}t≥0 is a Lévy process that has a Poisson distribution with parameter

pt at any time t > 0. In the Lévy-Khintchine representation, we find that a1 and A1 are

both zero and ν1 = pδ1, where δ1 is the Dirac measure supported on {1}. In the Lévy-Ito

decomposition, its characteristic exponent is expressed as ψ(θ) = ψ(3)(θ) = p(eiθ −1).

• A scaled Brownian motion with linear drift is also a Lévy process with the characteristic

triplet (a1,A1,0) in the Lévy-Khintchine representation. In the Lévy-Ito decomposition, its

characteristic exponent is expressed as ψ(θ) = ψ(1)(θ)+ψ(2)(θ) with ψ(1)(θ) = i〈a1,θ〉 and

ψ(2)(θ) =− 1
2
〈θ,A1θ〉.

4. Deviation Inequalities and Symmetrization Inequalities

In this section, we present the deviation inequalities and symmetrization inequality of the learning

process for Lévy process.

4.1 Preliminaries

Firstly, we need to introduce some notations and conditions for the following discussion.

4.1.1 NOTATIONS

Assume that F is a function class consisting of λ-Lipschitz functions and {Zt}t≥0 ⊂ R
K is a Lévy

process with the characteristic triplet (a1,A1,ν1). Let ZN
1 = {Ztn}N

n=1 be a sample set drawn from

{Zt}t≥0 in the time interval [T1,T2]. For any t ∈ [T1,T2], we give the following definitions:

(D1) Σ
(∗)
N := sup

t∈[T1,T2]

1

N

N

∑
n=1

sup
f∈F

|Etn f −Et f |;

(D2) ϕ(α) :=
N

∑
n=1

λ2πK2αtn +
∫
RK

λ‖u‖
(
eλα‖u‖−1

)
νtn(du);

(D3) V (n) :=
∫
RK

‖u‖2νtn(du) = tn

∫
RK

‖u‖2ν1(du);

(D4) Γ(x) := x− (x+1) ln(x+1).

Note that the quantity sup f∈F |Etn f −Et f | is called the integral probability metric and has been

widely used to measure the difference between two probability distributions (see Zolotarev, 1984;

Rachev, 1991; Müller, 1997; Reid and Williamson, 2011). Recently, Sriperumbudur et al. (2012)

gave the further investigation and proposed the empirical method to compute the integral probabil-

ity metric. As mentioned by Müller (1997), the quantity sup f∈F |Etn f −Et f | is a (semi)metric to

measure the difference between the distributions of {Zt}t≥0 at two time points t and tn. In fact, given

a non-trivial function class F , the quantity sup f∈F |Etn f −Et f | is equal to zero if the distributions

at the two time points match or the two time points coincide, that is, t = tn.

4.1.2 CONDITIONS

In order to achieve the desired risk bounds, some necessary conditions need to be introduced to

specify the behavior of Lévy processes.
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(C1) The f is a partially differentiable function on R
K and there exists a constant λ > 0 such that

for any Z = (z1, · · · ,zK)
T ∈ R

K ,

max
1≤k≤K

∣∣∣∂ f (Z)

∂zk

∣∣∣≤ λ.

(C2) Denoting A1 = {ai j}K×K , there exists a constant π > 0 such that

max
1≤i, j≤K

|ai j| ≤ π.

(C3) The ν1 has a bounded support with

R = inf{ρ > 0 : ν1({u : ‖u‖> ρ}) = 0}.

Condition (C1) implies that f has bounded partial derivatives and holds for many kinds of functions,

for example, quadratic functions with bounded domains and trigonometric functions. The constant

λ is determined by the selected function and thus it is manipulatable. Condition (C2) implies that all

entries of A1 are bounded. Condition (C3) implies the Lévy measure ν1 has a bounded support. To

take an example of Conditions (C2)-(C3), we refer to Poisson processes whose characteristic triplet

is (0,0,ν1) with ν1 supporting on {1}. Afterwards, we come up with the deviation inequalities of

the learning process for Lévy process.

4.2 Deviation Inequalities

Deviation inequalities play an essential role in obtaining risk bounds of a certain learning pro-

cess. Generally, specific deviation inequalities need to be developed for different learning pro-

cesses. There are a lot of popular concentration inequalities and deviation inequalities, for example,

Hoeffding’s inequality, McDiarmid’s inequality, Bennett’s inequality, Bernstein’s inequality and Ta-

lagrand’s inequality, which are all valid under the sample-i.i.d. assumption. Moreover, there have

been the deviation inequalities for ID distributions and Lévy processes both with zero Gaussian

components proposed by Houdré (2002); Houdré and Marchal (2008), respectively. Here, we ex-

tend the deviation results in Houdré (2002) to develop the deviation inequalities of the learning

process for Lévy process, which is related to a sequence of random variables taking values from a

Lévy process at different time points.

Based on a fact that the vector formed by N independent ID random vectors is itself infinitely

divisible, the following theorem and corollary can be derived from Theorem 1 & Corollary 1 of

Houdré (2002) and Proposition 2 of Houdré et al. (1998). We also refer to Zhang and Tao (2011a,b)

for the related discussions.

Theorem 6 Assume that f is a function satisfying Condition (C1) and {Zt}t≥0 ⊂ R
K is a Lévy

process with the characteristic triplet (a1,A1,ν1) satisfying Condition (C2). Let ZN
1 = {Ztn}N

n=1

(t1 < t2 < · · · < tN) be a set of time-dependent samples drawn from {Zt}t≥0 in the time interval

[T1,T2]. Define a function F : RNK → R as

F
(
ZN

1

)
:=

N

∑
n=1

f (Ztn). (9)
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If Condition (C1) is valid and Eeα‖zt‖
∣∣
t=1

< +∞ holds for some α > 0, then we have for any 0 <
ξ < ϕ((M/λ)−),

Pr
{∣∣F

(
ZN

1

)
−EF

∣∣> ξ
}
≤ 2exp

{
−
∫ ξ

0
ϕ−1(s)ds

}
, (10)

where the expectation E is taken on all {Zt1 , · · · ,ZtN}, ϕ is given in Definition (D2), ϕ(a−) is the

left-hand limit of ϕ at a, M = sup
{

α > 0 : Eeα‖zt‖
∣∣
t=1

<+∞
}

and ϕ−1 is the inverse of ϕ(α) with

the domain of 0 < α < M/λ.

In Theorem 6, we present a deviation inequality of the learning process for the Lévy process

satisfying Condition (C2). However, there are two drawbacks of this result that will bring some

difficulties to the future theoretical analysis of asymptotic behavior.

• The deviation inequality (10) is represented by the integral of ϕ−1, and thus the inequality

cannot explicitly reflect the asymptotic behavior as N goes to the infinity.

• Recalling Definition (D2), there is an integral term in the expression of the function ϕ. Thus,

given a certain ξ > 0, it may be difficult to justify whether the ξ satisfies the condition ξ <
ϕ((M/λ)−).

In order to overcome these drawbacks, we add Condition (C3) to achieve another deviation inequal-

ity for the learning process.

Corollary 7 Follow notations in Theorem 6. If Conditions (C1)-(C3) are all valid, then we have

for any ξ > 0,

Pr
{∣∣∣F

(
ZN

1

)
−EF

∣∣∣> ξ
}

≤2exp

{
∑N

n=1(λ
2πK2αtn +V (n))

(λR)2
Γ

(
λRξ

∑N
n=1(λ

2πK2αtn +V (n))

)}

≤2exp

{
NT1(λ

2πK2α+V )

(λR)2
Γ

(
λRξ

NT2(λ2πK2α+V )

)}
, (11)

where Γ is given in Definition (D4) and

V :=
∫
RK

‖u‖2ν1(du).

The second inequality of the above result is derived from the facts that there holds that V (n) ≤ T2V

for any 1 ≤ n ≤ N and the function Γ(x) is a monotonically decreasing function when x > 0 as

shown in Figure 1.

Compared to the result (10), the deviation inequality (11) holds for any ξ > 0 and its right-

hand-side is represented by using the function Γ(x) (x > 0). Therefore, we can directly analyze the

asymptotic behavior as N goes to the infinity. In fact, since the function Γ(x) is smaller than zero

when x > 0, the right-hand-side of (11) will go to zero for any ξ > 0 when N approaches to the

infinity. Next, we present the symmetrization inequality of the learning process for Lévy process.

360



RISK BOUNDS FOR LÉVY PROCESSES
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Figure 1: The Function Curve of Γ(x)

4.3 Symmetrization Inequality

Symmetrization inequalities are mainly used to replace the expected risk by an empirical risk com-

puted on another sample set that is independent of the given sample set but has the identical distri-

bution. In this manner, risk bounds can be achieved by using some kinds of complexity measures,

for example, the covering number and the VC dimension. However, the classical symmetrization

results (see Bousquet et al., 2004) are only valid under the sample-i.i.d. assumption. Afterward, we

propose the symmetrization inequality of the learning process for Lévy process.

For clarity of presentation, we give a notation that will be used in the rest of the paper. Given a

sample set ZN
1 = {Ztn}N

n=1 (t1 < t2 < · · · < tN), we denote Z′N
1 := {Z′

tn
}N

n=1 as the ghost sample set

of ZN
1 , where Z′

tn
has the same distribution as Ztn for any 1 ≤ n ≤ N. Then, the following theorem

presents the symmetrization inequality of the learning process.

Theorem 8 Assume that F is a function class with the range [a,b] and {Zt}t≥0 ⊂ R
K is a Lévy

process. Let ZN
1 and Z′N

1 be drawn from {Zt}t≥0 in the time interval [T1,T2]. Then, given any

ξ > Σ
(∗)
N , we have for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ = ξ−Σ
(∗)
N ,

Pr





sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣> ξ





≤ 2Pr

{
sup
f∈F

∣∣E′
N f −EN f

∣∣> ξ′

2

}
. (12)
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This theorem shows that given ξ > 0, the probability of the event:

sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣> ξ

can be bounded by using the probability of the event:

∣∣E′
N f −EN f

∣∣> ξ′

2

that is only determined by the characteristics of the sample sets ZN
1 and Z′N

1 , when N ≥ 8(b−a)2

(ξ′)2 for

any given ξ′ > 0 with ξ′ = ξ−Σ
(∗)
N . Compared with the classical symmetrization result under the

sample-i.i.d. assumption (see Bousquet et al., 2004), the derived symmetrization inequality (12)

incorporated a discrepancy term Σ
(∗)
N and the two results coincide when the time interval [T1,T2]

shrinks to one time point that match to t, that is, T1 = T2 = t that results in Σ
(∗)
N = 0.

In the next section, we use the resulted deviation inequalities and symmetrization inequality to

achieve the risk bounds of the learning process for Lévy process.

5. Risk Bounds of Learning Processes for Lévy Processes

In this section, we present the risk bounds of the learning process for Lévy process. Since the

resulting bounds are based on the covering number, we first introduce the definition of the cover

and then present the definition of the covering number of F .

Definition 9 Let N be a collection of sets. Then, the collection N is said to be a cover of a given

set Ω, if for any x ∈ Ω, there always exists an element of N that contains the point x.

Next, we define the the covering number of F as follows.

Definition 10 Let ZN
1 be a sample set drawn from a distribution Z. For any 1 ≤ p ≤ ∞ and ξ > 0,

the covering number of F at radius ξ, with respect to ℓp(Z
N
1 ), denoted by N (F ,ξ, ℓp(Z

N
1 )) is the

minimum size of a cover of radius ξ.

Subsequently, we come up with the main results of this paper.

Theorem 11 Assume that F is a function class composed of functions satisfying Condition (C1)
with the range [a,b] and {Zt}t≥0 ⊂ R

K is a Lévy process with the characteristic triplet (a1,A1,ν1)
satisfying Condition (C2). Let ZN

1 and Z′N
1 be drawn from {Zt}t≥0 in the time interval [T1,T2], and

denote Z2N
1 := {ZN

1 ,Z
′N
1 }. Given any Σ

(∗)
N < ξ < Σ

(∗)
N + 8ϕ((M/λ)−)

N
, if Eeα‖zt‖

∣∣
t=1

< +∞ holds for
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some α > 0, then we have for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ = ξ−Σ
(∗)
N ,

Pr

{
sup
f∈F

1

2

∣∣∣E f −EN f

∣∣∣> ξ

}

≤Pr





sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣> ξ





≤8EN
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
−
∫ Nξ′

8

0
ϕ−1(s)ds

}
, (13)

where ϕ(a−) denotes the left-hand limit of ϕ at the point a, M = sup
{

α > 0 : Eeα‖zt‖
∣∣
t=1

<+∞
}

and ϕ−1 is the inverse of ϕ(α) with the domain of 0 < α < M/λ.

The result shown in this theorem has the same drawbacks as those of Theorem 6. The right-

hand-side of the inequality (13) is represented by using the integrals of ϕ−1, so it is difficult to find

the asymptotic behavior of the risk bound as N goes to the infinity. The range 0 < ξ′ < 8ϕ((M/λ)−)
N

of ξ′ is expressed by incorporating the function ϕ that contains an integral term [see Definition

(D2)]. These will bring difficulties to the future theoretical analysis of asymptotic convergence.

To overcome the two drawbacks, we develop another risk bound of the learning process for Lévy

process by adding a mild condition (C3) that requires that the Lévy measure ν have a bounded

support.

Theorem 12 Follow notations in Theorem 11. Given any ξ > Σ
(∗)
N , if Conditions (C1)-(C3) are

valid, then we have for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ = ξ−Σ
(∗)
N ,

Pr

{
sup
f∈F

1

2

∣∣∣E f −EN f

∣∣∣> ξ

}

≤Pr





sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣> ξ





≤8EN
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
NT1(λ

2πK2α+V )

(λR)2
Γ

(
λR(ξ−Σ

(∗)
N )

8T2(λ2πK2α+V )

)}
, (14)

where Γ is given in Definition (D4).

This theorem shows that under Conditions (C1)-(C3), given any ξ > Σ
(∗)
N , the probability of the

event that for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ = ξ−Σ
(∗)
N ,

sup
f∈F

∣∣∣E f −EN f

∣∣∣> 2ξ
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can be bounded by the last term of (14). Until now, we have achieved the risk bound (3) and

the result (14) can explicitly reflect the asymptotic behavior as N goes to the infinity. Following

this result, the next section will discuss the asymptotical behavior of the learning process for Lévy

process.

6. Convergence Analysis

Based on the risk bound (14), this section presents a detailed theoretical analysis to asymptotic

convergence and the rate of convergence of the learning process for Lévy process. Meanwhile, we

also give a comparison with the related results of the learning process for i.i.d. samples.

6.1 Asymptotic Convergence

In statistical learning theory, it is well-known that the complexity of function classes is the main

factor to the asymptotic convergence of the learning process for i.i.d. samples (see Vapnik, 1998;

Van der Vaart and Wellner, 1996; Mendelson, 2003).

Based on Theorem 12, we show that the asymptotic convergence of the learning process for

Lévy process is affected by two factors: the covering number N (F ,ξ′/8, ℓ1(Z
2N
1 )) and the quantity

Σ
(∗)
N .

Recalling Definition (D4), it is noteworthy that there is only one solution x = 0 to the equation

Γ(x) = 0 and Γ(x) is monotonically decreasing when x ≥ 0 (see Figure 1). Thus, according to

Theorem 12, we can obtain the following result that describes the asymptotic convergence of the

learning process for Lévy process.

Theorem 13 Assume that F is a function class composed of functions satisfying Condition (C1)
with the range [a,b] and {Zt}t≥0 ⊂ R

K is a Lévy process with the characteristic triplet (a1,A1,ν1)
satisfying Conditions (C2) and (C3). Let ZN

1 = {Ztn}N
n=1 and Z′N

1 = {Z′
tn
}N

n=1 be drawn from {Zt}t≥0

in the time interval [T1,T2], and denote Z2N
1 := {ZN

1 ,Z
′N
1 }. If the following condition holds:

lim
N→+∞

lnEN
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

N
<+∞, (15)

then we have for any ξ > Σ
(∗)
N with ξ′ = ξ−Σ

(∗)
N ,

lim
N→+∞

Pr

{
sup
f∈F

∣∣E f −EN f
∣∣> 2ξ

}
= 0, (16)

where E f and EN f are defined in (1) and (2), respectively.

As shown in Theorem 13, if the covering number N (F ,ξ′/8, ℓ1(Z
2N
1 )) satisfies the condition

(15), the probability of the event

sup
f∈F

∣∣E f −EN f
∣∣> 2ξ

will converge to zero for any ξ > Σ
(∗)
N , when the sample number N goes to the infinity. This is

partially in accordance with the classical result given by Theorem 2.3 of Mendelson (2003): the

probability of the event

sup
f∈F

∣∣E f −EN f
∣∣> ξ (17)
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will converge to zero for any ξ > 0, if the covering number N
(
F ,ξ, ℓ1(Z

N
1 )
)

satisfies the following

condition:

lim
N→+∞

lnE
{

N
(
F ,ξ, ℓ1(Z

N
1 )
)}

N
<+∞. (18)

Note that in the learning process for Lévy process, the uniform convergence of the empirical

risk EN f to the expected risk E f may not hold, because the limit (16) does not hold for any ξ > 0

but for any ξ > Σ
(∗)
N . By contrast, the inequality (17) holds for all ξ > 0 in the learning process for

i.i.d. samples, if the condition (18) is satisfied. Again, these two results coincide when the time

interval [T1,T2] shrinks to one single time point that matches to t, that is, T1 = T2 = t that results in

Σ
(∗)
N = 0.

Interestingly, we show below that by ignoring the quantity Σ
(∗)
N , the learning process for Lévy

process has a faster rate of convergence than the classical result (see Mendelson, 2003, Theorem

2.3) in the large-derivation case.

6.2 Rate of Convergence

The classical result (see Mendelson, 2003, Theorem 2.3) is actually derived from Hoeffding’s in-

equality. Thus, it is said to be of Hoeffding-type and can directly lead to its alternative expression

as follows:

sup
f∈F

∣∣EN f −E f
∣∣≤ O



(

lnE
{

N
(
F ,ξ, ℓ1(Z

N
1 )
)}

− ln(ε/8)

N

) 1
2


 , (19)

which implies that the rate of convergence of the i.i.d. learning process is up to O(1/
√

N).
Recalling the classical Bennett’s inequality (Bennett, 1962; Bousquet, 2002), we can find that

the expression of the risk bound (14) is similar to that of Bennett’s inequality, that is, both of them

are in the form of eΓ(x) with Γ(x) = x− (x+ 1) ln(x+ 1). For convenience, this form is said to be

of Bennett-type. Differing from the Hoeffding-type result (see Mendelson, 2003, Theorem 2.3), it

is difficult to directly achieve the alternative expression of the Bennett-type result (14), because it

is difficult to obtain the analytical expression of the inverse function of Γ(x). Instead, one generally

uses the term −x2

2+(2x/3) to approximate the function Γ(x) and then get the so-called Bernstein’s in-

equality. In this way, we can obtain the following alternative expression of the Bennett-type result

(14):1

sup
f∈F

∣∣EN f −E f
∣∣≤2Σ

(∗)
N +

64λRT2

(
lnE

{
N
(
F ,ξ′/8, ℓ1(Z

N
1 )
)}

− ln(ε/8)
)

3NT1

+
16T2

√
2(λ2πK2α+V )

(
lnE

{
N
(
F ,ξ′/8, ℓ1(Z

N
1 )
)}

− ln(ε/8)
)

√
NT1

, (20)

which implies that the rate of convergence of the learning process for Lévy process is also up to

O(1/
√

N), which is in accordance with the classical result (19), if the discrepancy term Σ
(∗)
N is

ignored.

1. The details are referred to http://ocw.mit.edu/courses/mathematics/

18-465-topics-in-statistics-statistical-learning-theory-spring-2007/lecture-notes/l6.pdf.
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Here, we adopt a new method to obtain another alternative expression of the Bennett-type risk

bound (14) and show that the rate of convergence of the learning process can be up to o(1/N
1

1.3 ) in

the large-deviation case.

Remark 14 Here, “large-deviation” means that the discrepancy between the empirical risk and

the expected risk is large (or not small). Given any ξ > Σ
(∗)
N with ξ′ := ξ−Σ

(∗)
N , one of our ma-

jor concerns is the probability Pr
{

sup f∈F

∣∣EN f −E f
∣∣> ξ

}
, and then we say that the case that

λRξ′

8T2(λ2πK2α+V )
> 1.719 is of large-deviation, that is, ξ > 13.752T2(λ

2πK2α+V )
λR

+Σ
(∗)
N .

Theorem 15 Follow the notations and conditions of Theorem 12. Then, given any

ξ > 13.752T2(λ
2πK2α+V )

λR
+Σ

(∗)
N and for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ = ξ−Σ
(∗)
N , we have with probabil-

ity at least 1− ε,

sup
f∈F

∣∣EN f −E f
∣∣≤ 2Σ

(∗)
N +

27.504T2(λ
2πK2α+V )

λR
+

16T2(λ
2πK2α+V )

λR

×
(
(λR)2

(
lnE

{
N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)}

− ln(ε/8)
)

NT1(λ2πK2α+V )

) 1
γ

,

where

ε := 8EN
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
NT1(λ

2πK2α+V )

(λR)2
Γ

(
λR(ξ−Σ

(∗)
N )

8T2(λ2πK2α+V )

)}
,

and 0 < γ ≤ γ
(

λRξ′

8T2(λ2πK2α+V )

)
< 1.3 with

γ(x) :=
ln
(
(x+1) ln(x+1)− x

)

lnx
.

The above theorem provides another upper bound of the risk bound sup f∈F

∣∣EN f −E f
∣∣ in the

large-deviation case, where 1.719 is the numerical solution to the equation γ(x) = 0. Compared to

the classical result (19), there is a discrepancy quantity Σ
(∗)
N that also appears in the Bernstein-type

result (20). Interestingly, in the large-deviation case, the risk bound (14) can provide a faster rate

o
(

1

N1/1.3

)
of convergence than the rate O

(
1

N1/2

)
of the classical result (19) and the Bernstein-type

result (20). Note that the rate o
(

1

N1/1.3

)
will not hold if the large-deviation case is not valid (that is,

0 < λRξ′

8T2(λ2πK2α+V )
≤ 1.719), while the Bernstein-type result (20) for the learning process performs

well and provides the rate O
(

1

N1/2

)
regardless of whether the large-deviation case is valid.

7. Conclusion

In this paper, we study the risk bounds of the learning process for time-dependent samples drawn

from a Lévy process. We first provide the deviation inequalities and the symmetrization inequality

of the learning process, respectively. We then use the resulted deviation inequalities and sym-

metrization inequality to derive the risk bounds based on the covering number.
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By using the risk bound shown in Theorem 12, we analyze the asymptotic convergence and

the rate of convergence of the learning process for Lévy process. We point out that the asymptotic

convergence of such learning process is affected by two factors: the complexities of the function

class F measured by the covering number and the quantity Σ
(∗)
N . This is partially in accordance

with the classical result on the asymptotic convergence of the learning process for i.i.d. samples

(see Mendelson, 2003). Due to the quantity Σ
(∗)
N , the uniform convergence of the learning process

for Lévy process may not be valid. We also show that the rate of convergence of the learning process

is up to O(1/
√

N), which matches with the the classical result under the sample-i.i.d. assumption.

Furthermore, we adopt a new method to obtain another alternative expression of the risk bound

(14) and then find that the rate of convergence of the learning process can reach o(1/N
1

1.3 ) in the

large-deviation case. Note that as stated in Sections 3 & 5, the faster rate of convergence is actually

provided by the specific deviation inequality (17) which is of Bennett-type (that is, its expression is

similar to that of Bennett’s inequality), while the classical result (19) is derived from Hoeffding’s

inequality (see Mendelson, 2003).

In our future work, we will attempt to study risk bounds for other stochastic processes via

some specific concentration or deviation inequalities, for example, stochastic processes with ex-

changeable increments that are a well-known generalization of stochastic processes with indepen-

dent increments (Kallenberg, 1973; Kallenberg et al., 1975). Then, we will develop the risk bounds

of the learning process for Lévy process by using other complexity measures, for example, the

Rademacher complexity and the fat-shattering dimension.
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Appendix A. Proof of Theorem 8

Proof of Theorem 8. Let f̂ and t̂ be the function and the time achieving the supremum

sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣

with respect to ZN
1 , respectively. According to Definition (D1), we have

∣∣Et̂ f̂ −EN f̂
∣∣=
∣∣Et̂ f̂ − 1

N

N

∑
n=1

Etn f̂ +
1

N

N

∑
n=1

Etn f̂ −EN f̂
∣∣

≤Σ
(∗)
N +

∣∣ 1

N

N

∑
n=1

Etn f̂ −EN f̂
∣∣,

which can lead to for any ξ > Σ
(∗)
N with ξ′ = ξ−Σ

(∗)
N ,

Pr
{∣∣Et̂ f̂ −EN f̂

∣∣> ξ
}
≤ Pr

{
∣∣ 1

N

N

∑
n=1

Etn f̂ −EN f̂
∣∣> ξ′

}
.
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According to the triangle inequality, we have

∣∣ 1

N

N

∑
n=1

Etn f̂ −EN f̂
∣∣−
∣∣ 1

N

N

∑
n=1

Etn f̂ −E′
N f̂
∣∣≤ |E′

N f̂ −EN f̂ |. (21)

Let A stand for an event and denote the indicator function of the event A as

1A =

{
1, if A occurs;

0, otherwise.

By denoting ∧ as the conjunction of two events, it is followed from (21) that
(

1| 1
N ∑N

n=1 Etn f̂−EN f̂ |>ξ′

)(
1| 1

N ∑N
n=1 Etn f̂−E′

N f̂ |< ξ′
2

)

=1{| 1
N ∑N

n=1 Etn f̂−EN f̂ |>ξ′}∧
{
|E′

N f̂− 1
N ∑N

n=1 Etn f̂ |< ξ′
2

}

≤1|E′
N f̂−EN f̂ |> ξ′

2

.

Then, taking the expectation with respect to Z′N
1 gives

(
1∣∣ 1

N ∑N
n=1 Etn f̂−EN f̂

∣∣>ξ′

)
Pr′
{
∣∣ 1

N

N

∑
n=1

Etn f̂ −E′
N f̂
∣∣< ξ′

2

}

≤Pr′
{∣∣E′

N f̂ −EN f̂
∣∣> ξ′

2

}
. (22)

By Chebyshev’s inequality, we have for any ξ′ > 0,

Pr′
{
∣∣ 1

N

N

∑
n=1

Etn f̂ −E′
N f̂
∣∣≥ ξ′

2

}
=Pr′

{
∣∣

N

∑
n=1

(Etn f̂ − f̂ (Z′
tn
)
∣∣≥ Nξ′

2

}

≤
4E

{
∑N

n=1

(
Etn f̂ − f̂ (Z′

tn
)
)2
}

N2(ξ′)2

≤4N(b−a)2

N2(ξ′)2
=

4(b−a)2

N(ξ′)2
. (23)

Subsequently, according to (22) and (23), we have for any ξ′ > 0,

Pr′
{∣∣E′

N f̂ −EN f̂
∣∣> ξ′

2

}
≥
(

1∣∣ 1
N ∑N

n=1 Etn f̂−EN f̂

∣∣>ξ′

)(
1− 4(b−a)2

N(ξ′)2

)
.

Let
4(b−a)2

N(ξ′)2
≤ 1

2

and take the expectation with respect to ZN
1 . Given any ξ > Σ

(∗)
N , we then have for any N ≥ 8(b−a)2

(ξ′)2

with ξ′ = ξ−Σ
(∗)
N ,

Pr
{∣∣Et̂ f̂ −EN f̂

∣∣> ξ
}
≤2Pr

{
∣∣ 1

N

N

∑
n=1

Etn f̂ −EN f̂
∣∣> ξ′

2

}

≤2Pr

{∣∣E′
N f̂ −EN f̂

∣∣> ξ′

2

}
.
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This completes the proof. �

Appendix B. Proofs of Theorems 11 & 12

Proof of Theorem 11. Consider {εn}N
n=1 as independent Rademacher random variables, that is,

independent {−1,1}-valued random variables with equal probability of taking either value. Given

{εn}N
n=1 and Z2N

1 , denote −→
ε := (ε1, · · · ,εN ,−ε1, · · · ,−εN)

T , (24)

and for any f ∈ F ,

−→
f (Z2N

1 ) :=
(

f (Z′
t1
), · · · , f (Z′

tN
), f (Zt1), · · · , f (ZtN )

)T
. (25)

According to (6) and Theorem 8, given any ξ > Σ
(∗)
N , we have for any N ≥ 8(b−a)2

(ξ′)2 with ξ′ =

ξ−Σ
(∗)
N ,

Pr





sup
f∈F

t∈[T1,T2]

∣∣Et f −EN f
∣∣> ξ





≤2Pr

{
sup
f∈F

∣∣E′
N f −EN f

∣∣> ξ′

2

}
(by Theorem 8)

=2Pr

{
sup
f∈F

∣∣∣ 1

N

N

∑
n=1

(
f (Z′

tn
)− f (Ztn)

)∣∣∣> ξ′

2

}

=2Pr

{
sup
f∈F

∣∣∣ 1

N

N

∑
n=1

εn

(
f (Z′

tn
)− f (Ztn)

)∣∣∣> ξ′

2

}
(since Z′

tn
and Ztn are i.i.d.)

=2Pr

{
sup
f∈F

∣∣∣ 1

2N

〈−→
ε ,

−→
f (Z2N

1 )
〉∣∣∣> ξ′

4

}
. (by (24) and (25)) (26)

Fix a realization of Z2N
1 and let Λ be a ξ′/8-radius cover of F with respect to the ℓ1(Z

2N
1 ) norm.

Since F is composed of the λ-Lipschitz functions with the range [a,b], we assume that the same

holds for any h ∈ Λ. If f̂ is the function that achieves sup f∈F
1

2N

∣∣〈−→ε ,
−→
f (Z2N

1 )
〉∣∣ > ξ′

4
, there must

be an ĥ ∈ Λ that satisfies that

1

2N

N

∑
n=1

(
| f̂ (Z′

tn
)− ĥ(Z′

tn
)|+ | f̂ (Ztn)− ĥ(Ztn)|

)
<

ξ′

8
,

and meanwhile,

sup
h∈Λ

1

2N

∣∣〈−→ε ,
−→
h (Z2N

1 )
〉∣∣> ξ′

8
.

Therefore, for the realization of Z2N
1 , we arrive at

Pr

{
sup
f∈F

∣∣∣ 1

2N

〈−→
ε ,

−→
f (Z2N

1 )
〉∣∣∣> ξ′

4

}
≤ Pr

{
sup
h∈Λ

∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}
. (27)
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Moreover, we denote the event

A :=

{
Pr

{
sup
h∈Λ

∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}}
,

and let 1A be the characteristic function of the event A. By Fubini’s Theorem, we have

Pr{A}= E
{

E−→
ε

{
1A

}∣∣ Z2N
1

}
= E

{
Pr

{
sup
h∈Λ

∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}∣∣ Z2N
1

}
. (28)

Fix a realization of Z2N
1 again. According to (24), (25) and Theorem 6, we have

Pr

{
sup
h∈Λ

∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}

≤|Λ|max
h∈Λ

Pr

{∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}

=N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

max
h∈Λ

Pr

{∣∣E′
Nh−ENh

∣∣> ξ′

4

}

≤N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

max
h∈Λ

Pr

{
| 1

N

N

∑
n=1

Etnh−E′
Nh|+ | 1

N

N

∑
n=1

Etnh−ENh|> ξ′

4

}

≤2N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

max
h∈Λ

Pr

{
∣∣ 1

N

N

∑
n=1

Etnh−ENh
∣∣> ξ′

8

}

≤4N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
−
∫ Nξ′

8

0
ϕ−1(s)ds

}
. (29)

The combination of (26), (27), (28) and (29) leads to the result (13). This completes the proof. �

In the similar way, we can also prove Theorem 12.

Proof of Theorem 12. Similarly, by (11), we have

Pr

{
sup
h∈Λ

∣∣∣ 1

2N

〈−→
ε ,

−→
h (Z2N

1 )
〉∣∣∣> ξ′

8

}

≤2N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

max
h∈Λ

Pr

{
∣∣ 1

N

N

∑
n=1

Etnh−ENh
∣∣> ξ′

8

}

≤4N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
NT1(λ

2πK2α+V )

(λR)2
Γ

(
λR(ξ−Σ

(∗)
N )

8T2(λ2πK2α+V )

)}
. (30)

Then, the combination of (26), (27), (28) and (30) can lead to the result (14). This completes the

proof. �

B.1 Proof of Theorem 15

Proof of Theorem 15. Given any x > 1, consider the following equation with respect to γ > 0

x− (x+1) ln(x+1) =−xγ, (31)
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and denote its solution as

γ(x) :=
ln
(
(x+1) ln(x+1)− x

)

ln(x)
. (32)

It is evident that γ(x) is a continuously differentiable function with respect to x > 1 and there is only

one solution to the equation γ(x) = 0. Its numerical solution is x ≈ 1.719 and γ(x)> 0 holds for all

x > x ≈ 1.719. Then, given any x > 1.719, we have for any 0 < γ̃ ≤ γ(x),

x− (x+1) ln(x+1)≤−x γ̃. (33)

By combining Theorem 12, (31), (32) and (33), we can straightforwardly show an upper bound

of the risk bound sup f∈F

∣∣EN f −E f
∣∣ in the large-deviation case: letting

ε := 8EN
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)

exp

{
NT1(λ

2πK2α+V )

(λR)2
Γ

(
λR(ξ−Σ

(∗)
N )

8T2(λ2πK2α+V )

)}
.

and with probability at least 1− ε,

sup
f∈F

∣∣EN f −E f
∣∣≤ 2Σ

(∗)
N +

27.504T2(λ
2πK2α+V )

λR
+

16T2(λ
2πK2α+V )

λR

×
(
(λR)2

(
lnE

{
N
(
F ,ξ′/8, ℓ1(Z

2N
1 )
)}

− ln(ε/8)
)

NT1(λ2πK2α+V )

) 1
γ

,

where 0 < γ ≤ γ
(

λRξ′

8T2(λ2πK2α+V )

)
with

λRξ′

8T2(λ2πK2α+V )
> 1.719. Thus, we only need to find the upper

bound of the function γ(x) when x > 1.719.

According to (32), for any x > 1.719, we consider the derivative of γ(x)

γ ′(x) =
ln(x+1)

ln(x)
(
(x+1) ln(x+1)− x

) − ln
(
(x+1) ln(x+1)− x

)

x(lnx)2
, (34)

and draw the function curve of γ ′(x) in Figure 2.

Figure 2 shows that there is only one solution to the equation γ ′(x) = 0 (x > 1.719). Letting

the solution be x̂, we then have γ ′(x) > 0 (1.719 < x < x̂) and γ ′(x) < 0 (x > x̂), that is, γ(x) is

monotonically decreasing when x > x̂. Meanwhile, by (34), there holds that

lim
x→+∞

γ ′(x) = 0. (35)

Furthermore, we study the second derivative of γ ′′(x)

γ ′′(x) =
ln((x+1) ln(x+1)− x)

x2(lnx)2
− 1

(x+1)(x− (x+1) ln(x+1)) lnx

+
2ln((x+1) ln(x+1)− x)

x2(lnx)3
− (ln(x+1))2

(x− (x+1) ln(x+1))2 lnx

+
2ln(x+1)

x(lnx)2(x− (x+1) ln(x+1))
, (36)
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Figure 2: The Function Curve of γ ′(x)
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Figure 3: The Function Curve of γ ′′(x)
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and draw the function curve of γ ′′(x) in Figure 3. This figure shows that there is a solution to the

equation γ ′′(x) = 0 and its value approximately equals to 137.67. Moreover, according to (36), we

arrive at

lim
x→+∞

γ ′′(x) = 0. (37)

Therefore, by combining (34), (35), (36) and (37), we obtain that γ(x) has only one global

maximum point when x > 1.719 and thus the solution x̂ to the equation γ′(x) = 0 also achieves

x̂ = arg max
x>1.719

γ(x).

Our further numerical experiment shows that the value of x̂ approximately equals to 69.85 and

the maximum of γ(x) (x > 1.719) is not larger than 1.3 (see Figure 4). This completes the proof. �
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Figure 4: The Function Curve of γ(x)
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Processes. Birkhäuser Boston, 2005.

W. Jiang. On the uniform deviations of general empirical risks with unboundedness, dependence,

and high dimensionality. Journal of Machine Learning Research, 10:977–996, 2009.

O. Kallenberg. Canonical representations and convergence criteria for processes with interchange-

able increments. Probability Theory and Related Fields, 27(1):23–36, 1973.

O. Kallenberg et al. On symmetrically distributed random measures. Trans. Amer. Math. Soc, 202:

105–121, 1975.

374



RISK BOUNDS FOR LÉVY PROCESSES
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K. Sato. Lévy Processes and Infinite Divisible Distributions (Cambridge Studies in Advanced Math-

ematics). USA: Cambridge University Press, 2004.

375



ZHANG AND TAO

B.K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, and G.R.G. Lanckriet. On the em-

pirical estimation of integral probability metrics. Electronic Journal of Statistics, 6:1550–1599,

2012.

A. Sutivong, M. Chiang, T.M. Cover, and Y.H. Kim. Channel capacity and state estimation for

state-dependent gaussian channels. IEEE Transactions on Information Theory, 51(4):1486–1495,

2005.
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Abstract

We consider the minimum error entropy (MEE) criterion and an empirical risk minimization learn-

ing algorithm when an approximation of Rényi’s entropy (of order 2) by Parzen windowing is

minimized. This learning algorithm involves a Parzen windowing scaling parameter. We present a

learning theory approach for this MEE algorithm in a regression setting when the scaling parame-

ter is large. Consistency and explicit convergence rates are provided in terms of the approximation

ability and capacity of the involved hypothesis space. Novel analysis is carried out for the gen-

eralization error associated with Rényi’s entropy and a Parzen windowing function, to overcome

technical difficulties arising from the essential differences between the classical least squares prob-

lems and the MEE setting. An involved symmetrized least squares error is introduced and analyzed,

which is related to some ranking algorithms.

Keywords: minimum error entropy, learning theory, Rényi’s entropy, empirical risk minimization,

approximation error

1. Introduction

Information theoretical learning is inspired by introducing information theory into a machine learn-

ing paradigm. Within this framework algorithms have been developed for several learning tasks,

including regression, classification, and unsupervised learning. It attracts more and more attention

because of its successful applications in signal processing, system engineering, and data mining.

c©2013 Ting Hu, Jun Fan, Qiang Wu and Ding-Xuan Zhou.
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A systematic treatment and recent development of this area can be found in Principe (2010) and

references therein.

Minimum error entropy (MEE) is a principle of information theoretical learning and provides a

family of supervised learning algorithms. It was introduced for adaptive system training in Erdog-

mus and Principe (2002) and has been applied to blind source separation, maximally informative

subspace projections, clustering, feature selection, blind deconvolution, and some other topics (Er-

dogmus and Principe, 2003; Principe, 2010; Silva et al., 2010). The idea of MEE is to extract from

data as much information as possible about the data generating systems by minimizing error en-

tropies in various ways. In information theory, entropies are used to measure average information

quantitatively. For a random variable E with probability density function pE , Shannon’s entropy of

E is defined as

HS(E) =−E[log pE ] =−
∫

pE(e) log pE(e)de

while Rényi’s entropy of order α (α > 0 but α 6= 1) is defined as

HR,α(E) =
1

1−α
logE[pα−1

E ] =
1

1−α
log

(∫
(pE(e))

αde

)

satisfying limα→1 HR,α(E) = HS(E). In supervised learning our target is to predict the response

variable Y from the explanatory variable X . Then the random variable E becomes the error variable

E = Y − f (X) when a predictor f (X) is used and the MEE principle aims at searching for a pre-

dictor f (X) that contains the most information of the response variable by minimizing information

entropies of the error variable E = Y − f (X). This principle is a substitution of the classical least

squares method when the noise is non-Gaussian. Note that E[Y − f (X)]2 =
∫

e2 pE(e)de. The least

squares method minimizes the variance of the error variable E and is perfect to deal with problems

involving Gaussian noise (such as some from linear signal processing). But it only puts the first

two moments into consideration, and does not work very well for problems involving heavy tailed

non-Gaussian noise. For such problems, MEE might still perform very well in principle since mo-

ments of all orders of the error variable are taken into account by entropies. Here we only consider

Rényi’s entropy of order α = 2: HR(E) = HR,2(E) = − log
∫
(pE(e))

2de. Our analysis does not

apply to Rényi’s entropy of order α 6= 2.

In most real applications, neither the explanatory variable X nor the response variable Y is

explicitly known. Instead, in supervised learning, a sample z = {(xi,yi)}m
i=1 is available which

reflects the distribution of the explanatory variable X and the functional relation between X and the

response variable Y . With this sample, information entropies of the error variable E = Y − f (X)
can be approximated by estimating its probability density function pE by Parzen (1962) windowing

p̂E(e) =
1

mh ∑m
i=1 G( (e−ei)

2

2h2 ), where ei = yi − f (xi), h > 0 is an MEE scaling parameter, and G is a

windowing function. A typical choice for the windowing function G(t) = exp{−t} corresponds to

Gaussian windowing. Then approximations of Shannon’s entropy and Rényi’s entropy of order 2

are given by their empirical versions − 1
m ∑m

i=1 log p̂E(ei) and − log( 1
m ∑m

i=1 p̂E(ei)) as

ĤS =− 1

m

m

∑
i=1

log

[
1

mh

m

∑
j=1

G

(
(ei − e j)

2

2h2

)]

and

ĤR =− log
1

m2h

m

∑
i=1

m

∑
j=1

G

(
(ei − e j)

2

2h2

)
,
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respectively. The empirical MEE is implemented by minimizing these computable quantities.

Though the MEE principle has been proposed for a decade and MEE algorithms have been

shown to be effective in various applications, its theoretical foundation for mathematical error anal-

ysis is not well understood yet. There is even no consistency result in the literature. It has been

observed in applications that the scaling parameter h should be large enough for MEE algorithms to

work well before smaller values are tuned. However, it is well known that the convergence of Parzen

windowing requires h to converge to 0. We believe this contradiction imposes difficulty for rigorous

mathematical analysis of MEE algorithms. Another technical barrier for mathematical analysis of

MEE algorithms for regression is the possibility that the regression function may not be a minimizer

of the associated generalization error, as described in detail in Section 3 below. The main contribu-

tion of this paper is a consistency result for an MEE algorithm for regression. It does require h to

be large and explains the effectiveness of the MEE principle in applications.

In the sequel of this paper, we consider an MEE learning algorithm that minimizes the empirical

Rényi’s entropy ĤR and focus on the regression problem. We will take a learning theory approach

and analyze this algorithm in an empirical risk minimization (ERM) setting. Assume ρ is a proba-

bility measure on Z := X ×Y , where X is a separable metric space (input space for learning) and

Y =R (output space). Let ρX be its marginal distribution on X (for the explanatory variable X) and

ρ(·|x) be the conditional distribution of Y for given X = x. The sample z is assumed to be drawn

from ρ independently and identically distributed. The aim of the regression problem is to predict

the conditional mean of Y for given X by learning the regression function defined by

fρ(x) = E(Y |X = x) =
∫

X
ydρ(y|x), x ∈ X .

The minimization of empirical Rényi’s entropy cannot be done over all possible measurable

functions which would lead to overfitting. A suitable hypothesis space should be chosen appropri-

ately in the ERM setting. The ERM framework for MEE learning is defined as follows. Recall

ei = yi − f (xi).

Definition 1 Let G be a continuous function defined on [0,∞) and h > 0. Let H be a compact

subset of C(X ). Then the MEE learning algorithm associated with H is defined by

fz = arg min
f∈H

{
− log

1

m2h

m

∑
i=1

m

∑
j=1

G

(
[(yi − f (xi))− (y j − f (x j))]

2

2h2

)}
. (1)

The set H is called the hypothesis space for learning. Its compactness ensures the existence of

a minimizer fz. Computational methods for solving optimization problem (1) and its applications

in signal processing have been described in a vast MEE literature (Principe, 2010; Erdogmus and

Principe, 2002, 2003; Silva et al., 2010). For different purposes the MEE scaling parameter h may

be chosen to be large or small. It has been observed empirically that the MEE criterion has nice

convergence properties when the MEE scaling parameter h is large. The main purpose of this paper

is to verify this observation in the ERM setting and show that fz with a suitable constant adjustment

approximates the regression function well with confidence. Note that the requirement of a constant

adjustment is natural because any translate fz + c of a solution fz to (1) with a constant c ∈ R is

another solution to (1). So our consistency result for MEE algorithm (1) will be stated in terms of

the variance var[ fz(X)− fρ(X)] of the error function fz− fρ. Here we use var to denote the variance

of a random variable.
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2. Main Results on Consistency and Convergence Rates

Throughout the paper, we assume h ≥ 1 and that

E[|Y |q]< ∞ for some q > 2, and fρ ∈ L∞
ρX
. Denote q∗ = min{q−2,2}. (2)

We also assume that the windowing function G satisfies

G ∈C2[0,∞), G′
+(0) =−1, and CG := sup

t∈(0,∞)

{
|(1+ t)G′(t)|+ |(1+ t)G′′(t)|

}
< ∞. (3)

The special example G(t) = exp{−t} for the Gaussian windowing satisfies (3).

Consistency analysis for regression algorithms is often carried out in the literature under a decay

assumption for Y such as uniform boundedness and exponential decays. A recent study (Audibert

and Catoni, 2011) was made under the assumption E[|Y |4]< ∞. Our assumption (2) is weaker since

q may be arbitrarily close to 2. Note that (2) obviously holds when |Y | ≤ M almost surely for some

constant M > 0, in which case we shall denote q∗ = 2.

Our consistency result, to be proved in Section 5, asserts that when h and m are large enough,

the error var[ fz(X)− fρ(X)] of MEE algorithm (1) can be arbitrarily close to the approximation

error (Smale and Zhou, 2003) of the hypothesis space H with respect to the regression function fρ.

Definition 2 The approximation error of the pair (H ,ρ) is defined by

DH ( fρ) = inf
f∈H

var[ f (X)− fρ(X)].

Theorem 3 Under assumptions (2) and (3), for any 0< ε≤ 1 and 0< δ< 1, there exist hε,δ ≥ 1 and

mε,δ(h)≥ 1 both depending on H ,G,ρ,ε,δ such that for h ≥ hε,δ and m ≥ mε,δ(h), with confidence

1−δ, we have

var[ fz(X)− fρ(X)]≤ DH ( fρ)+ ε. (4)

Our convergence rates will be stated in terms of the approximation error and the capacity of the

hypothesis space H measured by covering numbers in this paper.

Definition 4 For ε > 0, the covering number N (H ,ε) is defined to be the smallest integer l ∈ N

such that there exist l disks in C(X ) with radius ε and centers in H covering the set H . We shall

assume that for some constants p > 0 and Ap > 0, there holds

logN (H ,ε)≤ Apε−p, ∀ε > 0. (5)

The behavior (5) of the covering numbers is typical in learning theory. It is satisfied by balls of

Sobolev spaces on X ⊂ R
n and reproducing kernel Hilbert spaces associated with Sobolev smooth

kernels. See Anthony and Bartlett (1999), Zhou (2002), Zhou (2003) and Yao (2010). We remark

that empirical covering numbers might be used together with concentration inequalities to provide

shaper error estimates. This is however beyond our scope and for simplicity we adopt the the

covering number in C(X ) throughout this paper.

The following convergence rates for (1) with large h will be proved in Section 5.
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Theorem 5 Assume (2), (3) and covering number condition (5) for some p > 0. Then for any

0 < η ≤ 1 and 0 < δ < 1, with confidence 1−δ we have

var[ fz(X)− fρ(X)]≤ C̃H η(2−q)/2
(

h−min{q−2,2}+hm
− 1

1+p

)
log

2

δ
+(1+η)DH ( fρ). (6)

If |Y | ≤ M almost surely for some M > 0, then with confidence 1−δ we have

var[ fz(X)− fρ(X)]≤ C̃H

η

(
h−2 +m

− 1
1+p

)
log

2

δ
+(1+η)DH ( fρ). (7)

Here C̃H is a constant independent of m,δ,η or h (depending on H ,G,ρ given explicitly in the

proof).

Remark 6 In Theorem 5, we use a parameter η > 0 in error bounds (6) and (7) to show that the

bounds consist of two terms, one of which is essentially the approximation error DH ( fρ) since η

can be arbitrarily small. The reader can simply set η = 1 to get the main ideas of our analysis.

If moment condition (2) with q≥ 4 is satisfied and η= 1, then by taking h=m
1

3(1+p) , (6) becomes

var[( fz(X)− fρ(X)]≤ 2C̃H

(
1

m

) 2
3(1+p)

log
2

δ
+2DH ( fρ). (8)

If |Y | ≤ M almost surely, then by taking h = m
1

2(1+p) and η = 1, error bound (7) becomes

var[ fz(X)− fρ(X)]≤ 2C̃H m
− 1

1+p log
2

δ
+2DH ( fρ). (9)

Remark 7 When the index p in covering number condition (5) is small enough (the case when H

is a finite ball of a reproducing kernel Hilbert space with a smooth kernel), we see that the power

indices for the sample error terms of convergence rates (8) and (9) can be arbitrarily close to 2/3

and 1, respectively. There is a gap in the rates between the case of (2) with large q and the uniform

bounded case. This gap is caused by the Parzen windowing process for which our method does

not lead to better estimates when q > 4. It would be interesting to know whether the gap can be

narrowed.

Note the result in Theorem 5 does not guarantee that fz itself approximates fρ well when the

bounds are small. Instead a constant adjustment is required. Theoretically the best constant is

E[ fz(X)− fρ(X)]. In practice it is usually approximated by the sample mean 1
m ∑m

i=1( fz(xi)− yi)
in the case of uniformly bounded noise and the approximation can be easily handled. To deal

with heavy tailed noise, we project the output values onto the closed interval [−√
m,

√
m] by the

projection π√
m : R→ R defined by

π√
m(y) =





y, if y ∈ [−√
m,

√
m],√

m, if y >
√

m,
−√

m, if y <−√
m,

and then approximate E[ fz(X)− fρ(X)] by the computable quantity

1

m

m

∑
i=1

[
fz(xi)−π√

m(yi)
]
. (10)

The following quantitative result, to be proved in Section 5, tells us that this is a good approximation.
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Theorem 8 Assume E[|Y |2]< ∞ and covering number condition (5) for some p > 0. Then for any

0 < δ < 1, with confidence 1−δ we have

sup
f∈H

∣∣∣∣∣
1

m

m

∑
i=1

[
f (xi)−π√

m(yi)
]
−E[ f (X)− fρ(X)]

∣∣∣∣∣≤ C̃′
H m

− 1
2+p log

2

δ
(11)

which implies in particular that
∣∣∣∣∣

1

m

m

∑
i=1

[
fz(xi)−π√

m(yi)
]
−E[ fz(X)− fρ(X)]

∣∣∣∣∣≤ C̃′
H m

− 1
2+p log

2

δ
, (12)

where C̃′
H

is the constant given by

C̃′
H = 7 sup

f∈H

‖ f‖∞ +4+7

√
E[|Y |2]+E[|Y |2]+A

1
2+p
p .

Replacing the mean E[ fz(X)− fρ(X)] by the quantity (10), we define an estimator of fρ as

f̃z = fz −
1

m

m

∑
i=1

[
fz(xi)−π√

m(yi)
]
.

Putting (12) and the bounds from Theorem 5 into the obvious error expression

∥∥∥ f̃z − fρ

∥∥∥
L2

ρX

≤
∣∣∣∣∣

1

m

m

∑
i=1

[
fz(xi)−π√

m(yi)
]
−E[ fz(X)− fρ(X)]

∣∣∣∣∣+
√

var[( fz(X)− fρ(X)], (13)

we see that f̃z is a good estimator of fρ: the power index 1
2+p

in (12) is greater than 1
2(1+p) , the

power index appearing in the last term of (13) when the variance term is bounded by (9), even in

the uniformly bounded case.

To interpret our main results better we present a corollary and an example below.

If there is a constant cρ such that fρ + cρ ∈ H , we have DH ( fρ) = 0. In this case, the choice

η = 1 in Theorem 5 yields the following learning rate. Note that (2) implies E[|Y |2]< ∞.

Corollary 9 Assume (5) with some p > 0 and fρ + cρ ∈ H for some constant cρ ∈ R. Under

conditions (2) and (3), by taking h = m
1

(1+p)min{q−1,3} , we have with confidence 1−δ,

∥∥∥ f̃z − fρ

∥∥∥
L2

ρX

≤
(

C̃′
H +

√
2C̃H

)
m
− min{q−2,2}

2(1+p)min{q−1,3} log
2

δ
.

If |Y | ≤ M almost surely, then by taking h = m
1

2(1+p) , we have with confidence 1−δ,

∥∥∥ f̃z − fρ

∥∥∥
L2

ρX

≤
(

C̃′
H +

√
2C̃H

)
m
− 1

2(1+p) log
2

δ
.

This corollary states that f̃z can approximate the regression function very well. Note, however,

this happens when the hypothesis space is chosen appropriately and the parameter h tends to infinity.

A special example of the hypothesis space is a ball of a Sobolev space Hs(X ) with index s > n
2

on a domain X ⊂R
n which satisfies (5) with p= n

s
. When s is large enough, the positive index n

s
can

be arbitrarily small. Then the power exponent of the following convergence rate can be arbitrarily

close to 1
3

when E[|Y |4]< ∞, and 1
2

when |Y | ≤ M almost surely.
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Example 1 Let X be a bounded domain of Rn with Lipschitz boundary. Assume fρ ∈ Hs(X) for

some s> n
2

and take H = { f ∈Hs(X) : ‖ f‖Hs(X) ≤R} with R≥‖ fρ‖Hs(X) and R≥ 1. If E[|Y |4]<∞,

then by taking h = m
1

3(1+n/s) , we have with confidence 1−δ,

∥∥∥ f̃z − fρ

∥∥∥
L2

ρX

≤Cs,n,ρR
n

2(s+n) m
− 1

3(1+n/s) log
2

δ
.

If |Y | ≤ M almost surely, then by taking h = m
1

2(1+n/s) , with confidence 1−δ,

∥∥∥ f̃z − fρ

∥∥∥
L2

ρX

≤Cs,n,ρR
n

2(s+n) m
− 1

2+2n/s log
2

δ
.

Here the constant Cs,n,ρ is independent of R.

Compared to the analysis of least squares methods, our consistency results for the MEE algo-

rithm require a weaker condition by allowing heavy tailed noise, while the convergence rates are

comparable but slightly worse than the optimal one O(m
− 1

2+n/s ). Further investigation of error anal-

ysis for the MEE algorithm is required to achieve the optimal rate, which is beyond the scope of this

paper.

3. Technical Difficulties in MEE and Novelties

The MEE algorithm (1) involving sample pairs like quadratic forms is different from most classical

ERM learning algorithms (Vapnik, 1998; Anthony and Bartlett, 1999) constructed by sums of inde-

pendent random variables. But as done for some ranking algorithms (Agarwal and Niyogi, 2009;

Clemencon et al., 2005), one can still follow the same line to define a functional called general-

ization error or information error (related to information potential defined on page 88 of Principe,

2010) associated with the windowing function G over the space of measurable functions on X as

E (h)( f ) =
∫

Z

∫
Z
−h2G

(
[(y− f (x))− (y′− f (x′))]2

2h2

)
dρ(x,y)dρ(x′,y′).

An essential barrier for our consistency analysis is an observation made by numerical simulations

(Erdogmus and Principe, 2003; Silva et al., 2010) and verified mathematically for Shannon’s en-

tropy in Chen and Principe (2012) that the regression function fρ may not be a minimizer of E (h).

It is totally different from the classical least squares generalization error E ls( f ) =
∫

Z( f (x)− y)2dρ

which satisfies a nice identity E ls( f )−E ls( fρ) = ‖ f − fρ‖2
L2

ρX

≥ 0. This barrier leads to three tech-

nical difficulties in our error analysis which will be overcome by our novel approaches making full

use of the special feature that the MEE scaling parameter h is large in this paper.

3.1 Approximation of Information Error

The first technical difficulty we meet in our mathematical analysis for MEE algorithm (1) is the

varying form depending on the windowing function G. Our novel approach here is an approximation

of the information error in terms of the variance var[ f (X)− fρ(X)] when h is large. This is achieved

by showing that E (h) is closely related to the following symmetrized least squares error which

has appeared in the literature of ranking algorithms (Clemencon et al., 2005; Agarwal and Niyogi,

2009).
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Definition 10 The symmetrized least squares error is defined on the space L2
ρX

by

E sls( f ) =
∫

Z

∫
Z

[
(y− f (x))−

(
y′− f (x′)

)]2
dρ(x,y)dρ(x′,y′), f ∈ L2

ρX
.

To give the approximation of E (h), we need a simpler form of E sls.

Lemma 11 If E[Y 2]< ∞, then by denoting Cρ =
∫

Z

[
y− fρ(x)

]2
dρ, we have

E sls( f ) = 2var[ f (X)− fρ(X)]+2Cρ, ∀ f ∈ L2
ρX
.

Proof Recall that for two independent and identically distributed samples ξ and ξ′ of a random

variable, one has the identity

E[(ξ−ξ′)2] = 2[E(ξ−Eξ)2] = 2var(ξ).

Then we have

E sls( f ) = E

[(
(y− f (x))−

(
y′− f (x′)

))2
]
= 2var[Y − f (X)].

By the definition E[Y |X ] = fρ(X), it is easy to see that Cρ = var(Y − fρ(X)) and the covariance

between Y − fρ(X) and fρ(X)− f (X) vanishes. So var[Y − f (X)] = var[Y − fρ(X)]+var[ f (X)−
fρ(X)]. This proves the desired identity.

We are in a position to present the approximation of E (h) for which a large scaling parame-

ter h plays an important role. Since H is a compact subset of C(X ), we know that the number

sup f∈H ‖ f‖∞ is finite.

Lemma 12 Under assumptions (2) and (3), for any essentially bounded measurable function f on

X, we have

∣∣∣E (h)( f )+h2G(0)−Cρ −var[ f (X)− fρ(X)]
∣∣∣≤ 5 ·27CG

(
(E[|Y |q])

q∗+2
q +‖ f‖q∗+2

∞

)
h−q∗ .

In particular,

∣∣∣E (h)( f )+h2G(0)−Cρ −var[ f (X)− fρ(X)]
∣∣∣≤C′

H h−q∗ , ∀ f ∈ H ,

where C′
H

is the constant depending on ρ,G,q and H given by

C′
H = 5 ·27CG


(E[|Y |q])(q∗+2)/q +

(
sup
f∈H

‖ f‖∞

)q∗+2

 .
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Proof Observe that q∗ + 2 = min{q,4} ∈ (2,4]. By the Taylor expansion and the mean value

theorem, we have

|G(t)−G(0)−G′
+(0)t| ≤

{
‖G′′‖∞

2
t2 ≤ ‖G′′‖∞

2
t(q

∗+2)/2, if 0 ≤ t ≤ 1,

2‖G′‖∞t ≤ 2‖G′‖∞t(q
∗+2)/2, if t > 1.

So |G(t) − G(0) − G′
+(0)t| ≤

(
‖G′′‖∞

2
+2‖G′‖∞

)
t(q

∗+2)/2 for all t ≥ 0, and by setting

t = [(y− f (x))−(y′− f (x′))]2

2h2 , we know that

∣∣∣∣∣E
(h)( f )+h2G(0)+

∫
Z

∫
Z

G′
+(0)

[(y− f (x))− (y′− f (x′))]2

2
dρ(x,y)dρ(x′,y′)

∣∣∣∣∣

≤
(‖G′′‖∞

2
+2‖G′‖∞

)
h−q∗2−

q∗+2
2

∫
Z

∫
Z

∣∣(y− f (x))−
(
y′− f (x′)

)∣∣q∗+2
dρ(x,y)dρ(x′,y′)

≤
(‖G′′‖∞

2
+2‖G′‖∞

)
h−q∗28

{∫
Z
|y|q∗+2dρ+‖ f‖q∗+2

∞

}
.

This together with Lemma 11, the normalization assumption G′
+(0) = −1 and Hölder’s inequality

applied when q > 4 proves the desired bound and hence our conclusion.

Applying Lemma 12 to a function f ∈ H and fρ ∈ L∞
ρX

yields the following fact on the excess

generalization error E (h)( f )−E (h)( fρ).

Theorem 13 Under assumptions (2) and (3), we have

∣∣∣E (h)( f )−E (h)( fρ)−var[ f (X)− fρ(X)]
∣∣∣≤C′′

H h−q∗ , ∀ f ∈ H ,

where C′′
H

is the constant depending on ρ,G,q and H given by

C′′
H = 5 ·28CG


(E[|Y |q])(q∗+2)/q +

(
sup
f∈H

‖ f‖∞

)q∗+2

+‖ fρ‖q∗+2
∞


 .

3.2 Functional Minimizer and Best Approximation

As fρ may not be a minimizer of E (h), the second technical difficulty in our error analysis is the

diversity of two ways to define a target function in H , one to minimize the information error and the

other to minimize the variance var[ f (X)− fρ(X)]. These possible candidates for the target function

are defined as

fH := arg min
f∈H

E (h)( f ),

fapprox := arg min
f∈H

var[ f (X)− fρ(X)].

Our novelty to overcome the technical difficulty is to show that when the MEE scaling parameter h

is large, these two functions are actually very close.
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Theorem 14 Under assumptions (2) and (3), we have

E (h)( fapprox)≤ E (h)( fH )+2C′′
H h−q∗

and

var[ fH (X)− fρ(X)]≤ var[ fapprox(X)− fρ(X)]+2C′′
H h−q∗ .

Proof By Theorem 13 and the definitions of fH and fapprox, we have

E (h)( fH )−E (h)( fρ)≤ E (h)( fapprox)−E (h)( fρ)≤ var[ fapprox(X)− fρ(X)]+C′′
H h−q∗

≤ var[ fH (X)− fρ(X)]+C′′
H h−q∗ ≤ E (h)( fH )−E (h)( fρ)+2C′′

H h−q∗

≤ var[ fapprox(X)− fρ(X)]+3C′′
H h−q∗ .

Then the desired inequalities follow.

Moreover, Theorem 13 yields the following error decomposition for our algorithm.

Lemma 15 Under assumptions (2) and (3), we have

var[ fz(X)− fρ(X)]≤
{

E (h)( fz)−E (h)( fH )
}
+var[ fapprox(X)− fρ(X)]+2C′′

H h−q∗ . (14)

Proof By Theorem 13,

var[ fz(X)− fρ(X)] ≤ E (h)( fz)−E (h)( fρ)+C′′
H h−q∗

≤
{

E (h)( fz)−E (h)( fH )
}
+E (h)( fH )−E (h)( fρ)+C′′

H h−q∗ .

Since fapprox ∈ H , the definition of fH tells us that

E (h)( fH )−E (h)( fρ)≤ E (h)( fapprox)−E (h)( fρ).

Applying Theorem 13 to the above bound implies

var[ fz(X)− fρ(X)]≤
{

E (h)( fz)−E (h)( fH )
}
+var[ fapprox(X)− fρ(X)]+2C′′

H h−q∗ .

Then desired error decomposition (14) follows.

Error decomposition has been a standard technique to analyze least squares ERM regression

algorithms (Anthony and Bartlett, 1999; Cucker and Zhou, 2007; Smale and Zhou, 2009; Ying,

2007). In error decomposition (14) for MEE learning algorithm (1), the first term on the right side is

the sample error, the second term var[ fapprox(X)− fρ(X)] is the approximation error, while the last

extra term 2C′′
H

h−q∗ is caused by the Parzen windowing and is small when h is large. The quantity

E (h)( fz)−E (h)( fH ) of the sample error term will be bounded in the following discussion.

386



MINIMUM ERROR ENTROPY

3.3 Error Decomposition by U-statistics and Special Properties

We shall decompose the sample error term E (h)( fz)−E (h)( fH ) further by means of U-statistics

defined for f ∈ H and the sample z as

Vf (z) =
1

m(m−1)

m

∑
i=1

∑
j 6=i

U f (zi,z j),

where U f is a kernel given with z = (x,y),z′ = (x′,y′) ∈ Z by

U f (z,z
′) =−h2G

(
[(y− f (x))− (y′− f (x′))]2

2h2

)
+h2G

([(
y− fρ(x)

)
−
(
y′− fρ(x

′)
)]2

2h2

)
. (15)

It is easy to see that E[Vf ] = E (h)( f )−E (h)( fρ) and U f (z,z) = 0. Then

E (h)( fz)−E (h)( fH ) = E [Vfz
]−E

[
VfH

]
= E [Vfz

]−Vfz
+Vfz

−VfH
+VfH

−E
[
VfH

]
.

By the definition of fz, we have Vfz
−VfH

≤ 0. Hence

E (h)( fz)−E (h)( fH )≤ E [Vfz
]−Vfz

+VfH
−E

[
VfH

]
. (16)

The above bound will be estimated by a uniform ratio probability inequality. A technical difficulty

we meet here is the possibility that E[Vf ] = E (h)( f )−E (h)( fρ) might be negative since fρ may not

be a minimizer of E (h). It is overcome by the following novel observation which is an immediate

consequence of Theorem 13.

Lemma 16 Under assumptions (2) and (3), if ε ≥C′′
H

h−q∗ , then

E[Vf ]+2ε ≥ E[Vf ]+C′′
H h−q∗ + ε ≥ var[ f (X)− fρ(X)]+ ε ≥ ε, ∀ f ∈ H . (17)

4. Sample Error Estimates

In this section, we follow (16) and estimate the sample error by a uniform ratio probability inequality

based on the following Hoeffding’s probability inequality for U-statistics (Hoeffding, 1963).

Lemma 17 If U is a symmetric real-valued function on Z ×Z satisfying a ≤ U(z,z′) ≤ b almost

surely and var[U ] = σ2, then for any ε > 0,

Prob

{∣∣∣∣∣
1

m(m−1)

m

∑
i=1

∑
j 6=i

U(zi,z j)−E[U ]

∣∣∣∣∣≥ ε

}
≤ 2exp

{
− (m−1)ε2

4σ2 +(4/3)(b−a)ε

}
.

To apply Lemma 17 we need to bound σ2 and b− a for the kernel U f defined by (15). Our

novelty for getting sharp bounds is to use a Taylor expansion involving a C2 function G̃ on R:

G̃(w) = G̃(0)+ G̃′(0)w+
∫ w

0
(w− t)G̃′′(t)dt, ∀w ∈ R. (18)

Denote a constant AH depending on ρ,G,q and H as

AH = 9 ·28C2
G sup

f∈H

‖ f − fρ‖
4
q
∞

(
(E[|Y |q])

2
q +‖ fρ‖2

∞ + sup
f∈H

‖ f − fρ‖2
∞

)
.
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Lemma 18 Assume (2) and (3).

(a) For any f ,g ∈ H , we have

∣∣U f

∣∣≤ 4CG‖ f − fρ‖∞h and
∣∣U f −Ug

∣∣≤ 4CG‖ f −g‖∞h

and

var[U f ]≤ AH

(
var[ f (X)− fρ(X)]

)(q−2)/q
.

(b) If |Y | ≤ M almost surely for some constant M > 0, then we have almost surely

∣∣U f

∣∣≤ A′
H

∣∣( f (x)− fρ(x))− ( f (x′)− fρ(x
′))
∣∣ , ∀ f ∈ H (19)

and ∣∣U f −Ug

∣∣≤ A′
H

∣∣( f (x)−g(x))− ( f (x′)−g(x′))
∣∣ , ∀ f ,g ∈ H , (20)

where A′
H

is a constant depending on ρ,G and H given by

A′
H = 36CG

(
M+ sup

f∈H

‖ f‖∞

)
.

Proof Define a function G̃ on R by

G̃(t) = G(t2/2), t ∈ R.

We see that G̃∈C2(R), G̃(0)=G(0), G̃′(0)= 0, G̃′(t)= tG′(t2/2) and G̃′′(t)=G′(t2/2)+t2G′′(t2/2).
Moreover,

U f (z,z
′) = −h2G̃

(
(y− f (x))− (y′− f (x′))

h

)
+h2G̃

((
y− fρ(x)

)
−
(
y′− fρ(x

′)
)

h

)
.

(a) We apply the mean value theorem and see that |U f (z,z
′)| ≤ 2h‖G̃′‖∞‖ f − fρ‖∞. The inequal-

ity for |U f −Ug| is obtained when fρ is replaced by g. Note that ‖G̃′‖∞ = ‖tG′(t2/2)‖∞. Then the

bounds for U f and U f −Ug are verified by noting ‖tG′(t2/2)‖∞ ≤ 2CG.

To bound the variance, we apply (18) to the two points w1 = (y− f (x))−(y′− f (x′))
h

and

w2 =
(y− fρ(x))−(y′− fρ(x

′))
h

. Writing w2 − t as w2 −w1 +w1 − t, we see from G̃′(0) = 0 that

U f (z,z
′) = h2

(
G̃(w2)− G̃(w1)

)
= h2G̃′(0)(w2 −w1)

+h2

∫ w2

0
(w2 − t)G̃′′(t)dt −h2

∫ w1

0
(w1 − t)G̃′′(t)dt

= h2

∫ w2

0
(w2 −w1)G̃

′′(t)dt +h2

∫ w2

w1

(w1 − t)G̃′′(t)dt.

It follows that

∣∣U f (z,z
′)
∣∣ ≤ ‖G̃′′‖∞

∣∣(y− fρ(x)
)
−
(
y′− fρ(x

′)
)∣∣ ∣∣( f (x)− fρ(x)

)
−
(

f (x′)− fρ(x
′)
)∣∣

+‖G̃′′‖∞

∣∣( f (x)− fρ(x)
)
−
(

f (x′)− fρ(x
′)
)∣∣2 . (21)
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Since E[|Y |q]< ∞, we apply Hölder’s inequality and see that

∫
Z

∫
Z

∣∣(y− fρ(x)
)
−
(
y′− fρ(x

′)
)∣∣2 ∣∣( f (x)− fρ(x)

)
−
(

f (x′)− fρ(x
′)
)∣∣2 dρ(z)dρ(z′)

≤
{∫

Z

∫
Z

∣∣(y− fρ(x)
)
−
(
y′− fρ(x

′)
)∣∣q dρ(z)dρ(z′)

}2/q

{∫
Z

∫
Z

∣∣( f (x)− fρ(x)
)
−
(

f (x′)− fρ(x
′)
)∣∣2q/(q−2)

dρ(z)dρ(z′)

}1−2/q

≤
{

4q+1(E[|Y |q]+‖ fρ‖q
∞)
}2/q

{
‖ f − fρ‖4/(q−2)

∞ 2var[ f (X)− fρ(X)]
}(q−2)/q

.

Here we have separated the power index 2q/(q−2) into the sum of 4/(q−2) and 2. Then

var[U f ] ≤ E[U2
f ]≤ 2‖G̃′′‖2

∞2
5q+3

q (E[|Y |q]+‖ fρ‖q
∞)

2
q ‖ f − fρ‖

4
q
∞

(
var[ f (X)− fρ(X)]

) q−2
q

+2‖G̃′′‖2
∞4‖ f − fρ‖2

∞2var[ f (X)− fρ(X)].

Hence the desired inequality holds true since ‖G̃′′‖∞ ≤‖G′‖∞+‖t2G′′(t2/2)‖∞ ≤ 3CG and var[ f (X)−
fρ(X)]≤ ‖ f − fρ‖2

∞.

(b) If |Y | ≤ M almost surely for some constant M > 0, then we see from (21) that almost

surely
∣∣U f (z,z

′)
∣∣ ≤ 4‖G̃′′‖∞(M + ‖ fρ‖∞ + ‖ f − fρ‖∞)

∣∣( f (x)− fρ(x)
)
−
(

f (x′)− fρ(x
′)
)∣∣ . Hence

(19) holds true almost surely. Replacing fρ by g in (21), we see immediately inequality (20). The

proof of Lemma 18 is complete.

With the above preparation, we can now give the uniform ratio probability inequality for U-

statistics to estimate the sample error, following methods in the learning theory literature (Haussler

et al., 1994; Koltchinskii, 2006; Cucker and Zhou, 2007).

Lemma 19 Assume (2), (3) and ε ≥C′′
H

h−q∗ . Then we have

Prob

{
sup
f∈H

∣∣Vf −E[Vf ]
∣∣

(E[Vf ]+2ε)(q−2)/q
> 4ε2/q

}
≤ 2N

(
H ,

ε

4CGh

)
exp

{
−(m−1)ε

A′′
H

h

}
,

where A′′
H

is the constant given by

A′′
H = 4AH (C′′

H )−2/q +12CG sup
f∈H

‖ f − fρ‖∞.

If |Y | ≤ M almost surely for some constant M > 0, then we have

Prob

{
sup
f∈H

∣∣Vf −E[Vf ]
∣∣

√
E[Vf ]+2ε

> 4
√

ε

}
≤ 2N

(
H ,

ε

2A′
H

)
exp

{
−(m−1)ε

A′′
H

}
,

where A′′
H

is the constant given by

A′′
H = 8A′

H +6A′
H sup

f∈H

‖ f − fρ‖∞.

389



HU, FAN, WU AND ZHOU

Proof If ‖ f − f j‖∞ ≤ ε
4CGh

, Lemma 18 (a) implies |E[Vf ]−E[Vf j
]| ≤ ε and |Vf −Vf j

| ≤ ε almost

surely. These in connection with Lemma 16 tell us that

∣∣Vf −E[Vf ]
∣∣

(E[Vf ]+2ε)(q−2)/q
> 4ε2/q =⇒

∣∣Vf j
−E[Vf j

]
∣∣

(E[Vf j
]+2ε)(q−2)/q

> ε2/q.

Thus by taking { f j}N
j=1 to be an ε

4CGh
net of the set H with N being the covering number

N
(

H , ε
4CGh

)
, we find

Prob

{
sup
f∈H

∣∣Vf −E[Vf ]
∣∣

(E[Vf ]+2ε)(q−2)/q
> 4ε2/q

}
≤ Prob

{
sup

j=1,...,N

∣∣Vf j
−E[Vf j

]
∣∣

(E[Vf j
]+2ε)(q−2)/q

> ε2/q

}

≤ ∑
j=1,...,N

Prob

{ ∣∣Vf j
−E[Vf j

]
∣∣

(E[Vf j
]+2ε)(q−2)/q

> ε2/q

}
.

Fix j ∈ {1, . . . ,N}. Apply Lemma 17 to U =U f j
satisfying 1

m(m−1) ∑m
i=1 ∑ j 6=iU(zi,z j)−E[U ] =

Vf j
−E[Vf j

]. By the bounds for |U f j
| and var[U f j

] from Part (b) of Lemma 18, we know by taking

ε̃ = ε2/q(E[Vf j
]+2ε)(q−2)/q that

Prob

{ ∣∣Vf j
−E[Vf j

]
∣∣

(E[Vf j
]+2ε)(q−2)/q

> ε2/q

}
= Prob

{∣∣Vf j
−E[Vf j

]
∣∣> ε̃

}

≤ 2exp

{
− (m−1)ε̃2

4AH

(
var[ f j(X)− fρ(X)]

)(q−2)/q
+12CG‖ f j − fρ‖∞hε̃

}

≤ 2exp

{
−
(m−1)ε4/q(E[Vf j

]+2ε)(q−2)/q

4AH +12CG‖ f j − fρ‖∞hε2/q

}
,

where in the last step we have used the important relation (17) to the function f = f j and bounded(
var[ f j(X)− fρ(X)]

)(q−2)/q
by

{
(E[Vf j

]+2ε)
}(q−2)/q

. This together with the notation

N = N
(

H , ε
4CGh

)
and the inequality ‖ f j − fρ‖∞ ≤ sup f∈H ‖ f − fρ‖∞ gives the first desired bound,

where we have observed that ε ≥C′′
H

h−q∗ and h ≥ 1 imply ε−2/q ≤ (C′′
H
)−2/qh.

If |Y | ≤ M almost surely for some constant M > 0, then we follows the same line as in our above

proof. According to Part (b) of Lemma 18, we should replace 4CGh by 2A′
H

, q by 4, and bound

the variance var[U f j
] by 2A′

H
var[ f j(X)− fρ(X)] ≤ 2A′

H
(E[Vf j

] + 2ε). Then the desired estimate

follows. The proof of Lemma 19 is complete.

We are in a position to bound the sample error. To unify the two estimates in Lemma 19, we

denote A′
H
= 2CG in the general case. For m ∈N,0 < δ < 1, let εm,δ be the smallest positive solution

to the inequality

logN

(
H ,

ε

2A′
H

)
− (m−1)ε

A′′
H

≤ log
δ

2
. (22)
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Proposition 20 Let 0 < δ < 1,0 < η ≤ 1. Under assumptions (2) and (3), we have with confidence

of 1−δ,

var[ fz(X)− fρ(X)]≤ (1+η)var[ fapprox(X)− fρ(X)]+12
(

2+24
q−2

2

)
η

2−q
2 (hεm,δ +2C′′

H h−q∗).

If |Y | ≤ M almost surely for some M > 0, then with confidence of 1−δ, we have

var[ fz(X)− fρ(X)]≤ (1+η)var[ fapprox(X)− fρ(X)]+
278

η
(εm,δ +2C′′

H h−2).

Proof Denote τ = (q−2)/q and εm,δ,h = max{hεm,δ,C
′′
H

h−q∗} in the general case with some q > 2,

while τ = 1/2 and εm,δ,h = max{εm,δ,C
′′
H

h−2} when |Y | ≤ M almost surely. Then by Lemma 19,

we know that with confidence 1−δ, there holds

sup
f∈H

∣∣Vf −E[Vf ]
∣∣

(E[Vf ]+2εm,δ,h)τ
≤ 4ε1−τ

m,δ,h

which implies

E [Vfz
]−Vfz

+VfH
−E

[
VfH

]
≤ 4ε1−τ

m,δ,h(E[Vfz
]+2εm,δ,h)

τ +4ε1−τ
m,δ,h(E[VfH

]+2εm,δ,h)
τ.

This together with Lemma 15 and (16) yields

var[ fz(X)− fρ(X)]≤ 4S +16εm,δ,h +var[ fapprox(X)− fρ(X)]+2C′′
H h−q∗ , (23)

where

S := ε1−τ
m,δ,h(E[Vfz

])τ + ε1−τ
m,δ,h(E[VfH

])τ = (
24

η
)τε1−τ

m,δ,h

( η

24
E[Vfz

]
)τ

+(
12

η
)τε1−τ

m,δ,h

( η

12
E[VfH

]
)τ

.

Now we apply Young’s inequality

a ·b ≤ (1− τ)a1/(1−τ)+ τb1/τ, a,b ≥ 0

and find

S ≤
(

24

η

)τ/(1−τ)

εm,δ,h +
η

24
E[Vfz

]+

(
12

η

)τ/(1−τ)

εm,δ,h +
η

12
E[VfH

].

Combining this with (23), Theorem 13 and the identity E[Vf ] = E (h)( f )−E (h)( fρ) gives

var[ fz(X)− fρ(X)]≤ η

6
var[ fz(X)− fρ(X)]+(1+

η

3
)var[ fapprox(X)− fρ(X)]+S ′,

where S ′ := (16+8(24/η)τ/(1−τ))εm,δ,h+3C′′
H

h−q∗ . Since 1/(1− η
6
)≤ 1+ η

3
and (1+ η

3
)2 ≤ 1+η,

we see that

var[ fz(X)− fρ(X)]≤ (1+η)var[ fapprox(X)− fρ(X)]+
4

3
S ′.

Then the desired estimates follow, and the proposition is proved.
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5. Proof of Main Results

We are now in a position to prove our main results stated in Section 2.

5.1 Proof of Theorem 3

Recall DH ( fρ) = var[ fapprox(X)− fρ(X)]. Take η = min{ε/(3DH ( fρ)),1}. Then

ηvar[ fapprox(X)− fρ(X)]≤ ε/3.

Now we take

hε,δ =
(

72
(

2+24(q−2)/2
)

η(2−q)/2C′′
H /ε

)1/q∗

.

Set ε̃ := ε/
(
36
(
2+24(q−2)/2

)
η(2−q)/2

)
. We choose

mε,δ(h) =
hA′′

H

ε̃

(
logN

(
H ,

ε̃

2hA′
H

)
− log

δ

2

)
+1.

With this choice, we know that whenever m ≥ mε,δ(h), the solution εm,δ to inequality (22) satisfies

εm,δ ≤ ε̃/h. Combining all the above estimates and Proposition 20, we see that whenever h ≥ hε,δ

and m ≥ mε,δ(h), error bound (4) holds true with confidence 1−δ. This proves Theorem 3.

5.2 Proof of Theorem 5

We apply Proposition 20. By covering number condition (5), we know that εm,δ is bounded by ε̃m,δ,

the smallest positive solution to the inequality

Ap

(
2A′

H

ε

)p

− (m−1)ε

A′′
H

≤ log
δ

2
.

This inequality written as ε1+p − A′′
H

m−1
log 2

δ εp −Ap

(
2A′

H

)p A′′
H

m−1
≥ 0 is well understood in learning

theory (e.g., Cucker and Zhou, 2007) and its solution can be bounded as

ε̃m,δ ≤ max

{
2

A′′
H

m−1
log

2

δ
,
(
2ApA′′

H (2A′
H )p

)1/(1+p)
(m−1)−

1
1+p

}
.

If E[|Y |q]< ∞ for some q > 2, then the first part of Proposition 20 verifies (6) with the constant

C̃H given by

C̃H = 24
(

2+24(q−2)/2
)(

2A′′
H +

(
2ApA′′

H (2A′
H )p

)1/(1+p)
+2C′′

H

)
.

If |Y | ≤ M almost surely for some M > 0, then the second part of Proposition 20 proves (7) with

the constant C̃H given by

C̃H = 278
(

2A′′
H +

(
2ApA′′

H (2A′
H )p

)1/(1+p)
+2C′′

H

)
.

This completes the proof of Theorem 5.
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5.3 Proof of Theorem 8

Note ∣∣∣∣∣
1

m

m

∑
i=1

[
f (xi)−π√

m(yi)
]
− 1

m

m

∑
i=1

[
g(xi)−π√

m(yi)
]
∣∣∣∣∣≤ ‖ f −g‖∞

and ∣∣E[ f (X)−π√
m(Y )]−E[g(X)−π√

m(Y )]
∣∣≤ ‖ f −g‖∞.

So by taking { f j}N
j=1 to be an ε

4
net of the set H with N = N

(
H , ε

4

)
, we know that for each f ∈ H

there is some j ∈ {1, . . . ,N} such that ‖ f − f j‖∞ ≤ ε
4
. Hence

∣∣∣∣∣
1

m

m

∑
i=1

[
f (xi)−π√

m(yi)
]
−E[ f (X)−π√

m(Y )]

∣∣∣∣∣> ε

=⇒
∣∣∣∣∣

1

m

m

∑
i=1

[
f j(xi)−π√

m(yi)
]
−E[ f j(X)−π√

m(Y )]

∣∣∣∣∣>
ε

2
.

It follows that

Prob

{
sup
f∈H

∣∣∣∣∣
1

m

m

∑
i=1

[
f (xi)−π√

m(yi)
]
−E[ f (X)−π√

m(Y )]

∣∣∣∣∣> ε

}

≤ Prob

{
sup

j=1,...,N

∣∣∣∣∣
1

m

m

∑
i=1

[
f j(xi)−π√

m(yi)
]
−E[ f j(X)−π√

m(Y )]

∣∣∣∣∣>
ε

2

}

≤
N

∑
j=1

Prob

{∣∣∣∣∣
1

m

m

∑
i=1

[
f j(xi)−π√

m(yi)
]
−E[ f j(X)−π√

m(Y )]

∣∣∣∣∣>
ε

2

}
.

For each fixed j ∈ {1, . . . ,N}, we apply the classical Bernstein probability inequality to the random

variable ξ = f j(X)−π√
m(Y ) on (Z,ρ) bounded by M̃ = sup f∈H ‖ f‖∞+

√
m with variance σ2(ξ)≤

E[| f j(X)−π√
m(Y )|2]≤ 2sup f∈H ‖ f‖2

∞ +2E[|Y |2] =: σ2
H

and know that

Prob

{∣∣∣∣∣
1

m

m

∑
i=1

[
f j(xi)−π√

m(yi)
]
−E[ f j(X)−π√

m(Y )]

∣∣∣∣∣>
ε

2

}

≤ 2exp

{
− m(ε/2)2

2
3
M̃ε/2+2σ2(ξ)

}
≤ 2exp

{
− mε2

4
3
M̃ε+8σ2

H

}
.

The above argument together with covering number condition (5) yields

Prob

{
sup
f∈H

∣∣∣∣∣
1

m

m

∑
i=1

[
f (xi)−π√

m(yi)
]
−E[ f (X)−π√

m(Y )]

∣∣∣∣∣> ε

}

≤ 2N exp

{
− mε2

4
3
M̃ε+8σ2

H

}
≤ 2exp

{
Ap

(
4

ε

)p

− mε2

4
3
M̃ε+8σ2

H

}
.

Bounding the right-hand side above by δ is equivalent to the inequality

ε2+p − 4

3m
M̃ log

2

δ
ε1+p − 8

m
σ2

H log
2

δ
εp − Ap4p

m
≥ 0.
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By taking ε̃m,δ to be the smallest solution to the above inequality, we see from Cucker and Zhou

(2007) as in the proof of Theorem 5 that with confidence at least 1−δ,

sup
f∈H

∣∣∣∣∣
1

m

m

∑
i=1

[
f (xi)−π√

m(yi)
]
−E[ f (X)−π√

m(Y )]

∣∣∣∣∣

≤ ε̃m,δ ≤ max





4M̃

m
log

2

δ
,

√
24σ2

H

m
log

2

δ
,

(
Ap4p

m

) 1
2+p





≤
{

7 sup
f∈H

‖ f‖∞ +4+7

√
E[|Y |2]+4A

1
2+p
p

}
m
− 1

2+p log
2

δ
.

Moreover, since π√
m(y)−y = 0 for |y| ≤√

m while |π√
m(y)−y| ≤ |y| ≤ |y|2√

m
for |y|>√

m, we know

that

∣∣E[π√
m(Y )]−E[ fρ(X)]

∣∣=
∣∣∣∣
∫

X

∫
Y

π√
m(y)− ydρ(y|x)dρX(x)

∣∣∣∣

=

∣∣∣∣
∫

X

∫
|y|>√

m
π√

m(y)− ydρ(y|x)dρX(x)

∣∣∣∣≤
∫

X

∫
|y|>√

m

|y|2√
m

dρ(y|x)dρX(x)≤
E[|Y |2]√

m
.

Therefore, (11) holds with confidence at least 1−δ. The proof of Theorem 8 is complete.

6. Conclusion and Discussion

In this paper we have proved the consistency of an MEE algorithm associated with Rényi’s entropy

of order 2 by letting the scaling parameter h in the kernel density estimator tends to infinity at an ap-

propriate rate. This result explains the effectiveness of the MEE principle in empirical applications

where the parameter h is required to be large enough before smaller values are tuned. However, the

motivation of the MEE principle is to minimize error entropies approximately, and requires small h

for the kernel density estimator to converge to the true probability density function. Therefore, our

consistency result seems surprising.

As far as we know, our result is the first rigorous consistency result for MEE algorithms. There

are many open questions in mathematical analysis of MEE algorithms. For instance, can MEE

algorithm (1) be consistent by taking h→ 0? Can one carry out error analysis for the MEE algorithm

if Shannon’s entropy or Rényi’s entropy of order α 6= 2 is used? How can we establish error analysis

for other learning settings such as those with non-identical sampling processes (Smale and Zhou,

2009; Hu, 2011)? These questions require further research and will be our future topics.

It might be helpful to understand our theoretical results by relating MEE algorithms to ranking

algorithms. Note that MEE algorithm (1) essentially minimizes the empirical version of the infor-

mation error which, according to our study in Section 2, differs from the symmetrized least squares

error used in some ranking algorithms by an extra term which vanishes when h → ∞. Our study may

shed some light on analysis of some ranking algorithms.
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Table 1: NOTATIONS

notation meaning pages

pE probability density function of a random variable E 378

HS(E) Shannon’s entropy of a random variable E 378

HR,α(E) Rényi’s entropy of order α 378

X explanatory variable for learning 378

Y response variable for learning 378

E = Y − f (X) error random variable associated with a predictor f (X) 378

HR(E) Rényi’s entropy of order α = 2 378

z = {(xi,yi)}m
i=1 a sample for learning 378

G windowing function 378, 379, 380

h MEE scaling parameter 378, 379

p̂E Parzen windowing approximation of pE 378

ĤS empirical Shannon entropy 378

ĤR empirical Rényi’s entropy of order 2 378

fρ the regression function of ρ 379

fz output function of the MEE learning algorithm (1) 379

H the hypothesis space for the ERM algorithm 379

var the variance of a random variable 379

q,q∗ = min{q−2,2} power indices in condition (2) for E[|Y |q]< ∞ 380

CG constant for decay condition (3) of G 380

DH ( fρ) approximation error of the pair (H ,ρ) 380

N (H ,ε) covering number of the hypothesis space H 380

p power index for covering number condition (5) 380

π√
m projection onto the closed interval [−√

m,
√

m] 381

f̃z estimator of fρ 382

E (h)( f ) generalization error associated with G and h 383

E ls( f ) least squares generalization error E ls( f ) =
∫

Z( f (x)− y)2dρ 383

Cρ constant Cρ =
∫

Z

[
y− fρ(x)

]2
dρ associated with ρ 384

fH minimizer of E (h)( f ) in H 385

fapprox minimizer of var[ f (X)− fρ(X)] in H 385

U f kernel for the U statistics Vf 387

G̃ an intermediate function defined by G̃(t) = G(t2/2) 388
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Abstract

Most learning to rank research has assumed that the utility of different documents is independent,

which results in learned ranking functions that return redundant results. The few approaches that

avoid this have rather unsatisfyingly lacked theoretical foundations, or do not scale. We present

a learning-to-rank formulation that optimizes the fraction of satisfied users, with several scalable

algorithms that explicitly takes document similarity and ranking context into account. Our formu-

lation is a non-trivial common generalization of two multi-armed bandit models from the literature:

ranked bandits (Radlinski et al., 2008) and Lipschitz bandits (Kleinberg et al., 2008b). We present

theoretical justifications for this approach, as well as a near-optimal algorithm. Our evaluation adds

optimizations that improve empirical performance, and shows that our algorithms learn orders of

magnitude more quickly than previous approaches.

Keywords: online learning, clickthrough data, diversity, multi-armed bandits, contextual bandits,

regret, metric spaces

1. Introduction

Identifying the most relevant results to a query is a central problem in web search, hence learning

ranking functions has received a lot of attention (e.g., Joachims, 2002; Burges et al., 2005; Chu

and Ghahramani, 2005; Taylor et al., 2008). One increasingly important goal is to learn from user

interactions with search engines, such as clicks. We address the task of learning a ranking function

that minimizes the likelihood of query abandonment: the event that the user does not click on any of

the search results for a given query. This objective is particularly interesting as query abandonment

∗. Preliminary versions of this paper has been published as a conference paper in ICML 2010 and as a technical report

at arxiv.org/abs/1005.5197 (May 2010). Compared to the conference version, this paper contains full proofs and

a significantly revised presentation.
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is a major challenge in today’s search engines, and is also sensitive to the diversity and redundancy

among documents presented.

We consider the Multi-Armed Bandit (MAB) setting (e.g., Cesa-Bianchi and Lugosi, 2006),

which captures many online learning problems wherein an algorithm chooses sequentially among a

fixed set of alternatives, traditionally called “arms”. In each round an algorithm chooses an arm and

collects the corresponding reward. Crucially, the algorithm receives limited feedback—only for the

arm it has chosen, which gives rise to the tradeoff between exploration (acquiring new information)

and exploitation (taking advantage of the information available so far).

While most of the literature on MAB corresponds to learning a single best alternative, MAB

algorithms can also be extended to learning a ranking of documents that minimizes query abandon-

ment (Radlinski et al., 2008; Streeter and Golovin, 2008). In this setting, called Ranked Bandits, in

each round an algorithm chooses an ordered list of k documents from some fixed collection of doc-

uments, and receives clicks on some of the chosen documents. Crucially, the click probability for

a given document may depend on the documents shown above: a user scrolls the list top-down and

may leave as soon as she clicked on the first document. The goal is to minimize query abandonment.

Radlinski et al. (2008) and Streeter and Golovin (2008) propose a simple but effective approach:

for each position in the ranking there is a separate instance bandit algorithm which is responsible

for choosing a document for this position. However, the specific algorithms they considered are

impractical at WWW scales.

Prior work on MAB algorithms has considered exploiting structure in the space of arms to

improve convergence rates. One particular approach, articulated by Kleinberg et al. (2008b) is

well suited to our scenario: when the arms form a metric space and the payoff function satisfies a

Lipschitz condition with respect to this metric space. The metric space provides information about

similarity between arms, which allows the algorithm to make inferences about similar arms without

exploring them. Further, they propose a “zooming algorithm” which partitions the metric space into

regions (and treats each region as a “meta-arm”) so that the partition is adaptively refined over time

and becomes finer in regions with higher payoffs.

In web search, a metric space directly models similarity between documents. (It is worth noting

that most offline learning-to-rank approaches also rely on similarity between documents, at least

implicitly.)

Our contributions. This paper initiates the study of bandit learning-to-rank with side informa-

tion on similarity between documents. We adopt the Ranked bandits setup: a user scrolls the results

top-down and may leave after a single click, the goal is to minimize query abandonment. The

similarity information is expressed as a metric space.

In this paper we consider a “perfect world” scenario: there exists an informative distance func-

tion which meaningfully describes similarity between documents in a ranked setting, and an algo-

rithm has access to such function. We focus on two high-level questions: How to represent the

knowledge of document similarity, and how to use it algorithmically in a bandit setting. We believe

that studying such “perfect world” scenario is useful, and perhaps necessary, to inform and guide

the corresponding data-driven work.

We propose a simple bandit model which combines Ranked bandits (Radlinski et al., 2008)

and Lipschitz bandits (Kleinberg et al., 2008b), and admits efficient bandit algorithms that, unlike

those in prior work on bandit learning-to-rank, scale to large document collections. Our model is

based on the new notion of “conditional Lipschitz continuity” which asserts that similar documents

have similar click probabilities even conditional on the event that all documents in a given set
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of documents are skipped (i.e., not clicked on) by the current user. We study this model both

theoretically and empirically.

First, we validate the expressiveness of our model by providing an explicit construction for

a wide family of plausible user distributions which provably fit the model. The analysis of this

construction is perhaps the most technical contribution of this paper. We also use this construction

in simulations.

Second, we put forth a battery of algorithms for our model. Some of these algorithms are

straightforward combinations of ideas from prior work on Ranked bandits and Lipschitz bandits,

and some are new.

A crucial insight in the new algorithms is that for each position i in the ranking there is a context

that we can use, namely the set of documents chosen for the above positions in the same round.

Indeed, since our objective is non-abandonment we only care about position i if all documents

shown above i have been skipped in the present round. So the algorithm responsible for position i

can simply assume that these documents have been skipped.

This interpretation of contexts allows us to cast the position-i problem as a contextual bandit

problem. Moreover, we derive a Lipschitz condition on contexts (with respect to a suitably defined

metric), which allows us to use the contextual Lipschitz MAB machinery from Slivkins (2009). We

also exploit correlations between clicks: if a given document is included in the context—that is, if

this document is skipped by the current user—then similar documents are likely to be skipped, too.

More specifically, we propose two algorithms that use contexts: a “heavy-weight” algorithm which

uses both the metric on contexts and correlated clicks, and a “light-weight” algorithm which uses

correlated clicks but not the metric on contexts.

Third, we provide scalability guarantees for the heavy-weight contextual algorithm, proving that

the convergence rate depends only on the dimensionality of the metric space but not on the number

of documents. However, we argue that our provable guarantees do not fully reflect the power of the

algorithm, and outline some directions for the follow-up theoretical work. In particular, we identify

a stronger benchmark and discuss convergence to this benchmark. We provide an initial result: we

prove, without any guarantees on the convergence rate, that the heavy-weight contextual algorithm

indeed converges to this stonger benchmark. This theoretical discussion is one of the contributions.

Finally, we empirically study the performance of our algorithms. We run a large-scale simula-

tion using the above-mentioned construction with realistic parameters. The main goal is to compare

the convergence rates of the various approaches. In particular, we confirm that metric-aware algo-

rithms significantly outperform the metric-oblivious ones, and that taking the context into account

improves the convergence rate. Somewhat surprisingly, our light-weight contextual algorithm per-

forms better than the heavy-weight one.

A secondary, smaller-scale experiment studies the limit behaviour of the algorithms, that is, the

query abandonment probability that the algorithms converge to. Following the theoretical discus-

sion mentioned above, we design a principled example on which different algorithms exhibit very

different limit behaviour. Interestingly, the heavy-weight contextual algorithm is the only algorithm

that achieves the optimal limit behaviour in this experiment.

Map of the paper. We start with a brief survey of related work (Section 2). We define our

model in Section 3, and validate its expressiveness in Section 4. In-depth discussion of relevant

approaches from prior work is in Section 5. Our new approach, ranked contextual bandits in metric

spaces, is presented in Section 6. Scalability guarantees are discussed in Section 7. We present our

simulations in Section 8.
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To keep the flow of the paper, the lengthy proofs for the theoretical results in Section 4 are

presented in Section A and Section B. Moreover, the background on instance-dependent regret

bounds for UCB1-style algorithms is discussed in Appendix C.

2. Related Work on Multi-Armed Bandits

Multi-armed bandits have been studied for many decades as a simple yet expressive model for under-

standing exploration-exploitation tradeoffs. A thorough discussion of the literature on bandit prob-

lems is beyond the scope of this paper. For background, a reader can refer to a book (Cesa-Bianchi

and Lugosi, 2006) and a recent survey (Bubeck and Cesa-Bianchi, 2012) on regret-minimizing

bandits.1 A somewhat different, Bayesian perspective can be found in surveys (Sundaram, 2005;

Bergemann and Välimäki, 2006).

On a very high level, there is a crucial distinction between regret-minimizing formulations and

Bayesian/MDP formulations (see the surveys mentioned above); this paper follows the former.

Among regret-minimizing formulations, an important distinction is between stochastic rewards (Lai

and Robbins, 1985; Auer et al., 2002a) and adversarial rewards (Auer et al., 2002b).

Below we survey several directions that are directly relevant to this paper.

Ranked bandits. A bandit model in which an algorithm learns a ranking of documents with a

goal to minimize query abandonment has been introduced in Radlinski et al. (2008) under the name

ranked bandits. A crucial feature in this setting is that the click probability for a given document

may depend not only on the document and the position in which it is shown, but also the documents

shown above. In particular, documents shown above can “steal” clicks from the documents shown

below, in the sense that a user scrolls the list top-down and may leave as soon as she clicked on the

first document.

Independently, Streeter and Golovin (2008) considered a more general model where the goal

is to minimize an arbitrary (known) submodular set function, rather than query abandonment. A

further generalization to submodular functions on ordered assignements (rather than on sets) was

considered in (Golovin et al., 2009). The contributions of the three papers essentially coincide for

the special case of ranked bandits.

Uchiya et al. (2010)2 and Kale et al. (2010)2 considered a related bandit model in which an

algorithm selects a ranking of documents in each round, but the click probabilities for a given

document do not depend on which other documents are shown to the same user.

Bandits with structure. Numerous papers enriched the basic MAB setting by assuming some

structure on arms, typically in order to handle settings where the number of arms is very large or

infinite. Most relevant to this paper is the model where arms lie in a metric space and their expected

rewards satisfy the Lipschitz condition with respect to this metric space (see Section 3 for details).

This model, for a general metric space, has been introduced in Kleinberg et al. (2008b) under the

name Lipschitz MAB; the special case of unit interval has been studied in (Agrawal, 1995; Kleinberg,

2004; Auer et al., 2007) under the name continuum-armed bandits. Subsequent work on Lipschtz

MAB includes Bubeck et al. (2011), Kleinberg and Slivkins (2010), Maillard and Munos (2010),

Slivkins (2009) and Slivkins (2011). A closely related model posits that arms corresponds to leaves

1. Regret of an algorithm in T rounds, typically denoted R(T ), is the expected payoff of the benchmark in T rounds

minus that of the algorithm. A standard benchmark is the best arm in hindsight.

2. This is either concurrent or subsequent work with respect to the conference publication of this paper.
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on a tree, but no metric space is revealed to the algorithm (Kocsis and Szepesvari, 2006; Pandey

et al., 2007; Munos and Coquelin, 2007; Slivkins, 2011).

Another commonly assumed structure is linear or convex payoffs (e.g., Awerbuch and Klein-

berg, 2008; Flaxman et al., 2005; Dani et al., 2007; Abernethy et al., 2008; Hazan and Kale, 2009).

Linear/convex payoffs is a much stronger assumption than similarity, essentially because it allows

to make strong inferences about far-away arms. Other structural assumptions have been considered,

for example, Wang et al. (2008) and Bubeck and Munos (2010) and Srinivas et al. (2010)2.

The distinction between the various possible structural assumptions is orthogonal to the dis-

tinction between stochastic and adversarial rewards. With a few exceptions, papers on MAB with

linear/convex payoffs allow adversarial payoffs, whereas papers on MAB with similarity informa-

tion focus on stochastic payoffs

Contextual bandits. Here in each round the algorithm receives a context, chooses an arm, and

the reward depends both on the arm and the context. The term “contextual bandits” was coined

in Langford and Zhang (2007). The setting, with a number of different modifications, has been

introduced independently in several papers; a possibly incomplete list is Woodroofe (1979), Auer

et al. (2002b), Auer (2002), Wang et al. (2005), Langford and Zhang (2007), Hazan and Megiddo

(2007) and Pandey et al. (2007).

There are several models for how contexts are related to rewards: rewards are linear in the

context (e.g., Auer, 2002; Langford and Zhang, 2007) and Chu et al. (2011)2, the context is a

random variable correlated with rewards (Woodroofe, 1979; Wang et al., 2005; Rigollet and Zeevi,

2010); rewards are Lipschitz with respect to a metric space on contexts (Hazan and Megiddo, 2007;

Slivkins, 2009) and Lu et al. (2010)2.

Most work on contextual bandits has been theoretical in nature; experimental work on contextual

MAB includes Pandey et al. (2007) and Li et al. (2010, 2011)2.

3. Problem Formalization: Ranked Bandits in Metric Spaces

Let us introduce the online learning-to-rank problem that we study in this paper.

Ranked bandits. Following Radlinski et al. (2008), we are interested in learning an optimally

diverse ranking of documents for a given query. We model it as a ranked bandit problem as follows.

Let X be a set of documents (“arms”). Each ‘user’ is represented by a binary relevance vector: a

function π : X → {0,1}. A document x ∈ X is called “relevant” to the user if and only if π(x) = 1.

Let FX be the set of all possible relevance vectors. Users come from a distribution P on FX that is

fixed but not revealed to an algorithm.3 This P will henceforth be called the user distribution.

In each round, the following happens: a user arrives, sampled independently from P ; an algo-

rithm outputs a list of k documents; the user scans this list top-down, and clicks on the first relevant

document. The goal is to maximize the expected fraction of satisfied users: users who click on at

least one document. Note that in contrast with prior work on diversifying existing rankings (e.g.,

Carbonell and Goldstein, 1998), the algorithm needs to directly learn a diverse ranking.

Since we count satisfied users rather than the clicks themselves, we can assume w.l.o.g. that

a user leaves once she clicks once. (Alternatively, the algorithm does not record any subsequent

clicks.) A user is satisfied or not satisfied independently of the order in which she scans the results.

However, the assumption of the top-down scan determines the feedback received by the algorithm,

that is, which document gets clicked.

3. This also models users for whom documents are probabilistically relevant (Radlinski et al., 2008).
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We will say that there are k slots to be filled in each round, so that when the algorithm outputs

the list of k documents, the i-th document in this list appears in slot i. Note that the standard model

of MAB with stochastic rewards (e.g., Auer et al., 2002a) is a special case with a single slot (k = 1).

Click probabilities. Recall that P is a distribution over relevance vectors. The pointwise mean

of P is a function µ : X → [0,1] such that µ(x), Eπ∼P [π(x)]. Thus, µ(x) is the click probability for

document x if it appears in the top slot.

Each slot i> 1 is examined by the user only in the event that all documents in the higher slots are

not clicked, so the relevant click probabilities for this slot are conditional on this event. Formally,

fix a subset of documents S ⊂ X and let ZS , {π(·) = 0 on S} be the event that all documents in S

are not relevant to the user. Let (P |ZS) be the distribution of users obtained by conditioning P on

this event, and let µ(· |ZS) be its pointwise mean. Then µ(x |ZS) is the click probability for document

x if S is the set of documents shown above x in the same round.

Metric spaces. Throughout the paper, let (X ,D) be a metric space.That is, X is a set and D is

a symmetric function on X ×X → [0,∞] such that D(x,y) = 0 ⇐⇒ x = y, and D(x,y)+D(y,z)≥
D(x,z) (triangle inequality).

A function ν : X → R is said to be Lipschitz-continuous with respect to (X ,D) if

|ν(x)−ν(y)| ≤ D(x,y) for all x,y ∈ X . (1)

Throughout the paper, we will write L-continuous for brevity.

A user distribution P is called L-continuous with respect to (X ,D) if its pointwise mean µ is

L-continuous with respect to (X ,D).

Document similarity. To allow us to incorporate information about similarity between docu-

ments, we start with the model, called Lipschitz MAB, proposed by Kleinberg et al. (2008b) for

the standard (single-slot) bandits. In this model, an algorithm is given a metric space (X ,D) with

respect to which the pointwise mean µ is L-continuous.4

While this model suffices for learning the document at the top slot (see Kleinberg et al., 2008b

for details), it is not sufficiently informative for lower slots. This is because the relevant click

probabilities µ(· |ZS) are conditional and therefore are not directly constrained by L-continuity. To

enable efficient learning in all k slots, we will assume a stronger property called conditional L-

continuity:

Definition 1 P is called conditionally L-continuous w.r.t. (X ,D) if the conditional pointwise mean

µ(·|ZS) is L-continuous for all S⊂ X.

Now, a document x in slot i > 1 is examined only if event ZS happens, where S is the set of

documents in the higher slots: that is, if all documents in the higher slots are not relevant to the

user. The document x has a conditional click probability µ(x|ZS). The function µ(· |ZS) satisfies the

Lipschitz condition (1), which will allow us to use the machinery from MAB problems on metric

spaces.

Formally, we define the k-slot Lipschitz MAB problem, an instance of which consists of a triple

(X ,D,P ), where (X ,D) is a metric space that is known to an algorithm, and P is a latent user

distribution which is conditionally L-continuous w.r.t. (X ,D).

4. One only needs to assume that similarity between any two documents x,y is summarized by a number δx,y such that

|µ(x)−µ(y)| ≤ δx,y. Then one obtains a metric space by taking the shortest paths closure.
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Note that the k-slot Lipschitz MAB problem subsumes the “metric-free” ranked bandit problem

from Radlinski et al. (2008) (as a special case with a trivial metric space in which all distances are

equal to 1) and the Lipschitz MAB problem from Kleinberg et al. (2008b) (as a special case with a

single slot).

3.1 Metric Space: A Running Example

Web documents are often classified into hierarchies, where closer pairs are more similar.5 For

evaluation, we assume the documents X fall in such a tree, with each document x ∈ X a leaf in the

tree. On this tree, we consider a very natural metric: the distance between any two tree nodes u,v is

exponential in the height (i.e., the hop-count distance to the root) of their least common ancestor:

D(u,v) = c× εheight(LCA(u,v)),

for some constant c and base ε ∈ (0,1). We call this the ε-exponential tree metric (with constant c).

However, our algorithms and analyses extend to arbitrary metric spaces.

3.2 Alternative Notion of Document Similarity

An alternative notion of document similarity focuses on correlated relevance: correlation between

the relevance of two documents to a given user. We express “similarity” by bounding the probability

of the “discorrelation event” {π(x) 6= π(y)}. Specifically, we consider conditional L-correlation,

defined as follows:

Definition 2 Call P L-correlated w.r.t. (X ,D) if

Pr
π∼P

[π(x) 6= π(y)]≤ D(x,y) ∀x,y ∈ X . (2)

Call P conditionally L-correlated w.r.t. (X ,D) if (2) holds conditional on ZS for any S⊂ X, that is,

Pr
π∼(P |ZS)

[π(x) 6= π(y)]≤ D(x,y) ∀x,y ∈ X ,S⊂ X .

It is easy to see that conditional L-correlation implies conditional L-continuity. In fact, we show

that the two notions are essentially equivalent. Namely, we prove that conditional L-continuity

w.r.t. (X ,D) implies conditional L-correlation w.r.t. (X ,2D).

Lemma 3 Consider an instance (X ,D,P ) of the k-slot Lipschitz MAB problem. Then the user

distribution P is conditionally L-correlated w.r.t. (X ,2D).

Proof Fix documents x,y ∈ X and a subset S ⊂ X . For brevity, write “x = 1” to mean “π(x) = 1”,

etc. We claim that

Pr[x = 1∧ y = 0 |ZS]≤ D(x,y). (3)

Indeed, consider the event Z = ZS+{y}. Applying the Bayes theorem to (P |ZS), we obtain that

µ(x|Z) = Pr[x = 1 |{y = 0}∧ZS]

=
Pr[x = 1∧ y = 0 |ZS]

Pr[y = 0 |ZS]
. (4)

5. One example of such hierarchical classification is the Open Directory Project (http://dmoz.org).
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On the other hand, since µ(y|Z) = 0, by conditional L-continuity it holds that

µ(x|Z) = |µ(x|Z)−µ(y|Z)| ≤ D(x,y), (5)

so claim (3) follows from Equation (4) and Equation (5).

Likewise, Pr[x = 0∧ y = 1 |ZS]≤ D(x,y). Since

{π(x) 6= π(y)}= {x = 1∧ y = 0}∪{x = 0∧ y = 1},

it follows that Pr[π(x) 6= π(y) |ZS]≤ 2D(x,y).

4. Expressiveness of the Model

Our approach relies on the conditional L-continuity (equivalently, conditional L-correlation) of the

user distribution. How “expressive” is this assumption, that is, how rich and “interesting” is the

collection of problem instances that satisfy it? While the unconditional L-continuity assumption

is usually considered reasonable from the expressiveness point of view, even the unconditional L-

correlation (let alone the conditional L-correlation) is a very non-trivial property about correlated

relevance, and thus potentially problematic. A related concern is how to generate a suitable collec-

tion of problem instances for simulation experiments.

We address both concerns by defining a natural (albeit highly stylized) generative model for the

user distribution, which we then use in the experiments in Section 8. We start with a tree metric

space (X ,D) and the desired pointwise mean µ : X → (0, 1
2
] that is L-continuous w.r.t. (X ,D). The

generative model provides a rich family of user distributions that are conditionally L-continuous

w.r.t. (X ,cD), for some small c. This result is a key theoretical contribution of this paper (and by

far the most technical one).

We develop the generative model in Section 4.1. We extend this result to arbitrary metric spaces

in Section 4.2, and to distributions over conditionally L-continuous user distributions in Section 4.3.

To keep the flow of the paper, the detailed analysis is deferred to Section A and Section B.

4.1 Bayesian Tree Network

The generative model is a tree-shaped Bayesian network with 0-1 “relevance values” π(·) on nodes,

where leaves correspond to documents. The tree is essentially a topical taxonomy on documents:

subtopics correspond to subtrees. The relevance value on each sub-topic is obtained from that on

the parent topic via a low-probability mutation.

The mutation probabilities need to be chosen so as to guarantee conditional L-continuity and

the desired pointwise mean µ. It is fairly easy to derive a necessary and sufficient condition for the

pointwise mean, and a necessary condition for conditional L-continuity. The latter condition states

that the mutation probabilities need to be bounded in terms of the distance between the child and

the parent. The hard part is to prove that this condition is sufficient.

Let us describe our Bayesian tree network in detail. The network inputs a tree metric space

(X ,D) and the desired pointwise mean µ, and outputs a relevance vector π : X→{0,1}. Specifically,

we assume that documents are leaves of a finite rooted edge-weighted tree, which we denote τd, with

node set V and leaf set X ⊂V , so that D is a (weighted) shortest-paths metric on V .
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Algorithm 1 User distribution for tree metrics

Input: Tree (root r, node set V ); µ(r) ∈ [0,1]
mutation probabilities q0,q1 : V → [0,1]

Output: relevance vector π : V →{0,1}
function AssignClicks(tree node v)

b← π(v)
for each child u of v do

π(u)←
{

1−b w/prob qb(u)

b otherwise

AssignClicks(u)

Pick π(r) ∈ {0,1} at random with expectation µ(r)
AssignClicks(r)

Recall that µ is L-continuous w.r.t. (X ,D). We assume that µ takes values in the interval [α, 1
2
],

for some constant parameter α > 0. We show that µ can be extended from X to V preserving the

range and L-continuity (see Section A for the proof).

Lemma 4 µ can be extended to V so that µ : V → [α, 1
2
] is L-continuous w.r.t. (V,D).

In what follows, by a slight abuse of notation we will assume that the domain of µ is V , with the

same range [α, 1
2
], and that µ is L-continuous w.r.t. (V,D). Also, we redefine the relevance vectors

to be functions V →{0,1} rather than X →{0,1}.
The Bayesian network itself is very intuitive. We pick π(root)∈ {0,1} at random with a suitable

expectation µ(root), and then proceed top-down so that the child’s bit is obtained from the parent’s

bit via a low-probability mutation. The mutation is parameterized by functions q0,q1 : V → [0,1],
as described in Algorithm 1: for each node u, if the parent’s bit is set to b then the mutation {π(u) =
1− b} happens with probability qb(u). These parameters let us vary the degree of independence

between each child and its parent, resulting in a rich family of user distributions.

To complete the construction, it remains to define the mutation probabilities q0,q1. Let P be the

resulting user distribution. It is easy to see that µ is the pointwise mean of P on V if and only if

µ(u) = (1−µ(v))q0(u)+µ(v)(1−q1(u)) (6)

whenever u is a child of v. (For sufficiency, use induction on the tree.) Further, letting qb = qb(u)
for each bit b ∈ {0,1}, note that

Pr[π(u) 6= π(v)] = µ(v)q1 +(1−µ(v))q0

= µ(v)(q0 +q1)+(1−2µ(v))q0

≥ µ(v)(q0 +q1).

Thus, if P is L-correlated w.r.t. (X ,D) then

q0(u)+q1(u)≤ D(u,v)/µ(v). (7)

We show that (6-7) suffices to guarantee conditional L-continuity.
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For a concrete example, one could define

(q0(u), q1(u)) =







(

0, µ(v)−µ(u)
µ(v)

)

if µ(v)≥ µ(u)
(

µ(u)−µ(v)
1−µ(v) , 0

)

otherwise.
(8)

The q0,q1 defined as above satisfy (6-7) for any µ that is L-continuous on (V,D).

The provable properties of Algorithm 1 are summarized in the theorem below. It is technically

more convenient to state this theorem in terms of L-correlation rather than L-continuity.

Theorem 5 Let D be the shortest-paths metric of an edge-weighted rooted tree with a finite leaf set

X. Let µ : X → [α, 1
2
], α > 0 be L-continuous w.r.t. (X ,D). Suppose q0,q1 : V → [0,1] satisfy (6-7).

Let P be the user distribution constructed by Algorithm 1. Then P has pointwise mean µ and is

conditionally L-correlated w.r.t. (X ,3Dµ) where

Dµ(x,y), D(x,y) min
(

1
α
, 3

µ(x)+µ(y)

)

.

Remark. The theorem can be strengthened by replacing Dµ with the shortest-paths metric induced

by Dµ.

Below we provide a proof sketch. The detailed proof is presented in Section B.

Proof Sketch As we noted above, the statement about the pointwise mean trivially follows from Equa-

tion (6) using induction on the tree. In what follows we focus on conditional L-correlation.

Fix leaves x,y ∈ X and a subset S ⊂ X . Let z be the least common ancestor of x,y. Recall

that in Algorithm 1 the bit π(·) at each node is a random mutation of that of its parent. We focus

on the event E that no mutation happened on the z→ x and z→ y paths. Note that E implies

π(x) = π(y) = π(z). Therefore

Pr[π(x) 6= π(y) |ZS]≤ Pr[Ē |ZS],

where Ē is the negation of E . Intuitively, Ē is a low-probability “failure event”. The rest of the

proof is concerned with showing that Pr[Ē |ZS]≤ 3Dµ(x,y).

First we handle the unconditional case. We claim that

Pr[Ē ]≤ Dµ(x,y). (9)

Note that Equation (9) immediately implies that P is L-correlated w.r.t. (X ,Dµ). This claim is not

very difficult to prove, essentially since the condition in Equation (7) is specifically engineered to

satisfy the unconditional L-correlation property. We provide the proof in detail.

Let w ∈ argminu∈Pxy
µ(u), where Pxy is the x → y path. Let (z = x0,x1, . . . ,xn = x) be the

z→ x path. For each i ≥ 1 by Equation (7) the probability of having a mutation at xi is at most

D(xi,xi−1)/µ(w), so the probability of having a mutation on the z→ x path is at most D(x,z)/µ(w).
Likewise for the z→ y path. So Pr[Ē ]≤ D(x,y)/µ(w)≤ D(x,y)/α.

It remains to prove that

Pr[Ē ]≤ D(x,y) 3
µ(x)+µ(y) . (10)
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Indeed, by L-continuity it holds that

µ(w)≥ µ(x)−D(x,w),

µ(w)≥ µ(y)−D(y,w).

Since D(x,y) = D(x,w)+D(y,w), it follows that

µ(w)≥ µ(x)+µ(y)−D(x,y)
2

. (11)

Now, either the right-hand side of Equation (11) is at least
µ(x)+µ(y)

3
, or the right-hand side of Equa-

tion (10) is at least 1. In both cases Equation (10) holds. This completes the proof of the claim (9).

The conditional case is much more difficult. We handle it by showing that

Pr[Ē |ZS]≤ 3 Pr[Ē ]. (12)

In fact, Equation (12) holds even if Equation (7) is replaced with a much weaker bound:

max(q0(u), q1(u))≤ 1
2

for each u.

The mathematically subtle proof of Equation (12) can be found in Section B. The crux in this

proof is that event ZS is more likely if document z is not relevant to the user:

Pr[ZS |z = 0]≥ Pr[ZS |z = 1].

4.2 Arbitrary Metric Spaces

We can extend Theorem 3.1 to arbitrary metric spaces using prior work on metric embeddings. Fix

an N-point metric space (X ,D) and a function µ : X → [α, 1
2
] that is L-continuous on (X ,D). It

is known (Bartal, 1996; Fakcharoenphol et al., 2004) that there exists a distribution Ptree over tree

metric spaces (X ,T ) such that D(x,y)≤ T (x,y) and

ET ∼Ptree
[T (x,y)]≤ cD(x,y) ∀x,y ∈ X ,

where c = O(logN).6

Our construction (Algorithm 2) is simple: first sample a tree metric space (X ,T ) from Ptree,

then independently generate a user distribution PT for (X ,T ) as per Algorithm 1.

Theorem 6 The user distribution P produced by Algorithm 2 has pointwise mean µ and is condi-

tionally L-correlated w.r.t. (X ,3cDµ), where Dµ is given by

Dµ(x,y) = D(x,y) min
(

1
α
, 3

µ(x)+µ(y)

)

.

6. This is the main result in Fakcharoenphol et al. (2004), which improves on an earlier result in Bartal (1996) with

c = O(log2 N). For point sets in a d-dimensional Euclidean space one could take c = O(d log 1
ε
), where ε is the

minimal distance. In fact, this result extends to a much more general family of metric spaces—those of doubling

dimension d (Gupta et al., 2003). Doubling dimension, the smallest d such that any ball can be covered by 2d balls

of half the radius, has been introduced to the theoretical computer science literature in Gupta et al. (2003), and has

been a well-studied concept since then.
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Algorithm 2 User distribution for arbitrary metric spaces

Input: metric space (X ,D); function µ : X → [α, 1
2
] that is L-continuous on (X ,D).

Output: relevance vector π : X →{0,1}
1. Sample a tree metric space (X ,T ) from Ptree,

2. Run Algorithm 1 for (X ,T ), output the resulting π.

Proof The function µ is L-continuous w.r.t. each tree metric space (X ,T ), so by Theorem 3.1 user

distribution PT has pointwise mean µ and is conditionally L-correlated w.r.t. (X ,3Tµ). It follows

that the aggregate user distribution P has pointwise mean µ, and moreover for any x,y ∈ X and

S⊂ X we have

Pr
π∼P

[π(x) 6= π(y) |ZS]

≤ ET ∼Ptree

[

Pr
π∼PT

[π(x) 6= π(y) |ZS]

]

≤ ET ∼Ptree
[3Tµ(x,y)]

≤ 3cDµ(x,y).

4.3 Distributions over User Distributions

Let us verify that conditional L-continuity is robust, in the sense that any distribution over condition-

ally L-continuous user distributions is itself conditionally L-continuous. This result considerably

extends the family of user distributions for which we have conditional L-continuity guarantees.

Lemma 7 Let P be a distribution over countably many user distributions Pi that are conditionally

L-continuous w.r.t. a metric space (X ,D). Then P is conditionally L-continuous w.r.t. (X ,D).

Proof Let µ and µi be the (conditional) pointwise means of P and Pi, respectively. Formally, let

us treat each Pi as a measure, so that Pi(E) is the probability of event E under Pi. Let P = ∑i qi Pi,

where {qi} are positive coefficients that sum up to 1. Fix documents x,y ∈ X and a subset S ⊂ X .

Then

µ(x|S) = P (x = 1 |ZS) =
P (x = 1∧ZS)

P (ZS)

=
∑i qi Pi(x = 1∧ZS)

P (ZS)

=
∑i qi Pi(ZS) µi(x|ZS)

P (ZS)
.
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It follows that

|µ(x|S)−µ(y|S)|

=
∑i qi Pi(ZS) (µi(x|ZS)−µi(y|ZS))

P (ZS)

≤ ∑i qi Pi(ZS) D(x,y)

P (ZS)

≤ D(x,y).

5. Algorithms from Prior Work

Let us discuss some algorithmic ideas from prior work that can be adapted to our setting. Interest-

ingly, one can combine these algorithms in a modular way, which we make particularly transparent

by putting forward a suitable naming scheme. Throughout this section, we let Bandit be some

algorithm for the MAB problem.

5.1 Ranked Bandits

Given some bandit algorithm Bandit, the “ranked” algorithm RankBandit for the multi-slot MAB

problem is defined as follows (Radlinski et al., 2008). We have k slots (i.e., ranks) for which we wish

to find the best documents to present. In each slot i, a separate instance Ai of Bandit is created.

In each round these instances select the documents to show independently of one another. If a user

clicks on slot i, then this slot receives a reward of 1, and all higher (i.e., skipped) slots j < i receive

a reward of 0. For slots j > i, the state is rolled back as if this round had never happened (as if the

user never considered these documents). If no slot is clicked, then all slots receive a reward of 0.

Let us emphasize that the above approach can be applied to any algorithm Bandit. In Radlinski

et al. (2008), this approach gives rise to algorithms RankUCB1 and RankEXP3, based on MAB algo-

rithms UCB1 and EXP3(Auer et al., 2002a,b). EXP3 is designed for the adversarial setting with no

assumptions on how the clicks are generated, which translates into concrete provable guarantees for

RankEXP3. UCB1 is geared towards the stochastic setting with i.i.d. rewards on each arm, although

the per-slot i.i.d. assumption breaks for slots i > 1 because of the influence of the higher slots. Nev-

ertheless, in small-scale experiments RankUCB1 performs much better than RankEXP3(Radlinski

et al., 2008).

Provable guarantees. Letting T be the number of rounds and OPT be the probability of clicking

on the optimal ranking, algorithm RankBandit achieves

E[#clicks]≥ (1− 1
e
)T ×OPT− k R(T ), (13)

where R(T ) is any upper bound on regret for Bandit in each slot (Radlinski et al., 2008; Streeter

and Golovin, 2008).

In the multi-slot setting, performance of an algorithm up to time T is defined as the time-

averaged expected total number of clicks. We will consider performance as a function of T . Assum-

ing R(T )= o(T ) in Equation (13), performance of RankBandit converges to or exceeds (1− 1
e
)OPT.
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Convergence to (1− 1
e
)OPT is proved to be worst-case optimal. Thus, as long as R(T ) scales well

with time, for the document collection sizes that are typical for the application at hand, Radlinski

et al. (2008) interpret Equation (13) as a proof of an algorithm’s scalability in the multi-slot MAB

setting.

RankBandit is presented in Radlinski et al. (2008) as the online version of the greedy algorithm:

an offline fully informed algorithm that selects documents greedily slot by slot from top to bottom.

The performance of this algorithm is called the greedy optimum,7 which is equal to (1− 1
e
)OPT in

the worst case, but for “benign” problem instances it can be as good as OPT. The greedy optimum is

a more natural benchmark for RankBandit than (1− 1
e
)OPT. However, results w.r.t. this benchmark

are absent in the literature.8

5.2 Lipschitz Bandits

Both UCB1 and EXP3 are impractical when there are too many documents to explore them all. To

alleviate this issue, one can use the similarity information provided by the metric space and the

Lipschitz assumption; this setting is called Lipschitz MAB.

Below we describe two “metric-aware” algorithms from Kleinberg (2004) and Kleinberg et al.

(2008b). Both are well-defined for arbitrary metric spaces, but for simplicity we present them for a

special case in which documents are leaves in a document tree (denoted τd) with an ε-exponential

tree metric. In both algorithms, a subtree is chosen in each round, then a document in this subtree

is sampled at random, choosing uniformly at each branch.

Given some bandit algorithm Bandit, Kleinberg (2004) define algorithm GridBandit for the

Lipschitz MAB setting. This algorithm proceeds in phases: in phase i, the depth-i subtrees are

treated as “arms”, and a fresh copy of Bandit is run on these arms.9 Phase i lasts for kε−2i rounds,

where k is the number of depth-i subtrees. This meta-algorithm, coupled with an adversarial MAB

algorithm such as EXP3, is the only algorithm in the literature that takes advantage of the metric

space in the adversarial setting. Following Radlinski et al. (2008), we expect GridEXP3 to be

overly pessimistic for our problem, trumped by the corresponding stochastic MAB approaches such

as GridUCB1.

The “zooming algorithm” (Kleinberg et al., 2008b, Algorithm 3) is a more efficient version

of GridUCB1: instead of iteratively reducing the grid size in the entire metric space, it adaptively

refines the grid in promising areas. It maintains a set A of active subtrees which collectively partition

the leaf set. In each round the active subtree with the maximal index is chosen. The index of a

subtree is (assuming stochastic rewards) the best available upper confidence bound on the click

probabilities in this subtree. It is defined via the confidence radius10 given (letting T be the time

horizon) by

rad(·),
√

4log(T )/(1+#samples(·)). (14)

The algorithm “zooms in” on a given active subtree u (de-activates u and activates all its chil-

dren) when rad(u) becomes smaller than its width W(u), εdepth(u) = maxx,x′∈u D(x,x′).

7. If due to ties there are multiple “greedy rankings”, define the greedy optimum via the worst of them.

8. Following the conference publication of this paper, Streeter and Golovin claimed that the techniques in Streeter and

Golovin (2008) can be used to extend Equation (13) to the greedy optimum benchmark. If so, then it may be possible

to use the same approach to improve our guarantees.

9. As an empirical optimization, previous events can also be replayed to better initialize later phases.

10. The meaning of rad(·) is that w.h.p. the sample average is within ±rad(·) from the true mean.
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Algorithm 3 “Zooming algorithm” in trees

initialize (document tree τd):

A← /0; activate(root(τd))

activate( u ∈ nodes(τd) ):

A←A ∪{u}; n(u)←0; r(u)←0

Main loop:

u← argmaxu∈A index(u),

where index(u) = r(u)
n(u) + 2 rad(u)

“Play” a random document from subtree(u)
r(u)← r(u)+{reward}; n(u)← n(u)+1

if rad(u)< W(u) then

deactivate u: remove u from A

activate all children of u

Provable guarantees. Regret guarantees for the two algorithms above are independent of the

number of arms (which, in particular, can be infinite). Instead, they depend on the covering prop-

erties of the metric space (X ,D). A crucial notion here is the covering number Nr(X), defined as

the minimal number of balls of radius r sufficient to cover X . It is often useful to summarize the

covering numbers Nr(X), r > 0 with a single number called the covering dimension:

CovDim(X ,D), inf{d ≥ 0 : Nr(X)≤ αr−d ∀r > 0}. (15)

(Here α > 0 is a constant which we will keep implicit in the notation.) In particular, for an arbitrary

point set in R
d under the standard (ℓ2) distance, the covering dimension is d, for some α = O(1).

For an ε-exponential tree metric with maximal branching factor b, the covering dimension is d =
log1/ε(b), with α = 1.

Against an oblivious adversary, GridEXP3 has regret

R(T ) = Õ(αT (d+1)/(d+2)), (16)

where d is the covering dimension of (X ,D).
For the stochastic setting, GridUCB1 and the zooming algorithm enjoy strong instance-dependent

regret guarantees. These guarantees reduce to Equation (16) in the worst case, but are much better

for “nice” problem instances. Informally, regret guarantees improve for problem instances in which

the set of near-optimal arms has smaller covering numbers than the set of all arms. Regret guar-

antees for the zooming algorithm are (typically) much stronger than for GridUCB1. In particular,

one can derive a version of Equation (16) with a different d called the zooming dimension, which

is equal to the covering dimension in the worst case but can be much smaller, even d = 0. These

issues are further discussed in Appendix C.

5.3 Anytime Guarantees and the Doubling Trick

While the zooming algorithm, and also the contextual zooming algorithm from Section 5.5, are

defined for a fixed time horizon, one can obtain the corresponding anytime versions using a simple

doubling trick: in each phase i ∈ N, run a fresh instance of the algorithm for 2i rounds. These
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versions are run indefinitely and enjoy the same asymptotic upper bounds on regret as the original

algorithms (but now these bounds hold for each round).

5.4 Ranked Bandits in Metric Spaces

Using and combining the algorithms in the previous two subsections, we obtain the following battery

of algorithms for k-slot Lipschitz MAB problem:

• metric-oblivious algorithms: RankUCB1 and RankEXP3.

• simple metric-aware algorithms: RankGridUCB1 and RankGridEXP3

(ranked versions of GridUCB1 and GridEXP3, respectively).

• RankZoom: the ranked version of the zooming algorithm.

In theory, RankGridEXP3 scales to large document collections, in the sense that it achieves Equa-

tion (13) with R(T ) that does not degenerate with #documents:

Theorem 8 Consider the k-slot Lipschitz MAB problem on a metric space with covering dimension

d (as defined in Equation (15), with constant α). Then after T rounds RankGridEXP3 achieves

E[#clicks]

T
≥ (1− 1

e
)OPT− Õ

(

αk

T 1/(d+2)

)

.

The theorem follows from the respective regret bounds for GridEXP3 (Equation (16)) and Rank-

Bandit (Equation (13)). We do not have any provable guarantees for other algorithms because

the corresponding regret bounds for the single-slot setting do not directly plug into Equation (13).

However, the strong instance-dependent guarantees for GridUCB1 and especially for the zooming

algorithm (even though they do not directly apply to the ranked bandit setting) suggest that Rank-

GridUCB1 and RankZoom are promising. We shall see that these two algorithms perform much

better than RankGridEXP3 in the experiments.

5.5 Contextual Lipschitz Bandits

We also leverage prior work on contextual bandits. The relevant contextual MAB setting, called

contextual Lipschitz MAB, is as follows. In each round nature reveals a context h, an algorithm

chooses a document x, and the resulting reward is an independent {0,1} sample with expectation

µ(x|h). Further, one is given similarity information: metrics D and Dc on documents and contexts,

respectively, such that for any two documents x,x′ and any two contexts h,h′ we have

|µ(x|h)−µ(x′|h′)| ≤ D(x,x′)+Dc(h,h
′).

Let Xc be the set of contexts, and Xdc = X × Xc be the set of all (document, context) pairs.

Abstractly, one considers the metric space (Xdc,Ddc), henceforth the DC-space, where the metric is

Ddc((x,h), (x
′,h′)) = D(x,x′)+Dc(h,h

′).

We will use the “contextual zooming algorithm” (ContextZoom) from Slivkins (2009). This

algorithm is well-defined for arbitrary Ddc, but for simplicity we will state it for the case when D

and Dc are ε-exponential tree metrics.

Let us assume that documents and contexts are leaves in a document tree τd and context tree τc,

respectively. The algorithm (see Algorithm 4 for pseudocode) maintains a set A of active strategies
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Algorithm 4 ContextZoom in trees

initialize (document tree τd, context tree τc):

A ← /0; activate( root(τd), root(τc) )

activate ( u ∈ nodes(τd), uc ∈ nodes(τc) ):

A ← A ∪{(u,uc)}; n(u,uc)← 0; r(u,uc)← 0

Main loop:

Input a context h ∈ nodes(τc)
(u,uc)← argmax

(u,uc)∈A : h∈uc

index(u,uc),

where index(u,uc) = W(u×uc)+
r(u,uc)
n(u,uc)

+rad(u,uc)

“Play” a random document from subtree(u)
r(u,uc)← r(u,uc)+{reward}; n(u,uc)← n(u,uc)+1

if rad(u,uc)< W(u,uc) then

deactivate (u,uc): remove (u,uc) from A

activate all pairs (child(u), child(uc))

of the form (u,uc), where u is a subtree in τd and uc is a subtree in τc. At any given time the active

strategies partition Xdc. In each round, a context h arrives, and one of the active strategies (u,uc)
with h ∈ uc is chosen: namely the one with the maximal index, and then a document x ∈ u is picked

uniformly at random. The index of (u,uc) is, essentially, the best available upper confidence bound

on expected rewards from choosing a document x ∈ u given a context h ∈ uc. The index is defined

via sample average, confidence radius (14), and “width” W(u× uc). The latter can be any upper

bound on the diameter of the product set u×uc in the DC-space:

W(u,uc)≥ max
x,x′∈u, h,h′∈uc

D(x,x′)+Dc(h,h
′). (17)

The (de)activation rule ensures that the active strategies form a finer partition in the regions of the

DC-space that correspond to higher rewards and more frequently occurring contexts.

Provable guarantees. The provable guarantees for the contextual MAB problem are in terms

of contextual regret, which is regret is with respect to a much stronger benchmark: the best arm in

hindsight for every given context.

Regret guarantees for ContextZoom focus on the DC-space (Xdc,Ddc). A very pessimistic

regret bound is Equation (16) with d = CovDim(Xdc,Ddc). However, as for the zooming algorithm,

much better instance-dependent bounds are possible. See Appendix C for further discussion.

6. New Approach: Ranked Contextual Bandits

We now present a new approach in which the upper slot selections are taken into account as a context

in the contextual MAB setting.

The slot algorithms in the RankBandit setting can make their selections sequentially. Then

without loss of generality each slot algorithm Ai knows the set S of documents in the upper slots.

We propose to treat S as a “context” to Ai. Specifically, Ai will assume that none of the documents in

S is clicked, that is, event ZS happens (else the i-th slot is ignored by the user). For each such round,

the click probabilities for Ai are given by µ(· |ZS), which is an L-continuous function on (X ,D).
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6.1 RankCorrZoom: “Light-weight” Ranked Contextual Algorithm

We first propose a simple modification to RankZoom, called RankCorrZoom, which uses the contexts

as discussed above.

Recall that in the zooming algorithm, the index of an active subtree u is defined so that, assuming

stochastic rewards, it is an upper confidence bound on the click probability of any document x in

this subtree:

w.h.p. index(u)≥max
x∈u

µ(x). (18)

Moreover, it follows from the analysis in (Kleinberg et al., 2008b) that performance of the algorithm

improves if the index is decreased as long as Equation (18) holds.

Now consider RankZoom, and let Ai be the instance of the zooming algorithm in slot i ≥ 2.

While for Ai the rewards are no longer stochastic, our intuition for why RankZoom may be a good

algorithm is still based on Equation (18). In other words, we wish that for each context S ⊂ X we

have

w.h.p. index(u)≥max
x∈u

µ(x|ZS), (19)

and our intuition is that it is desirable to decrease the index as long as Equation (19) holds.

We will derive an upper bound on maxx∈u µ(x|ZS) using correlation between u and S, and we

will cap the index of u at this quantity. Since µ(y|ZS) = 0 for any y ∈ S, we have

µ(x|ZS) = |µ(x|ZS)−µ(y|ZS)| ≤ D(x,y), ∀y ∈ S

µ(x|ZS)≤ D(x,S), miny∈S D(x,y). (20)

In other words, if document x is close to some document in S, the event ZS limits the conditional

probability µ(x|ZS). Therefore we can cap the index of u at maxx∈u D(x,S):

index(u)←min
(

index(u), max
x∈u

D(x,S)
)

.

The version of RankZoom with the above “correlation rule” will be called RankCorrZoom.

To simplify the computation of maxx∈u D(x,S) in an ε-exponential tree metric, we note that it

is equal to D(root(u), S) if u is disjoint with S, and in general it is equal to D(root(v), S), where

v is the largest subtree of u that is disjoint with S.

6.2 Contextual Lipschitz MAB Interpretation

Let us cast each slot algorithm Ai as a contextual algorithm in the contextual Lipschitz MAB setting

(as defined in Section 5.5). We need to specify a metric Dc on contexts S⊂X which can be computed

by the algorithm and satisfies the Lipschitz condition:

|µ(x|ZS)−µ(x|ZS′)| ≤ Dc(S,S
′) for all x ∈ X and S,S′ ⊂ X . (21)

Lemma 9 Consider the k-slot Lipschitz MAB problem. For any S,S′ ⊂ X, define

Dc(S,S
′), 4 inf∑

n
j=1D(x j,x

′
j), (22)

where the infimum is taken over all n ∈ N and over all n-element sequences {x j} and {x′j} that

enumerate, possibly with repetitions, all documents in S and S′. Then Dc satisfies Equation (21).

416



RANKED BANDITS IN METRIC SPACES

Proof For shorthand, let us write

σ(x|S), 1−µ(x|ZS),

σ(x|S,y), σ(x|S∪{y}).

First, we claim that for any y ∈ X and y′ ∈ S

|σ(x|S,y)−σ(x|S,y′)| ≤ 4D(y,y′). (23)

Indeed, noting that σ(x|S,y) = σ(y|S,x) σ(x|S)
σ(y|S) , we can re-write the left-hand side of Equation (23)

as

LHS(23) = σ(x,S)

∣

∣

∣

∣

σ(y|S,x)
σ(y|S) −

σ(y′|S,x)
σ(y′|S)

∣

∣

∣

∣

≤ σ(x,S) D(y,y′)
σ(y|S)+σ(y|S,x)

σ(y|S)σ(y′|S) (24)

= D(y,y′)
σ(x|S)+σ(x|S,y)

σ(y′|S) ≤ 2D(y,y′).

In Equation (24), we have used the L-continuity of σ(·|S) and σ(·|S,x). To achieve the constant of

2, it was crucial that y′ ∈ S, so that σ(y′|S) = 1. This completes the proof of Equation (23).

Fix some n ∈ N and some n-element sequences {xi} and {x′i} that enumerate, possibly with

repetitions, all values in S and S′, respectively. Consider sets

Si = {x′1 , . . . ,x′i}∪{xi+1 , . . . ,xn}, 1≤ i≤ n−1,

and let S0 = S and Sn+1 = S′. To prove the lemma, it suffices to show that

|σ(x|Si)−σ(x|Si+1)| ≤ 4D(xi+1, x′i+1) (25)

for each i ≤ n. To prove Equation (25), fix i and let y = xi+1 and y′ = x′i+1. Note that Si ∪{y′} =
Si+1∪{y}, call this set S∗. Then using Equation (23) (note, y ∈ Si and y′ ∈ S′i) we obtain

|σ(x|Si)−σ(x|S∗)|= |σ(x|Si,y)−σ(x|Si,y
′)|

≤ 2D(y,y′),

|σ(x|Si+1)−σ(x|S∗)|= |σ(x|Si+1,y
′)−σ(x|Si+1,y)|

≤ 2D(y,y′),

which implies Equation (25).

6.3 RankContextZoom: “Full-blown” Ranked Contextual Algorithm

Now we can take any algorithm for the contextual Lipschitz MAB problem (with metric Dc on con-

texts given by Equation (22)), and use it as a slot algorithm. We will use ContextZoom, augmented

by the “correlation rule” similar to the one in Section 6.1. The resulting “ranked” algorithm will be

called RankContextZoom.
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The implementation details are not difficult. Suppose the metric space on documents is the ε-

exponential tree metric, and let τd be the document tree. Consider slot (i+1)-th slot, i≥ 1.11 Then

the contexts are unordered i-tuples of documents. Let us define context tree τc as follows. Depth-ℓ
nodes of τc are unordered i-tuples of depth-ℓ nodes from τd, and leaves are contexts. The root of

τc is (r . . .r), where r = root(τd). For each internal node uc = (u1 . . .ui) of τc, its children are all

unordered tuples (v1 . . .vi) such that each v j is a child of u j in τd. This completes the definition of

τc. Letting u and uc be level-ℓ subtrees of τd and τc, respectively, it follows from the definition of Dc

in Equation (22) that Dc(S,S
′)≤ 4iεℓ for any contexts S,S′ ∈ uc. Thus setting W(u×uc), εℓ(4i+1)

satisfies Equation (17).

We define the “correlation rule” as follows. Let (u,uc) be an active strategy in the execution

of ContextZoom, where u is a subtree of the document tree τd, and uc is a subtree of the context

tree τc. It follows from the analysis in (Slivkins, 2009) that decreasing the index of (u,uc) improves

performance, as long it holds that

index(u,uc)≥ µ(x|ZS), ∀x ∈ u, S ∈ uc.

Recall that µ(x|ZS)≤ D(x,S) by Equation (20), so we can cap index(u,uc) at maxx∈u D(x|S):

index(u,S)←min
(

index(u,S), max
x∈u

D(x|S)
)

.

This completes the description of RankContextZoom.

7. Provable Scalability Guarantees and Discussion

Noting that for each slot i ≥ k the covering dimension of the DC-space is at most k times the

covering dimension of (X ,D), it follows that a (very pessimistic) upper bound on contextual regret

of RankContextZoom is R(T ) = Õ(αT 1−1/(kd+2)). Plugging this into Equation (13), we obtain:

Theorem 10 Consider the k-slot Lipschitz MAB problem on a metric space with covering dimen-

sion d (as defined in Equation (15), with constant α). Then after T rounds algorithm RankContext-

Zoom achieves

E[#clicks]

T
≥ (1− 1

e
)OPT− Õ

(

αk

T 1/(kd+2)

)

.

This is just a basic scalability guarantee which does not degenerate with the number of docu-

ments. (Note that it is worse than the one for RankGridEXP3.) We believe that this guarantee is

very pessimistic, as it builds on a very pessimistic version of the result for ContextZoom. In partic-

ular, we ignore the intuition that for a given slot, contexts S ⊂ X may gradually converge over time

to the greedy optimum, which effectively results in a much smaller set of possible contexts.12 We

believe this effect is very important to the performance RankContextZoom. In particular, it causes

RankContextZoom to perform much better than RankGridEXP3 in simulations.

11. For slot 1, contexts are empty, so ContextZoom reduces to Algorithm 3.

12. It is also wasteful (but perhaps less so) that we use a slot-k bound for each slot i < k.
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7.1 A Better Benchmark

Recall that while the bound in Equation (13) uses (1− 1
e
)OPT as a benchmark, a more natural

benchmark would be the greedy optimum. We provide a preliminary convergence result for Rank-

ContextZoom, without any specific regret bounds.

Such result is more elegantly formulated in terms of a version of RankContextZoom, hence-

forth called anytime-RankContextZoom, which uses the anytime version of ContextZoom (see

Section 5.3).

Theorem 11 Fix an instance of the k-slot MAB problem. The performance of anytime-Rank-

ContextZoom up to any given time t is equal to the greedy optimum minus f (t) such that f (t)→ 0.

Proof Sketch It suffices to prove that with high probability, anytime-RankContextZoom outputs a

greedy ranking in all but fk(t) rounds among the first t rounds, where fk(t)→ 0.

We prove this claim by induction on k, the number of slots. Suppose it holds for some k− 1

slots, and focus on the k-th slot. Consider all rounds in which a greedy ranking is chosen for the

upper slots but not for the k-th slot. In each such round, the k-th slot replica of anytime-Context-

Zoom incurs contextual regret at least δk, for some instance-specific constant δk > 0. Thus, with

high probability there can be at most Rk(t)/δk such rounds, where Rk(t) = o(t) is an upper bound

on contextual regret for slot k. Thus, one can take fk(t) = fk−1(t)+Rk(t)/δk.

Theorem 11 is about the “metric-less” setting from Radlinski et al. (2008). It easily extends

to the “ranked” version of any bandit algorithm whose contextual regret is sublinear with high

probability.

It is an open question whether (and under which assumptions) Theorem 11 can be extended to

the “ranked” versions of non-contextual bandit algorithms such as RankUCB1. One assumption that

appears essential is the uniqueness of the greedy ranking. To see that multiple greedy rankings may

cause problems for ranked non-contextual algorithms, consider a simple example:

• There are two slots and three documents x1,x2,x3 such that µ = ( 1
2
, 1

2
, 1

3
) and the relevance of

each arm is independent of that of the other arms.13

An optimal ranking for this example is a greedy ranking that puts x1 and x2 in the two slots, achieving

aggregate click probability 3
4
. According to our intuition, a “reasonable” ranked non-contextual

algorithm will behave as follows. The slot 1 algorithm will alternate between x1 and x2, each

with frequency→ 1
2
. Since the slot-2 algorithm is oblivious to the slot 1 selection, it will observe

averages that converge over time to ( 1
4
, 1

4
, 1

3
),14 so it will select document x3 with frequency → 1.

Therefore frequency→ 1 the ranked algorithm will alternate between (x,z) or (y,z), each of which

has aggregate click probability 2
3
.

13. Here documents x1,x2,x3 can stand for disjoint subsets of documents with highly correlated payoffs. Documents

within a given subset can lie far from one another in the metric space.

14. Suppose x j, j ∈ {1,2} is chosen in slot 1. Then, letting S = {x j}, µ(x1|ZS) equals 0 if j = 1 and 1
2 otherwise (which

averages to 1
4 ), whereas µ(x3|ZS) =

1
3 .
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RankUCB1 metric-oblivious algorithms: Section 5.1

RankEXP3 ranked versions of UCB1 and EXP3

RankGridUCB1 simple metric-aware algorithms: Section 5.4

RankGridEXP3 ranked versions of GridUCB1 and GridEXP3

RankZoom the ranked version of the zooming algorithm Section 5.4

contextual algorithms:

RankCorrZoom “light-weight”(based on the zooming algorithm) Section 6.1

RankContextZoom “full-blown” (based on ContextZoom). Section 6.3

Table 1: Algorithms for the k-slot Lipschitz MAB problem.

7.2 Desiderata

We believe that the above guarantees do not reflect the full power of our algorithms, and more

generally the full power of conditional L-continuity. The “ideal” performance guarantee for Rank-

Bandit in our setting would use the greedy optimum as a benchmark, and would have a bound on

regret that is free from the inefficiencies outlined in the discussion after Theorem 10. Furthermore,

this guarantee would only rely on some general property of Bandit such as a bound on regret

or contextual regret. We conjecture that such guarantee is possible for RankContextZoom, and,

perhaps under some assumptions, also for RankCorrZoom and RankZoom.

Further, one would like to study the relative benefits of the new “contextual” algorithms (Rank-

ContextZoom and RankCorrZoom) and the prior work such as RankZoom. The discussion Sec-

tion 7.1 suggests that the difference can be particularly pronounced when the pointwise mean has

multiple peaks of similar value. In fact, we confirm this experimentally in Section 8.4.

8. Evaluation

Let us evaluate the performance of the algorithms presented in Section 5 and Section 6. We sum-

marize these algorithms in Table 8.

In all UCB1-based algorithms in Table 8, including all extensions of the zooming algorithm,

one can damp exploration by replacing the 4log(T ) factor in Equation (14) with 1. Such change

effectively makes the algorithm more optimistic; it was found beneficial for RankUCB1 by Radlinski

et al. (2008). We find (see Section 8.3) that this change greatly improves the average performance

in our experiments. So, by a slight abuse of notation, we will assume this change from now on.

8.1 Experimental Setup

Using the generative model from Section 4 (Algorithm 1 with Equation (8)), we created a document

collection with |X | = 215 ≈ 32,000 documents15 in a binary ε-exponential tree metric space with

ε = 0.837 (and constant c = 1, see Section 3.1). The value for ε was chosen so that the most

dissimilar documents in the collection still have a non-trivial similarity, as may be expected for web

documents. Each document’s expected relevance µ(x) was set by first identifying a small number

15. This is a realistic number of documents that may be considered in detail for a typical web search query after pruning

very unlikely documents.
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of “peaks” yi ∈ X , choosing µ(·) for these documents, and then defining the relevance of other

documents as the minimum allowed while obeying L-continuity and a background relevance rate

µ0:

µ(x), max(µ0,
1
2
−mini D(x,yi)). (26)

For internal nodes in the tree, µ is defined bottom-up (from leaves to the root) as the mean value of

all children nodes. As a result, we obtain a set of documents X where each document x ∈ X has an

expected click probability µ(x) that obeys L-continuity.

Our simulation was run over a 5-slot ranked bandit setting, learning the best 5 documents. We

evaluated over 300,000 user visits sampled from P per Algorithm 1. Performance within 50,000

impressions, typical for the number of times relatively frequent queries are seen by commercial

search engines in a month, is essential for any practical applicability of this approach. However,

we also measure performance for a longer time period to obtain a deeper understanding of the

convergence properties of the algorithms.

We consider two models for µ(·) in Equation (26). In the first model, two “peaks” {y1,y2}
are selected at random with µ(·) = 1

2
, and µ0 set to 0.05. The second model is less “rigid” (and

thus more realistic): the relevant documents yi and their expected relevance rates µ(·) are selected

according to a Chinese Restaurant Process (Aldous, 1985) with parameters n=20 and θ=2, and

setting µ0 = 0.01. The Chinese Restaurant Process is inspired by customers coming in to a restaurant

with an infinite number of tables, each with infinite capacity. At time t, a customer arrives and can

choose to sit at a new table with probability θ/(t−1+θ), and otherwise sits at an already occupied

table with probability proportional to the number of customers already sitting at that table. By

considering each table as equivalent to a peak in the distrubtion, this leads to a set of peaks with

expected relevance rates distributed accoring to a power law. Following Radlinski et al. (2008), we

assign users to one of the peaks, then select relevant documents so as to obey the expected relevance

rate µ(x) for each document x.

As baselines we use an algorithm ranking the documents at random, and the (offline) greedy

algorithm discussed in Section 5.1.

8.2 Main Experimental Results

Our experimental results are summarized in Figure 1 and Figure 2.

RankEXP3 and RankUCB1 perform as poorly as picking documents randomly: the three curves

are indistinguishable. This is due to the large number of available documents and slow convergence

rates of these algorithms. Other algorithms that explore all strategies (such as REC Radlinski et al.,

2008) would perform just as poorly. This result is consistent with results reported by Radlinski et al.

(2008) on just 50 documents. On the other hand, algorithms that progressively refine the space of

strategies explored perform much better.

RankCorrZoom achieves the best empirical performance, converging rapidly to near-optimal

rankings. RankZoom is a close second. The theoretically preferred RankContextZoom comes third,

with a significant gap. This appears to be due to the much larger branching factor in the strategies

activated by RankContextZoom slowing down the convergence. (However, as we investigate in

Section 8.4, RankContextZoom may significantly outperform the other algorithms if µ has multiple

peaks with similar values.)
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Figure 1: The learning algorithms on 5-slot problem instances with two relevance peaks.
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Figure 2: The learning algorithms on 5-slot problem instances with random relevance rates µ(·)
selected according to the Chinese Restaurant Process.
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8.3 “Optimistic” vs. “Pessimistic” UCB1-style Algorithms

We find that the “optimistic” UCB1-style algorithms (obtained by replacing the 4log(T ) factor

in Equation (14) with 1) perform dramatically better than their “pessimistic” counterparts. In

Figure 3 and Figure 4 we compare RankUCB1 and RankZoom with their respective “pessimistic”

versions (which are marked with a “- -” after the algorithm name). We saw a similar increase in

performance for other UCB1-style algorithms, too.

8.4 Secondary Experiment

As discussed in Section 7.1, some RankBandit-style algorithms may converge to a suboptimal

ranking if µ has multiple peaks with similar values. To investigate this, we designed a small-scale

experiment presented in Figure 5. We generated a small collection of 128 documents using the

same setup with two “peaks”, and assumed 2 slots. Each peak corresponds to a half of the user

population, with peak value µ = 1
2

and background value µ0 = 0.05.

We see that RankContextZoom converges more slowly than the other zooming variants, but

eventually outperforms them. This confirms our intuition, and suggests that RankContextZoom

may eventually outperform the other algorithms on a larger collection, such as that used for Figures

1 and 2.

9. Further Directions

This paper initiates the study of bandit learning-to-rank with side information on similarity between

documents, focusing on an idealized model of document similarity based on the new notion of

“conditional Lipschitz-continuity”. As discussed in Section 7, we conjecture that provable perfor-

mance guarantees can be improved significantly. On the experimental side, future work will include

evaluating the model on web search data, and designing sufficiently memory- and time-efficient

implementations to allow experiments on real users. An interesting challenge in such an endeavor

would be to come up with effective similarity measures. A natural next step would be to also exploit

the similarity between search queries.

Appendix A. Proof of Lemma 4 (Extending µ from Leaves to Tree Nodes)

Recall that Lemma 4 is needed to define the generative model in Section 4. We will prove a slightly

more general statement:

Lemma 12 Let D be the shortest-paths metric of an edge-weighted rooted tree with node set V and

leaf set X. Let µ : X → [a,b] be an L-continuous function on (X ,D). Then µ can be extended to V so

that µ : V → [a,b] is L-continuous w.r.t. (V,D).

Proof For each x ∈V , let L(x) be the set of all leaves in the subtree rooted at x. For each z ∈ L(y)
the assignment µ(x) should satisfy

µ(z)−D(x,z)≤ µ(x)≤ µ(z)+D(x,z)
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Figure 3: “Optimistic” vs. “pessimistic” UCB1-style algorithms:

The learning algorithms on 5-slot problem instances with two relevance peaks.
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Figure 4: “Optimistic” vs. “pessimistic” UCB1-style algorithms:

The learning algorithms on 5-slot problem instances with random relevance rates µ(·)
selected according to the Chinese Restaurant Process.
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Figure 5: Zooming-style algorithms in a two-slot setting over a small document collection.

Thus µ(x) should lie in the interval I(x), [µ−(x),µ+(x)], where

µ−(x), supz∈L(x) µ(z)−D(x,z),

µ+(x), infz∈L(x) µ(z)+D(x,z).

This interval is always well-defined, that is, µ−(x)≤ µ+(x). Indeed, if not then for some z,z′ ∈ L(x)

µ(z)−D(x,z)> µ(z′)+D(x,z′)

µ(z)−µ(z′)> D(x,z)+D(x,z′)≥ D(z,z′),

contradiction, claim proved. Note that µ+(x) ≥ a and µ−(x) ≤ b, so the intervals I(x) and [a,b]
overlap.

Using induction on the tree, we will construct values µ(x), x ∈V such that the Lipschitz condi-

tion

|µ(x)−µ(y)| ≤ D(x,y) for all x,y ∈ X

holds whenever x is a parent of y. For the root x0, let µ(x0) be an arbitrary value in the interval

I(x0)∩ [a,b]. For the induction step, suppose for some x we have chosen µ(x) ∈ I(x)∩ [a,b] and y is

a child of x. We need to choose µ(y) ∈ I(y)∩ [a,b] so that |µ(x)−µ(y)| ≤ D(x,y). Note that

µ(x)≥ µ−(x)≥ supz∈L(y) [µ(z)−D(x,y)−D(y,z) ]

= µ−(y)−D(x,y),

µ(x)≤ µ+(x)≤ infz∈L(y) [µ(z)+D(x,y)+D(y,z) ]

= µ+(y)+D(x,y).

It follows that I(y) and [µ(x)−D(x,y), µ(x)+D(x,y)] have a non-empty intersection. Therefore,

both intervals have a non-empty intersection with [a,b]. So we can choose µ(y) as required. This

completes the construction of µ() on V .
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To check that µ is Lipschitz-continuous on V , fix x,y ∈ V , let P be the x→ y path in the tree,

and note that

|µ(x)−µ(y)| ≤ ∑(u,v)∈P |µ(u)−µ(v)|
≤ ∑(u,v)∈P D(u,v) = D(x,y).

Appendix B. Proof of Theorem 5 (Expressiveness of the Model)

Recall that a proof sketch for Theorem 5 was given in Section 4. In this section we complete this

proof sketch by proving Equation (12).

Notation. Let us introduce the notation (some of it is from the proof sketch).

For a tree node u, let Tu be the node set of the subtree rooted at u. For convenience (and by a

slight abuse of notation) we will write u = b, b ∈ {0,1} to mean π(u) = b.

Fix documents x,y ∈ X . We focus on the key event, denoted E , that no mutation happened

on the x → y path. Recall that in Algorithm 1, for each tree node u with parent v we assign

π(u)← Mu(π(v)), where Mu : {0,1} → {0,1} is a random mutation which flips the input bit b

with probability qb(u). If Mu is the identity function, then we say that no mutation happened at

u. We say that no mutation happened on the x→ y path if no mutation happened at each node in

Nxy, the set of all nodes on the x→ y path except z. This event is denoted E ; note that it implies

π(x) = π(y) = π(z). Its complement Ē is, intuitively, a low-probability “failure event”.

Fix a subset of documents S ⊂ X . Recall that ZS denotes the event that all documents in S are

irrelevant, that is, π(x) = 0 for all x ∈ S.

What we need to prove. We need to prove Equation (12), which states that

Pr[Ē |ZS]≤ 3 Pr[Ē ].

It suffices to prove the following lemma:

Lemma 13 Pr[Ē |ZS]≤ Pr[Ē ]× (2/Pr[E ]).

(Indeed, letting p = Pr[Ē ] it holds that Pr[Ē |ZS]≤min
(

1, 2p
1−p

)

≤ 3 p. )

Remark. Lemma 13 inherits assumptions (6-7) on the mutation probabilities. Specifically for this

Lemma, the upper bound (6) on mutation probabilities can be replaced with a much weaker upper

bound:

max(q0(u), q1(u))≤ 1
2

for each tree node u. (27)

Our goal is to prove Lemma 13. In a sequence on claims, we will establish that

Pr[ZS |z = 0]≥ Pr[ZS |z = 1]. (28)

Intuitively, (28) means that the low-probability mutations are more likely to zero out a given subset

of the leaves if the value at some fixed internal node is zero (rather than one).
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B.1 Using Equation (28) to Prove Lemma 13

Let us extend the notion of mutation from a single node to the x→ y path. Recall that Nxy denotes the

set of all nodes on this path except z. Then the individual node mutations {Mu : u∈Nxy} collectively

provide a mutation on Nxy, which we define simply as a function M : Nxy×{0,1}→ {0,1} such that

π(·) = M(·,π(z)). Crucially, M is chosen independently of π(z) (and of all other mutations). Let M

be the set of all possible mutations of Nxy. By a slight abuse of notation, we treat the event E as the

identity mutation.

Claim 14 Fix M ∈M and b ∈ {0,1}. Then

Pr[ZS |M,π(z) = b]≤ Pr[ZS |E ,π(z) = 0].

Proof For each tree node u, let Su = S∩ Tu be the subset of S that lies in the subtree Tu. Then

by (28)

Pr[ZS |M, π(z) = b] = ∏u Pr[ZSu
|π(u) = M(u,b)]

≤∏u Pr[ZSu
|π(u) = 0]

= Pr[ZS |E , π(z) = 0],

where the product is over all tree nodes u ∈ Nxy such that the intersection Su is non-empty.

Proof [Proof of Lemma 13] On one hand, by Claim 14

Pr[ZS∩ Ē ] = ∑b,M Pr[M] Pr[z = b] Pr[ZS |M, z = b]

≤ ∑b,M Pr[M] Pr[z = b] Pr[ZS | E , z = 0]

= Pr[Ē ]×Pr[ZS | E , z = 0],

where the sums are over bits b ∈ {0,1} and all mutations M ∈M \{E}. On the other hand,

Pr[ZS] = ∑b,M Pr[M] Pr[z = b] Pr[ZS |M, z = b]

(where the sum is over b ∈ {0,1} and M ∈M )

≥ Pr[E ] Pr[z = 0] Pr[ZS |E , z = 0].

Since Pr[z = 0]≥ 1
2
, it follows that

Pr[Ē |ZS] = Pr[ZS∩ Ē ]/ Pr[ZS]

≤ 2 Pr[Ē ]/Pr[E ].
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B.2 Proof of Equation (28)

First we prove (28) for the case S ⊂ Tz, then we build on it to prove the (similar, but considerably

more technical) case S∩ Tz = /0. The general case follows since the events ZS∩Tz
and ZS\Tz

are

conditionally independent given π(z).

Claim 15 If S⊂ Tz then (28) holds.

Proof Let us use induction the depth of z. For the base case, the case x = y = z. Then S = {z} is

the only possibility, and the claim is trivial.

For the induction step, consider children ui of z such that the intersection Si , S∩Tui
is non-

empty. Let u1 , . . . ,uk be all such children. For brevity, denote Zi , ZSi
, and

νi(a|b), Pr[ui = a |z = b], a,b ∈ {0,1}.

Note that vi(1,0) = q0(xi) and vi(0,1) = q1(xi).
Then for each b ∈ {0,1} we have

Pr[ZS |z = b] = ∏
k
i=1 Pr[Zi |z = b] (29)

Pr[Zi |z = b] = ∑a∈{0,1} νi(a|b) Pr[Zi |ui = a]. (30)

By (29), to prove the claim it suffices to show that

Pr[Zi |z = 0]≥ Pr[Zi |z = 1]

holds for each i. By the induction hypothesis we have

Pr[Zi |ui = 0]≥ Pr[Zi |ui = 1]. (31)

Combining (31) and (27), and noting that by (30) we have νi(0|0)≥ νi(0|1), it follows that

Pr[Zi |z = 0]−Pr[Zi |z = 1]

= ∑a∈{0,1} Pr[Zi |ui = a] (νi(a|0)−νi(a|1))
≥ Pr[Zi |ui = 1] ∑a∈{0,1} (νi(a|0)−νi(a|1))
= 0

because νi(0|0)+νi(1|0) = νi(0|1)+νi(1|1) = 1.

Corollary 16 Consider tree nodes r,v,w such that r is an ancestor of v which in turn is an ancestor

of w. Then for any c ∈ {0,1}

Pr[u = 0 |w = 0, r = c]≥ Pr[u = 0 |w = 1, r = c].

Proof We claim that for each b ∈ {0,1}

Pr[w = b |u = b]≥ Pr[w = b |u = 1−b]. (32)
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Indeed, truncating the subtree Tw to a single node w and specializing Lemma 15 to a singleton set

S = {w} (with z = u) we obtain (32) for b = 0. The case b = 1 is symmetric.

Now, for brevity we will omit conditioning on {r = c} in the remainder of the proof. (Formally,

we will work on in the probability space obtained by conditioning on this event.) Then for each

b ∈ {0,1}

Pr[u = 0 |w = b]

=
Pr[u = 0∧w = b]

Pr[u = 0∧w = b]∪Pr[u = 1∧w = b]

=
1

1+Φ(b)
,

where

Φ(b),
Pr[u = 1∧w = b]

Pr[u = 0∧w = b]

=
Pr[w = b |u = 1] Pr[u = 1]

Pr[w = b |u = 0] Pr[u = 0]

is decreasing in b by (32).

We will also need a stronger, conditional, version of Lemma 15 whose proof is essentially

identical (and omitted).

Claim 17 Suppose S⊂ Tz and u 6= z is a tree node such that Tu is disjoint with S. Then

Pr[ZS |z = 0, u = 1]≥ Pr[ZS |z = 1, u = 1].

We will use Corollary 16 and Lemma 17 to prove (28) for the case S∩Tz = /0.

Claim 18 If S is disjoint with Tz then (28) holds.

Proof Suppose S is disjoint with Tz, and let r be the root of the tree. We will use induction on the

tree to prove the following: for each c ∈ {0,1},

Pr[ZS |r = c, z = 0]≥ Pr[ZS |r = c, z = 1] (33)

For the induction base, consider a tree of depth 2, consisting of the root r and the leaves. Then z 6∈ S

is a leaf, so ZS is independent of π(z) given π(r), so (33) holds with equality.

For the induction step, fix c∈{0,1}. Let us set up the notation similarly to the proof of Claim 15.

Consider children ui of r such that the intersection Si , S∩Tui
is non-empty. Let u1 , . . . ,uk be all

such children. Assume z ∈ Tui
for some i (else, ZS is independent from π(z) given π(r), so (33)

holds with equality); without loss of generality, assume this happens for i = 1. For brevity, for

a,b ∈ {0,1} denote

fi(a,b), Pr[ZSi
|ui = a, z = b]

νi(a|b), Pr[ui = a |r = c, z = b].
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Note that fi(a,b) and νi(a|b) do not depend on b for i > 1.

Then for each b ∈ {0,1}
Pr[ZS |r = c, z = b]

= ∑
ai∈{0,1}, i≥1

∏
i≥1

fi(ai,b) νi(ai|b)

= Φ×∑a∈{0,1} f1(a,b) ν1(a|b),
where

Φ , ∑
ai∈{0,1}, i≥2

∏
i≥2

fi(ai,b)νi(ai|b)

does not depend on of b. Therefore:

Pr[ZS |r = c, z = 1]−Pr[ZS |r = c, z = 1]

= Φ×∑a∈{0,1}

[ f1(a,0)ν1(a|0)− f1(a,1)ν1(a|1) ] (34)

≥Φ×∑a∈{0,1} f1(a,1) [ ν1(a|0)−ν1(a|1) ] (35)

≥Φ× f1(1,1) ∑a∈{0,1} [ ν1(a|0)−ν1(a|1) ] (36)

= 0. (37)

The above transitions hold for the following reasons:

(34→35)By Induction Hypothesis, f1(a,0)≥ f1(a,1)

(35→36) By Lemma 17 f1(0,1) ≥ f1(1,1), and moreover we have ν1(0|0) ≥ ν1(0|1) by Corol-

lary 16.

(36→37) Since νi(0|0)+νi(1|0) = νi(0|1)+νi(1|1) = 1

This completes the proof of the inductive step.

Appendix C. Instance-Dependent Regret Bounds from Prior Work

In this section we discuss instance-dependent regret bounds from prior work on UCB1-style algo-

rithms for the single-slot setting. The purpose is to put forward a concrete mathematical evidence

which suggests that RankGridUCB1, RankZoom and RankCorrZoom are likely to satisfy strong up-

per bounds on regret in the k-slot setting (perhaps under some additional assumptions), even if such

bounds are beyond the reach of our current techniques. Similarly, we believe that the regret bound

for RankContextZoom that we have been able to prove (Theorem 10) is overly pessimistic. A

secondary purpose is to provide more intuition for when these algorithms are likely to excel.

Our story begins with the comparison between the guarantees for EXP3 and UCB1 in the stan-

dard (single-slot, metric-free) bandit setting, and then progresses to Lipschtz MAB and contextual

Lispchitz MAB.

In what follows, we let µ denote the vector of expected rewards in the stochastic reward setting,

so that µ(x) is the expected reward of arm x. Let ∆(x) , maxµ(·)− µ(x) denote the “badness” of

arm x compared to the optimum.
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C.1 Standard Bandits: UCB1 vs. EXP3

Algorithm EXP3(Auer et al., 2002b) achieves regret R(T ) = Õ(
√

nT ) against an oblivious adversary.

In the stochastic setting, UCB1(Auer et al., 2002a) performs much better, with logarithmic regret for

every fixed µ. More specifically, each arm x ∈ X contributes only O(logT )/∆(x) to regret. Noting

that the total regret from playing arms with ∆(·)≤ δ can be a priori upper-bounded by δT , we bound

regret of UCB1 as:

R(T ) = min
δ>0

(

δT +∑x∈X :∆(x)>δ
O(logT )

∆(x)

)

. (38)

Note that Equation (38) depends on µ. In particular, if ∆(·)≥ δ then R(T ) = O( n
δ

logT ).

However, for any given T there exists a “worst-case” pointwise mean µT such that R(T ) =
Θ̃(
√

nT ) in Equation (38), matching EXP3. The above regret guarantees for EXP3 and UCB1 are

optimal up to constant factors (Auer et al., 2002b; Kleinberg et al., 2008a).

C.2 Bandits in Metric Spaces

Let (X ,D) denote the metric space. Recall that the covering number Nr(X) is the minimal number

of balls of radius r sufficient to cover X , and the covering dimension is defined as

CovDim(X ,D), inf{d ≥ 0 : Nr(X)≤ αr−d ∀r > 0}.

(Here α > 0 is a constant which we will keep implicit in the notation.)

Against an oblivious adversary, GridEXP3 has regret

R(T ) = Õ(αT (d+1)/(d+2)), (39)

where d is the covering dimension of (X ,D).

For the stochastic setting, GridUCB1 and the zooming algorithm have better µ-specific regret

guarantees in terms of the covering numbers. These guarantees are similar to Equation (38) for

UCB1. In fact, it is possible, and instructive, to state the guarantees for all three algorithms in a

common form.

Consider reward scales S = {2i : i ∈ N}, and for each scale r ∈ S define

Xr = {x ∈ X : r < ∆(x)≤ 2r}.

Then regret (38) of UCB1 can be restated as

R(T ) = min
δ>0

(

δT +∑r∈S :r≥δ N(δ,r)
O(logT )

r

)

, (40)

where N(δ,r) = |Xr|. Further, it follows from the analysis in (Kleinberg, 2004; Kleinberg et al.,

2008b) that regret of GridUCB1 is Equation (40) with N(δ,r) = Nδ(Xr). For the zooming algorithm,

the µ-specific bound can be improved to Equation (40) with N(δ,r) = Nr(Xr). These results are

summarized in Table C.2.

For the worst-case µ one could have Nδ(Xr) = Nδ(X), in which case the µ-specific bound for

GridUCB1 essentially reduces to Equation (39).
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algorithm regret is (40) with ...

UCB1 N(δ,r) = |Xr|
GridUCB1 N(δ,r) = Nδ(Xr)

zooming algorithm N(δ,r) = Nr(Xr)
ContextZoom N(δ,r) = Nr(Xdc,r).

Table 2: Regret bounds in terms of covering numbers

For the zooming algorithm, the µ-specific bound above implies an improved version of Equa-

tion (39) with a different, smaller d called the zooming dimension:

ZoomDim(X ,D,µ), inf{d ≥ 0 : Nr(Xr)≤ cr−d ∀r > 0}.
Note that the zooming dimension depends on the triple (X ,D,µ) rather than on the metric space

alone. It can be as high as the covering dimension for the worst-case µ, but can be much smaller

(e.g., d = 0) for “nice” problem instances, see (Kleinberg et al., 2008b) for further discussion. For

a simple example, suppose an ε-exponential tree metric has a “high-reward” branch and a “low-

reward” branch with respective branching factors b≪ b′. Then the zooming dimension is log1/ε(b),
whereas the covering dimension is log1/ε(b

′).

C.3 Contextual Bandits in Metric Spaces

Let µ(x|h) denote the expected reward from arm x given context h. Recall that the algorithm is given

metrics D and Dc on documents and contexts, respectively, such that for any two documents x,x′

and any two contexts h,h′ we have

|µ(x|h)−µ(x′|h′)| ≤ D(x,x′)+Dc(h,h
′).

Let Xc be the set of contexts, and Xdc = X ×Xc be the set of all (document, context) pairs. More

abstractly, one considers the metric space (Xdc,Ddc), henceforth the DC-space, where the metric is

Ddc((x,h), (x
′,h′)) = D(x,x′)+Dc(h,h

′).

We partition Xdc according to reward scales r ∈ S :

∆(x|h), maxµ(·|h)−µ(x|h), x ∈ X ,h ∈ Xc.

Xdc,r , {(x,h) ∈ Xdc : r < ∆(x|h)≤ 2r}.
Then contextual regret of ContextZoom can be bounded by Equation (40) with N(δ,r) = Nr(Xdc,r),
where Nr(·) now refers to the covering numbers in the DC-space (see Table C.2).

Further, one can define the contextual zooming dimension as

ddc(X ,D,µ), inf{d ≥ 0 : Nr(Xr)≤ cr−d ∀r > 0}.
Then one obtains Equation (39) with d = ddc. In the worst case, we could have µ such that

Nr(Xdc,r) = Nr(Xdc), in which case ddc ≤ CovDim(Xdc,Ddc).
The regret bounds for ContextZoom can be improved by taking into account “benign” context

arrivals: effectively, one can prune the regions of Xc that correspond to infrequent context arrivals,

see (Slivkins, 2009) for details. This improvement can be especially significant if CovDim(Xc,Dc)>
CovDim(X ,D).
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Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit

problem. Machine Learning, 47(2-3):235–256, 2002a. Preliminary version in 15th ICML, 1998.
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Sébastien Bubeck and Rémi Munos. Open loop optimistic planning. In 23rd Conf. on Learning

Theory (COLT), pages 477–489, 2010.
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Abstract

Boosting combines weak classifiers to form highly accurate predictors. Although the case of binary

classification is well understood, in the multiclass setting, the “correct” requirements on the weak

classifier, or the notion of the most efficient boosting algorithms are missing. In this paper, we

create a broad and general framework, within which we make precise and identify the optimal

requirements on the weak-classifier, as well as design the most effective, in a certain sense, boosting

algorithms that assume such requirements.

Keywords: multiclass, boosting, weak learning condition, drifting games

1. Introduction

Boosting (Schapire and Freund, 2012) refers to a general technique of combining rules of thumb,

or weak classifiers, to form highly accurate combined classifiers. Minimal demands are placed

on the weak classifiers, so that a variety of learning algorithms, also called weak-learners, can be

employed to discover these simple rules, making the algorithm widely applicable. The theory of

boosting is well-developed for the case of binary classification. In particular, the exact requirements

on the weak classifiers in this setting are known: any algorithm that predicts better than random

on any distribution over the training set is said to satisfy the weak learning assumption. Further,

boosting algorithms that minimize loss as efficiently as possible have been designed. Specifically,

it is known that the Boost-by-majority (Freund, 1995) algorithm is optimal in a certain sense, and

that AdaBoost (Freund and Schapire, 1997) is a practical approximation.

Such an understanding would be desirable in the multiclass setting as well, since many natural

classification problems involve more than two labels, for example, recognizing a digit from its

image, natural language processing tasks such as part-of-speech tagging, and object recognition in

vision. However, for such multiclass problems, a complete theoretical understanding of boosting is

lacking. In particular, we do not know the “correct” way to define the requirements on the weak

classifiers, nor has the notion of optimal boosting been explored in the multiclass setting.

Straightforward extensions of the binary weak-learning condition to multiclass do not work.

Requiring less error than random guessing on every distribution, as in the binary case, turns out to

be too weak for boosting to be possible when there are more than two labels. On the other hand,

c©2013 Indraneel Mukherjee and Robert E. Schapire.
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requiring more than 50% accuracy even when the number of labels is much larger than two is too

stringent, and simple weak classifiers like decision stumps fail to meet this criterion, even though

they often can be combined to produce highly accurate classifiers (Freund and Schapire, 1996a).

The most common approaches so far have relied on reductions to binary classification (Allwein

et al., 2000), but it is hardly clear that the weak-learning conditions implicitly assumed by such

reductions are the most appropriate.

The purpose of a weak-learning condition is to clarify the goal of the weak-learner, thus aiding

in its design, while providing a specific minimal guarantee on performance that can be exploited by

a boosting algorithm. These considerations may significantly impact learning and generalization be-

cause knowing the correct weak-learning conditions might allow the use of simpler weak classifiers,

which in turn can help prevent overfitting. Furthermore, boosting algorithms that more efficiently

and effectively minimize training error may prevent underfitting, which can also be important.

In this paper, we create a broad and general framework for studying multiclass boosting that

formalizes the interaction between the boosting algorithm and the weak-learner. Unlike much, but

not all, of the previous work on multiclass boosting, we focus specifically on the most natural, and

perhaps weakest, case in which the weak classifiers are genuine classifiers in the sense of predicting

a single multiclass label for each instance. Our new framework allows us to express a range of

weak-learning conditions, both new ones and most of the ones that had previously been assumed

(often only implicitly). Within this formalism, we can also now finally make precise what is meant

by correct weak-learning conditions that are neither too weak nor too strong.

We focus particularly on a family of novel weak-learning conditions that have an especially

appealing form: like the binary conditions, they require performance that is only slightly better than

random guessing, though with respect to performance measures that are more general than ordinary

classification error. We introduce a whole family of such conditions since there are many ways of

randomly guessing on more than two labels, a key difference between the binary and multiclass

settings. Although these conditions impose seemingly mild demands on the weak-learner, we show

that each one of them is powerful enough to guarantee boostability, meaning that some combination

of the weak classifiers has high accuracy. And while no individual member of the family is necessary

for boostability, we also show that the entire family taken together is necessary in the sense that for

every boostable learning problem, there exists one member of the family that is satisfied. Thus, we

have identified a family of conditions which, as a whole, is necessary and sufficient for multiclass

boosting. Moreover, we can combine the entire family into a single weak-learning condition that is

necessary and sufficient by taking a kind of union, or logical OR, of all the members. This combined

condition can also be expressed in our framework.

With this understanding, we are able to characterize previously studied weak-learning condi-

tions. In particular, the condition implicitly used by AdaBoost.MH (Schapire and Singer, 1999),

which is based on a one-against-all reduction to binary, turns out to be strictly stronger than nec-

essary for boostability. This also applies to AdaBoost.M1 (Freund and Schapire, 1996a), the most

direct generalization of AdaBoost to multiclass, whose conditions can be shown to be equivalent

to those of AdaBoost.MH in our setting. On the other hand, the condition implicit to the SAMME

algorithm by Zhu et al. (2009) is too weak in the sense that even when the condition is satisfied, no

boosting algorithm can guarantee to drive down the training error. Finally, the condition implicit to

AdaBoost.MR (Schapire and Singer, 1999; Freund and Schapire, 1996a) (also called AdaBoost.M2)

turns out to be exactly necessary and sufficient for boostability.
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Employing proper weak-learning conditions is important, but we also need boosting algorithms

that can exploit these conditions to effectively drive down error. For a given weak-learning condi-

tion, the boosting algorithm that drives down training error most efficiently in our framework can

be understood as the optimal strategy for playing a certain two-player game. These games are non-

trivial to analyze. However, using the powerful machinery of drifting games (Freund and Opper,

2002; Schapire, 2001), we are able to compute the optimal strategy for the games arising out of each

weak-learning condition in the family described above. Compared to earlier work, our optimality

results hold more generally and also achieve tighter bounds. These optimal strategies have a natu-

ral interpretation in terms of random walks, a phenomenon that has been observed in other settings

(Abernethy et al., 2008; Freund, 1995).

We also analyze the optimal boosting strategy when using the minimal weak learning condition,

and this poses additional challenges. Firstly, the minimal weak learning condition has multiple nat-

ural formulations—for example, as the union of all the conditions in the family described above, or

the formulation used in AdaBoost.MR—and each formulation leading to a different game specifica-

tion. A priori, it is not clear which game would lead to the best strategy. We resolve this dilemma by

proving that the optimal strategies arising out of different formulations of the same weak learning

condition lead to algorithms that are essentially equally good, and therefore we are free to choose

whichever formulation leads to an easier analysis without fear of suffering in performance. We

choose the union of conditions formulation, since it leads to strategies that share the same inter-

pretation in terms of random walks as before. However, even with this choice, the resulting games

are hard to analyze, and although we can explicitly compute the optimum strategies in general, the

computational complexity is usually exponential in the number of classes. Nevertheless, we identify

key situations under which efficient computation is possible.

The game-theoretic strategies are non-adaptive in that they presume prior knowledge about the

edge, that is, how much better than random are the weak classifiers. Algorithms that are adaptive,

such as AdaBoost, are much more practical because they do not require such prior information.

We show therefore how to derive an adaptive boosting algorithm by modifying the game-theoretic

strategy based on the minimal condition. This algorithm enjoys a number of theoretical guarantees.

Unlike some of the non-adaptive strategies, it is efficiently computable, and since it is based on the

minimal weak learning condition, it makes minimal assumptions. In fact, whenever presented with

a boostable learning problem, this algorithm can approach zero training error at an exponential rate.

More importantly, the algorithm is effective even beyond the boostability framework. In particular,

we show empirical consistency, that is, the algorithm always converges to the minimum of a certain

exponential loss over the training data, whether or not the data set is boostable. Furthermore, using

the results in Mukherjee et al. (2011) we can show that this convergence occurs rapidly.

Our focus in this paper is only on minimizing training error, which, for the algorithms we derive,

provably decreases exponentially fast with the number of rounds of boosting under boostability

assumptions. Such results can be used in turn to derive bounds on the generalization error using

standard techniques that have been applied to other boosting algorithms (Schapire et al., 1998;

Freund and Schapire, 1997; Koltchinskii and Panchenko, 2002). Consistency in the multiclass

classification setting has been studied by Tewari and Bartlett (2007) and has been shown to be

trickier than binary classification consistency. Nonetheless, by following the approach in Bartlett

and Traskin (2007) for showing consistency in the binary setting, we are able to extend the empirical

consistency guarantees to general consistency guarantees in the multiclass setting: we show that
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under certain conditions and with sufficient data, our adaptive algorithm approaches the Bayes-

optimum error on the test data set.

We present experiments aimed at testing the efficacy of the adaptive algorithm when working

with a very weak weak-learner to check that the conditions we have identified are indeed weaker

than others that had previously been used. We find that our new adaptive strategy achieves low

test error compared to other multiclass boosting algorithms which usually heavily underfit. This

validates the potential practical benefit of a better theoretical understanding of multiclass boosting.

1.1 Previous Work

The first boosting algorithms were given by Schapire (1990) and Freund (1995), followed by their

AdaBoost algorithm (Freund and Schapire, 1997). Multiclass boosting techniques include Ada-

Boost.M1 and AdaBoost.M2 (Freund and Schapire, 1997), as well as AdaBoost.MH and Ada-

Boost.MR (Schapire and Singer, 1999). Other approaches include the work by Eibl and Pfeiffer

(2005) and Zhu et al. (2009). There are also more general approaches that can be applied to boosting

including Allwein et al. (2000), Beygelzimer et al. (2009), Dietterich and Bakiri (1995), Hastie and

Tibshirani (1998) and Li (2010). Two game-theoretic perspectives have been applied to boosting.

The first one (Freund and Schapire, 1996b; Rätsch and Warmuth, 2005) views the weak-learning

condition as a minimax game, while drifting games (Schapire, 2001; Freund, 1995) were designed

to analyze the most efficient boosting algorithms. These games have been further analyzed in the

multiclass and continuous time setting in Freund and Opper (2002).

2. Framework

We introduce some notation. Unless otherwise stated, matrices will be denoted by bold capital

letters like M, and vectors by bold small letters like v. Entries of a matrix and vector will be

denoted as M(i, j) or v(i), while M(i) will denote the ith row of a matrix. The inner product of two

vectors u,v is denoted by 〈u,v〉. The Frobenius inner product Tr(AB′) of two matrices A,B will

be denoted by A•B′, where B′ is the transpose of B. The indicator function is denoted by 1 [·]. The

set of all distributions over the set {1, . . . ,k} will be denoted by ∆{1, . . . ,k}, and in general, the set

of all distributions over any set S will be denoted by ∆(S).

In multiclass classification, we want to predict the labels of examples lying in some set X . We

are provided a training set of labeled examples {(x1,y1), . . . ,(xm,ym)}, where each example xi ∈ X

has a label yi in the set {1, . . . ,k}.

Boosting combines several mildly powerful predictors, called weak classifiers, to form a highly

accurate combined classifier, and has been previously applied for multiclass classification. In this

paper, we only allow weak classifiers that predict a single class for each example. This is appealing,

since the combined classifier has the same form, although it differs from what has been used in

much previous work. Later we will expand our framework to include multilabel weak classifiers,

that may predict multiple labels per example.

We adopt a game-theoretic view of boosting. A game is played between two players, Booster

and Weak-Learner, for a fixed number of rounds T . With binary labels, Booster outputs a distribu-

tion in each round, and Weak-Learner returns a weak classifier achieving more than 50% accuracy

on that distribution. The multiclass game is an extension of the binary game. In particular, in each

round t:
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• Booster creates a cost-matrix Ct ∈ Rm×k, specifying to Weak-Learner that the cost of classi-

fying example xi as l is Ct(i, l). The cost-matrix may not be arbitrary, but should conform to

certain restrictions as discussed below.

• Weak-Learner returns some weak classifier ht : X → {1, . . . ,k} from a fixed space ht ∈ H so

that the cost incurred is

Ct •1ht
=

m

∑
i=1

Ct(i,ht(xi)),

is “small enough”, according to some conditions discussed below. Here by 1h we mean the

m× k matrix whose (i, j)-th entry is 1 [h(i) = j].

• Booster computes a weight αt for the current weak classifier based on how much cost was

incurred in this round.

At the end, Booster predicts according to the weighted plurality vote of the classifiers returned

in each round:

H(x)
△

= argmax
l∈{1,...,k}

fT (x, l), where fT (x, l)
△

=
T

∑
t=1

1 [ht(x) = l]αt . (1)

By carefully choosing the cost matrices in each round, Booster aims to minimize the training error

of the final classifier H, even when Weak-Learner is adversarial. The restrictions on cost-matrices

created by Booster, and the maximum cost Weak-Learner can suffer in each round, together define

the weak-learning condition being used. For binary labels, the traditional weak-learning condition

states: for any non-negative weights w(1), . . . ,w(m) on the training set, the error of the weak classi-

fier returned is at most (1/2− γ/2)∑i wi. Here γ parametrizes the condition. There are many ways

to translate this condition into our language. The one with fewest restrictions on the cost-matrices

requires labeling correctly should be less costly than labeling incorrectly:

∀i : C(i,yi)≤C(i, ȳi) (here ȳi 6= yi is the other binary label),

while the restriction on the returned weak classifier h requires less cost than predicting randomly:

∑
i

C(i,h(xi))≤ ∑
i

{(
1

2
− γ

2

)
C(i, ȳi)+

(
1

2
+

γ

2

)
C(i,yi)

}
.

By the correspondence w(i) =C(i, ȳi)−C(i,yi), we may verify the two conditions are the same.

We will rewrite this condition after making some simplifying assumptions. Henceforth, without

loss of generality, we assume that the true label is always 1. Let C bin ⊆ Rm×2 consist of matri-

ces C which satisfy C(i,1) ≤ C(i,2). Further, let Ubin
γ ∈ Rm×2 be the matrix whose each row is

(1/2+ γ/2,1/2− γ/2). Then, Weak-Learner searching space H satisfies the binary weak-learning

condition if: ∀C ∈ C bin,∃h ∈ H : C •
(
1h −Ubin

γ

)
≤ 0. There are two main benefits to this refor-

mulation. With linear homogeneous constraints, the mathematics is simplified, as will be apparent

later. More importantly, by varying the restrictions C bin on the cost vectors and the matrix Ubin, we

can generate a vast variety of weak-learning conditions for the multiclass setting k ≥ 2 as we now

show.

441



MUKHERJEE AND SCHAPIRE

Let C ⊆Rm×k and let B ∈Rm×k be a matrix which we call the baseline. We say a weak classifier

space H satisfies the condition (C ,B) if

∀C ∈ C ,∃h ∈ H : C• (1h −B)≤ 0, i.e.,
m

∑
i=1

C(i,h(i))≤
m

∑
i=1

〈C(i),B(i)〉 . (2)

In (2), the variable matrix C specifies how costly each misclassification is, while the baseline B

specifies a weight for each misclassification. The condition therefore states that a weak classi-

fier should not exceed the average cost when weighted according to baseline B. This large class

of weak-learning conditions captures many previously used conditions, such as the ones used by

AdaBoost.M1 (Freund and Schapire, 1996a), AdaBoost.MH (Schapire and Singer, 1999) and Ada-

Boost.MR (Freund and Schapire, 1996a; Schapire and Singer, 1999) (see below), as well as novel

conditions introduced in the next section.

By studying this vast class of weak-learning conditions, we hope to find the one that will serve

the main purpose of the boosting game: finding a convex combination of weak classifiers that has

zero training error. For this to be possible, at the minimum the weak classifiers should be sufficiently

rich for such a perfect combination to exist. Formally, a collection H of weak classifiers is boostable

if it is eligible for boosting in the sense that there exists a weighting λ on the votes forming a

distribution that linearly separates the data: ∀i : argmaxl∈{1,...,k} ∑h∈H λ(h)1 [h(xi) = l] = yi. The

weak-learning condition plays two roles. It rejects spaces that are not boostable, and provides an

algorithmic means of searching for the right combination. Ideally, the second factor will not cause

the weak-learning condition to impose additional restrictions on the weak classifiers; in that case,

the weak-learning condition is merely a reformulation of being boostable that is more appropriate

for deriving an algorithm. In general, it could be too strong, that is, certain boostable spaces will fail

to satisfy the conditions. Or it could be too weak, that is, non-boostable spaces might satisfy such

a condition. Booster strategies relying on either of these conditions will fail to drive down error,

the former due to underfitting, and the latter due to overfitting. Later we will describe conditions

captured by our framework that avoid being too weak or too strong. But before that, we show in

the next section how our flexible framework captures weak learning conditions that have appeared

previously in the literature.

3. Old Conditions

In this section, we rewrite, in the language of our framework, the weak learning conditions ex-

plicitly or implicitly employed in the multiclass boosting algorithms SAMME (Zhu et al., 2009),

AdaBoost.M1 (Freund and Schapire, 1996a), and AdaBoost.MH and AdaBoost.MR (Schapire and

Singer, 1999). This will be useful later on for comparing the strengths and weaknesses of the var-

ious conditions. We will end this section with a curious equivalence between the conditions of

AdaBoost.MH and AdaBoost.M1.

Recall that we have assumed the correct label is 1 for every example. Nevertheless, we continue

to use yi to denote the correct label in this section.

3.1 Old Conditions in the New Framework

Here we restate, in the language of our new framework, the weak learning conditions of four algo-

rithms that have earlier appeared in the literature.
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3.1.1 SAMME

The SAMME algorithm (Zhu et al., 2009) requires less error than random guessing on any distribu-

tion on the examples. Formally, a space H satisfies the condition if there is a γ′ > 0 such that,

∀d(1), . . . ,d(m)≥ 0,∃h ∈ H :
m

∑
i=1

d(i)1 [h(xi) 6= yi]≤ (1−1/k− γ′)
m

∑
i=1

d(i). (3)

Define a cost matrix C whose entries are given by

C(i, j) =

{
d(i) if j 6= yi,

0 if j = yi.

Then the left hand side of (3) can be written as

m

∑
i=1

C(i,h(xi)) = C•1h.

Next let γ = (k/(k−1))γ′ and define baseline Uγ to be the multiclass extension of Ubin,

Uγ(i, l) =

{
(1−γ)

k
+ γ if l = yi,

(1−γ)
k

if l 6= yi.

Then notice that for each i, we have

〈
C(i),Uγ(i)

〉
= ∑

l 6=yi

C(i, l)Uγ(i, l)

= (k−1)
(1− γ)

k
d(i)

=

(
1− 1

k
−
(

1− 1

k

)
γ

)
d(i)

=

(
1− 1

k
− γ′
)

d(i).

Therefore, the right hand side of (3) can be written as

m

∑
i=1

∑
l 6=yi

C(i, l)Uγ(i, l) = C•Uγ,

since C(i,yi) = 0 for every example i. Define C SAM to be the following collection of cost matrices:

C SAM △

=

{
C : C(i, l) =

{
0 if l = yi,

ti if l 6= yi,
for non-negative t1, . . . , tm.

}

Using the last two equations, (3) is equivalent to

∀C ∈ C SAM,∃h ∈ H : C•
(
1h −Uγ

)
≤ 0.

Therefore, the weak-learning condition of SAMME is given by (C SAM,Uγ).
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3.1.2 ADABOOST.M1

AdaBoost.M1 (Freund and Schapire, 1997) measures the performance of weak classifiers using or-

dinary error. It requires 1/2+γ/2 accuracy with respect to any non-negative weights d(1), . . . ,d(m)
on the training set:

m

∑
i=1

d(i)1 [h(xi) 6= yi] ≤ (1/2− γ/2)
m

∑
i=1

d(i), (4)

i.e.,
m

∑
i=1

d(i)Jh(xi) 6= yiK ≤ −γ
m

∑
i=1

d(i).

where J·K is the ±1 indicator function, taking value +1 when its argument is true, and −1 when

false. Using the transformation

C(i, l) = Jl 6= yiKd(i)

we may rewrite (4) as

∀C ∈ Rm×k satisfying 0 ≤−C(i,yi) =C(i, l) for l 6= yi, (5)

∃h ∈ H :
m

∑
i=1

C(i,h(xi))≤ γ
m

∑
i=1

C(i,yi)

i.e., ∀C ∈ C M1,∃h ∈ H : C•
(
1h −BM1

γ

)
≤ 0,

where BM1
γ (i, l) = γ1 [l = yi], and C M1 ⊆ Rm×k consists of matrices satisfying the constraints in (5).

3.1.3 ADABOOST.MH

AdaBoost.MH (Schapire and Singer, 1999) is a popular multiclass boosting algorithm that is based

on the one-against-all reduction, and was originally designed to use weak-hypotheses that return a

prediction for every example and every label. The implicit weak learning condition requires that for

any matrix with non-negative entries d(i, l), the weak-hypothesis should achieve 1/2+ γ accuracy

m

∑
i=1

{
1 [h(xi) 6= yi]d(i,yi)+ ∑

l 6=yi

1 [h(xi) = l]d(i, l)

}
≤

(
1

2
− γ

2

)
m

∑
i=1

k

∑
l=1

d(i, l).

(6)

This can be rewritten as

m

∑
i=1

{
−1 [h(xi) = yi]d(i,yi)+ ∑

l 6=yi

1 [h(xi) = l]d(i, l)

}

≤
m

∑
i=1

{(
1

2
− γ

2

)
∑
l 6=yi

d(i, l)−
(

1

2
+

γ

2

)
d(i,yi)

}
.

Using the mapping

C(i, l) =

{
d(i, l) if l 6= yi

−d(i, l) if l = yi,
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their weak-learning condition may be rewritten as follows

∀C ∈ R
m×k satisfying C(i,yi)≤ 0,C(i, l)≥ 0 for l 6= yi, (7)

∃h ∈ H :

summ
i=1C(i,h(xi))≤

m

∑
i=1

{(
1

2
+

γ

2

)
C(i,yi)+

(
1

2
− γ

2

)
∑
l 6=yi

C(i, l)

}
.

Defining C MH to be the space of all cost matrices satisfying the constraints in (7), the above condi-

tion is the same as

∀C ∈ C MH,∃h ∈ H : C•
(
1h −BMH

γ

)
≤ 0,

where BMH
γ (i, l) = (1/2+ γJl = yiK/2).

3.1.4 ADABOOST.MR

AdaBoost.MR (Schapire and Singer, 1999) is based on the all-pairs multiclass to binary reduction.

Like AdaBoost.MH, it was originally designed to use weak-hypotheses that return a prediction for

every example and every label. The weak learning condition for AdaBoost.MR requires that for any

non-negative cost-vectors {d(i, l)}l 6=yi
, the weak-hypothesis returned should satisfy the following:

m

∑
i=1

∑
l 6=yi

(1 [h(xi) = l]−1 [h(xi) = yi])d(i, l) ≤ −γ
m

∑
i=1

∑
l 6=yi

d(i, l)

i.e.,
m

∑
i=1

{
−1 [h(xi) = yi] ∑

l 6=yi

d(i, l)+ ∑
l 6=yi

1 [h(xi) = l]d(i, l)

}
≤ −γ

m

∑
i=1

∑
l 6=yi

d(i, l).

Substituting

C(i, l) =

{
d(i, l) l 6= yi

−∑l 6=yi
d(i, l) l = yi,

we may rewrite AdaBoost.MR’s weak-learning condition as

∀C ∈ R
m×k satisfying C(i, l)≥ 0 for l 6= yi,C(i,yi) =− ∑

l 6=yi

C(i, l), (8)

∃h ∈ H :
m

∑
i=1

C(i,h(xi))≤− γ

2

m

∑
i=1

{
−C(i,yi)+ ∑

l 6=yi

C(i, l)

}
.

Defining C MR to be the collection of cost matrices satisfying the constraints in (8), the above con-

dition is the same as

∀C ∈ C MR,∃h ∈ H : C•
(
1h −BMR

γ

)
≤ 0,

where BMR
γ (i, l) = Jl = yiKγ/2.

3.2 A Curious Equivalence

We show that the weak learning conditions of AdaBoost.MH and AdaBoost.M1 are identical in our

framework. This is surprising because the original motivations behind these algorithms were com-

pletely different. AdaBoost.M1 is a direct extension of binary AdaBoost to the multiclass setting,
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whereas AdaBoost.MH is based on the one-against-all multiclass to binary reduction. This equiva-

lence is a sort of degeneracy, and arises because the weak classifiers being used predict single labels

per example. With multilabel weak classifiers, for which AdaBoost.MH was originally designed,

the equivalence no longer holds.

The proofs in this and later sections will make use of the following minimax result, that is a

weaker version of Corollary 37.3.2 of Rockafellar (1970).

Theorem 1 (Minimax Theorem) Let C,D be non-empty closed convex subsets of Rm,Rn respec-

tively, and let K be a linear function on C×D. If either C or D is bounded, then

min
v∈D

max
u∈C

K(u,v) = max
u∈C

min
v∈D

K(u,v).

Lemma 2 A weak classifier space H satisfies (C M1,BM1
γ ) if and only if it satisfies (C MH,BMH

γ ).

Note that C M1 and C MH depend implicitly on the training set. This lemma is valid for all training

sets.

Proof We will refer to (C M1,BM1
γ ) by M1 and (C MH,BMH

γ ) by MH for brevity. The proof is in three

steps.

Step (i): If H satisfies MH, then it also satisfies M1. This follows since any constraint (4)

imposed by M1 on H can be reproduced by MH by plugging the following values of d(i, l) in (6)

d(i, l) =

{
d(i) if l = yi

0 if l 6= yi.

Step (ii): If H satisfies M1, then there is a convex combination Hλ∗ of the matrices 1h ∈ H ,

defined as

Hλ∗
△

= ∑
h∈H

λ∗(h)1h,

such that

∀i :
(
Hλ∗ −BM1

γ

)
(i, l)

{
≥ 0 if l = yi

≤ 0 if l 6= yi.
(9)

Indeed, Theorem 1 yields

min
λ∈∆(H )

max
C∈C M1

C•
(
Hλ−BM1

γ

)
= max

C∈C M1
min
h∈H

C•
(
1h −BM1

γ

)
≤ 0, (10)

where the inequality is a restatement of our assumption that H satisfies M1. If λ∗ is a minimizer of

the minimax expression, then Hλ∗ must satisfy

∀i : Hλ∗(i, l)

{
≥ 1

2
+ γ

2
if l = yi

≤ 1
2
− γ

2
if l 6= yi,

(11)

or else some choice of C∈ C M1 can cause C•
(
Hλ∗ −BM1

γ

)
to exceed 0. In particular, if Hλ∗(i0, l)<

1/2+ γ/2, then (
Hλ∗ −BM1

γ

)
(i0,yi0)< ∑

l 6=yi0

(
Hλ∗ −BM1

γ

)
(i0, l).
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Now, if we choose C ∈ C M1 as

C(i, l) =





0 if i 6= i0

1 if i = i0, l 6= yi0

−1 if i = i0, l = yi0 ,

then,

C•
(
Hλ∗ −BM1

γ

)
=−

(
Hλ∗ −BM1

γ

)
(i0,yi0)+ ∑

l 6=yi0

(
Hλ∗ −BM1

γ

)
(i0, l)> 0,

contradicting the inequality in (10). Therefore (11) holds. Equation (9), and thus Step (ii), now

follows by observing that BMH
γ , by definition, satisfies

∀i : BMH
γ (i, l) =

{
1
2
+ γ

2
if l = yi

1
2
− γ

2
if l 6= yi.

Step (iii) If there is some convex combination Hλ∗ satisfying (9), then H satisfies MH. Recall

that BMH consists of entries that are non-positive on the correct labels and non-negative for incorrect

labels. Therefore, (9) implies

0 ≥ max
C∈C MH

C•
(
Hλ∗ −BMH

γ

)
≥ min

λ∈∆(H )
max

C∈C MH
C•
(
Hλ−BMH

γ

)
.

On the other hand, using Theorem 1 we have

min
λ∈∆(H )

max
C∈C MH

C•
(
Hλ−BMH

γ

)
= max

C∈C MH
min
h∈H

C•
(
1h −BMH

γ

)
.

Combining the two, we get

0 ≥ max
C∈C MH

min
h∈H

C•
(
1h −BMH

γ

)
,

which is the same as saying that H satisfies MH’s condition.

Steps (ii) and (iii) together imply that if H satisfies M1, then it also satisfies MH. Along with

Step (i), this concludes the proof.

4. Necessary and Sufficient Weak-learning Conditions

The binary weak-learning condition has an appealing form: for any distribution over the examples,

the weak classifier needs to achieve error not greater than that of a random player who guesses the

correct answer with probability 1/2+γ/2. Further, this is the weakest condition under which boost-

ing is possible as follows from a game-theoretic perspective (Freund and Schapire, 1996b; Rätsch

and Warmuth, 2005) . Multiclass weak-learning conditions with similar properties are missing in

the literature. In this section we show how our framework captures such conditions.

447



MUKHERJEE AND SCHAPIRE

4.1 Edge-over-random Conditions

In the multiclass setting, we model a random player as a baseline predictor B ∈ Rm×k whose rows

are distributions over the labels, B(i) ∈ ∆{1, . . . ,k}. The prediction on example i is a sample from

B(i). We only consider the space of edge-over-random baselines Beor
γ ⊆Rm×k who have a faint clue

about the correct answer. More precisely, any baseline B ∈ Beor
γ in this space is γ more likely to

predict the correct label than an incorrect one on every example i: ∀l 6= 1,B(i,1)≥ B(i, l)+ γ, with

equality holding for some l, that is:

B(i,1) = max{B(i, l)+ γ : l 6= 1} .

Notice that the edge-over-random baselines are different from the baselines used by earlier weak

learning conditions discussed in the previous section.

When k = 2, the space Beor
γ consists of the unique player Ubin

γ , and the binary weak-learning con-

dition is given by (C bin,Ubin
γ ). The new conditions generalize this to k > 2. In particular, define C eor

to be the multiclass extension of C bin: any cost-matrix in C eor should put the least cost on the cor-

rect label, that is, the rows of the cost-matrices should come from the set
{

c ∈ Rk : ∀l,c(1)≤ c(l)
}

.

Then, for every baseline B ∈ Beor
γ , we introduce the condition (C eor,B), which we call an edge-

over-random weak-learning condition. Since C •B is the expected cost of the edge-over-random

baseline B on matrix C, the constraints (2) imposed by the new condition essentially require better

than random performance.

Also recall that we have assumed that the true label yi of example i in our training set is always

1. Nevertheless, we may occasionally continue to refer to the true labels as yi.

We now present the central results of this section. The seemingly mild edge-over-random con-

ditions guarantee boostability, meaning weak classifiers that satisfy any one such condition can be

combined to form a highly accurate combined classifier.

Theorem 3 (Sufficiency) If a weak classifier space H satisfies a weak-learning condition (C eor,B),
for some B ∈ Beor

γ , then H is boostable.

Proof The proof is in the spirit of the ones in Freund and Schapire (1996b). Applying Theorem 1

yields

0 ≥ max
C∈C eor

min
h∈H

C• (1h −B) = min
λ∈∆(H )

max
C∈C eor

C• (Hλ−B) ,

where the first inequality follows from the definition (2) of the weak-learning condition. Let λ∗ be a

minimizer of the min-max expression. Unless the first entry of each row of (Hλ∗ −B) is the largest,

the right hand side of the min-max expression can be made arbitrarily large by choosing C ∈ C eor

appropriately. For example, if in some row i, the jth
0 element is strictly larger than the first element,

by choosing

C(i, j) =





−1 if j = 1

1 if j = j0

0 otherwise,

we get a matrix in C eor which causes C• (Hλ∗ −B) to be equal to C(i, j0)−C(i,1)> 0, an impos-

sibility by the first inequality.

Therefore, the convex combination of the weak classifiers, obtained by choosing each weak

classifier with weight given by λ
∗, perfectly classifies the training data, in fact with a margin γ.
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On the other hand, the family of such conditions, taken as a whole, is necessary for boostability in

the sense that every eligible space of weak classifiers satisfies some edge-over-random condition.

Theorem 4 (Relaxed necessity) For every boostable weak classifier space H , there exists a γ > 0

and B ∈ Beor
γ such that H satisfies the weak-learning condition (C eor,B).

Proof The proof shows existence through non-constructive averaging arguments. We will reuse

notation from the proof of Theorem 3 above. H is boostable implies there exists some distribution

λ
∗ ∈ ∆(H ) such that

∀ j 6= 1, i : Hλ∗(i,1)−Hλ∗(i, j)> 0.

Let γ > 0 be the minimum of the above expression over all possible (i, j), and let B = Hλ∗ . Then

B ∈ Beor
γ , and

max
C∈C eor

min
h∈H

C• (1h −B)≤ min
λ∈∆(H )

max
C∈C eor

C• (Hλ−B)≤ max
C∈C eor

C• (Hλ∗ −B) = 0,

where the equality follows since by definition Hλ∗ −B = 0. The max-min expression is at most zero

is another way of saying that H satisfies the weak-learning condition (C eor,B) as in (2).

Theorem 4 states that any boostable weak classifier space will satisfy some condition in our family,

but it does not help us choose the right condition. Experiments in Section 10 suggest
(
C eor,Uγ

)
is

effective with very simple weak-learners compared to popular boosting algorithms. (Recall Uγ ∈
Beor

γ is the edge-over-random baseline closest to uniform; it has weight (1−γ)/k on incorrect labels

and (1 − γ)/k + γ on the correct label.) However, there are theoretical examples showing each

condition in our family is too strong.

Theorem 5 For any B ∈ Beor
γ , there exists a boostable space H that fails to satisfy the condition

(C eor,B).

Proof We provide, for any γ > 0 and edge-over-random baseline B ∈ Beor
γ , a data set and weak

classifier space that is boostable but fails to satisfy the condition (C eor,B).
Pick γ′ = γ/k and set m > 1/γ′ so that ⌊m(1/2+ γ′)⌋ > m/2. Our data set will have m labeled

examples {(0,y0), . . . ,(m−1,ym−1)}, and m weak classifiers. We want the following symmetries

in our weak classifiers:

• Each weak classifier correctly classifies ⌊m(1/2+ γ′)⌋ examples and misclassifies the rest.

• On each example, ⌊m(1/2+ γ′)⌋ weak classifiers predict correctly.

Note the second property implies boostability, since the uniform convex combination of all the weak

classifiers is a perfect predictor.

The two properties can be satisfied by the following design. A window is a contiguous sequence

of examples that may wrap around; for example

{i,(i+1) mod m, . . . ,(i+ k) mod m}

is a window containing k elements, which may wrap around if i+k ≥ m. For each window of length

⌊m(1/2+ γ′)⌋ create a hypothesis that correctly classifies within the window, and misclassifies out-

side. This weak-hypothesis space has size m, and has the required properties.

We still have flexibility as to how the misclassifications occur, and which cost-matrix to use,

which brings us to the next two choices:
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• Whenever a hypothesis misclassifies on example i, it predicts label

ŷi
△

= argmin{B(i, l) : l 6= yi} . (12)

• A cost-matrix is chosen so that the cost of predicting ŷi on example i is 1, but for any other

prediction the cost is zero. Observe this cost-matrix belongs to C eor.

Therefore, every time a weak classifier predicts incorrectly, it also suffers cost 1. Since each weak

classifier predicts correctly only within a window of length ⌊m(1/2+ γ′)⌋, it suffers cost ⌈m(1/2−
γ′)⌉. On the other hand, by the choice of ŷi in (12), and by our assumption that yi = 1, we have

B(i, ŷi) = min{B(i,1)− γ,B(i,2), . . . ,B(i,k)}

≤ 1

k
(B(i,1)− γ+B(i,2)+B(i,3)+ . . .+B(i,k))

= 1/k− γ/k.

So the cost of B on the chosen cost-matrix is at most m(1/k − γ/k), which is less than the cost

⌈m(1/2− γ′)⌉ ≥ m(1/2− γ/k) of any weak classifier whenever the number of labels k is more than

two. Hence our boostable space of weak classifiers fails to satisfy (C eor,B).

Theorems 4 and 5 can be interpreted as follows. While a boostable space will satisfy some edge-

over-random condition, without further information about the data set it is not possible to know

which particular condition will be satisfied. The kind of prior knowledge required to make this

guess correctly is provided by Theorem 3: the appropriate weak learning condition is determined

by the distribution of votes on the labels for each example that a target weak classifier combination

might be able to get. Even with domain expertise, such knowledge may or may not be obtainable in

practice before running boosting. We therefore need conditions that assume less.

4.2 The Minimal Weak Learning Condition

A perhaps extreme way of weakening the condition is by requiring the performance on a cost matrix

to be competitive not with a fixed baseline B ∈ Beor
γ , but with the worst of them:

∀C ∈ C eor,∃h ∈ H : C•1h ≤ max
B∈Beor

γ

C•B. (13)

Condition (13) states that during the course of the same boosting game, Weak-Learner may choose

to beat any edge-over-random baseline B ∈ Beor
γ , possibly a different one for every round and every

cost-matrix. This may superficially seem much too weak. On the contrary, this condition turns out

to be equivalent to boostability. In other words, according to our criterion, it is neither too weak nor

too strong as a weak-learning condition. However, unlike the edge-over-random conditions, it also

turns out to be more difficult to work with algorithmically.

Furthermore, this condition can be shown to be equivalent to the one used by AdaBoost.MR

(Schapire and Singer, 1999; Freund and Schapire, 1996a). This is perhaps remarkable since the

latter is based on the apparently completely unrelated all-pairs multiclass to binary reduction. In

Section 3 we saw that the MR condition is given by (C MR,BMR
γ ), where C MR consists of cost-

matrices that put non-negative costs on incorrect labels and whose rows sum up to zero, while

BMR
γ ∈ Rm×k is the matrix that has γ on the first column and −γ on all other columns. Further, the

MR condition, and hence (13), can be shown to be neither too weak nor too strong.
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Theorem 6 (MR) A weak classifier space H satisfies AdaBoost.MR’s weak-learning condition

(C MR,BMR
γ ) if and only if it satisfies (13). Moreover, this condition is equivalent to being boost-

able.

Proof We will show the following three conditions are equivalent:

(A) H is boostable

(B) ∃γ > 0 such that ∀C ∈ C eor,∃h ∈ H : C•1h ≤ max
B∈Beor

γ

C•B

(C) ∃γ > 0 such that ∀C ∈ C MR,∃h ∈ H : C•1h ≤ C•BMR.

We will show (A) implies (B), (B) implies (C), and (C) implies (A) to achieve the above.

(A) implies (B): Immediate from Theorem 4.

(B) implies (C): Suppose (B) is satisfied with 2γ. We will show that this implies H satisfies

(C MR,BMR
γ ). Notice C MR ⊂ C eor. Therefore it suffices to show that

∀C ∈ C MR,B ∈ Beor
2γ : C•

(
B−BMR

γ

)
≤ 0.

Notice that B ∈ Beor
2γ implies B′ = B−BMR

γ is a matrix whose largest entry in each row is in the first

column of that row. Then, for any C ∈ C MR, C•B′ can be written as

C•B′ =
m

∑
i=1

k

∑
j=2

C(i, j)
(
B′(i, j)−B′(i,1)

)
.

Since C(i, j)≥ 0 for j > 1, and B′(i, j)−B′(i,1)≤ 0, we have our result.

(C) implies (A): Applying Theorem 1

0 ≥ max
C∈C MR

min
h∈H

C•
(
1h −BMR

γ

)

≥ max
C∈C MR

min
λ∈∆(H )

C•
(
Hλ−BMR

γ

)

= min
λ∈∆(H )

max
C∈C MR

C•
(
Hλ−BMR

γ

)
.

For any i0 and l0 6= 1, the following cost-matrix C satisfies C ∈ C MR,

C(i, l) =





0 if i 6= i0 or l 6∈ {1, l0}
1 if i = i0, l = l0

−1 if i = i0, l = 1.

Let λ belong to the argmin of the minmax expression. Then C•
(
Hλ−BMR

γ

)
≤ 0 implies Hλ(i0,1)−

Hλ(i0, l0) ≥ 2γ. Since this is true for all i0 and l0 6= 1, we conclude that the (C MR,BMR
γ ) condition

implies boostability.

This concludes the proof of equivalence.

Next, we illustrate the strengths of our minimal weak-learning condition through concrete compar-

isons with previous algorithms.
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h1 h2

a 1 2

b 1 2

Figure 1: A weak classifier space which satisfies SAMME’s weak learning condition but is not

boostable.

4.2.1 COMPARISON WITH SAMME

The SAMME algorithm of Zhu et al. (2009) requires the weak classifiers to achieve less error

than uniform random guessing for multiple labels; in our language, their weak-learning condition

is (C SAM,Uγ), as shown in Section 3, where C SAM consists of cost matrices whose rows are of

the form (0, t, t, . . .) for some non-negative t. As is well-known, this condition is not sufficient

for boosting to be possible. In particular, consider the data set {(a,1),(b,2)} with k = 3,m = 2,

and a weak classifier space consisting of h1,h2 which always predict 1,2, respectively (Figure 1).

Since neither classifier distinguishes between a,b we cannot achieve perfect accuracy by combining

them in any way. Yet, due to the constraints on the cost-matrix, one of h1,h2 will always manage

non-positive cost while random always suffers positive cost. On the other hand our weak-learning

condition allows the Booster to choose far richer cost matrices. In particular, when the cost matrix

C ∈ C eor is given by

1 2 3

a −1 +1 0

b +1 −1 0,

both classifiers in the above example suffer more loss than the random player Uγ, and fail to satisfy

our condition.

4.2.2 COMPARISON WITH ADABOOST.MH

AdaBoost.MH (Schapire and Singer, 1999) was designed for use with weak hypotheses that on each

example return a prediction for every label. When used in our framework, where the weak classifiers

return only a single multiclass prediction per example, the implicit demands made by AdaBoost.MH

on the weak classifier space turn out to be too strong. We cannot use Theorem 5 to demonstrate

this, since it applies to only fixed edge-over-random conditions. Instead, we construct a classifier

space that satisfies the condition (C eor,Uγ) in our family, but cannot satisfy AdaBoost.MH’s weak-

learning condition. Note that this does not imply that the conditions are too strong when used with

more powerful weak classifiers that return multilabel multiclass predictions.

Consider a space H that has, for every (1/k+ γ)m element subset of the examples, a classifier

that predicts correctly on exactly those elements. The expected loss of a randomly chosen classifier

from this space is the same as that of the random player Uγ. Hence H satisfies this weak-learning

condition. On the other hand, it was shown in Section 3 that AdaBoost.MH’s weak-learning con-

dition is the pair (C MH,BMH
γ ), where C MH consists of cost matrices with non-negative entries on

incorrect labels and non-positive entries on real labels, and where each row of the matrix BMH
γ is

the vector (1/2+γ/2,1/2−γ/2, . . . ,1/2−γ/2). A quick calculation shows that for any h ∈ H , and
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C ∈ C MH with −1 in the first column and zeroes elsewhere, C •
(
1h −BMH

γ

)
= 1/2− 1/k. This is

positive when k > 2, so that H fails to satisfy AdaBoost.MH’s condition.

We have seen how our framework allows us to capture the strengths and weaknesses of old con-

ditions, describe a whole new family of conditions and also identify the condition making minimal

assumptions. In the next few sections, we show how to design boosting algorithms that employ

these new conditions and enjoy strong theoretical guarantees.

5. Algorithms

In this section we devise algorithms by analyzing the boosting games that employ weak-learning

conditions in our framework. We compute the optimum Booster strategy against a completely

adversarial Weak-Learner, which here is permitted to choose weak classifiers without restriction,

that is, the entire space H all of all possible functions mapping examples to labels. By modeling

Weak-Learner adversarially, we make absolutely no assumptions on the algorithm it might use.

Hence, error guarantees enjoyed in this situation will be universally applicable. Our algorithms

are derived from the very general drifting games framework (Schapire, 2001) for solving boosting

games, which in turn was inspired by Freund’s Boost-by-majority algorithm (Freund, 1995), which

we review next.

5.1 The OS Algorithm

Fix the number of rounds T and a weak-learning condition (C ,B). We will only consider conditions

that are not vacuous, that is, at least some classifier space satisfies the condition, or equivalently, the

space H all satisfies (C ,B). Additionally, we assume the constraints placed by C are on individual

rows. In other words, there is some subset C0 ⊆ Rk of all possible rows, such that a cost matrix C

belongs to the collection C if and only if each of its rows belongs to this subset:

C ∈ C ⇐⇒ ∀i : C(i) ∈ C0. (14)

Further, we assume C0 forms a convex cone, that is, c,c′ ∈ C0 implies tc+ t ′c′ ∈ C0 for any non-

negative t, t ′. This also implies that C is a convex cone. This is a very natural restriction, and is

satisfied by the space C used by the weak learning conditions of AdaBoost.MH, AdaBoost.M1,

AdaBoost.MR, SAMME as well as every edge-over-random condition.1 For simplicity of presenta-

tion we fix the weights αt = 1 in each round. With fT defined as in (1), whether the final hypotheses

output by Booster makes a prediction error on an example i is decided by whether an incorrect label

received the maximum number of votes, fT (i,1)≤ maxk
l=2 fT (i, l). Therefore, the optimum Booster

payoff can be written as

min
C1∈C

max
h1∈H all:

C1•(1h1
−B)≤0

. . . min
CT∈C

max
hT∈H all:

CT •(1hT
−B)≤0

1

m

m

∑
i=1

Lerr( fT (xi,1), . . . , fT (xi,k)). (15)

where the function Lerr : Rk → R encodes 0-1 error

Lerr(s) = 1

[
s(1)≤ max

l>1
s(l)

]
. (16)

1. All our results hold under the weaker restriction on the space C , where the set of possible cost vectors C0 for a row i

could depend on i. For simplicity of exposition, we stick to the more restrictive assumption that C0 is common across

all rows.
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In general, we will also consider other loss functions L : Rk → R such as exponential loss, hinge

loss, etc. that upper-bound error and are proper: that is, L(s) is increasing in the weight of the

correct label s(1), and decreasing in the weights of the incorrect labels s(l), l 6= 1.

Directly analyzing the optimal payoff is hard. However, Schapire (2001) observed that the

payoffs can be very well approximated by certain potential functions. Indeed, for any b ∈Rk define

the potential function φb
t : Rk → R by the following recurrence:

φb
0(s) = L(s)

φb
t (s) =

min
c∈C0

max
p∈∆{1,...,k}

El∼p

[
φb

t−1 (s+ el)
]

s.t. El∼p [c(l)]≤ 〈b,c〉 ,
(17)

where l ∼ p denotes that label l is sampled from the distribution p, and el ∈ Rk is the unit-vector

whose lth coordinate is 1 and the remaining coordinates zero. Notice the recurrence uses the col-

lection of rows C0 instead of the collection of cost matrices C . When there are T − t rounds remain-

ing (that is, after t rounds of boosting), these potential functions compute an estimate φb
T−t(st) of

whether an example x will be misclassified, based on its current state st consisting of counts of votes

received so far on various classes:

st(l) =
t−1

∑
t ′=1

1 [ht ′(x) = l] . (18)

Notice this definition of state assumes that αt = 1 in each round. Sometimes, we will choose the

weights differently. In such cases, a more appropriate definition is the weighted state ft ∈ Rk,

tracking the weighted counts of votes received so far:

ft(l) =
t−1

∑
t ′=1

αt ′1 [ht ′(x) = l] . (19)

However, unless otherwise noted, we will assume αt = 1, and so the definition in (18) will suffice.

The recurrence in (17) requires the max player’s response p to satisfy the constraint that the

expected cost under the distribution p is at most the inner-product 〈c,b〉. If there is no distribution

satisfying this requirement, then the value of the max expression is −∞. The existence of a valid

distribution depends on both b and c and is captured by the following:

∃p ∈ ∆{1, . . . ,k} : El∼p [c(l)]≤ 〈c,b〉 ⇐⇒ min
l

c(l)≤ 〈b,c〉 . (20)

In this paper, the vector b will always correspond to some row B(i) of the baseline used in the

weak learning condition. In such a situation, the next lemma shows that a distribution satisfying the

required constraints will always exist.

Lemma 7 If C0 is a cone and (14) holds, then for any row b = B(i) of the baseline and any cost

vector c ∈ C0, (20) holds unless the condition (C ,B) is vacuous.

Proof We show that if (20) does not hold, then the condition is vacuous. Assume that for row

b = B(i0) of the baseline, and some choice of cost vector c ∈ C0, (20) does not hold. We pick a cost-

matrix C ∈ C , such that no weak classifier h can satisfy the requirement (2), implying the condition
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must be vacuous. The ith0 row of the cost matrix is c, and the remaining rows are 0. Since C0 is a

cone, 0 ∈ C0 and hence the cost matrix lies in C . With this choice for C, the condition (2) becomes

c(h(xi)) =C (i,h(xi))≤ 〈C(i),B(i)〉= 〈c,b〉< min
l

c(l),

where the last inequality holds since, by assumption, (20) is not true for this choice of c,b. The pre-

vious equation is an impossibility, and hence no such weak classifier h exists, showing the condition

is vacuous.

Lemma 7 shows that the expression in (17) is well defined, and takes on finite values. We next

record an alternate dual form for the same recurrence which will be useful later.

Lemma 8 The recurrence in (17) is equivalent to

φb
t (s) = min

c∈C0

k
max
l=1

{
φb

t−1 (s+ el)− (c(l)−〈c,b〉)
}
. (21)

Proof Using Lagrangean multipliers, we may convert (17) to an unconstrained expression as fol-

lows:

φb
t (s) = min

c∈C0

max
p∈∆{1,...,k}

min
λ≥0

{
El∼p

[
φb

t−1 (s+ el)
]
−λ(El∼p [c(l)]−〈c,b〉)

}
.

Applying Theorem 1 to the inner min-max expression we get

φb
t (s) = min

c∈C0

min
λ≥0

max
p∈∆{1,...,k}

{
El∼p

[
φb

t−1 (s+ el)
]
− (El∼p [λc(l)]−〈λc,b〉)

}
.

Since C0 is a cone, c ∈ C0 implies λc ∈ C0. Therefore we may absorb the Lagrange multiplier into

the cost vector:

φb
t (s) = min

c∈C0

max
p∈∆{1,...,k}

El∼p

[
φb

t−1 (s+ el)− (c(l)−〈c,b〉)
]
.

For a fixed choice of c, the expectation is maximized when the distribution p is concentrated on a

single label that maximizes the inner expression, which completes our proof.

The dual form of the recurrence is useful for optimally choosing the cost matrix in each round. When

the weak learning condition being used is (C ,B), Schapire (2001) proposed a Booster strategy,

called the OS strategy, which always chooses the weight αt = 1, and uses the potential functions to

construct a cost matrix Ct as follows. Each row Ct(i) of the matrix achieves the minimum of the

right hand side of (21) with b replaced by B(i), t replaced by T − t, and s replaced by current state

st(i):

Ct(i) = argmin
c∈C0

k
max
l=1

{
φ

B(i)
T−t−1 (s+ el)− (c(l)−〈c,B(i)〉)

}
. (22)

The following theorem, proved in the appendix, provides a guarantee for the loss suffered by the

OS algorithm, and also shows that it is the game-theoretically optimum strategy when the number

of examples is large. Similar results have been proved by Schapire (2001), but our theorem holds

much more generally, and also achieves tighter lower bounds.
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Theorem 9 (Extension of results in Schapire (2001)) Suppose the weak-learning condition is not

vacuous and is given by (C ,B), where C is such that, for some convex cone C0 ⊆ Rk, the condition

(14) holds. Let the potential functions φb
t be defined as in (17), and assume the Booster employs the

OS algorithm, choosing αt = 1 and Ct as in (22) in each round t. Then the average potential of the

states,

1

m

m

∑
i=1

φ
B(i)
T−t (st(i)) ,

never increases in any round. In particular, the loss suffered after T rounds of play is at most

1

m

m

∑
i=1

φ
B(i)
T (0). (23)

Further, under certain conditions, this bound is nearly tight. In particular, assume the loss

function does not vary too much but satisfies

sup
s,s′∈ST

|L(s)−L(s′)| ≤ �(L,T ), (24)

where ST , a subset of
{

s ∈ Rk : ‖s‖∞ ≤ T
}

, is the set of all states reachable in T iterations, and

�(L,T ) is an upper bound on the discrepancy of losses between any two reachable states when the

loss function is L and the total number of iterations is T . Then, for any ε > 0, when the number of

examples m is sufficiently large,

m ≥ T�(L,T )

ε
, (25)

no Booster strategy can guarantee to achieve in T rounds a loss that is ε less than the bound (23).

In order to implement the nearly optimal OS strategy, we need to solve (22). This is computationally

only as hard as evaluating the potentials, which in turn reduces to computing the recurrences in

(17). In the next few sections, we study how to do this when using various losses and weak learning

conditions.

6. Solving for Any Fixed Edge-over-random Condition

In this section we show how to implement the OS strategy when the weak learning condition is

any fixed edge-over-random condition: (C ,B) for some B ∈ Beor
γ . By our previous discussions, this

is equivalent to computing the potential φb
t by solving the recurrence in (17), where the vector b

corresponds to some row of the baseline B. Let ∆k
γ ⊆ ∆{1, . . . ,k} denote the set of all edge-over-

random distributions on {1, . . . ,k} with γ more weight on the first coordinate:

∆k
γ = {b ∈ ∆{1, . . . ,k} : b(1)− γ = max{b(2), . . . ,b(k)}} . (26)

Note, that Beor
γ consists of all matrices whose rows belong to the set ∆k

γ . Therefore we are interested

in computing φb, where b is an arbitrary edge-over-random distribution: b ∈ ∆k
γ . We begin by

simplifying the recurrence (17) satisfied by such potentials, and show how to compute the optimal

cost matrix in terms of the potentials.
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Lemma 10 Assume L is proper, and b ∈ ∆k
γ is an edge-over-random distribution. Then the recur-

rence (17) may be simplified as

φb
t (s) = El∼b [φt−1 (s+ el)] . (27)

Further, if the cost matrix Ct is chosen as follows

Ct(i, l) = φb
T−t−1(st(i)+ el), (28)

then Ct satisfies the condition in (22), and hence is the optimal choice.

Proof Let C eor
0 ⊆ Rk denote all vectors c satisfying ∀l : c(1)≤ c(l). Then, we have

φb
t (s) =

min
c∈C eor

0

max
p∈∆{1,...,k}

El∼p [φt−1 (s+ el)]

s.t. El∼p[c(l)]≤ El∼b [c(l)] ,
( by (17) )

= min
c∈C eor

0

max
p∈∆

min
λ≥0

{
El∼p

[
φb

t−1 (s+ el)
]
+λ(El∼b [c(l)]−El∼p[c(l)])

}
(Lagrangean)

= min
c∈C eor

0

min
λ≥0

max
p∈∆

El∼p

[
φb

t−1 (s+ el)
]
+λ〈b−p,c〉(Theorem 1)

= min
c∈C eor

0

max
p∈∆

El∼p

[
φb

t−1 (s+ el)
]
+ 〈b−p,c〉(absorb λ into c)

= max
p∈∆

min
c∈C eor

0

El∼p

[
φb

t−1 (s+ el)
]
+ 〈b−p,c〉(Theorem 1) .

Unless b(1)− p(1) ≤ 0 and b(l)− p(l) ≥ 0 for each l > 1, the quantity 〈b−p,c〉 can be made

arbitrarily small for appropriate choices of c ∈ C eor
0 . The max-player is therefore forced to constrain

its choices of p, and the above expression becomes

max
p∈∆

El∼p

[
φb

t−1 (s+ el)
]

s.t. b(l)−q(l)

{
≥ 0 if l = 1,

≤ 0 if l > 1.

Lemma 6 of Schapire (2001) states that if L is proper (as defined here), so is φb
t ; the same result can

be extended to our drifting games. This implies the optimal choice of p in the above expression is in

fact the distribution that puts as small weight as possible in the first coordinate, namely b. Therefore

the optimum choice of p is b, and the potential is the same as in (27).

We end the proof by showing that the choice of cost matrix in (28) is optimum. Theorem 9

states that a cost matrix Ct is the optimum choice if it satisfies (22), that is, if the expression

k
max
l=1

{
φ

B(i)
T−t−1 (s+ el)− (Ct(i, l)−〈Ct(i),B(i)〉)

}
(29)

is equal to

min
c∈C0

k
max
l=1

{
φ

B(i)
T−t−1 (s+ el)− (c(l)−〈c,B(i)〉)

}
= φ

B(i)
T−t (s) , (30)
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where the equality in (30) follows from (21). If Ct(i) is chosen as in (28), then, for any label l, the

expression within max in (29) evaluates to

φ
B(i)
T−t−1 (s+ el) −

(
φ

B(i)
T−t−1 (s+ el)−〈Ct(i),B(i)〉

)

= 〈B(i),Ct(i)〉
= El∼B(i) [Ct(i, l)]

= El∼B(i)

[
φ

B(i)
T−t−1 (s+ el)

]

= φ
B(i)
T−t(s),

where the last equality follows from (27). Therefore the max expression in (29) is also equal to

φ
B(i)
T−t(s), which is what we needed to show.

Equation (28) in Lemma 10 implies the cost matrix chosen by the OS strategy can be expressed

in terms of the potentials, which is the only thing left to calculate. Fortunately, the simplification

(27) of the drifting games recurrence, allows the potentials to be solved completely in terms of a

random-walk R t
b(x). This random variable denotes the position of a particle after t time steps, that

starts at location x ∈ Rk, and in each step moves in direction el with probability b(l).

Corollary 11 The recurrence in (27) can be solved as follows:

φb
t (s) = E

[
L
(
R t

b(s)
)]
. (31)

Proof Inductively assuming φb
t−1(x) = E

[
L(R t−1

b (x))
]
,

φt(s) = El∼b

[
L(R t−1

b (s)+ el)
]
= E

[
L(R t

b(s))
]
.

The last equality follows by observing that the random position R t−1
b (s)+el is distributed as R t

b(s)
when l is sampled from b.

Lemma 10 and Corollary 11 together imply:

Theorem 12 Assume L is proper and b ∈ ∆k
γ is an edge-over-random distribution. Then the poten-

tial φb
t , defined by the recurrence in (17), has the solution given in (31) in terms of random walks.

Before we can compute (31), we need to choose a loss function L. We next consider two options for

the loss—the non-convex 0-1 error, and exponential loss.

6.1 Exponential Loss

The exponential loss serves as a smooth convex proxy for discontinuous non-convex 0-1 error (16)

that we would ultimately like to bound, and is given by

L
exp
η (s) =

k

∑
l=2

eη(sl−s1). (32)

The parameter η can be thought of as the weight in each round, that is, αt = η in each round. Then

notice that the weighted state ft of the examples, defined in (19), is related to the unweighted states
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st as ft(l) = ηst(l). Therefore the exponential loss function in (32) directly measures the loss of the

weighted state as

Lexp(ft) =
k

∑
l=2

e ft(l)− ft(1). (33)

Because of this correspondence, the optimal strategy with the loss function Lexp and αt = η is the

same as that using loss L
exp
η and αt = 1. We study the latter setting so that we may use the results

derived earlier. With the choice of the exponential loss L
exp
η , the potentials are easily computed, and

in fact have a closed form solution.

Theorem 13 If L
exp
η is as in (32), where η is non-negative, then the solution in Theorem 12 evaluates

to φb
t (s) = ∑k

l=2(al)
teηl(sl−s1), where al = 1− (b1 +bl)+ eηbl + e−ηb1.

The proof by induction is straightforward. By tuning the weight η, each al can be always made

less than 1. This ensures the exponential loss decays exponentially with rounds. In particular, when

B = Uγ (so that the condition is (C eor,Uγ)), the relevant potential φt(s) or φt(f) is given by

φt(s) = φt( f ) = κ(γ,η)t
k

∑
l=2

eη(sl−s1) = κ(γ,η)t
k

∑
l=2

e fl− f1 (34)

where

κ(γ,η) = 1+
(1− γ)

k

(
eη + e−η −2

)
−
(
1− e−η

)
γ. (35)

The cost-matrix output by the OS algorithm can be simplified by rescaling, or adding the same

number to each coordinate of a cost vector, without affecting the constraints it imposes on a weak

classifier, to the following form

C(i, l) =

{
(eη −1)eη(sl−s1) if l > 1,

(e−η −1)∑k
l=2 eη(sl−s1) if l = 1.

Using the correspondence between unweighted and weighted states, the above may also be rewritten

as:

C(i, l) =

{
(eη −1)e fl− f1 if l > 1,

(e−η −1)∑k
l=2 e fl− f1 if l = 1.

(36)

With such a choice, Theorem 9 and the form of the potential guarantee that the average loss

1

m

m

∑
i=1

L
exp
η (st(i)) =

1

m

m

∑
i=1

Lexp(ft(i)) (37)

of the states changes by a factor of at most κ(γ,η) every round. Therefore the final loss, which upper

bounds the error, that is, the fraction of misclassified training examples, is at most (k−1)κ(γ,η)T
.

Since this upper bound holds for any value of η, we may tune it to optimize the bound. Setting

η = ln(1+ γ), the error can be upper bounded by (k−1)e−T γ2/2.
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6.2 Zero-one Loss

There is no simple closed form solution for the potential when using the zero-one loss Lerr (16).

However, we may compute the potentials efficiently as follows. To compute φb
t (s), we need to find

the probability that a random walk (making steps according to b) of length t in Zk, starting at s will

end up in a region where the loss function is 1. Any such random walk will consist of xl steps in

direction el where the non-negative ∑l xl = t. The probability of each such path is ∏l b
xl

l . Further,

there are exactly
(

t
x1,...,xk

)
such paths. Starting at state s, such a path will lead to a correct answer

only if s1 + x1 > sl + xl for each l > 1. Hence we may write the potential φb
t (s) as

φb
t (s) = 1−

t

∑
x1,...,xk

(
t

x1,...,xk

)
∏k

l=1 b
xl

l

s.t. x1 + . . .+ xk = t

∀l : xl ≥ 0

∀l : xl + sl ≤ x1 + s1.

Since the xl’s are restricted to be integers, this problem is presumably hard. In particular, the only

algorithms known to the authors that take time logarithmic in t is also exponential in k. However,

by using dynamic programming, we can compute the summation in time polynomial in |sl|, t and k.

In fact, the run time is always O(t3k), and at least Ω(tk).
The bounds on error we achieve, although not in closed form, are much tighter than those

obtainable using exponential loss. The exponential loss analysis yields an error upper bound of

(k−1)e−Tγ2/2. Using a different initial distribution, Schapire and Singer (1999) achieve the slightly

better bound
√
(k−1)e−T γ2/2. However, when the edge γ is small and the number of rounds are

few, each bound is greater than 1 and hence trivial. On the other hand, the bounds computed by the

above dynamic program are sensible for all values of k, γ and T . When b is the γ-biased uniform

distribution b= ( 1−γ
k
+γ, 1−γ

k
, 1−γ

k
, . . . , 1−γ

k
) a table containing the error upper bound φb

T (0) for k = 6,

γ = 0 and small values for the number of rounds T is shown in Figure 2(a); note that with the

exponential loss, the bound is always 1 if the edge γ is 0. Further, the bounds due to the exponential

loss analyses seem to imply that the dependence of the error on the number of labels is monotonic.

However, a plot of the tighter bounds with edge γ = 0.1, number of rounds T = 10 against various

values of k, shown in Figure 2(b), indicates that the true dependence is more complicated. Therefore

the tighter analysis also provides qualitative insights not obtainable via the exponential loss bound.

7. Solving for the Minimal Weak Learning Condition

In the previous section we saw how to find the optimal boosting strategy when using any fixed

edge-over-random condition. However as we have seen before, these conditions can be stronger

than necessary, and therefore lead to boosting algorithms that require additional assumptions. Here

we show how to compute the optimal algorithm while using the weakest weak learning condition,

provided by (13), or equivalently the condition used by AdaBoost.MR, (C MR,BMR
γ ). Since there

are two possible formulations for the minimal condition, it is not immediately clear which to use

to compute the optimal boosting strategy. To resolve this, we first show that the optimal boosting

strategy based on any formulation of a necessary and sufficient weak learning condition is the same.

Having resolved this ambiguity, we show how to compute this strategy for the exponential loss and

0-1 error using the first formulation.
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T φb
T (0) T φb

T (0)

0 1.00 6 0.90

1 0.83 7 0.91

2 0.97 8 0.90

3 0.93 9 0.89

4 0.89 10 0.89

5 0.89
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Figure 2: Plot of potential value φb
T (0) where b is the γ-biased uniform distribution: b = ( 1−γ

k
+

γ, 1−γ
k
, 1−γ

k
, . . . , 1−γ

k
). (a): Potential values (rounded to two decimal places) for different

number of rounds T using γ = 0 and k = 6. These are bounds on the error, and less than

1 even when the edge and number of rounds are small. (b): Potential values for different

number of classes k, with γ = 0.1, and T = 10. These are tight estimates for the optimal

error, and yet not monotonic in the number of classes.

7.1 Game-theoretic Equivalence of Necessary and Sufficient Weak-learning Conditions

In this section we study the effect of the weak learning condition on the game-theoretically optimal

boosting strategy. We introduce the notion of game-theoretic equivalence between two weak learn-

ing conditions, that determines if the payoffs (15) of the optimal boosting strategies based on the

two conditions are identical. This should hold whenever both games last for the same number of

iterations T , for any value of T . This is different from the usual notion of equivalence between two

conditions, which holds if any weak classifier space satisfies both conditions or neither condition.

In fact we prove that game-theoretic equivalence is a broader notion; in other words, equivalence

implies game-theoretic equivalence. A special case of this general result is that any two weak

learning conditions that are necessary and sufficient, and hence equivalent to boostability, are also

game-theoretically equivalent. In particular, so are the conditions of AdaBoost.MR and (13), and

the resulting optimal Booster strategies enjoy equally good payoffs. We conclude that in order to

derive the optimal boosting strategy that uses the minimal weak-learning condition, it is sound to

use either of these two formulations.

The purpose of a weak learning condition (C ,B) is to impose restrictions on the Weak-Learner’s

responses in each round. These restrictions are captured by subsets of the weak classifier space

as follows. If Booster chooses cost-matrix C ∈ C in a round, the Weak-Learner’s response h is

restricted to the subset SC ⊆ H all defined as

SC =
{

h ∈ H all : C•1h ≤ C•B
}
.
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Thus, a weak learning condition is essentially a family of subsets of the weak classifier space.

Further, smaller subsets mean fewer options for Weak-Learner, and hence better payoffs for the

optimal boosting strategy. Based on this idea, we may define when a weak learning condition

(C1,B1) is game-theoretically stronger than another condition (C2,B2) if the following holds: For

every subset SC2
in the second condition (that is C2 ∈ C2), there is a subset SC1

in the first condition

(that is C1 ∈ C1), such that SC1
⊆ SC2

. Mathematically, this may be written as follows:

∀C1 ∈ C1,∃C2 ∈ C2 : SC1
⊆ SC2

.

Intuitively, a game theoretically stronger condition will allow Booster to place similar or stricter

restrictions on Weak-Learner in each round. Therefore, the optimal Booster payoff using a game-

theoretically stronger condition is at least equally good, if not better. It therefore follows that if two

conditions are both game-theoretically stronger than each other, the corresponding Booster payoffs

must be equal, that is they must be game-theoretically equivalent.

Note that game-theoretic equivalence of two conditions does not mean that they are identical

as families of subsets, for we may arbitrarily add large and “useless” subsets to the two condi-

tions without affecting the Booster payoffs, since these subsets will never be used by an optimal

Booster strategy. In fact we next show that game-theoretic equivalence is a broader notion than just

equivalence.

Theorem 14 Suppose (C1,B1) and (C2,B2) are two equivalent weak learning conditions, that

is, every space H satisfies both or neither condition. Then each condition is game-theoretically

stronger than the other, and hence game-theoretically equivalent.

Proof We argue by contradiction. Assume that despite equivalence, the first condition (without

loss of generality) includes a particularly hard subset SC1
⊆ H all,C1 ∈ C1 which is not smaller

than any subset in the second condition. In particular, for every subset SC2
,C2 ∈ C2 in the second

condition is satisfied by some weak classifier hC2
not satisfying the hard subset in the first condition:

hC2
∈ SC2

\SC1
. Therefore, the space

H = {hC2
: C2 ∈ C2} ,

formed by just these classifiers satisfies the second condition, but has an empty intersection with

SC1
. In other words, H satisfies the second but not the first condition, a contradiction to their

equivalence.

An immediate corollary is the game theoretic equivalence of necessary and equivalent conditions.

Corollary 15 Any two necessary and sufficient weak learning conditions are game-theoretically

equivalent. In particular the optimum Booster strategies based on AdaBoost.MR’s condition

(C MR,BMR
γ ) and (13) have equal payoffs.

Therefore, in deriving the optimal Booster strategy, it is sound to work with either AdaBoost.MR’s

condition or (13). In the next section, we actually compute the optimal strategy using the latter

formulation.
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7.2 Optimal Strategy with the Minimal Conditions

In this section we compute the optimal Booster strategy that uses the minimum weak learning condi-

tion provided in (13). We choose this instead of AdaBoost.MR’s condition because this description

is more closely related to the edge-over-random conditions, and the resulting algorithm has a close

relationship to the ones derived for fixed edge-over-random conditions, and therefore more insight-

ful. However, this formulation does not state the condition as a single pair (C,B), and therefore we

cannot directly use the result of Theorem 9. Instead, we define new potentials and a modified OS

strategy that is still nearly optimal, and this constitutes the first part of this section. In the second

part, we show how to compute these new potentials and the resulting OS strategy.

7.2.1 MODIFIED POTENTIALS AND OS STRATEGY

The condition in (13) is not stated as a single pair (C eor,B), but uses all possible edge-over-random

baselines B∈Beor
γ . Therefore, we modify the definitions (17) of the potentials accordingly to extract

an optimal Booster strategy. Recall that ∆k
γ is defined in (26) as the set of all edge-over-random

distributions which constitute the rows of edge-over-random baselines B ∈ Beor
γ . Using these, define

new potentials φt(s) as follows:

φt(s) =
min

c∈C eor
0

max
b∈∆k

γ

max
p∈∆{1,...,k}

El∼p [φt−1 (s+ el)]

s.t. El∼p[c(l)]≤ 〈b,c〉 .
(38)

The main difference between (38) and (17) is that while the older potentials were defined using

a fixed vector b corresponding to some row in the fixed baseline B, the new definition takes the

maximum over all possible rows b ∈ ∆k
γ that an edge-over-random baseline B ∈ Beor

γ may have. As

before, we may write the recurrence in (38) in its dual form

φt(s) = min
c∈C eor

0

max
b∈∆k

γ

k
max
l=1

{φt−1 (s+ el)− (c(l)−〈c,b〉)} .

The proof is very similar to that of Lemma 8 and is omitted. We may now define a new OS strategy

that chooses a cost-matrix in round t analogously:

Ct(i) ∈ argmin
c∈C eor

0

max
b∈∆k

γ

k
max
l=1

{φt−1 (s+ el)− (c(l)−〈c,b〉)} . (39)

where recall that st(i) denotes the state vector (defined in (18)) of example i. With this strategy, we

can show an optimality result very similar to Theorem 9.

Theorem 16 Suppose the weak-learning condition is given by (13). Let the potential functions φb
t

be defined as in (38), and assume the Booster employs the modified OS strategy, choosing αt = 1

and Ct as in (39) in each round t. Then the average potential of the states,

1

m

m

∑
i=1

φT−t (st(i)) ,

never increases in any round. In particular, the loss suffered after T rounds of play is at most φT (0).
Further, for any ε > 0, when the loss function satisfies (24) and the number of examples m is as

large as in (25), no Booster strategy can guarantee to achieve less than φT (0)− ε loss in T rounds.

The proof is very similar to that of Theorem 9 and is omitted.
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7.2.2 COMPUTING THE NEW POTENTIALS

Here we show how to compute the new potentials. The resulting algorithms will require exponential

time, and we provide some empirical evidence showing that this might be necessary. Finally, we

show how to carry out the computations efficiently in certain special situations.

An Exponential Time Algorithm. Here we show how the potentials may be computed as the expected

loss of some random walk, just as we did for the potentials arising with fixed edge-over-random

conditions. The main difference is there will be several random walks to choose from.

We first begin by simplifying the recurrence (38), and expressing the optimal cost matrix in

(39) in terms of the potentials, just as we did in Lemma 10 for the case of fixed edge-over-random

conditions.

Lemma 17 Assume L is proper. Then the recurrence (38) may be simplified as

φt(s) = max
b∈∆k

γ

El∼b [φt−1 (s+ el)] . (40)

Further, if the cost matrix Ct is chosen as follows:

Ct(i, l) = φT−t−1(st(i)+ el), (41)

then Ct satisfies the condition in (39).

The proof is very similar to that of Lemma 10 and is omitted. Equation (41) implies that, as before,

computing the optimal Booster strategy reduces to computing the new potentials. One compu-

tational difficulty created by the new definitions (38) or (40) is that they require infinitely many

possible distributions b ∈ ∆k
γ to be considered. We show that we may in fact restrict our attention to

only finitely many of such distributions described next.

At any state s and number of remaining iterations t, let π be a permutation of the coordinates

{2, . . . ,k} that sorts the potential values:

φt−1

(
s+ eπ(k)

)
≥ φt−1

(
s+ eπ(k−1)

)
≥ . . .≥ φt−1

(
s+ eπ(2)

)
. (42)

For any permutation π of the coordinates {2, . . . ,k}, let bπ
a denote the γ-biased uniform distribution

on the a coordinates {1,πk,πk−1, . . . ,πk−a+2}:

bπ
a(l) =





1−γ
a

+ γ if l = 1
1−γ

a
if l ∈ {πk, . . . ,πk−a+2}

0 otherwise.

(43)

Then, the next lemma shows that we may restrict our attention to only the distributions
{

bπ
2, . . . ,b

π
k

}

when evaluating the recurrence in (40).

Lemma 18 Fix a state s and remaining rounds of boosting t. Let π be a permutation of the coordi-

nates {2, . . . ,k} satisfying (42), and define bπ
a as in (43). Then the recurrence (40) may be simplified

as follows:

φt(s) = max
b∈∆k

γ

El∼b [φt−1 (s+ el)] = max
2≤a≤k

El∼bπ
a
[φt−1 (s+ el)] . (44)
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Proof Assume (by relabeling the coordinates if necessary) that π is the identity permutation, that

is, π(2) = 2, . . . ,π(k) = k. Observe that the right hand side of (40) is at least as much the right hand

side of (44) since the former considers more distributions. We complete the proof by showing that

the former is also at most the latter.

By (40), we may assume that some optimal b satisfies

b(k) = · · ·= b(k−a+2) = b(1)− γ,

b(k−a+1) ≤ b(1)− γ,

b(k−a) = · · ·= b(2) = 0.

Therefore, b is a distribution supported on a+ 1 elements, with the minimum weight placed on

element k−a+1. This implies b(k−a+1) ∈ [0,1/(a+1)].
Now, El∼b [φt−1(s+ el)] may be written as

γ ·φt−1(s+ e1)+b(k−a+1)φt−1(s+ ek−a+1)

+ (1− γ−b(k−a+1))
φt−1(s+ e1)+φt−1(s+ ek−a+2)+ . . .φt−1(s+ ek)

a

= γ ·φt−1(s+ e1)+
b(k−a+1)

1− γ
φt−1(s+ ek−a+1)

+ (1− γ)
{(

1− b(k−a+1)

1− γ

)
φt−1(s+ e1)+φt−1(s+ ek−a+2)+ . . .φt−1(s+ ek)

a

}

Replacing b(k−a+1) by x in the above expression, we get a linear function of x. When restricted to

[0,1/(a+1)] the maximum value is attained at a boundary point. For x = 0, the expression becomes

γ ·φt−1(s+ e1)+(1− γ)
φt−1(s+ e1)+φt−1(s+ ek−a+2)+ . . .φt−1(s+ ek)

a
.

For x = 1/(a+1), the expression becomes

γ ·φt−1(s+ e1)+(1− γ)
φt−1(s+ e1)+φt−1(s+ ek−a+1)+ . . .φt−1(s+ ek)

a+1
.

Since b(k − a+ 1) lies in [0,1/(a+ 1)], the optimal value is at most the maximum of the two.

However each of these last two expressions is at most the right hand side of (44), completing the

proof.

Unraveling (44), we find that φt(s) is the expected loss of the final state reached by some random

walk of t steps starting at state s. However, the number of possibilities for the random-walk is

huge; indeed, the distribution at each step can be any of the k−1 possibilities bπ
a for a ∈ {2, . . . ,k},

where the parameter a denotes the size of the support of the γ-biased uniform distribution chosen at

each step. In other words, at a given state s with t rounds of boosting remaining, the parameter a

determines the number of directions the optimal random walk will consider taking; we will therefore

refer to a as the degree of the random walk given (s, t). Now, the total number of states reachable in

T steps is O
(
T k−1

)
. If the degree assignment every such state, for every value of t ≤ T is fixed in

advance, a = {a(s, t) : t ≤ T,s reachable}, we may identify a unique random walk R a,t(s) of length

t starting at step s. Therefore the potential may be computed as

φt(s) = max
a

E
[
R a,t(s)

]
. (45)
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Figure 3: Green pixels (crosses) have degree 3, black pixels (solid squares) have degree 2. Each

step is diagonally down (left), and up (if x < y) and right (if x > y) and both when degree

is 3. The rightmost figure uses γ = 0.4, and the other two γ = 0. The loss function is 0-1.

A dynamic programming approach for computing (45) requires time and memory linear in the

number of different states reachable by a random walk that takes T coordinate steps: O(T k−1). This

is exponential in the data set size, and hence impractical. In the next two sections we show that

perhaps there may not be any way of computing these efficiently in general, but provide efficient

algorithms in certain special cases.

Hardness of Evaluating the Potentials. Here we provide empirical evidence for the hardness of

computing the new potentials. We first identify a computationally easier problem, and show that

even that is probably hard to compute. Equation (44) implies that if the potentials were efficiently

computable, the correct value of the degree a could be determined efficiently. The problem of

determining the degree a given the state s and remaining rounds t is therefore easier than evaluating

the potentials. However, a plot of the degrees against states and remaining rounds, henceforth called

a degree map, reveals very little structure that might be captured by a computationally efficient

function.

We include three such degree maps in Figure 3. Only three classes k = 3 are used, and the

loss function is 0-1 error. We also fix the number T of remaining rounds of boosting and the value

of the edge γ for each plot. For ease of presentation, the 3-dimensional states s = (s1,s2,s3) are

compressed into 2-dimensional pixel coordinates (u = s2 − s1,v = s3 − s2). It can be shown that

this does not take away information required to evaluate the potentials or the degree at any pixel

(u,v). Further, only those states are considered whose compressed coordinates u,v lie in the range

[−T,T ]; in T rounds, these account for all the reachable states. The degrees are indicated on the

plot by colors. Our discussion in the previous sections implies that the possible values of the degree

is 2 or 3. When the degree at a pixel (u,v) is 3, the pixel is colored green, and when the degree is 2,

it is colored black.

Note that a random walk over the space s ∈ R3 consisting of distributions over coordinate steps

{(1,0,0),(0,1,0),(0,0,1)} translates to a random walk over (u,v) ∈ R2 where each step lies in

the set {(−1,−1),(1,0),(0,1)}. In Figure 3, these correspond to the directions diagonally down,

up or right. Therefore at a black pixel, the random walk either chooses between diagonally down

and up, or between diagonally down and right, with probabilities {1/2+ γ/2,1/2− γ/2}. On the
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Figure 4: Optimum recurrence value. We set γ = 0. Surface is irregular for smaller values of T , but

smoother for larger values, admitting hope for approximation.

other hand, at a green pixel, the random walk chooses among diagonally down, up and right with

probabilities (γ+(1− γ)/3,(1− γ)/3,(1− γ)/3). The degree maps are shown for varying values of

T and the edge γ. While some patterns emerge for the degrees, such as black or green depending on

the parity of u or v, the authors found the region near the line u = v still too complex to admit any

solution apart from a brute-force computation.

We also plot the potential values themselves in Figure 4 against different states. In each plot,

the number of iterations remaining, T , is held constant, the number of classes is chosen to be 3, and

the edge γ = 0. The states are compressed into pixels as before, and the potential is plotted against

each pixel, resulting in a 3-dimensional surface. We include two plots, with different values for

T . The surface is irregular for T = 3 rounds, but smoother for 20 rounds, admitting some hope for

approximation.

An alternative approach would be to approximate the potential φt by the potential φb
t for some

fixed b ∈ ∆k
γ corresponding to some particular edge-over-random condition. Since φt ≥ φb

t for all

edge-over-random distributions b, it is natural to approximate by choosing b that maximizes the

fixed edge-over-random potential. (It can be shown that this b corresponds to the γ-biased uniform

distribution.) Two plots of comparing the potential values at 0, φT (0) and maxb φb
T (0), which cor-

respond to the respective error upper bounds, is shown in Figure 5. In the first plot, the number

of classes k is held fixed at 6, and the values are plotted for different values of iterations T . In the

second plot, the number of classes vary, and the number of iterations is held at 10. Both plots show

that the difference in the values is significant, and hence maxb φb
T (0) would be a rather optimistic

upper bound on the error when using the minimal weak learning condition.

If we use exponential loss (32), the situation is not much better. The degree maps for varying

values of the weight parameter η against fixed values of edge γ = 0.1, rounds remaining T = 20 and
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Figure 5: Comparison of φt(0) (blue, dashed) with maxq φ
q
t (0) (red, solid) over different rounds t

and different number of classes k. We set γ = 0 in both.
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Figure 6: Green pixels (crosses) have degree 3, black pixels (squares) have degree 2. Each step is

diagonally down (left), and up (if x < y) and right (if x > y) and both when degree is 3.

Each plot uses T = 20,γ = 0.1. The values of η are 0.08, 0.1 and 0.3, respectively. With

smaller values of η, more pixels have degree 3.

number of classes k = 3 are plotted in Figure 6. Although the patterns are simple, with the degree

3 pixels forming a diagonal band, we found it hard to prove this fact formally, or compute the exact

boundary of the band. However the plots suggest that when η is small, all pixels have degree 3. We

next find conditions under which this opportunity for tractable computation exists.

Efficient Computation in Special Cases. Here we show that when using the exponential loss, if the

edge γ is very small, then the potentials can be computed efficiently. We first show an intermediate

result. We already observed empirically that when the weight parameter η is small, the degrees all

become equal to k. Indeed, we can prove this fact.
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Lemma 19 If the loss function being used is exponential loss (32) and the weight parameter η is

small compared to the number of rounds

η ≤ 1

4
min

{
1

k−1
,

1

T

}
, (46)

then the optimal value of the degree a in (44) is always k. Therefore, in this situation, the potential

φt using the minimal weak learning condition is the same as the potential φu
t using the γ-biased

uniform distribution u,

u =

(
1− γ

k
+ γ,

1− γ

k
, . . . ,

1− γ

k

)
, (47)

and hence can be efficiently computed.

Proof We show φt = φu
t by induction on the remaining number t of boosting iterations. The base

case holds since, by definition, φ0 = φu
0 = L

exp
η . Assume, inductively that

φt−1(s) = φu
t−1(s) = κ(γ,η)t−1

k

∑
l=2

eη(sl−s1), (48)

where the second equality follows from (34). We show that

φt(s) = El∼u [φt−1(s+ el)] . (49)

By the inductive hypothesis and (27), the right hand side of (49) is in fact equal to φu
t , and we will

have shown φt = φu
t . The proof will then follow by induction.

In order to show (49), by Lemma 18, it suffices to show that the optimal degree a maximizing

the right hand side of (44) is always k:

El∼bπ
a
[φt−1 (s+ el)]≤ El∼bπ

k
[φt−1 (s+ el)] . (50)

By (48), φt−1 (s+ el0) may be written as φt−1(s)+κ(γ,η)t−1 ·ξl0 , where the term ξl0 is:

ξl0 =

{
(eη −1)eη(sl0

−s1) if l0 6= 1,

(e−η −1)∑k
l=2 eη(sl−s1) if l0 = 1.

Therefore (50) is the same as: El∼bπ
a
[ξl]≤ El∼bπ

k
[ξl]. Assume (by relabeling if necessary) that π is

the identity permutation on coordinates {2, . . . ,k}. Then the expression El∼bπ
a
[ξl] can be written as

El∼bπ
a
[ξl] =

(
1− γ

a
+ γ

)
ξ1 +

k

∑
l=k−a+2

(
1− γ

a

)
ξl

= γξ1 +(1− γ)

{
ξ1 +∑k

l=k−a+2 ξl

a

}
.

It suffices to show that the term in curly brackets is maximized when a = k. We will in fact show

that the numerator of the term is negative if a < k, and non-negative for a = k, which will complete
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our proof. Notice that the numerator can be written as

(eη −1)

{
k

∑
l=k−a+2

eη(sl−s1)

}
− (1− e−η)

k

∑
l=2

eη(sl−s1)

= (eη −1)

{
k

∑
l=k−a+2

eη(sl−s1)−
k

∑
l=2

eη(sl−s1)

}
+
{
(eη −1)− (1− e−η)

} k

∑
l=2

eη(sl−s1)

=
{

eη + e−η −2
} k

∑
l=2

eη(sl−s1)− (eη −1)

{
k−a+1

∑
l=2

eη(sl−s1)

}
.

When a = k, the second summation disappears, and we are left with a non-negative expression.

However when a < k, the second summation is at least eη(s2−s1). Since t ≤ T , and in t iterations the

absolute value of any state coordinate |st(l)| is at most T , the first summation is at most (k−1)e2ηT

and the second summation is at least e−2ηT . Therefore the previous expression is at most

(k−1)
(
eη + e−η −2

)
e2ηT − (eη −1)e−2ηT

= (eη −1)e−2ηT
{
(k−1)(1− e−η)e4ηT −1

}
.

We show that the term in curly brackets is negative. Firstly, using ex ≥ 1+ x, we have 1− e−η ≤
η ≤ 1/(4(k−1)) by choice of η. Therefore it suffices to show that e4ηT < 4. By choice of η again,

e4ηT ≤ e1 < 4. This completes our proof.

The above lemma seems to suggest that under certain conditions, a sort of degeneracy occurs, and

the optimal Booster payoff (15) is nearly unaffected by whether we use the minimal weak learning

condition, or the condition (C eor,Uγ). Indeed, we next prove this fact.

Theorem 20 Suppose the loss function is as in Lemma 19, and for some parameter ε > 0, the

number of examples m is large enough

m ≥ Te1/4

ε
. (51)

Consider the minimal weak learning condition (13), and the fixed edge-over-random condition

(C eor,Uγ) corresponding to the γ-biased uniform baseline Uγ. Then the optimal booster payoffs

using either condition is within ε of each other.

Proof We show that the OS strategies arising out of either condition is the same. In other words, at

any iteration t and state st , both strategies play the same cost matrix and enforce the same constraints

on the response of Weak-Learner. The theorem will then follow if we can invoke Theorems 9 and

16. For that, the number of examples needs to be as large as in (25). The required largeness would

follow from (51) if the loss function satisfied (24) with �(L,T ) at most exp(1/4). Since the largest

discrepancy in losses between two states reachable in T iterations is at most eηT − 0, the bound

follows from the choice of η in (46). Therefore, it suffices to show the equivalence of the OS

strategies corresponding to the two weak learning conditions.

We first show both strategies play the same cost-matrix. Lemma 19 states that the potential

function using the minimal weak learning condition is the same as when using the fixed condition

(C eor,Uγ): φt = φu
t , where u is as in (47). Since, according to (28) and (41), given a state st and

iteration t, the two strategies choose cost matrices that are identical functions of the respective
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potentials, by the equivalence of the potential functions, the resulting cost matrices must be the

same.

Even with the same cost matrix, the two different conditions could be imposing different con-

straints on Weak-Learner, which might affect the final payoff. For instance, with the baseline Uγ,

Weak-Learner has to return a weak classifier h satisfying

Ct •1h ≤ Ct •Uγ,

whereas with the minimal condition, the constraint on h is

Ct •1h ≤ max
B∈Beor

γ

Ct •B.

In order to show that the constraints are the same we therefore need to show that for the common

cost matrix Ct chosen, the right hand side of the two previous expressions are the same:

Ct •Uγ = max
B∈Beor

γ

Ct •Beor
γ . (52)

We will in fact show the stronger fact that the equality holds for every row separately:

∀i : 〈Ct(i),u〉= max
b∈∆k

γ

〈Ct(i),b〉 . (53)

To see this, first observe that the choice of the optimal cost matrix Ct in (41) implies the following

identity

〈Ct(i),b〉= El∼b [φT−t−1(st(i)+ el)] .

On the other hand, (44) and Lemma 19 together imply that the distribution b maximizing the right

hand side of the above is the γ-biased uniform distribution, from which (53) follows. Therefore, the

constraints placed on Weak-Learner by the cost-matrix Ct is the same whether we use minimum

weak learning condition or the fixed condition (C eor,Uγ).

One may wonder why η would be chosen so small, especially since the previous theorem indi-

cates that such choices for η lead to degeneracies. To understand this, recall that η represents the

size of the weights αt chosen in every round, and was introduced as a tunable parameter to help

achieve the best possible upper bound on zero-one error. More precisely, recall that the exponential

loss L
exp
η (s) of the unweighted state, defined in (32), is equal to the exponential loss Lexp(f) on the

weighted state, defined in (33), which in turn is an upper bound on the error Lerr(fT ) of the final

weighted state fT . Therefore the potential value φT (0) based on the exponential loss L
exp
η is an up-

per bound on the minimum error attainable after T rounds of boosting. At the same time, φT (0) is

a function of η. Therefore, we may tune this parameter to attain the best bound possible. Even with

this motivation, it may seem that a properly tuned η will not be as small as in Lemma 19, especially

since it can be shown that the resulting loss bound φT (0) will always be larger than a fixed constant

(depending on γ,k), no matter how many rounds T of boosting is used. However, the next result

identifies conditions under which the tuned value of η is indeed as small as in Lemma 19. This hap-

pens when the edge γ is very small, as is described in the next theorem. Intuitively, a weak classifier

achieving small edge has low accuracy, and a low weight reflects Booster’s lack of confidence in

this classifier.
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Theorem 21 When using the exponential loss function (32), and the minimal weak learning con-

dition (13), the loss upper bound φT (0) provided by Theorem 16 is more than 1 and hence trivial

unless the parameter η is chosen sufficiently small compared to the edge γ:

η ≤ kγ

1− γ
. (54)

In particular, when the edge is very small:

γ ≤ min

{
1

2
,

1

8k
min

{
1

k
,

1

T

}}
, (55)

the value of η needs to be as small as in (46).

Proof Comparing solutions (45) and (31) to the potentials corresponding to the minimal weak

learning condition and a fixed edge-over-random condition, we may conclude that the loss bound

φT (0) is in the former case is larger than φb
T (0), for any edge-over-random distribution b ∈ ∆k

γ .

In particular, when b is set to be the γ-biased uniform distribution u, as defined in (47), we get

φT (0) ≥ φu
T (0). Now the latter bound, according to (34), is κ(γ,η)T , where κ is defined as in

(35). Therefore, to get non-trivial loss bounds which are at most 1, we need to choose η such that

κ(γ,η)≤ 1. By (35), this happens when

(
1− e−η

)
γ ≥

(
eη + e−η −2

)(1− γ

k

)

i.e.,
kγ

1− γ
≥ eη + e−η −2

1− e−η
= eη −1 ≥ η.

Therefore (54) holds. When γ is as small as in (55), then 1−γ ≤ 1
2
, and therefore, by (54), the bound

on η becomes identical to that in (55).

The condition in the previous theorem, that of the existence of only a very small edge, is the most

we can assume for most practical data sets. Therefore, in such situations, we can compute the

optimal Booster strategy that uses the minimal weak learning conditions. More importantly, using

this result, we derive, in the next section, a highly efficient and practical adaptive algorithm, that is,

one that does not require any prior knowledge about the edge γ, and will therefore work with any

data set.

8. Variable Edges

So far we have required Weak-Learner to beat random by at least a fixed amount γ > 0 in each round

of the boosting game. In reality, the edge over random is larger initially, and gets smaller as the OS

algorithm creates harder cost matrices. Therefore requiring a fixed edge is either unduly pessimistic

or overly optimistic. If the fixed edge is too small, not enough progress is made in the initial rounds,

and if the edge is too large, Weak-Learner fails to meet the weak-learning condition in latter rounds.

We fix this by not making any assumption about the edges, but instead adaptively responding to the

edges returned by Weak-Learner. In the rest of the section we describe the adaptive procedure, and

the resulting loss bounds guaranteed by it.

The philosophy behind the adaptive algorithm is a boosting game where Booster and Weak

Learner no longer have opposite goals, but cooperate to reduce error as fast as possible. However, in
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order to create a clean abstraction and separate implementations of the boosting algorithms and the

weak learning procedures as much as possible, we assume neither of the players has any knowledge

of the details of the algorithm employed by the other player. In particular Booster may only assume

that Weak Learner’s strategy is barely strong enough to guarantee boosting. Therefore, Booster’s

demands on the weak classifiers returned by Weak Learner should be minimal, and it should send

the weak learning algorithm the “easiest” cost matrices that will ensure boostability. In turn, Weak

Learner may only assume a very weak Booster strategy, and therefore return a weak classifier that

performs as well as possible with respect to the cost matrix sent by Booster.

At a high level, the adaptive strategy proceeds as follows. At any iteration, based on the states of

the examples and number of remaining rounds of boosting, Booster chooses the game-theoretically

optimal cost matrix assuming only infinitesimal edges in the remaining rounds. Intuitively, Booster

has no high expectations of Weak Learner, and supplies it the easiest cost matrices with which it

may be able to boost. However, in the adaptive setting, Weak-Learner is no longer adversarial.

Therefore, although only infinitesimal edges are anticipated by Booster, Weak Learner cooperates

in returning weak classifiers that achieve as large edges as possible, which will be more than just

inifinitesimal. Based on the exact edge received in each round, Booster chooses the weight αt

adaptively to reach the most favourable state possible. Therefore, Booster plays game theoretically

assuming an adversarial Weak Learner and expecting only the smallest edges in the future rounds,

although Weak Learner actually cooperates, and Booster adaptively exploits this favorable behavior

as much as possible. This way the boosting algorithm remains robust to a poorly performing Weak

Learner, and yet can make use of a powerful weak learning algorithm whenever possible.

We next describe the details of the adaptive procedure. With variable weights we need to work

with the weighted state ft(i) of each example i, defined in (19). To keep the computations tractable,

we will only be working with the exponential loss Lexp(f) on the weighted states. We first describe

how Booster chooses the cost-matrix in each round. Following that we describe how it adaptively

computes the weights in each round based on the edge of the weak classifier received.

8.1 Choosing the Cost-matrix

As discussed before, at any iteration t and state ft Booster assumes that it will receive an infinitesimal

edge γ in each of the remaining rounds. Since the step size is a function of the edge, which in turn

is expected to be the same tiny value in each round, we may assume that the step size in each round

will also be some fixed value η. We are therefore in the setting of Theorem 21, which states that the

parameter η in the exponential loss function (32) should also be tiny to get any non-trivial bound.

But then the loss function satisfies the conditions in Lemma 19, and by Theorem 20, the game

theoretically optimal strategy remains the same whether we use the minimal condition or (C eor,Uγ).
When using the latter condition, the optimal choice of the cost-matrix at iteration t and state ft ,

according to (36), is

Ct(i, l) =

{
(eη −1)e ft−1(i, j)− ft−1(i,1) if l > 1,

(e−η −1)∑k
j=2 e ft−1(i, j)− ft−1(i,1) if l = 1.

Further, when using the condition (C eor,Uγ), the average potential of the states ft(i), according to

(34), is given by the average loss (37) of the state times κ(γ,η)T−t , where the function κ is defined

in (35). Our goal is to choose η as a function of γ so that κ(γ,η) is as small as possible. Now, there

is no lower bound on how small the edge γ may get, and, anticipating the worst, it makes sense to
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choose an infinitesimal γ, in the spirit of Freund (2001). Equation (35) then implies that the choice

of η should also be infinitesimal. Then the above choice of the cost matrix becomes the following

(after some rescaling):

Ct(i, l) = lim
η→0

Cη(i, l)
△

=
1

η

{
(eη −1)e ft−1(i, j)− ft−1(i,1) if l > 1,

(e−η −1)∑k
j=2 e ft−1(i, j)− ft−1(i,1) if l = 1.

=

{
e ft−1(i, j)− ft−1(i,1) if l > 1,

−∑k
j=2 e ft−1(i, j)− ft−1(i,1) if l = 1.

(56)

We have therefore derived the optimal cost matrix played by the adaptive boosting strategy, and we

record this fact.

Lemma 22 Consider the boosting game using the minimal weak learning condition (13). Then, in

iteration t at state ft , the game-theoretically optimal Booster strategy chooses the cost matrix Ct

given in (56).

We next show how to adaptively choose the weights αt .

8.2 Adaptively Choosing Weights

Once Weak Learner returns a weak classifier ht , Booster chooses the optimum weight αt so that the

resulting states ft = ft−1 +αt1ht are as favorable as possible, that is, minimizes the total potential

of its states. By our previous discussions, these are proportional to the total loss given by Zt =

∑m
i=1 ∑k

l=2 e ft(i,l)− ft(i,1). For any choice of αt , the difference Zt −Zt−1 between the total loss in rounds

t −1 and t is given by

(eαt −1) ∑
i∈S−

e ft−1(i,ht(i))− ft−1(i,1)−
(
1− e−αt

)
∑

i∈S+

Lexp(ft−1(i))

= (eαt −1)At
−−

(
1− e−αt

)
At
+

=
(
At
+e−αt +At

−eαt
)
−
(
At
++At

−
)
,

where S+ denotes the set of examples that ht classifies correctly, S− the incorrectly classified ex-

amples, and At
−,A

t
+ denote the first and second summations, respectively. Therefore, the task of

choosing αt can be cast as a simple optimization problem minimizing the previous expression. In

fact, the optimal value of αt is given by the following closed form expression

αt =
1

2
ln

(
At
+

At
−

)
. (57)

With this choice of weight, one can show (with some straightforward algebra) that the total loss of

the state falls by a factor less than 1. In fact the factor is exactly

(1− ct)−
√

c2
t −δ2

t , (58)

where

ct = (At
++At

−)/Zt−1,
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and δt is the edge of the returned classifier ht on the supplied cost-matrix Ct . Notice that the quantity

ct is at most 1, and hence the factor (58) can be upper bounded by
√

1−δ2
t . We next show how to

compute the edge δt . The definition of the edge depends on the weak learning condition being used,

and in this case we are using the minimal condition (13). Therefore the edge δt is the largest γ such

that the following still holds

Ct •1h ≤ max
B∈Beor

γ

Ct •B.

However, since Ct is the optimal cost matrix when using exponential loss with a tiny value of η, we

can use arguments in the proof of Theorem 20 to simplify the computation. In particular, eq. (52)

implies that the edge δt may be computed as the largest γ satisfying the following simpler inequality

δt = sup
{

γ : Ct •1ht
≤ Ct •Uγ

}

= sup

{
γ : Ct •1ht

≤−γ
m

∑
i=1

k

∑
l=2

e ft−1(i,l)− ft−1(i,1)

}

=⇒ δt = γ : Ct •1ht
=−γ

m

∑
i=1

k

∑
l=2

e ft−1(i,l)− ft−1(i,1)

=⇒ δt =
−Ct •1ht

∑m
i=1 ∑k

l=2 e ft−1(i,l)− ft−1(i,1)
=

−Ct •1ht

Zt

, (59)

where the first step follows by expanding Ct •Uγ. We have therefore an adaptive strategy which

efficiently reduces error. We record our results.

Lemma 23 If the weight αt in each round is chosen as in (57), and the edge δt is given by (59),

then the total loss Zt falls by the factor given in (58), which is at most
√

1−δ2
t .

The choice of αt in (57) is optimal, but depends on quantities other than just the edge δt . We

next show a way of choosing αt based only on δt that still causes the total loss to drop by a factor

of
√

1−δ2
t .

Lemma 24 Suppose cost matrix Ct is chosen as in (56), and the returned weak classifier ht has

edge δt , that is, Ct • 1ht
≤ Ct •Uδt

. Then choosing any weight αt > 0 for ht makes the loss Zt at

most a factor

1− 1

2
(eαt − e−αt )δt +

1

2
(eαt + e−αt −2)

of the previous loss Zt−1. In particular by choosing

αt =
1

2
ln

(
1+δt

1−δt

)
, (60)

the drop factor is at most
√

1−δ2
t .

Proof We borrow notation from earlier discussions. The edge-condition implies

At
−−At

+ = Ct •1ht
≤ Ct •Uδt

=−δtZt−1 =⇒ At
+−At

− ≥ δtZt−1.
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On the other hand, the drop in loss after choosing ht with weight αt is
(
1− e−αt

)
At
+− (eαt −1)At

−

=

(
eαt − e−αt

2

)(
At
+−At

−
)
−
(

eαt + e−αt −2

2

)(
At
++At

−
)
.

We have already shown that At
+−At

− ≥ δtZt−1. Further, At
++At

− is at most Zt−1. Therefore the loss

drops by a factor of at least

1− 1

2
(eαt − e−αt )δt +

1

2
(eαt + e−αt −2) =

1

2

{
(1−δt)e

αt +(1+δt)e
−αt
}
.

Tuning αt as in (60) causes the drop factor to be at least
√

1−δ2
t .

Algorithm 1 contains pseudocode for the adaptive algorithm, and includes both ways of choosing

αt . We call both versions of this algorithm AdaBoost.MM. With the approximate way of choos-

ing the step length in (61), AdaBoost.MM turns out to be identical to AdaBoost.M2 (Freund and

Schapire, 1997) or AdaBoost.MR (Schapire and Singer, 1999), provided the weak classifier space is

transformed in an appropriate way to be acceptable by AdaBoost.M2 or AdaBoost.MR. We empha-

size that AdaBoost.MM and AdaBoost.M2 are products of very different theoretical considerations,

and this similarity should be viewed as a coincidence arising because of the particular choice of loss

function, infinitesimal edge and approximate step size. For instance, when the step sizes are chosen

instead as in (62), the training error falls more rapidly, and the resulting algorithm is different.

As a summary of all the discussions in the section, we record the following theorem.

Theorem 25 The boosting algorithm AdaBoost.MM, shown in Algorithm 1, is the optimal strategy

for playing the adaptive boosting game, and is based on the minimal weak learning condition.

Further if the edges returned in each round are δ1, . . . ,δT , then the error after T rounds is (k −
1)∏T

t=1

√
1−δ2

t ≤ (k−1)exp
{
−(1/2)∑T

t=1 δ2
t

}
.

In particular, if a weak hypothesis space is used that satisfies the optimal weak learning condi-

tion (13), for some γ, then the edge in each round is large, δt ≥ γ, and therefore the error after T

rounds is exponentially small, (k−1)e−Tγ2/2.

The theorem above states that as long as the minimal weak learning condition is satisfied, the

error will decrease exponentially fast. Even if the condition is not satisfied, the error rate will keep

falling rapidly provided the edges achieved by the weak classifiers are relatively high. However, our

theory so far can provide no guarantees on these edges, and therefore it is not clear what is the best

error rate achievable in this case, and how quickly it is achieved. The assumptions of boostability,

and hence our minimal weak learning condition does not hold for the vast majority of practical data

sets, and as such it is important to know what happens in such settings. In particular, an important

requirement is empirical consistency, where we want that for any given weak classifier space, the

algorithm converge, if allowed to run forever, to the weighted combination of classifiers that mini-

mizes error on the training set. Another important criterion is universal consistency, which requires

that the algorithm converge, when provided sufficient training data, to the classifier combination

that minimizes error on the test data set. In the next section, we show that AdaBoost.MM satisfies

such consistency requirements. Both the choice of the minimal weak learning condition as well as

the setup of the adaptive game framework will play crucial roles in ensuring consistency. These

results therefore provide evidence that game theoretic considerations can have strong statistical im-

plications.
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Algorithm 1 AdaBoost.MM

Require: Number of classes k, number of examples m.

Require: Training set {(x1,y1), . . . ,(xm,ym)} with yi ∈ {1, . . . ,k} and xi ∈ X .

• Initialize m× k matrix f0(i, l) = 0 for i = 1, . . . ,m, and l = 1, . . . ,k.

for t = 1 to T do

• Choose cost matrix Ct as follows:

Ct(i, l) =

{
e ft−1(i,l)− ft−1(i,yi) if l 6= yi,

−∑l 6=yi
e ft−1(i, j)− ft−1(i,yi) if l = 1.

• Receive weak classifier ht : X →{1, . . . ,k} from weak learning algorithm

• Compute edge δt as follows:

δt =
−∑m

i=1Ct(i,ht(xi))

∑m
i=1 ∑l 6=yi

e ft−1(i,l)− ft−1(i,yi)

• Choose αt either as

αt =
1

2
ln

(
1+δt

1−δt

)
, (61)

or, for a slightly bigger drop in the loss, as

αt =
1

2
ln

(
∑i:ht(xi)=yi

∑l 6=yi
e ft−1(i,l)− ft−1(i,yi)

∑i:ht(xi) 6=yi
e ft−1(i,ht(xi))− ft−1(i,yi)

)
(62)

• Compute ft as:

ft(i, l) = ft−1(i, l)+αt1 [ht(xi) = l] .

end for

• Output weighted combination of weak classifiers FT : X ×{1, . . . ,k}→ R defined as:

FT (x, l) =
T

∑
t=1

αt1 [ht(x) = l] . (63)

• Based on FT , output a classifier HT : X →{1, . . . ,k} that predicts as

HT (x) =
k

argmax
l=1

FT (x, l).

9. Consistency of the Adaptive Algorithm

The goal in a classification task is to design a classifier that predicts with high accuracy on un-

observed or test data. This is usually carried out by ensuring the classifier fits training data well

without being overly complex. Assuming the training and test data are reasonably similar, one can

show that the above procedure achieves high test accuracy, or is consistent. Here we work in a
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probabilistic setting that connects training and test data by assuming both consist of examples and

labels drawn from a common, unknown distribution.

Consistency for multiclass classification in the probabilistic setting has been studied by Tewari

and Bartlett (2007), who show that, unlike in the binary setting, many natural approaches fail to

achieve consistency. In this section, we show that AdaBoost.MM described in the previous section

avoids such pitfalls and enjoys various consistency results. We begin by laying down some standard

assumptions and setting up some notation. Then we prove our first result showing that our algorithm

minimizes a certain exponential loss function on the training data at a fast rate. Next, we build upon

this result and improve along two fronts: firstly we change our metric from exponential loss to the

more relevant classification error metric, and secondly we show fast convergence on not just training

data, but also the test set. For the proofs, we heavily reuse existing machinery in the literature.

Throughout the rest of this section we consider the version of AdaBoost.MM that picks weights

according to the approximate rule in (61). All our results most probably hold with the other rule

for picking weights in (62) as well, but we did not verify that. These results hold without any

boostability requirements on the space H of weak classifiers, and are therefore widely applicable in

practice. While we do not assume any weak learning condition, we will require a fully cooperating

Weak Learner. In particular, we will require that in each round Weak Learner picks the weak

classifier suffering minimum cost with respect to the cost matrix provided by the boosting algorithm,

or equivalently achieves the highest edge as defined in (59). Such assumptions are both necessary

and standard in the literature, and are frequently met in practice.

In order to state our results, we will need to setup some notation. The space of examples will be

denoted by X , and the set of labels by Y = {1, . . . ,k}. We also fix a finite weak classifier space H

consisting of classifiers h : X → Y . We will be interested in functions F : X ×Y → R that assign

a score to every example and label pair. Important examples of such functions are the weighted

majority combinations (63) output by the adaptive algorithm. In general, any such combination

of the weak classifiers in space H is specified by some weight function α : H → R; the resulting

function is denoted by Fα : X ×Y → R, and satisfies:

Fα(x, l) = ∑
h∈H

α(h)1 [h(x) = l] .

We will be interested in measuring the average exponential loss of such functions. To measure this,

we introduce the r̂isk operator:

r̂isk(F)
△

=
1

m

m

∑
i=1

∑
l 6=yi

eF(xi,l)−F(xi,yi).

With this setup, we can now state our simplest consistency result, which ensures that the algorithm

converges to a weighted combination of classifiers in the space H that achieves the minimum expo-

nential loss over the training set at an efficient rate.

Lemma 26 The r̂isk of the predictions FT , as defined in (63), converges to that of the optimal

predictions of any combination of the weak classifiers in H at the rate O(1/T ):

r̂isk(FT )− inf
α:H →R

r̂isk(Fα)≤
C

T
,

where C is a constant depending only on the data set.
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A slightly stronger result would state that the average exponential loss when measured with respect

to the test set, and not just the empirical set, also converges. The test set is generated by some

target distribution D over example label pairs, and we introduce the riskD operator to measure the

exponential loss for any function F : X ×Y → R with respect to D:

riskD(F) = E(x,y)∼D

[
∑
l 6=y

eF(x,l)−F(x,y)

]
.

We show this stronger result holds if the function FT is modified to the function F̄T : X ×Y → R

that takes values in the range [0,−C], for some large constant C:

F̄T (x, l)
△

= max

{
−C,FT (x, l)−max

l′
FT (x, l

′)

}
. (64)

Lemma 27 If F̄T is as in (64), and the number of rounds T is set to Tm =
√

m, then its riskD

converges to the optimal value as m → ∞ with high probability:

Pr

[
riskD (F̄Tm

)≤ inf
F :X×Y →R

riskD(F)+O
(
m−c

)]
≥ 1− 1

m2
,

where c > 0 is some absolute constant, and the probability is over the draw of training examples.

We prove Lemmas 26 and 27 by demonstrating a strong correspondence between AdaBoost.MM

and binary AdaBoost, and then leveraging almost identical known consistency results for AdaBoost

(Bartlett and Traskin, 2007). Our proofs will closely follow the exposition in Chapter 12 of Schapire

and Freund (2012) on the consistency of AdaBoost, and are deferred to the appendix.

So far we have focused on riskD, but a more desirable consistency result would state that the

test error of the final classifier output by AdaBoost.MM converges to the Bayes optimal error. The

test error is measured by the errD operator, and is given by

errD(H) = Pr
(x,y)∼D

[H(x) 6= y] .

The Bayes optimal classifier Hopt is a classifier achieving the minimum error among all possible

classifying functions

errD(Hopt) = inf
H:X→Y

errD(H),

and we want our algorithm to output a classifier whose errD approaches errD(Hopt). In designing the

algorithm, our main focus was on reducing the exponential loss, captured by riskD and r̂isk. Unless

these loss functions are aligned properly with classification error, we cannot hope to achieve optimal

error. The next result shows that our loss functions are correctly aligned, or more technically Bayes

consistent. In other words, if a scoring function F : X ×Y →R is close to achieving optimal riskD,

then the classifier H : X → Y derived from it as follows:

H(x) ∈ argmax
l∈Y

F(x,y), (65)

also approaches the Bayes optimal error.
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Lemma 28 Suppose F is a scoring function achieving close to optimal risk

riskD(F)≤ inf
F ′:X×Y →R

riskD(F
′)+ ε, (66)

for some ε ≥ 0. If H is the classifier derived from it as in (65), then it achieves close to the Bayes

optimal error

errD(H)≤ errD(Hopt)+
√

2ε.

Proof The proof is similar to that of Theorem 12.1 in Schapire and Freund (2012), which in turn is

based on the work by Zhang (2004) and Bartlett et al. (2006). Let p(x) = Pr(x′,y′)∼D (x′ = x) denote

the the marginalized probability of drawing example x from D, and let px
y = Pr(x′,y′)∼D [y′ = y|x′ = x]

denote the conditional probability of drawing label y given we have drawn example x. We first

rewrite the difference in errors between H and Hopt using these probabilities. Firstly note that the

accuracy of any classifier H ′ is given by

∑
x∈X

D(x,H ′(x)) = ∑
x∈X

p(x)px
H ′(x).

If X ′ is the set of examples where the predictions of H and Hopt differ, X ′=
{

x ∈ X : H(x) 6= Hopt(x)
}

,

then we may bound the error differences as

errD(H)− errD(Hopt) = ∑
x∈X ′

p(x)
(

px
Hopt(x)

− px
H(x)

)
. (67)

We next relate this expression to the difference of the losses.

Notice that for any scoring function F ′, the riskD can be rewritten as follows :

riskD(F
′) = ∑

x∈X

p(x) ∑
l<l′

{
px

l eF ′(x,l′)−F ′(x,l)+ px
l′e

F ′(x,l)−F ′(x,l′)
}
.

Denote the inner summation in curly brackets by L
l,l′

F ′ (x), and notice this quantity is minimized if

eF ′(x,l)−F ′(x,l′) =
√

px
l /px

l′ , i.e., if F ′(x, l)−F ′(x, l′) = 1
2

ln px
l − 1

2
ln px

l′ .

Therefore, defining F∗(x, l) = 1
2

ln px
l leads to a riskD minimizing function F∗. Furthermore, for any

example and pair of labels l, l′, the quantity L
l,l′

F∗ (x) is at most L
l,l′

F (x), and therefore the difference

in losses of F∗ and F may be lower bounded as follows:

ε ≥ riskD(F)− riskD(F
∗) = ∑

x∈X

p(x) ∑
l 6=l′

(
L

l,l′

F −L
l,l′

F∗

)

≥ ∑
x∈X ′

p(x)
{

L
H(x),Hopt(x)
F −L

H(x),Hopt(x)
F∗

}
. (68)

We next study the term in the curly brackets for a fixed x. Let A and B denote H(x) and Hopt(x),

respectively. We have already seen that L
A,B
F∗ = 2

√
px

A px
B. Further, by definition of Bayes optimality,
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px
A ≥ px

B. On the other hand, since x ∈ X ′, we know that B 6= A, and hence, F(x,A) ≥ F(x,B). Let

eF(x,B)−F(x,A) = 1+η, for some η ≥ 0. The quantity L
A,B
F may be lower bounded as:

L
A,B
F = px

AeF(x,B)−F(x,A)+ px
BeF(x,A)−F(x,B)

= (1+η)px
A +(1+η)−1 px

B

≥ (1+η)px
A +(1−η)px

B

= px
A + px

B +η(px
A − px

B)≥ px
A + px

B.

Combining we get

L
A,B
F −L

A,B
F∗ ≥ px

A + px
B −2

√
px

A px
B =

(√
px

A −
√

px
B

)2

.

Plugging back into (68) we get

∑
x∈X ′

p(x)

(√
px

H(x)−
√

px
Hopt(x)

)2

≤ ε. (69)

Now we connect (67) to the previous expression as follows

{
errD(H)− errD(Hopt)

}2

=

{
∑

x∈X ′
p(x)

(
px

Hopt(x)
− px

H(x)

)}2

≤
(

∑
x∈X ′

p(x)

)(
∑

x∈X ′
p(x)

(
px

Hopt(x)
− px

H(x)

)2

)
(Cauchy-Schwartz)

≤ ∑
x∈X ′

p(x)

(√
px

Hopt(x)
−
√

px
H(x)

)2(√
px

Hopt(x)
+
√

px
H(x)

)2

(70)

≤ 2 ∑
x∈X ′

p(x)

(√
px

Hopt(x)
−
√

px
H(x)

)2

(71)

≤ 2ε, (by (69))

where (70) holds since

∑
x∈X ′

p(x) = Pr
(x′,y′)∼D

[
x′ ∈ X ′]≤ 1,

and (71) holds since

px
H(x)+ px

Hopt(x)
= Pr

(x′,y′)∼D

[
y′ ∈

{
H(x),Hopt(x)

}
|x
]
≤ 1

=⇒
√

px
H(x)+

√
px

Hopt(x)
≤

√
2.

Therefore, errD(H)− errD(Hopt)≤
√

2ε.

Note that the classifier H̄T , derived from the truncated scoring function F̄T in the manner provided

in (65), makes identical predictions to, and hence has the same errD as, the classifier HT output by
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the adaptive algorithm. Further, Lemma 27 seems to suggest that F̄T satisfies the condition in (66),

which, combined with our previous observation errD(H) = errD(H̄T ), would imply HT approaches

the optimal error. However, the condition (66) requires achieving optimal risk over all scoring

functions, and not just ones achievable as a combination of weak classifiers in H . Therefore, in

order to use Lemma 28, we require the weak classifier space to be sufficiently rich, so that some

combination of the weak classifiers in H attains riskD arbitrarily close to the minimum attainable

by any function:

inf
α:H →R

riskD(Fα) = inf
F :X×Y →R

riskD(F). (72)

The richness condition, along with our previous arguments and Lemma 27, immediately imply the

following result.

Theorem 29 If the weak classifier space H satisfies the richness condition (72), and the number of

rounds T is set to
√

m, then the error of the final classifier HT approaches the Bayes optimal error:

Pr
[
errD

(
H√

m

)
≤ errD(Hopt)+O

(
m−c

)]
≥ 1− 1

m2
,

where c > 0 is some positive constant, and the probability is over the draw of training examples.

A consequence of the theorem is our strongest consistency result:

Corollary 30 Let Hopt be the Bayes optimal classifier, and let the weak classifier space H satisfy

the richness condition (72). Suppose m example and label pairs {(x1,y1), . . . ,(xm,ym)} are sampled

from the distribution D, the number of rounds T is set to be
√

m, and these are supplied to Ada-

Boost.MM. Then, in the limit m → ∞, the final classifier H√
m output by AdaBoost.MM achieves the

Bayes optimal error almost surely:

Pr
[{

lim
m→∞

errD(H√
m)
}
= errD(Hopt)

]
= 1,

where the probability is over the randomness due to the draw of training examples.

The proof of Corollary 30, based on the Borel-Cantelli Lemma, is very similar to that of Corol-

lary 12.3 in Schapire and Freund (2012), and so we omit it. When k = 2, AdaBoost.MM is identical

to AdaBoost. For Theorem 29 to hold for AdaBoost, the richness assumption (72) is necessary,

since there are examples due to Long and Servedio (2010) showing that the theorem may not hold

when that assumption is violated.

Although we have seen that technically AdaBoost.MM is consistent under broad assumptions,

intuitively perhaps it is not clear what properties were responsible for this desirable behavior. We

next briefly study the high level ingredients necessary for consistency in boosting algorithms.

9.1 Key Ingredients for Consistency

We show here how both the choice of the loss function as well as the weak learning condition play

crucial roles in ensuring consistency. If the loss function were not Bayes consistent as in Lemma 28,

driving it down arbitrarily could still lead to high test error. For example, the loss employed by

SAMME (Zhu et al., 2009) does not upper bound the error, and therefore although it can manage to
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drive down its loss arbitrarily when supplied by the data set discussed in Figure 1, although its error

remains high.

Equally important is the weak learning condition. Even if the loss function is chosen to be

error, so that it is trivially Bayes consistent, choosing the wrong weak learning condition could

lead to inconsistency. In particular, if the weak learning condition is stronger than necessary, then,

even on a boostable data set where the error can be driven to zero, the boosting algorithm may get

stuck prematurely because its stronger than necessary demands cannot be met by the weak classifier

space. We have already seen theoretical examples of such data sets, and we will see some practical

instances of this phenomenon in the next section.

On the other hand, if the weak learning condition is too weak, then a lazy Weak Learner may

satisfy the Booster’s demands by returning weak classifiers belonging only to a non-boostable subset

of the available weak classifier space. For instance, consider again the data set in Figure 1, and

assume that this time the weak classifier space is much richer, and consists of all possible classifying

functions. However, in any round, Weak Learner searches through the space, first trying hypotheses

h1 and h2 shown in the figure, and only if neither satisfy the Booster, search for additional weak

classifiers. In that case, any algorithm using SAMME’s weak learning condition, which is known

to be too weak and satisfiable by just the two hypotheses {h1,h2}, would only receive h1 or h2 in

each round, and therefore be unable to reach the optimum accuracy. Of course, if the Weak Learner

is extremely generous and helpful, then it may return the right collection of weak classifiers even

with a null weak learning condition that places no demands on it. However, in practice, many

Weak Learners used are similar to the lazy weak learner described since these are computationally

efficient.

To see the effect of inconsistency arising from too weak learning conditions in practice, we

need to test boosting algorithms relying on such data sets on significantly hard data sets, where

only the strictest Booster strategy can extract the necessary service from Weak Learner for creating

an optimal classifier. We did not include such experiments, and it will be an interesting empiri-

cal conjecture to be tested in the future. However, we did include experiments that illustrate the

consequence of using too strong conditions, and we discuss those in the next section.

10. Experiments

In the final section of this paper, we report preliminary experimental results on 13 UCI data sets:

letter, nursery, pendigits, satimage, segmentation, vowel, car, chess, connect4, forest, magic04,

poker, abalone. These data sets are all multiclass except for magic04, have a wide range of sizes,

contain all combinations of real and categorical features, have different number of examples to

number of features per example ratios, and are drawn from a variety of real-life situations. A

summary of each data set is provided in Figure 7. Most sets come with prespecified train and test

splits which we use; if not, we picked a random 4 : 1 split. Sometimes the prespecified test set was

too large compared to the training set, and we restricted ourselves to the first ten thousand examples

of the specified test set. Throughout this section by MM we refer to the version of AdaBoost.MM

studied in the consistency section, which uses the approximate step size (61).

There were two kinds of experiments. In the first, we took a standard implementation M1 of

AdaBoost.M1 with C4.5 as weak learner, and the Boostexter implementation MH of AdaBoost.MH

using stumps (Schapire and Singer, 2000), and compared it against our method MM with a naive

greedy tree-searching weak-learner Greedy. We will refer to the number of leaves as the size of
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data set classes test train discrete real

abalone* 28 1044 3133 1 7

car 4 345 1383 6 0

chess 2 799 2397 36 0

connect4 3 13511 54046 42 0

forest* 7 10000* 15120 44 10

letter 26 4000 16000 0 16

magic04 2 3804 15216 0 10

nursery 5 2591 10369 8 0

pendigits* 10 3498 7494 0 16

poker* 10 10000* 25010 5 5

satimage* 6 2000 4435 0 36

segmentation* 7 2100 210 0 19

vowel* 11 462 528 0 10

Figure 7: Summaries of the data sets used in the experiments. Each row contains the name of

data set, number of labels, number of test examples, and training examples, and number

of discrete and real features, in that order. The data sets that come with prespecified

training-test splits are marked with an asterisk. When the prespecified test set was too

large compared to the training set, only the first ten thousand examples were used. These

test set sizes are marked with an asterisk.

the tree. Note that since the trees are full binary trees, with each internal node having exactly two

children, the total number of nodes in the tree is one less than twice the number of leaves. When

C4.5 is run as the weak learner, it grows the tree till a desired accuracy is reached in each round,

and thereby automatically picks the tree sizes. Those sizes were used to pick the maximum size of

the trees that Greedy was allowed to return when run as a weak learner by MM, so that both M1 and

MM output ensembles of trees of roughly similar sizes. The test-errors after 500 rounds of boosting

for each algorithm and data set are shown in Figure 8. The performance is comparable with M1 and

far better than MH (understandably since stumps are far weaker than trees), even though our weak-

learner is very naive. The convergence rates of error with rounds of M1 and MM are also comparable,

as shown in Figure 9 (we omitted the curve for MH since it lay far above both M1 and MM).

We next investigated how each algorithm performs with less powerful weak-learners. We mod-

ified MH so that it uses a tree returning a single multiclass prediction on each example. For MH and

MM we used the Greedy weak learner, while for M1 we used a more powerful-variant Greedy-Info

whose greedy criterion was information gain rather than error or cost (we also ran M1 on top of

Greedy but Greedy-Info consistently gave better results so we only report the latter). The reason

for using weak learners that optimize different cost functions with the different boosting algorithms

is as follows. M1 is based on the error-metric, where every example incurs a penalty of 0 when

classified correctly and 1 when classified incorrectly. Information gain, measuring how “impure”

the nodes resulting from a particular split are, is well aligned with the error metric. However, MH

and MM use more general cost functions, and we could not come up with appropriate generalizations

of information gain for these setting. So we just used the cost itself in deciding how to grow the de-
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data set MH M1 MM

abalone 0.732 0.751 0.750

car 0.264 0.336 0.159

chess 0.025 0.003 0.005

connect4 0.321 0.306 0.282

forest 0.326 0.238 0.239

letter 0.146 0.031 0.027

magic04 0.148 0.117 0.118

nursery 0.081 0.164 0.196

pendigits 0.046 0.026 0.095

poker 0.497 0.341 0.228

satimage 0.121 0.088 0.093

segmentation 0.050 0.053 0.149

vowel 0.569 0.485 0.567

Figure 8: This is a table of the final test-errors of standard implementations of MH, M1 and MM after

500 rounds of boosting on different data sets. Both M1 and MM achieve comparable error,

which is often smaller than that achieved by MH. This is because M1 and MM used trees of

comparable sizes which were often much larger and powerful than the decision stumps

that MH boosted.

cision tree. We tried all tree-sizes in the set {10, 20, 50, 100, 200, 500, 1000, 2000, 4000} up to the

tree-size used by M1 on C4.5 for each data-set. We plotted the error of each algorithm against tree

size for each data-set in Figure 10. As predicted by our theory, our algorithm succeeds in boosting

the accuracy even when the tree size is too small to meet the stronger weak learning assumptions of

the other algorithms. More insight is provided by plots in Figure 11 of the rate of convergence of

error with rounds when the tree size allowed is very small (5). Both M1 and MH drive down the error

for a few rounds. But since boosting keeps creating harder distributions, very soon the small-tree

learning algorithms Greedy and Greedy-Info are no longer able to meet the excessive require-

ments of M1 and MH respectively. However, our algorithm makes more reasonable demands that are

easily met by Greedy.

11. Conclusion and Discussion

In summary, we create a new framework for studying multiclass boosting. This framework is very

general and captures the weak learning conditions implicitly used by many earlier multiclass boost-

ing algorithms as well as novel conditions, including the minimal condition under which boosting is

possible. We also show how to design boosting algorithms relying on these weak learning conditions

that drive down training error rapidly. These algorithms are the optimal strategies for playing cer-

tain two player games. Based on this game-theoretic approach, we also design a multiclass boosting

algorithm that is consistent, that is, approaches the minimum empirical risk, and under some basic

assumptions, the Bayes optimal test error. Preliminary experiments show that this algorithm can

achieve much lower error compared to existing algorithms when used with very weak classifiers.
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Figure 9: Plots of the rates at which M1(black,dashed) and MM(red,solid) drive down test-error on

different data-sets when using trees of comparable sizes as weak classifiers. M1 called

C4.5, and MM called Greedy, respectively, as weak-learner. The tree sizes returned by

C4.5 were used as a bound on the size of the trees that Greedy was allowed to return.

This bound on the tree-size depended on the data set, and are shown next to the data set

labels.

The notion of game-theoretic equivalence in Section 7.1 is based upon a weak learner that may

return any weak hypothesis, which is absurd from a practical viewpoint. However, designing op-

timal boosting algorithms separately for different kinds of weak learners, which we leave as an

open problem, will lead to a much more complex theory. Further, it is not clear what the addi-

tional gain (in terms of improvement in loss bounds) may be. Our philosophy here was to take the

ultra-conservative approach, so that the resulting boosting algorithm enjoys bounds that hold under

all settings. Theorem 14 then says, that in that ultra-conservative framework, the best algorithm

remains the same if you change the weak-learning condition to another ”equivalent” condition.

Although we can efficiently compute the game-theoretically optimal strategies under most con-

ditions, when using the minimal weak learning condition, and non-convex 0-1 error as loss function,
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Figure 10: For this figure, M1(black, dashed), MH(blue, dotted) and MM(red,solid) were designed to

boost decision trees of restricted sizes. The final test-errors of the three algorithms after

500 rounds of boosting are plotted against the maximum tree-sizes allowed for the weak

classifiers. MM achieves much lower error when the weak classifiers are very weak, that

is, with smaller trees.

we require exponential computational time to solve the corresponding boosting games. Boosting

algorithms based on error are potentially far more noise tolerant than those based on convex loss

functions, and finding efficiently computable near-optimal strategies in this situation is an impor-

tant problem left for future work. Further, we primarily work with weak classifiers that output a

single multiclass prediction per example, whereas weak hypotheses that make multilabel multiclass

predictions are typically more powerful. We believe that multilabel predictions do not increase

the power of the weak learner in our framework, and our theory can be extended without much

work to include such hypotheses, but we do not address this here. Finally, it will be interesting to

see if the notion of minimal weak learning condition can be extended to boosting settings beyond

classification, such as ranking.
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Figure 11: A plot of how fast the test-errors of the three algorithms drop with rounds when the weak

classifiers are trees with a size of at most 5. Algorithms M1 and MH make strong demands

which cannot be met by the extremely weak classifiers after a few rounds, whereas MM

makes gentler demands, and is hence able to drive down error through all the rounds of

boosting.
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Appendix A. Omitted Proofs

We include proofs and details that were omitted earlier in the paper.

A.1 Optimality of the OS Strategy

Here we prove Theorem 9. The proof of the upper bound on the loss is very similar to the proof

of Theorem 2 in Schapire (2001). For the lower bound, a similar result is proved in Theorem 3 in

Schapire (2001). However, the proof relies on certain assumptions that may not hold in our setting,

and we instead follow the more direct lower bounding techniques in Section 5 of Mukherjee and

Schapire (2010).

We first show that the average potential of states does not increase in any round. The dual form

of the recurrence (21) and the choice of the cost matrix Ct in (22) together ensure that for each

example i,

φ
B(i)
T−t (st(i)) =

k
max
l=1

{
φ

B(i)
T−t−1 (st(i)+ el)− (Ct(i)(l)−〈Ct(i),B(i)〉)

}

≥ φ
B(i)
T−t−1

(
st(i)+ eht(xi)

)
− (Ct(i,ht(xi))−〈Ct(i),B(i)〉) .

Summing up the inequalities over all examples, we get

m

∑
i=1

φ
B(i)
T−t−1

(
st(i)+ eht(xi)

)
≤

m

∑
i=1

φ
B(i)
T−t (st(i))+

m

∑
i=1

{Ct(i,ht(xi))−〈Ct(i),B(i)〉}

The first two summations are the total potentials in round t + 1 and t, respectively, and the third

summation is the difference in the costs incurred by the weak-classifier ht returned in iteration t and

the baseline B. By the weak learning condition, this difference is non-positive, implying that the

average potential does not increase.

Next we show that the bound is tight. In particular choose any accuracy parameter ε > 0, and

total number of iterations T , and let m be as large as in (25). We show that in any iteration t ≤ T ,

based on Booster’s choice of cost-matrix C, an adversary can choose a weak classifier ht ∈ H all

such that the weak learning condition is satisfied, and the average potential does not fall by more

than an amount ε/T . In fact, we show how to choose labels l1, . . . , lm such that the following hold

simultaneously:

m

∑
i=1

C(i, li) ≤
m

∑
i=1

〈C(i),B(i)〉 (73)

m

∑
i=1

φ
B(i)
T−t (st(i)) ≤ mε

T
+

m

∑
i=1

φ
B(i)
T−t−1 (st(i)+ eli) (74)

This will imply that the final potential or loss is at least ε less than the bound in (23).
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We first construct, for each example i, a distribution pi ∈ ∆{1, . . . ,k} such that the size of the

support of pi is either 1 or 2, and

φ
B(i)
T−t(st(i)) = El∼pi

[
φ

B(i)
T−t−1 (st(i)+ el)

]
. (75)

To satisfy (75), by (17), we may choose pi as any optimal response of the max player in the minimax

recurrence when the min player chooses C(i):

pi ∈ argmax
p∈Pi

{
El∼p

[
φ

B(i)
t−1 (s+ el)

]}
(76)

where Pi = {p ∈ ∆{1, . . . ,k} : El∼p [C(i, l)]≤ 〈C(i),B(i)〉} . (77)

The existence of pi is guaranteed, since, by Lemma 7, the polytope Pi is non-empty for each i. The

next result shows that we may choose pi to have a support of size 1 or 2.

Lemma 31 There is a pi satisfying (76) with either 1 or 2 non-zero coordinates.

Proof Let p∗ satisfy (76), and let its support set be S. Let µi denote the mean cost under this

distribution:

µi = El∼p∗ [C(i, l)]≤ 〈C(i),B(i)〉 .
If the support has size at most 2, then we are done. Further, if each non-zero coordinate l ∈ S of

p∗ satisfies C(i, l) = µi, then the distribution pi that concentrates all its weight on the label lmin ∈ S

minimizing φ
B(i)
t−1 (s+ elmin) is an optimum solution with support of size 1. Otherwise, we can pick

labels lmin
1 , lmin

2 ∈ S such that

C(i, lmin
1 )< µi <C(i, lmin

2 ).

Then we may choose a distribution q supported on these two labels with mean µi:

El∼q [C(i, l)] = q(lmin
1 )C(i, lmin

1 )+q(lmin
2 )C(i, lmin

2 ) = µi.

Choose λ as follows:

λ = min

{
p∗(lmin

1 )

q(lmin
1 )

,
p∗(lmin

2 )

q(lmin
2 )

}
,

and write p∗ = λq+(1−λ)p. Then both p,q belong to the polytope Pi, and have strictly fewer non-

zero coordinates than p∗. Further, by linearity, one of q,p is also optimal. We repeat the process on

the new optimal distribution till we find one which has only 1 or 2 non-zero entries.

We next show how to choose the labels l1, . . . , lm using the distributions pi. For each i, let{
l+i , l

−
i

}
be the support of pi so that

C
(
i, l+i

)
≤ El∼pi

[C(i, l)]≤C
(
i, l−i

)
.

(When pi has only one non-zero element, then l+i = l−i .) For brevity, we use p+i and p−i to denote

pi

(
l+i
)

and pi

(
l−i
)
, respectively. If the costs of both labels are equal, we assume without loss of

generality that pi is concentrated on label l−i :

C
(
i, l−i

)
−C

(
i, l−i

)
= 0 =⇒ p+i = 0, p−i = 1. (78)
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We will choose each label li from the set
{

l−i , l
+
i

}
. In fact, we will choose a partition S+,S−

of the examples 1, . . . ,m and choose the label depending on which side Sξ, for ξ ∈ {−,+}, of the

partition element i belongs to:

li = l
ξ
i if i ∈ Sξ.

In order to guide our choice for the partition, we introduce parameters ai,bi as follows:

ai = C(i, l−i )−C(i, l+i ),

bi = φ
B(i)
T−t−1

(
st(i)+ el−i

)
−φ

B(i)
T−t−1

(
st(i)+ el+i

)
.

Notice that for each example i and each sign-bit ξ ∈ {−1,+1}, we have the following relations:

C(i, l
ξ
i ) = El∼pi

[C(i, l)]−ξ(1− p
ξ
i )ai (79)

φ
B(i)
T−t−1

(
st(i)+ e

l
ξ
i

)
= El∼pi

[
φ

B(i)
T−t(i, l)

]
−ξ(1− p

ξ
i )bi. (80)

Then the cost incurred by the choice of labels can be expressed in terms of the parameters ai,bi as

follows:

∑
i∈S+

C(i, l+i )+ ∑
i∈S−

C(i, l−i ) = ∑
i∈S+

{
El∼pi

[C(i, l)]−ai + p+i ai

}

+ ∑
i∈S−

{
El∼pi

[C(i, l)]+ p+i ai

}

=
m

∑
i=1

El∼pi
[C(i, l)]+

(
m

∑
i=1

p+i ai − ∑
i∈S+

ai

)

≤
m

∑
i=1

〈C(i),B(i)〉+
(

m

∑
i=1

p+i ai − ∑
i∈S+

ai

)
, (81)

where the first equality follows from (79), and the inequality follows from the constraint on pi in

(77). Similarly, the potential of the new states is given by

∑
i∈S+

φ
B(i)
T−t−1

(
st(i)+ el+i

)
+ ∑

i∈S−

φ
B(i)
T−t−1

(
st(i)+ el−i

)

= ∑
i∈S+

{
El∼pi

[
φ

B(i)
T−t−1 (st(i)+ el)

]
−bi + p+i bi

}

+ ∑
i∈S−

{
El∼pi

[
φ

B(i)
T−t−1 (st(i)+ el)

]
+ p+i bi

}

=
m

∑
i=1

El∼pi

[
φ

B(i)
T−t−1 (st(i)+ el)

]
+

(
m

∑
i=1

p+i bi − ∑
i∈S+

bi

)

=
m

∑
i=1

φ
B(i)
T−t (st(i))+

(
m

∑
i=1

p+i bi − ∑
i∈S+

bi

)
, (82)

where the first equality follows from (80), and the last equality from an optimal choice of pi satis-

fying (75). Now, (81) and (82) imply that in order to satisfy (73) and (74), it suffices to choose a
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subset S+ satisfying

∑
i∈S+

ai ≥
m

∑
i=1

p+i ai, ∑
i∈S+

bi ≤
mε

T
+

m

∑
i=1

p+i bi. (83)

We simplify the required conditions. Notice the first constraint tries to ensure that S+ is big, while

the second constraint forces it to be small, provided the bi are non-negative. However, if bi < 0

for any example i, then adding this example to S+ only helps both inequalities. In other words, if

we can always construct a set S+ satisfying (83) in the case where the bi are non-negative, then we

may handle the more general situation by just adding the examples i with negative bi to the set S+
that would be constructed by considering only the examples {i : bi ≥ 0}. Therefore we may assume

without loss of generality that the bi are non-negative. Further, assume (by relabeling if necessary)

that a1, . . . ,am′ are positive and am′+1, . . .am = 0, for some m′ ≤ m. By (78), we have p+i = 0 for

i > m′. Therefore, by assigning the examples m′ + 1, . . . ,m to the opposite partition S−, we can

ensure that (83) holds if the following is true:

∑
i∈S+

ai ≥
m′

∑
i=1

p+i ai, (84)

∑
i∈S+

bi ≤ m′
max
i=1

|bi|+
m′

∑
i=1

p+i bi, (85)

where, for (85), we additionally used that, by the choice of m (25) and the bound on loss variation

(24), we have
mε

T
≥ �(L,T )≥ bi for i = 1, . . . ,m.

The next lemma shows how to construct such a subset S+, and concludes our lower bound proof.

Lemma 32 Suppose a1, . . . ,am′ are positive and b1, . . . ,bm′ are non-negative reals, and p+1 , . . . , p+m′ ∈
[0,1] are probabilities. Then there exists a subset S+ ⊆ {1, . . . ,m′} such that (84) and (85) hold.

Proof Assume, by relabeling if necessary, that the following ordering holds:

a(1)−b(1)

a(1)
≥ ·· · ≥ a(m′)−b(m′)

a(m′)
. (86)

Let I ≤ m′ be the largest integer such that

a1 +a2 + · · ·+aI <
m′

∑
i=1

p+i ai. (87)

Since the p+i are at most 1, I is in fact at most m′−1. We will choose S+ to be the first I+1 examples

S+ = {1, . . . , I +1}. Observe that (84) follows immediately from the definition of I. Further, (85)

will hold if the following is true

b1 +b2 + · · ·+bI ≤
m′

∑
i=1

p+i bi, (88)
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since the addition of one more example I +1 can exceed this bound by at most bI+1 ≤ maxm′
i=1|bi|.

We prove (88) by showing that the left hand side of this equation is not much more than the left

hand side of (87). We first rewrite the latter summation differently. The inequality in (87) implies

we can pick p̃+1 , . . . , p̃+m′ ∈ [0,1] (e.g., by simply scaling the p+i ’s appropriately) such that

a1 + . . .+aI =
m′

∑
i=1

p̃+i ai (89)

for i = 1, . . . ,m′: p̃+i ≤ pi. (90)

By subtracting off the first I terms in the right hand side of (89) from both sides we get

(1− p̃+1 )a1 + · · ·+(1− p̃+I )aI = p̃+I+1aI+1 + · · ·+ p̃+m′am′ .

Since the terms in the summations are non-negative, we may combine the above with the ordering

property in (86) to get

(1− p̃+1 )a1

(
a1 −b1

a1

)
+ · · ·+(1− p̃+I )aI

(
aI −bI

aI

)

≥ p̃+I+1aI+1

(
aI+1 −bI+1

aI+1

)
+ · · ·+ p̃+m′am′

(
am′ −bm′

am′

)
. (91)

Adding the expression

p̃+1 a1

(
a1 −b1

a1

)
+ · · ·+ p̃+I aI

(
aI −bI

aI

)

to both sides of (91) yields

I

∑
i=1

ai

(
ai −bi

ai

)
≥

m′

∑
i=1

p̃+i ai

(
ai −bi

ai

)

i.e.,
I

∑
i=1

ai −
I

∑
i=1

bi ≥
m′

∑
i=1

p̃+i ai −
m′

∑
i=1

p̃+i bi

i.e.,
I

∑
i=1

bi ≤
m′

∑
i=1

p̃+i bi, (92)

where the last inequality follows from (89). Now (88) follows from (92) using (90) and the fact that

the bi’s are non-negative.

This completes the proof of the lower bound.

A.2 Consistency Proofs

Here we sketch the proofs of Lemmas 26 and 27. Our approach will be to relate our algorithm to

AdaBoost and then use relevant known results on the consistency of AdaBoost. We first describe

the correspondence between the two algorithms, and then state and connect the relevant results on

AdaBoost to the ones in this section.

For any given multiclass data set and weak classifier space, we will obtain a transformed binary

data set and weak classifier space, such that the run of AdaBoost.MM on the original data set will be
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in perfect correspondence with the run of AdaBoost on the transformed data set. In particular, the

loss and error on both the training and test set of the combined classifiers produced by our algorithm

will be exactly equal to those produced by AdaBoost, while the space of functions and classifiers

on the two data sets will be in correspondence.

Intuitively, we transform our multiclass classification problem into a single binary classification

problem in a way similar to the all-pairs multiclass to binary reduction. A very similar reduction

was carried out by Freund and Schapire (1997). Borrowing their terminology, the transformed data

set roughly consists of mislabel triples (x,y, l) where y is the true label of the example and l is an

incorrect example. The new binary label of a mislabel triple is always −1, signifying that l is not the

true label. A multiclass classifier becomes a binary classifier that predict ±1 on the mislabel triple

(x,y, l) depending on whether the prediction on x matches label l; therefore error on the transformed

binary data set is low whenever the multiclass accuracy is high. The details of the transformation

are provided in Figure 12.

Some of the properties between the functions and their transformed counterparts are described

in the next lemma, showing that we are essentially dealing with similar objects.

Lemma 33 The following are identities for any scoring function F : X ×Y → R and weight func-

tion α : H → R:

r̂isk(Fα) =
˜̂
risk

(
F̃α̃

)
(93)

riskD (F̄) = r̃iskD

(
¯̃
F
)
. (94)

The proofs involve doing straightforward algebraic manipulations to verify the identities and are

omitted.

The next lemma connects the two algorithms. We show that the scoring function output by

AdaBoost when run on the transformed data set is the transformation of the function output by our

algorithm. The proof again involves tedious but straightforward checking of details and is omitted.

Lemma 34 If AdaBoost.MM produces scoring function Fα when run for T rounds with the training

set S and weak classifier space H , then AdaBoost produces the scoring function F̃α̃ when run for T

rounds with the training set S̃ and space H̃ . We assume that for both the algorithms, Weak Learner

returns the weak classifier in each round that achieves the maximum edge. Further we consider the

version of AdaBoost.MM that chooses weights according to the approximate rule (61).

We next state the result for AdaBoost corresponding to Lemma 26 , which appears in Mukherjee

et al. (2011).

Lemma 35 (Theorem 8 in Mukherjee et al. (2011)) Suppose AdaBoost produces the scoring func-

tion F̃α̃ when run for T rounds with the training set S̃ and space H̃ . Then

˜̂
risk

(
F̃α̃

)
≤ inf

β̃:H̃ →R

˜̂
risk

(
F̃̃

β

)
+C/T,

where the constant C depends only on the data set.

The previous lemma, along with (93) immediately proves Lemma 26. The result for AdaBoost

corresponding to Lemma 27 appears in Schapire and Freund (2012).
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AdaBoost.MM AdaBoost

Labels

Y = {1, . . . ,k} Ỹ = {−1,+1}

Examples

X X̃ = X × ((Y ×Y )\{(y,y) : y ∈ Y })

Weak classifiers

h : X → Y h̃ : X̃ →{−1,0,+1}, where

h̃(x,y, l) = 1 [h(x) = l]−1 [h(x) = y]

Classifier space

H H̃ =
{

h̃ : h ∈ H
}

Scoring function

F : X ×Y → R F̃ : X̃ → R where

F̃(x,y, l) = F(x, l)−F(x,y)

Clamped function

F̄(x,y) = ¯̃
F(x,y, l) = F̃(x,y, l), if |F̃(x,y, l)| ≤C

max{−C,F(x, l)−maxl′ FT (x, l
′)} ¯̃

F(x,y, l) =C, if |F̃(x,y, l)|>C

Classifier weights

α : H → R α̃ : H̃ → R where

α̃
(

h̃
)
= α(h)

Combined hypo-

thesis

Fα where F̃α̃ where

Fα(x, l) = ∑h∈H α(h)1 [h(x) = l] F̃α̃(x,y, l) = ∑
h̃∈H̃

α̃
(

h̃
)

h̃(x,y, l)

Training set

S = {(xi,yi) : 1 ≤ i ≤ m} S̃ =

{((xi,yi, l),ξ) : ξ =−1, l 6= yi,1 ≤ i ≤ m}

Test distribution

D over X ×Y D̃ over X̃ × Ỹ where

D̃((x,y, l),−1) = D(x,y)/(k−1)

D̃((x,y, l),+1) = 0

Empirical risk

r̂isk(F) =
˜̂
risk

(
F̃
)

1
m ∑m

i=1 ∑l 6=yi
eF(xi,l)−F(xi,yi) 1

m(k−1) ∑m
i=1 ∑l 6=yi

e−ξF̃(xi,yi,l)

Test risk

riskD(F) = r̃iskD

(
F̃
)
=

E(x,y)∼D

[
∑l 6=y eF(x,l)−F(x,y)

]
E((x,y,l),ξ)∼D̃

[
e−ξF̃(x,y,l)

]

Figure 12: Details of transformation between AdaBoost.MM and AdaBoost.

Lemma 36 (Theorem 12.2 in Schapire and Freund (2012)) Suppose AdaBoost produces the scor-

ing function F̃ when run for T =
√

m rounds with the training set S̃ and space H̃ . Then

Pr

[
riskD

(
¯̃
F
)
≤ inf

F̃ ′:X̃→R

riskD(F̃ ′)+O
(
m−c

)]
≥ 1− 1

m2
,

where the constant C depends only on the data set.
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The proof of Lemma 27 follows immediately from the above lemma and (94).
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Abstract

Algorithms for Markov boundary discovery from data constitute an important recent development

in machine learning, primarily because they offer a principled solution to the variable/feature selec-

tion problem and give insight on local causal structure. Over the last decade many sound algorithms

have been proposed to identify a single Markov boundary of the response variable. Even though

faithful distributions and, more broadly, distributions that satisfy the intersection property always

have a single Markov boundary, other distributions/data sets may have multiple Markov boundaries

of the response variable. The latter distributions/data sets are common in practical data-analytic ap-

plications, and there are several reasons why it is important to induce multiple Markov boundaries

from such data. However, there are currently no sound and efficient algorithms that can accomplish

this task. This paper describes a family of algorithms TIE* that can discover all Markov bound-

aries in a distribution. The broad applicability as well as efficiency of the new algorithmic family is

demonstrated in an extensive benchmarking study that involved comparison with 26 state-of-the-art

algorithms/variants in 15 data sets from a diversity of application domains.

Keywords: Markov boundary discovery, variable/feature selection, information equivalence, vio-

lations of faithfulness

1. Introduction

The problem of variable/feature selection is of fundamental importance in machine learning, espe-

cially when it comes to analysis, modeling, and discovery from high-dimensional data sets (Guyon

and Elisseeff, 2003; Kohavi and John, 1997). In addition to the promise of cost effectiveness (as a

result of reducing the number of observed variables), two major goals of variable selection are to

improve the predictive performance of classification/regression models and to provide a better un-

∗. Also at Interdisciplinary Institute for Broadband Technology (IBBT), FMI Dept., Gaston Crommenlaan 8 (box 102),

B-9050 Ghent, Belgium.
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derstanding of the data-generative process (Guyon and Elisseeff, 2003). An emerging class of filter

algorithms proposes solution of the variable selection problem by identification of a Markov bound-

ary of the response variable of interest (Aliferis et al., 2010a, 2003a; Mani and Cooper, 2004; Peña

et al., 2007; Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003a,b). The Markov boundary

M is a minimal set of variables conditioned on which all the remaining variables in the data set,

excluding the response variable T, are rendered statistically independent of the response variable T.

Under certain assumptions about the learner and the loss function, Markov boundary is the solution

of the variable selection problem (Tsamardinos and Aliferis, 2003), that is, it is the minimal set

of variables with optimal predictive performance for the current distribution and response variable.

Furthermore, in faithful distributions, Markov boundary corresponds to a local causal neighborhood

of the response variable and consists of all its direct causes, effects, and causes of the direct effects

(Neapolitan, 2004; Tsamardinos and Aliferis, 2003).

An important theoretical result states that if the distribution satisfies the intersection property

(which is defined in Section 2.2), then it is guaranteed to have a unique Markov boundary of the re-

sponse variable (Pearl, 1988). Faithful distributions, which constitute a subclass of distributions that

satisfy the intersection property, also have a unique Markov boundary (Neapolitan, 2004; Tsamardi-

nos and Aliferis, 2003). However, some real-life distributions contain multiple Markov boundaries

and thus violate the intersection property and faithfulness condition. For example, a phenomenon

ubiquitous in analysis of high-throughput molecular data, known as the “multiplicity” of molecular

signatures (i.e., different gene/biomarker sets perform equally well in terms of predictive accuracy

of phenotypes) suggests existence of multiple Markov boundaries in these distributions (Dougherty

and Brun, 2006; Somorjai et al., 2003; Aliferis et al., 2010a). Likewise, many engineering systems

such as digital circuits and engines typically contain deterministic components and thus can lead to

multiple Markov boundaries (Gopnik and Schulz, 2007; Lemeire, 2007).

Related to the above, a distinguished statistician, the late Professor Leo Breiman, in his seminal

work (Breiman, 2001) coined the term “Rashomon effect” that describes the phenomenon of multi-

ple different predictive models that fit the data equally well. Breiman emphasized that “multiplicity

problem and its effect on conclusions drawn from models needs serious attention” (Breiman, 2001).

There are at least three practical benefits of algorithms that could systematically discover from

data multiple Markov boundaries of the response variable of interest:

First, such algorithms would improve discovery of the underlying mechanisms by not missing

causative variables. For example, if a causal Bayesian network with the graph X ← Y → T → Z is

parameterized such that variables X and Y contain equivalent information about T (see section 2.3

and the work by Lemeire, 2007), then there are two Markov boundaries of T: {X, Z} and {Y, Z}.
If an algorithm discovers only a single Markov boundary {X, Z}, then it would miss the directly

causative variable Y.

Second, such algorithms can be useful in exploring alternative cost-effective but equally pre-

dictive solutions in cases where different variables may have different costs associated with their

acquisition. For example, some variables may correspond to cheaper and safer medical tests, while

other equally predictive variables may correspond to more expensive and/or potentially unsafe tests.

The American College of Radiology maintains Appropriateness Criteria for Diagnostic Imaging

(http://www.acr.org/Quality-Safety/Appropriateness-Criteria/) that list diagnostic protocols (sets of

radiographic procedures/variables) with the same sensitivity and specificity (i.e., these protocols

can be thought of Markov boundaries of the diagnostic response variable) but different cost and

500



DISCOVERY OF MULTIPLE MARKOV BOUNDARIES

radiation exposure level. Algorithms for induction of multiple Markov boundaries can be helpful

for de-novo identification of such protocols from patient data.

Third, such algorithms would shed light on the predictor multiplicity phenomenon and how it

affects the reproducibility of predictors. For example, in the domain of high-throughput molecular

analytics, induction of multiple Markov boundaries with subsequent validation in independent data

would allow testing whether multiple and equally predictive molecular signatures are due to intrinsic

information redundancy in the biological networks, small sample statistical indistinguishability of

signatures, correlated measurement noise, normalization/data preprocessing steps, or other factors

(Aliferis et al., 2010a).

Even though there are several well-developed algorithms for learning a single Markov boundary

(Aliferis et al., 2010a, 2003a; Mani and Cooper, 2004; Peña et al., 2007; Tsamardinos and Aliferis,

2003; Tsamardinos et al., 2003a,b), little research has been done in development of algorithms for

identification of multiple Markov boundaries. The most notable advances in the field are stochastic

Markov boundary algorithms that involve running multiple times either a standard or approximate

Markov boundary induction algorithm initialized with a random seed, for example, KIAMB (Peña

et al., 2007), EGS-NCMIGS and EGS-CMIM (Liu et al., 2010b). Another approach exemplified in

the EGSG algorithm (Liu et al., 2010) involves first grouping variables into multiple clusters such

that each cluster (i) has variables that are similar to each other and (ii) contributes “unique” infor-

mation about the response variable, and then randomly sampling a representative from each cluster

for the output Markov boundaries. In genomics data analysis, researchers try to induce multiple

variable sets (that sometimes approximate Markov boundaries) via application of a standard vari-

able selection algorithm to resampled data, for example, bootstrap samples (Ein-Dor et al., 2005;

Michiels et al., 2005; Roepman et al., 2006). Finally, other bioinformatics researchers proposed a

multiple variable set selection algorithm that iteratively applies a standard variable selection algo-

rithm after removing from the data all variables that participate in the previously discovered variable

sets with optimal classification performance (Natsoulis et al., 2005). As we will see in Sections 3

and 5 of this paper, the above early approaches are either highly heuristic and/or cannot be practi-

cally used to induce multiple Markov boundaries in high-dimensional data sets with relatively small

sample size.

To address the limitations of prior methods, this work presents an algorithmic family TIE∗

(which is an acronym for “Target Information Equivalence”) for multiple Markov boundary induc-

tion. TIE∗ is presented in the form of a generative algorithm and can be instantiated differently for

different distributions. TIE∗ is sound and can be practically applied in typical data-analytic tasks.

We have previously introduced in the bioinformatics domain a specific instantiation of TIE∗ for

development of multiple molecular signatures of the phenotype using microarray gene expression

data (Statnikov and Aliferis, 2010a). The current paper significantly extends the earlier work for

general machine learning use. This includes a detailed description of the generative algorithm, ex-

panded theoretical and complexity analyses, various instantiations of the generative algorithm and

its implementation details, and an extensive benchmarking study in 15 data sets from a diversity of

application domains.

The remainder of this paper is organized as follows. Section 2 provides general theory and back-

ground. Section 3 lists prior algorithms for induction of multiple Markov boundaries and variable

sets. Section 4 describes the TIE∗ generative algorithm, traces its execution, presents specific instan-

tiations, proves algorithm correctness, and analyzes its computational complexity. This section also

introduces a simpler and faster algorithm iTIE∗ for special distributions. Section 5 describes empir-
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ical experiments with the TIE* algorithm and comparison with prior methods in simulated and real

data. The paper concludes with Section 6 that summarizes main findings, reiterates key principles

of TIE* efficiency, demonstrates how the generative algorithm TIE∗ can be configured for optimal

results, presents limitations of this study, and outlines directions for future research. The paper

includes several appendices with additional details about our work: Appendix A proves theorems

and lemmas; Appendix B presents parameterizations of example structures; Appendix C describes

and performs theoretical analysis of prior algorithms for induction of multiple Markov boundaries

and variable sets; Appendix D provides details about the TIE∗ algorithm and its implementations;

Appendix E provides additional details about experiments with simulated and real data.

2. Background and Theory

This section provides general theory and background.

2.1 Notation and Key Definitions

In this paper upper-case letters in italics denote random variables (e.g., A, B, C) and lower-case

letters in italics denote their values (e.g., a, b, c). Upper-case bold letters in italics denote random

variable sets (e.g., X , Y , Z) and lower-case bold letters in italics denote their values (e.g., x, y,

z). The terms “variables” and “vertices” are used interchangeably. If a graph contains an edge X

→ Y, then X is a parent of Y and Y is a child of X. A vertex X is a spouse of Y if they share a

common child vertex. An undirected edge X − Y denotes an adjacency relation between X and

Y (i.e., presence of an edge directly connecting X and Y). A path p is a set of consecutive edges

(independent of the direction) without visiting a vertex more than once. A directed path p from X

to Y is a set of consecutive edges with direction “→” connecting X with Y, that is, X → . . . → Y.

X is an ancestor of Y (and Y is a descendant of X) if there exists a directed path p from X to Y. A

directed cycle is a nonempty directed path that starts and ends on the same vertex X. Three classes

of graphs are considered in this work: (i) directed graphs: graphs where vertices are connected only

with edges “→”; (ii) directed acyclic graphs (DAGs): graphs without directed cycles and where

vertices are connected only with edges “→”; and (iii) ancestral graphs: graphs without directed

cycles and where vertices are connected with edges “→” or “↔” (an edge X ↔ Y implies that X is

not an ancestor of Y and Y is not an ancestor of X).

When the two sets of variables X and Y are conditionally independent given a set of variables

Z in the joint probability distribution P, we denote this as X ⊥ Y |Z . For notational convenience,

conditional dependence is defined as absence of conditional independence and denoted as X 6⊥ Y

| Z . Two sets of variables X and Y are considered independent and denoted as X ⊥ Y , when X

and Y are conditionally independent given an empty set of variables. Similarly, the dependence of

X and Y is defined and denoted as X 6⊥ Y .

We further refer the readers to the work by Glymour and Copper (1991), Neapolitan (2004),

Pearl (2009) and Spirtes et al. (2000) to review the standard definitions of collider, blocked path, d-

separation, m-separation, Bayesian network, causation, direct/indirect causation, and causal Bayesian

network that are used in this work. Below we state several essential definitions:

Definition 1 Local Markov condition: The joint probability distribution P over variables V satis-

fies the local Markov condition for a directed acyclic graph (DAG) G = <V , E> if and only if for
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each W in V , W is conditionally independent of all variables in V excluding descendants of W

given parents of W (Richardson and Spirtes, 1999).

Definition 2 Global Markov condition: The joint probability distribution P over variables V sat-

isfies the global Markov condition for a directed graph (ancestral graph) G = <V , E> if and only

if for any three disjoint subsets of variables X , Y , Z from V , if X is d-separated (m-separated)

from Y given Z in G then X is independent of Y given Z in P (Richardson and Spirtes, 1999,

2002).

It follows that if the underlying graph G is a DAG, then the global Markov condition is equiva-

lent to the local Markov condition (Richardson and Spirtes, 1999).

Finally, we provide several definitions of the faithfulness condition. This condition is funda-

mental for causal discovery and Markov boundary induction algorithms.

Definition 3 DAG-faithfulness: If all and only the conditional independence relations that are true

in P defined over variables V are entailed by the local Markov condition applied to a DAG G =

<V , E>, then P and G are DAG-faithful to one another (Spirtes et al., 2000).

The following definition extends DAG-faithfulness to any directed or ancestral graphs:

Definition 4 Graph-faithfulness: If all and only the conditional independence relations that are

true in P defined over variables V are entailed by the global Markov condition applied to a directed

or ancestral graph G = <V , E >, then P and G are graph-faithful to one another.

A relaxed version of the standard faithfulness assumption is given in the following definition:

Definition 5 Adjacency faithfulness: Given a directed or ancestral graph G = <V , E> and a

joint probability distribution P defined over variables V , P and G are adjacency faithful to one

another if every adjacency relation between X and Y in G implies that X and Y are conditionally

dependent given any subset of V \ {X, Y} in P (Ramsey et al., 2006).

The adjacency faithfulness assumption can be relaxed to focus on the specific response variable

of interest:

Definition 6 Local adjacency faithfulness: Given a directed or ancestral graph G = <V , E>
and a joint probability distribution P defined over variables V , P and G are locally adjacency

faithful with respect to T if every adjacency relation between T and X in G implies that T and X are

conditionally dependent given any subset of V \ {T, X} in P.

2.2 Basic Properties of Probability Distributions

The following theorem provides a set of useful tools for theoretical analysis of probability distribu-

tions and proofs of correctness of Markov boundary algorithms. It is stated similarly to the work by

Peña et al. (2007) and its proof is given in the book by Pearl (1988).

Theorem 1 Let X , Y , Z, and W be any four subsets of variables from V .1 The following five

properties hold in any joint probability distribution P over variables V :

1. Pearl originally provided this theorem for disjoint sets of variables (Pearl, 1988). However, he stated that the disjoint

requirement is made for the sake of clarity, and that the theorem can be extended to include overlapping subsets as

well.
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• Symmetry: X ⊥ Y | Z ⇔ Y ⊥X | Z,

• Decomposition: X ⊥ ( Y ∪W ) | Z ⇒X ⊥ Y | Z and X ⊥W | Z,

• Weak union: X ⊥ ( Y ∪W ) | Z ⇒X ⊥ Y | ( Z ∪W ),

• Contraction: X ⊥ Y | Z and X ⊥W | ( Z ∪ Y )⇒X ⊥ ( Y ∪W ) | Z,

• Self-conditioning: X ⊥ Z | Z.

If P is strictly positive, then in addition to the above five properties a sixth property holds:

• Intersection: X ⊥ Y | ( Z ∪W ) and X ⊥W | ( Z ∪ Y )⇒X ⊥ ( Y ∪W ) | Z.

If P is faithful to G, then P satisfies the above six properties and:

• Composition: X ⊥ Y | Z and X ⊥W | Z ⇒X ⊥ ( Y ∪W ) | Z.

The definition given below provides a relaxed version of the composition property that will be

used later in the theoretical analysis of Markov boundary induction algorithms.

Definition 7 Local composition property: Let X , Y , Z be any three subsets of variables from V .

The joint probability distribution P over variables V satisfies the local composition property with

respect to T if T⊥X|Z and T⊥ Y |Z⇒ T⊥ (X ∪Y )|Z.

2.3 Information Equivalence

In this subsection we review relevant information equivalence theory (Lemeire, 2007). We first

formally define information equivalence that leads to violations of the intersection property and

eliminates uniqueness of the Markov boundary (see next subsection). We then describe distribu-

tions that have information equivalence relations and point to a theoretical result that characterizes

violations of the intersection property.

Definition 8 Equivalent information: Two subsets of variables X and Y from V contain equiva-

lent information about a variable T iff the following conditions hold: T 6⊥X , T 6⊥ Y , T ⊥X | Y
and T ⊥ Y |X .

It follows from the definition of equivalent information and the definition of mutual information

(Cover and Thomas, 1991) that both X and Y contain the same information about T, that is, mutual

information I(X , T) = I(Y ,T) (Lemeire, 2007).

Information equivalences can result from deterministic relations. For example, if we consider

a Bayesian network with the graph
A ց
B ր

X → T that is parameterized such that X = AND(A,

B) and T 6⊥ X , then {X} and {A, B} contain equivalent information with respect to T according to

the above definition. However, information equivalences follow from a broader class of relations

than just deterministic ones (see Example 2 and Figure 1 in the next subsection). We thus define the

notion of equivalent partition that was originally introduced in the work by Lemeire (2007). To do

so we first provide the definition of T-partition:

Definition 9 T-partition: The domain of X, denoted by Xdom, can be partitioned into disjoint sub-

sets Xk
dom for which P(T | x) is the same for all x ∈ Xdom

k . We call this the T-partition of Xdom. We

define κT(X) as the index of the subset of the partition.

Accordingly, the conditional distribution can be rewritten solely based on the index of T-

partition, that is, P(T | X) = P(T | κT(X)) .
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Definition 10 Equivalent partition: A relation R ⊂ X×Y (where the “×” operator denotes the

Cartesian product) defines an equivalent partition in Ydom to a partition of Xdom if:

• for any x1 and x2 ∈Xdom that do not belong to the same partition and for any y1 ∈Ydom with

x1 R y1, it must be that ¬(x2Ry1).
• for all subsets Xk

dom of the partition, ∃x1 ∈ Xk
dom and ∃y1 ∈ Ydom such that x1Ry1.

In other words, for an equivalent partition, every partition Xk
dom corresponds to a partition Yl

dom.

If an element of Ydom is related to an element of partition Xdom, then it is not related to an element

of another partition, and each partition of Xdom has at least one element that is related to a partition

of Ydom. An example of an equivalent partition is provided in Figure 1 in the next subsection.

In the following theorem the concept of equivalent partition is used to characterize violations of

the intersection property; the proof of this theorem is given in the work by Lemeire (2007).

Theorem 2 If T 6⊥ X and T ⊥ Y | X then T ⊥ X | Y if and only if the relation x R y defined by

P(x,y)> 0 with x∈Xdom and y ∈Ydom defines an equivalent partition in Ydom to the T-partition of

Xdom.

It is worthwhile to mention that the above definitions of T-partition, equivalent partition, and

Theorem 2 can be trivially extended to sets of variables instead of individual variables X and Y.

Next we provide two more definitions of equivalent information that take into consideration

values of other variables and also lead to violations of the intersection property.

Definition 11 Conditional equivalent information: Two subsets of variables X and Y from V

contain equivalent information about a variable T conditioned on a non-empty subset of variables

W iff the following conditions hold T 6⊥ X |W , T 6⊥ Y |W , T ⊥ X | (Y ∪W ), and T ⊥ Y

| (X ∪W ).

Definition 12 Context-independent equivalent information: Two subsets of variables X and Y

from V contain context-independent equivalent information about a variable T iff X and Y contain

equivalent information about T conditioned on any subset of variables V \(X ∪ Y ∪ {T}).

Finally, we point out that, in general, equivalent information does not always imply context-

independent equivalent information. However, equivalent information due to deterministic relations

always implies context-independent equivalent information.

2.4 Markov Boundary Theory

In this subsection we first define the concepts of Markov blanket and Markov boundary and theo-

retically characterize distributions with multiple Markov boundaries of the same response variable.

Then we provide examples of such distributions and demonstrate that the number of Markov bound-

aries can even be exponential in the number of variables in the underlying network. We also state

and prove theoretical results that connect the concepts of Markov blanket and Markov boundary

with the data-generative graph. Finally, we define optimal predictor and prove a theorem that links

the concept of Markov blanket with optimal predictor.

Definition 13 Markov blanket: A Markov blanket M of the response variable T ∈ V in the joint

probability distribution P over variables V is a set of variables conditioned on which all other

variables are independent of T, that is, for every X ∈ (V \M\{T}), T ⊥ X |M .
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Trivially, the set of all variables V excluding T is a Markov blanket of T. Also one can take

a small Markov blanket and produce a larger one by adding arbitrary (predictively redundant or

irrelevant) variables. Hence, only minimal Markov blankets are of interest.

Definition 14 Markov boundary: If no proper subset of M satisfies the definition of Markov blan-

ket of T, then M is called a Markov boundary of T.

The following theorem states a sufficient assumption for the uniqueness of Markov boundaries

and its proof is given in the book by Pearl (1988).

Theorem 3 If a joint probability distribution P over variables V satisfies the intersection property,

then for each X ∈ V , there exists a unique Markov boundary of X.

Since every joint probability distribution P that is faithful to G satisfies the intersection property

(Theorem 1), then there is a unique Markov boundary in such distributions according to Theorem

3. However, Theorem 3 does not guarantee that Markov boundaries will be unique in distributions

that do not satisfy the intersection property. In fact, as we will see below, Markov boundaries may

not be unique in such distributions.

The following two lemmas allow us to explicitly construct and verify multiple Markov blankets

and Markov boundaries when the distribution violates the intersection property (proofs are given in

Appendix A).

Lemma 1 If M is a Markov blanket of T that contains a set Y , and there is a subset of variables

Z such that Z and Y contain context-independent equivalent information about T, then M new =
(M\Y )∪Z is also a Markov blanket of T.

Lemma 2 If M is a Markov blanket of T and there exists a subset of variables M new ⊆ V \{T}
such that T ⊥M |M new, then M new is also a Markov blanket of T.

The above lemmas also hold when M is a Markov boundary and immediately imply that M new

is a Markov boundary assuming minimality of this subset.

The following three examples provide graphical structures and related probability distributions

where multiple Markov boundaries exist. Notably, these examples also demonstrate that multiple

Markov boundaries can exist even in large samples. Thus it is not an exclusively small-sample

phenomenon, as it was postulated by earlier research (Ein-Dor et al., 2005, 2006).

Example 1 Consider a joint probability distribution P described by a Bayesian network with graph

A→ B→ T where A, B, and T are binary random variables that take values {0,1}. Given the

local Markov condition, the joint probability distribution can be defined as follows: P(A = 0) =
0.3, P(B= 0 |A= 1) = 1.0, P(B= 1 |A= 0) = 1.0, P(T= 0 |B= 1) = 0.2, P(T= 0 |B= 0) = 0.4.
Two Markov boundaries of T exist in this distribution: {A} and {B}.

Example 2 Figure 1 shows a graph of a causal Bayesian network and constraints on its parame-

terization.2 As can be seen, there is an equivalent partition in the domain of A to the T-partition

2. This example has been previously published in the work by Statnikov and Aliferis (2010a) and is presented here with

the intent to illustrate the definition of equivalent partition.
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Figure 1: Graph of a causal Bayesian network with four variables (top) and constraints on its pa-

rameterization (bottom). Variables A, B, T take three values {0,1,2}, and variable C takes

two values {0,1}. Red dashed arrows denote non-zero conditional probabilities of each

variable given its parents. For example, P(T = 0 | A = 1) 6= 0, while P(T = 0 | A = 2) =
0.

of the domain of B. The following hold in any joint probability distribution of a causal Bayesian

network that satisfies the constraints in the figure:

• A and B are not deterministically related, yet they contain equivalent information about T;

• There are two Markov boundaries of T ({A,C}and {B,C});

• If an algorithm selects only one Markov boundary of T (e.g., {B,C}), then there is danger to

miss causative variables (i.e., direct cause A) and focus instead on confounded ones (i.e., B);

• The union of all Markov boundaries of T includes all variables that are adjacent with T

({A,C}).

Example 3 Consider a Bayesian network shown in Figure 2. It involves n + 1 binary variables:

X1,X2, . . . ,Xn and a response variable T. Variables Xi can be divided into m groups such that

any two variables in a group contain context-independent equivalent information about T. Assume

that n is divisible by m. Since there are n/m variables in each group, the total number of Markov

boundaries is (n/m)m. Now assume that k = n/m. Then the total number of Markov boundaries is

km. Since k > 1 and m = O(n), it follows that the number of Markov boundaries grows exponentially

in the number of variables in this example.

Now we provide theoretical results that connect the concepts of Markov blanket and Markov

boundary with the underlying causal graph. Theorem 4 was proved in the work by Neapolitan

(2004) and Pearl (1988), Theorem 5 was proved in the work by Neapolitan (2004) and Tsamardinos

and Aliferis (2003), and the proof of Theorem 6 is given in Appendix A.

Theorem 4 If a joint probability distribution P satisfies the global Markov condition for directed

graph G, then the set of children, parents, and spouses of T is a Markov blanket of T.
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T 

X1X2 X3 … Xn/m-1 Xn/m 

Xn/m+1 Xn/m+2 Xn/m+3 … X2n/m-1 X2n/m 

X(m-1)n/m+1 X(m-1)n/m+2 X(m-1)n/m+3 … Xn-1 Xn 

Group #1 of variables with context-independent equivalent information about T 

… 

Group #2 of variables with context-independent equivalent information about T 

Group #m of variables with context-independent equivalent information about T 

Figure 2: Graph of a Bayesian network used to demonstrate that the number of Markov boundaries

can be exponential in the number of variables in the network. The network parameter-

ization is provided in Table 5 in Appendix B. The response variable is T. All variables

take values {0,1}. All variables Xi in each group provide context-independent equivalent

information about T.

Theorem 5 If a joint probability distribution P is DAG-faithful to G, then the set of children, par-

ents, and spouses of T is a unique Markov boundary of T.

Theorem 6 If a joint probability distribution P satisfies the global Markov condition for ancestral

graph G, then the set of children, parents, and spouses of T, and vertices connected with T or

children of T by a bi-directed path (i.e., only with edges “↔”) and their respective parents is a

Markov blanket of T.

A graphical illustration of Theorem 6 is provided in Figure 3.

Definition 15 Optimal predictor: Given a data set D (a sample from distribution P) for variables

V , a learning algorithm L, and a performance metric M to assess learner’s models, a variable set

X ⊆ V \{T} is an optimal predictor of T if X maximizes the performance metric M for predicting

T using learner L in the data set D.

The following theorem links together the definitions of Markov blanket and optimal predictor,

and its proof is given in Appendix A.

Theorem 7 If M is a performance metric that is maximized only when P(T | V \{T}) is estimated

accurately3 and L is a learning algorithm that can approximate any conditional probability distri-

bution,4 then M is a Markov blanket of T if and only if it is an optimal predictor of T.

3. For example, M can be negative mean squared error between estimated and true values of P(T |V \{T}) (Tsamardinos

and Aliferis, 2003).

4. For example, L can be feed-forward neural networks or support vector machines that are known to have universal

approximation capabilities (Hammer and Gersmann, 2003; Pinkus, 1999; Scarselli and Chung Tsoi, 1998).
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a) b) 

Figure 3: Graphical illustration of a Markov blanket in an ancestral graph. a) Data-generative DAG,

variables H1 and H2 are latent. b) Corresponding ancestral graph. The set of parents,

children, and spouses of T are shown in blue. Vertices connected with T or children of

T by a bi-directed path and their respective parents are shown in red and are underlined.

If the global Markov condition holds for the graph and joint probability distribution, a

Markov blanket of T consists of vertices shown in blue and red. All grey vertices will be

then independent of T conditioned on the Markov blanket.

2.5 Prior Algorithms for Learning a Single Markov Boundary

The Markov boundary algorithm IAMB is described in Figure 4 (Tsamardinos and Aliferis, 2003;

Tsamardinos et al., 2003a). Originally, this algorithm was proved to be correct (i.e., that it identifies

a Markov boundary) if the joint probability distribution P is DAG-faithful to G. Then it was proved

to be correct when the composition property holds (Peña et al., 2007). The following theorem further

relaxes conditions sufficient for correctness of IAMB, requiring that only the local composition

property holds; the proof is given in Appendix A.

Theorem 8 IAMB outputs a Markov boundary of T if the joint probability distribution P satisfies

the local composition property with respect to T.

Notice that IAMB identifies a Markov boundary of T by essentially implementing its definition

and conditioning on the entire Markov boundary when testing variables for independence from

the response T. Conditioning on the entire Markov boundary may become especially problematic

in discrete data where the sample size required for high-confidence statistical tests of conditional

independence grows exponentially in the size of the conditioning set. This in part motivated the

development of the sample-efficient Markov boundary induction algorithmic family Generalized

Local Learning, or GLL (Aliferis et al., 2010a). Figure 5 presents the Semi-Interleaved HITON-PC

algorithm (Aliferis et al., 2010a), an instantiation of the GLL algorithmic family that we will use in

the present paper. Originally, Semi-Interleaved HITON-PC was proved to correctly identify a set of

parents and children of T in the Bayesian network N =<G,P> if the joint probability distribution

P is DAG-faithful to G and the so-called symmetry correction is not required (Aliferis et al., 2010a).
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Algorithm IAMB 

 

Input: dataset D (a sample from distribution P) for variables V, including a response variable T. 
 

Output: a Markov boundary M of T. 

 

  Phase I: Forward 

1. Initialize M with an empty set 

2. Initialize the set of eligible variables E ß V \ {T} 

3. Repeat 

4. Y ß argmaxXÎE Association(T,  X | M) 
5. E ß E \ {Y} 

6. If M|YT /̂  then 

7. M ß M È {Y} 

8. E ß V \ M \ {T}  

9. Until E is empty 

 

   Phase II: Backward 

10. For each X Î M 

11. If | ( \{ })T X X^ M  then 

12. M ß M \ {X} 

13. End 

14. Output M 
 

Z|

Z|

Figure 4: IAMB algorithm.

The algorithm also retains its correctness for identification of a Markov boundary of T under more

relaxed assumptions stated in Theorem 9 (proof is given in Appendix A).

Theorem 9 Semi-Interleaved HITON-PC outputs a Markov boundary of T if there is a Markov

boundary of T in the joint probability distribution P such that all its members are marginally de-

pendent on T and are also conditionally dependent on T, except for violations of the intersection

property that lead to context-independent information equivalence relations.

Theorem 9 can be also restated and proved using sufficient assumptions that are motivated by

the common assumptions in the causal discovery literature: (i) the joint probability distribution P

and directed or ancestral graph G are locally adjacency faithful with respect to T with the exception

of violations of the intersection property that lead to context-independent information equivalence

relations; (ii) P satisfies the global Markov condition for G; (iii) the set of vertices adjacent with T

in G is a Markov blanket of T.

The proofs of correctness for the Markov boundary algorithms in Theorems 8 and 9 implic-

itly assume that the statistical decisions about dependence and independence are correct. This re-

quirement is satisfied when the data set D is a sufficiently large i.i.d. (independent and identically

distributed) sample of the underlying probability distribution P. When the sample size is small, the

statistical tests of independence will incur type I and II errors. This may affect the correctness of

the algorithms output Markov boundary.

In the empirical experiments of this work, we use Semi-Interleaved HITON-PC without “sym-

metry correction” as a primary method for Markov boundary induction because prior research has
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Algorithm Semi-Interleaved HITON-PC (without “symmetry correction”) 

 

Input: dataset D (a sample from distribution P) for variables V, including a response variable T. 
 

Output: a Markov boundary M of T. 

 

  Phase I: Forward 

1. Initialize M with an empty set 

2. Initialize the set of eligible variables E ß V \ {T} 

3. Repeat 

4. Y ß argmaxXÎE Association(T,  X) 
5. E ß E \ {Y} 

6. If there is no subset Z Í M such that Z|YT ^
 
then 

7. M ß M È {Y} 

8. Until E is empty 

 

   Phase II: Backward 

9. For each X Î M 

10. If there is a subset Z Í M \ {X} such that Z|XT ^  then 

11. M ß M \ {X} 

12. End 

13. Output M 
 

Figure 5: Semi-Interleaved HITON-PC algorithm (without “symmetry correction”), member of the

Generalized Local Learning (GLL) algorithmic family. The algorithm is restated in a

fashion similar to IAMB for ease of comparative understanding. Original pseudo-code is

given in the work by Aliferis et al. (2010a).

demonstrated empirical superiority of this algorithm compared to the version with the “symmetry

correction”; the GLL-MB family of algorithms (including Semi-Interleaved HITON-MB) that can

identify Markov boundary members that are non-adjacent spouses of T (and thus may be marginally

independent with T); IAMB algorithms (Tsamardinos et al., 2003a); and other comparator Markov

boundary induction methods (Aliferis et al., 2010a,b).

3. Prior Algorithms for Learning Multiple Markov Boundaries and Variable Sets

Table 1 summarizes the properties of prior algorithms for learning multiple Markov boundaries and

variable sets, while a detailed description of the algorithms and their theoretical analysis is presented

in Appendix C. As can be seen, there is no algorithm that is simultaneously theoretically correct,

complete, computationally and sample efficient, and does not rely on extensive parameterization.

This was our motivation for introducing the TIE∗ algorithmic family that is described in Section 4.

We would like to note that not all algorithms listed in Table 1 are designed for identification

of Markov boundaries; methods Resampling+RFE, Resampling+UAF, and IR-SPLR are designed

for variable selection. However, sometimes variable sets output by these methods can approximate

Markov boundaries, that is why we included these methods in our study (Aliferis et al., 2010a,b).
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Markov boundary identification 

(assuming faithfulness except for 

violations of the intersection property) 

Parameterization: 

does not require  

prior knowledge of Computa-

tionally 

efficient 

sample 

efficient 

 

correct   

(identifies Markov 

boundaries) 

complete  

(identifies all 

Markov 

boundaries) 

the number 

of Markov 

boundaries/  

variable sets 

the size of 

Markov 

boundaries/ 

variable sets 

KIAMB + + - + - - 
EGS-CMIM - - - - - + 
EGS-NCMIGS - - - +/- - + 
EGSG - - - + - + 
Resampling+RFE - - - + - + 
Resampling+UAF - - - + - + 
IR-HITON-PC + - + + + + 
IR-SPLR - - + + + + 

Table 1: Prior algorithms for learning multiple Markov boundaries and variable sets. “+′′ means

that the corresponding property is satisfied by a method, “−” means that the property is not

satisfied, and “+/−” denotes cases where the property is satisfied under certain conditions.

4. TIE∗: A Family of Multiple Markov Boundary Induction Algorithms

In this section we present a generative anytime algorithm TIE∗ (which is an acronym for “Target

Information Equivalence”) for learning from data all Markov boundaries of the response variable.

This generative algorithm describes a family of related but not identical algorithms which can be

seen as instantiations of the same broad algorithmic principles. We decided to state TIE∗ as a gener-

ative algorithm in order to facilitate a broader understanding of this methodology and devise formal

conditions for correctness not only at the algorithm level but also at the level of algorithm family.

The latter is achieved by specifying the general set of assumptions (admissibility rules) that apply

to the generative algorithm and provide a set of flexible tools for constructing numerous algorith-

mic instantiations, each of which is guaranteed to be correct. This methodology thus significantly

facilitates development of new correct algorithms for discovery of multiple Markov boundaries in

various distributions.

4.1 Pseudo-Code and Trace

The pseudo-code of the TIE∗ generative algorithm is provided in Figure 6. On input TIE∗ receives

(i) a data set D (a sample from distribution P) for variables V , including a response variable T; (ii) a

single Markov boundary induction algorithm X; (iii) a procedure Y to generate data sets De from the

so-called embedded distributions that are obtained by removing subsets of variables from the full

set of variables V in the original distribution P; and (iv) a criterion Z to verify Markov boundaries

of T. The inputs X, Y, Z are selected to be suitable for the distribution at hand and should satisfy

admissibility rules stated in Figure 7 for correctness of the algorithm (see next two subsections for

details). The algorithm outputs all Markov boundaries of T that exist in the distribution P.
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Generative algorithm TIE* 

 

Inputs: 

· dataset D (a sample from distribution P) for variables V, including a response variable T; 

· Markov boundary induction algorithm X; 

· procedure Y to generate datasets from the embedded distributions; 

· criterion Z to verify Markov boundaries of T. 

(specific examples of inputs X, Y, Z are given in subsection 4.2) 
 

Output: all Markov boundaries of T that exist in P. 

 

1. Use algorithm X to learn a Markov boundary M of T from the dataset D for variables V (i.e., in 

the original distribution P) 

2. Output M 

3. Repeat 

4. Use procedure Y to generate a dataset D
e
 from the embedded distribution by removing a 

subset of variables G from the full set of variables V in the original distribution (also denoted 

as D(V \ G)). 

5. Use algorithm X to learn a Markov boundary Mnew of T from the dataset D
e
 

6. If Mnew is a Markov boundary of T in the original distribution according to criterion Z, output 

Mnew 

7. Until all datasets D
e
 generated by procedure Y have been considered. 

 

Figure 6: TIE∗ generative algorithm.

 
Admissibility rules for inputs X, Y, Z of the TIE* algorithm  

 

I. The Markov boundary induction algorithm X can correctly identify a Markov boundary of T 

both in the dataset D (from the original distribution) and in all datasets D
e
 (from the embedded 

distributions) that are generated by procedure Y. 

II. For every Markov boundary of T (M) that exists in the original distribution, the procedure Y 

generates a dataset D
e 
= D(V \ G) such that M can be discovered by the Markov boundary 

induction algorithm X applied to the dataset D
e
. 

III. The criterion Z can correctly verify that Mnew is a Markov boundary of T in the original 

distribution. 
 

Figure 7: Admissibility rules for inputs X, Y, Z of the TIE∗ algorithm.

In step 1, TIE∗ uses a Markov boundary induction algorithm X to learn a Markov boundary

M of T from the data set D for variables V (i.e., in the original distribution). Then M is output

in step 2. In step 4, the algorithm uses a procedure Y to generate a data set De that spans over a

subset of variables that participate in D. The motivation is that De may lead to identification of a

new Markov boundary of T that was previously “invisible” to a single Markov boundary induction

algorithm because it was “masked” by another Markov boundary of T. Next, in step 5 the Markov

boundary algorithm X is applied to D
e, resulting in a Markov boundary M new in the embedded

distribution. If M new is also a Markov boundary of T in the original distribution according to

criterion Z, then M new is output (step 6). The loop in steps 3-7 is repeated until all data sets D
e

generated by procedure Y have been considered.
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T 

D E F 

A 

C 

B 

Figure 8: Graph of a causal Bayesian network used to trace the TIE∗ algorithm. The network

parameterization is provided in Table 6 in Appendix B. The response variable is T. All

variables take values {0,1} except for B that takes values {0,1,2,3}. Variables A and C

contain equivalent information about T and are highlighted with the same color. Likewise,

two variables {D,E} jointly and a single variable B contain equivalent information about

T and thus are also highlighted with the same color.

Next we provide a high-level trace of the algorithm. Consider running an instance of the TIE∗

algorithm with admissible inputs X, Y, Z implemented by an oracle in the data set D generated from

the example causal Bayesian network shown in Figure 8.5 The response variable T is directly caused

by C, D, E, and F. The underlying distribution is such that variables A and C contain equivalent

information about T; likewise two variables {D,E} jointly and a single variable B contain equivalent

information about T. In step 1 of TIE∗ (Figure 6), a Markov boundary induction algorithm X is

applied to learn a Markov boundary of T, resulting in M = {A,B,F}. Then M is output in step 2.

In step 4, a procedure Y considers removing G = {F} and generates a data set De for variables V

\ G. Then in step 5 the Markov boundary induction algorithm P is run on the data set De . This

yields a Markov boundary of T in the embedded distribution M new = {A,B}. The criterion Z in step

6 does not confirm that M new is also Markov boundary of T in the original distribution; thus M new

is not output. The loop is run again. In step 4 the procedure Y considers removing G = {A} and

generates a data set De for variables V \G. The Markov boundary induction algorithm X in step 5

yields a Markov boundary of T in the embedded distribution M new = {C,B,F}. The criterion Z in

step 6 confirms that M new is also a Markov boundary in the original distribution, thus it is returned.

Similarly, when the Markov boundary induction algorithm X is run on the data set De = V \ G
where G = {B} or G = {A,B}, two additional Markov boundaries of T in the original distribution,

{A,D,E,F} or {C,D,E,F}, respectively, are found and output. The algorithm terminates shortly.

In total, four Markov boundaries of T are output by the algorithm: {A,B,F}, {C,B,F}, {A,D,E,F}
and {C,D,E,F}. These are exactly all Markov boundaries of T that exist in the distribution.

5. Specific examples of inputs X, Y, Z are given in the next subsection and are omitted here in order to emphasize core

algorithmic principles of TIE∗.
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4.2 Specific Instantiations

In this subsection we give several specific instantiations of the generative algorithm TIE∗ (Figure 6)

and in the next subsection we prove their admissibility (i.e., that they satisfy rules stated in Figure 7).

An instantiation of TIE∗ is specified by assigning its inputs X, Y, Z to well-defined algorithms.

Input X: This is a Markov boundary induction algorithm. For example, we can use IAMB

(Figure 4) or Semi-Interleaved HITON-PC (Figure 5) algorithms that were described in Section

2.5. Other sound Markov boundary induction algorithms can be used as well (Aliferis et al., 2010a,

2003a; Mani and Cooper, 2004; Peña et al., 2007; Tsamardinos and Aliferis, 2003; Tsamardinos

et al., 2003a,b).

Input Y: This is a procedure to generate data sets from the embedded distributions that would

allow identification of new Markov boundaries of T. Before we give specific examples of this pro-

cedure, it is worthwhile to understand its use in TIE∗. The main principle of TIE∗ is to first identify

a Markov boundary of T in the original distribution and then iteratively run a Markov boundary

induction algorithm in data sets from the embedded distributions (that are obtained by removing

subsets of variables from M ) in order to identify new Markov boundaries in the original distri-

bution. Generating such data sets from the embedded distributions is the purpose of procedure Y.

The reason why we need to remove subsets of variables from the original data and rerun Markov

boundary induction algorithm in the data set De = P ( V \ G ) is because some variables “mask”

Markov boundaries during operation of conventional single Markov boundary induction algorithms

by rendering some of the Markov boundary members conditionally independent of T. One possible

approach is to generate data sets by removing subsets of the original Markov boundary, or, more

broadly, subsets from all currently identified Markov boundaries. The procedure termed IGS (which

is an acronym for “Incremental Generation of Subsets”) implements the above stated approach and

is described in Figure 9.6

Below and in Table 2 we revisit the trace of TIE∗ that was given in the previous subsection, now

focusing on the operation of the procedure IGS (Y) from Figure 9. Recall that application of the

Markov boundary induction algorithm in step 1 of TIE∗ resulted in M = {A,B,F}. In step 4 of

TIE∗, the procedure IGS can generate data sets De = D ( V \G ) from the embedded distributions

by removing any of the three possible subsets G = {A} or {B} or {F} from V (it will not consider

larger subsets because of the requirement of the smallest subset size in step 1 of IGS, see Figure

9). Recall that next we considered a data set De obtained by removing G = {F} and identified via

algorithm X a Markov boundary in the embedded distribution M new ={A,B} that did not turn out

to be a Markov boundary in the original distribution. When the procedure IGS is executed in the

following iterations of steps 3-7, it will never generate data set De without {F} because G∗1 = {F}
and we require that G does not include G∗j for j = 1,. . . ,m. In the next iteration, IGS can generate

two possible data sets De by removing G = {A} or {B} from V . In order to be consistent with our

previous trace, assume that the procedure IGS output a data set De obtained by removing G = {A}
which led to identification of a new Markov boundary both in the original and embedded distribution

6. To retain simplicity of the TIE∗ pseudo-code (Figure 6), we implicitly assume that M i,Gi,G
∗
j are stored during

operation of the generative algorithm TIE∗. This can be implemented by setting a counter of all identified Markov

boundaries in the original distribution (i) and a counter of all identified Markov boundaries in the embedded dis-

tribution that are not Markov boundaries the original distribution ( j). Then the following assignments should be

made: M1←M and G
∗
1←⊘ after step 1 of TIE∗;M i←Mnew and G

∗
i←G

∗ in step 6 of TIE∗ if Mnew is a Markov

boundary in the original distribution; and G
∗
j←G in step 6 of TIE∗ if Mnew is not a Markov boundary in the original

distribution.
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Procedure IGS to generate datasets from the embedded distributions  
 

// This is an instantiation of the procedure Y in the generative algorithm TIE*  

 

Inputs
6
: 

· dataset D (a sample from distribution P) for variables V, including a response variable T; 

· Markov boundaries 
nMM ,...,1

of T (in the original distribution) obtained so far by TIE* and 

ordered by the time of discovery from earliest (
1M ) to latest ( nM ); 

· subsets 
nGG ,...,1

 that were used in previous calls to IGS to generate datasets from the 

embedded distributions that led to discovery of the above Markov boundaries (we use G1=Æ); 

· subsets **

1 ,..., mGG
 
that were used in previous calls to IGS to generate datasets from the 

embedded distributions that did not lead to Markov boundaries in the original distribution.   

 

1. Generate the smallest subset of variables G: )( iii GMGG ÈÍÌ for some i = 1, .., n that 

neither includes 
*

jG  nor coincides with 
kG  for any j =1, …, m and k =1, …, n 

2. D
e 
ß D(V \ G)   // This is a dataset from the embedded distribution 

 

Figure 9: Procedure IGS (Y) to generate data sets from the embedded distributions Note that IGS

is a procedure (not a function), and we assume that De and G are accessible in the scope

of TIE∗.

M new={C,B,F}. When the procedure IGS is executed in the next iteration, it will generate a data

set De by removing a subset G = {B} from V (all other subsets will have two or more variables and

thus will not be considered). This would lead to identification of a new Markov boundary both in

the original and embedded distribution M new ={A,D,E,F}. When the procedure IGS is executed in

the next iteration, it can generate data sets De by removing G ={A,B} or{A,C} or {B,D} or {B,E}
from V . Assume that the procedure generated a data set De by removing G ={A,B}, which would

lead to identification of a new Markov boundary both in the original and embedded distribution

M new ={C,D,E,F}. Several more iterations will follow, but no new Markov boundaries in the

original distribution will be identified (see Table 2 for one more iteration), and TIE∗ will terminate.

As it follows from the above example, we may have several possibilities for the subset G (and

thus for defining a data set De ) in the procedure IGS and we need to define rules in order to select

a single subset. We therefore provide three specific implementations of the procedure IGS:

• IGS-Lex (“Lex” stands for “lexicographical”): Procedure IGS from Figure 9 where one

chooses a subset G with the smallest lexicographical order of its variables;

• IGS-MinAssoc (“MinAssoc” stands for “minimal association”): Procedure IGS from Figure 9

where one chooses a subset G with the smallest association with the response variable T;

• IGS-MaxAssoc (“MaxAssoc” stands for “maximal association”): Procedure IGS from Fig-

ure 9 where one chooses a subset G with the largest association with the response variable T.

The above three instantiations of the procedure IGS may lead to different traces of the TIE∗

algorithm, however the final output of the algorithm will be the same (it will discover all Markov

boundaries of T).
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Loop 

iteration 

(steps 3-7) 

Procedure IGS (step 4) Identified Markov 

boundary (MB) 

(step 5) 

MB in original 

distribution 

(step 6)? Inputs 
Possible 

subsets G 

Output  

D
e
 

#1 
× M1={A, B, F} 

× G1=Æ 

{A},  

{B}, 

{F} 

D(V \ {F}) {A, B} NO 

#2 

× M1 

× G1 

× }{*

1 F=G  

{A},  

{B} 
D(V \ {A}) {C, B, F} YES 

#3 

× M1, M2={C, B, F} 

× G1, G2={A} 

× 
*

1G  

{B} D(V \ {B}) {A, D, E, F} YES 

#4 

× M1, M2, M3={A, D, E, F} 

× G1, G2, G3={B} 

× 
*

1G  

{A, B},  

{A, C}, 

{B, D},  

{B, E}.  

D(V \ {A, B}) {C, D, E, F} YES 

#5 

× M1, M2, M3,  

M4={C, D, E, F} 

× G1, G2, G3, G4={A, B} 

× 
*

1G  

{A, C}, 

{B, D},  

{B, E}. 

D(V \ {A, C}) {B, F} NO 

 

Table 2: Part of the trace of TIE∗, focusing on operation of the procedure Y.

Input Z: This is a criterion that can verify whether M new, a Markov boundary in the embed-

ded distribution (that was found by application of the Markov boundary induction algorithm X in

step 5 of TIE∗ to the data set De) is also a Markov boundary in the original distribution. In other

words, it is a criterion to verify the Markov boundary property of M new in the original definition.

For example, we can use the following two criteria given in Figures 10 and 11. Criterion Indepen-

dence from Figure 10 is closely related to the definition of the Markov boundary, and essentially

implies its verification. Criterion Predictivity from Figure 11 verifies Markov boundaries by assess-

ing their predictive (classification or regression) performance using some learning algorithm and

performance metric.

Appendix D provides two concrete admissible instantiations of the generative algorithm TIE∗

(admissibility follows from theoretical results presented in the next subsection). The instantiation

in Figure 17 is obtained using X = Semi-Interleaved HITON-PC, Y = IGS, Z = Predictivity. The

instantiation in Figure 18 is obtained using X = Semi-Interleaved HITON-PC, Y = IGS, Z = Inde-

pendence. Appendix D also gives practical considerations for computer implementations of TIE∗.

4.3 Analysis of the Algorithm Correctness

In this subsection we state theorems about correctness of TIE∗ and its specific instantiations that

were described in the previous subsection and Appendix D. The proofs of all theorems are given in

Appendix A.

First we show that the generative algorithm TIE∗ is sound and complete:
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Criterion Independence to verify Markov boundaries  
 

// This is an instantiation of the criterion Z in the generative algorithm TIE*  

 

Inputs: 

· dataset D (a sample from distribution P) for variables V, including a response variable T; 

· Markov boundary M of T in the original distribution; 

· Markov boundary Mnew of T in the embedded distribution. 
      

Output:  

· TRUE if Mnew is a Markov boundary of T in the original distribution; 

· FALSE if Mnew is a not a Markov blanket of T in the original distribution. 

 

If 
newT MM |^ , output TRUE; otherwise output FALSE. 

 

m̂

m̂

m̂

Figure 10: Criterion Independence (Z) to verify Markov boundaries.

  
Criterion Predictivity to verify Markov boundaries  
 

// This is an instantiation of the criterion Z in the generative algorithm TIE*  

 

Inputs: 

· dataset D (a sample from distribution P) for variables V, including a response variable T; 

· Markov boundary M of T in the original distribution; 

· Markov boundary Mnew of T in the embedded distribution; 

· learning algorithm L (to build a prediction model for T given data D for some subset of  

variables from V); 

· performance metric M (to assess the prediction model obtained by L; larger values of this 

performance metric correspond to higher predictivity of the model). 
 

Output:  

· TRUE if Mnew is a Markov boundary of T in the original distribution; 

· FALSE if Mnew is a not a Markov blanket of T in the original distribution. 

 

1. 1m̂ ß performance estimate using metric M for prediction model obtained by L in data D for 

variables M 

2. 2m̂ ß performance estimate using metric M for prediction model obtained by L in data D for 

variables Mnew 

3. If 21
ˆˆ mm £  (taking into account statistical uncertainty), output TRUE; otherwise output FALSE. 

 

Figure 11: Criterion Predictivity (Z) to verify Markov boundaries.

Theorem 10 The generative algorithm TIE∗ outputs all and only Markov boundaries of T that exist

in the joint probability distribution P if the inputs X, Y, Z are admissible (i.e., satisfy admissibility

rules in Figure 7).
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Now we show that IAMB (Figure 4) and Semi-Interleaved HITON-PC (Figure 5) are admissible

Markov boundary algorithms for TIE∗ under sufficient assumptions. In the case of the IAMB algo-

rithm, the sufficient assumptions for TIE∗ admissibility are the same as sufficient assumptions for

the general algorithm correctness (see Theorem 8). This leads to the following theorem.

Theorem 11 IAMB is an admissible Markov boundary induction algorithm for TIE∗ (input X) if

the joint probability distribution P satisfies the local composition property with respect to T.

However, the sufficient assumptions for the general correctness of Semi-Interleaved HITON-PC

(Theorem 9) are not sufficient for TIE∗ admissibility and require further restriction. Specifically,

we need to require that all members of all Markov boundaries retain marginal and conditional de-

pendence on T, except for certain violations of the intersection property. This leads to the following

theorem.

Theorem 12 Semi-Interleaved HITON-PC is an admissible Markov boundary induction algorithm

for TIE∗ (input P) if all members of all Markov boundaries of T that exist in the joint probability

distribution P are marginally dependent on T and are also conditionally dependent on T, except

for violations of the intersection property that lead to context-independent information equivalence

relations.

The next theorem states that the procedure IGS (Figure 9) is admissible for TIE∗:

Theorem 13 Procedure IGS to generate data sets from the embedded distributions (input Y) is

admissible for TIE∗.

Finally we show that both criteria Independence (Figure 10) and Predictivity (Figure 11) for verifi-

cation of Markov boundaries are admissible for TIE∗ and state sufficient assumptions for the latter

criterion. The former criterion implicitly assumes correctness of statistical decisions, similarly to

IAMB and Semi-Interleaved HITON-PC (see end of Section 2.5 for related discussion).

Theorem 14 Criterion Independence to verify Markov boundaries (input Z) is admissible for TIE∗

Theorem 15 Criterion Predictivity to verify Markov boundaries (input Z) is admissible for TIE∗ if

the following conditions hold: (i) the learning algorithm L can accurately approximate any condi-

tional probability distribution, and (ii) the performance metric M is maximized only when P( T| V
\ {T}) is estimated accurately.

As mentioned in the beginning of Section 4, the generative nature of TIE∗ facilitates design of new

algorithms for discovery of multiple Markov boundaries by simply instantiating TIE∗ with input

components X, Y, Z. Furthermore, if X, Y, Z are admissible, then TIE∗ will be sound and complete

according to Theorem 10, otherwise the algorithm will be heuristic. For example, one can take an

established Markov boundary induction algorithm, prove its admissibility, and then plug it into TIE∗

with admissible components Y and Z (e.g., ones presented above). This will yield a new correct

algorithm and significant economies in the proof of its correctness because one has only to prove

admissibility of new input components.
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4.4 Complexity Analysis

We first note that the computational complexity of TIE∗ depends on a specific instantiation of its

input components X (Markov boundary induction algorithm), Y (procedure for generating data sets

from the embedded distributions) and Z (criterion for verifying Markov boundaries), and on the

underlying joint probability distribution over a set variables V . In this subsection we will consider

the complexity of the following two specific instantiations of TIE∗: (X= Semi-Interleaved HITON-

PC, Y=IGS-Lex, Z=Independence) and (X= IAMB, Y=IGS-Lex, Z=Independence).

Since in our experiments we found that Markov boundary induction (with input component X)

was the most computationally expensive step in TIE∗ and accounted for > 99% of algorithm run-

time, we will omit from consideration the complexity of components Y and Z, and will use the

complexity of component X to derive an estimate of the total computational complexity of TIE∗.

Following general practice in complexity analysis of Markov boundary and causal discovery algo-

rithms, we measure computational complexity in terms of the number of statistical tests of condi-

tional independence.7 For completeness we also note that there exist efficient implementations of

the G2 test for discrete variables that can take only time nlog(n) in the number of training instances

n. The time for computation of Fishers Z-test for continuous variables is also bounded by a low

order polynomial in n because this test essentially involves solution of a linear system. See the work

by Aliferis et al. (2010a) and Anderson (2003) for more details and discussion.

As with all sound and complete computational causal discovery algorithms, discovery of all

Markov boundaries (and even one Markov boundary) is worst-case intractable. However we are

interested in the average-case complexity of TIE∗ in real-life distributions that is more instructive

to consider. Complexities of Markov boundary induction algorithms IAMB and Semi-Interleaved

HITON-PC are O(|V ||M |) and O(|V |2|M |), respectively, assuming that the size of the candidate

Markov boundary M obtained in the Forward phase is close to the size of the true Markov boundary

obtained after the Backward phase (see Figures 4 and 5), which is typically the case in practice

(Aliferis et al., 2010a; Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003a). When TIE∗ is

parameterized with the IGS procedure (as the component Y) and there is only one Markov boundary

M in the distribution, TIE∗ will invoke a Markov boundary induction algorithm X, |M |+ 1 number

of times. Thus, the total computational complexity of TIE∗ in this case becomes O(|V ||M |2) if X =

IAMB and O(|V ||M | | 2|M |) if X = Semi-Interleaved HITON-PC.When N Markov boundaries with

the average size |M | are present in the distribution, TIE∗ with IGS procedure will invoke a Markov

boundary induction algorithm no more than O(N2|M |) times. Therefore, the total complexity of

TIE∗ with the IGS procedure is O(N2|M ||V ||M |) ) when X = IAMB and O(N|V |22|M |) when X =

Semi-Interleaved HITON-PC.

In practical applications of TIE∗ with Semi-Interleaved HITON-PC, we use an additional caching

mechanism for conditional independence decisions, which alleviates the need to repeatedly conduct

the same conditional independence tests during Markov boundary induction when we have only

slightly altered the data set by removing a subset of variables G. In this case, induction of the first

Markov boundary still takes O(|V |2|M |) independence tests, but all consecutive Markov bound-

aries typically require less than O(|V |) conditional independence tests. Thus, the overall complex-

7. Since we use negative p-values from a conditional independence test as the measure of association in IAMB and

Semi-Interleaved HITON-PC (see Appendix D), we assume that complexity of computing an association is equal to

the complexity of conditional independence testing.
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Algorithm iTIE* 

 

Input: dataset D (a sample from distribution P) for variables V, including a response variable T. 
 

Output: all Markov boundaries of T that exist in P. 

 

1. Run steps 1-13 of Semi-Interleaved HITON-PC algorithm (Figure 5) with the following steps 

instead of steps 6 and 7: 
 

(a) If there is no subset Z Í M such that Z|YT ^  
then 

(b) M ß M È {Y} 

(c) Else if Z exists and the following relations hold: YT /̂ , Z/̂T , YT |Z^  

(d) Record in Q that Y and Z contain equivalent information with respect to T 
 

2. Compute the Cartesian product of information equivalence relations for subsets of M that are 

stored in Q to construct multiple Markov boundaries of T 

3. Output multiple Markov boundaries of T 
 

Figure 12: iTIE∗ algorithm, presented as a modification of Semi-Interleaved HITON-PC. Similar

algorithms may be obtained by modification of other members of the GLL-PC algorith-

mic family (Aliferis et al., 2010a).

ity of TIE∗ with the IGS procedure and Semi-Interleaved HITON-PC becomes O(|V |2|M |+(N−
1)|V |2|M |), or equivalently O(N|V |2|M |).

Finally, in practice we use parameters max-card for IGS procedure in TIE∗ and max-k for Semi-

Interleaved HITON-PC to limit the number of conditional independence tests (see Appendix D).

Thus, complexity of TIE∗ with the IGS procedure becomes O(N|V ||M |max-card+1) when X= IAMB

and O(|V ||M |max-k +(N−1)|V ||M |max-card) when X = Semi-Interleaved HITON-PC.

4.5 A Simple and Fast Algorithm for Special Distributions

The TIE∗ algorithm allows to find all Markov boundaries when there are information equivalence

relations between arbitrary sets of variables. A simpler and faster algorithm can be obtained by

restricting consideration to distributions where all information equivalence relations follow from

context-independent information equivalence relations between individual variables. The resulting

algorithm is termed iTIE∗(which is an acronym for “Individual Target Information Equivalence”)

and is described in Figure 12. As can be seen, iTIE∗ can be described as a modification to Semi-

Interleaved HITON-PC (or GLL-PC in general).

Consider running the iTIE∗ algorithm on data D generated from the example causal Bayesian

network shown in Figure 13. The response variable T is directly caused by C, D, F. The underlying

distribution is such that variables A and C contain equivalent information about T; likewise variables

B and D contain equivalent information about T. iTIE∗ starts by executing Semi-Interleaved HITON-

PC with the modified steps 6 and 7. Assume that we are running the loop in steps 3-8 of Semi-

Interleaved HITON-PC and currently E = {C,D} and M = {A,B,F}; variables E and J were

eliminated conditioned on F in previous iterations of the loop. In step 4 of Semi-Interleaved HITON-

PC, the algorithm may select Y = C. Next the modified steps 6 and 7 of Semi-Interleaved HITON-PC

proceed as described in Figure 12, namely: 1(a) we find that a subset Z={A} renders T independent
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T 

F 

A 

C 

B 

D 

J 

E 

Figure 13: Graph of a causal Bayesian network used to trace the iTIE∗ algorithm. The network

parameterization is provided in Table 7 in Appendix B. The response variable is T . All

variables take values {0,1}. Variables A and C contain equivalent information about T

and are highlighted with the same color. Likewise, variables B and D contain equivalent

information about T and thus are also highlighted with the same color.

of Y = C; 1(c) T is marginally dependent on Y = C,T is marginally dependent on Z = {A}, and

Y = C renders T independent of Z = {A}, thus 1(d) we record in Θ that Y = C and Z = {A}
contain equivalent information with respect to T . In the next iteration of the loop in steps 3- 8 of the

modified Semi-Interleaved HITON-PC, we record in Θ that Y = D and Z = {B} contain equivalent

information with respect to T . The Backward phase in steps 9-13 of Semi-Interleaved HITON-PC

does not result in variable eliminations in this example, thus we have M = {A,B,F}. Finally, we

build Cartesian product of information equivalence relations for subsets of M that are stored in Θ

and obtain 4 Markov boundaries of T : {A,B,F},{A,D,F},{C,B,F}, and {C,D,F}.

The iTIE∗ algorithm correctly identifies all Markov boundaries under the following sufficient as-

sumptions: (a) all equivalence relations in the underlying distribution follow from context-independent

equivalence relations of individual variables, and (b) the assumptions of Theorem 12 hold. The

proof of correctness of iTIE∗ can be obtained from the proofs of Theorems 9 and 12 and Lemma

1.

It is also important to notice that in some cases iTIE∗ can identify all Markov boundaries even if

the above stated sufficient assumption (a) is violated; that is why we do not exclude the possibility

that Z can be a set of variables in steps 1(c,d) of iTIE∗. Consider a Bayesian network with the

graph C
ր A ց
ց B ր

T that is parameterized such that a variable C and the set of variables {A,B}

jointly contain context-independent equivalent information about T , and T is marginally dependent

on A,B,C. Thus, there are two Markov boundaries of T in the joint probability distribution: {C}
and {A,B}. Now consider a situation when iTIE∗ first admits {A,B} to M during execution of

the modified Semi-Interleaved HITON-PC or another instance of GLL-PC. Then the step 1(c) of

iTIE∗ will reveal that while T ⊥ C | {A,B}, the following relations hold T 6⊥ C, T 6⊥ {A,B}, and

T ⊥ {A,B} |C. Thus, the algorithm will identify that C and {A,B} contain equivalent information

about T and will correctly find all Markov boundaries in the distribution. However, if iTIE∗ first

admits C to M , then the algorithm will output only one Markov boundary of T that consists of
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a single variable C, because variables A and B, when considered separately, will be eliminated by

conditioning on C and no equivalence relations will be found.

Notice that unlike TIE∗, iTIE∗ does not rely on repeated invocation of a Markov boundary in-

duction algorithm and instead extends Semi-Interleaved HITON-PC by potentially performing at

most one additional independence test for each variable in V during the Forward phase, as shown

in Figure 12.8 This allows iTIE∗ to maintain computational complexity of the same order as Semi-

Interleaved HITON-PC, namely, O(|V |2|M |) conditional independence tests. As before, |M | de-

notes the average size of a Markov boundary and the above complexity bound assumes that the

size of a candidate Markov boundary obtained in the Forward phase is close to the size of a true

Markov boundary obtained at the end of the Backward phase (see Figure 5). In practical applica-

tions of iTIE∗, we also use parameter max-k that limits the maximum size of a conditioning test,

which brings complexity of iTIE∗ to O(|V ||M |max-k). Interestingly, iTIE∗ can efficiently identify

all Markov boundaries in the distribution shown in Figure 2. This is due to the fact that the distribu-

tion in Figure 2 satisfies the assumption underlying iTIE∗ (i.e., that all information equivalences in

a distribution follow from context-independent equivalences between individual variables) and thus

allows it to capture all equivalence relationships between variables within groups in a single run

of the Forward phase of the modified Semi-Interleaved HITON-PC. All Markov boundaries in the

example in Figure 2 can then be reconstructed by taking the Cartesian product over sets of variables

found to be equivalent with respect to T in step 2 of iTIE∗ (Figure 12).

For experiments reported in this work, we implemented and ran iTIE∗ based on the Causal

Explorer code of Semi-Interleaved HITON-PC (Aliferis et al., 2003b; Statnikov et al., 2010) with

values of parameters and statistical tests of independence that are described in Appendix D.

5. Empirical Experiments

In this section, we present experimental results obtained by applying methods for learning multiple

Markov boundaries and variable sets on simulated and real data. The evaluated methods and their

parameterizations are shown in Table 9 in Appendix E. These methods were chosen for our evalua-

tion as they are the current state-of-the-art techniques for discovery of multiple Markov boundaries

and variable sets. In order to study the behavior of these methods as a function of parameter set-

tings, we considered several distinct parameterizations of each algorithm. In cases when parameter

settings have been recommended by the authors of a method, we included these settings in our

evaluation. A detailed description of parameters of prior methods for induction of multiple Markov

boundaries and variable sets is provided in Appendix C.

All experiments involving assessment of classification performance were executed by hold-

out validation or cross-validation (see below), whereby Markov boundaries and variable sets are

discovered in a training subset of data samples (training set), classification models based on the

above variables are also developed in the training set, and the reported performance of classifica-

tion models is estimated in an independent testing set. Assessment of classification performance

of the extracted Markov boundaries and variable sets was done using Support Vector Machines

(SVMs) (Vapnik, 1998). We chose to use SVMs due to their excellent empirical performance across

a wide range of application domains (especially with high-dimensional data and relatively small

sample sizes), regularization capabilities, ability to learn both simple and complex classification

8. This is a test T ⊥ Z | Y . Other necessary tests T 6⊥ Y and T 6⊥ Z have been previously computed in step 4 of

Semi-Interleaved HITON-PC algorithm, and their results can be retrieved from the cache.
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functions, and tractable computational time (Cristianini and Shawe-Taylor, 2000; Schölkopf et al.,

1999; Shawe-Taylor and Cristianini, 2004; Vapnik, 1998). When the response variable was multi-

class, we applied SVMs in one-versus-rest fashion (Schölkopf et al., 1999). We used libSVM v.2.9.1

(http://www.csie.ntu.edu.tw/˜cjlin/libsvm/) implementation of SVMs in all experiments

(Fan et al., 2005). Polynomial kernels were used in SVMs as they have shown good classification

performance across the data domains considered in this study. The degree d of the polynomial ker-

nel and the penalty parameter C of SVM were optimized by cross-validation on the training data.

Each variable in a data set was scaled to [0,1] range to facilitate SVM training. The scaling constants

were computed on the training set of samples and then applied to the entire data set.

All experiments presented in this section were run on the Asclepius Compute Cluster at the Cen-

ter for Health Informatics and Bioinformatics (CHIBI) at New York University Langone Medical

Center (http://www.nyuinformatics.org) and the Advanced Computing Center for Research

and Education (ACCRE) at Vanderbilt University (http://www.accre.vanderbilt.edu/). For

comparative purposes all experiments used exclusively the latest generation of Intel Xeon Nehalem

(x86) processors. Overall, it took >50 years of single CPU time to complete all reported experi-

ments.

5.1 Experiments with Simulated Data

Below we present an evaluation of methods for extraction of multiple Markov boundaries and vari-

able sets in simulated data. Simulated data allows us to evaluate methods in a controlled setting

where the underlying causal process and all Markov boundaries of the response variable T are

known exactly. Two data sets were used in this evaluation. One of these data sets, referred to as

T IED, was previously used in an international causality challenge (Statnikov and Aliferis, 2010b).

T IED contains 30 variables, including the response variable T. The underlying causal graph and

its parameterization are given in the work by Statnikov and Aliferis (2010b). There are 72 distinct

Markov boundaries of T . Each Markov boundary contains 5 variables: variable X10 and one vari-

able from each of the four subsets {X1,X2,X3,X11}, {X5,X9}, {X12,X13,X14} and {X19,X20,X21}.
Another simulated data set, referred to as T IED1000, contains 1,000 variables in total and was

generated by the causal process of T IED augmented with an additional 970 variables that have no

association with T. T IED1000 has the same set of Markov boundaries of T as T IED. T IED1000

allows us to study the behavior of different methods for learning multiple Markov boundaries and

variable sets in an environment where the fraction of variables carrying relevant information about

T is small.

For each of the two data sets, 750 observations were used for discovery of Markov bound-

aries/variable sets and training of the SVM classification models of the response variable T (with

the goal to predict its values from the inferred Markov boundary variables), and an independent

testing set of 3,000 observations was used for evaluation of the models’ classification performance.

All methods for extracting multiple Markov boundaries and variable sets were assessed based

on the following six performance criteria:

I. The number of distinct Markov boundaries/variable sets output by the method.

II. The average size of an output Markov boundary/variable set (number of variables).
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III. The number of true Markov boundaries identified exactly, that is, without false positives and

false negatives.9

IV. The average Proportion of False Positives (PFP) in the output Markov boundaries/variable

sets.10

V. The average False Negative Rate (FNR) in the output Markov boundaries/variable sets.11

VI. The average classification performance (weighted accuracy) over all output Markov bound-

aries/variable sets.12 We also compared the average classification performance of the SVM models

with the maximum a posteriori classifier in the true Bayesian network (denoted as MAP-BN) using

the same data sample.

Technical details about computing performance criteria III-V are given in Appendix E.

The results presented in Figure 14 in the manuscript, and Tables 10 and 11 and Figure 19 in

Appendix E show that only TIE∗ and iTIE∗ identified exactly all and only true Markov boundaries

of T in both simulated data sets, and their classification performance with the SVM classifier was

statistically comparable to performance of the MAP-BN classifier. None of the comparator methods,

regardless of the number of Markov boundaries/variable sets output, were able to identify exactly

any of the 72 true Markov boundaries, except for Resampling+RFE (without statistical comparison)

and IR-HITON-PC that identified exactly 1-2 out of 72 true Markov boundaries, depending on the

data set. Overall prior methods had either large proportion of false positives or large false negative

rate, and often their classification performance was significantly worse that the performance of the

MAP-BN classifier. However, in some cases the classification performance of other methods was

comparable to the MAP-BN classifier, regardless of the number of Markov boundaries identified

exactly. This can be attributed to (i) the relative insensitivity of the SVM classifiers to false positives,

(ii) connectivity in the underlying graph that compensates false negatives with other weakly relevant

variables, and (iii) differences between the employed classification performance metric (weighted

accuracy) and the metric which is maximized by the Markov boundary variables (that requires

accurate estimation of P(T |V \{T}), which is a harder task than maximizing proportions of correct

classification in the weighted accuracy metric). Thus, we remind the reader that a high classification

performance is often a necessary but not sufficient condition for correct identification of Markov

boundaries. Detailed discussion of the performance of comparator methods is given in Appendix E.

5.2 Experiments with Real Data

For evaluation of methods for learning multiple Markov boundaries and variable sets in real data, we

used 13 data sets that cover a broad range of application domains (clinical outcome prediction, gene

expression, proteomics, drug discovery, text categorization, digit recognition, ecology and finance),

dimensionalities (from 86 to over 100,000), and sample sizes (from hundreds to thousands) that are

representative of those appearing in practical applications. These data sets have recently been used

9. False positives are variables that do not belong to any true Markov boundary of T in the causal graph, but are

included in a Markov boundary/variable set extracted by some method. False negatives are variables that belong to a

true Markov boundary of T , but are absent in the extracted Markov boundary/variable set.

10. PFP is the number of false positives in an output Markov boundary/variable set divided by its size.

11. FNR is the number of false negatives in an output Markov boundary/variable set divided by the size of the true

Markov boundary.

12. Given that the response variable T had four possible values, classification performance was measured by the weighted

accuracy metric that allows to measure classification performance independent of class priors and can be applied to

multiclass responses (Guyon et al., 2006). In brief, weighted accuracy is obtained by computing proportion of correct

classifications in each class and combining these proportions by weighting using prior probabilities in each class.
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Figure 14: Results for average classification performance (weighted accuracy), average false neg-

ative rate, and average proportion of false positives that were obtained in TIED (top

figure) and TIED1000 (bottom figure) data sets. The style and color of a vertical line

connecting each point with the plane shows whether the average SVM classification

performance of a method is statistically comparable with the MAP-BN classifier in the

same data sample (red solid line) or not (black dotted line). The Pareto frontier was

constructed based on the average false negative rate and the average proportion of false

positives over the comparator methods (i.e., non-TIE∗). Results of TIE∗ and iTIE∗ were

identical in both data sets.
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in a broad benchmark (Aliferis et al., 2010a) of the current state-of-the-art single Markov boundary

induction and feature selection methods, which is another reason why we chose to use the same data

in this study. The data sets are described in detail in Table 12 in Appendix E. The data sets were

preprocessed (imputed, discretized, etc.) as described in the work by Aliferis et al. (2010a).

In data sets with relatively large sample sizes (> 600), classification performance of the output

Markov boundaries and variable sets was estimated by holdout validation with 75% of samples used

for Markov boundary/variable set induction and SVM classifier training, and the remaining 25% of

samples used for estimation of classification performance. In small-sample data sets, 10- fold cross-

validation was used instead. Markov boundary/variable set induction and classifier training were

both performed on the training sets from the 10-fold cross-validation design, with classification

performance being subsequently estimated on the respective testing sets.

Evaluation of Markov boundary/variable selection methods in real data is challenging due to the

lack of knowledge of the true Markov boundaries. In practical applications, however, the interest

typically lies in the most compact subsets of variables that give the highest classification perfor-

mance for reasonable and widely used classifiers (Guyon and Elisseeff, 2003). This consideration

motivated the following two primary evaluation criteria (with the averages taken over all Markov

boundaries/variable sets output by each method):

I. The average Proportion of Variables (PV) in the output Markov boundaries/variable sets.13

II. The average classification performance (AUC) of the output Markov boundaries/variable

sets.14

In addition to the above two primary criteria, in some problems we are also interested in ex-

tracting as many of the maximally compact and predictive variable sets (i.e., optimal solutions to

the variable selection problem) as possible. Therefore, we also considered a third criterion in our

evaluation:

III. The number of distinct Markov boundaries/variable sets output by each method (N).

We note that criterion I (PV) on its own can be optimized independently of the actual classi-

fication problem by taking small subsets of variables (e.g., 1 or 2 variables in each subset) to be

the presumed Markov boundaries of the response variable T . Criterion I may therefore be biased

towards methods that output Markov boundaries/variable sets of a user-defined size (e.g., some pa-

rameterizations of EGS-NCMIGS). Similarly, criterion III (N) can be maximized independently of

the response T by simply taking all 2|V |−1−1 non-empty subsets of the variable set V \{T} to be

the presumed Markov boundaries of T . This criterion could be potentially biased towards Markov

boundary/variable set extraction methods that output a number of Markov boundaries specified by

a user-defined parameter (e.g., EGSG) rather than by a data driven process (e.g., TIE∗). Criterion

II (AUC) served as a modulator for criteria I and III, because high performance on the latter two

criteria does not necessarily imply high classification performance.

We also ranked all methods on each of the three criteria averaged over all 13 real data sets, as

described in Appendix E. The ranks incorporated permutation-based statistical comparison of differ-

ence in the performance of algorithms, in order to ensure that methods with statistically comparable

performance receive the same rank.

13. The PV of an output Markov boundary/variable set measures its compactness and is defined as the number of variables

in the output Markov boundary/variable set divided by the total number of variables in the data set.

14. Classification performance was measured using area under ROC curve (AUC) (Fawcett, 2003), because all response

variables were binary.
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Finally, given ranks on the individual criteria I (PV) and II (AUC), we defined a combined (PV,

AUC) ranking criterion which reflects the ability of methods to find Markov boundaries in real data.

This is because Markov boundaries are expected to maximize performance of the classifiers with

universal approximation capabilities (maximize AUC of SVMs in our study) and be of minimal size

(minimize PV in our study) (Tsamardinos and Aliferis, 2003). The combined (PV, AUC) criterion

was defined as follows: First, the ranks on the individual criteria PV and AUC were normalized to

the [0,1] interval to account for varying rank ranges that resulted from ties in performance. Second,

the normalized ranks on the two criteria were averaged. Third, the resulting averages were used to

establish a new ranking of methods, aided by a permutation-based testing approach to ensure that

methods with statistically comparable performance receive the same rank (see Appendix E).

Other alternative combined (PV, AUC) ranking criteria, for example, one that performs ranking

based on some combination of raw PV and AUC scores, can also be used for performance assess-

ment in our study. We have confirmed that the best performing method remains the same when

either combining normalized ranks of PV and AUC (our criterion) or raw scores of PV and AUC

(alternative criterion) by an average function. This can be evidenced from Figure 15 and Tables 3

and 4 which are discussed below.

The results of experiments are presented in Figure 15 and Tables 3 and 4.15 Figure 15 shows a 2-

dimensional plot of PV versus AUC and a 3-dimensional plot of PV versus AUC versus the number

of extracted distinct Markov boundaries or variable sets (N). Each point in Figure 15 corresponds to

the results of one of the methods considered in this evaluation, averaged over all 13 data sets. The

Pareto frontier shown in Figure 15 was constructed based on the two primary evaluation criteria

PV and AUC over the prior methods (i.e., non-TIE∗). Methods on the Pareto frontier are such that

no other non-TIE∗ method had both lower PV and higher AUC when averaged over all data sets.

For ease of visualization, results on all variables (i.e., without variable selection) were omitted from

Figure 15. When all variables were used for classification, the average PV and AUC were 100% and

0.902, respectively. These results did not alter the Pareto set of prior methods in Figure 15 and are

reported in Table 13, 14 and 15 in Appendix E. The results averaged over all data sets are shown

in Table 3. The results for all methods in each data set individually are presented in Table 13, 14

and 15 in Appendix E. Ranks of the methods were computed as described above and are shown in

Table 4.

As can be seen in Figure 15 and Tables 3 and 4, none of the prior methods had both more com-

pact Markov boundaries or variable sets (lower PV) and better classification performance (higher

AUC) than TIE∗. This is evidenced by TIE∗s performance laying beyond the Pareto frontier con-

structed over the prior methods in Figure 15. While a few methods had comparable or slightly higher

AUC (Table 3), their Markov boundaries or variable sets were substantially larger with the average

PV reaching as high as 41% (see Resampling+UAF in Table 3). In contrast, Markov boundaries

output by TIE∗ were much more compact with an average PV of 2.3%. On the other hand, methods

that had PV lower than TIE∗ also had lower AUC. KIAMB, for example, had a PV of 1% and an

AUC of about 0.8, which was 7-8% lower than the AUC of TIE∗. Overall, TIE∗ ranked first out of

15 on the combined (PV, AUC) criterion. Please see Appendix E for a detailed discussion of the

results of prior methods.

It is worth noting that use of the AUC metric for verification of Markov boundaries in the Pre-

dictivity criterion of TIE∗ can result in some spurious multiplicity of the output Markov boundaries.

15. We did not include iTIE∗ in this comparison, because we anticipated that it will be outperformed by TIE∗ due to its

broader distributional assumptions than the ones of iTIE∗.
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Figure 15: Average performance of the evaluated methods across 13 real data sets. The Pareto

frontier was constructed based on the average proportion of variables and the average

AUC over the prior methods (i.e., non-TIE∗). Detailed results are provided in Tables 3

and 4.
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Method 
Average 

N PV AUC 

TIE* max-k = 3, a = 0.05 1993 0.023 0.872 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 1688 0.010 0.804 

Number of runs = 5000, a = 0.05, K = 0.8 1552 0.010 0.806 

Number of runs = 5000, a = 0.05, K = 0.9 1461 0.010 0.807 

EGS-NCMIGS 

l = 7, d = 0.015 6 0.007 0.783 

l = 7, K = 10 5 0.019 0.853 

l = 7, K = 50 3 0.095 0.865 

l = 5000, d = 0.015 3402 0.008 0.787 

l = 5000, K = 10 3395 0.019 0.849 

l = 5000, K = 50 3364 0.095 0.864 

EGS-CMIM 

l = 7, K = 10 4 0.019 0.852 

l = 7, K = 50 3 0.095 0.872 

l = 5000, K = 10 3394 0.019 0.847 

l = 5000, K = 50 3363 0.095 0.869 

EGSG 

Number of Markov boundaries = 30, t = 5 30 0.024 0.788 

Number of Markov boundaries = 30, t = 10 30 0.024 0.768 

Number of Markov boundaries = 30, t = 15 30 0.024 0.741 

Number of Markov boundaries = 5,000, t = 5 4634 0.024 0.785 

Number of Markov boundaries = 5,000, t = 10 4879 0.024 0.768 

Number of Markov boundaries = 5,000, t = 15 4936 0.024 0.743 

Resampling+RFE 
without statistical comparison 4896 0.168 0.892 

with statistical comparison (a = 0.05) 4371 0.047 0.868 

Resampling+UAF 
without statistical comparison 4033 0.409 0.900 

with statistical comparison (a = 0.05) 3548 0.237 0.885 

IR-HITON-PC max-k = 3, a = 0.05 5 0.023 0.865 

IR-SPLR 
without statistical comparison 7 0.149 0.881 

with statistical comparison (a = 0.05) 20 0.108 0.855 
 

Table 3: Number of distinct Markov boundaries or variable sets identified by the evaluated meth-

ods (N), proportion of variables in them (PV) and their classification performance (AUC)

averaged across all 13 real data sets for each method. The color of highlighting signifies

relative performance on each criterion with dark red corresponding to the best performance

and light yellow to the worst. See Table 4 for ranks of methods that also incorporate formal

statistical comparison of the observed differences between methods.

This can happen due to a possible mismatch between subsets of variables that lead to maximization

of the AUC metric for a given classifier and those that render the response variable T conditionally

independent of all other variables (thus effectively optimizing a metric that requires accurate estima-

tion of P(T | V \{T})). Consider an example where only a subset of variables from some Markov

boundary is sufficient to obtain the same AUC as the entire Markov boundary. Suppose there are

in total five variables {A,B,C,D,T} in the data set and M 1 = {A,B,C,D} is the only Markov

boundary of the response variable T. Suppose also that the subset M 2 = {A,B,C} yields the same

classification performance as the Markov boundary M 1 according to the AUC metric. Once TIE∗

discovers the Markov boundary M 1 = {A,B,C,D}, it will consider removing {D}, as well as other
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subsets of M 1, to discover other possible Markov boundaries. After removing subset {D} from the

data, TIE∗ would identify M 2 = {A,B,C} as a candidate Markov boundary to be verified by the

Predictivity criterion. Because M 1 and M 2 have the same classification performance (AUC), M 2

will be admitted as a Markov boundary by the Predictivity criterion. In order to control for possible

presence of such spurious Markov boundaries in the output of TIE∗, we performed an additional

analysis of its output whereby for each data set, we considered only those Markov boundaries that

were not proper subsets of any other Markov boundary extracted by TIE∗ in the same data set. We

refer to such Markov boundaries as minimal. The average number of minimal Markov boundaries

identified by TIE∗ was 1,484 (versus the average number of all Markov boundaries identified by

TIE∗ equal to 1,993). The average size (2.3% PV) and classification performance (0.872 AUC)

of the minimal Markov boundaries were statistically indistinguishable from the results obtained on

all Markov boundaries identified by TIE∗ and so were the ranks on the PV, AUC and (PV, AUC)

criteria.

In summary, TIE∗ extracted multiple compact Markov boundaries with high classification per-

formance and surpassed all other methods on the combined (PV, AUC) criterion. Since the data-

generative process in experiments with real data sets is unknown, a question that arises is: do

multiple Markov boundaries exist in real data? Prior work using the same data has established

that performance patterns of single Markov boundaries identified by Semi-Interleaved HITON-PC

(an instantiation of the GLL framework) are highly consistent with the Markov boundary induc-

tion theory and that GLL algorithms dominated an extensive panel of prior state-of-the-art Markov

boundary and variable selection methods in terms of compactness and classification performance

(Aliferis et al., 2010a). In this paper, we showed that TIE∗ parameterized with Semi-Interleaved

HITON-PC as the base Markov boundary induction algorithm was able to identify multiple com-

pact Markov boundaries with consistently high classification performance in real data. For example,

in the ACPJ Etiology data set, TIE∗ identified 5,330 distinct Markov boundaries (and 4,263 mini-

mal ones) that on average contained 18 variables out of 28,228 and had an AUC of 0.91. Out of all

prior methods for learning multiple Markov boundaries and variable sets applied to the same data

set, Resampling+UAF had the highest classification performance with an AUC of 0.93, which was

statistically non-distinguishable from TIE∗, while variable sets extracted by Resampling+UAF, on

average, were more than two orders of magnitude larger and contained 3,883 variables. A similar

pattern can be observed in the Dexter data set where TIE∗ identified 4,791 distinct Markov bound-

aries (and 3,498 minimal ones) with an average size of 17 variables out of 19,999 and an AUC of

0.96. The best performer among prior methods in the same data was EGS-CMIM with Markov

boundaries containing 50 variables each and an average AUC of 0.98, the latter being statistically

non-distinguishable from TIE∗. The compactness of Markov boundaries extracted by TIE∗ coupled

with their high classification performance provides strong evidence that there are indeed multiple

Markov boundaries in many real-life problem domains.

6. Discussion

This section summarizes main findings, reiterates key principles of TIE∗ efficiency, demonstrates

how the generative algorithm TIE∗ can be configured for optimal results, presents limitations of this

study, and outlines directions for future research.
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Method 
Rank 

N PV AUC (PV, AUC) 

TIE* max-k = 3, a = 0.05 4 5 2 1 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 4 2 4 5 

Number of runs = 5000, a = 0.05, K = 0.8 4 2 4 5 

Number of runs = 5000, a = 0.05, K = 0.9 4 2 4 5 

EGS-NCMIGS 

l = 7, d = 0.015 6 1 4 3 

l = 7, K = 10 6 5 3 6 

l = 7, K = 50 6 9 3 11 

l = 5000, d = 0.015 3 2 4 5 

l = 5000, K = 10 3 4 3 4 

l = 5000, K = 50 3 9 3 11 

EGS-CMIM 

l = 7, K = 10 6 5 3 6 

l = 7, K = 50 6 9 2 8 

l = 5000, K = 10 3 3 3 2 

l = 5000, K = 50 3 9 2 8 

EGSG 

Number of Markov boundaries = 30, t = 5 5 6 4 10 

Number of Markov boundaries = 30, t = 10 5 6 4 10 

Number of Markov boundaries = 30, t = 15 5 6 5 13 

Number of Markov boundaries = 5,000, t = 5 2 9 4 14 

Number of Markov boundaries = 5,000, t = 10 2 8 4 12 

Number of Markov boundaries = 5,000, t = 15 1 7 5 15 

Resampling+RFE 
without statistical comparison 2 10 2 9 

with statistical comparison (a = 0.05) 2 9 3 11 

Resampling+UAF 
without statistical comparison 3 11 1 7 

with statistical comparison (a = 0.05) 3 10 2 9 

IR-HITON-PC max-k = 3, a = 0.05 6 5 3 6 

IR-SPLR 
without statistical comparison 6 10 2 9 

with statistical comparison (a = 0.05) 5 9 3 11 
 

Table 4: Ranks of methods based on individual and combined criteria. Smaller ranks correspond

to better methods according to each criterion. As described in text, ranks were obtained

using formal statistical comparison of the observed differences between methods; that is

why they do not necessarily range between 1 and 27 (total number of tested methods).

6.1 Main Findings

There are two major contribution of this study. First, we presented TIE∗, a generative anytime al-

gorithm for discovery of multiple Markov boundaries. TIE∗ is sound under well-defined sufficient

conditions and can be practically applied to high-dimensional data sets with relatively small sample.

We performed a theoretical analysis of the algorithm correctness and derived estimates of its com-

putational complexity. To make our paper valuable for practitioners, we provided several specific

instantiations of the generative algorithm TIE∗ and described their implementation details.

Second, we conducted an empirical comparison of TIE∗ with 26 state-of-the-art methods for

discovery of multiple Markov boundaries and variable sets. The empirical study was performed on

2 simulated data sets with exactly known Markov boundaries and 13 real data sets from a diversity
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of application domains. We found that unlike prior methods, TIE∗ identifies exactly all true Markov

boundaries in simulated data, and in real data it yields Markov boundaries with simultaneously

better classification performance and smaller number of variables compared to prior methods.

Other notable contributions of this work include: (i) developing a deeper theoretical understand-

ing of distributions with multiple Markov boundaries of the same variable (Sections 2.2-2.4), (ii)

theoretical analysis of prior state-of-the-art algorithms for discovery of multiple Markov boundaries

and variable sets (Appendix C), (iii) a novel simple and fast algorithm iTIE∗ for learning multiple

Markov boundaries in special distributions (Section 4.5), and (iv) evidence that multiple Markov

boundaries exist in real data (Section 5.2).

6.2 Key Principles of TIE∗ Efficiency

We will illustrate key principles of TIE* efficiency using a simple example. Consider a distri-

bution that spans over variables M = {T,X1,X2,X3,X4,X5,Y1,Y2,Z1, . . . ,Z1000} and contains two

Markov boundaries of T : M 1 = {X1,X2,X3,X4,X5} and M 2 = {X1,X2,X3, X4,Y1,Y2}, because X5

and {Y1,Y2} contain context-independent equivalent information about T . Assuming that we can

apply a standard single Markov boundary induction algorithm to identify M 1, one naive approach

to discover multiple Markov boundaries in this distribution is to exhaustively consider whether a

variable subset in M 1 can be substituted with a variable subset in V \M 1 \ {T} to obtain a new

Markov boundary. In this example we will have to substitute 31 non-empty subsets in M 1 with

approximately 21002− 1 non-empty subsets of V \M 1 \ {T} (the latter number being orders of

magnitude larger than the number of atoms in the universe). This approach is clearly computation-

ally prohibitive in high-dimensional data sets. The first core efficiency principle in TIE∗ is to avoid

explicit search of all possible subsets of V \M 1 \ {T} and repeatedly run a fast Markov boundary

induction algorithm on the data for variables in V \G, where G is a subset of the previously found

Markov boundaries. In the example stated above, this would lead to running a Markov bound-

ary induction algorithm 27 = 128 times (because there are 7 members in the union of all Markov

boundaries) to find all Markov boundaries that exist in the distribution. The second core efficiency

principle in TIE∗ dictates to consider removing from V only certain subsets G of the previously

found Markov boundaries. Specifically, we consider only subsets G that do not include a subset

of variables G∗ (i.e., G∗ 6⊂ G) that did not result in discovery of a Markov boundary when the

Markov boundary induction algorithm has been previously run on the data for variables in V \G∗.
Coupled with the heuristic to first generate subsets G of the smallest size, this principle can signif-

icantly decrease the number of runs of the Markov boundary induction algorithm. In the example

stated above, this principle as exemplified in IGS procedure would lead to running a single Markov

boundary induction algorithm only 8 times in order to find all Markov boundaries that exist in the

distribution. Specifically, we will have to consider G = ⊘,{X1},{X2},{X3},{X4},{X5},{X5,Y1},
and {X5,Y2}. We would not need to consider G = {X1,X2} because its subset (G∗ = {X1} or {X2})
did not lead to discovery of any Markov boundary when the algorithm was run on the data for vari-

ables in V \ G∗ . Finally, since very fast single Markov boundary induction algorithms have been

recently introduced (Aliferis et al., 2010a, 2003a; Peña et al., 2007; Tsamardinos et al., 2003a,b),

the overall TIE∗ operation is very fast.
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Figure 16: Graph of a causal Bayesian network used to trace the TIE∗ algorithm. The network

parameterization is provided in Table 8 in Appendix B. The response variable is T . All

variables take values {0,1}. Variables that contain equivalent information about T are

highlighted with the same color, for example, variables X1 and X5 provide equivalent

information about T ; variable X9 and each of the four variable sets {X5,X6}, {X1,X2},
{X1,X6}, {X5,X2} provide equivalent information about T .

6.3 The Generative Nature of TIE∗ Allows to Configure the Algorithm for Optimal Results

TIE∗ is a generative algorithm that can be instantiated differently for different distributions. For

example, distributions that violate the local composition property with respect to T for members

of Markov boundaries (e.g., when T is defined as a parity function of its Markov boundary mem-

bers that are unrelated and have balanced priors) are incompatible with the assumptions of Markov

boundary induction algorithms IAMB and Semi-Interleaved HITON-PC that were considered in

this work. The generative nature of TIE∗ suggests to use an admissible Markov boundary induction

algorithm that is suitable for the distribution at hand.

Consider running TIE∗ algorithm on data D generated from the example causal Bayesian net-

work shown in Figure 16. There are 25 distinct Markov boundaries of T in this distribution. Each

of these Markov boundaries contains 3 or 5 variables: (i) X9 or {X5,X6} or {X1,X2} or {X1,X6} or

{X5,X2}, (ii) X10, and (iii) X11 or {X7,X8} or {X3,X4} or {X3,X8} or {X7,X4}. The local composition

property with respect to T is violated here because T = XOR(X9,X10,X11). To illustrate applica-

bility to such distributions, we ran TIE∗ with a Markov boundary induction algorithm SVM-FSMB

(Brown et al., 2012; Tsamardinos and Brown, 2008) as input component X and Y = IGS-Lex, Z =

Predictivity. In brief, SVM-FSMB works by first extracting features from the polynomial SVM fea-

ture space that have largest SVM weights and then running a Markov boundary induction algorithm

Semi-Interleaved HITON-MB in the SVM feature space on the constructed features. This allows

SVM-FSMB to circumvent the requirement for the local composition property. We found that in a

sufficiently large sample size (≥ 2,000), TIE∗ can discover all 25 true Markov boundaries with only

1 false positive in each extracted Markov boundary. This showcases how the generative nature of

TIE∗ allows to optimally configure the algorithm for the distribution at hand.
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6.4 Limitations and Open Problems

The empirical evaluation of TIE∗ performed in this study used 13 real data sets from a diversity

of application domains and provided evidence about existence of multiple Markov boundaries in

real-life data, primarily based on compactness of output variable sets and high classification perfor-

mance. The absence of knowledge about the true Markov boundaries in real data sets is a limitation

of the study, which is in our opinion mitigated by strong empirical evidence for existence of multiple

Markov boundaries.

Related to the above, the present work does not address the source of multiplicity of Markov

boundaries induced in real data. In other words, we do not separate intrinsic multiplicity of Markov

boundaries (that exists in the underlying probability distribution) from apparent multiplicity due to

various factors including (but not limited to) small sample size, hidden variables, correlated mea-

surement noise, and artifacts of normalization and/or data pre-processing (Statnikov and Aliferis,

2010a).

Also, as we have pointed out, the use of the AUC metric for verification of Markov boundaries

in the Predictivity criterion of TIE∗ can result in a small percentage of spurious Markov boundaries

in the output of the algorithm. This can happen due to a possible mismatch between subsets of

variables that lead to maximization of the AUC metric for a given classifier and those that render

the response variable T conditionally independent of all other variables (thus effectively optimizing

a metric that requires accurate estimation of P(T | V \{T})). In this paper we experimented with

one approach to reduce spurious multiplicity of TIE∗ by filtering extracted Markov boundaries to the

minimal ones. A more conventional approach to this problem is to augment the Markov boundary

induction method with an additional backward wrapping step (Aliferis et al., 2010a; Kohavi and

John, 1997). However, backward wrappers are prone to overfitting because they evaluate a large

number of classifier models with various variable subsets (Aliferis et al., 2010a), thus negatively

affecting generalizability of TIE∗. We have conducted preliminary experiments with a backward

wrapping method applied on 13 real data sets, and indeed the results revealed a significant reduction

in classification performance, as theoretically expected. We believe that it is still worthwhile to

explore more sophisticated wrapping strategies (especially ones that guard against overfitting) in

order to optimize the output of a Markov boundary inducer for a specific performance metric and

classifier.

Finally, another limitation of this study is that we included in empirical experiments both al-

gorithms for discovery of multiple Markov boundaries and algorithms for discovery of multiple

variable sets. Even though the latter family of algorithms are not theoretically designed for Markov

boundary induction, many researchers use them (Pellet and Elisseeff, 2008). This motivated us to

include in our study methods for selection of multiple variable sets.

6.5 Directions for Future Research

In addition to addressing open problems outlined in the previous subsection, there are several

promising directions for future research.

First, it is interesting to routinely apply TIE∗ to discover multiple Markov boundaries in various

application domains. This would allow one to learn whether some problem domains are more prone

to multiplicity of Markov boundaries than others. These results would instruct data-analysts about

potential existence of many more solutions and can form guidelines for performing analysis in such

data.
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Second, it is important to extend existing causal graph discovery methods to take into account

violations of the intersection property that lead to multiple Markov boundaries. For example, recent

work was able to modify the PC algorithm to account for information equivalence relations between

variables (Lemeire et al., 2010). However, many more algorithms remain to be improved upon.

Third, a useful direction for future research is to improve computational efficiency and run time

of TIE∗ by using high-performance computers with parallel and/or distributed architectures. We

have previously designed parallel versions of Markov boundary induction algorithms (Aliferis et al.,

2010b, 2002) and in some cases were able to achieve more than linear increase of computational

efficiency. At face value, this suggests that modifications of TIE∗ that run on parallel/distributed

architectures can discover multiple Markov boundaries in domains where TIE∗’s run time was pro-

hibitive.
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Appendix A. Proofs of Theorems and Lemmas

Proof Lemma 1 : Assume that M ∩M new = N . Then it follows that M=N ∪ Y and M new =

N∪Z. Since M is a Markov blanket, T ⊥ (V \{T}\(N ∪Y )) | (N ∪Y ). By the self-conditioning

property, it follows that T ⊥ (V \{T}) | (N ∪Y ). The previous independence relation is equiv-

alent to T ⊥ ((V \{T}\Z)∪Z) | (N ∪Y ). By the weak union property, T ⊥ (V \{T}\Z) |
(N ∪Y ∪Z). By the self-conditioning property, T ⊥ (V \{T}) | (N ∪Y ∪Z). Equivalently,

we can rewrite the previous relation as T ⊥ (V \{T}) | ((N ∪Y )∪ (N ∪Z)). Since Z and Y

provide context independent equivalent information about T and by the self-conditioning property

T ⊥ (N ∪Y ) | (N ∪Z). By the contraction property, T ⊥ (V \{T}) | ((N ∪Y )∪ (N ∪Z)) and

T ⊥ (N ∪Y ) | (N ∪Z) imply that T ⊥ ((V \{T})∪ (N ∪Y )) | (N ∪Z). This is equivalent to

T ⊥ (V \{T}) | (N ∪Z). By the decomposition property this implies that M new =N ∪Z is also

a Markov blanket of T . (Q.E.D.)

Proof Lemma 2 : By definition of the Markov blanket, T ⊥ (V \M\{T}) |M . By the self-

conditioning property, it follows that T ⊥ (V \{T}) |M . Since (V \{T}) = (V \{T})∪M new

and according to the weak union property, T ⊥ (V \{T}\M new) | (M ∪M new). By the self-

conditioning property, it follows that T ⊥ (V \{T}) | (M ∪M new). Since T ⊥M |M new and

T ⊥ (V \{T}) | (M ∪M new), the contraction property implies that T ⊥ ((V \{T})∪M) |M new.

Next, since (V \{T}) = (V \{T})∪M , it follows that T ⊥ (V \{T}) |M new. By the decomposi-

tion property this implies that M new is a Markov blanket of T . (Q.E.D.)

536



DISCOVERY OF MULTIPLE MARKOV BOUNDARIES

Proof Theorem 6 : Given an ancestral graph G = < V ,E >, let M denote the set containing all

parents and children of T and every variable X connected to T by a path from T to X in G such that:

(i) the first edge on the path is either bi-directed or away from T , (ii) all other edges except the last

are bi-directed, and (iii) the last edge is either bi-directed or is away from X . Note that spouses of

T satisfy the above conditions and are therefore included in M .

We first show that set M m-separates T and every other variable Y ∈ V \M\{T}. To see this,

suppose that M does not m-separate T from some variable Y ∈V \M\{T}. Then, there must exist

a path p connecting Y and T that is not blocked by M . By definition of M , Y cannot be directly

connected to T and not be in M . Additionally, path p cannot be through parents of T , its spouses,

or parents of variables connected to T or its children by bi-directed paths, because any such variable

would act as a non-collider that is in M and would therefore block the path p. The only remaining

possibility is for path p to contain a variable X ∈V \M\{T} that is a child of a variable Z ∈M that

is either (i) a child of T , or (ii) connected to T by a bi-directed path, or (iii) connected to a child of T

by a bi-directed path. However, in this case, variable Z would be a non-collider on path p and would

therefore block it. It follows that set M m-separates T and every other variable Y ∈ V \M\{T}.

From the definition of the global Markov condition it follows that every m-separation relation in

G implies conditional independence in every joint probability distribution P that satisfies the global

Markov condition for G. Thus, we have T ⊥ Y |M in P for every variable Y ∈ V \M\{T}, from

which it follows that M is a Markov blanket of T . (Q.E.D.)

Proof Theorem 7 : First we prove that any Markov blanket of T is an optimal predictor of T . If

M is a Markov blanket of T , then by definition it is the optimal predictor of T because P(T |M)
= P(T | V \{T}) and this distribution can be accurately approximated by L, which implies that M

will be maximized.

Now we prove that any optimal predictor of T is a Markov blanket of T . Assume that X ⊆
V \{T} is an optimal predictor of T but it is not a Markov blanket of T . This implies that,

P(T |X) 6= P(T | V \{T}). By definition, V \{T} is always a Markov blanket of T . By first

part of the theorem, V \{T} is an optimal predictor of T similarly to X . Therefore, the following

should hold: P(T |X) = P(T | V \{T}). This contradicts the assumption that X is not a Markov

blanket of T . Therefore, X is a Markov blanket of T . (Q.E.D.)

Proof Theorem 8 : First we prove that M is a Markov blanket of T at the end of Phase I. Suppose

it is not, that is, T 6⊥ (V \M\{T}) |M . By the local composition property with respect to T ,

there exists Y ∈ (V \M\{T}) such that T 6⊥ Y |M . This contradicts the exit condition from the

loop in step 9 that states that E should be empty, which can be the case if and only if for every

Y ∈ (V \M\{T}), T ⊥ Y |M . Therefore, M is a Markov blanket of T at the end of Phase I.

Next we prove that M remains a Markov blanket of T at the end of Phase II. Assume that a

variable Y ∈M can be rendered independent from T by conditioning on the remaining variables

in M , that is, T ⊥ Y | (M\{Y}). From Phase I it follows that T ⊥ (V \M\{T}) |M . The

above two independence relations by the contraction property imply that T ⊥ (V \(M\{Y})\{T}) |
(M\{Y }). Thus, M is a Markov blanket of T at the end of Phase II of the algorithm.

Finally we prove that M is a Markov boundary of T at the end of Phase II. Suppose it is not and

thus there exists N ⊂M that is a Markov blanket of T . Let Y ∈M\N and Z ⊆ (V \N\{T}\{Y}).
By definition of the Markov blanket, T ⊥ (V \N\{T}) | N . By the decomposition property,
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T ⊥ (Z ∪{Y}) |N . The latter independence relation implies T ⊥ Y | (N ∪Z) by the weak union

property. Therefore, any variable Y ∈M\N would be removed by the algorithm in step 12 which

contradicts the assumption that the algorithm output M and N ⊂M is another Markov blanket of

T . Therefore, M is a Markov boundary of T at the end of Phase II. (Q.E.D.)

Proof Theorem 9 : First we prove that the set M is a Markov blanket of T at the end of Phase I.

Because of the assumptions of the theorem, there are only two reasons for existence of a subset Z

that renders Y independent of T : either Y is a non-Markov boundary member or there is a violation

of the intersection property that leads to context-independent information equivalence relations.

The former case does not compromise the Markov blanket property of M , thus we consider only

the latter case. For example, we can consider the following situation T ⊥ Y | Z, T ⊥ Z | Y and

T 6⊥ ({Y}∪Z) that led to removal of Y . From Lemma 1 we know that if Y is a member of some

Markov blanket M 1 =N ∪{Y}, then M 2 =N ∪Z is also a Markov blanket of T because Y and

Z contain context-independent equivalent information about T . Therefore the set M is a Markov

blanket of T at the end of Phase I.

The proofs that M remains a Markov blanket of T at the end of Phase II and that M is a Markov

boundary of T at the end of Phase II are similar to the ones in IAMB algorithm (Theorem 8) and

will not be repeated here. (Q.E.D.)

Proof Theorem 10 : TIE∗ will output only Markov boundaries of T when the inputs X and Z are

admissible (see Figure 7). Assume that there exists a Markov boundary W that is not output by

TIE∗. Because of admissibility of inputs X and Z (Figure 7), M new =W was not identified in step

5 of the algorithm. However, because of admissibility of input Y (Figure 7), in some iteration of the

algorithm in step 4 a data set De will be generated where a Markov boundary W can be discovered

by X in step 5. The admissibility of input Z implies that W will be successfully verified and output

in step 6. Therefore, a contradiction is reached, and TIE∗ would never miss Markov boundaries.

(Q.E.D.)

Proof Theorem 11 : Since (i) all variables from each embedded distribution belong to the original

distribution, and (ii) the joint probability distribution of variables in each embedded distribution is

the same as marginal in the original one, the local composition property with respect to T also holds

in each embedded distribution. Therefore according to Theorem 8, IAMB will correctly identify a

Markov boundary in every embedded distribution. Thus, IAMB is an admissible Markov boundary

induction algorithm for TIE∗. (Q.E.D.)

Proof Theorem 12 : The proof follows from fact that assumptions of Theorem 9 are satisfied in

each embedded distribution that contains a Markov boundary of T . Thus, Semi-Interleaved HITON-

PC is an admissible Markov boundary induction algorithm for TIE∗. (Q.E.D.)

Proof Theorem 13 : The procedure IGS is executed iteratively in TIE∗ and generates data sets De =
D(V \G) from the embedded distributions by removing subsets G from the full set of variables V .

Such procedure is admissible if it uses as G all possible subsets of V . This is because eventually

the procedure will generate a data set De for every Markov boundary of T such that each data set
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contains all members of only one Markov boundary and thus a single Markov boundary induction

algorithm X can discover it. By similar argument, the procedure to generate embedded distributions

is admissible if it uses as G all possible subsets of all Markov boundaries. Notice that in IGS,

G is constructed iteratively from all possible subsets of the previously found Markov boundaries

with the following modification in order to increase efficiency of TIE∗ (see Section 6.2). If we

find that for some subset G∗ a data set De = D(V \G∗) leads to a Markov boundary M new in

the embedded distribution (as determined in step 5 of TIE∗) that is not a Markov boundary in the

original distribution (as determined in step 6 of TIE∗), then IGS does not consider generating data

sets De = D(V \G) where G includes G∗. Below we prove by contradiction that this modification

does not compromise admissibility of IGS.

Assume that there is W that is a Markov boundary of T in the original distribution and it was

not output by TIE∗ because D
e = D(V \G+) for some G+ : G+ ⊃G∗ has not been generated by

IGS.

• Since W is a Markov blanket of T in the original distribution and M new is not, Theorem

7 implies that performance of a learning algorithm L (that can approximate any conditional

probability distribution) for prediction of T measured by the metric M (that is maximized

only when P(T | V \{T}) is estimated accurately) is larger for W than for M new .

• Since W satisfies T ⊥ (V \W \{T}) |W by the definition of Markov blanket, decomposition

property implies that T ⊥ (V \W \G∗\{T}) |W , that is, W similarly to M new is a Markov

blanket of T in the embedded distribution after removal of G∗ . Therefore by Theorem

7, performance of a learning algorithm L (that can approximate any conditional probability

distribution) for prediction of T measured by metric M (that is maximized only when P(T |
V \{T}) is estimated accurately) should be the same for W and M new .

The above two points are contradictory, thus W does not exist. (Q.E.D.)

Proof Theorem 14 : Consider that there exists a set of variables M new ⊆ V \ {T} such that

T ⊥M |M new . Since M is a Markov boundary of T in the original distribution, it is also a

Markov blanket of T in the original distribution. From Lemma 2 we know that M new is a Markov

blanket of T in the original distribution. Since M new is a Markov boundary of T in the embedded

distribution and it is a Markov blanket of T in the original distribution, it is also a Markov boundary

of T in the original distribution. (Q.E.D.)

Proof Theorem 15 : The proof that this criterion can identify whether M new is a Markov blanket

of T in the original distribution or not follows from Theorem 7. If M new is a Markov blanket of

T in the original distribution, it is also a Markov boundary of T in the original distribution because

M new is a Markov boundary of T in the embedded distribution. (Q.E.D.)

Appendix B. Parameterizations of Example Structures

This appendix provides parameterizations of example structures from the manuscript that are shown

in Tables 5, 6, 7, and 8.
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Conditional probability table for the response variable T: 

P(T | X1,  

Xn/m+1,…  

X(m-1)n/m+1) 

(X1= 0,  

Xn/m+1 = 0,… 

X(m-1)n/m+1 = 0) 

(X1= 0,  

Xn/m+1 = 0,…  

X(m-1)n/m+1 = 1) … 

(X1= 1,  

Xn/m+1 = 1,…  

X(m-1)n/m+1 = 1) 

T = 0 0.2 0.8 0.2 

T = 1 0.8 0.2 0.8 

Conditional probability tables for any pair of variables Xj and Xk belonging to the same group i: 

P(Xj | Xk) Xk = 0 Xk = 1 

Xj = 0 1.0 0.0 

Xj = 1 0.0 1.0 
 

  ) 

  = 0  

  = 1  

 = 2  

)    = 3  

  

  ) 

 = 0  

)   = 2   = 1  

   

   

)   = 2   

   

   

,  C=0, D=0,   

Table 5: Parameterization of the Bayesian network shown in Figure 2.

P(A)      P(B)  

A = 0 0.6     B = 0 0.3 

A = 1 0.4     B = 1 0.2 

      B = 2 0.3 

P(C | A) A = 0 A = 1    B = 3 0.2 

C = 0 0.0 1.0      

C = 1 1.0 0.0    P(F)  

      F = 0 0.3 

P(D | B) B = 0 B = 1 B = 2 B = 3  F = 1 0.7 

D = 0 1.0 1.0 0.0 0.0    

D = 1 0.0 0.0 1.0 1.0    
        

P(E | B) B = 0 B = 1 B = 2 B = 3    

E = 0 1.0 0.0 1.0 0.0    

E = 1 0.0 1.0 0.0 1.0    
 

P(T | C, D, 

E, F) 

(C=0, D=0,  

E=0, F=0) 

(C=0, D=0,  

E=0, F=1) 

(C=0, D=0,  

E=1, F=0) 
… 

(C=1, D=1, 

E=1, F=1) 

T = 0 0.9 0.1 0.9 0.1 

T = 1 0.1 0.9 0.1 0.9 

Table 6: Parameterization of the causal Bayesian network shown in Figure 8.

Appendix C. Description and Theoretical Analysis of Prior Algorithms for Learning

Multiple Markov Boundaries and Variable Sets

This appendix provides description and theoretical analysis of prior algorithms for learning multiple

Markov boundaries and variable sets.

C.1 Stochastic Markov Boundary Algorithms: KIAMB

Reference: The work by Peña et al. (2007).

Description: Recall that the IAMB algorithm (Figure 4) requires only the local composition

property for its correctness (per Theorem 8) which is compatible with the existence of multiple

Markov boundaries of the response variable T . However, due to IAMB’s reliance on a greedy

deterministic strategy for adding variables into the (candidate) Markov boundary in Phase I (For-

ward), the algorithm can identify only a single Markov boundary of T . KIAMB addresses this
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P(A)     P(B)  

A = 0 0.6    B = 0 0.9 

A = 1 0.4    B = 1 0.1 
       

P(C | A) A = 0 A = 1   P(E)  

C = 0 0.0 1.0   E = 0 0.3 

C = 1 1.0 0.0   E = 1 0.7 

       

P(D | B) B = 0 B = 1     

D = 0 1.0 0.0     

D = 1 0.0 1.0     
       

P(F| E) E = 0 E = 1   P(J| F) F = 0 F = 1 

F = 0 0.8 0.3   J = 0 0.7 0.7 

F = 1 0.2 0.7   J = 1 0.3 0.3 
 

P(T | C,  

D, F) 

(C=0,  

D=0, F=0) 

(C=0,  

D=0, F=1) 

(C=0,  

D=1, F=0) 
… 

(C=1,  

D=1, F=1) 

T = 0 0.9 0.1 0.9 0.1 

T = 1 0.1 0.9 0.1 0.9 

=0) = 0.5 

Table 7: Parameterization of the causal Bayesian network shown in Figure 13.

X1: P(X1=0) = 0.5 X8 = X4 
X15: P(X15=0|X12=0) = 0.3 

       P(X15=0|X12=1) = 0.1 

X2: P(X2=0) = 0.5 X9 = OR(X5, X6) 
X16: P(X16=0|X13=0) = 0.2 

       P(X16=0|X13=1) = 0.5 

X3: P(X3=0) = 0.5 X10: P(X10=0) = 0.5 
X17: P(X17=0|X13=0) = 0.6 

       P(X17=0|X13=1) = 0.4 

X4: P(X4=0) = 0.5 X11 = OR(X7, X8) X18: P(X18=0) = 0.5 

X5 = 1 – X1 

X12: P(X12=0|X18=0, X9=0) = 0.4 

       P(X12=0|X18=0, X9=1) = 0.5 

       P(X12=0|X18=1, X9=0) = 0.5 

       P(X12=0|X18=1, X9=1) = 0.6 

X19: P(X18=0) = 0.5 

X6 = X2 

X13: P(X13=0|X11=0, X19=0) = 0.4 

       P(X13=0|X11=0, X19=1) = 0.6 

       P(X13=0|X11=1, X19=0) = 0.5 

       P(X13=0|X11=1, X19=1) = 0.5 

X20: P(X20=0|X12=0) = 0.5 

       P(X20=0|X12=1) = 0.2 

X7 = 1 – X3 
X14: P(X14=0|X12=0) = 0.2 

       P(X14=0|X12=1) = 0.4 
Xi: P(Xi=0) = 0.5, i = 21,…,40. 

T = XOR(X9, X10, X11) 

Table 8: Parameterization of the causal Bayesian network shown in Figure 16. All variables are

binary and take values {0,1}.

limitation of IAMB by employing a stochastic search heuristic that repeatedly disrupts the order in

which variables are selected for inclusion into the Markov boundary, thereby introducing a chance

of discovering alternative Markov boundaries of T . KIAMB allows the user to control the trade-

off between stochasticity and greediness of the search by setting the value of a single parameter

541



STATNIKOV, LYTKIN, LEMEIRE AND ALIFERIS

K ∈ [0,1]. Specifically, instead of picking the conditionally maximally associated variable Y from

the set E in step 4 of IAMB, in KIAMB a maximally associated variable is selected from a ran-

domly chosen subset of all the associated variables outside the current Markov boundary M . The

size of this subset relative to the size of the complete set of associated variables is determined by

parameter K. Setting K equal to 0 results in a purely stochastic search where a single randomly

chosen associated variable is added into M on each iteration in Phase I. Setting K equal to 1 results

exactly in IAMB algorithm with its greedy deterministic search.

Analysis: KIAMB correctly identifies Markov boundaries assuming the local composition prop-

erty. Theoretically, KIAMB can identify all Markov boundaries if given the chance to explore a

large enough number of different sequences of additions of associated variables into the current

Markov boundary in Phase I. However, KIAMB is computationally inefficient, because a large

fraction of its runs may yield previously identified Markov boundaries. For example, suppose the

causal graph consists of 11 variables: a response variable T and variables X1, . . . ,X10 such that

T ← X10← X9← ·· · ← X1 and each Xi(i = 1, . . . ,10) contains equivalent information about T and

is significantly associated with it. Thus, there are 10 Markov boundaries {X1}, . . . ,{X10} of T in

this distribution. Suppose also that parameter K was set equal to 0.7, which would mean that in

Phase I, KIAMB will first randomly select 7 variables out of 10 and will then select out of these

7 variables, one with the highest association with T . Because all variables in this example contain

equivalent information about T , all variables will have equal association with T (Lemeire, 2007).

Selection of a single variable for inclusion in the Markov boundary could then be done based on

lexicographic ordering. There are 120 ways to select 7 variables out of 10, but 84 (or 70%) of such

subsets of size 7 will contain variable X1 that precedes all other variables in lexicographic ordering.

Therefore, on average, we can expect 70% of the runs of KIAMB to return Markov boundary {X1}
in this example. In order for KIAMB to identify Markov boundary {X1}, variables X1,X2,X3 must

not be among the 7 randomly selected variables. On average, this would happen in only roughly

0.8% of the runs of KIAMB. Note also that in the above scenario, KIAMB will not be able to dis-

cover Markov boundaries {X5}, . . . ,{X10}, because there is no way to select 7 variables out of 10

and avoid including at least one variable from the subset {X1, . . . ,X4}. KIAMB could eventually

discover all 10 Markov boundaries if instead of lexicographic ordering, ties were broken by random

selection, or alternatively if parameter K was set equal to a smaller value. In both of these cases,

however, the probability that KIAMB will discover all 10 Markov boundaries after 10 runs is only

about 0.04%, indicating that a large number of runs may be necessary to recover all 10 Markov

boundaries. Thus, in order to produce the complete set of Markov boundaries, the value of param-

eter K and the number of runs of KIAMB must be determined based on the topology of the causal

graph and the number of Markov boundaries of T , neither of which are known in real-world causal

discovery applications. Finally, KIAMB suffers from the same sample inefficiency as IAMB, which

arises from conditioning on the entire Markov boundary when testing variables for independence

from the response variable T .

C.2 Stochastic Markov Boundary Algorithms: EGS-CMIM and EGS-NCMIGS

Reference: The work by Liu et al. (2010b).

Description: These algorithms attempt to extract multiple Markov boundaries by repeatedly in-

voking single Markov boundary extraction methods CMIM (Fleuret, 2004) and NCMIGS (Liu et al.,

2010b), respectively. Conceptually, CMIM and NCMIGS are very similar and differ primarily in the
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types of measures of association between variables. Both methods employ only a greedy forward

selection strategy similar to Phase I of IAMB and rely on mutual information-based functions for

measuring (conditional) association between variables and the response T . The algorithmic frame-

work of CMIM and NCMIGS is as follows. First, all variables are ordered by decreasing association

with the response T . A Markov boundary M is initialized to be the empty set. The t-th highest asso-

ciated variable (where t is a user-defined parameter) is then added into M and an iterative addition

of other variables begins. On each iteration, a new variable that maximizes the value of a selection

criterion J(X) (discussed below) is added to the Markov boundary M . The algorithm stops once

a termination condition is reached. CMIM terminates when the Markov boundary reaches a user-

defined size k. NCMIGS offers two different stopping criteria that the user could choose from. The

first stopping criterion is the same as in CMIM controlled by the parameter k. The other termina-

tion criterion alleviates the requirement of explicitly specifying the size of the Markov boundary

and forces iterative selection to stop if the value of the selection criterion J(X) changes from one

iteration to the next by no more than δ (a user-defined parameter), that is, if | J(Xi)− J(Xi−1) |≤ δ ,

where Xi denotes the variable selected for addition into M on the i-th iteration of NCMIGS.

CMIM employs an approximation to the conditional mutual information I(X ,T |M) as the se-

lection criterion JCMIM(X) for adding variables into the Markov boundary. The approximation is

achieved by conditioning on a single variable instead of the entire Markov boundary M (as in KI-

AMB), that is, JCMIM(X) = argmin
Y∈M I(X ,T |Y ). NCMIGS uses a very similar selection criterion

that is based on a normalized conditional mutual information JNCMIGS(X) = argmin
Y∈M I(X ,T |

Y )/H(X ,T ), where H(X ,T ) denotes the joint entropy of variable X and response T . Conditioning

on a single variable instead of the entire Markov boundary makes CMIM and NCMIGS sample effi-

cient by circumventing the problem of exponential growth in the number of parameters and sample

size required for estimating the conditional mutual information I(X ,Y |M) in discrete data as the

size of the Markov boundary M increases.

Analysis: Recall that EGS-CMIM (EGS-NCMIGS) extracts multiple Markov boundaries by

calling CMIM (NCMIGS) with different values of the input parameter t = 1, . . . , l, where l is a

user-defined parameter that bounds from above the total number of Markov boundaries that will be

output. Therefore, EGS-CMIM and EGS-NCMIGS require prior knowledge/estimate of the number

of Markov boundaries. Note that while admissible values of t (and therefore of l) are by design

bounded from above by the number of variables in the data, the actual number of true Markov

boundaries may be much higher. There is also no guarantee that different values of t will yield

different Markov boundaries, which makes these methods computationally inefficient (similarly to

KIAMB). In addition, because CMIM and NCMIGS implement only forward selection and employ

conditioning on a single variable, these methods are prone to inclusion of false positives in their

output. False positives may enter a Markov boundary for two reasons: (i) when more than one

variable from the current Markov boundary is required to establish independence of the response

T from some other variable being considered for addition into the Markov boundary, and (ii) when

some of the variables added into the Markov boundary are independent of the response T conditional

on variables that were added in later iterations. Furthermore, the stopping criteria in CMIM and

NCMIGS are heuristic, which may lead to an arbitrary number of false negatives in the output. This

may happen, for instance, if the value of parameter k (size of a Markov boundary) is set smaller

than the true size of the Markov boundary. The alternative stopping criterion of NCMIGS does not

fully solve the problem of false negatives, because the absolute difference | J(Xi)− J(Xi−1) | may

be small, while the individual values J(Xi) and J(Xi−1) of the selection criterion may still be large
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indicating that the considered variable Xi is highly associated with the response T and that it may be

too early to stop. In summary, EGS-CMIM and EGS-NCMIGS offer no formal guarantees of neither

correctness nor completeness of their output, require prior knowledge/estimate of the number of

Markov boundaries and their size, are computationally inefficient, but are sample efficient.

C.3 Variable Grouping Followed by Random Sampling of Variables from Each Group:

EGSG

Reference: The work by Liu et al. (2010).

Description: EGSG uses normalized version of mutual information JEGSG(X ,Y )= I(X ,Y )/H(X ,Y )
for measuring pair-wise association between variables and partitions them into disjoint groups. Each

group has a “centroid”, which is the first variable that formed the group. A variable X is added

into a group if (i) X has a higher association with the groups centroid C than with the response T

(i.e., if JEGSG(X ,C) ≥ JEGSG(X ,T )), and (ii) X has lower association with T than does C (i.e., if

JEGSG(C,T ) ≥ JEGSG(X ,T )). If no such group is found, then a new group is created with X as the

groups centroid. Variables within a group are implicitly assumed to carry similar information about

T . Under this assumption, it is sufficient to select one variable from each group to form a Markov

boundary of T . In EGSG, one of the top t variables most associated with the response T is sampled

at random from each group to form a single Markov boundary. Here, the value of parameter t is

given by the user. In order to extract multiple Markov boundaries, the above sampling is repeated a

number of times determined by the user.

Analysis: From the point of view of soundness and completeness, EGSG suffers from two major

drawbacks. First, the number of Markov boundaries output by EGSG is an arbitrary parameter and is

independent of the data-generating causal graph. Second, Markov boundaries output by EGSG may

contain an arbitrary number of false positives as well as false negatives. False positives may appear,

for instance, if a variable from one group is independent of the response T conditional on a variable

from another group. EGSG does not test for conditional independence and could include both

variables in a Markov boundary. Moreover, since only one variable is sampled from each group,

false negatives may appear in the output of EGSG if several variables within a group in reality belong

to the same Markov boundary. Therefore, no guarantees can be made regarding the correctness and

completeness of the output of EGSG. The method is not computationally efficient for discovery of

distinct Markov boundaries, because EGSG may produce the same Markov boundary multiple times

due to random sampling of variables from each group. However, its computationally efficiency can

be improved by constructing Markov boundaries from the Cartesian product of top-t members of

each group. EGSG is sample efficient, because it does not conduct any conditional independence

tests, but only computes pair-wise associations between variables.

C.4 Resampling-based Methods: Resampling+RFE and Resampling+UAF

Reference: The work by Ein-Dor et al. (2005), Michiels et al. (2005), Roepman et al. (2006) and

Statnikov and Aliferis (2010a).

Description: In resampling-based methods, multiple variable sets are extracted by repeatedly

applying a variable selection method to different bootstrap samples of the data (Ein-Dor et al., 2005;

Michiels et al., 2005; Roepman et al., 2006; Statnikov and Aliferis, 2010a). The two variable se-

lection methods employed in the resampling framework in this paper are Univariate Association

Filtering (UAF) (Hollander and Wolfe, 1999; Statnikov et al., 2005) and Recursive Feature Elim-
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ination (RFE) (Guyon et al., 2002). These methods implement only the backward selection akin

to Phase II of IAMB. Namely, given a bootstrap sample, all variables are first ordered by decreas-

ing association with the response T . UAF orders variables using p-values and test statistics from

Kruskal-Wallis non-parametric ANOVA (Hollander and Wolfe, 1999). RFE orders variables by de-

creasing absolute values of the SVM weights (Guyon et al., 2002). Once all variables have been

ordered, a portion of the least significant variables is removed, performance of the remaining vari-

ables for predicting the response T is evaluated, and this variable elimination process is recursively

applied to the remaining variables. The smallest nested subset of variables with the maximum pre-

dictive performance is then output. The proportion of variables to be removed on each iteration is

controlled by a user-defined parameter called “reduction coefficient”.16 Assessment of predictive

performance can be performed by training and evaluating a classifier model (e.g., SVM). One can

also use variants of UAF and RFE, where the smallest nested subset of variables with predictive

performance statistically indistinguishable from the nominally maximum predictive performance is

output. This often produces smaller variable sets than the former approach.

Analysis: Neither UAF nor RFE, which are at the core of resampling-based methods, offer for-

mal guarantees of the correctness of their output, because both methods are based on a heuristic

approach to finding the most predictive subset of variables and not the Markov boundary (Aliferis

et al., 2010b). Therefore, neither Resampling+UAF nor Resampling+RFE are sound and complete

for extraction of multiple Markov boundaries. Resampling+UAF and Resampling+RFE are also

computationally inefficient, because runs of UAF and RFE on different bootstrap samples may pro-

duce identical variable sets, especially when the sample size is large. In addition, the number of

runs is a user-defined parameter that requires prior knowledge of the number of Markov boundaries

in the data. Both resampling techniques are sample efficient, because UAF does not rely on con-

ditional independence tests and because RFE leverages SVMs regularized loss function that allows

for parameter estimation in high-dimensional data with small sample sizes.

C.5 Iterative Removal Methods: IR-HITON-PC and IR-SPLR

Reference: The work by Natsoulis et al. (2005) and Statnikov and Aliferis (2010a).

Description: Iterative removal methods identify multiple Markov boundaries (IR-HITON-PC)

or multiple variable sets (IR-SPLR) by repeatedly executing the following two steps. Step 1: Extract

a Markov boundary/variable set M from the current set W of variables (initially W = V \{T}).
Step 2: If M is the first Markov boundary/variable set extracted or if its predictive performance

is statistically indistinguishable from performance of the first Markov boundary/variable set, then

output M , remove all of its variables from further consideration (W ←W \M) and go to Step

1. Otherwise, terminate. IR-HITON-PC uses Semi-Interleaved HITON-PC as the base Markov

boundary extraction method. IR-SPLR extracts variable sets using regularized Logistic regression

with a L1 norm penalty term, which induces sparsity in the regression coefficients. All variables

with non-zero coefficients are taken to belong to an output variable set.

Analysis: IR-HITON-PC is correct because it uses Semi-Interleaved HITON-PC to identify

Markov boundaries (per Theorem 9). On the other hand, IR-SPLR relies on a heuristic regression-

based approach to finding the most predictive subset of variables and not the Markov boundary;

thus this method has no theoretical guarantees for correct identification of Markov boundaries. Fur-

thermore, neither iterative removal method is guaranteed to be complete, because these methods

16. Reduction coefficient = 1.2 means that every iteration retains 1/1.2 = 83% of variables from the previous iteration.
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An example of instantiated algorithm TIE*  
 

Inputs: dataset D (a sample from distribution P) for variables V, including a response variable T. 
 

Output: all Markov boundaries of T that exist in P. 
 

1. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary M of T from the dataset 

D for variables V (i.e., in the original distribution P) 

2. Output M 

3. Repeat 

4. Generate a dataset D
e 
= D(V \ G) from the embedded distribution by removing from the full 

set of variables V in the original distribution the smallest subset G of the so far discovered 

Markov boundaries of T such that: 

(i) G was not considered in the previous iterations of this step, and  

(ii) G does not include any subset of variables that was previously removed from V to 

yield a dataset D
e
 when Mnew was found not to be a Markov boundary of T in the 

original distribution (per step 6) 

5. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary Mnew of T from the 

dataset D
e
 (i.e., in the embedded distribution) 

6. If the holdout validation estimate of predictivity of T for the SVM classifier model induced 

from data D using variables Mnew is not statistically worse than the respective predictivity 

estimate for variables M, then Mnew is a Markov boundary of T in the original distribution 

and it is output by the algorithm 

7. Until all datasets D
e
 generated in step 4 have been considered. 

 

Figure 17: An example of instantiated TIE∗ algorithm. This algorithm was used in experiments

with real data in Section 5.2.

output disjoint Markov boundaries or variable sets, while in general multiple Markov boundaries

may share a number of variables. IR-HITON-PC and IR-SPLR neither require prior knowledge of

the number of Markov boundaries nor their size, and these methods are computationally and sample

efficient.

Appendix D. Details about the TIE∗ Algorithm

This appendix provides details about the generative TIE∗ algorithm.

D.1 Example Instantiations of the Generative Algorithm

Example instantiations of the generative algorithm TIE∗ are given in Figures 17 and 18.

D.2 Specific Implementation Details

We proceed below with details about TIE∗ implementations. We discuss Markov boundary in-

duction algorithm (X), procedure to generate data sets from the embedded distributions (Y), and

criterion to verify Markov boundaries of T (Z).

Markov boundary induction algorithm IAMB (Figure 4): We used the Matlab implementation

of the algorithm from the Causal Explorer toolkit (Aliferis et al., 2003b; Statnikov et al., 2010).

546



DISCOVERY OF MULTIPLE MARKOV BOUNDARIES

 

An example of instantiated algorithm TIE*  
 

Inputs: dataset D (a sample from distribution P) for variables V, including a response variable T. 
 

Output: all Markov boundaries of T that exist in P. 
 

1. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary M of T from the dataset 

D for variables V (i.e., in the original distribution P) 

2. Output M 

3. Repeat 

4. Generate a dataset D
e 
= D(V \ G) from the embedded distribution by removing from the full 

set of variables V in the original distribution the smallest subset G of the so far discovered 

Markov boundaries of T such that: 

(i) G was not considered in the previous iterations of this step, and 

(ii) G does not include any subset of variables that was previously removed from V to 

yield a dataset D
e
 when Mnew was found not to be a Markov boundary of T in the 

original distribution (per step 6) 

5. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary Mnew of T from the 

dataset D
e
 (i.e., in the embedded distribution) 

6. If 
newT MM |^ , then Mnew is a Markov boundary of T in the original distribution and it is 

output by the algorithm 

7. Until all datasets D
e
 generated in step 4 have been considered. 

 

Figure 18: An example of instantiated TIE∗ algorithm. This algorithm was used in experiments

with simulated data in Section 5.1.

When the algorithm was run on discrete data, we assessed independence of variables with G2 test at

significance level α = 0.05. In our implementation of G2 test, we required at least 5 samples per cell

in the contingency tables. For continuous data, one can use Fishers Z test to assess independence

of variables. To measure association Association(T,X |M) in step 4 of the algorithm we used

negative p-values returned by the corresponding test of independence T ⊥ X |M .17 Since the

IAMB algorithm can be run multiple times in TIE∗, we programmed on top of the Causal Explorer

code a caching method to store and retrieve results of conditional independence tests.

Markov boundary induction algorithm Semi-Interleaved HITON-PC (Figure 5): We used the

Matlab implementation of the algorithm from the Causal Explorer toolkit (Aliferis et al., 2003b;

Statnikov et al., 2010). Semi-Interleaved HITON-PC was implemented without so-called “symme-

try correction” (Aliferis et al., 2010a). Similarly to IAMB, to assess independence of variables in

discrete data we used G2 test at α = 0.05, and one can use Fisher’s Z test for continuous data. To

measure Association(T,X) in step 4 of the algorithm, we used negative p-values returned by the

corresponding test of independence T ⊥ X . The parameter max-k which denotes the upper bound

on the size of the conditioning set in Semi-Interleaved HITON-PC (i.e., the maximum size of the

subset Z in steps 6 and 10 of the algorithm) was set equal to 3. The choice of this value for max-

k parameter is justified by empirical performance in a variety of data distributions, as well as by

sample size limitations in our data (Aliferis et al., 2010a,b). Since the Semi-Interleaved HITON-PC

17. For the Fishers Z test and G2 test, p-value is inversely related to the test statistic, given a fixed degree of freedom.

Thus, larger test statistics correspond to smaller p-values, and vice-versa.
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algorithm can be run multiple times in TIE∗, we programmed on top of the Causal Explorer codes a

caching method to store and retrieve results of conditional independence tests.

Procedures IGS-Lex, IGS-MinAssoc, and IGS-MaxAssoc to generate data sets from the embed-

ded distributions (Figure 9): These procedures were implemented by (i) constructing all subsets

G such that {Gi} ⊂G ⊆ {M i ∪Gi} and |G| ≤ parameter max-card, (ii) excluding subsets that

either include G∗j or coincide with Gk , (iii) considering first subsets with the smallest number of

variables, and (iv) using a subset G with the either smallest lexicographical order of variables, or

minimum association with T , or maximum association with T (depending on the employed proce-

dure). The association with T was assessed with the appropriate statistical test, as described above

for the Markov boundary induction algorithms. The parameter max-card was set equal to 4 in all

experiments except for experiments with simulated data where it was set equal to 8. The purpose of

this parameter is to trade off completeness of the TIE∗ output for execution speed. We also experi-

mented with larger values of max-card until no more new Markov boundaries can be obtained.

Criterion Independence to verify Markov boundaries (Figure 10): This criterion was imple-

mented using statistical tests that were described above for the Markov boundary induction algo-

rithms. Since the Markov boundary in the original distribution (M ) and the examined Markov

boundary in the embedded distribution (M new) are often significantly overlapping, we used a sam-

ple efficient implementation where we do not need to condition on the entire Markov bound-

ary in the embedded distribution M new. Consider that M ∩M new = W , M\M new = S1, and

M new\M = S2. Then context-independent information equivalence of S1 and S2 implies infor-

mation equivalence of M= S1 ∪W and M new = S2 ∪W . Therefore, it suffices to verify that

T ⊥ S1 | S2 and T ⊥ S2 | S1 instead of T ⊥M |M new . This was the essence of our implementa-

tion of the Independence criterion for Markov boundary verification.

Criterion Predictivity to verify Markov boundaries (Figure 11): As a learning algorithm L, we

used linear support vector machines (SVMs) with default value of the penalty parameter C = 1 (Fan

et al., 2005; Vapnik, 1998). As a performance metric M, we used area under ROC curve (AUC)

(Fawcett, 2003) and weighted accuracy (Guyon et al., 2006) for binary and multiclass responses,

respectively. We estimated classification performance (using either AUC or weighted accuracy)

by holdout validation (Weiss and Kulikowski, 1991), whereby 2/3 of data samples were used for

Markov boundary induction and classifier training and remaining 1/3 for classifier testing. Statisti-

cal comparison of AUC estimates was performed using DeLong’s test at α = 0.05 (DeLong et al.,

1988) and comparison of weighted accuracy estimates was performed by permutation-based testing

with 10,000 permutations of the vectors of classifier predictions (Good, 2000). We also experi-

mented with other SVM kernels and parameters in the criterion Predictivity, but the final results

were similar because SVMs are used here only for relative assessment of the classifier performance

(i.e., to compare performance of the Markov boundary M from the original distribution with per-

formance of the new Markov boundary M new from the embedded distribution). Final assessment

of the classifier performance for induced Markov boundary variables was carried out using SVMs

with polynomial kernel and parameters C and degree d optimized by holdout validation or cross-

validation, as described in Section 5.

Appendix E. Additional Information about Empirical Experiments

This appendix provides additional information about empirical experiments.
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E.1 Parameterizations of Methods in Empirical Experiments

Parameterizations of methods in empirical experiments are given in Table 9.

E.2 On Computation of Performance Criteria in Experiments with Simulated Data

Since the number of distinct Markov boundaries/variable sets extracted by a given method in our

evaluation may differ from the number of true Markov boundaries in the causal graph, it is neces-

sary to establish a matching between the true Markov boundaries and the extracted Markov bound-

aries/variable sets before computing values of criteria III-V. This matching was performed by finding

a minimum-weight matching in a complete bipartite graph G =< V 1∪V 2,E >, where vertices in

V 1 corresponded to the true Markov boundaries and vertices in V 2 corresponded to the extracted

Markov boundaries/variable sets. The weight of an edge (u,v) ∈E,u ∈ V 1,v ∈ V 2, was set equal

to the sum of PFP and FNR that would have resulted from matching the true Markov boundary

u with the extracted Markov boundary/variable set v. The extracted Markov boundaries/variable

sets that were not matched to any true Markov boundary did not participate in the computation

of criteria III-V. A limitation of this approach to evaluation of different methods is that methods

that are parameterized to produce a number of Markov boundaries/variable sets that is much larger

than the number of true Markov boundaries could potentially show better performance on criteria

III-V than methods/parameterizations that output only a few Markov boundaries/variable sets. In

order to control for this effect, whenever a method allowed it, some of its parameterizations were

targeted towards producing the same “large” number of Markov boundaries/variable sets (5,000 in

our case). In addition, since the true Markov boundaries are unknown in practical applications, the

average classification performance (criterion VI) was computed over all distinct Markov bound-

aries/variable sets extracted by a method. This way of computing the average classification per-

formance, in a sense, counteracts the potential bias in criteria III-V towards methods that produce

large numbers of Markov boundaries/variable sets, since if many of the extracted Markov bound-

aries/variable sets do not contain the variables truly relevant to prediction of T (i.e., members of its

true Markov boundaries), the classification performance may suffer.

E.3 Additional Discussion of the Results of Experiments with Simulated Data

KIAMB did not identify any true Markov boundaries exactly due to this method’s sample ineffi-

ciency arising from conditioning on the entire (candidate) Markov boundary. The average classifi-

cation performance of Markov boundaries extracted by KIAMB was about 20% lower than of the

MAP-BN classifier in both data sets.

Performance of EGS-NCMIGS and EGS-CMIM was very similar and varied widely depending

on parameterization, with the average PFP ranging from 29% to 76% and average FNR ranging

from 0% to 27% in T IED. The high ends (i.e., worse results) of these measures increased to 95%

PFP and 51% FNR in T IED1000 demonstrating the sensitivity of these methods to the presence of

irrelevant variables in the data. The alternative stopping criterion of EGS-NCMIGS helped reduce

the PFP relative to other parameterizations, but failed to reduce the FNR. The other stopping crite-

rion that requires the size K of Markov boundaries to be specified, was able to achieve 0% FNR in

T IED (for large enough K; see Table 10). This suggests that, even though the alternative stopping

criterion has the advantage of not requiring prior knowledge of the size of Markov boundaries, it

makes EGS-NCMIGS susceptible to premature termination as discussed in Appendix C. The aver-
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age classification performance of Markov boundaries extracted by EGS-NCMIGS and EGS-CMIM

was statistically comparable to the MAP-BN classification performance for all parameterizations

except those with K = 50 in both data sets and also for (l = 7,δ = 0.015) in T IED1000. The re-

duction in classification performance relative to MAP-BN reached as high as 10% and was due to

presence of false positives and false negatives in the extracted Markov boundaries.

EGSG proved to be extremely sensitive to the presence of irrelevant variables with PFP and FNR

increasing across all parameterizations from highs of 55% PFP and 37% FNR in T IED to uniformly

above 93% PFP and high of 78% FNR in T IED1000. In addition, the average size of Markov bound-

aries extracted by EGSG increased almost 10-fold, from 7 in T IED to 67 in T IED1000, while the

number of variables conditionally dependent on T in the underlying network remained unchanged.

Consistent with the theoretical analysis in Appendix C, these results demonstrate the lack of control

for false positives as well as false negatives in the output of EGSG. Classification performance was

sensitive to the values of parameter t, with increasing values resulting in degradation of classifica-

tion performance in both data sets, which is due to the fact that as t increases, Markov boundaries

extracted by EGSG increasingly resemble subsets of randomly selected variables from the complete

set of variables. Classification performance of Markov boundaries extracted by EGSG was lower

than performance of the MAP-BN classifier by 9-23% (depending on parameter settings) in T IED

and by 27-55% in T IED1000. In addition, classification performance in T IED1000 was lower than

in T IED uniformly across all parameterizations of EGSG.

Variable sets extracted by Resampling+UAF were 24-50% larger than those found by

Resampling+RFE, which helped Resampling+UAF reach slightly lower FNR (by 3-6% in T IED

and by 2-4% in T IED1000), but also resulted in significantly higher PFP (by about 42-46% in

T IED and by 30-35% in T IED1000). The larger size of the extracted variable sets and higher

PFP are likely due to UAF’s ranking of variables based solely on univariate association with the re-

sponse T , whereas RFE’s ranking is “multivariate” in a sense that it takes into account not only each

variable’s individual classification performance, but also the information that other variables in the

current nested subset carry about T (Guyon et al., 2002). In fact, Resampling+RFE produced more

compact variable sets than Resampling+UAF in every simulated and real data set considered in this

study. In simulated data, parameterizations of Resampling+RFE and Resampling+UAF with statis-

tical comparison of classification performance estimates produced variable sets that were on average

60-70% smaller than those found by parameterizations without statistical comparison, resulting in

about 20% decreases in PFP, but causing roughly 30-36% increases in FNR. The average classifica-

tion performance of variable sets extracted by Resampling+RFE in simulated data was statistically

indistinguishable from Resampling+UAF with similar parameterizations. The average classifica-

tion performance of both methods parameterized without statistical comparison was comparable

with performance of the MAP-BN classifier in T IED and was slightly lower (by about 1-2%) in

T IED1000. Parameterizations with statistical comparison underperformed the MAP-BN classifier

by about 2-3% in both data sets. The results in both simulated data sets also show that the number of

distinct variable sets out of the 5,000 extracted by each parameterization of Resampling+RFE and

Resampling+UAF ranged from 0.24% to 50%, and hence roughly 99% to 50% of computational

resources were spent retrieving the same variable sets multiple times.

IR-HITON-PC was able to identify exactly only a single true Markov boundary in both data sets.

This was a direct consequence of a violation of the iterative removal’s underlying assumption that

the true Markov boundaries are disjoint sets of variables. All true Markov boundaries in T IED and

T IED1000 share variable X10. However, once that variable was found to be in a Markov boundary
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by an iterative removal method, it was then removed from further consideration thus preventing all

other extracted Markov boundaries from containing this variable. Markov boundaries extracted by

IR-HITON-PC had 8-10% PFP (depending on the data set) and 10-20% FNR. The low PFP was due

to Semi-Interleaved HITON-PC’s built-in control for the false discovery rate (Aliferis et al., 2010b),

while the high FNR was a consequence of the iterative removal scheme. As a result of high FNR

in T IED, the average classification performance of Markov boundaries extracted by IR-HITON-

PC was about 2% lower than of the MAP-BN classifier in the same data set. The FNR was lower

in T IED1000 than in T IED, which resulted in classification performance becoming statistically

comparable with the MAP-BN performance.

IR-SPLR was not able to identify any true Markov boundaries exactly in neither T IED or

T IED1000. Each parameterization of IR-SPLR extracted only one variable set in both simulated

data sets. Variable sets extracted by IR-SPLR in simulated data were 4-6 times larger than those

found by IR-HITON-PC, which resulted in about 60-70% increase in PFP (depending on the data

set), but zero FNR. The PFP of IR-SPLR did not increase significantly in T IED1000 relative to

T IED, which demonstrates the often-cited benefit of the L1-norm regularization, that is, its ability

to exclude irrelevant variables from the model. Classification performance of the extracted variable

sets was statistically comparable to the MAP-BN performance in T IED and was about 2% lower in

T IED1000 due to an increase in PFP.

E.4 Real Data sets Used in the Experiments

The list of real data sets used in the experiments is given in Table 12.
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Method Parameterizations References

NOVEL

TIE∗ • Semi-Interleaved HITON-PC (without symmetry correction) with α = 0.05 and max-k = 3

was used for identification of Markov boundaries. Procedure IGS-Lex was used for generat-

ing data sets from the embedded distributions. Criteria Independence and Predictivity were

used for verifying Markov boundaries in simulated and real data, respectively. See Appendix

D for details.

Extended from

Statnikov and

Aliferis (2010a)

iTIE∗ • α = 0.05, max-k = 3. Novel method

STOCHASTIC MARKOV BOUNDARY DISCOVERY

KIAMB

• ♯ of runs = 5,000,α = 0.05,K = 0.7
Peña et al. (2007)• ♯ of runs = 5,000,α = 0.05,K = 0.8

• ♯ of runs = 5,000,α = 0.05,K = 0.9

EGS-CMIM

• l = 7,K = 10 • l = 5,000,K = 10

Liu et al. (2010b)

• l = 7,K = 50 • l = 5,000,K = 50

EGS-NCMIGS

• l = 7,δ = 0.015 • l = 5000,δ = 0.015

• l = 7,K = 10 • l = 5000,K = 10

• l = 7,K = 50 • l = 5000,K = 50

VARIABLE GROUPING-BASED MARKOV BOUNDARY DISCOVERY

EGSG

• ♯ of Markov boundaries = 30, t = 15 • ♯ of Markov boundaries = 5000, t = 15

Liu et al. (2010)• ♯ of Markov boundaries = 30, t = 10 • ♯ of Markov boundaries = 5000, t = 10

• ♯ of Markov boundaries = 30, t = 5 • ♯ of Markov boundaries = 5000, t = 5

RESAMPLING-BASED VARIABLE SELECTION

Resampling+

RFE

• w/o statistical comparison of classification performance estimates Ein-Dor et al.

(2005); Michiels

et al. (2005);

Roepman et al.

(2006); Statnikov

and Aliferis

(2010a)

• with statistical comparison at significance level = 0.05

All configurations used 5,000 bootstrap samples and a reduction coefficient of 1.2. Statistical

comparison of classification performance estimates was performed using permutation-based

testing (with 10,000 permutations) for weighted accuracy (Good, 2000) and DeLong’s test

(DeLong et al., 1988) for AUC.

Resampling+

UAF

• w/o statistical comparison of classification performance estimates

• with statistical comparison at significance level α = 0.05

All configurations used 5,000 bootstrap samples and a reduction coefficient of 1.2. The same

tests as in Resampling+RFE were used for statistical comparisons.

ITERATIVE REMOVAL FOR VARIABLE SELECTION AND MARKOV BOUNDARY DISCOVERY

IR-HITON-PC
• max-k = 3,α = 0.05

Natsoulis et al.

(2005); Statnikov

and Aliferis

(2010a)

This method runs Semi-Interleaved HITON-PC without symmetry correction. The same tests

as in Resampling+RFE were used for statistical comparisons.

IR-SPLR

• w/o statistical comparison of classification performance estimates

• with statistical comparison at significance level α = 0.05

The regularization coefficient λ for each SPLR model was determined by holdout validation

in training data. The same tests as in Resampling+RFE were used for statistical comparisons.

Table 9: Parameterizations of methods for discovery of multiple Markov boundaries and variable

sets. Parameter settings that have been recommended by the authors of prior methods are

underlined.
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I. 
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of distinct 

MBs or 

VSs  

II.  

Average size 

of extracted 

distinct MBs 

or VSs  

III. 

Number 

of true 

MBs 

identified 

exactly 

IV. 

Average 

proportion 

of false 

positives 

V. 

Average 

false 

negative rate 

VI.  

Weighted accuracy over 

all extracted MBs or VSs 

Average 95% Interval 

TIE* max-k = 3, a = 0.05 72 5.0 72 0.000 0.000 0.951 0.938 0.965 

iTIE* max-k = 3, a = 0.05 72 5.0 72 0.000 0.000 0.951 0.938 0.965 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 377 2.8 0 0.000 0.400 0.727 0.479 0.946 

Number of runs = 5000, a = 0.05, K = 0.8 377 2.8 0 0.000 0.400 0.727 0.479 0.946 

Number of runs = 5000, a = 0.05, K = 0.9 377 2.8 0 0.000 0.400 0.727 0.479 0.946 

EGS-NCMIGS 

l = 7, d = 0.015 6 7.0 0 0.286 0.000 0.964 0.963 0.965 

l = 7, K = 10 6 10.0 0 0.500 0.000 0.964 0.963 0.965 

l = 7, K = 50 6 21.0 0 0.762 0.000 0.941 0.937 0.943 

l = 5000, d = 0.015 24 7.3 0 0.469 0.267 0.954 0.843 0.967 

l = 5000, K = 10 20 10.0 0 0.610 0.220 0.964 0.954 0.970 

l = 5000, K = 50 9 21.0 0 0.762 0.000 0.944 0.937 0.954 

EGS-CMIM 

l = 7, K = 10 6 10.0 0 0.500 0.000 0.963 0.963 0.965 

l = 7, K = 50 6 21.0 0 0.762 0.000 0.939 0.937 0.942 

l = 5000, K = 10 20 10.0 0 0.595 0.190 0.963 0.951 0.969 

l = 5000, K = 50 9 21.0 0 0.762 0.000 0.943 0.937 0.954 

EGSG 

Number of Markov boundaries = 30, t = 5 30 7.0 0 0.476 0.267 0.840 0.605 0.968 

Number of Markov boundaries = 30, t = 10 30 7.0 0 0.548 0.367 0.722 0.379 0.962 

Number of Markov boundaries = 30, t = 15 30 7.0 0 0.548 0.367 0.722 0.379 0.962 

Number of Markov boundaries = 5,000, t = 5 1,997 7.0 0 0.286 0.000 0.863 0.620 0.965 

Number of Markov boundaries = 5,000, t = 10 3,027 7.0 0 0.286 0.000 0.774 0.500 0.965 

Number of Markov boundaries = 5,000, t = 15 3,027 7.0 0 0.286 0.000 0.774 0.500 0.965 

Resampling+RFE 
without statistical comparison 1,374 14.9 1 0.397 0.058 0.955 0.932 0.979 

with statistical comparison (a = 0.05) 188 4.9 0 0.171 0.378 0.930 0.917 0.967 

Resampling+UAF 
without statistical comparison 184 20.8 0 0.752 0.000 0.953 0.934 0.966 

with statistical comparison (a = 0.05) 19 8.4 0 0.592 0.347 0.930 0.917 0.938 

IR-HITON-PC max-k = 3, a = 0.05 3 4.3 1 0.083 0.200 0.946 0.936 0.965 

IR-SPLR 
without statistical comparison 1 26.0 0 0.808 0.000 0.958 0.958 0.958 

with statistical comparison (a = 0.05) 1 17.0 0 0.706 0.000 0.959 0.959 0.959 
 

Table 10: Results obtained in simulated data set T IED. “MB” stands for “Markov boundary”, and “VS” stands for “variable set”. The 95%

interval for weighted accuracy denotes the range in which weighted accuracies of 95% of the extracted Markov boundaries/variable

sets fell. Classification performance of the MAP-BN classifier in the same data sample was 0.966 weighted accuracy. Highlighted

in bold are results that are statistically comparable to the MAP-BN classification performance.
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I. 

Number of 

distinct 

MBs or 

VSs  

II.  

Average 

size of 

extracted 

distinct 

MBs or VSs  

III. 

Number 

of true 

MBs 

identified 

exactly 

IV. 

Average 

proportion 

of false 

positives 

V. 

Average false 

negative rate 

VI.  

Weighted accuracy over 

all extracted MBs or VSs 

Average 95% Interval 

TIE* max-k = 3, a = 0.05 72 5.0 72 0.000 0.000 0.957 0.952 0.960 

iTIE* max-k = 3, a = 0.05 72 5.0 72 0.000 0.000 0.957 0.952 0.960 

KIAMB 

 

 

Number of runs = 5000, a = 0.05, K = 0.7 349 2.8 0 0.000 0.400 0.722 0.450 0.959 

Number of runs = 5000, a = 0.05, K = 0.8 349 2.8 0 0.000 0.400 0.722 0.450 0.959 

Number of runs = 5000, a = 0.05, K = 0.9 349 2.8 0 0.000 0.400 0.722 0.450 0.959 

EGS-NCMIGS 

 

 

l = 7, d = 0.015 6 7.0 0 0.286 0.000 0.953 0.952 0.956 

l = 7, K = 10 6 10.0 0 0.500 0.000 0.968 0.967 0.969 

l = 7, K = 50 6 50.0 0 0.900 0.000 0.877 0.866 0.887 

l = 5000, d = 0.015 995 8.0 0 0.648 0.508 0.960 0.950 0.968 

l = 5000, K = 10 990 10.0 0 0.747 0.494 0.961 0.952 0.968 

l = 5000, K = 50 950 50.0 0 0.949 0.494 0.868 0.857 0.882 

EGS-CMIM 

 

 

l = 7, K = 10 6 10.0 0 0.500 0.000 0.967 0.965 0.968 

l = 7, K = 50 6 50.0 0 0.900 0.000 0.904 0.895 0.915 

l = 5000, K = 10 990 10.0 0 0.676 0.353 0.961 0.953 0.967 

l = 5000, K = 50 950 50.0 0 0.935 0.353 0.897 0.885 0.910 

 

EGSG 

Number of Markov boundaries = 30, t = 5 30 67.0 0 0.958 0.440 0.688 0.383 0.850 

Number of Markov boundaries = 30, t = 10 30 67.0 0 0.977 0.693 0.485 0.253 0.769 

Number of Markov boundaries = 30, t = 15 30 67.0 0 0.984 0.780 0.422 0.246 0.739 

Number of Markov boundaries = 5,000, t = 5 5,000 67.0 0 0.927 0.028 0.662 0.441 0.850 

Number of Markov boundaries = 5,000, t = 10 5,000 67.0 0 0.944 0.250 0.476 0.248 0.780 

Number of Markov boundaries = 5,000, t = 15 5,000 67.0 0 0.953 0.369 0.406 0.247 0.710 

Resampling+RFE 
without statistical comparison 2,492 16.7 2 0.434 0.039 0.951 0.931 0.968 

with statistical comparison (a = 0.05) 214 6.0 0 0.225 0.336 0.947 0.917 0.964 

Resampling+UAF 
without statistical comparison 1,207 28.7 0 0.721 0.000 0.952 0.935 0.964 

with statistical comparison (a = 0.05) 12 7.8 0 0.577 0.367 0.949 0.931 0.959 

IR-HITON-PC max-k = 3, a = 0.05 2 5.0 1 0.100 0.100 0.958 0.958 0.959 

IR-SPLR 
without statistical comparison 1 30.0 0 0.833 0.000 0.949 0.949 0.949 

with statistical comparison (a = 0.05) 1 30.0 0 0.833 0.000 0.949 0.949 0.949 
 

Table 11: Results obtained in simulated data set T IED1000. “MB” stands for “Markov boundary”, and “VS” stands for “variable set”.

The 95% interval for weighted accuracy denotes the range in which weighted accuracies of 95% of the extracted Markov bound-

aries/variable sets fell. Classification performance of the MAP-BN classifier in the same data sample was 0.972 weighted accuracy.

Highlighted in bold are results that are statistically comparable to the MAP-BN classification performance.
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Figure 19: Results for average false negative rate and average proportion of false positives obtained

in T IED (left) and T IED1000 (right) data sets. Results of TIE∗ and iTIE∗ were identi-

cal.
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Name Domain ♯ of samples ♯ of variables Response type Data type CV de-

sign

References

Infant Mortality clinical 5,337 86 Death within the

first year

Discrete Holdout Mani and Cooper

(1999)

Ohsumed Text 5,000 14,373 Relevant to

neonatal diseases

Continuous Holdout Joachims (2002)

ACPJ Etiology Text 15,779 28,228 Relevant to etiol-

ogy

Continuous Holdout Aphinyanaphongs

et al. (2006)

Lymphoma Gene Expression 227 7,399 3-year sur-

vival:dead vs.

alive

Continuous 10-fold Rosenwald et al.

(2002)

Gisette Digit recognition 7,000 5,000 4 vs. 9 Continuous Holdout NIPS 2003 Feature

Selection Challenge

Guyon et al. (2006)

Dexter Text 600 19,999 Relevant to

corporate acquisi-

tions

Continuous 10-fold NIPS 2003 Feature

Selection Challenge

Guyon et al. (2006)

Sylva Ecology 14,394 216 Ponderosa vs.

rest

Continuous Holdout WCCI 2006 Perf. Pre-

diction Challenge

Ovarian Cancer Proteomics 216 2,190 Cancer vs. nor-

mal

Continuous 10-fold Conrads et al. (2004)

Thrombin Drug discovery 2,543 139,351 Binding to throm-

bin

Discrete Holdout KDD Cup 2001

Breast Cancer Gene Expression 286 17,816 ER+vs. ER- Continuous 10-fold Wang et al. (2005)

Hiva Drug discovery 4,229 1,617 Activity to HIV

AIDS infection

Discrete Holdout WCCI 2006

Perf.Prediction Chal-

lenge

Nova Text 1,929 16,969 Political topics

vs. religious

Discrete Holdout WCCI 2006 Perf. Pre-

diction Chanllenge

Bankruptcy Financial 7,063 147 Personal

bankruptcy

Continuous Holdout Foster and Stine

(2004)

Table 12: Real data sets used in the experiments.
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E.5 On Computation of Performance Criteria in Experiments with Real Data

In order to rank all methods based on a given performance criterion, the average value of this crite-

rion was first computed over all evaluation data sets for each method. The methods were then or-

dered from best to worst performing according to these averages. The best performer was assigned

rank 1 and designated as the current “reference method”. Performance of the next unranked method

in the ordered list was compared to performance of the reference method using permutation-based

testing at significance level 5% and with 10,000 permutations of the vectors of criterion values com-

puted on each data set. If performance of the two methods was found to be statistically comparable,

the unranked method received the same rank as the reference method. Otherwise, the next lowest

rank was assigned to the unranked method and this method was designated as the new reference

method. This process was repeated until each method was assigned a rank.

E.6 Additional Discussion of the Results of Experiments with Real Data

KIAMB produced some of the more compact Markov boundaries with the average PV of 1% and

ranked second out of 11 by that criterion. Small sizes of the extracted Markov boundaries were,

to a large extent, due to KIAMB’s sample inefficiency resulting in inability to perform some of the

required tests of independence as discussed in Appendix C. As a result, classification performance

of Markov boundaries extracted by KIAMB was lower than of most other methods with KIAMB

ranking 4 out of 5 by AUC. Consequently, KIAMB ranked 5 out of 15 on the (PV, AUC) criterion.

Although, KIAMB was parameterized to produce 5,000 Markov boundaries, only about 30% of

them were distinct, which means that 70% of computational time was spent on repeated retrieval of

the same Markov boundaries.

EGS-NCMIGS with the alternative stopping criterion produced the smallest Markov boundaries

at the expense of a significant reduction in AUC (∼ 9% below TIE∗). Parameterizations of EGS-

NCMIGS with the alternative stopping criterion ranked first and second out of 11 by PV and fourth

out of 5 by AUC. Overall, performance of EGS-NCMIGS and EGS-CMIM varied widely depending

on parameterization. Ranks of these methods ranged from 2 to 11 out of 15 on the (PV, AUC)

criterion.

EGSG showed an overall poor performance, ranking between 10 and 15 out of 15 on (PV,

AUC). Markov boundaries extracted by EGSG were larger than Markov boundaries identified by

many other methods and had the lowest average classification performance.

Resampling+RFE and Resampling+UAF extracted variable sets that were the largest in com-

parison with other methods, but that also had highest classification performance. Resampling+RFE

and Resampling+UAF ranked between 9 and 11 out of 11 by PV and between 1 and 3 by AUC. No-

tably, variable sets extracted by Resampling+UAF had an average PV between 24% and 41%, de-

pending on parameterization. Resampling+RFE extracted more compact variable sets than

Resampling+UAF in every data set, with the average PV between 5% and 17%. Due to poor

performance on the PV criterion, Resampling+RFE and Resampling+UAF ranked in the mid to

poor range on the combined (PV, AUC) criterion, scoring between 7 and 11 out of 15.

Iterative removal methods IR-HITON-PC and IR-SPLR extracted small numbers of Markov

boundaries/variable sets and ranked between 5 and 6 out of 6 by that criterion. IR-HITON-PC

produced more compact Markov boundaries than the variable sets of IR-SPLR. Markov boundaries

extracted by IR-HITON-PC had an average PV of 2.3%, which was significantly smaller than the

11%-15% average PV of IR-SPLR. IR-HITON-PC method ranked 5 out of 11 by PV while IR-SPLR
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methods ranked 9 and 10 by the same criterion. Despite the smaller average size of the extracted

Markov boundaries, IR-HITON-PC ranked on par with IR-SPLR (parameterized with statistical

comparison) by AUC, scoring third out of 5. Among all parameterizations of iterative removal

methods, IR-SPLR without statistical comparison produced the largest variable sets, which helped

this method reach a higher average classification performance and rank second out of 5 by AUC.

Higher average PV of variable sets extracted by IR-SPLR caused these methods to rank 9 and 11

out of 15 on the combined (PV, AUC) criterion. IR-HITON-PC ranked sixth on the same criterion

as a result of moderate ranks on PV and AUC.
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Method 
Infant_ Mortality Ohsumed ACPJ_ Etiology Lymphoma Gisette 

N S AUC N S AUC N S AUC N S AUC N S AUC 

All variables 1 86 0.821 1 14,373 0.857 1 28,228 0.938 1 7,399 0.659 1 5,000 0.997 

TIE* max-k = 3, a = 0.05 41 4 0.825 2,497 37 0.776 5,330 18 0.908 4,533 16 0.635 227 54 0.990 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 67 4 0.753 250 7 0.651 1,354 9 0.884 88 3 0.562 5,000 8 0.871 

Number of runs = 5000, a = 0.05, K = 0.8 39 4 0.752 133 7 0.650 830 9 0.883 50 3 0.561 5,000 8 0.871 

Number of runs = 5000, a = 0.05, K = 0.9 17 4 0.752 58 7 0.648 414 9 0.884 23 3 0.561 5,000 8 0.871 

EGS-NCMIGS 

l = 7, d = 0.015 6 4 0.809 6 4 0.584 6 3 0.743 7 3 0.591 7 3 0.913 

l = 7, K = 10 3 10 0.874 1 10 0.691 3 10 0.780 5 10 0.615 7 10 0.952 

l = 7, K = 50 1 50 0.821 1 50 0.828 3 35 0.842 3 50 0.662 5 50 0.986 

l = 5000, d = 0.015 84 4 0.806 4,999 4 0.564 4,999 4 0.770 4,992 3 0.574 4,999 5 0.920 

l = 5000, K = 10 77 10 0.862 4,991 10 0.693 4,991 10 0.785 4,981 10 0.600 4,994 10 0.953 

l = 5000, K = 50 39 50 0.822 4,951 50 0.830 4,981 31 0.843 4,947 50 0.653 4,957 50 0.987 

EGS-CMIM 

l = 7, K = 10 2 10 0.865 1 10 0.696 2 10 0.915 6 10 0.577 7 10 0.956 

l = 7, K = 50 1 50 0.829 1 50 0.843 1 32 0.917 4 50 0.608 5 50 0.987 

l = 5000, K = 10 77 10 0.863 4,991 10 0.687 4,991 10 0.842 4,970 10 0.581 4,992 10 0.963 

l = 5000, K = 50 38 50 0.827 4,951 50 0.841 4,982 31 0.857 4,942 50 0.613 4,957 50 0.987 

EGSG 

Number of Markov boundaries = 30, t = 5 30 12 0.634 30 70 0.653 30 84 0.840 30 58 0.600 30 35 0.959 

Number of Markov boundaries = 30, t = 10 30 12 0.568 30 70 0.634 30 84 0.835 30 58 0.616 30 35 0.946 

Number of Markov boundaries = 30, t = 15 30 12 0.552 30 70 0.602 30 84 0.792 30 58 0.607 30 35 0.936 

Number of Markov boundaries = 5,000, t = 5 991 12 0.631 5,000 70 0.649 5,000 84 0.837 5,000 58 0.604 5,000 35 0.961 

Number of Markov boundaries = 5,000, t = 10 3,576 12 0.587 5,000 70 0.624 5,000 84 0.822 5,000 58 0.617 5,000 35 0.950 

Number of Markov boundaries = 5,000, t = 15 4,272 12 0.556 5,000 70 0.606 5,000 84 0.780 5,000 58 0.609 5,000 35 0.941 

Resampling+RFE 
without statistical comparison 4,230 17 0.825 4,942 3,889 0.846 5,000 2,441 0.924 4,919 1,293 0.634 4,948 697 0.997 

with statistical comparison (a = 0.05) 3,222 9 0.814 5,000 914 0.836 5,000 308 0.864 4,962 45 0.587 5,000 134 0.995 

Resampling+UAF 
without statistical comparison 4,868 26 0.859 2,533 10,722 0.855 4,963 3,883 0.929 4,215 2,546 0.647 5,000 1,673 0.999 

with statistical comparison (a = 0.05) 3,141 15 0.777 4,925 7,690 0.864 5,000 1,600 0.918 4,895 195 0.600 5,000 1,088 0.998 

IR-HITON-PC max-k = 3, a = 0.05 1 5 0.857 2 40 0.778 4 22 0.875 12 10 0.593 3 64 0.990 

IR-SPLR 
without statistical comparison 1 8 0.835 1 176 0.829 4 123 0.885 16 456 0.577 1 466 0.996 

with statistical comparison (a = 0.05) 1 2 0.828 3 122 0.728 5 26 0.844 139 47 0.572 1 261 0.996 

 

(Continued on the next page) 

 

Table 13: Results showing the number of distinct Markov boundaries or variable sets (N) extracted by each method, their average size in

terms of the number of variables (S) and average classification performance (AUC) in each of 13 real data sets. The row labeled

“All variables” shows performance of the entire set of variables available in each data set.
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(Continued from the previous page) 
 

Method 
Dexter Sylva Ovarian_ Cancer Thrombin 

N S AUC N S AUC N S AUC N S AUC 

All variables 1 19,999 0.979 1 216 0.998 1 2,190 0.998 1 139,351 0.927 

TIE* max-k = 3, a = 0.05 4,791 17 0.959 1,483 27 0.996 223 7 0.973 298 11 0.813 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 299 5 0.882 4,429 8 0.949 285 4 0.925 4,936 6 0.771 

Number of runs = 5000, a = 0.05, K = 0.8 193 5 0.884 4,384 8 0.948 180 4 0.927 4,900 6 0.774 

Number of runs = 5000, a = 0.05, K = 0.9 120 5 0.887 4,385 8 0.947 106 4 0.928 4,854 6 0.774 

EGS-NCMIGS 

l = 7, d = 0.015 6 4 0.839 4 5 0.960 6 5 0.951 7 3 0.781 

l = 7, K = 10 5 10 0.927 2 10 0.988 6 10 0.974 7 10 0.854 

l = 7, K = 50 4 50 0.971 1 50 0.998 3 50 0.986 7 12 0.760 

l = 5000, d = 0.015 4,998 5 0.840 213 5 0.954 2,188 6 0.956 4,999 4 0.779 

l = 5000, K = 10 4,991 10 0.927 207 10 0.987 2,183 10 0.971 4,996 10 0.858 

l = 5000, K = 50 4,951 50 0.970 167 50 0.998 2,144 50 0.988 4,997 14 0.764 

EGS-CMIM 

l = 7, K = 10 5 10 0.942 2 10 0.991 5 10 0.976 7 10 0.799 

l = 7, K = 50 3 50 0.979 1 50 0.997 3 50 0.991 7 12 0.711 

l = 5000, K = 10 4,991 10 0.943 207 10 0.992 2,182 10 0.973 4,999 10 0.856 

l = 5000, K = 50 4,951 50 0.979 167 50 0.998 2,144 50 0.992 5,000 14 0.720 

EGSG 

Number of Markov boundaries = 30, t = 5 30 76 0.857 30 12 0.803 30 12 0.953 30 29 0.776 

Number of Markov boundaries = 30, t = 10 30 76 0.791 30 12 0.810 30 12 0.940 30 29 0.817 

Number of Markov boundaries = 30, t = 15 30 76 0.749 30 12 0.744 30 12 0.930 30 29 0.757 

Number of Markov boundaries = 5,000, t = 5 5,000 76 0.854 4,997 12 0.792 4,878 12 0.951 5,000 29 0.758 

Number of Markov boundaries = 5,000, t = 10 5,000 76 0.787 5,000 12 0.803 4,990 12 0.936 5,000 29 0.815 

Number of Markov boundaries = 5,000, t = 15 5,000 76 0.746 5,000 12 0.752 4,996 12 0.927 5,000 29 0.749 

Resampling+RFE 
without statistical comparison 5,000 2,097 0.976 4,976 19 0.998 4,951 142 0.983 5,000 14,996 0.912 

with statistical comparison (a = 0.05) 4,998 96 0.956 3,549 12 0.998 2,601 5 0.926 5,000 216 0.861 

Resampling+UAF 
without statistical comparison 3,561 15,491 0.976 3,944 44 0.998 4,372 424 0.980 4,998 74,521 0.933 

with statistical comparison (a = 0.05) 4,992 14,064 0.972 2,842 23 0.998 972 13 0.955 5,000 25,217 0.916 

IR-HITON-PC max-k = 3, a = 0.05 1 20 0.958 1 24 0.997 2 7 0.962 1 13 0.844 

IR-SPLR 
without statistical comparison 1 425 0.974 1 36 0.999 2 709 0.986 4 245 0.876 

with statistical comparison (a = 0.05) 3 149 0.940 1 36 0.999 11 115 0.943 28 144 0.749 
 

(Continued on the next page) 
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Method 
Breast_ Cancer Hiva Nova Bankruptcy 

N S AUC N S AUC N S AUC N S AUC 

All variables 1 17,816 0.914 1 1,617 0.716 1 16,969 0.981 1 147 0.940 

TIE* max-k = 3, a = 0.05 1,011 10 0.906 246 8 0.712 3,751 41 0.922 1,478 14 0.923 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 418 4 0.873 876 7 0.735 130 6 0.759 3,810 6 0.839 

Number of runs = 5000, a = 0.05, K = 0.8 255 4 0.874 439 7 0.754 57 6 0.764 3,713 5 0.836 

Number of runs = 5000, a = 0.05, K = 0.9 136 4 0.879 172 7 0.755 23 6 0.771 3,681 5 0.838 

EGS-NCMIGS 

l = 7, d = 0.015 6 4 0.922 7 3 0.661 5 4 0.730 7 4 0.698 

l = 7, K = 10 6 10 0.926 7 10 0.750 2 10 0.815 6 10 0.936 

l = 7, K = 50 6 50 0.928 7 50 0.668 1 50 0.849 3 50 0.953 

l = 5000, d = 0.015 4,994 4 0.911 1,616 4 0.696 4,998 5 0.735 145 4 0.721 

l = 5000, K = 10 4,985 10 0.926 1,610 10 0.760 4,991 10 0.780 139 10 0.936 

l = 5000, K = 50 4,973 50 0.927 1,570 50 0.658 4,951 50 0.846 101 50 0.953 

EGS-CMIM 

l = 7, K = 10 7 10 0.914 5 10 0.713 3 10 0.818 3 10 0.913 

l = 7, K = 50 6 50 0.902 5 50 0.727 1 50 0.886 1 50 0.954 

l = 5000, K = 10 4,978 10 0.906 1,608 10 0.724 4,992 10 0.780 139 10 0.901 

l = 5000, K = 50 4,966 50 0.907 1,577 50 0.729 4,951 50 0.897 99 50 0.954 

EGSG 

Number of Markov boundaries = 30, t = 5 30 205 0.893 30 17 0.705 30 89 0.751 30 9 0.815 

Number of Markov boundaries = 30, t = 10 30 205 0.886 30 17 0.660 30 89 0.722 30 9 0.754 

Number of Markov boundaries = 30, t = 15 30 205 0.890 30 17 0.633 30 89 0.687 30 9 0.752 

Number of Markov boundaries = 5,000, t = 5 5,000 205 0.892 5,000 17 0.701 5,000 89 0.751 4,373 9 0.819 

Number of Markov boundaries = 5,000, t = 10 5,000 205 0.888 5,000 17 0.652 5,000 89 0.720 4,856 9 0.786 

Number of Markov boundaries = 5,000, t = 15 5,000 205 0.889 5,000 17 0.638 5,000 89 0.682 4,905 9 0.787 

Resampling+RFE 
without statistical comparison 4,848 1,067 0.901 4,938 220 0.679 4,948 5,305 0.982 4,949 66 0.940 

with statistical comparison (a = 0.05) 2,922 10 0.894 4,598 13 0.646 5,000 1,261 0.966 4,972 38 0.946 

Resampling+UAF 
without statistical comparison 4,365 3,359 0.905 4,587 309 0.685 645 13,950 0.981 4,379 79 0.952 

with statistical comparison (a = 0.05) 1,295 42 0.917 4,250 36 0.663 3,185 12,503 0.978 628 47 0.946 

IR-HITON-PC max-k = 3, a = 0.05 12 9 0.890 23 6 0.673 2 49 0.920 3 15 0.910 

IR-SPLR 
without statistical comparison 47 159 0.892 10 129 0.661 1 10,289 0.981 1 69 0.956 

with statistical comparison (a = 0.05) 54 27 0.880 7 22 0.694 1 10,289 0.981 1 69 0.956 
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Abstract

Stochastic Gradient Descent (SGD) has become popular for solving large scale supervised machine

learning optimization problems such as SVM, due to their strong theoretical guarantees. While the

closely related Dual Coordinate Ascent (DCA) method has been implemented in various software

packages, it has so far lacked good convergence analysis. This paper presents a new analysis of

Stochastic Dual Coordinate Ascent (SDCA) showing that this class of methods enjoy strong theo-

retical guarantees that are comparable or better than SGD. This analysis justifies the effectiveness

of SDCA for practical applications.

Keywords: stochastic dual coordinate ascent, optimization, computational complexity, regular-

ized loss minimization, support vector machines, ridge regression, logistic regression

1. Introduction

We consider the following generic optimization problem associated with regularized loss minimiza-

tion of linear predictors: Let x1, . . . ,xn be vectors in R
d , let φ1, . . . ,φn be a sequence of scalar convex

functions, and let λ > 0 be a regularization parameter. Our goal is to solve minw∈Rd P(w) where1

P(w) =

[

1

n

n

∑
i=1

φi(w
⊤xi)+

λ

2
‖w‖2

]

. (1)

For example, given labels y1, . . . ,yn in {±1}, the SVM problem (with linear kernels and no bias

term) is obtained by setting φi(a) = max{0,1− yia}. Regularized logistic regression is obtained by

setting φi(a)= log(1+exp(−yia)). Regression problems also fall into the above. For example, ridge

regression is obtained by setting φi(a) = (a−yi)
2, regression with the absolute-value is obtained by

setting φi(a) = |a− yi|, and support vector regression is obtained by setting φi(a) = max{0, |a−
yi|−ν}, for some predefined insensitivity parameter ν > 0.

Let w∗ be the optimum of (1). We say that a solution w is εP-sub-optimal if P(w)−P(w∗)≤ εP.

We analyze the runtime of optimization procedures as a function of the time required to find an

εP-sub-optimal solution.

1. Throughout this paper, we only consider the ℓ2-norm.

c©2013 Shalev-Shwartz and Zhang.



SHALEV-SHWARTZ AND ZHANG

A simple approach for solving SVM is stochastic gradient descent (SGD) (Robbins and Monro,

1951; Murata, 1998; Cun and Bottou, 2004; Zhang, 2004; Bottou and Bousquet, 2008; Shalev-

Shwartz et al., 2007). SGD finds an εP-sub-optimal solution in time Õ(1/(λεP)). This runtime does

not depend on n and therefore is favorable when n is very large. However, the SGD approach has

several disadvantages. It does not have a clear stopping criterion; it tends to be too aggressive at

the beginning of the optimization process, especially when λ is very small; while SGD reaches a

moderate accuracy quite fast, its convergence becomes rather slow when we are interested in more

accurate solutions.

An alternative approach is dual coordinate ascent (DCA), which solves a dual problem of (1).

Specifically, for each i let φ∗i : R→ R be the convex conjugate of φi, namely, φ∗i (u) = maxz(zu−
φi(z)). The dual problem is

max
α∈Rn

D(α) where D(α) =




1

n

n

∑
i=1

−φ∗i (−αi)−
λ

2

∥
∥
∥
∥
∥

1
λn

n

∑
i=1

αixi

∥
∥
∥
∥
∥

2


 . (2)

The dual objective in (2) has a different dual variable associated with each example in the training

set. At each iteration of DCA, the dual objective is optimized with respect to a single dual variable,

while the rest of the dual variables are kept in tact.

If we define

w(α) =
1

λn

n

∑
i=1

αixi, (3)

then it is known that w(α∗) = w∗, where α∗ is an optimal solution of (2). It is also known that

P(w∗) = D(α∗) which immediately implies that for all w and α, we have P(w) ≥ D(α), and hence

the duality gap defined as

P(w(α))−D(α)

can be regarded as an upper bound of the primal sub-optimality P(w(α))−P(w∗).

We focus on a stochastic version of DCA, abbreviated by SDCA, in which at each round we

choose which dual coordinate to optimize uniformly at random. The purpose of this paper is to

develop theoretical understanding of the convergence of the duality gap for SDCA.

We analyze SDCA either for L-Lipschitz loss functions or for (1/γ)-smooth loss functions,

which are defined as follows. Throughout the paper, we will use φ′(a) to denote a sub-gradient of a

convex function φ(·), and use ∂φ(a) to denote its sub-differential.

Definition 1 A function φi : R→ R is L-Lipschitz if for all a,b ∈ R, we have

|φi(a)−φi(b)| ≤ L |a−b|.

A function φi : R→ R is (1/γ)-smooth if it is differentiable and its derivative is (1/γ)-Lipschitz. An

equivalent condition is that for all a,b ∈ R, we have

φi(a)≤ φi(b)+φ′i(b)(a−b)+
1

2γ
(a−b)2,

where φ′i is the derivative of φi.
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It is well-known that if φi(a) is (1/γ)-smooth, then φ∗i (u) is γ strongly convex: for all u,v ∈ R and

s ∈ [0,1]:

−φ∗i (su+(1− s)v)≥−sφ∗i (u)− (1− s)φ∗i (v)+
γs(1− s)

2
(u− v)2.

Our main findings are: in order to achieve a duality gap of ε,

• For L-Lipschitz loss functions, we obtain the rate of Õ(n+L2/(λε)).

• For (1/γ)-smooth loss functions, we obtain the rate of Õ((n+1/(λγ)) log(1/ε)).

• For loss functions which are almost everywhere smooth (such as the hinge-loss), we can

obtain rate better than the above rate for Lipschitz loss. See Section 5 for a precise statement.

2. Related Work

DCA methods are related to decomposition methods (Platt, 1998; Joachims, 1998). While several

experiments have shown that decomposition methods are inferior to SGD for large scale SVM

(Shalev-Shwartz et al., 2007; Bottou and Bousquet, 2008), Hsieh et al. (2008) recently argued that

SDCA outperform the SGD approach in some regimes. For example, this occurs when we need

relatively high solution accuracy so that either SGD or SDCA has to be run for more than a few

passes over the data.

However, our theoretical understanding of SDCA is not satisfying. Several authors (e.g., Man-

gasarian and Musicant, 1999; Hsieh et al., 2008) proved a linear convergence rate for solving SVM

with DCA (not necessarily stochastic). The basic technique is to adapt the linear convergence of

coordinate ascent that was established by Luo and Tseng (1992). The linear convergence means

that it achieves a rate of (1−ν)k after k passes over the data, where ν > 0. This convergence result

tells us that after an unspecified number of iterations, the algorithm converges faster to the optimal

solution than SGD.

However, there are two problems with this analysis. First, the linear convergence parameter, ν,

may be very close to zero and the initial unspecified number of iterations might be very large. In

fact, while the result of Luo and Tseng (1992) does not explicitly specify ν, an examine of their

proof shows that ν is proportional to the smallest nonzero eigenvalue of X⊤X , where X is the n×d

data matrix with its i-th row be the i-th data point xi. For example if two data points xi 6= x j becomes

closer and closer, then ν→ 0. This dependency is problematic in the data laden domain, and we

note that such a dependency does not occur in the analysis of SGD.

Second, the analysis only deals with the sub-optimality of the dual objective, while our real goal

is to bound the sub-optimality of the primal objective. Given a dual solution α ∈R
n its correspond-

ing primal solution is w(α) (see (3)). The problem is that even if α is εD-sub-optimal in the dual,

for some small εD, the primal solution w(α) might be far from being optimal. For SVM, (Hush

et al., 2006, Theorem 2) showed that in order to obtain a primal εP-sub-optimal solution, we need

a dual εD-sub-optimal solution with εD = O(λε2
P); therefore a convergence result for dual solution

can only translate into a primal convergence result with worse convergence rate. Such a treatment

is unsatisfactory, and this is what we will avoid in the current paper.

Some analyses of stochastic coordinate ascent provide solutions to the first problem mentioned

above. For example, Collins et al. (2008) analyzed an exponentiated gradient dual coordinate ascent

algorithm. The algorithm analyzed there (exponentiated gradient) is different from the standard
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DCA algorithm which we consider here, and the proof techniques are quite different. Consequently

their results are not directly comparable to results we obtain in this paper. Nevertheless we note that

for SVM, their analysis shows a convergence rate of O(n/εD) in order to achieve εD-sub-optimality

(on the dual) while our analysis shows a convergence of O(n log logn+ 1/λε) to achieve ε duality

gap; for logistic regression, their analysis shows a convergence rate of O((n+ 1/λ) log(1/εD)) in

order to achieve εD-sub-optimality on the dual while our analysis shows a convergence of O((n+
1/λ) log(1/ε)) to achieve ε duality gap.

In addition, Shalev-Shwartz and Tewari (2009), and later Nesterov (2012) have analyzed ran-

domized versions of coordinate descent for unconstrained and constrained minimization of smooth

convex functions. Hsieh et al. (2008, Theorem 4) applied these results to the dual SVM formulation.

However, the resulting convergence rate is O(n/εD) which is, as mentioned before, inferior to the

results we obtain here. Furthermore, neither of these analyses can be applied to logistic regression

due to their reliance on the smoothness of the dual objective function which is not satisfied for the

dual formulation of logistic regression. We shall also point out again that all of these bounds are for

the dual sub-optimality, while as mentioned before, we are interested in the primal sub-optimality.

In this paper we derive new bounds on the duality gap (hence, they also imply bounds on the

primal sub-optimality) of SDCA. These bounds are superior to earlier results, and our analysis only

holds for randomized (stochastic) dual coordinate ascent. As we will see from our experiments, ran-

domization is important in practice. In fact, the practical convergence behavior of (non-stochastic)

cyclic dual coordinate ascent (even with a random ordering of the data) can be slower than our the-

oretical bounds for SDCA, and thus cyclic DCA is inferior to SDCA. In this regard, we note that

some of the earlier analysis such as Luo and Tseng (1992) can be applied both to stochastic and to

cyclic dual coordinate ascent methods with similar results. This means that their analysis, which

can be no better than the behavior of cyclic dual coordinate ascent, is inferior to our analysis.

Recently, Lacoste-Julien et al. (2012) derived a stochastic coordinate ascent for structural SVM

based on the Frank-Wolfe algorithm. Specifying one variant of their algorithm to binary classifi-

cation with the hinge loss, yields the SDCA algorithm for the hinge-loss. The rate of convergence

Lacoste-Julien et al. (2012) derived for their algorithm is the same as the rate we derive for SDCA

with a Lipschitz loss function.

Another relevant approach is the Stochastic Average Gradient (SAG), that has recently been

analyzed in Le Roux et al. (2012). There, a convergence rate of Õ(n log(1/ε)) rate is shown, for the

case of smooth losses, assuming that n≥ 8
λγ . This matches our guarantee in the regime n≥ 8

λγ .

The following table summarizes our results in comparison to previous analyses. Note that for

SDCA with Lipschitz loss, we observe a faster practical convergence rate, which is explained with

our refined analysis in Section 5.

Lipschitz loss

Algorithm type of convergence rate

SGD primal Õ( 1
λε)

online EG (Collins et al., 2008) (for SVM) dual Õ( n
ε )

Stochastic Frank-Wolfe (Lacoste-Julien et al., 2012) primal-dual Õ(n+ 1
λε)

SDCA primal-dual Õ(n+ 1
λε) or faster

570



STOCHASTIC DUAL COORDINATE ASCENT METHODS FOR REGULARIZED LOSS MINIMIZATION

Smooth loss

Algorithm type of convergence rate

SGD primal Õ( 1
λε)

online EG (Collins et al., 2008) (for logistic regression) dual Õ((n+ 1
λ) log 1

ε )

SAG (Le Roux et al., 2012) (assuming n≥ 8
λγ ) primal Õ((n+ 1

λ) log 1
ε )

SDCA primal-dual Õ((n+ 1
λ) log 1

ε )

3. Basic Results

The generic algorithm we analyze is described below. In the pseudo-code, the parameter T indicates

the number of iterations while the parameter T0 can be chosen to be a number between 1 to T . Based

on our analysis, a good choice of T0 is to be T/2. In practice, however, the parameters T and T0 are

not required as one can evaluate the duality gap and terminate when it is sufficiently small.

Procedure SDCA(α(0))

Let w(0) = w(α(0))
Iterate: for t = 1,2, . . . ,T :

Randomly pick i

Find ∆αi to maximize −φ∗i (−(α
(t−1)
i +∆αi))−

λn
2
‖w(t−1)+(λn)−1∆αixi‖

2

α(t)← α(t−1)+∆αiei

w(t)← w(t−1)+(λn)−1∆αixi

Output (Averaging option):

Let ᾱ = 1
T−T0

∑T
i=T0+1 α(t−1)

Let w̄ = w(ᾱ) = 1
T−T0

∑T
i=T0+1 w(t−1)

return w̄

Output (Random option):

Let ᾱ = α(t) and w̄ = w(t) for some random t ∈ T0 +1, . . . ,T
return w̄

We analyze the algorithm based on different assumptions on the loss functions. To simplify the

statements of our theorems, we always assume the following:

1. For all i, ‖xi‖ ≤ 1

2. For all i and a, φi(a)≥ 0

3. For all i, φi(0)≤ 1

Theorem 2 Consider Procedure SDCA with α(0) = 0. Assume that φi is L-Lipschitz for all i. To

obtain a duality gap of E[P(w̄)−D(ᾱ)]≤ εP, it suffices to have a total number of iterations of

T ≥ T0 +n+
4L2

λεP

≥max(0,⌈n log(0.5λnL−2)⌉)+n+
20L2

λεP

.

Moreover, when t ≥ T0, we have dual sub-optimality bound of E[D(α∗)−D(α(t))]≤ εP/2.
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Remark 3 If we choose the average version, we may simply take T = 2T0. Moreover, we note that

Theorem 2 holds for both averaging or for choosing w at random from {T0 +1, . . . ,T}. This means

that calculating the duality gap at few random points would lead to the same type of guarantee with

high probability. This approach has the advantage over averaging, since it is easier to implement

the stopping condition (we simply check the duality gap at some random stopping points. This is in

contrast to averaging in which we need to know T,T0 in advance).

Remark 4 The above theorem applies to the hinge-loss function, φi(u)=max{0,1−yia}. However,

for the hinge-loss, the constant 4 in the first inequality can be replaced by 1 (this is because the

domain of the dual variables is positive, hence the constant 4 in Lemma 22 can be replaced by 1).

We therefore obtain the bound:

T ≥ T0 +n+
L2

λεP

≥max(0,⌈n log(0.5λnL−2)⌉)+n+
5L2

λεP

.

Theorem 5 Consider Procedure SDCA with α(0) = 0. Assume that φi is (1/γ)-smooth for all i. To

obtain an expected duality gap of E[P(w(T ))−D(α(T ))] ≤ εP, it suffices to have a total number of

iterations of

T ≥
(

n+ 1
λγ

)

log((n+ 1
λγ) ·

1
εP
).

Moreover, to obtain an expected duality gap of E[P(w̄)−D(ᾱ)] ≤ εP, it suffices to have a total

number of iterations of T > T0 where

T0 ≥
(

n+ 1
λγ

)

log((n+ 1
λγ) ·

1
(T−T0)εP

).

Remark 6 If we choose T = 2T0, and assume that T0 ≥ n+1/(λγ), then the second part of Theo-

rem 5 implies a requirement of

T0 ≥
(

n+ 1
λγ

)

log( 1
εP
),

which is slightly weaker than the first part of Theorem 5 when εP is relatively large.

Remark 7 Bottou and Bousquet (2008) analyzed the runtime of SGD and other algorithms from

the perspective of the time required to achieve a certain level of error on the test set. To perform

such analysis, we also need to take into account the estimation error, namely, the additional er-

ror we suffer due to the fact that the training examples defining the regularized loss minimization

problem are only a finite sample from the underlying distribution. The estimation error of the pri-

mal objective behaves like Θ
(

1
λn

)
(see Shalev-Shwartz and Srebro, 2008; Sridharan et al., 2009).

Therefore, an interesting regime is when 1
λn

= Θ(ε). In that case, the bound for both Lipschitz and

smooth functions would be Õ(n). However, this bound on the estimation error is for the worst-case

distribution over examples. Therefore, another interesting regime is when we would like ε≪ 1
λn

, but

still 1
λn

= O(1) (following the practical observation that λ = Θ(1/n) often performs well). In that

case, smooth functions still yield the bound Õ(n), but the dominating term for Lipschitz functions

will be 1
λε .

Remark 8 The runtime of SGD is Õ( 1
λε). This can be better than SDCA if n≫ 1

λε . However, in

that case, SGD in fact only looks at n′ = Õ( 1
λε) examples, so we can run SDCA on these n′ examples

and obtain basically the same rate. For smooth functions, SGD can be much worse than SDCA if

ε≪ 1
λn

.

572



STOCHASTIC DUAL COORDINATE ASCENT METHODS FOR REGULARIZED LOSS MINIMIZATION

4. Using SGD At The First Epoch

From the convergence analysis, SDCA may not perform as well as SGD for the first few epochs

(each epoch means one pass over the data). The main reason is that SGD takes a larger step size

than SDCA earlier on, which helps its performance. It is thus natural to combine SGD and SDCA,

where the first epoch is performed using a modified stochastic gradient descent rule. We show that

the expected dual sub-optimality at the end of the first epoch is Õ(1/(λn)). This result can be

combined with SDCA to obtain a faster convergence when λ≫ logn/n.

We first introduce convenient notation. Let Pt denote the primal objective for the first t examples

in the training set,

Pt(w) =

[

1

t

t

∑
i=1

φi(w
⊤xi)+

λ

2
‖w‖2

]

.

The corresponding dual objective is

Dt(α) =




1

t

t

∑
i=1

−φ∗i (−αi)−
λ

2

∥
∥
∥
∥
∥

1
λt

t

∑
i=1

αixi

∥
∥
∥
∥
∥

2


 .

Note that Pn(w) is the primal objective given in (1) and that Dn(α) is the dual objective given in (2).

The following algorithm is a modification of SGD. The idea is to greedily decrease the dual

sub-optimality for problem Dt(·) at each step t. This is different from DCA which works with Dn(·)
at each step t.

Procedure Modified-SGD

Initialize: w(0) = 0

Iterate: for t = 1,2, . . . ,n:

Find αt to maximize −φ∗t (−αt)−
λt
2
‖w(t−1)+(λt)−1αtxt‖

2.

Let w(t) = 1
λt ∑t

i=1 αixi

return α

We have the following result for the convergence of dual objective:

Theorem 9 Assume that φi is L-Lipschitz for all i. In addition, assume that (φi,xi) are iid samples

from the same distribution for all i = 1, . . . ,n. At the end of Procedure Modified-SGD, we have

E[D(α∗)−D(α)]≤
2L2 log(en)

λn
.

Here the expectation is with respect to the random sampling of {(φi,xi) : i = 1, . . . ,n}.

Remark 10 When λ is relatively large, the convergence rate in Theorem 9 for modified-SGD is

better than what we can prove for SDCA. This is because Modified-SGD employs a larger step size

at each step t for Dt(α) than the corresponding step size in SDCA for D(α). However, the proof

requires us to assume that (φi,xi) are randomly drawn from a certain distribution, while this extra

randomness assumption is not needed for the convergence of SDCA.
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Procedure SDCA with SGD Initialization

Stage 1: call Procedure Modified-SGD and obtain α

Stage 2: call Procedure SDCA with parameter α(0) = α

Theorem 11 Assume that φi is L-Lipschitz for all i. In addition, assume that (φi,xi) are iid samples

from the same distribution for all i = 1, . . . ,n. Consider Procedure SDCA with SGD Initialization.

To obtain a duality gap of E[P(w̄)−D(ᾱ)] ≤ εP at Stage 2, it suffices to have a total number of

SDCA iterations of

T ≥ T0 +n+
4L2

λεP

≥ ⌈n log(log(en))⌉+n+
20L2

λεP

.

Moreover, when t ≥ T0, we have duality sub-optimality bound of E[D(α∗)−D(α(t))]≤ εP/2.

Remark 12 For Lipschitz loss, ideally we would like to have a computational complexity of O(n+
L2/(λεP)). Theorem 11 shows that SDCA with SGD at first epoch can achieve no worst than

O(n log(logn)+ L2/(λεP)), which is very close to the ideal bound. The result is better than that

of vanilla SDCA in Theorem 2 when λ is relatively large, which shows a complexity of O(n log(n)+
L2/(λεP)). The difference is caused by small step-sizes in the vanilla SDCA, and its negative effect

can be observed in practice. That is, the vanilla SDCA tends to have a slower convergence rate than

SGD in the first few iterations when λ is relatively large.

Remark 13 Similar to Remark 4, for the hinge-loss, the constant 4 in Theorem 11 can be reduced

to 1, and the constant 20 can be reduced to 5.

5. Refined Analysis For Almost Smooth Loss

Our analysis shows that for smooth loss, SDCA converges faster than SGD (linear versus sub-

linear convergence). For non-smooth loss, the analysis does not show any advantage of SDCA

over SGD. This does not explain the practical observation that SDCA converges faster than SGD

asymptotically even for SVM. This section tries to refine the analysis for Lipschitz loss and shows

potential advantage of SDCA over SGD asymptotically. Note that the refined analysis of this section

relies on quantities that depend on the underlying data distribution, and thus the results are more

complicated than those presented earlier. Although precise interpretations of these results will be

complex, we will discuss them qualitatively after the theorem statements, and use them to explain

the advantage of SDCA over SGD for non-smooth losses.

Although we note that for SVM, Luo and Tseng’s analysis (Luo and Tseng, 1992) shows lin-

ear convergence of the form (1− ν)k for dual sub-optimality after k passes over the data, as we

mentioned, ν is proportional to the smallest nonzero eigenvalue of the data Gram matrix X⊤X , and

hence can be arbitrarily bad when two data points xi 6= x j becomes very close to each other. Our

analysis uses a completely different argument that avoids this dependency on the data Gram matrix.

The main intuition behind our analysis is that many non-smooth loss functions are nearly smooth

everywhere. For example, the hinge loss max(0,1− uyi) is smooth at any point u such that uyi is

not close to 1. Since a smooth loss has a strongly convex dual (and the strong convexity of the dual
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is directly used in our proof to obtain fast rate for smooth loss), the refined analysis in this section

relies on the following refined dual strong convexity condition that holds for nearly everywhere

smooth loss functions.

Definition 14 For each i, we define γi(·)≥ 0 so that for all dual variables a and b, and u∈ ∂φ∗i (−b),
we have

φ∗i (−a)−φ∗i (−b)+u(a−b)≥ γi(u)|a−b|2. (4)

For the SVM loss, we have φi(u) = max(0,1− uyi), and φ∗i (−a) = −ayi, with ayi ∈ [0,1] and

yi ∈ {±1}. It follows that

φ∗i (−a)−φ∗i (−b)+u(a−b) = (b−a)yi +u(a−b) = |uyi−1||a−b| ≥ |uyi−1| · |a−b|2.

Therefore we may take γi(u) = |uyi−1|.
For the absolute deviation loss, we have φi(u) = |u− yi|, and φ∗(−a) = −ayi with a ∈ [−1,1].

It follows that γi(u) = |u− yi|.

Proposition 15 Under the assumption of (4). Let γi = γi(w
∗⊤xi), we have the following dual strong

convexity inequality:

D(α∗)−D(α)≥
1

n

n

∑
i=1

γi|αi−α∗i |
2 +

λ

2
(w−w∗)⊤(w−w∗). (5)

Moreover, given w ∈ R
d and −ai ∈ ∂φi(w

⊤xi), we have

|(w∗−w)⊤xi| ≥ γi|ai−α∗i |.

For SVM, we can take γi = |w
∗⊤xiyi− 1|, and for the absolute deviation loss, we may take

γi = |w
∗⊤xi− yi|. Although some of γi can be close to zero, in practice, most γi will be away from

zero, which means D(α) is strongly convex at nearly all points. Under this assumption, we may

establish a convergence result for the dual sub-optimality.

Theorem 16 Consider Procedure SDCA with α(0) = 0. Assume that φi is L-Lipschitz for all i and it

satisfies (5). Define N(u) = #{i : γi < u}. To obtain a dual-suboptimality of E[D(α∗)−D(αt)]≤ εD,

it suffices to have a total number of iterations of

t ≥ 2(n/s) log(2/εD),

where s ∈ [0,1] satisfies εD ≥ 8L2(s/λn)N(s/λn)/n.

Remark 17 if N(s/λn)/n is small, then Theorem 16 is superior to Theorem 2 for the convergence

of the dual objective function. We consider three scenarios. The first scenario is when s = 1.

If N(1/λn)/n is small, and εD ≥ 8L2(1/λn)N(1/λn)/n, then the convergence is linear. The sec-

ond scenario is when there exists s0 so that N(s0/λn) = 0 (for SVM, it means that λn|w∗⊤xiyi−
1| ≥ s0 for all i), and since εD ≥ 8L2(s0/λn)N(s0/λn)/n, we again have a linear convergence of

(2n/s0) log(2/εD). In the third scenario, we assume that N(s/λn)/n = O[(s/λn)ν] for some ν > 0,

we can take εD = O((s/λn)1+ν) and obtain

t ≥ O(λ−1ε
−1/(1+ν)
D log(2/εD)).

The log(1/εD) factor can be removed in this case with a slightly more complex analysis. This result

is again superior to Theorem 2 for dual convergence.

575



SHALEV-SHWARTZ AND ZHANG

The following result shows fast convergence of duality gap using Theorem 16.

Theorem 18 Consider Procedure SDCA with α(0) = 0. Assume that φi is L-Lipschitz for all i and

it satisfies (4). Let ρ≤ 1 be the largest eigenvalue of the matrix n−1 ∑i=1 xix
⊤
i . Define N(u) = #{i :

γi < u}. Assume that at time T0 ≥ n, we have dual suboptimality of E[D(α∗)−D(α(T0))]≤ εD, and

define

ε̃P = inf
γ>0

[
N(γ)

n
4L2 +

2εD

min(γ,λγ2/(2ρ))

]

,

then at time T = 2T0, we have

E[P(w̄)−D(ᾱ)]≤ εD +
ε̃P

2λT0

.

If for some γ, N(γ)/n is small, then Theorem 18 is superior to Theorem 2. Although the general

dependency may be complex, the improvement over Theorem 2 can be more easily seen in the

special case that N(γ) = 0 for some γ > 0. In fact, in this case we have ε̃P = O(εD), and thus

E[P(w̄)−D(ᾱ)] = O(εD).

This means that the convergence rate for duality gap in Theorem 18 is linear as implied by the linear

convergence of εD in Theorem 16.

6. Examples

We will specify the SDCA algorithms for a few common loss functions. For simplicity, we only

specify the algorithms without SGD initialization. In practice, instead of complete randomization,

we may also run in epochs, and each epoch employs a random permutation of the data. We call this

variant SDCA-Perm.

Procedure SDCA-Perm(α(0))

Let w(0) = w(α(0))
Let t = 0

Iterate: for epoch k = 1,2, . . .
Let {i1, . . . , in} be a random permutation of {1, . . . ,n}
Iterate: for j = 1,2, . . . ,n:

t← t +1

i = i j

Find ∆αi to increase dual (*)

α(t)← α(t−1)+∆αiei

w(t)← w(t−1)+(λn)−1∆αixi

Output (Averaging option):

Let ᾱ = 1
T−T0

∑T
i=T0+1 α(t−1)

Let w̄ = w(ᾱ) = 1
T−T0

∑T
i=T0+1 w(t−1)

return w̄

Output (Random option):

Let ᾱ = α(t) and w̄ = w(t) for some random t ∈ T0 +1, . . . ,T
return w̄
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6.1 Lipschitz Loss

Hinge loss is used in SVM. We have φi(u) = max{0,1− yiu} and φ∗i (−a) =−ayi with ayi ∈ [0,1].
Absolute deviation loss is used in quantile regression. We have φi(u) = |u− yi| and φ∗i (−a) =−ayi

with a ∈ [−1,1].
For the hinge loss, step (*) in Procedure SDCA-Perm has a closed form solution as

∆αi = yi max

(

0,min

(

1,
1− x⊤i w(t−1)yi

‖xi‖2/(λn)
+α

(t−1)
i yi

))

−α
(t−1)
i .

For absolute deviation loss, step (*) in Procedure SDCA-Perm has a closed form solution as

∆αi = max

(

−1,min

(

1,
yi− x⊤i w(t−1)

‖xi‖2/(λn)
+α

(t−1)
i

))

−α
(t−1)
i .

Both hinge loss and absolute deviation loss are 1-Lipschitz. Therefore, we expect a convergence

behavior of no worse than

O

(

n logn+
1

λε

)

without SGD initialization based on Theorem 2. The refined analysis in Section 5 suggests a rate

that can be significantly better, and this is confirmed with our empirical experiments.

6.2 Smooth Loss

Squared loss is used in ridge regression. We have φi(u) = (u−yi)
2, and φ∗i (−a) =−ayi+a2/4. Log

loss is used in logistic regression. We have φi(u) = log(1+exp(−yiu)), and φ∗i (−a) = ayi log(ayi)+
(1−ayi) log(1−ayi) with ayi ∈ [0,1].

For squared loss, step (*) in Procedure SDCA-Perm has a closed form solution as

∆αi =
yi− x⊤i w(t−1)−0.5α

(t−1)
i

0.5+‖xi‖2/(λn)
.

For log loss, step (*) in Procedure SDCA-Perm does not have a closed form solution. However,

one may start with the approximate solution,

∆αi =
(1+ exp(x⊤i w(t−1)yi))

−1yi−α
(t−1)
i

max(1,0.25+‖xi‖2/(λn))
,

and further use several steps of Newton’s update to get a more accurate solution.

Finally, we present a smooth variant of the hinge-loss, as defined below. Recall that the hinge

loss function (for positive labels) is φ(u) = max{0,1−u} and we have φ∗(−a) =−a with a ∈ [0,1].
Consider adding to φ∗ the term

γ
2
a2 which yields the γ-strongly convex function

φ̃∗γ(a) = φ∗(a)+
γ

2
a2 .

Then, its conjugate, which is defined below, is (1/γ)-smooth. We refer to it as the smoothed hinge-

loss (for positive labels):

φ̃γ(x) = max
a∈[−1,0]

[

ax−a−
γ

2
a2
]

=







0 x > 1

1− x− γ/2 x < 1− γ
1
2γ(1− x)2 otherwise

. (6)
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For the smoothed hinge loss, step (*) in Procedure SDCA-Perm has a closed form solution as

∆αi = yi max

(

0,min

(

1,
1− x⊤i w(t−1)yi− γα

(t−1)
i yi

‖xi‖2/(λn)+ γ
+α

(t−1)
i yi

))

−α
(t−1)
i .

Both log loss and squared loss are 1-smooth. The smoothed-hinge loss is 1/γ smooth. Therefore

we expect a convergence behavior of no worse than

O

((

n+
1

γλ

)

log
1

ε

)

.

This is confirmed in our empirical experiments.

7. Proofs

We denote by ∂φi(a) the set of sub-gradients of φi at a. We use the notation φ′i(a) to denote some

sub-gradient of φi at a. For convenience, we list the following simple facts about primal and dual

formulations, which will used in the proofs. For each i, we have

−α∗i ∈ ∂φi(w
∗⊤xi), w∗⊤xi ∈ ∂φ∗i (−α∗i ),

and

w∗ =
1

λn

n

∑
i=1

α∗i xi.

The proof of our basic results stated in Theorem 5 and Theorem 2 relies on the fact that for

SDCA, it is possible to lower bound the expected increase in dual objective by the duality gap. This

key observation is stated in Lemma 19. Note that the duality gap can be further lower bounded

using dual suboptimality. Therefore Lemma 19 implies a recursion for dual suboptimality which

can be solved to obtain the convergence of dual objective. We can then apply Lemma 19 again,

and the convergence of dual objective implies an upper bound of the duality gap, which leads to the

basic theorems. The more refined results in Section 4 and Section 5 use similar strategies but with

Lemma 19 replaced by its variants.

7.1 Proof Of Theorem 5

The key lemma, which estimates the expected increase in dual objective in terms of the duality gap,

can be stated as follows.

Lemma 19 Assume that φ∗i is γ-strongly-convex (where γ can be zero). Then, for any iteration t and

any s ∈ [0,1] we have

E[D(α(t))−D(α(t−1))]≥
s

n
E[P(w(t−1))−D(α(t−1))]−

( s

n

)2 G(t)

2λ
,

where

G(t) =
1

n

n

∑
i=1

(

‖xi‖
2−

γ(1− s)λn

s

)

E[(u
(t−1)
i −α

(t−1)
i )2],

and −u
(t−1)
i ∈ ∂φi(x

⊤
i w(t−1)).
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Proof Since only the i’th element of α is updated, the improvement in the dual objective can be

written as

n[D(α(t))−D(α(t−1))] =

(

−φ∗i (−α
(t)
i )−

λn

2
‖w(t)‖2

)

︸ ︷︷ ︸

A

−

(

−φ∗i (−α
(t−1)
i )−

λn

2
‖w(t−1)‖2

)

︸ ︷︷ ︸

B

.

By the definition of the update we have for all s ∈ [0,1] that

A = max
∆αi

−φ∗i (−(α
(t−1)
i +∆αi))−

λn

2
‖w(t−1)+(λn)−1∆αixi‖

2

≥−φ∗i (−(α
(t−1)
i + s(u

(t−1)
i −α

(t−1)
i )))−

λn

2
‖w(t−1)+(λn)−1s(u

(t−1)
i −α

(t−1)
i )xi‖

2. (7)

From now on, we omit the superscripts and subscripts. Since φ∗ is γ-strongly convex, we have that

φ∗(−(α+ s(u−α))) = φ∗(s(−u)+(1− s)(−α))≤ sφ∗(−u)+(1− s)φ∗(−α)−
γ

2
s(1− s)(u−α)2.

Combining this with (7) and rearranging terms we obtain that

A≥−sφ∗(−u)− (1− s)φ∗(−α)+
γ

2
s(1− s)(u−α)2−

λn

2
‖w+(λn)−1s(u−α)x‖2

=−sφ∗(−u)− (1− s)φ∗(−α)+
γ

2
s(1− s)(u−α)2−

λn

2
‖w‖2− s(u−α)w⊤x

−
s2(u−α)2

2λn
‖x‖2

=−s(φ∗(−u)+uw⊤x)
︸ ︷︷ ︸

sφ(w⊤x)

+(−φ∗(−α)−
λn

2
‖w‖2)

︸ ︷︷ ︸

B

+
s

2

(

γ(1− s)−
s‖x‖2

λn

)

(u−α)2

+ s(φ∗(−α)+αw⊤x),

where we used −u ∈ ∂φ(w⊤x) which yields φ∗(−u) =−uw⊤x−φ(w⊤x). Therefore

A−B≥ s

[

φ(w⊤x)+φ∗(−α)+αw⊤x+

(
γ(1− s)

2
−

s‖x‖2

2λn

)

(u−α)2

]

. (8)

Next note that

P(w)−D(α) =
1

n

n

∑
i=1

φi(w
⊤xi)+

λ

2
w⊤w−

(

−
1

n

n

∑
i=1

φ∗i (−αi)−
λ

2
w⊤w

)

=
1

n

n

∑
i=1

(

φi(w
⊤xi)+φ∗i (−αi)+αiw

⊤xi

)

.

Therefore, if we take expectation of (8) w.r.t. the choice of i we obtain that

1

s
E[A−B]≥ E[P(w)−D(α)]−

s

2λn
·

1

n

n

∑
i=1

(

‖xi‖
2−

γ(1− s)λn

s

)

E(ui−αi)
2

︸ ︷︷ ︸

=G(t)

.
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We have obtained that

n

s
E[D(α(t))−D(α(t−1))]≥ E[P(w(t−1))−D(α(t−1))]−

sG(t)

2λn
.

Multiplying both sides by s/n concludes the proof of the lemma.

We also use the following simple lemma:

Lemma 20 For all α, D(α)≤ P(w∗)≤ P(0)≤ 1. In addition, D(0)≥ 0.

Proof The first inequality is by weak duality, the second is by the optimality of w∗, and the third

by the assumption that φi(0) ≤ 1. For the last inequality we use −φ∗i (0) = −maxz(0− φi(z)) =
minz φi(z)≥ 0, which yields D(0)≥ 0.

Equipped with the above lemmas we are ready to prove Theorem 5.

Proof [Proof of Theorem 5] The assumption that φi is (1/γ)-smooth implies that φ∗i is γ-strongly-

convex. We will apply Lemma 19 with s = λnγ
1+λnγ ∈ [0,1]. Recall that ‖xi‖ ≤ 1. Therefore, the

choice of s implies that ‖xi‖
2− γ(1−s)λn

s
≤ 0, and hence G(t) ≤ 0 for all t. This yields,

E[D(α(t))−D(α(t−1))]≥
s

n
E[P(w(t−1))−D(α(t−1))] .

But since ε
(t−1)
D := D(α∗)−D(α(t−1))≤ P(w(t−1))−D(α(t−1)) and D(α(t))−D(α(t−1)) = ε

(t−1)
D −

ε
(t)
D , we obtain that

E[ε
(t)
D ]≤

(
1− s

n

)
E[ε

(t−1)
D ]≤

(
1− s

n

)t
E[ε

(0)
D ]≤

(
1− s

n

)t
≤ exp(−st/n) = exp

(

−
λγt

1+λγn

)

.

This would be smaller than εD if

t ≥
(

n+ 1
λγ

)

log(1/εD) .

It implies that

E[P(w(t))−D(α(t))]≤
n

s
E[ε

(t)
D − ε

(t+1)
D ]≤

n

s
E[ε

(t)
D ]. (9)

So, requiring ε
(t)
D ≤

s
n
εP we obtain a duality gap of at most εP. This means that we should require

t ≥
(

n+ 1
λγ

)

log((n+ 1
λγ) ·

1
εP
) ,

which proves the first part of Theorem 5.

Next, we sum (9) over t = T0, . . . ,T −1 to obtain

E

[

1

T −T0

T−1

∑
t=T0

(P(w(t))−D(α(t)))

]

≤
n

s(T −T0)
E[D(α(T ))−D(α(T0))].
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Now, if we choose w̄, ᾱ to be either the average vectors or a randomly chosen vector over t ∈
{T0 +1, . . . ,T}, then the above implies

E[P(w̄)−D(ᾱ)]≤
n

s(T −T0)
E[D(α(T ))−D(α(T0))]≤

n

s(T −T0)
E[ε

(T0)
D )].

It follows that in order to obtain a result of E[P(w̄)−D(ᾱ)]≤ εP, we only need to have

E[ε
(T0)
D )]≤

s(T −T0)εP

n
=

(T −T0)εP

n+ 1
λγ

.

This implies the second part of Theorem 5, and concludes the proof.

7.2 Proof Of Theorem 2

Next, we turn to the case of Lipschitz loss function. We rely on the following lemma.

Lemma 21 Let φ : R→ R be an L-Lipschitz function. Then, for any α s.t. |α| > L we have that

φ∗(α) = ∞.

Proof Fix some α > L. By definition of the conjugate we have

φ∗(α) = sup
x

[αx−φ(x)]

≥−φ(0)+ sup
x

[αx− (φ(x)−φ(0))]

≥−φ(0)+ sup
x

[αx−L|x−0|]

≥−φ(0)+ sup
x>0

(α−L)x = ∞ .

Similar argument holds for α <−L.

A direct corollary of the above lemma is:

Lemma 22 Suppose that for all i, φi is L-Lipschitz. Let G(t) be as defined in Lemma 19 (with γ = 0).

Then, G(t) ≤ 4L2.

Proof Using Lemma 21 we know that |α
(t−1)
i | ≤ L, and in addition by the relation of Lipschitz and

sub-gradients we have |u
(t−1)
i | ≤ L. Thus, (u

(t−1)
i −α

(t−1)
i )2 ≤ 4L2, and the proof follows.

We are now ready to prove Theorem 2.

Proof [Proof of Theorem 2] Let G = maxt G(t) and note that by Lemma 22 we have G ≤ 4L2.

Lemma 19, with γ = 0, tells us that

E[D(α(t))−D(α(t−1))]≥
s

n
E[P(w(t−1))−D(α(t−1))]−

( s

n

)2 G

2λ
, (10)

which implies that

E[ε
(t)
D ]≤

(
1− s

n

)
E[ε

(t−1)
D ]+

(
s
n

)2 G
2λ .
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We next show that the above yields

E[ε
(t)
D ]≤

2G

λ(2n+ t− t0)
(11)

for all t ≥ t0 = max(0,⌈n log(2λnε
(0)
D /G)⌉). Indeed, let us choose s = 1, then at t = t0, we have

E[ε
(t)
D ]≤

(
1− 1

n

)t
ε
(0)
D + G

2λn2
1

1−(1−1/n) ≤ e−t/nε
(0)
D + G

2λn
≤ G

λn
.

This implies that (11) holds at t = t0. For t > t0 we use an inductive argument. Suppose the claim

holds for t−1, therefore

E[ε
(t)
D ]≤

(
1− s

n

)
E[ε

(t−1)
D ]+

(
s
n

)2 G
2λ ≤

(
1− s

n

)
2G

λ(2n+t−1−t0)
+
(

s
n

)2 G
2λ .

Choosing s = 2n/(2n− t0 + t−1) ∈ [0,1] yields

E[ε
(t)
D ]≤

(

1− 2
2n−t0+t−1

)
2G

λ(2n−t0+t−1) +
(

2
2n−t0+t−1

)2
G
2λ

= 2G
λ(2n−t0+t−1)

(

1− 1
2n−t0+t−1

)

= 2G
λ(2n−t0+t−1)

2n−t0+t−2
2n−t0+t−1

≤ 2G
λ(2n−t0+t−1)

2n−t0+t−1
2n−t0+t

= 2G
λ(2n−t0+t) .

This provides a bound on the dual sub-optimality. We next turn to bound the duality gap. Summing

(10) over t = T0 +1, . . . ,T and rearranging terms we obtain that

E

[

1

T −T0

T

∑
t=T0+1

(P(w(t−1))−D(α(t−1)))

]

≤
n

s(T −T0)
E[D(α(T ))−D(α(T0))]+

sG

2λn
.

Now, if we choose w̄, ᾱ to be either the average vectors or a randomly chosen vector over t ∈
{T0 +1, . . . ,T}, then the above implies

E[P(w̄)−D(ᾱ)]≤
n

s(T −T0)
E[D(α(T ))−D(α(T0))]+

sG

2λn
.

If T ≥ n+T0 and T0 ≥ t0, we can set s = n/(T −T0) and combining with (11) we obtain

E[P(w̄)−D(ᾱ)]≤ E[D(α(T ))−D(α(T0))]+
G

2λ(T −T0)

≤ E[D(α∗)−D(α(T0))]+
G

2λ(T −T0)

≤
2G

λ(2n− t0 +T0)
+

G

2λ(T −T0)
.

A sufficient condition for the above to be smaller than εP is that T0 ≥
4G
λεP
−2n+ t0 and T ≥ T0+

G
λεP

.

It also implies that E[D(α∗)−D(α(T0))] ≤ εP/2. Since we also need T0 ≥ t0 and T −T0 ≥ n, the

overall number of required iterations can be

T0 ≥max{t0,4G/(λεP)−2n+ t0}, T −T0 ≥max{n,G/(λεP)}.
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We conclude the proof by noticing that ε
(0)
D ≤ 1 using Lemma 20, which implies that

t0 ≤max(0,⌈n log(2λn/G)⌉).

7.3 Proof Of Theorem 9

We assume that (φt ,xt) are randomly drawn from a distribution D, and define the population opti-

mizer

w∗D = argmin
w

PD(w), PD(w) = E(φ,x)∼D

[

φ(w⊤x)+
λ

2
‖w‖2

]

.

By definition, we have P(w∗)≤ P(w∗D) for any specific realization of {(φt ,xt) : t = 1, . . . ,n}. There-

fore

EP(w∗)≤ EP(w∗D) = EPD(w
∗
D),

where the expectation is with respect to the choice of examples, and note that both P(·) and w∗ are

sample dependent.

After each step t, we let α(t) = [α1, . . . ,αt ], and let −u ∈ ∂φt+1(x
⊤
t+1w(t)). We have, for all t,

(t +1)Dt+1(α
(t+1))− tDt(α

(t)) =−φ∗t+1(−α
(t+1)
t+1 )− (t +1)

λ

2
‖w(t+1)‖2 + t

λ

2
‖w(t)‖2

=−φ∗t+1(−α
(t+1)
t+1 )−

1

2(t +1)λ
‖λtw(t)+α

(t+1)
t+1 xt+1‖

2 +
1

2tλ
‖λtw(t)‖2

≥−φ∗t+1(−u)−
1

2(t +1)λ
‖λtw(t)+uxt+1‖

2 +
1

2tλ
‖λtw(t)‖2

=−φ∗t+1(−u)−
t

t +1
x⊤t+1w(t) u+

1

2λ

(
1

t
−

1

t +1

)

‖λtw(t)‖2−
u2‖xt+1‖

2

2(t +1)λ

=−φ∗t+1(−u)− x⊤t+1w(t) u+

(

1−
t

t +1

)

x⊤t+1w(t) u+
1

2(t +1)λ

(

‖λtw(t)‖2

t
−u2‖xt+1‖

2

)

= φt+1(x
⊤
t+1w(t))+

1

2(t +1)λ

(

2λx⊤t+1w(t) u+
‖λtw(t)‖2

t
−u2‖xt+1‖

2

)

= φt+1(x
⊤
t+1w(t))+

λ

2
‖w(t)‖2 +

1

2(t +1)λ

(

2λx⊤t+1w(t) u−‖λw(t)‖2−u2‖xt+1‖
2
)

= φt+1(w
(t) ⊤xt+1)+

λ

2
‖w(t)‖2−

‖λw(t)−uxt+1‖
2

2(t +1)λ
.

The inequality above can be obtained by noticing that the choice of −α
(t+1)
t+1 maximizes the dual

objective. In the derivation of the equalities we have used basic algebra as well as the equa-

tion −φ∗t+1(−u)− x⊤t+1w(t) u = φt+1(x
⊤
t+1w(t)) which follows from −u ∈ ∂φt+1(x

⊤
t+1w(t)). Next we

note that ‖λw(t)− uxt+1‖ ≤ 2L (where we used the triangle inequality, the definition of w(t), and

Lemma 21). Therefore,

(t +1)Dt+1(α
(t+1))− tDt(α

(t))≥ φt+1(w
(t) ⊤xt+1)+

λ

2
‖w(t)‖2−

2L2

(t +1)λ
.
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Taking expectation with respect to the choice of the examples, and note that the (t +1)’th example

does not depend on w(t) we obtain that

E[(t +1)Dt+1(α
(t+1))− tDt(α

(t))]

≥E[PD(w
(t))]−

2L2

(t +1)λ
≥ E[PD(w

∗
D)]−

2L2

(t +1)λ

≥E[P(w∗)]−
2L2

(t +1)λ
= E[D(α∗)]−

2L2

(t +1)λ
.

Using Lemma 20 we know that Dt(α
(t)) ≥ 0 for all t. Therefore, by summing the above over t we

obtain that

E[nD(α(n))]≥ nE[D(α∗)]−
2L2 log(en)

λ
,

which yields

E[D(α∗)−D(α(n))]≤
2L2 log(en)

λn
.

7.4 Proof Of Theorem 11

The proof is identical to the proof of Theorem 2. We just need to notice that at the end of the first

stage, we have Eε
(0)
D ≤ 2L2 log(en)/(λn). It implies that t0≤max(0,⌈n log(2λn ·2L2 log(en)/(λnG))⌉).

7.5 Proof Of Proposition 15

Consider any feasible dual variable α and the corresponding w = w(α). Since

w =
1

λn

n

∑
i=1

αixi, w∗ =
1

λn

n

∑
i=1

α∗i xi,

we have

λ(w−w∗)⊤w∗ =
1

n

n

∑
i=1

(αi−α∗i )w
∗⊤xi.

Therefore

D(α∗)−D(α)

=
1

n

n

∑
i=1

[

φ∗i (−αi)−φ∗i (−α∗i )+(αi−α∗i )w
∗⊤xi

]

+
λ

2
[w⊤w−w∗⊤w∗−2(w−w∗)⊤w∗]

=
1

n

n

∑
i=1

[

φ∗i (−αi)−φ∗i (−α∗i )+(αi−α∗i )w
∗⊤xi

]

+
λ

2
(w−w∗)⊤(w−w∗).

Since w∗⊤xi ∈ ∂φ∗i (−α∗i ), we have

φ∗i (−αi)−φ∗i (−α∗i )+(αi−α∗i )w
∗⊤xi ≥ γi(αi−α∗i )

2.

By combining the previous two displayed inequalities, we obtain the first desired bound.
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Next, we let u = w∗⊤xi, v = w⊤xi. Since −ai ∈ ∂φi(v) and −α∗i ∈ ∂φi(u), it follows that u ∈
∂φ∗i (−α∗i ) and v ∈ ∂φ∗i (−ai). Therefore

|u− v| · |α∗i −ai|

=[φ∗i (−ai)−φ∗i (−α∗i )+u(ai−α∗i )]
︸ ︷︷ ︸

≥0

+[φ∗i (−α∗i )−φ∗i (−ai)+ v(α∗i −ai)]
︸ ︷︷ ︸

≥0

≥φ∗i (−ai)−φ∗i (−α∗i )+u(ai−α∗i )≥ γi(u)|ai−α∗i |
2.

This implies the second bound.

7.6 Proof Of Theorem 16

The following lemma is very similar to Lemma 19 with nearly identical proof, but it focuses only

on the convergence of dual objective function using (5).

Lemma 23 Assume that (5) is valid. Then for any iteration t and any s ∈ [0,1] we have

E[D(α(t))−D(α(t−1))]≥
s

2n
E[D(α∗)−D(α(t−1))]+

3sλ

4n
‖w∗−w(t−1)‖2−

( s

n

)2 G
(t)
∗ (s)

2λ
,

where

G
(t)
∗ (s) =

1

n

n

∑
i=1

(

‖xi‖
2−

γiλn

s

)

E[(α∗i −α
(t−1)
i )2].

Proof Since only the i’th element of α is updated, the improvement in the dual objective can be

written as

n[D(α(t))−D(α(t−1))] =

(

−φ∗(−α
(t)
i )−

λn

2
‖w(t)‖2

)

︸ ︷︷ ︸

Ai

−

(

−φ∗(−α
(t−1)
i )−

λn

2
‖w(t−1)‖2

)

︸ ︷︷ ︸

Bi

.

By the definition of the update we have for all s ∈ [0,1] that

Ai = max
∆αi

−φ∗(−(α
(t−1)
i +∆αi))−

λn

2
‖w(t−1)+(λn)−1∆αixi‖

2

≥−φ∗(−(α
(t−1)
i + s(α∗i −α

(t−1)
i )))−

λn

2
‖w(t−1)+(λn)−1s(α∗i −α

(t−1)
i )xi‖

2.

We can now apply the Jensen’s inequality to obtain

Ai ≥−sφ∗i (−α∗i )− (1− s)φ∗i (−α
(t−1)
i )−

λn

2
‖w(t−1)+(λn)−1s(α∗i −α

(t−1)
i )xi‖

2

=−s[φ∗i (−α∗i )−φ∗i (−α
(t−1)
i )] −φ∗i (−α

(t−1)
i )−

λn

2
‖w(t−1)‖2

︸ ︷︷ ︸

Bi

−s(α∗i −α
(t−1)
i )x⊤i w(t−1)

−
s2(α∗i −α

(t−1)
i )2

2λn
‖xi‖

2.
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By summing over i = 1, . . . ,n, we obtain

n

∑
i=1

[Ai−Bi]≥− s
n

∑
i=1

[φ∗i (−α∗i )−φ∗i (−α
(t−1)
i )]− s

n

∑
i=1

(α∗i −α
(t−1)
i )x⊤i w(t−1)

−
s2

2λn

n

∑
i=1

(α∗i −α
(t−1)
i )2‖xi‖

2

=− s
n

∑
i=1

[φ∗i (−α∗i )−φ∗i (−α
(t−1)
i )+λ(w∗−w(t−1))⊤w(t−1)]

−
s2

2λn

n

∑
i=1

(α∗i −α
(t−1)
i )2‖xi‖

2,

where the equality follows from ∑n
i=1(α

∗
i −α

(t−1)
i )xi = λn(w∗−w(t−1)). By rearranging the terms

on the right hand side using (w∗−w(t−1))⊤w(t−1) = ‖w∗‖2/2−‖w(t−1)‖2/2−‖w∗−w(t−1)‖2/2, we

obtain

n

∑
i=1

[Ai−Bi]

≥− s
n

∑
i=1

[

φ∗i (−α∗i )−φ∗i (−α
(t−1)
i )+

λ

2
‖w∗‖2−

λ

2
‖w(t−1)‖2

]

+
λsn

2
‖w∗−w(t−1)‖2

−
s2

2λn

n

∑
i=1

(α∗i −α
(t−1)
i )2‖xi‖

2

=sn[D(α∗)−D(α(t−1))]+
sλn

2
‖w∗−w(t−1)‖2−

s2

2λn

n

∑
i=1

(α∗i −α
(t−1)
i )2‖xi‖

2.

We can now apply (5) to obtain

n

∑
i=1

[Ai−Bi]≥
sn

2
[D(α∗)−D(α(t−1))]+

3sλn

4
‖w∗−w(t−1)‖2

−
s2

2λn

n

∑
i=1

(α∗i −α
(t−1)
i )2(‖xi‖

2− γiλn/s).

This implies the desired result.

Lemma 24 Suppose that for all i, φi is L-Lipschitz. Let G
(t)
∗ be as defined in Lemma 23. Then

G
(t)
∗ (s)≤

4L2N(s/(λn))

n
.

Proof Similarly to the proof of Lemma 22, we know that (α∗i −α
(t−1)
i )2≤ 4L2. Moreover, ‖xi‖

2≤ 1,

and ‖xi‖
2− γiλn

s
≤ 0 when γi ≥ s/(λn). Therefore there are no more than N(s/(λn)) data points i

such that ‖xi‖
2− γiλn

s
is positive. The desired result follows from these facts.
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Proof [Proof of Theorem 16] Let ε
(t)
D =E[D(α∗)−D(α(t))], and G∗(s) = 4L2N(s/λn)/n. We obtain

from Lemma 23 and Lemma 24 that

ε
(t)
D ≤ (1− s/(2n))ε

(t−1)
D +

( s

n

)2 G∗(s)

2λ
.

It follows that for all t > 0 we have

ε
(t)
D ≤(1− s/(2n))tε

(0)
D +

1

1− (1− s/(2n))

( s

n

)2 G∗(s)

2λ

≤e−st/2n +
( s

n

) G∗(s)

λ
≤ e−st/2n + εD/2.

It follows that when

t ≥ (2n/s) log(2/εD),

we have ε
(t)
D ≤ εD.

7.7 Proof Of Theorem 18

Let ε
(t)
D = E[D(α∗)−D(α(t))]. From Proposition 15, we know that for all t ≥ T0:

ε
(t)
D ≥

1

n

n

∑
i=1

[

γiE |α
(t)
i −α∗i |

2 +
λ

2ρ
E((w(t)−w∗)⊤xi)

2

]

≥
1

n

n

∑
i=1

[

γiE |α
(t)
i −α∗i |

2 +
λγ2

i

2ρ
E(u

(t−1)
i −α∗i )

2

]

,

where −u
(t−1)
i ∈ ∂φi(x

⊤
i w(t)). It follows that given any γ > 0, we have

1

n

n

∑
i=1

E |α
(t)
i −u

(t−1)
i |2

≤
N(γ)

n
sup

i

E |α
(t)
i −u

(t−1)
i |2 +

2

n
∑

i:γi≥γ

[

E |α
(t)
i −α∗i |

2 +E(u
(t−1)
i −α∗i )

2
]

≤
N(γ)

n
sup

i

E |α
(t)
i −u

(t−1)
i |2 +

2
n ∑n

i=1

[

γiE |α
(t)
i −α∗i |

2 +
λγ2

i

2ρ E(u
(t−1)
i −α∗i )

2
]

min(γ,λγ2/(2ρ))

≤
N(γ)

n
4L2 +

2ε
(t)
D

min(γ,λγ2/(2ρ))
,

where Lemma 22 is used for the last inequality. Since γ is arbitrary and ε
(t)
D ≤ εD, it follows that

1

n

n

∑
i=1

E |α
(t)
i −u

(t−1)
i |2 ≤ ε̃P.
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Now plug into Lemma 19, we obtain for all t ≥ T0 +1:

ε
(t−1)
D − ε

(t)
D

≥
s

n
E[P(w(t−1))−D(α(t−1))]−

( s

n

)2 1

2λn

n

∑
i=1

E[(u
(t−1)
i −α

(t−1)
i )2]

≥
s

n
E[P(w(t−1))−D(α(t−1))]−

( s

n

)2 ε̃P

2λ
.

By taking s = n/T0, and summing over t = T0 +1, . . . ,2T0 = T , we obtain

εD ≥ ε
(T0)
D − ε

(T )
D ≥ E[P(w̄)−D(ᾱ)]−

ε̃P

2λT0

.

This proves the desired bound.

8. Experimental Results

In this section we demonstrate the tightness of our theory. All our experiments are performed

with the smooth variant of the hinge-loss defined in (6), where the value of γ is taken from the set

{0,0.01,0.1,1}. Note that for γ = 0 we obtain the vanilla non-smooth hinge-loss.

In the experiments, we use εD to denote the dual sub-optimality, and εP to denote the primal

sub-optimality (note that this is different than the notation in our analysis which uses εP to denote

the duality gap). It follows that εD + εP is the duality gap.

8.1 Data

The experiments were performed on three large data sets with very different feature counts and spar-

sity, which were kindly provided by Thorsten Joachims. The astro-ph data set classifies abstracts

of papers from the physics ArXiv according to whether they belong in the astro-physics section;

CCAT is a classification task taken from the Reuters RCV1 collection; and cov1 is class 1 of the

covertype data set of Blackard, Jock & Dean. The following table provides details of the data set

characteristics.

Data Set Training Size Testing Size Features Sparsity

astro-ph 29882 32487 99757 0.08%

CCAT 781265 23149 47236 0.16%

cov1 522911 58101 54 22.22%

8.2 Linear Convergence For Smooth Hinge-loss

Our first experiments are with φγ where we set γ = 1. The goal of the experiment is to show

that the convergence is indeed linear. We ran the SDCA algorithm for solving the regularized

loss minimization problem with different values of regularization parameter λ. Figure 1 shows

the results. Note that a logarithmic scale is used for the vertical axis. Therefore, a straight line

corresponds to linear convergence. We indeed observe linear convergence for the duality gap.

8.3 Convergence For Non-smooth Hinge-loss

Next we experiment with the original hinge loss, which is 1-Lipschitz but is not smooth. We again

ran the SDCA algorithm for solving the regularized loss minimization problem with different values
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of regularization parameter λ. Figure 2 shows the results. As expected, the overall convergence rate

is slower than the case of a smoothed hinge-loss. However, it is also apparent that for large values of

λ a linear convergence is still exhibited, as expected according to our refined analysis. The bounds

plotted are based on Theorem 2, which are slower than what we observe, as expected from the

refined analysis in Section 5.

8.4 Effect Of Smoothness Parameter

We next show the effect of the smoothness parameter. Figure 3 shows the effect of the smoothness

parameter on the rate of convergence. As can be seen, the convergence becomes faster as the loss

function becomes smoother. However, the difference is more dominant when λ decreases.

Figure 4 shows the effect of the smoothness parameter on the zero-one test error. It is noticeable

that even though the non-smooth hinge-loss is considered a tighter approximation of the zero-one

error, in most cases, the smoothed hinge-loss actually provides a lower test error than the non-

smooth hinge-loss. In any case, it is apparent that the smooth hinge-loss decreases the zero-one test

error faster than the non-smooth hinge-loss.

8.5 Cyclic vs. Stochastic vs. Random Permutation

In Figure 5 we compare choosing dual variables at random with repetitions (as done in SDCA)

vs. choosing dual variables using a random permutation at each epoch (as done in SDCA-Perm)

vs. choosing dual variables in a fixed cyclic order (that was chosen once at random). As can be

seen, a cyclic order does not lead to linear convergence and yields actual convergence rate much

slower than the other methods and even worse than our bound. As mentioned before, some of the

earlier analyses such as Luo and Tseng (1992) can be applied both to stochastic and to cyclic dual

coordinate ascent methods with similar results. This means that their analysis, which can be no

better than the behavior of cyclic dual coordinate ascent, is inferior to our analysis. Finally, we also

observe that SDCA-Perm is sometimes faster than SDCA.

8.6 Comparison To SGD

We next compare SDCA to Stochastic Gradient Descent (SGD). In particular, we implemented SGD

with the update rule w(t+1) = (1−1/t)w(t)− 1
λt

φ′i(w
(t)⊤xi)xi, where i is chosen uniformly at random

and φ′i denotes a sub-gradient of φi. One clear advantage of SDCA is the availability of a clear

stopping condition (by calculating the duality gap). In Figure 6 and Figure 7 we present the primal

sub-optimality of SDCA, SDCA-Perm, and SGD. As can be seen, SDCA converges faster than

SGD in most regimes. SGD can be better if both λ is high and one performs a very small number

of epochs. This is in line with our theory of Section 4. However, SDCA quickly catches up.

In Figure 8 we compare the zero-one test error of SDCA, when working with the smooth hinge-

loss (γ = 1) to the zero-one test error of SGD, when working with the non-smooth hinge-loss. As

can be seen, SDCA with the smooth hinge-loss achieves the smallest zero-one test error faster than

SGD.
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Figure 1: Experiments with the smoothed hinge-loss (γ = 1). The primal and dual sub-optimality,

the duality gap, and our bound are depicted as a function of the number of epochs, on the

astro-ph (left), CCAT (center) and cov1 (right) data sets. In all plots the horizontal axis

is the number of iterations divided by training set size (corresponding to the number of

epochs through the data).
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Figure 2: Experiments with the hinge-loss (non-smooth). The primal and dual sub-optimality, the

duality gap, and our bound are depicted as a function of the number of epochs, on the

astro-ph (left), CCAT (center) and cov1 (right) data sets. In all plots the horizontal axis

is the number of iterations divided by training set size (corresponding to the number of

epochs through the data).
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Figure 3: Duality gap as a function of the number of rounds for different values of γ.
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Figure 4: Comparing the test zero-one error of SDCA for smoothed hinge-loss (γ = 1) and non-

smooth hinge-loss (γ = 0). In all plots the vertical axis is the zero-one error on the test

set and the horizontal axis is the number of iterations divided by training set size (corre-

sponding to the number of epochs through the data). We terminated each method when

the duality gap was smaller than 10−5.
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Figure 5: Comparing the duality gap achieved by choosing dual variables at random with repetitions

(SDCA), choosing dual variables at random without repetitions (SDCA-Perm), or using

a fixed cyclic order. In all cases, the duality gap is depicted as a function of the number

of epochs for different values of λ. The loss function is the smooth hinge loss with γ = 1.
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Figure 6: Comparing the primal sub-optimality of SDCA and SGD for the smoothed hinge-loss

(γ = 1). In all plots the horizontal axis is the number of iterations divided by training set

size (corresponding to the number of epochs through the data).
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Figure 7: Comparing the primal sub-optimality of SDCA and SGD for the non-smooth hinge-loss

(γ = 0). In all plots the horizontal axis is the number of iterations divided by training set

size (corresponding to the number of epochs through the data).
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Figure 8: Comparing the test error of SDCA with the smoothed hinge-loss (γ = 1) to the test error

of SGD with the non-smoothed hinge-loss. In all plots the vertical axis is the zero-one

error on the test set and the horizontal axis is the number of iterations divided by training

set size (corresponding to the number of epochs through the data). We terminated SDCA

when the duality gap was smaller than 10−5.

597



SHALEV-SHWARTZ AND ZHANG

Acknowledgments

Shai Shalev-Shwartz acknowledges the support of the Israeli Science Foundation grant number

598-10. Tong Zhang acknowledges the support of NSF grant DMS-1007527 and NSF grant IIS-

1016061.

References

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural Information

Processing Systems (NIPS), pages 161–168, 2008.

M. Collins, A. Globerson, T. Koo, X. Carreras, and P. Bartlett. Exponentiated gradient algorithms

for conditional random fields and max-margin markov networks. Journal of Machine Learning

Research, 9:1775–1822, 2008.

Y. Le Cun and L. Bottou. Large scale online learning. In Advances in Neural Information Processing

Systems 16: Proceedings of the 2003 Conference, volume 16, page 217. MIT Press, 2004.

C.J. Hsieh, K.W. Chang, C.J. Lin, S.S. Keerthi, and S. Sundararajan. A dual coordinate descent

method for large-scale linear SVM. In Proceedings of the International Conference on Machine

Learning (ICML), pages 408–415, 2008.

D. Hush, P. Kelly, C. Scovel, and I. Steinwart. QP algorithms with guaranteed accuracy and run

time for support vector machines. Journal of Machine Learning Research, 7:733–769, 2006.

T. Joachims. Making large-scale support vector machine learning practical. In B. Schölkopf,

C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning. MIT

Press, 1998.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Stochastic block-coordinate frank-wolfe

optimization for structural svms. arXiv preprint:1207.4747, 2012.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential con-

vergence rate for strongly-convex optimization with finite training sets. In Advances in Neu-

ral Information Processing Systems (NIPS): Proceedings of the 2012 Conference, 2012. arXiv

preprint:1202.6258.

Z.Q. Luo and P. Tseng. On the convergence of coordinate descent method for convex differentiable

minimization. J. Optim. Theory Appl., 72:7–35, 1992.

O. Mangasarian and D. Musicant. Successive overrelaxation for support vector machines. IEEE

Transactions on Neural Networks, 10, 1999.

N. Murata. A statistical study of on-line learning. Online Learning and Neural Networks. Cam-

bridge University Press, Cambridge, UK, 1998.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM

Journal on Optimization, 22(2):341–362, 2012.

598



STOCHASTIC DUAL COORDINATE ASCENT METHODS FOR REGULARIZED LOSS MINIMIZATION

J. C. Platt. Fast training of Support Vector Machines using sequential minimal optimization. In

B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector

Learning. MIT Press, 1998.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statis-

tics, pages 400–407, 1951.

S. Shalev-Shwartz and N. Srebro. SVM optimization: Inverse dependence on training set size. In

International Conference on Machine Learning (ICML), pages 928–935, 2008.

S. Shalev-Shwartz and A. Tewari. Stochastic methods for l1 regularized loss minimization. In

Proceedings of the International Conference on Machine Learning (ICML), page 117, 2009.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-GrAdient SOlver

for SVM. In Proceedings of the International Conference on Machine Learning (ICML), pages

807–814, 2007.

K. Sridharan, N. Srebro, and S. Shalev-Shwartz. Fast rates for regularized objectives. In Advances

in Neural Information Processing Systems (NIPS), 2009.

T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent al-

gorithms. In Proceedings of the Twenty-First International Conference on Machine Learning

(ICML), 2004.

599



 



Journal of Machine Learning Research 14 (2013) 601-623 Submitted 10/11; Revised 11/12; Published 2/13

Optimal Discovery with Probabilistic Expert Advice:

Finite Time Analysis and Macroscopic Optimality
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Abstract

We consider an original problem that arises from the issue of security analysis of a power system

and that we name optimal discovery with probabilistic expert advice. We address it with an algo-

rithm based on the optimistic paradigm and on the Good-Turing missing mass estimator. We prove

two different regret bounds on the performance of this algorithm under weak assumptions on the

probabilistic experts. Under more restrictive hypotheses, we also prove a macroscopic optimality

result, comparing the algorithm both with an oracle strategy and with uniform sampling. Finally,

we provide numerical experiments illustrating these theoretical findings.

Keywords: optimal discovery, probabilistic experts, optimistic algorithm, Good-Turing estimator,

UCB

1. Introduction

In this paper we consider the following problem: Let X be a set, and A ⊂ X be a set of interesting

elements in X . One can access X only through requests to a finite set of probabilistic experts. More

precisely, when one makes a request to the ith expert, the latter draws independently at random a

point from a fixed probability distribution Pi over X . One is interested in discovering rapidly as

many elements of A as possible, by making sequential requests to the experts.

1.1 Motivation

The original motivation for this problem arises from the issue of real-time security analysis of a

power system. This problem often amounts to identifying in a set of credible contingencies those

that may indeed endanger the security of the power system and perhaps lead to a system collapse

with catastrophic consequences (e.g., an entire region, country may be without electrical power for

c©2013 Sébastien Bubeck, Damien Ernst and Aurélien Garivier.
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hours). Once those dangerous contingencies have been identified, the system operators usually take

preventive actions so as to ensure that they could mitigate their effect on the system in the likelihood

they would occur. Note that usually, the dangerous contingencies are very rare with respect to the

non dangerous ones. A straightforward approach for tackling this security analysis problem is to

simulate the power system dynamics for every credible contingency so as to identify those that are

indeed dangerous. Unfortunately, when the set of credible contingencies contains a large number of

elements (say, there are more than 105 credible contingencies) such an approach may not possible

anymore since the computational resources required to simulate every contingency may excess those

that are usually available during the few (tens of) minutes available for the real-time security anal-

ysis. One is therefore left with the problem of identifying within this short time-frame a maximum

number of dangerous contingencies rather than all of them. The approach proposed in Fonteneau-

Belmudes (2012) and Fonteneau-Belmudes et al. (2010) addresses this problem by building first

very rapidly what could be described as a probability distribution P over the set of credible contin-

gencies that points with significant probability to contingencies which are dangerous. Afterwards,

this probability distribution is used to draw the contingencies to be analyzed through simulations.

When the computational resources are exhausted, the approach outputs the contingencies found to

be dangerous. One of the main shortcoming of this approach is that usually P points only with a

significant probability to a few of the dangerous contingencies and not all of them. This in turn

makes this probability distribution not more likely to generate after a few draws new dangerous

contingencies than for example a uniform one. The dangerous contingencies to which P points

to with a significant probability depend however strongly on the set of (sometimes arbitrary) en-

gineering choices that have been made for building it. One possible strategy to ensure that more

dangerous contingencies can be identified within a limited budget of draws would therefore be to

consider K > 1 sets of engineering choices to build K different probability distributions P1, P2, . . .,
PK and to draw the contingencies from these K distributions rather than only from a single one.

This strategy raises however an important question to which this paper tries to answer: how should

the distributions be selected for being able to generate with a given number of draws a maximum

number of dangerous contingencies? We consider the specific case where the contingencies are se-

quentially drawn and where the distribution selected for generating a contingency at one instant can

be based on the past distributions that have been selected, the contingencies that have been already

drawn and the results of the security analyses (dangerous/non dangerous) for these contingencies.

This corresponds exactly to the optimal discovery problem with expert advice described above. We

believe that this framework has many other possible applications, such as for example web-based

content access.

1.2 Setting and Notation

In this paper we restrict our attention to finite or countably infinite sets X . We denote by K the

number of experts. For each i ∈ {1, . . . ,K}, we assume that (Xi,n)n≥1 are random variables with

distribution Pi such that the (Xi,n)i,n are independent. Sequential discovery with probabilistic expert

advice can be described as follows: at each time step t ∈N
∗, one picks an index It ∈ {1, . . . ,K}, and

one observes XIt ,nIt ,t
, where

ni,t = ∑
s≤t

1{Is = i} .
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The goal is to choose the (It)t≥1 so as to observe as many elements of A as possible in a fixed horizon

t, that is to maximize the number of interesting items found after t requests

F(t) = ∑
x∈A

1

{

x ∈ {X1,1, . . . ,X1,n1,t , . . . ,XK,1, . . . ,XK,nK,t}
}

. (1)

Note in particular that it is of no interest to observe twice the same same element of A. The in-

dex It+1 may be chosen according to past observations: it is a (possibly randomized) function of

(I1,XI1,1, . . . , It ,XIt ,nIt ,t
).

An easier quantity to analyze than the number of interesting items found F(t) is the waiting

time T (λ), λ ∈ (0,1), which is the time at which the strategy has a missing mass of interesting items

smaller than λ on every experts, that is

T (λ) = inf

{

t : ∀i ∈ {1, . . . ,K},Pi(A\{X1,1, . . . ,X1,n1,t , . . . ,XK,1, . . . ,XK,nK,t})≤ λ

}

. (2)

While we shall derive a general strategy that can be used without any assumption on the prob-

abilistic experts, for the mathematical analysis of the waiting time T (λ) we make the following

assumption:

(i) non-intersecting supports: A∩ supp(Pi)∩ supp(Pj) = /0 for i 6= j.

Furthermore we will also derive some results under the following more restrictive assumptions:

(ii) finite supports with the same cardinality: |supp(Pi)|= N,∀i ∈ {1, . . . ,K},

(iii) uniform distributions: Pi(x) =
1
N
,∀x ∈ supp(Pi),∀i ∈ {1, . . . ,K}.

1.3 Contribution and Content of the Paper

This paper contains the description of a generic algorithm for the optimal discovery problem with

probabilistic expert advice, and a theoretical analysis of its properties. In Section 2, we first depict

our strategy, termed Good-UCB. This algorithm relies on the optimistic paradigm, which led to

the UCB (Upper Confidence Bound) algorithm for multi-armed bandits, see Auer et al. (2002) and

Garivier and Cappé (2011). It relies also on a finite-time analysis of the Good-Turing estimator for

the missing mass. We also derive in Section 2 two different regret bounds under the non-intersecting

assumption (i): we first show that FUCB(t) (the number of interesting items found by Good-UCB) is

larger than F∗(t) (the number of interesting items found by an oracle strategy), up to a term of order
√

Kt log(t). We argue that such a bound does not capture all the fine properties of Good-UCB:

indeed, on the contrary to the multi-armed bandit problem, here the regret F∗(t)−F(t) remains

bounded for any reasonable strategy. This can be understood as a restoring property of the game:

if a policy makes a sub-optimal choice at some given time t, then in the future it will have better

opportunities than the optimal policy. This key feature of our problem prevents the regret from

growing too much. To analyze this phenomenon, we complete our first bound by a second regret

analysis—the main result of the paper—which states roughly that with high probability, TUCB(λ)
(the waiting time for the strategy Good-UCB) is uniformly (in λ) smaller than T ∗(λ′) (the smallest

possible waiting time), for some λ′ close to λ and up to a small additional term, see Theorem 5 for

a more precise statement. We emphasize that these regret bounds are both completely distribution-

free and explicit.

603



BUBECK, ERNST AND GARIVIER

In Section 3 we propose to investigate the behavior of Good-UCB in a macroscopic limit sense,

that is we make assumptions [(i), (ii), (iii)] and we consider the limit when the size of the set X

grows to infinity while maintaining a constant proportion of interesting items. In this scenario we

show that Good-UCB is macroscopically optimal, in the sense that the normalized waiting time of

Good-UCB tends to the normalized smallest possible waiting time. We also derive a formula for

this latter quantity and we show that it is equal to ∑i:qi>λ log
qi

λ , where qi is the limiting proportion of

interesting items on expert i. This macroscopic limit also allows to easily assess the performance of

different strategies, and we show that for example the normalized waiting time of uniform sampling

tends to K max1≤i≤K log
qi

λ , which proves that this strategy is macroscopically suboptimal, unless all

experts have the same number of interesting items.

Finally, Section 4 reports experimental results that show that the Good-UCB algorithm performs

very well, even in a setting where assumptions (i), (ii) and (iii) are not satisfied. The appendix

contains some technical proofs, together with a more detailed discussion on oracle strategies in the

macroscopic limit and on the relation between the waiting time T defined in (2) and the number

of items found F defined in (1), proving in particular that optimality in terms of waiting time is

equivalent to optimality in terms of number of items found.

2. The Good-UCB Algorithm

We describe here the Good-UCB strategy. This algorithm is a sequential method estimating at

time t, for each expert i ∈ {1, . . . ,K}, the total probability of the interesting items that remain to be

discovered through requests to expert i. This estimation is done by adapting the so-called Good-

Turing estimator for the missing mass. Then, instead of simply using the distribution with highest

estimated missing mass, which proves hazardous, we make use of the optimistic paradigm—see

Bubeck and Cesa-Bianchi (2012, Chapter 2, and references therein)—a heuristic principle well-

known in reinforcement learning, which entails to prefer using an upper-confidence bound (UCB)

of the missing mass instead. At a given time step, the Good-UCB algorithm simply makes a request

to the expert with highest upper-confidence bound on the missing mass at this time step.

We start in Section 2.1 with the Good-Turing estimator and a brief study of its concentration

properties. Then we describe precisely the Good-UCB strategy in Section 2.2. Next we proceed

to the theoretical analysis of Good-UCB and we start in Section 2.3 where we describe an oracle

strategy (that we shall use as a comparator) that we prove to be optimal under assumption (i). In

Section 2.4 we show that one can obtain a standard regret bound of order
√

t when one compares the

number of items FUCB(t) found by Good-UCB to the number of items F∗(t) found by the oracle.

This bound is not completely satisfactory (as we explain in Section 2.4), and our main result—a

’non-linear’ regret bound—is proved in Section 2.5.

2.1 Estimating the Missing Mass

Our algorithm relies on an estimation at each step of the probability of obtaining a new interesting

item by making a request to a given expert. A similar issue was addressed by I. Good and A. Turing

as part of their efforts to crack German ciphers for the Enigma machine during World War II. In this

subsection, we describe a version of the Good-Turing estimator adapted to our problem. Let Ω be a

discrete set, and let A be a subset of interesting elements of Ω. Assume that X1, . . . ,Xn are elements
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of Ω drawn independently under the same distribution P, and define for every x ∈ Ω:

On(x) =
n

∑
m=1

1{Xm = x}, Zn(x) = 1{On(x) = 0}, Un(x) = 1{On(x) = 1} .

Let Rn = ∑x∈A Zn(x)P(x) denote the missing mass of the interesting items, and let Un = ∑x∈AUn(x)
be the number of elements of A that have been seen exactly once (in linguistics, they are often

called hapaxes). The idea of the Good-Turing estimator—see Good (1953), see also McAllester

and Schapire (2000); Orlitsky et al., and references therein—is to estimate the (random) “missing

mass” Rn, which is the total probability of all the interesting items that do not occur in the sample

X1, . . . ,Xn, by the “fraction of hapaxes R̂n = Un/n. This estimator is well-known in linguistics, for

instance in order to estimate the number of words in some language, see Gale and Sampson (1995).

We shall use the following tight bound on the estimation error. We emphasize the fact that the

following bound holds true independently of the underlying distribution P.

Proposition 1 With probability at least 1−δ,

R̂n −
1

n
− (1+

√
2)

√

log(4/δ)

n
≤ Rn ≤ R̂n +(1+

√
2)

√

log(4/δ)

n
.

Proof For self-containment, we first show that ERn −ER̂n ∈
[

− 1
n
,0
]

; this result is well known, see

for example Theorem 1 in McAllester and Schapire (2000):

ERn −ER̂n = ∑
x∈A

[

P(x)(1−P(x))n − 1

n
×nP(x)(1−P(x))n−1

]

=−1

n
∑
x∈A

P(x)×nP(x)(1−P(x))n−1

=−1

n
E

[

∑
x∈A

P(x)Un(x)

]

∈
[

−1

n
,0

]

.

Next we apply the inequality of McDiarmid (1989) to R̂n as follows. The random variable R̂n

is a function of the independent observations X1, . . . ,Xn such that, denoting R̂n = f (X1, . . . ,Xn),
modifying just one observation has limited impact: ∀l ∈ {1, . . . ,n},∀(x1, . . . ,xn,x

′
l) ∈ Ωn+1,

∣

∣ f (x1, . . . ,xn)− f (x1, . . . ,xl−1,x
′
l,xl+1, . . . ,xn)

∣

∣≤ 2

n
.

Thus one gets that, with probability at least 1−δ,

∣

∣R̂n −E[R̂n]
∣

∣≤
√

2log(2/δ)

n
.

Finally we extract the following result from Theorem 10 and Theorem 16 in McAllester and Ortiz

(2003): with probability at least 1−δ,

|Rn −E[Rn]| ≤
√

log(2/δ)

n
.

which concludes the proof.
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2.2 The Good-UCB Algorithm

Following the example of the well-known Upper-Confidence Bound procedure for multi-armed

bandit problems, we propose Algorithm 1, which we call Good-UCB in reference to the estimator it

relies on. For each arm i ∈ {1, . . . ,K}, the index at time t of Good-UCB corresponds to the estimate

R̂i,ni,t−1
=

1

ni,t−1
∑
x∈A

1

{

ni,t−1

∑
s=1

1{Xi,s = x}= 1 and
K

∑
j=1

n j,t−1

∑
s=1

1{X j,s = x}= 1

}

of the missing mass

∑
x∈A\

{

XI1 ,nI1 ,1
,...,XIt−1,nIt−1 ,t−1

}

Pi(x) (3)

inflated by a confidence bonus of order
√

log(t)/ni,t−1. Good-UCB relies on a tuning parameter C

which is discussed below.

Algorithm 1 Good-UCB

1: For 1 ≤ t ≤ K choose It = t.

2: for t ≥ K +1 do

3: Choose It = arg max1≤i≤K

{

R̂i,ni,t−1
+C

√

log(4t)
ni,t−1

}

4: Observe Xt distributed as PIt and update the missing mass estimates accordingly

5: end for

The Good-UCB algorithm is designed to work without any assumption on the probabilistic ex-

perts. However for the analysis we shall make the non-intersecting supports assumption (i). Indeed

without this assumption the missing mass of a given expert i depends explicitly on the outcomes of

all requests (and not only requests to expert i), see (3), which makes the analysis significantly more

difficult. On the other hand under assumption (i) one can define the missing mass of expert i after n

pulls without any reference to the other arms, and it takes the following simple form:

Ri,n = ∑
x∈A\{Xi,1,...,Xi,n}

Pi(x) . (4)

Note that while the theoretical analysis will be carried out under assumption (i), we show in Sec-

tion 4 that Good-UCB performs well in practice even when this assumption is not met.

2.3 The Closed-loop Oracle Policy

In this section we define a policy that we shall use as a benchmark to study the properties of Good-

UCB. We assume hereafter that assumption (i) is satisfied (in particular we shall use the notation

defined in (4)). The Oracle Closed-Loop policy, denoted OCL in the following, makes a request at

time t to the expert

I∗t = arg max
1≤i≤K

Ri,n∗i,t−1
, where n∗i,t =

t

∑
s=1

1{I∗s = i} .

In words, OCL greedily selects the expert that maximizes the probability of finding a new interesting

item. The next lemma shows that this greedy procedure is in fact optimal (in expectation) under

assumption (i). The proof is given in the appendix.
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For any given policy π, let Fπ(t) be the number of items found at time t with π, Iπ
t be the expert

chosen by π at time t, and nπ
i,t = ∑t

s=11{Iπ
s = i} be the number of requests made by π to expert i up

to time t.

Lemma 2 Let π be an arbitrary policy, and t ≥ 1. Then

EFπ(t)≤ EF∗(t).

The optimality of OCL crucially relies on assumption (i). Consider for example the following

problem instance: X = {1,2,3,4}, A = {1,2,3}, K = 3, ν1 = δ1, ν2 =
2
5
(δ1 +δ2)+

1
5
δ4, and ν3 =

2
5
(δ1 + δ3)+

1
5
δ4 and t = 2. In this case OCL first chooses expert 1, and then (say) expert 2: this

yields F∗(2) = 1+ 2/5 = 7/5. But the strategy π consisting in choosing first expert 2, and then

expert 3, is readily seen to have expected return EFπ(2) = 2/5× (1+ 2/5)+ 2/5× (1+ 4/5)+
1/5×4/5 = 36/25 > 7/5.

The next lemma is a technical result on OCL that shall prove to be very useful to derive a

standard regret bound for Good-UCB. Its proof is also given in the appendix.

Lemma 3 Let π be an arbitrary policy, and for t ≥ 1 let

Īt = arg max
1≤i≤K

Ri,nπ
i,t−1

.

Then

EF∗(t)≤
t

∑
s=1

ERĪs,n
π
Īs ,s−1

.

2.4 Classical Analysis of the Good-UCB Algorithm

We provide here an upper bound on the expectation of F∗(t)− FUCB(t) which is completely

distribution-free, and which depends only on the horizon t and on the number K of experts. This

bound grows like O(
√

Kt log(t)), which is a usual rate for a bandit problem. Indeed, thanks to

Lemma 3, the analysis presented in this section follows the lines of classical regret analyses, see

for instance Bubeck and Cesa-Bianchi (2012, and the references therein). Below, we discuss some

differences between the discovery problem considered here and bandit problems, and we provide an

alternative analysis of the Good-UCB algorithm which is more suited to understand its long-term

behavior.

Theorem 4 For any t ≥ 1, under assumption (i), Good-UCB (with constant C = (1 +
√

2)
√

3)

satisfies

E
[

F∗(t)−FUCB(t)
]

≤ 17
√

Kt log(t)+20
√

Kt +K +K log(t/K) .

Proof Consider the event

ξ =

{

∀i ∈ {1, . . . ,K},∀u >
√

Kt,∀s ≤ u,

R̂i,s −
1

s
− (1+

√
2)

√

3log(4u)

s
≤ Ri,s ≤ R̂i,s +(1+

√
2)

√

3log(4u)

s

}

.
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Using Proposition 1 and an union bound, one obtains P(ξ)≥ 1−
√

K
t

, and thus

E
[

(F∗(t)−FUCB(t))(1−1ξ)
]

≤ t

√

K

t
=
√

Kt .

Let u >
√

Kt and Īu = arg max1≤i≤K Ri,ni,u−1
be defined as in Lemma 3. On the event ξ, one obtains

by definition of Iu that

RIu,nIu,u−1
≥ R̂Iu,nIu,u−1

− 1

nIu,u−1

− (1+
√

2)

√

3log(4u)

nIu,u−1

≥ R̂Iu,nIu,u−1
+(1+

√
2)

√

3log(4u)

nIu,u−1

− 1

nIu,u−1

−2(1+
√

2)

√

3log(4u)

nIu,u−1

≥ R̂Īu,nĪu,u−1
+(1+

√
2)

√

3log(4u)

nI∗u ,u−1

− 1

nIu,u−1

−2(1+
√

2)

√

3log(4u)

nIu,u−1

≥ RĪu,nĪu,u−1
− 1

nIu,u−1

−2(1+
√

2)

√

3log(4u)

nIu,u−1

,

and thus

RĪu,nĪu ,u−1
−RIu,nIu,u−1

≤ 1

nIu,u−1

+2(1+
√

2)

√

3log(4u)

nIu,u−1

≤ 1

nIu,u−1

+2(1+
√

2)

√

3log(4t)

nIu,u−1

.

Hence, using Lemma 3 and the above computation, one obtains

E
[

F∗(t)−FUCB(t)
]

≤
√

Kt +E

[

t

∑
u=1

1

nIu,u−1

+2(1+
√

2)

√

3log(4t)

nIu,u−1

]

=
√

Kt +E

[

K

∑
i=1

ni,t−1

∑
s=1

1

s
+2(1+

√
2)

√

3log(4t)

s

]

≤
√

Kt +E

[

K

∑
i=1

1+ log(ni,t−1)+4(1+
√

2)
√

3log(4t)(ni,t−1 +1)

]

≤
√

Kt +K +K log(t/K)+4(1+
√

2)
√

3Kt log(4t)

by Jensen’s inequality and the fact that ∑K
i=1 ni,t−1 = t −1.

The cumulative regret bound provided in Theorem 4 has a similar flavor as well known regret

bounds for the multi-armed bandit problem. Unfortunately here, such bounds, by suggesting that

the regret increases with t, do not represent completely the behavior of Good-UCB: as we shall see
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in the experiments, the difference between F∗(t) and FUCB(t) is bounded and tends to 0 as t tends

to infinity (indeed, ultimately any reasonable strategy will find all the interesting items). Theorem 4

provides insight into the properties of Good-UCB only for ’small’ values of t.

The weakness of Theorem 4 and its analysis is that, by using the upper bound of Lemma 3, one

ignores the restoring property of the game: if a policy makes a sub-optimal choice at some given

time t, then it will have better opportunities than OCL in the future, which prevents the regret from

growing too much. In the next section we provide a completely different analysis of Good-UCB

that takes advantage of this restoring property. This results in a non-standard regret bound, which

differs from usual results in the multi-armed bandit literature.

Let us make one more comment about the bound of Theorem 4. On the contrary to the multi-

armed bandit, the discovery problem discussed in this paper has a ’natural’ time scale: if the horizon

t is too small, then even OCL will not be able to discover a significant proportion of interesting

items, while if t is too large then any reasonable strategy will find almost all interesting items. To

go around this issue we find it more elegant to study the waiting time T (λ) (see (2)) which yields a

sort of automatic normalization of the time scale.

2.5 Time-uniform Analysis of the Good-UCB Algorithm

In this section we analyze the waiting time of Good-UCB under assumption (i). We shall derive

a non-linear regret bound as follows. For a fixed λ ∈ (0,1) we consider the number of requests

TUCB(λ) that Good-UCB needs to make in order to have a missing mass of interesting items smaller

than λ on each expert, see (2). We also consider the omniscient oracle strategy that minimizes

this number of requests, given the knowledge of λ and the sequence of answers to the requests

(Xi,s)1≤i≤K,s≥1. We denote by T ∗(λ) the corresponding number of requests for this omniscient

oracle strategy. (Note that this strategy is even more powerful than the OCL studied in the previous

sections.) We now prove that with high probability, TUCB(λ) is smaller than T ∗(λ′), for some λ′

close to λ and up to a small additional term.

Theorem 5 Let c > 0 and S ≥ 1. Under assumption (i), Good-UCB (with constant C = (1 +√
2)
√

c+2) satisfies with probability at least 1− K
cSc , for any λ ∈ (0,1),

TUCB(λ)≤ T ∗+KS log(8T ∗+16KS log(KS)) ,

where T ∗ = T ∗
(

λ− 3

S
−2(1+

√
2)

√

c+2

S

)

.

Informally this bound shows that Good-UCB slightly lags behind the omniscient oracle strategy.

Under more restrictive assumptions on the experts it is possible to obtain a more explicit bound

by studying the variations of T . In the next section we take another route and we show that the

above upper bound can be used to prove a clear qualitative property for Good-UCB, namely its

macroscopic optimality.

Proof Recall that we work under assumption (i), and we run Good-UCB with parameter C =
(1+

√
2)
√

c+2, for some positive constant c. After t pulls, the missing mass estimate of expert i

is:

R̂i,t =
1

t
∑
x∈A

1

{

1 =
t

∑
s=1

1{Xi,s = x}
}

.
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We consider the following event:

ξ =

{

∀i ∈ {1, . . . ,K},∀t > S,∀s ≤ t,

R̂i,s −
1

s
− (1+

√
2)

√

(c+2) log(4t)

s
≤ Ri,s ≤ R̂i,s +(1+

√
2)

√

(c+2) log(4t)

s

}

.

Using Proposition 1 and an union bound, one obtains P(ξ) ≥ 1− K
cSc . In the following we work

on the event ξ. Recall that T ∗(λ) (respectively TUCB(λ)) is the time at which the omniscient oracle

strategy (respectively the Good-UCB strategy) attains a missing mass smaller than λ on all experts.

Note that T ∗(λ) and TUCB(λ) are functions of (Xi,s)1≤i≤K,s≥1. In particular one can write:

TUCB(λ) = min
{

t ≥ 1 : ∀i ∈ {1, . . . ,K},Ri,ni,t ≤ λ
}

,

T ∗(λ) =
K

∑
i=1

T ∗
i (λ), where T ∗

i (λ) = min{t ≥ 1 : Ri,t ≤ λ} .

Let

U(λ) = min

{

t ≥ 1 : ∀i ∈ {1, . . . ,K}, R̂i,ni,t +(1+
√

2)

√

(c+2) log(4t)

ni,t
≤ λ

}

.

Let S′ ≥ S to be defined later. On the event ξ one clearly gets TUCB(λ)≤ max(S′,U(λ)). Moreover

the following inequalities hold true if U(λ)> S′ (see below for an explanation of each inequality)

Ri,ni,U(λ)
≥ R̂i,ni,U(λ)

− 1

ni,U(λ)
− (1+

√
2)

√

(c+2) log(4U(λ))

ni,U(λ)

≥ R̂i,ni,U(λ)−1 −
3

ni,U(λ)
− (1+

√
2)

√

(c+2) log(4U(λ))

ni,U(λ)

≥
(

λ− (1+
√

2)

√

(c+2) log(4U(λ))

ni,U(λ)−1

)

− 3

ni,U(λ)
− (1+

√
2)

√

(c+2) log(4U(λ))

ni,U(λ)

≥ λ− 3

ni,U(λ)
−2(1+

√
2)

√

(c+2) log(4U(λ))

ni,U(λ)−1
.

The first inequality comes from the fact that we are on event ξ and we assume U(λ) > S′. The

second inequality uses the fact that when we make a request to an expert, the number of items

uniquely seen on this expert can drop by at most one, and thus we get

sR̂i,s ≥ (s−1)R̂i,s−1 −1 ≥ sR̂i,s−1 −2.

The third inequality is the key step of the proof. Consider the time step t such that ni,t = ni,U(λ)−
1 and ni,t+1 = ni,U(λ). Since t < U(λ) we know that one of the expert satisfies R̂ j,n j,t + (1 +
√

2)
√

(c+2) log(4t)
n j,t

> λ. Moreover, since Good-UCB is run with constant C = (1+
√

2)
√

c+2 and

since we make a request to expert i at time t, we know that it maximizes the Good-UCB index,

and thus R̂i,ni,t +(1+
√

2)
√

(c+2) log(4t)
ni,t

> λ. Using that t ≤ U(λ) completes the proof of the third

inequality. The fourth inequality is trivial.
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We just proved that if ni,U(λ) > S′ then

Ri,ni,U(λ)
≥ λ− 3

S′
−2(1+

√
2)

√

(c+2) log(4U(λ))

S′
,

which clearly implies

ni,U(λ) ≤ T ∗
i

(

λ− 3

S′
−2(1+

√
2)

√

(c+2) log(4U(λ))

S′

)

.

Thus in any case we have proved that

ni,U(λ) ≤ S′+T ∗
i

(

λ− 3

S′
−2(1+

√
2)

√

(c+2) log(4U(λ))

S′

)

,

which implies

U(λ) ≤ KS′+T ∗
(

λ− 3

S′
−2(1+

√
2)

√

(c+2) log(4U(λ))

S′

)

≤ KS log(4U(λ))+T ∗
(

λ− 3

S
−2(1+

√
2)

√

c+2

S

)

,

where the last inequality follows by taking S′ = S log(4U(λ)). Finally using Lemma 9 (in the ap-

pendix) and TUCB(λ)≤ max(S′,U(λ)) ends the proof.

3. Macroscopic Limit

In the previous section we derived a very general non-linear regret bound for Good-UCB. Here we

shall study the behavior of Good-UCB under more restrictive assumptions on the experts, but it

will allow us to derive a clear qualitative statement about its performance, and it also permits easier

comparison with other strategies such as uniform sampling. In this section we shall add the two

following assumptions in addition to assumption (i):

(ii) finite supports with the same cardinality: |supp(Pi)|= N,∀i ∈ {1, . . . ,K},

(iii) uniform distributions: Pi(x) =
1
N
,∀x ∈ supp(Pi),∀i ∈ {1, . . . ,K}.

These assumptions are primarily made in order to be able to assess the performance of the op-

timal strategy. In this setting it is convenient to re-parameterize slightly the problem (in par-

ticular we make explicit the dependency on N for reasons that will appear later). Let X N =
{1, . . . ,K}×{1, . . . ,N}, AN ⊂ X N the set of interesting items of X N , and QN = |AN | the number

of interesting items. We assume that, for expert i ∈ {1, . . . ,K}, PN
i is the uniform distribution on

{i}×{1, . . . ,N}. We also denote by QN
i =

∣

∣AN ∩ ({i}×{1, . . . ,N})
∣

∣ the number of interesting items

accessible through requests to expert i. Without loss of generality, we assume in this section that

QN
1 ≥ QN

2 ≥ ·· · ≥ QN
K .
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The macroscopic limit that we investigate in this section corresponds to the setting where N

goes to infinity together with the QN
i in such a way that QN

i /N → qi ∈ (0,1). For a given strategy

we are interested in the time T N(λ) such that all experts have at most Nλ undiscovered interesting

items. In particular we define T N
UCB(λ) (respectively T N

∗ (λ)) to be the corresponding time for the

Good-UCB strategy (respectively the oracle omniscient strategy). In the macroscopic limit we shall

be particularly interested in normalized limit waiting time limN→+∞ T N(λ)/N.

3.1 Macroscopic Behavior of the Oracle Closed-loop Strategy

In this section we shall derive an explicit upper bound on the macroscopic limit of T N
∗ by studying

the OCL strategy introduced in Section 2.3. Recall that at each time step, OCL makes a request to

one of the experts with highest number of still undiscovered interesting items: the expert requested

at time t is:

It ∈ arg max
1≤i≤K

Pi

(

A\{X1,1, . . . ,X1,n1,t , . . . ,XK,1, . . . ,XK,nK,t}
)

.

Theorem 6 For every λ ∈ (0,q1), for every sequence (λN)N converging to λ as N goes to infinity,

under assumption (i), (ii) and (iii), almost surely

lim
N→∞

T N
OCL(λ

N)

N
= ∑

i:qi>λ

log
qi

λ
.

Proof Denote by BN
i the set of interesting items in {1, . . . ,N} supported by PN

i : BN
i = {x ∈

{1, . . . ,N} : (i,x) ∈ AN}. Successive draws of expert i are denoted (i,XN
i,1),(i,X

N
i,2) . . . where the

variables (XN
i,n)i,n are assumed to be independent. Without loss of generality, we may assume that

NλN is a positive integer, for otherwise λN can be replaced by ⌈NλN⌉/N. We denote by (DN
i,k)1≤k≤QN

i

the increasing sequence of the indices corresponding to draws for which new interesting items are

discovered with expert i:

DN
i,1 = min

{

n ≥ 1 : XN
i,n ∈ BN

i

}

, DN
i,2 = min

{

n ≥ DN
i,1 : XN

i,n ∈ BN
i \
{

XN
i,DN

i,1

}}

, . . .

We also define SN
i,0 = 0 and for k ≥ 1,SN

i,k =DN
i,k−DN

i,k−1. The random variables SN
i,k (1≤ i≤K,k ≥ 1)

are independent with geometric distribution G((1+QN
i − k)/N).

At every step, the OCL should call the expert with maximal number of undiscovered interesting

items. Hence, it can:

• first request expert 1 for DN
1,QN

1 −QN
2

steps;

• then, alternatively request

– expert 1 for SN
1,1+QN

1 −QN
2

steps;

– expert 2 for SN
2,1 steps;

– expert 1 for SN
1,2+QN

1 −QN
2

steps;

– expert 2 for SN
2,2 steps;

– and so on, until there are only QN
3 undiscovered interesting items on experts 1 and 2.
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• and so on, including successively experts 3,4, . . . ,K in the alternation.

Obviously,

T N
OCL(λ

N) = ∑
i:QN

i >NλN

DN
i,QN

i −NλN .

It suffices now to show that for every expert i ∈ {1, . . . ,K}, DN
i,QN

i −NλN/N converges almost surely

to log(qi/λ) as N goes to infinity. Write

W N
i,NλN =

1

N

(

DN
i,QN

i −NλN −E

[

DN
i,QN

i −NλN

])

=
1

N

QN
i −NλN−1

∑
k=1

(

SN
i,k −E

[

SN
i,k

])

. (5)

For every positive integer d and for k ∈{1, . . . ,NλN −1}, elementary manipulations of the geometric

distribution yield that

E

[

(

SN
i,k −E

[

SN
i,k

])d
]

≤ E

[

(

SN
i,NλN −E

[

SN
i,NλN

])d
]

≤ c(d)

(λN)d
≤ 2c(d)

λ4

for some positive constant c(d) depending only on d, and for N large enough. Hence, taking (5) to

the fourth power and developing yields

E

[

(

W N
i,NλN

)4
]

≤ c′

N2λ4

for some positive constant c′. Using Markov’s inequality together with the Borel-Cantelli lemma,

this permits to show that W N
i,λN converges almost surely to 0 as N goes to infinity. But

1

N
E

[

DN
i,QN

i −NλN

]

=
1

QN
1

+ · · ·+ 1

NλN +1
= log

QN
i

NλN
− εN ,

with 0 ≤ εN ≤ 1/(NλN) according to Lemma 10, and thus

1

N
E

[

DN
i,QN

i −NλN

]

→ lim
N→∞

log

(

QN
i /N

λN

)

= log(qi/λ) ,

which concludes the proof.

3.2 Macroscopic Behavior of Uniform Sampling

In this section we study the simple uniform sampling strategy that cycles through the experts, that

is, at time t uniform sampling makes a request to the (t mod [K])th expert. This strategy is not

macroscopically optimal unless all experts have the same number of interesting items. Furthermore

the next proposition makes precise the extent of improvement of a macroscopic optimal strategy

over uniform sampling. The proof follows the exact same steps than the proof of Theorem 6 and

thus is omitted.

Proposition 7 For every λ ∈ (0,q1), for every sequence (λN)N converging to λ as N goes to infinity,

under assumption (i), (ii) and (iii), almost surely

lim
N→∞

T N
US(λ

N)

N
= K log

q1

λ
.
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3.3 Macroscopic Optimality of Good-UCB

Using the regret bound of Theorem 5 we obtain the following corollary that shows the asymptotic

optimality of the Good-UCB algorithm in the macroscopic sense.

Corollary 8 Take C = (1+
√

2)
√

c+2 with c > 3/2 in Algorithm 1. Under assumption (i), (ii) and

(iii), for every sequence (λN)N converging to λ as N goes to infinity, almost surely

limsup
N→+∞

T N
UCB(λ

N)

N
≤ ∑

i:qi>λ

log
qi

λ
.

Proof Let SN = N2/3. First note that:

ℓN de f
= λN − 3

SN
−2(1+

√
2)

√

c+2

SN
→ λ when N → ∞ .

Thus, by Theorem 6, and the fact that the OCL strategy needs at least as much time as the omniscient

oracle strategy in order to find the same number of items, there exists an event Ω of probability 1 on

which

limsup
N→+∞

T N
∗
(

ℓN
)

N
≤ ∑

i:qi>λ

log
qi

λ
.

Thus, according to Theorem 5, for each positive integer N there exists an event AN of probability

P(AN)≥ 1−K/(cN2c/3) on which

T N
UCB(λ

N)

N
≤ T N

∗
(

ℓN
)

N
+

KSN

N
log
(

8T N
∗
(

ℓN
)

+16KS log(KSN)
)

=
T ∗

N

(

ℓN
)

N
+O

(

log(N)

N1/3

)

.

Using Borel-Cantelli’s lemma and the fact that, with our choice of parameters, ∑N N−2c/3 < ∞, we

obtain that except maybe on the set (of probability 0) Ω̄∪ limsupAN ,

limsup
N→∞

T N
UCB(λ

N)

N
≤ limsup

N→+∞

T N
∗ (ℓN)

N
≤ ∑

i:qi>λ

log
qi

λ
,

which ends the proof.

4. Simulations

We provide a few simulations illustrating the behavior of the Good-UCB algorithm and the asymp-

totic analysis above of Section 3. We first consider an example with K = 7 different sampling

distributions satisfying assumptions [(i),(ii),(iii)], with respective proportions of interesting items

q1 = 51.2%,q2 = 25.6%,q3 = 12.8%,q4 = 6.4%,q5 = 3.2%,q6 = 1.6% and q7 = 0.8%.

We have chosen to display here the numbers of items found as a function of the number of

draws (see (1)), instead of the times T N(λN), because they express more intuitively the discovering
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possibilities of each algorithm. Note, however, that the correspondence between these two quantities

is straightforward, especially in the macroscopic limit: For λ ∈ (0,q1) let

T (λ) = ∑
i:qi>λ

log
qi

λ
. (6)

It is easy to show that the proportion of interesting items found by the OCL strategy after Nt draws

converge to

F(t) =
K

∑
i=1

(

qi −T−1(t)
)

+
. (7)

Furthermore the latter expression is a lower bound for the corresponding proportion of interesting

items found by the Good-UCB algorithm. Proposition 11, proved in the Appendix, provides a

more explicit expression for F : denoting q = ∑K
i=1 qi, there exists an increasing, {1, . . . ,K}-valued

function I such that, for each t,

F(t) = q− I(t)q
I(t)

exp(−t/I(t)) ,

where q
I(t)

denotes the geometric mean of q1, . . . ,qI(t). This permits an explicit comparison of the

macroscopic performance of the Good-UCB algorithm with uniform sampling: when all distribu-

tions are sampled equally often, the proportion of unseen interesting items at time t is smaller than

K

∑
i=1

qi exp(−t/K) = Kq̄K exp(−t/K) ,

where q̄K = (∑K
i=1 qi)/K is the arithmetic mean of the (qi)i. On the other hand, for the Good-UCB

algorithm, the proportion of unseen interesting items at time t is smaller than

I(t)q
I(t)

exp(−t/I(t)) .

The ratio of those two quantities is a decreasing function of time lower-bounded by q̄K/q
K
≥ 1, the

ratio of the arithmetic mean with the geometric mean of the (qi)i. As expected, this ratio gets larger

when the proportions of interesting items among experts becomes more unbalanced.

Figure 1 displays the number of items found as a function of time by the Good-UCB (solid),

the OCL (dashed) and the uniform sampling scheme that alternates between experts (dotted). The

results are presented for sizes N = 128,N = 500,N = 1000 and N = 10000, each time for one

representative run (averaging over different runs removes the interesting variability of the process).

We chose to plot the number of items found rather than the waiting time t as the former is easier to

visualize while the latter was easier to analyze. In fact, macroscopic optimality in terms of number

of items found could also be derived with the techniques of Section 3. Figure 1 also shows clearly

the macroscopic convergence of Good-UCB to the OCL. Moreover, it can be seen that, even for

very moderate values of N, the Good-UCB significantly outperforms uniform sampling even if it is

clearly distanced by the OCL.

For these simulations, the parameter C of Algorithm Good-UCB has been taken equal to 1/2,

which is a rather conservative choice. In fact, it appears that during all rounds of all runs, all upper-

confidence bounds did contain the actual missing mass. Of course, a bolder choice of C can only

improve the performance of the algorithm, as long as the confidence level remains sufficient.
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Figure 1: Number of items found by Good-UCB (solid), the OCL (dashed), and uniform sampling

(dotted) as a function of time for sizes N = 128,N = 500,N = 1000 and N = 10000 in a

7-experts setting.
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Figure 2: Number of prime numbers found by Good-UCB (solid), the OCL (dashed), and uni-

form sampling (dotted) as a function of time, using geometric experts with means

100,300,500,700 and 900, for C = 0.1 (left) and C = 0.02 (right).

In order to illustrate the efficiency of the Good-UCB algorithm in a more difficult setting, which

does not satisfy any of the assumptions (i), (ii) and (iii), we also considered the following (artifi-

cial) example: K = 5 probabilistic experts draw independent sequences of geometrically distributed
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random variables, with expectations 100, 300, 500, 700 and 900 respectively. The set of interest-

ing items is the set of prime numbers. We compare the oracle closed-loop policy, Good-UCB and

uniform sampling. The results are displayed in Figure 2. Even if the difference remains significant

between Good-UCB and the OCL, the former still performs significantly better than uniform sam-

pling during the entire discovery process. In this example, choosing a smaller parameter C seems

to be preferable; this is due to the fact that the proportion of interesting items on each arm is low;

in that case, it may be possible to show, by using tighter concentration inequalities, that the concen-

tration of the Good-Turing estimator is actually better than suggested by Proposition 1. In fact, this

experiment suggests that the value of C should be chosen smaller when the remaining missing mass

is small.
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Appendix A.

Proof of lemma 2 We proceed by induction on t. For t = 1, the result is obvious. For t > 1, denote

by π̄ the policy choosing Iπ̄
1 = Iπ

1 and then playing like OCL for the t −1 remaining rounds. Denote

H1 =(Iπ
1 ,XIπ

1 ,1
), and Fπ(2 : t) (respectively F π̄(2 : t)) the number of interesting items found by policy

π (respectively π̄) between rounds 2 and t. Note that conditionally on H1, F π̄(2 : t) corresponds to

F∗(t − 1) in some modified problem (where one interesting item on expert Iπ
1 might have been

removed from the set of interesting items). Thus one can apply the induction hypothesis to obtain

E [Fπ(2 : t)|H1]≤ E
[

F π̄(2 : t)|H1

]

.

Let us assume in the following that Iπ
1 is deterministic (we make this assumption only for sake of

clarity, everything go through with a randomized choice of Iπ
1 ). Then thanks to the above inequality

one has

EFπ(t) = RIπ
1 ,0

+E [Fπ(2 : t)]≤ RIπ
1 ,0

+E
[

F π̄(2 : t)
]

= EF π̄(t) . (8)

Now let

τ = min{s ≥ 1 : I∗s = Iπ
1 } .

On the event τ ≤ t, OCL and π̄ observe exactly the same items during the t first rounds, and thus

F π̄(t)1{τ ≤ t}= F∗(t)1{τ ≤ t} . (9)

On the other hand on the event τ > t, π̄ observe the same items between rounds 2 and t than OCL

between rounds 1 and t − 1, that is F π̄(2 : t)1{τ > t} = F∗(t − 1)1{τ > t}. Thanks to assumption

(i), this implies (denoting Y ∗
1 , . . . ,Y

∗
t for the sequence of items observed by OCL),

F π̄(t)1{τ > t}=
(

1{XIπ
1 ,1

∈ A}+F∗(t)−1{Y ∗
t ∈ A\{Y ∗

1 , . . . ,Y
∗

t−1}}
)

1{τ > t} . (10)

By combining (8), (9) and (10), it only remains to show that

E[1{XIπ
1 ,1

∈ A}1{τ > t}]≤ E[1{Y ∗
t ∈ A\{Y ∗

1 , . . . ,Y
∗

t−1}}1{τ > t}]. (11)
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Since XIπ
1 ,1

is independent of 1{τ > t}, one has E[1{XIπ
1 ,1

∈ A}1{τ > t}] = E[RIπ
1 ,0
1{τ > t}]. More-

over, noting that 1{τ> t}, I∗t and RI∗t ,n
∗
I∗t ,t−1

are measurable with respect to H∗
t−1 =

(

I∗1 ,Y
∗
1 , . . . , I

∗
t−1,Y

∗
t−1

)

,

one has

E[1{Y ∗
t ∈ A\{Y ∗

1 , . . . ,Y
∗

t−1}}1{τ > t}] = E[RI∗t ,n
∗
I∗t ,t−1

1{τ > t}].

Finally remark that on the event τ > t one necessarily have that the remaining missing mass on

the expert pulled at time t by OCL is larger than the initial missing mass of expert Iπ
1 , that is

RI∗t ,n
∗
I∗t ,t−1

1{τ > t} ≥ RIπ
1 ,0
1{τ > t}, which concludes the proof of (11).

Proof of Lemma 3 Let Y π
s = XIπ

s ,nIπ
s ,s

be the item observed by π at time step s, and

Hπ
s =

(

Iπ
1 ,Y

π
1 , . . . , I

π
s−1,Y

π
s−1) be the history of π prior to making the decision on time s. For any

history hs = (i1,y1, . . . , is−1,ys−1), let F∗(t|hs) be the number of newly discovered interesting items

when running OCL from the history hs for t − s+1 steps. ’From the history hs’ means that, prior to

running OCL, the sequence of experts i1, . . . , is−1 has been chosen and has led to the observations

y1, . . . ,ys−1. For s′ ≥ s we shall also denote I∗s′(hs) (respectively Y ∗
s′ (hs)) the sequence of expert

requests made by OCL starting at hs (respectively the corresponding sequence of observed items).

Note in particular that Īs defined in the statement of the lemma corresponds to I∗s (H
π
s ). We shall also

need τs to be the first time when OCL, running from history Hπ
s , selects expert Iπ

s , that is

τs = min{s′ ≥ s : I∗s′(H
π
s ) = Iπ

s } ,

and τs =+∞ if there is no interesting item to be found by expert Iπ
s at time s.

We shall prove that

E[F∗(t|Hπ
s )−F∗(t|Hπ

s+1)]≤ ERĪs,n
π
Īs,s−1

, (12)

which inductively yields the lemma since F∗(t) = F∗(t|h1) and F∗(t|ht+1) = 0.

First let us consider the case when τs ≤ t. Then the observed items with OCL (running from

Hπ
s ) between step s and t remains unchanged if one forces OCL to play Iπ

s at time step s, that is

F∗(t|Hπ
s )1{τs ≤ t}= 1{Y π

s ∈ A\{Y π
1 , . . . ,Y

π
s−1}}1{τs ≤ t}+F∗(t|Hπ

s+1)1{τs ≤ t}.

On the other hand if τs > t, the behavior of OCL will be the same if played for t − s steps from Hπ
s

or from Hπ
s+1, that is

F∗(t −1|Hπ
s )1{τs > t}= F∗(t|Hπ

s+1)1{τs > t}.

Moreover note that

F∗(t −1|Hπ
s ) = F∗(t|Hπ

s )−1{Y ∗
t (H

π
s ) ∈ A\{Y π

1 , . . . ,Y
π
s−1,Y

∗
s (H

π
s ), . . . ,Y

∗
t−1(H

π
s )}}.

Thus we proved so far that

F∗(t|Hπ
s )−F∗(t|Hπ

s+1)

= 1{Y π
s ∈ A\{Y π

1 , . . . ,Y
π
s−1}}1{τs ≤ t}

+1{Y ∗
t (H

π
s ) ∈ A\{Y π

1 , . . . ,Y
π
s−1,Y

∗
s (H

π
s ), . . . ,Y

∗
t−1(H

π
s )}}1{τs > t}

≤ 1{Y π
s ∈ A\{Y π

1 , . . . ,Y
π
s−1}}1{τs ≤ t}+1{Y ∗

t (H
π
s ) ∈ A\{Y π

1 , . . . ,Y
π
s−1}}1{τs > t}.
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Now remark that Y π
s is independent of τs conditionally to Hπ

s . Thus one immediately obtains

E[1{Y π
s ∈ A\{Y π

1 , . . . ,Y
π
s−1}}1{τs ≤ t}|Hπ

s ]

= RIs,n
π
Is ,s−1

E[1{τs ≤ t}|Hπ
s ]

≤ RĪs,n
π
Īs ,s−1

E[1{τs ≤ t}|Hπ
s ].

Similarly Y ∗
t (H

π
s ) is independent of 1{τs > t} conditionally to (Hπ

s , I
∗
t (H

π
s )) and thus

E[1{Y ∗
t (H

π
s ) ∈ A\{Y π

1 , . . . ,Y
π
s−1}}1{τs > t}|Hπ

s , I
∗
t (H

π
s )]

= E[RI∗t (Hπ
s ),n

π
I∗t (Hπ

s ),s−1
|Hπ

s , I
∗
t (H

π
s )]E[1{τs > t}|Hπ

s , I
∗
t (H

π
s )]

≤ RĪs,n
π
Īs ,s−1

E[1{τs > t}|Hπ
s , I

∗
t (H

π
s )].

Putting everything together one obtains (12), which concludes the proof.

Lemma 9 Let a > 0, b ≥ 0.4, and x ≥ e, such that x ≤ a+b logx. Then one has

x ≤ a+b log(2a+4b log(4b)) .

Proof If a ≥ b logx then x ≤ 2a and thus x ≤ a+b log(2a). On the other hand if a < b logx then x ≤
2b logx which easily implies x≤ 4b log(4b) (indeed for x≥ e, x 7→ x

logx
is increasing and furthermore

for b ≥ 0.4 one can check that 4b log(4b)> 2b log(4b log(4b))) and thus x ≤ a+b log(4b log(4b)).
In any case one has x ≤ a+b log(2a+4b log(4b)).

Lemma 10 For all 1 ≤ k ≤ n,

−1

k
+ log

n

k
≤

n

∑
j=k+1

1

j
≤ log

n

k
.

Proof The standard sum/integral comparison yields

log
n+1

k+1
≤

n

∑
j=k+1

1

j
≤ log

n

k
,

but

log
n+1

k+1
= log

n

k
+ log

(

1+
1

n+1

)

− log

(

1+
1

k+1

)

≥ log
n

k
+0− 1

k
.
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Appendix B. The Open-loop Oracle Policy

In this final section, we provide an macroscopic analysis of the open-loop oracle policy in the case

of uniform sampling, that is under Hypotheses (i), (ii) and (iii). An open-loop policy must choose,

for each horizon t, the respective numbers of requests (nN
1 , . . . ,n

N
K) for each distribution (so that

nN
1 + · · ·+nN

K = tN) in advance. It appears here that, in the limit, the oracle open-loop (OOL) policy,

which makes use of the parameters (QN
1 , . . . ,Q

N
K), is as good as the OCL policy.

Let here RN
i,nN

i

= (QN
i −FN

i (nN
i ))/N be the proportion of interesting items not yet found with

expert i after nN
i requests. Suppose that tN/N → t, and that nN

i /N → νi as N goes to infinity; it is

easily shown that, almost surely,

lim
N→∞

RN
i,nN

i
= lim

N→∞
E

[

RN
i,nN

i

]

= lim
N→∞

QN
i

(

1− 1
N

)nN
i

N
= qi exp(−νi) .

Hence, the proportion of interesting items found with the allocation (nN
1 , . . . ,n

N
K) almost surely con-

verges to ∑K
i=1 qi (1− exp(−νi)). Defining

r(ν) =
K

∑
i=1

qi exp(−νi) ,

it follows that finding the best macroscopic allocation reduces to the following constrained convex

minimization problem:

min
ν∈RK

r(ν) such that ν1 + · · ·+νK = t and ∀i, νi ≥ 0 .

The solution r∗(t), reached at ν = ν∗(t), is easily derived by classical optimization techniques:

Proposition 11 For every i ∈ {1, . . . ,K}, let q
i
= exp

(

1/i×∑i
k=1 logqk

)

denotes the geometric

mean of q1, . . . ,qi.

1. There exists I(t) ∈ {1, . . . ,K} such that







∀i ≤ I(t), ν∗
i (t) =

t
I(t) + log

qi

q
I(t)

∀i > I(t), ν∗
i (t) = 0 .

Hence,

r∗(t) = I(t)q
I(t)

exp

(

− t

I(t)

)

+ ∑
i>I(t)

qi .

2. There exists 1 = t1 ≤ ·· · ≤ tK <+∞ such that

∀t ∈ [ti, ti+1[, I(t) = i .

The (tk)k are such that

qi +(i−1)q
i−1

exp

(

− ti

i−1

)

= iq
i
exp
(

− ti

i

)

.

For instance, t1 = log(q1/q2).
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Proof: Introduce the Lagrangian:

L(ν1, . . . ,νK ,λ,µ1, . . . ,µK) =
K

∑
i=1

qi exp
(

−νi

N

)

+λ

(

K

∑
i=1

νi

)

−
K

∑
i=1

µiνi .

We need to find the solution of:

∀i ∈ {1, . . . ,M}, −qi exp(−νi)+λ−µi = 0,

K

∑
i=1

νi = t,

∀i ∈ {1, . . . ,M}, µiνi = 0 and µi ≥ 0 .

We first obtain that

νi = logqi − log(λ−µi) .

Denoting A = {i : νi > 0}, and using that i ∈ A =⇒ µi = 0, we get

t = ∑
i∈A

log(qi)−|A| log(λ) ,

from which we get

− log(λ) =
t

|A| −
1

|A| ∑
i∈A

logqi,

and then for all i ∈ A:

νi = logqi +
t

|A| −
1

|A| ∑
i∈A

logqi .

Next, observe that νi = 0 ⇐⇒ qi > λ: in fact, if νi = 0 then the first equation gives −qi+λ−µi = 0,

and 0 ≤ µi = λ−qi. Conversely, if νi > 0 then µi = 0 and νi = log(qi/λ)> 0 implies qi > λ. Thus,

there exists I(t) such that A = {1, . . . , I(t)}, and for all i ≤ I(t),

νi = log
qi

q
I(t)

+
t

I(t)
.

Moreover,

r∗(t) = r
(

ν1, . . . ,νI(t),0, . . . ,0
)

= ∑
i≤I(t)

qi exp

[

−
(

log
qi

q
I(t)

+
t

I(t)

)]

+ ∑
i>I(t)

qi

= I(t)q
I(t)

exp

(

− t

I(t)

)

+ ∑
i>I(t)

qi .

The instants (ti)1≤i≤K are such that

(i−1)q
i−1

exp

(

− ti

i−1

)

+ ∑
k>i−1

qk = iq
i
exp
(

− ti

i

)

+∑
k>i

qk ,
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which is equivalent to

qi +(i−1)q
i−1

exp

(

− ti

i−1

)

= iq
i
exp
(

− ti

i

)

.

For i = 2, this gives

0 = q2 +q1 exp(−ν2)−2
√

q1q2 exp
(

−ν2

2

)

=
(√

q2 −
√

q1 exp(−ν2)
)2

,

which leads to t1 = log(q1/q2).

Theorem 12 In the macroscopic limit, the proportion of items found by the open-loop oracle policy

uniformly converges to the function F defined in Equation (7).

The proportion of interesting items found by the OOL policy is

q− r∗(t) = ∑
i≤I(t)

[

qi −q
I(t)

exp

(

− t

I(t)

)]

=
K

∑
i=1

(qi −Λ(t))+ ,

where Λ(t) = q
I(t)

exp
(

− t
I(t)

)

∈ [0,qI(t)]. To conclude, it remains only to remark that Λ = T−1,

where T is defined in Equation (6). In fact, if λ is such that qi0+1 < λ ≤ qi0 , then I(T (λ)) = i0 and

Λ(T (λ)) = q
i0

exp

(

−T (λ)

i0

)

= exp

(

1

i0
∑
i≤i0

logqi

)

exp

(

−∑i≤i0
log(qi/λ)

i0

)

= λ .

If λ < qK , the same holds with i0 = K.
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Hervé Frezza-Buet∗ HERVE.FREZZA-BUET@SUPELEC.FR

Matthieu Geist MATTHIEU.GEIST@SUPELEC.FR

Supélec
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Abstract

This paper introduces the rllib as an original C++ template-based library oriented toward value

function estimation. Generic programming is promoted here as a way of having a good fit between

the mathematics of reinforcement learning and their implementation in a library. The main concepts

of rllib are presented, as well as a short example.

Keywords: reinforcement learning, C++, generic programming

1. C++ Genericity for Fitting the Mathematics of Reinforcement Learning

Reinforcement learning (RL) is a field of machine learning that benefits from a rigorous mathemati-

cal formalism, as shown for example by Bertsekas (1995). Although this formalism is well accepted

in the field, its translation into efficient computer science tools has surprisingly not led to any stan-

dard yet, as mentioned by Kovacs and Egginton (2011). The claim of this paper is that genericity

enables a natural expression of the mathematics of RL. The rllib (2011) library implements this

idea in the C++ language, where genericity relies on templates. Templates automate the re-writing

of some generic code involving user types, offering a strong type checking at compile time that

improves the code safety.

Using the rllib templates requires that the user-defined types fit some documented concepts.

For example, some class C defining an agent should be designed so that C::state type is the type

used for the states, C::action type is the type used for the actions, and the method C::action type

policy(const C::state type& s) const is implemented, in order to compute the action to be

performed in a given state. This concept definition specifies what is required for an agent mathe-

matically. Note that C does not need to inherit from any kind of abstract rl::Agent class to be used

by the rllib tools. It can be directly provided as a type argument to any rllib template requiring

an argument fitting the concept of an agent, so that the re-written code actually compiles.

2. A Short Example

Let us consider the following toy-example. The state space contains values from 0 to 9, and actions

consist in increasing or decreasing the value. When the value gets out of bounds, a reward is returned

∗. Also at UMI 2958 Georgia Tech / CNRS, 2-3, rue Marconi, 57070 Metz, France.

c©2013 Hervé Frezza-Buet and Matthieu Geist.
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(-1 for bound 0, 1 for bound 9). Otherwise, a null reward is returned. Let us define this problem and

run Sarsa. First, a simulator class fitting the concept Simulator described in the documentation is

needed.

c l a s s Sim { / / Our s i m u l a t o r c l a s s . No i n h e r i t a n c e r e q u i r e d .

p r i v a t e :

i n t c u r r e n t ; double r ;

p u b l i c :

t y p e d e f i n t p h a s e t y p e ; t y p e d e f i n t o b s e r v a t i o n t y p e ;

t y p e d e f enum {up , down} a c t i o n t y p e ; t y p e d e f double r e w a r d t y p e ;

Sim ( void ) : c u r r e n t ( 0 ) , r ( 0 ) {}
void s e t P h a s e ( c o n s t p h a s e t y p e &s ) { c u r r e n t = s %10;}
c o n s t o b s e r v a t i o n t y p e& s e n s e ( void ) c o n s t { re turn c u r r e n t ;}
r e w a r d t y p e reward ( void ) c o n s t { re turn r ;}
void t i m e S t e p ( c o n s t a c t i o n t y p e &a ) {

i f ( a == up ) c u r r e n t ++; e l s e c u r r e n t −−;

i f ( c u r r e n t < 0) r =−1; e l s e i f ( c u r r e n t > 9) r =1; e l s e r =0 ;

i f ( r != 0 ) throw r l : : e x c e p t i o n : : T e r m i n a l ( ” Out o f r a n g e ” ) ;

}
} ;

Following the concept requirements, the class Sim naturally implements a sensor method sense

that provides an observation from the current phase of the controlled dynamical system, and a

method timeStep that computes a transition consecutive to some action. Note the use of exceptions

for terminal states. For the sake of simplicity in further code, the following is added.

t y p e d e f Sim : : p h a s e t y p e S ;

t y p e d e f Sim : : a c t i o n t y p e A;

t y p e d e f r l : : I t e r a t o r <A, Sim : : up , Sim : : down> Aenum ; / / enumera te a l l a c t i o n s .

t y p e d e f r l : : SA<S , A> SA ;

t y p e d e f r l : : s a : : T r a n s i t i o n <S , A, double> T r a n s i t i o n ; / / i . e . , ( s , a , r , s ’ , a ’ )

As Sarsa computes some Q-values, a structure is needed to store these values. A 10× 2 array

could be used, but our library is oriented toward value function estimation. It means that the Q-

function computed by Sarsa is an element taken in some parametrized set of functions from S×A to

R. The parameter used is a vector. Such Q-function fits the concept of DerivableArchitecture.

Let us here consider a tabular representation of Q: a |S|× |A| = 20 array is actually implemented,

but it is viewed as some particular case of parametrized function (there is one dimension in the

parameter vector for each Q-value in the array, that is, the parameter vector is the array). This

leads to the following definition of Q. The explicit definition of the gradient of Q according to the

parameter is required.

c l a s s Q { / / Tabu lar r e p r e s e n t a t i o n o f Q ( t h e t a c o n t a i n s t h e Q[ s , a ] ) .

p u b l i c :

t y p e d e f S s t a t e t y p e ; t y p e d e f A a c t i o n t y p e ;

t y p e d e f SA s a t y p e ; t y p e d e f SA i n p u t t y p e ;

t y p e d e f T r a n s i t i o n s a t r a n s i t i o n t y p e ; t y p e d e f T r a n s i t i o n t r a n s i t i o n t y p e ;

t y p e d e f g s l v e c t o r ∗ p a r a m t y p e ; t y p e d e f double o u t p u t t y p e ;

p a r a m t y p e n e w P a r a m e t e r I n s t a n c e ( void ) c o n s t {
re turn g s l v e c t o r c a l l o c ( 2 0 ) ; / / 20 = | S | ∗ |A |

}
o u t p u t t y p e operator ( ) ( c o n s t p a r a m t y p e t h e t a ,

s t a t e t y p e s , a c t i o n t y p e a ) c o n s t {
re turn g s l v e c t o r g e t ( t h e t a , 2∗ s+a ) ; / / r e t u r n t h e v a l u e q t h e t a ( s , a ) .

}
void g r a d i e n t ( c o n s t p a r a m t y p e t h e t a ,

s t a t e t y p e s , a c t i o n t y p e a ,

p a r a m t y p e g rad ) c o n s t {
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g s l v e c t o r s e t b a s i s ( grad , 2∗ s+a ) ; / / . . 0 0 1 0 0 0 . . . w i t h 1 a t [ s , a ]

}
} ;

The simulator and the parametrized Q-function are the only classes to be defined, since they are

problem-dependent. From these types, the Sarsa algorithm can be easily implemented from rllib

templates, as well as different kinds of agents. Here, learning is performed by an ε-greedy agent,

while testing is executed by a greedy agent.

c l a s s Param {
p u b l i c :

s t a t i c double gamma ( void ) { re turn . 9 9 ; }
s t a t i c double a l p h a ( void ) { re turn . 0 5 ; }
s t a t i c double e p s i l o n ( void ) { re turn 0 . 2 ; }

} ;

t y p e d e f r l : : s a : : SARSA<Q, Param> C r i t i c ;

t y p e d e f r l : : s a : : ArgmaxFromAItera t ion<C r i t i c , Aenum> A r g m a x C r i t i c ;

t y p e d e f r l : : a g e n t : : Greedy<ArgmaxCr i t i c> Tes tAgen t ;

t y p e d e f r l : : a g e n t : : o n l i n e : : Eps i lonGreedy<ArgmaxCr i t i c , Aenum , Param> LearnAgent ;

The rllib expresses that Sarsa provides a critic, offering a Q-function. As actions are discrete,

the best action (i.e., argmaxa∈AQ(s,a)) can be found by considering all the actions sequentially.

This is what ArgmaxCritic offers thanks to the action enumerator Aenum, in order to define greedy

and ε-greedy agents. The main function then only consists in running episodes with the appropriate

agents.

i n t main ( i n t argc , char∗ a rgv [ ] ) {
Sim s i m u l a t o r ; / / T h i s i s what t h e a g e n t c o n t r o l s .

T r a n s i t i o n t r a n s i t i o n ; / / T h i s i s some s , a , r , s ’ , a ’ da ta .

A r g m a x C r i t i c c r i t i c ; / / T h i s computes Q and argmax a Q( s , a ) .

LearnAgent l e a r n e r ( c r i t i c ) ; / / SARSA u s e s t h i s a g e n t t o l e a r n t h e p o l i c y .

Tes tAgen t t e s t e r ( c r i t i c ) ; / / T h i s behaves a c c o r d i n g t o t h e c r i t i c .

A a ; / / Some a c t i o n .

S s ; / / Some s t a t e .

i n t e p i s o d e , l e n g t h , s t e p =0;

f o r ( e p i s o d e = 0 ; e p i s o d e < 10000 ; ++ e p i s o d e ) { / / Le a rn i n g phase

s i m u l a t o r . s e t P h a s e ( r and ( ) % 1 0 ) ;

r l : : e p i s o d e : : s a : : r u n a n d l e a r n ( s i m u l a t o r , l e a r n e r , t r a n s i t i o n , 0 , l e n g t h ) ;

}
t r y { / / T e s t phase

s i m u l a t o r . s e t P h a s e ( 0 ) ;

whi le ( t rue ) {
s = s i m u l a t o r . s e n s e ( ) ; a = t e s t e r . p o l i c y ( s ) ;

s t e p ++; s i m u l a t o r . t i m e S t e p ( a ) ;

}
}
ca tch ( r l : : e x c e p t i o n : : T e r m i n a l e ) { s t d : : c o u t << s t e p << ” s t e p s . ” << s t d : : e n d l ;}
re turn 0 ; / / t h e message p r i n t e d i s ‘ ‘10 s t e p s . ’ ’

}

3. Features of the Library

Using the library requires to define the features that are specific to the problem (the simulator and

the Q-function architecture in our example) from scratch, but with the help of concepts. Then, the

specific features can be handled by generic code provided by the library to implement RL techniques

with value function estimation.
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Currently, Q-learing, Sarsa, KTD-Q, LSTD, and policy iteration are available, as well as a

multi-layer perceptron architecture. Moreover, some benchmark problems (i.e., simulators) are also

provided: the mountain car, the cliff walking, the inverted pendulum and the Boyan chain. Extend-

ing the library with new algorithms is allowed, since it consists in defining new templates. This

is a bit more technical than only using the existing algorithms, but the structure of existing con-

cepts helps, since it reflects the mathematics of RL. For example, concepts like Feature, for linear

approaches mainly (i.e., Q(s,a) = θTϕ(s,a)) and Architecture (i.e., Q(s,a) = fθ(s,a) for more

general approximation) orient the design toward functional approaches of RL. The algorithms im-

plemented so far rely on the GNU Scientific Library (see GSL, 2011) for linear algebra computation,

so the GPL licence of GSL propagates to the rllib.

4. Conclusion

The rllib relies only on the C++ standard and the availability of the GSL on the system. It offers

state-action function approximation tools for applying RL to real problems, as well as a design that

fits the mathematics. The latter allows for extensions, but is also compliant with pedagogical pur-

pose. The design of the rllib aims at allowing the user to build (using C++ programming) its own

experiment, using several algorithms, several agents, on-line or batch learning, and so on. Actually,

the difficult part of RL is the algorithms themselves, not the script-like part of the experiment where

things are put together (see the main function in our example). With a framework, in the sense of

Kovacs and Egginton (2011), the experiment is not directly accessible to the user programs, since

it is handled by some libraries in order to offer graphical interface or analyzing tools. The user

code is then called by the framework when required. We advocate that allowing the user to call

the rllib functionality at his/her convenience provides an open and extensible access to RL for

students, researchers and engineers.

Last, the rllib fits the requirements expressed by Kovacs and Egginton (2011, Section 4.3):

support of good scientific research, formulation compliant with the domain, allowing for any kind

of agents and any kind of approximators, interoperability of components (the Q function of the

example can be used for different algorithms and agents), maximization of run-time speed (use of

C++ and templates that inline massively the code), open source, etc. Extensions of rllib can be

considered, for example for handling POMDPs, and contributions of users are expected. The use

of templates is unfortunately unfamiliar to many programmers, but the effort is worth it, since it

brings the code at the level of the mathematical formalism, increasing readability (by a rational

use of typedefs) and reducing bugs. Even if the approach is dramatically different from existing

frameworks, wrappings with frameworks can be considered in further development.
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Abstract

We propose a high dimensional classification method, named the Copula Discriminant Analysis

(CODA). The CODA generalizes the normal-based linear discriminant analysis to the larger Gaus-

sian Copula models (or the nonparanormal) as proposed by Liu et al. (2009). To simultaneously

achieve estimation efficiency and robustness, the nonparametric rank-based methods including the

Spearman’s rho and Kendall’s tau are exploited in estimating the covariance matrix. In high dimen-

sional settings, we prove that the sparsity pattern of the discriminant features can be consistently

recovered with the parametric rate, and the expected misclassification error is consistent to the

Bayes risk. Our theory is backed up by careful numerical experiments, which show that the extra

flexibility gained by the CODA method incurs little efficiency loss even when the data are truly

Gaussian. These results suggest that the CODA method can be an alternative choice besides the

normal-based high dimensional linear discriminant analysis.

Keywords: high dimensional statistics, sparse nonlinear discriminant analysis, Gaussian copula,

nonparanormal distribution, rank-based statistics

1. Introduction

High dimensional classification is of great interest to both computer scientists and statisticians.

Bickel and Levina (2004) show that the classical low dimensional normal-based linear discriminant

analysis (LDA) is asymptotically equivalent to random guess when the dimension d increases fast

compared to the sample size n, even if the Gaussian assumption is correct. To handle this problem, a

sparsity condition is commonly added, resulting in many follow-up works in recent years. A variety

of methods in sparse linear discriminant analysis, including the nearest shrunken centroids (Tibshi-

rani et al., 2002; Wang and Zhu, 2007) and feature annealed independence rules (Fan and Fan, 2008),

are based on a working independence assumption. Recently, numerous alternative approaches have

been proposed by taking more complex covariance matrix structures into consideration (Fan et al.,

2010; Shao et al., 2011; Cai and Liu, 2012; Mai et al., 2012).
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A binary classification problem can be formulated as follows: suppose that we have a training

set {(xi,yi), i = 1, ...,n} independently drawn from a joint distribution of (X,Y ), where X ∈ R
d

and Y ∈ {0,1}. The target of the classification is to determine the value of Y given a new data

point x. Let ψ0(x) and ψ1(x) be the density functions of (X|Y = 0) and (X|Y = 1), and the prior

probabilities π0 = P(Y = 0), π1 = P(Y = 1). It is well known that the Bayes rule classifies a new

data point x to the second class if and only if

logψ1(x)− logψ0(x)+ log(π1/π0)> 0. (1)

Specifically, when (X|Y = 0) ∼ N(µ0,Σ), (X|Y = 1) ∼ N(µ1,Σ) and π0 = π1, Equation (1) is

equivalent to the following classifier:

g∗(x) := I((x−µa)
T
Σ

−1µd > 0),

where µa := µ1+µ0

2
, µd :=µ1 −µ0, and I(·) is the indicator function. It is well known then that for

any linear discriminant rule with respect to w ∈ R
d :

gw(X) := I((X−µa)
Tw > 0), (2)

the corresponding misclassification error is

C (gw) = 1−Φ

(
wTµd√
wTΣw

)
, (3)

where Φ(·) is the cumulative distribution function of the standard Gaussian. By simple calculation,

we have

Σ
−1µd ∈ argmin

w∈Rd

C (gw),

and we denote by β∗ := Σ
−1µd . In exploring discriminant rules with a similar form as Equation

(2), both Tibshirani et al. (2002) and Fan and Fan (2008) assume a working independence structure

for Σ. However this assumption is often violated in real applications.

Alternatively, Fan et al. (2010) propose the Regularized Optimal Affine Discriminant (ROAD)

approach. Let Σ̂ and µ̂d be consistent estimators of Σ and µd . To minimize C (gw) in Equation (3),

the ROAD minimizes wT
Σ̂w with wT µ̂d restricted to be a constant value, that is,

min
wT µ̂d=1

{wT
Σ̂w, subject to ||w||1 ≤ c}.

Later, Cai and Liu (2012) propose another version of the sparse LDA, which tries to make w close

to the Bayes rule’s linear term Σ
−1µd in the ℓ∞ norm (detailed definitions are provided in the next

section), that is,

min
w

{||w||1, subject to ||Σ̂w− µ̂d||∞ ≤ λn}. (4)

Equation (4) turns out to be a linear programming problem highly related to the Dantzig selector

(Candes and Tao, 2007; Yuan, 2010; Cai et al., 2011).

Very recently, Mai et al. (2012) propose another version of the sparse linear discriminant anal-

ysis based on an equivalent least square formulation of the LDA. We will explain it in more details

in Section 3. In brief, to avoid the “the curse of dimensionality”, an ℓ1 penalty is added in all three
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methods to encourage a sparsity pattern of w, and hence nice theoretical properties can be obtained

under certain regularity conditions. However, though significant process has been made, all these

methods require the normality assumptions which can be restrictive in applications.

There are three issues with regard to high dimensional linear discriminant analysis: (1) How

to estimate Σ and Σ
−1 accurately and efficiently (Rothman et al., 2008; Friedman et al., 2007;

Ravikumar et al., 2009; Scheinberg et al., 2010); (2) How to incorporate the covariance estimator

to classification (Fan et al., 2010; Shao et al., 2011; Cai and Liu, 2012; Witten and Tibshirani,

2011; Mai et al., 2012); (3) How to deal with non-Gaussian data (Lin and Jeon, 2003; Hastie and

Tibshirani, 1996). In this paper, we propose a high dimensional classification method, named the

Copula Discriminant Analysis (CODA), which addresses all the above three questions.

To handle non-Gaussian data, we extend the underlying conditional distributions of (X|Y = 0)
and (X|Y = 1) from Gaussian to the larger nonparanormal family (Liu et al., 2009). A random

variable X = (X1, ...,Xd)
T belongs to a nonparanormal family if and only if there exists a set of

univariate strictly increasing functions { f j}d
j=1 such that ( f1(X1), ..., fd(Xd))

T is multivariate Gaus-

sian.

To estimate Σ and Σ
−1 robustly and efficiently, instead of estimating the transformation func-

tions { f j}d
j=1 as Liu et al. (2009) did, we exploit the nonparametric rank-based correlation coeffi-

cient estimators including the Spearman’s rho and Kendall’s tau, which are invariant to the strictly

increasing functions f j. They have been shown to enjoy the optimal parametric rate in estimating

the correlation matrix (Liu et al., 2012; Xue and Zou, 2012). Unlike previous analysis, a new con-

tribution of this paper is that we provide an extra condition on the transformation functions which

guarantees the fast rates of convergence of the marginal mean and standard deviation estimators,

such that the covariance matrix can also be estimated with the parametric rate.

To incorporate the estimated covariance matrix into high dimensional classification, we show

that the ROAD (Fan et al., 2010) is connected to the lasso in the sense that if we fix the second tuning

parameter, these two problems are equivalent. Using this connection, we prove that the CODA is

variable selection consistent.

Unlike the parametric cases, one new challenge for the CODA is that the rank-based covariance

matrix estimator may not be positive semidefinite which makes the objective function nonconvex.

To solve this problem, we first project the estimated covariance matrix into the cone of positive

semidefinite matrices (using elementwise sup-norm). It can be proven that the theoretical properties

are preserved in this way.

Finally, to show that the expected misclassification error is consistent to the Bayes risk, we quan-

tify the difference between the CODA classifier ĝnpn and the Bayes rule g∗. To this end, we measure

the convergence rate of the estimated transformation function { f̃ j}d
j=1 to the true transformation

function { f j}d
j=1. Under certain regularity conditions, we show that

sup
In,γ

| f̃ j − f j|= OP

(
n−

γ
2

)
, ∀ j ∈ {1,2, . . . ,d},

over an expanding site In,γ determined by the sample size n and a parameter γ (detailed definitions

will be provided later). In,γ is set to go to (−∞,∞). Using this result, we can show that:

E(C (ĝnpn)) = C (g∗)+o(1).
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A related approach to our method has been proposed by Lin and Jeon (2003). They also consider

the Gaussian copula family. However, their focus is on fixed dimensions. In contrast, this paper

focuses on increasing dimensions and provides a thorough theoretical analysis.

The rest of this paper is organized as follows. In the next section, we briefly review the non-

paranormal estimators (Liu et al., 2009, 2012). In Section 3, we present the CODA method. We

give a theoretical analysis of the CODA estimator in Section 4, with more detailed proofs collected

in the appendix. In Section 5, we present numerical results on both simulated and real data. More

discussions are presented in the last section.

2. Background

We start with notations: for any two real values a,b ∈ R, a∧b := min(a,b). Let M = [M jk] ∈ R
d×d

and v= (v1, ...,vd)
T ∈R

d . Let v− j := (v1, ...,vd−1,v j+1, ...,vd)
T and M− j,−k be the matrix with M’s

j-th row and k-th column removed, M j,−k be M’s j-th row with the k-th column removed, M− j,k be

M’s k-th column with the j-th row removed. Moreover, v’s subvector with entries indexed by I is

denoted by vI , M’s submatrix with rows indexed by I and columns indexed by J is denoted by MIJ ,

M’s submatrix with all rows and columns indexed by J is denoted by M·J , M’s submatrix with all

rows and columns indexed by J is denoted by MJ . For 0 < q < ∞, we define

||v0|| := card(support(v)), ||v||q :=

(
d

∑
i=1

|vi|q
)1/q

, and ||v||∞ := max
1≤i≤d

|vi|.

We define the matrix ℓmax norm as the elementwise maximum value: ||M||max := max{|Mi j|} and

the ℓ∞ norm as ||M||∞ = max
1≤i≤m

n

∑
j=1

|Mi j|. λmin(M) and λmax(M) are the smallest and largest eigen-

values of M. We define the matrix operator norm as ||M||op := λmax(M).

2.1 The nonparanormal

A random variable X = (X1, ...,Xd)
T is said to follow a nonparanormal distribution if and only if

there exists a set of univariate strictly increasing transformations f = { f j}d
j=1 such that:

f (X) = ( f1(X1), ..., fd(Xd))
T :=Z ∼ N(µ,Σ),

where µ = (µ1, ...,µd)
T , Σ = [Σ jk], Ω = Σ

−1, Σ0 = [Σ0
jk] are the mean, covariance, concentra-

tion and correlation matrices of the Gaussian distribution Z. {σ2
j := Σ j j}d

j=1 are the corresponding

marginal variances. To make the model identifiable, we add two constraints on f such that f pre-

serves the population means and standard deviations. In other words, for 1 ≤ j ≤ d,

E(X j) = E( f j(X j)) = µ j; Var(X j) = Var( f j(X j)) = σ2
j .

In summary, we denote by such X ∼ NPN(µ,Σ, f ). Liu et al. (2009) prove that the nonparanormal

is highly related to the Gaussian Copula (Clemen and Reilly, 1999; Klaassen and Wellner, 1997).
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2.2 Correlation Matrix and Transformation Functions Estimations

Liu et al. (2009) suggest a normal-score based correlation coefficient matrix to estimate Σ
0. More

specifically, let x1, ...,xn ∈ R
d be n data point where xi = (xi1, . . . ,xid)

T . We define

F̃j(t;δn,x1, . . . ,xn) := Tδn

(
1

n

n

∑
i=1

I(xi j ≤ t)

)
, (5)

to be the winsorized empirical cumulative distribution function of X j. Here

Tδn
(x) :=





δn, if x < δn,

x, if δn ≤ x ≤ 1−δn,

1−δn, if x > 1−δn.

In particular, the empirical cumulative distribution function F̂j(t;x1, . . . ,xn) := F̃j(t;0,x1, . . . ,xn)
by letting δn = 0. Let Φ−1(·) be the quantile function of standard Gaussian, we define

f̃ j(t) = Φ−1
(
F̃j(t)

)
,

and the corresponding sample correlation estimator R̂ns = [R̂ns
jk] to be:

R̂ns
jk :=

1

n

n

∑
i=1

f̃ j(xi j) f̃k(xik)

√
1

n

n

∑
i=1

f̃ 2
j (xi j) ·

√
1

n

n

∑
i=1

f̃ 2
k (xik)

.

Liu et al. (2009) suggest to use the truncation level δn =
1

4n1/4
√

π logn
and prove that

||R̂ns −Σ
0||max = Op

(√
logd log2 n

n1/2

)
.

In contrast, Liu et al. (2012) propose a different approach for estimating the correlations, called the

Nonparanormal SKEPTIC. The Nonparanormal SKEPTIC exploits the Spearman’s rho and Kendall’s

tau to directly estimate the unknown correlation matrix.

In specific, let ri j be the rank of xi j among x1 j, . . . ,xn j and r̄ j =
1

n

n

∑
i=1

ri j. We consider the

following two statistics:

(Spearman’s rho) ρ̂ jk =
∑n

i=1(ri j − r̄ j)(rik − r̄k)√
∑n

i=1(ri j − r̄ j)2 ·∑n
i=1(rik − r̄k)2

,

(Kendall’s tau) τ̂ jk =
2

n(n−1) ∑
1≤i<i′≤n

sign
(
xi j − xi′ j

)
(xik − xi′k) .

and the correlation matrix estimators:

R̂
ρ
jk =

{
2sin

(π

6
ρ̂ jk

)
j 6= k

1 j = k
and R̂τ

jk =

{
sin
(π

2
τ̂ jk

)
j 6= k

1 j = k
.

Let R̂ρ = [R̂
ρ
jk] and R̂τ = [R̂τ

jk]. Liu et al. (2012) prove the following key result:
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Lemma 1 For any n ≥ 21
logd

+2, with probability at least 1−1/d2, we have

||R̂ρ −Σ
0||max ≤ 8π

√
logd

n
.

For any n > 1, with probability at least 1−1/d, we have

||R̂τ −Σ
0||max ≤ 2.45π

√
logd

n
.

In the following we denote by Ŝρ = [Ŝ
ρ
jk] = [σ̂ jσ̂kR̂

ρ
jk] and Ŝτ = [Ŝτ

jk] = [σ̂ jσ̂kR̂τ
jk], with {σ̂2

j , j =
1, . . . .d} the sample variances, to be the Spearman’s rho and Kendall’s tau covariance matrix es-

timators. As the correlation matrix based on the Spearman’s rho and Kendall’s tau statistics have

similar theoretical performance, in the following sections we omit the superscript ρ and τ and simply

denote the estimated correlation and covariance matrices by R̂ and Ŝ.

The following theorem shows that f̃ j converges to f j uniformly over an expanding interval with

high probability. This theorem will play a key role in analyzing the classification performance of

the CODA method. Here we note that a similar version of this theorem has been shown in Liu et al.

(2012), but our result is stronger in terms of extending the region of In to be optimal (check the

appendix for detailed discussions on it).

Theorem 2 Let g j := f−1
j be the inverse function of f j. In Equation (5), let δn = 1

2n
. For any

0 < γ < 1, we define

In :=
[
g j

(
−
√

2(1− γ) logn
)
,g j

(√
2(1− γ) logn

)]
,

then sup
t∈In

| f̃ j(t)− f j(t)|= OP

(√
log logn

nγ

)
.

3. Methods

Let X0 ∈ R
d and X1 ∈ R

d be two random variables with different means µ0, µ1 and the same

covariance matrix Σ. Here we do not pose extra assumptions on the distributions of X0 and X1. Let

x1, . . . ,xn0
be n0 data points i.i.d drawn from X0, xn0+1, . . . ,xn be n1 data points i.i.d drawn from

X1, n = n0 + n1. Denote by X = (x1, . . . ,xn)
T , y = (y1, ...,yn)

T = (−n1/n, . . . ,−n1/n,n0/n, . . . ,
n0/n)T with the first n0 entries equal to −n1/n and the next n1 entries equal to n0/n. We have

n0 ∼ Binomial(n,π0) and n1 ∼ Binomial(n,π1). In the sequel, without loss of generality, we assume

that π0 = π1 = 1/2. The extension to the case where π0 6= π1 is straightforward (Hastie et al., 2001).

Define

µ̂0 =
1

n0
∑

i:yi=−n1/n

xi, µ̂1 =
1

n1
∑

i:yi=n0/n

xi, µ̂d = µ̂1 − µ̂0, µ̂=
1

n
∑

i

xi,

S0 =
1

n0
∑

i:yi=−n1/n

(xi − µ̂0)(xi − µ̂0)
T , S1 =

1

n1
∑

i:yi=n0/n

(xi − µ̂1)(xi − µ̂1)
T ,

Sb =
1

n

1

∑
i=0

ni(µ̂i − µ̂)(µ̂i − µ̂)T =
n0n1

n2
µ̂dµ̂

T
d , Sw =

n0S0 +n1S1

n
.
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3.1 The Connection between ROAD and Lasso

In this subsection, we first show that in low dimensions, LDA can be formulated as a least square

problem. Motivated by such a relationship, we further show that in high dimensions, the lasso can

be viewed as a special case of the ROAD. Such a connection between the ROAD and lasso will be

further exploited to develop the CODA method.

When d < n, we define the population and sample versions of the LDA classifiers as:

β∗ =Σ
−1µd , β̂∗ = S−1

w µ̂d .

Similarly, a least square estimator has the formulation:

(β̂0, β̂) = argmin
β0,β

||y−β01−Xβ||22, (6)

where 1 := (1,1, . . . ,1)T . The following lemma connects the LDA to simple linear regression. The

proof is elementary, for self-containess, we include the proof here.

Lemma 3 Under the above notations, β̂ ∝ β̂∗. Specifically, when n1 = n0, the linear discriminant

classifier g∗(x) is equivalent to the following classifier

l̂(x) =

{
1, if β̂0 +xT β̂ > 0

0, otherwise.
.

Proof Taking the first derivatives of the right hand side of (6), we have β̂0, β̂ satisfying:

nβ0 +(n0µ̂0 +n1µ̂1)
Tβ = 0, (7)

(n0µ̂0 +n1µ̂1)β0 +(nSw +n1µ̂1µ̂
T
1 +n0µ̂0µ̂

T
0 )β =

n0n1

n
µ̂d . (8)

Combining Equations (7) and (8), we have

(Sw +Sb)β̂ =
n0n1

n2
µ̂d .

Noticing that Sbβ̂ ∝ µ̂d , it must be true that

Swβ̂ =

(
n1n0

n2
µ̂d −Sbβ̂

)
∝ µ̂d .

Therefore, β̂ ∝ S−1
w µ̂d = β̂∗. This completes the proof of the first assertion.

Moreover, noticing that by (7), l̂(x) = 1 is equivalent to

β̂0 +xT β̂ =−
(

n0µ̂0 +n1µ̂1

n

)T

β̂+xT β̂ = (x− n1µ̂1 +n0µ̂0

n
)T β̂ > 0.

because β̂ ∝ β̂∗, n1 = n0 and sign(β̂) = sign(β̂∗) (see Lemma 6 for details), we have g∗(x) = l̂(x).
This proves the second assertion.

In the high dimensional setting, the following lemma shows that the ROAD is connected to the

lasso.
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Lemma 4 We define:

β̂
λn,ν
ROAD = argmin

β

1

2
βT Swβ+λn||β||1 +

ν

2
(βT µ̂d −1)2, (9)

β̂λn
∗ = argmin

βT µ̂d=1

1

2n
||y− X̃β||22 +λn||β||1, (10)

β̂
λn

LASSO = argmin
β

1

2n
||y− X̃β||22 +λn||β||1, (11)

where X̃ = X− 1n×1µ̂
T is the globally centered version of X. We then have β̂

λn∗ = β̂
λn,∞
ROAD and

β̂
λn

LASSO = β̂
λn,ν

∗

ROAD where ν∗ = n1n0

n2 .

Proof Noticing that the right hand side of Equation (11) has the form:

β̂
λn

LASSO = argmin
β

(
1

2n
||y− X̃β||22 +λn||β||1

)

= argmin
β

(
1

2n
yTy− n1n0

n2
βT µ̂d +

1

2
βT (Sw +Sb)β+λn||β||1

)

= argmin
β

(
1

2
βT Swβ+

n1n0

2n2
βT µ̂dµ̂

T
d β− n1n0

n2
βT µ̂d +λn||β||1

)

= argmin
β

(
1

2
βT Swβ+

1

2

n1n0

n2
(βT µ̂d −1)2 +λn||β||1

)
.

And similarly

β̂λn
∗ = argmin

βT µ̂d=1

(
1

2
βT Swβ+

1

2

n1n0

n2
(βT µ̂d −1)2 +λn||β||1

)

= argmin
βT µ̂d=1

(
1

2
βT Swβ+λn||β||1

)
.

This finishes the proof.

Motivated by the above lemma, later we will show that β̂
λn

LASSO is already variable selection

consistent.

3.2 Copula Discriminant Analysis

In this subsection we introduce the Copula Discriminant Analysis (CODA). We assume that

X0 ∼ NPN(µ0,Σ, f ), X1 ∼ NPN(µ1,Σ, f ).

Here the transformation functions are f = { f j}d
j=1. In this setting, the corresponding Bayes rule can

be easily calculated as:

gnpn(x) =

{
1, if ( f (x)−µa)

T
Σ

−1µd > 0,

0, otherwise.
(12)
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By Equation (12) the Bayes rule is the sign of the log odds: ( f (x)−µa)
T
Σ

−1µd . Therefore,

similar to the linear discriminant analysis, if there is a sparsity pattern on β∗ :=Σ
−1µd , a fast rate

is expected.

Inspired by Lemma 3 and Lemma 4, to recover the sparsity pattern, we propose the ℓ1 regular-

ized minimization equation:

β̂npn = argmin
β

(
1

2
βT Ŝβ+

ν

2
(βT µ̂d −1)2 +λn||β||1

)
. (13)

Here Ŝ = n0/n · Ŝ0 + n1/n · Ŝ1, Ŝ0 and Ŝ1 are the Spearman’s rho/Kendall’s tau covariance matrix

estimators of [x1, ...,xn0
]T and [xn0+1, ...,xn]

T , respectively. When ν is set to be n0n1

n2 , β̂npn parallels

the ℓ1 regularization formulation shown in Equation (11); when ν goes to infinity, β̂npn reduces to

β̂
λn∗ shown in Equation (10).

For any new data point x = (x1, . . . ,xd)
T , reminding that the transforms f j preserves the mean

of x j, we assign it to the second class if and only if

( f̂ (x)− µ̂)T β̂npn > 0,

where f̂ (x) = ( f̂1(x1), . . . , f̂d(xd))
T with

f̂ j(x j) =
(

n0 f̂0 j(x j)+n1 f̂1 j(x j)
)
/n, ∀ j ∈ {1, . . . ,d}.

Here f̂0 j and f̂1 j are defined to be:

f̂0 j(t) := µ̂0 + Ŝ
−1/2
j j Φ−1

(
F̃j(t;δn0

,x1, ...,xn0
)

)
,

and

f̂1 j(t) := µ̂1 + Ŝ
−1/2
j j Φ−1

(
F̃j(t;δn1

,xn0+1, ...,xn)

)
.

Here we use the truncation level δn =
1

2n
. The corresponding classifier is named ĝnpn.

3.3 Algorithms

To solve the Equation (13), when ν is set to be n0n1

n2 , Lemma 4 has shown that it can be formulated as

a ℓ1 regularized least square problem and hence popular softwares such as glmnet (Friedman et al.,

2009, 2010) or lars (Efron et al., 2004) can be applied.

When ν goes to infinity, the Equation (13) reduces to the ROAD, which can be efficiently solved

by the augmented Lagrangian method (Nocedal and Wright, 2006). More specifically, we define the

augmented Lagrangian function:

L(β,u) =
1

2
βT Ŝβ+λ‖β‖1 +νu(µ̂Tβ−1)+

ν

2
(µ̂Tβ−1)2,

where u∈R is the rescaled Lagrangian multiplier and ν> 0 is the augmented Lagrangian multiplier.

We can obtain the optimum to Equation (9) using the following iterative procedure. Suppose at the

k-th iteration, we already have the solution β(k), u(k), then at the (k+1)-th iteration,
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• Step.1 Minimize L(β,u) with respect to β. It can be efficiently solved by coordinate descent. We

rearrange

Ŝ =

(
Ŝ j, j Ŝ j,− j

Ŝ− j, j Ŝ− j,− j

)
, µ̂= (µ̂ j, µ̂

T
− j)

T

and β = (β j,β
T
− j)

T . Then we can iteratively update β j by the formula

β
(k+1)
j =

Soft
(

νµ̂ j

(
1−u(k)− µ̂T

− jβ
(k)
− j

)
− Ŝ j,− jβ

(k)
− j , λ

)

Ŝ j, j +νµ̂2
j

,

where Soft(x,λ) := sign(x)(|x| − λ)+. It is observed that a better empirical performance can be

achieved by updating each β j only once.

• Step.2 Update u using the formula

u(k+1) = u(k)+ µ̂Tβ(k+1)−1.

This augmented Lagrangian method has provable global convergence. See Chapter 17 of Nocedal

and Wright (2006) for discussions in details. Our empirical simulations show that this algorithm is

more accurate than Fan et al. (2010)’s method.

To solve Equation (13), we also need to make sure that Ŝ, or equivalently R̂, is positive semidef-

inite. Otherwise, Equation (13) is not a convex optimization problem and the above algorithm may

not even converge. Heuristically, we can truncate all of the negative eigenvalues of R̂ to zero. In

practice, we project R̂ into the cone of the positive semidefinite matrices and find solution R̃ to the

following convex optimization problem:

R̃ = argmin
R�0

‖R̂−R‖max, (14)

where ℓmax norm is chosen such that the theoretical properties in Lemma 1 can be preserved. In

specific, we have the following corollary:

Lemma 5 For all t ≥ 32π
√

logd
n log2

, the minimizer R̃ to Equation (14) satisfies the following expo-

nential inequality:

P(|R̃ jk −Σ0
jk| ≥ t)≤ 2exp

(
− nt2

512π2

)
, ∀ 1 ≤ j,k ≤ d.

Proof Combining Equation (A.23) and Equation (A.28) of Liu et al. (2012), we have

P(|R̂ jk −Σ0
jk|> t)≤ 2exp

(
− nt2

64π2

)
.

Because Σ
0 is feasible to Equation (14), R̃ must satisfy that:

||R̂− R̃||max ≤ ||R̂−Σ
0||max.
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Using Pythagorean Theorem, we then have

P(|R̃ jk −Σ0
jk| ≥ t)≤ P(|R̃ jk − R̂ jk|+ |R̂ jk −Σ0

jk| ≥ t)

≤ P(||R̃− R̂||max + ||R̂−Σ
0||max ≥ t)

≤ P(||R̂−Σ
0||max ≥ t/2)

≤ d2 exp

(
− nt2

256π2

)

≤ 2exp

(
2logd

log2
− nt2

256π2

)
.

Using the fact that t ≥ 32π
√

logd
n log2

, we have the result.

Therefore, the theoretical properties in Lemma 1 also hold for R̃, only with a slight loose on the

constant. In practice, it has been found that the optimization problem in Equation (14) can be

formulated as the dual of a graphical lasso problem with the smallest possible tuning parameter

that still guarantees a feasible solution (Liu et al., 2012). Empirically, we can use a surrogate

projection procedure that computes a singular value decomposition of R̂ and truncates all of the

negative singular values to be zero. And then we define S̃ := [S̃ jk] = [σ̂ jσ̂kR̃ jk] to be the projected

Spearman’s rho/Kendall’s tau covariance matrices, which can be plugged into Equation (13) to

obtain an optimum.

3.4 Computational Cost

Compared to the corresponding parametric methods like the ROAD and the least square formulation

proposed by Mai et al. (2012), one extra cost of the CODA is the computation of R̃, which can be

solved in two steps: (1) computing R̂; (2) projecting R̂ to the cone of the positive semidefinite ma-

trices. In the first step, computing R̂ requires the calculation of d(d−1)/2 pairwise Spearman’s rho

or Kendall’s tau statistics. As shown in Christensen (2005) and Kruskal (1958), R̂ can be computed

with the cost O(d2n logn). In the second step, to obtain R̃ requires estimating a full path of estimates

by implementing the graphical lasso algorithm. This approach shows good scalability to very high

dimensional data sets (Friedman et al., 2007; Zhao et al., 2012). Moreover, in practice we can use

a surrogate projection procedure, which can be solved by implementing the SVD decomposition of

R̂ once.

4. Theoretical Properties

In this section we provide the theoretical properties of the CODA method. We set ν = (n0n1)/n2

in Equation (13). With such a choice of ν, we prove that the CODA method is variable selection

consistent and has an oracle property. We define

C :=Σ+(µ1 −µ0)(µ1 −µ0)
T/4. (15)

To calculate β̂
λn

LASSO in Equation (11), we define Σ̃:

Σ̃ := S̃+
n0n1

n2
· (µ̂1 − µ̂0)(µ̂1 − µ̂0)

T .
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We then replace 1
n
X̃T X̃ with Σ̃ in Equation (11).

It is easy to see that Σ̃ is a consistent estimator of C. We define ⌊c⌋ the greatest integer strictly

less than the real number c. For any subset T ⊆ {1,2, . . . ,d}, let X̃T be the n×|T | matrix with the

vectors {X̃·i, i ∈ T} as columns. We assume that β∗ is sparse and define S := {i ∈ 1, ...,d|β∗
i 6= 0}

with |S|= s, s ≪ n. we denote by

β∗∗ := C−1(µ1 −µ0), where β∗∗
max := max

j∈S
(|β∗∗

j |), and β∗∗
min := min

j∈S
(|β∗∗

j |).

Recalling that β∗ =Σ
−1µd , the next lemma claims that β∗∗ ∝ β∗ and therefore β∗∗ is also sparse,

and hence β∗∗
S = (CSS)

−1(µ1 −µ0)S.

Lemma 6 Let β∗ =Σ
−1µd . β∗∗ is proportional to β∗. Especially, we have

β∗∗ =
4β∗

4+µT
d Σ

−1µd

.

Proof Using the Binomial inverse theorem (Strang, 2003), we have

β∗∗ = (Σ+
1

4
µdµ

T
d )

−1µd =

(
Σ

−1 −
1
4
Σ

−1µdµ
T
d Σ

−1

1+ 1
4
µT

d Σ
−1µd

)
µd =Σ

−1µd −
1
4
Σ

−1µd(µ
T
d Σ

−1µd)

1+ 1
4
µT

d Σ
−1µd

=

(
1− µT

d Σ
−1µd

4+µT
d Σ

−1µd

)
Σ

−1µd =
4β∗

4+µT
d Σ

−1µd

.

This completes the proof.

We want to show that β̂
λn

LASSO recovers the sparsity pattern of the unknown β∗ with high prob-

ability. In the sequel, we use β̂ to denote β̂
λn

LASSO for notational simplicity. We define the variable

selection consistency property as:

Definition 7 (Variable Selection Consistency Property) We say that a procedure has the variable

selection consistency property R (X,β∗∗,λn) if and only if there exists a λn and an optimal solution

β̂ such that β̂S 6= 0 and β̂Sc = 0.

Furthermore, to ensure variable selection consistency, the following condition on the covariance

matrix is imposed:

Definition 8 A positive definite matrix C has the Irrepresentable Conditions (IC) property if

||CScS(CSS)
−1||∞ := ψ < 1.

This assumption is well known to secure the variable selection consistency of the lasso procedure

and we refer to Zou (2006), Meinshausen and Bühlmann (2006), Zhao and Yu (2007) and Wain-

wright (2009) for more thorough discussions.

The key to prove the variable selection consistency is to show that the marginal sample means

and standard deviations converge to the population means and standard deviations in a fast rate for

the nonparanormal. To get this result, we need extra conditions on the transformation functions

{ f j}d
j=1. For this, we define the Subgaussian Transformation Function Class.
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Definition 9 (Subgaussian Transformation Function Class) Let Z ∈R be a random variable fol-

lowing the standard Gaussian distribution. The Subgaussian Transformation Function Class TF(K)
is defined as the set of functions g : R→ R which satisfies:

E|g(Z)|m ≤ m!

2
Km, ∀ m ∈ Z

+.

Remark 10 Here we note that for any function g : R→R, if there exists a constant L < ∞ such that

g(z)≤ L or g′(z)≤ L or g′′(z)≤ L, ∀ z ∈ R, (16)

then g ∈ TF(K) for some constant K. To show that, we have the central absolute moments of the

standard Gaussian distribution satisfying, ∀ m ∈ Z
+:

E|Z|m ≤ (m−1)!! < m!!,

E|Z2|m = (2m−1)!! < m! ·2m. (17)

Because g satisfies the condition in Equation (16), using Taylor expansion, we have for any z ∈ R,

g(z)≤ |g(0)|+L or |g(z)| ≤ |g(0)|+L|z|, or |g(z)| ≤ |g(0)|+ |g′(0)z|+Lz2. (18)

Combining Equations (17) and (18), we have E|g(Z)|m ≤ m!
2

Km for some constant K. This proves

the assertion.

The next theorem provides the variable selection consistency result of the proposed procedure.

It shows that under certain conditions on the covariance matrix Σ and the transformation functions,

the sparsity pattern of β∗∗ can be recovered with a parametric rate.

Theorem 11 (Sparsity Recovery) Let X0 ∼ NPN(µ0,Σ, f ), X1 ∼ NPN(µ1,Σ, f ). We assume

that C in Equation (15) satisfies the IC condition and ||(CSS)
−1||∞ = Dmax for some 0 < Dmax < ∞,

||µ1 −µ0||∞ = ∆max for some 0 < ∆max < ∞ and λmin(CSS) > δ for some constant δ > 0. Then, if

we have the additional conditions:

Condition 1: λn is chosen such that

λn < min

{
3β∗∗

min

64Dmax

,
3∆max

32

}
;

Condition 2: Let σmax be a constant such that

0 < 1/σmax < min
j
{σ j}< max

j
{σ j}< σmax < ∞,max

j
|µ j| ≤ σmax,

and g = {g j := f−1
j }d

j=1 satisfies

g2
j ∈ TF(K), ∀ j ∈ {1, . . .d},

where K < ∞ is a constant,
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then there exist positive constants c0 and c1 only depending on {g j}d
j=1, such that for large enough

n

P(R (X,β∗∗,λn))

≥ 1−
[

2ds · exp

(
−c0nε2

s2

)
+2d · exp

(
−4c1nλ2

n(1−ψ−2εDmax)
2

(1+ψ)2

)]

︸ ︷︷ ︸
A

−
[

2s2 exp

(
−c0nε2

s2

)
+2sexp(−c1nε2)

]

︸ ︷︷ ︸
B

−2s2 exp(−c0nδ2

4s2
)

︸ ︷︷ ︸
C

−2exp
(
−n

8

)

︸ ︷︷ ︸
D

,

and

P

(
|| n2β̂

n0n1

−β∗∗||∞ ≤ 228Dmaxλn

)

≥ 1−
[

2s2 exp

(
−c0nε2

s2

)
+2sexp(−c1nε2)

]

︸ ︷︷ ︸
B

−2exp
(
−n

8

)

︸ ︷︷ ︸
D

, (19)

whenever ε satisfies that, for large enough n,

64π

√
logd

n log2
≤ ε < min

{
1,

1−ψ

2Dmax

,
2λn(1−ψ)

Dmax(4λn +(1+ψ)∆max)
,

ω

(3+ω)Dmax

,
∆maxω

6+2ω
,

4λn

Dmax∆max

,8λ2
n

}
.

Here ω :=
β∗∗

min

∆maxDmax
and δ ≥ 128πs

√
logd

n log2
.

Remark 12 The above Condition 2 requires the transformation functions’ inverse {g j}d
j=1 to be

restricted such that the estimated marginal means and standard deviations converge to their popu-

lation quantities exponentially fast. The exponential term A is set to control P(β̂Sc 6= 0), B is set to

control P(β̂S = 0), C is set to control P(λmin(Σ̃SS) ≤ 0) and D is set to control P( 3
16

≤ n0n1

n2 ≤ 1
4
).

Here we note that the key of the proof is to show that: (i) there exist fast rates for sample means and

standard deviations converging to the population means and standard deviations for the nonpara-

normal; (ii) Σ̃SS is invertible with high probability. ε ≥ 64π
√

logd
n log2

is used to make sure that the

Lemma 5 can be applied here.

The next corollary provides an asymptotic result of the Theorem 11.

Corollary 13 Under the same conditions as in Theorem 11, if we further have the following Con-

ditions 3,4 and 5 hold:

Condition 3: Dmax, ∆max, ψ and δ are constants that do not scale with (n,d,s);

642



COPULA DISCRIMINANT ANALYSIS

Condition 4: The triplet (n,d,s) admits the scaling such that

s

√
logd + logs

n
→ 0 and

s

β∗∗
min

√
logd + logs

n
→ 0;

Condition 5: λn scales with (n,d,s) such that

λn

β∗∗
min

→ 0 and
s

λn

√
logd + logs

n
→ 0,

then

P(R (X,β∗∗,λn))→ 1.

Remark 14 Condition 3 is assumed to be true, in order to give an explicit relationship among

(n,d,s) and λn. Condition 4 allows the dimension d to grow in an exponential rate of n, which is

faster than any polynomial of n. Condition 5 requires that λn shrinks towards zero in a slower rate

than s

√
logd+logs

n
.

In the next theorem, we analyze the classification oracle property of the CODA method. Suppose

that there is an oracle, which classifies a new data point x to the second class if and only if

( f (x)−µa)
T
Σ

−1µd > 0. (20)

In contrast, ĝnpn will classify x to the second class if

( f̂ (x)− µ̂)T β̂ > 0,

or equivalently,

( f̂ (x)− µ̂)T · n2β̂

n0n1

> 0. (21)

We try to quantify the difference between the “oracle” in Equation (20) and the empirical classifier

in Equation (21). For this, we define the empirical and population classifiers as

G(x,β, f ) := ( f (x)−µa)
Tβ,

Ĝ(x,β, f ) := ( f (x)− µ̂)Tβ.

With the above definitions, we have the following theorem:

Theorem 15 When the conditions in Theorem 11 hold such that A+B+C → 0, furthermore b is a

positive constant chosen to satisfy

sn−c2·b → 0, where c2 is a constant depending only on the choice of {g j}d
j=1,

then we have
∣∣∣∣∣Ĝ
(
x,

n2β̂

n0n1

, f̂

)
−G(x,β∗∗, f )

∣∣∣∣∣= OP

(
sβ∗∗

max

√
log logn

n1−b/2
+ sDmaxλn

(√
logn+∆max

))
.
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Remark 16 Using n2

n0n1
β̂ instead of β̂ is for the purpose of using the Equation (19) in Theorem 11.

When the conditions in Corollary 13 hold, the rate in Theorem 15 can be written more explicitly:

Corollary 17 When β∗∗
max is a positive constant which does not scale with (n,d,s),

logs

c2 logn
< b <

4logs

logn
,

and the conditions in Corollary 13 hold, we have

∣∣∣∣∣Ĝ
(
x,

n2β̂

n0n1

, f̂

)
−G(x,β∗∗, f )

∣∣∣∣∣= OP

(
s2 logn ·

√
logd + logs

n

)
,

by choosing λn ≍ s

√
logn(logd + logs)

n
.

Remark 18 Here we note that the conditions require that c2 > 1/4, in order to give an explicit rate

of the classifier estimation without including b. Theorem 15 or Corollary 17 can directly lead to

the result on misclassification consistency. The key proof proceeds by showing that f (X) satisfies

a version of the “low noise condition” as proposed by Tsybakov (2004).

Corollary 19 (Misclassification Consistency) Let

C (g∗) := P(Y · sign(G(X,β∗∗, f ))< 0) and C (ĝ) := P(Y · sign(Ĝ(X, β̂, f̂ ))< 0 | β̂, f̂ ),

be the misclassification errors of the Bayes classifier and the CODA classifier. Then if the conditions

in Theorem 15 hold, and we have the addition assumption that

logn ·
(

sβ∗∗
max

√
log logn

n1−b/2
+ sDmaxλn

(√
logn+∆max

))
→ 0;

or if the conditions in Corollary 17 hold, and we have the additional assumption that

s2 log2 n ·
√

logd + logs

n
→ 0,

then we have

E(C (ĝ)) = C (g∗)+o(1).

5. Experiments

In this section we investigate the empirical performance of the CODA method. We compare the

following five methods:

• LS-LDA: the least square formulation for classification proposed by Mai et al. (2012);

• CODA-LS: the CODA using a similar optimization formulation as the LS-LDA;

• ROAD: the Regularized Optimal Affine Discriminant method (Fan et al., 2010);
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• CODA-ROAD: the CODA using a similar optimization formulation as the LS-LDA

• SLR: the sparse logistic regression (Friedman et al., 2010).

We note that the main difference among the top four methods is that the covariance matrix Σ is

estimated in different ways: the ROAD and LS-LDA both assume that data are Gaussian and use

the sample covariance, which introduces estimation bias for non-Gaussian data and the resulting

covariance matrix can be inconsistent to Σ; in contrast, the CODA method exploits the Spearman’s

rho and Kendall’s tau covariance matrices to estimate Σ. It enjoys a O

(√
logd

n

)
convergence rate

in terms of ℓ∞ norm. In the following, the Spearman’s rho estimator is applied. The Kendall’s tau

estimator achieves very similar performance.

The LS-LDA, CODA-LS and SLR are implemented using the R package glmnet (Friedman et al.,

2009). We use the augmented Lagrangian multiplier algorithm to solve ROAD and CODA-ROAD.

Here in computing ROAD and CODA-ROAD, ν is set to be 10.

5.1 Synthetic Data

In the simulation studies, we randomly generate n+ 1000 class labels such that π1 = π2 = 0.5.

Conditioning on the class labels, we generate d dimensional predictors x from nonparanormal dis-

tribution NPN(µ0,Σ, f ) and NPN(µ1,Σ, f ). Without loss of generality, we suppose µ0 = 0 and

βBayes :=Σ
−1µ1 with s := ||βBayes||0. The data are then split to two parts: the first n data points as

the training set and the next 1000 data points as the testing set. We consider twelve different simu-

lation models. The choices of n,d,s,Σ,βBayes are shown in Table 1. Here the first two schemes are

sparse discriminant models with difference Σ and µ1; Model 3 is practically sparse in the sense that

its Bayes rule depends on all variables in theory but can be well approximated by sparse discriminant

functions.

scheme n d s Σ βBayes

Scheme 1 100 400 20 Σi j = 0.5|i− j| 0.342(1, . . . ,1,0, . . . ,0)T

Scheme 2 400 800 20 Σ j j = 1,Σi j = 0.5, i 6= j 0.176(1, . . . ,1,0, . . . ,0)T

Scheme 3 100 200 20 Σi j = 0.6|i− j| 0.198(1, . . . ,1,0.001, . . . ,0.001)T

Table 1: Simulation Models with different n,d,s,Σ and βBayes listed below.

Furthermore, we explore the effects of different transformation functions f by considering the

following four types of the transformation functions:

• Linear transformation: flinear = ( f 0, f 0, . . .), where f 0 is the linear function;

• Gaussian CDF transformation: fCDF = ( f 1, f 1, . . .), where f 1 is the marginal Gaussian

CDF transformation function as defined in Liu et al. (2009);

• Power transformation: fpower = ( f 2, f 2, . . .), where f 2 is the marginal power transformation

function as defined in Liu et al. (2009) with parameter 3;
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• Complex transformation: fcomplex = ( f 1, f 1, . . . , f 1

︸ ︷︷ ︸
s

, f 2, f 2, . . .), where the first s variables

are transformed through f 1, and the rest are transformed through f 2.

Then we obtain twelve models based on all the combinations of the three schemes of n,d,s,Σ,βBayes

and four transformation functions (linear, Gaussian CDF, power and complex). We note that the lin-

ear transformation flinear is equivalent to no transformation. The Gaussian CDF transformation

function is bounded and therefore preserves the theoretical properties of the CODA method. The

power transformation function, on the other hand, is unbounded. We exploit fCDF , fpower and

fcomplex to separately illustrate how the CODA works when the assumptions in Section 4 hold, when

these assumptions are mildly violated and when they are only violated for the variables X j’s with

(Σ−1(µ1 −µ0)) j = 0.

Figures 1 to 3 summarize the simulation results based on 3,000 replications for twelve models

discussed above. Here the means of misclassification errors in percentage are plotted against the

numbers of extracted features to illustrate the performance of different methods across the whole

regularization paths.

To further show quantitative comparisons among different methods, we use two penalty pa-

rameter selection criteria. First, we use an oracle penalty parameter selection criterion. Let S :=
support(βBayes) be the set that contains the s discriminant features. Let Ŝλ be the set of nonzero

values in the estimated parameters using the regularization parameter λ in different methods. In this

way, the number of false positives at λ is defined as FP(λ) := the number of features in Ŝλ but not

in S. The number of false negatives at λ is defined as FN(λ) := the number of features in S but not

in Ŝλ. We further define the false positive rate (FPR) and false negative rate (FNR) as

FPR(λ) := FP(λ)/(d − s), and FNR(λ) := FN(λ)/s.

Let Λ be the set of all regularization parameters used to create the full path. The oracle regularization

parameter λ∗ is defined as

λ∗ := argmin
λ∈Λ

{FPR(λ)+FNR(λ)}.

Using the oracle regularization parameter λ∗, the numerical comparisons of the five methods on

the twelve models are presented in Table 2. Here Bayes is the Bayes risk and in each row the

winning method is in bold. These results manifest how the five methods perform when data are

either Gaussian or non-Gaussian.

Second, in practice, we propose a cross validation based approach in penalty parameter selec-

tion. In detail, for the training set, we randomly separate the data into ten folds with no overlap

between each two parts. Each part has the same case and control data points. Each time we apply

the above five methods to the combination of any nine folds, using a given set of regularization

parameters. The parameters learned are then applied to predict the labels of the left one fold. We

select the penalty parameter λ∗
CV to be the one that minimizes the averaged misclassification error.

λ∗
CV is then applied to the test set. The numerical results are presented in Table 3. Here Bayes is the

Bayes risk and in each row the winning method is in bold.

In the following we provide detailed analysis based on these numeric simulations.

5.1.1 NON-GAUSSIAN DATA

From Tables 2 and 3 and Figures 1 to 3, we observe that for different transformation functions f and

different schemes of {n,d,s,Σ,βBayes}, CODA-ROAD and CODA-LS both significantly outperform
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Figure 1: Misclassification error curves on Scheme 1 with four different transformation functions.

(A) transformation function is flinear; (B) transformation function is fCDF ; (C) transfor-

mation function is fpower; (D) transformation function is fcomplex. The x-axis represents

the numbers of features extracted by different methods; the y-axis represents the aver-

aged misclassification errors in percentage of the methods on the testing data set based

on 3,000 replications.

ROAD and LS-LDA, respectively. Secondly, for different transformation functions f , the differences

between the two CODA methods (CODA-ROAD and CODA-LS) and their corresponding parametric

methods (ROAD and LS-LDA) are comparable. This suggests that the CODA methods can beat the

corresponding parametric methods when the sub-Gaussian assumptions for transformation functions
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Figure 2: Misclassification error curves on Scheme 2 with four different transformation functions.

(A) transformation function is flinear; (B) transformation function is fCDF ; (C) transfor-

mation function is fpower; (D) transformation function is fcomplex. The x-axis represents

the numbers of features extracted by different methods; the y-axis represents the aver-

aged misclassification errors in percentage of the methods on the testing data set based

on 3,000 replications.

shown in Section 4 are mildly violated. Thirdly, the CODA methods CODA-LS and CODA-ROAD

both outperform SLR frequently.
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Figure 3: Misclassification error curves on Scheme 3 with four different transformation functions.

(A) transformation function is flinear; (B) transformation function is fCDF ; (C) transfor-

mation function is fpower; (D) transformation function is fcomplex. The x-axis represents

the numbers of features extracted by different methods; the y-axis represents the aver-

aged misclassification errors in percentage of the methods on the testing data set based

on 3,000 replications.

5.1.2 GAUSSIAN DATA

From Tables 2 and 3 and Figures 1 to 3, we observe that when the transformation function is flinear,

there is no significant differences between CODA-ROAD and ROAD, and between CODA-LS and LS-
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Scheme f Bayes(%) ROAD CODA-ROAD LS-LDA CODA-LS SLR

Scheme 1 flinear 10.00 16.64(0.81) 16.90(0.84) 15.09(0.52) 15.29(0.53) 15.40(0.49)

fCDF 10.00 18.57(0.80) 17.17(0.84) 17.26(0.52) 15.66(0.53) 17.10(0.46)

fpower 10.00 18.80(0.81) 16.51(0.86) 17.76(0.52) 15.45(0.56) 17.99(0.52)

fcomplex 10.00 18.68(0.84) 17.12(0.87) 17.40(0.54) 15.78(0.53) 17.26(0.57)

Scheme 2 flinear 10.00 12.28(0.41) 12.34(0.38) 11.46(0.28) 11.48(0.28) 12.19(0.31)

fcd f 10.00 13.56(0.65) 12.83(0.72) 12.95(1.00) 11.99(0.99) 12.84(0.30)

fpower 10.00 17.85(0.86) 17.38(0.65) 17.10(0.73) 16.65(0.50) 16.50(0.33)

fcomplex 10.00 16.89(1.39) 16.89(0.43) 17.20(2.43) 16.77(0.33) 16.91(0.47)

Scheme 3 flinear 20.00 26.65(0.78) 26.69(0.77) 25.59(0.63) 25.70(0.64) 25.97(0.58)

fcd f 20.00 26.97(0.70) 26.03(0.78) 26.16(0.58) 25.18(0.64) 26.41(0.58)

fpower 20.00 29.78(0.72) 26.07(0.87) 29.03(0.60) 25.14(0.70) 29.34(0.61)

fcomplex 20.00 27.54(0.71) 26.78(0.73) 26.70(0.62) 25.87(0.59) 26.87(0.57)

Table 2: Quantitative comparisons on different models with linear, Gaussian CDF, power, and com-

plex transformations using the oracle penalty parameter selection criterion. The methods

compared here are ROAD,CODA-ROAD,LS-LDA,CODA-LS and SLR. Here Bayes is the

Bayes risk and the winning methods are in bold. The means of misclassification errors

in percentage with their standard deviations in parentheses are presented. The results are

based on 3,000 replications.

LDA. This suggests that the CODA methods can be an alternative choice besides the Gaussian-based

high dimensional classification methods.

In summary, we observe that the CODA methods (CODA-LS in particular) have very good over-

all performance. The simulation results suggest that they can be an alternative choices besides their

corresponding parametric methods. And the results also show that in our experiments the CODA

methods can outperform their corresponding parametric methods when the sub-Gaussian assump-

tions for transformation functions are mildly violated.

5.2 Large-scale Genomic Data

In this section we investigate the performance of the CODA methods compared with the others

using one of the largest microarray data sets (McCall et al., 2010). In summary, we collect in

all 13,182 publicly available microarray samples from Affymetrixs HGU133a platform. The raw

data contain 20,248 probes and 13,182 samples belonging to 2,711 tissue types (e.g., lung cancers,

prostate cancer, brain tumor etc.). There are at most 1599 samples and at least 1 sample belonging to

each tissue type. We merge the probes corresponding to the same gene. There are remaining 12,713

genes and 13,182 samples. The main purpose of this experiment is to compare the performance of

different methods in classifying tissues.

We adopt the same idea of data preprocessing as in Liu et al. (2012). In particular, we remove

the batch effect by applying the surrogate variable analysis proposed by Leek and Storey (2007).

There are, accordingly, 12,713 genes left and the data matrix we are focusing is 12,713×13,182.

We then explore several tissue types with the largest sample size:

• Breast tumor, which has 1599 samples;
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Scheme f Bayes(%) ROAD CODA-ROAD LS-LDA CODA-LS SLR

Scheme 1 flinear 10.00 16.86(0.77) 16.99(0.94) 15.31(0.54) 15.41(0.49) 15.44(0.51)

fCDF 10.00 18.86(0.83) 17.19(0.79) 17.39(0.68) 16.16(0.63) 17.42(0.64)

fpower 10.00 19.13(0.91) 16.84(0.90) 17.91(0.61) 15.92(0.66) 18.13(0.62)

fcomplex 10.00 18.81(0.93) 17.73(0.89) 17.42(0.63) 15.89(0.62) 17.94(0.66)

Scheme 2 flinear 10.00 12.58(0.52) 12.59(0.47) 11.59(0.33) 11.70(0.38) 12.19(0.29)

fcd f 10.00 13.97(0.74) 12.86(0.76) 13.36(1.05) 12.08(1.03) 13.03(0.32)

fpower 10.00 18.23(0.76) 17.48(0.73) 17.11(0.77) 16.85(0.59) 16.86(0.37)

fcomplex 10.00 16.96(1.59) 16.74(0.61) 17.47(1.99) 16.80(0.49) 17.06(0.55)

Scheme 3 flinear 20.00 26.83(0.88) 27.23(0.77) 25.62(0.64) 25.74(0.71) 26.21(0.63)

fcd f 20.00 27.13(0.81) 26.21(0.85) 26.76(0.64) 25.23(0.61) 26.43(0.69)

fpower 20.00 30.17(0.85) 26.79(1.00) 29.03(0.73) 25.15(0.78) 29.85(0.63)

fcomplex 20.00 28.43(0.91) 26.82(0.77) 26.74(0.60) 25.88(0.68) 27.27(0.71)

Table 3: Quantitative comparisons on different models with linear, Gaussian CDF, power, and com-

plex transformations using the cross validation based penalty parameter selection criterion.

The methods compared here are ROAD,CODA-ROAD,LS-LDA,CODA-LS and SLR. Here

Bayes is the Bayes risk and the winning methods are in bold. The means of misclassifica-

tion errors in percentage with their standard deviations in parentheses are presented. The

results are based on 3,000 replications.

• B cell lymphoma, which has 213 samples;

• Prostate tumor, which has 148 samples;

• Wilms tumor, which has 143 samples.

Different tissues have been believed to be associated with different sets of genes and microarray

data have been heavily used to classify tissue types. See for example, Hans et al. (2004), Wang

et al. (2008) and Huang and Chang (2007), among others. For each tissue type listed above, our

target is to classify it from all the other tissue types. To this end, each time we randomly split the

whole data to three parts: (i) the training set with 200 samples (equal size of case and control); (ii)

the testing set with 1000 samples; (iii) the rest. We then run ROAD,CODA-ROAD,LS-LDA,CODA-LS

on the training set and applying the learned parameters on the testing set. We repeat this for 1,000

times. The averaged misclassification errors in percentage versus the numbers of extracted features

are illustrated in Figure 4. Quantitative results, with penalty parameter selected using the cross

validation criterion, are presented in Table 4.

It can be observed that CODA-ROAD and CODA-LS have the best overall performance. Some

biological discoveries have also been verified in this process. For example, the MYC gene has been

discovered to be relevant to the b cell lymphoma (Lovec et al., 1994; Smith and Wickstrom, 1998)

and has recently been found to be associated with the Wilms tumor (Ji et al., 2011). This gene is

also constantly selected by the CODA methods in classifying b cell lymphoma and Wilms tumor

with the rest.

651



HAN, ZHAO AND LIU

0 20 40 60 80 100

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

Misclassification Error Curve

Number of Features

M
is

cl
as

si
fic

at
io

n 
E

rr
or

(%
)

ROAD
CODA−ROAD
LS−LDA
CODA−LS
SLR

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Misclassification Error Curve

Number of Features
M

is
cl

as
si

fic
at

io
n 

E
rr

or
(%

)

ROAD
CODA−ROAD
LS−LDA
CODA−LS
SLR

(A) (B)

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Misclassification Error Curve

Number of Features

M
is

cl
as

si
fic

at
io

n 
E

rr
or

(%
)

ROAD
CODA−ROAD
LS−LDA
CODA−LS
SLR

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Misclassification Error Curve

Number of Features

M
is

cl
as

si
fic

at
io

n 
E

rr
or

(%
)

ROAD
CODA−ROAD
LS−LDA
CODA−LS
SLR

(C) (D)

Figure 4: Misclassification error curves on the GPL96 data set. (A) Breast tumor; (B) B cell lym-

phoma; (C) Prostate tumor; (D) Wilms tumor. The x-axis represents the numbers of fea-

tures extracted by different methods; the y-axis represents the averaged misclassification

errors in percentage of the methods on the testing data set based on 1,000 replications.

5.3 Brain Imaging Data

In this section we investigate the performance of several methods on a brain imaging data set, the

ADHD 200 data set (Eloyan et al., 2012). The ADHD 200 data set is a landmark study compil-

ing over 1,000 functional and structural scans including subjects with and without attention deficit

hyperactive disorder (ADHD). The current releases data are from 776 subjects: 491 controls and

285 children diagnosed with ADHD. Each has structural blood oxygen level dependent (BOLD)
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Figure 5: Misclassification error curves on the ADHD data set. The x-axis represents the num-

bers of features extracted by different methods; the y-axis represents the averaged mis-

classification errors in percentage of the methods on the testing data set based on 1,000

replications.

functional MRI scans. The data also include demographic variables as predictors. These include

age, IQ, gender and handedness. We refer to Eloyan et al. (2012) for detailed data preprocessing

procedures.

We construct our predictors by extracting voxels that broadly cover major functional regions of

the cerebral cortex and cerebellum following Power et al. (2011). We also combine the information

of the demographic variables, resulting to the final data matrix we will use with the dimension

268×776. The target is to differentiate the subjects with ADHD from those without ADHD.

To evaluate the performance of different methods, each time we randomly sample 155 data

points unrepeatedly from the whole data. We then gather them together as the training set. The
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Data ROAD(%) CODA-ROAD LS-LDA CODA-LS SLR

Genomic (A) 0.29(0.17) 0.29(0.17) 0.26(0.16) 0.25(0.15) 0.29(0.18)

Genomic (B) 1.31(0.26) 0.69(0.15) 1.16(0.20) 0.63(0.13) 0.82(0.18)

Genomic (C) 0.56(0.13) 0.39(0.11) 0.55(0.15) 0.37(0.12) 0.62(0.17)

Genomic (D) 0.38(0.16) 0.23(0.08) 0.38(0.09) 0.22(0.10) 0.48(0.12)

ADHD 33.20(0.26) 31.89(0.27) 32.66(0.24) 32.25(0.24) 31.73(0.21)

Table 4: Quantitative comparisons on genomic and brain imaging data using the cross validation

based penalty parameter selection criterion. The methods compared here are ROAD,CODA-

ROAD,LS-LDA,CODA-LS and SLR. Here the winning methods are in bold. The means of

misclassification errors in percentage with their standard deviations in parentheses are pre-

sented. Here “Genomic (A)” to “Genomic (D)” denote the breast tumor, b cell lymphoma,

prostate tumor and Wilms tumor, ’ADHD’ denotes the results in brain imaging data anal-

ysis.

rest are left as the testing set. We then run ROAD,CODA-ROAD,LS-LDA,CODA-LS on the training

set and applying the learned parameters on the testing set. This is repeated for 1,000 times and the

averaged misclassification errors in percentage versus the numbers of extracted features are illus-

trated in Figure 5. Quantitative results, with penalty parameter selected using the cross validation

criterion, are presented in Table 4. In this data set, SLR performs the best, followed by CODA-LS

and CODA-ROAD. Moreover, the CODA methods beat their corresponding parametric methods in

this experiment. It can be observed in Table 4 that there is no significant difference between SLR

and CODA-ROAD.

6. Discussions

In this paper a high dimensional classification method named the CODA (Copula Discriminant

Analysis) is proposed. The main contributions of this paper include: (i) We relax the normality

assumption of linear discriminant analysis through the nonparanormal (or Gaussian copula) model-

ing; (ii) We use the nonparanormal SKEPTIC procedure proposed by Liu et al. (2012) to efficiently

estimate the model parameters; (iii) We build a connection of the ROAD and lasso and provide an

approach to solve the problem that the rank-based covariance matrix may not be positive semidef-

inite; (iv) We provide sufficient conditions to secure the variable selection consistency with the

parametric rate, and the expected misclassification error is consistent to the Bayes risk; (v) Careful

experiments on synthetic and real data sets are conducted to support the theoretical claims.
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Appendix A. Proof of Theorem 2

To show that Theorem 2 holds, we need to provide several important lemmas using results of large

deviation and empirical process. First, define φ(·) and Φ(·) to be the probability density func-

tion and cumulative distribution function of the standard Gaussian distribution. For any x ∈ R,

we denote by x+ = x · I(x > 0) and x− = −x · I(x < 0). By definition, f j(t) = Φ−1(Fj(t)) and

g j(u) := f−1
j (u) = F−1

j (Φ(u)). Here for notation simplicity, let F̃j(t) and F̂j(t) be the abbreviations

of F̃j(t;1/(2n),x1, . . . ,xn) and F̂j(t;x1, . . . ,xn) defined in Section 2.2.

The following lemma quantifies the region of the value F̃j in In and shows that F̃j is not truncated

in In almost surely.

Lemma 20 (Liu et al., 2012) We have for large enough n,

P

(
1

n
≤ F̃j(t)≤ 1− 1

n
, for all t ∈ In

)
= 1.

With Lemma 20, we can now prove the following key lemma, which provides an uniform con-

vergence rate on F̃j(t) to Fj(t). This result is mentioned in Liu et al. (2012), but without proof.

Lemma 21 Consider a sequence of sub-intervals [L
( j)
n ,U

( j)
n ] with both L

( j)
n := g j(

√
α logn) and

U
( j)
n := g j(

√
β logn) ↑ ∞, then for any 0 < α < β < 2, for large enough n,

limsup
n→∞

√
n

2loglogn
sup

L
( j)
n <t<U

( j)
n

∣∣∣∣∣
F̃j(t)−Fj(t)√
Fj(t)(1−Fj(t))

∣∣∣∣∣=C a.s.,

where 0 <C < 2
√

2 is a constant.

Proof By Lemma 20, for large enough n,

F̃j(t) = F̂j(t), for all t ∈ In, almost surely. (22)

Given ξ1, . . . ,ξn a series of i.i.d random variables from Unif(0,1) and define Gn(t) := 1
n ∑ I(ξi < t),

it is easy to see that

F̂j(t) =Gn(Fj(t)) a.s.. (23)

Define

Un(u) :=
Gn(u)−u√

u(1−u)
.

By Equation (22) and (23), it is easy to see that

Un(Fj(t)) =
F̃j(t)−Fj(t)√
Fj(t)(1−Fj(t))

a.s.. (24)

By Theorem 1 in Section 2 (Chapter 16) of Shorack and Wellner (1986), we know that

lim sup
n→∞

√
n

2loglogn
sup

0≤u≤1/2

(Un(u))
− =

√
2 a.s.. (25)
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And by Theorem 2 in Section 3 (Chapter 16) of Shorack and Wellner (1986), for an → 0 such that
log log(1/an)

log logn
→ 1, we have

lim sup
n→∞

√
n

2loglogn
sup

an≤u≤1/2

(Un(u))
+ =

√
2 a.s.. (26)

Combining Equation (25) and (26) together, we have

lim sup
n→∞

√
n

2loglogn
sup

an≤u≤1/2

|Un(u)| ≤ 2
√

2 a.s.. (27)

Furthermore, for any u ∈ [0,1],

Gn(1−u) =
1

n
∑ I(ξi < 1−u) =

1

n
∑ I(1−ξi ≥ u) = 1−Gn(u),

which implies that

Un(1−u) =−Un(u).

Therefore, by Equation (27), for an ↓ 0 such that
log log(1/an)

log logn
→ 1, we have

lim sup
n→∞

√
n

2loglogn
sup

1/2≤u≤1−an

|Un(u)| ≤ 2
√

2 a.s.. (28)

Finally, choosing an = 1−Fj(U
( j)
n ), we have

an = 1−Φ(
√

β logn)≈ n−β/2 and
loglognβ/2

log logn
→ 1,

so taking an = 1−Fj(U
( j)
n ) into Equation (28), the result follows by using Equation (24).

Proof [Proof of the Theorem 2] Finally, we prove the Theorem 2. By symmetry, we only need to

conduct analysis on a sub-interval of Is
n ⊂ In:

Is
n :=

[
g j(0),g j

(√
2(1− γ) logn

)]
.

We define a series 0 < α < 1 < β1 < β2 < .. . < βκ and denote by β0 := α,

I0n :=
[
g j(0),g j(

√
α logn)

]
,

I1n :=
[
g j(
√

α logn),g j(
√

β1 logn)
]
, . . . , Iκn :=

[
g j(
√

βκ−1 logn),g j(
√

βκ logn)
]
.

For i = 0, . . . ,κ, we can rewrite

sup
t∈Iin

∣∣∣ f̃ j(t)− f j(t)
∣∣∣= sup

t∈Iin

∣∣∣Φ−1(F̃j(t))−Φ−1(Fj(t))
∣∣∣ .
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By the mean value theorem, for some ξn such that

ξn∈
[
min{F̃j(g j(

√
βi−1logn)),Fj(g j(

√
βi−1logn))},max{F̃j(g j(

√
βilogn)),Fj(g j(

√
βilogn))}

]
,

we have

sup
t∈Iin

∣∣∣Φ−1
(

F̃j(t)
)
−Φ−1 (Fj(t))

∣∣∣= sup
t∈Iin

∣∣∣(Φ−1)′(ξn)
(

F̃j(t)−Fj(t)
)∣∣∣ . (29)

Because Φ and Φ−1 are strictly increasing function, for large enough n, we have

(Φ−1)′(ξn)≤ (Φ−1)′
(

max
{

Fj

(
g j

(√
βi logn

))
, F̃j

(
g j

(√
βi logn

))})
. (30)

From Lemma 21, for large enough n, we have

F̃j(t)≤ Fj(t)+4

√
log logn

n
·
√

1−Fj(t).

In special, using the fact that Fj(g j(t)) = Φ(t), we have

F̃j(g j(
√

βi logn)) ≤ Fj(g j(
√

βi logn))+4

√
log logn

n
·
√

1−Fj(g j(
√

βi logn))

≤ Φ

(
√

βi logn+4

√
log logn

n1−βi/2

)
.

The last inequality holds given Equation (B.4) to (B.12) in Liu et al. (2012).

Therefore,

(Φ−1)′(F̃j(g j(
√

βi logn))) ≤
√

2πexp




(√
βi logn+4

√
log logn

n1−βi/2

)2

2




≍ (Φ−1)′(Fj(g j(
√

βi logn))).

Returning to Equation (30), we have

(Φ−1)′(ξn)≤C(Φ−1)′(Fj(g j(
√

βi logn))) =
C

φ(
√

βi logn)
≤ c1nβi/2, (31)

where C > 1 and c1 are generic constants. Specifically, when i = 0, using the Dvoretzky-Kiefer-

Wolfowitz inequality (Massart, 1990; Dvoretzky et al., 1956), from Equation (29), we have

sup
t∈I0n

∣∣∣Φ−1(F̃j(t))−Φ−1(Fj(t))
∣∣∣= OP

(√
log logn

n1−α

)
.

For any i ∈ {1, . . . ,κ}, using Lemma 21, for large enough n,

sup
t∈Iin

∣∣∣F̃j(t)−Fj(t)
∣∣∣ = OP

(√
log logn

n
·
√

1−Fj

(
g j(
√

βi−1 logn)
))

= OP



√

log logn

n
·
√

n−βi−1/2

√
α logn




= OP

(√
log logn

nβi−1/2+1

)
. (32)
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Again, using Equation (31), we have

(Φ−1)′(ξn)≤C(Φ−1)′(Fj(g j(
√

βi logn))) =
C

φ(
√

βi logn)
≤ c1nβi/2,

and applying Equation (32), we have

sup
t∈Iin

∣∣∣Φ−1(F̃j(t))−Φ−1(Fj(t))
∣∣∣= OP

(√
log logn

n1+βi−1/2−βi

)
.

Chaining the inequalities together and choose

βi = (2− (1/2)i)(1− γ), i ∈ {0,1, . . . ,κ},

we have for any i ∈ {0,1, . . . ,κ},

1−α = 1− (1− γ) = γ and

1+βi−1/2−βi = 1+

(
1− 1

2i

)
(1− γ)−

(
2− 1

2i

)
(1− γ) = γ.

And therefore, we have

sup
I0n∪...∪Iκn

∣∣∣Φ−1(F̃j(t))−Φ−1(Fj(t))
∣∣∣= OP

(√
log logn

nγ

)
,

while

I0n ∪ . . .∪ Iκn =
[
g j(0),g j

(√
(2−2−κ)(1− γ)

)]
.

Taking κ ↑ ∞, we have the result.

Appendix B. Proof of Theorem 11

To prove Theorem 11, we need the following three key lemmas. Lemma 22 claims that, under

certain constraints on the transformation functions, there exist fast rates for the sample means and

projected Spearman’s rho/Kendall’s tau covariance matrices converging to the population means

and covariance matrix for the nonparanormal. Lemma 23 provides exponential inequalities for two

estimators we are most interested in in analyzing the theoretical performance of the CODA. Lemma

25 claims that Σ̃SS is invertible with high probability.

Lemma 22 For any x1, . . . ,xn i.i.d drawn from X , where X ∼ NPN(µ,Σ, f ), 0 < 1/σmax <
min

j
{σ j}< max

j
{σ j}< σmax < ∞, max j |µ j| ≤ σmax and g := f−1 satisfies g2

j ∈ T F(K), j = 1, . . .d

for some constant K < ∞, we have for any t ≥ 32π
√

logd
n log2

,

P

(
|S̃ jk −Σ jk|> t

)
≤ 2exp(−c′0nt2), (33)

P(|µ̂ j −µ j|> t) ≤ 2exp(−c′1nt2), (34)

where c′0 and c′1 are two constants only depending on the choice of {g j}d
j=1.
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Proof Because σmax is a constant which does not scale with (n,d,s), without loss of generality we

can assume that K ≥ 1, µ = 0 and diag(Σ) = 1. The key is to prove that the high order moments

of each X j and X2
j will not grow very fast.

We only focus on j = 1 and the results can be generalized to j = 2,3, . . . ,d. Define Z :=
f1(X1)∼ N(0,1). We have ∀ m ∈ Z

+, because g2
1 ∈ TF(K) for some constant K,

E|X2
1 |m = E|g2

1(Z)|m ≤ m!

2
Km.

Therefore, by Lemma 5.7 of van de Geer (2000), σ̂2
1 goes to σ2

1 exponentially fast. To show that the

Equation (34) holds, we have

E|X1|m = E|X2
1 |m/2 ≤ (m/2)!

2
Km/2 <

m!

2
Km, if m is even,

E|X1|m ≤ 1+E|X1|mI(|X1| ≥ 1)≤ 1+E(|X1|m+1I(|X1| ≥ 1))

≤ 1+E|X1|m+1 ≤ 1+

(
m+1

2

)
!

2
K

m+1
2 <

m!

2
(2K +2)m, if m is odd.

Therefore, again by Lemma 5.7 of van de Geer (2000), µ̂1 goes to µ1 exponentially fast.

Similarly we can prove that P(|σ̂ j−σ j| ≥ t) =O(exp(−cnt2)) for the generic constant c. There-

fore, to prove that Equation (33) holds, the only thing left is to show that combining σ̂ j, σ̂k with R̃ jk

does not change the rate. Actually, suppose that

P
(∣∣σ̂ j −σ j

∣∣> ε
)

≤ η1 (n,ε) ,

P

(∣∣∣R̃ jk −Σ0
jk

∣∣∣> ε
)

≤ η2 (n,ε) ,

then we have

P

(∣∣∣S̃ jk −Σ jk

∣∣∣> ε
)

= P

(∣∣∣(σ̂ jσ̂k −σ jσk) R̃ jk +σ jσk

(
R̃ jk −Σ0

jk

)∣∣∣> ε
)

≤ P

(∣∣∣(σ̂ jσ̂k −σ jσk) R̃ jk

∣∣∣> ε

2

)
+P

(∣∣∣σ jσk

(
R̃ jk −Σ0

jk

)∣∣∣> ε

2

)

≤ P

(∣∣σ̂ jσ̂k −σ jσk

∣∣> ε

2

)
+P

(∣∣∣R̃ jk −Σ0
jk

∣∣∣> ε

2σ2
max

)

≤ P

(∣∣(σ̂ j −σ j)(σ̂k −σk)+σ j (σ̂k −σk)+σk (σ̂ j −σ j)
∣∣> ε

2

)
+η2

(
n,

ε

2σ2
max

)

≤ P

(∣∣(σ̂ j −σ j)(σ̂k −σk)
∣∣> ε

6

)
+P

(∣∣σ j(σ̂k −σk)
∣∣> ε

6

)

+P

(∣∣σk(σ̂ j −σ j)
∣∣> ε

6

)
+η2

(
n,

ε

2σ2
max

)

≤ P

(∣∣σ̂ j −σ j

∣∣>
√

ε

6

)
+P

(
|σ̂k −σk|>

√
ε

6

)

+P

(
|σ̂k −σk|>

ε

6σmax

)
+P

(∣∣σ̂ j −σ j

∣∣> ε

6σmax

)
+η2

(
n,

ε

2σ2
max

)

≤ 2η1

(
n,

√
ε

6

)
+2η1

(
n,

ε

6σmax

)
+η2

(
n,

ε

2σ2
max

)
.
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Due to Lemma 5, we have for all t ≥ 32π
√

logd
n log2

P(|R̃ jk −Σ0
jk|> t)≤ 2exp(−cnt2),

for some generic constant c. It means that η1 and η2 are both of parametric exponential decay rate.

we complete the proof.

Lemma 23 If n0 and n1 are deterministic, then there exists a constant c0 such that for any ε ≥
32π
√

logd

(n0∧n1) log2
, we have

P

(∣∣∣Σ̃ jk −C jk

∣∣∣> ε
)
≤ 2exp

(
−c0nε2

)
, ∀ j,k = 1, . . . ,d;

P(||(µ̂1 − µ̂0)− (µ1 −µ0)||∞ > ε)≤ 2d exp(−c1nε2).

Proof Using Lemma 22 and the fact that P(|n j − n
2
| ≥ nε)≤ 2exp(−2nε2) for j = 0,1, we have the

result.

Remark 24 Here n0 and n1 are “pretended” to be deterministic but not random variables. Later

we will see that because n0 ∧ n1 >
n
4

with an overwhelming probability, we can easily rewrite the

condition ε ≥ 32π
√

logd

(n0∧n1) log2
to be a deterministic one: ε ≥ 64π

√
logd

n log2
in the final presentation.

Lemma 25 Let λmin(CSS) = δ. If δ ≥ 64πs

√
logd

(n0∧n1) log2
, we have

P(Σ̃SS ≻ 0)≥ 1−2s2 exp

(
−c0nδ2

4s2

)
. (35)

Proof Let ∆̂ = Σ̃SS −CSS. Using Lemma 23, in probability 1− 2s2 exp(−c0nt2), ‖∆̂‖max ≤ t.

Therefore, for any v ∈ R
s,

vT
Σ̃SSv = vT CSSv+vT

∆̂v ≥ δ‖v‖2
2 +λmin(∆̂)‖v‖2

2,

where δ = λmin(CSS). By the norm equivalence, we have

‖∆̂‖op ≤ s‖∆̂‖max ≤ st,

where || · ||op is the matrix operator norm. Since

||−∆̂||op = λmax(−∆̂) = λmax(CSS − Σ̃SS) =−λmin(Σ̃SS −CSS) =−λmin(∆̂),

and

||−∆̂||op ≤ s||−∆̂||max = s||∆̂||max ≤ st,
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we can further have

λmin(∆̂)≥−‖∆̂‖op ≥−st.

Therefore we have

vT
Σ̃SSv ≥ (δ− st)‖v‖2

2, i.e., λmin(Σ̃SS)≥ δ− st.

In other words, for all t < δ/s, we have λmin(Σ̃SS)> 0. In particular, choosing t = δ/(2s), we have

λmin(Σ̃SS) = δ/2 > 0. This proves that Equation (35) holds with high probability.

Using Lemma 22, Lemma 23 and Lemma 25, Theorem 11 can be obtained using a similar proof

structure of Mai et al. (2012). For concreteness and self-containedness, we provide a proof of the

remaining part in the last section of the appendix.

Appendix C. Proof of Theorem 15

To prove Theorem 15, we first need to quantify the convergence rate of f̂ to f , or equivalently,

f̂0 := { f̂0 j}d
j=1 and f̂1 := { f̂1 j}d

j=1’s convergence rates to f . By symmetry, we can focus on f̂0.

Lemma 26 Let g j := f−1
j be the inverse function of f j. We define

In :=
[
g j

(
−
√

2(1− γ) logn
)
,g j

(√
2(1− γ) logn

)]
,

then sup
t∈In

| f̂0 j(t)− f j(t)|= OP

(√
log logn

nγ

)
.

Proof Using Lemma 22, a similar proof as Theorem 2 can be applied.

Then we can proceed to proof of Theorem 15:

Proof We define { j1, . . . , js}= S to be the indices of the s discriminant features, that is,

β∗
jk
6= 0, k = 1, . . . ,s.

In this way, we can further define

Tn =
[
g j1(−

√
b logn),g j1(

√
b logn)

]
× . . . ,×

[
g js(−

√
b logn),g js(

√
b logn)

]
,

for some 0 < b < 1. Moreover, an event Mn is defined as

Mn := {x ∈ R
d : xS ∈ Tn}.

Then we have

P

(
|Ĝ
(
X,

n2β̂

n0n1

, f̂

)
−G(X,β∗∗, f )|> t

)

≤ P

(
|Ĝ
(
X,

n2β̂

n0n1

, f̂

)
−G(X,β∗∗, f )|> t |R (X,β∗,λn),Mn

)

+P(Mc
n)+P(R (X,β∗,λn)

c) .
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Given R (X,β∗,λn) and Mn hold, we have

∣∣∣∣∣Ĝ
(
X,

n2β̂

n0n1

, f̂

)
−G(X,β∗∗, f )

∣∣∣∣∣≤
∣∣∣( f (X)− f̂ (X))Tβ∗∗

∣∣∣+
∣∣∣∣∣ f̂ (X)T

(
β∗∗− n2β̂

n0n1

)∣∣∣∣∣

+

∣∣∣∣∣µ̂
T

(
β∗∗− n2β̂

n0n1

)∣∣∣∣∣+
∣∣(µ̂−µa)

Tβ∗∗∣∣

≤β∗∗
max||( f (X)− f̂ (X))S||1 + ||( f̂ (X))S||1||β∗∗− n2β̂

n0n1

||∞

+ ||µ̂S||1||β∗∗− n2β̂

n0n1

||∞ + ||β∗∗||∞||(µ̂−µa)S||1.

Using Theorem 2,

sup
X∈Mn

||( f (X)− f̂ (X))S||1 = OP

(
s

√
log logn

n1−b/2

)
, (36)

and by Lemma 26,

sup
X∈Mn

||( f̂ (X))S||1 = OP

(
s
√

2logn
)
.

Using the Gaussian tail inequality,

P

(
f j(X j)≥

√
b logn

)
= O

(
n−c2·b

)
,

so P(Mc
n) = O

(
sn−c2·b

)
. Using Lemma 23,

||µ̂S||1 = OP(s∆max) and ||(µ̂−µa)S||1 = OP(sn−1/2).

Using the assumption that A+B+C → 0 and B → 0 in the Theorem 15, we have

||β∗∗− n2β̂

n0n1

||∞ = OP (Dmaxλn) and P(R (X,β∗,λn)
c) = o(1). (37)

Combining Equation (36) to (37), we have

∣∣∣∣∣Ĝ
(
X,

n2β̂

n0n1

, f̂

)
−G(X,β∗∗, f )

∣∣∣∣∣=OP

(
sβ∗∗

max

√
log logn

n1−b/2
+sDmaxλn(

√
logn+∆max)+

sβ∗∗
max√
n

)
.

This completes the proof.
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Appendix D. Proof of Corollary 19

Proof For notation simplicity, we denote by

D = {(x1,y1),(x2,y2), . . . ,(xn,yn)} and G∗ := G(X,β∗∗, f ), G̃ := Ĝ

(
X,

n2β̂

n0n1

, f̂

)
.

Here we note that sign(G̃) = sign
(

Ĝ
(
X, β̂, f̂

))
. Then we have

P

(
Y · sign(G̃)< 0|D

)
= P

(
Y · sign(G∗)+Y · (sign(G̃)− sign(G∗))< 0 | D

)

≤ P(Y · sign(G∗)< 0)+P

(
Y · (sign(G̃)− sign(G∗))< 0 | D

)

≤ P(Y · sign(G∗)< 0)+P

(
sign(G̃) 6= sign(G∗) | D

)
.

Therefore,

E(C (ĝ))−C (g∗) ≤ E

(
P(sign(G̃) 6= sign(G∗) | D)

)

= E

(
E(I(sign(G̃) 6= sign(G∗)) | D)

)

= E

(
I(sign(G̃) 6= sign(G∗))

)

= P

(
sign(G̃) 6= sign(G∗))

)
.

Given tn,d,s a constant depending only on (d,n,s), we have

P

(
sign(G̃) 6= sign(G∗)

)

= P

(
G̃ ·G∗ < 0

)

= P

(
G̃ ·G∗ < 0, |G̃−G∗|< tn,d,s

)
+P

(
G̃ ·G∗ < 0, |G̃−G∗| ≥ tn,d,s

)

≤ P

(
|G̃−G∗|< tn,d,s, G̃ ·G∗ < 0

)
+P

(
|G̃−G∗|> tn,d,s

)

≤ P

(
G̃ ·G∗ < 0 | |G̃−G∗|< tn,d,s

)
P

(
|G̃−G∗|< tn,d,s

)
+P

(
|G̃−G∗|> tn,d,s

)

≤ P

(
|G∗|< tn,d,s | |G̃−G∗|< tn,d,s

)
P

(
|G̃−G∗|< tn,d,s

)
+P

(
|G̃−G∗|> tn,d,s

)

≤ P(|G∗|< tn,d,s)+P

(
|G̃−G∗|> tn,d,s

)
.

Suppose that the conditions in Corollary 3 hold, then choosing

tn,d,s = s2 log2 n ·
√

logd + logs

n
,

using Corollary 17, we know that

P

(∣∣∣∣∣Ĝ
(
X,

n2β̂

n0n1

, f̂

)
−G(X,β∗∗, f )

∣∣∣∣∣> tn,d,s

)
= o(1).
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And using Lemma 6, we have

G(X,β∗∗, f ) = ( f (X)−µa)
T
β∗∗ ∼ N

(
τµT

d Σ
−1µd

2
,τ2µT

d Σ
−1µd

)
,

where τ =
4

4+µT
d Σ

−1µd

> 0. Therefore, by simple calculation, we have

P(|G(X,β∗∗, f )|< tn,d,s) = Φ


 tn,d,s − τµT

d Σ
−1µd

2

τ
√
µT

d Σ
−1µd


−Φ


−tn,d,s − τµT

d Σ
−1µd

2

τ
√
µT

d Σ
−1µd


= o(1),

as long as tn,d,s → 0 because of the continuity of Φ. This proves that P
(

sign(G̃) 6= sign(G∗)
)
= o(1)

and completes the proof. The same argument can be generalized to the case where the conditions in

Theorem 15 hold.

Appendix E. Proof of the Remaining Part of Theorem 11

we now start to prove the remaining part of Theorem 11. In the sequel, all the equalities and

inequalities are element-wise. The main structure of the proof is coming from Mai et al. (2012) and

we include the proof here only for the paper concreteness and self-containedness.

Lemma 27 Given n j ∼ Binomial
(
n, 1

2

)
for j = 0,1, we have

P

(
3

16
≤ n0n1

n2
≤ 1

4

)
≥ 1−2exp

(
−n

8

)
.

Proof Using the Hoeffding’s inequality, we have

P

(
3

16
≤ n0n1

n2
≤ 1

4

)
= P

(∣∣∣n j −
n

2

∣∣∣≤ n

4

)
= P

(∣∣∣∣
n j

n
− 1

2

∣∣∣∣≤
1

4

)
≥ 1−2exp

(
−n

8

)
.

This completes the proof.

Proof [Proof of the Theorem 11] We define the event

E0 :=

{
3

16
≤ n0n1

n2
≤ 1

4

}
.

Under the event E0, we consider the optimization problem in Equation (11). We firstly consider an

intermediate optimum:

β̃S := argmin
βS∈Rs

{
1

2n
||y− X̃SβS||22 +λn||βS||1

}
.

Reminding that X̃T X̃/n has been replaced by Σ̃ in calculating β̂. Using Lemma 25, Σ̃SS is invertible

with high probability. Then, under the event that Σ̃SS is invertible, β̃S exists and is unique, moreover

β̃S = (Σ̃SS)
−1
[n0n1

n2
(µ̂1 − µ̂0)S −λnzS

]
,
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where zS is the subgradient such that z j = sign(β̃ j) 6= 0 and −1 ≤ z j ≤ 1 if β̃ j = 0.

To prove that β̂ = (β̃S,0) with high probability, it suffices to show that ||zSc ||∞ ≤ 1, or equiva-

lently R1(X,β∗∗,λn) holds, where

R1(X,β∗∗,λn) :=
{
||n0n1

n2
(µ̂1 − µ̂0)Sc − Σ̃ScS(Σ̃SS)

−1
[n0n1

n2
(µ̂1 − µ̂0)S −λnzS

]
||∞ ≤ λn

}
. (38)

Then following Equation (38), with high probability, we now can write

P(R1(X,β∗∗,λn)
c)

≤P

(
||n0n1

n2
(µ̂1 − µ̂0)Sc − Σ̃ScS(Σ̃SS)

−1
(n0n1

n2
(µ̂1 − µ̂0)S −λnzS

)
||∞ > λn

)
.

Let λ = 2n2λn

n0n1
and using the matrix norm equivalency, we have

P(R1(X,β∗∗,λn)
c)≤ P

(
||(µ̂1 − µ̂0)Sc − Σ̃ScS(Σ̃SS)

−1

(
(µ̂1 − µ̂0)S −

λ

2
zS)

)
||∞ > λ/2

)

≤ P

(
ζ∆max + ||(µ̂1 − µ̂0)Sc − (µ1 −µ0)Sc ||∞

+(ζ+ψ) ·
(

λ

2
+ ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞

)
>

λ

2

)
,

where

ζ := ||Σ̃ScS(Σ̃SS)
−1 −CScS(CSS)

−1||∞.
.

The key part of the rest of proof is obtain by using the concentration inequalities for several key

estimators. In Lemma 28, we give such a result:

Lemma 28 There exist constants c0 and c1 such that, under the event E0, for any ε > 64π
√

logd
n log2

,

we have

P

(∣∣∣Σ̃ jk −C jk

∣∣∣> ε
)

≤ 2exp
(
−nc0ε2

)
, ∀ j,k = 1, . . . ,d; (39)

P

(
||Σ̃SS −CSS||∞ > ε

)
≤ 2s2 exp

(
−nc0ε2

s2

)
; (40)

P

(
||Σ̃ScS −CScS||∞ > ε

)
≤ 2(d − s)sexp

(
−nc0ε2

s2

)
; (41)

P(||(µ̂1 − µ̂0)− (µ1 −µ0)||∞ > ε) ≤ 2d exp(−nc1ε2). (42)

And for any ε < 1/Dmax, we have

P
(
ζ > εDmax(ψ+1)(1−Dmaxε)−1

)
≤ 2dsexp

(
−nc0ε2

s2

)
. (43)
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Proof [Proof of the Lemma 28] Given Lemma 23, Equation (39) and Equation (42) are correct and

Equation (40) and (41) are straightforward using Equation (39). To prove that Equation (43) holds,

we have the key observation from Mai et al. (2012):

||Σ̃ScS(Σ̃SS)
−1 −CScS(CSS)

−1||∞ ≤(
ψ||Σ̃SS −CSS||∞ + ||Σ̃ScS −CScS||∞

)(
Dmax + ||(Σ̃SS)

−1 − (CSS)
−1||∞

)
.

We choose

ε ≥ max{||Σ̃SS −CSS||∞, ||Σ̃ScS −CScS||∞},

and substitute ||Σ̃SS −CSS||∞ and ||Σ̃ScS −CScS||∞ with ε, then apply Equation (40) and Equation

(41), we have Equation (43).

Therefore, using the condition that, under the event E0, we have

ε ≤ n2λn(1−ψ)

2Dmax(n2λn +n0n1(1+ψ)∆max)
=

λ(1−ψ)

4Dmax(λ/2+(1+ψ)∆max)
,

we have

∆max ≤
(1−2εDmax −ψ)λ

4(1+ψ)εDmax

.

Noticing that if

ζ ≤ (ψ+1)εDmax

1−Dmaxε
, ||(µ̂1 − µ̂0)− (µ1 −µ0)||∞ ≤ λ(1−ψ−2εDmax)

4(1+ψ)
,

λ < ∆max and ∆max ≤
(1−2εDmax −ψ)λ

4(1+ψ)εDmax

,

then ζ∆max + ||(µ̂1 − µ̂0)Sc − (µ1 −µ0)Sc ||∞ +(ζ+ψ) ·
(

λ
2
+ ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞

)
≤ λ

2
.

Accordingly, denoting by

E1 =

{
ζ ≥ (ψ+1)εDmax

1−Dmaxε

}
,

E2 =

{
||(µ̂1 − µ̂0)− (µ1 −µ0)||∞ ≥ λ(1−ψ−2εDmax)

4(1+ψ)

}
,

we have

P(R1(X,β∗∗,λn)
c)≤ P(E1)+P(E2).

Using Lemma 28, we have the result that

P(R1(X,β∗∗,λn)
c)≤2ds · exp

(
−c0nε2

s2

)
+2d · exp

(
−4c1nλ2

n(1−ψ−2εDmax)
2

(1+ψ)2

)
. (44)

Then, to prove that |β̃S|> 0 with high probability, we consider the second set:

R2(X,β∗∗,λn) =
{∣∣∣β̃S

∣∣∣> 0
}
=
{∣∣∣(Σ̃SS)

−1
[n0n1

n2
(µ̂1 − µ̂0)S −λnzS

]∣∣∣> 0
}
.
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Again, denoting by λ = 2n2λn

n0n1
, we have

R2(X,β∗∗,λn) =
{∣∣∣(Σ̃SS)

−1 [(µ̂1 − µ̂0)S −λzS/2]
∣∣∣> 0

}
.

Denote by ζ1 := ||Σ̃SS −CSS||∞ and ζ2 := ||(Σ̃SS)
−1 − (CSS)

−1||∞, we have

(Σ̃SS)
−1 [(µ̂1 − µ̂0)S −λzS/2] = β∗∗

S +(Σ̃SS)
−1[(µ̂1 − µ̂0)S − (µ1 −µ0)S]

+ [(Σ̃SS)
−1 − (CSS)

−1](µ1 −µ0)S −λ(Σ̃SS)
−1zS/2, (45)

where we remind that C−1
SS (µ1 −µ0)S = β∗∗

S . Therefore

P(R2(X,β∗∗,λn))≥P

(
β∗∗

min − (ζ2 +Dmax)(λ/2+ ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞)

−ζ2∆max > 0

)
.

Moreover, when ζ1Dmax < 1, we have

ζ2 ≤ ||(Σ̃SS)
−1||∞ζ1Dmax ≤ (Dmax +ζ2)ζ1Dmax,

and hence ζ2 < D2
maxζ1/(1−ζ1Dmax). Therefore

P(R2(X,β∗∗,λn))

≥ P

(
ω∆maxDmax − (1−ζ1Dmax)

−1(Dmaxλ/2+ ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞Dmax

+D2
maxζ1∆max)> 0

)
.

Noting that ω ≤ 1 because ∆maxDmax ≥ ||β∗∗||∞, we have λ ≤ β∗∗
min

2Dmax
≤ 2β∗∗

min

(3+ω)Dmax
under event E0.

Therefore, given that ζ1 ≤ ε and ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞ ≤ ε and ε ≤ ω
(3+ω)Dmax

, ε ≤ ∆maxω
2(ω+3) ,

we have

ω∆maxDmax−(1−ζ1Dmax)
−1(Dmaxλ/2+||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞Dmax+D2

maxζ1∆max)>0.

Therefore

P(R2(X,β∗∗,λn)
c)≤ P(ζ1 ≥ ε)+P(||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞ ≥ ε)

≤ 2s2 exp(−c0nε2/s2)+2sexp(−nc1ε2). (46)

Combining Equation (44) and Equation (46), we have that R2(X,β∗∗,λn) holds with high probabil-

ity.

Finally, using Equation (45), given that R1(X,β∗∗,λn) and R2(X,β∗∗,λn) hold, we have

|| n2β̂

n0n1

−β∗∗||∞ = ||n
2β̃S

n0n1

−β∗∗
S ||∞

≤ (1−ζ1Dmax)
−1(Dmaxλ/2+ ||(µ̂1 − µ̂0)S − (µ1 −µ0)S||∞Dmax +D2

maxζ1∆max).
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Using the fact that ε ≤ λ
2Dmax∆max

and ε ≤ λ, we have that, under the event ζ1 ≤ ε and ||(µ̂1 − µ̂0)S −
(µ1 −µ0)S||∞ ≤ ε,

|| n2β̂

n0n1

−β∗∗||∞ ≤ (1−ζ1Dmax)
−1(Dmaxλ/2+λDmax +Dmaxλ/2)

≤ 2Dmaxλ

1− λ
2∆max

≤ 4Dmaxλ.

We finalize the proof by using Lemma 27 to show that P(Ec
0) ≤ 2exp(−n/8). This completes the

proof.
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Abstract

There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM)

as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning

from sequential and time-series data. However, in many settings the HDP-HMM’s strict Markovian

constraints are undesirable, particularly if we wish to learn or encode non-geometric state dura-

tions. We can extend the HDP-HMM to capture such structure by drawing upon explicit-duration

semi-Markov modeling, which has been developed mainly in the parametric non-Bayesian setting,

to allow construction of highly interpretable models that admit natural prior information on state

durations.

In this paper we introduce the explicit-duration Hierarchical Dirichlet Process Hidden semi-

Markov Model (HDP-HSMM) and develop sampling algorithms for efficient posterior inference.

The methods we introduce also provide new methods for sampling inference in the finite Bayesian

HSMM. Our modular Gibbs sampling methods can be embedded in samplers for larger hierarchical

Bayesian models, adding semi-Markov chain modeling as another tool in the Bayesian inference

toolbox. We demonstrate the utility of the HDP-HSMM and our inference methods on both syn-

thetic and real experiments.

Keywords: Bayesian nonparametrics, time series, semi-Markov, sampling algorithms, Hierarchi-

cal Dirichlet Process Hidden Markov Model

1. Introduction

Given a set of sequential data in an unsupervised setting, we often aim to infer meaningful states,

or “topics,” present in the data along with characteristics that describe and distinguish those states.

For example, in a speaker diarization (or who-spoke-when) problem, we are given a single audio

recording of a meeting and wish to infer the number of speakers present, when they speak, and some

characteristics governing their speech patterns (Tranter and Reynolds, 2006; Fox et al., 2008). Or

in separating a home power signal into the power signals of individual devices, we would be able

to perform the task much better if we were able to exploit our prior knowledge about the levels

and durations of each device’s power modes (Kolter and Johnson, 2011). Such learning problems

for sequential data are pervasive, and so we would like to build general models that are both flex-

ible enough to be applicable to many domains and expressive enough to encode the appropriate

information.

c©2013 Matthew J. Johnson and Alan S. Willsky.
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Hidden Markov Models (HMMs) have proven to be excellent general models for approaching

learning problems in sequential data, but they have two significant disadvantages: (1) state duration

distributions are necessarily restricted to a geometric form that is not appropriate for many real-

world data, and (2) the number of hidden states must be set a priori so that model complexity is not

inferred from data in a Bayesian way.

Recent work in Bayesian nonparametrics has addressed the latter issue. In particular, the Hi-

erarchical Dirichlet Process HMM (HDP-HMM) has provided a powerful framework for inferring

arbitrarily large state complexity from data (Teh et al., 2006; Beal et al., 2002). However, the HDP-

HMM does not address the issue of non-Markovianity in real data. The Markovian disadvantage

is even compounded in the nonparametric setting, since non-Markovian behavior in data can lead

to the creation of unnecessary extra states and unrealistically rapid switching dynamics (Fox et al.,

2008).

One approach to avoiding the rapid-switching problem is the Sticky HDP-HMM (Fox et al.,

2008), which introduces a learned global self-transition bias to discourage rapid switching. Indeed,

the Sticky model has demonstrated significant performance improvements over the HDP-HMM for

several applications. However, it shares the HDP-HMM’s restriction to geometric state durations,

thus limiting the model’s expressiveness regarding duration structure. Moreover, its global self-

transition bias is shared among all states, and so it does not allow for learning state-specific duration

information. The infinite Hierarchical HMM (Heller et al., 2009) induces non-Markovian state du-

rations at the coarser levels of its state hierarchy, but even the coarser levels are constrained to have

a sum-of-geometrics form, and hence it can be difficult to incorporate prior information. Further-

more, constructing posterior samples from any of these models can be computationally expensive,

and finding efficient algorithms to exploit problem structure is an important area of research.

These potential limitations and needed improvements to the HDP-HMM motivate this investiga-

tion into explicit-duration semi-Markov modeling, which has a history of success in the parametric

(and usually non-Bayesian) setting. We combine semi-Markovian ideas with the HDP-HMM to

construct a general class of models that allow for both Bayesian nonparametric inference of state

complexity as well as general duration distributions. In addition, the sampling techniques we de-

velop for the Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM) provide

new approaches to inference in HDP-HMMs that can avoid some of the difficulties which result in

slow mixing rates. We demonstrate the applicability of our models and algorithms on both synthetic

and real data sets.

The remainder of this paper is organized as follows. In Section 2, we describe explicit-duration

HSMMs and existing HSMM message-passing algorithms, which we use to build efficient Bayesian

inference algorithms. We also provide a brief treatment of the Bayesian nonparametric HDP-HMM

and sampling inference algorithms. In Section 3 we develop the HDP-HSMM and related models. In

Section 4 we develop extensions of the weak-limit and direct assignment samplers (Teh et al., 2006)

for the HDP-HMM to our models and describe some techniques for improving the computational

efficiency in some settings.

Section 5 demonstrates the effectiveness of the HDP-HSMM on both synthetic and real data. In

synthetic experiments, we demonstrate that our sampler mixes very quickly on data generated by

both HMMs and HSMMs and accurately learns parameter values and state cardinality. We also show

that while an HDP-HMM is unable to capture the statistics of an HSMM-generated sequence, we

can build HDP-HSMMs that efficiently learn whether data were generated by an HMM or HSMM.

As a real-data experiment, we apply the HDP-HSMM to a problem in power signal disaggregation.
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Figure 1: Basic graphical model for the Bayesian HMM. Parameters for the transition, emission,

and initial state distributions are random variables. The symbol α represents the hyper-

parameter for the prior distributions on state-transition parameters. The shaded nodes

indicate observations on which we condition to form the posterior distribution over the

unshaded latent components.

2. Background and Notation

In this section, we outline three main background topics: our notation for Bayesian HMMs, con-

ventions for explicit-duration HSMMs, and the Bayesian nonparametric HDP-HMM.

2.1 HMMs

The core of the HMM consists of two layers: a layer of hidden state variables and a layer of ob-

servation or emission variables, as shown in Figure 1. The hidden state sequence, x = (xt)
T
t=1,

is a sequence of random variables on a finite alphabet, xt ∈ {1,2, . . . ,N}, that form a Markov

chain. In this paper, we focus on time-homogeneous models, in which the transition distribution

does not depend on t. The transition parameters are collected into a row-stochastic transition matrix

π = (πij)N
i,j=1 where πij = p(xt+1 = j|xt = i). We also use {πi} to refer to the set of rows of the

transition matrix. We use p(yt|xt,{θi}) to denote the emission distribution, where {θi} represents

parameters.

The Bayesian approach allows us to model uncertainty over the parameters and perform model

averaging (for example, forming a prediction of an observation yT +1 by integrating out all possible

parameters and state sequences), generally at the expense of somewhat more expensive algorithms.

This paper is concerned with the Bayesian approach and so the model parameters are treated as

random variables, with their priors denoted p(π|α) and p({θi}|H).

2.2 HSMMs

There are several approaches to hidden semi-Markov models (Murphy, 2002; Yu, 2010). We fo-

cus on explicit duration semi-Markov modeling; that is, we are interested in the setting where

each state’s duration is given an explicit distribution. Such HSMMs are generally treated from a

non-Bayesian perspective in the literature, where parameters are estimated and fixed via an approxi-

mate maximum-likelihood procedure (particularly the natural Expectation-Maximization algorithm,

which constitutes a local search).

The basic idea underlying this HSMM formalism is to augment the generative process of a

standard HMM with a random state duration time, drawn from some state-specific distribution when
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Figure 2: HSMM interpreted as a Markov chain on a set of super-states, (zs)S
s=1. The number

of shaded nodes associated with each zs, denoted by Ds, is drawn from a state-specific

duration distribution.

the state is entered. The state remains constant until the duration expires, at which point there is

a Markov transition to a new state. We use the random variable Dt to denote the duration of a

state that is entered at time t, and we write the probability mass function for the random variable as

p(dt|xt = i).

A graphical model for the explicit-duration HSMM is shown in Figure 2 (from Murphy, 2002),

though the number of nodes in the graphical model is itself random. In this picture, we see there

is a Markov chain (without self-transitions) on S “super-state” nodes, (zs)S
s=1, and these super-

states in turn emit random-length segments of observations, of which we observe the first T . Here,

the symbol Ds is used to denote the random length of the observation segment of super-state s
for s = 1, . . . ,S. The “super-state” picture separates the Markovian transitions from the segment

durations.

When defining an HSMM model, one must also choose whether the observation sequence ends

exactly on a segment boundary or whether the observations are censored at the end, so that the final

segment may possibly be cut off in the observations. We focus on the right-censored formulation in

this paper, but our models and algorithms can easily be modified to the uncensored or left-censored

cases. For a further discussion, see Guédon (2007).

It is possible to perform efficient message-passing inference along an HSMM state chain (con-

ditioned on parameters and observations) in a way similar to the standard alpha-beta dynamic pro-

gramming algorithm for standard HMMs. The “backwards” messages are crucial in the devel-

opment of efficient sampling inference in Section 4 because the message values can be used to

efficiently compute the posterior information necessary to block-sample the hidden state sequence

(xt), and so we briefly describe the relevant part of the existing HSMM message-passing algorithm.

As derived in Murphy (2002), we can define and compute the backwards messages1 B and B∗ as

follows:

1. In Murphy (2002) and others, the symbols β and β∗ are used for the messages, but to avoid confusion with our HDP

parameter β, we use the symbols B and B∗ for messages.
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Bt(i) := p(yt+1:T |xt = i,Ft = 1)

=
∑

j

B∗
t (j)p(xt+1 = j|xt = i),

B∗
t (i) := p(yt+1:T |xt+1 = i,Ft = 1)

=
T −t∑

d=1

Bt+d(i)p(Dt+1 = d|xt+1 = i)
︸ ︷︷ ︸

duration prior term

·p(yt+1:t+d|xt+1 = i,Dt+1 = d)
︸ ︷︷ ︸

likelihood term

+p(Dt+1 > T − t|xt+1 = i)p(yt+1:T |xt+1 = i,Dt+1 > T − t)
︸ ︷︷ ︸

censoring term

,

BT (i) := 1,

where we have split the messages into B and B∗ components for convenience and used yk1:k2
to

denote (yk1
, . . . ,yk2

). Dt+1 represents the duration of the segment beginning at time t + 1. The

conditioning on the parameters of the distributions, namely the observation, duration, and transition

parameters, is suppressed from the notation.

We write Ft = 1 to indicate a new segment begins at t + 1 (Murphy, 2002), and so to compute

the message from t + 1 to t we sum over all possible lengths d for the segment beginning at t + 1,

using the backwards message at t+d to provide aggregate future information given a boundary just

after t + d. The final additive term in the expression for B∗
t (i) is described in Guédon (2007); it

constitutes the contribution of state segments that run off the end of the provided observations, as

per the censoring assumption, and depends on the survival function of the duration distribution.

Though a very similar message-passing subroutine is used in HMM Gibbs samplers, there are

significant differences in computational cost between the HMM and HSMM message computations.

The greater expressive power of the HSMM model necessarily increases the computational cost: the

above message passing requires O(T 2N +TN2) basic operations for a chain of length T and state

cardinality N , while the corresponding HMM message passing algorithm requires only O(TN2).

However, if the support of the duration distribution is limited, or if we truncate possible segment

lengths included in the inference messages to some maximum dmax, we can instead express the

asymptotic message passing cost as O(TdmaxN + TN2). Such truncations are often natural as the

duration prior often causes the message contributions to decay rapidly with sufficiently large d.

Though the increased complexity of message-passing over an HMM significantly increases the cost

per iteration of sampling inference for a global model, the cost is offset because HSMM samplers

need far fewer total iterations to converge. See the experiments in Section 5.

2.3 The HDP-HMM and Sticky HDP-HMM

The HDP-HMM (Teh et al., 2006) provides a natural Bayesian nonparametric treatment of the clas-

sical Hidden Markov Model. The model employs an HDP prior over an infinite state space, which

enables both inference of state complexity and Bayesian mixing over models of varying complexity.

We provide a brief overview of the HDP-HMM model and relevant inference algorithms, which we

extend to develop the HDP-HSMM. A much more thorough treatment of the HDP-HMM can be

found in, for example, Fox (2009).
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Figure 3: Graphical model for the HDP-HMM.

The generative process HDP-HMM(γ,α,H) given concentration parameters γ,α > 0 and base

measure (observation prior) H can be summarized as:

β ∼ GEM(γ),

πi
iid
∼ DP(α,β) θi

iid
∼ H i = 1,2, . . . ,

xt ∼ πxt−1
,

yt ∼ f(θxt) t = 1,2, . . . ,T,

where GEM denotes a stick breaking process (Sethuraman, 1994) and f denotes an observation

distribution parameterized by draws from H . We set x1 := 1. We have also suppressed explicit

conditioning from the notation. See Figure 3 for a graphical model.

The HDP plays the role of a prior over infinite transition matrices: each πj is a DP draw and

is interpreted as the transition distribution from state j. The πj are linked by being DP draws

parameterized by the same discrete measure β, thus E[πj ] = β and the transition distributions tend

to have their mass concentrated around a typical set of states, providing the desired bias towards

re-entering and re-using a consistent set of states.

The Chinese Restaurant Franchise and direct-assignment collapsed sampling methods described

in Teh et al. (2006); Fox (2009) are approximate inference algorithms for the full infinite dimen-

sional HDP, but they have a particular weakness in the sequential-data context of the HDP-HMM:

each state transition must be re-sampled individually, and strong correlations within the state se-

quence significantly reduce mixing rates (Fox, 2009). As a result, finite approximations to the HDP

have been studied for the purpose of providing faster mixing. Of particular note is the popular

weak limit approximation, used in Fox et al. (2008), which has been shown to reduce mixing times

for HDP-HMM inference while sacrificing little of the “tail” of the infinite transition matrix. In

this paper, we describe how the HDP-HSMM with geometric durations can provide an HDP-HMM

sampling inference algorithm that maintains the “full” infinite-dimensional sampling process while

mitigating the detrimental mixing effects due to the strong correlations in the state sequence, thus

providing a new alternative to existing HDP-HMM sampling methods.

The Sticky HDP-HMM augments the HDP-HMM with an extra parameter κ > 0 that biases

the process towards self-transitions and thus provides a method to encourage longer state durations.
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The Sticky-HDP-HMM(γ,α,κ,H) generative process can be written

β ∼ GEM(γ),

πi
iid
∼ DP(α +κ,β +κδj) θi

iid
∼ H i = 1,2, . . . ,

xt ∼ πxt−1
,

yt ∼ f(θxt) t = 1,2, . . . ,T,

where δj denotes an indicator function that takes value 1 at index j and 0 elsewhere. While the

Sticky HDP-HMM allows some control over duration statistics, the state duration distributions re-

main geometric; the goal of this work is to provide a model in which any duration distributions may

be used.

3. Models

In this section, we introduce the explicit-duration HSMM-based models that we use in the remainder

of the paper. We define the finite Bayesian HSMM and the HDP-HSMM and show how they can be

used as components in more complex models, such as in a factorial structure. We describe generative

processes that do not allow self-transitions in the state sequence, but we emphasize that we can also

allow self-transitions and still employ the inference algorithms we describe; in fact, allowing self-

transitions simplifies inference in the HDP-HSMM, since complications arise as a result of the

hierarchical prior and an elimination of self-transitions. However, there is a clear modeling gain by

eliminating self-transitions: when self-transitions are allowed, the “explicit duration distributions”

do not model the state duration statistics directly. To allow direct modeling of state durations, we

must consider the case where self-transitions do not occurr.

We do not investigate here the problem of selecting particular observation and duration distribu-

tion classes; model selection is a fundamental challenge in generative modeling, and models must

be chosen to capture structure in any particular data. Instead, we provide the HDP-HSMM and re-

lated models as tools in which modeling choices (such as the selection of observation and duration

distribution classes to fit particular data) can be made flexibly and naturally.

3.1 Finite Bayesian HSMM

The finite Bayesian HSMM is a combination of the Bayesian HMM approach with semi-Markov

state durations and is the model we generalize to the HDP-HSMM. Some forms of finite Bayesian

HSMMs have been described previously, such as in Hashimoto et al. (2009) which treats observation

parameters as Bayesian latent variables, but to the best of our knowledge the first fully Bayesian

treatment of all latent components of the HSMM was given in Johnson and Willsky (2010) and later

independently in Dewar et al. (2012), which allows self-transitions.

It is instructive to compare this construction with that of the finite model used in the weak-limit

HDP-HSMM sampler that will be described in Section 4.2, since in that case the hierarchical ties

between rows of the transition matrix requires particular care.

The generative process for a Bayesian HSMM with N states and observation and duration pa-

rameter prior distributions of H and G, respectively, can be summarized as

679



JOHNSON AND WILLSKY

πi
iid
∼ Dir(α(1− δi)) (θi,ωi)

iid
∼ H ×G i = 1,2, . . . ,N,

zs ∼ πzs−1
,

Ds ∼ g(ωzs), s = 1,2, . . . ,

xt1
s:t2

s
= zs,

yt1
s:t2

s

iid
∼ f(θzs) t1

s =
∑

s̄<s

Ds̄ t2
s = t1

s +Ds −1,

where f and g denote observation and duration distributions parameterized by draws from H and

G, respectively. The indices t1
s and t2

s denote the first and last index of segment s, respectively, and

xt1
s:t2

s
:= (xt1

s
,xt1

s+1, . . . ,xt2
s
). We use Dir(α(1 − δi)) to denote a symmetric Dirichlet distribution

with parameter α except with the ith component of the hyperparameter vector set to zero, hence

fixing πii = 0 and ensuring there will be no self-transitions sampled in the super-state sequence

(zs). We also define the label sequence (xt) for convenience; the pair (zs,Ds) is the run-length

encoding of (xt). The process as written generates an infinite sequence of observations; we observe

a finite prefix of size T .

Note, crucially, that in this definition the πi are not tied across various i. In the HDP-HSMM,

as well as the weak limit model used for approximate inference in the HDP-HSMM, the πi will

be tied through the hierarchical prior (specifically via β), and that connection is necessary to pe-

nalize the total number of states and encourage a small, consistent set of states to be visited in

the state sequence. However, the interaction between the hierarchical prior and the elimination of

self-transitions presents an inference challenge.

3.2 HDP-HSMM

The generative process of the HDP-HSMM is similar to that of the HDP-HMM (as described in,

for example, Fox et al. (2008)), with some extra work to include duration distributions. The process

HDP-HSMM(γ,α,H,G), illustrated in Figure 4, can be written

β ∼ GEM(γ),

πi
iid
∼ DP(α,β) (θi,ωi)

iid
∼ H ×G i = 1,2, . . . ,

zs ∼ π̄zs−1
,

Ds ∼ g(ωzs) s = 1,2, . . . ,

xt1
s:t2

s
= zs,

yt1
s:t2

s

iid
∼ f(θxt) t1

s =
∑

s̄<s

Ds̄ t2
s = t1

s +Ds −1,

where we use π̄i :=
πij

1−πii
(1 − δij) to eliminate self-transitions in the super-state sequence (zs). As

with the finite HSMM, we define the label sequence (xt) for convenience. We observe a finite prefix

of size T of the observation sequence.

Note that the atoms we edit to eliminate self-transitions are the same atoms that are affected by

the global sticky bias in the Sticky HDP-HMM.
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= D1 + D2 t′S = T

tS = T − DS + 1

Figure 4: A graphical model for the HDP-HSMM in which the number of segments S, and hence

the number of nodes, is random.

3.3 Factorial Structure

We can easily compose our sequential models into other common model structures, such as the

factorial structure of the factorial HMM (Ghahramani and Jordan, 1997). Factorial models are

very useful for source separation problems, and when combined with the rich class of sequential

models provided by the HSMM, one can use prior duration information about each source to greatly

improve performance (as demonstrated in Section 5). Here, we briefly outline the factorial model

and its uses.

If we use y ∼ HDP-HSMM(α,γ,H,G) to denote an observation sequence generated by the

process defined in Sections 3.2 to 3.2, then the generative process for a factorial HDP-HSMM with

K component sequences can be written

y(k) ∼ HDP-HSMM(αk,γk,Hk,Gk) k = 1,2, . . . ,K,

ȳt :=
K∑

k=1

y
(k)
t +wt t = 1,2, . . . ,T,

where wt is a noise process independent of the other components of the model states.

A graphical model for a factorial HMM can be seen in Figure 5, and a factorial HSMM or fac-

torial HDP-HSMM simply replaces the hidden state chains with semi-Markov chains. Each chain,

indexed by superscripts, evolves with independent dynamics and produces independent emissions,

but the observations are combinations of the independent emissions. Note that each component

HSMM is not restricted to any fixed number of states.

Such factorial models are natural ways to frame source separation or disaggregation problems,

which require identifying component emissions and component states. With the Bayesian frame-

work, we also model uncertainty and ambiguity in such a separation. In Section 5.2 we demonstrate

the use of a factorial HDP-HSMM for the task of disaggregating home power signals.
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Figure 5: A graphical model for the factorial HMM, which can naturally be extended to factorial

structures involving the HSMM or HDP-HSMM.

Problems in source separation or disaggregation are often ill-conditioned, and so one relies on

prior information in addition to the source independence structure to solve the separation problem.

Furthermore, representation of uncertainty is often important, since there may be several good ex-

planations for the data. These considerations motivate Bayesian inference as well as direct modeling

of state duration statistics.

4. Inference Algorithms

We describe three Gibbs sampling inference algorithms, beginning with a sampling algorithm for

the finite Bayesian HSMM, which is built upon in developing algorithms for the HDP-HSMM in

the sequel. Next, we develop a weak-limit Gibbs sampling algorithm for the HDP-HSMM, which

parallels the popular weak-limit sampler for the HDP-HMM and its sticky extension. Finally, we

introduce a collapsed sampler which parallels the direct assignment sampler of Teh et al. (2006).

For all both of the HDP-HSMM samplers there is a loss of conjugacy with the HDP prior due to

the fact that self-transitions in the super-state sequence are not permitted (see Section 4.2.1). We

develop auxiliary variables to form an augmented representation that effectively recovers conjugacy

and hence enables fast Gibbs steps.

In comparing the weak limit and direct assignment sampler, the most important trade-offs are

that the direct assignment sampler works with the infinite model by integrating out the transition

matrix π while simplifying bookkeeping by maintaining part of β; it also collapses the observation

and duration parameters. However, the variables in the label sequence (xt) are coupled by the inte-

gration, and hence each element of the label sequence must be resampled sequentially. In contrast,

the weak limit sampler represents all latent components of the model (up to an adjustable finite

approximation for the HDP) and thus allows block resampling of the label sequence by exploiting

HSMM message passing.

We end the section with a discussion of leveraging changepoint side-information to greatly

accelerate inference.
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4.1 A Gibbs Sampler for the Finite Bayesian HSMM

In this section, we describe a blocked Gibbs sampler for the finite HSMM using standard priors.

4.1.1 OUTLINE OF GIBBS SAMPLER

To perform posterior inference in a finite Bayesian HSMM, we construct a Gibbs sampler resem-

bling that for finite HMMs. Our goal is to construct samples from the posterior

p((xt),{θi},{πi},{ωi}|(yt),H,G,α)

by drawing samples from the distribution, where G represents the prior over duration parameters.

We can construct these samples by following a Gibbs sampling algorithm in which we iteratively

sample from the appropriate conditional distributions of (xt), {πi}, {ωi}, and {θi}.

Sampling {θi} or {ωi} from their respective conditional distributions can be easily reduced to

standard problems depending on the particular priors chosen. Sampling the transition matrix rows

{πi} is straightforward if the prior on each row is Dirichlet over the off-diagonal entries and so

we do not discuss it in this section, but we note that when the rows are tied together hierarchically

(as in the weak-limit approximation to the HDP-HSMM), resampling the {πi} correctly requires

particular care (see Section 4.2.1).

Sampling (xt)|{θi},{πi},(yt) in a finite Bayesian Hidden semi-Markov Model was first intro-

duced in Johnson and Willsky (2010) and, in independent work, later in Dewar et al. (2012). In

the following section we develop the algorithm for block-sampling the state sequence (xt) from its

conditional distribution by employing the HSMM message-passing scheme.

4.1.2 BLOCKED CONDITIONAL SAMPLING OF (xt) WITH MESSAGE PASSING

To block sample (xt)|{θi},{πi},{ωi},(yt) in an HSMM we can extend the standard block state

sampling scheme for an HMM. The key challenge is that to block sample the states in an HSMM

we must also be able to sample the posterior duration variables.

If we compute the backwards messages B and B∗ described in Section 2.2, then we can easily

draw a posterior sample for the first state according to

p(x1 = k|y1:T ) ∝ p(x1 = k)p(y1:T |x1 = k,F0 = 1)

= p(x1 = k)B∗
0(k),

where we have used the assumption that the observation sequence begins on a segment boundary

(F0 = 1) and suppressed notation for conditioning on parameters.

We can also use the messages to efficiently draw a sample from the posterior duration distribu-

tion for the sampled initial state. Conditioning on the initial state draw, x̄1, the posterior duration of

the first state is:

p(D1 = d|y1:T ,x1 = x̄1,F0 = 1) =
p(D1 = d,y1:T |x1 = x̄1,F0)

p(y1:T |x1 = x̄1,F0)

=
p(D1 = d|x1 = x̄1,F0)p(y1:d|D1 = d,x1 = x̄1,F0)p(yd+1:T |D1 = d,x1 = x̄1,F0)

p(y1:T |x1 = x̄1,F0)

=
p(D1 = d)p(y1:d|D1 = d,x1 = x̄1,F0 = 1)Bd(x̄1)

B∗
0(x̄1)

.
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We repeat the process by using xD1+1 as our new initial state with initial distribution p(xD1+1 =
i|x1 = x̄1), and thus draw a block sample for the entire label sequence.

4.2 A Weak-Limit Gibbs Sampler for the HDP-HSMM

The weak-limit sampler for an HDP-HMM (Fox et al., 2008) constructs a finite approximation to

the HDP transitions prior with finite L-dimensional Dirichlet distributions, motivated by the fact

that the infinite limit of such a construction converges in distribution to a true HDP:

β|γ ∼ Dir(γ/L, . . . ,γ/L),

πi|α,β ∼ Dir(αβ1, . . . ,αβL) i = 1, . . . ,L,

where we again interpret πi as the transition distribution for state i and β as the distribution which

ties state distributions together and encourages shared sparsity. Practically, the weak limit approxi-

mation enables the complete representation of the transition matrix in a finite form, and thus, when

we also represent all parameters, allows block sampling of the entire label sequence at once, result-

ing in greatly accelerated mixing in many circumstances. The parameter L gives us control over

the approximation, with the guarantee that the approximation will become exact as L grows; see

Ishwaran and Zarepour (2000), especially Theorem 1, for a discussion of theoretical guarantees.

Note that the weak limit approximation is more convenient for us than the truncated stick-breaking

approximation because it directly models the state transition probabilities, while stick lengths in the

HDP do not directly represent state transition probabilities because multiple sticks in constructing

πi can be sampled at the same atom of β.

We can employ the weak limit approximation to create a finite HSMM that approximates infer-

ence in the HDP-HSMM. This approximation technique often results in greatly accelerated mixing,

and hence it is the technique we employ for the experiments in the sequel. However, the infer-

ence algorithm of Section 4.1 must be modified to incorporate the fact that the {πi} are no longer

mutually independent and are instead tied through the shared β. This dependence between the tran-

sition rows introduces potential conjugacy issues with the hierarchical Dirichlet prior; the following

section explains the difficulty as well as a clean solution via auxiliary variables.

The beam sampling technique (Van Gael et al., 2008) can be applied here with little modifica-

tion, as in Dewar et al. (2012), to sample over the approximation parameter L, thus avoiding the

need to set L a priori while still allowing instantiation of the transition matrix and block sampling

of the state sequence. This technique is especially useful if the number of states could be very large

and is difficult to bound a priori. We do not explore beam sampling here.

4.2.1 CONDITIONAL SAMPLING OF {πi} WITH DATA AUGMENTATION

To construct our overall Gibbs sampler, we need to be able to easily resample the transition matrix π
given the other components of the model. However, by ruling out self-transitions while maintaining

a hierarchical link between the transition rows, the model is no longer fully conjugate, and hence

resampling is not necessarily easy. To observe the loss of conjugacy using the hierarchical prior

required in the weak-limit approximation, note that we can summarize the relevant portion of the
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generative model as

β|γ ∼ Dir(γ, . . . ,γ),

πj |β ∼ Dir(αβ1, . . . ,αβL) j = 1, . . . ,L,

xt|{πj},xt−1 ∼ π̄xt−1
t = 2, . . . ,T,

where π̄j represents πj with the jth component removed and renormalized appropriately:

π̄ji =
πji(1− δij)

1−πjj

with δij = 1 if i = j and δij = 0 otherwise. The deterministic transformation from πj to π̄j eliminates

self-transitions. Note that we have suppressed the observation parameter set, duration parameter set,

and observation sequence sampling for simplicity.

Consider the distribution of π1|(xt),β, the first row of the transition matrix:

p(π1|(xt),β) ∝ p(π1|β)p((xt)|π1)

∝ παβ1−1
11 παβ2−1

12 · · ·παβL−1
1L

(
π12

1−π11

)n12
(

π13

1−π11

)n13

· · ·

(
π1L

1−π11

)n1L

,

where nij are the number of transitions from state i to state j in the state sequence (xt). Essentially,

because of the extra 1
1−π11

terms from the likelihood without self-transitions, we cannot reduce this

expression to the Dirichlet form over the components of π1, and therefore we cannot proceed with

sampling m and resampling β and π as in Teh et al. (2006).

However, we can introduce auxiliary variables to recover conjugacy, following the general data

augmentation technique described in Van Dyk and Meng (2001). We define an extended generative

model with extra random variables, and then show through simple manipulations that conditional

distributions simplify with the additional variables, hence allowing us to cycle simple Gibbs updates

to produce a sampler.

For simplicity, we focus on the first row of the transition matrix, namely π1, and the draws that

depend on it; the reasoning easily extends to the other rows. We also drop the parameter α for

convenience. First, we write the relevant portion of the generative process as

π1|β ∼ Dir(β),

zi|π̄1 ∼ π̄1 i = 1, . . . ,n,

yi|zi ∼ f(zi) i = 1, . . . ,n.

Here, n counts the total number of transitions out of state 1 and the {zi} represent the transitions

out of state 1 to a specific state: sampling zi = k represents a transition from state 1 to state k. The

{yi} represent the observations on which we condition; in particular, if we have zi = k then the yi

corresponds to an emission from state k in the HSMM. See the graphical model in Figure 6(a) for a

depiction of the relationship between the variables.

We can introduce auxiliary variables {ρi}
n
i=1, where each ρi is independently drawn from a

geometric distribution supported on {0,1, . . .} with success parameter 1 − π11: ρi|π11 ∼ Geo(1 −
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Figure 6: Simplified depiction of the relationship between the auxiliary variables and the rest of

the model; 6(a) depicts the nonconjugate setting and 6(b) shows the introduced auxiliary

variables {ρi}.

π11) (See Figure 6(b)). Thus our posterior becomes:

p(π1|{zi},{ρi}) ∝ p(π1)p({zi}|π1)p({ρi}|{π1i})

∝ πβ1−1
11 πβ2−1

12 · · ·πβL−1
1L

(
π12

1−π11

)n2

· · ·

(
π1L

1−π11

)nL





n∏

i=1

πρi

11(1−π11)





= π
β1+

∑

i
ρi−1

11 πβ2+n2−1
12 · · ·πβL+nL−1

1L

∝ Dir



β1 +
∑

i

ρi,β2 +n2, . . . ,βL +nL



 .

Noting that n =
∑

i ni, we recover conjugacy and hence can iterate simple Gibbs steps.

We can compare the numerical performance of the auxiliary variable sampler to a Metropolis-

Hastings sampler in the simplified model. For a detailed evaluation, see Johnson and Willsky (2012);

in deference to space considerations, we only reproduce two figures from that report here. Figure 7

shows the sample chain autocorrelations for the first component of π in both samplers. Figure 8

compares the Multivariate Scale Reduction Factors of Brooks and Gelman (1998) for the two sam-

plers, where good mixing is indicated by achieving the statistic’s asymptotic value of unity.

We can easily extend the data augmentation to the full HSMM, and once we have augmented the

data with the auxiliary variables {ρs} we are once again in the conjugate setting. A graphical model

for the weak-limit approximation to the HDP-HSMM including the auxiliary variables is shown in

Figure 9.

For a more detailed derivation as well as further numerical experiments, see Johnson and Will-

sky (2012).

4.3 A Direct Assignment Sampler for the HDP-HSMM

Though all the experiments in this paper are performed with the weak-limit sampler, we provide a

direct assignment (DA) sampler as well for theoretical completeness and because it may be useful
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Figure 7: Empirical sample chain autocorrelation for the first component of π for both the proposed

auxiliary variable sampler and a Metropolis-Hastings sampler. The rapidly diminishing

autocorrelation for the auxiliary variable sampler is indicative of fast mixing.

(a) (b)

Figure 8: Multivariate Potential Scale Reduction Factors for both the proposed auxiliary variable

sampler and a Metropolis-Hastings sampler. The auxiliary variable sampler rapidly

achieves the statistic’s asymptotic value of unity. Note that the auxiliary variable sam-

pler is also much more efficient to execute, as shown in 8(b).
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Figure 9: Graphical model for the weak-limit approximation including auxiliary variables.

in cases where there is insufficient data to inform some latent parameters so that marginalization

is necessary for mixing or estimating marginal likelihoods (such as in some topic models). As

mentioned previously, in the direct assignment sampler for the HDP-HMM the infinite transition

matrix π is analytically marginalized out along with the observation parameters (if conjugate priors

are used). The sampler represents explicit instantiations of the state sequence (xt) and the “used”

prefix of the infinite vector β: β1:K where K = #{xt : t = 1, . . . ,T}. There are also auxiliary

variables m used to resample β, but for simplicity we do not discuss them here; see Teh et al.

(2006) for details.

Our DA sampler additionally represents the auxiliary variables necessary to recover HDP con-

jugacy (as introduced in the previous section). Note that the requirement for, and correctness of, the

auxiliary variables described in the finite setting in Section 4.2.1 immediately extends to the infinite

setting as a consequence of the Dirichlet Process’s definition in terms of the finite Dirichlet distri-

bution and the Kolmogorov extension theorem (Çinlar, 2010, Chapter 4); for a detailed discussion,

see Orbanz (2009). The connection to the finite case can also be seen in the sampling steps of the

direct assignment sampler for the HDP-HMM, in which the global weights β over K instantiated

components are resampled according to (β1:K ,βrest)|α,(xt) ∼ Dir(α+n1, . . . ,α+nK ,α) where ni

is the number of transitions into state i and Dir is the finite Dirichlet distribution.

4.3.1 RESAMPLING (xt)

As described in Fox (2009), the basic HDP-HMM DA sampling step for each element xt of the

label sequence is to sample a new label k with probability proportional (over k) to

p(xt = k|(x\t),β) ∝
αβk +nxt−1,k

α +nxt−1,·
︸ ︷︷ ︸

left-transition

·
αβxt+1

+nk,xt+1
+1[xt−1 = k = xt+1]

α +nk,· +1[xt−1 = k]
︸ ︷︷ ︸

right-transition

·fobs(yt|xt = k)
︸ ︷︷ ︸

observation
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for k = 1, . . . ,K + 1 where K = #{xt : t = 1, . . . ,T} and where 1 is an indicator function taking

value 1 if its argument condition is true and 0 otherwise.2 The variables nij are transition counts

in the portion of the state sequence we are conditioning on; that is, nij = #{xτ = i,xτ+1 = j : τ ∈
{1, . . . ,T −1}\{t−1, t}}. The function fobs is a predictive likelihood:

fobs(yt|k) := p(yt|xt = k,{yτ : xτ = k},H)

=

∫

θk

p(yt|xt = k,θk)
︸ ︷︷ ︸

likelihood

∏

τ :xτ =k

p(yτ |xτ = k,θk)

︸ ︷︷ ︸

likelihood of data with same label

p(θk|H)
︸ ︷︷ ︸

observation parameter prior

dθk.

We can derive this step by writing the complete joint probability p((xt),(yt)|β,H) leveraging

exchangeability; this joint probability value is proportional to the desired posterior probability

p(xt|(x\t),(yt),β,H). When we consider each possible assignment xt = k, we can cancel all the

terms that are invariant over k, namely all the transition probabilities other than those to and from

xt and all data likelihoods other than that for yt. However, this cancellation process relies on the

fact that for the HDP-HMM there is no distinction between self-transitions and new transitions: the

term for each t in the complete posterior simply involves transition scores no matter the labels of

xt+1 and xt−1. In the HDP-HSMM case, we must consider segments and their durations separately

from transitions.

To derive an expression for resampling xt in the case of the HDP-HSMM, we can similarly

consider writing out an expression for the joint probability p((xt),(yt)|β,H,G), but we notice that

as we vary our assignment of xt over k, the terms in the expression must change: if xt−1 = k̄ or

xt+1 = k̄, the probability expression includes a segment term for entire contiguous run of label k̄.

Hence, since we can only cancel terms that are invariant over k, our score expression must include

terms for the adjacent segments into which xt may merge. See Figure 10 for an illustration.

The final expression for the probability of sampling the new value of xt to be k then consists of

between 1 and 3 segment score terms, depending on merges with adjacent segments, each of which

has the form

p(xt = k|(x\t),β,H,G) ∝
αβk +nxprev,k

α(1−βxprev)+nxprev,·
︸ ︷︷ ︸

left-transition

·
αβxnext +nk,xnext

α(1−βk)+nk,·
︸ ︷︷ ︸

right-transition

·fdur(t
2 − t1 +1)

︸ ︷︷ ︸

duration

·fobs(yt1:t2 |k)
︸ ︷︷ ︸

observation

,

where we have used t1 and t2 to denote the first and last indices of the segment, respectively.

Transition scores at the start and end of the chain are not included.

The function fdur(d|k) is the corresponding duration predictive likelihood evaluated on a dura-

tion d, which depends on the durations of other segments with label k and any duration hyperpa-

rameters. The function fobs now represents a block or joint predictive likelihood over all the data in

a segment (see, for example, Murphy (2007) for a thorough discussion of the Gaussian case). Note

that the denominators in the transition terms are affected by the elimination of self-transitions by a

rescaling of the “total mass.” The resulting chain is ergodic if the duration predictive score fdur has a

support that includes {1,2, . . . ,dmax}, so that segments can be split and merged in any combination.

2. The indicator variables are present because the two transition probabilities are not independent but rather exchange-

able.
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Figure 10: Illustration of the Gibbs step to resample xt for the DA sampler for the HDP-HSMM.

The red dashed boxes indicate the elements of the label sequence that contribute to the

score computation for k = 1,2,3 which produce two, three, and two segment terms,

respectively. The label sequence element being resample is emphasized in bold.

4.3.2 RESAMPLING β AND AUXILIARY VARIABLES ρ

To allow conjugate resampling of β, auxiliary variables must be introduced to deal with the con-

jugacy issue raised in Section 4.2. In the direct assignment samplers, the auxiliary variables are

not used to resample diagonal entries of the transition matrix π, which is marginalized out, but

rather to directly resample β. In particular, with each segment s we associate an auxiliary count ρs

which is independent of the data and only serves to preserve conjugacy in the HDP. We periodically

re-sample via

πii|α,β ∼ Beta(αβi,α(1−βi)),

ρs|πii, zs ∼ Geo(1−πzs,zs).

The count ni,i, which is used in resampling the auxiliary variables m of Teh et al. (2006) which in

turn are then used to resample β, is the total of the auxiliary variables for other segments with the

same label: ni,i =
∑

s̄ 6=s,zs̄=zs
ρs̄. This formula can be interpreted as simply sampling the number

of self-transitions we may have seen at segment s given β and the counts of self- and non-self

transitions in the super-state sequence. Note πii is independent of the data given (zs); as before, this

auxiliary variable procedure is a convenient way to integrate out numerically the diagonal entries of

the transition matrix.

By using the total auxiliary as the statistics for ni,i, we can resample β|(xt),α,γ according to

the procedure for the HDP-HMM as described in Teh et al. (2006).

4.4 Exploiting Changepoint Side-Information

In many circumstances, we may not need to consider all time indices as possible changepoints at

which the super-state may switch; it may be easy to rule out many non-changepoints from consid-
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eration. For example, in the power disaggregation application in Section 5, we can run inexpensive

changepoint detection on the observations to get a list of possible changepoints, ruling out many

obvious non-changepoints. The possible changepoints divide the label sequence into state blocks,

where within each block the label sequence must be constant, though sequential blocks may have

the same label. By only allowing super-state switching to occur at these detected changepoints, we

can greatly reduce the computation of all the samplers considered.

In the case of the weak-limit sampler, the complexity of the bottleneck message-passing step is

reduced to a function of the number of possible changepoints (instead of total sequence length): the

asymptotic complexity becomes O(T 2
changeN + N2Tchange) , where Tchange, the number of possible

changepoints, may be dramatically smaller than the sequence length T . We simply modify the

backwards message-passing procedure to sum only over the possible durations:

B∗
t (i) := p(yt+1:T |xt+1 = i,Ft = 1)

=
∑

d∈D

Bt+d(i) p̃(Dt+1 = d|xt+1 = i)
︸ ︷︷ ︸

duration prior term

·p(yt+1:t+d|xt+1 = i,Dt+1 = d)
︸ ︷︷ ︸

likelihood term

+ p̃(Dt+1 > T − t|xt+1 = i)p(yt+1:T |xt+1 = i,Dt+1 > T − t)
︸ ︷︷ ︸

censoring term

,

where p̃ represents the duration distribution restricted to the set of possible durations D ⊂ N
+ and

re-normalized. We similarly modify the forward-sampling procedure to only consider possible du-

rations. It is also clear how to adapt the DA sampler: instead of re-sampling each element of the

label sequence (xt) we simply consider the block label sequence, resampling each block’s label

(allowing merging with adjacent blocks).

5. Experiments

In this section, we evaluate the proposed HDP-HSMM sampling algorithms on both synthetic and

real data. First, we compare the HDP-HSMM direct assignment sampler to the weak limit sampler

as well as the Sticky HDP-HMM direct assignment sampler, showing that the HDP-HSMM direct

assignment sampler has similar performance to that for the Sticky HDP-HMM and that the weak

limit sampler is much faster. Next, we evaluate the HDP-HSMM weak limit sampler on synthetic

data generated from finite HSMMs and HMMs. We show that the HDP-HSMM applied to HSMM

data can efficiently learn the correct model, including the correct number of states and state labels,

while the HDP-HMM is unable to capture non-geometric duration statistics. We also apply the

HDP-HSMM to data generated by an HMM and demonstrate that, when equipped with a duration

distribution class that includes geometric durations, the HDP-HSMM can also efficiently learn an

HMM model when appropriate with little loss in efficiency. Next, we use the HDP-HSMM in

a factorial (Ghahramani and Jordan, 1997) structure for the purpose of disaggregating a whole-

home power signal into the power draws of individual devices. We show that encoding simple

duration prior information when modeling individual devices can greatly improve performance,

and further that a Bayesian treatment of the parameters is advantageous. We also demonstrate

how changepoint side-information can be leveraged to significantly speed up computation. The

Python code used to perform these experiments as well as Matlab code is available online at http:

//github.com/mattjj/pyhsmm.
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(a) (b)

Figure 11: 11(a) compares the Geometric-HDP-HSMM direct assignment sampler with that of the

Sticky HDP-HMM, both applied to HMM data. The sticky parameter κ was chosen to

maximize mixing. 11(b) compares the HDP-HSMM direct assignment sampler with the

weak limit sampler. In all plots, solid lines are the median error at each time over 25

independent chains; dashed lines are 25th and 75th percentile errors.

5.1 Synthetic Data

Figure 11 compares the HDP-HSMM direct assignment sampler to that of the Sticky HDP-HMM

as well as the HDP-HSMM weak limit sampler. Figure 11(a) shows that the direct assignment sam-

pler for a Geometric-HDP-HSMM performs similarly to the Sticky HDP-HSMM direct assignment

sampler when applied to data generated by an HMM with scalar Gaussian emissions. Figures 11(b)

shows that the weak limit sampler mixes much more quickly than the direct assignment sampler.

Each iteration of the weak limit sampler is also much faster to execute (approximately 50x faster

in our implementations in Python). Due to its much greater efficiency, we focus on the weak limit

sampler for the rest of this section; we believe it is a superior inference algorithm whenever an

adequately large approximation parameter L can be chosen a priori.

Figure 12 summarizes the results of applying both a Poisson-HDP-HSMM and an HDP-HMM

to data generated from an HSMM with four states, Poisson durations, and 2-dimensional mixture-of-

Gaussian emissions. In the 25 Gibbs sampling runs for each model, we applied 5 chains to each of 5

generated observation sequences. The HDP-HMM is unable to capture the non-Markovian duration

statistics and so its state sampling error remains high, while the HDP-HSMM equipped with Poisson

duration distributions is able to effectively learn the correct temporal model, including duration,

transition, and emission parameters, and thus effectively separate the states and significantly reduce

posterior uncertainty. The HDP-HMM also frequently fails to identify the true number of states,

while the posterior samples for the HDP-HSMM concentrate on the true number; see Figure 13.

By setting the class of duration distributions to be a superclass of the class of geometric dis-

tributions, we can allow an HDP-HSMM model to learn an HMM from data when appropriate.

One such distribution class is the class of negative binomial distributions, denoted NegBin(r,p), the

discrete analog of the Gamma distribution, which covers the class of geometric distributions when

r = 1. By placing a (non-conjugate) prior over r that includes r = 1 in its support, we allow the
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(b) HDP-HSMM

Figure 12: State-sequence Hamming error of the HDP-HMM and Poisson-HDP-HSMM applied to

data from a Poisson-HSMM. In each plot, the blue line indicates the error of the chain

with the median error across 25 independent Gibbs chains, while the red dashed lines

indicate the chains with the 10th and 90th percentile errors at each iteration. The jumps

in the plot correspond to a change in the ranking of the 25 chains.

(a) HDP-HMM (b) HDP-HSMM

Figure 13: Number of states inferred by the HDP-HMM and Poisson-HDP-HSMM applied to data

from a four-state Poisson-HSMM. In each plot, the blue line indicates the error of the

chain with the median error across 25 independent Gibbs chains, while the red dashed

lines indicate the chains with the 10th and 90th percentile errors at each iteration.
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(b) HDP-HSMM

Figure 14: The HDP-HSMM and HDP-HMM applied to data from an HMM. In each plot, the blue

line indicates the error of the chain with the median error across 25 independent Gibbs

chains, while the red dashed line indicates the chains with the 10th and 90th percentile

error at each iteration.

model to learn geometric durations as well as significantly non-geometric distributions with modes

away from zero. Figure 14 shows a negative binomial HDP-HSMM learning an HMM model from

data generated from an HMM with four states. The observation distribution for each state is a 10-

dimensional Gaussian, again with parameters sampled i.i.d. from a NIW prior. The prior over r was

set to be uniform on {1,2, . . . ,6}, and all other priors were chosen to be similarly non-informative.

The sampler chains quickly concentrated at r = 1 for all state duration distributions. There is only

a slight loss in mixing time for the HDP-HSMM compared to the HDP-HMM. This experiment

demonstrates that with the appropriate choice of duration distribution the HDP-HSMM can effec-

tively learn an HMM model.

5.2 Power Disaggregation

In this section we show an application of the HDP-HSMM factorial structure to an unsupervised

power signal disaggregation problem. The task is to estimate the power draw from individual de-

vices, such as refrigerators and microwaves, given an aggregated whole-home power consumption

signal. This disaggregation problem is important for energy efficiency: providing consumers with

detailed power use information at the device level has been shown to improve efficiency signifi-

cantly, and by solving the disaggregation problem one can provide that feedback without instru-

menting every individual device with monitoring equipment. This application demonstrates the

utility of including duration information in priors as well as the significant speedup achieved with

changepoint-based inference.

The power disaggregation problem has a rich history (Zeifman and Roth, 2011) with many

proposed approaches for a variety of problem specifications. Some recent work (Kim et al., 2010)

has considered applying factorial HSMMs to the disaggregation problem using an EM algorithm;

our work here is distinct in that (1) we do not use training data to learn device models but instead

rely on simple prior information and learn the model details during inference, (2) our states are not

restricted to binary values and can model multiple different power modes per device, and (3) we use

Gibbs sampling to learn all levels of the model. The work in Kim et al. (2010) also explores many
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other aspects of the problem, such as additional data features, and builds a very compelling complete

solution to the disaggregation problem, while we focus on the factorial time series modeling itself.

For our experiments, we used the REDD data set (Kolter and Johnson, 2011), which monitors

many homes at high frequency and for extended periods of time. We chose the top 5 power-drawing

devices (refrigerator, lighting, dishwasher, microwave, furnace) across several houses and identified

18 24-hour segments across 4 houses for which many (but not always all) of the devices switched on

at least once. We applied a 20-second median filter to the data, and each sequence is approximately

5000 samples long.

We constructed simple priors that set the rough power draw levels and duration statistics of the

modes for several devices. For example, the power draw from home lighting changes infrequently

and can have many different levels, so an HDP-HSMM with a bias towards longer negative-binomial

durations is appropriate. On the other hand, a refrigerator’s power draw cycle is very regular and

usually exhibits only three modes, so our priors biased the refrigerator HDP-HSMM to have fewer

modes and set the power levels accordingly. For details on our prior specification, see Appendix A.

We did not truncate the duration distributions during inference, and we set the weak limit approxi-

mation parameter L to be twice the number of expected modes for each device; for example, for the

refrigerator device we set L = 6 and for lighting we set L = 20. We performed sampling inference

independently on each observation sequence.

As a baseline for comparison, we also constructed a factorial sticky HDP-HMM (Fox et al.,

2008) with the same observation priors and with duration biases that induced the same average

mode durations as the corresponding HDP-HSMM priors. We also compare to the factorial HMM

performance presented in Kolter and Johnson (2011), which fit device models using an EM al-

gorithm on training data. For the Bayesian models, we performed inference separately on each

aggregate data signal.

The set of possible changepoints is easily identifiable in these data, and a primary task of the

model is to organize the jumps observed in the observations into an explanation in terms of the

individual device models. By simply computing first differences and thresholding, we are able to

reduce the number of potential changepoints we need to consider from 5000 to 100-200, and hence

we are able to speed up state sequence resampling by orders of magnitude. See Figure 15 for an

illustration.

To measure performance, we used the error metric of Kolter and Johnson (2011):

Acc. = 1−

∑T
t=1

∑K
i=1

∣
∣
∣
∣ŷ

(i)
t −y

(i)
t

∣
∣
∣
∣

2
∑T

t=1 ȳt

where ȳt refers to the observed total power consumption at time t, y
(i)
t is the true power consumed at

time t by device i, and ŷ
(i)
t is the estimated power consumption. We produced 20 posterior samples

for each model and report the median accuracy of the component emission means compared to

the ground truth provided in REDD. We ran our experiments on standard desktop machines (Intel

Core i7-920 CPUs, released Q4 2008), and a sequence with about 200 detected changepoints would

resample each component chain in 0.1 seconds, including block sampling the state sequence and

resampling all observation, duration, and transition parameters. We collected samples after every

50 such iterations.

Our overall results are summarized in Figure 16 and Table 1. Both Bayesian approaches im-

proved upon the EM-based approach because they allowed flexibility in the device models that
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Figure 15: An total power observation sequence from the power disaggregation data set. Vertical

dotted red lines indicate changepoints detected with a simple first-differences. By using

the changepoint-based algorithms described in Section 4.4 we can greatly accelerate

inference speed for this application.

Figure 16: Overall accuracy comparison between the EM-trained FHMM of Kolter and Johnson

(2011), the factorial sticky HDP-HMM, and the factorial HDP-HSMM.

could be fit during inference, while the EM-based approach fixed device model parameters that

may not be consistent across homes. Furthermore, the incorporation of duration structure and prior

information provided a significant performance increase for the HDP-HSMM approach. Detailed

performance comparisons between the HDP-HMM and HDP-HSMM approaches can be seen in

Figure 17. Finally, Figures 18 and 19 shows total power consumption estimates for the two models

on two selected data sequences.

We note that the nonparametric prior was very important for modeling the power consumption

due to lighting. Power modes arise from combinations of lights switched on in the user’s home, and

hence the number of levels that are observed is highly uncertain a priori. For the other devices the

number of power modes (and hence states) is not so uncertain, but duration statistics can provide a
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House EM FHMM F-HDP-HMM F-HDP-HSMM

1 46.6% 69.0% 82.1%

2 50.8% 70.7% 84.8%

3 33.3% 67.3% 81.5%

6 55.7% 61.8% 77.7%

Mean 47.7% 67.2% 81.5%

Table 1: Performance comparison broken down by house.

Figure 17: Performance comparison between the HDP-HMM and HDP-HSMM approaches broken

down by data sequence.

(a) (b) (c)

Figure 18: Estimated total power consumption for a data sequence where the HDP-HSMM signifi-

cantly outperformed the HDP-HMM due to its modeling of duration regularities.
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(a) (b) (c)

Figure 19: Estimated total power consumption for a data sequence where both the HDP-HMM and

HDP-HSMM approaches performed well.

strong clue for disaggregation; for these, the main advantage of our model is in providing Bayesian

inference and duration modeling.

6. Conclusion

We have developed the HDP-HSMM and two Gibbs sampling inference algorithms, the weak

limit and direct assignment samplers, uniting explicit-duration semi-Markov modeling with new

Bayesian nonparametric techniques. These models and algorithms not only allow learning from

complex sequential data with non-Markov duration statistics in supervised and unsupervised set-

tings, but also can be used as tools in constructing and performing infernece in larger hierarchical

models. We have demonstrated the utility of the HDP-HSMM and the effectiveness of our inference

algorithms with real and synthetic experiments, and we believe these methods can be built upon to

provide new tools for many sequential learning problems.
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Appendix A. Power Disaggregation Priors

We used simple hand-set priors for the power disaggregation experiments in Section 5.2, where each

prior had two free parameters that were set to encode rough means and variances for each device

mode’s durations and emissions. To put priors on multiple modes we used atomic mixture models in

the priors. For example, refrigerators tend to exhibit an “off” mode near zero Watts, an “on” mode

near 100-140 Watts, and a “high” mode near 300-400 Watts; we include each of these regimes in

the prior by specifying three sets of hyperparameters, and a state samples observation parameters
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by first sampling one of the three sets of hyperparameters uniformly at random and then sampling

observation parameters using those hyperparameters

A comprehensive summary of our prior settings for the Factorial HDP-HSMM are in Table 2.

Observation distributions were all Gaussian with state-specific latent means and fixed variances. We

use Gauss(µ0,σ2
0;σ2) to denote a Gaussian observation distribution prior with a fixed variance of

σ2 and a prior over its mean parameter that is Gaussian distributed with mean µ0 and variance σ2
0;

that is, it denotes that a state’s mean parameter µ is sampled according to µ ∼ N (µ0,σ2
0) and an

observation from that state is sampled from N (µ,σ2). Similarly, we use NegBin(α,β;r) to denote

Negative Binomial duration distribution priors where a latent state-specific “success” parameter p
is drawn from p ∼ Beta(α,β) and the parameter r is fixed, so that state durations for that state are

then drawn from NegBin(p,r). (Note choosing r = 1 sets a geometric duration class.)

We set the priors for the Factorial Sticky HDP-HMM by using the same set of observation prior

parameters as for the HDP-HSMM and setting state-specific sticky bias parameters so as to match

the expected durations encoded in the HDP-HSMM duration priors. For an example of real data

observation sequences, see Figure 20.

A natural extension of this model would be a more elaborate hierarchical model which learns

the hyperparameter mixtures automatically from training data. As our experiment is meant to em-

phasize the merits of the HDP-HSMM and sampling inference, we leave this extension to future

work.
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Figure 20: Example real data observation sequences for the power disaggregation experiments.

Device
Base Measures Specific States

Observations Durations Observations Durations

Lighting Gauss(300,2002;52) NegBin(5,220;12) Gauss(0,1;52) NegBin(5,220;12)

Refrigerator Gauss(110,502;102) NegBin(100,600;10)
Gauss(0,1;52) NegBin(100,600;10)

Gauss(115,102;102) NegBin(100,600;10)

Gauss(425,302;102) NegBin(100,600;10)

Dishwasher Gauss(225,252;102) NegBin(100,200;10)
Gauss(0,1;52) NegBin(1,2000;1)

Gauss(225,252;102) NegBin(100,200;10)

Gauss(900,2002;102) NegBin(40,500;10)

Furnace Gauss(600,1002;202) NegBin(40,40;10) Gauss(0,1;52) NegBin(1,50;1)

Microwave Gauss(1700,2002;502) NegBin(200,1;50) Gauss(0,1;52) NegBin(1,1000;1)

Table 2: Power disaggregation prior parameters for each device. Observation priors encode rough

power levels that are expected from devices. Duration priors encode duration statistics that

are expected from devices.

700



BAYESIAN NONPARAMETRIC HIDDEN SEMI-MARKOV MODELS

K. A. Heller, Y. W. Teh, and D. Görür. Infinite hierarchical hidden Markov models. In Proceedings

of the International Conference on Artificial Intelligence and Statistics, volume 12, 2009.

H. Ishwaran and M. Zarepour. Markov chain monte carlo in approximate dirichlet and beta two-

parameter process hierarchical models. Biometrika, 87(2):371–390, 2000.

M. J. Johnson and A. S. Willsky. The Hierarchical Dirichlet Process Hidden Semi-Markov Model. In

Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, Corvallis,

Oregon, USA, 2010. AUAI Press.

M. J. Johnson and A. S. Willsky. Dirichlet posterior sampling with truncated multinomial likeli-

hoods. 2012. arXiv:1208.6537v2.

H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han. Unsupervised disaggregation of low frequency

power measurements. Technical report, HP Labs Tech. Report, 2010.

J. Z. Kolter and M. J. Johnson. REDD: A Public Data Set for Energy Disaggregation Research. In

SustKDD Workshop on Data Mining Applications in Sustainability, 2011.

K. Murphy. Hidden semi-markov models (segment models). Technical Report, November 2002.

URL http://www.cs.ubc.ca/˜murphyk/Papers/segment.pdf.

K. P. Murphy. Conjugate bayesian analysis of the gaussian distribution. Technical report, 2007.

P. Orbanz. Construction of nonparametric bayesian models from parametric bayes equations. Ad-

vances in Neural Information Processing Systems, 2009.

J. Sethuraman. A constructive definition of dirichlet priors. In Statistica Sinica, volume 4, pages

639–650, 1994.

Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of

the American Statistical Association, 101(476):1566–1581, 2006.

S. E. Tranter and D. A. Reynolds. An overview of automatic speaker diarization systems. Audio,

Speech, and Language Processing, IEEE Transactions on, 14(5):1557–1565, 2006.

D. A. Van Dyk and X. L. Meng. The art of data augmentation. Journal of Computational and

Graphical Statistics, 10(1):1–50, 2001.

J. Van Gael, Y. Saatci, Y. W. Teh, and Z. Ghahramani. Beam sampling for the infinite hidden

markov model. In Proceedings of the 25th International Conference on Machine Learning, pages

1088–1095. ACM, 2008.

S. Z. Yu. Hidden semi-markov models. Artificial Intelligence, 174(2):215–243, 2010.

M. Zeifman and K. Roth. Nonintrusive appliance load monitoring: Review and outlook. Consumer

Electronics, IEEE Transactions on, 57(1):76–84, 2011.

701



 



Journal of Machine Learning Research 14 (2013) 703-727 Submitted 3/12; Revised 10/12; Published 3/13

Differential Privacy for Functions and Functional Data

Rob Hall RJHALL@CS.CMU.EDU

Machine Learning Department

Carnegie Mellon University

Pittsburgh, PA 15289, USA

Alessandro Rinaldo ARINALDO@STAT.CMU.EDU

Larry Wasserman LARRY@STAT.CMU.EDU

Department of Statistics

Carnegie Mellon University

Pittsburgh, PA 15289, USA

Editor: Charles Elkan

Abstract

Differential privacy is a rigorous cryptographically-motivated characterization of data privacy which

may be applied when releasing summaries of a database. Previous work has focused mainly on

methods for which the output is a finite dimensional vector, or an element of some discrete set.

We develop methods for releasing functions while preserving differential privacy. Specifically, we

show that adding an appropriate Gaussian process to the function of interest yields differential pri-

vacy. When the functions lie in the reproducing kernel Hilbert space (RKHS) generated by the

covariance kernel of the Gaussian process, then the correct noise level is established by measur-

ing the “sensitivity” of the function in the RKHS norm. As examples we consider kernel density

estimation, kernel support vector machines, and functions in RKHSs.

Keywords: differential privacy, density estimation, Gaussian processes, reproducing kernel Hilbert

space

1. Introduction

Suppose we have database D which consists of measurements of a set of individuals. We want to

release a summary of D without compromising the privacy of those individuals in the database.

One framework for defining privacy rigorously in such problems is differential privacy (Dwork

et al., 2006b; Dwork, 2006). The basic idea is to produce an output via random noise addition.

An algorithm which does this may be thought of as inducing a distribution PD on the output space

(where the randomness is due to internal “coin flips” of the algorithm), for every input data set D.

Differential privacy, defined in Section 2, requires that PD not depend too strongly on any single

element of the database D.

The literature on differential privacy is vast. Algorithms that preserve differential privacy have

been developed for boosting, parameter estimation, clustering, logistic regression, SVM learning

and many other learning tasks. See, for example, Dwork et al. (2010), Chaudhuri and Monteleoni

(2008), Smith (2011), Chaudhuri and Monteleoni (2011), Nissim et al. (2007), Kasiviswanathan

et al. (2008), Barak et al. (2007), and references therein. In all these cases, the data (both the input

and output) are assumed to be real numbers or vectors. In this paper we are concerned with a setting

in which the output, and possibly the input data set, consist of functions.

c©2013 Rob Hall, Alessandro Rinaldo and Larry Wasserman.
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A concept that has been important in differential privacy is the “sensitivity” of the output (Dwork

et al., 2006b). In the case of vector valued output the sensitivity is typically measured in the Eu-

clidean norm or the ℓ1-norm. We find that when the output is a function the sensitivity may be

measured in terms of an RKHS norm. To establish privacy a Gaussian process may be added to the

function with noise level calibrated to the “RKHS sensitivity” of the output.

The motivation for considering function valued data is two-fold. First, in some problems the

data are naturally function valued, that is, each data point is a function. For example, growth

curves, temperature profiles, and economic indicators are often of this form. This has given rise to

a subfield of statistics known as functional data analysis (see, for instance, Ramsay and Silverman,

1997). Second, even if the data are not functions, we may want to release a data summary that is a

function. For example, if the data d1, . . . ,dn ∈ R
d are a sample from a distribution with density f

then we can estimate the density with the kernel density estimator

f̂ (x) =
1

n

n

∑
i=1

W

( ||x−di||
h

)
, x ∈ R

d ,

where W is a kernel (see, for instance, Wasserman, 2006) and h> 0 is the bandwidth parameter. The

density estimator is useful for may tasks such as clustering and classification. We may then want

to release a “version” of the density estimator f̂ in a way which fulfills the criteria of differential

privacy. The utility of such a procedure goes beyond merely estimating the underlying density.

In fact, suppose the goal is to release a privatized database. With a differentially private density

estimator in hand, a large sample of data may be drawn from that density. The release of such a

sample would inherit the differential privacy properties of the density estimator: see, in particular,

Wasserman and Zhou (2010) and Machanavajjhala et al. (2008). This is a very attractive proposition,

since a differentially private sample of data could be used as the basis for any number of statistical

analyses which may have been brought to bear against the original data (for instance, exploratory

data analysis, model fitting, etc).

Histograms are an example of a density estimator that has been “privatized” in previous litera-

ture (Wasserman and Zhou, 2010; Chawla et al., 2005). However, as density estimators, histograms

are suboptimal because they are not smooth. Specifically, they do converge at the minimax rate un-

der the assumption that the true density is smooth. The preferred method for density estimation in

statistics is kernel density estimation. The methods developed in this paper lead to a private kernel

density estimator.

In addition to kernel density estimation, there are a myriad of other scenarios in which the result

of a statistical analysis is a function. For example, the regression function or classification function

from a supervised learning task. We demonstrate how the theory we develop may be applied in

these contexts as well.

Since a function over a real valued domain is characterized by an infinite number of points

it is not feasible to output the function directly. We give methods which in essence permit the

user to request the evaluation of the private function at arbitrarily many input points. These points

may be specified a-priori, or after the construction of the function, or even adaptively based on the

outputs given, it makes no difference to the privacy guarantee. However we note that in the case

when the points are specified a-priori (for example, a grid over the domain) that the release of the

function values corresponds to the release of a finite dimensional vector. In this case we may regard

this work as providing a conceptually clean way to determine the sensitivity of this vector so that

standard finite dimensional privacy techniques may be applied.
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Outline. After putting our contribution in the context of some related work, we introduce some

notation and review the definition of differential privacy in Section 2. We also give a demonstra-

tion of a technique to achieve the differential privacy for a vector valued output. The theory for

demonstrating differentially privacy of functions is established in Section 3. In Section 4 we apply

the theory to the problems of kernel density estimation and kernel SVM learning. We also demon-

strate how the theory may apply to a broad class of functions (a Sobolev space). Section 5 discusses

possible algorithms for outputting functions.

1.1 Related Work

There are a few lines of research in the differential privacy literature that are related to this work. In

addition to the foundational papers mentioned above there has already been interest in the differen-

tially private release of functions such as support vector machines. Independently Rubinstein et al.

(2010) and Chaudhuri and Monteleoni (2011) demonstrated that a private approximation to a non-

private kernel support vector machine could be made by considering a certain finite dimensional

projection of the original function. In essence they construct a finite dimensional feature space so

that the classification function may be characterized by a finite dimensional vector of coefficients,

at which point standard techniques may be brought to bear to ensure privacy. Here we give an alter-

nate method for the release of the classification function (or regression function) which avoids this

approximation, although we do so by employing a weaker type of differential privacy. Our method

in essence results in an infinite dimensional private function which is not necessarily characterized

by any finite dimensional vector. Rather we can permit the user to query the value of the function at

any arbitrary number of input points.

There has also been research in the literature regarding the generation of synthetic data sets. For

example, Barak et al. (2007) and more recently Hardt et al. (2010) give techniques which output a

differentially private contingency table. A recent summary of related methods is in Charest (2012).

These contingency tables may be subjected to whatever statistical analysis is required, while still

maintaining privacy. In the case that the original data is not categorical (for example, containing real

valued measurements) there are two immediate options, the first is to divide the range of the vari-

ables up into bins and to essentially make the data categorical then to apply these techniques. This is

conceptually simple however the resulting density estimator fails to achieve the correct convergence

rate under the usual regularity conditions Wasserman (2006) (namely the histogram density estima-

tor achieves the rate of n−2/(2+d) whereas the kernel density estimate achieves the rate n−4/(4+d) in

d dimensions). The second approach is to perform some other kind of density estimation on the

input data in a way which admits the differential privacy, and then to sample that density to generate

synthetic data. So far differentially private density estimation is considered in Smith (2011) for

parametric models and Wasserman and Zhou (2010) for non-parametric estimation. In this work

we give a technique which is useful for the differentially private estimation of a density in arbi-

trary dimension, and which achieves the same convergence rate (up to constants) as the non-private

estimator.

It is worth noting that the availability of a differentially private synthetic data set allows the

recipient to compute whatever function he wishes on the data. For example he may compute his own

support vector machine using that data. This may seem to obviate the need for methods to compute

private kernel machines and other functions. However we note that the techniques mentioned above

for releasing a data set involved computing a density estimator as a first step (be it discrete or
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otherwise) and so the quality of the released data (which will ultimately dictate the quality of the

learned function) depends on the convergence rate of these estimators—which are typically slow

in high dimensions. On the other hand a kernel support vector machine learned on the original

data may converge to a good classifier with a relatively small number of samples, and so building

a private version of that directly may lead to better classification performance. Therefore although

private synthetic data may be seen as a panacea for differential privacy, it is important to remember

that it in essence taints all analyses with the curse of dimensionality.

2. Differential Privacy

Here we recall the definition of differential privacy and introduce some notation.

Let D = (d1, . . . ,dn) ∈ D be an input database in which di represents a row or an individual, and

where D is the space of all such databases of n elements. For two databases D,D′, we say they are

“adjacent” or “neighboring” and write D ∼ D′ whenever both have the same number of elements,

but differ in one element. In other words, there exists a permutation of D having Hamming distance

of 2 to D′. In some other works databases are called “adjacent” whenever one database contains the

other together with exactly one additional element.

We may characterize a non-private algorithm in terms of the function it outputs, for example

by, θ : D → R
d . Thus we write θD = θ(D) to mean the output when the input database is D.

Thus, a computer program which outputs a vector may be characterized as a family of vectors

{θD : D ∈ D}, one for every possible input database. Likewise a randomized computer program

may be characterized by the distributions {PD : D ∈ D} it induces on the output space (for example,

R
d) when the input is D. In the literature such a set of distributions is sometimes referred to as a

“mechanism.” We consider randomized algorithms where the input is a database in D and the output

takes values in a measurable space Ω endowed with the σ-field A . Thus, to each such algorithm

there correspond the set of distributions {PD : D ∈ D} on (Ω,A) indexed by databases. We phrase

the definition of differential privacy using this characterization of randomized algorithms.

Definition 1 (Differential Privacy) A set of distributions {PD : D∈D} is called (α,β)-differentially

private, or said to “achieve (α,β)-DP” whenever for all D ∼ D′ ∈ D we have:

PD(A)≤ eαPD′(A)+β, ∀A ∈ A , (1)

where α,β ≥ 0 are parameters, and A is the finest σ-field on which all PD are defined.

Typically the above definition is called “approximate differential privacy” whenever β > 0, and

“(α,0)-differential privacy” is shortened to “α-differential privacy.” It is important to note that

the relation D ∼ D′ is symmetric, and so the inequality (1) is required to hold when D and D′

are swapped. Throughout this paper we take α ≤ 1, since this simplifies some proofs. We note

that an alternate notion of adjacency for databases also appears in some of the differential privacy

literature. There databases are called adjacent whenever one is a strict subset of the other and

contains exactly one less entry. We remark that the techniques we present can be reformulated

under this definition, but we use the above definition of adjacency since it leads to slightly simpler

forms for the sensitivity.

The σ-field A is rarely mentioned in the literature on differential privacy but is actually quite

important. For example if we were to take A = {Ω, /0} then the condition (1) is trivially satisfied by
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any randomized algorithm. To make the definition as strong as possible we insist that A be the finest

available σ-field on which the PD are defined. Therefore when Ω is discrete the typical σ-field is

A = 2Ω (the class of all subsets of Ω), and when Ω is a space with a topology it is typical to use the

completion of the Borel σ-field (the smallest σ-field containing all open sets). We raise this point

since when Ω is a space of functions, the choice of σ-field is more delicate.

2.1 Differential Privacy of Finite Dimensional Vectors

Dwork et al. (2006a) give a technique to achieve approximate differential privacy for general vector

valued outputs in which the “sensitivity” may be bounded. We review this below, since the result is

important in the demonstration of the privacy of our methods which output functions. What follows

in this section is a mild alteration to the technique developed by Dwork et al. (2006a) and McSherry

and Mironov (2009), in that the “sensitivity” of the class of vectors is measured in the Mahalanobis

distance rather than the usual Euclidean distance.

In demonstrating the differential privacy, we make use of the following lemma which is simply

an explicit statement of an argument used in a proof by Dwork et al. (2006a).

Lemma 2 Suppose that, for all D ∼ D′, there exists a set A⋆
D,D′ ∈ A such that, for all S ∈ A ,

S ⊆ A⋆
D,D′ ⇒ PD(S)≤ eαPD′(S) (2)

and

PD(A
⋆
D,D′)≥ 1−β. (3)

Then the family {PD} achieves the (α,β)-DP.

Proof Let S ∈ A . Then,

PD(S) = PD(S∩A⋆)+PD(S∩A⋆C)≤ PD(S∩A⋆)+β

≤ eαPD′(S∩A⋆)+β ≤ eαPD′(S)+β.

The first inequality is due to (3), the second is due to (2) and the third is due to the subadditivity of

measures.

The above result shows that, so long as there is a large enough (in terms of the measure PD) set on

which the (α,0)-DP condition holds, then the approximate (α,β)-DP is achieved.

Remark 1 If (Ω,A) has a σ-finite dominating measure λ, then for (2) to hold a sufficient condition

is that the ratio of the densities be bounded on some set A⋆
D,D′:

∀a ∈ A⋆
D,D′ :

dPD

dλ
(a)≤ eα dPD′

dλ
(a). (4)

This follows from the inequality

PD(S) =
∫

S

dPD

dλ
(a) dλ(a)≤

∫
S

eα dPD′

dλ
(a) dλ(a) = eαPD′(S).
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In our next result we show that approximate differential privacy is achieved via (4) when the

output is a real vector, say vD = v(D)∈R
d , whose dimension does not depend on the database D. An

example is when the database elements di ∈R
d and the output is the mean vector v(D) = n−1 ∑n

i=1 di.

We note that this is basically a re-statement of the well-known fact that the addition of appropriate

Gaussian noise to a vector valued output will lead to approximate differential privacy.

Proposition 3 Suppose that, for a positive definite symmetric matrix M ∈ R
d×d , the family of vec-

tors {vD : D ∈ D} ⊂ R
d satisfies

sup
D∼D′

‖M−1/2(vD − vD′)‖2 ≤ ∆. (5)

Then the randomized algorithm which, for input database D outputs

ṽD = vD +
c(β)∆

α
Z, Z ∼ Nd(0,M)

achieves (α,β)-DP whenever

c(β)≥
√

2log
2

β
. (6)

Proof Since the Gaussian measure on R
d admits the Lebesgue measure λ as a σ-finite dominating

measure we consider the ratio of the densities

dPD(x)/dλ

dPD′(x)/dλ
= exp

{
α2

2c(β)2∆2

[
(x− vD′)M−1(x− vD′)− (x− vD)

T M−1(x− vD)
]}

.

This ratio exceeds eα only when

2xT M−1(vD − vD′)+ vT
D′M

−1vD′ − vT
DM−1vD ≥ 2

c(β)2∆2

α
.

We consider the probability of this set under PD, in which case we have x = vD + c(β)∆
α M1/2z, where

z is an isotropic normal with unit variance. We have

c(β)∆

α
zT M−1/2(vD − vD′)≥ c(β)2∆2

α2
− 1

2
(vD − vD′)T M−1(vD − vD′).

Multiplying by α
c(β)∆ and using (5) gives

zT M−1/2(vD − vD′)≥ c(β)∆

α
− α∆

2c(β)
.

Note that the left side is a normal random variable with mean zero and variance smaller than ∆2.

The probability of this set is increasing with the variance of said variable, and so we examine the

probability when the variance equals ∆2. We also restrict to α ≤ 1, and let y ∼ N (0,1), yielding

P

(
zT M−1/2(vD − vD′)≥ c(β)∆

α
− α∆

2c(β)

)
≤ P

(
∆y ≥ c(β)∆

α
− α∆

2c(β)

)

≤ P

(
y ≥ c(β)− 1

2c(β)

)

≤ β,
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where c(β) is as defined in (6) and the final inequality is proved in Dwork (2006). Thus lemma 2

gives the differential privacy.

Remark 2 The quantity (5) is a mild modification of the usual notion of “sensitivity” or “global

sensitivity” (Dwork et al., 2006b). It is nothing more than the sensitivity measured in the Maha-

lanobis distance corresponding to the matrix M. The case M = I corresponds to the usual Euclidean

distance, a setting that has been studied previously by McSherry and Mironov (2009), among others.

The use of this matrix allows for smaller noise magnitudes in the case when the difference of vectors

on neighboring data sets are elements of some ellipsoid rather than a sphere. A simple case when

this is advantageous is when the released function is an affine transformation of a sample mean of

input vectors.

2.2 The Implications of Approximate Differential Privacy

The above definitions provide a strong privacy guarantee in the sense that they aim to protect against

an adversary having almost complete knowledge of the private database. Specifically, an adversary

knowing all but one of the data elements and having observed the output of a private procedure,

will remain unable to determine the identity of the data element which is unknown to him. To see

this, we provide an analog of theorem 2.4 of Wasserman and Zhou (2010), who consider the case of

α-differential privacy.

Let the adversary’s database be denoted by DA = (d1, . . . ,dn−1), and the private database by

D = (d1, . . . ,dn). First note that before observing the output of the private algorithm, the adversary

could determine that the private database D lay in the set {(d1, . . . ,dn−1,d) ∈ D} . Thus, the private

database comprises his data with one more element. Since all other databases may be excluded from

consideration by the adversary we concentrate on those in the above set. In particular, we obtain the

following analog of theorem 2.4 of Wasserman and Zhou (2010).

Proposition 4 Let X ∼ PD where the family PD achieves the (α,β)-approximate DP. Any level γ test

of: H : D = D0 vs V : D 6= D0 has power bounded above by γeα +β.

The above result follows immediately from noting that the rejection region of the test is a measurable

set in the space and so obeys the constraint of the differential privacy. The implication of the above

proposition is that the power of the test will be bounded close to its size. When α,β are small, this

means that the test is close to being “trivial” in the sense that it is no more likely to correctly reject

a false hypothesis than it is to incorrectly reject the true one.

3. Approximate Differential Privacy for Functions

The goal of the release a function raises a number of questions. First what does it mean for a

computer program to output a function? Second, how can the differential privacy be demonstrated?

In this section we continue to treat randomized algorithms as measures, however now they are

measures over function spaces. In section 5 we demonstrate concrete algorithms, which in essence

output the function on any arbitrary countable set of points.

We cannot expect the techniques for finite dimensional vectors to apply directly when dealing

with functions. The reason is that σ-finite dominating measures of the space of functions do not
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exist, and, therefore, neither do densities. However, there exist probability measures on the spaces

of functions. Below, we demonstrate the approximate differential privacy of measures on function

spaces, by considering random variables which correspond to evaluating the random function on a

finite set of points.

We consider the family of functions over T = R
d (where appropriate we may restrict to a com-

pact subset such as the unit cube in d-dimensions):

{ fD : D ∈ D} ⊂ R
T .

A before, we consider randomized algorithms which on input D, output some f̃D ∼ PD where

PD is a measure on R
T corresponding to D. The nature of the σ-field on this space will be described

below.

3.1 Differential Privacy on the Field of Cylinders

We define the “cylinder sets” of functions (see Billingsley, 1995) for all finite subsets S=(x1, . . . ,xn)
of T , and Borel sets B of Rn

CS,B =
{

f ∈ R
T : ( f (x1), . . . , f (xn)) ∈ B

}
.

These are just those functions which take values in prescribed sets, at those points in S. The family

of sets: CS = {CS,B : B ∈ B(Rn)} forms a σ-field for each fixed S, since it is the preimage of B(Rn)
under the operation of evaluation on the fixed finite set S. Taking the union over all finite sets S

yields the collection

F0 =
⋃

S:|S|<∞

CS.

This is a field (see Billingsley, 1995 page 508) although not a σ-field, since it does not have the

requisite closure under countable intersections (namely it does not contain cylinder sets for which

S is countably infinite). We focus on the creation of algorithms for which the differential privacy

holds over the field of cylinder sets, in the sense that, for all D ∼ D′ ∈ D ,

P( f̃D ∈ A)≤ eαP( f̃D′ ∈ A)+β, ∀A ∈ F0. (7)

This statement appears to be prima facie unlike the definition (1), since F0 is not a σ-field on

R
T . However, we give a limiting argument which demonstrates that to satisfy (7) is to achieve the

approximate (α,β)-DP throughout the generated σ-field. First we note that satisfying (7) implies

that the release of any finite evaluation of the function achieves the differential privacy. Since for

any finite S ⊂ T , we have that CS ⊂ F0, we readily obtain the following result.

Proposition 5 Let x1, . . . ,xn be any finite set of points in T chosen a-priori. Then whenever (7)

holds, the release of the vector (
f̃D(x1), . . . , f̃D(xn)

)

satisfies the (α,β)-DP.

Proof We have that

PD

((
f̃ (x1), . . . , f̃ (xn)

)
∈ A
)
= PD( f̃ ∈C{x1,...,xn},A).
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The claimed privacy guarantee follows from (7).

We now give a limiting argument to extend (7) to the generated σ-field (or, equivalently, the

σ-field generated by the cylinders of dimension 1)

F
def
= σ(F0) =

⋃
S

CS

where the union extends over all the countable subsets S of T . The second equality above is due to

Billingsley (1995) theorem 36.3 part ii.

Note that, for countable S, the cylinder sets take the form

CS,B =
{

f ∈ R
T : f (xi) ∈ Bi, i = 1,2, . . .

}
=

∞⋂
i=1

C{xi},Bi
,

where Bi’s are Borel sets of R.

Proposition 6 Let (7) hold. Then, the family {PD : D ∈ D} on (RT ,F ) satisfies for all D ∼ D′ ∈ D:

PD(A)≤ eαPD′(A)+β, ∀A ∈ F .

Proof Define CS,B,n =
⋂n

i=1C{ti},Bi
. Then, the sets CS,B,n form a sequence of sets which decreases

towards CS,B and CS,B = limn→∞CS,B,n. Since the sequence of sets is decreasing and the measure in

question is a probability (hence bounded above by 1), we have

PD(CS,B) = PD( lim
n→∞

CS,B,n) = lim
n→∞

PD(CS,B,n).

Therefore, for each pair D ∼ D′ and for every ε > 0, there exists an n0 so that for all n ≥ n0

|PD(CS,B)−PD(CS,B,n)| ≤ ε, |PD′(CS,B)−PD′(CS,B,n)| ≤ ε.

The number n0 depends on whichever is the slowest sequence to converge. Finally we obtain

PD(CS,B)≤ PD(CS,B,n0
)+ ε

≤ eαPD′(CS,B,n0
)+β+ ε

≤ eαPD′(CS,B)+β+(1+ eα)ε

≤ eαPD′(CS,B)+β+3ε.

Since this holds for all ε > 0 we conclude that PD(CS,B)≤ eαPD′(CS,B)+β.

In principle, if it were possible for a computer to release a complete description of the function

f̃D then this result would demonstrate the privacy guarantee achieved by our algorithm. In practice

a computer algorithm which runs in a finite amount of time may only output a finite set of points,

hence this result is mainly of theoretical interest. However, in the case in which the functions to be

output are continuous, and the restriction is made that PD are measures over C[0,1] (the continuous

functions on the unit interval), another description of the σ-field becomes available. Namely, the
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restriction of F to the elements of C[0,1] corresponds to the Borel σ-field over C[0,1] with the

topology induced by the uniform norm (‖ f‖∞ = supt | f (t)|). Therefore in the case of continuous

functions, differential privacy over F0 hence leads to differential privacy throughout the Borel σ-

field.

In summary, we find that if every finite dimensional projection of the released function sat-

isfies differential privacy, then so does every countable-dimensional projection. We now explore

techniques which achieve the differential privacy over these σ-fields.

3.2 Differential Privacy via the Exponential Mechanism

A straightforward means to output a function in a way which achieves the differential privacy is to

make use of the so-called “exponential mechanism” of McSherry and Talwar (2007). This approach

entails the construction of a suitable finite set of functions G = {gi, . . . ,gm} ∈ R
T , in which every

fD has a reasonable approximation, under some distance function d. Then, when the input is D, a

function is chosen to output by sampling the set of G with probabilities given by

PD(gi) ∝ exp

{−α

2s
d(gi, fD)

}
, s

def
= sup

D∼D′
d( fD, fD′).

McSherry and Talwar (2007) demonstrate that such a technique achieves the α-differential privacy,

which is strictly stronger than the (α,β)-differential privacy we consider here. Although this tech-

nique is conceptually appealing for its simplicity, it remains challenging to use in practice since the

set of functions G may need to be very large in order to ensure the utility of the released function

(in the sense of expected error). Since the algorithm which outputs from PD must obtain the nor-

malization constant to the distribution above, it must evidently compute the probabilities for each

gi, which may be extremely time consuming. Note that techniques such as importance sampling are

also difficult to bring to bear against this problem when it is important to maintain utility.

The technique given above can be interpreted as outputting a discrete random variable, and

fulfilling privacy definition with respect to the σ-field consisting of the powerset of G. This implies

the privacy with respect to the cylinder sets, since the restriction of each cylinder set to the elements

of G corresponds some subset of G.

We note that the exponential mechanism above essentially corresponded to a discretization of

the function space R
T . An alternative is to discretize the input space T , and to approximate the

function by a piecewise constant function where the pieces correspond to the discretization of T .

Thereupon the approximation may be regarded as a real valued vector, with one entry for the value

of each piece of the function. This is conceptually appealing but it remains to be seen whether

the sensitivity of such a vector valued output could be bounded. In the next section we describe a

method which may be regarded as similar to the above, and which has the nice property that the

choice of discretization is immaterial to the method and to the determination of sensitivity.

3.3 Differential Privacy via Gaussian Process Noise

We propose to use measures PD over functions, which are Gaussian processes. The reason is that

there is a strong connection between these measures over the infinite dimensional function space,

and the Gaussian measures over finite dimensional vector spaces such as those used in Proposition 3.

Therefore, with some additional technical machinery which we will illustrate next, it is possible to

move from differentially private measures over vectors to those over functions.
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A Gaussian process indexed by T is a collection of random variables {Xt : t ∈ T}, for which

each finite subset is distributed as a multivariate Gaussian (see, for instance, Adler, 1990; Adler

and Taylor, 2007). A sample from a Gaussian process may be considered as a function T → R, by

examining the so-called “sample path” t → Xt . The Gaussian process is determined by the mean

and covariance functions, defined on T and T 2 respectively, as

m(t) = EXt , K(s, t) = Cov(Xs,Xt).

For any finite subset S ⊂ T , the random vector {Xt : t ∈ S} has a normal distribution with the means,

variances, and covariances given by the above functions. Such a “finite dimensional distribution”

may be regarded as a projection of the Gaussian process. Below we propose particular mean and

covariance functions for which Proposition 3 will hold for all finite dimensional distributions. These

will require some smoothness properties of the family of functions { fD}. We first demonstrate the

technical machinery which allows us to move from finite dimensional distributions to distributions

on the function space, and then we give differentially private measures on function spaces of one

dimension. Finally, we extend our results to multiple dimensions.

Proposition 7 Let G be a sample path of a Gaussian process having mean zero and covariance

function K. Let M denote the Gram matrix

M(x1, . . . ,xn) =




K(x1,x1) · · · K(x1,xn)
...

. . .
...

K(xn,x1) · · · K(xn,xn)


 .

Let { fD : D ∈ D} be a family of functions indexed by databases. Then the release of

f̃D = fD +
∆c(β)

α
G

is (α,β)-differentially private (with respect to the cylinder σ-field F ) whenever

sup
D∼D′

sup
n<∞

sup
(x1,...,xn)∈T n

∥∥∥∥∥∥∥
M−1/2(x1, . . . ,xn)




fD(x1)− fD′(x1)
...

fD(xn)− fD′(xn)




∥∥∥∥∥∥∥
2

≤ ∆. (8)

Proof For any finite set (x1, . . . ,xn) ∈ T n, the vector (G(x1), . . . ,G(xn)) follows a multivariate nor-

mal distribution having mean zero and covariance matrix specified by Cov(G(xi),G(x j))=K(xi,x j).

Thus for the vector obtained by evaluation of f̃ at those points, differential privacy is demon-

strated by Proposition 3 since (8) implies the sensitivity bound (5). Thus, for any n < ∞ and any

(x1, . . . ,xn) ∈ T n we have B ∈ B(Rn)

PD

((
f̃ (x1), . . . , f̃ (xn)

)
∈ B
)
≤ eαPD′

((
f̃ (x1), . . . , f̃ (xn)

)
∈ B
)
+β

Finally note that for any A ∈ F0, we may write A = CXn,B for some finite n, some vector Xn =
(x1, . . . ,xn) ∈ T n and some Borel set B. Then

PD( f̃ ∈ A) = PD

((
f̃ (x1), . . . , f̃ (xn)

)
∈ B
)
.

Combining this with the above gives the requisite privacy statement for all A ∈ F0. Proposition 6

carries this to F .
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3.4 Functions in a Reproducing Kernel Hilbert Space

When the family of functions lies in the reproducing kernel Hilbert space (RKHS) which corre-

sponds to the covariance kernel of the Gaussian process, then establishing upper bounds of the form

(8) is simple. Below, we give some basic definitions for RKHSs, and refer the reader to Bertinet

and Agnan (2004) for a more detailed account. We first recall that the RKHS is generated from the

closure of those functions which can be represented as finite linear combinations of the kernel,

H0 =

{
n

∑
i=1

ξiKxi

}

for some finite n and sequence ξi ∈ R, xi ∈ T , and where Kx = K(x, ·). For two functions f =

∑n
i=1 θiKxi

and g = ∑m
j=1 ξ jKy j

the inner product is given by

〈 f ,g〉H =
n

∑
i=1

∑
j=1m

θiξ jK(xi,y j),

and the corresponding norm of f is ‖ f‖H =
√
〈 f , f 〉H . This gives rise to the “reproducing” nature

of the Hilbert space, namely, 〈Kx,Ky〉H = K(x,y). Furthermore, the functionals 〈Kx, ·〉H correspond

to point evaluation,

〈Kx, f 〉H =
n

∑
i=1

θiK(xi,x) = f (x).

The RKHS H is then the closure of H0 with respect to the RKHS norm. We now present the main

theorem which suggests an upper bound of the form required in Proposition 7.

Proposition 8 For f ∈ H , where H is the RKHS corresponding to the kernel K, and for any finite

sequence x1, . . . ,xn of distinct points in T , we have:

∥∥∥∥∥∥∥∥




K(x1,x1) · · · K(x1,xn)
...

. . .
...

K(xn,x1) · · · K(xn,xn)




−1/2


f (x1)
...

f (xn)




∥∥∥∥∥∥∥∥
2

≤ ‖ f‖H .

The proof is in the appendix. Together with Proposition 7, this result implies the following.

Corollary 9 For { fD : D ∈ D} ⊆ H , the release of

f̃D = fD +
∆c(β)

α
G

is (α,β)-differentially private (with respect to the cylinder σ-field) whenever

∆ ≥ sup
D∼D′

‖ fD − fD′‖H .

and when G is the sample path of a Gaussian process having mean zero and covariance function K,

given by the reproducing kernel of H .
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4. Examples

We now give some examples in which the above technique may be used to construct private versions

of functions in an RKHS.

4.1 Kernel Density Estimation

Let fD be the kernel density estimator, where D is regarded as a sequence of points xi ∈ T as

i = 1, . . . ,n drawn from a distribution with density f . Let h denote the bandwidth. Assuming a

Gaussian kernel, the estimator is

fD(x) =
1

n(2πh2)d/2

n

∑
i=1

exp

{−‖x− xi‖2
2

2h2

}
, x ∈ T.

Let D ∼ D′ so that D′ = x1, . . . ,xn−1,x
′
n (no loss of generality is incurred by demanding that the

data sequences differ in their last element). Then,

( fD − fD′)(x) =
1

n(2πh2)d/2

(
exp

{
−‖x− xn‖2

2

2h2

}
− exp

{
−‖x− x′n‖2

2

2h2

})
.

If we use the Gaussian kernel as the covariance function for the Gaussian process then upper

bounding the RKHS norm of this function is trivial. Thus, let K(x,y) = exp
{
− ‖x−y‖2

2

2h2

}
. Then

fD − fD′ = 1

n(2πh2)d/2

(
Kxn

−Kx′n

)
and

‖ fD − fD′‖2
H =

(
1

n(2πh2)d/2

)2 (
K(xn,xn)+K(x′n,x

′
n)−2K(xn,x

′
n)
)

≤ 2

(
1

n(2πh2)d/2

)2

.

If we release

f̃D = fD +
c(β)

√
2

αn(2πh2)d/2
G

where G is a sample path of a Gaussian process having mean zero and covariance K, then differential

privacy is demonstrated by corollary 9. We may compare the utility of the released estimator to that

of the non-private version. Under standard smoothness assumptions on f , it is well-known (see

Wasserman, 2006) that the risk is

R = E

∫
( fD(x)− f (x))2dx = c1h4 +

c2

nhd
,

for some constants c1 and c2. The optimal bandwidth is h ≍ (1/n)1/(4+d) in which case R =

O(n−
4

4+d ).
For the differentially private function it is easy to see that

E

∫
( f̃D(x)− f (x))2dx = O

(
h4 +

c2

nhd

)
.

Therefore, at least in terms of rates, no accuracy has been lost.
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Figure 1: An example of a kernel density estimator (the solid curve) and the released version (the

dashed curve). This uses the method developed in Section 4.1. Here we sampled n = 100

points from a mixture of two normals centered at 0.3 and 0.7 respectively. We use h = 0.1
and have α = 1 and β = 0.1. The Gaussian Process is evaluated on an evenly spaced grid

of 1000 points between 0 and 1. Note that gross features of the original kernel density

estimator remain, namely the two peaks.

4.1.1 NON-ISOTROPIC KERNELS

The above demonstration of privacy also holds when the kernel is replaced by a non-isotropic Gaus-

sian kernel. In this case the kernel density estimate may take the form

fD(x) =
1

n(2π)d/2|H|1/2

n

∑
i=1

exp

{
−1

2
(x− xi)

T H−1(x− xi)

}
, x ∈ T,

where H is a positive definite matrix and |H| is the determinant. For example it may be required to

employ a different choice of bandwidth for each coordinate of the space, in which case H would be
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a diagonal matrix having non-equal entries on the diagonal. So long as H is fixed a-priori, privacy

may be established by adding a Gaussian process having mean zero and covariance given by

K(x,y) = exp

{
−1

2
(x− y)T H−1(x− y)

}
.

As above, the sensitivity is upper bounded, as

‖ fD − fD′‖2
H ≤ 2

(
1

n(2π)d/2|H|1/2

)2

.

Therefore it satisfies the (α,β)-DP to release

f̃D = fD +
c(β)

√
2

αn(2π)d/2|H|1/2
G,

where G is a sample path of a Gaussian process having mean zero and covariance K.

4.1.2 PRIVATE CHOICE OF BANDWIDTH

Note that the above assumed that h (or H) was fixed a-priori by the user. In usual statistical settings

h is a parameter that is tuned depending on the data (not simply set to the correct order of growth

as a function of n). Thus rather than fixed h the user would use ĥ which depends on the data itself.

In order to do this it is necessary to find a differentially private version of ĥ and then to employ the

composition property of differential privacy.

The typical way that the bandwidth is selected is by employing the leave-one-out cross valida-

tion. This consists of choosing a grid of candidate values for h, evaluating the leave one out log

likelihood for each value, and then choosing whichever is the maximizer. This technique may be

amenable to private analysis via the “exponential mechanism,” however it would evidently require

that T be a compact set which is known a-priori. An alternative is to use a “rule of thumb” (see

Scott, 1992) for determining the bandwidth which is given by

ĥ j =

(
4

(d +1)n

) 1
d+4 IQR j

1.34

In which IQR j is the observed interquartile range of the data along the jth coordinate. Thus this

method gives a diagonal matrix H as in the above section. To make a private version h̃ j we may use

the technique of Dwork and Lei (2009) in which a differentially private algorithm for the interquar-

tile range was developed.

4.2 Functions in a Sobolev Space

The above technique worked easily since we chose a particular RKHS in which we knew the kernel

density estimator to live. What’s more, since the functions themselves lay in the generating set of

functions for that space, the determination of the norm of the difference fD − fD′ was extremely

simple. In general we may not be so lucky that the family of functions is amenable to such analysis.

In this section we demonstrate a more broadly applicable technique which may be used whenever

the functions are sufficiently smooth. Consider the Sobolev space

H1[0,1] =

{
f ∈C[0,1] :

∫ 1

0
(∂ f (x))2 dλ(x)< ∞

}
.
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This is a RKHS with the kernel K(x,y) = exp{−γ |x− y|} for positive constant γ. The norm in this

space is given by

‖ f‖2
H =

1

2

(
f (0)2 + f (1))2

)
+

1

2γ

∫ 1

0
(∂ f (x))2 + γ2 f (t)2 dλ(t). (9)

See Bertinet and Agnan (2004) (p. 316) and Parzen (1961) for details. Thus for a family of functions

in one dimension which lay in the Sobolev space H1, we may determine a noise level necessary to

achieve the differential privacy by bounding the above quantity for the difference of two functions.

For functions over higher dimensional domains (as [0,1]d for some d > 1) we may construct an

RKHS by taking the d-fold tensor product of the above RKHS (see, in particular, Parzen, 1963;

Aronszajn, 1950, for details of the construction). The resulting space has the reproducing kernel

K(x,y) = exp{−γ‖x− y‖1} ,

and is the completion of the set of functions

G0 =
{

f : [0,1]d → R : f (x1, . . . ,xd) = f1(x1) · · · fd(xd), fi ∈ H1[0,1]
}
.

The norm over this set of functions is given by:

‖ f‖2
G0

=
d

∏
j=1

‖ fi‖2
H . (10)

The norm over the completed space agrees with the above on G0. The explicit form is obtained

by substituting (9) into the right hand side of (10) and replacing all instances of ∏d
j=1 f j(x j) with

f (x1, . . . ,x j). Thus the norm in the completed space is defined for all f possessing all first partial

derivatives which are all in L2.

We revisit the example of a kernel density estimator (with an isotropic Gaussian kernel). We

note that this isotropic kernel function is in the set G0 defined above, as

φµ,h(x) =
1

(2πh2)d/2
exp

{
−‖x−µ‖2

2

2h2

}
=

d

∏
j=1

1√
2πh

exp

{
−(x j −µ j)

2

2h2

}
=

d

∏
j=1

φµ j,h(x j).

Where φµ,h is the isotropic Gaussian kernel on R
d with mean vector µ and φµ j,h is the Gaussian

kernel in one dimension with mean µ j. We obtain the norm of the latter one dimensional function

by bounding the elements of the sum in (9) ad follows:

∫ 1

0
(∂φµ j,h(x))

2 dλ(x) ≤
∫ ∞

−∞

(
∂

1√
2πh

e−(x−µ j)
2/2h2

)2

dλ(x) =
1

4
√

πh3
,

and

∫ 1

0
φµ j,h(x)

2 dλ(x) ≤
∫ ∞

−∞

1

2πh2
e−(x−µ j)

2/h2

dλ(x) =
1

2
√

2πh
,
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where we have used the fact that

φµ j,h(x)
2 ≤ 1

2πh
, ∀x ∈ R

d .

Therefore, choosing γ = 1/h leads to

‖φµ j,h‖2
H ≤ 1

2πh2
+

1

8
√

πh2
+

1

4
√

2πh2
≤ 1√

2πh2
,

and

‖φµ,h‖2
H ≤ 1

(2π)d/2h2d
.

Finally,

‖ fD − fD′‖H = n−1‖φxn,h −φx′n,h‖H ≤ 2

(2π)d/4nhd

Therefore, we observe a technique which attains higher generality than the ad-hoc analysis of

the preceding section. However this is at the expense of the noise level, which grows at a higher rate

as d increases. An example of the technique applied to the same kernel density estimation problem

as above is given in Figure 2.

4.3 Minimizers of Regularized Functionals in an RKHS

The construction of the following section is due to Bousquet and Elisseeff (2002), who were inter-

ested in determining the sensitivity of certain kernel machines (among other algorithms) with the

aim of bounding the generalization error of the output classifiers. Rubinstein et al. (2010) noted that

these bounds are useful for establishing the noise level required for differential privacy of support

vector machines. They are also useful for our approach to privacy in a function space.

We consider classification and regression schemes in which the data sets D = {z1, . . . ,zn} with

zi = (xi,yi), where xi ∈ [0,1]d are some covariates, and yi is some kind of label, either taking values

on {−1,+1} in the case of classification or some taking values in some interval when the goal

is regression. Thus the output functions are from [0,1]d to a subset of R. The functions we are

interested in take the form

fD = argmin
g∈H

1

n
∑

zi∈D

ℓ(g,zi)+λ‖g‖2
H (11)

where H is some RKHS to be determined, and ℓ is the so-called “loss function.” We now recall a

definition from Bousquet and Elisseeff (2002) (using M in place of their σ to prevent confusion):

Definition 10 (M-admissible loss function: see Bousquet and Elisseeff, 2002) A loss function:

ℓ(g,z) = c(g(x),y) is called M-admissible whenever c it is convex in its first argument and Lips-

chitz with constant M in its first argument.

We will now demonstrate that for (11), whenever the loss function is admissible, the minimiz-

ers on adjacent data sets may be bounded close together in RKHS norm. Denote the part of the

optimization due to the loss function:

LD( f ) =
1

n
∑

zi∈D

ℓ( f ,zi).
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Figure 2: An example of a kernel density estimator (the solid curve) and the released version (the

dashed curve). The setup is the same as in Figure 1, but the privacy mechanism devel-

oped in Section 4.2 was used instead. Note that the released function does not have the

desirable smoothness of released function from Figure 1.

Using the technique from the proof of lemma 20 of Bousquet and Elisseeff (2002) we find that since

ℓ is convex in its first argument we have

LD( fD +ηδD′,D)−LD( fD)≤ η(LD( fD′)−LD( fD)),

where η ∈ [0,1] and we use δD′,D = fD′ − fD. This also holds when fD and fD′ swap places. Sum-

ming the resulting inequality with the above and rearranging yields

LD( fD′ −ηδD′,D)−LD( fD′)≤ LD( fD)−LD( fD +ηδD′,D).

Due to the definition of fD, fD′ as the minimizers of their respective functionals we have

LD( fD)+λ‖ fD‖2
H ≤ LD( fD +ηδD′,D)+λ‖ fD +ηδD′,D‖2

H

LD′( fD′)+λ‖ fD′‖2
H ≤ LD′( fD′ −ηδD′,D)+λ‖ fD′ −ηδD′,D‖2

H .
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This leads to the inequalities

0 ≥ λ
(
‖ fD‖2

H −‖ fD +ηδD′,D‖2
H +‖ fD′‖2

H −‖ fD′ −ηδD′,D‖2
H

)

+LD( fD)−LD( fD +ηδD′,D +LD′( fD′)−LD′( fD′ −ηδD′,D)

≥ 2λ‖ηδD′,D‖2
H −LD( fD′)+LD( fD′ −ηδD′,D)+LD′( fD′)−LD′( fD′ −ηδD′,D)

= 2λ‖ηδD′,D‖2
H +

1

n

(
ℓ(z, fD′)− ℓ(z, fD′ −ηδD′,D)+ ℓ(z′, fD′)− ℓ(z′, fD′ −ηδD′,D)

)
.

Moving the loss function term to the other side and using the Lipschitz property we finally obtain

that

‖ fD − fD′‖2
H ≤ M

λn
‖ fD − fD′‖∞.

What’s more, the reproducing property together with Cauchy-Schwarz inequality yields

| fD(x)− fD′(x)|= | 〈 fD − fD′ ,Kx〉H | ≤ ‖ fD − fD′‖H

√
K(x,x).

Combining with the previous result gives

‖ fD − fD′‖2
H ≤ M

λn
‖ fD − fD′‖H

√
sup

x

K(x,x),

which, in turn, leads to

‖ fD − fD′‖H ≤ M

λn

√
sup

x

K(x,x).

For a soft-margin kernel SVM we have the loss function: ℓ(g,z) = (1− yg(x))+, which means the

positive part of the term in parentheses. Since the label y takes on either plus or minus one, we find

this to be 1-admissible. An example of a kernel SVM in T = R
2 is shown in Figure 3.

5. Algorithms

There are two main modes in which functions fD could be released by the holder of the data D to the

outside parties. The first is a “batch” setting in which the parties designate some finite collection of

points x1 . . . ,xn ∈ T . The database owner computes f̃D(xi) for each i and return the vector of results.

At this point the entire transaction would end with only the collection of pairs (xi, f̃D(xi)) being

known to the outsiders. An alternative is the “online” setting in which outside users repeatedly

specify points in xi ∈ T , the database owner replies with f̃D(xi), but unlike the former setting he

remains available to respond to more requests for function evaluations. We name these settings

“batch” and “online” for their resemblance of the batch and online settings typically considered in

machine learning algorithms.

The batch method is nothing more than sampling a multivariate Gaussian, since the set

x1, . . . ,xn ∈ T specifies the finite dimensional distribution of the Gaussian process from which to

sample. The released vector is simply




f̃D(x1)
...

f̃D(xn)


∼ N







fD(x1)
...

fD(xn)


 ,

c(β)∆

α




K(x1,x1) · · · K(x1,xn)
...

. . .
...

K(xn,x1) · · · K(xn,xn)





 .
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Figure 3: An example of a kernel support vector machine. In the top image are the data points,

with the colors representing the two class labels (also points are used for one class and

crosses for the other). The background color corresponds to the class predicted by the

learned kernel svm. In the bottom image are the same data points, with the predictions of

the private kernel svm. This example uses the Gaussian kernel for classification.

In the online setting, the data owner upon receiving a request for evaluation at xi would sample the

Gaussian process conditioned on the samples already produced at x1, . . . ,xi−1. Let

Ci =




K(x1,x1) · · · K(x1,xi−1)
...

. . .
...

K(xi−1,x1) · · · K(xi−1,xi−1)


 ,
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Gi =




f̃D(x1)
...

f̃D(xi−1)


 , Vi =




K(x1,xi)
...

K(xi−1,xi)


 .

Then,

f̃D(xi)∼ N
(
V T

i C−1
i Gi, K(xi,xi)−V T

i C−1
i Vi

)
.

The database owner may track the inverse matrix C−1
i and after each request update it into C−1

i+1 by

making use of Schurs Complements combined with the matrix inversion lemma. Nevertheless we

note that as i increases the computational complexity of answering the request will in general grow.

In the very least, the construction of Vi takes time proportional to i. This may make this approach

problematic to implement in practice. However we note that when using the covariance kernel

K(x,y) = exp{−γ |x− y|1}

that a more efficient algorithm presents itself. This is the kernel considered in section 4.2. Due to

the above form of K, we find that for x < y < z we have: K(x,z) = K(x,y)K(y,z). Therefore in

using the above algorithm we would find that Vi is always contained in the span of at most two rows

of Ci. This is most evident when, for instance, xi < min j<i x j. In this case let m = argmin j<i x j

Vi = K(xi,xm)Ci(m), in which Ci(m) means the mth row of Ci. Therefore C−1
i Vi will be a sparse

vector with exactly one non-zero entry (taking value K(x,xm)) in the mth position. Similar algebra

applies whenever xi falls between two previous points, in which case Vi lays in the span of the two

rows corresponding to the closest point on the left and the closest on the right. Using the above

kernel with some choice of γ let

ρ(x,y) = eγ|x−y|− e−γ|x−y|.

Let ξ(xi) = f̃D(xi)− fD(xi) represent the noise process. We find that the conditional distribution of

ξ(xi) to be Normal with mean and variance given by:

Eξ(xi) =





K(xi,x(1))ξ(x(1)) xi < x(1)

K(xi,x(i−1))ξ(x(i−1)) xi > x(i−1)
ρ(x( j+1),xi)

ρ(x( j),x( j+1))
ξ(x( j))+

ρ(x( j),xi)

ρ(x( j),x( j+1))
ξ(x( j+1)) x( j) < xi < x( j+1),

and

Var[ f̃D(xi)] =





1−K(x,x(1))
2 xi < x(1)

1−K(x,x(i−1))
2 xi > x(i−1)

1−K(x,x( j))
ρ(x( j+1),xi)

ρ(x( j),x( j+1))
−K(x,x( j+1))

ρ(x( j),xi)

ρ(x( j),x( j+1))
x( j) < xi < x( j+1),

where x(1) < x(2) < · · ·< x(i−1) are the points x1, . . . ,xi−1 after being sorted into increasing order. In

using the above algorithm it is only necessary for the data owner to store the values xi and f̃D(xi).
When using the proper data structures, for example a sorted doubly linked list for the xi it is possible

to determine the mean and variance using the above technique in time proportional to log(i) which

is a significant improvement over the general linear time scheme above (note that the linked list is

suggested since then it is possible to update the list in constant time).
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6. Conclusion

We have shown how to add random noise to a function in such a way that differential privacy is

preserved. It would be interesting to study this method in the many applications of functional data

analysis (Ramsay and Silverman, 1997).

Interesting future work will be to address the issue of lower bounds for private functions. Specif-

ically, we can ask: Given that we want to release a differentially private function, what is the least

amount of noise that must necessarily be added in order to preserve differential privacy? This

question has been addressed in detail for real-valued, count-valued and vector-valued data (see, for

example, Hardt and Talwar, 2010). However, those techniques apply to the case of β = 0 where-

upon the family {PD} are all mutually absolutely continuous. In the case of β> 0 which we consider

this no longer applies and so the determination of lower bounds is complicated (for example, since

quantities such as the KL divergence are no longer bounded). Some work in this direction is in

McGregor et al. (2010) and Chaudhuri and Hsu (2012).
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Appendix A.

Proof of Proposition 8. Note that invertibility of the matrix is safely assumed due to Mercer’s

theorem. Denote the matrix by M−1. Denote by P the operator H → H defined by

P =
n

∑
i=1

Kxi

n

∑
j=1

(M−1)i, j

〈
Kx j

, ·
〉

H

We find this operator to be idempotent in the sense that P = P2:

P2 =
n

∑
i=1

Kxi

n

∑
j=1

(M−1)i, j

〈
Kx j

,
n

∑
k=1

Kxk

n

∑
l=1

(M−1)k,l 〈Kxl
, ·〉H

〉

H

=
n

∑
i=1

Kxi

n

∑
j=1

(M−1)i, j

n

∑
k=1

〈
Kx j

,Kxk

〉
H

n

∑
l=1

(M−1)k,l 〈Kxl
, ·〉H

=
n

∑
i=1

Kxi

n

∑
j=1

(M−1)i, j

n

∑
k=1

M j,k

n

∑
l=1

(M−1)k,l 〈Kxl
, ·〉H

=
n

∑
i=1

Kxi

n

∑
l=1

(M−1)i,l 〈Kxl
, ·〉H

= P.
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P is also self-adjoint due to the symmetry of M,

〈P f ,g〉H =

〈
n

∑
i=1

Kxi

n

∑
j=1

(M−1)i, j

〈
Kx j

, f
〉

H
,g

〉

H

=

〈
n

∑
i=1

〈Kxi
,g〉H

n

∑
j=1

(M−1)i, jKx j
, f

〉

H

=

〈
n

∑
j=1

Kx j

n

∑
i=1

(M−1)i, j 〈Kxi
,g〉H , f

〉

H

=

〈
n

∑
j=1

Kx j

n

∑
i=1

(M−1) j,i 〈Kxi
,g〉H , f

〉

H

= 〈Pg, f 〉H .

Therefore,

‖ f‖2
H = 〈 f , f 〉H

= 〈P f +( f −P f ),P f +( f −P f )〉H

= 〈P f ,P f 〉H +2〈P f , f −P f 〉H + 〈 f −P f , f −P f 〉H

= 〈P f ,P f 〉H +2
〈

f ,P f −P2 f
〉

H
+ 〈 f −P f , f −P f 〉H

= 〈P f ,P f 〉H + 〈 f −P f , f −P f 〉H

≥ 〈P f ,P f 〉H

= 〈 f ,P f 〉H .

The latter term is nothing more than the left hand side in the statement. In summary the quantity in

the statement of the theorem is just the square RKHS norm in the restriction of H to the subspace

spanned by the functions Kxi
. �

References

R.J. Adler. An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Pro-

cesses, volume 12 of Lecture Notes–Monograph series. Institute of Mathematical Statistics, 1990.

R.J. Adler and J.E. Taylor. Random Fields and Geometry (Springer Monographs in Mathematics).

Springer, 1 edition, June 2007. ISBN 0387481125.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society,

68, 1950.

B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and

consistency too: a holistic solution to contingency table release. Proceedings of the Twenty-

Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages

273–282, 2007.

725



HALL, RINALDO AND WASSERMAN

A. Bertinet and Thomas C. Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics.

Kluwer Academic Publishers, 2004.

P. Billingsley. Probability and Measure. Wiley-Interscience, 3 edition, 1995.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Research,

2:499–526, 2002.

A. Charest. Creation and Analysis of Differentially-Private Synthetic Datasets. PhD thesis, Carnegie

Mellon University, 2012.

K. Chaudhuri and D. Hsu. Convergence rates for differentially private statistical estimation. In

ICML’12, 2012.

K. Chaudhuri and C. Monteleoni. Privacy preserving logistic regression. NIPS 2008, 2008.

K. Chaudhuri and C. Monteleoni. Differentially private empirical risk minimization. Journal of

Machine Learning Research, 12:1069–1109, 2011.

S. Chawla, C. Dwork, F. McSherry, and K. Talwar. On the utility of privacy-preserving histograms.

UAI, 2005.

C. Dwork. Differential privacy. 33rd International Colloquium on Automata, Languages and Pro-

gramming, pages 1–12, 2006.

C. Dwork and J. Lei. Differential privacy and robust statistics. Proceedings of the 41st ACM

Symposium on Theory of Computing, pages 371–380, May–June 2009.

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via

distributed noise generation. EUROCRYPT, pages 486–503, 2006a.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data

analysis. Proceedings of the 3rd Theory of Cryptography Conference, pages 265–284, 2006b.

C. Dwork, G.N. Rothblum, and S. Vadhan. Boosting and differential privacy. Foundations of

Computer Science (FOCS), 2010 51st Annual IEEE Symposium, pages 51–60, 2010.

M. Hardt and K. Talwar. On the geometry of differential privacy. STOC ’10 Proceedings of the

42nd ACM Symposium on Theory of computing, pages 705–714, 2010.

M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially private

data release. Technical Report, 2010.

S. Kasiviswanathan, H. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What can we learn pri-

vately? Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,

pages 531–540, 2008.

A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. Privacy: Theory meets Practice

on the Map. Proceedings of the 24th International Conference on Data Engineering, pages 277–

286, 2008.

726



DIFFERENTIAL PRIVACY FOR FUNCTIONS

A. McGregor, I. Mironov, T. Pitassi, O. Reingold, K. Talwar, and S. Vadhan. The limits of two-party

differential privacy. In FOCS’10, pages 81–90, 2010.

F. McSherry and I. Mironov. Differentially private recommender systems: building privacy into the

net. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 627–636, New York, NY, USA, 2009. ACM.

F. McSherry and K. Talwar. Mechanism design via differential privacy. Proceedings of the 48th

Annual IEEE Symposium on Foundations of Computer Science, pages 94–103, 2007.

K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analy-

sis. Proceedings of the 39th Annual ACM Symposium on the Theory of Computing, pages 75–84,

2007.

E. Parzen. An approach to time series analysis. The Annals of Mathematical Statistics, 32(4):

951–989, 1961.

E. Parzen. Probability density functionals and reproducing kernel hilbert spaces. Proceedings of the

Symposium on Time Series Analysis, 196:155–169, 1963.

J. Ramsay and B. Silverman. Functional Data Analysis. Springer, 1997.

B.I.P. Rubinstein, P.L. Bartlett, L. Huang, and N. Taft. Learning in a large function space: Privacy-

preserving mechanisms for svm learning. Journal of Privacy and Confidentiality, 2010.

D.W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley Series in

Probability and Statistics). Wiley, 1992.

A. Smith. Privacy-preserving statistical estimation with optimal convergence rates. In Proceedings

of the 43rd Annual ACM Symposium on the Theory of Computing, STOC ’11, pages 813–822,

New York, NY, USA, 2011. ACM.

L. Wasserman. All of Nonparametric Statistics. Springer, 2006.

L. Wasserman and S. Zhou. A statistical framework for differential privacy. The Journal of the

American Statistical Association, 105:375–389, 2010.

727



 



Journal of Machine Learning Research 14 (2013) 729-769 Submitted 3/12; Revised 11/12; Published 3/13

Sparsity Regret Bounds for Individual Sequences

in Online Linear Regression∗
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Abstract

We consider the problem of online linear regression on arbitrary deterministic sequences when the

ambient dimension d can be much larger than the number of time rounds T . We introduce the notion

of sparsity regret bound, which is a deterministic online counterpart of recent risk bounds derived in

the stochastic setting under a sparsity scenario. We prove such regret bounds for an online-learning

algorithm called SeqSEW and based on exponential weighting and data-driven truncation. In a

second part we apply a parameter-free version of this algorithm to the stochastic setting (regression

model with random design). This yields risk bounds of the same flavor as in Dalalyan and Tsybakov

(2012a) but which solve two questions left open therein. In particular our risk bounds are adaptive

(up to a logarithmic factor) to the unknown variance of the noise if the latter is Gaussian. We also

address the regression model with fixed design.

Keywords: sparsity, online linear regression, individual sequences, adaptive regret bounds

1. Introduction

Sparsity has been extensively studied in the stochastic setting over the past decade. This notion is

key to address statistical problems that are high-dimensional, that is, where the number of unknown

parameters is of the same order or even much larger than the number of observations. This is

the case in many contemporary applications such as computational biology (e.g., analysis of DNA

sequences), collaborative filtering (e.g., Netflix, Amazon), satellite and hyperspectral imaging, and

high-dimensional econometrics (e.g., cross-country growth regression problems).

A key message about sparsity is that, although high-dimensional statistical inference is impossi-

ble in general (i.e., without further assumptions), it becomes statistically feasible if among the many

unknown parameters, only few of them are non-zero. Such a situation is called a sparsity scenario

and has been the focus of many theoretical, computational, and practical works over the past decade

in the stochastic setting. On the theoretical side, most sparsity-related risk bounds take the form of

the so-called sparsity oracle inequalities, that is, risk bounds expressed in terms of the number of

non-zero coordinates of the oracle vector. As of now, such theoretical guarantees have only been

proved under stochastic assumptions.1

∗. A shorter version appeared in the proceedings of COLT 2011 (see Gerchinovitz 2011).

†. This research was carried out within the INRIA project CLASSIC hosted by École Normale Supérieure and CNRS.

1. One could object that most high-probability risk bounds derived for ℓ1-regularization methods are in fact deterministic

inequalities that hold true whenever the noise vector ε belong to some set S (see, e.g., Bickel et al. 2009). However,

c©2013 Sébastien Gerchinovitz.
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In this paper we address the prediction possibilities under a sparsity scenario in both determin-

istic and stochastic settings. We first prove that theoretical guarantees similar to sparsity oracle

inequalities can be obtained in a deterministic online setting, namely, online linear regression on

individual sequences. The newly obtained deterministic prediction guarantees are called sparsity

regret bounds. We prove such bounds for an online-learning algorithm which, in its most sophisti-

cated version, is fully automatic in the sense that no preliminary knowledge is needed for the choice

of its tuning parameters. In the second part of this paper, we apply our sparsity regret bounds—of

deterministic nature—to the stochastic setting (regression model with random design). One of our

key results is that, thanks to our online tuning techniques, these deterministic bounds imply sparsity

oracle inequalities that are adaptive to the unknown variance of the noise (up to logarithmic fac-

tors) when the latter is Gaussian. In particular, this solves an open question raised by Dalalyan and

Tsybakov (2012a).

In the next paragraphs, we introduce our main setting and motivate the notion of sparsity regret

bound from an online-learning viewpoint. We then detail our main contributions with respect to the

statistical literature and the machine-learning literature.

1.1 Introduction of a Deterministic Counterpart of Sparsity Oracle Inequalities

We consider the problem of online linear regression on arbitrary deterministic sequences. A fore-

caster has to predict in a sequential fashion the values yt ∈ R of an unknown sequence of observa-

tions given some input data xt ∈ X and some base forecasters ϕ j : X →R, 1 6 j 6 d, on the basis of

which he outputs a prediction ŷt ∈ R. The quality of the predictions is assessed by the square loss.

The goal of the forecaster is to predict almost as well as the best linear forecaster u ·ϕ , ∑d
j=1 u jϕ j,

where u∈R
d , that is, to satisfy, uniformly over all individual sequences (xt ,yt)16t6T , a regret bound

of the form
T

∑
t=1

(
yt − ŷt

)2
6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+∆T,d(u)

}

for some regret term ∆T,d(u) that should be as small as possible and, in particular, sublinear in T .

(For the sake of introduction, we omit the dependencies of ∆T,d(u) on the amplitudes max16t6T |yt |
and max16t6T max16 j6d |ϕ j(xt)|.)

In this setting the version of the sequential ridge regression forecaster studied by Azoury and

Warmuth (2001) and Vovk (2001) can be tuned to have a regret ∆T,d(u) of order at most d ln
(
T ‖u‖2

2

)
.

When the ambient dimension d is much larger than the number of time rounds T , the latter regret

bound may unfortunately be larger than T and is thus somehow trivial. Since the regret bound

d lnT is optimal in a certain sense (see, e.g., the lower bound of Vovk 2001, Theorem 2), additional

assumptions are needed to get interesting theoretical guarantees.

A natural assumption, which has already been extensively studied in the stochastic setting, is

that there is a sparse vector u∗ (i.e., with s ≪ T/(lnT ) non-zero coefficients) such that the linear

combination u∗ ·ϕ has a small cumulative square loss. If the forecaster knew in advance the support

J(u∗), { j : u∗j 6= 0} of u∗, he could apply the same forecaster as above but only to the s-dimensional

linear subspace
{

u ∈ R
d : ∀ j /∈ J(u∗),u j = 0

}
. The regret bound of this “oracle” would be roughly

of order s lnT and thus sublinear in T . Under this sparsity scenario, a sublinear regret thus seems

the fact that ε ∈ S with high-probability is only guaranteed via concentration arguments, so it is a consequence of the

underlying statistical assumptions.
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possible, though, of course, the aforementioned regret bound s lnT can only be used as an ideal

benchmark (since the support of u∗ is unknown).

In this paper, we prove that a regret bound proportional to s is achievable (up to logarithmic

factors). In Corollary 2 and its refinements (Corollary 7 and Theorem 10), we indeed derive regret

bounds of the form

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+
(
‖u‖0 +1

)
gT,d

(
‖u‖1 ,‖ϕ‖∞

)
}

, (1)

where ‖u‖0 denotes the number of non-zero coordinates of u and where g grows at most logarith-

mically in T , d, ‖u‖1 , ∑d
j=1 |u j|, and ‖ϕ‖∞ , supx∈X max16 j6d |ϕ j(x)|. We call regret bounds of

the above form sparsity regret bounds.

This work is in connection with several papers that belong either to the statistical or to the

machine-learning literature. Next we discuss these papers and some related references.

1.2 Related Works in the Stochastic Setting

The above regret bound (1) can be seen as a deterministic online counterpart of the so-called sparsity

oracle inequalities introduced in the stochastic setting in the past decade. The latter are risk bounds

expressed in terms of the number of non-zero coordinates of the oracle vector—see (2) below.

More formally, consider the regression model with random of fixed design. The forecaster observes

independent random pairs (X1,Y1), . . . ,(XT ,YT ) ∈ X ×R given by

Yt = f (Xt)+ εt , 1 6 t 6 T ,

where the Xt ∈ X are either i.i.d random variables (random design) or fixed elements (fixed design),

denoted in both cases by capital letters in this paragraph, and where the εt are i.i.d. square-integrable

real random variables with zero mean (conditionally on the Xt if the design is random). The goal of

the forecaster is to construct an estimator f̂T : X →R of the unknown regression function f : X →R

based on the sample (Xt ,Yt)16t6T . Depending on the nature of the design, the performance of f̂T is

measured through its risk R
(

f̂T

)
:

R
(

f̂T

)
,





∫
X

(
f (x)− f̂T (x)

)2

PX(dx) (random design)

1

T

T

∑
t=1

(
f (Xt)− f̂T (Xt)

)2
(fixed design),

where PX denotes the common distribution of the Xt if the design is random. With the above

notations, and given a dictionary ϕ = (ϕ1, · · · ,ϕd) of base forecasters ϕ j : X → R as previously,

typical examples of sparsity oracle inequalities take approximately the form

R
(

f̂T

)
6C inf

u∈Rd

{
R
(
u ·ϕ

)
+

‖u‖0 lnd +1

T

}
(2)

in expectation or with high probability, for some constant C > 1. Thus, sparsity oracle inequalities

are risk bounds involving a trade-off between the risk R(u ·ϕ) and the number of non-zero coordi-

nates ‖u‖0 of any comparison vector u ∈ R
d . In particular, they indicate that f̂T has a small risk
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under a sparsity scenario, that is, if f is well approximated by a sparse linear combination u∗ ·ϕ of

the base forecasters ϕ j, 1 6 j 6 d.

Sparsity oracle inequalities were first derived by Birgé and Massart (2001) via ℓ0-regularization

methods (through model-selection arguments). Later works in this direction include, among many

other papers, those of Birgé and Massart (2007), Abramovich et al. (2006), and Bunea et al. (2007a)

in the regression model with fixed design and that of Bunea et al. (2004) in the random design case.

More recently, a large body of research has been dedicated to the analysis of ℓ1-regularization

methods, which are convex and thus computationally tractable variants of ℓ0-regularization meth-

ods. A celebrated example is the Lasso estimator introduced by Tibshirani (1996) and Donoho and

Johnstone (1994). Under some assumptions on the design matrix,2 such methods have been proved

to satisfy sparsity oracle inequalities of the form (2) (with C = 1 in the recent paper by Koltchinskii

et al. 2011). A list of few references—but far from being comprehensive—includes the works of

Bunea et al. (2007b), Candes and Tao (2007), van de Geer (2008), Bickel et al. (2009), Koltchin-

skii (2009a), Koltchinskii (2009b),Hebiri and van de Geer (2011), Koltchinskii et al. (2011) and

Lounici et al. (2011). We refer the reader to the monograph by Bühlmann and van de Geer (2011)

for a detailed account on ℓ1-regularization.

A third line of research recently focused on procedures based on exponential weighting. Such

methods were proved to satisfy sharp sparsity oracle inequalities (i.e., with leading constant C = 1),

either in the regression model with fixed design (Dalalyan and Tsybakov, 2007, 2008; Rigollet

and Tsybakov, 2011; Alquier and Lounici, 2011) or in the regression model with random design

(Dalalyan and Tsybakov, 2012a; Alquier and Lounici, 2011). These papers show that a trade-off

can be reached between strong theoretical guarantees (as with ℓ0-regularization) and computational

efficiency (as with ℓ1-regularization). They indeed propose aggregation algorithms which satisfy

sparsity oracle inequalities under almost no assumption on the base forecasters (ϕ j) j, and which

can be approximated numerically at a reasonable computational cost for large values of the ambient

dimension d.

Our online-learning algorithm SeqSEW is inspired from a statistical method of Dalalyan and

Tsybakov (2008, 2012a). Following the same lines as in Dalalyan and Tsybakov (2012b), it is

possible to slightly adapt the statement of our algorithm to make it computationally tractable by

means of Langevin Monte-Carlo approximation—without affecting its statistical properties. The

technical details are however omitted in this paper, which only focuses on the theoretical guarantees

of the algorithm SeqSEW.

1.3 Previous Works on Sparsity in the Framework of Individual Sequences

To the best of our knowledge, Corollary 2 and its refinements (Corollary 7 and Theorem 10) provide

the first examples of sparsity regret bounds in the sense of (1). To comment on the optimality of

such regret bounds and compare them to related results in the framework of individual sequences,

note that (1) can be rewritten in the equivalent form:

2. Despite their computational efficiency, the aforementioned ℓ1-regularized methods still suffer from a drawback: their

ℓ0-oracle properties hold under rather restrictive assumptions on the design; namely, that the ϕ j should be nearly

orthogonal (see the detailed discussion in van de Geer and Bühlmann 2009).
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For all s ∈ N and all U > 0,

T

∑
t=1

(yt − ŷt)
2 − inf

‖u‖06s

‖u‖16U

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
6
(
s+1

)
gT,d

(
U,‖ϕ‖∞

)
,

where g grows at most logarithmically in T , d, U , and ‖ϕ‖∞. When s ≪ T , this upper bound

matches (up to logarithmic factors) the lower bound of order s lnT that follows in a straightforward

manner from Theorem 2 of Vovk (2001). Indeed, if s ≪ T , X = R
d , and ϕ j(x) = x j, then for any

forecaster, there is an individual sequence (xt ,yt)16t6T such that the regret of this forecaster on{
u ∈ R

d : ‖u‖0 6 s and ‖u‖1 6 d
}

is bounded from below by a quantity of order s lnT . Therefore,

up to logarithmic factors, any algorithm satisfying a sparsity regret bound of the form (1) is minimax

optimal on intersections of ℓ0-balls (of radii s ≪ T ) and ℓ1-balls. This is in particular the case for

our algorithm SeqSEW, but this contrasts with related works discussed below.

Recent works in the field of online convex optimization addressed the sparsity issue in the

online deterministic setting, but from a quite different angle. They focus on algorithms which

output sparse linear combinations, while we are interested in algorithms whose regret is small under

a sparsity scenario, that is, on ℓ0-balls of small radii. See, for example, the papers by Langford et al.

(2009), Shalev-Shwartz and Tewari (2011), Xiao (2010), Duchi et al. (2010) and the references

therein. All these articles focus on convex regularization. In the particular case of ℓ1-regularization

under the square loss, the aforementioned works propose algorithms which predict as a sparse linear

combination ŷt = ût ·ϕ(xt) of the base forecasts (i.e., ‖ût‖0 is small), while no such guarantee can

be proved for our algorithm SeqSEW. However they prove bounds on the ℓ1-regularized regret of

the form

T

∑
t=1

(
(yt − ût · xt)

2 +λ‖ût‖1

)
6 inf

u∈Rd

{
T

∑
t=1

(
(yt −u · xt)

2 +λ‖u‖1

)
+ ∆̃T,d(u)

}
, (3)

for some regret term ∆̃T,d(u) which is suboptimal on intersections of ℓ0- and ℓ1-balls as explained

below. The truncated gradient algorithm of Langford et al. (2009, Corollary 4.1) satisfies such a

regret bound3 with ∆̃T,d(u) at least of order ‖ϕ‖∞

√
dT when the base forecasts ϕ j(xt) are dense

in the sense that max16t6T ∑d
j=1 ϕ2

j(xt) ≈ d ‖ϕ‖2
∞. This regret bound grows as a power of and not

logarithmically in d as is expected for sparsity regret bounds (recall that we are interested in the

case when d ≫ T ).

The three other papers mentioned above do prove (some) regret bounds with a logarithmic de-

pendence in d, but these bounds do not have the dependence in ‖u‖1 and T we are looking for. For

p− 1 ≈ 1/(lnd), the p-norm RDA method of Xiao (2010) and the algorithm SMIDAS of Shalev-

Shwartz and Tewari (2011)—the latter being a particular case of the algorithm COMID of Duchi

et al. (2010) specialized to the p-norm divergence—satisfy regret bounds of the above form (3) with

3. The bound stated in Langford et al. (2009, Corollary 4.1) differs from (3) in that the constant before the infimum is

equal to C = 1/(1− 2c2
dη), where c2

d ≈ max16t6T ∑d
j=1 ϕ2

j(xt) 6 d ‖ϕ‖2
∞, and where a reasonable choice for η can

easily be seen to be η ≈ 1/
√

2c2
dT . If the base forecasts ϕ j(xt) are dense in the sense that c2

d ≈ d ‖ϕ‖2
∞, then we have

C ≈ 1+
√

2c2
d/T , which yields a regret bound with leading constant 1 as in (3) and with ∆̃T,d(u) at least of order

√
c2

dT ≈ ‖ϕ‖∞

√
dT .
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∆̃T,d(u)≈ µ‖u‖1

√
T lnd, for some gradient-based constant µ. Therefore, in all three cases, the func-

tion ∆̃ grows at least linearly in ‖u‖1 and as
√

T . This is in contrast with the logarithmic dependence

in ‖u‖1 and the fast rate O(lnT ) we are looking for and prove, for example, in Corollary 2.

Note that the suboptimality of the aforementioned algorithms is specific to the goal we are pur-

suing, that is, prediction on ℓ0-balls (intersected with ℓ1-balls). On the contrary the rate ‖u‖1

√
T lnd

is more suited and actually nearly optimal for learning on ℓ1-balls (see Gerchinovitz and Yu 2011).

Moreover, the predictions output by our algorithm SeqSEW are not necessarily sparse linear com-

binations of the base forecasts. A question left open is thus whether it is possible to design an al-

gorithm which both ouputs sparse linear combinations (which is statistically useful and sometimes

essential for computational issues) and satisfies a sparsity regret bound of the form (1).

1.4 PAC-Bayesian Analysis in the Framework of Individual Sequences

To derive our sparsity regret bounds, we follow a PAC-Bayesian approach combined with the choice

of a sparsity-favoring prior. We do not have the space to review the PAC-Bayesian literature in the

stochastic setting and only refer the reader to Catoni (2004) for a thorough introduction to the

subject. As for the online deterministic setting, PAC-Bayesian-type inequalities were proved in

the framework of prediction with expert advice, for example, by Freund et al. (1997) and Kivinen

and Warmuth (1999), or in the same setting as ours with a Gaussian prior by Vovk (2001). More

recently, Audibert (2009) proved a PAC-Bayesian result on individual sequences for general losses

and prediction sets. The latter result relies on a unifying assumption called the online variance

inequality, which holds true, for example, when the loss function is exp-concave. In the present

paper, we only focus on the particular case of the square loss. We first use Theorem 4.6 of Audibert

(2009) to derive a non-adaptive sparsity regret bound. We then provide an adaptive online PAC-

Bayesian inequality to automatically adapt to the unknown range of the observations max16t6T |yt |.

1.5 Application to the Stochastic Setting When the Noise Level Is Unknown

In Section 4.1 we apply an automatically-tuned version of our algorithm SeqSEW on i.i.d. data.

Thanks to the standard online-to-batch conversion, our sparsity regret bounds—of deterministic

nature—imply a sparsity oracle inequality of the same flavor as a result of Dalalyan and Tsybakov

(2012a). However, our risk bound holds on the whole R
d space instead of ℓ1-balls of finite radii,

which solves one question left open by Dalalyan and Tsybakov (2012a, Section 4.2). Besides, and

more importantly, our algorithm does not need the a priori knowledge of the variance of the noise

when the latter is Gaussian. Since the noise level is unknown in practice, adapting to it is important.

This solves a second question raised by Dalalyan and Tsybakov (2012a, Section 5.1, Remark 6).

1.6 Outline of the Paper

This paper is organized as follows. In Section 2 we describe our main (deterministic) setting as

well as our main notations. In Section 3 we prove the aforementioned sparsity regret bounds for our

algorithm SeqSEW, first when the forecaster has access to some a priori knowledge on the observa-

tions (Sections 3.1 and 3.2), and then when no a priori information is available (Section 3.3), which

yields a fully automatic algorithm. In Section 4 we apply the algorithm SeqSEW to two stochastic

settings: the regression model with random design (Section 4.1) and the regression model with fixed

design (Section 4.2). Finally the appendix contains some proofs and several useful inequalities.
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2. Setting and Notations

The main setting considered in this paper is an instance of the game of prediction with expert

advice called prediction with side information (under the square loss) or, more simply, online linear

regression (see Cesa-Bianchi and Lugosi 2006, Chapter 11 for an introduction to this setting). The

data sequence (xt ,yt)t>1 at hand is deterministic and arbitrary and we look for theoretical guarantees

that hold for every individual sequence. We give in Figure 1 a detailed description of our online

protocol.

Parameters: input data set X , base forecasters ϕ = (ϕ1, . . . ,ϕd) with ϕ j : X → R, 1 6 j 6 d.

Initial step: the environment chooses a sequence of observations (yt)t>1 in R and a sequence

of input data (xt)t>1 in X but the forecaster has not access to them.

At each time round t ∈ N
∗ , {1,2, . . .},

1. The environment reveals the input data xt ∈ X .

2. The forecaster chooses a prediction ŷt ∈ R

(possibly as a linear combination of the ϕ j(xt), but this is not necessary).

3. The environment reveals the observation yt ∈ R.

4. Each linear forecaster u ·ϕ , ∑d
j=1 u jϕ j, u ∈ R

d , incurs the loss
(
yt − u ·ϕ(xt)

)2
and the

forecaster incurs the loss (yt − ŷt)
2.

Figure 1: The online linear regression setting.

Note that our online protocol is described as if the environment were oblivious to the forecaster’s

predictions. Actually, since we only consider deterministic forecasters, all regret bounds of this

paper also hold when (xt)t>1 and (yt)t>1 are chosen by an adversarial environment.

Two stochastic batch settings are also considered later in this paper. See Section 4.1 for the

regression model with random design, and Section 4.2 for the regression model with fixed design.

2.1 Some Notations

We now define some notations. We write N , {0,1, . . .} and e , exp(1). Vectors in R
d will be

denoted by bold letters. For all u,v ∈R
d , the standard inner product in R

d between u = (u1, . . . ,ud)
and v= (v1, . . . ,vd) will be denoted by u ·v=∑d

i= j u j v j; the ℓ0-, ℓ1-, and ℓ2-norms of u= (u1, . . . ,ud)
are respectively defined by

‖u‖0 ,
d

∑
j=1

I{u j 6=0} =
∣∣{ j : u j 6= 0}

∣∣ , ‖u‖1 ,
d

∑
j=1

|u j| , and ‖u‖2 ,

(
d

∑
j=1

u2
j

)1/2

.
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The set of all probability distributions on a set Θ (endowed with some σ-algebra, for example,

the Borel σ-algebra when Θ=R
d) will be denoted by M +

1 (Θ). For all ρ,π∈M +
1 (Θ), the Kullback-

Leibler divergence between ρ and π is defined by

K (ρ,π),





∫
Rd

ln

(
dρ

dπ

)
dρ if ρ is absolutely continuous with respect to π;

+∞ otherwise,

where
dρ
dπ denotes the Radon-Nikodym derivative of ρ with respect to π.

For all x ∈ R and B > 0, we denote by ⌈x⌉ the smallest integer larger than or equal to x, and by

[x]B its thresholded (or clipped) value:

[x]B ,





−B if x <−B;

x if −B 6 x 6 B;

B if x > B.

Finally, we will use the (natural) conventions 1/0 =+∞, (+∞)×0 = 0, and 0ln(1+U/0) = 0

for all U > 0. Any sum ∑0
s=1 as indexed from 1 up to 0 is by convention equal to 0.

3. Sparsity Regret Bounds for Individual Sequences

In this section we prove sparsity regret bounds for different variants of our algorithm SeqSEW. We

first assume in Section 3.1 that the forecaster has access in advance to a bound By on the observations

|yt | and a bound BΦ on the trace of the empirical Gram matrix. We then remove these requirements

one by one in Sections 3.2 and 3.3.

3.1 Known Bounds By on the Observations and BΦ on the Trace of the Empirical Gram

Matrix

To simplify the analysis, we first assume that, at the beginning of the game, the number of rounds

T is known to the forecaster and that he has access to a bound By on all the observations y1, . . . ,yT

and to a bound BΦ on the trace of the empirical Gram matrix, that is,

y1, . . . ,yT ∈ [−By,By] and
d

∑
j=1

T

∑
t=1

ϕ2
j(xt)6 BΦ .

The first version of the algorithm studied in this paper is defined in Figure 2 (adaptive variants

will be introduced later). We name it SeqSEW for it is a variant of the Sparse Exponential Weighting

algorithm introduced in the stochastic setting by Dalalyan and Tsybakov (2007, 2008) which is

tailored for the prediction of individual sequences.

The choice of the heavy-tailed prior πτ is due to Dalalyan and Tsybakov (2007). The role of

heavy-tailed priors to tackle the sparsity issue was already pointed out earlier; see, for example, the

discussion by Seeger (2008, Section 2.1). In high dimension, such heavy-tailed priors favor sparsity:

sampling from these prior distributions (or posterior distributions based on them) typically results

in approximately sparse vectors, that is, vectors having most coordinates almost equal to zero and

the few remaining ones with quite large values.
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Parameters: threshold B > 0, inverse temperature η > 0, and prior scale τ > 0 with which we

associate the sparsity prior πτ ∈ M +
1 (Rd) defined by

πτ(du),
d

∏
j=1

(3/τ)du j

2
(
1+ |u j|/τ

)4
.

Initialization: p1 , πτ.

At each time round t > 1,

1. Get the input data xt and predicta as ŷt ,

∫
Rd

[
u ·ϕ(xt)

]
B

pt(du) ;

2. Get the observation yt and compute the posterior distribution pt+1 ∈ M +
1 (Rd) as

pt+1(du),

exp

(
−η

t

∑
s=1

(
ys −

[
u ·ϕ(xs)

]
B

)2

)

Wt+1

πτ(du) ,

where

Wt+1 ,

∫
Rd

exp

(
−η

t

∑
s=1

(
ys −

[
v ·ϕ(xs)

]
B

)2

)
πτ(dv) .

a. The clipping operator [·]B is defined in Section 2.

Figure 2: The algorithm SeqSEW
B,η
τ .

Proposition 1 Assume that, for a known constant By > 0, the (x1,y1), . . . ,(xT ,yT ) are such that

y1, . . . ,yT ∈ [−By,By]. Then, for all B>By, all η6 1/(8B2), and all τ> 0, the algorithm SeqSEW
B,η
τ

satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1+

‖u‖1

‖u‖0 τ

)}
+ τ2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt) . (4)

Corollary 2 Assume that, for some known constants By > 0 and BΦ > 0, the (x1,y1), . . . ,(xT ,yT )
are such that y1, . . . ,yT ∈ [−By,By] and ∑d

j=1 ∑T
t=1 ϕ2

j(xt)6 BΦ .

Then, when used with B = By, η =
1

8B2
y

, and τ =

√
16B2

y

BΦ
, the algorithm SeqSEW

B,η
τ satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+32B2

y ‖u‖0 ln

(
1+

√
BΦ ‖u‖1

4By ‖u‖0

)}
+ 16B2

y . (5)

Note that, if ‖ϕ‖∞ , supx∈X max16 j6d |ϕ j(x)| is finite, then the last corollary provides a sparsity

regret bound in the sense of (1). Indeed, in this case, we can take BΦ = d T ‖ϕ‖2
∞, which yields a

regret bound proportional to ‖u‖0 and that grows logarithmically in d, T , ‖u‖1, and ‖ϕ‖∞.
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To prove Proposition 1, we first need the following deterministic PAC-Bayesian inequality

which is at the core of our analysis. It is a straightforward consequence of Theorem 4.6 of Audibert

(2009) when applied to the square loss. An adaptive variant of this inequality will be provided in

Section 3.2.

Lemma 3 Assume that for some known constant By > 0, we have y1, . . . ,yT ∈ [−By,By].

For all τ > 0, if the algorithm SeqSEW
B,η
τ is used with B > By and η 6 1/(8B2), then

T

∑
t=1

(yt − ŷt)
2 6 inf

ρ∈M +
1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
B

)2

ρ(du) +
K (ρ,πτ)

η

}
(6)

6 inf
ρ∈M +

1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρ(du) +

K (ρ,πτ)

η

}
. (7)

Proof (of Lemma 3) Inequality (6) is a straightforward consequence of Theorem 4.6 of Audibert

(2009) when applied to the square loss, the set of prediction functions G ,
{

x 7→
[
u ·ϕ(x)

]
B

: u ∈
R

d
}

, and the prior4 π̃τ on G induced by the prior πτ on R
d via the mapping u∈R

d 7→
[
u ·ϕ(·)

]
B
∈G .

To apply the aforementioned theorem, recall from Cesa-Bianchi and Lugosi (2006, Section 3.3)

that the square loss is 1/(8B2)-exp-concave on [−B,B] and thus η-exp-concave,5 since η 6 1/(8B2)
by assumption. Therefore, by Theorem 4.6 of Audibert (2009) with the variance function δη ≡ 0

(see the comments following Remark 4.1 therein), we get

T

∑
t=1

(yt − ŷt)
2 6 inf

µ∈M +
1 (G)

{∫
G

T

∑
t=1

(
yt −g(xt)

)2
µ(dg) +

K (µ, π̃τ )

η

}

6 inf
ρ∈M +

1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
B

)2

ρ(du) +
K (ρ̃, π̃τ )

η

}
,

where the last inequality follows by restricting the infimum over M +
1

(
G
)

to the subset
{

ρ̃ : ρ ∈
M +

1 (Rd)
}
⊂ M +

1

(
G
)
, where ρ̃ ∈ M +

1

(
G
)

denotes the probability distribution induced by ρ ∈
M +

1 (Rd) via the mapping u ∈ R
d 7→

[
u ·ϕ(·)

]
B
∈ G . Inequality (6) then follows from the fact that

for all ρ ∈ M +
1 (Rd), we have K (ρ̃, π̃τ )6 K (ρ,πτ) by joint convexity of K (·, ·).

As for Inequality (7), it follows from (6) by noting that

∀y ∈ [−B,B], ∀x ∈ R,
∣∣y− [x]B

∣∣6 |y− x| .

Therefore, truncation to [−B,B] can only improve prediction under the square loss if the observa-

tions are [−B,B]-valued, which is the case here since by assumption yt ∈ [−By,By]⊂ [−B,B] for all

t = 1, . . . ,T .

Remark 4 As can be seen from the previous proof, if the prior πτ used to define the algorithm Se-

qSEW was replaced with any prior π ∈ M +
1 (Rd), then Lemma 3 would still hold true with π instead

4. The set G is endowed with the σ-algebra generated by all the coordinate mappings g ∈ G 7→ g(x) ∈ R, x ∈ X (where

R is endowed with its Borel σ-algebra).

5. This means that for all y ∈ [−B,B], the function x 7→ exp
(
−η(y− x)2

)
is concave on [−B,B].
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of πτ. This fact is natural from a PAC-Bayesian perspective (see, e.g., Catoni, 2004; Dalalyan and

Tsybakov, 2008). We only—but crucially—use the particular shape of the sparsity-favoring prior πτ

to derive Proposition 1 from the PAC-Bayesian bound (7).

Proof (of Proposition 1) Our proof mimics the proof of Theorem 5 by Dalalyan and Tsybakov

(2008). We thus only write the outline of the proof and stress the minor changes that are needed

to derive Inequality (4). The key technical tools provided by Dalalyan and Tsybakov (2008) are

reproduced in Appendix B.2 for the convenience of the reader.

Let u∗ ∈ R
d . Since B > By and η 6 1/(8B2), we can apply Lemma 3 and get

T

∑
t=1

(yt − ŷt)
2 6 inf

ρ∈M +
1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρ(du) +

K (ρ,πτ)

η

}

6

∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρu∗,τ(du)

︸ ︷︷ ︸
(1)

+
K (ρu∗,τ,πτ)

η︸ ︷︷ ︸
(2)

. (8)

In the last inequality, ρu∗,τ is taken as the translated of πτ at u∗, namely,

ρu∗,τ(du),
dπτ

du
(u−u∗)du =

d

∏
j=1

(3/τ)du j

2
(
1+ |u j −u∗j |/τ

)4
.

The two terms (1) and (2) can be upper bounded as in the proof of Theorem 5 by Dalalyan and

Tsybakov (2008). By a symmetry argument recalled in Lemma 22 (Appendix B.2), the first term

(1) can be rewritten as

∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρu∗,τ(du) =

T

∑
t=1

(
yt −u∗ ·ϕ(xt)

)2
+ τ2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt) . (9)

As for the term (2), we have, as is recalled in Lemma 23,

K (ρu∗,τ,πτ)

η
6

4

η
‖u∗‖0 ln

(
1+

‖u∗‖1

‖u∗‖0 τ

)
. (10)

Combining (8), (9), and (10), which all hold for all u∗ ∈ R
d , we get Inequality (4).

Proof (of Corollary 2) Applying Proposition 1, we have, since B > By and η 6 1/(8B2),

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1+

‖u‖1

‖u‖0 τ

)}
+ τ2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)

6 inf
u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1+

‖u‖1

‖u‖0 τ

)}
+ τ2BΦ ,

since ∑d
j=1 ∑T

t=1 ϕ2
j(xt)6 BΦ by assumption. The particular (and nearly optimal) choices of η and τ

given in the statement of the corollary then yield the desired inequality (5).
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We end this subsection with a natural question about approximate sparsity: Proposition 1 en-

sures a low regret with respect to sparse linear combinations u ·ϕ, but what can be said for approxi-

mately sparse linear combinations, that is, predictors of the form u ·ϕ where u ∈ R
d is very close to

a sparse vector? As can be seen from the proof of Lemma 23 in Appendix B.2, the sparsity-related

term
4

η
‖u‖0 ln

(
1+

‖u‖1

‖u‖0 τ

)

in the regret bound of Proposition 1 can actually be replaced with the smaller (and continous) term

4

η

d

∑
j=1

ln(1+ |u j|/τ) .

The last term is always smaller than the former and guarantees that the regret is small with respect

to any approximately sparse vector u ∈ R
d .

3.2 Unknown Bound By on the Observations but Known Bound BΦ on the Trace of the

Empirical Gram Matrix

In the previous section, to prove the upper bounds stated in Lemma 3 and Proposition 1, we assumed

that the forecaster had access to a bound By on the observations |yt | and to a bound BΦ on the trace

of the empirical Gram matrix. In this section, we remove the first requirement and prove a sparsity

regret bound for a variant of the algorithm SeqSEW
B,η
τ which is adaptive to the unknown bound

By = max16t6T |yt |; see Proposition 5 and Remark 6 below.

For this purpose we consider the algorithm of Figure 3, which we call SeqSEW∗
τ thereafter.

It differs from SeqSEW
B,η
τ defined in the previous section in that the threshold B and the inverse

temperature η are now allowed to vary over time and are chosen at each time round as a function of

the data available to the forecaster.

The idea of truncating the base forecasts was used many times in the past; see, for example, the

work of Vovk (2001) in the online linear regression setting, that of Györfi et al. (2002, Chapter 10)

for the regression problem with random design, and the papers of Györfi and Ottucsák (2007) and

Biau et al. (2010) for sequential prediction of unbounded time series under the square loss. A key

ingredient in the present paper is to perform truncation with respect to a data-driven threshold.

Proposition 5 For all τ > 0, the algorithm SeqSEW∗
τ satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+32B2

T+1 ‖u‖0 ln

(
1+

‖u‖1

‖u‖0 τ

)}

+ τ2
d

∑
j=1

T

∑
t=1

ϕ2
j(xt) +5B2

T+1 ,

where B2
T+1 , max16t6T y2

t .

Remark 6 In view of Proposition 1, the algorithm SeqSEW∗
τ satisfies a sparsity regret bound which

is adaptive to the unknown bound By = max16t6T |yt |. The price for the automatic tuning with

respect to By consists only of the additive term 5B2
T+1 = 5B2

y .
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Parameter: prior scale τ > 0 with which we associate the sparsity prior πτ ∈ M +
1 (Rd) defined

by

πτ(du),
d

∏
j=1

(3/τ)du j

2
(
1+ |u j|/τ

)4
.

Initialization: B1 , 0, η1 ,+∞, and p1 , πτ.

At each time round t > 1,

1. Get the input data xt and predicta as ŷt ,

∫
Rd

[
u ·ϕ(xt)

]
Bt

pt(du);

2. Get the observation yt and update:

• the threshold Bt+1 , max16s6t |ys|,
• the inverse temperature ηt+1 , 1/

(
8B2

t+1

)
,

• and the posterior distribution pt+1 ∈ M +
1 (Rd) as

pt+1(du),

exp

(
−ηt+1

t

∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2

)

Wt+1

πτ(du) ,

where
Wt+1 ,

∫
Rd

exp

(
−ηt+1

t

∑
s=1

(
ys −

[
v ·ϕ(xs)

]
Bs

)2

)
πτ(dv) .

a. The clipping operator [·]B is defined in Section 2.

Figure 3: The algorithm SeqSEW∗
τ .

As in the previous section, several corollaries can be derived from Proposition 5. If the forecaster

has access beforehand to a quantity BΦ > 0 such that ∑d
j=1 ∑T

t=1 ϕ2
j(xt) 6 BΦ, then a suboptimal

but reasonable choice of τ is given by τ = 1/
√

BΦ; see Corollary 7 below. The simpler tuning

τ = 1/
√

dT of Corollary 8 will be useful in the stochastic batch setting (cf., Section 4).6 The proofs

of the next corollaries are immediate.

Corollary 7 Assume that, for a known constant BΦ > 0, the (x1,y1), . . . ,(xT ,yT ) are such that

∑d
j=1 ∑T

t=1 ϕ2
j(xt)6 BΦ. Then, when used with τ = 1/

√
BΦ, the algorithm SeqSEW∗

τ satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+32B2

T+1 ‖u‖0 ln

(
1+

√
BΦ ‖u‖1

‖u‖0

)}

+5B2
T+1 +1 ,

6. The tuning τ= 1/
√

dT only uses the knowledge of T , which is known by the forecaster in the stochastic batch setting.

In that framework, another simple and easy-to-analyse tuning is given by τ = 1/(‖ϕ‖∞

√
d T )—which corresponds

to BΦ = d T ‖ϕ‖2
∞—but it requires that ‖ϕ‖∞ , supx∈X max16 j6d |ϕ j(x)| be finite. Note that the last tuning satisfies

the scale-invariant property pointed out by Dalalyan and Tsybakov (2012a, Remark 4).
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where B2
T+1 , max16t6T y2

t .

Corollary 8 Assume that T is known to the forecaster at the beginning of the prediction game.

Then, when used with τ = 1/
√

dT , the algorithm SeqSEW∗
τ satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+32B2

T+1 ‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+5B2

T+1 ,

where B2
T+1 , max16t6T y2

t .

As in the previous section, to prove Proposition 5, we first need a key PAC-Bayesian inequality.

The next lemma is an adaptive variant of Lemma 3.

Lemma 9 For all τ > 0, the algorithm SeqSEW∗
τ satisfies

T

∑
t=1

(yt − ŷt)
2 6 inf

ρ∈M +
1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2

ρ(du) +8B2
T+1 K (ρ,πτ)

}
+4B2

T+1 (11)

6 inf
ρ∈M +

1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρ(du) +8B2

T+1 K (ρ,πτ)

}
+5B2

T+1 , (12)

where B2
T+1 , max16t6T y2

t .

Proof (of Lemma 9) The proof is based on arguments that are similar to those underlying Lemma 3,

except that we now need to deal with B and η changing over time. In the same spirit as in Auer

et al. (2002), Cesa-Bianchi et al. (2007) and Györfi and Ottucsák (2007), our analysis relies on the

control of (lnWt+1)/ηt+1 − (lnWt)/ηt where W1 , 1 and, for all t > 2,

Wt ,

∫
Rd

exp

(
−ηt

t−1

∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2

)
πτ(du) .

Before controlling (lnWt+1)/ηt+1− (lnWt)/ηt , we first need a little comment. Note that all ηt’s

such that ηt =+∞ (i.e., Bt = 0) can be replaced with any finite value without changing the predic-

tions of the algorithm (since the sum ∑t−1
s=1 above equals zero). Therefore, we assume in the sequel

that (ηt)t>1 is a non-decreasing sequence of finite positive real numbers.

First step: On the one hand, we have

lnWT+1

ηT+1

− lnW1

η1

=
1

ηT+1

ln

∫
Rd

exp

(
−ηT+1

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2

)
πτ(du) − 1

η1

ln1

=− inf
ρ∈M +

1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2

ρ(du) +
K (ρ,πτ)

ηT+1

}
, (13)
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where the last equality follows from a convex duality argument for the Kullback-Leibler divergence

(cf., e.g., Catoni 2004, p. 159) which we recall in Proposition 21 in Appendix B.1.

Second step: On the other hand, we can rewrite (lnWT+1)/ηT+1 − (lnW1)/η1 as a telescopic sum

and get

lnWT+1

ηT+1

− lnW1

η1

=
T

∑
t=1

(
lnWt+1

ηt+1

− lnWt

ηt

)
=

T

∑
t=1

(
lnWt+1

ηt+1

− lnW ′
t+1

ηt︸ ︷︷ ︸
(1)

+
1

ηt

ln
W ′

t+1

Wt︸ ︷︷ ︸
(2)

)
, (14)

where W ′
t+1 is obtained from Wt+1 by replacing ηt+1 with ηt ; namely,

W ′
t+1 ,

∫
Rd

exp

(
−ηt

t

∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2

)
πτ(du) .

Let t ∈ {1, . . . ,T}. The first term (1) is non-positive by Jensen’s inequality (note that x 7→ xηt+1/ηt is

concave on R
∗
+ since ηt+1 6 ηt by construction). As for the second term (2), by definition of W ′

t+1,

1

ηt

ln
W ′

t+1

Wt

=
1

ηt

ln

∫
R

d

exp

(
−ηt

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)

exp

(
−ηt

t−1

∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2

)

Wt

πτ(du)

=
1

ηt

ln

∫
Rd

exp

(
−ηt

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)

pt(du) . (15)

where (15) follows by definition of pt . The next paragraphs are dedicated to upper bounding the

last integral above. First note that this is straightforward in the particular case where yt ∈ [−Bt ,Bt ].
Indeed, by definition of ηt , 1/(8B2

t ) and by the fact that the square loss is 1/(8B2
t )-exp-concave

on [−Bt ,Bt ] (as in Lemma 3),7 we get from Jensen’s inequality that

∫
Rd

e
−ηt

(
yt−
[

u·ϕ(xt)
]

Bt

)2

pt(du)6 exp

(
−ηt

(
yt −

∫
Rd

[
u ·ϕ(xt)

]
Bt

pt(du)

)2
)

= e−ηt(yt−ŷt)
2

,

where the last equality follows by definition of ŷt . Taking the logarithms of both sides of the last

inequality and dividing by ηt , we can see that the quantity on the right-hand side of (15) is bounded

from above by −
(
yt − ŷt

)2
.

In the general case, we cannot assume that yt ∈ [−Bt ,Bt ], since it may happen that |yt | >
max16s6t−1 |ys| , Bt . As shown below, we can still use the exp-concavity of the square loss if

we replace yt with its clipped version [yt ]Bt
. More precisely, setting ŷt,u , [u ·ϕ(xt)]Bt

for all u ∈R
d ,

the square loss appearing in the right-hand side of (15) equals

(
yt − ŷt,u

)2
=
(
[yt ]Bt

− ŷt,u

)2
+
(
yt − [yt ]Bt

)2
+2
(
yt − [yt ]Bt

)(
[yt ]Bt

− ŷt,u

)

=
(
[yt ]Bt

− ŷt,u

)2
+
(
yt − [yt ]Bt

)2
+2
(
yt − [yt ]Bt

)(
[yt ]Bt

− ŷt

)
+ ct,u , (16)

7. To be more exact, we assigned some arbitrary finite value to ηt when Bt = 0. However, in this case, the square loss

is of course ηt -exp-concave on [−Bt ,Bt ] = {0} whatever the value of ηt .
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where we set

ct,u , 2
(
yt − [yt ]Bt

)(
ŷt − ŷt,u

)

>−4Bt

∣∣yt − [yt ]Bt

∣∣>−4Bt(Bt+1 −Bt) , (17)

where the last two inequalities follow from the property ŷt , ŷt,u ∈ [−Bt ,Bt ] (by construction) and

from the elementary8 yet useful upper bound
∣∣yt − [yt ]Bt

∣∣6 Bt+1 −Bt .

Combining (16) with the lower bound (17) yields that, for all u ∈ R
d ,

(
yt − ŷt,u

)2
>
(
[yt ]Bt

− ŷt,u

)2
+Ct , (18)

where we set Ct ,
(
yt − [yt ]Bt

)2
+2
(
yt − [yt ]Bt

)(
[yt ]Bt

− ŷt

)
−4Bt(Bt+1 −Bt).

We can now continue the upper bounding of (1/ηt) ln(W ′
t+1/Wt). Indeed, substituting the lower

bound (18) into (15), we get that

1

ηt

ln
W ′

t+1

Wt

6
1

ηt

ln

[∫
Rd

exp
(
−ηt

(
[yt ]Bt

− ŷt,u

)2
)

pt(du)

]
−Ct

6
1

ηt

ln

[
exp

(
−ηt

(
[yt ]Bt

−
∫
Rd

ŷt,u pt(du)

)2
)]

−Ct (19)

=−
(
[yt ]Bt

− ŷt

)2 −Ct (20)

=−
(
yt − ŷt

)2
+4Bt(Bt+1 −Bt) , (21)

where (19) follows by Jensen’s inequality (recall that ηt , 1/(8B2
t ) and that the square loss is

1/(8B2
t )-exp-concave on [−Bt ,Bt ]),

9 where (20) is entailed by definition of ŷt,u and ŷt , and where

(21) follows by definition of Ct above and by elementary calculations.

Summing (21) over t = 1, . . . ,T and using the upper bound Bt(Bt+1 −Bt) 6 B2
t+1 −B2

t , Equa-

tion (14) yields

lnWT+1

ηT+1

− lnW1

η1

6−
T

∑
t=1

(yt − ŷt)
2 +4

T

∑
t=1

(
B2

t+1 −B2
t

)

=−
T

∑
t=1

(yt − ŷt)
2 +4B2

T+1 . (22)

Third step: Putting (13) and (22) together, we get the PAC-Bayesian inequality

T

∑
t=1

(yt − ŷt)
2 6 inf

ρ∈M +
1 (Rd)

{∫
Rd

T

∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2

ρ(du) +
K (ρ,πτ)

ηT+1

}
+4B2

T+1 ,

which yields (11) since ηT+1 , 1/(8B2
T+1) by definition.10 The other PAC-Bayesian inequality (12),

which is stated for non-truncated base forecasts, is a direct consequence of (11) and of the following

two arguments: for all u ∈ R
d and all t = 1, . . . ,T ,

(
yt − [u ·ϕ(xt)]Bt

)2
6
(
yt −u ·ϕ(xt)

)2
+(Bt+1 −Bt)

2 (23)

8. To see why this is true, it suffices to rewrite [yt ]Bt
in the three cases yt <−Bt , |yt |6 Bt , or yt > Bt .

9. Same remark as in Footnote 7.

10. If BT+1 = 0, then yt = ŷt = 0 for all 1 6 t 6 T , which immediately yields (11).
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and

T

∑
t=1

(Bt+1 −Bt)
2 6 B2

T+1 . (24)

Complement: proof of (23) and (24).

To see why (23) is true, we can distinguish between several cases. First note that this inequality is

straightforward when |yt |6 Bt (indeed, in this case, clipping u ·ϕ(xt) to [−Bt ,Bt ] can only improve

prediction). We can thus assume that |yt |> Bt , or just11 that yt > Bt . In this case, we can distinguish

between three sub-cases:

• if u ·ϕ(xt)<−Bt , then clipping improves prediction since yt > Bt ;

• if −Bt 6 u ·ϕ(xt)6 Bt , then the clipping operator [·]B has no effect on u ·ϕ(xt);

• if u ·ϕ(xt)>Bt , then [u ·ϕ(xt)]Bt
=Bt so that (yt − [u ·ϕ(xt)]Bt

)2 =(Bt+1−Bt)
2 since Bt+1 = yt .

Therefore, in all three sub-cases described above, we have

(yt − [u ·ϕ(xt)]Bt
)2 6 max

{
(yt −u ·ϕ(xt))

2, (Bt+1 −Bt)
2
}
,

which concludes the proof of (23). As for (24), it follows from the inequality

T

∑
t=1

(Bt+1 −Bt)
2 6 sup

∆1,...,∆T>0

∑T
t=1 ∆t=BT+1

{
T

∑
t=1

∆2
t

}
= B2

T+1 ,

where the last equality is entailed by convexity of the function (∆1, . . . ,∆T ) 7→ ∑T
t=1 ∆2

t on the poly-

tope
{
(∆1, . . . ,∆T ) ∈ R

T
+ : ∑T

t=1 ∆t = BT+1

}
. This concludes the proof.

Proof (of Proposition 5) The proof follows exactly the same lines as in Proposition 1 except that

we apply Lemma 9 instead of Lemma 3. Indeed, using Lemma 9 and restricting the infimum to the

ρu∗,τ, u∗ ∈ R
d (cf., (40)), we get that

T

∑
t=1

(yt − ŷt)
2 6 inf

u∗∈Rd

{∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρu∗,τ(du)+8B2

T+1K (ρu∗,τ,πτ)

}
+5B2

T+1

6 inf
u∗∈Rd

{
T

∑
t=1

(
yt −u∗ ·ϕ(xt)

)2
+32B2

T+1 ‖u∗‖0 ln

(
1+

‖u∗‖1

‖u∗‖0 τ

)}

+ τ2
d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+5B2

T+1 ,

where the last inequality follows from Lemmas 22 and 23.

11. If yt <−Bt , it suffices to apply (23) with −yt and −u.
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3.3 A Fully Automatic Algorithm

In the previous section, we proved that adaptation to By was possible. If we also no longer assume

that a bound BΦ on the trace of the empirical Gram matrix is available to the forecaster, then we can

use a doubling trick on the nondecreasing quantity

γt , ln


1+

√√√√
t

∑
s=1

d

∑
j=1

ϕ2
j(xs)




and repeatedly run the algorithm SeqSEW∗
τ of the previous section for rapidly-decreasing values

of τ. This yields a sparsity regret bound with extra logarithmic multiplicative factors as compared

to Proposition 5, but which holds for a fully automatic algorithm; see Theorem 10 below.

More formally, our algorithm SeqSEW∗
∗ is defined as follows. The set of all time rounds t =

1,2, . . . is partitioned into regimes r = 0,1, . . . whose final time instances tr are data-driven. Let

t−1 , 0 by convention. We call regime r, r = 0,1, . . ., the sequence of time rounds (tr−1 +1, . . . , tr)
where tr is the first date t > tr−1 +1 such that γt > 2r. At the beginning of regime r, we restart the

algorithm SeqSEW∗
τ defined in Figure 3 with the parameter τ set to τr , 1/

(
exp(2r)−1

)
.

In particular, on each regime r, the current instance of the algorithm SeqSEW∗
τr

only uses the

past observations ys, s ∈ {tr−1+1, . . . , t −1}, to perform the online trunction and to tune the inverse

temperature parameter. Therefore, the algorithm SeqSEW∗
∗ is fully automatic.

Theorem 10 Without requiring any preliminary knowledge at the beginning of the prediction game,

SeqSEW∗
∗ satisfies, for all T > 1 and all (x1,y1), . . . ,(xT ,yT ) ∈ X ×R,

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+128

(
max

16t6T
y2

t

)
‖u‖0 ln


e+

√√√√
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)




+ 32
(

max
16t6T

y2
t

)
AT ‖u‖0 ln

(
1+

‖u‖1

‖u‖0

)}
+
(

1+9 max
16t6T

y2
t

)
AT ,

where AT , 2+ log2 ln
(

e+
√

∑T
t=1 ∑d

j=1 ϕ2
j(xt)

)
.

Though the algorithm SeqSEW∗
∗ is fully automatic, two possible improvements could be ad-

dressed in the future. From a theoretical viewpoint, can we contruct a fully automatic algorithm

with a bound similar to Theorem 10 but without the extra logarithmic factor AT ? From a practical

viewpoint, is it possible to perform the adaptation to BΦ without restarting the algorithm repeatedly

(just like we did for By)? A smoother time-varying tuning (τt)t>2 might enable to answer both ques-

tions. This would be very probably at the price of a more involved analysis (e.g., if we adapt the

PAC-Bayesian bound of Lemma 9, then a third approximation term would appear in (14) since πτt

changes over time).

Proof sketch (of Theorem 10) The proof relies on the use of Corollary 7 on all regimes r visited

up to time T . More precisely, note that γtr−1 6 2r by definition of tr (except maybe in the trivial case

when tr = tr−1 +1), which entails that

tr−1

∑
t=tr−1+1

d

∑
j=1

ϕ2
j(xt)6

(
e2r −1

)2

, BΦ,r .
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Since we tuned the instance of the algorithm SeqSEW∗
τ on regime r with τ = τr , 1/

√
BΦ,r, we

can apply Corollary 7 on regime r for all r. Summing the corresponding regret bounds over r then

yields the desired result. See Appendix A.1 for a detailed proof.

Theorem 10 yields the following corollary. It upper bounds the regret of the algorithm SeqSEW∗
∗

uniformly over all u ∈ R
d such that ‖u‖0 6 s and ‖u‖1 6U , where the sparsity level s ∈ N and the

ℓ1-diameter U > 0 are both unknown to the forecaster. The proof is postponed to Appendix A.1.

Corollary 11 Fix s ∈ N and U > 0. Then, for all T > 1 and all (x1,y1), . . . ,(xT ,yT ) ∈ X ×R, the

regret of the algorithm SeqSEW∗
∗ on

{
u ∈ R

d : ‖u‖0 6 s and ‖u‖1 6U
}

is bounded by

T

∑
t=1

(yt − ŷt)
2 − inf

‖u‖06s

‖u‖16U

T

∑
t=1

(
yt −u ·ϕ(xt)

)2

6 128
(

max
16t6T

y2
t

)
s ln


e+

√√√√
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)


+ 32

(
max

16t6T
y2

t

)
AT s ln

(
1+

U

s

)

+
(

1+9 max
16t6T

y2
t

)
AT ,

where AT , 2+ log2 ln
(

e+
√

∑T
t=1 ∑d

j=1 ϕ2
j(xt)

)
.

4. Adaptivity to the Unknown Variance in the Stochastic Setting

In this section, we apply the online algorithm SeqSEW∗
τ of Section 3.2 to two related stochastic

settings: the regression model with random design (Section 4.1) and the regression model with fixed

design (Section 4.2). The sparsity regret bounds proved for this algorithm on individual sequences

imply in both settings sparsity oracle inequalities with leading constant 1. These risk bounds are of

the same flavor as in Dalalyan and Tsybakov (2008, 2012a) but they are adaptive (up to a logarithmic

factor) to the unknown variance σ2 of the noise if the latter is Gaussian. In particular, we solve two

questions left open by Dalalyan and Tsybakov (2012a) in the random design case.

In the sequel, just like in the online deterministic setting, we assume that the forecaster has

access to a dictionary ϕ = (ϕ1, . . . ,ϕd) of measurable base forecasters ϕ j : X → R, j = 1, . . . ,d.

4.1 Regression Model With Random Design

In this section we apply the algorithm SeqSEW∗
τ to the regression model with random design. In

this batch setting the forecaster is given at the beginning of the game T independent random copies

(X1,Y1), . . . ,(XT ,YT ) of (X ,Y ) ∈ X ×R whose common distribution is unknown. We assume there-

after that E[Y 2] < ∞; the goal of the forecaster is to estimate the regression function f : X → R

defined by f (x), E[Y |X = x] for all x ∈ X . Setting εt , Yt − f (Xt) for all t = 1, . . . ,T , note that

Yt = f (Xt)+ εt , 1 6 t 6 T ,

and that the pairs (X1,ε1), . . . ,(XT ,εT ) are i.i.d. and such that E[ε2
1] < ∞ and E[ε1|X1] = 0 almost

surely. In the sequel, we denote the distribution of X by PX and we set, for all measurable functions
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h : X → R,

‖h‖L2 ,

(∫
X

h(x)2PX(dx)

)1/2

=
(
E
[
h(X)2

])1/2

.

Next we construct an estimator f̂T : X → R based on the sample (X1,Y1), . . . ,(XT ,YT ) that satisfies

a sparsity oracle inequality, that is, its expected L2-risk E
[ww f − f̂T

ww2

L2

]
is almost as small as the

smallest L2-risk ‖ f −u ·ϕ‖2
L2 , u ∈ R

d , up to some additive term proportional to ‖u‖0.

4.1.1 ALGORITHM AND MAIN RESULT

Even if the whole sample (X1,Y1), . . . ,(XT ,YT ) is available at the beginning of the prediction game,

we treat it in a sequential fashion. We run the algorithm SeqSEW∗
τ of Section 3.2 from time 1

to time T with τ = 1/
√

dT (note that T is known in this setting). Using the standard online-to-

batch conversion (see, e.g., Littlestone 1989; Cesa-Bianchi et al. 2004), we define our estimator

f̂T : X → R as the uniform average

f̂T ,
1

T

T

∑
t=1

f̃t (25)

of the estimators f̃t : X → R sequentially built by the algorithm SeqSEW∗
τ as

f̃t(x),
∫
Rd

[
u ·ϕ(x)

]
Bt

pt(du) . (26)

Note that, contrary to much prior work from the statistics community such as those of Catoni

(2004), Bunea and Nobel (2008) and Dalalyan and Tsybakov (2012a), the estimators f̃t : X →R are

tuned online. Therefore, f̂T does not depend on any prior knowledge on the unknown distribution

of the (Xt ,Yt), 1 6 t 6 T , such as the unknown variance E
[
(Y − f (X))2

]
of the noise, the normswwϕ j

ww
∞

, or the norms
ww f −ϕ j

ww
∞

(actually, the functions ϕ j and f −ϕ j do not even need to be

bounded in ℓ∞-norm).

In this respect, this work improves on that of Bunea and Nobel (2008) who tune their online

forecasters as a function of ‖ f‖∞ and supu∈U ‖u ·ϕ‖∞, where U ⊂ R
d is a bounded comparison

set.12 Their technique is not appropriate when ‖ f‖∞ is unknown and it cannot be extended to the

case where U = R
d (since supu∈Rd ‖u ·ϕ‖∞ =+∞ if ϕ 6= 0). The major technical difference is that

we truncate the base forecasts u ·ϕ(Xt) instead of truncating the observations Yt . In particular, this

enables us to aggregate the base forecasters u ·ϕ for all u ∈ R
d , that is, over the whole R

d space.

The next sparsity oracle inequality is the main result of this section. It follows from the deter-

ministic regret bound of Corollory 8 and from Jensen’s inequality. Two corollaries are to be derived

later.

Theorem 12 Assume that (X1,Y1), . . . ,(XT ,YT )∈X ×R are independent random copies of (X ,Y )∈
X ×R, where E[Y 2]<+∞ and

wwϕ j

ww2

L2 , E[ϕ j(X)2]<+∞ for all j = 1, . . . ,d. Then, the estimator

12. Bunea and Nobel (2008) study the case where U is the (scaled) simplex in R
d or the set of its vertices.
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f̂T defined in (25)-(26) satisfies

E

[www f − f̂T

www
2

L2

]
6 inf

u∈Rd

{
‖ f −u ·ϕ‖2

L2 +32
E
[
max16t6T Y 2

t

]

T
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

wwϕ j

ww2

L2 + 5
E
[
max16t6T Y 2

t

]

T
.

Proof sketch (of Theorem 12) By Corollary 8 and by definition of f̃t above and ŷt , f̃t(Xt) in

Figure 3, we have, almost surely,

T

∑
t=1

(Yt − f̃t(Xt))
2 6 inf

u∈Rd

{
T

∑
t=1

(
Yt −u ·ϕ(Xt)

)2
+32

(
max

16t6T
Y 2

t

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

T

∑
t=1

ϕ2
j(Xt)+5 max

16t6T
Y 2

t .

Taking the expectations of both sides and applying Jensen’s inequality yields the desired result. For

a detailed proof, see Appendix A.2.

Theorem 12 above can be used under several assumptions on the distribution of the output Y .

In all cases, it suffices to upper bound the amplitude E
[
max16t6T Y 2

t

]
. We present below a general

corollary and explain later why our fully automatic procedure f̂T solves two questions left open by

Dalalyan and Tsybakov (2012a) (see Corollary 14 below).

4.1.2 A GENERAL COROLLARY

The next sparsity oracle inequality follows from Theorem 12 and from the upper bounds on

E
[
max16t6T Y 2

t

]
entailed by Lemmas 24–26 in Appendix B. The proof is postponed to Appendix A.2.

Corollary 13 Assume that (X1,Y1), . . . ,(XT ,YT )∈X ×R are independent random copies of (X ,Y )∈
X ×R, that sup16 j6d

wwϕ j

ww2

L2 < +∞, that E|Y | < +∞, and that one of the following assumptions

holds on the distribution of ∆Y , Y −E[Y ].

•
(
BD(B)

)
: |∆Y |6 B almost surely for a given constant B > 0;

•
(
SG(σ2)

)
: ∆Y is subgaussian with variance factor σ2 > 0, that is, E

[
eλ∆Y

]
6 eλ2σ2/2 for all

λ ∈ R;

•
(
BEM(α,M)

)
: ∆Y has a bounded exponential moment, that is, E

[
eα|∆Y |]6 M for some given

constants α > 0 and M > 0;

•
(
BM(α,M)

)
: ∆Y has a bounded moment, that is, E

[
|∆Y |α

]
6 M for some given constants

α > 2 and M > 0.
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Then, the estimator f̂T defined above satisfies

E

[www f − f̂T

www
2

L2

]
6 inf

u∈Rd

{
‖ f −u ·ϕ‖2

L2 +64

(
E[Y ]2

T
+ψT

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

wwϕ j

ww2

L2 + 10

(
E[Y ]2

T
+ψT

)
,

where

ψT ,
1

T
E

[
max

16t6T

(
Yt −E[Yt ]

)2

]
6





B2

T
under Assumption

(
BD(B)

)
,

2σ2 ln(2eT )

T
under Assumption

(
SG(σ2)

)
,

ln2
(
(M+ e)T

)

α2 T
under Assumption

(
BEM(α,M)

)
,

M2/α

T (α−2)/α
under Assumption

(
BM(α,M)

)
.

Several comments can be made about Corollary 13. We first stress that, if T > 2, then the

two “bias” terms E[Y ]2/T above can be avoided, at least at the price of a multiplicative factor

of 2T/(T − 1) 6 4. This can be achieved via a slightly more sophisticated online clipping—see

Remark 19 in Appendix A.2.

Second, under the assumptions
(
BD(B)

)
,
(
SG(σ2)

)
, or

(
BEM(α,M)

)
, the key quantity ψT is

respectively of the order of 1/T , ln(T )/T and ln2(T )/T . Up to a logarithmic factor, this corresponds

to the classical fast rate of convergence 1/T obtained in the random design setting for different ag-

gregation problems (see, e.g., Catoni 1999; Juditsky et al. 2008; Audibert 2009 for model-selection-

type aggregation and Dalalyan and Tsybakov 2012a for linear aggregation). We were able to get

similar rates—with, however, a fully automatic procedure—since our online algorithm SeqSEW∗
τ

is well suited for bounded individual sequences with an unknown bound. More precisely, the finite

i.i.d. sequence Y1, . . . ,YT is almost surely uniformly bounded by the random bound max16t6T |Yt |.
Our individual sequence techniques adapt sequentially to this random bound, yielding a regret bound

that scales as max16t6T Y 2
t . As a result, the risk bounds obtained after the online-to-batch conversion

scale as E
[
max16t6T Y 2

t

]
/T . If the distribution of the output Y is sufficiently lightly-tailed—which

includes the quite general bounded-exponential-moment assumption—then we can recover the fast

rate of convergence 1/T up to a logarithmic factor.

We note that there is still a question left open for heavy-tailed output distributions. For example,

under the bounded moment assumption
(
BM(α,M)

)
, the rate T−(α−2)/α that we proved does not

match the faster rate T−α/(α+2) obtained by Juditsky et al. (2008) and Audibert (2009) under a

similar assumption. Their methods use some preliminary knowledge on the output distribution

(such as the exponent α). Thus, obtaining the same rate with a procedure tuned in an automatic

fashion—just like our method f̂T —is a challenging task. For this purpose, a different tuning of ηt

or a more sophisticated online truncation might be necessary.

Third, several variations on the assumptions are possible. First note that several classical

assumptions on Y expressed in terms of f (X) and ε , Y − f (X) are either particular cases of

the above corollary or can be treated similarly. Indeed, each of the four assumptions above on
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∆Y ,Y −E[Y ] = f (X)−E[ f (X)]+ε is satisfied as soon as both the distribution of f (X)−E[ f (X)]
and the conditional distribution of ε (conditionally on X) satisfy the same type of assumption. For

example, if f (X)−E[ f (X)] is subgaussian with variance factor σ2
X and if ε is subgaussian condi-

tionally on X with a variance factor uniformly bounded by a constant σ2
ε , then ∆Y is subgaussian

with variance factor σ2
X +σ2

ε (see also Remark 20 in Appendix A.2 to avoid conditioning).

The assumptions on f (X)−E[ f (X)] and ε can also be mixed together. For instance, as explained

in Remark 20 in Appendix A.2, under the classical assumptions

‖ f‖∞ <+∞ and E

[
eα|ε|

∣∣∣ X
]
6 M a.s. (27)

or

‖ f‖∞ <+∞ and E

[
eλε
∣∣∣ X
]
6 eλ2σ2/2 a.s., ∀λ ∈ R , (28)

the key quantity ψT in the corollary can be bounded from above by

ψT 6





8‖ f‖2
∞

T
+

2ln2
(
(M+ e)T

)

α2 T
under the set of assumptions (27),

8‖ f‖2
∞

T
+

4σ2 ln(2eT )

T
under the set of assumptions (28).

In particular, under the set of assumptions (28), our procedure f̂T solves two questions left open

by Dalalyan and Tsybakov (2012a). We discuss below our contributions in this particular case.

4.1.3 QUESTIONS LEFT OPEN BY DALALYAN AND TSYBAKOV

In this subsection we focus on the case when the set of assumptions (28) holds true. Namely, the

regression function f is bounded (by an unknown constant) and the noise ε , Y − f (X) is subgaus-

sian conditionally on X with an unknown variance factor σ2 > 0. An important particular case is

when ‖ f‖∞ <+∞ and when the noise ε is independent of X and normally distributed N (0,σ2).

Under the set of assumptions (28), the two terms E
[
max16t6T Y 2

t

]
of Theorem 12 can be upper

bounded in a simpler and slightly tighter way as compared to the proof of Corollary 13 (we only use

the inequality (x+ y)2 6 2x2 + 2y2 once, instead of twice). It yields the following sparsity oracle

inequality.

Corollary 14 Assume that (X1,Y1), . . . ,(XT ,YT )∈X ×R are independent random copies of (X ,Y )∈
X ×R such that the set of assumptions (28) above holds true. Then, the estimator f̂T defined in (25)-

(26) satisfies

E

[www f − f̂T

www
2

L2

]

6 inf
u∈Rd

{
‖ f −u ·ϕ‖2

L2 +64
(
‖ f‖2

∞ +2σ2 ln(2eT )
) ‖u‖0

T
ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

wwϕ j

ww2

L2 +
10

T

(
‖ f‖2

∞ +2σ2 ln(2eT )
)
.
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Proof We apply Theorem 12 and bound E
[
max16t6T Y 2

t

]
from above. By the elementary inequality

(x+ y)2 6 2x2 +2y2 for all x,y ∈ R, we get

E

[
max

16t6T
Y 2

t

]
= E

[
max

16t6T

(
f (Xt)+ εt

)2

]
6 2

(
‖ f‖2

∞ +E

[
max

16t6T
ε2

t

])

6 2
(
‖ f‖2

∞ +2σ2 ln(2eT )
)
,

where the last inequality follows from Lemma 24 in Appendix B and from the fact that, for all

1 6 t 6 T and all λ ∈ R, we have E
[
eλεt
]
= E

[
eλε
]
= E

[
E
[
eλε
∣∣X
]]

6 eλ2σ2/2 by (28). (Note that

the assumption of conditional subgaussianity in (28) is stronger than what we need, that is, subgaus-

sianity without conditioning.) This concludes the proof.

The above bound is of the same order (up to a lnT factor) as the sparsity oracle inequal-

ity proved in Proposition 1 of Dalalyan and Tsybakov (2012a). For the sake of comparison we

state below with our notations (e.g., β therein corresponds to 1/η in this paper) a straightforward

consequence of this proposition, which follows by Jensen’s inequality and the particular13 choice

τ = min
{

1/
√

dT ,R/(4d)
}

.

Proposition 15 (A consequence of Prop. 1 of Dalalyan and Tsybakov 2012a)

Assume that sup16 j6d

wwϕ j

ww
∞
< ∞ and that the set of assumptions (28) above holds true. Then,

for all R > 0 and all η 6 η̄(R) ,
(
2σ2 + 2sup‖u‖16R ‖u ·ϕ− f‖2

∞

)−1
, the mirror averaging ag-

gregate f̂T : X → R defined by Dalalyan and Tsybakov (2012a, Equations (1) and (3)) with τ =
min
{

1/
√

dT ,R/(4d)
}

satisfies

E

[www f − f̂T

www
2

L2

]
6 inf

‖u‖16R/2

{
‖ f −u ·ϕ‖2

L2 +
4

η

‖u‖0

T +1
ln

(
1+

√
dT ‖u‖1 +2d

‖u‖0

)}

+
4

dT

d

∑
j=1

wwϕ j

ww2

L2 +
1

(T +1)η
.

We can now discuss the two questions left open by Dalalyan and Tsybakov (2012a).

Risk bound on the whole R
d space. Despite the similarity of the two bounds, the sparsity oracle

inequality stated in Proposition 15 above only holds for vectors u within an ℓ1-ball of finite radius

R/2, while our bound holds over the whole R
d space. Moreover, the parameter R above has to be

chosen in advance, but it cannot be chosen too large since 1/η > 1/η̄(R), which grows as R2 when

R →+∞ (if ϕ 6= 0). Dalalyan and Tsybakov (2012a, Section 4.2) thus asked whether it was possible

to get a bound with 1/η < +∞ such that the infimum in Proposition 15 extends to the whole R
d

space. Our results show that, thanks to data-driven truncation, the answer is positive.

Note that it is still possible to transform the bound of Proposition 15 into a bound over the whole

R
d space if the parameter R is chosen (illegally) as R = 2‖u∗‖1 (or as a tight upper bound of the last

13. Proposition 1 of Dalalyan and Tsybakov (2012a) may seem more general than Corollary 14 at first sight since it holds

for all τ > 0, but this is actually also the case for Corollary 14. The proof of the latter would indeed have remained

true had we replaced τ = 1/
√

dT with any value of τ > 0 (see Proposition 5). We however chose the reasonable value

τ = 1/
√

dT to make our algorithm parameter-free. As noted earlier, if ‖ϕ‖∞ , supx∈X max16 j6d |ϕ j(x)| is finite and

known by the forecaster, another simple and easy-to-analyse tuning is given by τ = 1/(‖ϕ‖∞

√
d T ).
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quantity), where u∗ ∈ R
d minimizes over Rd the regularized risk

‖ f −u ·ϕ‖2
L2 +

4

η̄(2‖u‖1)

‖u‖0

T +1
ln

(
1+

√
dT ‖u‖1 +2d

‖u‖0

)

+
4

dT

d

∑
j=1

wwϕ j

ww2

L2 +
1

(T +1) η̄(2‖u‖1)
.

For instance, choosing R = 2‖u∗‖1 and η = η̄(R), we get from Proposition 15 that the expected L2-

risk E
[
‖ f − f̂T‖2

L2

]
of the corresponding procedure is upper bounded by the infimum of the above

regularized risk over all u ∈ R
d . However, this parameter tuning is illegal since ‖u∗‖1 is not known

in practice. On the contrary, thanks to data-driven truncation, the prior knowledge of ‖u∗‖1 is not

required by our procedure.

Adaptivity to the unknown variance of the noise. The second open question, which was raised by

Dalalyan and Tsybakov (2012a, Section 5.1, Remark 6), deals with the prior knowledge of the

variance factor σ2 of the noise. The latter is indeed required by their algorithm for the choice of the

inverse temperature parameter η. Since the noise level σ2 is unknown in practice, the authors asked

the important question whether adaptivity to σ2 was possible. Up to a lnT factor, Corollary 14

above provides a positive answer.

4.2 Regression Model With Fixed Design

In this section, we consider the regression model with fixed design. In this batch setting the fore-

caster is given at the beginning of the game a T -sample (x1,Y1), . . . ,(xT ,YT ) ∈ X ×R, where the xt

are deterministic elements in X and where

Yt = f (xt)+ εt , 1 6 t 6 T, (29)

for some i.i.d. sequence ε1, . . . ,εT ∈ R (with unknown distribution) and some unknown function

f : X →R. Next we construct an estimator f̂T : X →R of f based on the sample (x1,Y1), . . . ,(xT ,YT )
that satisfies a sparsity oracle inequality, that is, its expected mean squared error E

[
1
T ∑T

t=1( f (xt)−
f̂T (xt))

2
]

is almost as small as the smallest mean squared error 1
T ∑T

t=1( f (xt)− u ·ϕ(xt))
2, u ∈ R

d ,

up to some additive term proportional to ‖u‖0.

In this setting, just like in Section 4.1, our algorithm and the corresponding analysis are a

straightforward consequence of the general results on individual sequences developed in Section 3.

As in the random design setting, the sample (x1,Y1), . . . ,(xT ,YT ) is treated in a sequential fashion.

We run the algorithm SeqSEW∗
τ defined in Figure 3 from time 1 to time T with the particular choice

of τ = 1/
√

dT . We then define our estimator f̂T : X → R by

f̂T (x),





1

nx
∑

16t6T
t:xt=x

f̃t(x) if x ∈ {x1, . . . ,xT} ,

0 if x /∈ {x1, . . . ,xT} ,

(30)

where nx ,
∣∣{t : xt = x

}∣∣= ∑T
t=1 I{xt=x}, and where the estimators f̃t : X → R sequentially built by

the algorithm SeqSEW∗
τ are defined by

f̃t(x),
∫
Rd

[
u ·ϕ(x)

]
Bt

pt(du) . (31)
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In the particular case when the xt are all distinct, f̂T is simply defined by f̂T (xt) , f̃t(xt) for all

t ∈ {1, . . . ,T} and by f̂T (x) = 0 otherwise. Therefore, in this case, f̂T only uses the observations

y1, . . . ,yt−1 to estimate f (xt) (in particular, f̂T (x1) is deterministic).

The next theorem is the main result of this subsection. It follows as in the random design

setting from the deterministic regret bound of Corollory 8 and from Jensen’s inequality. The proof

is postponed to Appendix A.3.

Theorem 16 Consider the regression model with fixed design described in (29). Then, the estimator

f̂T defined in (30)–(31) satisfies

E

[
1

T

T

∑
t=1

(
f (xt)− f̂T (xt)

)2

]
6 inf

u∈Rd

{
1

T

T

∑
t=1

(
f (xt)−u ·ϕ(xt)

)2

+32
E
[
max16t6T Y 2

t

]

T
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT 2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+ 5

E
[
max16t6T Y 2

t

]

T
.

As in Section 4.1, the amplitude E
[
max16t6T Y 2

t

]
can be upper bounded under various assump-

tions. The proof of the following corollary is postponed to Appendix A.3.

Corollary 17 Consider the regression model with fixed design described in (29). Assume that one

of the following assumptions holds on the distribution of ε1.

•
(
BD(B)

)
: |ε1|6 B almost surely for a given constant B > 0;

•
(
SG(σ2)

)
: ε1 is subgaussian with variance factor σ2 > 0, that is, E

[
eλε1
]
6 eλ2σ2/2 for all

λ ∈ R;

•
(
BEM(α,M)

)
: ε has a bounded exponential moment, that is, E

[
eα|ε|] 6 M for some given

constants α > 0 and M > 0;

•
(
BM(α,M)

)
: ε has a bounded moment, that is, E

[
|ε|α
]
6 M for some given constants α > 2

and M > 0.

Then, the estimator f̂T defined in (30)–(31) satisfies

E

[
1

T

T

∑
t=1

(
f (xt)− f̂T (xt)

)2

]
6 inf

u∈Rd

{
1

T

T

∑
t=1

(
f (xt)−u ·ϕ(xt)

)2

+64

(
max16t6T f 2(xt)

T
+ψT

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT 2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+ 10

(
max16t6T f 2(xt)

T
+ψT

)
,
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where

ψT ,
1

T
E

[
max

16t6T
ε2

t

]
6





B2

T
if Assumption

(
BD(B)

)
holds,

2σ2 ln(2eT )

T
if Assumption

(
SG(σ2)

)
holds,

ln2 ((M+ e)T )

α2 T
if Assumption

(
BEM(α,M)

)
holds,

M2/α

T (α−2)/α
if Assumption

(
BM(α,M)

)
holds.

The above bound is of the same flavor as that of Dalalyan and Tsybakov (2008, Theorem 5).

It has one advantage and one drawback. On the one hand, we note two additional “bias” terms(
max16t6T f 2(xt)

)
/T as compared to the bound of Dalalyan and Tsybakov (2008, Theorem 5). As

of now, we have not been able to remove them using ideas similar to what we did in the random

design case (see Remark 19 in Appendix A.2). On the other hand, under Assumption
(
SG(σ2)

)
,

contrary to Dalalyan and Tsybakov (2008), our algorithm does not require the prior knowledge of

the variance factor σ2 of the noise.
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Appendix A. Proofs

In this appendix we provide the proofs of some results stated above.

A.1 Proofs of Theorem 10 and Corollary 11

Before proving Theorem 10, we first need the following comment. Since the algorithm SeqSEW∗
τ is

restarted at the beginning of each regime, the threshold values Bt used on regime r by the algorithm

SeqSEW∗
τ are not computed on the basis of all past observations y1, . . . ,yt−1 but only on the basis of

the past observations yt , t ∈ {tr−1 +1, . . . , t −1}. To avoid any ambiguity, we set Br,tr−1+1 , 0 and

Br,t , max
tr−1+16s6t−1

|ys| , t ∈ {tr−1 +2, . . . , tr} .

Proof (of Theorem 10) We denote by R , min{r ∈ N : T 6 tr} the index of the last regime. For

notational convenience, we re-define tR , T (even if γT 6 2R).
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We upper bound the regret of the algorithm SeqSEW∗
∗ on {1, . . . ,T} by the sum of its regrets on

each time interval. To do so, first note that14

T

∑
t=1

(yt − ŷt)
2 =

R

∑
r=0

tr

∑
t=tr−1+1

(yt − ŷt)
2 =

R

∑
r=0

(
(ytr − ŷtr)

2 +
tr−1

∑
t=tr−1+1

(yt − ŷt)
2

)

6
R

∑
r=0

(
2(y2

tr
+B2

r,tr)+
tr−1

∑
t=tr−1+1

(yt − ŷt)
2

)
(32)

6
R

∑
r=0

(
tr−1

∑
t=tr−1+1

(yt − ŷt)
2

)
+4(R+1)y∗T

2 , (33)

where we set y∗T , max16t6T |yt |, where (32) follows from the upper bound (ytr − ŷtr)
2 6 2(y2

tr
+

ŷ2
tr
)6 2(y2

tr
+B2

r,tr) (since |ŷtr |6 Br,tr by construction), and where (33) follows from the inequalities

y2
tr
6 y∗T

2 and

B2
r,tr , max

tr−1+16t6tr−1
y2

t 6 y∗T
2 .

But, for every r = 0, . . . ,R, the trace of the empirical Gram matrix on {tr−1 +1, . . . , tr −1} is upper

bounded by
tr−1

∑
t=tr−1+1

d

∑
j=1

ϕ2
j(xt)6

tr−1

∑
t=1

d

∑
j=1

ϕ2
j(xt)6 (e2r −1)2 ,

where the last inequality follows from the fact that γtr−1 6 2r (by definition of tr). Since in addition

τr , 1/
√
(e2r −1)2, we can apply Corollory 7 on each period {tr−1 + 1, . . . , tr − 1}, r = 0, . . . ,R,

with BΦ = (e2r −1)2 and get from (33) the upper bound

T

∑
t=1

(yt − ŷt)
2 6

R

∑
r=0

inf
u∈Rd

{
tr−1

∑
t=tr−1+1

(
yt −u ·ϕ(xt)

)2
+∆r(u)

}
+4(R+1)y∗T

2 , (34)

where

∆r(u), 32B2
r,tr ‖u‖0 ln

(
1+

(
e2r −1

)
‖u‖1

‖u‖0

)
+5B2

r,tr +1 . (35)

Since the infimum is superadditive and since
(
ytr − u · ϕ(xtr)

)2
> 0 for all r = 0, . . . ,R, we get

from (34) that

T

∑
t=1

(yt − ŷt)
2 6 inf

u∈Rd

R

∑
r=0

(
tr

∑
t=tr−1+1

(
yt −u ·ϕ(xt)

)2
+∆r(u)

)
+4(R+1)y∗T

2

= inf
u∈Rd

{
T

∑
t=1

(
yt −u ·ϕ(xt)

)2
+

R

∑
r=0

∆r(u)

}
+4(R+1)y∗T

2 . (36)

Let u ∈ R
d . Next we bound ∑R

r=0 ∆r(u) and 4(R+ 1)y∗T
2 from above. First note that, by the

upper bound B2
r,tr 6 y∗T

2 and by the elementary inequality ln(1+ xy) 6 ln((1+ x)(1+ y)) = ln(1+

14. In the trivial cases where tr = tr−1 +1 for some r, the sum ∑
tr−1
t=tr−1+1(yt − ŷt)

2 equals 0 by convention.
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x)+ ln(1+ y) with x = e2r −1 and y = ‖u‖1 /‖u‖0, (35) yields

∆r(u)6 32y∗T
2 ‖u‖0 2r +32y∗T

2 ‖u‖0 ln

(
1+

‖u‖1

‖u‖0

)
+5y∗T

2 +1 .

Summing over r = 0, . . . ,R, we get

R

∑
r=0

∆r(u)6 32
(
2R+1 −1

)
y∗T

2 ‖u‖0 +(R+1)

(
32y∗T

2 ‖u‖0 ln

(
1+

‖u‖1

‖u‖0

)
+5y∗T

2 +1

)
. (37)

First case: R = 0

Substituting (37) in (36), we conclude the proof by noting that AT > 2 + log2 1 > 1 and that

ln
(

e+
√

∑T
t=1 ∑d

j=1 ϕ2
j(xt)

)
> 1.

Second case: R > 1

Since R > 1, we have, by definition of tR−1,

2R−1 < γtR−1
, ln


1+

√√√√
tR−1

∑
t=1

d

∑
j=1

ϕ2
j(xt)


6 ln


e+

√√√√
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)


 .

The last inequality entails that 2R+1−1 6 4 ·2R−1 6 4ln
(

e+
√

∑T
t=1 ∑d

j=1 ϕ2
j(xt)

)
and that R+1 6

2+ log2 ln
(

e+
√

∑T
t=1 ∑d

j=1 ϕ2
j(xt)

)
, AT . Therefore, one the one hand, via (37),

R

∑
r=0

∆r(u)6 128y∗T
2 ‖u‖0 ln


e+

√√√√
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)


+32y∗T

2
AT ‖u‖0 ln

(
1+

‖u‖1

‖u‖0

)

+AT

(
5y∗T

2 +1
)
,

and, on the other hand,

4(R+1)y∗T
2 6 4AT y∗T

2 .

Substituting the last two inequalities in (36) and noting that y∗T
2 = max16t6T y2

t concludes the proof.

Proof (of Corollary 11) The proof is straightforward. In view of Theorem 10, we just need to

check that the quantity (continuously extended in s = 0)

128
(

max
16t6T

y2
t

)
s ln


e+

√√√√
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)


+ 32

(
max

16t6T
y2

t

)
AT s ln

(
1+

U

s

)

is non-decreasing in s ∈ R+ and in U ∈ R+.

This is clear for U . The fact that it also non-decreasing in s comes from the following remark.

For all U > 0, the function s ∈ (0,+∞) 7→ s ln(1+U/s) has a derivative equal to

ln

(
1+

U

s

)
− U/s

1+U/s
for all s > 0 .
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From the elementary inequality

ln(1+u) =− ln

(
1

1+u

)
>−

(
1

1+u
−1

)
=

u

1+u
,

which holds for all u ∈ (−1,+∞), the above derivative is nonnegative for all s > 0 so that the con-

tinuous extension s ∈ R+ 7→ s ln(1+U/s) is non-decreasing.

A.2 Proofs of Theorem 12 and Corollary 13

In this subsection, we set ε,Y − f (X), so that the pairs (X1,ε1), . . . ,(XT ,εT ) are independent copies

of (X ,ε) ∈ X ×R. We also define σ > 0 by

σ2 , E
[
ε2
]
= E

[
(Y − f (X))2

]
.

Proof (of Theorem 12) By Corollory 8 and the definitions of f̃t in (26) and ŷt , f̃t(Xt) in Figure 3,

we have, almost surely,

T

∑
t=1

(Yt − f̃t(Xt))
2 6 inf

u∈Rd

{
T

∑
t=1

(
Yt −u ·ϕ(Xt)

)2
+32

(
max

16t6T
Y 2

t

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

T

∑
t=1

ϕ2
j(Xt)+5 max

16t6T
Y 2

t .

It remains to take the expectations of both sides with respect to
(
(X1,Y1), . . . ,(XT ,YT )

)
. First note

that for all t = 1, . . . ,T , since εt , Yt − f (Xt), we have

E

[(
Yt − f̃t(Xt)

)2
]
= E

[(
εt + f (Xt)− f̃t(Xt)

)2
]

= σ2 +E

[(
f (Xt)− f̃t(Xt)

)2
]
,

since E
[
ε2

t

]
= E

[
ε2
]
, σ2 on the one hand, and, on the other hand, f̃t is a built on (Xs,Ys)16s6t−1

and E
[
εt

∣∣(Xs,Ys)16s6t−1,Xt

]
= E

[
εt

∣∣Xt

]
= 0 (from the independence of (Xs,Ys)16s6t−1 and (Xt ,Yt)

and by definition of f ).

In the same way,

E

[(
Yt −u ·ϕ(Xt)

)2
]
= σ2 +E

[(
f (Xt)−u ·ϕ(Xt)

)2
]
.

Therefore, by Jensen’s inequality and the concavity of the infimum, the last inequality becomes,

after taking the expectations of both sides,

T σ2 +
T

∑
t=1

E

[(
f (Xt)− f̃t(Xt)

)2
]
6 inf

u∈Rd

{
T σ2 +

T

∑
t=1

E

[(
f (Xt)−u ·ϕ(Xt)

)2
]

+32E

[
max

16t6T
Y 2

t

]
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

T

∑
t=1

E
[
ϕ2

j(Xt)
]
+5E

[
max

16t6T
Y 2

t

]
.
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Noting that the T σ2 cancel out, dividing the two sides by T , and using the fact that Xt ∼ X in the

right-hand side, we get

1

T

T

∑
t=1

E

[(
f (Xt)− f̃t(Xt)

)2
]
6 inf

u∈Rd

{
‖ f −u ·ϕ‖2

L2

+32
E
[
max16t6T Y 2

t

]

T
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

wwϕ j

ww2

L2 + 5
E
[
max16t6T Y 2

t

]

T
.

The right-hand side of the last inequality is exactly the upper bound stated in Theorem 12. To

conclude the proof, we thus only need to check that E
[
‖ f − f̂T‖2

L2

]
is bounded from above by the

left-hand side. But by definition of f̂T and by convexity of the square loss,

E

[www f − f̂T

www
2

L2

]
, E

[(
f (X)− 1

T

T

∑
t=1

f̃t(X)

)2
]

6
1

T

T

∑
t=1

E

[(
f (X)− f̃t(X)

)2
]
=

1

T

T

∑
t=1

E

[(
f (Xt)− f̃t(Xt)

)2
]
.

The last equality follows classically from the fact that, for all t = 1, . . . ,T , (Xs,Ys)16s6t−1 (on which

f̃t is constructed) is independent from both Xt and X and the fact that Xt ∼ X .

Remark 18 The fact that the inequality stated in Corollary 8 has a leading constant equal to 1 on

individual sequences is crucial to derive in the stochastic setting an oracle inequality in terms of

the (excess) risks E
[
‖ f − f̂T‖2

L2

]
and ‖ f −u ·ϕ‖2

L2 . Indeed, if the constant appearing in front of the

infimum was equal to C > 1, then the T σ2 would not cancel out in the previous proof, so that the

resulting expected inequality would contain a non-vanishing additive term (C−1)σ2.

Proof (of Corollary 13) We can apply Theorem 12. Then, to prove the upper bound on E

[
‖ f − f̂T‖2

L2

]
,

it suffices to show that
E
[
max16t6T Y 2

t

]

T
6 2

(
E[Y ]2

T
+ψT

)
. (38)

Recall that

ψT ,
1

T
E

[
max

16t6T

(
Yt −E[Yt ]

)2
]
=

1

T
E

[
max

16t6T
(∆Y )2

t

]
,

where we defined (∆Y )t , Yt −E[Yt ] = Yt −E[Y ] for all t = 1, . . . ,T .

From the elementary inequality (x+ y)2 6 2x2 +2y2 for all x,y ∈ R, we have

E

[
max

16t6T
Y 2

t

]
, E

[
max

16t6T

(
E[Y ]+ (∆Y )t

)2

]
6 2E[Y ]2 +2E

[
max

16t6T
(∆Y )2

t

]
.

Dividing both sides by T , we get (38).
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As for the upper bound on ψT , since the (∆Y )t , 1 6 t 6 T , are distributed as ∆Y , we can apply

Lemmas 24, 25, and 26 in Appendix B.3 to bound ψT from above under the assumptions
(
SG(σ2)

)
,(

BEM(α,M)
)
, and

(
BM(α,M)

)
respectively (the upper bound under

(
BD(B)

)
is straightforward):

E

[
max

16t6T
(∆Y )2

t

]
6





B2 if Assumption
(
BD(B)

)
holds,

σ2 +2σ2 ln(2eT ) if Assumption
(
SG(σ2)

)
holds,

ln2
(
(M+e)T

)
α2 if Assumption

(
BEM(α,M)

)
holds,

(MT )2/α if Assumption
(
BM(α,M)

)
holds .

Remark 19 If T > 2, then the two “bias” terms E[Y ]2/T appearing in Corollary 13 can be avoided,

at least at the price of a multiplicative factor of 2T/(T − 1) 6 4. It suffices to use a slightly more

sophisticated online clipping defined as follows. The first round t = 1 is only used to observe Y1.

Then, the algorithm SeqSEW∗
τ is run with τ= 1/

√
dT from round 2 up to round T with the following

important modification: instead of truncating the predictions to [−Bt ,Bt ], which is best suited to the

case E[Y ] = 0, we truncate them to the interval
[
Y1 −B′

t ,Y1 +B′
t

]
, where B′

t , max
16s6t−1

|Ys −Y1| .

If ηt is changed accordingly, that is, if ηt = 1/(8B′
t
2), then it easy to see that the resulting procedure

f̂T , 1
T−1 ∑T

s=2 f̃s (where f̃2, . . . , f̃T are the estimators output by SeqSEW∗
τ) satisfies

E

[www f − f̂T

www
2

L2

]
6 inf

u∈Rd

{
‖ f −u ·ϕ‖2

L2 +64

(
Var[Y ]

T −1
+ψT−1

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

wwϕ j

ww2

L2 +10

(
Var[Y ]

T −1
+ψT−1

)
,

where Var[Y ] , E
[
(Y −E[Y ])2

]
. Comparing the last bound to that of Corollary 13, we note that

the two terms E[Y ]2/T are absent, and that we loose a multiplicative factor at most of 4 since

Var[Y ]6 E
[
max26t6T (Yt −E[Yt ])

2
]
, (T −1)ψT−1 so that

Var[Y ]

T −1
+ψT−1 6 2ψT−1 6 2

(
T

T −1

)
ψT 6 4ψT .

Remark 20 We mentioned after Corollary 13 that each of the four assumptions on ∆Y is fulfilled

as soon as both the distribution of f (X)−E[ f (X)] and the conditional distribution of ε (condi-

tionally on X) satisfy the same type of assumption. It actually extends to the more general case

when the conditional distribution of ε given X is replaced with the distribution of ε itself (without

conditioning). This relies on the elementary upper bound

E

[
max

16t6T
(∆Y )2

t

]
= E

[
max

16t6T

(
f (Xt)−E[ f (X)]+ εt

)2

]

6 2E

[
max

16t6T

(
f (Xt)−E[ f (X)]

)2

]
+2E

[
max

16t6T
ε2

t

]
.
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From the last inequality, we can also see that assumptions of different nature can be made on

f (X)−E[ f (X)] and ε, such as the assumptions given in (27) or in (28).

A.3 Proofs of Theorem 16 and Corollary 17

Proof (of Theorem 16) The proof follows the sames lines as in the proof of Theorem 12. We thus

only sketch the main arguments. In the sequel, we set σ2 , E
[
ε2

1].
Applying Corollory 8 we have, almost surely,

T

∑
t=1

(
Yt − f̃t(xt)

)2
6 inf

u∈Rd

{
T

∑
t=1

(
Yt −u ·ϕ(xt)

)2
+32

(
max

16t6T
Y 2

t

)
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+5 max

16t6T
Y 2

t .

Taking the expectations of both sides, expanding the squares
(
Yt − f̃t(xt)

)2
and

(
Yt − u ·ϕ(xt)

)2
,

noting that two terms T σ2 cancel out,15 and then dividing both sides by T , we get

E

[
1

T

T

∑
t=1

(
f (xt)− f̃t(xt)

)2

]
6 inf

u∈Rd

{
1

T

T

∑
t=1

(
f (xt)−u ·ϕ(xt)

)2

+32
E
[
max16t6T Y 2

t

]

T
‖u‖0 ln

(
1+

√
dT ‖u‖1

‖u‖0

)}

+
1

dT 2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt)+5

E
[
max16t6T Y 2

t

]

T
.

The right-hand side is exactly the upper bound stated in Theorem 16. We thus only need to check

that

E

[
1

T

T

∑
t=1

(
f (xt)− f̂T (xt)

)2

]
6 E

[
1

T

T

∑
t=1

(
f (xt)− f̃t(xt)

)2

]
. (39)

This is an equality if the xt are all distinct. In general we get an inequality which follows from the

convexity of the square loss. Indeed, by definition of nx, we have, almost surely,

T

∑
t=1

(
f (xt)− f̂T (xt)

)2
= ∑

x∈{x1,...,xT }
∑

16t6T
t:xt=x

(
f (xt)− f̂T (xt)

)2
= ∑

x∈{x1,...,xT }
nx

(
f (x)− f̂T (x)

)2

= ∑
x∈{x1,...,xT }

nx

(
f (x)− 1

nx
∑

16t6T
t:xt=x

f̃t(x)

)2

6 ∑
x∈{x1,...,xT }

nx

1

nx
∑

16t6T
t:xt=x

(
f (x)− f̃t(x)

)2
=

T

∑
t=1

(
f (xt)− f̃t(xt)

)2
,

15. Note that E
[
( f (xt)− f̃ (xt))εt

]
= 0 since f̃t(xt) and εt are independent. This is due to the fact that f̃t is built from

the past data only. In particular, truncating the predictions to B = max16t6T |Yt | might not work. A similar comment

could be made in the random design case (Section 4.1).
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where the second line is by definition of f̂T and where the last line follows from Jensen’s inequality.

Dividing both sides by T and taking their expectations, we get (39), which concludes the proof.

Proof (of Corollary 17) First note that

E

[
max

16t6T
Y 2

t

]
, E

[
max

16t6T

(
f (xt)+ εt

)2

]
6 2

(
max

16t6T
f 2(xt)+E

[
max

16t6T
ε2

t

])
.

The proof then follows exactly the same lines as for Corollary 13 with the sequence (εt) instead of

the sequence
(
(∆Y )t

)
.

Appendix B. Tools

Next we provide several (in)equalities that prove to be useful throughout the paper.

B.1 A Duality Formula for the Kullback-Leibler Divergence

We recall below a key duality formula satisfied by the Kullback-Leibler divergence and whose proof

can be found, for example, in the monograph by Catoni (2004, pp. 159–160). We use the notations

of Section 2.

Proposition 21 For any measurable space (Θ,B), any probability distribution π on (Θ,B), and

any measurable function h : Θ → [a,+∞) bounded from below (by some a ∈ R), we have

− ln

∫
Θ

e−hdπ = inf
ρ∈M +

1 (Θ)

{∫
Θ

hdρ + K (ρ,π)

}
,

where M +
1 (Θ) denotes the set of all probability distributions on (Θ,B), and where the expectations∫

Θ hdρ ∈ [a,+∞] are always well defined since h is bounded from below.

B.2 Some Tools to Exploit Our PAC-Bayesian Inequalities

In this subsection we recall two results needed for the derivation of Proposition 1 and Proposition 5

from the PAC-Bayesian inequalities (7) and (12). The proofs are due to Dalalyan and Tsybakov

(2007, 2008) and we only reproduce them for the convenience of the reader.16

For any u∗ ∈ R
d and τ > 0, define ρu∗,τ as the translated of πτ at u∗, namely,

ρu∗,τ ,
dπτ

du
(u−u∗)du =

d

∏
j=1

(3/τ)du j

2
(
1+ |u j −u∗j |/τ

)4
. (40)

16. The notations are however slightly modified because of the change in the statistical setting and goal. The target

predictions ( f (x1), . . . , f (xT )) are indeed replaced with the observations (y1, . . . ,yT ) and the prediction loss ‖ f − fu‖2
n

is replaced with the cumulative loss ∑T
t=1

(
yt − u ·ϕ(xt)

)2
. Moreover, the analysis of the present proof is slightly

simpler since we just need to consider the case L0 = +∞ according to the notations of Theorem 5 by Dalalyan and

Tsybakov (2008).

762



SPARSITY REGRET BOUNDS FOR INDIVIDUAL SEQUENCES

Lemma 22 For all u∗ ∈ R
d and τ > 0, the probability distribution ρu∗,τ satisfies

∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρu∗,τ(du) =

T

∑
t=1

(
yt −u∗ ·ϕ(xt)

)2
+ τ2

d

∑
j=1

T

∑
t=1

ϕ2
j(xt) .

Lemma 23 For all u∗ ∈ R
d and τ > 0, the probability distribution ρu∗,τ satisfies

K (ρu∗,τ,πτ)6 4‖u∗‖0 ln

(
1+

‖u∗‖1

‖u∗‖0 τ

)
.

Proof (of Lemma 22) For all t ∈ {1, . . . ,T} we expand the square
(
yt − u ·ϕ(xt)

)2
=
(
yt − u∗ ·

ϕ(xt)+(u∗−u) ·ϕ(xt)
)2

and use the linearity of the integral to get

∫
Rd

T

∑
t=1

(
yt −u ·ϕ(xt)

)2
ρu∗,τ(du) (41)

=
T

∑
t=1

(
yt −u∗ ·ϕ(xt)

)2
+

T

∑
t=1

∫
Rd

(
(u∗−u) ·ϕ(xt)

)2
ρu∗,τ(du)

+
T

∑
t=1

2
(
yt −u∗ ·ϕ(xt)

)∫
Rd
(u∗−u) ·ϕ(xt)ρu∗,τ(du)

︸ ︷︷ ︸
=0

The last sum equals zero by symmetry of ρu∗,τ around u∗, which yields

∫
R

uρu∗,τ(du) = u∗. As for

the second sum of the right-hand side, it can be bounded from above similarly. Indeed, expanding

the inner product and then the square
(
(u∗−u) ·ϕ(xt)

)2
we have, for all t = 1, . . . ,T ,

(
(u∗−u) ·ϕ(xt)

)2
=

d

∑
j=1

(u∗j −u j)
2ϕ2

j(xt)+ ∑
16 j 6=k6d

(u∗j −u j)(u
∗
k −uk)ϕ j(xt)ϕk(xt) .

By symmetry of ρu∗,τ around u∗ and the fact that ρu∗,τ is a product-distribution, we get

T

∑
t=1

∫
Rd

(
(u∗−u) ·ϕ(xt)

)2
ρu∗,τ(du) =

T

∑
t=1

d

∑
j=1

ϕ2
j(xt)

∫
Rd
(u∗j −u j)

2ρu∗,τ(du) +0

=
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)

∫
R

(u∗j −u j)
2 (3/τ)du j

2
(
1+ |u j −u∗j |/τ

)4
(42)

=τ2
T

∑
t=1

d

∑
j=1

ϕ2
j(xt)

∫
R

3t2dt

2(1+ |t|)4
(43)

=τ2
T

∑
t=1

d

∑
j=1

ϕ2
j(xt) , (44)

where (42) follows by definition of ρu∗,τ, where (43) is obtained by the change of variables t =

(u j −u∗j)/τ, and where (44) follows from the equality

∫
R

3t2dt

2
(
1+ |t|

)4
= 1 that can be proved by in-

tegrating by parts. Substituting (44) into (41) concludes the proof.
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Proof (of Lemma 23) By definition of ρu∗,τ and πτ, we have

K (ρu∗,τ,πτ),
∫
Rd

(
ln

dρu∗,τ

dπτ
(u)

)
ρu∗,τ(du) =

∫
Rd

(
ln

d

∏
j=1

(
1+ |u j|/τ

)4

(
1+ |u j −u∗j |/τ

)4

)
ρu∗,τ(du)

=4

∫
Rd

(
d

∑
j=1

ln
1+ |u j|/τ

1+ |u j −u∗j |/τ

)
ρu∗,τ(du) . (45)

But, for all u ∈ R
d , by the triangle inequality,

1+ |u j|/τ 6 1+ |u∗j |/τ+ |u j −u∗j |/τ 6
(
1+ |u∗j |/τ

)(
1+ |u j −u∗j |/τ

)
,

so that Equation (45) yields the upper bound

K (ρu∗,τ,πτ)6 4
d

∑
j=1

ln
(
1+ |u∗j |/τ

)
= 4 ∑

j:u∗j 6=0

ln
(
1+ |u∗j |/τ

)
.

We now recall that ‖u∗‖0 ,
∣∣{ j : u∗j 6= 0}

∣∣ and apply Jensen’s inequality to the concave function

x ∈ (−1,+∞) 7−→ ln(1+ x) to get

∑
j:u∗j 6=0

ln
(
1+ |u∗j |/τ

)
= ‖u∗‖0

1

‖u∗‖0
∑

j:u∗j 6=0

ln
(
1+ |u∗j |/τ

)
6 ‖u∗‖0 ln

(
1+

∑ j:u∗j 6=0 |u∗j |
‖u∗‖0 τ

)

6 ‖u∗‖0 ln

(
1+

‖u∗‖1

‖u∗‖0 τ

)
.

This concludes the proof.

B.3 Some Maximal Inequalities

Next we prove three maximal inequalities needed for the derivation of Corollaries 13 and 17 from

Theorems 12 and 16 respectively. Their proofs are quite standard but we provide them for the

convenience of the reader.

Lemma 24 Let Z1, . . . ,ZT be T > 1 (centered) real random variables such that, for a given constant

ν > 0, we have

∀t ∈ {1, . . . ,T}, ∀λ ∈ R, E

[
eλZt

]
6 eλ2ν/2 . (46)

Then,

E

[
max

16t6T
Z2

t

]
6 2ν ln(2eT ) .

Lemma 25 Let Z1, . . . ,ZT be T > 1 real random variables such that, for some given constants α> 0

and M > 0, we have

∀t ∈ {1, . . . ,T}, E

[
eα|Zt |

]
6 M .

Then,

E

[
max

16t6T
Z2

t

]
6

ln2
(
(M+ e)T

)

α2
.
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Lemma 26 Let Z1, . . . ,ZT be T > 1 real random variables such that, for some given constants α> 2

and M > 0, we have

∀t ∈ {1, . . . ,T}, E
[
|Zt |α

]
6 M .

Then,

E

[
max

16t6T
Z2

t

]
6 (MT )2/α .

Proof (of Lemma 24) Let t ∈ {1, . . . ,T}. From the subgaussian assumption (46) it is well known

(see, e.g., Massart 2007, Chapter 2) that for all x > 0, we have

∀t ∈ {1, . . . ,T} , P
(
|Zt |> x

)
6 2e−x2/(2ν) .

Let δ ∈ (0,1). By the change of variables x =
√

2ν ln(2T/δ), the last inequality entails that, for all

t = 1, . . . ,T , we have |Zt |6
√

2ν ln(2T/δ) with probability at least 1−δ/T . Therefore, by a union

bound, we get, with probability at least 1−δ,

∀t ∈ {1, . . . ,T} , |Zt |6
√

2ν ln(2T/δ) .

As a consequence, with probability at least 1−δ,

max
16t6T

Z2
t 6 2ν ln(2T/δ)6 2ν ln(1/δ)+2ν ln(2T ) .

It now just remains to integrate the last inequality over δ ∈ (0,1) as is made precise below. By the

change of variables δ = e−z, the latter inequality yields

∀z > 0 , P

[(
max16t6T Z2

t −2ν ln(2T )

2ν

)

+

> z

]
6 e−z , (47)

where for all x ∈ R, x+ , max{x,0} denotes the positive part of x. Using the well-known fact that

E[ξ] =
∫ +∞

0 P(ξ > z)dz for all nonnegative real random variable ξ, we get

E

[
max16t6T Z2

t −2ν ln(2T )

2ν

]
6 E

[(
max16t6T Z2

t −2ν ln(2T )

2ν

)

+

]

=
∫ +∞

0
P

[(
max16t6T Z2

t −2ν ln(2T )

2ν

)

+

> z

]
dz

6

∫ +∞

0
e−zdz = 1 ,

where the last line follows from (47) above. Rearranging terms, we get E
[
max16t6T Z2

t

]
6 2ν+

2ν ln(2T ), which concludes the proof.

Proof (of Lemma 25) We first need the following definitions. Let ψα : R+ → R be a convex

majorant of x 7→ eα
√

x on R+ defined by

ψα(x),

{
e if x < 1/α2 ,

eα
√

x if x > 1/α2 .
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We associate with ψα its generalized inverse ψ−1
α : R→ R+ defined by

ψ−1
α (y) =

{
1/α2 if y < e ,

(lny)2/α2 if y > e .

Elementary manipulations show that:

• ψα is nondecreasing and convex on R+;

• ψ−1
α is nondecreasing on R;

• x 6 ψ−1
α

(
ψα(x)

)
for all x ∈ R+.

The proof is based on a Pisier-type argument as is done, for example, by Massart (2007,

Lemma 2.3) to prove the maximal inequality E[max16t6T ξt ] 6
√

2ν lnT for all subgaussian real

random variables ξt , 1 6 t 6 T , with common variance factor ν > 0.

From the inequality x 6 ψ−1
α

(
ψα(x)

)
for all x ∈ R+ we have

E

[
max

16t6T
Z2

t

]
6 ψ−1

α

(
ψα

(
E

[
max

16t6T
Z2

t

]))

6 ψ−1
α

(
E

[
ψα

(
max

16t6T
Z2

t

)])
= ψ−1

α

(
E

[
max

16t6T
ψα

(
Z2

t

)])
,

where the last two inequalities follow by Jensen’s inequality (since ψα is convex) and the fact that

both ψ−1
α and ψα are nondecreasing.

Since ψα > 0 and ψ−1
α is nondecreasing we get

E

[
max

16t6T
Z2

t

]
6 ψ−1

α

(
E

[
T

∑
t=1

ψα

(
Z2

t

)
])

= ψ−1
α

(
T

∑
t=1

E

[
ψα

(
Z2

t

)]
)

6 ψ−1
α

(
T

∑
t=1

E

[
eα|Zt |+ e

])

6 ψ−1
α

(
MT + eT

)
=

ln2
(
MT + eT

)

α2
,

where the second line follows from the inequality ψα(x) 6 e+ eα
√

x for all x ∈ R+, and where the

last line follows from the bounded exponential moment assumption and the definition of ψ−1
α . It

concludes the proof.

Proof (of Lemma 26) As in the previous proof, we have, by Jensen’s inequality and the fact that

x 7→ xα/2 is convex and nondecreasing on R+ (since α > 2),

E

[
max

16t6T
Z2

t

]
6 E

[(
max

16t6T
Z2

t

)α/2
]2/α

= E

[
max

16t6T

∣∣Zt

∣∣α
]2/α

6 E

[
T

∑
t=1

∣∣Zt

∣∣α
]2/α

6 (MT )2/α

by the bounded-moment assumption, which concludes the proof.
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Abstract

Graph-based semi-supervised learning (SSL) methods play an increasingly important role in prac-

tical machine learning systems, particularly in agnostic settings when no parametric information

or other prior knowledge is available about the data distribution. Given the constructed graph rep-

resented by a weight matrix, transductive inference is used to propagate known labels to predict

the values of all unlabeled vertices. Designing a robust label diffusion algorithm for such graphs

is a widely studied problem and various methods have recently been suggested. Many of these

can be formalized as regularized function estimation through the minimization of a quadratic cost.

However, most existing label diffusion methods minimize a univariate cost with the classification

function as the only variable of interest. Since the observed labels seed the diffusion process, such

univariate frameworks are extremely sensitive to the initial label choice and any label noise. To

alleviate the dependency on the initial observed labels, this article proposes a bivariate formulation

for graph-based SSL, where both the binary label information and a continuous classification func-

tion are arguments of the optimization. This bivariate formulation is shown to be equivalent to a

linearly constrained Max-Cut problem. Finally an efficient solution via greedy gradient Max-Cut

(GGMC) is derived which gradually assigns unlabeled vertices to each class with minimum con-

nectivity. Once convergence guarantees are established, this greedy Max-Cut based SSL is applied

on both artificial and standard benchmark data sets where it obtains superior classification accu-

racy compared to existing state-of-the-art SSL methods. Moreover, GGMC shows robustness with

respect to the graph construction method and maintains high accuracy over extensive experiments

with various edge linking and weighting schemes.

Keywords: graph transduction, semi-supervised learning, bivariate formulation, mixed integer

programming, greedy Max-Cut

1. Introduction

In many real applications, labeled samples are scarce but unlabeled samples are abundant. Paradigms

that consider both labeled and unlabeled data, that is, semi-supervised learning (SSL) methods, have

c©2013 Jun Wang, Tony Jebara and Shih-Fu Chang.
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been increasingly explored in practical machine learning systems. While many semi-supervised

learning approaches estimate a smooth function over labeled and unlabeled examples, this article

presents a novel approach which emphasizes a bivariate optimization problem over the classifica-

tion function and the labels. Prior to describing the method in detail, we briefly mention other SSL

methods and previous work to motivate this article’s contributions.

One of the earliest examples of the empirical advantages of SSL was co-training, a method first

developed for text mining problems (Blum and Mitchell, 1998) and later extended in various forms

to other applications (Chawla and Karakoulas, 2005; Goldman and Zhou, 2000). Therein, multi-

ple classifiers are first estimated using conditionally independent feature sets of training data. The

performance advantages of this method rely heavily on the existence of independent and comple-

mentary classifiers. Theoretical results show that some mild assumptions on the underlying data

distribution are sufficient for co-training to work (Balcan et al., 2005; Wang and Zhou, 2010). How-

ever, performance can dramatically degrade if the classifiers do not complement each other or the

independence assumption does not hold (Krogel and Scheffer, 2004). Though co-training is concep-

tually similar to semi-supervised learning due to the way it incorporates unlabeled data, the classifier

training procedure itself is often supervised.

The extension of traditional supervised support vector machines (SVMs) to the semi-supervised

scenario is another widely used SSL algorithm. Instead of maximizing separation (via a maximum-

margin hyperplane) over training data as in standard SVMs, semi-supervised SVMs (S3VMs) es-

timate a hyperplane to balance maximum-margin partitioning of labeled data while encouraging

a separation through low-density regions of the data (Vapnik, 1998). For example, transductive

support vector machines (TSVMs) were developed as one of the earliest incarnations of semi-

supervised SVMs (Joachims, 1999).1 Various optimization techniques have been applied to solve

S3VMs (Chapelle et al., 2008), resulting in a wide range of methods, such as low density separation

(Chapelle and Zien, 2005), semi-definite programming based methods (Bie and Cristianini, 2004;

Xu et al., 2008), and a branch-and-bound based approach (Chapelle et al., 2007).

Another family of SSL methods known as graph-based approaches have recently become popu-

lar due to their high accuracy and computational efficiency. Graph-based semi-supervised learning

(GSSL) treats both labeled and unlabeled samples from a data set as vertices in a graph and builds

pairwise edges between these vertices which are weighted by the affinity between the corresponding

samples. The small portion of vertices with labels are then used by SSL methods to perform graph

partition or information propagation to predict labels for unlabeled vertices. For instance, the graph

mincuts approach formulates the label prediction as a graph cut problem (Blum and Chawla, 2001;

Blum et al., 2004). Other GSSL methods, like graph transductive learning, formulate the problem

as regularized function estimation over an undirected weighted graph. These methods optimize a

trade-off between the accuracy of the classification function on labeled samples and a regulariza-

tion term that favors a smooth function. The weighted graph and the optimal function ultimately

propagate label information from labeled data to unlabeled data to produce transductive predic-

tions. Popular algorithms for GSSL include graph cuts (Blum and Chawla, 2001; Blum et al., 2004;

Joachims, 2003; Kveton et al., 2010), graph random walks (Azran, 2007; Szummer and Jaakkola,

2002), manifold regularization (Belkin et al., 2005, 2006; Sindhwani et al., 2008, 2005), and graph

regularization (Zhou et al., 2004; Zhu et al., 2003). Comprehensive survey articles have also been

disseminated (Zhu, 2005).

1. It is actually more appropriate to call this method a semi-supervised SVM since the learned classifier is indeed

inductive (Zhu and Goldberg, 2009).
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For some synthetic and real data problems, GSSL approaches do achieve promising perfor-

mance. However, previous research has identified several realistic settings and labeling situations

where this performance can be compromised (Wang et al., 2008b). In particular, both the graph

construction methodology and the label initialization conditions can significantly impact prediction

accuracy (Jebara et al., 2009). For a well-constructed graph such as the one shown in Figure 1(a),

many GSSL methods produce satisfactory predictions. However, for graphs involving non-separable

manifold structure as shown in Figure 1(b), prediction accuracy may deteriorate. Even if one as-

sumes that the graph structures used in the above methods faithfully describe the data manifold,

GSSL algorithms may still be misled by problems in the label information. Figure 3 depicts several

cases where the label information leads to invalid graph transduction solutions for all the aforemen-

tioned algorithms.

In order to handle such challenging labeling conditions, we first extend the existing GSSL for-

mulation by casting it as a bivariate optimization problem over the classification function and the

labels. Then we demonstrate that minimizing the mixed bivariate cost function can be reduced to

a pure integer programming problem that is equivalent to a constrained Max-Cut problem. Though

semi-definite programming can be used to obtain approximate solutions, these are impractical due

to scalability issues. Instead, an efficient greedy gradient Max-Cut (GGMC) solution is developed

which remedies the instability previous methods seem to have vis-a-vis the initial labeling condi-

tions on the graph. In the proposed greedy solution, initial labels simply act as initial values of

the graph cut which is incrementally refined until convergence. During each iteration of the greedy

search, the optimal unlabeled vertex is assigned to the labeled subset with minimum connectivity

to maximally preserve cross-subset edge weight. Finally, an overall cut is produced after placing

the unlabeled vertices into one of the label sets. It is then straightforward to obtain the final label

prediction from the graph cut result. Note that this greedy gradient Max-Cut solution is equivalent

to alternating between minimization of the cost over the label matrix and minimization of the cost

over the prediction function. Moreover, to alleviate dependencies on the initialization of the cut (the

given labels), a re-weighting of the connectivity between unlabeled vertices and labeled subsets is

proposed. This re-weighting performs a within-class normalization using vertex degree as well as a

between-class normalization using class prior information. We demonstrate that the greedy gradient

Max-Cut based graph transduction produces significantly better performance on both artificial and

real data sets.

The remainder of this paper is organized as the follows. Section 2 provides a brief background

of graph-based SSL and discusses some open issues. In Section 3, we present our bivariate graph

transduction framework, followed by the theoretical proof of its equivalence with the constrained

Max-Cut problem in Section 4. In addition, a greedy gradient Max-Cut algorithm is proposed.

Section 5 provides experimental validation for the algorithm on both toy and real classification

data sets. Comparisons with leading semi-supervised methods are made. Concluding remarks and

discussions are then provided in Section 6.

2. Background and Open Issues

In this section, we introduce some notation and then revisit two critical components of graph-based

SSL: graph construction and label propagation. Subsequently, we discuss some challenging issues

such as SSL’s sensitivity to graph construction and label initialization.
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Figure 1: Examples of constructed k-nearest-neighbors (kNN) graphs with k = 5 on the artificial

two moon data set for a) the completely separable case; and b) the non-separable case

with noisy samples.

2.1 Notations

We first summarize the notation used in this article. Assume we are given iid (independent and iden-

tically distributed) labeled samples {(x1,z1), . . . ,(xl,zl)} as well as unlabeled samples

{xl+1, . . . ,xl+u} drawn from a distribution p(x,z). Define the set of labeled inputs as Xl = {x1, . . . ,xl}
with cardinality |Xl|= l and the set of unlabeled inputs Xu = {xl+1, . . . ,xl+u}with cardinality |Xu|=
u. The labeled set Xl is associated with labels Zl = {z1, · · · ,zl}, where zi ∈ {1, · · · ,c}, i = 1,2, · · · , l.
The goal of semi-supervised learning is to infer the missing labels {zl+1, · · · ,zn} corresponding to

the unlabeled data {xl+1, · · · ,xn}, where typically l << n (l + u = n). A crucial component of

GSSL is the estimation of a weighted sparse graph G from the input data X = Xl ∪Xu. Subse-

quently, a labeling algorithm uses G and the known labels Zl = {z1, . . . ,zl} to provide estimates

Ẑu = {ẑl+1, . . . , ẑl+u} which try to approximate the true labels Zu = {zl+1, . . . ,zl+u} as measured by

an appropriately chosen loss function.

In this article, assume the undirected graph converted from the data X is represented by

G = {X,E}, where the set of vertices is X = {xi} and the set of edges is E = {ei j}. Each sample xi

is treated as a vertex and the weight of edge ei j is wi j. Typically, one uses a kernel function k(·) over

pairs of points to compute weights. The weights for edges are used to build a weight matrix which

is denoted by W = {wi j}. Similarly, the vertex degree matrix D = diag([d1, · · · ,dn]) is defined as

di =
n

∑
j=1

wi j. The graph Laplacian is defined as ∆∆∆ = D−W and the normalized graph Laplacian is

L = D−1/2∆∆∆D−1/2 = I−D−1/2WD−1/2.

The graph Laplacian and its normalized version can be viewed as operators on the space of functions

f which can be used to define a regularization measure of smoothness over strongly-connected

regions in a graph (Chung and Biggs, 1997). For example, the smoothness measurement of functions

f using L over a graph is defined as

〈 f ,L f 〉= ∑
i

∑
j

wi j

∥

∥

∥

∥

∥

f (xi)√
di

− f (x j)√
d j

∥

∥

∥

∥

∥

2

.
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Finally, the label information is formulated as a label matrix Y = {yi j} ∈ B
n×c, where yi j = 1

if sample xi is associated with label j for j ∈ {1,2, · · · ,c}, that is, zi = j, and yi j = 0 otherwise.

For single label problems (as opposed to multi-label problems), the constraints
c

∑
j=1

yi j = 1 are also

imposed. Moreover, we will often refer to row and column vectors of such matrices, for instance,

the i’th row and j’th column vectors of Y are denoted as Yi· and Y· j, respectively. Let F = f (X)
be the values of classification function over the data set X. Most of the GSSL methods then use

the graph quantity W as well as the known labels to recover a continuous classification function

F ∈ R
n×c by minimizing a predefined cost on the graph.

2.2 Graph Construction for Semi-Supervised Learning

To estimate Ẑu = {ẑl+1, . . . , ẑl+u} using G and the known labels Zl = {z1, . . . ,zl}, we first convert the

data points X = Xl ∪Xu into a graph G = {X,E,W}. This section discusses the graph construction

method, X→ G , in detail. Given input data X with cardinality |X| = l + u, graph construction

produces a graph G consisting of n = l+u vertices where each vertex is associated with the sample

xi. The estimation of G from X usually proceeds in two steps.

The first step is to compute a score between all pairs of vertices using a similarity function. This

creates a full adjacency matrix K ∈ R
n×n, where Ki j = k(xi,x j) is computed using kernel function

k(·) to measure sample similarity. Subsequently, in the second step of graph construction, the matrix

K is sparsified and reweighted to produce the final matrix W. Sparsification is important since it

leads to improved efficiency, better accuracy, and robustness to noise in the label inference stage.

Furthermore, the kernel function k(·) is often only locally useful as a similarity and does not recover

reliable weights between pairs of samples that are relatively far apart.

2.2.1 GRAPH SPARSIFICATION

Starting with the fully connected matrix K, sparsification removes edges by recovering a binary

matrix B ∈ B
n×n where Bi j = 1 indicates that an edge is present between sample xi and x j, and

Bi j = 0 indicates the edge is absent (assume Bii = 0 unless otherwise noted). Here we will primarily

investigate two graph sparsification algorithms: neighborhood approaches including the k-nearest

and ε neighbors algorithms, and matching approaches such as b-matching (BM) (Edmonds and

Johnson, 2003). All such methods operate on the matrix K or, equivalently, the distance matrix

H ∈ R
n×n obtained from K element-wise as Hi j =

√

Kii +K j j−2Ki j.

Sparsification via Neighborhood Methods: There are two typical ways to build a neighborhood

graph: the ε-neighborhood graph connecting samples within a distance of ε, and the kNN (k-nearest-

neighbors) graph connecting k closest samples. Recent studies show the dramatic influences that

different neighborhood methods have on clustering techniques (Carreira-Perpinán and Zemel, 2005;

Maier et al., 2009). In practice, the kNN graph remains a more common approach since it is more

adaptive to scale variation and data density anomalies while an improper threshold value in the ε-

neighborhood graph may result in disconnected components or subgraphs in the data set or even

isolated singleton vertices, as shown in Figure 2(b). In this article, we often use kNN neighborhood

graphs since the ε-neighborhood graphs provide consistently weaker performance. In the remainder

of this article, we will use neighborhood and kNN neighborhood graph interchangeably without

specific declaration.
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Figure 2: The synthetic data set used for demonstrating different graph construction approaches. a)

The synthetic data; b) The ε-nearest neighbor graph; c) The k-nearest neighbor graph; d)

The b-matched graph.

More specifically, the k-nearest neighbor graph is a graph in which two vertices xi and x j are

connected by an edge if the distance Hi j between xi and x j is within or equal k-th smallest among

the distances from xi to other samples in X. Roughly speaking, the k-nearest neighbors algorithm

starts with a matrix B̂ of all zeros and for each point, searches for the k closest points to it (without

considering itself). If a point j is one of the k closest neighbors to i, then we set B̂i j = 1. It is

straightforward to show that k-nearest neighbors search solves the following optimization problem:

min
B̂∈B

∑i j
B̂i jHi j (1)

s.t. ∑ j
B̂i j = k, B̂ii = 0, ∀i, j ∈ 1, . . . ,n.

The final solution of Equation (1) is produced by symmetrizing B̂ as follows Bi j = max(B̂i j, B̂ ji).
2

This greedy algorithm is in fact not solving a well defined optimization problem over symmetric

binary matrices. In addition, since it produces a symmetric matrix only via the ad hoc maximization

over B̂ and its transpose, the solution B it produces does not satisfy the equality ∑k Bi j = k, but,

rather, only satisfies the inequality ∑ j Bi j ≥ k. Ironically, despite conventional wisdom and the

nomenclature, the k-nearest neighbors algorithm is producing an undirected subgraph with more

2. It is possible to replace the maximization operator with minimization to produce a symmetric matrix, yet in the setting

B = min(B̂, B̂⊤) the solution B only satisfies the inequality ∑ j Bi j ≤ k and not the desired equality.
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than k neighbors for each vertex. This motivates researchers to investigate the b-matching algorithm

which actually achieves the desired output.

Sparsification via b-Matching: The b-matching problem generalizes maximum weight match-

ing, that is, the linear assignment problem, where the objective is to find the binary matrix to mini-

mize the optimization problem

min
B∈B∑i j

Bi jHi j (2)

s.t. ∑ j
Bi j = b,Bii = 0,Bi j = B ji, ∀i, j ∈ 1, . . . ,n.

achieving symmetry directly without post-processing. Here, the symmetric solution is recovered

up-front by enforcing the additional constraints Bi j = B ji. The matrix then satisfies the equality

∑ j Bi j = ∑i Bi j = b strictly. The solution to Equation (2) is not quite as straightforward or efficient

as the greedy k-nearest neighbors algorithm. A polynomial time O(bn3) solution has been known,

yet recent advances show that much faster alternatives are possible via (guaranteed) loopy belief

propagation (Huang and Jebara, 2007).

Compared with the neighborhood graphs, the b-matching graph is balanced or b-regular. In

other words, each vertex in the b-matched graph has exactly b edges connecting it to other vertices.

This advantage plays a key role when conducting label propagation on typical samples X which are

unevenly and non-uniformly distributed. Our previous work applied b-matching to construct graphs

for semi-supervised learning tasks and demonstrated the superior performance over some unevenly

sampled data (Jebara et al., 2009). For example, in Figure 2, this data set clearly contains two

clusters of points, a dense Gaussian cluster surrounded by a ring cluster. Furthermore, the cluster

data is unevenly sampled; one cluster is dense and the other is fairly sparse. In this example, the k-

nearest neighbor graph constantly generates many cross-cluster edges while b-matching efficiently

alleviates this problem by removing most of the improper edges. The example clearly shows that

the b-matching technique produces regular graphs which could overcome the drawback of cross-

structure linkages often generated by nearest neighbor methods. This intuitive study confirms the

importance of graph construction methods and advocates b-matching as a valuable alternative to

k-nearest neighbors, a method that many practitioners expect to produce regular undirected graphs,

though in practice often generates irregular graphs.

2.2.2 GRAPH EDGE RE-WEIGHTING

Once a graph has been sparsified and a binary matrix B is computed and used to delete unwanted

edges, several procedures can then be used to update the weights in the matrix K to produce a final

set of edge weights W. Specifically, whenever Bi j = 0, the edge weight is also wi j = 0; however,

Bi j = 1 implies that wi j ≥ 0. Two popular approaches are considered here for estimating the non-

zero components of W.

Binary Weighting: The simplest approach for building the weighted graph is the binary weight-

ing approach, where all the linked edges in the graph are given the weight 1 and the edge weights

of disconnected vertices are given the weight 0. In other words, this setting simply uses W = B.

However, this uniform weight on graph edges can be sensitive, particularly if some of the graph

vertices were improperly connected by the sparsification procedure (either the neighborhood based

procedures or the b-matching procedure).

Gaussian Kernel Weighting: An alternative approach is Gaussian kernel weighting which is

often applied to modulate sample similarity. Therein, the edge weight between two connected
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samples xi and x j is computed as:

wi j = Bi j exp

(

−d2(xi,x j)

2σ2

)

,

where the function d(xi,x j) evaluates the dissimilarity of samples xi and x j, and σ is the kernel

bandwidth parameter. There are many choices for the distance function d(·) including any ℓp dis-

tance, χ2 distance, and cosine distance (Zhu, 2005; Belkin et al., 2005; Jebara et al., 2009).

This final step in the graph construction procedure ensures that the unlabeled data X has now

been converted into a graph G with a weighted sparse undirected adjacency matrix W. Given this

graph and some initial label information Yl , any of the current popular algorithms for graph based

SSL can be used to solve the labeling problem.

2.3 Univariate Graph Regularization Framework

Given the constructed graph G = {X,E}, whose geometric structure is represented by the weight

matrix W, the label inference task is to diffuse the known labels Zl to all the unlabeled vertices

Xu in the graph and estimate Ẑu. Designing a robust label diffusion algorithm for such graphs is a

widely studied problem (Chapelle et al., 2006; Zhu, 2005; Zhu and Goldberg, 2009).

Here we are particularly interested in a category of approaches, which estimate the prediction

function F∈Rn×c by minimizing a quadratic cost defined over the graph. The cost function typically

involves a trade-off between the smoothness of the function over the graph of both labeled and

unlabeled data (consistency of the predictions on closely connected vertices) and the accuracy of the

function at fitting the label information on the labeled vertices. Approaches like the Gaussian fields

and harmonic functions (GFHF) method (Zhu et al., 2003) and the local and global consistency

(LGC) method (Zhou et al., 2004) fall into this category, so does our previous method of graph

transduction via alternating minimization (Wang et al., 2008b).

Both LGC and GFHF define a cost function Q that involves the combined contribution of two

penalty terms: the global smoothness Qsmooth and local fitting accuracy Q f it . The final prediction

function F is obtained by minimizing the cost function as:

F∗ = arg min
F∈Rn×c

Q (F) = arg min
F∈Rn×c

(Qsmooth(F)+Q f it(F)) . (3)

A natural formulation of the above cost function is LGC (Zhou et al., 2004) which uses an elastic

regularizer framework as follows

Q (F) = ‖F‖2
G +

µ

2
‖F−Y‖2. (4)

The first term ‖F‖2
G represents function smoothness over graph G and ‖F−Y‖2 measures the em-

pirical loss on given labeled samples. Specifically, in LGC, the function smoothness is defined using

the semi-inner product

Qsmooth = ‖F‖2
G =

1

2
〈F,LF〉= 1

2
tr(F⊤LF).

Note that the coefficient µ in Equation (4) balances global smoothness and local fitting terms.

If we set µ = ∞ and use a standard graph Laplacian quantity ∆∆∆ for the smoothness term, the above
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framework reduces to the harmonic function formulation (Zhu et al., 2003). More precisely, the cost

function only preserves the smoothness term as

Q (F) = tr(F⊤∆∆∆F). (5)

Meanwhile, the harmonic function F minimizing the above cost also satisfies two conditions:

∂Q

∂F u
= ∆∆∆Fu = 0,

Fl = Yl ,

where Fl ,Fu are the function values of f (·) over labeled and unlabeled vertices, that is, Fl = f (Xl),
Fu = f (Xu), and F = [Fl Fu]

⊤
. The first equation above denotes the zero derivative of the object

function on the unlabeled data and the second equation clamps the function value on the given label

value Yl . Both LGC and GFHF are univariate regularization frameworks where the continuous pre-

diction function is treated as the only variable in the optimization procedure. The optimal solutions

for Equation (4) and Equation (5) are easily obtained by solving a linear system.

2.4 Open Issues

Existing graph-based SSL methods hinge on having good label information and an appropriately

constructed graph (Wang et al., 2008b; Liu et al., 2012). But the heuristic design of the graph may

result in suboptimal inference. In addition, the label propagation procedure can easily be misled if

there exist excessive noise or outliers in the initial labeled set. Finally, in iid settings, the difference

between empirically estimated class proportions and their true expected value is bounded (Huang

and Jebara, 2010). However, practical annotation procedures are not necessarily iid and labeled

data may have empirical class frequencies that deviate significantly from the expected class ratios.

These degenerate situations seem to plague real world problems and compromise the performance

of many state-of-the-art SSL algorithms. We next discuss some open issues which occur often in

graph construction and label propagation, two critical components of all GSSL algorithms.

2.4.1 SENSITIVITY TO GRAPH CONSTRUCTION

As shown in Figure 1(a), a well-built graph obtained from separable manifolds of data will achieve

good results with most existing GSSL approaches. However, practical applications often produce

non-separable graphs as shown in Figure 1(b). In addition to the widely used kNN graph, we showed

that b-matching could be used successfully for graph construction (Jebara et al., 2009). But both

kNN graphs and b-matched graphs are heuristics and require the careful selection of the parameter

k or b which controls the number of links incident to each vertex in the graph. Moreover, edge

reweighing on the sparse graph often also requires exploration forcing the user to select kernels and

various kernel parameters. All these heuristic steps in graph design require extra effort from the

user and demand some level of familiarity with the data domain.

2.4.2 SENSITIVITY TO LABEL NOISE

Most of the existing GSSL methods are based on an univariate quadratic regularization framework

which relies heavily on the quality of the initially assigned labels. For certain synthetic and real

data problems, such graph transduction approaches achieve promising performance. However, sev-

eral realistic labeling conditions produce unsatisfactory performance (Wang et al., 2008b). Even if
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Figure 3: Examples illustrating the sensitivity of graph-based SSL to adverse labeling conditions.

Particularly challenging conditions are shown in (a) where an uninformative label on an

outlier sample is the only negative label (denoted by a black circle) and in (g) where

imbalanced labeling is involved. Prediction results are shown for the GFHF method (Zhu

et al., 2003) in (b) and (h), the LGC method (Zhou et al., 2004) in (c) and (i), the LapSVM

method (Belkin et al., 2006) in (d) and (j), the TSVM method (Joachims, 1999) in (e) and

(k); and our method in (f) and (l).

the graph is perfectly constructed from the data, problematic initial labels under practical situations

can easily deteriorate the performance of SSL prediction. Figure 3 provides examples depicting

imbalanced and noisy labels that lead to invalid graph transduction solutions for all the aforemen-

tioned algorithms. The first labeling problem involves uninformative labels (Figure 3(a)). The only
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negative label (dark circle) is located in an outlier region where the low density connectivity limits

its diffusion to the rest of the graph. The leading SSL methods classify the majority of unlabeled

nodes in the graph as positive (Figure 3(b)-Figure 3(e)). Such conditions are frequent in real prob-

lems like content-based image retrieval (CBIR) where the visual query example is not necessarily

representative of the class. Another difficult case is due to imbalanced labeling. There, the ratio

of training labels is disproportionate to the underlying class proportions. For example, Figure 3(g)

depicts two half-circles with an almost equal number of samples. However, since the training labels

contain three negative samples and only one positive example, the SSL predictions are strongly bi-

ased towards the negative class (see Figures 3(h) to 3(k)). This imbalanced labeling situation occurs

frequently in realistic problems such as the annotation of microscopic images (Wang et al., 2008a).

Therein, the human labeler favors certain cellular phenotypes due to domain-specific biological hy-

potheses. To tackle these issues, we next propose a novel bivariate framework for graph-based SSL

and describe an efficient algorithm that achieves it via alternating minimization.

3. Bivariate Framework for Graph-Based SSL

We first propose an extension to the existing graph regularization-based SSL formulations by casting

the problem as a bivariate optimization over both the classification function and the unknown labels.

Then we demonstrate that the minimization of this bivariate cost reduces to a linearly constrained

binary integer programming (BIP) problem. This problem can be approximated via semi-definite

programming yet this approach is impractical due to scalability issues. We instead explore a fast

method which alternates minimization of the cost over the label matrix and the prediction function.

3.1 The Cost Function

Recall the univariate regularization formulation for graph-based SSL in Equation (3). Also note that

the optimization problem in existing approaches such as LGC and GFHF can be broken up into

separate parallel problems since the cost function decomposes into additive terms that only depend

on individual columns of the prediction matrix F (Wang et al., 2008a). Such a decomposition reveals

that biases may arise if the input labels are disproportionately imbalanced. In addition, when the

graph contains background noise and makes class manifolds non-separable (as in Figure 1(b)), these

existing graph transduction approaches fail to output reasonable classification results.

Since the univariate framework treats the initial label information as a constant, we propose a

novel bivariate optimization framework that explicitly optimizes over both the classification function

F and the binary label matrix Y:

(F∗,Y∗) = argminF∈Rn×c,Y∈Bn×cQ (F,Y)

s.t. yi j ∈ {0,1},
∑

c

j=1
yi j = 1,

yi j = 1, for zi = j, j = 1, · · · ,c.,

where B
n×c is the set of all binary matrices Y of size n× c. For a labeled sample xi ∈ Xl , yi j = 1

if zi = j, and the constraint ∑c
j=1 yi j = 1 indicates that this a single label prediction problem. We

specify the cost function as

Q (F,Y) =
1

2
tr
(

F⊤LF+µ(F−Y)⊤(F−Y)
)

. (6)
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Finally, rewriting the cost as a summation (Zhou et al., 2004) reveals a more intuitive formulation

where

Q (F,Y) =
1

2

n

∑
i=1

n

∑
j=1

wi j

∥

∥

∥

∥

∥

Fi·√
di

− F j·
√

d j

∥

∥

∥

∥

∥

2

+
µ

2

n

∑
i=1

‖Fi·−Yi·‖2 .

3.2 Reduction to a Univariate Problem

In the new graph regularization framework proposed above, the cost function involves two variables

to be optimized. Simultaneously recovering both solutions is intractable due to the mixed integer

programming problem over binary Y and continuous F. To solve the issue, we first show how to

reduce the original mixed problem to a univariate optimization problem with respect to the label

variable Y.

F optimization step:

In each loop with Y fixed, the classification function F ∈ R
n×c is continuous and the cost function

is convex, allowing the minimum to be recovered by setting the partial derivative to zero:

∂Q

∂F∗
= 0 =⇒ LF∗+µ(F∗−Y) = 0

=⇒ F∗ = (L/µ+ I)−1Y = PY, (7)

where we denote the P matrix as

P = (L/µ+ I)−1,

and name it the propagation matrix since it is used to derived a prediction function F given a label

matrix Y. Because the graph is often symmetric, it is easy to show that the graph Laplacian L and

the propagation matrix P are both symmetric.

Y optimization step:

Next replace F in Equation (6) by its optimal value F∗ from the solution of Equation (7). This yields

Q (Y) =
1

2
tr(Y⊤P⊤LPY+µ(PY −Y)⊤(PY−Y))

=
1

2
tr
(

Y⊤
[

P⊤LP+µ(P⊤− I)(P− I)
]

Y
)

=
1

2
tr
(

Y⊤AY
)

,

where we group all the constant parts in the above equation and define

A = P⊤LP+µ(P⊤− I)(P− I) = P⊤LP+µ(P− I)2.

The final optimization problem becomes

Y∗ = argmin
1

2
tr
(

Y⊤AY
)

s.t. yi j ∈ {0,1},
∑ j

yi j = 1, j = 1, · · · ,c
yi j = 1, for zi = j, j = 1, · · · ,c. (8)
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The first constraint produces a binary integer problem and the second one ∑ j yi j = 1 produces a

single assignment constraint, that is, each vertex can only be assigned one class label. The third

group of constraints encodes the initial label information in the variable Y. Since the binary matrix

Y ∈ B
n×c is subject to linear constraints of the form ∑ j yi j = 1 and initial labeling conditions, the

optimization in Equation (8) requires solving a linearly constrained binary integer programming

(BIP) problem which is NP hard (Cook, 1971; Karp, 1972).

3.3 Incorporating Label Normalization

A straightforward approach to solving the minimization problem in Equation (8) is to use the gradi-

ent to greedily update the label variable Y. However, this may produce biased classification results

in practice since, at each iteration, the class with more labels will be preferred and will propagate

more quickly to the unlabeled examples. This arises in practice (as in Figure 3) and is due to the

fact that Y starts off sparse and contains many unknown entries. To compensate for this bias during

label propagation, we propose using a normalized label variable Ỹ = ΛΛΛY for computing the cost

function in Equation (6) as

Q =
1

2
tr
(

F⊤LF+µ(F− Ỹ)⊤(F− Ỹ)
)

=
1

2
tr
(

F⊤LF+µ(F−ΛΛΛY)⊤(F−ΛΛΛY)
)

. (9)

The diagonal matrix ΛΛΛ = diag(λλλ) = diag([λ1, · · · ,λn]) is introduced to re-weight or re-balance the

influence of labels from different classes as it modulates the label importance based on node degree.

The value of λi (i = 1, · · · ,n) is computed using the vertex degree di and label information

λi =

{

p j · di

∑k yk jdk
: yi j = 1

0 : otherwise,
(10)

where p j is the prior of class j and is subject to the constraint
c

∑
j=1

p j = 1. The value of p j can be

either estimated from the labeled training set or simply set to be uniform p j = 1/c ( j = 1, · · · , c)

in agnostic situations (when no better prior is available or if the labeled data is plagued by biased

sampling). Using the normalized label matrix Ỹ in the bivariate formulation allows labeled nodes

with high degrees to contribute more during the label propagation process. However, the total

diffusion of each class is kept equal (for agnostic settings with no priors available) or proportional

to the class prior (for the setting with prior information). Therefore, the influence of different classes

is balanced even if the given class labels are imbalanced. If class proportion information is known,

it can be integrated by scaling the diffusion with the appropriate prior. In other words, the label

normalization attempts to enforce simple concentration inequalities which, in the iid case require

the predicted label results to concentrate around the underlying class ratios (Huang and Jebara,

2010). This intuition is in line with prior work that uses class proportion information in transductive

inference where class proportion is enforced as a hard constraint (Chapelle et al., 2007) or as a

regularizer (Mann and McCallum, 2007).

3.4 Alternating Minimization Procedure

To solve the above refined problem, we proposed an alternating minimization algorithm (Wang et al.,

2008b). Briefly, starting with Equation (9) and repeating the similar derivation as in Section 3.2, we
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obtain the optimal solution F∗ and the final cost function with respect to label variable Y as

F∗ = PỸ = PΛΛΛY, (11)

Q =
1

2
tr
(

Ỹ⊤AỸ
)

=
1

2
tr
(

Y⊤ΛΛΛAΛΛΛY
)

. (12)

Instead of finding the global optimum Y∗, we only take an incremental step in each iteration to

modify a single entry in Y. Namely in each iteration, we find the optimal position (i∗, j∗) in the

matrix Y and change the binary value of yi∗ j∗ from 0 to 1. To do this, we find the direction with the

largest negative gradient guiding our choice of binary step on Y. Specifically, we evaluate ‖▽QY‖
and find the largest negative value to determine (i∗, j∗).

Note that the setting yi∗ j∗ = 1 is equivalent to modifying the normalized label matrix Ỹ by setting

ỹi∗, j∗ = εi∗ ,0< εi∗ < 1, and Y, Ỹ can be converted from each other componentwise. Thus, the greedy

optimization of Q with respect to Y is equivalent to greedy minimization of Q with respect to Ỹ.

More formally, we derive the gradient of the above loss function ∇ỸQ = ∂Q

∂Ỹ
and recover it with

respect to Y as:

∂Q

∂Ỹ
= AỸ = AΛΛΛY. (13)

As described earlier, we search the gradient matrix ∇ỸQ to find the minimal element

(i∗, j∗) = argminxi∈Xu,1≤ j≤c∇ỹi j
Q .

Because of the binary nature of Y, we simply set yi∗ j∗ = 1 instead of making a continuous

update. Accordingly, the node weight matrix ΛΛΛt+1 can be recalculated with the updated Yt+1 in

the iteration t + 1. The update of Y is greedy and thus it could backtrack from predicted labels in

previous iterations without convergence guarantees. We propose a straightforward way to guarantee

convergence and avoid backtracking or unstable oscillation in the greedy propagation process: once

an unlabeled point has been labeled, its labeling can no longer be changed. Thus, we remove the

most recently labeled point (i∗, j∗) from future consideration and conduct search over the remaining

unlabeled data only. In other words, to avoid retroactively changing predicted labels, the labeled

vertex xi∗ is removed from Xu and added to Xl .

Note that although the optimal F∗ can be computed using Equation (11), this need not be done

explicitly. Instead, the new value is implicitly used in Equation (14) only to update Y. In the fol-

lowing, we summarize the update rules from step t to t +1 in the alternating minimization scheme.

. Compute gradient matrix:

(∇ỸQ )t = AỸt = AΛΛΛtYt ,ΛΛΛt = diag(λλλt).

. Update one label:

(i∗, j∗) = argminxi∈Xu,1≤ j≤c(∇ỹi j
Q )t ,

yt+1
i∗ j∗ = 1.
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. Update label normalization matrix:

λt+1 =

{

Dii

∑k Yt+1
k j Dkk

: yt+1
i j = 1

0 : otherwise.

. Update the list of labeled and unlabeled data:

Xt+1
l ←− Xt

l +xi∗ ; Xt+1
u ←− Xt

u−xi∗ .

Starting with a few given labels, the method iteratively and greedily updates the label matrix Y

to derive new labels in each iteration. The newly obtained labels are then use in the next iteration.

Notice that the label normalization vector is re-computed for each iteration due to the change of

label set. Although the original objective is formed in a bivariate manner in Equation 6, the above

alternating optimization procedure drives the prediction of new labels without explicitly calculating

F∗ as is done in other graph transduction methods like LGC and GFHF. This unique feature makes

the proposed algorithm very efficient since we only update the gradient matrix ∇ỸQ for prediction

new labels in each iteration.

Due to the greedy assignment step and the lack of back-tracking, the algorithm can repeat the

alternating minimization (or the gradient computation) at most n− l times. Each minimization

step over F and Y requires O(n2) complexity and, thus, the total complexity of the above greedy

algorithm is O(n3). However, the update of the graph gradient can be done efficiently by modifying

only a single entry in Y per iteration. This further reduces the computational cost down to O(n2).
Empirically, the value of the loss function Q decreases rapidly in the the first dozen iterations and

steadily converges afterward (Wang et al., 2009). This phenomenon indicates that early stopping

strategy could be applied to speed up the training and prediction (Melacci and Belkin, 2011). Once

the first few iterations are completed, the new labels are added and the standard propagation step can

be used to predict the optimal F∗ as indicated in Equation (11) over the whole graph in one step. The

details of the algorithm, namely graph transduction via alternating minimization, can be referred to

Wang et al. (2008b). In the following section, we provide a greedy Max-Cut based solution, which

essentially interprets the above alternating minimization procedure from a graph cut view.

4. Greedy Max-Cut for Semi-Supervised Learning

In this section, we introduce a connection between the proposed bivariate graph transduction frame-

work and the well-known maximum cut problem. Then, a greedy gradient based Max-Cut solution

will be developed and related to the above alternating minimization algorithm.

4.1 Equivalence to a Constrained Max-Cut Problem

Recall the optimization problem defined in Equation (8) which is exactly a linearly constrained

binary integer programming (BIP) problem. In the case of a two-class problem, this optimization

will be reduced to a weighted Max-Cut problem over the graph GA = {X,A} subject to linear

constraints. The cost function in Equation (8) can be rewritten as

Q (Y) =
1

2
tr
(

Y⊤AY
)

=
1

2
tr
(

AYY⊤
)

=
1

2
tr(AR) ,

785



WANG, JEBARA AND CHANG

where A = {ai j} and R = YY⊤. Considering the constraints ∑ j yi j = 1 and Y∈Bn×2 for a two-class

problem, we let

Y = [y e−y],

where y∈Bn (i.e., y = {yi},yi ∈ {0,1}, i = 1, · · · ,n) and e = [1,1, · · · ,1]⊤ are column vectors. Then

rewrite R as

R = YY⊤ = [y e−y][y e−y]⊤

= ee⊤−y(e⊤−y⊤)− (e−y)y⊤. (14)

Now rewrite the cost function in Equation (14) by replacing R with Equation (14)

Q (y) =
1

2
tr
(

A
[

ee⊤−y(e⊤−y⊤)− (e−y)y⊤
])

.

Since ee⊤ is the all-ones matrix, we obtain

1

2
tr
(

Aee⊤
)

=
1

2
∑

i
∑

j

Ai j.

It is easy to show that A is symmetric and

y(e⊤−y⊤) = [(e−y)y⊤]⊤.

Next, simplify the cost function Q as

Q (y) =
1

2
tr
(

Aee⊤
)

− tr
[

(e⊤−y⊤)Ay
]

=
1

2
tr
(

Aee⊤
)

−y⊤A(e−y).

Since the first part is a constant, the optimal value y∗ of the above minimization problem is the

argument of the maximization problem

y∗ = argmin
y

Q (y) = argmax
y

y⊤A(e−y).

Define a new function f (y) as

f (y) = y⊤A(e−y).

Again, the variable y ∈ B
n is a binary vector and e = [1,1, · · · ,1]⊤ is the unit column vector.

Now we show that maximization of the above function maxy f (y) is exactly a Max-Cut problem if

we treat the symmetric matrix A as the weighted adjacency matrix of an undirected graph GA =
{VA,A}. Note that the diagonal elements of A could be non-zero Aii 6= 0, i = 1,2, · · · ,n, which

indicates the undirected graph GA has self-connected nodes. Assume A = A0 + AΛ, where A0

is the matrix obtained by zeroing the diagonal elements of A and AΛ is a diagonal matrix with

AΛ
ii = Aii,A

Λ
i j = 0, i, j = 1,2, · · · ,n, i 6= j. It is straightforward to show that the the function f (y)

can be written as

f (y) = y⊤(A0 +AΛ)(e−y) = y⊤A0(e−y).
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In other words, the non-zero elements in A do not affect the value of f (y). Therefore, in the rest

of this article, we can assume that the matrix A has zero diagonal elements unless the text specifies

otherwise.

Since y = {y1,y2, · · · ,yn} is a binary vector, each setting of y partitions the vertex set VA in the

graph GA into two disjoint subsets (S1,S2). In other words, the two subsets S1 = {vi|yi = 1} and

S2 = {vi|yi = 0} satisfy S1∪S2 =VA and S1∩S2 = /0. The maximization problem can then be written

as

max f (y) = max∑
i, j

ai j · yi(1− y j) = max
1

2
∑

vi∈S1
v j∈S2

ai j.

Because each binary vector y resulting in a partition (S1,S2) over the graph GA and f (y) is a corre-

sponding cut, the above maximization max f (y) is easily recognized as a Max-Cut problem (Deza

and Laurent, 2009). However, in graph based semi-supervised learning, the variable y is partially

specified by the initial label values. This given label information can be interpreted as a set of linear

constraints on the Max-Cut problem. Thus, the optimal solution can achieved by solving a linearly

constrained Max-Cut problem (Karp, 1972). In addition, we also show that a multi-class problem

equals a Max K-Cut problem (K = c) (refer to Appendix A). Note that previous work used min-cut

over the original data graph G = {X,W} to perform semi-supervised learning (Blum and Chawla,

2001; Blum et al., 2004). A key difference of the above formulation lies in the fact that we perform

max-cut over the transformed graph GA = {X,A}.
However, since there is no guarantee that the weights on the graph GA are non-negative, so-

lutions to the Max-Cut problem can be difficult to find (Barahona et al., 1988). Therefore, in the

following subsection, we will propose a gradient greedy solution to efficiently solve the above

Max-Cut problem, which can be treated as a different view of the previous alternating minimization

solution.

4.2 Label Propagation by Gradient Greedy Max-Cut

For the standard Max-Cut problem, many approximation techniques have been developed, including

the most remarkable Goemans-Williamson algorithm using semidefinite programming (Goemans

and Williamson, 1994, 1995). However, applying these guaranteed approximation schemes to solve

the constrained Max-Cut problem for Y mentioned above is infeasible due to the constraints on

initial labels. Furthermore, there is no guarantee that all edge weights ai j of the graph GA are

non-negative, a fundamental requirement in solving a standard Max-Cut problem (Goemans and

Williamson, 1995). Instead, here we use a greedy gradient based strategy to find local optima by

assigning each unlabeled vertex to the label set with minimum connectivity to maximize cross-set

edge weights iteratively.

The greedy Max-Cut algorithm randomly selects unlabeled vertices and places each of them into

the appropriate class subset depending on the edges between this unlabeled vertex and the vertices

in the labeled subset. Given the label information, the initial label set for class j can be constructed

as S j = {xi|yi j = 1} or S j = {xi|zi = j}, i = 1,2, · · · ,n; j = 1,2, · · · ,c. Define the following as the

connectivity between unlabeled vertex xi and labeled subset S j

ci j =
n

∑
m=1

aimym j = Ai.Y. j, (15)
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Algorithm 1 Greedy Max-Cut for Label Propagation

Input: the graph GA = {X,A}, the given labeled vertex Xl , and initial labels Y;

Initialization:

obtain the initial cut {S j} by assigning the labeled vertex Xl to each subset:

S j = {xi|yi j = 1}, j = 1,2, · · · ,c
unlabeled vertex set Xu = X\Xl ;

repeat

randomly select an unlabeled vertex xi ∈ Xu

compute the connectivity ci j, j = 1,2, · · · ,c
place the vertex to the labeled subject S j∗ :

j∗ = argmin j ci j

add xi to Xl: Xl ←− Xl +xi;

remove xi from Xu: Xu←− Xu−xi;

until Xu = /0

Output: the final cut and the corresponding labeled subsets S j, j = 1,2, · · · ,c

where Ai. is the i’th row vector of A and Y. j is the j’th column vector of Y. Intuitively, ci j represents

the sum of edge weights between vertex xi and label set S j given the graph GA with edge weights A.

Based on this definition, a straightforward local search for the maximum cut involves placing each

unlabeled vertex xi ∈ Xu in the labeled subset S j with minimum connectivity ci j to maximize the

cross-set edge weights as shown in Algorithm (1). In order to achieve a good solution Algorithm (1)

should be run multiple times with different random seeds after which the best cut overall is output

(Mathieu and Schudy, 2008).

While the above method is computationally cumbersome, it still does not resolve the issue of

undesired local optima and may generate biased cuts. According to the definition in Equation (15),

the initialized labels determine the connectivity between unlabeled vertices and labeled subsets. If

the computed connectivity is negative, the above random search will prefer assigning unlabeled

vertices to the label set with the most labeled vertices which results in biased partitioning. Such

biased partitioning also occurs in minimum cut problems over an undirected graph with positive

weights (Shi and Malik, 2000). Other label initialization problems may also produce a poor cut.

For example, the numbers of labels from different classes may deviate from the underlying class

proportions. Alternatively, the labeled vertices may be outliers and lie in regions of the graph

with low density. Such labels often lead to weak label prediction results (Wang et al., 2008a).

Furthermore, the algorithm’s random selection of an unlabeled vertex results in unstable predictions

since the chosen unlabeled vertex xi could have equally low connectivity to multiple label subsets

S j.

To address the aforementioned issues, we first modify the original definition of connectivity to

alleviate label imbalance across different classes. A weighted connectivity is computed as

ci j = p j ·
n

∑
m=1

λmaimym j = p j ·ΛΛΛAi.Y. j. (16)

The diagonal matrix ΛΛΛ = diag([λ1, λ2, · · · , λn] is called the label weight matrix as in Equation (10)

λi =

{

di/dS j
: if xi ∈ S j, j = 1, · · · ,c

0 : otherwise,
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Algorithm 2 Greedy Gradient based Max-Cut for Label Propagation

Input: the graph GA = {X,A} and the given labeled vertex Xl , and initial label Y;

Initialization:

obtain the initial cut {S j} through assigning the labeled vertex Xl to each subset:

S j = {xi|yi j = 1}, j = 1,2, · · · ,c
unlabeled vertex set Xu = X\Xl ;

repeat

for all j = 0 to |Xu| do

compute weighted connectivity:

ci j =
n

∑
k=1

λiaikyk j,xi ∈ Xu, j = 1, · · · ,c
end for

update the cut {Si} by placing the vertex xi∗ to the S j∗’th subset:

(i∗, j∗) = arg min
i, j,xi∈Xu

ci j

add xi to Xl: Xl ←− Xl +xi;

remove xi from Xu: Xu←− Xu−xi;

until Xu = /0

Output: the final cut and the corresponding labeled subsets S j, j = 1,2, · · · ,c

where dS j
= ∑xm∈S j

dm is the sum of the degrees of the vertices in the label set S j. This heuristic

setting weights the importance of each label based on degree which alleviates the adverse impact of

outliers. If we ignore class priors, this definition of ΛΛΛ coincides with the one in Equation (10).

Finally, to handle any instability due to the random search algorithm, we propose a greedy

gradient search approach where the most beneficial vertex is assigned to the label set with minimum

connectivity. In other words, we first compute the connectivity matrix C = {ci j} ∈ R
n×c that gives

the connectivity between all unlabeled vertices to existing label sets

C = AΛΛΛY.

Then we examine C to identify the element (i∗, j∗) with minimum value as

(i∗, j∗) = arg min
i, j:xi∈Xu

ci j.

This means that the unlabeled vertex xi∗ has the least connectivity with label set S j∗ . Then, we

update the labeled set S j∗ by adding vertex xi∗ as one greedy step to maximize the cross-set edge

weights. This greedy search can be repeated until all the unlabeled vertices are assigned to labeled

sets. In each iteration of the greedy cut process, the weighted connectivity of all unlabeled vertices

to labeled sets is re-computed. Then the vertex with minimum connectivity is placed in the proper

labeled set. The algorithm is summarized in Algorithm (2).

The connectivity matrix C can also be viewed as the gradient of the cost function Q in Equa-

tion (12) with respect to Ỹ. This is precisely the same setting used in Equation (13) of the alternating

minimization algorithm

C =
∂Q

∂Ỹ
= AΛΛΛY.
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We name the algorithm greedy gradient Max-Cut (GGMC) since, in the greedy step, the unla-

beled vertices are assigned labels in a manner that reduces the value of Q along the direction of

the steepest descent. Consider both the variables Y and F in the original bivariate formulation in

Equation (9). The greedy Max-Cut method is equivalent to the alternating minimization procedure

discussed earlier. Unlike graph-cut based SSL methods such as mincuts (Blum and Chawla, 2001;

Blum et al., 2004), our GGMC algorithm tends to generate more natural graph cuts and avoid biased

solutions since it uses a weighted connectivity matrix. This allows it to effectively handle the issues

mentioned earlier and, in practice, achieve significant gains in accuracy while retaining efficiency.

4.3 Complexity and Speed Up

Assume the graph has n = |X| vertices and a subset Xl with l = |Xl| labeled vertices (where l≪ n).

The greedy gradient algorithm terminates after at most n− l ≃ n iterations. In each iteration of

the greedy gradient algorithm, the connectivity matrix C is updated by a matrix multiplication (an

n× n-matrix is multiplied by a n× c-matrix). Hence, the complexity of the greedy algorithm is

O(cn3).
However, the greedy algorithm can be greatly accelerated in practice. For example, the com-

putation of the connectivity in Equation (16) can be done incrementally after assigning each new

unlabeled vertex to a certain label set. This circumvents the re-calculation of all the entries in the

C matrix. Assume in the t’th iteration the connectivity is Ct and an unlabeled vertex xi with degree

di is assigned to the labeled set S j. Clearly, for all remaining unlabeled vertices, the connectivity

to the labeled sets remains unchanged except for the j’th labeled set. In other words, only the j’th

column of C needs updating. This update is performed incrementally via

Ct+1
. j =

dS t
j

dS t+1
j

Ct
. j +

di

dS t+1
j

A.i,

where dS t+1
j

= dS t
j
+di is the sum of the degrees of the labeled vertices after assigning xi to the labeled

set S j. This incremental update reduces the complexity of the greedy gradient search algorithm to

O(n2).

5. Experiments

In this section, we demonstrate the superiority of the proposed GGMC method over state-of-the-art

semi-supervised learning methods using both synthetic and real data. Previous work showed that

LapSVM and LapRLS outperform other semi-supervised approaches such as Transductive SVMs

TSVM (Joachims, 1999) and ∇TSVM (Chapelle and Zien, 2005). Therefore, we limit our compar-

isons to only the LapRLS, LapSVM (Sindhwani et al., 2005; Belkin et al., 2005), LGC (Zhou et al.,

2004) and GFHF (Zhu et al., 2003). To set various hyper-parameters such as γI,γr in LapRLS and

LapSVM, we followed the default configurations used in the literature. Similarly, for GGMC and

LGC, we set the hyper-parameter µ = 0.01 across all data sets. For the computational cost, GGMC,

LGC and GFHF required very similar run-times to output a prediction. However, LapRLS and

LapSVM need significant longer training time, especially for multiple-class problems since multiple

rounds of one-vs-all training have to be performed.

As in Section 2, any real implementation of graph-based SSL needs a graph construction method

algorithm that builds a graph from the training data X. This is then followed by a sparsification
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Figure 4: Experimental results on the noisy two-moon data set simulating different graph construc-

tion approaches and label conditions. Figures a) d) g) use binary weighting. Figures b)

e) h) use fixed Gaussian kernel weighting. Figures c) f) i) use adaptive Gaussian kernel

weighting. Figures a) b) c) vary the number of labels. Figures d) e) f) vary the value of k

in the graph construction. Figures g) h) i) vary the label imbalance ratio.

procedure to generate the sparse connectivity matrix B and a weighting procedure to obtain weights

on the edges in B. In these experiments, we used the same graph construction procedure for all the

SSL algorithms. The sparsification was done using the standard k-nearest-neighbors approach and

the edge weighting involved either binary weighting or Gaussian kernel weighting. In the latter case,

the ℓ2 distance dℓ2
(xi,x j) is used and the kernel bandwidth σ is estimated in two different ways. The

first estimate uses a fixed σ defined as the average distance between each selected sample and its k’th

nearest neighbor (Chapelle et al., 2006). In addition, a second adaptive approach is also considered

which locally estimates the parameter σ to the mean distance in the k-nearest neighborhoods of the

samples xi and x j (Wang et al., 2008a).
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Figure 5: Experimental results on the USPS digits data set under varying levels of labeling using:

a) binary weighting; b) fixed Gaussian kernel weighting and c) adaptive Gaussian kernel

weighting.

5.1 Noisy Two-Moon Data Set

We first compared GGMC with several representative SSL algorithms using the noisy two-moon

data set shown in Figure 3. Despite the near-perfect classification results reported on clean versions

of this data set (Sindhwani et al., 2005; Zhou et al., 2004), small amounts of noise quickly degrade

the performance of previous algorithms. In Figure 3, two separable manifolds containing 600 two-

dimensional points are mixed with 100 noisy outlier samples. The noise foils previous methods

which are sensitive to the locations of the initial labels, disproportional sampling from the classes,

and outlier noise. All experiments are repeated with 100 independent folds with random sampling

to show the average error rate of each algorithm.

The first group of experiments varies the number of labels provided to the algorithms. We

uniformly used k = 6 in the k-nearest-neighbors graph construction and applied the aforementioned

three edge-weighting schemes. The average error rates of the predictions on the unlabeled points is

shown in Figures 4(a), 4(b) and 4(c). These correspond to binary edge weighting, fixed Gaussian

kernel edge weighting, and adaptive Gaussian kernel edge weighting, respectively. The results

clearly show that GGMC is robust to the size of the label set and and generates perfect prediction

results for all three edge-weighting schemes.

The second group of experiments demonstrate the influence of the number of edges (i.e., the

value of k) in the graph construction method. We varied the value of k from 4 to 20 and Figures 4(d),

4(e), and 4(f) show results for the different edge-weighting schemes. Once again, GGMC achieves

significantly better performance in most cases.

Finally, we studied the effect of imbalanced labeling on the SSL algorithms. We fix one class

to have only one label and then randomly select r labels from the other classes. Here, r indicates

the imbalance ratio and we study the range 1 ≤ r ≤ 20. Figures 4(g), 4(h), and 4(i) show the

results with different edge-weighting schemes. Clearly, GGMC is insensitive to the imbalance since

it computes a per-class label weight normalization which compensates directly for differences in

label proportions.

In summary, Figure 4 depicted the performance advantages of GGMC relative to LGC, GFHF,

LapRLS, and LapSVM methods. We clearly see that the four previous algorithms are sensitive to

the initial labeling conditions and none of them produces perfect prediction. Furthermore, the error

rates of LGC and GFHF increase significantly when labeling becomes imbalanced, even if many
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Figure 6: Performance of LGC, GFHF, LapRLS, LapSVM, and GGMC algorithms using the UCI

data sets. The horizontal axis is the number of training labels provided while the vertical

axis is the average error rate achieved over 100 random folds. Results are based on k-

nearest neighbor graphs shown in a) for the Iris data set, in b) for the Wine data set and

in c) for the Breast Cancer data set. Results are based on b-matched graphs shown in d)

for the Iris data set, in e) for the Wine data set and in f) for the Breast Cancer data set.

labels are made available. However, GGMC achieves high accuracy regardless of the imbalance

ratio and the size of the label set. Furthermore, GGMC remains robust to the graph construction

procedure and the edge-weighting strategy.

5.2 Handwritten Digit Data Set

We also evaluated the algorithms in an image recognition task where handwritten digits in the USPS

database are to be annotated with the appropriate label {0,1, . . . ,9}. The data set contains gray scale

handwritten digit images involving 16×16 pixels. We randomly sampled a subset of 4000 samples

from the data. For all the constructed graphs, we used the k-nearest-neighbors algorithm with k = 6

and tried the three different edge-weighting schemes above. We varied the total number of labels

from 20 to 100 while guaranteeing that each digit class had at least one label. For each setting, the

average error rate was computed over 20 random folds.

The experimental results are shown in Figures 5(a), 5(b), and 5(c) which correspond to the three

different edge-weighting schemes. As usual, GGMC significantly improves classification accuracy

relative to other approaches, especially when few labeled training examples are available. The

average error rates of GGMC are consistently low with small standard deviations. This demonstrates

that the GGMC method is less sensitive to the number and locations of the initial training labels.
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Figure 7: Performance of LGC, GFHF, LapRLS, LapSVM, and GGMC algorithms using the COIL-

20 and Animal data sets. The horizontal axis is the number of training labels provided

while the vertical axis is the average error rate. Results are shown in a) for the COIL-210

object data set, and in b) for the Animal data set.

5.3 UCI Data Sets

We tested GGMC and the other algorithms on benchmark data sets from the UCI Machine Learning

Repository (Frank and Asuncion, 2010). Specifically, we used the Iris, Wine, and Breast Cancer

data sets. The numerical attributes of the data sets are all normalized to span the range [0,1]. For all

three data sets, we used a k-nearest-neighbors graph construction procedure with k = 6 and explored

the Gaussian kernel with fixed bandwidth as the edge-weighting scheme, where the bandwidth is

set as the average distance between each selected sample and its k’th nearest neighbor.

Figure 6 shows the performance of the various SSL algorithms. The vertical axis is the average

error rate computed over 100 random folds and the horizontal axis shows the number of labeled sam-

ples provided at training time. Besides using the k-nearest neighbor graphs, we also evaluated the

perform using the b-matched graphs on this data set. The GGMC method significantly outperforms

other algorithms in most test cases, especially when little labeled data is available.

5.4 COIL-20 Object Images

We investigated the object recognition problem using the well-known Columbia Object Image Li-

brary (COIL-20), which contains 1440 gray-scale images of 20 objects (Nene et al., 1996). The

images sequences were obtained when the objects were placed on a turntable table with black

background, where one image was taken for each 5-degree interval. As with UCI data sets, we

constructed kNN graphs with k = 6 and used a fixed bandwidth for edge weighting. The number of

given labels from all object categories was varied from 20 to 40 with the guarantee that each object

class has at least one label. Figure 7(a) shows the performance curves in terms of the average error

rate of 100 random tests, where GGMC outperformed all other methods.
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5.5 NEC Animal Data Set

The NEC Animal data set contains sequences of images of 60 toy animals and has been used as a

benchmark data set for image and video classification (Mobahi et al., 2009). Each toy animal has

around 72 images taken at different poses. The data set contains a total of 4371 images, each of

size 580× 480 pixels. In the experiments, the images were re-sized to 96× 72 pixels and the grey

intensity was used as the feature representation. The previous graph construction methodology was

followed and algorithm performance was evaluated using the average error rate across 100 random

folds with the number of initial labels varying from 60 to 100. In the experiments, the GGMC

method again achieved the best performance among all tested methods. In particular, when given

very sparse labels, that is, one label per class, GGMC produced significantly lower error rates.

6. Conclusion and Discussion

The performance of existing graph-based SSL methods depends heavily on the availability of accu-

rate initial labels and good connectivity structure. Otherwise, performance can significantly degrade

if labels are not distributed evenly across classes, if the initial label locations are biased, or if noise

and outliers corrupt the underlying manifold structure. These problems arise in many real world

data sets and limit the performance of state-of-the-art SSL algorithms. Furthermore, several heuris-

tic choices in the SSL approach require considerable exploratory work by the practitioner before the

methods perform well in a specific problem domain.

This article addressed these shortcomings and proposed a novel graph-based semi-supervised

learning method named greedy gradient Max-Cut (GGMC). Our main contributions include:

1. Extending the existing univariate quadratic regularization framework to an optimization over

both label matrix and classification function. Such an extension allows us to treat input labels

as part of the optimization problem and thereby alleviate SSL’s sensitivity to initial labels.

2. Demonstrating that the bivariate formulation is actually a mixed integer programming prob-

lem which can be reduced to a binary integer programming (BIP) problem. In addition, we

show that an alternating minimization procedure can be used to derive a locally optimal solu-

tion.

3. Proving that the proposed bivariate formulation is equivalent to a Max-Cut problem for the

two-class case and proving that it is equivalent to a Maximum K-cut problem for the multi-

class case. In addition, we proposed an efficient solution with O(n2) complexity. This greedy

gradient Max-Cut (GGMC) solution presents a different interpretation for the alternating min-

imization procedure from a graph cut view.

Unlike other graph-cut based SSL methods such as min-cut (Blum and Chawla, 2001; Blum

et al., 2004), the proposed GGMC algorithm tends to generate more natural graph cuts and avoids

biased solutions. In addition, it uses a weighted connectivity matrix to normalize the label matrix.

The result is a solution that can cope with all the aforementioned degeneracies. It improves accuracy

in practice while remaining efficient. Future work will extend the proposed methods to out-of-

sample settings where additional data points are added to the prediction problem without requiring a

full retraining procedure. Another interesting extension of the bivariate framework is active learning

which can potentially reduce the amount of labels necessary for accurate prediction (Goldberg et al.,

2011).
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Appendix A. Multi-Class Case as a Max K-Cut Problem

Here, we show that K-class bivariate graph transduction is equivalent to a Max K-Cut problem. If

the number of classes is K, the label variable Y is a n×K matrix denoting the classification result.

Therein, Yi j = 1 indicates that vertex xi is assigned the label j. We rewrite the cost function in

Equation (8) as

Q (Y) =
1

2
tr
(

Y⊤AY
)

=
1

2

K

∑
k=1

Y⊤.kAY.k.

Let yk = Y.k be a column vector of Y. Let the non-zero elements in yk denote the vertices in subset

Sk, where k = 1,2, · · · ,K, S1 ∪ S2 ∪ · · · ∪ SK = VA, and Sm ∩ Sn = /0 if m 6= n. Then the above cost

function is equivalent to

Q (y1,y2, · · · ,yK) =
1
2

K

∑
k=1

y⊤k Ayk = ∑
xi ,x j∈Sk

i< j

Ai j

= ∑
i< j

Ai j−
K−1

∑
m=1

K

∑
n=m+1

∑
xi∈Sm
x j∈Sn

Ai j.

Therefore the original minimization problem is equivalent to maximizing the sum of the weight of

the edges between the disjoint sets Sk, that is, the maximum K-cut problem

max
S1,...,SK

K−1

∑
m=1

K

∑
n=m+1

∑
xi∈Sm
x j∈Sn

Ai j.
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Abstract

MLPACK is a state-of-the-art, scalable, multi-platform C++ machine learning library released
in late 2011 offering both a simple, consistent API accessible to novice users and high perfor-
mance and flexibility to expert users by leveraging modern features of C++. MLPACK pro-
vides cutting-edge algorithms whose benchmarks exhibit far better performance than other lead-
ing machine learning libraries. MLPACK version 1.0.3, licensed under the LGPL, is available at
http://www.mlpack.org.

Keywords: C++, dual-tree algorithms, machine learning software, open source software, large-
scale learning

1. Introduction and Goals

Though several machine learning libraries are freely available online, few, if any, offer efficient
algorithms to the average user. For instance, the popular Weka toolkit (Hall et al., 2009) emphasizes
ease of use but scales poorly; the distributed Apache Mahout library offers scalability at a cost of
higher overhead (such as clusters and powerful servers often unavailable to the average user). Also,
few libraries offer breadth; for instance, libsvm (Chang and Lin, 2011) and the Tilburg Memory-
Based Learner (TiMBL) are highly scalable and accessible yet each offer only a single method.

MLPACK, intended to be the machine learning analog to the general-purpose LAPACK linear
algebra library, aims to combine efficiency and accessibility. Written in C++, MLPACK uses the
highly efficient Armadillo matrix library (Sanderson, 2010) and is freely available under the GNU
Lesser General Public License (LGPL). Through the use of C++ templates, MLPACK both elimi-
nates unnecessary copying of data sets and performs expression optimizations unavailable in other
languages. Also, MLPACK is, to our knowledge, unique among existing libraries in using generic
programming features of C++ to allow customization of the available machine learning methods
without incurring performance penalties.

c©2013 Ryan R. Curtin, James R. Cline, N. P. Slagle, William B. March, Parikshit Ram, Nishant A. Mehta and Alexander G. Gray.
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In addition, users ranging from students to experts should find the consistent, intuitive interface
of MLPACK to be highly accessible. Finally, the source code provides references and comprehen-
sive documentation.

Four major goals of the development team of MLPACK are

• to implement scalable, fast machine learning algorithms,
• to design an intuitive, consistent, and simple API for non-expert users,
• to implement a variety of machine learning methods, and
• to provide cutting-edge machine learning algorithms unavailable elsewhere.

This paper offers both an introduction to the simple and extensible API and a glimpse of the
superior performance of the library.

2. Package Overview

Each algorithm available in MLPACK features both a set of C++ library functions and a standalone
command-line executable. Version 1.0.3 includes the following methods:

• nearest/furthest neighbor search with cover trees or kd-trees (k-nearest-neighbors)
• range search with cover trees or kd-trees
• Gaussian mixture models (GMMs)
• hidden Markov models (HMMs)
• LARS / Lasso regression
• k-means clustering
• fast hierarchical clustering (Euclidean MST calculation)1 (March et al., 2010)
• kernel PCA (and regular PCA)
• local coordinate coding1 (Yu et al., 2009)
• sparse coding using dictionary learning
• RADICAL (Robust, Accurate, Direct ICA aLgorithm) (Learned-Miller and Fisher, 2003)
• maximum variance unfolding (MVU) via LRSDP1 (Burer and Monteiro, 2003)
• the naive Bayes classifier
• density estimation trees1 (Ram and Gray, 2011)

The development team manages MLPACK with Subversion and the Trac bug reporting system,
allowing easy downloads and simple bug reporting. The entire development process is transparent,
so any interested user can easily contribute to the library. MLPACK can compile from source on
Linux, Mac OS, and Windows; currently, different Linux distributions are reviewing MLPACK for
inclusion in their package managers, which will allow users to install MLPACK without needing to
compile from source.

3. A Consistent, Simple API

MLPACK features a highly accessible API, both in style (such as consistent naming schemes and
coding conventions) and ease of use (such as templated defaults), as well as stringent documentation
standards. Consequently, a new user can execute algorithms out-of-the-box often with little or no
adjustment to parameters, while the seasoned expert can expect extreme flexibility in algorithmic

1. This algorithm is not available in any other comparable software package.
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Data Set MLPACK Weka Shogun MATLAB mlpy sklearn
wine 0.0003 0.0621 0.0277 0.0021 0.0025 0.0008
cloud 0.0069 0.1174 0.5000 0.0210 0.3520 0.0192
wine-qual 0.0290 0.8868 4.3617 0.6465 4.0431 0.1668
isolet 13.0197 213.4735 37.6190 46.9518 52.0437 46.8016
miniboone 20.2045 216.1469 2351.4637 1088.1127 3219.2696 714.2385
yp-msd 5430.0478 >9000.0000 >9000.0000 >9000.0000 >9000.0000 >9000.0000
corel 4.9716 14.4264 555.9600 60.8496 209.5056 160.4597
covtype 14.3449 45.9912 >9000.0000 >9000.0000 >9000.0000 651.6259
mnist 2719.8087 >9000.0000 3536.4477 4838.6747 5192.3586 5363.9650
randu 1020.9142 2665.0921 >9000.0000 1679.2893 >9000.0000 8780.0176

Table 1: k-NN benchmarks (in seconds).

Data Set wine cloud wine-qual isolet miniboone

UCI Name Wine Cloud Wine Quality ISOLET MiniBooNE
Size 178x13 2048x10 6497x11 7797x617 130064x50

Data Set yp-msd corel covtype mnist randu

UCI Name YearPredictionMSD Corel Covertype N/A N/A

Size 515345x90 37749x32 581082x54 70000x784 1000000x10

Table 2: Benchmark data set sizes.

tuning. For example, the following line initializes an object which will perform the standard k-
means clustering in Euclidean space:

KMeans<> k();

However, an expert user could easily use the Manhattan distance, a different cluster initialization
policy, and allow empty clusters:

KMeans<ManhattanDistance, KMeansPlusPlusInitialization, AllowEmptyClusters> k();

Users can implement these custom classes in their code, then simply link against the MLPACK
library, requiring no modification within the MLPACK library. In addition to this flexibility, Ar-
madillo 3.4.0 includes sparse matrix support; sparse matrices can be used in place of dense matrices
for the appropriate MLPACK methods.

4. Benchmarks

To demonstrate the efficiency of the algorithms implemented in MLPACK, we present a comparison
of the running times of k-nearest-neighbors and the k-means clustering algorithm from MLPACK,
Weka (Hall et al., 2009), MATLAB, the Shogun Toolkit (Sonnenburg et al., 2010), mlpy (Albanese
et al., 2012), and scikit.learn (‘sklearn’) (Pedregosa et al., 2011), using a modest consumer-grade
workstation containing an AMD Phenom II X6 1100T processor clocked at 3.3 GHz and 8 GB of
RAM.

Eight data sets from the UCI data sets repository (Frank and Asuncion, 2010) are used; the
MNIST handwritten digit database is also used (‘mnist’) (LeCun et al., 2001), as well as a uniformly
distributed random data set (‘randu’). Information on the sizes of these ten data sets appears in Table
2. Data set loading time is not included in the benchmarks. Each test was run 5 times; the average
is shown in the results.
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Data Set Clusters MLPACK Shogun MATLAB sklearn
wine 3 0.0006 0.0073 0.0055 0.0064
cloud 5 0.0036 0.1240 0.0194 0.1753
wine-qual 7 0.0221 0.6030 0.0987 4.0407
isolet 26 4.9762 8.5093 54.7463 7.0902
miniboone 2 0.1853 8.0206 0.7221 memory

yp-msd 10 34.8223 135.8853 269.7302 memory

corel 10 0.4672 2.4237 1.6318 memory

covtype 7 13.5997 71.1283 54.9034 memory

mnist 10 80.2092 163.7513 133.9970 memory

randu 75 727.1498 7443.2675 3117.5177 memory

Table 3: k-means benchmarks (in seconds).

k-NN was run with each library on each data set, with k = 3. The results for each library and
each data set appears in Table 1. The k-means algorithm was run with the same starting centroids
for each library, and 1000 iterations maximum. The number of clusters k was chosen to reflect the
structure of the data set. Benchmarks for k-means are given in Table 3. Weka and mlpy are excluded
because they do not allow specification of the starting centroids. ‘memory’ indicates that the system
ran out of memory during the test.

MLPACK’s k-nearest neighbors and k-means are faster than the competitors in all test cases.
Benchmarks for other methods, omitted due to space constraints, also show similar speedups over
competing implementations.

5. Future Plans and Conclusion

The favorable benchmarks exhibited above are not necessarily the global optimum; MLPACK’s
active development team includes several core developers and many contributors. Because ML-
PACK is open-source, contributions from outsiders are welcome, including feature requests and
bug reports. Thus, the performance, extensibility, and breadth of algorithms within MLPACK are
all certain to improve.

The first releases of MLPACK lacked parallelism, but experimental parallel code using OpenMP
is currently in testing. This parallel support must maintain a simple API and avoid large, reverse-
incompatible API changes. Other useful planned features include using on-disk databases (rather
than requiring loading the data set entirely into RAM) and validation of saved models (such as trees
or distributions). Refactoring work continues on existing code, providing more flexible abstractions
and greater extensibility. Nevertheless, MLPACK’s future growth will mostly be the addition of new
machine learning methods; since the original release (1.0.0), there are five new methods. Forthcom-
ing methods include approximate nearest neighbors, locality-sensitive hashing (LSH), and support
vector machines (SVMs).

In conclusion, we have shown that MLPACK is a state-of-the-art C++ machine learning library
which leverages the powerful C++ concept of generic programming to give excellent performance
on large data sets.
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Abstract

Sparsity-constrained optimization has wide applicability in machine learning, statistics, and signal

processing problems such as feature selection and Compressed Sensing. A vast body of work has

studied the sparsity-constrained optimization from theoretical, algorithmic, and application aspects

in the context of sparse estimation in linear models where the fidelity of the estimate is measured

by the squared error. In contrast, relatively less effort has been made in the study of sparsity-

constrained optimization in cases where nonlinear models are involved or the cost function is not

quadratic. In this paper we propose a greedy algorithm, Gradient Support Pursuit (GraSP), to

approximate sparse minima of cost functions of arbitrary form. Should a cost function have a Stable

Restricted Hessian (SRH) or a Stable Restricted Linearization (SRL), both of which are introduced

in this paper, our algorithm is guaranteed to produce a sparse vector within a bounded distance

from the true sparse optimum. Our approach generalizes known results for quadratic cost functions

that arise in sparse linear regression and Compressed Sensing. We also evaluate the performance of

GraSP through numerical simulations on synthetic and real data, where the algorithm is employed

for sparse logistic regression with and without ℓ2-regularization.

Keywords: sparsity, optimization, compressed sensing, greedy algorithm

1. Introduction

The demand for high-dimensional data analysis has grown significantly over the past decade by

the emergence of applications such as social networking, bioinformatics, and mathematical finance.

In these applications data samples often have thousands of features using which an underlying

parameter must be inferred or predicted. In many circumstances the number of collected samples

is significantly smaller than the dimensionality of the data, rendering any inference from the data

ill-posed. However, it is widely acknowledged that the data sets that need to be processed usually

c©2013 Sohail Bahmani, Bhiksha Raj and Petros T. Boufounos.
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exhibit significant structure, which sparsity models are often able to capture. This structure can be

exploited for robust regression and hypothesis testing, model reduction and variable selection, and

more efficient signal acquisition in underdetermined regimes. Estimation of parameters with sparse

structure is usually cast as an optimization problem, formulated according to specific application

requirements. Developing techniques that are robust and computationally tractable to solve these

optimization problems, even only approximately, is therefore critical.

In particular, theoretical and application aspects of sparse estimation in linear models have been

studied extensively in areas such as signal processing, machine learning, and statistics. However,

sparse estimation in problems where nonlinear models are involved have received comparatively

little attention. Most of the work in this area extend the use of the ℓ1-norm as a regularizer, effec-

tive to induce sparse solutions in linear regression, to problems with nonlinear models (see, e.g.,

Bunea, 2008; van de Geer, 2008; Kakade et al., 2010; Negahban et al., 2009). As a special case,

logistic regression with ℓ1 and elastic net regularization are studied by Bunea (2008). Furthermore,

Kakade et al. (2010) have studied the accuracy of sparse estimation through ℓ1-regularization for the

exponential family distributions. A more general frame of study is proposed and analyzed by Negah-

ban et al. (2009) where regularization with “decomposable” norms is considered in M-estimation

problems. To provide the accuracy guarantees, these works generalize the Restricted Eigenvalue

condition (Bickel et al., 2009) to ensure that the loss function is strongly convex over a restriction of

its domain. We would like to emphasize that these sufficient conditions generally hold with proper

constants and with high probability only if one assumes that the true parameter is bounded. This fact

is more apparent in some of the mentioned work (e.g., Bunea, 2008; Kakade et al., 2010), while in

some others (e.g., Negahban et al., 2009) the assumption is not explicitly stated. We will elaborate

on this matter in Section 2. Tewari et al. (2011) also proposed a coordinate-descent type algorithm

for minimization of a convex and smooth objective over the convex signal/parameter models intro-

duced in Chandrasekaran et al. (2012). This formulation includes the ℓ1-constrained minimization

as a special case, and the algorithm is shown to converge to the minimum in objective value similar

to the standard results in convex optimization.

Furthermore, Shalev-Shwartz et al. (2010) proposed a number of greedy that sparsify a given es-

timate at the cost of relatively small increase of the objective function. However, their algorithms are

not stand-alone. A generalization of Compressed Sensing is also proposed in Blumensath (2010),

where the linear measurement operator is replaced by a nonlinear operator that applies to the sparse

signal. Considering the norm of the residual error as the objective, Blumensath (2010) shows that

if the objective satisfies certain sufficient conditions, the sparse signal can be accurately estimated

by a generalization of the Iterative Hard Thresholding algorithm (Blumensath and Davies, 2009).

The formulation of Blumensath (2010), however, has a limited scope because the metric of error is

defined using a norm. For instance, the formulation does not apply to objectives such as the logistic

loss. More recently, Jalali et al. (2011) studied a forward-backward algorithm using a variant of

the sufficient conditions introduced in Negahban et al. (2009). Similar to our work, the main result

in Jalali et al. (2011) imposes conditions on the function as restricted to sparse inputs whose non-

zeros are fewer than a multiple of the target sparsity level. The multiplier used in their results has

an objective-dependent value and is never less than 10. Furthermore, the multiplier is important in

their analysis not only for determining the stopping condition of the algorithm, but also in the lower

bound assumed for the minimal magnitude of the non-zero entries. In contrast, the multiplier in our

results is fixed at 4, independent of the objective function itself, and we make no assumptions about

the magnitudes of the non-zero entries.
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This paper presents an extended version with improved guarantees of our prior work in Bah-

mani et al. (2011), where we proposed a greedy algorithm, the Gradient Support Pursuit (GraSP),

for sparse estimation problems that arise in applications with general nonlinear models. We prove

the accuracy of GraSP for a class of cost functions that have a Stable Restricted Hessian (SRH). The

SRH, introduced in Bahmani et al. (2011), characterizes the functions whose restriction to sparse

canonical subspaces have well-conditioned Hessian matrices. Similarly, we analyze the GraSP algo-

rithm for non-smooth functions that have a Stable Restricted Linearization (SRL), a property intro-

duced in this paper, analogous to SRH. The analysis and the guarantees for smooth and non-smooth

cost functions are similar, except for less stringent conditions derived for smooth cost functions due

to properties of symmetric Hessian matrices. We also prove that the SRH holds for the case of the

ℓ2-penalized logistic loss function.

1.1 Notation

In the remainder of this paper we use the notation listed in Table 1.

1.2 Paper Outline

In Section 2 we provide a background on sparse parameter estimation which serves as an overview

of prior work. In Section 3 we state the general formulation of the problem and present our al-

gorithm. Conditions that characterize the cost functions and the main accuracy guarantees of our

algorithm are provided in Section 3 as well. The guarantees of the algorithm are proved in Appen-

dices A and B. As an example where our algorithm can be applied, ℓ2-regularized logistic regression

is studied in Section 4. Some experimental results for logistic regression with sparsity constraints

are presented in Section 5. Finally, Section 6 discusses the results and concludes.

2. Background

We first briefly review sparse estimation problems studied in the literature.

2.1 Sparse Linear Regression and Compressed Sensing

The special case of sparse estimation in linear models has gained significant attention under the

title of Compressed Sensing (CS) (Donoho, 2006). In standard CS problems the aim is to estimate

a sparse vector x⋆ from noisy linear measurements y = Ax⋆+ e, where A is a known n× p mea-

surement matrix with n ≪ p and e is the additive measurement noise. To find the sparsest estimate

in this underdetermined problem that is consistent with the measurements y one needs to solve the

optimization problem

x̂ =argmin
x

‖x‖0 s.t. ‖y−Ax‖2 ≤ ε, (1)

where ε is a given upper bound for ‖e‖2 (Candès et al., 2006). In the absence of noise (i.e., when

ε = 0), if x⋆ is s-sparse (i.e., it has at most s nonzero entries) one merely needs every 2s columns of

A to be linearly independent to guarantee exact recovery (Donoho and Elad, 2003). Unfortunately,

the ideal solver (1) is computationally NP-hard in general (Natarajan, 1995) and one must seek

approximate solvers instead.

It is shown in Candès et al. (2006) that under certain conditions, minimizing the ℓ1-norm as

a convex proxy for the ℓ0-norm yields accurate estimates of x⋆. The resulting approximate solver
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Symbol Description

[n] the set {1,2, . . . ,n} for any n ∈ N

I
calligraphic letters denote sets unless stated otherwise (e.g., N

(
µ,σ2

)
denotes

a normal distribution)

I c complement of set I

v bold face small letters denote column vectors in R
b for some b ∈ N

‖v‖q the ℓq-norm of vector v, that is
(
∑b

i=1 |vi|q
)1/q

, for a real number q ≥ 1

‖v‖0 the “ℓ0-norm” of vector v that merely counts its nonzero entries

v|I
depending on the context

1. restriction of vector v to the rows indicated by indices in I , or

2. a vector that equals v except for coordinates in I c where it is zero

vr the best r-term approximation of vector v

supp(v) the support set (i.e., indices of the non-zero entries) of v

M bold face capital letters denote matrices in R
a×b for some a,b ∈ N

MT transpose of matrix M

M† pseudo-inverse of matrix M

MI restriction of matrix M to the columns enumerated by I

‖M‖ the operator norm of matrix M which is equal to
√

λmax (MTM)

I the identity matrix

PI restriction of the identity matrix to the columns indicated by I

1 column vector of all ones

E [·] expectation

H f (·) Hessian of the function f

Table 1: Notation used in this paper
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basically returns the solution to the convex optimization problem

x̂ =argmin
x

‖x‖1 s.t. ‖y−Ax‖2 ≤ ε, (2)

The required conditions for approximate equivalence of (1) and (2), however, generally hold only if

measurements are collected at a higher rate. Ideally, one merely needs n = O(s) measurements to

estimate x⋆, but n = O(s log
p
s
) measurements are necessary for the accuracy of (2) to be guaranteed.

The convex program (2) can be solved in polynomial time using interior point methods. How-

ever, these methods do not scale well as the size of the problem grows. Therefore, several first-order

convex optimization methods are developed and analyzed as more efficient alternatives (see, e.g.,

Beck and Teboulle, 2009; Agarwal et al., 2010). Another category of low-complexity algorithms in

CS are the non-convex greedy pursuits including Orthogonal Matching Pursuit (OMP) (Pati et al.,

1993; Tropp and Gilbert, 2007), Compressive Sampling Matching Pursuit (CoSaMP) (Needell and

Tropp, 2009), Iterative Hard Thresholding (IHT) (Blumensath and Davies, 2009), and Subspace

Pursuit (Dai and Milenkovic, 2009) to name a few. These greedy algorithms implicitly approximate

the solution to the ℓ0-constrained least squares problem

x̂ =argmin
x

1

2
‖y−Ax‖2

2 s.t. ‖x‖0 ≤ s. (3)

The main theme of these iterative algorithms is to use the residual error from the previous iteration

to successively approximate the position of non-zero entries and estimate their values. These algo-

rithms have shown to exhibit accuracy guarantees similar to those of convex optimization methods,

though with more stringent requirements.

As mentioned above, to guarantee accuracy of the CS algorithms the measurement matrix should

meet certain conditions such as incoherence (Donoho and Huo, 2001), Restricted Isometry Property

(RIP) (Candès et al., 2006), Nullspace Property (Cohen et al., 2009), etc. Among these conditions

RIP is the most commonly used and the best understood condition.

Matrix A is said to satisfy the RIP of order k—in its symmetric form—with constant δk, if δk < 1

is the smallest number that

(1−δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+δk)‖x‖2
2

holds for all k-sparse vectors x. Several CS algorithms are shown to produce accurate solutions

provided that the measurement matrix has a sufficiently small RIP constant of order ck with c being

a small integer. For example, solving (2) is guaranteed to yield an accurate estimate of s-sparse

x⋆ if δ2s <
√

2−1 (Candès, 2008). Interested readers can find the best known RIP-based accuracy

guarantees for some of the CS algorithms in Foucart (2012).

2.2 Beyond Linear Models

The CS reconstruction algorithms attempt to provide a sparse vector that incurs only a small squared

error which measures consistency of the solution versus the acquired data. While this measure of

discrepancy is often desirable for signal processing applications, it is not the appropriate choice

for a variety of other applications. For example, in statistics and machine learning the logistic loss

function is also commonly used in regression and classification problems (see Liu et al., 2009, and

references therein). Thus, it is desirable to develop theory and algorithms that apply to a broader

class of optimization problems with sparsity constraints.
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The existing studies on this subject are mostly in the context of statistical estimation. The

majority of these studies consider the cost function to be convex everywhere and rely on the ℓ1-

regularization as the means to induce sparsity in the solution. For example, Kakade et al. (2010)

have shown that for the exponential family of distributions maximum likelihood estimation with

ℓ1-regularization yields accurate estimates of the underlying sparse parameter. Furthermore, Negah-

ban et al. have developed a unifying framework for analyzing statistical accuracy of M-estimators

regularized by “decomposable” norms in (Negahban et al., 2009). In particular, in their work ℓ1-

regularization is applied to Generalized Linear Models (GLM) (Dobson and Barnett, 2008) and

shown to guarantee a bounded distance between the estimate and the true statistical parameter. To

establish this error bound they introduced the notion of Restricted Strong Convexity (RSC), which

basically requires a lower bound on the curvature of the cost function around the true parameter in a

restricted set of directions. The achieved error bound in this framework is inversely proportional to

this curvature bound. Furthermore, Agarwal et al. (2010) have studied Projected Gradient Descent

as a method to solve ℓ1-constrained optimization problems and established accuracy guarantees

using a slightly different notion of RSC and Restricted Smoothness (RSM).

Note that the guarantees provided for majority of the ℓ1-regularization algorithms presume that

the true parameter is bounded, albeit implicitly. For instance, the error bound for ℓ1-regularized lo-

gistic regression is recognized by Bunea (2008) to be dependent on the true parameter (Bunea, 2008,

Assumption A, Theorem 2.4, and the remark that succeeds them). Moreover, the result proposed

by Kakade et al. (2010) implicitly requires the true parameter to have a sufficiently short length to

allow the choice of the desirable regularization coefficient (Kakade et al., 2010, Theorems 4.2 and

4.5). Negahban et al. (2009) also assume that the true parameter is inside the unit ball to establish

the required condition for their analysis of ℓ1-regularized GLM, although this restriction is not ex-

plicitly stated (see the longer version of Negahban et al., 2009, p. 37). We can better understand

why restricting the length of the true parameter may generally be inevitable by viewing these esti-

mation problems from the perspective of empirical processes and their convergence. The empirical

processes, including those considered in the studies mentioned above, are generally good approxi-

mations of their corresponding expected process (see Vapnik, 1998, chap. 5 and van de Geer, 2000).

Therefore, if the expected process is not strongly convex over an unbounded, but perhaps otherwise

restricted, set the corresponding empirical process cannot be strongly convex over the same set.

This reasoning applies in many cases including the studies mentioned above, where it would be

impossible to achieve the desired restricted strong convexity properties—with high probability—if

the true parameter is allowed to be unbounded.

Furthermore, the methods that rely on the ℓ1-norm are known to result in sparse solutions, but,

as mentioned in Kakade et al. (2010), the sparsity of these solutions is not known to be optimal in

general. One can intuit this fact from definitions of RSC and RSM. These two properties bound

the curvature of the function from below and above in a restricted set of directions around the true

optimum. For quadratic cost functions, such as squared error, these curvature bounds are absolute

constants. As stated before, for more general cost functions such as the loss functions in GLMs,

however, these constants will depend on the location of the true optimum. Consequently, depending

on the location of the true optimum these error bounds could be extremely large, albeit finite. When

error bounds are significantly large, the sparsity of the solution obtained by ℓ1-regularization may

not be satisfactory. This motivates investigation of algorithms that do not rely on ℓ1-norm to induce

sparsity.
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3. Problem Formulation and the GraSP Algorithm

As seen in Section 2.1, in standard CS the squared error f (x) = 1
2
‖y−Ax‖2

2 is used to measure

fidelity of the estimate. While this is appropriate for a large number of signal acquisition applica-

tions, it is not the right cost in other fields. Thus, the significant advances in CS cannot readily be

applied in these fields when estimation or prediction of sparse parameters become necessary. In this

paper we focus on a generalization of (3) where a generic cost function replaces the squared error.

Specifically, for the cost function f : Rp 7→ R, it is desirable to approximate

argmin
x

f (x) s.t. ‖x‖0 ≤ s. (4)

We propose the Gradient Support Pursuit (GraSP) algorithm, which is inspired by and generalizes

the CoSaMP algorithm, to approximate the solution to (4) for a broader class of cost functions.

Of course, even for a simple quadratic objective, (4) can have combinatorial complexity and

become NP-hard. However, similar to the results of CS, knowing that the cost function obeys

certain properties allows us to obtain accurate estimates through tractable algorithms. To guarantee

that GraSP yields accurate solutions and is a tractable algorithm, we also require the cost function to

have certain properties that will be described in Section 3.2. These properties are analogous to and

generalize the RIP in the standard CS framework. For smooth cost functions we introduce the notion

of a Stable Restricted Hessian (SRH) and for non-smooth cost functions we introduce the Stable

Restricted Linearization (SRL). Both of these properties basically bound the Bregman divergence

of the cost function restricted to sparse canonical subspaces. However, the analysis based on the

SRH is facilitated by matrix algebra that results in somewhat less restrictive requirements for the

cost function.

3.1 Algorithm Description

Algorithm 1: The GraSP algorithm

input : f (·) and s

output: x̂

initialize: x̂ = 0

repeat

compute local gradient: z = ∇ f (x̂)
identify directions: Z = supp(z2s)
merge supports: T = Z ∪ supp(x̂)
minimize over support: b = argmin f (x) s.t. x|T c = 0

prune estimate: x̂ = bs

until halting condition holds

GraSP is an iterative algorithm, summarized in Algorithm 1, that maintains and updates an esti-

mate x̂ of the sparse optimum at every iteration. The first step in each iteration, z = ∇ f (x̂), evaluates

the gradient of the cost function at the current estimate. For nonsmooth functions, instead of the

gradient we use a restricted subgradient z = ∇ f (x̂) defined in Section 3.2. Then 2s coordinates

of the vector z that have the largest magnitude are chosen as the directions in which pursuing the

minimization will be most effective. Their indices, denoted by Z = supp(z2s), are then merged
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with the support of the current estimate to obtain T = Z ∪ supp(x̂). The combined support is a set

of at most 3s indices over which the function f is minimized to produce an intermediate estimate

b= argmin f (x) s.t. x|T c =0. The estimate x̂ is then updated as the best s-term approximation of

the intermediate estimate b. The iterations terminate once certain condition, for instance, on the

change of the cost function or the change of the estimated minimum from the previous iteration,

holds.

In the special case where the squared error f (x) = 1
2
‖y−Ax‖2

2 is the cost function, GraSP

reduces to CoSaMP. Specifically, the gradient step reduces to the proxy step z = AT (y−Ax̂) and

minimization over the restricted support reduces to the constrained pseudoinverse step b|T = A
†
T

y,

b|T c = 0 in CoSaMP.

Variants Although in this paper we only analyze the standard form of GraSP outlined in Algorithm

1, other variants of the algorithm can also be studied. Below we list some of these variants.

1. Debiasing: In this variant, instead of performing a hard thresholding on the vector b, the

objective is minimized restricted to the support set of bs to obtain the new iterate:

x̂ = argmin
x

f (x) s.t. supp(x)⊆ supp(bs) .

2. Restricted Newton Step: To reduce the computations in each iteration, the minimization that

yields b, we can set b|T c = 0 and take a restricted Newton step as

b|T = x̂|T −κ
(
PT

T H f (x̂)PT

)−1
x̂|T ,

where κ > 0 is a step-size. Of course, here we are assuming that the restricted Hessian,

PT
T H f (x̂)PT , is invertible.

3. Restricted Gradient Descent: The minimization step can be relaxed even further by applying

a restricted gradient descent. In this approach, we again set b|T c = 0 and

b|T = x̂|T −κ ∇ f (x̂)|T .

Since T contains both the support set of x̂ and the 2s-largest entries of ∇ f (x̂) , it is easy to

show that each iteration of this alternative method is equivalent to a standard gradient descent

followed by a hard thresholding. In particular, if the squared error is the cost function as in

standard CS, this variant reduces to the IHT algorithm.

3.2 Sparse Reconstruction Conditions

In what follows we characterize the functions for which accuracy of GraSP can be guaranteed. For

twice continuously differentiable functions we rely on Stable Restricted Hessian (SRH), while for

non-smooth cost functions we introduce the Stable Restricted Linearization (SRL). These properties

that are analogous to the RIP in the standard CS framework, basically require that the curvature of

the cost function over the sparse subspaces can be bounded locally from above and below such that

the corresponding bounds have the same order. Below we provide precise definitions of these two

properties.
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Definition 1 (Stable Restricted Hessian). Suppose that f is a twice continuously differentiable func-

tion whose Hessian is denoted by H f (·). Furthermore, let

Ak (x) =sup
{

∆TH f (x)∆
∣∣∣ |supp(x)∪ supp(∆)| ≤ k,‖∆‖2 = 1

}
(5)

and

Bk (x) = inf
{

∆TH f (x)∆
∣∣∣ |supp(x)∪ supp(∆)| ≤ k,‖∆‖2 = 1

}
, (6)

for all k-sparse vectors x. Then f is said to have a Stable Restricted Hessian (SRH) with constant

µk, or in short µk-SRH, if 1 ≤ Ak(x)
Bk(x)

≤ µk.

Remark 1. Since the Hessian of f is symmetric, an equivalent for Definition 1 is that a twice contin-

uously differentiable function f has µk-SRH if the condition number of PK H f (x)PT
K is not greater

than µk for all k-sparse vectors x and sets K ⊆ [p] with |supp(x)∪K | ≤ k.

In the special case when the cost function is the squared error as in (3), we can write H f (x) =
ATA which is constant. The SRH condition then requires

Bk ‖∆‖2
2 ≤ ‖A∆‖2

2 ≤ Ak ‖∆‖2
2

to hold for all k-sparse vectors ∆ with Ak/Bk ≤ µk. Therefore, in this special case the SRH condition

essentially becomes equivalent to the RIP condition.

Remark 2. Note that the functions that satisfy the SRH are convex over canonical sparse subspaces,

but they are not necessarily convex everywhere. The following two examples describe some non-

convex functions that have SRH.

Example 1. Let f (x) = 1
2
xTQx, where Q= 2×11T−I. Obviously, we have H f (x) =Q. Therefore,

(5) and (6) determine the extreme eigenvalues across all of the k× k symmetric submatrices of Q.

Note that the diagonal entries of Q are all equal to one, while its off-diagonal entries are all equal to

two. Therefore, for any 1-sparse signal u we have uTQu = ‖u‖2
2, meaning that f has µ1-SRH with

µ1 = 1. However, for u = [1,−1,0, . . . ,0]T we have uTQu < 0, which means that the Hessian of f

is not positive semi-definite (i.e., f is not convex).

Example 2. Let f (x) = 1
2
‖x‖2

2 +Cx1x2 · · ·xk+1 where the dimensionality of x is greater than k. It is

obvious that this function is convex for k-sparse vectors as x1x2 · · ·xk+1 = 0 for any k-sparse vector.

So we can easily verify that f satisfies SRH of order k. However, for x1 = x2 = · · ·= xk+1 = t and

xi = 0 for i > k+1 the restriction of the Hessian of f to indices in [k+1] (i.e., PT
[k+1]H f (x)P[k+1])

is a matrix with diagonal entries all equal to one and off-diagonal entries all equal to Ctk−1. Let

Q denote this matrix and u be a unit-norm vector such that 〈u,1〉 = 0. Then it is straightforward

to verify that uTQu = 1−Ctk−1, which can be negative for sufficiently large values of C and t.

Therefore, the Hessian of f is not positive semi-definite everywhere, meaning that f is not convex.

To generalize the notion of SRH to the case of nonsmooth functions, first we define the restricted

subgradient of a function.

Definition 2 (Restricted Subgradient). We say vector ∇ f (x) is a restricted subgradient of f : Rp 7→ R

at point x if

f (x+∆)− f (x)≥
〈
∇ f (x) ,∆

〉

holds for all k-sparse vectors ∆.
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Remark 3. We introduced the notion of restricted subgradient so that the restrictions imposed on f

are as minimal as we need. We acknowledge that the existence of restricted subgradients implies

convexity in sparse directions, but it does not imply convexity everywhere.

Remark 4. Obviously, if the function f is convex everywhere, then any subgradient of f determines

a restricted subgradient of f as well. In general one may need to invoke the axiom of choice to

define the restricted subgradient.

Remark 5. We drop the sparsity level from the notation as it can be understood from the context.

With a slight abuse of terminology we call

B f

(
x′ ‖ x

)
= f

(
x′
)
− f (x)−

〈
∇ f (x) ,x

′−x
〉

the restricted Bregman divergence of f : Rp 7→ R between points x and x′ where ∇ f (·) gives a

restricted subgradient of f (·).

Definition 3 (Stable Restricted Linearization). Let x be a k-sparse vector in R
p. For function

f : Rp 7→ R we define the functions

αk (x) = sup

{
1

‖∆‖2
2

B f (x+∆ ‖ x) | ∆ 6= 0 and |supp(x)∪ supp(∆)| ≤ k

}

and

βk (x) = inf

{
1

‖∆‖2
2

B f (x+∆ ‖ x) | ∆ 6= 0 and |supp(x)∪ supp(∆)| ≤ k

}
.

Then f (·) is said to have a Stable Restricted Linearization with constant µk, or µk-SRL, if
αk(x)
βk(x)

≤ µk

for all k-sparse vectors x.

Remark 6. The SRH and SRL conditions are similar to various forms of the Restricted Strong Con-

vexity (RSC) and Restricted Strong Smoothness (RSS) conditions (Negahban et al., 2009; Agarwal

et al., 2010; Blumensath, 2010; Jalali et al., 2011; Zhang, 2011) in the sense that they all bound the

curvature of the objective function over a restricted set. The SRL condition quantifies the curvature

in terms of a (restricted) Bregman divergence similar to RSC and RSS. The quadratic form used in

SRH can also be converted to the Bregman divergence form used in RSC and RSS and vice-versa

using the mean-value theorem. However, compared to various forms of RSC and RSS conditions

SRH and SRL have some important distinctions. The main difference is that the bounds in SRH

and SRL conditions are not global constants; only their ratio is required to be bounded globally.

Furthermore, unlike the SRH and SRL conditions the variants of RSC and RSS, that are used in

convex relaxation methods, are required to hold over a set which is strictly larger than the set of

canonical k-sparse vectors.

There is also a subtle but important difference regarding the points where the curvature is eval-

uated at. Since Negahban et al. (2009) analyze a convex program, rather than an iterative algorithm,

they only needed to invoke the RSC and RSS at a neighborhood of the true parameter. In contrast,

the other variants of RSC and RSS (see, e.g., Agarwal et al., 2010; Jalali et al., 2011), as well as our

SRH and SRL conditions, require the curvature bounds to hold uniformly over a larger set of points,

thereby they are more stringent.
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3.3 Main Theorems

Now we can state our main results regarding approximation of

x⋆ = argmin f (x) s.t. ‖x‖0 ≤ s, (7)

using the GraSP algorithm.

Theorem 1. Suppose that f is a twice continuously differentiable function that has µ4s-SRH with

µ4s ≤ 1+
√

3
2

. Furthermore, suppose that for some ε > 0 we have ε ≤ B4s (x) for all 4s-sparse vectors

x. Then x̂(i), the estimate at the i-th iteration, satisfies

∥∥∥x̂(i)−x⋆
∥∥∥

2
≤ 2−i ‖x⋆‖2 +

6+2
√

3

ε
‖∇ f (x⋆)|I‖2 ,

where I is the position of the 3s largest entries of ∇ f (x⋆) in magnitude.

Remark 7. Note that this result indicates that ∇ f (x⋆) determines how accurate the estimate can

be. In particular, if the sparse minimum x⋆ is sufficiently close to an unconstrained minimum of

f then the estimation error floor is negligible because ∇ f (x⋆) has small magnitude. This result is

analogous to accuracy guarantees for estimation from noisy measurements in CS (Candès et al.,

2006; Needell and Tropp, 2009).

Remark 8. As the derivations required to prove Theorem 1 show, the provided accuracy guarantee

holds for any s-sparse x⋆, even if it does not obey (7). Obviously, for arbitrary choices of x⋆,

∇ f (x⋆)|I may have a large norm that cannot be bounded properly which implies large errors. In

statistical estimation problems, often the true parameter that describes the data is chosen as the target

parameter x⋆ rather than the minimizer of the average loss function as in (7). In these problems,

the approximation error ‖∇ f (x⋆)|I‖2 has statistical interpretation and can determine the statistical

precision of the problem. This property is easy to verify in linear regression problems. We will also

show this for the logistic loss as an example in Section 4.

Nonsmooth cost functions should be treated differently, since we do not have the luxury of

working with Hessian matrices for these type of functions. The following theorem provides guar-

antees that are similar to those of Theorem 1 for nonsmooth cost functions that satisfy the SRL

condition.

Theorem 2. Suppose that f is a function that is not necessarily smooth, but it satisfies µ4s-SRL with

µ4s ≤ 3+
√

3
4

. Furthermore, suppose that for β4s (·) in Definition 3 there exists some ε > 0 such that

β4s (x)≥ ε holds for all 4s-sparse vectors x. Then x̂(i), the estimate at the i-th iteration, satisfies

∥∥∥x̂(i)−x⋆
∥∥∥

2
≤ 2−i ‖x⋆‖2 +

6+2
√

3

ε

∥∥∇ f (x
⋆)
∣∣
I

∥∥
2
,

where I is the position of the 3s largest entries of ∇ f (x
⋆) in magnitude.

Remark 9. Should the SRH or SRL conditions hold for the objective function, it is straightforward

to convert the point accuracy guarantees of Theorems 1 and 2, into accuracy guarantees in terms of

the objective value. First we can use SRH or SRL to bound the Bregman divergence, or its restricted

version defined above, for points x̂(i) and x⋆. Then we can obtain a bound for the accuracy of the

objective value by invoking the results of the theorems. This indirect approach, however, might not

lead to sharp bounds and thus we do not pursue the detailed analysis in this work.
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4. Example: Sparse Minimization of ℓ2-regularized Logistic Regression

One of the models widely used in machine learning and statistics is the logistic model. In this model

the relation between the data, represented by a random vector a ∈ R
p, and its associated label,

represented by a random binary variable y ∈ {0,1}, is determined by the conditional probability

Pr{y | a;x}= exp(y〈a,x〉)
1+ exp(〈a,x〉) , (8)

where x denotes a parameter vector. Then, for a set of n independently drawn data samples {(ai,yi)}n
i=1

the joint likelihood can be written as a function of x. To find the maximum likelihood estimate one

should maximize this likelihood function, or equivalently minimize the negative log-likelihood, the

logistic loss,

g(x) =
1

n

n

∑
i=1

log(1+ exp(〈ai,x〉))− yi 〈ai,x〉 .

It is well-known that g(·) is strictly convex for p ≤ n provided that the associated design matrix,

A = [a1 a2 . . . an]
T
, is full-rank. However, in many important applications (e.g., feature selection)

the problem can be underdetermined (i.e., n < p). In these scenarios the logistic loss is merely

convex and it does not have a unique minimum. Furthermore, it is possible, especially in under-

determined problems, that the observed data is linearly separable. In that case one can achieve

arbitrarily small loss values by tending the parameters to infinity along certain directions. To com-

pensate for these drawbacks the logistic loss is usually regularized by some penalty term (Hastie

et al., 2009; Bunea, 2008).

One of the candidates for the penalty function is the (squared) ℓ2-norm of x (i.e., ‖x‖2
2). Con-

sidering a positive penalty coefficient η the regularized loss is

f (x) = g(x)+
η

2
‖x‖2

2 .

For any convex g(·) this regularized loss is guaranteed to be η-strongly convex, thus it has a unique

minimum. Furthermore, the penalty term implicitly bounds the length of the minimizer thereby

resolving the aforementioned problems. Nevertheless, the ℓ2 penalty does not promote sparse solu-

tions. Therefore, it is often desirable to impose an explicit sparsity constraint, in addition to the ℓ2

regularizer.

4.1 Verifying SRH for ℓ2-regularized Logistic Loss

It is easy to show that the Hessian of the logistic loss at any point x is given by Hg(x) =
1

4n
ATΛA,

where Λ is an n× n diagonal matrix whose diagonal entries are Λii = sech2 1
2
〈ai,x〉 with sech(·)

denoting the hyperbolic secant function. Note that 0 4 Hg (x) 4
1

4n
ATA. Therefore, if Hη (x)

denotes the Hessian of the ℓ2-regularized logistic loss, we have

∀x,∆ η‖∆‖2
2 ≤ ∆THη (x)∆ ≤ 1

4n
‖A∆‖2

2 +η‖∆‖2
2 . (9)

To verify SRH, the upper and lower bounds achieved at k-sparse vectors ∆ are of particular interest.

It only remains to find an appropriate upper bound for ‖A∆‖2
2 in terms of ‖∆‖2

2. To this end we use

the following result on Chernoff bounds for random matrices due to Tropp (2012).
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Theorem 3 (Matrix Chernoff (Tropp, 2012)). Consider a finite sequence {Mi} of k× k, indepen-

dent, random, self-adjoint matrices that satisfy

Mi < 0 and λmax (Mi)≤ R almost surely.

Let θmax := λmax (∑iE [Mi]). Then for τ ≥ 0,

Pr

{
λmax

(

∑
i

Mi

)
≥ (1+ τ)θmax

}
≤k exp

(
θmax

R
(τ− (1+ τ) log(1+ τ)

)
.

As stated before, in a standard logistic model data samples {ai} are supposed to be independent

instances of a random vector a. In order to apply Theorem 3 we need to make the following extra

assumptions:

Assumption. For every J ⊆ [p] with |J |= k,

(i) we have
∥∥a|J

∥∥2

2
≤ R almost surely, and

(ii) none of the matrices PT
JE
[
aaT
]

PJ is the zero matrix.

We define θJ
max := λmax

(
PT

J CPJ

)
, where C = E

[
aaT
]
, and let

θ := max
J⊆[p] , |J |=k

θJ
max and θ̃ := min

J⊆[p] , |J |=k
θJ

max.

To simplify the notation henceforth we let h(τ) = (1+ τ) log(1+ τ)− τ.

Corollary 1. With the above assumptions, if n ≥ R

θ̃h(τ)

(
logk+ k

(
1+ log

p
k

)
− logε

)
for some τ > 0

and ε ∈ (0,1), then with probability at least 1− ε the ℓ2-regularized logistic loss has µk-SRH with

µk ≤ 1+ 1+τ
4η θ.

Proof For any set of k indices J let M
J
i = ai|J ai|TJ = PT

J aia
T
i PJ . The independence of the vectors

ai implies that the matrix

AT
J AJ =

n

∑
i=1

ai|J ai|TJ

=
n

∑
i=1

M
J
i

is a sum of n independent, random, self-adjoint matrices. Assumption (i) implies that λmax

(
M

J
i

)
=

∥∥ai|J
∥∥2

2
≤ R almost surely. Furthermore, we have

λmax

(
n

∑
i=1

E

[
M

J
i

])
= λmax

(
n

∑
i=1

E
[
PT

J aia
T
i PJ

]
)

= λmax

(
n

∑
i=1

PT
JE
[
aia

T
i

]
PJ

)

= λmax

(
n

∑
i=1

PT
J CPJ

)

= nλmax

(
PT

J CPJ

)

= nθJ
max.
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Hence, for any fixed index set J with |J |= k we may apply Theorem 3 for Mi = M
J
i , θmax = nθJ

max,

and τ > 0 to obtain

Pr

{
λmax

(
n

∑
i=1

M
J
i

)
≥ (1+ τ)nθJ

max

}
≤k exp

(
−nθJ

maxh(τ)

R

)
.

Furthermore, we can write

Pr
{

λmax

(
AT

J AJ

)
≥ (1+ τ)nθ

}
= Pr

{
λmax

(
n

∑
i=1

M
J
i

)
≥ (1+ τ)nθ

}

≤ Pr

{
λmax

(
n

∑
i=1

M
J
i

)
≥ (1+ τ)nθJ

max

}

≤ k exp

(
−nθJ

maxh(τ)

R

)

≤ k exp

(
−nθ̃h(τ)

R

)
. (10)

Note that Assumption (ii) guarantees that θ̃ > 0, and thus the above probability bound will not be

vacuous for sufficiently large n. To ensure a uniform guarantee for all
(

p
k

)
possible choices of J we

can use the union bound to obtain

Pr





∨
J⊆[p]
|J |=k

λmax

(
AT

J AJ

)
≥(1+τ)nθ





≤ ∑
J⊆[p]
|J |=k

Pr
{

λmax

(
AT

J AJ

)
≥(1+τ)nθ

}

≤ k

(
p

k

)
exp

(
−nθ̃h(τ)

R

)

≤ k
( pe

k

)k

exp

(
−nθ̃h(τ)

R

)

= exp

(
logk+k+k log

p

k
−nθ̃h(τ)

R

)
.

Therefore, for ε ∈ (0,1) and n ≥ R
(
logk+ k

(
1+ log

p
k

)
− logε

)
/
(

θ̃h(τ)
)

it follows from (9) that

for any x and any k-sparse ∆,

η‖∆‖2
2 ≤ ∆THη (x)∆ ≤

(
η+

1+ τ

4
θ

)
‖∆‖2

2

holds with probability at least 1− ε. Thus, the ℓ2-regularized logistic loss has an SRH constant

µk ≤ 1+ 1+τ
4η θ with probability 1− ε.
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Remark 10. One implication of this result is that for a regime in which k and p grow sufficiently

large while
p
k

remains constant one can achieve small failure rates provided that n = Ω
(
Rk log

p
k

)
.

Note that R is deliberately included in the argument of the order function because in general R

depends on k. In other words, the above analysis may require n = Ω
(
k2 log

p
k

)
as the sufficient

number of observations. This bound is a consequence of using Theorem 3, but to the best of our

knowledge, other results regarding the extreme eigenvalues of the average of independent random

PSD matrices also yield an n of the same order. If matrix A has certain additional properties (e.g.,

independent and sub-Gaussian entries), however, a better rate of n = Ω
(
k log

p
k

)
can be achieved

without using the techniques mentioned above.

Remark 11. The analysis provided here is not specific to the ℓ2-regularized logistic loss and can be

readily extended to any other ℓ2-regularized GLM loss whose log-partition function has a Lipschitz-

continuous derivative.

4.2 Bounding the Approximation Error

We are going to bound ‖∇ f (x⋆)|I‖2 which controls the approximation error in the statement of

Theorem 1. In the case of case of ℓ2-regularized logistic loss considered in this section we have

∇ f (x) =
n

∑
i=1

(
1

1+ exp(−〈ai,x〉)
− yi

)
ai +ηx.

Denoting 1
1+exp(−〈ai,x⋆〉) − yi by vi for i = 1,2, . . . ,n then we can deduce

‖∇ f (x⋆)|I‖2 =

∥∥∥∥∥
1

n

n

∑
i=1

vi ai|I +η x⋆|I

∥∥∥∥∥
2

=

∥∥∥∥
1

n
AT

I v+η x⋆|I
∥∥∥∥

2

≤ 1

n

∥∥AT
I

∥∥‖v‖2 +η‖x⋆|I‖2

≤ 1√
n
‖AI‖

√
1

n

n

∑
i=1

v2
i +η‖x⋆|I‖2 ,

where v = [v1 v2 . . .vn]
T
. Note that vi’s are n independent copies of the random variable v =

1
1+exp(−〈a,x⋆〉) − y that is zero-mean and always lie in the interval [−1,1]. Therefore, applying the

Hoeffding’s inequality yields

Pr

{
1

n

n

∑
i=1

v2
i ≥ (1+ c)σ2

v

}
≤ exp

(
−2nc2σ4

v

)
,
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where σ2
v = E

[
v2
]

is the variance of v. Furthermore, using the logistic model (8) we can deduce

σ2
v = E

[
v2
]

= E
[
E
[
v2 | a

]]

= E

[
E

[
(y−E [y | a])2 | a

]]

= E [var(y | a)]

= E

[
1

1+ exp(〈a,x⋆〉) ×
exp(〈a,x⋆〉)

1+ exp(〈a,x⋆〉)

]
(because y | a ∼ Bernoulli as in (8))

= E

[
1

2+ exp(〈a,x⋆〉)+ exp(−〈a,x⋆〉)

]

≤ 1

4
(because exp(t)+ exp(−t)≥ 2).

Therefore, we have 1
n ∑n

i=1 v2
i <

1
4

with high probability. As in the previous subsection one can also

bound 1√
n
‖AI‖=

√
1
n
λmax

(
AT

I AI

)
using (10) with k = |I |= 3s. Hence, with high probability we

have

‖∇ f (x⋆)|I‖2 ≤
1

2

√
(1+ τ)θ+η‖x⋆‖2 .

Interestingly, this analysis can also be extended to the GLMs whose log-partition function ψ(·)
obeys 0 ≤ ψ′′ (t)≤C for all t with C being a positive constant. For these models the approximation

error can be bounded in terms of the variance of vψ = ψ′ (〈a,x⋆〉)− y.

5. Experimental Results

Algorithms that are used for sparsity-constrained estimation or optimization often induce sparsity

using different types of regularizations or constraints. Therefore, the optimized objective function

may vary from one algorithm to another, even though all of these algorithms try to estimate the

same sparse parameter and sparsely optimize the same original objective. Because of the discrep-

ancy in the optimized objective functions it is generally difficult to compare performance of these

algorithms. Applying algorithms on real data generally produces even less reliable results because

of the unmanageable or unknown characteristics of the real data. Nevertheless, we evaluated per-

formance of GraSP for variable selection in the logistic model both on synthetic and real data.

5.1 Synthetic Data

In our simulations the sparse parameter of interest x⋆ is a p = 1000 dimensional vector that has

s = 10 nonzero entries drawn independently from the standard Gaussian distribution. An intercept

c ∈ R is also considered which is drawn independently of the other parameters according to the

standard Gaussian distribution. Each data sample is an independent instance of the random vector

a = [a1,a2, . . . ,ap]
T

generated by an autoregressive process (Hamilton, 1994) determined by

a j+1 = ρa j +
√

1−ρ2z j, for all j ∈ [p−1]
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with a1 ∼ N (0,1), z j ∼ N (0,1), and ρ ∈ [0,1] being the correlation parameter. The data model we

describe and use above is identical to the experimental model used in Agarwal et al. (2010), except

that we adjusted the coefficients to ensure that E
[
a2

j

]
= 1 for all j ∈ [p]. The data labels, y ∈ {0,1}

are then drawn randomly according to the Bernoulli distribution with

Pr{y = 0 | a}= 1/(1+ exp(〈a,x⋆〉+ c)) .

We compared GraSP to the LASSO algorithm implemented in the GLMnet package (Friedman

et al., 2010), as well as the Orthogonal Matching Pursuit method dubbed Logit-OMP (Lozano et al.,

2011). To isolate the effect of ℓ2-regularization, both LASSO and the basic implementation of

GraSP did not consider additional ℓ2-regularization terms. To analyze the effect of an additional ℓ2-

regularization we also evaluated the performance of GraSP with ℓ2-regularized logistic loss, as well

as the logistic regression with elastic net (i.e., mixed ℓ1-ℓ2) penalty also available in the GLMnet

package. We configured the GLMnet software to produce s-sparse solutions for a fair comparison.

For the elastic net penalty (1−ω)‖x‖2
2 /2+ω‖x‖1 we considered the “mixing parameter” ω to be

0.8. For the ℓ2-regularized logistic loss we considered η = (1−ω)
√

log p
n

. For each choice of the

number of measurements n between 50 and 1000 in steps of size 50, and ρ in the set
{

0, 1
3
, 1

2
,
√

2
2

}

we generate the data and the associated labels and apply the algorithms. The average performance

is measured over 200 trials for each pair of (n,ρ).

Figure 1 compares the average value of the empirical logistic loss achieved by each of the con-

sidered algorithms for a wide range of “sampling ratio” n/p. For GraSP, the curves labelled by

GraSP and GraSP + ℓ2 corresponding to the cases where the algorithm is applied to unregularized

and ℓ2-regularized logistic loss, respectively. Furthermore, the results of GLMnet for the LASSO

and the elastic net regularization are labelled by GLMnet (ℓ1) and GLMnet (elastic net), respectively.

The simulation result of the Logit-OMP algorithm is also included. To contrast the obtained results

we also provided the average of empirical logistic loss evaluated at the true parameter and one stan-

dard deviation above and below this average on the plots. Furthermore, we evaluated performance

of GraSP with the debiasing procedure described in Section 3.1.

As can be seen from the figure at lower values of the sampling ratio GraSP is not accurate and

does not seem to be converging. This behavior can be explained by the fact that without regular-

ization at low sampling ratios the training data is linearly separable or has very few mislabelled

samples. In either case, the value of the loss can vary significantly even in small neighborhoods.

Therefore, the algorithm can become too sensitive to the pruning step at the end of each iteration.

At larger sampling ratios, however, the loss from GraSP begins to decrease rapidly, becoming ef-

fectively identical to the loss at the true parameter for n/p > 0.7. The results show that unlike

GraSP, Logit-OMP performs gracefully at lower sampling ratios. At higher sampling ratios, how-

ever, GraSP appears to yield smaller bias in the loss value. Furthermore, the difference between the

loss obtained by the LASSO and the loss at the true parameter never drops below a certain threshold,

although the convex method exhibits a more stable behaviour at low sampling ratios.

Interestingly, GraSP becomes more stable at low sampling ratios when the logistic loss is reg-

ularized with the ℓ2-norm. However, this stability comes at the cost of a bias in the loss value at

high sampling ratios that is particularly pronounced in Figure 1d. Nevertheless, for all of the tested

values of ρ, at low sampling ratios GraSP+ℓ2 and at high sampling ratios GraSP are consistently

closer to the true loss value compared to the other methods. Debiasing the iterates of GraSP also
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Figure 1: Comparison of the average (empirical) logistic loss at solutions obtained via GraSP,

GraSP with ℓ2-penalty, LASSO, the elastic-net regularization, and Logit-OMP. The re-

sults of both GraSP methods with “debiasing” are also included. The average loss at the

true parameter and one standard deviation interval around it are plotted as well.

appears to have a stabilizing effect at lower sampling ratios. For GraSP with ℓ2 regularized cost, the

debiasing particularly reduced the undesirable bias at ρ =
√

2
2

.

Figure 2 illustrates the performance of the same algorithms in terms of the relative error
‖x̂−x⋆‖2

‖x⋆‖2

where x̂ denotes the estimate that the algorithms produce. Not surprisingly, none of the algorithms

attain an arbitrarily small relative error. Furthermore, the parameter ρ does not appear to affect

the performance of the algorithms significantly. Without the ℓ2-regularization, at high sampling

ratios GraSP provides an estimate that has a comparable error versus the ℓ1-regularization method.

However, for mid to high sampling ratios both GraSP and GLMnet methods are outperformed by

Logit-OMP. At low to mid sampling ratios, GraSP is unstable and does not converge to an estimate

close to the true parameter. Logit-OMP shows similar behavior at lower sampling ratios. Perfor-

mance of GraSP changes dramatically once we consider the ℓ2-regularization and/or the debiasing

procedure. With ℓ2-regularization, GraSP achieves better relative error compared to GLMnet and

ordinary GraSP for almost the entire range of tested sampling ratios. Applying the debiasing pro-

cedure has improved the performance of both GraSP methods except at very low sampling ratios.
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Figure 2: Comparison of the average relative error (i.e.,
‖x̂−x⋆‖2

‖x⋆‖2
) in logarithmic scale at solutions

obtained via GraSP, GraSP with ℓ2-penalty, LASSO, the elastic-net regularization, and

Logit-OMP. The results of both GraSP methods with “debiasing” are also included.

These variants of GraSP appear to perform better than Logit-OMP for almost the entire range of

n/p.

5.2 Real Data

We also conducted the same simulation on some of the data sets used in NIPS 2003 Workshop on

feature extraction (Guyon et al., 2005), namely the ARCENE and DEXTER data sets. The logistic

loss values at obtained estimates are reported in Tables 2 and 3. For each data set we applied the

sparse logistic regression for a range of sparsity level s. The columns indicated by “G” correspond

to different variants of GraSP. Suffixes ℓ2 and “d” indicate the ℓ2-regularization and the debiasing

are applied, respectively. The columns indicated by ℓ1 and E-net correspond to the results of the

ℓ1-regularization and the elastic-net regularization methods that are performed using the GLMnet

package. The last column contains the result of the Logit-OMP algorithm.

The results for DEXTER data set show that GraSP variants without debiasing and the convex

methods achieve comparable loss values in most cases, whereas the convex methods show signifi-

cantly better performance on the ARCENE data set. Nevertheless, except for a few instances where
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s G Gd Gℓ2 Gℓ2d ℓ1 E-net Logit-OMP

5 5.89E+01 5.75E-01 2.02E+01 5.24E-01 5.59E-01 6.43E-01 2.23E-01

10 3.17E+02 5.43E-01 3.71E+01 4.53E-01 5.10E-01 5.98E-01 5.31E-07

15 3.38E+02 6.40E-07 5.94E+00 1.42E-07 4.86E-01 5.29E-01 5.31E-07

20 1.21E+02 3.44E-07 8.82E+00 3.08E-08 4.52E-01 5.19E-01 5.31E-07

25 9.87E+02 1.13E-07 4.46E+01 1.35E-08 4.18E-01 4.96E-01 5.31E-07

Table 2: ARCENE

s G Gd Gℓ2 Gℓ2d ℓ1 E-net Logit-OMP

5 7.58E+00 3.28E-01 3.30E+00 2.80E-01 5.75E-01 6.08E-01 2.64E-01

10 1.08E+00 1.79E-01 4.33E-01 1.28E-01 5.23E-01 5.33E-01 1.79E-01

15 6.06E+00 1.71E-01 3.35E-01 1.17E-01 4.88E-01 4.98E-01 1.16E-01

20 1.30E+00 8.84E-02 1.79E-01 8.19E-02 4.27E-01 4.36E-01 4.60E-02

25 1.17E+00 2.51E-07 2.85E-01 1.17E-02 3.94E-01 4.12E-01 4.62E-03

30 3.04E-01 5.83E-07 2.65E-01 1.77E-07 3.70E-01 3.88E-01 2.88E-07

35 6.22E-01 2.08E-07 2.68E-01 1.19E-07 3.47E-01 3.72E-01 2.14E-07

40 5.38E-01 2.01E-07 6.30E-02 1.27E-07 3.31E-01 3.56E-01 2.14E-07

45 3.29E-01 2.11E-07 1.05E-01 1.47E-07 3.16E-01 3.41E-01 2.14E-07

50 2.06E-01 1.31E-07 5.66E-02 1.46E-07 2.87E-01 3.11E-01 2.14E-07

55 3.61E-02 1.20E-07 8.40E-02 1.31E-07 2.80E-01 2.89E-01 2.14E-07

60 1.18E-01 2.46E-07 5.70E-02 1.09E-07 2.66E-01 2.82E-01 2.14E-07

65 1.18E-01 7.86E-08 2.87E-02 9.47E-08 2.59E-01 2.75E-01 2.14E-07

70 8.92E-02 1.17E-07 2.23E-02 8.15E-08 2.52E-01 2.69E-01 2.14E-07

75 1.03E-01 8.54E-08 3.93E-02 7.94E-08 2.45E-01 2.69E-01 2.14E-07

Table 3: DEXTER

Logit-OMP has the best performance, the smallest loss values in both data sets are attained by GraSP

methods with debiasing step.

6. Discussion and Conclusion

In many applications understanding high dimensional data or systems that involve these types of

data can be reduced to identification of a sparse parameter. For example, in gene selection problems

researchers are interested in locating a few genes among thousands of genes that cause or contribute

to a particular disease. These problems can usually be cast as sparsity-constrained optimizations.

In this paper we introduce a greedy algorithm called the Gradient Support Pursuit(GraSP) as an

approximate solver for a wide range of sparsity-constrained optimization problems.

We provide theoretical convergence guarantees based on the notions of a Stable Restricted Hes-

sian (SRH) for smooth cost functions and a Stable Restricted Linearization (SRL) for non-smooth

cost functions, both of which are introduced in this paper. Our algorithm generalizes the well-

established sparse recovery algorithm CoSaMP that merely applies in linear models with squared

error loss. The SRH and SRL also generalize the well-known Restricted Isometry Property for
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sparse recovery to the case of cost functions other than the squared error. To provide a concrete

example we studied the requirements of GraSP for ℓ2-regularized logistic loss. Using a similar ap-

proach one can verify SRH condition for loss functions that have Lipschitz-continuous gradient that

incorporates a broad family of loss functions.

At medium- and large-scale problems computational cost of the GraSP algorithm is mostly af-

fected by the inner convex optimization step whose complexity is polynomial in s. On the other

hand, for very large-scale problems, especially with respect to the dimension of the input, p, the

running time of the GraSP algorithm will be dominated by evaluation of the function and its gradi-

ent, whose computational cost grows with p. This problem is common in algorithms that only have

deterministic steps; even ordinary coordinate-descent methods have this limitation (Nesterov, 2012).

Similar to improvements gained by using randomization in coordinate-descent methods (Nesterov,

2012), introducing randomization in the GraSP algorithm could reduce its computational complex-

ity at large-scale problems. This extension, however, is beyond the scope of this paper and we leave

it for future work.

Appendix A. Iteration Analysis For Smooth Cost Functions

To analyze our algorithm we first establish a series of results on how the algorithm operates on its

current estimate, leading to an iteration invariant property on the estimation error. Propositions 1

and 2 are used to prove Lemmas 1 and 2. These Lemmas then are used to prove Lemma 3 that

provides an iteration invariant which in turn yields the main result.

Proposition 1. Let M(t) be a matrix-valued function such that for all t ∈ [0,1], M(t) is symmetric

and its eigenvalues lie in interval [B(t) ,A(t)] with B(t)> 0. Then for any vector v we have




1∫

0

B(t)dt


 ‖v‖2 ≤

∥∥∥∥∥∥




1∫

0

M(t)dt


 v

∥∥∥∥∥∥
2

≤




1∫

0

A(t)dt


 ‖v‖2 .

Proof Let λmin (·) and λmax (·) denote the smallest and largest eigenvalue functions defined over the

set of symmetric positive-definite matrices, respectively. These functions are in order concave and

convex. Therefore, Jensen’s inequality yields

λmin




1∫

0

M(t)dt


≥

1∫

0

λmin (M(t))dt ≥
1∫

0

B(t)dt

and

λmax




1∫

0

M(t)dt


≤

1∫

0

λmax (M(t))dt ≤
1∫

0

A(t)dt,

which imply the desired result.
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Proposition 2. Let M(t) be a matrix-valued function such that for all t ∈ [0,1] M(t) is symmetric

and its eigenvalues lie in interval [B(t) ,A(t)] with B(t)> 0. If Γ is a subset of row/column indices

of M(·) then for any vector v we have

∥∥∥∥∥∥




1∫

0

PT
ΓM(t)PΓcdt


 v

∥∥∥∥∥∥
2

≤
1∫

0

A(t)−B(t)

2
dt ‖v‖2 .

Proof Since M(t) is symmetric, it is also diagonalizable. Thus, for any vector v we may write

B(t)‖v‖2
2 ≤ vTM(t)v ≤ A(t)‖v‖2

2 ,

and thereby

−A(t)−B(t)

2
≤

vT
(

M(t)− A(t)+B(t)
2

I
)

v

‖v‖2
≤ A(t)−B(t)

2
.

Since M(t)− A(t)+B(t)
2

I is also diagonalizable, it follows from the above inequality that

∥∥∥∥M(t)− A(t)+B(t)

2
I

∥∥∥∥≤
A(t)−B(t)

2
.

Let M̃(t) = PT
ΓM(t)PΓc . Since M̃(t) is a submatrix of M(t)− A(t)+B(t)

2
I we should have

∥∥∥M̃(t)
∥∥∥≤

∥∥∥∥M(t)− A(t)+B(t)

2
I

∥∥∥∥≤
A(t)−B(t)

2
. (11)

Finally, it follows from the convexity of the operator norm, Jensen’s inequality, and (11) that

∥∥∥∥∥∥

1∫

0

M̃(t)dt

∥∥∥∥∥∥
≤

1∫

0

∥∥∥M̃(t)
∥∥∥dt ≤

1∫

0

A(t)−B(t)

2
dt.

To simplify notation we introduce functions

αk (p,q) =

1∫

0

Ak (tq+(1− t)p)dt

βk (p,q) =

1∫

0

Bk (tq+(1− t)p)dt

γk (p,q) = αk (p,q)−βk (p,q) ,

where Ak (·) and Bk (·) are defined by (5) and (6), respectively.
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Lemma 1. Let R denote the set supp(x̂−x⋆). The current estimate x̂ then satisfies

‖(x̂−x⋆) |Zc‖2 ≤
γ4s (x̂,x

⋆)+γ2s (x̂,x
⋆)

2β2s (x̂,x⋆)
‖x̂−x⋆‖2+

∥∥∇ f (x⋆) |R\Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

β2s (x̂,x⋆)
.

Proof Since Z = supp(z2s) and |R | ≤ 2s we have
∥∥z|R

∥∥
2
≤ ‖z|Z‖2 and thereby

∥∥z|R \Z

∥∥
2
≤
∥∥z|Z\R

∥∥
2
. (12)

Furthermore, because z = ∇ f (x̂) we can write
∥∥z|R \Z

∥∥
2
≥
∥∥∇f (x̂)|R\Z−∇f (x⋆)|R\Z

∥∥
2
−
∥∥∇f (x⋆)|R\Z

∥∥
2

=

∥∥∥∥∥∥




1∫

0

PT
R \ZH f (tx̂+(1− t)x⋆)dt


(x̂−x⋆)

∥∥∥∥∥∥
2

−
∥∥∇ f (x⋆) |R \Z

∥∥
2

≥

∥∥∥∥∥∥




1∫

0

PT
R \ZH f (tx̂+(1− t)x⋆)PR \Zdt


(x̂−x⋆) |R \Z

∥∥∥∥∥∥
2

−
∥∥∇ f (x⋆) |R \Z

∥∥
2

−

∥∥∥∥∥∥




1∫

0

PT
R \ZH f (tx̂+(1− t)x⋆)PZ∩R dt


(x̂−x⋆) |Z∩R

∥∥∥∥∥∥
2

,

where we split the active coordinates (i.e., R ) into the sets R \Z and Z ∩R to apply the triangle

inequality and obtain the last expression. Applying Propositions 1 and 2 yields

∥∥z|R\Z

∥∥
2
≥β2s (x̂,x

⋆)
∥∥(x̂−x⋆) |R\Z

∥∥
2
− γ2s (x̂,x

⋆)

2

∥∥(x̂−x⋆) |Z∩R

∥∥
2
−
∥∥∇ f (x⋆) |R\Z

∥∥
2

≥β2s (x̂,x
⋆)
∥∥(x̂−x⋆) |R \Z

∥∥
2
− γ2s (x̂,x

⋆)

2
‖x̂−x⋆‖2−

∥∥∇ f (x⋆) |R \Z

∥∥
2
. (13)

Similarly, we have
∥∥z|Z\R

∥∥
2
≤
∥∥∇ f (x̂) |Z\R −∇ f (x⋆) |Z\R

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

=

∥∥∥∥∥∥




1∫

0

PT
Z\R H f (tx̂+(1− t)x⋆)PR dt


(x̂−x⋆) |R

∥∥∥∥∥∥
2

+
∥∥∇ f (x⋆) |Z\R

∥∥
2

≤γ4s (x̂,x
⋆)

2

∥∥(x̂−x⋆) |R
∥∥

2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

=
γ4s (x̂,x

⋆)

2
‖x̂−x⋆‖2 +

∥∥∇ f (x⋆) |Z\R

∥∥
2
. (14)

Combining (12), (13), and (14) we obtain

γ4s(x̂,x
⋆)

2
‖x̂−x⋆‖2+

∥∥∇ f (x⋆) |Z\R
∥∥

2
≥
∥∥z|Z\R

∥∥
2

≥
∥∥z|R \Z

∥∥
2

≥β2s(x̂,x
⋆)
∥∥(x̂−x⋆) |R\Z

∥∥
2
− γ2s(x̂,x

⋆)

2
‖x̂−x⋆‖2

−
∥∥∇ f (x⋆) |R \Z

∥∥
2
.
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Since R = supp(x̂−x⋆), we have
∥∥(x̂−x⋆) |R \Z

∥∥
2
= ‖(x̂−x⋆) |Zc‖2. Hence,

‖(x̂−x⋆) |Zc‖2 ≤
γ4s (x̂,x

⋆)+γ2s (x̂,x
⋆)

2β2s (x̂,x⋆)
‖x̂−x⋆‖2+

∥∥∇ f (x⋆) |R\Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
β2s (x̂,x⋆)

.

Lemma 2. The vector b given by

b =argmin f (x) s.t. x|T c = 0 (15)

satisfies

‖x⋆|T −b‖2 ≤
‖∇ f (x⋆) |T ‖2

β4s (b,x⋆)
+

γ4s (b,x
⋆)

2β4s (b,x⋆)
‖x⋆|T c‖2 .

Proof We have

∇ f (x⋆)−∇ f (b) =

1∫

0

H f (tx
⋆+(1−t)b)dt (x⋆−b) .

Furthermore, since b is the solution to (15) we must have ∇ f (b) |T = 0. Therefore,

∇ f (x⋆) |T =




1∫

0

PT
T H f (tx

⋆+(1− t)b)dt


 (x⋆−b)

=




1∫

0

PT
T H f (tx

⋆+(1−t)b)PT dt


 (x⋆−b) |T

+




1∫

0

PT
T H f (tx

⋆+(1−t)b)PT cdt


 (x⋆−b) |T c . (16)

Since f has µ4s-SRH and |T ∪ supp(tx⋆+(1− t)b)| ≤ 4s for all t ∈ [0,1], functions A4s (·) and

B4s (·), defined using (5) and (6), exist such that we have

B4s (tx
⋆+(1− t)b)≤ λmin

(
PT

T H f (tx
⋆+(1−t)b)PT

)

and

A4s (tx
⋆+(1− t)b)≥ λmax

(
PT

T H f (tx
⋆+(1−t)b)PT

)
.

Thus, from Proposition 1 we obtain

β4s (b,x
⋆)≤ λmin




1∫

0

PT
T H f (tx

⋆+(1− t)b)PT dt
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and

α4s (b,x
⋆)≥ λmax




1∫

0

PT
T H f (tx

⋆+(1− t)b)PT dt


 .

This result implies that the matrix
∫ 1

0 PT
T H f (tx

⋆+(1− t)b)PT dt, henceforth denoted by W, is

invertible and
1

α4s (b,x⋆)
≤ λmin

(
W−1

)
≤ λmax

(
W−1

)
≤ 1

β4s (b,x⋆)
, (17)

where we used the fact that λmax (M)λmin

(
M−1

)
= 1 for any positive-definite matrix M, particularly

for W and W−1. Therefore, by multiplying both sides of (16) by W−1 obtain

W−1∇ f (x⋆) |T =(x⋆−b) |T +W−1




1∫

0

PT
T H f (tx

⋆+(1−t)b)PT cdt


 x⋆|T c ,

where we also used the fact that (x⋆−b) |T c = x⋆|T c . With S ⋆ = supp(x⋆), using triangle inequality,

(17), and Proposition 2 then we obtain

‖x⋆|T −b‖2 = ‖(x⋆−b)|T ‖2

≤

∥∥∥∥∥∥
W−1




1∫

0

PT
T H f (tx

⋆+(1−t)b)PT c∩S⋆dt


 x⋆|T c∩S⋆

∥∥∥∥∥∥
2

+
∥∥W−1∇ f (x⋆) |T

∥∥
2

≤ ‖∇ f (x⋆) |T ‖2

β4s (b,x⋆)
+

γ4s (b,x
⋆)

2β4s (b,x⋆)
‖x⋆|T c‖2 ,

as desired.

Lemma 3 (Iteration Invariant). The estimation error in the current iteration, ‖x̂−x⋆‖2, and that in

the next iteration, ‖bs −x⋆‖2, are related by the inequality:

‖bs −x⋆‖2 ≤
γ4s (x̂,x

⋆)+ γ2s (x̂,x
⋆)

2β2s (x̂,x⋆)

(
1+

γ4s (b,x
⋆)

β4s (b,x⋆)

)
‖x̂−x⋆‖2

+

(
1+

γ4s (b,x
⋆)

β4s (b,x⋆)

) ∥∥∇ f (x⋆) |R \Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

β2s (x̂,x⋆)
+

2‖∇ f (x⋆) |T ‖2

β4s (b,x⋆)
.

Proof Because Z ⊆T we must have T c ⊆Zc. Therefore, we can write ‖x⋆|T c‖2 = ‖(x̂−x⋆) |T c‖2 ≤
‖(x̂−x⋆) |Zc‖2. Then using Lemma 1 we obtain

‖x⋆|T c‖2 ≤
γ4s(x̂,x

⋆)+γ2s(x̂,x
⋆)

2β2s(x̂,x⋆)
‖x̂−x⋆‖2+

∥∥∇ f (x⋆) |R\Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

β2s(x̂,x⋆)
. (18)

Furthermore,

‖bs −x⋆‖2 ≤ ‖bs − x⋆|T ‖2 +‖x⋆|T c‖2

≤ ‖x⋆|T −b‖2 +‖bs −b‖2 +‖x⋆|T c‖2≤ 2‖x⋆|T −b‖2 +‖x⋆|T c‖2 , (19)
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where the last inequality holds because ‖x⋆|T ‖0 ≤ s and bs is the best s-term approximation of b.

Therefore, using Lemma 2,

‖bs −x⋆‖2 ≤
2

β4s (b,x⋆)
‖∇ f (x⋆) |T ‖2 +

(
1+

γ4s (b,x
⋆)

β4s (b,x⋆)

)
‖x⋆|T c‖2 . (20)

Combining (18) and (20) we obtain

‖bs−x⋆‖2 ≤
γ4s (x̂,x

⋆)+ γ2s (x̂,x
⋆)

2β2s (x̂,x⋆)

(
1+

γ4s (b,x
⋆)

β4s (b,x⋆)

)
‖x̂−x⋆‖2

+

(
1+

γ4s (b,x
⋆)

β4s (b,x⋆)

) ∥∥∇ f (x⋆) |R \Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

β2s (x̂,x⋆)
+

2‖∇ f (x⋆) |T ‖2

β4s (b,x⋆)
.

Using the results above, we can now prove Theorem 1.

Proof of Theorem 1. Using definition 1 it is easy to verify that for k ≤ k′ and any vector u we

have Ak (u) ≤ Ak′ (u) and Bk (u) ≥ Bk′ (u). Consequently, for k ≤ k′ and any pair of vectors p and

q we have αk (p,q) ≤ αk′ (p,q), βk (p,q) ≥ βk′ (p,q), and µk ≤ µk′ . Furthermore, for any function

that satisfies µk−SRH we can write

αk (p,q)

βk (p,q)
=

∫ 1
0 Ak (tq+(1− t)p)dt∫ 1
0 Bk (tq+(1− t)p)dt

≤
∫ 1

0 µkBk (tq+(1− t)p)dt∫ 1
0 Bk (tq+(1− t)p)dt

= µk,

and thereby
γk(p,q)
βk(p,q)

≤ µk −1. Therefore, applying Lemma 3 to the estimate in the i-th iterate of the

algorithm shows that

∥∥∥x̂(i)−x⋆
∥∥∥

2
≤(µ4s −1)µ4s

∥∥∥x̂(i−1)−x⋆
∥∥∥

2
+

2‖∇ f (x⋆) |T ‖2

β4s (b,x⋆)

+µ4s

∥∥∇ f (x⋆) |R \Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

β2s

(
x̂(i−1),x⋆

)

≤
(
µ2

4s −µ4s

)∥∥∥x̂(i−1)−x⋆
∥∥∥

2
+

2

ε
‖∇ f (x⋆) |I‖2+

2µ4s

ε
‖∇ f (x⋆) |I‖2 .

Applying the assumption µ4s ≤ 1+
√

3
2

then yields

∥∥∥x̂(i)−x⋆
∥∥∥

2
≤ 1

2

∥∥∥x̂(i−1)−x⋆
∥∥∥

2
+

3+
√

3

ε
‖∇ f (x⋆) |I‖2 .

The theorem follows using this inequality recursively.

Appendix B. Iteration Analysis For Non-Smooth Cost Functions

In this part we provide analysis of GraSP for non-smooth functions. Definition 3 basically states

that for any k-sparse vector x ∈ R
n, αk (x) and βk (x) are in order the smallest and largest values for

which

βk (x)‖∆‖2
2 ≤ B f (x+∆ ‖ x)≤ αk (x)‖∆‖2

2 (21)

832



GREEDY SPARSITY-CONSTRAINED OPTIMIZATION

holds for all vectors ∆ ∈ R
n that satisfy |supp(x)∪ supp(∆)| ≤ k. By interchanging x and x+∆ in

(21) and using the fact that

B f (x+∆ ‖ x)+B f (x ‖ x+∆) =
〈
∇ f (x+∆)−∇ f (x) ,∆

〉

one can easily deduce

[βk(x+∆)+βk(x)]‖∆‖2
2≤
〈
∇ f (x+∆)−∇ f (x) ,∆

〉
≤ [αk(x+∆)+αk(x)]‖∆‖2

2. (22)

Propositions 3, 4, and 5 establish some basic inequalities regarding the restricted Bregman di-

vergence under SRL assumption. Using these inequalities we prove Lemmas 4 and 5. These two

Lemmas are then used to prove an iteration invariant result in Lemma 6 which in turn is used to

prove Theorem 2.

Note In Propositions 3, 4, and 5 we assume x1 and x2 are two vectors in R
n such that |supp(x1) ∪

supp(x2)| ≤ r. Furthermore, we use the shorthand ∆ = x1 −x2 and denote supp(∆) by R . We also

denote ∇ f (x1)−∇ f (x2) by ∆′. To simplify the notation further the shorthands αl , βl , and γl are

used for αl (x1,x2) :=αl (x1)+αl (x2), βl (x1,x2) := βl (x1)+βl (x2), and γl (x1,x2) :=αl (x1,x2)−
βl (x1,x2), respectively.

Proposition 3. Let R ′ be a subset of R . Then the following inequalities hold.
∣∣∣∣αr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆′, ∆|R ′

〉∣∣∣∣≤ γr

∥∥∥∆|R ′

∥∥∥
2
‖∆‖2 (23)

∣∣∣∣βr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆′, ∆|R ′

〉∣∣∣∣≤ γr

∥∥∥∆|R ′

∥∥∥
2
‖∆‖2

Proof Using (21) we can write

βr (x1)
∥∥∥∆|R ′

∥∥∥
2

2
t2 ≤ B f

(
x1 − t ∆|R ′ ‖ x1

)
≤ αr (x1)

∥∥∥∆|R ′

∥∥∥
2

2
t2 (24)

βr (x2)
∥∥∥∆|R ′

∥∥∥
2

2
t2 ≤ B f

(
x2 − t ∆|R ′ ‖ x2

)
≤ αr (x2)

∥∥∥∆|R ′

∥∥∥
2

2
t2 (25)

and

βr (x1)
∥∥∥∆− t ∆|R ′

∥∥∥
2

2
≤ B f

(
x2 + t ∆|R ′ ‖ x1

)
≤ αr (x1)

∥∥∥∆− t ∆|R ′

∥∥∥
2

2
(26)

βr (x2)
∥∥∥∆− t ∆|R ′

∥∥∥
2

2
≤ B f

(
x1 − t ∆|R ′ ‖ x2

)
≤ αr (x2)

∥∥∥∆− t ∆|R ′

∥∥∥
2

2
, (27)

where t is an arbitrary real number. Using the definition of the Bregman divergence we can add (24)

and (25) to obtain

βr

∥∥∥∆|R ′

∥∥∥
2

2
t2 ≤ f

(
x1 − t ∆|R ′

)
− f (x1)+ f

(
x2 + t ∆|R ′

)
− f (x2)+

〈
∆′, ∆|R ′

〉
t

≤ αr

∥∥∥∆|R ′

∥∥∥
2

2
t2. (28)

Similarly, (26) and (27) yield

βr

∥∥∥∆−t ∆|R ′

∥∥∥
2

2
≤ f
(

x1−t ∆|R ′

)
− f (x1)+ f

(
x2 +t ∆|R ′

)
− f (x2)+

〈
∆′,∆−t ∆|R ′

〉

≤ αr

∥∥∥∆− t ∆|R ′

∥∥∥
2

2
. (29)
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Expanding the quadratic bounds of (29) and using (28) then we obtain

0 ≤ γr

∥∥∥∆|R ′

∥∥∥
2

2
t2 +2

(
βr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆, ∆|R ′

〉)
t −βr ‖∆‖2

2 +
〈
∆′,∆

〉
(30)

0 ≤ γr

∥∥∥∆|R ′

∥∥∥
2

2
t2 −2

(
αr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆, ∆|R ′

〉)
t +αr ‖∆‖2

2 −
〈
∆′,∆

〉
. (31)

It follows from (22), (30), and (31) that

0 ≤ γr

∥∥∥∆|R ′

∥∥∥
2

2
t2 +2

(
βr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆, ∆|R ′

〉)
t + γr ‖∆‖2

2

0 ≤ γr

∥∥∥∆|R ′

∥∥∥
2

2
t2 −2

(
αr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆, ∆|R ′

〉)
t + γr ‖∆‖2

2 .

These two quadratic inequalities hold for any t ∈ R thus their discriminants are not positive, that is,

(
βr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆′, ∆|R ′

〉)2

− γ2
r

∥∥∥∆|R ′

∥∥∥
2

2
‖∆‖2

2 ≤ 0

(
αr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆′, ∆|R ′

〉)2

− γ2
r

∥∥∥∆|R ′

∥∥∥
2

2
‖∆‖2

2 ≤ 0,

which yield the desired result.

Proposition 4. The following inequalities hold for R ′ ⊆ R .
∣∣∣∣
∥∥∥∆′∣∣

R ′

∥∥∥
2

2
−αr

〈
∆′, ∆|R ′

〉∣∣∣∣≤ γr

∥∥∥∆|R ′

∥∥∥
2
‖∆‖2 (32)

∣∣∣∣
∥∥∥∆′∣∣

R ′

∥∥∥
2

2
−βr

〈
∆′, ∆|R ′

〉∣∣∣∣≤ γr

∥∥∥∆|R ′

∥∥∥
2
‖∆‖2

Proof From (21) we have

βr (x1)
∥∥∥∆′∣∣

R ′

∥∥∥
2

2
t2 ≤ B f

(
x1 − t ∆′∣∣

R ′ ‖ x1

)
≤ αr (x1)

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 (33)

βr (x2)
∥∥∥∆′∣∣

R ′

∥∥∥
2

2
t2 ≤ B f

(
x2 + t ∆′∣∣

R ′ ‖ x2

)
≤ αr (x2)

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 (34)

and

βr (x1)
∥∥∥∆− t ∆′∣∣

R ′

∥∥∥
2

2
≤ B f

(
x2 + t ∆′∣∣

R ′ ‖ x1

)
≤ αr (x1)

∥∥∥∆− t ∆′∣∣
R ′

∥∥∥
2

2
(35)

βr (x2)
∥∥∥∆− t ∆′∣∣

R ′

∥∥∥
2

2
≤ B f

(
x1 − t ∆′∣∣

R ′ ‖ x2

)
≤ αr (x2)

∥∥∥∆− t ∆′∣∣
R ′

∥∥∥
2

2
, (36)

for any t ∈ R. By subtracting the sum of (35) and (36) from that of (33) and (34) we obtain

βr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 −αr

∥∥∥∆− t ∆′∣∣
R ′

∥∥∥
2

2
≤ 2

〈
∆′, ∆′∣∣

R ′

〉
t −
〈
∆′,∆

〉

≤ αr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 −βr

∥∥∥∆− t ∆′∣∣
R ′

∥∥∥
2

2
. (37)
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Expanding the bounds of (37) then yields

0 ≤ γr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 +2

(〈
∆′, ∆′∣∣

R ′

〉
−αr

〈
∆, ∆′∣∣

R ′

〉)
t +αr ‖∆‖2

2 −
〈
∆′,∆

〉

0 ≤ γr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 −2

(〈
∆′, ∆′∣∣

R ′

〉
−βr

〈
∆, ∆′∣∣

R ′

〉)
t −βr ‖∆‖2

2 +
〈
∆′,∆

〉
.

Note that
〈

∆′, ∆′|R ′

〉
=
∥∥∥∆′|R ′

∥∥∥
2

2
and

〈
∆, ∆′|R ′

〉
=
〈

∆|R ′ ,∆′
〉

. Therefore, using (22) we obtain

0 ≤ γr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 +2

(∥∥∥∆′∣∣
R ′

∥∥∥
2

2
−αr

〈
∆′, ∆|R ′

〉)
t + γr ‖∆‖2

2 (38)

0 ≤ γr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 −2

(∥∥∥∆′∣∣
R ′

∥∥∥
2

2
−βr

〈
∆′, ∆|R ′

〉)
t + γr ‖∆‖2

2 . (39)

Since the right-hand sides of (38) and (39) are quadratics in t and always non-negative for all values

of t ∈ R, their discriminants cannot be positive. Thus we have

(∥∥∥∆′∣∣
R ′

∥∥∥
2

2
−αr

〈
∆′, ∆|R ′

〉)2

− γ2
r

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
‖∆‖2 ≤ 0

(∥∥∥∆′∣∣
R ′

∥∥∥
2

2
−βr

〈
∆′, ∆|R ′

〉)2

− γ2
r

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
‖∆‖2 ≤ 0,

which yield the desired result.

Corollary 2. The inequality

∥∥∥∆′∣∣
R ′

∥∥∥
2
≥ βr

∥∥∥∆|R ′

∥∥∥
2
− γr

∥∥∥∆|R \R ′

∥∥∥
2
,

holds for R ′ ⊆ R .

Proof It follows from (32) and (23) that

−
∥∥∥∆′∣∣

R ′

∥∥∥
2

2
+α2

r

∥∥∥∆|R ′

∥∥∥
2

2
=−

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
+αr

〈
∆′,∆|R ′

〉
+αr

[
αr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆′,∆|R ′

〉]

≤ γr

∥∥∥∆′∣∣
R ′

∥∥∥
2
‖∆‖2 +αrγr

∥∥∥∆|R ′

∥∥∥
2
‖∆‖2 .

Therefore, after straightforward calculations we get

∥∥∥∆′∣∣
R ′

∥∥∥
2
≥ 1

2

(
−γr ‖∆‖2 +

∣∣∣2αr

∥∥∥∆|R ′

∥∥∥
2
− γr ‖∆‖2

∣∣∣
)

≥ αr

∥∥∥∆|R ′

∥∥∥
2
− γr ‖∆‖2

≥ βr

∥∥∥∆|R ′

∥∥∥
2
− γr

∥∥∥∆|R \R ′

∥∥∥
2
.
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Proposition 5. Suppose that K is a subset of R c with at most k elements. Then we have

∥∥∥∆′∣∣
K

∥∥∥
2
≤ γk+r ‖∆‖2 .

Proof Using (21) for any t ∈ R we can write

βk+r (x1)
∥∥∥∆′∣∣

K

∥∥∥
2

2
t2 ≤ B f

(
x1 + t ∆′∣∣

K
‖ x1

)
≤ αk+r (x1)

∥∥∥∆′∣∣
K

∥∥∥
2

2
t2 (40)

βk+r (x2)
∥∥∥∆′∣∣

K

∥∥∥
2

2
t2 ≤ B f

(
x2 − t ∆′∣∣

K
‖ x2

)
≤ αk+r (x2)

∥∥∥∆′∣∣
K

∥∥∥
2

2
t2 (41)

and similarly

βk+r (x1)
∥∥∥∆+t ∆′∣∣

K

∥∥∥
2

2
≤ B f

(
x2−t ∆′∣∣

K
‖ x1

)
≤ αk+r (x1)

∥∥∥∆+t ∆′∣∣
K

∥∥∥
2

2
(42)

βk+r (x2)
∥∥∥∆+t ∆′∣∣

K

∥∥∥
2

2
≤ B f

(
x1+t ∆′∣∣

K
‖ x2

)
≤ αk+r (x2)

∥∥∥∆+t ∆′∣∣
K

∥∥∥
2

2
. (43)

By subtracting the sum of (42) and (43) from that of (40) and (41) we obtain

βk+r

∥∥∥∆′∣∣
K

∥∥∥
2

2
t2 −αk+r

∥∥∥∆+t ∆′∣∣
K

∥∥∥
2

2
≤−2t

〈
∆′, ∆′∣∣

K

〉
−
〈
∆′,∆

〉

≤ αk+r

∥∥∥∆′∣∣
K

∥∥∥
2

2
t2 −βk+r

∥∥∥∆+t ∆′∣∣
K

∥∥∥
2

2
. (44)

Note that
〈
∆′, ∆′|K

〉
=
∥∥∆′|K

∥∥2

2
and

〈
∆, ∆′|K

〉
= 0. Therefore, (22) and (44) imply

0 ≤ γk+r

∥∥∥∆′∣∣
K

∥∥∥
2

2
t2 ±2

∥∥∥∆′∣∣
K

∥∥∥
2

2
t + γk+r ‖∆‖2

2 (45)

hold for all t ∈ R. Hence, as quadratic functions of t, the right-hand side of (45) cannot have a

positive discriminant. Thus we must have

∥∥∥∆′∣∣
K

∥∥∥
4

2
− γ2

k+r ‖∆‖2
2

∥∥∥∆′∣∣
K

∥∥∥
2

2
≤ 0,

which yields the desired result.

Lemma 4. Let R denote supp(x̂−x⋆). Then we have

‖(x̂−x⋆)|Zc‖2
≤ γ2s (x̂,x

⋆)+γ4s (x̂,x
⋆)

β2s (x̂,x
⋆)

‖x̂−x⋆‖2+

∥∥∥∇ f (x
⋆)
∣∣
R\Z

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

β2s (x̂,x
⋆)

.

Proof Given that Z = supp(z2s) and |R | ≤ 2s we have

∥∥∥z|R
∥∥∥

2
≤ ‖z|Z‖2

. Hence

∥∥∥z|R \Z

∥∥∥
2
≤
∥∥∥z|Z\R

∥∥∥
2
. (46)
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Furthermore, using Corollary 2 we can write

∥∥∥z|R \Z

∥∥∥
2
=
∥∥∥∇ f (x̂)

∣∣
R \Z

∥∥∥
2

≥
∥∥∥(∇ f (x̂)−∇ f (x

⋆))
∣∣
R \Z

∥∥∥
2
−
∥∥∥∇ f (x

⋆)
∣∣
R \Z

∥∥∥
2

≥β2s (x̂,x
⋆)
∥∥∥(x̂−x⋆)|R\Z

∥∥∥
2
− γ2s (x̂,x

⋆)
∥∥∥(x̂−x⋆)|R ∩Z

∥∥∥
2
−
∥∥∥∇ f (x

⋆)
∣∣
R\Z

∥∥∥
2

≥β2s (x̂,x
⋆)
∥∥∥(x̂−x⋆)|R \Z

∥∥∥
2
− γ2s (x̂,x

⋆)‖x̂−x⋆‖2−
∥∥∥∇ f (x

⋆)
∣∣
R\Z

∥∥∥
2
. (47)

Similarly, using Proposition 5 we have

∥∥∥z|Z\R

∥∥∥
2
=
∥∥∥∇ f (x̂)

∣∣
Z\R

∥∥∥
2
≤
∥∥∥(∇ f (x̂)−∇ f (x

⋆))
∣∣
Z\R

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

≤ γ4s (x̂,x
⋆)‖x̂−x⋆‖2 +

∥∥∥∇ f (x
⋆)
∣∣
Z\R

∥∥∥
2
. (48)

Combining (46), (47), and (48) then yields

γ4s (x̂,x
⋆)‖x̂−x⋆‖2 +

∥∥∥∇ f (x
⋆)
∣∣
Z\R

∥∥∥
2
≥−γ2s (x̂,x

⋆)
∥∥∥(x̂−x⋆)|R ∩Z

∥∥∥
2

+β2s (x̂,x
⋆)
∥∥∥(x̂−x⋆)|R\Z

∥∥∥
2
−
∥∥∥∇ f (x

⋆)
∣∣
R\Z

∥∥∥
2
.

Note that (x̂−x⋆)|R \Z = (x̂−x⋆)|Zc . Therefore, we have

‖(x̂−x⋆)|Zc‖2
≤ γ2s (x̂,x

⋆)+γ4s (x̂,x
⋆)

β2s (x̂,x
⋆)

‖x̂−x⋆‖2+

∥∥∥∇ f (x
⋆)
∣∣
R\Z

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

β2s (x̂,x
⋆)

.

Lemma 5. The vector b given by

b = argmin
x

f (x) s.t. x|T c = 0 (49)

satisfies ‖x⋆|T −b‖2 ≤
‖∇ f (x

⋆)|
T
‖

2

β4s(x
⋆,b)

+
(

1+
γ4s(x

⋆,b)

β4s(x
⋆,b)

)
‖x⋆|T c‖2.

Proof Since b satisfies (49) we must have ∇ f (b)
∣∣
T
= 0. Then it follows from Corollary 2 that

‖x⋆|T −b‖2 = ‖(x⋆−b)|T ‖2

≤
∥∥∇ f (x

⋆)
∣∣
T

∥∥
2

β4s (x
⋆,b)

+
γ4s (x

⋆,b)

β4s (x
⋆,b)

‖x⋆|T c‖2 .
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Lemma 6. The estimation error of the current iterate (i.e., ‖x̂−x⋆‖2) and that of the next iterate

(i.e., ‖bs −x⋆‖2) are related by the inequality:

‖bs−x⋆‖2 ≤
(

1+
2γ4s (x

⋆,b)

β4s (x
⋆,b)

)
γ2s (x̂,x

⋆)+γ4s (x̂,x
⋆)

β2s (x̂
i,x⋆)

‖x̂−x⋆‖2+
2
∥∥∇ f (x

⋆)
∣∣
T

∥∥
2

β4s (x
⋆,b)

+

(
1+

2γ4s (x
⋆,b)

β4s (x
⋆,b)

) ∥∥∥∇ f (x
⋆)
∣∣
R \Z

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

β2s (x̂,x
⋆)

.

Proof Since T c ⊆ Zc we have ‖x⋆|T c‖2 = ‖(x̂−x⋆)|T c‖2 ≤ ‖(x̂−x⋆)|Zc‖2
. Therefore, applying

Lemma 4 yields

‖x⋆|T c‖2 ≤
γ2s(x̂,x

⋆)+γ4s(x̂,x
⋆)

β2s(x̂,x
⋆)

‖x̂−x⋆‖2+

∥∥∥∇ f (x
⋆)
∣∣
R\Z

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

β2s(x̂,x
⋆)

. (50)

Furthermore, as showed by (19) during the proof of Lemma 3, we again have

‖bs −x⋆‖2 ≤ 2‖x⋆|T −b‖2 +‖x⋆|T c‖2 .

Hence, it follows from Lemma 5 that

‖bs −x⋆‖2 ≤
2
∥∥∇ f (x

⋆)
∣∣
T

∥∥
2

β4s (x
⋆,b)

+

(
1+

2γ4s (x
⋆,b)

β4s (x
⋆,b)

)
‖x⋆|T c‖2 . (51)

Combining (50) and (51) yields

‖bs −x⋆‖2 ≤
(

1+
2γ4s (x

⋆,b)

β4s (x
⋆,b)

)
γ2s (x̂,x

⋆)+γ4s (x̂,x
⋆)

β2s (x̂,x
⋆)

‖x̂−x⋆‖2+
2
∥∥∇ f (x

⋆)
∣∣
T

∥∥
2

β4s (x
⋆,b)

+

(
1+

2γ4s (x
⋆,b)

β4s (x
⋆,b)

) ∥∥∥∇ f (x
⋆)
∣∣
R \Z

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

β2s (x̂,x
⋆)

.

Proof of Theorem 2. Let the vectors involved in the j-th iteration of the algorithm be denoted

by superscript ( j). Given that µ4s ≤ 3+
√

3
4

we have

γ4s

(
x̂( j),x⋆

)

β4s

(
x̂( j),x⋆

) ≤
√

3−1

4
and 1+

2γ4s

(
x⋆,b( j)

)

β4s

(
x⋆,b( j)

) ≤ 1+
√

3

2
,

that yield,
(

1+
2γ4s (x

⋆,b)

β4s (x
⋆,b)

)
γ2s

(
x̂( j),x⋆

)
+ γ4s

(
x̂( j),x⋆

)

β2s

(
x̂( j),x⋆

) ≤ 1+
√

3

2
× 2γ4s

(
x̂( j),x⋆

)

β4s

(
x̂( j),x⋆

)

≤ 1+
√

3

2
×

√
3−1

2

=
1

2
.
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Therefore, it follows from Lemma 6 that

∥∥∥x̂
( j+1) −x⋆

∥∥∥
2
≤ 1

2

∥∥∥x̂( j)−x⋆
∥∥∥

2
+

3+
√

3

ε

∥∥∇ f (x
⋆)
∣∣
I

∥∥
2
.

Applying this inequality recursively for j = 0,1, · · · , i−1 then yields

‖x̂−x⋆‖2 ≤ 2−i ‖x⋆‖2 +
6+2

√
3

ε

∥∥∇ f (x
⋆)
∣∣
I

∥∥
2
,

which is the desired result.
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Abstract

Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained

numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit

a local quadratic approximation to the objective function. We show that many, including the most

popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression

under varying prior assumptions. This new notion elucidates some shortcomings of classical algo-

rithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make

more efficient use of available information at computational cost similar to its predecessors.

Keywords: optimization, numerical analysis, probability, Gaussian processes

1. Introduction

Quasi-Newton algorithms are arguably the most popular class of nonlinear numerical optimization

methods, used widely in numerical applications not just in machine learning. Their defining prop-

erty is that they iteratively build estimators Bi for the Hessian B(x) =∇∇⊺ f (x) of the objective func-

tion f (x), from observations of f ’s gradient ∇ f (x), at each iteration searching for a local minimum

along a line search direction −B−1
i ∇ f (x), an estimate of the eponymous Newton-Raphson search di-

rection. Some of the most widely known members of this family include Broyden’s (1965) method,

the SR1 formula (Davidon, 1959; Broyden, 1967), the DFP method (Davidon, 1959; Fletcher and

Powell, 1963) and the BFGS method (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno,

1970). Decades of continued research effort in this area make it impossible to give even a superfi-

cial overview over the available literature. The textbooks by Nocedal and Wright (1999) and Boyd

and Vandenberghe (2004) are good modern starting points for readers interested in background.

An insightful and extensive contemporary review was compiled by Dennis and Moré (1977). The

ubiquity of optimization problems in machine learning has made these algorithms tools of the trade.

But, perhaps because they predate machine learning itself, they have rarely been studied as learning

algorithms in their own right. This paper offers a probabilistic analysis.

Throughout, let f ∶ RN
_ R be a sufficiently regular, not necessarily convex, function; ∇ f ∶

R
N

_ R
N its gradient; B ∶RN

_ R
N×N its Hessian. We consider iterative algorithms moving from

location xℓ−1 ∈ RD to location xℓ. The algorithm performs consecutive line searches along one-

dimensional subspaces xi(α) = αei + x0
i , with α ∈ R+ and a unit length vector ei ∈ RN spanning the

line search space starting at x0
i . Evaluations at xi evince the gradient ∇ f (xi) (and usually also f (xi),

©2013 Philipp Hennig and Martin Kiefel.
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though this will not feature in this paper). The goal is to find a candidate x∗ for a local minimum: a

root ∇ f (x∗) = 0 of the gradient.

The derivations of classical quasi-Newton algorithms proceed along the following line of argu-

ment: We require an update rule incorporating an observation ∇ f (xi+1) into a current estimate Bi

to get a new estimate Bi+1, subject to the following desiderata:

1. Low Rank/Cost Updates Optimization problems regularly have dimensionality above N ∼
103, even beyond N ∼ 106. To keep computational costs tractable, the update to the estimator

Bi for the Hessian should be of the form

Bi = Bi−1+uCv⊺ with u,v ∈RN×M,C ∈RM×M,

with low rank M (usually M = 1 or 2), because, by the matrix inversion lemma, its inversion,

and multiplication with the gradient has (worst-case) cost O(N2+NM+M3).
2. Consistency with Quadratic Model If f is locally described well to second order, then

yi ≡∇ f (xi)−∇ f (xi−1) ≈ B(xi)si, (1)

with si ≡ xi−xi−1. Because this is the fundamental idea behind this family of algorithms, it is

also known as the quasi-Newton equation.

3. Symmetry The Hessian of twice differentiable functions is symmetric; so the estimator

should be symmetric, too.

4. Positive Definiteness Convex functions have positive definite Hessians everywhere. Over

time, it has become common conviction that, even for non-convex problems, positive defi-

niteness of the estimator is desirable.

1.1 Outline

This first half of this paper (Section 2) constructs a new conceptual interpretation of quasi-Newton

methods. Adopting a probabilistic viewpoint, we interpret the two requirements classically used

to derive this family of methods as log likelihood and log prior, both of a specific Gaussian form.

Varying the prior covariance and choosing one of two possible likelihoods gives rise to the different

members of the family of quasi-Newton methods. A surprising insight arising from this analysis is

that the way symmetry and positive definiteness (desiderata 3 and 4 above) are ensured in existing

quasi-Newton methods differs from the way one would naı̈vely choose from the probabilistic per-

spective. In fact, the posterior arising from the newly identified prior and likelihood assigns nonzero

probability mass to non-symmetric (Section 2.1), and to indefinite matrices (Section 2.2). It is only

the maximum of the posterior, the estimator used by quasi-Newton methods, that is both symmetric

and positive definite. Interestingly, the “proper” probabilistic way to ensure these properties has

much higher computational complexity (Sections 2.1 and 3.5).

The second half of the paper (Section 3) uses the insights gained in Section 2 to construct

a novel nonparametric Bayesian quasi-Newton algorithm. This replaces the approximate form of

desideratum 2 above with an exact, analytic expression. We show that the structural ideas developed

in Section 2 extend from the classic parametric formulation to a Gaussian Process model keeping

computational cost linear in the input dimensionality (it has costO(NM+M3)). A further advantage
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of the nonparametric formulation is that it allows the use of every gradient observation calculated

during a line search instead of just the last one, something that is not easily achievable under the old

parametric models.

1.2 Notation

The derivations in the following sections require a compact notation for joint Gaussian probability

densities over the elements of matrices. This often requires re-arranging the elements of a matrix

A ∈RN×M into a vector in R
NM, which we denote by

Ð⇀
A . We will assume this vectorization operation

stacks the rows of A into column vector row by row, not column by column (this choice is relevant,

it has effects Equation (3) below). Instead of introducing a new scalar index for the elements of such

vectors, it will be convenient to keep the original indices i, j of the matrix A, and interpret them as

an index set (i j) of the vector.

Throughout, we make use of the following sum convention: Indices that appear more than

once on one side of an equation are summed over, unless they also appear on the other side of

the equation. We also extensively use the Kronecker product. Given A ∈ RI×K and B ∈ RJ×L, the

Kronecker product A⊗B ∈RIJ×KL has elements

(A⊗B)(i j)(kℓ) = AikB jℓ. (2)

In this notation, using the sum convention defined above, the vectorization of the matrix product

AXB can be re-written as

ÐÐÐ⇀(AXB)i j = AikXkℓBℓ j = AikB⊺jℓXkℓ = [(A⊗B⊺)Ð⇀X ]
i j
. (3)

Some important properties of Kronecker products are

(A⊗B)(C⊗D) = AC⊗BD, (A⊗B)−1 = A−1⊗B−1,

α(A⊗B) = (αA⊗B) = (A⊗αB), rk(A⊗B) = rkA ⋅ rkB,

tr(A⊗B) = trA ⋅ trB, det(A⊗B) = detrk(B)A ⋅detrk(A)B.

The identities in the left column directly follow from (2), the less straightforward identities on the

right can be found in matrix algebra collections (e.g., Lütkepohl, 1996; Minka, 2000a).

2. Quasi-Newton Methods as Approximate Bayesian Regressors

Aiming for a probabilistic interpretation of quasi-Newton methods, we consider them as regularised

maximum likelihood (that is, maximum a posteriori) estimation schemes. The quasi-Newton equa-

tion (1) is a likelihood for B. Using si = xi−xi−1, we can write it using Dirac’s distribution as

p(yi ∣B,si) = δ(yi−Bsi) = lim
β_0
N [yi;S

⊺
▷
Ð⇀
B ,(Vi−1⊗β)] , (4)

with any arbitrary N×N matrix Vi−1, a scalar β, and the linear operator S▷ = (I⊗si) (the significance

of the subscript ▷ will become clear later). Instead of enforcing this point mass likelihood (4), we

could equivalently minimize its negative logarithm

− log p(yi ∣B,si) = lim
β_0

1
β
(yi−Bsi)⊺V−1(yi−Bsi)+const.
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Since the N real numbers in yi are not sufficient to identify the N2 numbers in B, classic derivations

(Dennis and Moré, 1977; Nocedal and Wright, 1999) choose the estimator minimizing a regularized

loss,

Bi = argmin
B∈RN×N

{ lim
β_0

1
β
(yi−Bsi)⊺V−1(yi−Bsi)+∥B−Bi−1∥F,V−1

i−1
} ,

using the weighted Frobenius norm ∥ ⋅ ∥F,V−1
i−1

from the current best estimate Bi−1 from previous

iterations. The weight in the Frobenius norm is encoded using a positive definite matrix, which we

will suggestively call V−1
i−1 and identify with the Vi−1 of Equation (4)

∥B−Bi−1∥F,V−1
i−1
≡ tr(V−1

i−1(B−Bi−1)⊺V−1
i−1(B−Bi−1))

= (Ð⇀B −Ð⇀B i−1)⊺(V−1
i−1⊗V−1

i−1)(Ð⇀B −Ð⇀B i−1). (5)

The new estimate is the unique matrix Bi minimizing the regularizer subject to Equation (4). In-

specting Equation (5) we see that, up to additive constants, the Frobenius regularizer is the negative

logarithm of a Gaussian prior

p(B) =N [Ð⇀B ;
Ð⇀
B i−1,Σi−1 ≡ (Vi−1⊗Vi−1)] . (6)

Gaussian likelihoods are conjugate to Gaussian priors (the sum of quadratic forms is a quadratic

form). So the posterior is Gaussian, too, even for the limit case of a Dirac likelihood. We perform

the following derivations for finite β, then take the limit at the end. A first form for the posterior can

be found by explicitly multiplying the two Gaussians and “completing the square” in the exponent

of the product of Gaussians: Posterior covariance and mean are

Σ▷ = (Σ−1
i−1+S▷(V−1

i−1⊗β−1)S⊺▷)−1,

B▷ = Σ▷(S▷(V−1
i−1⊗β−1)Ð⇀Y +Σ−1

i−1

Ð⇀
B i−1).

The following observation is helpful in the search for a more compact form (e.g., Rasmussen and

Williams, 2006, Equation 2.12). Because Σ▷ is invertible for any finite β,

S▷(V−1
i−1⊗β−1)(S⊺▷Σi−1S▷+Vi−1⊗β) = Σ−1

▷ Σi−1S▷,

Σ▷S▷(V−1
i−1⊗β−1)(S⊺▷Σi−1S▷+Vi−1⊗β) = Σi−1S▷,

Σ▷S▷(V−1
i−1⊗β−1) = Σi−1S▷(S⊺▷Σi−1S▷+Vi−1⊗β)−1.

The step from the first to the second line is multiplication from the left by Σ−1
▷ , the one from the

second to the third is multiplication from the right by (S⊺▷Σi−1S▷ +Vi−1⊗β)−1. Using this result,

we re-write the posterior mean, using the Matrix inversion lemma, as

Ð⇀
B▷ = Σ▷((V−1

i−1⊗β−1)S▷Ð⇀Y +Σ−1
i−1

Ð⇀
B i−1)

=
Ð⇀
B i−1+Σi−1S▷(S⊺▷Σi−1S▷+Vi−1⊗β)−1 ⋅ (Ð⇀Y −S⊺▷Ð⇀B i−1).
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Now we plug in the explicit expressions for S▷ and Σi−1. Note that Σi−1S▷ = (Vi−1⊗Vi−1)(I⊗ si) =(Vi−1⊗Vi−1si) and likewise S⊺▷Σi−1S▷ = (Vi−1⊗s⊺i Vi−1si). So the posterior has mean and covariance

Bi = Bi−1+ lim
β_0

(yi−Bi−1si)s⊺i Vi−1

s⊺i Vi−1si+β
= Bi−1+ (yi−Bi−1si)s⊺i Vi−1

s⊺i Vi−1si

and

Σi =Vi−1⊗(Vi−1− lim
β_0

Vi−1sis
⊺
i Vi−1

s⊺i Vi−1si+β
) =Vi−1⊗(Vi−1−Vi−1sis

⊺
i Vi−1

s⊺i Vi−1si

)
≡Vi−1⊗Vi, (7)

respectively. The new mean is a rank-1 update of the old mean, and the rank of the new covariance

Σi is one less than that of Σi−1. The posterior mean has maximum posterior probability (minimal

regularized loss), and is thus our new point estimate. Choosing a unit variance prior Σi−1 = I⊗ I

recovers one of the oldest quasi-Newton algorithms: Broyden’s method (1965):

Bi = Bi−1+ (yi−Bi−1si)s⊺i
s⊺i si

.

Broyden’s method does not satisfy the third requirement of Section 1: the updated estimate is, in

general, not a symmetric matrix. A supposed remedy for this problem, and in fact the only rank-1

update rule that obeys Equation (4) (Dennis and Moré, 1977) is the symmetric rank 1 (SR1) method

(Davidon, 1959; Broyden, 1967):

Bi = Bi−1+ (yi−Bi−1si)(yi−Bi−1si)⊺
s⊺i (yi−Bi−1si) .

The SR1 update rule has acquired a controversial reputation (e.g., Nocedal and Wright, 1999, §6.2):

While some authors report good results using this method, others note that it is unstable and overly

limited. Our Bayesian interpretation identifies the SR1 formula as Gaussian regression with a data-

dependent prior variance involving Vi−1 with

Vi−1si = (yi−Bi−1si).
Given the explicitly Gaussian prior of Equation (6), there is no rank 1 update rule that gives a

symmetric posterior. This blemish of rank-1 updates is also reflected in Equation (7): Uncertainty

drops only in the “row”, or “primal” subspace of the belief (the right hand side of the Kronecker

product in the covariance). While this still means uncertainty goes toward 0 over time, it does so in

an asymmetric way.

2.1 Symmetric Estimates, but no Symmetric Beliefs

Many classic quasi-Newton methods provide symmetric estimators for B. Is it possible to encode

the Hessians symmetry directly in the probabilistic belief? The proper probabilistic way to do so is

to include an additional factor

δ(∆Ð⇀B −Ð⇀0 ) = lim
τ_0
N (Ð⇀0 ,∆

Ð⇀
B ,τI) (8)

using ∆, the antisymmetry operator—the linear map defined through

∆
Ð⇀
X =

1

2

ÐÐÐÐÐ⇀(X −X⊺).
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Since this is a linear map, the resulting posterior is analytic, and Gaussian. But the rank of ∆ is

1/2 ⋅N(N −1) (e.g., Lütkepohl, 1996, §4.3.1, Equations 12 & 20), so the corresponding update rule

does not obey the first requirement of Section 1. So, while it is possible to encode symmetry, it is

not practical. However, the structure of Equation (7) hints at another idea, which in fact turns out to

give rise to the most popular quasi-Newton methods. We introduce a second, dual observation (dual,

as in “dual vector space”, not as in “primal-dual optimization”), using the operator S◁ = (si⊗I), the

dual of S▷,

p(y⊺i ∣B,s⊺i ) = δ(y⊺i − s⊺i B) = lim
γ_0
N [y⊺i ;S⊺◁

Ð⇀
B ,(γ⊗Vi)] . (9)

Note that the limit uses Vi, not Vi−1 as in Equation (4). The posterior has mean

Ð⇀
B i =
Ð⇀
B▷+Σ▷S◁(K◁+γI⊗V▷)−1(Ð⇀y⊺i −S⊺◁Ð⇀B▷)
=
Ð⇀
B i−1+(I⊗ Vi−1si

s⊺i Vi−1si+β
)ÐÐÐÐÐÐ⇀(yi−Bi−1si)

+(Vi−1si⊗Vi)[(s⊺i Vi−1s+γ)⊗Vi]−1

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ⇀

[y⊺i − s⊺i (Bi−1+ yi−Bi−1si

s⊺i Vi−1si+β
s⊺i Vi−1)].

The calculation for the posterior covariance can be reduced to a simple symmetry argument. Ex-

panding the Kronecker products as before, we find that the posterior after both primal and dual

observation is a Gaussian with mean and covariance

Bi = Bi−1+ (yi−Bi−1si)s⊺i V⊺
i−1

s⊺i Vi−1si

+Vi−1si(yi−Bi−1si)⊺
s⊺i Vi−1si

−Vi−1si(s⊺i (yi−Bi−1si))s⊺i Vi−1(s⊺i Vi−1si)2 , (10)

Σi = (Vi−1−Vi−1sis
⊺
i Vi−1

s⊺i Vi−1si

)⊗Vi =Vi⊗Vi. (11)

The posterior mean is clearly symmetric if Bi−1 is symmetric (as Vi−1 is symmetric by definition).

Choosing the unit prior Σi−1 = I ⊗ I once more, Equation (10) gives what is known as Powell’s

(1970) symmetric Broyden (PSB) update. Equation (10) has previously been known to be the most

general form of a symmetric rank 2 update obeying the quasi-Newton equation (1) and minimizing

a Frobenius regularizer (Dennis and Moré, 1977). This old result is a corollary of our derivations.

But note that symmetry only extends to the mean, not the entire belief: In contrast to the posterior

generated by Equation (8), samples from this posterior are, with probability 1, not symmetric. Of

course, they can be projected into the space of symmetric matrices by applying the symmetrization

operator Γ defined by

Γ
Ð⇀
X =

1

2

ÐÐÐÐÐ⇀(X +X⊺) (note that I = Γ+∆;Γ∆ = 0). (12)

Since Γ is a symmetric linear operator, the projection of any Gaussian belief N (X ;X0,Σ) onto

the space of symmetric matrices is itself a Gaussian N (ΓX ;ΓX0,ΓΣΓ). But symmetrized samples

from the posterior of Equations (10), (11) do not necessarily obey the quasi-Newton Equation (1).

While Equation (9) does convey useful information, it is not equivalent to encoding symmetry. It is

cheaper, but also weaker, than using the likelihood (8), which encodes the full information afforded

by symmetry.
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2.2 Positive Definiteness: Meaning or Decoration?

So quasi-Newton methods ensure symmetry in the maximum of the posterior, but not the posterior

itself. What about desideratum 4 from Section 1, positive definiteness? Consider choosing Vi−1 = B.

The prior (6) then turns into the non-Gaussian form

p(B)∝ ∣B∣−N2/2 ⋅exp[−1

2
(N −2tr(Bi−1B−1)+ tr(Bi−1B−1Bi−1B−1))] . (13)

This is an intriguing prior. The last term in the exponential has the form of the natural Riemannian

metric on the space of positive definite real matrices (Savage, 1982), and may also remind some

readers of the Wishart distribution. But the second term in the exponential means this prior is

broader than the Wishart. It is not well-defined for degenerate matrices, and it is not clear whether

it is proper. It is thus surprising to discover that it engenders the two most popular quasi-Newton

methods: If we use the quasi-Newton equation (1) a second time to replace Vi−1s = y, Equation (13)

gives the DFP method (Davidon, 1959; Fletcher and Powell, 1963)

Bi = Bi−1+ (yi−Bi−1si)y⊺i
s⊺i yi

+ yi(yi−Bi−1si)⊺
y⊺i si

− yi(s⊺i (yi−Bi−1si))y⊺i(yisi)2 .

And, if we exchange in the entire preceding derivation s ] y, B ] B−1, Bi−1 ] B−1
i−1, then we arrive

at the BFGS method (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), which ranks

among the most widely used algorithms in numerical optimization. Table 1 gives an overview over

the relationships between quasi-Newton methods described so far. It also mentions methods by

Greenstadt (1970) and McCormick (see Pearson, 1969) which contain the “missing links” in this

table but have not been mentioned so far. These works are also briefly discussed by Dennis and

Moré (1977), from where we take these citations.

DFP and BFGS owe much of their popularity to the fact that the updated Bi,DFP and B−1
i,BFGS are

guaranteed to be positive definite whenever Bi−1,DFP and B−1
i−1,BFGS are positive definite, respectively,

and additionally y⊺i si > 0. How helpful is this property? It is relatively straightforward to extend a

theorem by Dennis and Moré (1977) to find that, assuming Bi−1 is positive definite, the posterior

mean of Equation (10) is positive definite if, and only if,

0 < (y⊺i B−1
i−1Vi−1si)2+(yi−Bi−1si)⊺B−1

i−1yi ⋅ s⊺i Vi−1B−1
i−1Vi−1si

⇔ 0 < s⊺i Vi−1[B−1
i−1yiy

⊺
i B−1

i−1−y⊺B−1
i−1yi+ s⊺i yi]Vi−1si.

If the prior covariance is not to depend on the data, it is thus impossible to guarantee positive defi-

niteness in this framework—BFGS and DFP circumvent this conceptual issue by choosing Vi−1 =B,

then applying Equation (1) a second time. But, even casting aside such philosophical reservations,

our analysis also casts doubt upon the efficacy of the way in which DFP and BFGS achieve positive

definiteness: Equation (13) does not exclude indefinite matrices; in fact it assigns positive density to

every invertible matrix. For example, under a mean Bi−1 = I, the indefinite matrix B = diag(1,−1) is

assigned p(B)∝ exp(−2). DFP and BFGS achieve positive definiteness, not by including additional

information, but by manipulating the prior such that the MAP estimator (not the belief) happens to

be positive definite. These observations do not rule out any utility of guaranteeing positive definite-

ness in this way, and the prior (13) deserves closer study. But these results suggest there is less value

in the positive definiteness guarantee of DFP and BFGS than previously thought.
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likelihood prior inferring B inferring B−1

y = Bs

V = I Broyden (1965)

V = B Pearson (1969) McCormick

V s = (y−Bs) SR1 (Davidon, 1959)

y = Bs∧y⊺ = Bs⊺
V = I PSB (Powell, 1970) Greenstadt (1970)

V = B DFP BFGS

Table 1: Overview over probabilistic interpretations of various quasi-Newton methods, based on the

combination of prior and likelihood. The “McCormick” entry refers to a note in Pearson

(1969), see also Dennis and Moré (1977). The SR1 method is identical for inference on

either B or its inverse. The abbreviation DFP stands for Davidon (1959), Fletcher and

Powell (1963), while BFGS stands for Broyden (1970), Fletcher (1970), Goldfarb (1970)

and Shanno (1970).

2.3 Rank M Updates

The classical quasi-Newton algorithms update the mean of the belief at every step in a rank 2

operation, then, implicitly, reset their uncertainty in the next step, thereby discarding information

acquired earlier. Albeit inelegant from a Bayesian point of view, this scheme is still a good idea

given other aspects of the framework: Since the quasi-Newton likelihood models the objective

function as a quadratic, with constant Hessian everywhere, strict Bayesian inference from this prior

would simply average over the Hessian everywhere, which is obviously not a good model. But it

is instructive to consider the effect of encoding more than just the most recent observation. It is

straightforward to extend Equation (4) to observations (Y,S) from several line searches:

Ynm =∇n f (xim)−∇n f (xim−1), Snm = xim,n−xim−1,n.

Given a prior p(B) =N (B;B0,V0), the Gaussian posterior then has mean and covariance

Bi = B0+(Y −B0S)(S⊺V0S)−1S⊺V0+V0S(S⊺V0S)−1(Y −B0S)⊺ (14)

−V S(S⊺V0S)−1(S⊺(Y −B0S))(S⊺V S)−1S⊺V0,

Σi = (V0−V0S(S⊺V0S)−1S⊺V0)⊗(V0−V0S(S⊺V0S)−1S⊺V0) .
Here, the absence of information about the symmetry of the Hessian becomes even more obvious:

No matter the prior covariance V0, because of the term S⊺Y in the second line of Equation (14),

the posterior mean is not in general symmetric, unless Y = BS, (e.g., if the objective function is in

fact a quadratic). See Section 4, particularly Figure 3, for a simple experiment with this parametric

algorithm.

2.4 Summary

The preceding section showed that quasi-Newton algorithms, including the state-of-the-art BFGS

and DFP algorithms, can be interpreted as approximate Bayesian regression from the primal and

dual likelihood of Equations (4) and (9) under varying priors, in the following sense: At each quasi-

Newton step, fix a Gaussian prior ad hoc, update the mean, then “forget” the covariance update.
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Two particularly interesting observations concern the way in which the desiderata of symmetry and

positive definiteness of the MAP estimator are achieved in these algorithms. Symmetry is encoded

via dual observations, which is a useful but imperfect shortcut. Similarly, positive definiteness is

just guaranteed for the mode, not the entire support of the posterior distribution. There may well

be a non-obvious value to the “scale-free” prior of Equation (13) (see also Nocedal and Wright,

1999, Equations 6.11–6.13), but our analysis raises doubt on whether the proven good performance

of BFGS and DFP is actually down to positive definiteness, or to a different effect involving the

broader non-Gaussian prior (13).

3. A Nonparametric Bayesian Quasi-Newton Method

Section 2 used the probabilistic perspective to gain novel insight into classical methods. It showed

that quasi-Newton methods can be interpreted as Gaussian regressors using algebraic structure to

weaken prior knowledge, in exchange for lower computational cost. In this second part of the paper

we depart from the traditional framework to construct a nonparametric, Bayesian quasi-Newton

method, de novo. To motivate this effort, notice some other deficiencies of DFP/BFGS not directly

connected to computational cost: Equation (4) assumes that the function is (locally) a quadratic. Old

observations collected “far” from the current location (in the sense that a second order expansion

is a poor approximation) may thus be useless or even harmful. The fact that the function is not

quadratic should be part of the model. On an only slightly related point, individual line searches

typically involve several evaluations of the objective function f and its gradient; but the algorithms

only make use of one of those (the last one). This is clearly wasteful, but even the exact Bayesian

parametric algorithm of Section 2.3 has this problem, because the matrix S of several observations

along one line search has rank 1, so the inverse of S⊺V0S is not defined. The following section

will address all these issues, using the framework of nonparametric Gaussian process regression to

model the objective function more closely.

3.1 A Nonparametric Prior

Defining a prior for the function B ∶ RN
_ R

N×N , we choose a set of N2 correlated Gaussian pro-

cesses. The mean function is assumed to be an arbitrary integrable function B0(x) (in our imple-

mentation we use a constant function, but the analytic derivations do not need to be so restrictive).

The core idea is to assume that the covariance between the element Bi j at location1 x¾ and the entry

Bkℓ at location x¼ is

cov(Bi j(x¾),Bkℓ(x¼)) = kik(x⊺¾,x⊺¼)k jℓ(x¾,x¼) = (k⊗k)(i j)(kℓ)(x¾,x¼)
with an N×N matrix of kernels, k. To give a more concrete intuition: In our implementation we use

one joint squared exponential kernel for all elements. I.e.

ki j(x¾,x¼) =Vi j exp(−1

2
(x¾−x¼)⊺Λ−1(x¾,x¼)) (15)

1. We use the notation x¼ and x¾ (read “x up” and “x down”) to denote two separate, arbitrary elements of the input

space. The combinations x∗ and x∗ or x and x′, or x1 and x2 are more widely used in the literature. But since this

document is heavy on indices, we prefer this notation as it prevents confusion over sub- and superscripts and named

indices.
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with a positive definite matrix V and length scales Λ. This means

cov(Bi j(x⊺¾),Bkℓ(x¼)) =VikVjℓ exp(−1

2
(x¾−x¼)⊺2Λ−1(x¾−x¼)) ,

and in particular, the marginal variance of any particular local Hessian element is

var(Bi j(x¾)) = cov(Bi j(x¾),Bi j(x¾)) =ViiVj j.

So the prior variance of element Bi j is ViiVj j, not Vi j, as one might think at first. Similarly, the length

scale on which the elements change is not Λ, but Λ/2. So it is not possible to encode separate signal

scales for the off-diagonal elements of the Hessian in this framework. They are determined entirely

by the scales of the diagonal elements. Even so, if V is diagonal, then beliefs between any two

different elements of B are independent.

Other kernels can of course be chosen; but it will become clear that an important practical

requirement is the ability to efficiently integrate the kernel. This is feasible, though nontrivial, with

the squared exponential kernel.

3.2 Line Integral Observations

For the Hessian B(x) of a general function f , the quasi-Newton equation (4) is only a zeroth order

approximation (a second-order approximation to f itself), assuming a constant Hessian everywhere.

In our treatment, we will replace this approximate statement with its exact version: We observe the

value of the line integral along the path ri ∶ [0,1]_R
N , ri(t) = xi−1+ t(xi−xi−1),

Yni =∑
m
∫

ri
m

Bnm(x)dxm.

Note that, for scalar fields φi with Bim = ∇mφi, such as the gradient φi = ∇i f , it follows from the

chain rule that (the following derivations again use the sum convention defined in Section 1.2)

d

dt
φi(r j(t)) =∇mφi(r j(t))∂r

j
m(t)
∂t

= Bim(r j(t))∂tr
j
m(t).

Thus, our line integral obeys

Yi j =∫
r j

Bim(x)dxm =∫
1

0
Bim(r j(t)) ⋅∂tr

j
m(t)dt (16)

=∫
1

0
∂tφi(r j(t))dt = φi(r j(1))−φi(r j(0)).

This is the classic result that line integrals over the gradients of scalar fields are independent of

the path taken, they only depend on the starting and end points of the path. In particular, our path

satisfies ∂tr
j
m(t) = S jm (its derivative is constant), and our line integral can be written as

Yi j =∫
1

0
Bim(r j(t))S jm dt = δik ⋅S jm∫

1

0
Bkm(t j)dt j,

Ð⇀
Y = [I⊗(S⊺⊙∫

t
)]Ð⇀B ≡S▷Ð⇀B . (17)
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Figure 1: One-dimensional Gaussian process inference from integral observations (squared expo-

nential kernel). Four observations, average values (integral value divided by length of in-

tegration region) and integration regions denoted by bars. Posterior mean in thick green,

two standard deviations as shaded region, three samples as dashed lines. The left-most

integral is over a very small region, which essentially reduces to the classical case of a lo-

cal observation. Corresponding integrals over the mean, and each sample, are consistent

with the integral observations.

where ⊙ denotes the Hadamard, or element-wise, product (a⊙b)kℓ = akℓbkℓ. In words: For every

projection S j∶ of the rows of B, there are N one-dimensional functions (Bs)i(t j) ∶ R _ R. Each of

those functions are integrated from 0 to 1 (this is an affine projection onto the space of integrals

over [0,1]). This amounts to taking each component Bi j(t) of each projection and applying the

integral-projection—hence the Hadamard product. We write the likelihood as

p(Y ∣B(x),S▷) = lim
β_0
N [Y ;S⊺▷

Ð⇀
B ,(k⊗βIM)] ,

using the linear operator S▷ defined in Equation (17). An interesting aspect to note is that, while

path-independence holds for the ground-truth integrals of Equations (16), the prior covariance of

Equation (15) does not encode this fact. The prior used here is more conservative than necessary, in

the sense that it assigns nonzero probability mass on algebraically impossible functions, in exchange

for lower computational cost. This is not unlike the aspects of parametric quasi-Newton methods

discussed in Sections 2.1 and 2.2, where nonzero probability mass is assigned to the algebraically

impossible case of non-symmetric Hessians. See Section 3.5 for more on this issue.

3.3 Gaussian Process Inference from Integral Observations

Because the Gaussian exponential family is closed under linear transformations, Gaussian process

inference is analytic under any linear operator. Since integration is a linear operation, it is a corollary

that Gaussian process inference is possible, in closed form, from integral observations. Neverthe-

less, this idea has only rarely been used in the literature (e.g., by Minka, 2000b). So we briefly

digress here to introduce it in detail. Let there be a function f (x) ∶ R _ R (extension to multi-
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variate functions is straightforward). Assume a Gaussian process prior, with mean function µ(x),
covariance function (kernel) k. We observe, up to Gaussian noise, the value of a definite integral

y = ξ+∫ b

a
f (x)dx; ξ ∼N (0,σ2).

What is the posterior? We construct the answer from the finite-dimensional case, then take the

Riemann limit. Consider observing the noisy weighted sum of N Gaussian variables, with weights

δmi:

y = ξ+ N

∑
i

δmi fi ≡ ξ+m⊺ f ; p( f ) =N (µ;K).
The posterior can be found as above, by “completing the square”

p( f ∣y) =N (Ψ(K−1µ+σ−2my),Ψ)
with the covariance

Ψ = (K−1+σ−2mm⊺)−1 =K− Kmm⊺K

σ2+m⊺Km
.

Now consider the limit transition N _∞, such that the weights δmi converge to a measure m(xi)dxi

(m = 1 is a special case). We get

Km =Ki jm j _ ∫
b

a
k(xi,x j)dm(x j) and

m⊺Km =miKi jm j _∬
b

a
k(xi,x j)dm(xi)dm(x j).

The mean has the form

µ− Kmm⊺µ

σ2+m⊺Km
+σ−2Km(1− m⊺Km

σ2+m⊺Km
)y = µ+Km( y−m⊺µ

σ2+m⊺Km
)

which, in the limit, transforms to

µ+ y−∫ b

a µ(x̃)dm(x̃)
σ2+∬ b

a k(xi,x j)dm(xi)dm(x j) ∫
b

a
k(xi,x j)dm(xi).

Figure 1 gives a toy 1D example for intuition.

3.4 Posterior on Hessians

Using an argument entirely analogous to that of Section 2, we find that the primal posterior after M

observations has mean function

Ð⇀
B▷(x¾)
=
Ð⇀
B 0(x¾)+(ΣS▷)(x¾)(K+(k⊗βI))−1(Y −S⊺▷Ð⇀B 0)
=
Ð⇀
B 0+[k⊗k(S⊙∫

t
)](k⊗(S⊙∫ )⊺ k(S⊙∫ )+k⊗βI)−1 (Y −S⊺▷Ð⇀B 0).

854



QUASI-NEWTON METHODS: A NEW DIRECTION

The terms of this equation can be further identified using the Gram matrix

(S⊙∫ )⊺ k(S⊙∫ )∣
jℓ

=∫
1

0
dt j∫

1

0
dtℓS

j

k
kkm(x¾(t j),x¼(tℓ))Sℓm (18)

= S jk [∬ 1

0
kkm(x¾(t j),x¼(tℓ))dt j dtℓ]Smℓ

≡K ∈RM×M,

the integrated kernel map

k(S⊙∫ )∣
k j

(x¾) =∫ 1

0
kkm(x¾,x¼(t j))dt jS jm (19)

≡ k(x¾) ∈ {RN
_R

N×M},
and the integrated mean function

S
⊺
▷
Ð⇀
B 0∣

mk
= S jk∫

1

0
B0

m j(x(tk))dtk ≡B ∈RN×M. (20)

These objects are homologous to concepts in canonical Gaussian process inference: B0,nm is the

n-th mean prediction along the m-th line integral observation. knm(x¾) is the covariance between

the n-th column of the Hessian at location x¾ and the m-th line-integral observation. Kpq is the

covariance between the p-th and q-th line integral observations. The derivations for the covariance

are similar and contain the same terms. Together with the dual observation, we arrive at a posterior,

which has mean and covariance functions

B◇(x¾) = B0(x¾)+(Y −B0)K−1
k
⊺(x¾)+ k(x¾)K−1(Y −B0)⊺− k(x¾)K−1S⊺(Y −B0)K−1

k
⊺(x¾),

Σ◇(x¾,x¼) = [k(x⊺¾,x⊺¼)− k(x⊺¾)K−1
k
⊺(x¼)]⊗ [k(x¾,x¼)− k(x¾)K−1

k
⊺(x¼)] .

The actual numerical realisation of this nonparametric method involves relatively tedious algebraic

derivations, which can be found in Appendix A.

An important aspect is that, because k is a positive definite kernel, unless two observations are

exactly identical, K has full rank M (the number of function evaluations), even if several observa-

tions take place within one shared 1-dimensional subspace. So it is possible to make full use of all

function evaluations made during line searches, not just the last one, as in the parametric setting of

existing quasi-Newton methods. Figure 2 uses another toy setting to give an intuition for why this

matters. Just as in Section 2.3, it is clear that the posterior mean is not in general a symmetric matrix.

So we project into the space of symmetric matrices using the arguments surrounding Equation (12).

A downside is that evaluating the mean function involves finding the inverse of K, at cost

O(M3). Two aspects of numerical optimization make this issue less problematic than one might

think. First, solving an optimization problem takes finite time, often just a few hundred evaluations;

so the cubic cost in M is often manageable. Where it is not, note that, because optimization proceeds

along a trajectory through the parameter space, old observations tend to have low covariance with

the Hessian at the current location, and thus a small effect on the local mean estimate. So they can

often simply be ignored. The simplest possible way to do so is to just throw away all observations
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Figure 2: Simulated line search, a toy problem to elucidate why it helps to use all line search

observations instead of only the first and last ones. Observations at locations X =[−4;−1;2;2.5;3;2.6], observed 1D Gradients of ∇ f (X) = [−2;−1;−1;−0.1;0.2;−0.001].
Left: Traditional inference based on only the first and last observations. Right: Our non-

parametric model can use all observations. Gaussian process posterior with thick mean

and two standard deviations marginal variance as shaded region, as well as three sam-

ples as dashed lines. Effective observations yi/(xi−xi−1) as bars. Gradient values as thin

lines on the abscissa for intuition. The posterior from all observations captures much

more structure, and in particular a different mean estimate at the end of the line search

(x = 2.6), where its value defines the next search direction.

older than some memory bound M0. This is the approach of the L-BFGS method (Nocedal, 1980).

Since the regression framework quantifies the contribution of each observation to the prediction, in

the vector kK−1, we can also use the relative sizes of these elements to order past observations and

discard those ranked below M0.

3.5 Diversion: Naı̈ve Gaussian Regression is Too Costly

The discussion in Section 2 established that, with a few caveats (Section 2.2), quasi-Newton meth-

ods are Gaussian regressors; and we then extended to nonparametric Gaussian process inference.

Importantly, the prior from Section 3.1 is over the elements of the Hessian, and gradient observa-

tions are integrals of this function. One may wonder why we did not just start with a Gaussian

process prior on the objective function f and used observations of the gradient to infer the Hessian

directly from there. This is possible because differentiation, like integration, is a linear operation:

Under a Gaussian process prior on f with kernel k f and mean function µ f , the mean function of

the prior belief over the gradient is µ∇ f =∇µ f , and the covariance between elements of ∇ f at two
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different points x¾ and x¼ is (Rasmussen and Williams, 2006, §9.4)

cov
⎛⎝∂ f (x¾)

∂x¼i
,
∂ f (x¾)

∂x¾j

⎞⎠ = ∂2k(x¾,x¼)
∂x¼i ,∂x¾j

, which, for an SE kernel, is (21)

=
⎛⎝ 1

λ2
j

δi j + (x¼i −x¾i )(x¼j −x¾j )
λ2

i λ2
j

⎞⎠kSE(x¼,x¾).
The covariance between elements of the Hessian and elements of the gradient is

cov
⎛⎝∂2 f (x¾)

∂x¼i dx¼
k

,
∂ f (x¾)

∂x¾j

⎞⎠ = ∂2k(x¾,x¼)
∂x¼i ,∂x¾j

, which, for an SE kernel, is

=
⎛⎝

δik(x¼j −x¾j )+δ jk(x¼i −x¾i )
λ2

i λ2
j

− (x¼k −x¾k )
λ2

k

⎞⎠kSE(x¼,x¾).
So, given observations of the gradient at M points xm, we can evaluate the mean over the elements

of the Hessian B(x∗) as

B̂ik(x∗) = µB(x∗)+cov(Bik(x∗),∇ j f (xm))K−1
( jm)(ℓq)(∇ℓ f (xq)−µ∇ℓ f (xq)),

with a Gram matrix K ∈ RMN×MN of elements K( jm)(ℓq) = cov(∇ j f (xm),∇ℓ f (xq)). From Equa-

tion (21) we see that this Gram matrix has specific structure, so it might be possible to construct its

inverse faster than inO(M3N3). But even then, this scheme would only provide a belief over the el-

ements of B. Since Newton’s method requires the inverse of B, this mean prediction would still have

to be inverted, at cost O(N3). This would defeat the point of a quasi-Newton method: constructing

a low-rank estimate of the Hessian, and thus a fast estimate of its inverse. If N is small enough

to allow for general (cubic) inversion of B̂, we might as well just calculate the true Hessian of f

and invert that instead. So quasi-Newton methods are not “just” standard Gaussian regression on

Hessians. Their key advantage stems from the weaker prior assumptions, as discussed in Sections

2.1 and 2.2, which allow the construction of a low-rank estimate.

4. Experiments

The calculations required by nonparametric quasi-Newton algorithm using the squared-exponential

kernel involve exponential functions, error functions, and numerical integrals (see Appendix A for

details). A side-effect of these is that this algorithm has slightly lower numerical precision than

its predecessors. This issue becomes clear when minimizing quadratic functions (Figure 3), whose

constant Hessian voids the modeling advantage of the nonparametric method:2 The nonparametric

algorithm behaves more regularly initially, but towards the end of the optimization process the nu-

merical conditioning of the kernel calculations begins to play a role, offering an advantage to the

better conditioned older methods. In real, non-quadratic optimization problems, however, this prob-

lem only arises close to the end of optimization, when the algorithm is very close to the optimum. In

2. This is only a diagnostic example. Quadratic functions, whose optimization amounts to solving a positive-definite

linear program, are not a realistic use-case for quasi-Newton methods, parametric or not. Specialised methods, like

the method of conjugate gradients (Hestenes and Stiefel, 1952), or plain Cholesky decomposition for low-dimensional

cases, are better suited for this simple setting.
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Figure 3: Minimization of a 100-dimensional quadratic. All algorithms shared the same line search

method. Averages over 20 sampled problems (see text for details). The two dashed lines

in this log-log plot mark linear and quadratic convergence. The Bayesian algorithms

converge more regularly and faster initially, but suffer from bad numerical conditioning

toward the end of the optimization.

this small region, a local quadratic approximation is valid and the Hessian is essentially constant. In

our practical implementation, we thus check for convergence, then pass the learned inverse Hessian

to the better conditioned BFGS for the final few steps, in which the learned Hessian barely changes.

For intuition, Figure 4 shows results from a popular two-dimensional test problem—Rosenbrock’s

polynomial. The plot also shows the mean belief on one element of the Hessian. The availability of

this explicit estimate for the entire function is an additional benefit of the nonparametric method.

In problems where the Hessian is not constant everywhere, the nonparametric Bayesian opti-

mizer can sometimes offer drastic advantages over the classical alternatives. Figure 5, left, shows

averages of experiments on a 200-dimensional domain. The objective functions is a prior over hy-

perparameters of a Gaussian process regressor: the logarithm of products of Gamma distributions,

with different parameters for each dimension. The right part of the figure shows that the perfor-

mance advantage is not always so drastic. It was gathered on the corresponding posterior after the

addition of 10 datapoints per problem. This makes the objective function less regular, meaning

that the optimal Newton path to the minimum has more complex shape, and more line searches are

necessary to converge to the minimum.

Figure 6 shows performance on a set of low-dimensional but challenging set of problems: Func-

tions sampled from a Gaussian process with quadratic prior mean, after conditioning on 10 obser-

vations of the function’s Hessian (drawn separately from a Wishart distribution, to ensure positive

definiteness). In all experiments, however, the Bayesian algorithm performs at least as good, and

regularly better than its classical competitors. For numerical optimization, even performance gains

of a few percent are valuable, because optimization is such a widely encountered problem. Speed-

ing up quasi-Newton methods by 10% means speeding up large parts of machine learning by that

amount. Our experiments show that, at least in some cases, the new algorithm offers improvements

much beyond that.
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Figure 4: Minimizing Rosenbrock’s polynomial, a non-convex function with unique minimum at

(1,1). All algorithms start from (-1,2.5). Top left: Function values, line search trajec-

tory of the Bayesian algorithm in white. Top Right: True value of the (1,1) element of

the Hessian (other elements have less interesting structure). Middle Row: Two times

marginal posterior standard deviation (a.k.a. posterior uncertainty, left) and mean esti-

mate (right) of the Bayesian regressor. Comparing the top right and middle right plots

shows good agreement in the regions visited by the algorithm. Bottom: function value as

function of the number of line searches. The cross after 24 line searches marks the point

where the Bayesian method switches to a local parametric model for numerical stability.

4.1 Cost

As pointed out above, the computational complexity of this algorithm, given a diagonal prior mean,

is O(NM+M3) per update of the search direction, where M is the number of function evaluations

used to build the model (which can be controlled ad hoc within the algorithm by excluding redun-
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Figure 5: Left: Minimizing the 200-dimensional (Gamma) prior over the hyperparameters of a

Gaussian process regression modell. Right: Minimizing the corresponding posterior

after the addition of 10 datapoints sampled from the correct model. The datapoints create

a more complicated optimization problem in which line searches tend to be shorter, thus

reducing the advantage of the Bayesian method gained from superior Hessian estimates.

Averages over 20 sampled problems; plotted is the relative distance from initial function

value (shared by all algorithms) to the minimum, as a function of the number of line

searches (all algorithms use the same line search method).

dant or irrelevant evaluations). This compares to O(NM) for the corresponding cases of DFP and

BFGS. Although the overhead created by the squared-exponential integrals is nontrivial, we found

the computational demands of our implementation manageable: In our experiments, the cost of con-

structing and inverting the matrix K was negligible, and could, in very time-sensitive settings, be

further reduced by a more efficient implementation.

5. Outlook

In this paper we primarily focused on a better understanding for quasi-Newton methods. For an

intuition on the potential of Bayesian formulations of numerical optimization, apart from the new

nonparametric algorithm derived in Section 3 and tested in Section 4, consider some potential for

future work: Perhaps the most obvious insight is that Gaussian process regression is trivial to extend

to noisy evaluations. An upcoming conference paper (Hennig, 2013) will study how this can be

used to construct optimizers robust to noise. Repeated integration, and non-Gaussian likelihoods in

combination with approximate inference, may allow optimization without gradients, and from only

gradient sign observations, respectively. Structured and hierarchical priors are a third direction,

offering new avenues for optimization of very high-dimensional functions.

6. Conclusion

We have shown that the most popular quasi-Newton algorithms can be interpreted as approximations

to Bayesian regression under Gaussian and other priors. This deepens our understanding of these

algorithms. In particular, it emerged that symmetry in the estimators of SR1, PSB, DFP and BFGS,
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Figure 6: Minimizing randomly generated 4-dimensional analytic functions. Left: For illustration.

One slice through the (x,y,0,0) plane of one of the sampled functions. Neither starting

point of the search nor the found optimum lie within this slice, and are thus not shown.

Right: function values achieved by three numerical optimizers as a function of the num-

ber of line searches. All algorithms shared the same line search routine. Plotted is the

difference between best function value achieved by any of the optimizers for each func-

tion, normalized by the initial function value (which is identical for all algorithms). The

lines are averages of the logarithmic values from 10 iid. experiments.

and positive definiteness in those of DFP and BFGS, are encoded in approximate ways which do

not capture all available prior information but allow for low computational cost.

As a parallel result, our analysis also gives rise to a new class of Bayesian nonparametric quasi-

Newton algorithms. These use a kernel model to learn from all observations in each line-search,

explicitly track uncertainty, and thus achieve faster convergence towards the true Hessian. While

the new methods are not trivial to understand and implement, their computational cost lies within

a constant of that of their predecessors. Our research implementation is available at http://www.

probabilistic-optimization.org/Newton.html.
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Appendix A. Numerical Implementation

As mentioned above, for a concrete implementation, we chose to use the squared exponential kernel

(15), and a constant mean function assigning B0(x¾) = I everywhere. It is another advantage of the

Bayesian formulation that prior assumptions are directly accessible for analysis: The squared expo-
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nential prior amounts to the assumption that the elements of the Hessian vary independently over

the parameter space, on one unique set of length-scales Λ. Multiple length scales could be modeled

using sums of kernels, but our implementation does not currently offer this option. Changing the

length scales Λ amounts to a form of pre-conditioning. The fact that this can be done automatically

using methods from machine learning is another advantage of a Bayesian formulation. A naı̈ve

approach for such an optimization would be to optimize the hyperparameters by type-II maximum

likelihood, as is often done in standard Gaussian process regression. Since this amounts to an opti-

mization problem itself, though, one might hope to find closed form estimators. We will not dwell

further on this issue here, leaving it for future work.

A numerical challenge in the implementation arises from the required integrals over squared

exponentials. Of the three objects in Equations (18), (19), and (20) only the last one, B, is truly

straightforward, thanks to our choice of constant mean function. The other two will be derived in

this section. For this purpose, it is helpful to use an explicit notation for individual line searches:

We change the index set from m to ( jh): Let observation ym have been taken as the h-th observation

of line search number j. If the line search proceeded along unit direction e j and started from x0 j,

then the h-th observation was the difference between the gradients at locations x0 j+(ηh−νh)e j and

x0 j +νhe j.

A.1 k

The elements of the N×M matrix k(x¾) are, (the ellipses are placeholders for the second, analogous

part of quadratic forms)

k
j

nh
(x¾) = (ηh−νh)Vnme j

m∫
1

0
exp[− 1

2
(x¾−(νhe j +x0 j)−(ηh−νh−1)te j)⊺Λ−1 . . .]dt

= (Ve j)n exp(−c−b2/a2

2
) 1

a
∫
(ηh−νh)a+b/a

b
exp(− u2

2
)du

= (Ve j)n exp(−c−b2/a2

2
)√ π

2a2
[erf((ηh−νh)a2+b√

2a2
)−erf( b√

2a2
)] ,

with

a =
√

e⊺j Λ−1e j

b = e⊺j Λ−1(x0 j +νhe j −x¾)
c = x⊺¾Λ−1x¾−2x¾Λ−1(x0 j +νhe j)+(x0 j +νhe j)⊺Λ−1(x0 j +νhe j).

This involves the error function, for which good double-precision approximations are widely avail-

able.
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A.2 K

The M ×M matrix K has two types of elements. Along its block diagonal lie covariance between

observations collected as part of the same line search. These have the form

K
ii
hk = (ηh−νh)(ηk−νk)(e⊺i V ei)θ2

∬
1

0
exp[− 1

2
[(ηh−νh)thei+νhei+x0i−(αk −νk)tkei−νkei−x0i]⊺Λ−1[. . .]]dth dtk

= e⊺i V eiθ
2∫

ηh

νh

∫
αk

νk

exp[− (uh−uk)2
2σ2

i

]duh duk.

So these terms are double integrals over a one-dimensional squared exponential. Such integrals

can be integrated by parts, leading to an analytic expression that only involves error functions and

exponential functions (Peltonen, 2012).

The most challenging calculations involve elements of K describing the covariance between

observations made along different line search directions. We make use, once more, of the closure

of the Gaussian exponential family under linear maps, to write

K
i j

hk
=(ηh−νh)(ηk−νk)e⊺j V ei

∬
1

0
exp[− 1

2

⎛⎜⎝
(ηh−νh)th(ηk −νk)tk

1

⎞⎟⎠
⊺⎛⎜⎝

e j−ei

νhe j +x0 j −νkei−x0i

⎞⎟⎠
⊺

Λ−1 . . .]dth dtk

=
2πe⊺j V ei exp[−1

2
(c−b⊺A−1b)]√(1−ρ2)AhhAkk[Φ(uh f ,uk f ,ρ)+Φ(uhi,uki,ρ)−Φ(uhi,uk f ,ρ)−Φ(uh f ,uki,ρ)]

with the bivariate Gaussian CDF

Φ(b1,b2,ρ) = 1

2π
√

1−ρ2
∫

b1

−∞
∫

b2

−∞
exp[−(x2−2ρxy+y2)/2(1−ρ2)]dx dy

and

A−1 = ( e⊺j Λ−1e j −e⊺j Λ−1ei−e⊺j Λ−1ei e⊺i Λ−1ei
)−1

=

(e⊺i Λ−1ei e⊺j Λ−1ei

e⊺j Λ−1ei e⊺j Λ−1e j
)

e⊺j Λ−1e je
⊺
i Λ−1ei−(e⊺j Λ−1ei)2 ,

b = ( e⊺j Λ−1(νhe j +x0 j −νkei−x0i)−e⊺i Λ−1(νhe j +x0 j −νkei−x0i)) ,
c = (νhe j +x0 j −νkei−x0i)⊺Λ−1(νhe j +x0 j −νkei−x0i),

as well as

ρ =
e⊺j Λ−1ei√

e⊺j Λ−1e je
⊺
i Λ−1ei

,

ui =
√

1−ρ2 diag(√[Ahh,Akk])A−1b,

u f =
√

1−ρ2 diag(√[Ahh,Akk])[(ηh−νh

ηk −νk
)+A−1b] .
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Just like in the univariate case, bivariate Gaussian CDFs are not analytic. But single and double

precision numerical approximations at acceptable computational cost exist (Genz, 2004).

From Sec. 1, recall that updating the search direction requires the inverse of B. Explicit inversion

costs O(N3), but the inverse can be constructed analytically, from the matrix inversion lemma, in

O(N2+NM+M3). Using an argument largely analogous to the derivation of the L-BFGS algorithm

(Nocedal, 1980) a diagonal prior mean B0 lowers cost to O(NM +M3), linear in N. Just like L-

BFGS, the nonparametric method is thus applicable to problems of even very high dimensionality.
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Abstract

A statistical model or a learning machine is called regular if the map taking a parameter to a prob-

ability distribution is one-to-one and if its Fisher information matrix is always positive definite. If

otherwise, it is called singular. In regular statistical models, the Bayes free energy, which is defined

by the minus logarithm of Bayes marginal likelihood, can be asymptotically approximated by the

Schwarz Bayes information criterion (BIC), whereas in singular models such approximation does

not hold.

Recently, it was proved that the Bayes free energy of a singular model is asymptotically given

by a generalized formula using a birational invariant, the real log canonical threshold (RLCT),

instead of half the number of parameters in BIC. Theoretical values of RLCTs in several statistical

models are now being discovered based on algebraic geometrical methodology. However, it has

been difficult to estimate the Bayes free energy using only training samples, because an RLCT

depends on an unknown true distribution.

In the present paper, we define a widely applicable Bayesian information criterion (WBIC)

by the average log likelihood function over the posterior distribution with the inverse temperature

1/ logn, where n is the number of training samples. We mathematically prove that WBIC has

the same asymptotic expansion as the Bayes free energy, even if a statistical model is singular

for or unrealizable by a statistical model. Since WBIC can be numerically calculated without any

information about a true distribution, it is a generalized version of BIC onto singular statistical

models.

Keywords: Bayes marginal likelihood, widely applicable Bayes information criterion

1. Introduction

A statistical model or a learning machine is called regular if the map taking a parameter to a prob-

ability distribution is one-to-one and if its Fisher information matrix is always positive definite. If

otherwise, it is called singular. Many statistical models and learning machines are not regular but

singular, for example, artificial neural networks, normal mixtures, binomial mixtures, reduced rank

regressions, Bayesian networks, and hidden Markov models. In general, if a statistical model con-

tains hierarchical layers, hidden variables, or grammatical rules, then it is singular. In other words,

if a statistical model is devised so that it extracts hidden structure from a random phenomenon, then

it naturally becomes singular. If a statistical model is singular, then the likelihood function cannot

be approximated by any normal distribution, resulting that neither AIC, BIC, nor MDL can be used

c©2013 Sumio Watanabe.
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in statistical model evaluation. Hence constructing singular learning theory is an important issue in

both statistics and learning theory.

A statistical model or a learning machine is represented by a probability density function p(x|w)
of x ∈R

N for a given parameter w ∈W ⊂R
d , where W is a set of all parameters. A prior probability

density function is denoted by ϕ(w) on W . Assume that training samples X1,X2, ...,Xn are indepen-

dently subject to a probability density function q(x), which is called a true distribution. The log loss

function or the minus log likelihood function is defined by

Ln(w) =−1

n

n

∑
i=1

log p(Xi|w). (1)

Also the Bayes free energy F is defined by

F =− log

∫ n

∏
i=1

p(Xi|w)ϕ(w)dw. (2)

This value F can be understood as the minus logarithm of marginal likelihood of a model and a

prior, hence it plays an important role in statistical model evaluation. In fact, a model or a prior is

often optimized by maximization of the Bayes marginal likelihood (Good, 1965), which is equiva-

lent to minimization of the Bayes free energy.

If a statistical model is regular, then the posterior distribution can be asymptotically approxi-

mated by a normal distribution, resulting that

F = nLn(ŵ)+
d

2
logn+Op(1), (3)

where ŵ is the maximum likelihood estimator, d is the dimension of the parameter space, and n is

the number of training samples. The right hand side of Equation (3) is the well-known Schwarz

Bayesian information criterion (BIC) (Schwarz, 1978).

If a statistical model is singular, then the posterior distribution is different from any normal

distribution, hence the Bayes free energy cannot be approximated by BIC in general. Recently, it

was proved that, even if a statistical model is singular,

F = nLn(w0)+λ logn+Op(log logn),

where w0 is the parameter that minimizes the Kullback-Leibler distance from a true distribution to

a statistical model, and λ > 0 is a rational number called the real log canonical threshold (RLCT)

(Watanabe, 1999, 2001a, 2009, 2010a) .

The birational invariant RLCT, which was firstly found by a research of singular Schwartz dis-

tribution (Gelfand and Shilov, 1964), plays an important role in algebraic geometry and algebraic

analysis (Bernstein, 1972; Sato and Shintani, 1974; Kashiwara, 1976; Varchenko, 1976; Kollár,

1997; Saito, 2007). In algebraic geometry, it represents a relative property of singularities of a pair

of algebraic varieties. In statistical learning theory, it shows the asymptotic behaviors of the Bayes

free energy and the generalization loss, which are determined by a pair of an optimal parameter set

and a parameter set W .

If a triple of a true distribution, a statistical model, and a prior distribution is fixed, then there

is an algebraic geometrical procedure which enables us to find an RLCT (Hironaka, 1964). In
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fact, RLCTs for several statistical models and learning machines are being discovered. For exam-

ple, RLCTs have been studied in artificial neural networks (Watanabe, 2001b; Aoyagi and Nagata,

2012), normal mixtures (Yamazaki and Watanabe, 2003), reduced rank regressions (Aoyagi and

Watanabe, 2005), Bayes networks with hidden variables (Rusakov and Geiger, 2005; Zwiernik,

2010, 2011), binomial mixtures, Boltzmann machines (Yamazaki and Watanabe, 2005), and hidden

Markov models. To study singular statistical models, new algebraic geometrical theory is con-

structed (Watanabe, 2009; Drton et al., 2009; Lin, 2011; Király et al., 2012).

Based on such researches, the theoretical behavior of the Bayes free energy is clarified. These

results are very important because they indicate the quantitative difference of singular models from

regular ones. However, in general, an RLCT depends on an unknown true distribution. In practical

applications, we do not know a true distribution, hence we cannot directly apply the theoretical

results to statistical model evaluation.

In the present paper, in order to estimate the Bayes free energy without any information about

a true distribution, we propose a widely applicable Bayesian information criterion (WBIC) by the

following definition:

WBIC = E
β
w[nLn(w)], β =

1

logn
, (4)

where E
β
w[ ] shows the expectation value over the posterior distribution on W that is defined by, for

an arbitrary integrable function G(w),

E
β
w[G(w)] =

∫
G(w)

n

∏
i=1

p(Xi|w)β ϕ(w)dw

∫ n

∏
i=1

p(Xi|w)β ϕ(w)dw

. (5)

In this definition, β > 0 is called the inverse temperature. Then the main purpose of this paper is to

show

F = WBIC+Op(
√

logn).

To establish mathematical support of WBIC, we prove three theorems. Firstly, in Theorem 3 we

show that there exists a unique inverse temperature β∗ which satisfies

F = E
β∗
w [nLn(w)].

The optimal inverse temperature β∗ is a random variable which satisfies the convergence in proba-

bility, β∗ logn → 1 as n → ∞. Secondly, in Theorem 4 we prove that, even if a statistical model is

singular,

WBIC = nLn(w0)+λ logn+Op(
√

logn).

In other words, WBIC has the same asymptotic behavior as the Bayes free energy even if a statistical

model is singular. And lastly, in Theorem 5 we prove that, if a statistical model is regular, then

WBIC = nLn(ŵ)+
d

2
logn+Op(1),

which shows WBIC coincides with BIC in regular statistical models. Moreover, it is expected that

a computational cost in numerical calculation of WBIC is far smaller than that of the Bayes free
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Variable Name Equation Number

F Bayes free energy Equation (2)

G Generalization loss Equation (29)

WBIC WBIC Equation (4)

WAIC WAIC Equation (30)

E
β
w[ ] posterior average Equation (5)

β∗ optimal inverse temperature Equation (18)

L(w) log loss function Equation (6)

Ln(w) empirical loss Equation (1)

K(w) Average log likelihood ratio Equation (7)

Kn(w) empirical log likelihood ratio Equation (8)

λ real log canonical threshold Equation (15)

m multiplicity Equation (16)

Q(K(w),ϕ(w)) parity of model Equation (17)

(M ,g(u),a(x,u),b(u)) resolution quartet Theorem 1

Table 1: Variable, Name, and Equation Number

energy. These results show that WBIC is a generalized version of BIC onto singular statistical

models and that RLCTs can be estimated even if a true distribution is unknown.

This paper consists of eight sections. In Section 2, we summarize several notations. In Section 3,

singular learning theory and the standard representation theorem are introduced. The main theorems

and corollaries of this paper are explained in Section 4, which are mathematically proved in Section

5. As the purpose of the present paper is to prove the mathematical support of WBIC, Sections 4

and 5 are the main sections. In section 6, a method how to use WBIC in statistical model evaluation

is illustrated using an experimental result. In section 7 and 8, we discuss and conclude the present

paper.

2. Statistical Models and Notations

In this section, we summarize several notations. Table 1 shows variables, names, and equation

numbers in this paper. The average log loss function L(w) and the entropy of the true distribution S

are respectively defined by

L(w) = −
∫

q(x) log p(x|w)dx, (6)

S = −
∫

q(x) logq(x)dx.

Then L(w) = S+D(q||pw), where D(q||pw) is the Kullback-Leibler distance defined by

D(q||pw) =
∫

q(x) log
q(x)

p(x|w)dx.

Then D(q||pw)≥ 0, hence L(w)≥ S. Moreover, L(w) = S if and only if p(x|w) = q(x).

870



WBIC

In this paper, we assume that there exists a parameter w0 in the interior of W which minimizes

L(w),
L(w0) = min

w∈W
L(w),

where the interior of a set S is the defined by the largest open set that is contained in S. Note that such

w0 is not unique in general, because the map w 7→ p(x|w) is not one-to-one in general in singular

statistical models. We also assume that, for an arbitrary w that satisfies L(w) = L(w0), p(x|w) is

the same probability density function. Let p0(x) be such a unique probability density function. In

general, the set

W0 = {w ∈W ; p(x|w) = p0(x)}
is not a set of single element but an analytic set or an algebraic set with singularities. Let us define

a log density ratio function,

f (x,w) = log
p0(x)

p(x|w) ,

which is equivalent to

p(x|w) = p0(x)exp(− f (x,w)).

Two functions K(w) and Kn(w) are respectively defined by

K(w) =
∫

q(x) f (x,w)dx, (7)

Kn(w) =
1

n

n

∑
i=1

f (Xi,w). (8)

Then it immediately follows that

L(w) = L(w0)+K(w),

Ln(w) = Ln(w0)+Kn(w).

The expectation value over all sets of training samples X1,X2, ...,Xn is denoted by E[ ]. For example,

E[Ln(w)] = L(w) and E[Kn(w)] = K(w). The problem of statistical learning is characterized by the

log density ratio function f (x,w). In fact,

E
β
w[nLn(w)] = nLn(w0)+E

β
w[nKn(w)], (9)

E
β
w[nKn(w)] =

∫
nKn(w)exp(−nβKn(w))ϕ(w)dw∫

exp(−nβKn(w))ϕ(w)dw
. (10)

The main purpose of the present paper is to prove

F = nLn(w0)+E
β
w[nKn(w)]+Op(

√

logn)

for β = 1/ logn.

Definition.

(1) If q(x) = p0(x), then q(x) is said to be realizable by p(x|w). If otherwise, it is said to be

unrealizable.

(2) If the set W0 consists of a single element w0 and if the Hessian matrix

Ji j(w) =
∂2L

∂wi∂w j

(w) (11)
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at w = w0 is strictly positive definite, then q(x) is said to be regular for p(x|w). If otherwise, it is

said to be singular for p(x|w).
Note that the matrix J(w) is equal to the Hessian matrix of K(w) and that J(w0) is equal to

the Fisher information matrix if the true distribution is realizable by a statistical model. Also note

that, if q(x) is realizable by p(x|w), then K(w) is Kullback-Leibler divergence of q(x) and p(x|w).
However, if q(x) is not realizable by p(x|w), then it is not.

3. Singular Learning Theory

In this section we summarize singular learning theory. In the present paper, we assume the following

conditions.

Fundamental Conditions.

(1) The set of parameters W is a compact set in R
d whose interior is not the empty set. Its boundary

is defined by several analytic functions π1(w), π2(w), ..., πk(w), in other words,

W = {w ∈ R
d ;π1(w)≥ 0,π2(w)≥ 0, ...,πk(w)≥ 0}.

(2) The prior distribution satisfies ϕ(w) = ϕ1(w)ϕ2(w), where ϕ1(w)≥ 0 is an analytic function and

ϕ2(w)> 0 is a C∞-class function.

(3) Let s ≥ 6 and

Ls(q) = { f (x);‖ f‖s ≡
(

∫
| f (x)|sq(x)dx

)1/s

< ∞}

be a Banach space. There exists an open set W ′ ⊃ W such that the map W ′ ∋ w 7→ f (x,w) is an

Ls(q)-valued analytic function.

(4) The set Wε is defined by

Wε = {w ∈W ; K(w)≤ ε}.

It is assumed that there exist constants ε,c > 0 such that

(∀w ∈Wε) EX [ f (X ,w)]≥ c EX [ f (X ,w)2]. (12)

Remark. (1) These conditions allow that the set of optimal parameters

W0 = {w ∈W ; p(x|w) = p(x|w0)}= {w ∈W ; K(w) = 0}

may contain singularities, and that the Hessian matrix J(w) at w ∈W0 is not positive definite. There-

fore K(w) can not be approximated by any quadratic form in general.

(2) The condition Equation (12) is satisfied if a true distribution is realizable by or regular for a

statistical model (Watanabe, 2010a). If a true distribution is unrealizable by and singular for a sta-

tistical model, there is an example which does not satisfy this condition. In the present paper, we

study the case when Equation (12) is satisfied.

Lemma 1 Assume Fundamental Conditions (1)-(4). Let

β =
β0

logn
,
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where β0 > 0 is a constant and let 0 ≤ r < 1/2. Then, as n → ∞,

∫
K(w)≥1/nr

exp(−nβKn(w))ϕ(w)dw = op(exp(−
√

n)), (13)

∫
K(w)≥1/nr

nKn(w)exp(−nβKn(w))ϕ(w)dw = op(exp(−
√

n)). (14)

The proof of Lemma 1 is given in Section 5.

Let ε> 0 be a sufficiently small constant. Lemma 1 shows that integrals outside of the region Wε

do not affect the expectation value E
β
w[nKn(w)] asymptotically, because in the following theorems,

we prove that integral in the region Wε have larger orders than the integral outside of Wε. To study

integrals in the region Wε, we need algebraic geometrical method, because the set {w;K(w) = 0}
contains singularities in general. There are quite many kinds of singularities, however, the following

theorem makes any singularities be a same standard form.

Theorem 1 (Standard Representation) Assume Fundamental Conditions (1)-(4). Let ε > 0 be a

sufficiently small constant. Then there exists an quartet (M ,g(u),a(x,u),b(u)), where

(1) M is a d-dimensional real analytic manifold,

(2) g is a proper analytic function g : M → W ′
ε , where W ′

ε is the set that is defined by the largest

open set contained in Wε and g : {u ∈ M ;K(g(u)) 6= 0}→ {w ∈W ′
ε ;K(w) 6= 0} is a bijective map,

(3) a(x,u) is an Ls(q)-valued analytic function,

(4) and b(u) is an infinitely many times differentiable function which satisfies b(u)> 0,

such that the following equations are satisfied in each local coordinate of M :

K(g(u)) = u2k,

f (x,g(u)) = uka(x,u),

ϕ(w)dw = ϕ(g(u))|g′(u)|du = b(u)|uh|du,

where k = (k1,k2, ...,kd) and h = (h1,h2, ...,hd) are multi-indices made of nonnegative integers. At

least one of k j is not equal to zero.

Remark. (1) In this theorem, for u = (u1,u2, · · · ,ud) ∈ R
d , notations u2k and |uh| respectively

represent

u2k = u
2k1

1 u
2k2

2 · · ·u2kd

d ,

|uh| = |uh1

1 u
h2

2 · · ·uhd

d |.

The singularity u= 0 in u2k = 0 is said to be normal crossing. Theorem 1 shows that any singularities

can be made normal crossing by using an analytic function w = g(u).
(2) A map w = g(u) is said to be proper if, for an arbitrary compact set C, g−1(C) is also compact.

(3) The proof of Theorem 1 is given in Theorem 6.1 of a book (Watanabe, 2009, 2010a). In order to

prove this theorem, we need the Hironaka resolution of singularities (Hironaka, 1964; Atiyah, 1970)

that is the fundamental theorem in algebraic geometry. The function w = g(u) is often referred to

as a resolution map.

(4) In this theorem, a quartet (k,h,a(x,u),b(u)) depends on a local coordinate in general. For a

given function K(w), there is an algebraic recursive algorithm which enables us to find a resolution
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map w = g(u). However, even for a fixed K(w), a resolution map is not unique, resulting that a

quartet (M ,g(u),a(x,u),b(u)) is not unique.

Definition. (Real Log Canonical Threshold) Let {Uα;α ∈ A} be a system of local coordinates of a

manifold M ,

M =
⋃

α∈A

Uα.

The real log canonical threshold (RLCT) is defined by

λ = min
α∈A

d

min
j=1

(h j +1

2k j

)

, (15)

where we define 1/k j = ∞ if k j = 0. The multiplicity m is defined by

m = max
α∈A

#
{

j;
h j +1

2k j

= λ
}

, (16)

where #S shows the number of elements of a set S.

The concept of RLCT is well known in algebraic geometry and statistical learning theory. In

the following definition we introduce a parity of a statistical model.

Definition. (Parity of Statistical Model) The support of ϕ(g(u)) is defined by

supp ϕ(g(u)) = {u ∈ M ; g(u) ∈Wε, ϕ(g(u))> 0},

where S shows the closure of a set S. A local coordinate Uα is said to be an essential local coordinate

if both equations

λ =
d

min
j=1

(h j +1

2k j

)

,

m = #{ j;(h j +1)/(2k j) = λ},

hold in its local coordinate. The set of all essential local coordinates is denoted by {Uα;α ∈ A∗}.

If, for an arbitrary essential local coordinate, there exist both δ > 0 and a natural number j in the set

{ j ; (h j +1)/(2k j) = λ} such that

(1) k j is an odd number,

(2) {(0,0, ..,0,u j,0,0, ..,0) ; |u j|< δ} ⊂ supp ϕ(g(u)),
then we define Q(K(g(u)),ϕ(g(u))) = 1. If otherwise, Q(K(g(u)),ϕ(g(u))) = 0. If there exists a

resolution map w = g(u) such that Q(K(g(u)),ϕ(g(u))) = 1, then we define

Q(K(w),ϕ(w)) = 1. (17)

If otherwise Q(K(w),ϕ(w)) = 0. If Q(K(w),ϕ(w)) = 1, then the parity of a statistical model is said

to be odd, otherwise even.

It was proved in Theorem 2.4 of a book (Watanabe, 2009) that, for a given set (q, p,ϕ), λ and m

are independent of a choice of a resolution map. Such a value is called a birational invariant. The

RLCT is a birational invariant.

Lemma 2 If a true distribution q(x) is realizable by a statistical model p(x|w), then the value

Q(K(g(u)),ϕ(g(u))) is independent of a choice of a resolution map w = g(u).
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Proof of this lemma is shown in Section 5. Lemma 2 indicates that, if a true distribution is real-

izable by a statistical model, then Q(K(g(u)),ϕ(g(u))) is a birational invariant. The present paper

proposes a conjecture that Q(K(g(u)),ϕ(g(u))) is a birational invariant in general. By Lemma 2,

this conjecture is proved if we can show the proposition that, for an arbitrary nonnegative analytic

function K(w), there exist q(x) and p(x|w) such that K(w) is the Kullback-Leibler distance from

q(x) to p(x|w).
Example. Let w = (a,b,c) ∈ R

3 and

K(w) = (ab+ c)2 +a2b4,

which is the Kullback-Leibler distance of a neural network model in Example 1.6 of a book (Watan-

abe, 2009), where a true distribution is realizable by a statistical model. The prior ϕ(w) is defined

by some nonzero function on a sufficiently large compact set. In a singular statistical model, com-

pactness of the prior is necessary in general, because, if the parameter set is not compact, then it is

not easy to mathematically treat the integration on the neighborhood among the infinite point.

Let a system of local coordinates be

Ui = {(ai,bi,ci) ∈ R
3} (i = 1,2,3,4).

A resolution map g : U1 ∪U2 ∪U3 ∪U4 → R
3 in each local coordinate is defined by

a = a1c1, b = b1, c = c1,

a = a2, b = b2c2, c = a2(1−b2)c2,

a = a3, b = b3, c = a3b3(b3c3 −1),

a = a4, b = b4c4, c = a4b4c4(c4 −1).

This map g is made of recursive blowing-ups whose centers are smooth manifolds, hence it is one-

to-one as a map g : {u;K(g(u))> 0}→ {w;K(w)> 0}. Then

K(a,b,c) = c2
1{(a1b1 +1)2 +a2

1b4
1}= a2

2c2
2(1+b2

2c2
2)

= a2
3b4

3(c
2
3 +1) = a2

4b2
4c4

4(1+b2
4).

Therefore integration over W can be calculated using integration over the manifold. The Jacobian

determinant |g′(u)| is

|g′(u)| = |c1|= |a2c2|
= |a3b2

3|= |a4b4c4|2.
In other words, in each local coordinate,

(k1,k2,k3) = (0,0,1),(1,0,1),(1,2,0),(1,1,2),

(h1,h2,h3) = (0,0,1),(1,0,1),(1,2,0),(2,2,2).

Therefore
(h1 +1

2k1

,
h2 +1

2k2

,
h2 +1

2k2

)

= (∞,∞,1),(1,0,1),(1,
3

4
,∞),(

3

2
,
3

2
,
3

4
).

The smallest value among them is 3/4 which is equal to λ and the multiplicty is m= 1. The essential

local coordinates are U3 and U4. In U3 and U4, the sets {u j ; (h j+1)/(2k j) = 3/4} are respectively

{u2} and {u3}, where 2k j = 4 in both cases. Consequently, both k j are even, thus the parity is given

by Q(K(w),ϕ(w)) = 0.
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Lemma 3 Assume that the Fundamental Conditions (1)-(4) are satisfied and that a true distribution

q(x) is regular for a statistical model p(x|w). If w0 is contained in the interior of W and if ϕ(w0)> 0,

then

λ =
d

2
, m = 1,

and

Q(K(w),ϕ(w)) = 1.

Proof of this lemma is shown in Section 5.

Theorem 2 Assume that the Fundamental Conditions (1)-(4) are satisfied. Then the following

holds.

F = nLn(w0)+λ logn− (m−1) log logn+Rn,

where λ is a real log canonical threshold, m is its multiplicity, and {Rn} is a sequence of random

variables which converges to a random variable in law, when n → ∞.

Theorem 2 was proved in the previous papers. In the case when q(x) is realizable by and singular

for p(x|w), the expectation value of F is given by algebraic analysis (Watanabe, 2001a). The

asymptotic behavior of F as a random variable was shown in a book (Watanabe, 2009). These

results were generalized (Watanabe, 2010a) for the case that q(x) is unrealizable.

Remark. In practical applications, we do not know the true distribution, hence λ and m are un-

known. Therefore, we can not directly apply Theorem 2 to such cases. The main purpose of the

present paper is to make a new method how to estimate F even if the true distribution is unknown.

4. Main Results

In this section, we introduce the main results of the present paper.

Theorem 3 (Unique Existence of the Optimal Parameter) Assume that Ln(w) is not a constant

function of w. Then the followings hold.

(1) The value E
β
w[nLn(w)] is a decreasing function of β.

(2) There exists a unique β∗ (0 < β∗ < 1) which satisfies

F = E
β∗
w [nLn(w)]. (18)

Note that the function Ln(w) is not a constant function in an ordinary statistical model with prob-

ability one. The Proof of Theorem 3 is given in Section 5. Based on this theorem, we define the

optimal inverse temperature.

Definition. The unique parameter β∗ that satisfies Equation (18) is called the optimal inverse tem-

perature.

In general, the optimal inverse temperature β∗ depends on a true distribution q(x), a statistical

model p(x|w), a prior ϕ(w), and training samples. Therefore β∗ is a random variable. In the present

paper, we study its probabilistic behavior. Theorem 4 is a mathematical base for such a purpose.

Theorem 4 (Main Theorem) Assume Fundamental Conditions (1)-(4) and that

β =
β0

logn
,
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where β0 is a constant. Then there exists a random variable Un such that

E
β
w[nLn(w)] = nLn(w0)+

λ logn

β0

+Un

√

λ logn

2β0

+Op(1),

where λ is the real log canonical threshold and {Un} is a sequence of random variables, which

satisfies E[Un] = 0, converges to a Gaussian random variable in law as n → ∞. Moreover, if a true

distribution q(x) is realizable by a statistical model p(x|w), then E[(Un)
2]< 1.

The proof of Theorem 4 is given in Section 5. Theorem 4 with β0 = 1 shows that

WBIC = nLn(w0)+λ logn+Un

√

λ logn

2
+Op(1),

whose first two main terms are equal to those of F in Theorem 2. From Theorem 4 and its proof,

three important corollaries are derived.

Corollary 1 If the parity of a statistical model is odd, Q(K(w),ϕ(w)) = 1, then Un = 0.

Corollary 2 Let β∗ be the optimal inverse temperature. Then

β∗ =
1

logn

(

1+
Un

√

2λ logn
+op

( 1√
logn

))

.

Corollary 3 Let β1 = β01/ logn and β2 = β02/ logn, where β01 and β02 are positive constants. Then

the convergence in probability

E
β1
w [nLn(w)]−E

β2
w [nLn(w)]

1/β1 −1/β2

→ λ (19)

holds as n → ∞, where λ is the real log canonical threshold.

Proofs of these corollaries are given in Section 5. Note that, if the expectation value E
β1
w [ ] is

calculated by some numerical method, then E
β2
w [ ] can be estimated using E

β1
w [ ] by using

E
β2
w [nLn(w)] =

E
β1
w [nLn(w)exp(−(β2 −β1)nLn(w))]

E
β1
w [exp(−(β2 −β1)nLn(w))]

. (20)

Therefore RLCT can be estimated by the same computational cost as WBIC. In Bayes estimation,

the posterior distribution is often approximated by some numerical method. If we know theoret-

ical values of RLCTs, then we can confirm the approximated posterior distribution by comparing

theoretical values with estimated ones.

The well-known Schwarz BIC is defined by

BIC = nLn(ŵ)+
d

2
logn,

where ŵ is the maximum likelihood estimator. WBIC can be understood as the generalized BIC

onto singular statistical models, because it satisfies the following theorem.
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Theorem 5 If a true distribution q(x) is regular for a statistical model p(x|w), then

WBIC = nLn(ŵ)+
d

2
logn+op(1).

Proof of Theorem 5 is given in Section 5. This theorem shows that the difference of WBIC and BIC

is smaller than a constant order term, if a true distribution is regular for a statistical model. This

theorem holds even if a true distribution q(x) is unrealizable by p(x|w).
Remark. Since the set of parameters W was assumed to be compact, it is proved in Main The-

orem 6.4 of a book (Watanabe, 2009) that nLn(w0)− nLn(ŵ) is a constant order random variable

in general. If a true distribution is regular for and realizable by a statistical model, its average is

asymptotically equal to d/2, where d is the dimension of parameter. If a true distribution is singu-

lar for a statistical model, then it is sometimes much larger than d/2, because it is asymptotically

equal to the maximum value of the Gaussian process. Whether replacement of nLn(w0) by nL(ŵ) is

appropriate or not depends on the statistical model and its singularities (Drton, 2009).

5. Proofs of Main Results

In this section, we prove the main theorems and corollaries.

5.1 Proof of Lemma 1

Let us define an empirical process,

ηn(w) =
1√
n

n

∑
i=1

(K(w)− f (Xi,w)).

It was proved in Theorem 5.9 and 5.10 of a book (Watanabe, 2009) that ηn(w) converges to a random

process in law and

‖ηn‖ ≡ sup
w∈W

|ηn(w)|

also converges to a random variable in law. If K(w)≥ 1/nr, then

nKn(w) = nK(w)−
√

n ηn(w)

≥ n1−r −
√

n ‖ηn‖.

By the condition 1− r > 1/2 and β = β0/ logn,

exp(
√

n)
∫

K(w)≥1/nr
exp(−nβKn(w))ϕ(w)dw

≤ exp(−n1−rβ+
√

n+
√

nβ‖ηn‖),

which converges to zero in probability, which shows Equation (13). Then, let us prove Equa-

tion (14). Since the set of parameter W is compact, ‖K‖ ≡ supw K(w)< ∞. Therefore,

|nKn(w)| ≤ n‖K‖+
√

n‖ηn‖
= n (‖K‖+‖ηn‖/

√
n).
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Hence

exp(
√

n)
∫

K(w)≥1/nr
|nKn(w)|exp(−nβKn(w))ϕ(w)dw

≤ (‖K‖+‖ηn‖/
√

n)

×exp(−n1−rβ+
√

n+
√

nβ‖ηn‖+ logn),

which converges to zero in probability. (Q.E.D.)

5.2 Proof of Lemma 3

Without loss of generality, we can assume w0 = 0. Since q(x) is regular for p(x|w), there exists w∗

such that

K(w) =
1

2
w · J(w∗)w,

where J(w) is given in Equation (11). Since J(w0) is a strictly positive definite matrix, there exists

ε > 0 such that, if K(w) ≤ ε, then J(w∗) is positive definite. Let ℓ1 and ℓ2 be respectively the

minimum and maximum eigen values of {J(w∗);K(w)≤ ε}. Then

1

4
ℓ1

d

∑
j=1

w2
j ≤

1

2
w · J(w∗)w ≤ ℓ2

d

∑
j=1

w2
j .

By using a blow-up g : U1 ∪ · · · ∪Ud → W which is represented on each local coordinate Ui =
(ui1,ui2, ...,uid),

wi = uii,

w j = uiiui j ( j 6= i),

it follows that
ℓ1 u2

ii

4
(1+∑

j 6=i

u2
i j)≤

u2
ii

2
(û,J(w∗)û)≤ ℓ2 u2

ii(1+∑
j 6=i

u2
i j),

where ûi j = ui j ( j 6= i) and ûii = 1. These inequalities show that ki = 1 in Ui, therefore Q(K(w),ϕ(w))=
1. The Jacobian determinant of the blow-up is

|g′(u)|= |uii|d−1,

hence λ = d/2 and m = 1. (Q.E.D.)

5.3 Proof of Theorem 3

Let us define a function Fn(β) of β > 0 by

Fn(β) =− log

∫ n

∏
i=1

p(Xi|w)βϕ(w)dw.

Then, by the definition, F = Fn(1) and

F ′
n(β) = E

β
w[nLn(w)],

F ′′
n (β) = −E

β
w[(nLn(w))

2]+E
β
w[nLn(w)]

2.
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By the Cauchy-Schwarz inequality and the assumption that Ln(w) is not a constant function,

F ′′
n (β)< 0,

which shows (1). Since Fn(0) = 0,

F = Fn(1) =
∫ 1

0
F ′

n(β)dβ.

By using the mean value theorem, there exists β∗ (0 < β∗ < 1) such that

F = F ′
n(β

∗) = E
β∗
w [nLn(w)].

Here F ′
n(β) is a decreasing function, β∗ is unique, which completes Theorem 3. (Q.E.D.)

5.4 First Preparation for Proof of Theorem 4

In this subsection, we prepare the proof of Theorem 4. By using Equation (9) and Equation (10),

the proof of Theorem 4 results in evaluating E
β
w[nKn(w)]. By Lemma 1,

Eβ
w[nKn(w)] =

Bn +op(exp(−√
n))

An +op(exp(−√
n))

, (21)

where An and Bn are respectively defined by

An =
∫

K(w)<ε
exp(−nβKn(w))ϕ(w)dw, (22)

Bn =
∫

K(w)<ε
nKn(w)exp(−nβKn(w))ϕ(w)dw. (23)

By Theorem 1, an integral over {w ∈ W ;K(w) < ε} is equal to that over M . For a given set of

local coordinates {Uα} of M , there exists a set of C∞ class functions {ϕα(g(u))} such that, for an

arbitrary u ∈ M ,

∑
α∈A

ϕα(g(u)) = ϕ(g(u)).

By using this fact, for an arbitrary integrable function G(w),

∫
K(w)<ε

G(w)ϕ(w)dw = ∑
α∈A

∫
Uα

G(g(u))ϕα(g(u))|g′(u)|du.

Without loss of generality, we can assume that Uα ∩ supp ϕ(g(u)) is isomorphic to [−1,1]d . More-

over, by Theorem 1, there exists a function bα(u)> 0 such that

ϕα(g(u))|g′(u)|= |uh|bα(u),

in each local coordinate. Consequently,

∫
K(w)<ε

G(w)ϕ(w)dw = ∑
α∈A

∫
[−1,1]d

du G(g(u)) |uh| bα(u).
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In each local coordinate,

K(g(u)) = u2k.

We define a function ξn(u) by

ξn(u) =
1√
n

n

∑
i=1

{uk −a(Xi,u)}.

Then

Kn(g(u)) = u2k − 1√
n

ukξn(u).

Note that

uk =
∫

a(x,u)q(x)dx

holds, because

u2k = K(g(u)) =
∫

f (x,g(u))q(x)dx = uk

∫
a(x,u)q(x)dx.

Therefore, for an arbitrary u,

E[ξn(u)] = 0.

The function ξn(u) can be understood as a random process on M . On Fundamental Conditions

(1)-(4), it is proved in Theorem 6.1, Theorem 6.2, and Theorem 6.3 of a book (Watanabe, 2009) that

(1) ξn(u) converges to a Gaussian random process ξ(u) in law and

E[sup
u

ξn(u)
2]→ E[sup

u

ξ(u)2].

(2) If q(x) is realizable by p(x|w), and if u2k = 0, then

E[ξn(u)
2] = EX [a(X ,u)2] = 2. (24)

By using the random process ξn(u), the two random variables An and Bn can be represented by

integrals over M ,

An = ∑
α∈A

∫
[−1,1]d

du exp(−nβu2k +
√

nβukξn(u))|uh|bα(u),

Bn = ∑
α∈A

∫
[−1,1]d

du (nu2k −
√

nukξn(u))

×exp(−nβu2k +
√

nβukξn(u))|uh|bα(u)

To prove Theorem 4, we study asymptotics of these two random variables.

5.5 Second Preparation for Proof of Theorem 4

To evaluate two integrals An and Bn as n → ∞, we have to study the asymptotic behavior of the

following Schwartz distribution,

δ(t −u2k) |u|h
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for t → 0. Without loss of generality, we can assume that, in each essential local coordinate,

λ =
h1 +1

2k1

=
h2 +1

2k2

= · · ·= hm +1

2km

<
h j +1

2k j

,

for an arbitrary j such that m < j ≤ d. A variable u ∈ R
d is denoted by

u = (ua,ub) ∈ R
m ×R

d−m.

We define a measure du∗ by

du∗ =

(
m

∏
j=1

δ(u j)) (
d

∏
j=m+1

(u j)
µ j) du

2m (m−1)! (∏m
j=1 k j)

, (25)

where δ( ) is the Dirac delta function, and µ = (µm+1,µ2, ...,µd) is a multi-index defined by

µ j =−2λk j +h j (m+1 ≤ j ≤ d).

Then µ j >−1, hence Equation (25) defines a measure on M . The support of du∗ is {u=(ua,ub) ; ua =
0}.

Definition. Let σ be a d-dimensional variable made of ±1. We use the notation,

σ = (σ1,σ2, ...,σd) ∈ R
d

where σ j =±1. The set of all such variables is denoted by S(d).

S(d) = {σ ; σ j =±1 (1 ≤ j ≤ d)}.

Also we use the notation

σu = (σ1u1,σ2u2, ...,σdud) ∈ R
d .

Then (σu)k = σkuk and (σu)2k = u2k. By using this notation, we can derive the asymptotic behavior

of δ(t −u2k)|uh| for t → 0.

Lemma 4 Let G(u2k,uk,u) be a real-valued C1-class function of (u2k,uk,u) (u∈R
d). The following

asymptotic expansion holds as t →+0,

∫
[−1,1]d

du δ(t −u2k)|u|hG(u2k,uk,u)

= tλ−1(− log t)m−1 ∑
σ∈S(d)

∫
[0,1]d

du∗ G(t,σk
√

t,u)

+O
(

tλ−1(− log t)m−2
)

, (26)

where du∗ is a measure defined by Equation (25).
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(Proof of Lemma 4) Let Y (t) be the left hand side of Equation (26). Then

Y (t) = ∑
σ∈S(d)

∫
[0,1]d

δ(t − (σu)2k)|σu|hG((σu)2k,(σu)k,σu)d(σu)

= ∑
σ∈S(d)

∫
[0,1]d

δ(t −u2k)|u|hG(t,σk
√

t,u)du.

By using Theorem 4.6 of a book (Watanabe, 2009), if u ∈ [0,1]d , then

δ(t −u2k)|u|hdu = tλ−1(− log t)m−1du∗

+O(tλ−1(− log t)m−2).

By applying this relation to Y (t), we obtain Lemma 4. (Q.E.D.)

5.6 Proof of Lemma 2

Let Φ(w)> 0 be an arbitrary C∞ class function on Wε. Let Y (t,Φ) (t > 0) be a function defined by

Y (t,Φ)≡
∫

K(w)<ε
δ(t −K(w)) f (x,w)Φ(w)ϕ(w)dw,

whose value is independent of a choice of a resolution map. By using a resolution map w = g(u),

Y (t,Φ) = ∑
α∈A

∑
σ∈S(d)

∫
[−1,1]d

du δ(t −u2k) uk |u|ha(x,u)Φ(g(u))bα(u)du.

By Lemma 4, and σ = (σa,σb),

Y (t,Φ) = tλ−1/2(log t)m−1 ∑
α∈A∗

∑
σa∈S(m)

(σa)
k ∑

σb∈S(d−m)

(σb)
k

×
∫
[0,1]d

du∗ a(x,σu) Φ(g(σu)) bα(σu)

+O(tλ−1/2(log t)m−2).

By the assumption that a true distribution is realizable by a statistical model, Equation (24) shows

that there exists x such that a(x,u) 6= 0 for u2k = 0. On the support of du∗,

σu = (σaua,σbub) = (0,σbub),

consequently the main order term of Y (t,Φ) is determined by Φ(0,ub).
In order to prove Lemma, it is sufficient to prove that Q(K(g(u)),ϕ(g(u))) = 1 is equivalent to

the proposition that, for an arbitrary Φ, the main term of Y (t,Φ) is equal to zero.

First, assume that Q(K(g(u)),ϕ(g(u))) = 1. Then at least one k j (1 ≤ j ≤ m) is odd, σk
a takes

both values ±1, hence

∑
σa∈S(m)

σk
a = 0,

which shows that the coefficient of the main order term in Y (t,Φ) (t →+0) is zero for an arbitrary

Φ(w). Second, assume that Q(K(g(u)),ϕ(g(u))) = 0. Then all k j (1 ≤ j ≤ m) are even, hence

∑
σa∈S(m)

σk
a = ∑

σa∈S(m)

1 6= 0.

Then there exists a function Φ(w) such that the main order term is not equal to zero. Therefore

Q(K(g(u)),ϕ(g(u))) does not depend on the resolution map. (Q.E.D.)
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5.7 Proof of Theorem 4

In this subsection, we prove Theorem 4 using the foregoing preparations. We need to study An and

Bn in Equation (22) and Equation (23). Firstly, we study An.

An = ∑
α∈A

∫
[−1,1]d

du exp(−nβu2k +β
√

nukξn(u))|u|hbα(u)

= ∑
α∈A

∫
[−1,1]d

du

∫ ∞

0
dt δ(t −u2k)|u|hbα(u)

×exp(−nβu2k +β
√

nukξn(u)).

By substitution t := t/(nβ) and dt := dt/(nβ),

An = ∑
α∈A

∫
[−1,1]d

bα(u)du

∫ ∞

0

dt

nβ
δ
( t

nβ
−u2k

)

|u|h

×exp(−nβu2k +β
√

nukξn(u)).

For simple notations, we use
∫

M
du∗ ≡ ∑

α∈A∗
∑

σ∈S(d)

∫
[0,1]d

bα(u) du∗,

ξ∗n(u) ≡ σkξn(u),

where {Uα ; α ∈ A∗} is the set of all essential local coordinates. Then by using Lemma 4, δ(t/nβ−
u2k) can be asymptotically expanded for nβ → 0, hence

An =
∫

M
du∗

∫ ∞

0

dt

nβ

( t

nβ

)λ−1(

− log(
t

nβ
)
)m−1

×exp(−t +
√

βt ξ∗n(u))+Op(
(log(nβ))m−2

(nβ)λ
)

=
(log(nβ))m−1

(nβ)λ

∫
M

du∗
∫ ∞

0
dt tλ−1 exp(−t) exp(

√

βt ξ∗n(u))

+Op(
(log(nβ))m−2

(nβ)λ
).

Since β = β0/ logn → 0,

exp(
√

βt ξ∗n(u)) = 1+
√

βt ξ∗n(u)+Op(β).

By using the gamma function,

Γ(λ) =
∫ ∞

0
tλ−1 exp(−t) dt,

it follows that

An =
(log(nβ))m−1

(nβ)λ

{

Γ(λ)
(

∫
M

du∗
)

+
√

βΓ(λ+
1

2
)
(

∫
M

du∗ξ∗n(u)
)}

+Op(
(log(nβ))m−2

(nβ)λ
).
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Secondly, Bn can be calculated by the same way,

Bn = ∑
α∈A

∫
[−1,1]d

du

∫ ∞

0
dt δ(t −u2k)|u|hbα(u)

×(nu2k −
√

nukξn(u))exp(−nβu2k +β
√

nukξn(u)).

By substitution t := t/(nβ) and dt := dt/(nβ) and Lemma 4,

Bn =
∫

M
du∗

∫ ∞

0

dt

nβ

( t

nβ

)λ−1(

− log(
t

nβ
)
)m−1

×1

β
(t −

√

βt ξ∗n(u))exp(−t +
√

βt ξ∗n(u))+Op(
(log(nβ))m−2

β(nβ)λ
)

=
(log(nβ))m−1

β(nβ)λ

∫
M

du∗
∫ ∞

0
tλ−1(t −

√

βt ξ∗n(u))exp(−t)

×exp(
√

βt ξ∗n(u))+Op(
(log(nβ))m−2

β(nβ)λ
).

Therefore,

Bn =
(log(nβ))m−1

β(nβ)λ

{

Γ(λ+1)
(

∫
M

du∗
)

+
√

β Γ(λ+
3

2
)
(

∫
M

du∗ξ∗n(u)
)

−
√

β Γ(λ+
1

2
)
(

∫
M

du∗ξ∗n(u)
)}

+Op(
(log(nβ))m−2

β(nβ)λ
).

Let us define a random variable Θ by

Θ =

∫
M du∗ξ∗n(u)∫

M du∗
. (27)

By applying results of An and Bn to Equation (21),

E
β
w[nKn(w)] =

1

β
× Γ(λ+1)+

√

β Θ {Γ(λ+3/2)−Γ(λ+1/2)}
Γ(λ)+

√

β ΘΓ(λ+1/2)
+Op(1).

Note that, if a,b,c,d are constants and β → 0,

c+
√

β d

a+
√

β b
=

c

a
+
√

β
(ad −bc

a2

)

+O(β).

Then by using an identity,

Γ(λ)(Γ(λ+3/2)−Γ(λ+1/2))−Γ(λ+1)Γ(λ+1/2)

Γ(λ)2
=−Γ(λ+1/2)

2Γ(λ)
,

we obtain

E
β
w[nKn(w)] =

1

β

Γ(λ+1)

Γ(λ)
− Θ

√

β

Γ(λ+1/2)

2Γ(λ)
+Op(1).
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A random variable Un is defined by

Un =−ΘΓ(λ+1/2)√
2λΓ(λ)

. (28)

Then it follows that

E
β
w[nKn(w)] =

λ

β
+Un

√

λ

2β
+Op(1).

By the definition of ξn(u), E[Θ] = 0, hence E[Un] = 0. By using Cauchy-Schwarz inequality,

Θ2 ≤
∫

M du∗ ξ∗n(u)
2∫

M du∗
.

Lastly let us study the case that q(x) is realizable by p(x|w). The support of du∗ is contained in

u2k = 0, hence we can apply Equation (24) to Θ,

E[Θ2]≤
∫

M du∗E[ξ∗n(u)
2]∫

M du∗
= 2.

The gamma function satisfies
Γ(λ+1/2)

Γ(λ)
<
√

λ (λ > 0).

Hence we obtain

E[(Un)
2]≤ E[Θ2]

2λ

(Γ(λ+1/2)

Γ(λ)

)2

< 1,

which completes Theorem 4. (Q.E.D.)

5.8 Proof of Corollary 1

By definition Equation (27) and Equation (28), it is sufficient to prove Θ = 0, where

Θ =

∑
α∈A∗

∑
σ∈S(d)

∫
[0,1]d

bα(u) du∗ σk ξn(u)

∑
α∈A∗

∑
σ∈S(d)

∫
[0,1]d

bα(u) du∗
.

The support of the measure du∗ is contained in the set {u = (0,ub)}. We use a notation σ =
(σa,σb) ∈ R

m ×R
d−m. If Q(q, p,ϕ) = 1 then there exists a resolution map w = g(u) such that

σk
a takes values both +1 and −1 in arbitrary local coordinate, hence

∑
σa∈S(m)

σk
a = 0.

It follows that

∑
σ∈S(d)

σkξn(0,ub) = ∑
σb∈S(d−m)

σk
bξn(0,ub) ∑

σa∈S(m)

σk
a = 0,

therefore, Θ = 0, which completes Corollary 1. (Q.E.D.)
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5.9 Proof Corollary 2

By using the optimal inverse temperature β∗, we define T = 1/(β∗ logn). By the definition, F =

E
β∗
w [nLn(w)]. By using Theorem 2 and Theorem 4,

λ logn = T λ logn+Un

√

T λ logn/2+Vn = 0,

where

Vn = Op(log logn).

It follows that

T +
Un

√
T

√

2λ logn
−1+

Vn

logn
= 0.

Therefore,

√
T =− Un

√

8λ logn
+

√

1+
(Un)2

8λ logn
− Vn

logn
.

Since Un = Op(1),
√

T = 1− Un
√

8λ logn
+op(

1
√

λ logn
),

resulting that

β∗ logn = 1+
Un

√

2λ logn
+op(

1
√

λ logn
),

which completes Corollary 2. (Q.E.D.)

5.10 Proof of Corollary 3

By using Theorem 4,

E
β1
w [nLn(w)] = nLn(w0)+

λ

β1

+Op(
√

logn),

E
β2
w [nLn(w)] = nLn(w0)+

λ

β2

+Op(
√

logn).

Since (1/β1 −1/β2) = Op(logn),

λ =
E

β1
w [nLn(w)]−E

β2
w [nLn(w)]

1/β1 −1/β2

+Op(1/
√

logn),

which shows Corollary 3. (Q.E.D.)

5.11 Proof Theorem 5

By using Equation (9) and Equation (10),

E
β
w[nLn(w)] = nLn(w0)+E

β
w[nKn(w)],
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the proof of Theorem 5 results in evaluating E
β
w[nKn(w)]. By Lemma 1 for the case r = 1/4,

E
β
w[nKn(w)] =

Dn +op(exp(−√
n))

Cn +op(exp(−√
n))

,

where Cn and Dn are respectively defined by

Cn =
∫

K<1/n1/4
exp(−nβKn(w))ϕ(w)dw,

Dn =
∫

K<1/n1/4
nKn(w)exp(−nβKn(w))ϕ(w)dw.

If a statistical model is regular, the maximum likelihood estimator ŵ converges to w0 in probability.

Let Jn(w) be d ×d matrices defined by

(Jn)i j(w) =
∂2Kn

∂wi∂w j

(w).

There exists a parameter w∗ such that

Kn(w) = Kn(ŵ)+
1

2
(w− ŵ) · Jn(w

∗)(w− ŵ).

Since ŵ → w0 in probability and K(w)< 1/n1/4, w∗ → w0 in probability. Then

‖Jn(w
∗)− J(w0)‖ ≤ ‖Jn(w

∗)− Jn(w0)‖+‖Jn(w0)− J(w0)‖

≤ ‖w∗−w0‖ sup
K(w)<1/n1/4

∥

∥

∥

∂Jn(w)

∂w

∥

∥

∥
+‖Jn(w0)− J(w0)‖,

which converges to zero in probability as n → ∞. Therefore,

Jn(w
∗) = J(w0)+op(1).

Since the model is regular, J(w0) is a positive definite matrix. Now we define

Cn = exp(−nβKn(ŵ))

×
∫

K(w)<n1/4
exp(−nβ

2
(w− ŵ) · (J(w0)+op(1))(w− ŵ))ϕ(w)dw.

By substituting

u =
√

nβ(w− ŵ),

it follows that

Cn = exp(−nβKn(ŵ))(nβ)−d/2

×
∫

exp(−1

2
u · (J(w0)+op(1))u)ϕ(ŵ+

u
√

nβ
)du

=
(2π)d/2 exp(−nβKn(ŵ))(ϕ(ŵ)+op(1))

(nβ)d/2 det(J(w0)+op(1))1/2
.
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H 1 2 3 4 5 6

WBIC1 Ave. 17899.82 3088.90 71.11 78.21 83.23 87.58

WBIC1 Std. 1081.30 226.94 3.67 3.78 3.97 4.09

WBIC2 Ave. 17899.77 3089.03 71.18 75.43 82.54 86.83

WBIC2 Std. 1081.30 226.97 3.54 3.89 4.03 4.08

BIC Ave. 17899.77 3089.03 71.18 83.47 91.86 94.87

BIC Std. 1081.30 226.97 3.54 3.89 4.03 4.08

Table 2: WBIC and BIC in Model Selection

In the same way,

Dn = exp(−nβKn(ŵ))

×
∫

K(w)<1/n1/4

(

nKn(ŵ)+
n

2
(w− ŵ) · (J(w0)+op(1))(w− ŵ)

)

×exp
(

−nβ

2
(w− ŵ) · (J(w0)+op(1))(w− ŵ)

)

ϕ(w)dw

=
(2π)d/2 exp(−nβKn(ŵ))(ϕ(ŵ)+op(1))

(nβ)d/2 det(J(w0)+op(1))1/2

(

nKn(ŵ)+
d

2β
+op(1)

)

.

Here nKn(ŵ) = Op(1), because the true distribution is regular for a statistical model. Therefore,

E
β
w[nLn(w)] = nLn(w0)+nKn(ŵ)+

d

2β
+op(1),

which completes Theorem 5. (Q.E.D.)

6. A Method How to Use WBIC

In this section we show a method how to use WBIC in statistical model evaluation. The main

theorems have already been mathematically proved, hence WBIC has a theoretical support. The

following experiment was conducted not for proving theorems but for illustrating a method how to

use it.

6.1 Statistical Model Selection

Firstly, we study model selection by using WBIC.

Let x ∈ R
M , y ∈ R

N , and w = (A,B), where A is an H ×M matrix and B is an N ×H matrix. A

reduced rank regression model is defined by

p(x,y|w) = r(x)

(2πσ2)N/2
exp

(

− 1

2σ2
‖y−BAx‖2

)

,

where r(x) is a probability density function of x and σ2 is the variance of an output. Let NM(0,Σ)
denote the M-dimensional normal distribution with the average zero and the covariance matrix Σ.

In an experiment, we set σ = 0.1, r(x) = NM(0,32I), where I is the identity matrix, and ϕ(w) =
Nd(0,102I). The true distribution was fixed as p(x,y|w0), where w0 = (A0,B0) was determined so
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that A0 and B0 were respectively an H0×M matrix and an M×H0 matrix. Note that, in reduced rank

regression models, RLCTs and multiplicities were clarified by a research (Aoyagi and Watanabe,

2005) and Q(K(w),ϕ(w)) = 1 for arbitrary q(x), p(x|w), and ϕ(w). In the experiment, M = N = 6

and the true rank was set as H0 = 3. Each element of A0 and B0 was taken from N1(0,0.2
2) and

fixed. From the true distribution p(x,y|w0), 100 sets of n = 500 training samples were generated.

The Metropolis method was employed for sampling from the posterior distribution,

p(w|X1,X2, ...,Xn) ∝ exp(−βnLn(w)+ logϕ(w)),

where β= 1/ logn. Every Metropolis trial was generated from a normal distribution Nd(0,(0.0012)2I),
by which the acceptance probability was 0.1-0.9. First 50000 Metropolis trails were not used. After

50000 trails, R = 2000 parameters {wr;r = 1,2, ...,R} were obtained in every 100 Metropolis steps.

The expectation value of a function G(w) over the posterior distribution was approximated by

E
β
w[G(w)] =

1

R

R

∑
r=1

G(wr).

The six statistical models H = 1,2,3,4,5,6 were compared by the criterion,

WBIC = E
β
w[nLn(w)], (β = 1/ logn).

To compare these values among several models, we show both WBIC1, WBIC2, and BIC in Table

2. In the table, the average and the standard deviation of WBIC1 defined by

WBIC1 = WBIC−nSn,

for 100 independent sets of training samples are shown, where the empirical entropy of the true

distribution

Sn =−1

n

n

∑
i=1

logq(Xi)

does not depend on a statistical model. Although nSn does not affect the model selection, its standard

deviation is in proportion to
√

n. In order to estimate the standard deviation of the essential part of

WBIC, the effect of nSn was removed. In 100 independent sets of training samples, the true model

H = 3 was chosen 100 times in this experiment, which demonstrates a typical application method

of WBIC.

Also WBIC2 in Table 2 shows the average and the standard deviation of

WBIC2 = nLn(ŵ)+λ logn− (m−1) log logn−nSn,

where ŵ is the maximum likelihood estimator, λ is the real log canonical threshold, and m is the

multiplicity. The maximum likelihood estimator ŵ = (Â, B̂) is given in reduced rank regression

(Anderson, 1951),

B̂Â =VV tY X t(XX t)−1,

where t shows the transposed matrix and X , Y , and V are matrices defined as follows.

(1) Xi j is the i-th coefficient of x j

(2) Yi j is the i-th coefficient of y j.
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H 1 2 3 4 5 6

Theory λ 5.5 10 13.5 15 16 17

Theory m 1 1 1 2 1 2

Average λ 5.51 9.95 13.49 14.80 15.72 16.55

Std. Dev. λ 0.17 0.31 0.52 0.65 0.66 0.72

Table 3: RLCTs for the case H0 = 3

(3) The matrix V is made of eigen vectors with respect to the maximum H eigen values of the

matrix,

Y X t(XX t)−1XY t .

If we know the model that is equal to the true distribution, and if we have theoretical real log

canonical threshold and multiplicity, then we can calculate WBIC2.

The value BIC in Table 2 shows the average and the standard deviation of Shwarz BIC,

BIC = nLn(ŵ)+
d

2
logn−nSn,

where d is the essential dimension of the parameter space of the reduced rank regression,

d = H(M+N −H).

We used this dimension because the number of parameters in reduced rank regression is H(M+N)
and it has free dimension H2. These results show that WBIC is a better approximator of the Bayes

free energy than BIC.

6.2 Estimating RLCT

Secondly, we study a method how to estimate an RLCT. By using the same experiment as the

foregoing subsection, we estimated RLCTs of reduced rank regression models by using Corollary

3. Based on Equation (19), the estimated RLCT is given by

λ̂ =
E

β1
w [nLn(w)]−E

β2
w [nLn(w)]

1/β1 −1/β2

,

where β1 = 1/ logn and β2 = 1.5/ logn and we used Equation (20) in the calculation of E
β2
w [ ]. The-

ory λ in Table 3 shows the theoretical values of RLCTs of reduced rank regression. For the cases

when true distributions are unrealizable by statistical models, RLCTs are given by half the dimen-

sion of the parameter space, λ = H(M+N −H)/2. In Table 3, averages and standard deviations of

λ shows estimated RLCTs. The theoretical RLCTs were well estimated. The difference between

theory and experimental results was caused by the effect of the smaller order terms than logn. In

the case the multiplicity m = 2, the term loglogn also affected the results.

7. Discussion

In this section, we discuss the widely applicable information criterion from three different points of

view.
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7.1 WAIC and WBIC

Firstly, let us study the difference between the free energy and the generalization error. In the present

paper, we study the Bayes free energy F as the statistical model selection criterion. Its expectation

value is given by

E[F ] = nS+
∫

q(xn) log
q(xn)

p(xn)
dxn,

where S is the entropy of the true distribution,

q(xn) =
n

∏
i=1

q(xi),

p(xn) =
∫ n

∏
i=1

p(xi|w)ϕ(w)dw,

and dxn = dx1dx2 · · ·dxn. Hence minimization of E[F ] is equivalent to minimization of the Kullback-

Leibler distance from the q(xn) to p(xn).

There is a different model evaluation criterion, which is the generalization loss defined by

G =−
∫

q(x) log p∗(x)dx, (29)

where p∗(x) is the Bayes predictive distribution defined by p∗(x) = E
β
w[p(x|w)], with β = 1. The

expectation value of G satisfies

E[G ] = S+E

[

∫
q(x) log

q(x)

p∗(x)
dx
]

.

Hence minimization of E[G ] is equivalent to minimization of the Kullback-Leibler distance from

q(x) to p∗(x). Both of F and G are important in statistics and learning theory, however, they are

different criteria.

The well-known model selection criteria AIC and BIC are respectively defined by

AIC = Ln(ŵ)+
d

n
, (30)

BIC = nLn(ŵ)+
d

2
logn.

If a true distribution is realizable by and regular for a statistical model, then

E[AIC] = E[G ]+o(
1

n
),

E[BIC] = E[F ]+O(1).

These relations can be generalized onto singular statistical models. We define WAIC and WBIC by

WAIC = Tn +Vn/n,

WBIC = E
β
w[nLn(w)], β = 1/ logn,
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where

Tn = −1

n

n

∑
i=1

log p∗(Xi|w),

Vn =
n

∑
i=1

{

Ew[(log p(Xi|w))2]−Ew[log p(Xi|w)]2
}

.

Then, even if a statistical model is unrealizable by and singular for a statistical model,

E[WAIC] = E[G ]+O(
1

n2
), (31)

E[WBIC] = E[F ]+O(log logn), (32)

where Equation (31) was proved in a book (Watanabe, 2009, 2010b), whereas Equation (32) has

been proved in the present paper. In fact, the difference between the average leave-one-out cross

validation and the average generalization error is in proportion to 1/n2 and the difference between

the leave-one-out cross validation and WAIC is also in proportion to 1/n2. The difference between

E[WBIC] and E[F ] is caused by the multiplicity m. If a statistical model is realizable by and regular

for a statistical model, WAIC and WBIC respectively coincide with AIC and BIC,

WAIC = AIC+op(
1

n
),

WBIC = BIC+op(1).

Theoretical comparison of WAIC and WBIC in singular model selection is an important problem

for future study.

7.2 Other Methods How to Evaluate Free Energy

Secondly, we discuss several methods how to numerically evaluate the Bayes free energy. There are

three methods other than WBIC.

Firstly, let {β j; j = 0,1,2, ...,J} be a sequence which satisfies

0 = β0 < β1 < · · ·< βJ = 1.

Then the Bayes free energy satisfies

F =−
J

∑
j=1

logE
β j−1
w [exp(−n(β j −β j−1)Ln(w))].

This method can be used without asymptotic theory. We can estimate F , if the number J is suf-

ficiently large and if all expectation values over the posterior distributions {Eβ j−1
w [ ]} are precisely

calculated. The disadvantage of this method is its huge computational costs for accurate calculation.

In the present paper, this method is referred to as ‘all temperatures method’.

Secondly, the importance sampling method is often used. Let H(w) be a function which ap-

proximates nLn(w). Then, for an arbitrary function G(w), we define an expectation value Êw[ ]
by

Êw[G(w)] =

∫
G(w)exp(−H(w))ϕ(w)dw∫

exp(−H(w))ϕ(w)dw
.
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Method Asymptotics RLCT Comput. Cost

All Temperatures Not used Not Used Huge

Importance Sampling Not used Not Used Small

Two-Step Used Used Small

WBIC Used Not Used Small

Table 4: Comparison of Several Methods

Then

F = − log Êw[exp(−nLn(w)+H(w))]

− log

∫
exp(−H(w))ϕ(w)dw,

where the last term is the free energy of H(w). Hence if we find H(w) whose free energy is analyti-

cally calculated and if it is easy to generate random samples from Êw[ ], then F can be numerically

evaluated. The accuracy of this method strongly depends on the choice of H(w).

Thirdly, a two-step method was proposed (Drton, 2010). Assume that we have theoretical values

about RLCTs for all cases about true distribution and statistical models. Then, in the first step, a null

hypothesis model is chosen by using BIC. In the second step, the optimal model is chosen by using

RLCTs with the assumption that the null hypothesis model is a true distribution. If the selected

model is different from the null hypothesis model, then the same procedure is recursively applied

until the null hypothesis model becomes the optimal model. In this method, asymptotic theory is

necessary but RLCTs do not contain fluctuations because they are theoretical values.

Compared with these methods, WBIC needs asymptotic theory but it does not theoretical results

about RLCT. The theoretical comparison of these methods is summarized in Table 4.

The effectiveness of a model selection method strongly depends on a statistical condition which

is determined by a true distribution, a statistical model, a prior distribution, and a set of training

samples. Under some condition, one method may be more effective, however, under the other con-

dition, another may be. The proposed method WBIC gives a new approach in numerical calculation

of the Bayes free energy which is more useful with cooperation with the conventional method. It is

a future study to clarify which method is recommended in what statistical conditions.

Remark. It is one of the most important problems in Bayes statistics how to make accurate

Markov Chain Monte Carlo (MCMC) process. There are several MCMC methods, for example,

the Metropolis method, the Gibbs sampler method, the Hybrid Monte Carlo method, and the ex-

change Monte Carlo method. Numerical calculation of WBIC depends on the accuracy of MCMC

process.

7.3 Algebraic Geometry and Statistics

Lastly, let us discuss a relation between algebraic geometry and statistics. In the present paper, we

define the parity of a statistical Q(K(w),ϕ(w)) and proved that it affects the asymptotic behavior of

WBIC. In this subsection we show three mathematical properties of the parity of a statistical model.

Firstly, the parity has a relation to the analytic continuation of K(w)1/2. For example, by using

blow-up, (a,b)= (a1,a1b1)= (a2b2,b2), it follows that analytic continuation of (a2+b2)1/2 is given
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by

(a2 +b2)1/2 = a1

√

1+b2
1 = b2

√

a2
2 +1,

which takes both positive and negative values. On the other hand, (a4 +b4)1/2 takes only nonnega-

tive value. The parity indicates such difference.

Secondly, the parity has a relation to statistical model with a restricted parameter set. For exam-

ple, a statistical model

p(x|a) = 1√
2π

exp(−(x−a)2

2
)

whose parameter set is given by {a ≥ 0} is equivalent to a statistical model p(x|b2) and {b ∈R}. In

other words, a statistical model which has restricted parameter set is statistically equivalent to an-

other even model which has unrestricted parameter set. We have a conjecture that an even statistical

model has some relation to a model with a restricted parameter model.

And lastly, the parity has a relation to the difference of K(w) and Kn(w). As is proven (Watanabe,

2001a), the relation

− log

∫
exp(−nKn(w))ϕ(w)dw =− log

∫
exp(−nK(w))ϕ(w)dw+Op(1)

holds independent of the parity of a statistical model. On the other hand, if β = 1/ logn, then

E
β
w[nKn(w)] =

∫
nK(w)exp(−nβK(w))ϕ(w)dw∫

exp(−nβK(w))ϕ(w)

+Un

√

logn+Op(1).

If the parity is odd, then Un = 0, otherwise Un is not equal to zero in general. This fact shows that

the parity shows difference in a fluctuation of the likelihood function.

8. Conclusion

We proposed a widely applicable Bayesian information criterion (WBIC) which can be used even

if a true distribution is unrealizable by and singular for a statistical model and proved that WBIC

has the same asymptotic expansion as the Bayes free energy. Also we developed a method how to

estimate real log canonical thresholds even if a true distribution is unknown.
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Abstract

This paper considers the sparse eigenvalue problem, which is to extract dominant (largest) sparse

eigenvectors with at most k non-zero components. We propose a simple yet effective solution called

truncated power method that can approximately solve the underlying nonconvex optimization prob-

lem. A strong sparse recovery result is proved for the truncated power method, and this theory is

our key motivation for developing the new algorithm. The proposed method is tested on applica-

tions such as sparse principal component analysis and the densest k-subgraph problem. Extensive

experiments on several synthetic and real-world data sets demonstrate the competitive empirical

performance of our method.

Keywords: sparse eigenvalue, power method, sparse principal component analysis,

densest k-subgraph

1. Introduction

Given a p× p symmetric positive semidefinite matrix A, the largest k-sparse eigenvalue problem

aims to maximize the quadratic form x⊤Ax with a sparse unit vector x ∈ R
p with no more than k

non-zero elements:

λmax(A,k) = max
x∈Rp

x⊤Ax, subject to ‖x‖= 1, ‖x‖0 ≤ k, (1)

where ‖ · ‖ denotes the ℓ2-norm, and ‖ · ‖0 denotes the ℓ0-norm which counts the number of non-

zero entries in a vector. The sparsity is controlled by the values of k and can be viewed as a

design parameter. In machine learning applications, for example, principal component analysis,

this problem is motivated from the following perturbation formulation of matrix A:

A = Ā+E, (2)

where A is the empirical covariance matrix, Ā is the true covariance matrix, and E is a random

perturbation due to having only a finite number of empirical samples. If we assume that the largest

eigenvector x̄ of Ā is sparse, then a natural question is to recover x̄ from the noisy observation A

when the error E is “small”. In this context, the problem (1) is also referred to as sparse principal

component analysis (sparse PCA).

In general, problem (1) is non-convex. In fact, it is also NP-hard because it can be reduced to the

subset selection problem for ordinary least squares regression (Moghaddam et al., 2006), which is

c©2013 Xiao-Tong Yuan and Tong Zhang.
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known to be NP-hard. Various researchers have proposed approximate optimization methods: some

are based on greedy procedures (e.g., Moghaddam et al., 2006; Jolliffe et al., 2003; d’Aspremont

et al., 2008), and some others are based on various types of convex relaxation or reformulation

(e.g., d’Aspremont et al., 2007; Zou et al., 2006; Journée et al., 2010). Statistical analysis of sparse

PCA has also received significant attention. Under the high dimensional single spike model, John-

stone (2001) proved the consistency of PCA using a subset of features corresponding to the largest

sample variances. Under the same single spike model, Amini and Wainwright (2009) established

conditions for recovering the non-zero entries of eigenvectors using the convex relaxation method

of d’Aspremont et al. (2007). However, these results were concerned with variable selection con-

sistency under a relatively simple and specific example with limited general applicability. More

recently, Paul and Johnstone (2012) studied an extension called multiple spike model, and proposed

an augmented sparse PCA method for estimating each of the leading eigenvectors and investigated

the rate of convergence of their procedure in the high dimensional setting. In another recent work

that is independent of ours, Ma (2013) analyzed an iterative thresholding method for recovering the

sparse principal subspace. Although it also focused on the multiple spike covariance model, the pro-

cedures and techniques considered there are closely related to the method studied in this paper. In

addition, Shen et al. (2013) analyzed the consistency of the sparse PCA method of Shen and Huang

(2008), and Cai et al. (2012) analyzed the optimal convergence rate of sparse PCA and introduced

an adaptive procedure for estimating the principal subspace.

This paper proposes and analyzes a computational procedure called truncated power iteration

method that approximately solves (1). This method is similar to the classical power method, with

an additional truncation operation to ensure sparsity. We show that if the true matrix Ā has a sparse

(or approximately sparse) dominant eigenvector x̄, then under appropriate assumptions, this algo-

rithm can recover x̄ when the spectral norm of sparse submatrices of the perturbation E is small.

Moreover, this result can be proved under relative generality without restricting ourselves to the

rather specific spike covariance model. Therefore our analysis provides strong theoretical support

for this new method, and this differentiates our proposal from previous studies. We have applied the

proposed method to sparse PCA and to the densest k-subgraph finding problem (with proper modi-

fication). Extensive experiments on synthetic and real-world large-scale data sets demonstrate both

the competitive sparse recovering performance and the computational efficiency of our method.

It is worth mentioning that the truncated power method developed in this paper can also be

applied to the smallest k-sparse eigenvalue problem given by:

λmin(A,k) = min
x∈Rp

x⊤Ax, subject to ‖x‖= 1, ‖x‖0 ≤ k,

which also has many applications in machine learning.

1.1 Notation

Let Sp = {A ∈ R
p×p | A = A⊤} denote the set of symmetric matrices, and S

p
+ = {A ∈ S

p,A �
0} denote the cone of symmetric, positive semidefinite matrices. For any A ∈ S

p, we denote its

eigenvalues by λmin(A) = λp(A)≤ ·· · ≤ λ1(A) = λmax(A). We use ρ(A) to denote the spectral norm

of A, which is max{|λmin(A)|, |λmax(A)|}, and define

ρ(A,s) := max{|λmin(A,s)|, |λmax(A,s)|}. (3)

The i-th entry of vector x is denoted by [x]i while [A]i j denotes the element on the i-th row and j-th

column of matrix A. We denote by Ak any k× k principal submatrix of A and by AF the principal
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submatrix of A with rows and columns indexed in set F . If necessary, we also denote AF as the

restriction of A on the rows and columns indexed in F . Let ‖x‖p be the ℓp-norm of a vector x. In

particular, ‖x‖2 =
√

x⊤x denotes the Euclidean norm, ‖x‖1 = ∑d
i=1 |[x]i| denotes the ℓ1-norm, and

‖x‖0 = #{ j : [x] j 6= 0} denotes the ℓ0-norm. For simplicity, we also denote the ℓ2 norm ‖x‖2 by ‖x‖.
In the rest of the paper, we define Q(x) := x⊤Ax. We let supp(x) := { j : [x] j 6= 0} denote the support

set of vector x. Given an index set F , we define

x(F) := argmax
x∈Rp

x⊤Ax, subject to ‖x‖= 1, supp(x)⊆ F.

Finally, we denote by Ip×p the p× p identity matrix.

1.2 Paper Organization

The remaining of this paper is organized as follows: §2 describes the truncated power iteration algo-

rithm that approximately solves problem (1). In §3 we analyze the solution quality of the proposed

algorithm. §4 evaluates the relevance of our theoretical prediction and the practical performance of

the proposed algorithm in applications of sparse PCA and the densest k-subgraph finding problems.

We conclude this work and discuss potential extensions in §5.

2. Truncated Power Method

Since λmax(A,k) equals λmax(A
∗
k) where A∗k is the k× k principal submatrix of A with the largest

eigenvalue, one may solve (1) by exhaustively enumerating all subsets of {1, . . . , p} of size k in

order to find A∗k . However, this procedure is impractical even for moderate sized k since the number

of subsets is exponential in k.

2.1 Algorithm

Therefore in order to solve the spare eigenvalue problem (1) more efficiently, we consider an itera-

tive procedure based on the standard power method for eigenvalue problems, while maintaining the

desired sparsity for the intermediate solutions. The procedure, presented in Algorithm 1, generates

a sequence of intermediate k-sparse eigenvectors x0,x1, . . . from an initial sparse approximation x0.

At each time stamp t, the intermediate vector xt−1 is multiplied by A, and then the entries are trun-

cated to zeros except for the largest k entries. The resulting vector is then normalized to unit length,

which becomes xt . The cardinality k is a free parameter in the algorithm. If no prior knowledge

of sparsity is available, then we have to tune this parameter, for example, through cross-validation.

Note that our theory does not require choosing k precisely (see Theorem 4), and thus the tuning is

not difficult in practice. At each iteration, the computational complexity is in O(kp+ p) which is

O(kp) for matrix-vector product Axt−1 and O(p)1 for selecting k largest elements from the obtained

vector of length p to get Ft .

Definition 1 Given a vector x and an index set F, we define the truncation operation Truncate(x,F)
to be the vector obtained by restricting x to F, that is

[Truncate(x,F)]i =

{

[x]i i ∈ F

0 otherwise
.

1. Our actual implementation employs sorting for simplicity, which has a slightly worse complexity of O(p ln p) instead

of O(p).
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Algorithm 1: Truncated Power (TPower) Method

Input : matrix A ∈ S
p, initial vector x0 ∈ R

p

Output : xt

Parameters : cardinality k ∈ {1, ..., p}
Let t = 1.

repeat

Compute x′t = Axt−1/‖Axt−1‖.
Let Ft = supp(x′t ,k) be the indices of x′t with the largest k absolute values.

Compute x̂t = Truncate(x′t ,Ft).
Normalize xt = x̂t/‖x̂t‖.
t← t +1.

until Convergence;

Remark 2 Similar to the behavior of traditional power method, if A ∈ S
p
+, then TPower tries to

find the (sparse) eigenvector of A corresponding to the largest eigenvalue. Otherwise, it may find

the (sparse) eigenvector with the smallest eigenvalue if −λp(A)> λ1(A). However, this situation is

easily detectable because it can only happen when λp(A)< 0. In such case, we may restart TPower

with A replaced by an appropriately shifted version A+ λ̃Ip×p.

2.2 Convergence

We now show that when A is positive semidefinite, TPower converges. This claim is a direct conse-

quence of the following proposition.

Proposition 3 If all 2k× 2k principal submatrix A2k of A are positive semidefinite, then the se-

quence {Q(xt)}t≥1 is monotonically increasing, where xt is obtained from the TPower algorithm.

Proof Observe that the iterate xt in TPower solves the following constrained linear optimization

problem:

xt = argmax
‖x‖=1,‖x‖0≤k

L(x;xt−1), L(x;xt−1) := 〈2Axt−1,x− xt−1〉.

Clearly, Q(x)−Q(xt−1) = L(x;xt−1)+ (x− xt−1)
⊤A(x− xt−1). Since ‖xt − xt−1‖0 ≤ 2k and each

2k× 2k principal submatrix of A is positive semidefinite, we have (xt − xt−1)
⊤A(xt − xt−1) ≥ 0. It

follows that Q(xt)−Q(xt−1) ≥ L(xt ;xt−1). By the definition of xt as the maximizer of L(x;xt−1)
over x (subject to ‖x‖ = 1 and ‖x‖0 ≤ k), we have L(xt ;xt−1) ≥ L(xt−1;xt−1) = 0. Therefore

Q(xt)−Q(xt−1)≥ 0, which proves the desired result.

3. Sparse Recovery Analysis

We consider the general noisy matrix model (2), and are especially interested in the high dimen-

sional situation where the dimension p of A is large. We assume that the noise matrix E is a dense

p× p matrix such that its sparse submatrices have small spectral norm ρ(E,s) (see (3)) for s in the

same order of k. We refer to this quantity as restricted perturbation error. However, the spectral
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norm of the full matrix perturbation error ρ(E) can be large. For example, if the original covariance

is corrupted by an additive standard Gaussian iid noise vector, then ρ(E,s) = O(
√

s log p/n), which

grows linearly in
√

s, instead of ρ(E) = O(
√

p/n), which grows linearly in
√

p. The main advan-

tage of the sparse eigenvalue formulation (1) over the standard eigenvalue formulation is that the

estimation error of its optimal solution depends on ρ(E,s) with respectively a small s = O(k) rather

than ρ(E). This linear dependency on sparsity k instead of the original dimension p is analogous

to similar results for sparse regression (or compressive sensing). In fact, the restricted perturbation

error considered here is analogous to the idea of restricted isometry property (RIP) considered by

Candes and Tao (2005).

The purpose of the section is to show that if matrix Ā has a unique sparse (or approximately

sparse) dominant eigenvector, then under suitable conditions, TPower can (approximately) recover

this eigenvector from the noisy observation A.

Assumption 1 Assume that the largest eigenvalue of Ā ∈ S
p is λ = λmax(Ā) > 0 that is non-

degenerate, with a gap ∆λ = λ−max j>1 |λ j(Ā)| between the largest and the remaining eigenvalues.

Moreover, assume that the eigenvector x̄ corresponding to the dominant eigenvalue λ is sparse with

cardinality k̄ = ‖x̄‖0.

We want to show that under Assumption 1, if the spectral norm ρ(E,s) of the error matrix is

small for an appropriately chosen s > k̄, then it is possible to approximately recover x̄. Note that

in the extreme case of s = p, this result follows directly from the standard eigenvalue perturbation

analysis (which does not require Assumption 1).

We now state our main result as below, which shows that under appropriate conditions, the

TPower method can recover the sparse eigenvector. The final error bound is a direct generalization

of standard matrix perturbation result that depends on the full matrix perturbation error ρ(E). Here

this quantity is replaced by the restricted perturbation error ρ(E,s).

Theorem 4 We assume that Assumption 1 holds. Let s = 2k+ k̄ with k ≥ k̄. Assume that ρ(E,s)≤
∆λ/2. Define

γ(s) :=
λ−∆λ+ρ(E,s)

λ−ρ(E,s)
< 1, δ(s) :=

√
2ρ(E,s)

√

ρ(E,s)2 +(∆λ−2ρ(E,s))2
.

If |x⊤0 x̄| ≥ θ+δ(s) for some ‖x0‖0 ≤ k, ‖x0‖= 1, and θ ∈ (0,1) such that

µ =
√

(1+2((k̄/k)1/2 + k̄/k))(1−0.5θ(1+θ)(1− γ(s)2))< 1, (4)

then we either have
√

1−|x⊤0 x̄|<
√

10δ(s)/(1−µ), (5)

or for all t ≥ 0
√

1−|x⊤t x̄| ≤ µt

√

1−|x⊤0 x̄|+
√

10δ(s)/(1−µ). (6)

Remark 5 We only state our result with a relatively simple but easy to understand quantity ρ(E,s),
which we refer to as restricted perturbation error. It is analogous to the RIP concept (Candes and

Tao, 2005), and is also directly comparable to the traditional full matrix perturbation error ρ(E).
While it is possible to obtain sharper results with additional quantities, we intentionally keep the

theorem simple so that its consequence is relatively easy to interpret.
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Remark 6 Although we state the result by assuming that the dominant eigenvector x̄ is sparse, the

theorem can also be adapted to certain situations that x̄ is only approximately sparse. In such case,

we simply let x̄′ be a k̄ sparse approximation of x̄. If x̄′− x̄ is sufficiently small, then x̄′ is the dominant

eigenvector of a symmetric matrix Ā′ that is close to Ā; hence the theorem can be applied with the

decomposition A = Ā′+E ′ where E ′ = E +A− Ā′.

Note that we did not make any attempt to optimize the constants in Theorem 4, which are

relatively large. Therefore in the discussion, we shall ignore the constants, and focus on the main

message Theorem 4 conveys. If ρ(E,s) is smaller than the eigen-gap ∆λ/2 > 0, then γ(s) < 1

and δ(s) = O(ρ(E,s)). It is easy to check that for any k ≥ k̄, if γ(s) is sufficiently small then the

requirement (4) can be satisfied for a sufficiently small θ of the order (k̄/k)1/2. It follows that under

appropriate conditions, as long as we can find an initial x0 such that

|x⊤0 x̄| ≥ c(ρ(E,s)+(k̄/k)1/2)

for some constant c, then 1−|x⊤t x̄| converges geometrically until

‖xt − x̄‖= O(ρ(E,s)).

This result is similar to the standard eigenvector perturbation result stated in Lemma 10 of Ap-

pendix A, except that we replace the spectral error ρ(E) of the full matrix by ρ(E,s) that can be

significantly smaller when s≪ p. To our knowledge, this is the first sparse recovery result for

the sparse eigenvalue problem in a relatively general setting. This theorem can be considered as a

strong theoretical justification of the proposed TPower algorithm that distinguishes it from earlier

algorithms without theoretical guarantees. Specifically, the replacement of the full matrix perturba-

tion error ρ(E) with ρ(E,s) gives the theoretical insights on why TPower works well in practice.

To illustrate our result, we briefly describe a consequence of the theorem under the single spike

covariance model of Johnstone (2001) which was investigated by Amini and Wainwright (2009).

We assume that the observations are p dimensional vectors

xi = x̄+ ε,

for i = 1, . . . ,n, where ε∼ N(0, Ip×p). For simplicity, we assume that ‖x̄‖= 1. The true covariance

is

Ā = x̄x̄⊤+ Ip×p,

and A is the empirical covariance

A =
1

n

n

∑
i=1

xix
⊤
i .

Let E = A− Ā, then random matrix theory implies that with large probability,

ρ(E,s) = O(
√

s ln p/n).

Now assume that max j |x̄ j| is sufficiently large. In this case, we can run TPower with a starting

point x0 = e j for some vector e j (where e j is the vector of zeros except the j-th entry being one) so

that |e⊤j x̄| = |x̄ j| is sufficiently large, and the assumption for the initial vector |x⊤0 x̄| ≥ c(ρ(E,s)+
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(k̄/k)1/2) is satisfied with s = O(k̄). We may run TPower with an appropriate initial vector to obtain

an approximate solution xt of error

‖xt − x̄‖= O(
√

k̄ ln p/n).

This bound is optimal (Cai et al., 2012). Note that our results are not directly comparable to those of

Amini and Wainwright (2009), which studied support recovery. Nevertheless, it is worth noting that

if max j |x̄ j| is sufficiently large, then our result becomes meaningful when n = O(k̄ ln p); however

their result requires n = O(k̄2 ln p) to be meaningful, although this is for the pessimistic case of x̄

having equal nonzero values of 1/
√

k̄. Based on a similar spike covariance model, Ma (2013) inde-

pendently presented and analyzed an iterative thresholding method for recovering sparse orthogonal

principal components, using ideas related to what we present in this paper.

Finally we note that if we cannot find an initial vector with large enough value |x⊤0 x̄|, then it

may be necessary to take a relatively large k so that the requirement |x⊤0 x̄| ≥ c(ρ(E,s)+ (k̄/k)1/2)
is satisfied. With such a k, ρ(E,s) may be relatively large and hence the theorem indicates that xt

may not converge to x̄ accurately. Nevertheless, as long as |x⊤t x̄| converges to a value that is not

too small (e.g., can be much larger than |x⊤0 x̄|), we may reduce k and rerun the algorithm with a

k-sparse truncation of xt as initial vector together with the reduced k. In this two stage process,

the vector found from the first stage (with large k) is truncated and normalized, and then used

as the initial value of the second stage (with small k). Therefore we may also regard it as an

initialization method for TPower. Specially, in the first stage we may run TPower with k = p from

arbitrary initialization. In this stage, TPower reduces to the classic power method which outputs

the dominant eigenvector x of A. Let F = supp(x,k) be the indices of x with the largest k absolute

values and x0 := Truncate(x,F)/‖Truncate(x,F)‖. Let θ = x⊤x̄− (k̄/k)1/2
√

1− (x⊤x̄)2−δ(s). It is

implied by Lemma 12 in Appendix A that x⊤0 x̄ ≥ θ+ δ(s). Obviously, if θ(1+θ) ≥ 8(k̄/k)/((1+
4k̄/k)(1− γ(s)2)), then x0 will be an initialization suitable for Theorem 1. From this initialization,

we can obtain a better solution using the TPower method. In practice, one may use other methods

to obtain an approximate x0 to initialize TPower, not necessarily restricted to running TPower with

larger k.

4. Experiments

In this section, we first show numerical results (in §4.1) that confirm the relevance of our theoretical

predictions. We then illustrate the effectiveness of TPower method when applied to sparse principal

component analysis (sparse PCA) (in §4.2) and the densest k-subgraph (DkS) finding problem (in

§4.3). The Matlab code for reproducing the experimental results reported in this section is available

from https://sites.google.com/site/xtyuan1980/publications.

4.1 Simulation Study

In this experiment, we illustrate the performance of TPower using simulated data. Theorem 4

implies that under appropriate conditions, the estimation error
√

1− x⊤t x̄ is proportional to δ(s). By

definition, δ(s) is an increasing function with respect to perturbation error ρ(E,s) and a decreasing

function with respect to the gap ∆λ between the largest eigenvalue and the remaining eigenvalues.

We will verify the results of Theorem 4 by applying TPower to the following single spike model
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with true covariance

Ā = βx̄x̄⊤+ Ip×p

and empirical covariance

A =
1

n

n

∑
i=1

xix
⊤
i ,

where xi ∼ N (0, Ā). For the true covariance matrix Ā, its dominant eigenvector is x̄ with eigen-

value β + 1, and its eigenvalue gap is ∆λ = β. For this model, with large probability we have

ρ(E,s) = O(
√

s ln p/n). Therefore, for fixed dimensionality p, the error bound is relevant to the

triplet {n,β,k}. In this study, we consider a setup with p = 1000, and x̄ is a k̄-sparse uniform

random vector with k̄ = 20 and ‖x̄‖= 1. We are interested in the following two cases:

1. Cardinality k is tuned and fixed: we will study how the estimation error is affected by sample

size n and eigen-gap β.

2. Cardinality k is varying: for fixed sample size n and eigen-gap β, we will study how the

estimation error is affected by cardinality k in the algorithm.

4.1.1 ON INITIALIZATION

Theorem 4 suggests that TPower can benefit from a good initial vector x0. We initialize x0 by using

the warm-start strategy suggested at the end of §3. In our implementation, this strategy is specialized

as follows: we sequentially run TPower with cardinality {8k,4k,2k,k}, using the (truncated) output

from the previous running as the initial vector for the next running. This initialization strategy works

satisfactory in our numerical experiments.

4.1.2 TEST I: CARDINALITY k IS TUNED AND FIXED

In this case, we test with n∈{100,200,500,1000,2000} and β∈{1,10,50,100,200,400}. For each

pair {n,β}, we generate 100 empirical covariance matrices and employ the TPower to compute a

k-sparse eigenvector x̂. For each empirical covariance matrix A, we also generate an independent

empirical covariance matrix Aval to select k from the candidate set K = {5,10,15, ...,50} by maxi-

mizing the following criterion:

k̂ = argmax
k∈K

x̂(k)⊤Aval x̂(k),

where x̂(k) is the output of TPower for A under cardinality k. For different pairs (n,β), the tuned

values of k could be different. For example, for (n,β) = (100,1), k = 10 will be selected; while

for (n,β) = (100,10), k = 20 will be selected. Note that Theorem 4 does not require an accurate

estimation of k. Figure 1(a) shows the estimation error curves as functions of β under various n. It

can be observed that for any fixed n, the estimation error decreases as eigen-gap β increases; and

for any fixed β, the estimation error decreases as sample size n increases. This is consistent with the

prediction of Theorem 4.

4.1.3 TEST II: CARDINALITY k IS VARYING

In this case, we fix sample size n= 500 and eigen-gap β= 400, and test the values of k∈{20...,500}
that are at least as large as the true sparsity k̄ = 20. We generate 100 empirical covariance matrices

and employ the TPower to compute a k-sparse eigenvector. Figure 1(b) shows the estimation error
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(b) Estimation error bound vs. cardinality k (with n = 500

and β = 400). Both theoretical and empirical curves are

plotted.

Figure 1: Estimation error curves on the simulated data. For better viewing, please see the original

pdf file.

curves as functions of k. It can be observed that the estimation error becomes larger as k increases.

This is consistent with the prediction of Theorem 4. For a fixed k, provided that the conditions are

satisfied in Theorem 4, we can also calculate the theoretical estimation error bound
√

10δ(s)/(1−
µ). The curve of the theoretical bound is plotted in the same figure. As predicted by Theorem 4, the

theoretical bound curve dominates the empirical error curve. Similar observations are also made for

other fixed pairs {n,β}.

4.2 Sparse PCA

Principal component analysis (PCA) is a well established tool for dimensionality reduction and has

a wide range of applications in science and engineering where high dimensional data sets are en-

countered. Sparse principal component analysis (sparse PCA) is an extension of PCA that aims

at finding sparse vectors (loading vectors) capturing the maximum amount of variance in the data.

In recent years, various researchers have proposed various approaches to directly address the con-

flicting goals of explaining variance and achieving sparsity in sparse PCA. For instance, greedy

search and branch-and-bound methods were investigated by Moghaddam et al. (2006) to solve

small instances of sparse PCA exactly and to obtain approximate solutions for larger scale prob-

lems. d’Aspremont et al. (2008) proposed the use of greedy forward selection with a certificate of

optimality. Another popular technique for sparse PCA is regularized sparse learning. Zou et al.

(2006) formulated sparse PCA as a regression-type optimization problem and imposed the Lasso

penalty (Tibshirani, 1996) on the regression coefficients. The DSPCA algorithm of d’Aspremont

et al. (2007) is an ℓ1-norm based semidefinite relaxation for sparse PCA. Shen and Huang (2008)

resorted to the singular value decomposition (SVD) to compute low-rank matrix approximations of

the data matrix under various sparsity-inducing penalties. Mairal et al. (2010) proposed an online
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learning method for matrix decomposition with sparsity regularization. More recently, Journée et al.

(2010) studied a generalized power method to solve sparse PCA with a certain dual reformulation of

the problem. Similar power-truncation-type methods were also considered by Witten et al. (2009)

and Ma (2013).

Given a sample covariance matrix, Σ ∈ S
p
+ (or equivalently a centered data matrix D ∈ R

n×p

with n rows of p-dimensional observations vectors such that Σ = D⊤D) and the target cardinality

k, following the literature (Moghaddam et al., 2006; d’Aspremont et al., 2007, 2008), we formulate

sparse PCA as:

x̂ = argmax
x∈Rp

x⊤Σx, subject to ‖x‖= 1,‖x‖0 ≤ k. (7)

The TPower method proposed in this paper can be directly applied to solve the above problem. One

advantage of TPower for Sparse PCA is that it directly addresses the constraint on cardinality k. To

find the top m rather than the top one sparse loading vectors, a common approach in the literature

(d’Aspremont et al., 2007; Moghaddam et al., 2006; Mackey, 2008) is to use the iterative deflation

method for PCA: subsequent sparse loading vectors can be obtained by recursively removing the

contribution of the previously found loading vectors from the covariance matrix. Here we employ

a projection deflation scheme proposed by Mackey (2008), which deflates a vector x̂ using the

formula:

Σ′ = (Ip×p− x̂x̂⊤)Σ(Ip×p− x̂x̂⊤).

Obviously, Σ′ remains positive semidefinite. Moreover, Σ′ is rendered left and right orthogonal to x̂.

4.2.1 CONNECTION WITH EXISTING SPARSE PCA METHODS

In the setup of sparse PCA, TPower is closely related to GPower (Journée et al., 2010) and sPCA-

rSVD (Shen and Huang, 2008) which share the same spirit of thresholding iteration to make the

loading vectors sparse. Indeed, GPower and sPCA-rSVD are identical except for the initialization

and post-processing phases (see, e.g., Journée et al., 2010). TPower is most closely related to the

GPowerℓ0
(Journée et al., 2010, Algorithm 3) in the sense that both are characterized by rank-

1 approximation and alternate optimization with hard-thresholding. Indeed, given a data matrix

D ∈ R
n×p, GPowerℓ0

solves the following ℓ0-norm regularized rank-1 approximation problem:

min
x∈Rp,z∈Rn

‖D− zx⊤‖2
F + γ‖x‖0, subject to ‖z‖= 1.

GPowerℓ0
is essentially a coordinate descent procedure which iterates between updating x and z.

Given xt−1, the update of zt is zt = Dxt−1/‖Dxt−1‖. Given zt , the update of xt is a hard-thresholding

operation which selects those entries in D⊤zt = D⊤Dxt−1/‖Dxt−1‖ with squared values greater than

γ and then normalize the vector after truncation. From the viewpoint of rank-1 approximation, it

can be shown that TPower optimizes the following cardinality constrained problem:

min
x∈Rp,z∈Rn

‖D− zx⊤‖2
F , subject to ‖z‖= 1, ‖x‖= 1, ‖x‖0 ≤ k.

Indeed, based on the fact that z = Dx/‖Dx‖ is optimal at any x, the above problem is identical to

the formulation (7). To update xt , TPower selects the top k entries of D⊤Dxt−1 and then normalize

the truncated vector. Therefore, we can see that TPower and GPowerℓ0
differs in the thresholding

manner: the former selects the top k entries in D⊤Dxt−1 while the latter preserves those entries in
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D⊤Dxt−1 with squared values greater than γ‖Dxt−1‖2. Another rank-1 approximation formulation

was considered by Witten et al. (2009) with ℓ1-norm ball constraint:

min
x∈Rp,z∈Rn

‖D− zx⊤‖2
F , subject to ‖z‖= 1, ‖x‖= 1, ‖x‖1 ≤ c.

Its minimization procedure, called Projected Matrix Decomposition (PMD), alternates between the

update of x and the update of z; where the update of x is a soft-thresholding operation.

Our method is also related to the Iterative Thresholding Sparse PCA (ITSPCA) method (Ma,

2013) which concentrates on recovering a sparse subspace of dimension m under the spike model.

In particular, when m= 1, ITSPCA reduces to a power method with thresholding. However, TPower

differs from ITSPCA in the following two aspects. First, the truncation strategy is different: we

truncate the vector by preserving the top k largest absolute entries and setting the remaining entries

to zeros, while ITSPCA truncates the vector by setting entries below a fixed threshold to zeros.

Second, the analysis is different: TPower is analyzed under the matrix perturbation theory and thus

is deterministic, while the analysis of ITSPCA focused on the convergence rate under the stochastic

multiple spike model.

TPower is essentially a greedy selection method for solving problem (1). In this viewpoint, it

is related to PathSPCA (d’Aspremont et al., 2008) which is a forward greedy selection procedure.

PathSPCA starts from the empty set and at each iteration it selects the most relevant variable and

adds it to the current variable set; it then re-estimates the leading eigenvector on the augmented

variable set. Both TPower and PathSPCA output sparse solutions with exact cardinality k.

4.2.2 RESULTS ON TOY DATA SET

To illustrate the sparse recovering performance of TPower, we apply the algorithm to a synthetic

data set drawn from a sparse PCA model. We follow the same procedure proposed by Shen and

Huang (2008) to generate random data with a covariance matrix having sparse eigenvectors. To

this end, a covariance matrix is first synthesized through the eigenvalue decomposition Σ =V DV⊤,

where the first m columns of V ∈ R
p×p are pre-specified sparse orthogonal unit vectors. A data

matrix X ∈ R
n×p is then generated by drawing n samples from a zero-mean normal distribution

with covariance matrix Σ, that is X ∼N (0,Σ). The empirical covariance Σ̂ matrix is then estimated

from data X as the input for TPower.

Consider a setup with p = 500, n = 50, and the first m = 2 dominant eigenvectors of Σ are

sparse. Here the first two dominant eigenvectors are specified as follows:

[v1]i =

{

1√
10
, i = 1, ...,10

0, otherwise
, [v2]i =

{

1√
10
, i = 11, ...,20

0, otherwise
.

The remaining eigenvectors v j for j ≥ 3 are chosen arbitrarily, and the eigenvalues are fixed at the

following values:






λ1 = 400,
λ2 = 300,
λ j = 1, j = 3, ...,500.

We generate 500 data matrices and employ the TPower method to compute two unit-norm sparse

loading vectors u1,u2 ∈ R
500, which are hopefully close to v1 and v2. Our method is compared
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on this data set with a greedy algorithm PathPCA (d’Aspremont et al., 2008), two power-iteration-

type methods GPower (Journée et al., 2010) and PMD (Witten et al., 2009), two sparse regression

based methods SPCA (Zou et al., 2006) and online SPCA (oSPCA) (Mairal et al., 2010), and the

standard PCA. For GPower, we test its two block versions GPowerℓ1,m and GPowerℓ0,m with ℓ1-

norm and ℓ0-norm penalties, respectively. Here we do not directly compare to two representative

sparse PCA algorithms sPCA-rSVD (Shen and Huang, 2008) and DSPCA (d’Aspremont et al.,

2007) because the former is shown to be identical to GPower up to initialization and post-processing

phases (Journée et al., 2010), while the latter is suggested by the authors as a secondary choice after

PathSPCA. All tested algorithms were implemented in Matlab 7.12 running on a desktop. We use

the two-stage warm-start strategy for initialization. Similar to the empirical study in the previous

section, we tune the cardinality parameter k on independently generated validation matrices.

In this experiment, we regard the true model to be successfully recovered when both quanti-

ties |v⊤1 u1| and |v⊤2 u2| are greater than 0.99. Table 1 lists the recovering results by the considered

methods. It can be observed that TPower, PathPCA, GPower, PMD and oSPCA all successfully

recover the ground truth sparse PC vectors with high rate of success. SPCA frequently fails to re-

cover the spares loadings on this data set. The potential reason is that SPCA is initialized with the

ordinary principal components which in many random data matrices are far away from the truth

sparse solution. Traditional PCA always fails to recover the sparse PC loadings on this data set. The

success of TPower and the failure of traditional PCA can be well explained by our sparse recovery

result in Theorem 4 (for TPower) in comparison to the traditional eigenvector perturbation theory

in Lemma 10 (for traditional PCA), which we have already discussed in §3. However, the success

of other methods suggests that it might be possible to prove sparse recovery results similar to The-

orem 4 for some of these alternative algorithms. The running time of these algorithms on this data

is listed in the last column of Table 1. It can be seen that TPower is among the top efficient solvers.

Algorithms Parameter |v⊤1 u1| |v⊤2 u2| Prob. of succ. CPU (in ms)

TPower k = 10 .9998 (.0001) .9997 (.0002) 1 6.14 (0.76)

PathSPCA k = 10 .9998 (.0001) .9997 (.0002) 1 77.42 (2.95)

GPowerℓ1,m γ = 0.8 .9997 (.0016) .9996 (.0022) 0.99 6.22 (0.30)

GPowerℓ0,m γ = 0.8 .9997 (.0016) .9991 (.0117) 0.99 6.07 (0.30)

PMD c = 3.0 .9998 (.0001) .9997 (.0002) 1 11.97 (0.48)

oSPCA λ = 3 .9929 (.0434) .9923 (.0483) 0.97 24.74 (1.20)

SPCA λ1 = 10−3 .9274 (.0809) .9250 (.0810) 0.25 799.99 (50.62)

PCA − .9146 (.0801) .9086 (.0790) 0 3.87 (1.59)

Table 1: The quantitative results on a synthetic data set. The values |v⊤1 u1|, |v⊤2 u2|, CPU time (in

ms) are in format of mean (std) over 500 running.

4.2.3 RESULTS ON PITPROPS DATA

The PitProps data set (Jeffers, 1967), which consists of 180 observations with 13 measured vari-

ables, has been a standard benchmark to evaluate algorithms for sparse PCA (see, e.g., Zou et al.,

2006; Shen and Huang, 2008; Journée et al., 2010). Following these previous studies, we also con-

sider to compute the first six sparse PCs of the data. In Table 2, we list the total cardinality and
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the proportion of adjusted variance (Zou et al., 2006) explained by six components computed with

TPower, PathSPCA (d’Aspremont et al., 2008), GPower, PMD, oSPCA and SPCA. From these re-

sults we can see that on this relatively simple data set, TPower, PathSPCA and GPower perform

quite similarly and are slightly better than PMD, oSPCA and SPCA.

Table 3 lists the six extracted PCs by TPower with cardinality setting 6-2-1-2-1-1. We can see

that the important variables associated with the six PCs are exclusive except for the variable “ringb”

which is simultaneously selected by PC1 and PC4. The variable “diaknot” is excluded from all the

six PCs. The same loadings are also extracted by both PathSPCA and GPower under the parameters

listed in Table 2.

Method Parameters Total cardinality Prop. of explained variance

TPower cardinalities: 7-2-4-3-5-4 25 0.8887

TPower cardinalities: 6-2-1-2-1-1 13 0.7978

PathSPCA cardinalities: 7-2-4-3-5-4 25 0.8834

PathSPCA cardinalities: 6-2-1-2-1-1 13 0.7978

GPowerℓ1,m γ = 0.22 26 0.8438

GPowerℓ1,m γ = 0.50 13 0.7978

PMD c = 1.50 25 0.8244

PMD c = 1.10 13 0.7309

oSPCA λ = 0.2 27 0.8351

oSPCA λ = 0.4 12 0.6625

SPCA see Zou et al. (2006) 18 0.7580

Table 2: The quantitative results on the PitProps data set. The result of SPCA is taken from Zou

et al. (2006).

PCs
x1

topd

x2

length

x3

moist

x4

testsg

x5

ovensg

x6

ringt

x7

ringb

x8

bowm

x9

bowd

x10

whorls

x11

clear

x12

knots

x13

diaknot

PC1 .4444 .4534 0 0 0 0 .3779 .3415 .4032 .4183 0 0 0

PC2 0 0 .7071 .7071 0 0 0 0 0 0 0 0 0

PC3 0 0 0 0 1.000 0 0 0 0 0 0 0 0

PC4 0 0 0 0 0 .8569 .5154 0 0 0 0 0 0

PC5 0 0 0 0 0 0 0 0 0 1.000 0 0

PC6 0 0 0 0 0 0 0 0 0 0 0 1.000 0

Table 3: The extracted six PCs by TPower on PitProps data set with cardinality setting 6-2-1-2-1-1.

Note that in this setting, the extracted significant loadings are non-overlapping except for

“ringb”. And the variable “diaknot” is excluded from all the six PCs.

4.2.4 RESULTS ON BIOLOGICAL DATA

We have also evaluated the performance of TPower on two gene expression data sets, one is the

Colon cancer data from Alon et al. (1999), the other is the Lymphoma data from Alizadeh et al.

(2000). Following the experimental setup of d’Aspremont et al. (2008), we consider the 500 genes

with the largest variances. We plot the variance versus cardinality tradeoff curves in Figure 2, to-
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Figure 2: The variance versus cardinality tradeoff curves on two gene expression data sets. For

better viewing, please see the original pdf file.

gether with the result from PathSPCA and the upper bounds of optimal values from d’Aspremont

et al. (2008). Note that our method performs almost identical to the PathSPCA which is demon-

strated to have optimal or very close to optimal solutions in many cardinalities. The computational

time of the two methods on both data sets is comparable and is less than two seconds.

4.2.5 SUMMARY

To summarize this group of experiments on sparse PCA, the basic finding is that TPower performs

quite competitively in terms of the tradeoff between explained variance and representation sparsity.

The performance is comparable or superior to leading methods such as PathSPCA and GPower.

It is observed that TPower, PathSPCA and GPower outperform PMD, oSPCA and SPCA on the

benchmark data Pitprops. It is not surprising that TPower and GPower behave similarly because

both are power-truncation-type method (see the previous §4.2.1). While strong theoretical guarantee

can be established for the TPower method, it remains open to show that PathSPCA and GPower have

a similar sparse recovery performance.

4.3 Densest k-Subgraph Finding

As another concrete application, we show that with proper modification, TPower can be applied

to the densest k-subgraph finding problem. Given an undirected graph G = (V,E), |V | = n, and

integer 1≤ k≤ n, the densest k-subgraph (DkS) problem is to find a set of k vertices with maximum

average degree in the subgraph induced by this set. In the weighted version of DkS we are also

given nonnegative weights on the edges and the goal is to find a k-vertex induced subgraph of

maximum average edge weight. Algorithms for finding DkS are useful tools for analyzing networks.

In particular, they have been used to select features for ranking (Geng et al., 2007), to identify cores

of communities (Kumar et al., 1999), and to combat link spam (Gibson et al., 2005).
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It has been shown that the DkS problem is NP hard for bipartite graphs and chordal graphs

(Corneil and Perl, 1984), and even for graphs of maximum degree three (Feige et al., 2001). A

large body of algorithms have been proposed based on a variety of techniques including greedy al-

gorithms (Feige et al., 2001; Asahiro et al., 2002; Ravi et al., 1994), linear programming (Billionnet

and Roupin, 2004; Khuller and Saha, 2009), and semidefinite programming (Srivastav and Wolf,

1998; Ye and Zhang, 2003). For general k, the algorithm developed by Feige et al. (2001) achieves

the best approximation ratio of O(nε) where ε < 1/3. Ravi et al. (1994) proposed 4-approximation

algorithms for weighted DkS on complete graphs for which the weights satisfy the triangle inequal-

ity. Liazi et al. (2008) has presented a 3-approximation algorithm for DkS for chordal graphs.

Recently, Jiang et al. (2010) proposed to reformulate DkS as a 1-mean clustering problem and

developed a 2-approximation to the reformulated clustering problem. Moreover, based on this re-

formulation, Yang (2010) proposed a 1+ ε-approximation algorithm with certain exhaustive (and

thus expensive) initialization procedure. In general, however, Khot (2006) showed that DkS has no

polynomial time approximation scheme (PTAS), assuming that there are no sub-exponential time

algorithms for problems in NP.

Mathematically, DkS can be restated as the following binary quadratic programming problem:

max
π∈Rn

π⊤Wπ, subject to π ∈ {1,0}n,‖π‖0 = k, (8)

where W is the (non-negative weighted) adjacency matrix of G. If G is an undirected graph, then

W is symmetric. If G is directed, then W could be asymmetric. In this latter case, from the fact that

π⊤Wπ= π⊤W+W⊤
2

π, we may equivalently solve Problem (8) by replacing W with W+W⊤
2

. Therefore,

in the following discussion, we always assume that the affinity matrix W is symmetric (or G is

undirected).

4.3.1 THE TPOWER-DKS ALGORITHM

We propose the TPower-DkS algorithm as an adaptation of TPower to the DkS problem. The process

generates a sequence of intermediate vectors π0,π1, ... from a starting vector π0. At each step t the

vector πt−1 is multiplied by the matrix W , then πt is set to be the indicator vector of the top k entries

in Wπt−1. The TPower-Dks is outlined in Algorithm 2. The convergence of this algorithm can be

justified using the same arguments of bounding optimization as described in §2.2.

Algorithm 2: Truncated Power Method for DkS (TPower-DkS)

Input : W ∈ S
n
+,, initial vector π0 ∈ R

n

Output : πt

Parameters : cardinality k ∈ {1, ...,n}
Let t = 1.

repeat

Compute π′t =Wπt−1.

Identify Ft = supp(π′t ,k) the index set of π′t with top k values.

Set πt to be 1 on the index set Ft , and 0 otherwise.

t← t +1.
until Convergence;
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Remark 7 By relaxing the constraint π ∈ {0,1}n to ‖π‖ =
√

k, we may convert the densest k-

subgraph problem (8) to the standard sparse eigenvalue problem (1) (up to a scaling) and then

directly apply TPower (in Algorithm 1) for solution. Our numerical experience shows that such a

relaxation strategy also works satisfactory in practice, although is slightly inferior to TPower-DkS

(in Algorithm 2) which directly addresses the original problem.

Remark 8 As aforementioned that the DkS problem is generally NP-hard. The quality of its ap-

proximate solution can be measured by the approximation ratio defined as the output objective to

the optimal objective. Recently, Jiang et al. (2010) proposed to reformulate DkS as a 1-mean clus-

tering problem and developed a 2-approximation to the reformulated clustering problem. Moreover,

based on this reformulation, Yang (2010) proposed a 1+ ε-approximation algorithm with certain

exhaustive (and thus expensive) initialization procedure. Provided that W is positive semidefinite

with equal diagonal elements, trivial derivation shows that TPower-DkS is identical to the method

of Jiang et al. (2010). Therefore, the approximation ratio results from Jiang et al. (2010); Yang

(2010) can be shared by TPower-DkS in this restricted case.

Note that in Algorithm 2 we require that W is positive semidefinite. The motivation of this

requirement is to guarantee the convexity of the objective in problem (8), and thus the convergence

of Algorithm 2 can be justified by the similar arguments in §2.2. In many real-world DkS problems,

however, it is often the case that the affinity matrix W is not positive semidefinite. In this case,

the objective is non-convex and thus the monotonicity of TPower-DkS does not hold. However,

this complication can be circumvented by instead running the algorithm with the shifted quadratic

function:

max
π∈Rn

π⊤(W + λ̃Ip×p)π, subject to π ∈ {0,1}n,‖π‖0 = k.

where λ̃ > 0 is large enough such that W̃ =W + λ̃Ip×p ∈ S
n
+. On the domain of interest, this change

only adds a constant term to the objective function. The TPower-DkS, however, produces a different

sequence of iterates, and there is a clear tradeoff. If the second term dominates the first term (say

by choosing a very large λ̃), the objective function becomes approximately a squared norm, and the

algorithm tends to terminate in very few iterations. In the limiting case of λ̃→ ∞, the method will

not move away from the initial iterate. To handle this issue, we propose to gradually increase λ̃

during the iterations and we do so only when the monotonicity is violated. To be precise, if at a time

instance t, π⊤t Wπt < π⊤t−1Wπt−1, then we add λ̃Ip×p to W with a gradually increased λ̃ by repeating

the current iteration with the updated matrix until π⊤t (W + λ̃Ip×p)πt ≥ π⊤t−1(W +λIp×p)πt−1,2 which

implies π⊤t Wπt ≥ π⊤t−1Wπt−1.

4.3.2 ON INITIALIZATION

Since TPower-DkS is a monotonically increasing procedure, it guarantees to improve the initial

point π0. Basically, any existing approximation DkS method, for example, greedy algorithms (Feige

et al., 2001; Ravi et al., 1994), can be used to initialize TPower-DkS. In our numerical experiments,

we observe that by simply setting π0 as the indicator vector of the vertices with the top k (weighted)

degrees, our method can achieve very competitive results on all the real-world data sets we have

tested on.

2. Note that the inequality π⊤t (W + λ̃Ip×p)πt ≥ π⊤t−1(W + λ̃Ip×p)πt−1 is deemed to be satisfied when λ̃ is large enough,

for example, when W + λ̃Ip×p ∈ S
n
+.
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4.3.3 RESULTS ON WEB GRAPHS

We have tested TPower on four page-level web graphs: cnr-2000, amazon-2008, ljournal-2008,

hollywood-2009, from the WebGraph framework provided by the Laboratory for Web Algorithms.3

We treated each directed arc as an undirected edge. Table 4 lists the statistics of the data sets used

in the experiment.

Graph Nodes (|V |) Total Arcs (|E|) Average Degree

cnr-2000 325,557 3,216,152 9.88

amazon-2008 735,323 5,158,388 7.02

ljournal-2008 5,363,260 79,023,142 14.73

hollywood-2009 1,139,905 113,891,327 99.91

Table 4: The statistics of the web graph data sets.

We compare our TPower-DkS method with two greedy methods for the DkS problem. One

greedy method is proposed by Ravi et al. (1994) which is referred to as Greedy-Ravi in our experi-

ments. The Greedy-Ravi algorithm works as follows: it starts from a heaviest edge and repeatedly

adds a vertex to the current subgraph to maximize the weight of the resulting new subgraph; this

process is repeated until k vertices are chosen. The other greedy method is developed by Feige et al.

(2001, Procedure 2) which is referred as Greedy-Feige in our experiments. The procedure works as

follows: let S denote the k/2 vertices with the highest degrees in G; let C denote the k/2 vertices in

the remaining vertices with largest number of neighbors in S; return S∪C.

Figure 3 shows the density value π⊤Wπ/k and CPU time versus the cardinality k. From the

density curves we can observe that on cnr-2000, ljournal-2008 and hollywood-2009, TPower-DkS

consistently outputs denser subgraphs than the two greedy algorithms, while on amazon-2008,

TPower-DkS and Greedy-Ravi are comparable and both are better than Greedy-Feige. For CPU

running time, it can be seen from the right column of Figure 3 that Greedy-Feige is the fastest

among the three methods while TPower-DkS is only slightly slower. This is due to the fact that

TPower-DkS needs iterative matrix-vector products while Greedy-Feige only needs a few degree

sorting operations. Although TPower-DkS is slightly slower than Greedy-Feige, it is still quite

efficient. For example, on hollywood-2009 which has hundreds of millions of arcs, for each k,

Greedy-Feige terminates within about 1 second while TPower terminates within about 10 seconds.

The Greedy-Ravi method is however much slower than the other two on all the graphs when k is

large.

4.3.4 RESULTS ON AIR-TRAVEL ROUTINE

We have applied TPower-DkS to identify subsets of American and Canadian cities that are most

easily connected to each other, in terms of estimated commercial airline travel time. The graph4

is of size |V | = 456 and |E| = 71,959: the vertices are 456 busiest commercial airports in United

States and Canada, while the weight wi j of edge ei j is set to the inverse of the mean time it takes

to travel from city i to city j by airline, including estimated stopover delays. Due to the headwind

3. These four data sets are publicly available at http://lae.dsi.unimi.it/datasets.php.

4. The data is available at www.psi.toronto.edu/affinitypropogation.
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(a) cnr-2000
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(b) amazon-2008
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(c) ljournal-2008
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(d) hollywood-2009

Figure 3: Identifying densest k-subgraph on four web graphs. Left: density curves as a function of

cardinality. Right: CPU time (in second) curves as a function of cardinality. For better

viewing, please see the original pdf file.
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effect, the transit time can depend on the direction of travel; thus 36% of the weight are asymmetric.

Figure 4(a) shows a map of air-travel routine.

As in the previous experiment, we compare TPower-DkS to Greedy-Ravi and Greedy-Feige

on this data set. For all the three considered algorithms, the densities of k-subgraphs under differ-

ent k values are shown in Figure 4(b), and the CPU running time curves are given in Figure 4(c).

From the former figure we observe that TPower-DkS consistently outperforms the other two greedy

algorithms in terms of the density of the extracted k-subgraphs. From the latter figure we can

see that TPower-DkS is slightly slower than Greed-Feige but much faster than Greedy-Ravi. Fig-

ure 4(d)∼4(f) illustrate the densest k-subgraph with k = 30 output by the three algorithms. In each of

these three subgraph, the red dot indicates the representing city with the largest (weighted) degree.

Both TPower-DkS and Greedy-Feige reveal 30 cities in east US. The former takes Cleveland as the

representing city while the latter Cincinnati. Greedy-Ravi reveals 30 cities in west US and CA and

takes Vancouver as the representing city. Visual inspection shows that the subgraph recovered by

TPower-DkS is the densest among the three.

After discovering the densest k-subgraph, we can eliminate their nodes and edges from the graph

and then apply the algorithms on the reduced graph to search for the next densest subgraph. This se-

quential procedure can be repeated to find multiple densest k-subgraphs. Figure 4(g)∼4(i) illustrate

sequentially estimated six densest 30-subgraphs by the three considered algorithms. Again, visual

inspection shows that our method outputs more geographically compact subsets of cities than the

other two. As a quantitative result, the total densities of the six subgraphs discovered by the three

algorithms are: 1.14 (TPower-DkS), 0.90 (Greedy-Feige) and 0.99 (Greedy-Ravi), respectively.

5. Conclusion

The sparse eigenvalue problem has been widely studied in machine learning with applications such

as sparse PCA. TPower is a truncated power iteration method that approximately solves the non-

convex sparse eigenvalue problem. Our analysis shows that when the underlying matrix has sparse

eigenvectors, under proper conditions TPower can approximately recover the true sparse solution.

The theoretical benefit of this method is that with appropriate initialization, the reconstruction qual-

ity depends on the restricted matrix perturbation error at size s that is comparable to the sparsity

k̄, instead of the full matrix dimension p. This explains why this method has good empirical per-

formance. To our knowledge, this is one of the first theoretical results of this kind, although our

empirical study suggests that it might be possible to prove related sparse recovery results for some

other algorithms we have tested. We have applied TPower to two concrete applications: sparse PCA

and the densest k-subgraph finding problem. Extensive experimental results on synthetic and real-

world data sets validate the effectiveness and efficiency of the TPower algorithm. To summarize,

simply combing power iteration with hard-thresholding truncation provides an accurate and scalable

computational method for the sparse eigenvalue problem.
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(a) The air-travel route map

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cardinality

D
en

si
ty

Densest k-Subgraph

 

 

TPower
Greedy-Ravi
Greedy-Feige

(b) Density
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Figure 4: Identifying densest k-subgraph of air-travel routing. Top row: Route map, and the density
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Appendix A. Proof Of Theorem 4

Our proof employs several technical tools including the perturbation theory of symmetric eigen-

value problem (Lemma 9 and Lemma 10), the convergence analysis of traditional power method

(Lemma 11), and the error analysis of hard-thresholding operation (Lemma 12).

We state the following standard result from the perturbation theory of symmetric eigenvalue

problem (see, e.g., Golub and Loan, 1996).

Lemma 9 If B and B+U are p× p symmetric matrices, then ∀1≤ k ≤ p,

λk(B)+λp(U)≤ λk(B+U)≤ λk(B)+λ1(U),

where λk(B) denotes the k-th largest eigenvalue of matrix B.

Lemma 10 Consider set F such that supp(x̄) ⊆ F with |F| = s. If ρ(E,s) ≤ ∆λ/2, then the ratio

of the second largest (in absolute value) to the largest eigenvalue of sub matrix AF is no more than

γ(s). Moreover,

‖x̄⊤− x(F)‖ ≤ δ(s) :=

√
2ρ(E,s)

√

ρ(E,s)2 +(∆λ−2ρ(E,s))2
.

Proof We may use Lemma 9 with B = ĀF and U = EF to obtain

λ1(AF)≥ λ1(ĀF)+λp(EF)≥ λ1(ĀF)−ρ(EF)≥ λ−ρ(E,s)

and ∀ j ≥ 2,

|λ j(AF)| ≤ |λ j(ĀF)|+ρ(EF)≤ λ−∆λ+ρ(E,s).

This implies the first statement of the lemma.

Now let x(F), the largest eigenvector of AF , be αx̄+βx′, where ‖x̄‖2 = ‖x′‖2 = 1, x̄⊤x′ = 0 and

α2 +β2 = 1, with eigenvalue λ′ ≥ λ−ρ(E,s). This implies that

αAF x̄+βAFx′ = λ′(αx̄+βx′),

implying

αx′⊤AF x̄+βx′⊤AFx′ = λ′β.

That is,

|β|= |α| x′⊤AF x̄

λ′− x′⊤AFx′
≤ |α| |x

′⊤AF x̄|
λ′− x′⊤AFx′

= |α| |x
′⊤EF x̄|

λ′− x′⊤AFx′
≤ t|α|,

where t = ρ(E,s)/(∆λ− 2ρ(E,s)). This implies that α2(1+ t2) ≥ α2 + β2 = 1, and thus α2 ≥
1/(1+ t2). Without loss of generality, we may assume that α > 0, because otherwise we can replace

x̄ with −x̄. It follows that

‖x(F)− x̄‖2 = 2−2x(F)⊤x̄ = 2−2α≤ 2

√
1+ t2−1√

1+ t2
≤ 2t2

1+ t2
.

This implies the desired bound.

The following result measures the progress of untruncated power method.
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Lemma 11 Let y be the eigenvector with the largest (in absolute value) eigenvalue of a symmetric

matrix A, and let γ < 1 be the ratio of the second largest to largest eigenvalue in absolute values.

Given any x such that ‖x‖= 1 and y⊤x > 0; let x′ = Ax/‖Ax‖, then

|y⊤x′| ≥ |y⊤x|[1+(1− γ2)(1− (y⊤x)2)/2].

Proof Without loss of generality, we may assume that λ1(A)= 1 is the largest eigenvalue in absolute

value, and |λ j(A)| ≤ γ when j > 1. We can decompose x as x = αy+βy′, where y⊤y′ = 0, ‖y‖ =
‖y′‖= 1, and α2 +β2 = 1. Then |α|= |x⊤y|. Let z′ = Ay′, then ‖z′‖ ≤ γ and y⊤z′ = 0. This means

Ax = αy+βz′, and

|y⊤x′|= |y
⊤Ax|
‖Ax‖ =

|α|
√

α2 +β2‖z′‖2
≥ |α|

√

α2 +β2γ2

=
|y⊤x|

√

1− (1− γ2)(1− (y⊤x)2)

≥|y⊤x| [1+(1− γ2)(1− (y⊤x)2)/2].

The last inequality is due to 1/
√

1− z≥ 1+ z/2 for z ∈ [0,1). This proves the desired bound.

The following lemma quantifies the error introduced by the truncation step in TPower.

Lemma 12 Consider x̄ with supp(x̄) = F̄ and k̄ = |F̄|. Consider y and let F = supp(y,k) be the

indices of y with the largest k absolute values. If ‖x̄‖= ‖y‖= 1, then

|Truncate(y,F)⊤x̄| ≥ |y⊤x̄|− (k̄/k)1/2 min

[

√

1− (y⊤x̄)2,(1+(k̄/k)1/2) (1− (y⊤x̄)2)

]

.

Proof Without loss of generality, we assume that y⊤x̄ = ∆ > 0. We can also assume that ∆ >
√

k̄/(k̄+ k) because otherwise the right hand side is smaller than zero, and thus the result holds

trivially.

Let F1 = F̄ \F , and F2 = F̄ ∩F , and F3 = F \ F̄ . Now, let ᾱ = ‖x̄F1
‖, β̄ = ‖x̄F2

‖, α = ‖yF1
‖,

β = ‖yF2
‖, and γ = ‖yF3

‖. let k1 = |F1|, k2 = |F2|, and k3 = |F3|. It follows that α2/k1 ≤ γ2/k3.

Therefore

∆2 ≤ [ᾱα+ β̄β]2 ≤ α2 +β2 ≤ 1− γ2 ≤ 1− (k3/k1)α
2.

This implies that

α2 ≤ (k1/k3)(1−∆2)≤ (k̄/k)(1−∆2)< ∆2, (9)

where the second inequality follows from k̄≤ k and the last inequality follows from the assumption

∆ >
√

k̄/(k̄+ k). Now by solving the following inequality for ᾱ

αᾱ+
√

1−α2
√

1− ᾱ2 ≥ αᾱ+ββ̄≥ ∆

under the condition ∆ > α≥ αᾱ, we obtain that

ᾱ≤ α∆+
√

1−α2
√

1−∆2 ≤min
[

1,α+
√

1−∆2
]

≤min
[

1,(1+(k̄/k)1/2)
√

1−∆2
]

, (10)

920



TRUNCATED POWER METHOD FOR SPARSE EIGENVALUE PROBLEMS

where the second inequality follows from the Cauchy-Schwartz inequality and ∆≤ 1,
√

1−α2 ≤ 1,

while the last inequality follows from (9). Finally,

|y⊤x̄|− |Truncate(y,F)⊤x̄| ≤ |(y−Truncate(y,F))⊤x̄|

≤ αᾱ≤ (k̄/k)1/2 min

[

√

1− (y⊤x̄)2,(1+(k̄/k)1/2) (1− (y⊤x̄)2)

]

,

where the last inequality follows from (9) and (10). This leads to the desired bound.

Next is our main lemma, which says each step of sparse power method improves eigenvector

estimation.

Lemma 13 Assume that k ≥ k̄. Let s = 2k+ k̄. If |x⊤t−1x̄|> θ+δ(s), then

√

1−|x̂⊤t x̄| ≤ µ

√

1−|x⊤t−1x̄|+
√

10δ(s).

Proof Let F = Ft−1∪Ft ∪ supp(x̄). Consider the following vector

x̃′t = AFxt−1/‖AFxt−1‖, (11)

where AF denotes the restriction of A on the rows and columns indexed by F . We note that replacing

x′t with x̃′t in Algorithm 1 does not affect the output iteration sequence {xt} because of the sparsity

of xt−1 and the fact that the truncation operation is invariant to scaling. Therefore for notation

simplicity, in the following proof we will simply assume that x′t is redefined as x′t = x̃′t according to

(11).

Without loss of generality and for simplicity, we may assume that x′⊤t x(F) ≥ 0 and x⊤t−1x̄ ≥
0, because otherwise we can simply do appropriate sign changes in the proof. We obtain from

Lemma 11 that

x′⊤t x(F)≥ x⊤t−1x(F) [1+(1− γ(s)2)(1− (x⊤t−1x(F))2)/2].

This implies that

[1− x′⊤t x(F)]≤[1− x⊤t−1x(F)] [1− (1− γ(s)2)(1+ x⊤t−1x(F))(x⊤t−1x(F))/2]

≤[1− x⊤t−1x(F)] [1−0.5θ(1+θ)(1− γ(s)2)],

where in the derivation of the second inequality, we have used Lemma 10 and the assumption of the

lemma that implies x⊤t−1x(F)≥ x⊤t−1x̄−δ(s)≥ θ. We thus have

‖x′t − x(F)‖ ≤ ‖xt−1− x(F)‖
√

1−0.5θ(1+θ)(1− γ(s)2).

Therefore using Lemma 10, we have

‖x′t − x̄‖ ≤ ‖xt−1− x̄‖
√

1−0.5θ(1+θ)(1− γ(s)2)+2δ(s).

This is equivalent to

√

1−|x′t⊤x̄| ≤
√

1−|x⊤t−1x̄|
√

1−0.5θ(1+θ)(1− γ(s)2)+
√

2δ(s).
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Next we can apply Lemma 12 and use k ≥ k̄ to obtain

√

1−|x̂⊤t x̄| ≤
√

1−|x′t⊤x̄|+((k̄/k)1/2 + k̄/k)(1−|x′t⊤x̄|2)

≤
√

1−|x′t⊤x̄|
√

1+2((k̄/k)1/2 + k̄/k)

≤ µ

√

1−|xt−1
⊤x̄|+

√
10δ(s).

This proves the second desired inequality.

We are now in the position to prove Theorem 4.

Proof of Theorem 4:

Let us distinguish the following two complementary cases:

Case I: θ+δ(s)> 1−10δ(s)2/(1−µ)2. In this case, we have that x⊤0 x̄≥ θ+δ(s)> 1−10δ(s)2/(1−
µ)2 which implies the inequality (5).

Case II: θ+δ(s)≤ 1−10δ(s)2/(1−µ)2. In this case, we first prove by induction that for all t ≥ 0,

x⊤t x̄ ≥ θ+ δ(s). This is obviously hold for t = 0. Assume that |x⊤t−1x̄| ≥ θ+ δ(s). Let us further

distinguish the following two cases:

(a)

√

1−|x⊤t−1x̄| ≥
√

10δ(s)/(1−µ). From Lemma 13 we obtain that

√

1−|x⊤t x̄| ≤
√

1−|x̂⊤t x̄| ≤ µ

√

1−|x⊤t−1x̄|+
√

10δ(s)≤
√

1−|x⊤t−1x̄|,

where the first inequality follows from |x⊤t x̄| = |x̂⊤t x̄|/‖x̂t‖ ≥ |x̂⊤t x̄|. This implies |x⊤t x̄| ≥
|x⊤t−1x̄| ≥ θ+δ(s).

(b)

√

1−|x⊤t−1x̄|<
√

10δ(s)/(1−µ). Based on the previous argument we have

√

1−|x⊤t x̄| ≤ µ

√

1−|x⊤t−1x̄|+
√

10δ(s)<
√

10δ(s)/(1−µ),

which implies that |x⊤t x̄|> 1−10δ(s)2/(1−µ)2 ≥ θ+δ(s).

In both cases (a) and (b), we have |x⊤t x̄| ≥ θ+ δ(s) and this finishes the induction. Therefore, by

recursively applying Lemma 13 we have that for all t ≥ 0

√

1−|x⊤t x̄| ≤ µt

√

1−|x⊤0 x̄|+
√

10δ(s)/(1−µ),

which is inequality (6). This completes the proof.
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Abstract

Inference algorithms for tree automata that define node selecting queries in unranked trees rely on
tree pruning strategies. These impose additional assumptions on node selection that are needed to
compensate for small numbers of annotated examples. Pruning-based heuristics in query learning
algorithms for Web information extraction often boost the learning quality and speed up the learning
process. We will distinguish the class of regular queries that are stable under a given schema-
guided pruning strategy, and show that this class is learnable with polynomial time and data. Our
learning algorithm is obtained by adding pruning heuristics to the traditional learning algorithm for
tree automata from positive and negative examples. While justified by a formal learning model,
our learning algorithm for stable queries also performs very well in practice of XML information
extraction.

Keywords: XML information extraction, XML schemas, interactive learning, tree automata, gram-
matical inference

1. Introduction

A fundamental problem of XML information extraction is query induction from annotated examples.
The problem is to select “relevant” elements in collections of XML documents, while knowing only
few positive and negative examples for relevant elements. The target of this learning problem is
thus a query for elements in XML documents.

Most approaches for XML information extraction can be found in the context of Web infor-
mation extraction. The many learning methods applied there range from statistical classification
(Kushmerick, 2000; Gilleron et al., 2006b), hidden Markov models (Freitag and McCallum, 1999),
conditional random fields (Pinto et al., 2003; Zhu et al., 2005; Gilleron et al., 2006a), active learn-
ing on strings (Muslea et al., 2003), grammatical inference (Raeymaekers et al., 2008; Carme et al.,

c©2013 Joachim Niehren, Jérôme Champavère, Rémi Gilleron and Aurélien Lemay.
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2007), to inductive logic programming (Cohen et al., 2002). Queries for information extraction can
also be produced by visual programming (Baumgartner et al., 2001) possibly with learning enhance-
ment (Carme et al., 2006a). Unsupervised approaches based on ontology knowledge were proposed
recently (Sellers et al., 2011a).

< c o u n t r y >
<name> F r a n c e < / name>
< c i t y > P a r i s < / c i t y >
< r e g i o n >

<name>Nord−Pas de C a l a i s < / name>
< p o p u l a t i o n >3996588< / p o p u l a t i o n >
< c i t y > L i l l e < / c i t y >

< / r e g i o n >
< r e g i o n >

<name> V a l l ée du Rhône< / name>
< c i t y >Lyon< / c i t y >
< c i t y > Valence < / c i t y >

< / r e g i o n >
< / c o u n t r y >

Figure 1: A tiny geographical XML database.

country

name

France

city

Paris

region

name

Nord - Pas de Calais

population

3 996 588

city

Lille

region

name

VallÃ c©e du RhÃ´ne

city

Lyon

city

Valence

Figure 2: Data tree of the geographical database in Figure 1.

For illustration, we consider in Figure 1 an XML document for a geographical database with
information about regions in France. This XML document can be parsed into the data tree in Figure 2.
A user may then want to select, for instance, all those regions for which the size of the population is
known in the database. This goal can be translated to a query to data trees of geographical databases,
which selects all nodes labeled by region and having a child labeled by population, that is the
XPath query //region[population].

However, finding this query requires knowledge on XPath and the XML schema of geographical
databases, which is not to be expected from a non-expert user. The difficulties of non-expert users
can be solved by supervised query induction. The idea is that the user annotates some examples of
elements positively or negatively, meaning that they should be selected or not. This can be done
in a graphical interface of the database, as illustrated in Figure 3, or in a Web browser, and then
translated to annotations on the XML tree. It can also be done directly by annotating the XML tree.
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Figure 3: Two positive examples annotated via the user interface.

The query induction algorithm then learns the query from the XML trees with some annotated
elements. The main difficulties of query induction are the following:

1. the availability of only few annotated examples,

2. missing semantic information about the meaning of XML tags, and

3. the difficulty to understand natural language texts in data trees.

We do not tackle the third problem in the present paper. Instead, we restrict ourselves to node
selection queries in unranked trees without data values. In order to limit the burden of annotation
and to obtain relevant annotations quickly, we will rely on interactive learning in Angluin style
(Angluin, 1987), where selected nodes proposed by the learner are corrected by the teacher in an
annotate-learn-select loop. This corresponds to the usual user interaction loop of Web information
extraction systems (see, e.g., Muslea et al., 2003).

In this article, we study the relevance of schema-guided pruning heuristics for query induction.1

Pruning consists in removing useless information for learning. Schema-less pruning strategies were
essential for good quality with few examples of query induction algorithms based on tree automata
inference by, for example, Raeymaekers et al. (2008) or Carme et al. (2007), and also for decent
efficiency. So far, however, pruning strategies were always defined in ad hoc manners. Thus, our
first objective is to define them systematically. Pruning strategies must be aggressive on the one
hand side, since the more subtrees are pruned, the more efficient the learning algorithm will be.
On the other hand side, pruning strategies must preserve the information required to learn the query.
Our second objective is hence to formalize the relationship between pruning strategies and learnable
classes of queries. Finally, schemas express semantic information on XML trees which should allow
to learn larger classes. Our third objective is thus to use schemas to improve learning algorithms
and to understand the relevance of schemas for pruning strategies in particular.

1. Early ideas of the present article were published by Champavère et al. (2008) at ICGI, elaborated in the PhD thesis of
Champavère (2010), and seriously revised here.
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country → name · city · region∗

region → name · populationε · city+

name → ε

city → ε

population → ε

Figure 4: Schema Geo for a geographical XML database restricted to the description of a country.
It is defined by a DTD where country is the label of the root.

Document type definitions (DTDs) are the simplest schemas for XML documents. For instance,
let us consider the DTD in Figure 4 for our geographical database example. It says that under
the root with label country, there is its name, followed by a city, followed by a possibly empty
list of regions. Each region is described by its name, its population but it is not mandatory,
and a non empty list of cities. For sake of simplicity, we assume that subtrees with root label
name, city and population only contain data values that we do not consider here. For instance,
the unranked tree u = country(name,city, region(name,population,city), region(name,city,city)) is
valid for the DTD Geo, it is the tree presented in Figure 2 without the data values. Schemas
can also be defined by deterministic tree automata. These are finite state machines adapted to
trees. They process trees in a bottom-up way (from the leaves to the root) according to a finite
set of rules. The result is a tree annotated with states. For instance, a tree automaton associ-
ated with the DTD Geo can be defined with states qcountry, qname, etc., and a state qinvalid, and
rules expressing the conditions given by the DTD. For an invalid tree, the state qinvalid will ap-
pear along the run of the automaton and the tree will be rejected, while a valid tree will be pro-
cessed and annotated by the correct states. For instance the unranked tree u will be annotated as
qcountry(qname,qcity,qregion(qname,qpopulation,qcity),qregion(qname,qcity,qcity)), and will be accepted be-
cause the root state is qcountry.

We next introduce schema-guided pruning strategies by example and illustrate their relationship
to query classes. Pruning strategy path-only applied to a node of the XML database keeps only the
path leading from the root to the node, and replaces all subtrees adjacent to this path by a special
symbol ⊤. Pruning strategy path-onlyGeo keeps that same path but replaces the adjacent subtrees by
the state assigned to them by the tree automaton for Geo. In Figure 5, the result of applying both
pruning strategies to the name-child of the region-node in Figure 2 is presented. It will turn out
that more complex pruning strategies will be needed for ranked trees, in order to deal with the above
pruning strategies for unranked trees via binary encoding.

We call a query stable for a pruning strategy if the result of applying the strategy to a tree at
some selected node does always justify the node’s selection. In this case, we call this result the
critical region for selecting the node. For illustration, let us consider the query that selects all names
of regions whose population is known in our geographic XML database with schema Geo, that is the
XPath query //region[population]/name. Whether a node with label name is selected depends
only on its local environment, more precisely, on whether its father is labeled by region and whether
its right-sibling is labeled by population. It is easy to see that pruning strategy path-only applied
to a selected node removes the label of its right sibling. Thus this query is not stable for pruning
strategy path-only. In contrast, the schema-guided pruning strategy path-onlyGeo stores the label
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country

region

name

⊤ ⊤ ⊤

⊤ ⊤

country

region

name

qname qcity qregion

qpopulation qcity

Figure 5: Pruning the tree from Figure 2 at the name-child of the first region-node, by strategies
path-only (left) and path-onlyGeo (right).

country

region

(name,1)

name city region

population city (name,0) city city

Figure 6: An annotated tree in which the first region name has been annotated positively (it must
be selected) and the second region name has been annotated negatively (it must not be
selected).

of the right sibling in state qpopulation, so that this relevant information is preserved. Therefore, the
query //region[population]/name is stable for pruning strategy path-onlyGeo.

A user of the learning system may want to learn the above XPath query since he does not know
how to express it formally. He might not be an XPath expert or might not have access to the schema
Geo of our geographic database. Such users may still be willing to annotate some selected name-
nodes by the Boolean value 1 and some rejected nodes by the Boolean value 0 with the help of a
graphical interface. An example for a partial annotation of our geographical database that could
be obtained this way is given in Figure 6. Pruning strategies can be lifted to pruning functions on
positively annotated trees. The easiest way to do so is to keep only the union of the critical regions
of all nodes annotated by 1 jointly with their annotations.

Given a pruning strategy σ, the next question is whether σ-stable queries can be learned from
σ-pruned samples of annotated examples. These are finite sets that contain σ-pruned trees with
positive annotations and unpruned trees with negative annotations, such that all annotations are
consistent with respect to the target query. For any pruning strategy σ, we will distinguish the
class of regular σ-stable queries and show that this class can indeed be identified from σ-pruned
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samples. Depending on the pruning strategy, this yields a hierarchy of query classes that is essential
for understanding the difficulty of query learning in practice.

1.1 Contributions

We study the impact of pruning strategies on learning algorithms for classes of regular queries for the
first time. We recall that XPath queries (without tests on data values) are regular, even if imposing
schema restrictions by DTDs or tree automata.

1. We define schema-guided pruning strategies for schemas defined by deterministic bottom-
up tree automata, both for ranked and unranked trees. We introduce the notion of stable
queries for a given pruning strategy. We show how to characterize stable queries by languages
of pruned annotated trees. For regular queries these languages can be recognized by tree
automata.

2. We lift pruning strategies to pruning functions that can be applied to positively annotated
trees, in order to produce pruned samples for our learning algorithm.

3. We show how to represent pruning functions by means of tree automata. Thereby we define
the notion of regular pruning functions. We present an algorithm that decides in polynomial
time whether a regular query is stable for a regular pruning function.

4. We present a learning algorithm, based on the RPNI algorithm (García and Oncina, 1993),
that identifies regular σ-stable queries in polynomial time from σ-pruned samples of polyno-
mial cardinality.

5. We present experimental results that confirm the relevance of our query learning algorithm
in an interactive learning environment, both for Web information extraction and for XML

information extraction.

6. We compare different pruning strategies with respect to their aggressiveness. It turns out that
more aggressive pruning strategies yield better learning quality. We also discuss how to select
appropriate schema-guided pruning strategies in practice.

1.2 Outline

For sake of clarity, we first give definitions, results and proofs for ranked trees. All results can be
lifted to the case of unranked trees via a binary encoding. Experiments will be done on information
extraction tasks over unranked trees (HTML trees or XML trees).

Section 2 recalls preliminaries on tree automata for ranked trees and illustrates how to use them
as schemas. Section 3 introduces the notion of stable queries for schema-guided pruning strategies
and shows that less aggressive pruning strategies give rise to larger classes of stable queries. In Sec-
tion 4 we show how to lift pruning strategies to pruning functions, by which to prune examples with
positive annotations only. We then show how to characterize stable queries for pruning functions by
regular languages of pruned annotated examples in a unique manner. Thereby we specify the target
languages for the learning algorithm. Section 5 discusses how to define regular stable queries and
pruning functions by deterministic tree automata. In Section 6 we present algorithms for testing two
consistency properties for regular languages of pruned annotated trees. Section 7 presents our new
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learning algorithm for stable queries from pruned annotated examples based on these algorithms.
In Section 8, we lift all previous results to unranked trees via a binary encoding. Experimental re-
sults on query induction in XML information extraction are discussed in Section 9. Future work and
conclusions are presented in Section 10. The appendix completes the proofs of results that are not
essential for the main contributions.

1.3 Related Work

There exist two previous approaches for inducing regular languages that can account for the consis-
tency with some domain of the target language. Both of them guarantee that the current hypothesis
L of the learning algorithm does satisfy L⊆ L(D), were D is a deterministic finite automaton defin-
ing the domain, in which the target language must be included. The first dynamic approach is to
test language inclusion after each generalization step (Coste et al., 2004). This is the approach we
here generalize to query induction. The second static approach is to ensure inclusion (Oncina and
Varó, 1996) by typing all states of the current DFA A by the states of the domain DFA D. This means
that the target automaton will be a product with the domain automaton D. Formal learnability re-
sults were missing for both approaches so far. In the present article, we provide such results for the
first time for the dynamic approach. Furthermore, we show that the dynamic approach is feasible
in practice even in the case of tree automata, where inclusion testing is more tedious. The static
approach performs worse in our applications in most cases.

Schema induction for XML documents was invested by Bex et al. (2006). The interest there is to
produce readable DTDs with regular expressions. Query induction, as presented here, usually tries
to avoid the induction of schemas, since queries may only rely on parts of the schema. Conversely,
however, one might use induced schemas for query induction. Induction of XPath queries was
considered by Carme et al. (2006b) and Staworko and Wieczorek (2011). Induction algorithms for
top-down deterministic tree transducers were presented by Lemay et al. (2010).

2. Schemas and Tree Automata

In this section, we recall facts on tree automata on ranked trees and illustrate how to use them as
schemas. Unranked trees will be treated later on via a binary encoding. Most results we will remind
here are standard with the exception of an efficient inclusion test, which will be fundamental for the
efficiency of our schema-guided learning algorithm.

Let N be the set of non-zero natural numbers. A ranked signature is a set Σ equipped with a
function rankΣ from Σ to N∪{0}. For k ≥ 0, we denote by Σ(k) the set { f ∈ Σ | rankΣ( f ) = k}.
We write f (k) to indicate that f is of rank k. The set TΣ of ground terms over Σ is the least set
that contains all tuples f (t1, . . . , tk) where f ∈ Σ(k) and t1, . . . , tk ∈ TΣ. Ground terms in TΣ are
equivalently called ranked Σ-trees or simply trees. As usual we write f instead of the single node
tree f () where f (0) ∈ Σ is a constant. We denote by nodes(t)⊆N

∗ the (prefix-closed) set of nodes
of the tree t. The label of a node ν in t is denoted by t[ν]. Given a subset Σ′ ⊆ Σ of labels, we denote
by nodesΣ′(t) = {ν ∈ nodes(t) | t[ν] ∈ Σ′} the set of all nodes of t labeled in Σ′.

A tree automaton is a tuple D = (Σ,X ,R,F) where Σ is a finite ranked signature, X is a finite set
of states, F ⊆ X is a set of final states, and R ⊆

⋃
k≥0 Σ(k)×Xk+1 is a set of (transition) rules. We

denote by |D| the sum of the lengths of the rules of D and call it the size of D. A transition rule r ∈ R
is a tuple ( f (k),q1, . . . ,qk,q) where q,q1, . . . ,qk are states in X . As usual, we denote such a rule r

933



NIEHREN, CHAMPAVÈRE, GILLERON AND LEMAY

by f (q1, . . . ,qk)→ q and call f (q1, . . . ,qk) its left-hand side. A tree automaton D is (bottom-up)
deterministic if no two rules of D have the same left-hand side.

The evaluator of D is a function evalD : TΣ → 2X such that for all trees f (t1, . . . , tk) ∈ TΣ:
evalD( f (t1, . . . , tk)) = {q | f (q1, . . . ,qk)→ q in D,∀i ∈ {1, . . . ,k} : qi ∈ evalD(ti)}. If D is deter-
ministic, then, for any t, the set evalD(t) contains at most one element. The language recognized by
D is the set of all trees in TΣ that D can evaluate into some final state:

L(D) = {t ∈ TΣ | evalD(t)∩F 6= /0}.

A tree language L⊆ TΣ is regular if L = L(D) for some tree automaton D with signature Σ.

Example 1 We consider libraries (lib) which contain lists of books (b) with lists of authors (a).
We use cons and nil as list constructors as usual for ranked trees, so we use the following sig-
nature ΣLib = {lib(1),b(1),a(0),cons(2),nil(0)}. The unranked library lib(b(a,a),(b(a,a),b)) with
three books of which the last one has no author is represented by the following ranked Σ-tree, which
is also illustrated graphically on the left of Figure 8:

lib(cons(b(cons(a,cons(a,nil))),cons(b(cons(a,cons(a,nil))),cons(b(nil),nil))))

The schema of libraries is defined by the tree automaton Lib′ with signature ΣLib with state set
X = {qlib,qbs,qas,qb,qa}, final state qlib, and the rules:

lib(qbs) → qlib, b(qas) → qb, nil → qbs,
cons(qb,qbs) → qbs, nil → qas, cons(qa,qas) → qas,
a → qa.

Note that Lib′ is nondeterministic, since symbol nil may be analyzed as the end of a book-list or as
the end of an author-list. Let Lib be the determinization of Lib′. This can be done by mapping nil to
some new state {qas,qbs}, while adding the necessary rules for this state.

We will need some basic constructions on tree automata and complexity results which can be
found in Comon et al. (2007). Given a tree automaton D, it is decidable in time O(|D|) whether
L(D) = /0. Given another tree automaton D′ over the same signature, a tree automaton D∩D′ with
L(D∩D′) = L(D)∩L(D′) can be computed in time O(|D| |D′|).

Our learning algorithm will heavily rely on language inclusion tests for deterministic tree au-
tomata. We will use a recent inclusion test, proposed by the authors, which can be implemented
highly efficiently and incrementally (w.r.t. adding rules to D′):

Proposition 1 (Efficient Inclusion Test, Champavère et al., 2009) Let D′ and D be tree automata
over Σ. If D is deterministic then language inclusion L(D′) ⊆ L(D) can be decided in time
O(|D′| |D|).

3. Schema-Guided Pruning Strategies

We introduce schema-guided pruning strategies and define a partial aggressiveness order on them.
We then present stable queries for a given pruning strategy. We show that less aggressive pruning
strategies give rise to larger classes of stable queries.
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3.1 Pruned Trees

We fix a ranked signature Σ and a schema D which is a deterministic tree automaton with signature
Σ and state set X . We define a pruned tree to be a tree over signature Σ∪X , that is, the states of
D become additional constants. Whenever D is unclear from the context, we will talk of D-pruned
trees equivalently to pruned trees.

We will write TΣ(X) instead of TΣ∪X for the set of pruned trees. It should be noted that schema
D can be also abused to recognize pruned trees. In order to do so, it is sufficient to add the rules
q→ q for all states q ∈ X . In this way, the evaluator evalD for unpruned trees can be lifted to pruned
trees.

Let t and t ′ be two pruned trees in TΣ(X). We say that t is subsumed by t ′, or equivalently that t ′

is a D-instance of t, and write t ≤ t ′ if t ′ can be obtained from t by replacing occurrences of states
q by pruned trees that can be evaluated to q by D. We call a finite set of pruned trees L ⊆ TΣ(X)
compatible (with respect to D) if all trees in L have a common instance, that is, if there exists a
tree t ′ such that t ≤ t ′ for all t ∈ L. In this case, L has a least upper bound, that we denote by ⊔L
such that t ≤ ⊔L for all t ∈ L. The existence of least upper bounds follows, since we assume that
D is deterministic, so that no subsets of X with two different states {q,q′} ⊆ X are compatible. For
instance, if Σ = { f (2),g(1),a(0)} and D contains the rules a→ q′, g(q′)→ q, and f (q,q)→ q′′ where
q′′ is final then:

⊔{ f (g(a),q), f (q,g(q′)), f (q,q),q′′}= f (g(a),g(q′)).

A D-completion of a pruned tree t ∈ TΣ(X) is a tree t ′ ∈ TΣ such that t ≤ t ′. Every pruned tree t
defines a sublanguage of TΣ that we denote by complD(t) containing all its D-completions. Note
that complD(q) is the set of all trees t ∈ TΣ that D can evaluate to q.

3.2 Pruning Strategies

The purpose of a pruning strategy is to remove all parts of a tree that are irrelevant for the selection
of a given node. Removed subtrees are always replaced by the state into which they are evaluated
by the schema, so that some information about removed subtrees may still be preserved.

Definition 2 A pruning strategy for D is a function σ that maps any tree t ∈ L(D) and node ν ∈
nodes(t) to a pruned tree σ(t,ν) ∈ TΣ(X) of which t is a D-instance, such that ν is preserved with
its label.

Since schema D is a deterministic tree automaton, there is no choice by which state a subtree
is to be replaced. Thus, a pruning strategy can be specified by the subset of nodes rooting pruned
subtrees. Let us introduce the four pruning strategies that will be used in the experiments. The
pruning strategy path-only is total. It prunes away all maximal subtrees that are not ancestors of ν

and replaces them by ⊤. The pruning strategy path-onlyD is more restrictive in that it can only be
applied to trees satisfying schema D. Note that if U is the unique universal tree automaton with
a single state ⊤ that recognizes all trees, then path-only = path-onlyU . Pruning strategy path-extD

can be applied to any tree satisfying schema D. When applied to a tree t with node ν, the extended
path from the root to ν remains unchanged, that is, all children of siblings of nodes on the path to ν

are substituted by their state, as well as all children of ν. The pruning strategy path-ext is equal to
path-extD where D = U.
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path-only

path-onlyD path-ext

path-extD
less

aggressive

more
aggressive

Figure 7: Example pruning strategies ordered by aggressiveness.

Definition 3 Let σ and σ′ be two pruning strategies for schema D and D′ respectively such that
L(D) ⊆ L(D′). We call σ less aggressive than σ′ if any tree t ∈ L(D) with node ν satisfies that
complD(σ(t,ν))⊆ complD′(σ

′(t,ν)).

We will use the following sufficient criterion to prove that σ is less aggressive than σ′:

1. Schema D should always evaluate to more informative states than D′, that is, for any tree t
and state q ∈ evalD(t), there exists a state q′ ∈ evalD′(t) such that complD(q) ⊆ complD′(q

′),
and

2. strategy σ should always replace fewer subtrees than σ′, that is, for any t ∈ L(D) with node
ν: nodesΣ(σ(t,ν))⊇ nodesΣ(σ

′(t,ν)).

Clearly, path-extD is less aggressive than path-onlyD since path-onlyD always leaves the minimal
number of nodes unchanged, but path-extD leaves children of ancestor nodes on the path unchanged
too. The strategy path-only is more aggressive than path-onlyD since both prune the same nodes
away, while path-onlyD substitutes them by more informative states than path-only.

The notion of aggressiveness defines a partial order on pruning strategies, which is illustrated
for our example strategies in Figure 7. This order is usually not total since path-onlyD and path-ext
are incomparable for most choices of D and Σ.

3.3 Stable Queries

A query Q with schema D is a partial function with domain L(D) which maps trees t from this
domain to sets of nodes Q(t) ⊆ nodes(t). Note that queries can be applied to complete trees only.
Now, we define the class of those queries that are stable with respect to a given schema-guided
pruning strategy.

Definition 4 Let σ be a pruning strategy and Q a query, both with schema D. We call Q σ-stable if
all trees t ∈ L(D), selected nodes ν ∈ Q(t), and D-completions t ′ of σ(t,ν) satisfy ν ∈ Q(t ′).

For a selected node ν ∈ Q(t) of a σ-stable query Q, we call σ(t,ν) the critical region of ν in
t. Note that we do not define any critical region for rejected nodes, since the definition of stability
talks only about selected nodes. The next example illustrates the relevance of selected nodes’ critical
regions.
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an unpruned tree path-only pruning for first path-onlyLib pruning for first
author of the second book author of the first book

Figure 8: Illustration of “path-only” pruning strategies at the library from Example 1 without
schema and with schema Lib.

Example 2 Let Lib be the deterministic tree automaton recognizing libraries from Example 1. On
the left of Figure 8, we present an example library (lib), which contains three books (b), of which
the first two have two authors (a), while the last has none. Given that we use ranked trees, lists are
build by a binary list constructor (cons), and a constant (nil) for the empty list. We consider the
following queries on libraries with this schema:

Q1 selects the first author of all books of the library.

Q2 selects the first author of all books of the library with at least two authors.

Query Q1 is stable for both pruning strategies path-only and thus for path-onlyLib while query Q2

is stable only for path-onlyLib but not for path-only. This becomes clear when considering the
applications of these pruning strategies to the nodes, that correspond to the first authors of the first
two books.

The result of applying path-only to the first author of the second book is illustrated in the middle
of Figure 8. Note that all the information needed for the selection of this author by Q1 is preserved.
However, since the second author of the same book is pruned away and replaced by ⊤, one can-
not know whether there was a second author before, so necessary information is lost for deciding
selection by Q2.

The result of applying path-onlyD to the first author of the first book is shown on the right of
Figure 8. This time, the pruned tree contains enough information to select the first author of the first
book by Q2, since now, the second author of this book is replaced by the state qas which stands for
a nonempty author list.

Our next objective is to restrict pruning strategies to schemas recognizing smaller languages.
So let σ′ be a pruning strategy with some schema D′ such that L(D) ⊆ L(D′). We now define the
pruning strategy σ′|D with schema D such that it replaces for all trees t ∈ L(D) the same subtrees t0
as σ′ by the unique state in evalD(t0), but not by the unique state in evalD′(t0) as chosen by σ′. Note
that we deliberately overload the notation of function restriction here, in that states in images are
changed too when restricting domains of pruning strategies.
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Proposition 5 Let σ and σ′ be pruning strategies with respective schemas D and D′ such that σ is
less aggressive than σ′. Any query Q with schema D then satisfies that:

Q is σ′|D-stable⇒ Q is σ-stable.

Proof Let tree t0 be a D-completion of σ(t,ν) for some selected node ν ∈ Q(t). Since σ is less
aggressive then σ′, t0 is also a D′-completion of σ′(t,ν). Since t0 ∈ L(D) and L(D) ⊆ L(D′), it is
also a D-completion of σ′|D(t,ν). The σ′|D-stability of Q thus yields ν ∈ Q(t0), so that ν remains
selected on any σ-variant of t at ν, which shows that Q is also σ-stable.

4. Languages of Annotated Examples for Stable Queries

We will characterize stable queries in terms of languages of pruned positively annotated trees. In
order to do so, we will lift pruning strategies to pruning functions that can be applied to example
trees with positive annotations. There are several manners to do so, depending of whether only a
single positive annotation is permitted or else many of them. Only once the choice of the pruning
function is fixed, the characteristic language of a stable query can be defined in a unique manner.

The main idea of the learning algorithm for regular stable queries in Section 7 will be to identify
the characteristic languages of the target query from annotated examples. Different methods for
lifting pruning strategies to pruning functions will give rise to different target languages and thus to
different learning algorithms.

4.1 Annotated Trees

Intuitively, annotated examples for a target query are trees in which some selected nodes are an-
notated by the Boolean 1 (“true”) and some rejected nodes by the Boolean 0 (“false”). We will
support partial annotations, so that only few annotations have to be added by a user. Nodes without
annotation may either be selected or rejected. Some subtrees may be pruned away and replaced by
a state of the schema of the query.

We next formalize the notion of annotated trees (independently of any target query or pruning
strategy). Let B = {0,1} be the set of Booleans. As before, we fix a ranked signature Σ and a
deterministic tree automaton D with state set X . An annotated tree is a tree with ranked signature
Σ∪ (Σ×B)∪X , where all q ∈ X have arity 0 while Boolean annotations preserve the arity. Nodes
labeled by states in X are placeholders for subtrees which may contain both selected or rejected
nodes. For instance, ( f ,0)(a, f ((b,1),q)) is an annotated tree where f (2),a(0),b(0) ∈ Σ and q ∈
X . We call an annotated tree unpruned if none of its nodes is labeled in X . We call it positively
annotated if none of its nodes is labeled in Σ×{0} and negatively annotated if none its nodes is
labeled in Σ×{1}.

An annotation of a pruned tree t ∈ TΣ(X) is a partial function β mapping a subset of Σ-nodes of
t to a Boolean. Let dom(β)⊆ nodesΣ(t) be the domain of β. For instance, the annotation β = [1 7→
1,2 7→ 0] maps node 1 to 1 and node 2 to 0. We denote by t ∗β the annotated tree obtained from t
by relabeling all nodes ν in the domain of β to (t[ν],β(ν)) while preserving the labels of all other
nodes. Let Q be a query with schema D. We call an annotation β for t Q-consistent if all nodes
ν ∈ dom(β) satisfy:

β(ν) = 1⇔ ν ∈ Q(t).
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Figure 9: An unpruned annotated example for the two queries from Example 2 and two pruned
annotated examples obtained by applying the “path-only” pruning function respectively
without and with schema Lib.

In this case, we call t ∗β an annotated example for Q. Note that annotations may be partial. Note
also that 0-annotations are strict in that all nodes annotated by 0 in some annotated example for Q
must be rejected by Q.

We will need a projection operation on annotated trees which deletes all annotations. The Σ-
projection of a language L of annotated trees is the language ΠΣ(L) of pruned trees t ∈ TΣ(X)
where every t is the Σ-projection of some tree t ∗β ∈ L. For every tree automaton A with signature
Σ∪ (Σ×B)∪X , one can compute in linear time a nondeterministic automaton ΠΣ(A) over Σ×X
such that L(ΠΣ(A)) = ΠΣ(L(A)).

4.2 From Pruning Strategies to Pruning Functions

We next show how to lift pruning strategies in order to prune positively annotated trees. There are
two main manners to do so, depending on whether one permits to prune trees with many positive
annotations or trees with a single positive annotation only.

Given a pruning strategy σ, our first objective is to define a pruning function pσ that can be
applied to all positively annotated trees t ∗ β with t ∈ L(D), while preserving the critical regions
σ(t,ν) of all positively annotated nodes ν with their annotations:

pσ(t ∗β) =
(

⊔ν∈dom(β)σ(t,ν)
)

∗β.

The least upper bound ⊔ defines the least common instance of the σ relevant regions of all 1-
annotated nodes of t. Note that this least upper bound does always exist because t is an upper
bound of all σ(t,ν). The above least upper bound thus requires that a node is substituted by a state
if and only if it is substituted by some of these prunings and not preserved by any other. Since we
assume that β is a positive annotation, note that β(ν) = 1 for all ν in the domain of β.

The concrete pruning functions ppath-onlyD
and ppath-extD

keep all paths (respectively extended
paths) to 1-annotated nodes.

Example 3 We reconsider the library tree from Example 2 (see Figure 8). On the left of Figure 9
we present a positively annotated unpruned example for both queries Q1 and Q2 from Example
2. In the middle, we present the result obtained by applying function ppath-only to this annotated
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example, and on the right the annotated example obtained by applying function ppath-onlyD
. The

ppath-only pruned example in the middle contains the minimal information relevant for query Q1 for
first-authors, while the ppath-onlyD

pruned example on the right contains the minimal information
relevant for query Q2 for first-authors that are not single authors. It should be noticed that negative
information will be provided to the learning algorithm independently through negatively annotated
examples.

Alternatively, we could permit to prune only trees with a single positive annotation. This is done
by the following pruning function pcan

σ , which is defined for all t ∗ [ν 7→ 1] with t ∈ L(D) as below
and undefined for all other annotated trees:

pcan
σ (t ∗ [ν 7→ 1]) = σ(t,ν)∗ [ν 7→ 1].

If using such “canonical” pruning functions in our learning algorithm with a universal schema D =
U, we will obtain back the learning algorithm from Lemay et al. (2006) restricted to monadic
queries. In our experiments, we will exclusively work with pruning functions pσ, even though the
alternative pruning function pcan

σ is highly promising for learning n-ary queries in particular.
In our theoretical framework, we wish to capture both cases. Therefore, we now propose a

unifying definition of pruning functions by which our learning algorithm will be parameterized.

Definition 6 A pruning function with schema D is a partial function p whose domain dom(p) is a
subset of positively annotated trees t ∗β with t ∈ L(D) such that:

(P1) every annotated tree t ∗β ∈ dom(p) is a D-instance of p(t ∗β), and

(P2) for every tree t ∈ L(D) with node ν, p(t ∗ [ν 7→ 1]) is defined and preserves node ν with its
label.

Lemma 7 For any pruning strategy σ, both pσ and pcan
σ are pruning functions.

The proof is straightforward. It should also be noticed that pruning functions need to be adapted
to unranked trees, before they become suitable for our experiments on XML query induction. Any
pruning function on unranked trees can be compiled back to a (more involved) pruning function on
ranked trees via a binary encoding of unranked trees (see Section 8).

4.3 Stability for Pruning Functions

We next lift the notion of stability to pruning functions. Let t ∗β be an annotated example for query
Q with schema D and p a pruning function with the same schema. We call t1 a (β, p)-variant of a
tree t if t1 is a D- completion of the unique tree t ′1 such that t ′1 ∗β′ = p(t ∗β) for some β′. Note that
β provides positive annotations only given that p is a pruning function. Furthermore, β′ must be the
restriction of β to nodesΣ(t1). The nodes of dom(β′) are called determined by the (β, p)-variant t1
of t.

Definition 8 Let D be a deterministic tree automaton, p be a pruning function and Q be a query
both with schema D. We say that Q is p-stable if for any annotated example t ∗β for Q in dom(p),
and any node ν determined by any (β, p)-variant t1 of t satisfies ν ∈ Q(t1).
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Proposition 9 Let σ be a pruning strategy and Q a query with the same schema D, then:

Q is σ-stable⇔ Q is pσ-stable.

Proof “⇒”. Let t ∗β ∈ dom(pσ) be an annotated example for Q and t ′ a (β, pσ)-variant of t that
determines ν. Since β is Q-consistent it follows that ν ∈ Q(t). We have to show that ν ∈ Q(t ′). By
definition of pσ, t ′ = ⊔ν′∈dom(β)σ(t,ν

′), so that t ′ is a D-completion of σ(t,ν). The σ-stability of Q
then implies that ν ∈ Q(t ′) as required.

“⇐”. Let ν ∈ Q(t) and t1 a D-completion of σ(t,ν). We have to show that ν ∈ Q(t1). The
annotation β = [ν 7→ 1] is a Q-consistent for t and satisfies σ(t,ν) ∗ β = pσ(t ∗ β). Hence, t1 is a
(β, pσ)-variant of t that determines ν. The pσ-stability of Q yields that ν ∈ Q(t1).

4.4 Stability Characterization

We now characterize p-stable queries by languages of p-pruned positively annotated trees. Let D
be a deterministic automaton and p be a pruning function with schema D. For any query Q with
schema D, let LQ

LQ = {t ∗β | β is a Q-consistent annotation of t ∈ L(D)}.

be the set of unpruned annotated examples for Q. Note that users of a query induction system will
provide elements of LQ for the target query Q. Then, the set of pruned annotated examples p(LQ)
is the set of all p-images of positively annotated examples for Q that belong to dom(p). Note that
in our XML information extraction tool, example trees will contain both positive annotations and
negative annotations. In a preprocessing step, we collect positively annotated examples to which
the pruning function will be applied. We will also collect negatively annotated examples which
must remain unpruned in contrast.

Conversely, every language of pruned annotated trees defines a query. Let L be a language of
annotated trees, it defines a query with domain L(D) that we denote by QL such that for all trees t
in L(D):

QL(t) = {ν | ∃t
′ ∗β ∈ L such that β(ν) = 1 and t ∈ complD(t

′)}.

The following proposition shows that stable queries can be uniquely identified by their language
of pruned positively annotated trees, under the assumption that the schema is known.

Proposition 10 Any p-stable query Q is defined by the language L = p(LQ), that is QL = Q.

Proof We assume that Q is p-stable and show that QL = Q. Both queries have the same domain
L(D), so it is sufficient to show that, for all t ∈ L(D) that QL(t) = Q(t).

“⊇” Assume ν ∈Q(t). Then β = [ν 7→ 1] is a Q-consistent annotation of t, so that by (P2), the tree
t ∗β can be pruned by p while preserving ν with its label. By definition of L = p(LQ), we
have p(t ∗β) ∈ L. Let t ′ ∗β′ be equal to p(t ∗β). Since ν is the only node ν in the domain of
β and is preserved, we can deduce that β′ = β, so that t ′ ∗β ∈ L. Furthermore, t ∈ complD(t

′)
as a consequence of condition (P1) on pruning functions. Therefore, ν ∈ QL(t) by definition
of QL.
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“⊆” Assume ν ∈ QL(t). Then, by definition of QL, there exists t ′ ∗β ∈ L such that t ∈ complD(t
′)

and β(ν) = 1. Now, by definition of L = p(LQ), there exists an annotated example t1 ∗ β1

for Q such that t ′ ∗β = p(t1 ∗β1). We have β1(ν) = 1 by condition (P1) in the definition of
pruning functions, thus ν ∈ Q(t1) by definition of Q-consistency. Finally, notice that t is a
(β1, p)-variant of t1 that determines ν. Therefore ν ∈ Q(t) follows from p-stability.

Theorem 11 Let D be a deterministic tree automaton, p a pruning function and Q a query both
with schema D. The following two properties are then equivalent:

1. Query Q is p-stable.

2. Language L = p(LQ) defines query Q in that Q = QL.

Proof The implication “1 ⇒ 2” was shown by Proposition 10, so it remains to prove “2 ⇒ 1”.
We assume QL = Q and show that Q is p-stable. Let t ∗ β be a Q-consistently annotated tree in
dom(p) and t1 a (β, p)-variant of t determining ν. Variant t1 is then a D-completion of t ′1 where
t ′1 ∗β′ = p(t ∗β) for some β′. The Q-consistency of β on t implies that t ′1 ∗β′ ∈ L. Furthermore, it
implies that ν ∈Q(t) since β must be all positive by definition of pruning functions. Since variant t1
determines ν, it follows that β′(ν) = 1. Hence ν ∈ QL(t1) by definition of QL. With our assumption
QL = Q, we can conclude that ν ∈ Q(t1) as required.

5. Regularity

From the view point of XML information extraction, XPath queries with DTD schema restrictions are
of highest interest for query induction. Modulo binary encoding of unranked trees, DTD schemas
can be expressed by deterministic tree automata. Furthermore, since we ignore data values, XPath
queries can be defined by tree automata too, that operate on binary encodings of unranked trees.
This motivates our study of the class of regular queries for query induction.

In our learning algorithm we will represent regular p-stable queries by tree automata that rec-
ognize the language p(LQ) of pruned positively annotated examples for Q. The objective of this
section is to show that every regular p-stable query can be represented in this manner under the
assumption that the pruning function p is regular too, a notion that we will introduce.

5.1 Regular Stable Queries

We recall a definition of regular queries and show how to represent stable regular queries by regular
languages of pruned annotated examples.

Definition 12 A query Q is regular if the set LQ of unpruned annotated examples for Q is a regular
tree language.

As before, let D be a fixed deterministic tree automaton with signature Σ and state set X , so that
pruned annotated tree have the signature Σ∪ (Σ×B)∪X . Given a tree automaton A that recognizes
pruned annotated trees, we define the query QA with schema D by QL(A). Recall that our notation
leaves the dependence of D implicit.
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Figure 10: The unpruned annotated tree of Figure 9 with nodes annotated with the symbols y and
n according to “path-only” pruning functions is on the left. Its pruning according to
pruning function ppath-onlyLib

is shown on the right.

Query answering for regular queries is an important task for every interactive query induction
system. Fortunately, queries defined by tree automata can be answered efficiently. Indeed, for
every tree t in L(D), the set QA(t) of query answers can be computed in time O(|A| |D| |t|) even
without determinism. This result is folklore. It can be shown, for instance, by converting (A,D)
into a monadic Datalog program of size O(|A| |D|) that defines the same query and applying the
algorithms for monadic Datalog from Gottlob and Koch (2002).

Lemma 13 A query Q with schema D is regular if and only if Q = QL for some regular language L
of D-pruned annotated trees.

Proof For the one direction, note that QLQ
= Q, so that we can choose L = LQ if LQ is regular.

The other direction is more tedious. Given automata A and D we have to construct an automaton
recognizing LQA

depending on D. How this can be done is shown in Appendix A.

It should be noticed that the automaton construction in the above proof requires exponential
time in the size of A. Fortunately, this construction will only be used to clarify the expressiveness
of our query representation formalism in Theorem 18. It will not be used by our query induction
algorithm.

Proposition 14 A p-stable query Q is regular if its language p(LQ) is regular.

Proof Let Q be a p-stable query and L = p(LQ). Proposition 10 shows that Q = QL. Lemma 13
thus implies that QL is regular, under the assumption that L is regular.

The converse holds only for regular pruning functions introduced next (see Theorem 18).

5.2 Regular Pruning Functions

We will also need a formalism for specifying pruning functions. Again, we will use tree automata
for this purpose, leading to the notion of regular pruning functions.
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Example 4 We reconsider the example on pruned libraries for the pruning function obtained from
the path-onlyLib strategy. All maximal subtrees in which no node is annotated by 1 must be pruned
and all nodes above nodes annotated by 1 must be preserved. This can be done by a finite state
machine. For this, we will annotate nodes that are to be pruned by y and nodes that must be
preserved by n. For instance, the annotation of the tree of Figure 9 is shown in Figure 10. Then,
it is easy to define a tree automaton which checks whether the definition of a “path-only” pruning
function is satisfied. This automaton can also be used to apply the pruning function.

Formally, let us consider a pruning function p and an annotated tree t ∗β in its domain. We call
a node ν of t ∗β unpruned if it belongs to nodesΣ∪Σ×B(p(t ∗β)) and pruned otherwise. Let t ∗β∗ p
be the tree obtained from t ∗β by annotating all nodes that were pruned by p with y and all others
by n. This way we can identify p with the language Lp = {t ∗β∗ p | t ∗β ∈ dom(p)}. Note that Lp

contains unpruned trees only. We say that a tree automaton P with signature (Σ∪ (Σ×B))×{y,n}
defines a pruning function p with schema D if Lp = {s ∈ L(P) |ΠΣ(s) ∈ L(D)}. Note that schema
validation for D is considered as an external issue for P. This pruning function p is then denoted by
℘P,D.

Definition 15 A pruning function p with schema D is called regular if it is equal to ℘P,D for some
tree automaton P.

For instance, the pruning function ppath-onlyD
is regular. It can be defined by the same automaton

with 2 states for all D (since schema validation is done externally). This automaton checks whether
a node has a 1-annotated descendant (state 1) or not (state 0). Nodes in state 1 must be labeled by n
and nodes in state 0 by y. Both states are final. For all symbols f (k) in Σ where k ≥ 0 we define the
following rules, where each occurrence of symbol ∗ stands for either state 0 and 1.

( f ,y)(0, . . . ,0)→ 0 (( f ,1),n)(∗, . . . ,∗)→ 1 ( f ,n)(∗, . . . ,∗,1,∗, . . .∗)→ 1.

Pruning function ppath-extD
is also regular. It is sufficient to add a further state to the previous

automaton, which checks whether a node is a sibling of a positively annotated node (or not). We
leave the precise automaton construction to the reader.

Any pair (P,D) can be transformed in polynomial time into a linear bottom-up tree transducer
(Comon et al., 2007) that defines the same pruning function ℘P,D. Such transducers, however, may
become nondeterministic even if P and D are deterministic, as for instance for ppath-extD

. Further-
more, if we avoid such a conversion, we can indeed evaluate the application of a pruning functions
to an annotated tree efficiently, as we show next.

Lemma 16 Let P and D be deterministic tree automata, p =℘P,D, and t ∗β an unpruned annotated
tree. One can decide whether t ∗ β belongs to dom(p) and in this case compute p(t ∗ β) in time
O(|P| |t|+ |D|+ |t|).

Proof We compute the projection automaton P′ = ΠΣ∪(Σ×B)(P) by “integrating” the labels y and n
into the states of P. Note that P′ may be nondeterministic despite of the determinism of P. Let t ∗β

be an unpruned annotated input tree. Since D is deterministic we can decide in time O(|D|+ |t|)
whether t ∈ L(D). If not, we return that t ∗β does not belong to dom(p). Otherwise, there exists
at most one unpruned tree s ∈ L(P) such that ΠΣ∪Σ×B(s) = t ∗ β, since p is a partial function
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satisfying Lp = {s ∈ L(P) | ΠΣ(s) ∈ L(D)}. Therefore, and since P is deterministic, P′ may have
at most one successful run on t ∗β and possibly many unsuccessful runs. This unique successful
run would contain all information on whether a node is to be pruned or not in the {y,n} component
of its state. It is thus sufficient to compute the successful run of P′ on t ∗β if it exists and to detect
is nonexistence otherwise. This can be done by running the nondeterministic automaton P′ on t
in time O(|P′| |t|) in a bottom up phase, then testing whether a final state got reached, and if yes
selecting the successful run in a top-down phase. Since P′ contains at most twice as many states
as P, its size is linear in that that of P. The overall computation time is thus in O(|P| |t|+ |D|+ |t|).

Lemma 17 Let D, A, and P be deterministic tree automata. If L = L(A) is a language of unpruned
annotated trees and p =℘P,D a pruning function then p(L) can be recognized by a deterministic

tree automaton of size O(|D| 2|P| |A|).

Proof Let p =℘P,D and L = L(A) for deterministic tree automata P,D,A. We rely on a similar
algorithm as for computing p(t ∗β) from t ∗β except that we must deal with states from X in pruned
trees p(t ∗β). So we use the projection automaton P′ = ΠΣ∪(Σ×B)(P) but we add rules q→ (r,y)
for all states q ∈ X and r of P. Then, we determinize automaton P′, lift D to the automaton D′

on Σ∪ (Σ×B)∪X that runs D on the Σ component of any pruned input trees, while adding rules
q→ q for all q ∈ X . We note that the determinism of D inherits to D′. We then compute the
product P′∩D′∩A. By running this product on a pruned input tree t ∗β, we can test whether there
exists a D-completion t ′ ∗ β′ such that t ′ ∈ L(D) and p(t ′ ∗ β′) = t ∗ β. The product automaton is
deterministic, recognizes p(L), and is of size O(|D| 2|P| |A|).

Theorem 18 Let Q be a p-stable query for a regular pruning function p. Then:

Q is regular⇔ p(LQ) is regular.

Proof If Q is regular then LQ is regular, and thus p(LQ) by Lemma 17. The converse implication
was shown in Proposition 14.

This shows that every regular p-stable query Q can be represented by a (minimal deterministic) tree
automaton that recognizes the language p(LQ) of p-pruned positively annotated examples for Q.
This is the representation on which we will base our learning algorithm for regular p-stable queries.

5.3 Deciding Stability

For our experimental validation, it will be necessary to decide whether a regular query is stable for
a regular pruning function. This can be done in polynomial time:

Theorem 19 Let D and P be deterministic automata defining a regular pruning function p =℘P,D

and Q a query with domain D. For any tree automaton A recognizing LQ we can decide in time
O(|A|2 |D| |P|) whether Q is p-stable.

The quite technical proof which is based on so called recognizable relations between trees
(which is based on the idea of regular language of overlays of tree tuples, see, for example, Comon
et al., 2007) is deferred to Appendix A.
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6. Algorithms for Consistency Checking

In this section, we will present algorithms for checking consistency properties for regular sets of
annotated examples that we will introduce: D-functionality and p-consistency. These consistency
checks will be the prime subroutines of our learning algorithm. They help us to avoid the need for
further negative examples for the target language, beside the negatively annotated examples for the
target query.

6.1 D-Functionality

We consider languages of pruned annotated trees with mixed positive and negative annotations.
D-functionality is a consistency notion for such sets which requires that positive and negative anno-
tations are non-contradictory.

Definition 20 We call a language L ⊆ TΣ∪(Σ×B)(X) of annotated trees D-functional if for any t ∗
β, t ′ ∗β′ ∈ L, if t and t ′ are compatible with respect to D then β and β′ coincide on dom(β)∩dom(β′).

The language {(a,1)(⊤),(a,0)(⊤)}, for instance, is not U-functional. We next relate p-stable
queries to D-functional languages.

Proposition 21 If Q is a p-stable query with schema D, then the language p(LQ) ∪ LQ is D-
functional.

Proof The proof is by contradiction. Let us assume that p(LQ)∪LQ is not D-functional. Since
domains of pruning functions contain positively annotated trees, there must exist a p-pruned
example t ′1 ∗ β′1 ∈ p(LQ) for Q and an unpruned example t2 ∗ β2 ∈ LQ for Q such that t ′1 and t2
are compatible with respect to D, so that there exists a node ν with β′1(ν) = 1 and β2(ν) = 0. By
definition of p(LQ), there exists an unpruned example t1 ∗ β1 for Q such that t ′1 ∗ β′1 = p(t1 ∗ β1).
Property (P1) of pruning functions implies that β1(ν) = β′1(ν) = 1. Since β1 is a Q-consistent
annotation of t1, it follows that ν ∈ Q(t1), and since β2 is a Q-consistent annotation of t2 that
ν 6∈ Q(t2). Compatibility implies that t2 is a D-completion of t ′1. Hence, t2 is a (β1, p)-variant of t1
that determines ν. The p-stability of Q yields ν ∈ Q(t2). Contradiction.

We now show that D-functionality can be tested efficiently for regular queries QA, by reduction
to testing emptiness of tree automata. Note that determinism does not help to improve emptiness
tests, so that it will not help to assume that A is deterministic here.

Theorem 22 Let D be a deterministic tree automaton with signature Σ and state set X, and A be
a tree automaton with signature Σ∪ (Σ×B)∪X. Whether L(A) is D-functional can be decided in
time O(|D| |A|2).

Proof We write s1 ⊛ s2 for the overlay of trees s1 and s2, where missing nodes are filled up with
a fresh ⊥-symbol. Let us consider the language Lcontra of overlays (t1 ∗ β1)⊛ (t2 ∗ β2) such that
t1 ∗β1 and t2 ∗β2 are accepted by A, that t1 and t2 have a common completion, that is, complD(t1)∩
complD(t2) 6= /0, and that there exists a node ν with contradicting annotations β1(ν) 6= β2(ν). By
definition of D-functionality, L(A) is D-functional if and only if Lcontra = /0.

The existence of a common D-completion can be checked by running a single copy of D jointly
on t1 and t2, while checking that the states of D occurring in t1 and t2 are chosen appropriately.
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More precisely, if a node in t1 ⊛ t2 is labeled by ( f ,⊥) then D runs on the left component and if it is
labeled with (⊥, f ) then it is run on the right component. Nodes with labels ( f ,q), (q, f ) are correct,
if the state reached by D is equal to q. From this time point on, D continues on both components
while testing their equality. Labels (q1,q2) with different state contradicts the compatibility of t1
and t2 (since D is deterministic), as well as labels ( f1, f2) with different function symbols. We have
also to test that the joined run of D on t1 and t2 does reach a final state.

Membership of t1 ∗β1 and t2 ∗β2 to L(A) can be checked by running two copies of A in parallel
on their overlay. Last but not least, the existence of a contradiction between annotations can be
checked by a very simple automaton with a single state. Thus, Lcontra can be recognized by a
product automaton of size O(|D| |A|2). As emptiness is testable in linear time for tree automata, the
theorem follows.

Note that if one can assume that the Σ-projections of all trees recognized by A satisfy schema D,
as we can do for our learning algorithm, then the test in the proof can be simplified, since never D
has to be run in parallel with both copies of A. In this case, D-functionality can be checked in time
O(|D| |A|+ |A|2).

6.2 p-Consistency

In our learning algorithms, we will need to check whether a language of annotated trees contains
only p-pruned trees for a given regular pruning function p.

Definition 23 We call a language L of annotated trees p-consistent if all trees in L are p-pruned,
that is, if L⊆ p(TΣ∪(Σ×B)).

Proposition 24 Let p =℘P,D be a regular pruning function, let L = L(A) be a regular set of pruned
annotated trees defined by a deterministic automaton with signature Σ∪(Σ×B)∪X. Whether L(A)
is p-consistent can be decided in time O(|A| |D| 2|P|).

Proof By definition of p-consistency, we must test whether L(A) ⊆ p(TΣ∪(Σ×B)). By Lemma 13,

we can construct a deterministic tree automaton recognizing p(TΣ∪(Σ×B)) in time O(|D| 2|P|). We
can thus decide p-consistency by inclusion checking. According to Proposition 1, inclusion can be
checked in time O(|A| |D| 2|P|).

The p-consistency test may lead to an exponential blow-up in the size of P due to determiniza-
tion of the projection of P. In practice this does not raise any problems. The first reason is that
the usual determinization procedure does often behaves much better than in the worst case. The
second reason is that the automaton P defining the pruning function will usually be very small. For
instance, “path-only” pruning functions can be defined by an automaton with 2-states (indeed the
same automaton for all schemas D), and “path-extended” pruning functions with 3-states. Pruning
functions derived from the unranked case via the binary encoding will be defined with no more than
5-states.
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7. Learning Stable Regular Queries

In this section, we present a learning algorithm for stable queries and prove a formal learnability
result.

7.1 Learning from p-Pruned Samples

We present a learning algorithm that infers p-stable queries from p-pruned samples and show that it
satisfies the learning model from polynomial time and data. The nontrivial aspect is that p-pruned
samples are indeed sufficient.

We suppose that the schema is fixed by a deterministic automaton D, and that the pruning
function p =℘P,D is fixed by a deterministic tree automaton P. As shown before, a p-stable regular
query Q is uniquely defined by the language L = p(LQ) of all p-pruned examples for Q. The
idea is therefore to identify the minimal deterministic tree automaton for the language L = p(LQ)
associated with the p-stable target query Q. As input, it will receive a p-pruned sample for the target
query.

Definition 25 A p-pruned sample is a pair (S+,S−) where S+ is a p-consistent finite set of positively
annotated trees and S− a finite set of negatively annotated trees such that S+∪S− is D-functional.

Note that only positively annotated examples can be p-pruned, since pruning functions do not apply
to examples with negative annotations. We can now state our main result of the learnability of
p-stable queries from p-pruned samples.

Theorem 26 Let schema D be a deterministic tree automaton and p be a fixed regular pruning
function with schema D. Let A be the class of deterministic tree automata that recognize lan-
guages p(LQ) of some regular p-stable query Q and S the class of p-pruned samples of annotated
examples. Then, the class of p-stable regular queries represented by automata in class A is learn-
able in polynomial time with polynomially many examples from samples in the class S . I.e. any
automaton A in A has a characteristic sample char(A) in S whose cardinality is polynomial in the
size of A and there is an algorithm p-stable-RPNI D such that, for any sample S′ in S that subsumes
the characteristic sample char(A) of an automaton A recognizing the language L = p(LQ) of a p-
stable query Q, algorithm p-stable-RPNI D outputs in polynomial time in the size of S′ the unique
minimal deterministic tree automaton recognizing L.

Proof The proof is by reduction to the problem of learning regular tree languages represented by
deterministic tree automata from positive and negative examples (García and Oncina, 1993). Let
A ′ be the class of deterministic tree automata with signature Σ′ = Σ∪ (Σ×B)∪X and S ′ the class
of samples (S′+,S′−) of positive and negative examples S′+,S′− ⊆ TΣ′ with S′+ ∩ S′− = /0. From
the learnability result for deterministic tree automata, we know that every automaton A in A ′ has
a characteristic sample char′(A) = (S′+,S′−) in S ′ with S′+ ⊆ L(A) and S′− ∩L(A) = /0 whose
cardinality is polynomial in the size of A. Also, there is an algorithm RPNI such that, for every
sample S in S ′ that subsumes the characteristic sample char′(A), RPNI with input S outputs in
polynomial time in the size of S the unique minimal deterministic tree automaton recognizing L(A).

In the first step of the proof, we construct the characteristic sample char(A) = (S+,S−) in S for
A in A . We fix a total order on trees over Σ, such that trees with fewer nodes become smaller. Let A
be a deterministic tree automaton recognizing the language L = p(LQ) of the p-stable target query
Q. Since automaton A belongs to class A ′, there exists a characteristic sample char′(A) = (S′+,S′−)
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fun p-stable-RPNI D(S
+,S−) / / i n p u t a p−pruned sample (S+,S−)

A← init(S+) / / d e t e r m i n i s t i c t r e e automaton r e c o g n i z i n g S+ such
/ / t h a t a t most one t r e e i s r e c o g n i z e d per s t a t e

l e t (q1, . . . ,qn) = s o r t s t a t e s o f A c o n s i s t e n t l y wi th o r d e r on t r e e s
Ok← /0 / / s t a t e s a l r e a d y merged
f o r i =1 to n do

i f qi ∈ Ok then sk ip e l s e

f o r j =1 to i−1 do

l e t A′ = det-merge(A,qi,q j) / / qi becomes a r e f e r e n c e t o q j

i f L(A′)∪S− i s D− f u n c t i o n a l / / Theorem 22
and L(A′) i s p−c o n s i s t e n t / / Proposition 24

then

A← A′

u p d a t e Ok by a d d i n g newly merged s t a t e s from comput ing A′

e x i t / / i n n e r f o r loop
e l s e

sk ip

end / / i n n e r f o r loop
add qi to Ok / / i f qi g o t merged t h e n i t b e l o n g e d a l r e a d y t o Ok

end / / o u t e r f o r loop
output A / / a d e t e r m i n i s t i c t r e e automaton d e f i n i n g query QA

Figure 11: Learning algorithm for p-stable queries from p-pruned examples.

in S ′. We define char(A) in S from char′(A) as follows. All trees in S′+ belong to L = p(LQ), so
we put them into S+. For all trees s in S′− we proceed as follows:

• If s does not belong to the image of p then we can safely ignore s, since our algorithm will
always check that the language of the target automaton will be p-consistent (recall that p is
fixed and known by the algorithm).

• Otherwise, let t be the least tree in the total order fixed above such that s = p(t ∗β) for some
β, and fix one of those βs. By definition of pruning functions, β must be a positive annotation.
Since s ∈ S′−, however, β cannot be consistent with Q, so there exists a node ν 6∈ Q(t) such
that β(t) = 1. We add t ∗ [ν 7→ 0] to S−.

We obtain a sample char(A) = (S+,S−) whose cardinality is at most linear in the cardinality of
char′(A), and thus polynomial in the size of A. Moreover, it follows from Proposition 21 that S+∪S−

is D-functional since Q is p-stable. Therefore, char(A) is a p-pruned sample in the class S . In Figure
11, we define our learning algorithm p-stable-RPNI D which receives p-pruned samples (S+,S−) in
S as input. It is parameterized by a deterministic tree automaton D and a regular pruning function p
with schema D. It remains to show for every sample (S+,S−) in S that subsumes the characteristic
sample char(A) of an automaton A recognizing the language L = p(LQ) of a p-stable query Q, that
p-stable-RPNI D(S

+,S−) is the unique minimal deterministic tree automaton recognizing L and that
it is computed in polynomial time.

For this, let A ∈ A be an automaton. We consider char(A) as defined before from the character-
istic sample char′(A). We first show that:

p-stable-RPNI D(char(A)) = RPNI (char′(A)).
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Before showing this, we recall the principles of RPNI and explain the differences to p-stable-RPNI D.
Algorithm RPNI receives as input a finite sample of positive and negative examples for the target
language. At the beginning it computes an initial automaton init(S+) recognizing the positive ex-
amples S+. Each of its states can be associated with the least subtree that is evaluated to this state.
Thereby, states become totally ordered, as well as pairs of states. State merge operations preserving
determinism are then tried out in this order. A state merge operation is accepted if it preserves con-
sistency in that no negative example can be recognized. Otherwise, it is rejected and must be undone.
This procedure is repeated exhaustively. Algorithm p-stable-RPNI D is similar except that it receives
a p-pruned sample as input, and that the consistency test is replaced by a test for D-functionality
and p-consistency.

Let char(A) = (S+,S−) be the p-pruned sample constructed from char′(A) = (S′+,S′−) as de-
scribed above. By construction, S′+⊆ S+. Therefore, it follows from the learnability result for deter-
ministic tree automata that RPNI (S+,S′−) = RPNI (char′(A)) is the unique minimal deterministic
automaton recognizing L(A). It remains to show that p-stable-RPNI D(S

+,S−) = RPNI (S+,S′−).
Both algorithms start by constructing the initial automaton init(S+). Therefore, along their com-
putations, both algorithms will try to perform the same state merge operations in the same order.
Successful attempts will be accepted, while all others with be rejected and undone. It remains to
show that both algorithms accept the same state merge operations. A merge operation is rejected
by RPNI if the automaton obtained recognizes some tree s ∈ S′−. This translates either to a lack
of p-consistency of the current automaton A reached by evaluating p-stable-RPNI D or to a lack of
D-functionality of L(A)∪ S−. Conversely, if p-consistency or D-functionality fail for the current
automaton of p-stable-RPNI D, then the computation of RPNI cannot accept this merge operation
either, since otherwise its final automaton would accept a larger language than the target language.
Thus, p-stable-RPNI D(S

+,S−) = RPNI (S+,S′−).

The computation time for RPNI is polynomial in the size of the input sample. The additional
tests for D-functionality and p-consistency performed by p-stable-RPNI D are in polynomial
time (for fixed p) by Theorem 22 and Proposition 24. Thus, the overall computation time of
p-stable-RPNI D is polynomial in the size of the input sample. It can also be proven that if
p-stable-RPNI D receives a superset of char(A) as input, then the output is again the minimal
deterministic automaton recognizing the language L = p(LQ) of the target p-stable query Q.

As shown above, automaton p-stable-RPNI D(S
+,S−) can be computed in polynomial time de-

pending on the size of the input sample (S+,S−), for fixed regular pruning function p =℘P,D. This
may change if moving the deterministic automaton P to the inputs, since then there may be an ex-
ponential blow up in the size of P in the worst case (see Proposition 24). Therefore, the choice of
the pruning function requires a little care: they should be defined by automata with few states only.

The performance of the inclusion test for checking p-consistency is crucial for practical effi-
ciency, since it is performed repeatedly at every merge attempt of learning algorithm p-stable-RPNI D.
Therefore, we have implemented our inclusion test such that it is incremental with respect to the ad-
dition of rules to automaton A defining the query hypothesis, see Champavère et al. (2009).

We also designed and implemented an alternative algorithm, where schema consistency is en-
sured by static state-typing, as in previous inference algorithms for regular languages (Coste et al.,
2004; Oncina and Varó, 1996). The experimental results were not convincing though: the algorithm
worked well only for queries whose automata share much of their “structure” with the schema,
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fun σ-stable-learnD(S) / / i n p u t a sample o f unpruned a n n o t a t e d t r e e s
/ / t h a t i s f u n c t i o n a l and c o n s i s t e n t w i t h schema D

l e t S+ = pσ(S
=1) / / remove 0−a n n o t a t i o n s i n S and a p p l y p

l e t S− = S=0 / / remove 1−a n n o t a t i o n s i n S
i f S+∪S− i s n o t D− f u n c t i o n a l then r a i s e except ion ‘ u n s t a b l e query ’

/ / i f no e x c e p t i o n i s r a i s e d t h e n (S+,S−) i s a p−pruned sample
output pσ-stable-RPNI D(S

+,S−)

Figure 12: Learning algorithm for σ-stable queries from unpruned examples.

which is rarely the case in our applications. Furthermore, state-typing algorithms are not yet well-
founded theoretically, that is, no result on learning in the limit exists.

7.2 Learning from Unpruned Samples

In our experiments, a user annotates unpruned samples for the target query, which may or may not
be stable for a given pruning strategy σ. We next discuss how to produce pσ-pruned samples thereof,
in order to obtain a learning algorithm for σ-stable queries from unpruned examples.

Definition 27 An unpruned sample for a schema D is a functional tree language L⊆ TΣ∪(Σ×B) that

is consistent with D, that is, ΠΣ(L)⊆ L(D).2

This algorithm which we call σ-stable-learnD is presented in Figure 12. Given an unpruned sample S
for schema D, it computes a pσ-pruned sample (S+,S−) if possible. The positive part S+ is obtained
by removing all negative annotations from trees in S and then applying pσ. The negative part S−

is obtained from S by removing all positive annotations. If S is a sample for a σ-stable query, then
S+ ∪ S− must be D-functional as shown by Propositions 9 and 21, so that (S+,S−) is indeed a p-
pruned sample. In this case, pσ-stable-RPNI D can be safely applied. Otherwise, the algorithm raises
an exception.3

For instance, pruning strategy σ = path-only with the universal schema D = U, and query Q
which selects all a’s whose left-sibling is labeled by b. The set S = { f (b,(a,1)), f (a,(a,0))} is an
unpruned sample for Q. It induces the pσ-pruned sample (S+,S−) where S+ = { f (⊤,(a,1))} and
S− = { f (a,(a,0))}. Clearly, S+ ∪ S− is not U-functional since Q is not σ-stable, and evaluating
σ-stable-learnD(S) will raise exception ‘unstable query’.

7.3 Selection of a Pruning Strategy

The choice of a pruning strategy has strong implications on the class of learnable queries. The more
aggressive the underlying pruning strategy is, the smaller will be the class of stable queries, and
thus the class of learnable queries. For more aggressive pruning strategies, however, our learning
algorithm will converge more quickly. So the question is how to find appropriate pruning strategies.

We can approach the problem as follows. First we fix a finite set of pruning strategies, containing
for instance path-onlyD, path-extD, path-only, and path-ext as in our experiments. Given a sample

2. A language of unpruned annotated trees is functional if and only if it is U-functional.
3. The usage of canonical pruning functions pcan

σ requires some care since pcan
σ might be undefined for some trees in

S=1. Instead, one can add all trees p(t ∗ [ν 7→ 1]) to S+ such that there exists t ∗β ∈ S with β(ν) = 1. This approach,
however, requires some algorithmic improvements to become competitive.
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S of unpruned trees, the idea is to choose the most aggressive of these pruning strategies, so that
the evaluation of pσ-stable-learnD(S) does not raise exception ‘unstable query’. The inferred query
that as well as the pruning strategy that is selected may still be unsatisfactory if the sample S is not
sufficiently informative. In this case, a larger sample must be provided, so that the pruning strategy
can be updated accordingly and the correct query can be found.

8. Stable Regular Queries for Unranked Trees

So far, all notions have been defined for ranked trees. But our goal is to learn XML queries over
XML trees. Thus, all notions and results must be lifted to the unranked case and this is the objective
of the section.

For this, we use a binary encoding. We choose the bottom-up binary encoding from Carme et al.
(2004) that is also known as currying from the lambda-calculus. The advantage of using the bottom-
up encoding, rather than the more frequently used top-down encoding based on first-child and next-
sibling relations, is that schemas can be defined by bottom-up deterministic tree automata (rather
than the less expressive top-down deterministic tree automata). For instance, any deterministic
DTD for unranked trees can be transformed in polynomial time into a bottom-up deterministic tree
automaton for curried binary encodings. See for instance Champavère et al. (2009) for a precise
complexity analysis of the translation and further details.

Example 5 Let us introduce currying by example. We reconsider the unranked library tree u with
three books (b), of which the first two have two authors (a), and the last one none:

u = lib(b(a,a),b(a,a),b).

Its curried encoding is as follows where the binary “application” operator @ is written in infix
notation, while missing parenthesis are to be added from left to right.

curry(u) = lib@(b@a@a)@(b@a@a)@b.

This way, function curry maps unranked trees over a label set Σ are encoded into binary trees over
the ranked alphabet Σ@ containing the binary special function symbol @(2) and constants for all
symbols of Σ. Function curry is one to one and onto, that is, every binary tree over Σ@ uniquely
defines an unranked tree over Σ. However, the relationship between nodes is a little more intricate.
Every node of an unranked tree u corresponds to a unique leaf node of the ranked tree curry(u) and
vice versa. Inner nodes of curry(u), that is, those labeled by @, do not correspond to any node of
u (but to some of its edges). Node selection queries on unranked trees therefore correspond to leaf
selection queries on ranked trees.

We next introduce stable regular queries and pruning strategies for unranked trees, and show
how to translate them to ranked trees via a binary encoding. Let Σ be a finite label set. We denote by
UΣ the set of unranked trees over Σ. A schema will be defined as a deterministic tree automaton D
with ranked signature Σ@ and state set X . Such an automaton evaluates unranked trees by evaluating
their binary encoding.

A pruned unranked tree is a unranked tree with label set Σ∪X . By UΣ(X) we denote the set of
all pruned unranked trees. As for ranked trees, we can define a subsumption order on UΣ(X), so
that greater trees are obtained by instantiating occurrences of states by unranked trees that can be
evaluated to this state by D.
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An unranked pruning strategy for a schema D is a function σ that maps unranked trees u ∈UΣ

with leaf nodes ν ∈ leafs(u) to pruned unranked trees σ(u,ν) ∈ UΣ(X), while satisfying literally
conditions (S1) and (S2) from the ranked case (but with u instead of t). There exists a one-to-one
and onto mapping between unranked and ranked pruning strategies.

We define pruning strategies path-onlyD and path-extD on unranked trees as before, such that
they preserve the path to the input node and respectively the extended path. The next example
shows that pruning strategies that correspond on ranked trees are quite different from what one
obtains when applying the ranked path-onlyD and path-extD pruning strategies to binary encodings
of unranked trees. This means that the automata that defining path-onlyD and path-extD need to be
adapted to the unranked case appropriately.

Example 6 Let u be the unranked library from Example 5. The unranked “path-only” pruning
strategy without schema restrictions applied to the first author of the second book yields:

path-ext(u,2 ·2) = lib(⊤,b(a,⊤),⊤).

The correct corresponding path-only pruning of curry(u) at the corresponding leaf 1 ·2 ·1 ·2 is equal
to:

curry(path-ext(u,2 ·2)) = lib@⊤@(b@a@⊤)@⊤.

In contrast, the ranked path-ext pruning of curry(u) at this leaf yields something quite different:

path-ext(curry(u),1 ·2 ·1 ·2) =⊤@(⊤@a@⊤)@⊤.

This shows that the framework with general ranked pruning strategies is needed for dealing with
the unranked case properly.

The definition of σ-stable queries carries over literally to unranked trees. It follows that a node
selection query on unranked trees is stable for an unranked pruning strategy if and only if the corre-
sponding leaf selection query on ranked trees is stable for the corresponding ranked pruning strategy.
We can also compare unranked pruning strategies for aggressiveness, literally as we did in the ranked
case. It follows as before, that query stability inherits to less aggressive pruning strategies

An annotated unranked tree is a tree in UΣ∪(Σ×B)(X). It should be noticed that annotated ranked
trees correspond to annotated unranked trees in which only leafs are annotated, and vice versa.
Pruning functions can be defined on unranked trees literally as in the ranked case. Ranked pruning
functions then correspond precisely to unranked pruning functions, whose domains are restricted to
leaf-only-annotated trees. Furthermore, we can lift pruning strategies to pruning functions in the
unranked case in the same manner as in the ranked case. Based on these correspondences, we can
also lift to unranked trees our theorem on learning stable queries from pruned examples without any
particular difficulties.

9. Experimental Results

We have implemented our learning algorithm and integrated it into Web and XML information
extraction systems. In this section, we present experimental results that illustrate the relevance of
schema-guided pruning strategies in practice.

We will start with the presentation of an interactive query induction system and how we simulate
it in order to evaluate its performance. We then show how we use our learning algorithms in the
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system. Then, we compare our system with existing Web information extraction tools in order to
illustrate that our algorithms are competitive. Note that no previous system makes use of the DTD

of HTML. We then move to XML information extraction, for which no alternative tool exists for the
same tasks to the best of our knowledge.

9.1 Interactive Query Induction

Given a set of XML documents, the goal of the user is to find an unknown target query that selects
the correct set of nodes in each of them. In order to do so, the user has to play the role of a teacher
who provides the learner with annotations that are consistent with the target query.

9.1.1 INTERACTIVE LEARNING PROTOCOL

The interactive learning protocol follows a classical annotate-learn-select-correct loop. We fix a
schema D and as pruning strategy σ either path-onlyD or path-extD. At the beginning, the user
chooses an XML document from the collection and annotates some nodes as selected or rejected.
This yields an unpruned sample S on which the system runs the learning algorithm σ-stable-learnD.
Either a non-stability exception is raised or a σ-stable query is inferred. In case of success, the
system presents the answer of the induced query on the current document to the user, possibly via a
graphical interface, at least in the case of HTML documents. For other kinds XML documents, there
might not exist suitable visualizations, but for example as in the introduction, there are some.

If the user agrees with the query’s answer on the current document then he can proceed with
inspecting the answer of the same query on another document. Otherwise, he must correct a node
that is wrongly selected or rejected and provide a correction by adding a negative or a positive an-
notation respectively. The learner learns a new query but now from a larger collection of annotated
examples, and so on and so forth. The process continues until the user accepts the current query.

9.1.2 AUTOMATIC EVALUATION

In order to evaluate our learning algorithm σ-stable-learnD, we will simulate the user in the interactive
learning protocol. We assume that the target query is known beforehand, so that we can generate
annotations simulating the user’s behavior automatically.

Given a totally ordered collection of documents and a pruning strategy σ with schema D, the
simulated user behaves as follows in order to find the target query. He creates an empty unpruned
sample at the beginning, which is enriched incrementally. He then inspects the first document. If
the query does not select any node on this document then the sample remains empty. Otherwise,
the first answer node of the document in a breadth-first order is annotated by 1, and the thereby
annotated document is added to the sample. The learning algorithm σ-stable-learnD is then run
with the current sample. It returns a query that is an hypothesis for the target query. If this query
returns an incorrect answer set on the current document, then the simulated user corrects the first
wrongly selected or rejected node by adding a negative respectively positive annotation, and reruns
the learning algorithm with the updated sample. Otherwise, he continues with the next document
in the same manner, while always enriching the sample. The simulator has also to decide when
the user will stop the interaction loop. We chose to stop once the current query computes correct
answers on 30 consecutive documents or until the whole data collection has been processed. In
order to reduce the dependency on the particular total order on the document collection, we will
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generate 30 different total orders randomly, and report the average results on these 30 repetitions.
The quality of the learning algorithm is measured by the following two criteria:

1. the number of annotations to be provided by the simulated user until convergence,

2. the number of XML documents that the simulated user needs to consult until convergence.

These criteria measure the annotation effort of the simulated user until convergence. Its verification
effort, on whether the queries proposed by the system are correct, is ignored since considered less
relevant.

Compared to a human user, our automatic evaluation procedure with a simulated user is pes-
simistic in two aspects. First, a human user inspects informative documents eagerly rather than
using a random order, and second, he can choose informative annotations and corrections eagerly
rather than in breadth first manner.

9.2 Web Information Extraction

We start with a comparison to the Web information extraction tools by Raeymaekers et al. (2008)
(see also Raeymaekers, 2008) and Carme et al. (2007). The former is based on learning local tree
automata for unranked trees, while the later is based on learning unrestricted deterministic tree au-
tomata for ranked trees. No schemas are considered there. Both tools rely on the pruning strategy
path-only (see the second transformation of Raeymaekers et al., 2008, p. 170), which ignores any
schema information. When learning without pruning strategies, both tools yield poor results. We do
not present such experiments here but confirm equally poor results for our algorithm. Less aggres-
sive pruning strategies than path-only were not tested there. This imposes important restrictions on
the class of learnable queries, as we argued here. Furthermore, none of these tools can deal with
schema-guided pruning strategies or benefit from the DTD of HTML, in contrast to what we do. Note
that we did not try out to work with schemas that got inferred themselves from a collection of XML

documents, for instance by the induction algorithm proposed by Bex et al. (2006).
Raeymaekers (2008) provides experimental comparisons to quite some Web information

extraction tools based on different methods from machine learning, of which the most effi-
cient are the string-based tools STALKER and BWI (Muslea et al., 2003). Since his tool
is shown competitive with those, and ours is doing equally well for the kind of queries
tested there, we skip further comparisons. Unfortunately, however, only few of his data
sets are available.4 As a work around, we rely on the data sets from Carme et al. (2007)
for some more challenging cases. All of them are available online at the following URL:
http://www.grappa.univ-lille3.fr/~carme/WebWiki/DataSets.html. Note that we had to
use tidy5 in order to make the HTML documents valid w.r.t. a DTD (XHTML 1.0 Transitional in our
case). Indeed, this was necessary for all HTML data sets that we tested with, since none of them was
consistent with any existing DTD.

The results of our algorithm p-stable-RPNI HTML where p = ppath-onlyHTML
are shown in Table 1.

They illustrate that our algorithm is fully competitive with both predecessors considered, even
though of much larger scope. Indeed, our algorithm often performs best and never needs signifi-
cantly more annotations that the others. This is probably due to guidance of the pruning strategy by
the schema of HTML.

4. This fact got confirmed by Raeymaeker’s PhD supervisors by Email contact.
5. Tidy is freely available online at http://tidy.sourceforge.net.
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Data sets (# of docs.) Our results Carme et al. (07) Raeymaekers (08)
# corr. # docs. # corr. # docs. # corr. # docs.

Okra-mails (251) 2.67±0.54 1.77±0.42 3.48 1.6 2.0 ?
Bigbook-address (234) 2.17±0.37 1.17±0.37 3.02 1 2.3 ?

Yahoo (79) 10.07±3.00 4.27±1.34 11.36 6.18 –
Ebay (34) 1.87±0.67 1.20±0.40 2.62 1.06 –
NY-Times (22) 2.47±0.50 1.47±0.50 1.44 1.44 –
Google (33) 4.47±0.76 2.57±0.56 4.78 1.86 –

Table 1: We compare our algorithm stable-RPNI with “path-only” pruning function but guided by
the schema of HTML with two previous Web information extraction systems. For each
tool and data set, we show the average number of corrections and the average number of
documents needed until convergence. For our system, we also show the standard variation
over the first 30 experiments. The best result for each target query is highlighted.

Raeymaekers (2008) did not indicate the number of documents necessary to identify the target
queries in the two first data sets, and since his tool is no longer available, we cannot obtain them
by other means. The four other data sets were designed by Carme et al. (2007). The Yahoo data
set is the most difficult. This is because the HTML documents in this collection have heterogeneous
formats.

9.3 XML Information Extraction

The queries learned for Web information extraction seem to be stable under the path-only pruning
strategy, since otherwise they could not be learned thereby. In XML information extraction, how-
ever, there is a need for more complex queries, where less aggressive pruning strategies must be
considered. We next define data sets for such queries and test our learning algorithm on them.

9.3.1 XPATH QUERIES FOR XML DATA SETS

An XML data set is composed of a collection of XML documents, all valid w.r.t. some DTD, and of
a special XML document—called companion—that enumerates for each document of the collection
all nodes that are selected by some fixed XML query (the target). Companions are also used in order
to define input samples.

The data sets we will use in the experiments have been designed upon the XMark benchmark.
XMark (Schmidt et al., 2002)6 is a popular benchmark project in the XML database community. An
XMark document stores a set of auctions which contain several data like items, persons, bidders, etc.
The main interest of XMark, for our purpose, is that it comes with a rather complex DTD, which
defines a set of trees with varied structures.7

The target queries we use are based on a set of realistic XPath queries that the authors of
XMark, as well as Franceschet (2005), have proposed for testing XQuery or XPath processors.
We have chosen XPath queries based only on the structure of XMark documents, that is, queries

6. This benchmark can be found at the following URL: http://www.ins.cwi.nl/projects/xmark.
7. This DTD can be found at http://www.ins.cwi.nl/projects/xmark/Assets/auction.dtd.
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XMark-A1 (50 documents):

/site/closed_auctions/closed_auction
/annotation/description/text/keyword

The target query selects the keywords in the description of the closed auctions. It is the most simple of
all queries, since the selection of a node only depends on its path from the root. By definition, all pruning
functions capture this condition.

XMark-02 (100 documents):

/site/open_auctions/open_auction/bidder[1]/increase

The target query selects the increase of the first bidder for all open auctions. It is difficult to learn because
the selection of a node depends on its position. That is why the query is not path-only-stable.

XMark-17 (100 documents):

/site/people/person[not(homepage)]/name

The target query selects the name of the persons that do not have a homepage. The difficulty here is to
infer the previous negative condition.

XMark-21 (50 documents):

/site/open_auctions/open_auction[count(bidder)≥ 3]/itemre f

The target query selects the item reference of all open auctions whose numbers of bidders is greater than
three. It is hard to learn because the selection of one node depends on information on its siblings. This
explains why it is not stable by path-only-pruning.

XMark-A8 (100 documents):

/site/people/person[address and (phone or homepage)
and (creditcard or pro f ile)]/name

The target query selects the name of the persons who have filled in several information. The learning
algorithm must infer a conjunction of disjunctions, which is a hard task.

XMark-A6 (250 documents):

/site/people/person[pro f ile/gender and pro f ile/age]/name

The target query selects the name of persons who have filled in both their gender and their age in their
profile. This is a difficult query because the selected nodes depend on two children of their siblings. Only
path-extD-pruning is able to capture this condition.

Figure 13: Description of XML queries used in our experiments.

that do not use tests on data values in their definition. Figure 13 provides the target queries
in terms of XPath expressions. All the data sets are available online at the following URL:
http://grappa.univ-lille3.fr/~champavere/Recherche/datasets/. Table 2 summarizes
the pruning strategies for which these queries are stable.

9.3.2 EXPERIMENTAL RESULTS

For each data set, we run our learning algorithm with the pruning functions defined above where D
is an automaton for the XMark DTD. Either an exception is raised because the target query is not
stable for the pruning strategy. Or, it is stable and then we give the number of interactions done by
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Query id.
Stable w.r.t.

path-only path-onlyXMark path-ext path-extXMark

XMark-A1 yes yes yes yes
XMark-02 no yes yes yes
XMark-17 no yes yes yes
XMark-21 no yes yes yes
XMark-A8 no yes yes yes
XMark-A6 no no no yes

Table 2: Stability of the XML queries used in our experiments and presented in Figure 13 w.r.t. the
four pruning strategies on unranked trees.

the simulator, the number of pages which have been visited before convergence, and the running
time of the algorithm. The results of our experiments are presented in Table 3.

Let us recall that we compared pruning strategies according to their aggressiveness in Figure 7.
The results show that the best pruning strategy for learning a query is always the most aggressive
one for which the target query is stable. Furthermore, if the maximally aggressive strategies are
path-onlyD and path-ext (recall that they can not be compared), then the results show (with the
exception of XMark-17) that path-onlyD is the better. In other words, when a schema is available,
one should use the most aggressive pruning strategy guided by the schema.

10. Conclusion and Future Work

We distinguished classes of stable queries for schema-guided pruning strategies, and proposed new
learning algorithms for regular stable queries. Experimental evidence shows that stability is the
essential notion for understanding the difficulty of particular queries, in that queries are easier to
learn if they remain stable under more aggressive pruning strategies. Furthermore, schema guidance
is useful for defining relevant pruning strategies.

Which classes of XPath queries can be learned with what kind of pruning strategies remains
to be discussed. That is the question, which classes of XPath queries are stable for which pruning
strategies. Simple XPath queries with forward child and descendant axis only, such as //a/b//c/d,
are stable under the path-only pruning strategy. When adding filters that use the child axis once such
as //a[./b]/c[./d]/e they remain stable for path-onlyD. When permitting a second child axis in
filters, such as in //a[./b/f]/c[./d/g]/e, we obtain a class of XPath queries that is stable under
the path-extD strategy. Pruning may become useless for queries with descendant axis in filters, such
as /a[.//b], where node selection depends on arbitrary b-descendants. Whether this happens also
depends on the schema. Similar problems are raised when using other recursive axis in filters. When
using the “following” axis on the main path, such as in //a/following::b, we can use yet another
pruning function that keeps all nodes following a selected node in document order (or only the next
b-node following a selected node). Recursive backward axis, such as in //a/preceding::*//c

may also quickly lead to non-stability. For more general classes of XPath queries, an interesting
problem that we leave open might be to learn suitable pruning strategies. A user could help by
annotating nodes that are relevant for selecting others.
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XMark-A1 avg. # corrections avg. # documents total time (s)
path-only 1.40 ±0.49 1.40 ±0.49 0.16 ±0.15

path-onlyD 4.60 ±0.99 3.10 ±0.75 1.17 ±0.70

path-ext 6.03 ±1.64 4.10 ±1.30 4.75 ±2.66

path-extD 8.87 ±2.08 5.80 ±1.38 14.77 ±5.66

XMark-02
path-only exception ‘unstable query’
path-onlyD 4.43 ±1.12 3.30 ±0.69 0.54 ±0.35

path-ext 13.33 ±7.74 7.43 ±3.22 9.17 ±8.82

path-extD 18.10 ±6.38 14.07 ±4.09 20.62 ±11.48

XMark-17
path-only exception ‘unstable query’
path-onlyD 13.57 ±1.54 4.77 ±1.31 1.09 ±0.36

path-ext 4.90 ±0.98 2.93 ±0.81 0.42 ±0.21

path-extD 20.43 ±2.70 6.90 ±1.56 6.32 ±2.04

XMark-21
path-only exception ‘unstable query’
path-onlyD 12.00 ±2.78 7.80 ±1.66 4.17 ±1.74

path-ext 22.97 ±4.69 16.03 ±3.04 47.65 ±21.63

path-extD 40.47 ±7.08 31.50 ±5.52 83.39 ±29.74

XMark-A8
path-only exception ‘unstable query’
path-onlyD 11.93 ±6.62 5.27 ±1.57 5.95 ±11.86

path-ext 124.87 ±59.34 35.87 ±17.31 872.29 ±1240.39

path-extD 32.10 ±18.04 14.30 ±6.75 82.79 ±169.44

XMark-A6
path-only

exception ‘unstable query’path-onlyD

path-ext
path-extD 16.03 ±2.74 9.30 ±2.21 12.83 ±5.60

Table 3: Experiments on XML data: average number of corrections and documents, and the total
time needed to infer queries with respect to pruning strategies.

Another question is how to deal with XPath queries with tests on data values, such as
//book[./author=”Knuth”]. A practical approach could be to enrich the interactive setting by
allowing the user to specify data values of interest. Another approach should be to combine our
approach with statistical learning methods dealing with data values. Queries, in which equality of
data values can be tested (joins), may be non-regular and thus raise more principal difficulties to
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learnability. More generally, an interesting problem is whether classes of path queries for graph
databases can be learned and what a pruning strategy could be in this context.

Also, in the future, query induction with schema-guided pruning strategies should be extended
to n-ary regular queries (Lemay et al., 2006). This new framework for pruning strategies provided
in this paper should be sufficiently general, so that one can define appropriate pruning strategies
in the n-ary case (in contrast to previous settings). Other interesting directions would be to study
OXPath queries (Sellers et al., 2011b) or tree-to-tree transformations (Lemay et al., 2010).
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Appendix A. Remaining Proofs

Lemma 13 (Open Part) For any tree automaton A recognizing D-pruned annotated trees, the lan-
guage of unpruned trees LQA

of the query QA with schema D is regular.
Proof We have to construct a tree automaton A′ recognizing LQA

. It must check for a tree t ∗ β

whether all 1-annotations of β are justified by some 1-annotation of a tree t ′ ∗ β′ ∈ L(A) where
t ∈ complD(t

′), and that no 0-annotation of β is in conflict with some 1-annotation of a tree t ′′ ∗β′′ ∈
L(A) with t ∈ complD(t

′′). We first construct a deterministic automaton A′′ that recognizes the
language:

L(A′′) = {t ∗β | t ∈ L(D), t ∈ complD(t
′), t ′ ∗β ∈ L(A)}.

This is straightforward but requires determinization. Given a tree t let γt be the function that maps
nodes ν of t to the state of A′ that contains all states r such that there exists β for which t[ν 7→ r]∗β

is recognized by A′′. We construct an automaton A′′′ that recognizes the language:

L(A′′′) = {t ∗β∗ γt | t ∈ L(D), β is Q-consistent}.

Once this will be done, we can define A′ by projection A′ = ΠΣ∪(Σ×B)(A
′′′). For trees t ∗β∗ γ, it can

be tested by an automaton whether γ = γt and also whether t ∈ L(D). What remains to construct is
an automaton that tests for trees t ∗β∗γ whether β is Q-consistent. This can be done by an automaton
B that we define next. The states of B are the subsets of states of A′′. For f ∈ Σ(n), a set of symbols
F ⊆ { f ,( f ,0),( f ,1)}, and states R1, . . . ,Rn of A′′ we define the following set of states:

F(R1, . . . ,Rn) = {r | f̃ ∈ F, f̃ (r1, . . . ,rn)→ r in A′′, ri ∈ Ri}.

These are the states that A′′ can reach from some tuple of states in R1× . . .×Rn with a symbol from
F . The rules of B are inferred as follows where f ∈ Σ(n).

R∩{( f ,1)}(R1, . . . ,Rn) 6= /0 R′ = F(R1, . . . ,Rn) F = {( f ,0),( f ,1), f}

(( f ,1),R)(R1, . . . ,Rn)→ R′ in B
,
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R∩{( f ,1)}(R1, . . . ,Rn) = /0 R′ = F(R1, . . . ,Rn) F = {( f ,0),( f ,1), f}

(( f ,0),R)(R1, . . . ,Rn)→ R′ in B
,

R′ = F(R1, . . . ,Rn) F = {( f ,0),( f ,1), f}

( f ,R)(R1, . . . ,Rn)→ R′ in B
.

The final states of B are those states R that contain some final state of B. If B goes into a state R on
a tree t ∗β∗ γ then all states in R can be reached on some tree t ∗β′ ∈ L(A′′) and all annotations of
β are compatible with γ. If γ = γt , then β is Q-consistent.

Theorem 19 Let D be a deterministic tree automaton with signature Σ, P a deterministic tree au-
tomaton with signature (Σ∪ (Σ×B))×{y,n}, p =℘P,D a pruning function, and Q a query with
domain D. Given a tree automaton A with L(A) = LQ we can decide in time O(|A|2 |D| |P|) whether
Q is p-stable.
Proof We write t1 ⊛ . . .⊛ tn for the overlay of trees t1, . . ., tn over possibly different ranked sig-
natures, where missing nodes are filled up with a fresh ⊥-symbol. We consider the following tree
language:







t ∗β⊛ t ′ ∗β′⊛ t1 ∗β1 | t ′ ∗β′ = p(t ∗β), t1 ∈ complD(t
′),

β is Q-consistent for t, β1 is Q-consistent for t1,
∃ν ∈ nodes(t ′). β(ν) = 1∧β1(ν) = 0.







By construction, this language is empty and if only if Q is p-stable. This can be decided in linear
time in the size of an automaton recognizing the above language:

- By running a single copy of D jointly on t ′⊛ t1—as explained in more details in the proof of
Theorem 22—one can check whether t1 ∈ complD(t

′).

- By running A on the first component in parallel, we can check whether β is a Q-consistent
annotation of t, and thus whether t ∈ L(D).

- By running ΠΣ∪(Σ×B)(P) on t ∗ β, we can check that the second component t ′ ∗ β′ is the p-
pruning of the first component t ∗β.

- By running another copy of A on the third component in parallel, we can check whether β1 is
a Q-consistent annotation of t1, and thus whether t1 ∈ L(D).

- Testing whether ∃ν ∈ nodes(t ′). β(ν) = 1∧β1(ν) = 0 can be done with a 2-state control.

In summary, we have to run the following automata in parallel on different components: twice A,
once D and once P, so the overall size of the automaton is in O(|A|2 |D| |P|).
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Abstract

Canonical correlation analysis (CCA) is a classical method for seeking correlations between two

multivariate data sets. During the last ten years, it has received more and more attention in the

machine learning community in the form of novel computational formulations and a plethora of

applications. We review recent developments in Bayesian models and inference methods for CCA

which are attractive for their potential in hierarchical extensions and for coping with the combina-

tion of large dimensionalities and small sample sizes. The existing methods have not been partic-

ularly successful in fulfilling the promise yet; we introduce a novel efficient solution that imposes

group-wise sparsity to estimate the posterior of an extended model which not only extracts the

statistical dependencies (correlations) between data sets but also decomposes the data into shared

and data set-specific components. In statistics literature the model is known as inter-battery factor

analysis (IBFA), for which we now provide a Bayesian treatment.

Keywords: Bayesian modeling, canonical correlation analysis, group-wise sparsity, inter-battery

factor analysis, variational Bayesian approximation

1. Introduction

Canonical correlation analysis (CCA), originally introduced by Hotelling (1936), extracts linear

components that capture correlations between two multivariate random variables or data sets. Dur-

ing the last decade the model has received a renewed interest in the machine learning community

as the standard model for unsupervised multi-view learning settings. In a sense, it is the analogue

of principal component analysis (PCA) for two co-occurring observations, or views, retaining the

positive properties of closed-form analytical solution and ease of interpretation of its more popular

cousin.

A considerable proportion of the work has been on non-linear extensions of CCA, including

neural network based solutions (Hsieh, 2000) and kernel-based variants (Bach and Jordan, 2002;

Lai and Fyfe, 2000; Melzer et al., 2001). This line of research has been covered in a comprehensive

overview by Hardoon et al. (2004), and hence will not be discussed in detail in this article. Instead,

we review a more recent trend treating CCA as a generative model, initiated by the work of Bach and

∗. Is also at Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of

Helsinki, Finland.

c©2013 Arto Klami, Seppo Virtanen and Samuel Kaski.
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Jordan (2005). Most works in the generative approach retain the linear nature of CCA, but provide

inference methods more robust than the classical linear algebraic solution and, more importantly,

the approach leads to novel models through simple changes in the generative description or via the

basic principles of hierarchical modeling.

The generative modelling interpretation of CCA is essentially equivalent to a special case of a

probabilistic interpretation (Browne, 1979) of a model called inter-battery factor analysis (IBFA;

Tucker, 1958). While the analysis part of Browne (1979) is limited to the special case of CCA, the

generic IBFA model describes not only the correlations between the data sets but provides also com-

ponents explaining the linear structure within each of the data sets. One way of thinking about IBFA

is that it complements CCA by providing a PCA-like component description of all the variation not

captured by the correlating components. If the analysis focuses on only the correlating compo-

nents, or equivalently the latent variables shared by both data sets, the solution becomes equivalent

to CCA. However, the extended model provides novel application opportunities not immediately

apparent in the more restricted CCA model.

The IBFA model has recently been re-invented in the machine learning community by several

authors (Klami and Kaski, 2006, 2008; Ek et al., 2008; Archambeau and Bach, 2009), resulting in

probabilistic descriptions identical with that of Browne (1979). The inference has been primarily

based on finding the maximum likelihood or maximum a posteriori solution of the model, with

practical algorithms based on expectation maximization. Since the terminology of calling these

models (probabilistic) CCA has already become established in the machine learning community,

we will regard the names CCA and IBFA interchangeable. Using the term CCA emphasizes finding

of the correlations and shared components, whereas IBFA emphasizes the decomposition into shared

and data source-specific components.

In this paper we extend this IBFA/CCA work to a fully Bayesian treatment, extending our

earlier conference paper (Virtanen et al., 2011), and in particular provide two efficient inference

algorithms, a variational approximation and a Gibbs sampler, that automatically learn the structure

of the model that is, in the general case, unidentifiable. The model is solved as a generic factor

analysis (FA) model with a specific group-wise sparsity prior for the factor loadings or projections,

and an additional constraint tying the residual variances within each group to be the same. We

demonstrate how the model not only finds the IBFA solution, but also provides a CCA solution

superior to the earlier Bayesian variants of Klami and Kaski (2007) and Wang (2007).

The technical description of the model and its connection to other models are complemented

with demonstrations on practical application scenarios for the IBFA model. The main purpose of

the experiments is to show that the tools find the intended solution, and to introduce prototypical

application cases.

2. Canonical Correlation Analysis

Before explaining the Bayesian approach for canonical correlation analysis (CCA), we briefly in-

troduce the classical CCA problem. Given two co-occurring random variables with N observations

collected as matrices X1 ∈R
D1×N and X2 ∈R

D2×N , the task is to find linear projections U ∈R
D1×K

and V∈RD2×K so that the correlation between uT
k X(1) and vT

k X(2) is maximized for the components

k, under the constraint that uT
k X(1) and uT

k′X
(1) are uncorrelated for all k 6= k′ (and similarly for the

966



BAYESIAN CANONICAL CORRELATION ANALYSIS

other view). The solution can be found analytically by solving the eigenvalue problems

C−1
11 C12C−1

22 C21u = ρ2u, (1)

C−1
22 C21C−1

11 C12v = ρ2v,

where

C =

[

C11 C12

C21 C22

]

is the joint covariance matrix of x(1) and x(2) and ρ denotes the canonical correlation. In practice

all components can be found by solving a single generalized eigenvalue problem. For more detailed

discussion on classical CCA, see for instance the review of Hardoon et al. (2004).

3. Model

Our Bayesian approach to CCA is based on latent variable models and linear projections. At the

core of the generative process is an unobserved latent variable z ∈ R
K×1, which is transformed

via linear mappings to the observation spaces to represent the two multivariate random variables

x(1) ∈ R
D1×1 and x(2) ∈ R

D2×1. The observed data samples are provided as matrices X(m) =

[x
(m)
1 , ...,x

(m)
N ] ∈ R

Dm×N with N observations. To simplify the notation, we denote by x = [x(1);x(2)]
and X= [X(1);X(2)] the feature-wise concatenation of the two random variables. Throughout the pa-

per we use the superscript (m), where m is 1 or 2, to denote the view or data set in question, though

for scalar variables (such as Dm) we use the subscript without risk of confusion to streamline the

notation. For matrices and vectors the subscripts are used to indicate the individual elements, with

X:,n denoting the whole nth column of X (also denoted by xn to simplify the notation when appro-

priate) and Xd,: denoting the dth row treated as a column vector. Finally, we use 0 and I to denote

zero- and identity matrices of sizes which make sense in the context, without cluttering the notation.

3.1 Inter-battery Factor Analysis

In the latent variable model studied in this work,

z∼ N(0,I),

z(m) ∼ N(0,I), (2)

x(m) ∼ N(A(m)z+B(m)z(m),Σ(m)),

following the probabilistic interpretation of inter-battery factor analysis by Browne (1979).1 The

notation N(µ,Σ) corresponds to the normal distribution with mean µ and covariance Σ. Here the

Σ
(m) ∈ R

Dm×Dm are diagonal matrices, indicating independence of the noise over the features. Our

practical solutions will further simplify the model by assuming isotropic noise, but could easily be

extended to generic diagonal noise covariances as well. A plate diagram of the model is given in

Figure 1.

The conceptual meaning of the various terms in the model is as follows. The shared latent vari-

ables z capture the variation common to both data sets, and they are transformed to the observation

1. The original definition by Browne (1979) allows for more relaxed definitions for the various covariance terms, but in

practice he resorts to the choices made above in the actual analysis part of his work and makes the same independence

assumptions.
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Figure 1: Graphical illustration of the inter-battery factor analysis (IBFA) model as a plate diagram.

The shaded nodes x(m) denote the two observed random variables, and the latent variables

z capture the correlations between them. The variation specific to each view is modeled

with view-specific latent variables z(m). The parameters of the model are the linear pro-

jections from the z to the data (A(m) with columns a(m)) and from the z(m) to the data

(B(m) with columns b(m)), complemented by the residual noise covariance of each view

denoted by Σ
(m).

space by the linear mappings A(m)z, where A(m) ∈ R
Dm×K . The remaining variation is modeled by

the latent variables z(m) ∈ R
Km×1 specific to each data set, transformed to the observation space by

another linear mapping B(m)z(m), where B(m) ∈RDm×Km . The actual observations are then generated

by adding up these two terms, followed by addition of noise that is independent over the dimen-

sions. We assume zero-mean data without loss of generality; the model could include a separate

mean parameter whose estimate would anyway converge close to the empirical mean which can

equivalently be subtracted from the data prior to the analysis. We also assume fully observed data;

techniques similar to what Ilin and Raiko (2010) propose for Bayesian PCA could be adopted to

handle missing data.

In terms of classical models, the model can be interpreted as CCA complemented by two sep-

arate FA models (or PCA models if assuming isotropic noise) factorizing the residuals of the CCA

within each data set. This connection will become more apparent in the following sections when

the probabilistic interpretation of CCA is introduced. Typically both K and Km are smaller than the

corresponding data dimensionality, implying that the model provides low-rank approximations for

the two data matrices.

3.2 Probabilistic Canonical Correlation Analysis

There exists a simple way of converting the IBFA model of (2) into a probabilistic version of CCA

(Bach and Jordan, 2005; Browne, 1979; De Bie and De Moor, 2003). The process starts by inte-

grating out the view-specific latent variables z(m), to reach a model that has explicit components

only for the shared variation similarly to how CCA only explains the correlations. Simple algebraic
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manipulation gives the model

z∼ N(0,I),

x(m) ∼ N(A(m)z,B(m)B(m)T

+Σ
(m)).

The latent representation of this model is simpler, only containing the z instead of three separate sets

of latent variables, but the diagonal covariance of the IBFA model is replaced with B(m)B(m)T

+Σ
(m).

In effect, the view-specific variation is now modeled only implicitly, in form of correlating noise. If

we further assume that the dimensionality of the z(m) is sufficient for modeling all such variation,

the model can be re-parameterized with Ψ
(m) = B(m)B(m)T

+Σ
(m) without loss of generality. This

results in the model

z∼ N(0,I),

x(m) ∼ N(A(m)z,Ψ(m)), (3)

where Ψ
(m) is a generic covariance matrix. This holds even if assuming isotropic noise in (2).

Browne (1979) proved that (3) is equivalent to classical CCA, by showing how the maximum

likelihood solution finds the same canonical weights as regular CCA, up to a rotation. Bach and

Jordan (2005) proved the same result through a slightly different derivation, whereas De Bie and

De Moor (2003) provided a partial proof showing that the CCA solution is a stationary point of the

likelihood. The fundamental result of these derivations is that the maximum likelihood estimates

Â(m) correspond to rank-preserving linear transformations of U and V, the solutions of (1). While

the connection was shown for the case with a generic Ψ, it holds also for the IBFA model as long as

the rank of B(m) is sufficient for modeling all data set-specific variation. This is because the model

itself is the same, it just explicitly includes the nuisance parameters z(m) and B(m).

Even though the generative formulation is equivalent to classical CCA in the sense that they both

find the same subspace, one difference pointed out also by Browne (1979) is worth emphasizing:

The generative formulation maintains a single latent variable z that captures the shared variation,

whereas CCA results in two separate but correlating variables obtained by projecting the observed

variables into the correlating subspace. It is, however, possible to move between these representa-

tions; a single latent variable can be obtained by averaging the canonical scores (uT
k X(1) and vT

k X(2))

of regular CCA; two separate latent variables can be produced with the generative formulation by

estimating the distribution of z conditional on having observed only one of the views (p(z|x(1)) and

p(z|x(2))).

3.3 Identifiability

The model in (2) is in general unidentifiable in two respects. The first is shared with the marginalized

version in (3): the models are invariant to rank-preserving linear transformations. For all invertible

R ∈RK×K we have A(m)z = A(m)RR−1z, and hence the solution is defined only up to such transfor-

mations. In other words, the model finds the same subspace as the classical CCA would, but extract-

ing the specific components requires further constraints or postprocessing. Browne (1979) resorts

to simple identifiability constraints borrowed from regular factor analysis, whereas Archambeau

et al. (2006) provide a post-processing step that is close to applying regular CCA to the covariance

matrices of the probabilistic solution.
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The full IBFA model (2) has additional degrees of freedom in terms of component allocation.

The model comes with three separate sets of latent variables with component numbers K, K1 and

K2. However, individual components can be moved between these sets without influencing the

likelihood of the observed data; removal of a shared component can always be compensated by

introducing two view-specific components, one for each data set, that have the same latent variables.

In practice, all solutions for the full IBFA model hence need to carefully address the choice of model

complexity. In the next section we will introduce one such solution, based on Bayesian inference.

3.4 The Role of View-specific Variation

The models (2) and (3) are both very closely related to probabilistic formulation of PCA, FA, and

many other simple matrix factorizations. The crucial difference worth pointing out is the definition

of the noise. Instead of assuming independent noise over the dimensions the CCA model allows

for arbitrary correlations between them. This is done either by explicitly parameterizing the noise

through a covariance matrix Ψ
(m) as in (3) or by the separate view-specific components B(m)z(m) as

in (2).

Modeling the correlations in view-specific noise is crucial for extracting the true correlations

between the views. This is easy to illustrate by constructing counter-examples where the correlating

dimensions are of smaller scale than some strong view-specific variation. Any joint model assuming

independent noise over the dimensions will find the view-specific variation as the most prominent

components. It may be possible to identify these components as view-specific in a post-processing

step to reach interpretation similar to CCA, but directly modeling the view-specific variation as

separate components has obvious advantages.

The importance of modeling the variation within each view in addition to the shared effects is

so subtle that even some authors claiming to work with CCA have ignored it. For example, Shon

et al. (2006), Fujiwara et al. (2009), and Rai and Daumé III (2009) all describe their models as

CCA, but eventually resort to assuming independent noise on top of the shared components. This is

a reasonable assumption that simplifies computation dramatically, but it also means that the models

do not correspond to CCA but are instead variants of collective matrix factorization (CMF; Singh

and Gordon 2008). They are useful tools for multi-view data, but it is important to realize that the

simplifying assumption dramatically changes the nature of the model. In particular, such models

are likely to misinterpret strong view-specific variation as a shared effect, since they have no means

of explaining it otherwise. Our choice of modeling the view-specific variation as a low-rank process

results in similar computational performance as ignoring the view-specific variation, but retains the

capability of modeling also view-specific variation.

4. Inference

For learning the IBFA model we need to infer both the latent signals z and z(m) as well as the linear

projections A(m) and B(m) from data. For this purpose, we need to estimate the posterior distribution

p(z,z(1),z(2),A(1),A(2),B(1),B(2),Σ(1),Σ(2)|X(1),X(2)), and marginalize over the possibly uninter-

esting variables. In this section we first review the earlier inference solutions for the Bayesian CCA

model without presenting the technical details, and then proceed to explaining our solution for the

full Bayesian IBFA model.

Before explaining the Bayesian inference solutions, we mention earlier maximum likelihood

solutions for completeness. Bach and Jordan (2005) gave an expectation maximization algorithm
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for the pure CCA model, whereas Klami and Kaski (2008) extended it for the IBFA model. Both

approaches generalize immediately to seeking maximum a posteriori (MAP) estimates, which pro-

vides a justified way for adding regularization in the solution. Here, however, we are interested in

analysis of the full posterior distribution.

4.1 Bayesian Inference

For Bayesian analysis, the model needs to be complemented with priors for the model parameters.

Bayesian treatments of CCA were independently proposed by Klami and Kaski (2007) and Wang

(2007). Both formulations use the inverse-Wishart distribution as a prior for the covariance matrices

Ψ
(m) in (3) and apply the automatic relevance determination (ARD; Neal, 1996) prior for the linear

mappings A(m).

The ARD is a Normal-Gamma prior for the projection weights. For each component (column)

a
(m)
k the prior specifies a precision α

(m)
k that controls the scale of the values for that component:2

ARD(A(m)|α0,β0) =
K

∏
k=1

p(a
(m)
k |α

(m)
k )p(α

(m)
k |α0,β0),

α
(m)
k ∼ Gamma(α0,β0),

a
(m)
k ∼ N(0,(α

(m)
k )−1I).

The hyperpriors α0,β0 are set to small values (in our experiments to α0 = β0 = 10−14) to obtain

a relatively noninformative prior with wide support.3 The posterior of the model then becomes

one where the number of components is automatically selected by pushing α
(m)
k of unnecessary

components towards infinity. A justification for this observation is obtained by integrating α
(m)
k

out in the above prior; we then get a heavy-tailed prior for the elements of A(m) with considerable

posterior mass around zero. The component choice can be made more robust by further assuming

α
(1) = α

(2), which corresponds to placing the ARD prior for A = [A(1);A(2)] (Klami and Kaski,

2007). More data will then be used for determining the activity of each component, but data sets

with comparable scale are required. Further insights into the ARD prior are provided by Wipf and

Nagarajan (2008).

For the covariance matrices Ψ(m) a natural choice is to use a conjugate inverse-Wishart prior

Ψ
(m) ∼ IW(S0,ν0)

with ν0 degrees of freedom and scale matrix S0, which results in positive definite draws as long as

the degrees of freedom (which for N samples becomes N +ν0 in the posterior) is at least equal the

data dimensionality. Both Klami and Kaski (2007) and Wang (2007) adopted this choice.

Given the above priors, several inference techniques for the posterior are feasible. Wang (2007)

provided a variational mean-field algorithm, whereas Klami and Kaski (2007) used Gibbs sampling.

Both of these algorithms are fairly straightforward and easy to derive, since all conditional distribu-

tions are conjugate. The former is more efficient in determining the correct model complexity due

2. Note that ARD generates both the matrix A(m) as well as the scales α(m), and hence notation ARD(A(m),α(m)|α0,β0)
would be more accurate. However, since α

(m) is irrelevant for the rest of the model, we adopt the more compact

notation.

3. The distribution is flat over the positive real line, but slightly favors values near zero.
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to the ARD prior updates being more efficient in the variational framework, whereas the latter is

easier to extend, as demonstrated by Klami and Kaski (2007) by using the Bayesian CCA as part of

a non-parametric hierarchical model. Further extensions of the CCA model, described in Section 6,

have used both approaches.

Despite the apparent simplicity of the derivation, it is worth pointing out that inference of the

Bayesian CCA model is difficult for large dimensionalities. This is because we need to estimate the

posterior distribution over the Dm×Dm covariance matrices Ψ(m). The inference algorithms gener-

ally need to invert those matrices in every step, resulting in O(D3
m) complexity. More importantly,

providing accurate estimates would require extremely large sample sizes; the covariance matrix has

O(D2
m) parameters, which is often well above the data set size. Hence the direct Bayesian treatment

of CCA needs to resort to either using very strong priors (for example, favoring diagonal covariance

matrices and hence regularizing the model towards Bayesian PCA), or it will end up doing infer-

ence over a very wide posterior. Consequently, all the practical applications of Bayesian CCA in the

earlier works have been for relatively low-dimensional data; the original works by Klami and Kaski

(2007) and Wang (2007) had at most 8 dimensions in any of their experiments. Later applications

have typically used some alternative dimensionality reduction techniques to make Bayesian CCA

feasible for otherwise too high-dimensional data (Huopaniemi et al., 2009, 2010).

4.2 Group-wise Sparsity for IBFA

While the above solutions are sufficient for the CCA model, barring the difficulties with high dimen-

sionality, the full IBFA model requires more advanced inference methods. Next we will introduce

a novel inference solution extending our earlier conference paper (Virtanen et al., 2011). Besides

providing a Bayesian inference technique for the IBFA model, the algorithm is applicable also to

the regular CCA case and, as will be shown later, actually is superior to the earlier solutions also for

that scenario.

A main challenge in learning the Bayesian IBFA (BIBFA) model, as discussed in Section 3.3,

is that it requires learning three separate sets of components and the solution is unidentifiable with

respect to allocating components to the three groups. A central element in our solution is to replace

these three sets with just one set, and solve the allocation by requiring the projections to be sparse

in a specific structured way. This is done in a way that does not change the model itself, but allows

automatic complexity selection.

We start with a straightforward re-formatting of the model. We define y = [z;z(1);z(2)] ∈RKc×1,

where Kc = K +K1 +K2, as the concatenation of the three latent variables and set

W =

[

A(1) B(1) 0

A(2) 0 B(2)

]

(4)

and

Σ=

[

Σ
(1) 0

0 Σ
(2)

]

.

Now we can write (2) equivalently as

y∼ N(0,I),

x∼ N(Wy,Σ). (5)
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In other words, we are now analyzing the feature-wise concatenation of the data sources with a

single latent variable model with diagonal noise covariance Σ ∈ R
D×D, where D = D1 +D2, and a

projection matrix W ∈ R
D×Kc with the specific structure shown in (4).

Ignoring the structure in W, the model is actually a Bayesian factor analysis model (Ghahramani

and Beal, 2000). If Σ is further assumed to be spherical (Σ= σ2I), the model equals the Bayesian

PCA (Bishop, 1999) with the specific structure in W. We use Σ
(m) = σ2

mI with a Gamma prior

for the noise precisions τm = σ−2
m . That is, we make the PCA assumption separately for both data

sets. However, it is important to remember that the model still allows for dependencies between the

features of both views, by modeling them with B(m)z(m). Hence, the spherical noise covariance does

not restrict the flexibility of the model but decreases the number of parameters. Alternatively, we

could allow each dimension to have their own variance parameter as in factor analysis models; this

could be useful when the scales of the variables are very different.

Since efficient inference solutions are available for regular factor analysis, the only challenge in

learning the BIBFA model is in obtaining the right kind of structure for W. We solve the BIBFA

model by doing inference directly for (5) and learn the structure of W by imposing group-wise

sparsity for the components (columns of W), which results in the model automatically converging

to a solution that matches (4) (up to an arbitrary re-ordering of the columns). In other words, we do

not directly specify the matrices A(m) and B(m), but instead learn a single W matrix. To implement

the group-wise sparsity, we divide the variables in x into two groups corresponding to the two data

sets, and construct a prior that encourages sparsity over these groups. For each component wk the

elements corresponding to one group are either pushed all towards zero, or are all allowed to be

active. Recently Jia et al. (2010) introduced a similar sparsity constraint for learning factorized

latent spaces; our approach can be seen as a Bayesian realization of the same idea, applied to

canonical correlation analysis.

It turns out that the correct form of sparsity can easily be obtained by a simple extension of

the ARD prior used for component selection in many Bayesian component models, including the

Bayesian CCA described in the previous section. We define the group-wise ARD as

p(W) =
2

∏
m=1

ARD(W(m)|α0,β0),

with separate ARD prior for each W(m). Here W(1) denotes the first D1 rows of W and W(2) refers

to the remaining D2 rows. Similarly to how ARD has earlier been used to choose the number of

components, the group-wise ARD makes unnecessary components w
(m)
k inactive for each of the

views separately. The components needed for modeling the shared response will have small α
(m)
k

(that is, large variance) for both views, whereas the view-specific components will have small α
(m)
k

for the active view and a large one for the inactive one. Finally, the model still selects automatically

the total number of components by making both views inactive for unnecessary components. To our

knowledge, Virtanen et al. (2011) is the first to consider this simple extension of ARD into multiple

groups. Later Virtanen et al. (2012a) and Damianou et al. (2012) discussed the prior in more detail,

presenting also extensions to more than two groups.

In practice, the elements of the inactive w
(m)
k will not become pushed exactly to zero, but instead

to very small values. For most applications of BIBFA this is not a problem, since we need not iden-

tify the components. For example, the demonstration in Section 7.2 that uses CCA for predicting

one view from the other automatically ignores the view-specific components even when w
(m)
k is not
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exactly zero. Similarly, the explorative data analysis experiment illustrated in Figures 8 and 9 is

invariant to the actual components and only relies on the total amount of contribution each feature

has on the shared variation. However, in case the individual components are needed, the structure

of (4) can be obtained by thresholding small values to zero, for example based on the amount of

relative variance explained, and re-ordering the components. The problem is essentially identical

to choosing the threshold for PCA models, and hence the techniques suggested for Bayesian PCA

apply directly. The ARD prior efficiently pushes the variance of inactive components towards zero,

and hence selecting the threshold is often easy in practice.

We apply variational approximation for inference, using the factorized distribution

q(W,τm,α
(m),Y) =

N

∏
n=1

q(yn)
2

∏
m=1

(

q(τm)q(α
(m))

)D1+D2

∏
d=1

q(Wd,:).

Here Wd,: corresponds to the dth row of W, a vector spanning over the K different components. The

different terms q(·) in the approximation are updated alternatingly to minimize the Kullback-Leibler

divergence DKL(q, p) between q(W,τm,α
(m),Y) and p(W,τm,α

(m),Y|X) to obtain an approxima-

tion best matching the true posterior. Equivalently, the task is to maximize the lower bound

L(q) = log p(X)−DKL(q, p) =
∫

q(W,τm,α
(m),Y) log

p(W,τm,α
(m),Y,X)

q(W,τm,α(m),Y)

for the marginal likelihood, where the integral is over all of the variables in q(W,τm,α
(m),Y). Since

all priors are conjugate, variational optimization over q(·), constrained to be probability densities,

automatically specifies the functional form of all of the terms. Furthermore, we get closed-form

updates for each of them, conditional on the choices for all other terms, resulting in straightforward

update rules for an EM-style algorithm. The details are given in Appendix A.

As mentioned in Section 3.3, the model is unidentifiable with respect to linear transformations

of y, and only the prior p(y) is influenced by the allocation of the components into shared and

view-specific ones. The above procedure for learning the component complexities via group-wise

ARD tremendously helps with the latter issue; even though the likelihood part would be equal for a

model that splits a true shared component into two separate ones, the variational lower bound will

be considerably better for a choice that does not need to replicate the latent variables. In particular,

being able to completely drop a component means that the Kullback-Leibler divergence between

q(yk) and p(yk) becomes essentially zero; this advantage would be lost if a shared component was

replicated as two view-specific ones.

Interestingly, the variational approximation solves implicitly also the rotational invariance. Even

though the likelihood is invariant with respect to right-multiplication of W with any invertible matrix

R, the variational lower bound is maximal for a specific rotation. Since the R does not influence

the likelihood, it can only improve the lower bound by transforming the approximation into one

that best matches the prior distribution. The prior, in turn, assumes independent latent variables,

implying that the optimal solution will result in an R that makes the latent variables of the posterior

approximation also maximally independent.4 The model is hence identified in the same sense as

4. For the current model, the independence corresponds to orthogonality of the latent variables. We prefer to use the

phrase independence as it better fits the notion of assuming independent latent variables and may become more

precise in extensions; for other priors and inference algorithms independence need not equal orthogonality.
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Figure 2: Illustration of the effect of parameter-expanded VB, where the variational lower bound

is explicitly optimized with respect to a linear transformation R to make the updates

less correlated. The number of iterations until convergence is reduced clearly when op-

timizing for the rotation (left), while the lower bound is still on average slightly better

(right). However, since R is optimized numerically the total computation time might still

be smaller without the rotation optimization, depending on the data and parameter values

(such as Kc). These plots were drawn for the data analyzed in Section 7.1.1 and Figure 9;

the boxplots show the results of 50 runs with random initialization. The overall picture is

similar for other data sets, but the actual differences vary depending on the complexity of

the data. In practice, we recommend trying both with and without the rotation for each

data type, and to choose the solution resulting in a better lower bound.

the classical CCA solution is; the latent variables are assumed orthogonal, instead of assuming

orthogonal projections (like in PCA).

That property also allows deriving a more efficient algorithm for optimizing the variational

approximation, following the idea of parameter-expanded variational Bayes (Qi and Jaakkola, 2007;

Luttinen and Ilin, 2010). We introduce explicit parameter R ∈ R
Kc×Kc in the approximation and

optimize the lower bound also with respect to it. Transforming the parameters with R improves

the convergence speed dramatically, due to lower correlations between the EM updates for y and

W, and often also results in slightly better lower bound. Both of the properties are illustrated in

Figure 2, and the details for how the rotation can be optimized are given in Appendix B.

In summary, the above model formulation with the associated variational approximation pro-

vides a fully Bayesian treatment for the IBFA model. It can also be used for solving the CCA

problem with a low-rank assumption for the view-specific noise. The model automatically se-

lects the complexity of the three separate component types through a group-wise ARD prior ap-

plied for a joint FA model (that additionally shares the noise variances for all variables within a

view), and disambiguates between different rotations by maximizing the orthogonality of the latent

variables for improved interpretability and computational efficiency. Open-source implementation

of the model, written in the R language, is available in CRAN: http://cran.r-project.org/

package=CCAGFA.
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4.3 On the Choice of Group-sparsity Prior

The above derivation uses group-wise ARD for inferring the component activities. This particular

choice is, however, not the only possibility. In fact, any reasonable prior that results in group-wise

sparse projection matrix W could be adopted. Here we briefly discuss possible alternatives, and

derive one practical implementation that uses sampling-based inference instead of the variational

approximation described above.

BIBFA is essentially a linear model for the concatenation of the two sources, made interpretable

by the group-wise sparsity. Hence, a sufficient requirement for a model to implement the BIBFA

concept is that it can make W:,k sparse in the specific sense of favouring solutions where all of the

elements corresponding to the first D1 or the last D2 dimensions (or both) are driven to zero. This

can be achieved in two qualitatively different ways, called weak and strong sparsity by Mohamed

et al. (2012). The ARD prior is an example of the former, a continuous sparsity-inducing prior

that results in elements that are close to zero but not exactly so. Other priors that induce weak

sparsity could also be considered, such as the group-wise extensions of the Laplace and scale-

mixture priors Archambeau and Bach (2009) and Guan and Dy (2009) used for sparse PCA, but as

we will demonstrate in the empirical experiments, already the ARD prior works well. Hence, we use

it as a representative of weak sparsity priors. As general properties, such priors allow continuous

inference procedures that are often efficient, but it is not always trivial to separate low-activity

components from inactive ones for interpretative purposes. This is because the elements are not

made exactly zero even for the components deemed inactive, but instead the values are pushed to

very small values.

In our applications in Section 7, we do not need to accurately identify the active components,

since already near-zero effects become irrelevant for the predictive measures used. In case more

precise determination of the active components is needed, it may be better to switch to strong spar-

sity, using priors that provide exact zeroes in W. For this purpose, we here extend the element-wise

sparse factor analysis model of Knowles and Ghahramani (2011) for the BIBFA setup. The orig-

inal model is based on the spike-and-slab prior, where each element of W is drawn from a two-

component prior. One of the components, the spike, is a delta distribution centered at zero, whereas

the other, the slab, is a Gaussian distribution. Hence, each element can either become exactly zero

or is drawn from a relatively noninformative distribution. To create a BIBFA method based on this

idea, we introduce the group-wise spike-and-slab prior with the prior

p(W,H,αb,π|α0,β0) = p(π)p(H|π)
2

∏
m=1

p(W(m)|Hm,:,α
(m))p(α(m)|α0,β0), (6)

W
(m)
d,k |Hm,k,α

(m)
k ∼Hm,kN(0,(α

(m)
k )−1)+(1−Hm,k)δ0,

Hm,k|πm ∼ Bernoulli(πm),

πm ∼ Beta(1,1),

α
(m)
k |α0,β0 ∼ Gamma(α0,β0),

where δ0 denotes a point-density at zero. That is, the view-specific πm tells the probability for a

component to be active, binary Hm,k drawn from the Bernoulli distribution tells whether component

k is active in view m, and finally W:,k is either exactly zero or its elements are all drawn indepen-

dently from a Gaussian distribution with precision α
(m)
k depending on whether Hm,k is zero or one,

respectively.
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For inference, we use Gibbs sampler by Knowles and Ghahramani (2011) with small modifi-

cations. In particular, the elements of H now depend on Dm features instead of just a single one.

This, however, does not make the inference more complicated; the dimensions are independent and

hence we get the conditional density by multiplying element-wise terms that still integrate W
(m)
d,k

out. Another change is motivated by the fact that we only need to estimate a 2×K matrix H, in-

stead of a D×K matrix needed for element-wise sparsity. Since we only have two choices for each

component, it does not make sense to use the Indian Buffet Process (IBP) prior for H; there cannot

be any interesting structure in H. Hence, we simplify the model to merely draw each entry of H

independently. The details of the resulting sampler are presented in Appendix D.

4.4 Model Summary

We will next briefly summarize the Bayesian CCA model and lay out the two alternative inference

strategies. These methods will be empirically demonstrated and compared in the following sections.

4.4.1 BAYESIAN CCA WITH LOW-RANK COVARIANCE, OR BAYESIAN IBFA (BIBFA)

The assumption of low-rank covariance results in the IBFA model of (5). Efficient inference is

done in the factor analysis model for x = [x(1);x(2)] with group-wise sparsity prior for the projection

matrix:

y∼ N(0,I),

x∼ N(Wy,Σ), (7)

W(m) ∼ ARD(α0,β0).

Here W(m) denotes the dimensions (rows) of W corresponding to the mth view, and Σ is a diagonal

matrix with D1 copies of τ−1
1 and D2 copies of τ−1

2 on its diagonal. The noise precision parameters

are given Gamma priors τm ∼ Gamma(ατ
0,β

τ
0). Inference for the model is done according to the

updates provided in Appendices A and B.

An alternative inference scheme replaces the above ARD prior with the group-wise spike-and-

slab prior of (6) and draws samples from the posterior using Gibbs sampling.

4.4.2 BAYESIAN CCA WITH FULL COVARIANCE (BCCA)

The Bayesian CCA as presented by Wang (2007) and Klami and Kaski (2007) models the view-

specific variation with a free covariance parameter. The full model is specified as

z∼ N(0,I),

x(m) ∼ N(A(m)z,Ψ(m)), (8)

A(m) ∼ ARD(α0,β0),

Ψ
(m) ∼ IW(S0,ν0),

and inference follows the variational updates provided by Wang (2007). When A = [A(1);A(2)] is

drawn from a single ARD prior, the lower bound can analytically be optimized with respect to a

rotation R (see Appendix C), resulting in considerable speedup.
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The variational approximations for both BCCA and BIBFA are deterministic and will converge

to a local optimum that depends on the initialization. We initialize the model by sampling the latent

variables from the prior, and recommend running the algorithm multiple times and choosing the

solution with the best variational lower bound. In the experiments we used 10 initializations.

All of the above require pre-specifying the number of components K. However, since the ARD

prior (or the spike-and-slab prior for the Gibbs sampler variant) automatically shuts down compo-

nents that are not needed, the parameter can safely be set large enough; the only drawback of using

too large K is in increased computation time. In practice, one can follow a strategy where the model

is first run with some reasonable guess for K. In case all components remain active, try again with

a larger K.

5. Illustration

In this section we demonstrate the BIBFA model on artificial data, in order to illustrate the factoriza-

tion into shared and data set-specific components, as well as to show that the inference proceduree

converge to the correct solution. Furthermore, we provide empirical experiments demonstrating

the importance of making the low-rank assumption for the view-specific noise, in terms of both

accuracy and computational speed, by comparing BIBFA (7) with BCCA (8).

The results are illustrated primarily from the point-of-view of the variational inference solution;

the variational approximation is easier to visualize and compare with alternative methods. The

Gibbs sampler produced virtually identical results for these examples, as demonstrated in Figures 4

and 6.

5.1 Artificial Example

First, we validate the model on artificial data drawn from a model from the same model family, with

parameters set up so that it contains all types of components (view-specific and shared components).

The latent signals y were manually constructed to produce components that can be visually matched

with the true ones for intuitive assessment of the results. Also the α
(m) parameters, controlling the

activity of each latent component in both views, were manually specified. The projections W were

then drawn from the prior, and noise with fixed variance was added to the observations.

The left column of Figure 3 illustrates the data generation, showing the four latent components,

two of which are shared between the two views. We generated N = 100 samples with D1 = 50

and D2 = 40 dimensions, and applied the BIBFA model with K = 6 components to show that it

learns the correct latent components and automatically discards the excess ones. The results of

the variational inference are shown in the middle column of Figure 3; the Gibbs sampler produces

virtually indistinguishable results. The learned matrix of α-values (and the corresponding elements

in W) reveals that the model extracted exactly four components, correctly identifying two of them

as shared components and two as view-specific ones (one for each data set). The actual latent

components also correspond to the ones used for generating the data. The components are presented

in the order returned by the model, which is invariant to the order. We also see how the model is

invariant to the sign of y, but that it gives the actual components instead of a linear combination of

those, demonstrating that the variational approximation indeed solves the rotational disambiguity

that would remain for instance in the maximum likelihood solution.

The BIBFA results are further illustrated in Figure 4. The plot shows the approximate posterior

for two of the model parameters, namely the residual noise levels τm, demonstrating that the model
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has found the true generating parameters. We see that the true parameter values fall nicely within

the posterior and both the variational approximation and the Gibbs sampler provide almost the same

posterior. We performed similar comparison for all parameters, and the results are also similar,

indicating that both variants model this simple data correctly. Furthermore, the results do not here

depend notably on the initialization; the model always converges to the right solution. Finally,

we also studied that the model is robust with respect to the number of components K. We re-

ran the experiment with multiple values of K upto 30, always getting the same result where only

4 components remain active. This demonstrates that we can safely overestimate the number of

components, the only negative side being increased computation time.

5.2 Quantitative Comparison

Next we proceed to quantitatively illustrating that the solution obtained with the BIBFA model is

superior to both classical CCA and earlier Bayesian CCA variants not making the low-rank assump-

tion for view-specific noise. We use the same data generation process as above, but explore the two

main dimensions of potential applications by varying the number of samples N and the data dimen-

sionality Dm. For the easy case of large N and small D all methods work well since there is enough

information for determining the correlations accurately. Classical CCA has an edge in computa-

tional efficiency, due to the analytic solution, but also the Bayesian variants are easy to compute

since the complexity is only linear in N. Below we will study in more detail the more interesting

cases where either D is large or N is small, or both.

We generated data with 4 true correlating components drawn from the prior, drawing N inde-

pendent samples of D1 =D2 dimensions, and measure the performance by comparing the average of

the four largest correlations ρk, normalized by the ground truth correlations. For the Bayesian vari-

ants we estimate the correlation between the expectations 〈Yk,:|X
(1)〉 and 〈Yk,:|X

(2)〉 that are easy to

compute by a slight modification of the inference updates. Here Yk,: contains the kth latent variable

for all N samples. Note that Yk,:|X
(m) follows the prior for the components k that are switched off

for the mth view.

We compare the two variants of the Bayesian CCA, denoting by BCCA a model parameterized

with full covariance matrices (8) and by BIBFA the fully factorized model (7), with both classical

CCA and a regularized CCA (RCCA). For BCCA we used ν0 = Dm degrees of freedom and the

scale matrix S0 = 0.01 ∗ I to give a reasonably flat prior over the covariances, and for BIBFA we

gave a flat prior ατ
0 = βτ

0 = 10−14 for the precisions; the other parameters for BCCA and BIBFA

were identical. We followed Gonzales et al. (2008) as the reference implementation of a regularized

CCA, but replaced the leave-one-out validation for the two regularization parameters with 20-fold

cross-validation instead, after verifying that it does not result in statistically significant differences

in accuracy compared to the proposed scheme. With leave-one-out validation the computational

complexity of RCCA would be quadratic in N, which would have made it severely too slow. To

keep the computational load manageable we further devised a two-level grid for choosing the two

regularization parameter values: We first try values in a loose two-dimensional grid of 7×7 values

and then search for the optimal value in a dynamically created 7×7 grid around the best values.

Figure 5 illustrates the accuracy of the four methods for various scenarios, showing the relative

correlations for both training and test data. The main observation is that BIBFA and RCCA are con-

sistently the best methods, with BIBFA having a slightly better accuracy. Classical CCA without

regularization breaks down completely for large D/N ratios, as does BCCA with full covariance
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Figure 3: Illustration that Bayesian IBFA (BIBFA) finds the correct underlying latent components.

The left column shows four components in the generated data, the first two being shared

between the two views and the last two being specific to just one view. BIBFA finds all

four components while ignoring the excess ones. The top row of the BIBFA block shows

the Hinton-plot (the area of each block indicating the value) of the component variances

and the elements of |W|, and the remaining six plots show the estimated latent variables,

the small red numbers indicating the link between the latent components and the rows

of WT . Components 5 and 6 are shared, revealed by non-zero variance for both views,

components 2 and 4 are the two view-specific components, and the unnecessary compo-

nents 1 and 3 have been suppressed to the prior in the sense that their mean and variance

match those of the prior. The small lines depict one standard deviation, revealing that

the model is more confident on its predictions for the shared components, due to more

data (D1 +D2 features compared to just D1 or D2) available for inferring them. The clas-

sical CCA (top two plots in the right column), which is only applicable for extracting

the shared components, finds much noisier versions of the components, and for slightly

higher dimensionality would return only noise. Baysian CCA with full covariance matri-

ces (bottom two plots in the right column) does better than classical CCA, but does not

capture the components as well as BIBFA. For all methods the latent variables have here

been estimated for held-out test data.
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Figure 4: Illustration that Bayesian IBFA (BIBFA) finds also the correct posterior distributions for

the model parameters. The plot shows the approximative distributions q(τm) for the vari-

ational approximation (solid black line) as well as the posterior obtained with the Gibbs

sampling algorithm of the spike-and-slab variant (dashed red line), revealing how both

capture the true generating values denoted by dotted black lines. The modes are not ex-

actly at the true value due to the small sample size, but both inference strategies provide

the same result.

matrices. Both of these are understandable observations since the methods estimate Dm×Dm co-

variance matrices with few or no constraints. To further illustrate the behavior of BIBFA, we plot in

Figure 6 the estimated number of shared and view-specific components for both the variational and

Gibbs sampling variants. For the purpose of this illustration, we considered a component of the vari-

ational inference solution to be active if α
(m)
k was below 50 (the true value for active components

was 1) and shared if the relative variance of α
(1)
k and α

(2)
k was below 10, whereas for the Gibbs

sampler Hm,k directly reveals the activities. We see that both inference algorithms are conservative

in the sense that for very small sample sizes they miss some of the components, using the residual

noise term to model the variation that cannot be reliably explained with so limited data. Starting

from N = 64 (which is still smaller than the data dimensionality for two of the plots) the ranks are

estimated correctly.

Another important dimension is the computational time. CCA, RCCA and BCCA all require

inverting Dm×Dm covariance matrices, which results in O(D3
m) complexity, whereas BIBFA is

linear in N and Dm and cubic only with respect to K. The computational times are illustrated in

Figure 7, revealing clearly how the lower complexity of BIBFA realizes as faster computation.

For very small D the regularized CCA solution is slightly faster than BIBFA, but for large D it

becomes impractically slow, even with our faster cross-validation scheme. The overall trend hence

is that despite its iterative inference algorithm BIBFA is a much faster solution for high-dimensional

CCA problems than regularized CCA solutions that require matrix inversion and cross-validation

for tuning the regularization.

The overall summary of these illustrations is that the BIBFA model solves the CCA problem

well, even in cases (large dimensionality and/or small sample size) where regular CCA and Bayesian

CCA with full covariance matrices do not work at all. Carefully regularized CCA finds the corre-

lations roughly as well as BIBFA, but it is considerably slower for large dimensionalities and lacks

interpretable view-specific components, and cannot be extended as easily to directions discussed in

the next section. While K was here small, making the gap between BIBFA and the rest of the models
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Figure 5: Illustration of the relative performance of the BIBFA model, Bayesian CCA with inverse-

Wishart priors (BCCA), regularized CCA (RCCA) and classical CCA for various sample

sizes (N; x-axis) and dimensionalities D (row). RCCA is missing for the last row due to

too high computational cost, and CCA could not be computed for D>N. The first column

shows the sum of the first four correlations (the data has four non-zero correlations) on

the training data, normalized so that 1 matches the true value (y-axis). All methods but

BIBFA overfit for small N and D, whereas BCCA severely underfits for small N and large

D, not finding any reliable correlations. The second column shows the same measure for

test data, revealing how BIBFA outperforms the other methods for all cases, except RCCA

for very small N and D. The third column shows a zoomed inset for the most interesting

region, this time normalized so that the result of BIBFA is used as the baseline, revealing

more clearly the advantage BIBFA has over RCCA for all but the smallest samples sizes

for D = 15.
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Figure 6: Learning the rank of the data. For reasonable number of samples both the variational

approximation (VB) and the spike-and-slab sampler (Gibbs) learn the correct number

of both shared components (red lines) and total components (black lines) for all three

dimensionalities (subplots). The difference between these two curves corresponds to the

sum of residual noise ranks of the two views, which are not shown to avoid cluttering

the image. The solid lines correspond to the results of the variational approximation,

averaged over 10 random initializations, whereas the dashed line shows the mean of the

posterior samples for the Gibbs sampler and the shaded region covers the values between

the 5% and 95% quantiles. The two inference algorithms perform roughly as well, and

a notable observation is that both methods underestimate the number of components for

very small sample sizes, especially for the higher dimensionalities. This is the correct

behavior when there is not enough evidence to support the findings.

bigger than in most real applications, the empirical experiments with real-world data in Section 7

reveal that for plenty of practical applications with thousands of dimensions it is sufficient to use

values of K in the range of tens. Hence, the computational advantage will hold in real applications

as well, making BIBFA a feasible model for scenarios where D would be clearly too large for direct

inversion of the covariance matrices.

6. Variants and Extensions

The key advantage of the Bayesian treatment, besides robustness for small sample sizes, is that it

enables easy modifications and extensions. In this section we will review a number of extensions

presented for the Bayesian CCA model, to provide an overview of the possibilities opened up by

the probabilistic treatment of the classical model.

6.1 Modifying the Generative Model

Since the latent variable model is described through a generative process, it is straightforward to

change the distributional assumptions in the model to arrive at alternatives designed for specific

purposes. Typically these modifications will need to be accompanied by changes in the inference

process that are not necessarily trivial, but without the probabilistic formulation extensions like

these would be more difficult to keep consistent and justify.
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Figure 7: Illustration of the computational time (in seconds) for the BIBFA model (solid black line),

Bayesian CCA with inverse-Wishart prior for covariances (BCCA; dashed red line), and

regularized CCA (RCCA; dotted blue line). The Bayesian variants assume 10 random

restarts, whereas the regularized CCA uses 20-fold cross-validation over a two-stage grid

of the two regularization parameters, requiring a total of 20*(49+49) runs. The top row

shows how regularized CCA becomes very slow for large dimensionality D, irrespective

of the number of samples N. The bottom row shows the linear growth as a function of N

for regularized CCA, effectively constant time complexity for BIBFA, and illustrates an

interplay of N and D for the BCCA model (it needs more iterations for convergence when

D is roughly N). For BIBFA the theoretical complexity is linear in both N and D, but the

number of iterations needed for convergence depends on the underlying data in a complex

manner and hence the trend is not visible here. Instead, for this data the computational

time is almost constant.

The first improvement over the classical CCA brought by the probabilistic interpretation was to

replace the Gaussian noise in (3) with the multivariate Student’s t distribution (Archambeau et al.,

2006). This makes the model more robust for outlier observations, since observations not fitting the

general pattern will be better modeled by the noise term. The maximum likelihood solution provided

for the robust CCA by Archambeau et al. (2006) was later extended to the Bayesian formulation with

a variational approximation by Viinikanoja et al. (2010).

Klami et al. (2010) extended Bayesian CCA by generalizing from the Gaussian noise assump-

tion to noise with any distribution in the exponential family. Using the natural parameter formu-

lation of exponential family distributions, a generic formulation applicable for any choice was de-
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rived. The solution was built on top of the Gibbs-sampling scheme of Klami and Kaski (2007), with

considerable technical extensions to cope with the fact that conjugate priors are no longer justified.

Recently, Virtanen et al. (2012b) extended the IBFA-type modelling to count data, introducing

a multi-view topic model that generates the observed counts similarly to how IBFA generates con-

tinuous data. That is, the model automatically learns topics that are shared between the views as

well as topics specific to each view, using a hierarchical Dirichlet process (HDP; Teh et al., 2006)

formulation.

Another line of extensions changes the prior for the projections A(m). Archambeau and Bach

(2009) presented a range of sparse models based on various prior distributions. They introduced

sparsity priors and associated variational approximations for Bayesian PCA and the full IBFA

model, but did not provide empirical experiments with the latter. Another sparse variant was pro-

vided by Fujiwara et al. (2009), using an element-wise ARD prior to obtain sparsity, though the

method is actually not a proper CCA model since it does not model view-specific variation at all.

Rai and Daumé III (2009) built similarly motivated sparse CCA models via a non-parametric formu-

lation where an Indian Buffet Process prior (Ghahramani et al., 2007) is used to switch projection

weights on and off. The same non-parametric prior also controls the overall complexity of the

model. The inference is based on a combination of Gibbs and more general Metropolis-Hastings

steps, but again the model lacks the crucial CCA property of separately modeling view-specific

variation.

Leen and Fyfe (2006) and Ek et al. (2008) extended the probabilistic formulation to create Gaus-

sian process latent variable models (GP-LVM) for modeling dependencies between two data sets.

They integrate out the projections A(m), giving a representation that enables replacing the outer

product with a kernel matrix, resulting in non-linear extensions. Leen and Fyfe (2006) formulated

the model as direct generalization of probabilistic CCA, whereas Ek et al. (2008) modeled explic-

itly also the view-specific variation. Recently, Damianou et al. (2012) extended the approach to a

Bayesian multi-view model that uses group-wise sparsity to identify shared and view-specific latent

manifolds for a GP-LVM model, using an ARD prior very similar to the one used by Virtanen et al.

(2011) and here for BIBFA.

The conceptual idea of CCA has also been extended beyond linear transformation and continu-

ous latent variables. As a practical example, multinomial latent variables provide clustering models.

Both Klami and Kaski (2006) and Rogers et al. (2010) presented clustering models that capture the

dependencies between two views with the cluster structure while modeling view-specific variation

with another set of clusters. Recently, Rey and Roth (2012) followed the same idea, modeling ar-

bitrary view-specific structure within the clusters with copulas. The Bayesian CCA approach has

also been extended beyond vectorial data representations; van der Linde (2011) provided a Bayesian

CCA model for functional data, building on the variational approximation.

Haghighi et al. (2008) and Tripathi et al. (2011) extended probabilistic CCA beyond the under-

lying setup of co-occurring data samples. They complement regular CCA learning by a module that

infers the relationship between the samples in the two views, by finding close neighbors in the CCA

subspace. This enables both computing CCA for setups where the pairing of (some of) the samples

is not known but also applications where learning the pairing is the primary task. Recently, Klami

(2012) presented a variational Bayesian solution to the same problem, extending BIBFA to include

a permutation parameter re-ordering the samples.

Some related methods not described in the terminology of Bayesian CCA are also worth men-

tioning, due to the close relationship between both the task and the models. Singh and Gordon
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(2008) introduced collective matrix factorization (CMF), where the task is to learn simultaneous

matrix factorizations of the form X(m) = V(m)Z for multiple (in their application three) views, which

is equivalent to the Bayesian CCA formulation. However, the exact definition of the noise additive

to the factorization is crucial; BIBFA includes explicit components for modeling view-specific vari-

ation (or they are modeled with full covariance matrices as in the earlier Bayesian CCA solutions).

CMF, in turn, assumes that all variation is shared, by factorizing the noise over the dimensions.

Hence, CMF is more closely related to learning PCA for the concatenated data sources, and is inca-

pable of separating the shared variation from the view-specific one. Recently, Agarwal et al. (2011)

extended CMFs to localized factor model (LMF) that allows separate latent variables z(m) for the

views and models them as a linear combination of global latent profiles u. This extended model is

capable of implementing the CCA idea by selectively using only some of the global latent profiles

for each of the views, though it is not explicitly encouraged and the authors do not discuss the con-

nection. The residual component analysis by Kalaitzis and Lawrence (2012) is also closely related;

it is a framework that includes probabilistic CCA as a special case. They assume a model where the

data is already partly explained by some components and the rest is explained by a set of factors.

By iteratively treating the view-specific and shared components as the explanatory factors they can

learn the maximum likelihood solution of IBFA (and hence CCA) through eigen-decompositions,

but their general formulation also applies to other data analysis scenarios.

Finally, a number of papers have discussed extensions of probabilistic CCA into more than two

views. Already Archambeau and Bach (2009) mention that the generative model directly gener-

alizes to more than two views, but they do not show that their inference solution would provide

meaningful results for multiple views. Recently, Virtanen et al. (2012a) presented the first practical

multi-view generalization of Bayesian CCA, coining the method group factor analysis (GFA), and

Damianou et al. (2012) described a GP-LVM -based solution for multiple views. We do not discuss

the multi-view generalizations further in this article, since the extended model cannot be directly

interpreted as CCA; the concept of correlation does not directly generalize to multiple views.

6.2 Building Block in Hierarchical Models

The generative formulation of probabilistic models extends naturally to complex hierarchical repre-

sentations. The Bayesian CCA model itself is already a hierarchical model, but can also be used as

a building block in more complex hierarchical models. In essence, most Bayesian models operating

on individual data sets can be generalized to work for paired data by incorporating a CCA-type

latent variable formulation as a part of the model.

The first practical examples considered the simplest hierarchical constructs. Klami and Kaski

(2007) introduced an infinite mixture of Bayesian CCA models, accompanied with a Gibbs sampling

scheme. Later Viinikanoja et al. (2010) provided a variational approximation for mixtures of robust

CCA models, resulting in a computationally more efficient algorithm for the same problem. These

kinds of mixture models can be thought of as locally linear models that partition the data space into

clusters and fit a separate CCA model within each. The clustering step is, however, integrated in the

solution and is also influenced by the CCA models themselves.

Recently, some authors have used Bayesian CCA as an integral part in more complex hierarchi-

cal models. Huopaniemi et al. (2009) integrate a dimensionality reduction step into Bayesian CCA

by clustering the original features and applying Bayesian CCA to the latent variables that aggre-

gate features within a cluster, to make BCCA feasible for high-dimensional metabolomics data with
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very limited sample size. Huopaniemi et al. (2010) addresses the same application domain, this

time combining BCCA with multivariate analysis of variance (ANOVA). Nakano et al. (2011), in

turn, created a hierarchical topic trajectory model (HTTM) by using CCA as the observation model

in a hidden Markov model (HMM).

7. Applications

In this section we will discuss some of the applications of CCA, covering both general application

fields and concrete problem setups. Some of the examples are from fields where the probabilistic

variants have not been widely applied yet, but where the need for CCA-type modeling is apparent

and the properties of the data suit well the strengths of the Bayesian approach.

We have divided the applications into two broad categories. The first category considers CCA

as a tool for exploratory data analysis, seeking to evaluate the amount of correlation or dependency

between various information sources or to illustrate which of the dimensions correlate with the other

view. The other category uses CCA as a predictive model, building on the observation that CCA is a

good predictor for multiple outputs, correctly separating the information useful for prediction from

the noise.

7.1 Data Analysis

One of the key strengths of the Bayesian approach is that it enables justified analysis of small

samples, providing estimates of the reliability of the results. For the application fields with plenty

of data also the classical and kernel-based CCA solutions work well, as has been demonstrated for

example in analysis of relationships between text documents and image content (Vinokourov et al.,

2003). Hence, we focus here on applications where the amount of data is typically limited.

Life sciences are a prototypical example of a field with limited sample sizes. In many analysis

scenarios the samples correspond to individuals, and high cost of measurements prevents collect-

ing large data sets. There are also several application scenarios where the number of samples is

restricted for biological reasons, for example when studying rare diseases or effects specific to an

individual instead of a population.

CCA has received a lot of attention in analysis of omics data, including genomics measured with

microarrays as well as proteomics and metabolomics measured by mass spectrometry. Huopaniemi

et al. (2009, 2010) applied extensions of Bayesian CCA to find correlations between concentrations

of biomolecules in different tissues and species to build “translational” models. In their studies, the

samples correspond to individual mice and humans with a sample size in the order of tens, whereas

the features correspond to concentrations of hundreds of lipids. Similar setups but still much more

extreme ratios of Dm/N are encountered frequently in microarray analysis, where the dimensions

correspond to tens of thousands of genes. Due to the limitations of the earlier models the Bayesian

solutions have not yet been used with full strength in such applications.

Another typical application scenario is in brain activity analysis, where the samples typically

correspond to time-slices of an experiment and the features span the brain activity measured either

through BOLD (blood-oxygen-level-dependent) signal activity in small brain volumes called voxels

(in functional magnetic resonance imaging fMRI) or through magnetometers on the scalp (magne-

toencephalography MEG). Fujiwara et al. (2009) used sparse Bayesian CCA to predict the visual

stimuli from fMRI data, and Koskinen et al. (2012) inferred the identity of short speech segments

using mixture of robust Bayesian CCAs applied to MEG. Several authors have also applied classical
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CCA or its multiset extensions for fMRI data; Ylipaavalniemi et al. (2009) studied the relationships

between brain activity and naturalistic stimuli features, Deleus and Hulle (2011) explored functional

connectivity between multiple brain areas, and Rustandi et al. (2009) integrated fMRI data of mul-

tiple subjects. Similar tasks could also be solved with the Bayesian variants, in particular with the

BIBFA model.

7.1.1 ILLUSTRATION

To demonstrate the use of CCA in an exploratory data analysis scenario, we apply it to the problem

of cancer gene prioritization based on co-occurring gene expression and copy number data (Lahti

et al., 2012). DNA alterations frequent in cancers, measured by the copy number data, are known

to induce changes in the expression levels, and hence cancer-associated genes can be mined by

searching for such interactions.

One approach is to proceed over the whole genome in a gene-by-gene fashion, searching for

correlations between the gene expression and copy number modification. Lahti et al. (2009) adapted

CCA for this task, using it to estimate the amount of correlation inside short continuous windows of

the genome. A collection of cancer and control patients are treated as samples, and the features are

the genes within a window. For each window they computed so-called similarity-constrained CCA

and labeled the genes within that window with the resulting correlation. That is, a gene is assumed

to be cancer-related if CCA finds strong correlation within a small chromosomal window around it.

This approach is one of the leading solutions for finding cancer-associated genes from integrated

copy number and gene expression data, as shown in the recent comparison by Lahti et al. (2012).

For computing the association scores for N genes the above process requires running N separate

CCA models, one for each neighborhood. Within each window, the CCA is ran for N′ samples

(the patients, on the order of 30-50 for typical data sets) and Dx = Dy features (the genes within the

window). The authors used window sizes of roughly 10-20, to guarantee that the number of samples

exceeds the number of features, satisfying the usual requirement for CCA-style models.

The BIBFA model (7) has been specifically designed to tackle the issue of high dimensionality,

and hence it allows a much more direct approach. Instead of measuring the amount of correlation

for several small windows, we simply run CCA considering the patients as samples and all of the

genes in the whole genome as features. Direct inspection of the weights in the shared components

then reveals the cancer-associated genes; a high weight implies an association between the copy

number and gene expression, relating the gene to the cancer under study.

We applied BIBFA, using the ARD prior and variational inference, on the two publicly available

data sets used in the recent comparison of various integrative cancer-gene mining tools by Lahti et al.

(2012), the Pollack and Hyman data sets. We repeated their experimental setup to obtain results

directly comparable with their study, and measured the performance by the same measure, the area

under curve (AUC) for retrieving known cancer genes (37 out of 4247 genes in Pollack, and 47 out

of 7363 genes in Hyman). We ran the BIBFA model for Kc between 5 and 60 components and chose

the model with the best variational lower bound, resulting in Kc = 15 for Hyman and Kc = 40 for

Pollack. The full results of BIBFA and the comparison methods are reported in Figure 8, revealing

that our method outperforms all of the alternatives for both data sets. The results would be similar

for a wide range of values of Kc; for all values we beat the alternative methods. We also applied the

Gibbs-sampler variant, which produced very similar results.
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Figure 8: Comparison of AUC scores for the various methods in detecting cancer-related genes in

genome-wide data. The BIBFA model ranks the genes based on the weight of that gene

in both W(1) and W(2), and finds the cancer genes with better accuracy than any of the

methods studied in the recent comparison by Lahti et al. (2012). The accuracies for all the

other methods are taken from the publicly available results provided by the authors; see

their article for the names and details of the methods. Of these methods, pint is the most

closely related to ours. It screens the genome by computing CCA for narrow windows

and ranks the genes according to the strength of dependency found within each window.

For ranking the genes we used the measure sg = ∑
Kc

k=1 |〈W
(1)
g,k〉〈W

(2)
g,k〉|. That is, for each compo-

nent we multiply the expected projection vectors corresponding to gene expression and copy number

change, to emphasize effects seen in both views. We then simply sum the absolute values of these

quantities over all components, to reach the measure sg for each gene g. Note that the view-specific

components have no effect on the score, since either 〈W
(1)
:,k 〉 or 〈W

(2)
:,k 〉 will be zero for all genes.

To further illustrate the approach, Figure 9 plots the quantity over one chromosome in the Pollack

data (chromosome 17, the one most strongly associated with the breast cancer studied in that data)

and compares the result with the activity profile provided by the similarity-constrained CCA model

(also called pint, after the name of the public software implementation) of Lahti et al. (2009).

7.2 Multi-label Prediction

Another interesting application for CCA is in prediction. Even though the model is symmetric with

respect to x(1) and x(2), it is surprisingly efficient as a predictive model. In a sense, the model can

be seen as a combination of purely unsupervised and supervised learning; both of the views can be

considered as supervising the other view, yet the model is (here) defined as a generative description

of the whole data collection.
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Figure 9: Illustration of the weights sg (y-axis) learned for the 272 genes in Chromosome 17, de-

picted in the chromosomal order (x-axis), with BIBFA (red) and the window-based com-

parison method of pint (blue). Since the gene detection is based on the ranks of the

genes, the two weight vectors have here been re-scaled into comparable scales for vi-

sual inspection. Both methods reveal a similar overall trend over the chromosome, cap-

turing especially the known cancer-related region around 40Mb, but BIBFA does it in

much more direct fashion: The BIBFA profile shown here is the outcome of a single run,

whereas 272 applications of similarity-constrained CCA were needed to create the profile

for pint. Note that BIBFA gets this result without making any assumptions about muta-

tions in a region causing gene expression changes in the same region, showing the power

of the algorithm but resulting in some noise in the result. Pint, in contrast, analyzes local

neighborhoods and hence necessarily results in similar values for nearby chromosomal

regions. The six known cancer genes are marked with circles. Neither method captures

all of them, but BIBFA finds the top two cancer genes at higher ranks. On the other hand,

BIBFA seems to here miss some cancer-related genes around the 47Mb region; there is no

guarantee that the method would always be more accurate, but the numerical comparisons

in Figure 8 show that it on average outperforms pint.

The CCA model is closely related to multiple regression. Breiman and Friedman (1997) showed

that CCA is particularly efficient in multiple regression when the response variables are correlated.

In recent years, for example Ji et al. (2008), Rai and Daumé III (2009), and Sun et al. (2011) have

all demonstrated good predictive performance for CCA-type models in multi-output prediction or

multiple regression tasks.

The Bayesian formulation through the BIBFA model helps in understanding why CCA works

so well for multiple regression tasks. The predictive distribution of interest is p(x(1)|x(2)), which

cannot be computed in close form, but for which it is easy to obtain expectations from the variational

990



BAYESIAN CANONICAL CORRELATION ANALYSIS

approximation. The mean prediction is given by

〈x(1)|x(2)〉= 〈A(1)z〉q(A(1))q(z|x(2)) = 〈A
(1)〉〈σ−2

2 〉Σ〈A
(2)T

〉x(2),

where Σ=
(

I+ 〈σ−2
2 〉〈A

(2)T

A(2)〉
)−1

.

The notable observation is that neither B(1) nor B(2) (or the corresponding latent variables z(1) or

z(2)) appear in the formula. This implies the model correctly neglects variation specific to X(2) when

making the prediction, and additionally does not attempt to predict the variation in X(1) that cannot

be predicted. In other words, the model squeezes the prediction through the shared latent variables z,

the lower-dimensional representation capturing all the information flow from one data set to another.

Note that in practice the prediction can be directly written in terms of W and y, without needing to

explicitly extract A(m) and B(m), since the zeroes induced in W due to the group-wise sparsity will

cancel the unnecessary components out automatically.

Similar observation holds also for the Gibbs sampler variant using the spike-and-slab prior (6);

again the mean prediction only depends on the shared components. However, making predictions

with that model is considerably more time-consuming, since the predictions need to be averaged

over the posterior samples. When making predictions for new samples, we need to store all of the

posterior samples and then run the sampler again for each of those estimate the latent variables

and the predicted X(1). Due to this extra computational overhead for the sampler, we will next

demonstrate the BIBFA in multi-label prediction tasks using only the variational inference variant.

7.2.1 ILLUSTRATION

To measure the multi-label classification accuracy of the BIBFA model we applied it on 10 bench-

mark data sets from the Mulan library (Tsoumakas et al., 2010), using the split to train and test

samples given in the library. Each of these data sets includes several binary labels that are not mu-

tually exclusive, and we encode them into X(1) so that each column represents one label. Then the

task becomes predicting X(1) from X(2). Since the labels are discrete, we feed the predicted values

through a simple threshold filter, with the threshold for each class chosen to maximize the accuracy

on the training data. The Bayesian formulation would enable integrating also more advanced ways

of handling with the binary data (Klami et al., 2010), but here the primary purpose is to demonstrate

the application of the basic principle instead of developing a fully-fledged multi-label prediction

model.

We compare the BIBFA model (7) with both classical CCA and the standard Bayesian CCA

with full covariance matrices (8), using the variational approximation of Wang (2007). For BCCA

we set the maximal number of components to K = min(D1,D2,50), and for classical CCA we chose

the number of components by 10-fold cross-validation within the training set. For BIBFA we set

Kc to the minimum of 100 and the number of components extracted by Bayesian PCA ran on the

concatenation of the two data views. Overall, these choices constitute a fair way of selecting the

model complexity for each of the methods. For BIBFA and BCCA we started the optimization from

10 different random initializations and chose the solution that resulted in the best lower bound for

the training data, whereas CCA is a deterministic algorithm and always provides the global opti-

mum. The regularized CCA model studied earlier in Section 5.2 was left out due to its immensely

high computational cost for most of the data sets, but preliminary studies showed that it did not

outperform even classical CCA on the ones with sufficiently few dimensions. Besides showing the
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Data Set D1 D2 Ntrain BIBFA CCA BCCA RML RAKEL MLKNN

emotions 6 72 391 0.223 0.232 0.329 0.225 0.223 0.209

scene 6 294 1211 0.105 0.332 0.162 0.127 0.115 0.0953

yeast 14 103 1500 0.202 0.205 0.211 - 0.233 0.198

genbase 27 1186 463 9.3e-4 - 9.3e-4 - 0.0011 0.0052

medical 45 1449 333 0.0124 - 0.0276 - 0.0113 0.0188

enron 53 1001 1123 0.0465 - 0.0607 - 0.0509 0.0514

mediamill 101 120 30933 0.0309 0.161 0.0305 - 0.0335 0.0314

bibtex 159 1836 4880 0.0131 0.0138 - - 0.0144 0.0140

Corel5-k 374 499 4500 0.0094 0.0099 0.0098 - 0.0096 0.0093

delicious 983 500 12920 0.0182 0.0183 - - 0.0185 0.0183

Table 1: Prediction errors (Hamming loss) for 10 benchmark data sets sorted by the increasing

number of labels D1. For each data set the error for the best method has been boldfaced.

The proposed Bayesian inter-battery factor analysis model (BIBFA) outperforms the clas-

sical CCA and Bayesian CCA with full covariance matrices (BCCA) for almost all data

sets. For cases with a large number of labels BIBFA outperforms also designated multi-

label prediction models RAKEL and MLKNN, showing that modeling the dependencies

between the labels helps more when the number of labels is high. The figures for the re-

verse multi-label prediction model (RML) were taken from Petterson and Caetano (2010),

Ntrain is the number of training samples, and D2 is the input dimensionality. The values

missing for BCCA were excluded due to too long computation time (more than 5 hours per

run), and classical CCA was not ran for data sets where the dimensionality of either view

is higher than the number of samples (for the enron data, D2 > N for the cross-validation

runs needed for setting the threshold).

relationships between the various CCA-based methods, we also compared BIBFA with three multi-

label prediction models with publicly available code or results, RAKEL (Tsoumakas and Vlahavas,

2007) and MLKNN (Zhang and Zhou, 2007) as implemented in the Mulan library, and reverse

multi-label prediction model by Petterson and Caetano (2010). For measuring the performance we

use the Hamming distance between the predictions and the true labels, penalizing equally much for

both false negatives and false positives.

Table 1 shows that BIBFA is the best of the CCA variants on all but one of the data sets.

Furthermore, Table 2 demonstrates how it is again considerably faster than BCCA model, even

though we analytically optimized for the rotation R in the Bayesian CCA model. BIBFA also

outperforms the other comparison models systematically for the cases with very large number of

labels (D1), with the exception of the Corel5-k data set. This demonstrates that CCA-type models

are particularly useful for multi-label prediction tasks with an extreme number of labels, most likely

because more information can then be extracted from the dependencies between the labels. The

improvements presented in this paper are needed especially for that domain, since BIBFA is most

useful for analysis of high-dimensional data.

For cases with a low number of labels (below 20 for the first three data sets), MLKNN outper-

forms IBFA. This is understandable as it is a model specifically designed for multi-label prediction

and it explicitly maximizes the prediction accuracy, in contrast to BIBFA that is a generative model
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Method emotions scene yeast genbase medical

BIBFA 3 13 2 11 14

BCCA 1 8 2 46 79

Method enron mediamill bibtex Corel5-k delicious

BIBFA 13 33 14 4 26

BCCA 289 95 >300 104 >300

Table 2: Average computation times for BIBFA and BCCA (in minutes) until convergence (relative

change of the lower bound below 10−6). For small dimensionalities the computational

demands of the methods are comparable, but for high dimensionality the BCCA model

becomes infeasible.

for both data sources. Nevertheless, BIBFA outperforms the two other comparison methods even

for data sets with few labels.

8. Discussion

In this paper we have reviewed the works on probabilistic and Bayesian canonical correlation analy-

sis, with particular focus on the extensions made possible by the probabilistic interpretation. While

the solutions presented here are linear, as opposed to the possibly nonlinear kernel-based CCA

models (Hardoon et al., 2004), the extensions and the ease of including CCA as a sub-model in

larger hierarchical models clearly showcase the importance of probabilistic treatment of the prob-

lem. Works by Fujiwara et al. (2009) and Huopaniemi et al. (2010) have recently demonstrated how

the Bayesian solution has enabled analysis of life science data sets with very low sample sizes.

Besides reviewing the earlier work, we introduced a novel solution that that results in consid-

erably more efficient inference for the Bayesian CCA model, especially for high-dimensional data.

The key is to make a low-rank assumption for the noise specific to each data set, which results in

re-formulation of CCA as a more complex latent variable model called inter-battery factor analysis

(IBFA) in the statistics literature (Tucker, 1958). While the extended model seems more complex

due to having more unknown latent variables, it has the advantage of diagonal noise that reduces the

risk of overfitting and simplifies the computation to the extent that it is actually much more efficient

to learn the Bayesian IBFA (BIBFA) model than it is to directly learn the Bayesian CCA solution.

The computational difficulties stemming from introducing the extra latent variables are solved

by clever usage of group-wise sparsity assumption. Instead of explicitly instantiating several latent

variables, we re-cast the IBFA model as a straightforward joint factor analysis model with a specific

prior driving the component group-wise sparse, showing how the resulting model is equivalent to

IBFA. For inference we proposed two alternative solutions with alternative sparsity-inducing priors.

One uses parameter expanded variational approximation with automatic relevance determination

(ARD) prior, whereas the other uses Gibbs sampling with spike-and-slab prior. Both variants work

well in practice, and usually seem to produce very similar results.

Given the efficient inference solution we believe the necessary tools for real-world application

of Bayesian CCA are now available, making the approach feasible for scenarios that were previ-
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ously not possible to solve. In this work we demonstrated how earlier serial computation of several

low-dimensional CCA models could be replaced by single use of BIBFA for the original high-

dimensional data in the task of extracting cancer-related genes. Similar conceptual shifts should be

possible for other domains as well, in particular in life sciences where the sample sizes are typically

in the order of tens while the dimensionality may be thousands or even larger.
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Appendix A. Variational Updates for the BIBFA Model

The joint likelihood of the BIBFA model is

p(X,W(1),W(2),Y,α(1),α(2),τ(1),τ(2)) =
2

∏
m=1

p(W(m)|α(m))p(α(m))p(τm)
N

∏
n=1

p(yn)p(x
(m)
n |W

(m),yn,τm),

where

x
(m)
n ∼ N(W(m)yn,τ

−1
m I),

W
(m)
:,k ∼ N(0,(α

(m)
k )−1I),

α
(m)
k ∼ Gamma(α0,β0),

τm ∼ Gamma(α0,β0),

yn ∼ N(0,I).

We use mean field variational approximation to approximate the posterior, with the factorization

Q(Θ) = q(Y)
2

∏
m=1

q(W(m))q(α(m))q(τm),

where Θ denotes all of the parameters and latent variables. For the latent variables we further

assume column-wise independence (that is, the latent variables of observations are independent) and

for projections row-wise independence (that is, each component is independent). The distributions

are found by maximizing the lower bound of the marginal log-likelihood

L(Q) =
∫

q(Θ) log
p(X,Θ)

q(Θ)
dΘ≤ log p(X),

and free-form optimization of the factored variables in Q(Θ) results in analytically tractable dis-

tributions due to conjugate priors. The forms of these distributions and the matrix-form updates
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rules for efficient computations are given below, after introducing the necessary notation for the

expectations.

For normal distribution x∼N(µ,Σ) the first moment is given as 〈x〉=µ and the second moment

as 〈xxT 〉= 〈x〉〈x〉T +Σ. We also introduce the notation 〈X〉= [µ1, ...,µN ] and 〈XXT 〉= 〈X〉〈X〉T +
NΣ to indicate the moments of N independent draws of x with different µn but the same covariance

matrix. For gamma distribution α∼ Gamma(α0,β0) the expectation is given by 〈α〉= α0

β0
.

For the projections we get row-wise independent factorial approximation

q(W(m)) =
Dm

∏
d=1

N(W
(m)
d,: |µW

(m)
d,:

,ΣW(m)),

ΣW(m) = (〈α(m)〉−1 + 〈τ(m)〉〈YYT 〉)−1,

〈W(m)〉= X(m)〈Y〉TΣW(m)〈τ(m)〉,

where 〈W(m)〉T = [µ
W

(m)
1,:
, ...,µ

W
(m)
Dm,:

], and for the latent variables the update is given by

q(Y) =
N

∏
n=1

N(yn|µyn
,ΣY),

ΣY = (I+
2

∑
m=1

〈τ(m)〉〈W(m)T

W(m)〉)−1,

〈Y〉=
2

∑
m=1

〈τ(m)〉ΣY〈W
(m)〉T X(m).

For the ARD parameters the updates are

q(α(m)) =
K

∏
k=1

Gamma(α
(m)
k |a

(m)
αk

,b
(m)
αk

),

a
(m)
αk

=α0 +Dm/2,

b
(m)
αk

=β0 + 〈W
(m)T

W(m)〉k,k/2,

where 〈α
(m)
k 〉=

a
(m)
αk

b
(m)
αk

. Finally, for the noise precision parameters we have

q(τm) = Gamma(a
(m)
τ ,b

(m)
τ ),

a
(m)
τ = α0 +NDm/2,

b
(m)
τ = β0 +(∑

dn

X
(m)2

dn +Trace[〈W(m)T

W(m)〉〈YYT 〉]

−2Trace[〈W(m)〉〈Y〉X(m)T

])/2.

The algorithm proceeds by updating the parameters of the above factors sequentially until con-

vergence. In the experiments included in this paper we determined convergence as relative change

of L(Q) falling below 10−6.
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Appendix B. Parameter-expanded Variational Bayes for BIBFA

To make the correlations between the mean-field updates of BIBFA smaller, we can optimize L(Q)
also with respect to a likelihood-invariant rotation R

x(m) = W(m)y = W(m)RR−1y = W(m)∗y∗,

where the asterisk is used to denote the transformed variables. We perform this optimization af-

ter updating W and Y according to the equations in Appendix A, but before learning the ARD

parameters.

Given the new R, the transformed factorial distributions are given as

q∗(W(m)) =
Dm

∏
d=1

N(W
(m)
d,: |R

T
µ

W
(m)
d,:

,RT
ΣW(m)R),

q∗(Y) =
N

∏
n=1

N(yn|R
−1
µyn

,R−1
ΣYR−T ),

q∗(α(m)) =
K

∏
k=1

Gamma(α0 +Dm/2,β0 + rT
k 〈W

(m)T

W(m)〉rk/2),

where rk is the kth column of R. The cost function for optimizing R is

LR = 〈log p(Y)〉∗−〈logq∗(Y)〉∗+
2

∑
m=1

〈log p(W(m)|α(m))〉∗−〈logq∗(W(m))〉∗+

〈log p(α(m))〉∗−〈logq∗(α(m))〉∗,

where 〈·〉∗ denotes the expectation with respect to the transformed distribution. The first four indi-

vidual terms can be written, omitting constants independent of R, as

〈log p(Y)〉∗ =−Trace[R−1〈YYT 〉R−T ]/2,

−〈logq(Y)〉∗ =−N log |R|,

〈p(W(m)|α(m))〉∗ ≈−Dm/2log
K

∏
k=1

rT
k 〈W

(m)T

W(m)〉rk,

−〈logq(W(m))〉∗ = Dm log |R|.

The last two terms can be accurately approximated as constants, since the prior is effectively non-

informative (α0 = β0 ≈ 0). The same argument has been used to approximate the third term; a part

that is effectively constant has been left out. Finally, the cost function to be maximized as a function

of R is

LR = −Trace[R−1〈YYT 〉R−T ]/2+(
2

∑
m=1

Dm−N) log |R|

−
2

∑
m=1

Dm/2log
K

∏
k=1

rk〈W
(m)T

W(m)〉rk. (9)
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For finding the optimum we calculate the gradient of the cost and use standard L-BFGS algorithm

for the optimization, with the initial solution of R = I.

After the optimization converges the expectations can be transformed as

〈Y〉 ← R−1〈Y〉,

ΣY← R−1
ΣYR−T ,

〈YYT 〉 ← 〈Y〉〈Y〉T +NΣY,

〈W(m)〉 ← 〈W(m)〉R,

ΣW← RT
ΣWR,

〈W(m)T

W(m)〉 ← 〈W(m)〉T 〈W(m)〉+DmΣW.

Appendix C. Parameter-expanded Variational Bayes for BCCA

Appendix B explains how to optimize the BIBFA lower bound with respect to the linear transfor-

mation. It is also possible to do the same for the BCCA model with full covariance matrices (8). In

particular, for the choice of α(1) =α
(2) we can solve for optimal R analytically. In the experiments

conducted in this paper we always used this optimization step when computing BCCA.

The derivation follows closely the derivation provided for parameter-expanded factor analysis

by Luttinen and Ilin (2010), and hence we only summarize here the main steps. We start with the

expression in (9), and note that the last term,

〈p(W|α)〉∗ ≈−D/2log
K

∏
k=1

rT
k 〈W

T W〉rk,

is maximized if RT 〈WT W〉R is a diagonal matrix. Hence, we can add that as a constraint in the

cost function. For a diagonal matrix we can easily compute the trace, and the term simplifies to

〈p(W|α)〉∗ ≈−D/2log
K

∏
k=1

rT
k 〈W

T W〉rk =−D log |R|,

canceling 〈logq(W)〉∗ = D logR| out. By reparameterizing R through its singular value decompo-

sition we can find the optimum for the remaining terms in (9) by computing the left singular vectors

by eigendecomposition of 〈ZZT 〉/N. The right singular vectors are then chosen to make 〈WT W〉
diagonal.

Appendix D. BIBFA with Spike-and-slab Prior

For inference with the spike-and-slab prior (6) we use Gibbs sampling, following closely the updates

given for element-wise sparse FA model by Knowles and Ghahramani (2011). Here we summarize

the necessary changes for adopting their model for group-wise sparsity in BIBFA.

D.1 Sampling H and W

We sample each entry Hm,k independently, based on the relative likelihoods of the two possible

values. For Hm,k = 1 we integrate out W
(m)
:,k , which can be done independently for each element.
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This results in the relative probability

p(Hm,k = 1|X(m))

p(Hm,k = 0|X(m))
=

πm ∏
Dm

d=1

∫
p(X(m)|W

(m)
d,k )p(W

(m)
d,k |0,(α

(m)
k )−1)dW

(m)
d,k

(1−πm)∏
Dm

d=1 p(X(m)|W
(m)
d,k = 0)

=
πm

(1−πm)

(

(α
(m)
k )−1

λ

)Dm/2

exp(
1

2
λµT

µ),

where conditioning on the rest of the variables has been dropped for clarity. Here λ = τmYT
k,:Yk,: +

α
(m)
k and µ = τm

λ

(

X(m)−∑ j 6=k W
(m)
:, j YT

j,:

)

Yk,:. Compared to Knowles and Ghahramani (2011), we

need to multiply Dm separate terms to reach the final ratio. On the other hand, we need not con-

sider new components since we have replaced the Indian Buffet Process (IBP) prior with a simple

Bernoulli prior; IBP would not be useful since we only have two realizations for each component.

While the above step integrates over W(m), we will still need the projections for sampling other

parameters of the model. Hence, we instantiate them by drawing W
(m)
:,k ∼ N(µ,λ−1I) if Hm,k = 1.

Otherwise, we set the whole vector to 0 as dictated by the prior.

D.2 Sampling the Rest of the Parameters

The sampling for the rest of the parameters does not depend on the prior used for W, since they

depend directly on the current values of W. The conditional distributions are very close to the

updates used for the variational approximation, only now they are conditional on the current values

instead of the expectations. Below we show the sampling equations for yn as an example; the

updates for α(m) and τ(m) can be easily modified from the variational updates given in Appendix A.

yn ∼ N(µyn
,ΣY),

ΣY = (I+
2

∑
m=1

τ(m)W(m)T
W(m))−1,

µyn
=

2

∑
m=1

τ(m)
ΣYW(m)T

x
(m)
n .

Finally, we need to update the variables πm, drawing them from their Beta-posterior

πm ∼ Beta(1+∑
k

Hm,k,1+K−∑
k

Hm,k).
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Abstract

Mean-field variational methods are widely used for approximate posterior inference in many prob-

abilistic models. In a typical application, mean-field methods approximately compute the posterior

with a coordinate-ascent optimization algorithm. When the model is conditionally conjugate, the

coordinate updates are easily derived and in closed form. However, many models of interest—like

the correlated topic model and Bayesian logistic regression—are nonconjugate. In these models,

mean-field methods cannot be directly applied and practitioners have had to develop variational

algorithms on a case-by-case basis. In this paper, we develop two generic methods for nonconju-

gate models, Laplace variational inference and delta method variational inference. Our methods

have several advantages: they allow for easily derived variational algorithms with a wide class of

nonconjugate models; they extend and unify some of the existing algorithms that have been derived

for specific models; and they work well on real-world data sets. We studied our methods on the

correlated topic model, Bayesian logistic regression, and hierarchical Bayesian logistic regression.

Keywords: variational inference, nonconjugate models, Laplace approximations, the multivariate

delta method

1 Introduction

Mean-field variational inference lets us efficiently approximate posterior distributions in complex

probabilistic models (Jordan et al., 1999; Wainwright and Jordan, 2008). Applications of variational

inference are widespread. As examples, it has been applied to Bayesian mixtures (Attias, 2000;

Corduneanu and Bishop, 2001), factorial models (Ghahramani and Jordan, 1997), and probabilistic

topic models (Blei et al., 2003).

The basic idea behind mean-field inference is the following. First define a family of distribu-

tions over the hidden variables where each variable is assumed independent and governed by its

own parameter. Then fit those parameters so that the resulting distribution is close to the condi-

tional distribution of the hidden variables given the observations. Closeness is measured with the

Kullback-Leibler divergence. Inference becomes optimization.

In many settings this approach can be used as a “black box” technique. In particular, this is

possible when we can easily compute the conditional distribution of each hidden variable given all

c©2013 Chong Wang and David M. Blei.
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of the other variables, both hidden and observed. (This class contains the models mentioned above.)

For such models, which are called conditionally conjugate models, it is easy to derive a coordinate

ascent algorithm that optimizes the parameters of the variational distribution (Beal, 2003; Bishop,

2006). This is the principle behind software tools like VIBES (Bishop et al., 2003) and Infer.NET

(Minka et al., 2010), which allow practitioners to define models of their data and immediately

approximate the corresponding posterior with variational inference.

Many models of interest, however, do not enjoy the properties required to take advantage of

this easily derived algorithm. Such nonconjugate models1 include Bayesian logistic regression

(Jaakkola and Jordan, 1997), Bayesian generalized linear models (Wells, 2001), discrete choice

models (Braun and McAuliffe, 2010), Bayesian item response models (Clinton et al., 2004; Fox,

2010), and nonconjugate topic models (Blei and Lafferty, 2006, 2007). Using variational inference

in these settings requires algorithms tailored to the specific model at hand. Researchers have devel-

oped a variety of strategies for a variety of models, including approximations (Braun and McAuliffe,

2010; Ahmed and Xing, 2007), alternative bounds (Jaakkola and Jordan, 1997; Blei and Lafferty,

2006, 2007; Khan et al., 2010), and numerical quadrature (Honkela and Valpola, 2004).

In this paper we develop two approaches to mean-field variational inference for a large class

of nonconjugate models. First we develop Laplace variational inference. This approach embeds

Laplace approximations—an approximation technique for continuous distributions (Tierney et al.,

1989; MacKay, 1992)—within a variational optimization algorithm. We then develop delta method

variational inference. This approach optimizes a Taylor approximation of the variational objective.

The details of the algorithm depend on how the approximation is formed. Formed one way, it gives

an alternative interpretation of Laplace variational inference. Formed another way, it is equivalent

to using a multivariate delta approximation (Bickel and Doksum, 2007) of the variational objective.

Our methods are generic. Given a model, they can be derived nearly as easily as traditional

coordinate-ascent inference. Unlike traditional inference, however, they place fewer conditions on

the model, conditions that are less restrictive than conditional conjugacy. Our methods significantly

expand the class of models for which mean-field variational inference can be easily applied.

We studied our algorithms with three nonconjugate models: Bayesian logistic regression

(Jaakkola and Jordan, 1997), hierarchical logistic regression (Gelman and Hill, 2007), and the cor-

related topic model (Blei and Lafferty, 2007). We found that our methods give better results than

those obtained through special-purpose techniques. Further, we found that Laplace variational in-

ference usually outperforms delta method variational inference, both in terms of computation time

and the fidelity of the approximate posterior.

Related work. We have described the various approaches that researchers have developed for

specific models. There have been other efforts to examine generic variational inference in noncon-

jugate models. Paisley et al. (2012a) proposed a variational inference approach using stochastic

search for nonconjugate models, approximating the intractable integrals with Monte Carlo meth-

ods. Gershman et al. (2012) proposed a nonparametric variational inference algorithm, which can

be applied to nonconjugate models. Knowles and Minka (2011) presented a message passing al-

gorithm for nonconjugate models, which has been implemented in Infer.NET (Minka et al., 2010);

their technique applies to a subset of models described in this paper.2

1. Carlin and Polson (1991) coined the term “nonconjugate model” to describe a model that does not enjoy full condi-

tional conjugacy.

2. It may be generalizable to the full set. However, one must determine how to compute the required expectations.
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Laplace approximations have been used in approximate inference in more complex models,

though not in the context of mean-field variational inference. Smola et al. (2003) used them to

approximate the difficult-to-compute moments in expectation propagation (Minka, 2001). Rue et al.

(2009) used them for inference in latent Gaussian models. Here we want to use them for variational

inference, in a method that can be applied to a wider range of nonconjugate models.

Finally, we note that the delta method was first used in variational inference by Braun and

McAuliffe (2010) in the context of the discrete choice model. Our method generalizes their ap-

proach.

Organization of this paper. In Section 2 we review mean-field variational inference and define

the class of nonconjugate models to which our algorithms apply. In Section 3, we derive Laplace

and delta-method variational inference and present our full algorithm for nonconjugate inference.

In Section 4, we show how to use our generic method on several example models and in Section 5

we study its performance on these models. In Section 6, we summarize and discuss this work.

2 Variational Inference and a Class of Nonconjugate Models

We consider a generic model with observations x and hidden variables θ and z,

p(θ,z,x) = p(x|z)p(z|θ)p(θ). (1)

The distinction between the two hidden variables will be made clear below.

The inference problem is to compute the posterior,

p(θ,z|x) =
p(θ,z,x)

∫
p(θ,z,x)dzdθ

.

This is intractable for many models because the denominator is difficult to compute; we must ap-

proximate the distribution. In variational inference, we approximate the posterior by positing a

simple family of distributions over the latent variables q(θ,z) and then finding the member of that

family which minimizes the Kullback-Leibler (KL) divergence to the true posterior (Jordan et al.,

1999; Wainwright and Jordan, 2008).3

In this section we review variational inference and discuss mean-field variational inference for

the class of conditionally conjugate models. We then define a wider class of nonconjugate models

for which mean-field variational inference is not as easily applied. In the next section, we derive

algorithms for performing mean-field variational inference in this larger class of models.

2.1 Mean-field Variational Inference

Mean-field variational inference is simplest and most widely used variational inference method. In

mean-field variational inference we posit a fully factorized variational family,

q(θ,z) = q(θ)q(z). (2)

3. In this paper, we focus on mean-field variational inference where we minimize the KL divergence to the posterior.

We note that there are other kinds of variational inference, with more structured variational distributions or with

alternative objective functions (Wainwright and Jordan, 2008; Barber, 2012). In this paper, we use “variational

inference” to indicate mean-field variational inference that minimizes the KL divergence.

1007



WANG AND BLEI

In this family of distributions the variables are independent and each is governed by its own distri-

bution. This family usually does not contain the posterior, where θ and z are dependent. However,

it is very flexible—it can capture any set of marginals of the hidden variables.

Under the standard variational theory, minimizing the KL divergence between q(θ,z) and the

posterior p(θ,z|x) is equivalent to maximizing a lower bound of the log marginal likelihood of the

observed data x. We obtain this bound with Jensen’s inequality,

log p(x) = log
∫

p(θ,z,x)dzdθ

≥ Eq [log p(θ,z,x)]−Eq [logq(θ,z)]

, L(q), (3)

where Eq [·] is the expectation taken with respect to q and note the second term is the entropy of q.

We call L(q) the variational objective.

Setting ∂L(q)/∂q = 0 shows that the optimal solution satisfies the following,

q∗(θ) ∝ exp
{

Eq(z) [log p(z|θ)p(θ)]
}

, (4)

q∗(z) ∝ exp
{

Eq(θ) [log p(x|z)p(z|θ)]
}

. (5)

Here we have combined the optimal conditions from Bishop (2006) with the particular factorization

of Equation 1. Note that the variational objective usually contains many local optima.

These conditions lead to the traditional coordinate ascent algorithm for variational inference. It

iterates between holding q(z) fixed to update q(θ) from Equation 4 and holding q(θ) fixed to update

q(z) from Equation 5. This converges to a local optimum of the variational objective (Bishop, 2006).

When all the nodes in a model are conditionally conjugate, the coordinate updates of Equation 4

and Equation 5 are available in closed form. A node is conditionally conjugate when its conditional

distribution given its Markov blanket (i.e., the set of random variables that it is dependent on in

the posterior) is in the same family as its conditional distribution given its parents (i.e., its factor

in the joint distribution). For example, in Equation 1 suppose the factor p(θ) is a Dirichlet and

both factors p(z |θ) and p(x |z) are multinomials. This means that the conditional p(θ|z) is also a

Dirichlet and the conditional p(z |x,θ) is also a multinomial. This model, which is latent Dirichlet

allocation (Blei et al., 2003), is conditionally conjugate. Many applications of variational inference

have been developed for this type of model (Bishop, 1999; Attias, 2000; Beal, 2003).

However, if there exists any node in the model that is not conditionally conjugate then this

coordinate ascent algorithm is not available. That setting arises in many practical models and does

not permit closed-form updates or easy calculation of the variational objective. We will develop

generic variational inference algorithms for a wide class of nonconjugate models. First, we define

that class.

2.2 A Class of Nonconjugate Models

We present a wide class of nonconjugate models, still assuming the factorization of Equation 1.

1. We assume that θ is real-valued and the distribution p(θ) is twice differentiable with respect

to θ. If we require θ > θ0 (θ0 is a constant), we may define a distribution over log(θ− θ0).
These assumptions cover exponential families, such as the Gaussian, Poisson and gamma, as

well as more complex distributions, such as a student-t.
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2. We assume the distribution p(z |θ) is in the exponential family (Brown, 1986),

p(z |θ) = h(z)exp
{

η(θ)⊤t(z)−a(η(θ))
}

, (6)

where h(z) is a function of z; t(z) is the sufficient statistic; η(θ) is the natural parameter,

which is a function of the conditioning variables; and a(η(θ)) is the log partition function.

We also assume that η(θ) is twice differentiable; since θ is real-valued, this is satisfied in

most statistical models. Unlike in conjugate models, these assumptions do not restrict p(θ)
and p(z |θ) to be a conjugate pair; the conditional distribution p(θ |z) is not necessarily in the

same family as the prior p(θ).

3. The distribution p(x |z) is in the exponential family,

p(x |z) = h(x)exp
{

t(z)⊤〈t(x),1〉
}

. (7)

We set up this exponential family so that the natural parameter for x is all but the last compo-

nent of t(z) and the last component is the negative log normalizer −a(·). Thus, the distribution

of z is conjugate to the conditional distribution of x; the conditional p(z |θ,x) is in the same

family as p(z |θ) (Bernardo and Smith, 1994).

Our terminology follows these assumptions: θ is the nonconjugate variable, z is the conjugate

variable, and x is the observation.

This class of models is larger than the class of conditionally conjugate models. Our expanded

class also includes nonconjugate models like the correlated topic model (Blei and Lafferty, 2007),

dynamic topic model (Blei and Lafferty, 2006), Bayesian logistic regression (Jaakkola and Jordan,

1997; Gelman and Hill, 2007), discrete choice models (Braun and McAuliffe, 2010), Bayesian ideal

point models (Clinton et al., 2004), and many others. Further, the methods we develop below are

easily adapted more complicated graphical models, those that contain conjugate and nonconjugate

variables whose dependencies are encoded in a directed acyclic graph. Appendix A outlines how to

adapt our algorithms to this more general case.

Example: Hierarchical language modeling. We introduce the hierarchical language model, a

simple example of a nonconjugate model to help ground our derivation of the general algorithms.

Consider the problem of unigram language modeling. We are given a collection of documents D =
x1:D where each document xd is a vector of word counts, observations from a discrete vocabulary

of length V . We model each document with its own distribution over words and place a Dirichlet

prior on that distribution. This model is used, for example, in the language modeling approach to

information retrieval (Croft and Lafferty, 2003).

We want to place a prior on the Dirichlet parameters, a positive V -vector, that govern each

document’s distribution over terms. In theory, every exponential family distribution has a conjugate

prior (Bernardo and Smith, 1994) and the prior to the Dirichlet is the multi-gamma distribution (Kotz

et al., 2000). However, the multi-gamma is difficult to work with because its log normalizer is not

easy to compute. As an alternative, we place a log normal distribution on the Dirichlet parameters.

This is not the conjugate prior.

The full generative process is as follows:

1. Draw log Dirichlet parameters θ ∼ N (0, I).
2. For each document d, 1 ≤ d ≤ D:
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(a) Draw multinomial parameter zd |θ ∼ Dirichlet(exp{θ}).
(b) Draw word counts xd ∼ Multinomial(N,zd).

Given a collection of documents, our goal is to compute the posterior distribution p(θ,z1:D |x1:D).
Traditional variational or Gibbs sampling methods cannot be easily used because the normal prior

on the parameters θ is not conjugate to the Dirichlet(exp{θ}) likelihood.

This language model fits into our model class. In the notation of the joint distribution of Equa-

tion 1, θ = θ, z = z1:D, and x = x1:D. The per-document multinomial parameters z and word counts

x are conditionally independent given the Dirichlet parameters θ,

p(z |θ) = ∏d p(zd |θ),

p(x |z) = ∏d ∏n p(xdn |zd).

In this case, the natural parameter η(θ) = exp{θ}. This model satisfies the assumptions: the log

normal p(exp{θ}) is not conjugate to the Dirichlet p(zd | exp{θ}) but is twice differentiable; the

Dirichlet is conjugate to the multinomial p(xd |zd) and the multinomial is in the exponential family.

Below we will use various components of the exponential family form of the Dirichlet:

h(zd) = ∏i z−1
di ; t(zd) = logzd ; ad(η(θ)) = ∑i logΓ(exp{θi}− logΓ(∑i exp{θi}) . (8)

We will return to this model as a simple running example.

3 Laplace and Delta Method Variational Inference

We have defined a class of nonconjugate models. Variational inference is difficult to derive for

these models because p(θ) is not conjugate to p(z |θ). Specifically, the update in Equation 4 does

not necessarily have the form of an exponential family we can work with and it is difficult to use

Eq(θ) [log p(z |θ)] in the update of Equation 5.

We will develop two variational inference algorithms for this class: Laplace variational infer-

ence and delta method variational inference. Both use coordinate ascent to optimize the variational

parameters, iterating between updating q(θ) and q(z). They differ in how they update the vari-

ational distribution of the nonconjugate variable q(θ). In Laplace variational inference, we use

Laplace approximations (MacKay, 1992; Tierney et al., 1989) within the coordinate ascent updates

of Equation 4 and Equation 5. In delta method variational inference, we apply Taylor approxi-

mations to approximate the variational objective in Equation 3 and then derive the corresponding

updates. Different ways of taking the Taylor approximation lead to different algorithms. Formed

one way, this recovers the Laplace approximation. Formed another way, it is equivalent to using a

multivariate delta approximation (Bickel and Doksum, 2007) of the variational objective function.

In both variants, the variational distribution is the mean-field family in Equation 2. The vari-

ational distribution of the nonconjugate variable q(θ) is a Gaussian; the variational distribution of

the conjugate variable q(z) is in the same family as p(z |η(θ)). In Laplace inference, these forms

emerge from the derivation. In delta method inference, they are assumed. The complete variational

family is,

q(θ,z) = q(θ |µ,Σ)q(z |φ).
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where (µ,Σ) are the parameters for a Gaussian distribution and φ is a natural parameter for z. For ex-

ample, in the hierarchical language model of Section 2.2, φ is a collection of D Dirichlet parameters.

We will sometimes suppress the parameters, writing q(θ) for q(θ |µ,Σ).
Our algorithms are coordinate ascent algorithms, where we iterate between updating the non-

conjugate variational distribution q(θ) and updating the conjugate variational distribution q(z). In

the subsections below, we derive the update for q(θ) in each algorithm. Then, for both algorithms,

we derive the update for q(z). The full procedure is described in Section 3.4 and Figure 1.

3.1 Laplace Variational Inference

We first review the Laplace approximation. Then we show how to use it in variational inference.

3.1.1 The Laplace Approximation

Laplace approximations use a Gaussian to approximate an intractable density. Consider approxi-

mating an intractable posterior p(θ |x). (There is no hidden variable z in this set up.) Assume the

joint distribution p(x,θ) = p(x |θ)p(θ) is easy to compute. Laplace approximations use a Taylor

approximation around the maximum a posterior (MAP) point to construct a Gaussian proxy for the

posterior. They are used for continuous distributions.

First, notice the posterior is proportional to the exponentiated log joint

p(θ |x) = exp{log p(θ |x)} ∝ exp{log p(θ,x)}.

Let θ̂ be the MAP of p(θ |x), found by maximizing log p(θ,x). A Taylor expansion around θ̂ gives

log p(θ |x)≈ log p(θ̂ |x)+ 1
2
(θ− θ̂)⊤H(θ̂)(θ− θ̂). (9)

The term H(θ̂) is the Hessian of log p(θ |x) evaluated at θ̂, H(θ̂),▽2 log p(θ |x)|θ=θ̂.

In the Taylor expansion of Equation 9, the first-order term (θ − θ̂)⊤▽ log p(θ |x)|θ=θ̂ equals

zero. The reason is that θ̂ is the maximum of log p(θ |x) and so its gradient ▽ log p(θ |x)|θ=θ̂ is zero.

Exponentiating Equation 9 gives the approximate Gaussian posterior

p(θ |x)≈ 1
C

exp
{

− 1
2
(θ− θ̂)⊤

(

−H(θ̂)
)

(θ− θ̂)
}

,

where C is a normalizing constant. In other words, p(θ |x) can be approximated by

p(θ |x)≈ N (θ̂,−H(θ̂)−1).

This is the Laplace approximation. While powerful, it is difficult to use in multivariate settings,

for example, when there are discrete hidden variables. Now we describe how we use Laplace

approximations as part of a variational inference algorithm for more complex models.

3.1.2 Laplace Updates in Variational Inference

We adapt the idea behind Laplace approximations to update the variational distribution q(θ). First,

we combine the coordinate update in Equation 4 with the exponential family assumption in Equa-

tion 6,

q(θ) ∝ exp
{

η(θ)⊤Eq(z) [t(z)]−a(η(θ))+ log p(θ)
}

. (10)
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Define the function f (θ) to contain the terms inside the exponent of the update,

f (θ), η(θ)⊤Eq(z) [t(z)]−a(η(θ))+ log p(θ). (11)

The terms of f (θ) come from the model and involve q(z) or θ. Recall that q(z) is in the same

exponential family as p(z |θ), t(z) are its sufficient statistics, and φ is the variational parameter. We

can compute Eq(z) [t(z)] from a basic property of the exponential family (Brown, 1986),

Eq(z) [t(z)] = ∇a(φ).

Seen another way, f (θ) = Eq(z) [log p(θ,z)]. This function will be important in both Laplace and

delta method inference.

The problem with nonconjugate models is that we cannot update q(θ) exactly using Equation 10

because q(θ) ∝ exp{ f (θ)} cannot be normalized in closed form. We approximate the update by

taking a second-order Taylor approximation of f (θ) around its maximum, following the same logic

as from the original Laplace approximation in Equation 9. The Taylor approximation for f (θ)
around θ̂ is

f (θ)≈ f (θ̂)+▽ f (θ̂)(θ− θ̂)+ 1
2
(θ− θ̂)⊤▽2 f (θ̂)(θ− θ̂), (12)

where ▽2 f (θ̂) is the Hessian matrix evaluated at θ̂. Now let θ̂ be the value that maximizes f (θ).
This implies that ▽ f (θ̂) = 0 and Equation 12 simplifies to

q(θ) ∝ exp{ f (θ)} ≈ exp
{

f (θ̂)+ 1
2
(θ− θ̂)⊤▽2 f (θ̂)(θ− θ̂)

}

.

Thus the approximate update for q(θ) is to set it to

q(θ)≈ N
(

θ̂,−▽2 f (θ̂)−1
)

. (13)

Note we did not assume q(θ) is Gaussian. Its Gaussian form stems from the Taylor approximation.

The update in Equation 13 can be used in a coordinate ascent algorithm for a nonconjugate

model. We iterate between holding q(z) fixed while updating q(θ) from Equation 13, and holding

q(θ) fixed while updating q(z). (We derive the second update in Section 3.3.) Each time we update

q(θ) we must use numerical optimization to obtain θ̂, the optimal value of f (θ).
We return to the hierarchical language model of Section 2.2, where θ are the log of the parame-

ters to the Dirichlet distribution. Implementing the algorithm to update q(θ) involves forming f (θ)
for the model at hand and deriving an algorithm to optimize it.

With the model equations in Equation 8, we have

f (θ) = exp(θ)⊤Eq(z) [t(z)]−D(∑i logΓ(exp(θi)− logΓ(∑i exp(θi)))− (1/2)θ⊤θ. (14)

The expected sufficient statistics of the conjugate variable are

Eq(z) [t(z)] = ∑d Eq(zd) [t(zd)] = ∑d Ψ(φd)−Ψ(∑i φdi) ,

where Ψ(·) is the digamma function, the first derivative of logΓ(·). (This function will also arise in

the gradient.) It is straightforward to use numerical methods, such as conjugate gradient (Bertsekas,

1999), to optimize Equation 14. We can then use Equation 13 to update the nonconjugate variable.
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3.2 Delta Method Variational Inference

In Laplace variational inference, the variational distribution q(θ) Equation 13 is solely a function of

θ̂, the maximum of f (θ) in Equation 11. A natural question is, would other values of θ be suitable

as well? To consider such alternatives, we describe a different technique for variational inference.

We approximate the variational objective L in Equation 3 and then optimize that approximation.

Again we focus on updating q(θ) in a coordinate ascent algorithm and postpone the discussion

of updating q(z). We set the variational distribution q(θ) to be a Gaussian N (µ,Σ), where the

parameters are free variational parameters fit to optimize the variational objective. (Note that in

Laplace inference, this Gaussian family came out of the derivation.) We isolate the terms of the

objective in Equation 3 related to q(θ), and we substitute the exponential family form of p(z |θ) in

Equation 6,

L(q(θ)) = Eq(θ)

[

η(θ)⊤Eq(z) [t(z)]−a(η(θ))+ log p(θ)
]

+ 1
2

log |Σ|.

The second term comes from the entropy of the Gaussian,

−Eq(θ) [logq(θ)] =
1

2
log |Σ|+C,

where C is a constant and is excluded from the objective. The first term is Eq(θ) [ f (θ)], where f (·)
is the same as defined for Laplace inference in Equation 11. Thus,

L(q(θ)) = Eq(θ) [ f (θ)]+
1
2

log |Σ|.

We cannot easily compute the expectation in the first term. So we use a Taylor approximation of

f (θ) around a chosen value θ̂ (Equation 12) and then take the expectation,

L(q(θ))≈ f (θ̂)+▽ f (θ̂)⊤(µ− θ̂)+1
2
(µ− θ̂)⊤▽2 f (θ̂)(µ− θ̂)]]+ 1

2

(

Tr
{

▽2 f (θ̂)Σ
}

+ log |Σ|
)

, (15)

where Tr(·) is the Trace operator. In the coordinate update of q(θ), this is the function we optimize

with respect to its variational parameters {µ,Σ}.

To fully specify the algorithm we must choose θ̂, the point around which to approximate f (θ).
We will discuss three choices. The first is to set θ̂ to be the maximum of f (θ). With this choice,

maximizing the approximation in Equation 15 gives µ = θ̂ and Σ = −▽2 f (θ̂)−1. Notice this is the

update derived in Section 3.1. We have given a different derivation of Laplace variational inference.

The second choice is to set θ̂ as the mean of the variational distribution from the previous

iteration of coordinate ascent. If the prior p(θ) is Gaussian, this recovers the updates derived in

Ahmed and Xing (2007) for the correlated topic model.4 In our study, we found this algorithm did

not work well. It did not always converge, possibly due to the difficulty of choosing an appropriate

initial θ̂.

The third choice is to set θ̂ = µ, that is, the mean of the variational distribution q(θ). With

this choice, the variable around which we center the Taylor approximation becomes part of the

optimization problem. The objective is

L(q(θ))≈ f (µ)+ 1
2
Tr
{

▽2 f (µ)Σ
}

+ 1
2

log |Σ|. (16)

4. This is an alternative derivation of their algorithm. They derived these updates from the perspective of generalized

mean-field theory (Xing et al., 2003).
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This is the multivariate delta method for evaluating Eq(θ) [ f (θ)] (Bickel and Doksum, 2007). Delta

method variational inference optimizes this objective in the coordinate update of q(θ) .

In more detail, we first optimize µ with gradient methods and then optimize Σ in closed form

Σ =−▽2 f (µ)−1. Note this is more expensive than Laplace variational inference because optimizing

Equation 16 requires the third derivative ▽3 f (θ). Braun and McAuliffe (2010) were the first to use

the delta method in a variational inference algorithm, developing this technique for the discrete

choice model. If we assume the prior p(θ) is Gaussian then we recover their algorithm. With the

ideas presented here, we can now use this strategy in many models.

We return briefly to the unigram language model. The delta method update for q(θ) optimizes

Equation 16, using the specific f (·) found in Equation 14. While Laplace inference required the

digamma function and logΓ function, delta method inference will further require the trigamma

function.

3.3 Updating the Conjugate Variable

We derived variational updates for q(θ) using two methods. We now turn to the update for the varia-

tional distribution of the conjugate variable q(z). We show that both Laplace inference (Section 3.1)

and delta method inference (Section 3.2) lead to the same update. Further, we have implicitly as-

sumed that Eq(z) [t(z)] in Equation 11 is easy to compute. We will confirm this as well.

We first derive the update for q(z) when using Laplace inference. We apply the exponential

family form in Equation 6 to the exact update of Equation 5,

logq(z) = log p(x |z)+ logh(z)+Eq(θ) [η(θ)]
⊤

t(z)+C,

where C is a constant not depending on z. Now we use p(x |z) from Equation 7 to obtain

q(z) ∝ h(z)exp
{

(

Eq(θ) [η(θ)]+ t(x)
)⊤

t(z)
}

, (17)

which is in the same family as p(z |θ) in Equation 6. This is the update for q(z).
Recall that η(θ) maps the nonconjugate variable θ to the natural parameter of the conjugate

variable z. The update for q(z) requires computing Eq(θ) [η(θ)]. For some models, this expectation

is computable. If not, we can take a Taylor approximation of η(θ) around the variational parameter

µ,

ηi(θ)≈ ηi(µ)+▽η(µ)⊤i (θ−µ)+ 1
2
(θ−µ)⊤▽2ηi(µ)(θ−µ),

where η(θ) is a vector and i indexes the ith component. This requires η(θ) is twice differentiable,

which is satisfied in most models. Since q(θ) = N (µ,Σ), this means that

Eq(θ) [ηi(θ)]≈ ηi(µ)+
1
2
Tr
{

▽2ηi(µ)Σ
}

. (18)

(Note that the linear term Eq(θ)

[

▽ηi(µ)
T (θ−µ)

]

= 0.)

Using delta method variational inference to update q(θ), the update for q(z) is identical to that

in Laplace variational inference. We isolate the relevant terms in Equation 3,

L(q(z)) =Eq(z)

[

log p(x |z)+ logh(z)+Eq(θ) [η(θ)]
⊤

t(z)
]

−Eq(z) [logq(z)] .
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1: Initialize variational distributions q(θ |µ,Σ) and q(z |φ).
2: repeat

3: Compute the statistics Eq(z) [t(z)].
4: Update q(θ) using one of the methods:

a) For Laplace inference, compute Equation 13.

b) For delta method inference, optimize Equation 16.

5: Compute Eq(θ) [η(θ)] or approximate it as in Equation 18.

6: Update q(z) from Equation 17.

7: until convergence. (See Section 3.4 for the criterion.)

8: return q(θ) and q(z).

Figure 1: Nonconjugate variational inference

Setting the partial gradient ∂L(q(z))/∂q(z) = 0 gives the same optimal q(z) of Equation 5. Com-

puting this update reduces to the approach for Laplace variational inference in Equation 17.

We return again to the unigram language model with log normal priors on the Dirichlet param-

eters. In this model, we can compute Eq(θ) [η(θ)] exactly by using properties of the log normal,

Eq(θ) [η(θ)] = Eq(θ) [exp{θ}] = exp{µ+diag(Σ)/2}.

Recall that xd are the word counts for document d and note that it is its own sufficient statistic in a

multinomial count model. Given the calculation of Eq(θ) [η(θ)] and the model-specific calculations

in Equation 8, the update for q(zd) is

q(zd) = Dirichlet(exp(µ+diag(Σ)/2)+ xd) .

This completes our derivation in the example model. To implement nonconjugate inference we need

this update for q(z) and the definition of f (·) in Equation 14.

3.4 Nonconjugate Variational Inference

We now present the full algorithm for nonconjugate variational inference. In this section, we

will be explicit about the variational parameters. Recall that the variational distribution of the non-

conjugate variable is a Gaussian q(θ |µ,Σ); the variational distribution of the conjugate variable is

q(z |φ), where φ is a natural parameter in the same family as p(z |η(θ)).
The algorithm is as follows. Begin by initializing the variational parameters. Iterate between

updating q(θ) and updating q(z) until convergence. Update q(θ) by either Equation 13 (Laplace

inference) or optimizing Equation 16 (Delta method inference). Update q(z) from Equation 17.

Assess convergence by measuring the L2 norm of the mean of the nonconjugate variable, Eq [θ].
This algorithm is summarized in Figure 1. In either Laplace or delta method inference, we have

reduced deriving variational updates for complicated nonconjugate models to mechanical work—

calculating derivatives and calling a numerical optimization library. We note that Laplace inference

is simpler to derive because it only requires second derivatives of the function in Equation 11;
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Figure 2: The approximate variational objective from Equation 19 goes up as a function of the

iteration. This is for document-level inference in the correlated topic model. The left plot

is for a collection from the Associated Press; the right plot is for a collection from the

New York Times. (See Section 4.1 and Section 5.1 for details about the model and data.)

delta method inference requires third derivatives. We study the empirical difference between these

methods in Section 5.

Our algorithm (in either setting) is based on approximately optimal coordinate updates for the

variational objective, but we cannot compute that objective. However, we can compute an approx-

imate objective at each iteration with the same Taylor approximation used in the coordinate steps,

and this can be monitored as a proxy. The approximate objective is

L ≈ f (θ̂)+▽ f (θ̂)⊤(µ− θ̂)+1
2
(µ− θ̂)⊤▽2 f (θ̂)(µ− θ̂)

+ 1
2

(

Tr
{

▽2 f (θ̂)Σ
}

+ log |Σ|
)

−Eq(z) [logq(z)] (19)

where f (θ) is defined in Equation 11 and θ̂ is defined as for Laplace or delta method inference.5

Figure 2 shows this score at each iteration for two runs of inference in the correlated topic

model. (See Section 4.1 for details about the model.) The approximate objective increases as the

algorithm proceeds, and these plots were typical. In practice, as did Braun and McAuliffe (2010) in

their setting, we found that this is a good score to monitor.

4 Example Models

We have described a generic algorithm for approximate posterior inference in nonconjugate models.

In this section we derive this algorithm for several nonconjugate models from the research litera-

ture: the correlated topic model (Blei and Lafferty, 2007), Bayesian logistic regression (Jaakkola

and Jordan, 1997), and hierarchical Bayesian logistic regression (Gelman and Hill, 2007). For each

5. We note again that Equation 19 is not the function we are optimizing. Even the simpler Laplace approximation

is not clearly minimizing a well-defined distance function between the approximate Gaussian and true posterior

(MacKay, 1992). Thus, while this approach is an approximate coordinate ascent algorithm, clearly characterizing the

corresponding objective function is an open problem.
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Figure 3: The graphical representation of the correlated topic model (CTM). The nonconjugate

variable is θ; the conjugate variable is the collection z = z1:N ; the observation is the

collection of words x = x1:N .

model, we identify the variables—the nonconjugate variable θ, conjugate variable z, and observa-

tions x—and we calculate f (θ) from Equation 11. (The calculations of f (θ) are in the appendices.)

In the next section, we study how our algorithms perform when analyzing data under these models.6

4.1 The Correlated Topic Model

Probabilistic topic models are models of document collections. Each document is treated as a group

of observed words that are drawn from a mixture model. The mixture components, called “topics,”

are distributions over terms that are shared for the whole collection; each document exhibits them

with individualized proportions.

Conditioned on a corpus of documents, the posterior topics place high probabilities on words

that are associated under a single theme; for example, one topic may contain words like “bat,” “ball,”

and “pitcher.” The posterior topic proportions reflect how each document exhibits those themes; for

example, a document may combine the topics of sports and health. This posterior decomposition of

a collection can be used for summarization, visualization, or forming predictions about a document.

See Blei (2012) for a review of topic modeling.

The per-document topic proportions are a latent variable. In latent Dirichlet allocation (LDA)

(Blei et al., 2003)—which is the simplest topic model—these are given a Dirichlet prior, which

makes the model conditionally conjugate. Here we will study the correlated topic model (CTM)

(Blei and Lafferty, 2007). The CTM extends LDA by replacing the Dirichlet prior on the topic

proportions with a logistic normal prior (Aitchison, 1982). This is a richer prior that can capture

correlations between occurrences of the components. For example, a document about sports is more

likely to also be about health. The CTM is not conditionally conjugate. But it is a more expressive

model: it gives a better fit to texts and provides new kinds of exploratory structure.

Suppose there are K topic parameters β1:K , each of which is a distribution over V terms. Let π(θ)
denote the multinomial logistic function, which maps a real-valued vector to a point on the simplex

with the same dimension, π(θ) ∝ exp{θ}. The CTM assumes a document is drawn as follows:

1. Draw log topic proportions θ ∼ N (µ0,Σ0).
2. For each word n:

(a) Draw topic assignment zn |θ ∼ Mult(π(θ)).

6. Python implementations of our algorithms are available at http://www.cs.cmu.edu/˜chongw/software/

nonconjugate_inference.tar.gz.
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N

f�0; †0g �m
zm;n tm;n

M

Figure 4: The graphical representation of hierarchical logistic regression. (When M = 1, this is

standard Bayesian logistic regression.)The nonconjugate variable is the vector of coeffi-

cients θm, the conjugate variable is the collection of observed classes for each data point,

zm = zm,1:N . (In this case there is no additional observation x downstream.)

(b) Draw word xn |zn,β ∼ Mult(βzn
).

Figure 3 shows the graphical model. The topic proportions π(θ) are drawn from a logistic normal

distribution; their correlation structure is captured in its covariance matrix Σ0. The topic assignment

variable zn indicates from which topic the nth word is drawn.

Holding the topics β1:K fixed, the main inference problem in the CTM is to infer the condi-

tional distribution of the document-level hidden variables p(θ,z1:N |x1:N ,β1:K). This calculation is

important in two contexts: it is used when forming predictions about new data; and it is used as a

subroutine in the variational expectation maximization algorithm for fitting the topics and logistic

normal parameters (mean µ0 and covariance Σ0) with maximum likelihood. The corresponding per-

document inference problem is straightforward to solve in LDA, thanks to conditional conjugacy.

In the CTM, however, it is difficult because the logistic normal on θ is not conjugate to the multi-

nomial on z. Blei and Lafferty (2007) used a Taylor approximation designed specifically for this

model. Here we apply the generic algorithm from Section 3.

In terms of the earlier notation, the nonconjugate variable is the topic proportions θ, the conju-

gate variable is the collection of topic assignments z = z1:N , and the observation is the collection of

words x = x1:N . The variational distribution for the topic proportions θ is Gaussian, q(θ) = N (µ,Σ);
the variational distribution for the topic assignments is discrete, q(z) = ∏n q(zn |φn) where each φn

is a distribution over K elements. In delta method inference, as in Braun and McAuliffe (2010), we

restrict the variational covariance Σ to be diagonal to simplify the derivative of Equation 16. Laplace

variational inference does not require this simplification. Appendix B gives the detailed derivations

of the algorithm.

Besides the CTM, this approach can be adapted to a variety of nonconjugate topic models,

including the topic evolution model (Xing, 2005), Dirichlet-multinomial regression (Mimno and

McCallum, 2008), dynamic topic models (Blei and Lafferty, 2006; Wang et al., 2008), and the

discrete infinite logistic normal distribution (Paisley et al., 2012b).

4.2 Bayesian Logistic Regression

Bayesian logistic regression is a well-studied model for binary classification (Jaakkola and Jordan,

1997). It places a Gaussian prior on a set of coefficients and draws class labels, conditioned on co-

variates, from the corresponding logistic. Let tn is be a p-dimensional observed covariate vector for

the nth sample and zn be its class label (an indicator vector of length two). Let θ be the real-valued

1018



VARIATIONAL INFERENCE IN NONCONJUGATE MODELS

coefficients in R
p; there is a coefficient for each feature. Bayesian logistic regression assumes the

following conditional process:

1. Draw coefficients θ ∼ N (µ0,Σ0).
2. For each data point n and its covariates tn, draw its class label from

zn |θ, tn ∼ Bernoulli
(

σ(θ⊤tn)
zn,1σ(−θ⊤tn)

zn,2

)

,

where σ(y), 1/(1+ exp(−y)) is the logistic function.

Figure 4 shows the graphical model. Given a data set of labeled feature vectors, the posterior

inference problem is to compute the conditional distribution of the coefficients p(θ |z1:N , t1:N). The

issue is that the Gaussian prior on the coefficients is not conjugate to the conditional likelihood of

the label.

This is a subset of the model class in Section 2.2. The nonconjugate variable θ is identical and

the variable z is the collection of observed classes of each data point, z1:N . Note there is no additional

observed variable x downstream. The variational distribution need only be defined for the coeffi-

cients, q(θ) = N (µ,Σ). Using Laplace variational inference, our approach recovers the standard

Laplace approximation for Bayesian logistic regression (Bishop, 2006). This gives a connection

between standard Laplace approximation and variational inference. Delta method variational infer-

ence provides an alternative. Appendix C gives the detailed derivations.

An important extension of Bayesian logistic regression is hierarchical Bayesian logistic regres-

sion (Gelman and Hill, 2007). It simultaneously models related logistic regression problems, and

estimates the hyperparameters of the shared prior on the coefficients. With M related problems, we

construct the following hierarchical model:

1. Draw the global hyperparameters,

Σ−1
0 ∼ Wishart(ν,Φ0), (20)

µ0 ∼ N (0,Φ1). (21)

2. For each problem m:

(a) Draw coefficients θm ∼ N (µ0,Σ0).
(b) For each data point n and its covariates tmn, draw its class label,

zmn |θm, tmn ∼ Bernoulli(σ(θ⊤
mtmn)

zmn,1σ(−θ⊤
mtmn)

zmn,2).

As for the CTM, we use nonconjugate inference as a subroutine in a variational EM algorithm

(where the M step is regularized). We construct f (θm) in Equation 11 separately for each problem m,

and fit the hyperparameters µ0 and Σ0 from their approximate expected sufficient statistics (Bishop,

2006). This amounts to MAP estimation with priors as specified above. See Appendix C for the

complete derivation.

Finally, we note that logistic regression is a generalized linear model with a binary response and

canonical link function (McCullagh and Nelder, 1989). It is straightforward to use our algorithms

with other Bayesian generalized linear models (and their hierarchical forms).
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5 Empirical Study

We studied nonconjugate variational inference with correlated topic models and Bayesian logis-

tic regression. We found that nonconjugate inference is more accurate than the existing methods

tailored to specific models. Between the two nonconjugate inference algorithms, we found that

Laplace inference is faster and more accurate than delta method inference.

5.1 The Correlated Topic Model

We studied Laplace inference and delta method inference in the CTM. We compared it to the original

inference algorithm of Blei and Lafferty (2007).

We analyzed two collections of documents. The Associated Press (AP) collection contains

2,246 documents from the Associated Press. We used a vocabulary of 10,473 terms, which gave

a total of 436K observed words. The New York Times (NYT) collection contains 9,238 documents

from the New York Times. We used a vocabulary of 10,760 terms, which gave a total of 2.3 million

observed words. For each corpus we used 80% of the documents to fit models and reserved 20% to

test them.

We fitted the models with variational EM. At each iteration, the algorithm has a set of topics

β1:K and parameters to the logistic normal {µ0,Σ0}. In the E-step we perform approximate posterior

inference with each document, estimating its topic proportions and topic assignments. In the M-step,

we re-estimate the topics and logistic normal parameters. We fit models with different kinds of E-

steps, using both of the nonconjugate inference methods from Section 3 and the original approach of

Blei and Lafferty (2007). To initialize nonconjugate inference we set the variational mean parameter

µ = 0 for log topic proportions θ and computed the corresponding updates for the topic assignments

z. We initialize the topics in variational EM to random draws from a uniform Dirichlet.

With nonconjugate inference in the E-step, variational EM approximately optimizes a bound on

the marginal probability of the observed data. We can calculate an approximation of this bound with

Equation 19 summed over all documents. We monitor this quantity as we run variational EM.

To test our fitted models, we measured predictive performance on held-out data with predictive

distributions derived from the posterior approximations. We follow the testing framework of Asun-

cion et al. (2009) and Blei and Lafferty (2007). We fix fitted topics and logistic normal parameters

M = {β1:K ,µ0,Σ0}. We split each held-out document in to two halves (w1,w2) and form the ap-

proximate posterior log topic proportions qw1
(θ) using one of the approximate inference algorithms

and the first half of the document w1. We use this to form an approximate predictive distribution,

p(w |w1,M)≈
∫

θ ∑z p(w |z,β1:K)qw1
(θ)dθ ≈ ∑K

k=1 βkwπk,

where πk ∝ exp{Eq [θk]}. Finally, we evaluate the log probability of the second half of the document

using that predictive distribution; this is the held out log likelihood. A better model and inference

method will give higher predictive probabilities of the unseen words. Note that this testing frame-

work puts the approximate posterior distributions on the same playing field. The quantities are

comparable regardless of how the approximate posterior is formed.

Figure 5 shows the per-word approximate bound and the per-word held out likelihood as func-

tions of the number of topics. Figure 5 (a) indicates that the approximate bounds from nonconjugate

inference generally go up as the number of topics increases. This is a property of a good approxi-

mation because the marginal certainly goes up as the number of parameters increases. In contrast,
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Blei and Lafferty’s (2007) objective (which is a true bound on the marginal of the data) behaves

erratically. This is illustrated for the New York Times corpus; on the Associated Press corpus, it does

not come close to the approximate bound and is not plotted.

Figure 5 (b) shows that on held out data, Blei and Lafferty’s approach, tailored for this model,

performed worse than both of our algorithms. Our conjecture is that while this method gives a strict

lower bound on the marginal, it might be a loose bound and give poor predictive distributions. Our

methods use an approximation which, while not a bound, might be closer to the objective and give

better predictive distributions. The held out likelihood plots also show that when the number of

topics increases the algorithms eventually overfit the data. Finally, note that Laplace variational

inference was always better than both other algorithms.

Finally, Figure 6 shows the approximate bound and the held out log likelihood as functions of

running time.7 From Figure 6 (a), we see that even though variational EM is not formally optimizing

this approximate objective (see Equation 19), the increase at each iteration suggests that the marginal

probability is also increasing. The plot also shows that Laplace inference converges faster than

delta method inference. Figure 6 (b) confirms that Laplace inference is both faster and gives better

predictive performance.

5.2 Bayesian Logistic Regression

We studied our algorithms on Bayesian logistic regression in both standard and hierarchical settings.

In the standard setting, we analyzed two data sets. With the Yeast data (Elisseeff and Weston, 2001),

we form a predictor of gene functional classes from features composed of micro-array expression

data and phylogenetic profiles. The data set has 1,500 genes in the training set and 917 genes in

the test set. For each gene there are 103 covariates and up to 14 different gene functional classes

(14 labels). This corresponds to 14 independent binary classification problems. With the Scene data

(Boutell et al., 2004), we form a predictor of scene labels from image features. It contains 1,211

images in the training set and 1,196 images in the test set. There are 294 images features and up to

6 scene labels per image. This corresponds to 6 independent binary classification problems.8

We used two performance measures. First we measured accuracy, which is the proportion of

test-case examples correctly labeled. Second, we measured average log predictive likelihood. Given

a test-case input t with label z, we compute the log predictive likelihood,

log p(z |µ, t) = z1 logσ(µ⊤t)+ z2 logσ(−µ⊤t),

where µ is the mean of variational distribution q(θ) = N (µ,Σ). Higher likelihoods indicate a better

fit. For both accuracy and predictive likelihood, we used cross validation to estimate the generaliza-

tion performance of each inference algorithm. We set the priors µ0 = 0 and Σ0 = I.

We compared Laplace inference (Section 3.1), delta method inference (Section 3.2), and the

method of Jaakkola and Jordan (1997). Jaakkola and Jordan’s (1996) method preserves a lower

bound on the marginal likelihood with a first-order Taylor approximation and was developed specif-

ically for Bayesian logistic regression. (We note that Blei and Lafferty’s bound-preserving method

for the CTM was built on this technique.)

7. We did not formally compare the running time of Blei and Lafferty’s (2007) method because we used the authors’ C

implementation, while ours is in Python. We observed that their method took more than five times longer than ours.

8. The Yeast and Scene data are at http://mulan.sourceforge.net/datasets.html.
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Figure 5: Laplace variational inference is “Lap-Var”; delta method variational inference is “Delta-

Var”; Blei and Lafferty’s method is “BL.” (a) Approximate per-word lower bound against

the number of topics. A good approximation will go up as the number of topics increases,

but not necessarily indicate a better predictive performance on the held out data. (b) Per-

word held-out log likelihood against the number of topics. Higher numbers are better.

Both nonconjugate methods perform better than Blei and Lafferty’s method. Laplace

inference performs best. Blei and Lafferty’s method was erratic in both collections. (It is

not plotted for the AP collection.)

Table 1 gives the results. To compare methods we compute the difference in score (accuracy

or log likelihood) on the independent binary classification problems, and then perform a standard

t-test (at level 0.05) to test if the mean of the differences is larger than 0. Laplace inference and

delta method inference gave slightly better accuracy than Jaakkola and Jordan’s method, and much
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Figure 6: In this figure, we set the number of topics as K = 60. (Others are similar.) (a) The

per-word approximate bound during model fitting with variational EM. Though it is an

approximation of the variational EM objective, it converges in practice. (b) The per-

word held out likelihood during the model fitting with variational EM. Laplace inference

performs best in terms of speed and predictive performance.

better log predictive likelihood.9 The t-test showed that both Laplace and delta method inference

are better than Jaakkola and Jordan’s method.

We next examined a data set of student performance in a collection of schools. With the School

data, our goal is to use various features of a student to predict whether he or she will perform

above or below the median on a standardized exam.10 The data came from the Inner London Edu-

cation Authority. It contains examination records from 139 secondary schools for the years 1985,

1986 and 1987. It is a random 50% sample with 15,362 students. The students’ features contain

four student-dependent features and school-dependent features. The student dependent features are

9. Previous literature, for example, Xue et al. (2007) and Archambeau et al. (2011) treat Yeast and Scene as multi-task

problems. In our study, we found that our standard Bayesian logistic regression algorithms performed the same as

the algorithms developed in these papers.

10. The data is available at http://multilevel.ioe.ac.uk/intro/datasets.html.
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Yeast Scene

Accuracy Log Likelihood Accuracy Log Likelihood

Jaakkola and Jordan (1996) 79.7% -0.678 87.4% -0.670

Laplace inference 80.1% -0.449 89.4% -0.259

Delta method inference 80.2% -0.450 89.5% -0.265

Table 1: Comparison of the different methods for Bayesian logistic regression using accuracy and

averaged log predictive likelihood. Higher numbers are better. These results are averaged

from five random starts. (The variance is too small to report.) Bold results indicate sig-

nificantly better performance using a standard t-test. Laplace and delta method inference

perform best.

the year of the exam, gender, VR band (individual prior attainment data), and ethnic group; the

school-dependent features are the percentage of students eligible for free school meals, percentage

of students in VR band 1, school gender, and school denomination. We coded the binary indicator

of whether each was below the median (“bad”) or above (“good”). We use the same 10 random

splits of the data as Argyriou et al. (2008).

In this data, we can either treat each school as a separate classification problem, pool all the

schools together as a single classification problem, or analyze them with hierarchical logistic re-

gression (Section 4.2). The hierarchical model allows the predictors for each school to deviate from

each other, but shares statistical strength across them. Let p be the number of covariates. We set

the prior on the hyperparameters to the coefficients to ν = p+ 100, Φ0 = 0.01I, and Φ1 = 0.01I (

see Equation 20 and Equation 21) to favor sparsity. We initialized the variational distributions to

q(θ) = N (0, I).
Table 2 gives the results. A standard t-test (at level 0.05) showed that the hierarchical models are

better than the non-hierarchical models both in terms of accuracy and predictive likelihood. With

predictive likelihood, Laplace variational inference in the hierarchical model is significantly better

than all other approaches.

6 Discussion

We developed Laplace and delta method variational inference, two strategies for variational infer-

ence in a large class of nonconjugate models. These methods approximate the variational objective

function with a Taylor approximation, each in a different way. We studied them in two nonconju-

gate models and showed that they work well in practice, forming approximate posteriors that lead

to good predictions. In the examples we analyzed, our methods worked better than methods tailored

for the specific models at hand. Between the two, Laplace inference was better and faster than delta

method inference. These methods expand the scope of variational inference.
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Accuracy Log Likelihood

Separate

Jaakkola and Jordan (1996) 70.5% -0.684

Laplace inference 70.8% -0.569

Delta inference 70.8% -0.571

Pooled

Jaakkola and Jordan (1996) 71.2% -0.685

Laplace inference 71.3% -0.557

Delta inference 71.3% -0.557

Hierarchical

Jaakkola and Jordan (1996) 71.3% -0.685

Laplace inference 71.9% -0.549

Delta inference 71.9% -0.559

Table 2: Comparison of the different methods on the School data using accuracy and averaged log

predictive likelihood. Results are averaged from 10 random splits. (The variance is too

small to report.) We compared Laplace inference, delta inference and Jaakkola and Jor-

dan’s (1996) method in three settings: separate logistic regression models for each school,

a pooled logistic regression model for all schools, and the hierarchical logistic regression

model in Section 4.2. Bold indicates significantly better performance by a standard t-test

(at level 0.05). The hierarchical model performs best.
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Appendix A. Generalization to Complex Models

We describe how we can generalize our approaches to more complex models. Suppose we have

a directed probabilistic model with latent variables θ = θ1:m and observations x. (We will not dif-

ferentiate notation between conjugate and nonconjugate variables.) The log joint likelihood of all

latent and observed variables is

log p(θ,x) = ∑m
i=1 log p(θi |θπi

)+ log p(x |θ),

where πi are the indices of the parents of θi, the variables it depends on.

Our goal is to approximate the posterior distribution p(θ |x). Similar to the main paper, we use

mean-field variational inference (Jordan et al., 1999). We posit a fully-factorized variational family

q(θ) = ∏m
i=1 q(θi),

and optimize ach factor q(θi) to find the member closest in KL-divergence to the posterior.

As in the main paper, we solve this optimization problem with coordinate ascent, iteratively

optimizing each variational factor while holding the others fixed. Recall that Bishop (2006) shows

that this leads to the following update

q(θi) ∝ exp{E−i [log p(θ,x)]} , (22)

where E−i [·] denotes the expectation with respect to ∏ j, j 6=i q(θ j).

Many of the terms of the log joint will be constant with respect to θi and absorbed into the

constant of proportionality. This allows us to simplify the update in Equation 22 to be q(θi) ∝

exp{ f (θi)} where

f (θi) = E−i [log p(θi |θπi
)]+∑{ j:i∈π j} E−i

[

log p(θ j |θπ j
)
]

+E−i [log p(x |θ)] . (23)

As in the main paper, this update is not tractable in general. We use Laplace variational inference

(Section 3.1) to approximate it, although delta method variational inference (Section 3.2) is also

applicable. In Laplace variational inference, we take a Taylor approximation of f (θi) around its

maximum θ̂i. This naturally leads to q(θi) as a Gaussian factor,

q∗(θi)≈ N (θ̂i,−▽2 f (θ̂i)
−1).

The main paper considers the case where θ is a single random variable and updates its variational

distribution. In the more general coordinate ascent setting considered here, we need to compute or

approximate the expected log probabilities (and their derivatives) in Equation 23.
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Now suppose each factor is in the exponential family. (This is weaker than the conjugacy

assumption, and describes most graphical models from the literature.) The log joint likelihood

becomes

log p(θ,x) = ∑m
i=1

(

η(θπi
)⊤t(θi)−a(η(θπi

))
)

+ log p(x |θ),

where η(·) are natural parameters, t(·) are sufficient statistics, and a(η(·)) are log normalizers. (All

are overloaded.) Substituting the exponential family assumptions into f (θi) gives

f (θi) = E−i [η(θπi
)]⊤ t(θi)

+∑{ j:i∈π j}

(

E−i

[

η(θπ j
)
]⊤

E−i [t(θ j)]−E−i

[

a(η(θπ j
))
]

)

+E−i [t(θ)]
⊤

t(x)−E−i [a(η(θ))] .

Here we can use further Taylor approximations of the natural parameters η(·), sufficient statistics

t(·), and log normalizers a(·) in order to easily take their expectations.

Finally, for some variables we may be able to exactly compute f (θi) and form the q∗(θi) with-

out further approximations. (These are conjugate variables for which the complete conditional

p(θi |θ−i,x) is available in closed form.) These variables were separated out in the main paper; here

we note that they can be updated exactly in the coordinate ascent algorithm.

Appendix B. The Correlated Topic Model

The correlated topic model is described in Section 4.1. We identify the quantities from Equation 6

and Equation 7 that we need to compute f (θ) in Equation 11,

h(z) = 1, t(z) = ∑n zn,

η(θ) = θ− log{∑k exp{θk}} ,

a(η(θ)) = 0.

With this notation,

f (θ) = η(θ)⊤Eq(z) [t(z)]−
1
2
(θ−µ0)

⊤Σ−1
0 (θ−µ0),

where Eq(z) [t(z)] is the expected word counts of each topic under the variational distribution q(z).
Let π ∝ exp{η(θ)} be the topic proportions. Using ∂πi/∂θ j = πi(1[i= j] − π j), we obtain the

gradient and Hessian of the function f (θ) in the CTM,

▽ f (θ) = Eq(z) [t(z)]−π∑K
k=1

[

Eq(z) [t(z)]
]

k
−Σ−1

0 (θ−µ0),

▽2 f (θ)i j = (−πi1[i= j]+πiπ j)∑K
k=1

[

Eq(z) [t(z)]
]

k
− (Σ−1

0 )i j.

where 1[i= j] = 1 if i = j and 0 otherwise. Note that ▽ f (θ) is all we need for Laplace inference.

In delta method variational inference, we also need to compute the gradient of

Trace
{

▽2 f (θ)Σ
}

=
(

−∑K
k=1 πkΣkk +πT Σπ

)

∑K
k=1

[

Eq(z) [t(z)]
]

k
−Trace(Σ−1

0 Σ).

Following Braun and McAuliffe (2010), we assume Σ is diagonal in the delta method. (In Laplace

inference, we do not need this assumption.) This gives

∂Trace
{

▽2 f (θ)Σ
}

∂θi

= πi(1−2πi)(∑k πkΣkk −1).
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These quantities let us implement the algorithm in Figure 1 to infer the per-document posterior of

the CTM hidden variables.

As we discussed Section 4.1, we use this algorithm in variational EM for finding maximum like-

lihood estimates of the model parameters. The E-step runs posterior inference on each document.

Since the variational family is the same, the M-step is as described in Blei and Lafferty (2007).

Appendix C. Bayesian Logistic Regression

Bayesian logistic regression is described in Section 4.2.

The distribution of the observations z1:N fit into the exponential family as follows,

h(z) = 1, t(z) = [z1, . . . ,zN ],

η(θ) = [logσ(θ⊤tn), logσ(−θ⊤tn)]
N
n=1,

a(η(θ)) = 0.

In this set up, t(z) represents the whole set of labels. Since z is observed, its “expectation” is just

itself. With this notation, f (θ) from Equation 11 is

f (θ) = η(θ)⊤t(z)− 1
2
(θ−µ0)

⊤Σ−1
0 (θ−µ0).

The gradient and Hessian of f (θ) are

▽ f (θ) = ∑N
n=1 tn

(

zn,1 −σ(θT tn)
)

−Σ−1
0 (θ−µ0),

▽2 f (θ) =−∑N
n=1 σ(θT tn)σ(−θT tn)tntT

n −Σ−1
0 . (24)

This is the standard Laplace approximation to Bayesian logistic regression (Bishop, 2006).

For delta variational inference, we also need the gradient for Trace
{

▽2 f (θ)Σ
}

. It is

∂Trace
{

▽2 f (θ)Σ
}

∂θi

=−
N

∑
n=1

σ(θT tn)σ(−θT tn)(1−2σ(θT tn))tntT
n Σtn.

Here we do not need to assume Σ is diagonal, since the special structure of the Hessian in Equa-

tions 24 makes the computation of Trace
{

▽2 f (θ)Σ
}

fairly simple.

C.1 Hierarchical Logistic Regression

Here we describe how we update the global hyperparameters (µ0,Σ0) (Equations 20 and 21) in

hierarchical logistic regression. At each iteration, we first compute the variational distribution of

coefficients θm for each problem m = 1, ...,M,

q(θm) = N (µm,Σm).

We then estimate the global hyperparameters (µ0,Σ0) using the MAP estimate. These come from

the following update equations,

µ0 =

(

Σ0Φ−1
1

M
+ Ip

)−1

∑M
m=1 µm

M
,

Σ0 =
Φ−1

0 +∑M
m=1(µm −µ0)(µm −µ0)

⊤

M+ν− p−1
,

where p is the dimension of coefficients θm.
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Abstract

Fano’s inequality lower bounds the probability of transmission error through a communication

channel. Applied to classification problems, it provides a lower bound on the Bayes error rate and

motivates the widely used Infomax principle. In modern machine learning, we are often interested

in more than just the error rate. In medical diagnosis, different errors incur different cost; hence, the

overall risk is cost-sensitive. Two other popular criteria are balanced error rate (BER) and F-score.

In this work, we focus on the two-class problem and use a general definition of conditional entropy

(including Shannon’s as a special case) to derive upper/lower bounds on the optimal F-score, BER

and cost-sensitive risk, extending Fano’s result. As a consequence, we show that Infomax is not

suitable for optimizing F-score or cost-sensitive risk, in that it can potentially lead to low F-score

and high risk. For cost-sensitive risk, we propose a new conditional entropy formulation which

avoids this inconsistency. In addition, we consider the common practice of using a threshold on the

posterior probability to tune performance of a classifier. As is widely known, a threshold of 0.5,

where the posteriors cross, minimizes error rate—we derive similar optimal thresholds for F-score

and BER.

Keywords: balanced error rate, F-score (Fβ-measure), cost-sensitive risk, conditional entropy,

lower/upper bound

1. Introduction

In the information theory literature, Fano’s inequality (Fano, 1961) is a well known result linking the

transmission error probability of a noisy communication channel to standard information theoretic

quantities such as conditional entropy and mutual information (Shannon, 1948). From a machine

learning perspective, we can treat a classification problem as a noisy channel; then the inequality

provides us with a lower bound on the Bayes error rate, that is, the minimum error rate attainable by

any classifier, for that problem. A few years later, several upper bounds were also reported, of which

the simplest one is as follows: the Bayes error rate of a multi-class problem cannot exceed half of

the Shannon conditional entropy (of the class label given the feature vector). This relationship was

first obtained by Tebbe and Dwyer III (1968)1—see Equation (7) therein, and later by Hellman

∗. The corresponding author

1. We thank an anonymous reviewer for bringing this to our attention.

c©2013 Ming-Jie Zhao, Narayanan Edakunni, Adam Pocock and Gavin Brown.



ZHAO, EDAKUNNI, POCOCK AND BROWN

and Raviv (1970) using a different argument from Tebbe’s. It will be nevertheless referred to as

Hellman’s bound or Hellman’s inequality in the paper, as Tebbe’s result is actually stronger than the

one we have just stated. See Appendix A (Figure 10) for more detail.

In practice, information measures are often easier than the error probability to evaluate and

manipulate (Kailath, 1967). Consequently, both Fano’s and Hellman’s bounds are useful since they

give, from the respective side, some indication of the minimum achievable error rate for a given

classification task. More importantly, as shown by Figure 1, the two bounds are both increasing

functions of the conditional entropy. Therefore, minimizing the conditional entropy of a system

is roughly equivalent to minimizing its probability of error or Bayes error rate. This justifies a

general learning principle proposed in the late 1980’s, called the Infomax or maximum information

preservation principle:2

The Infomax Principle (Linsker, 1989, p. 186): The principle applies to a layer L of

cells that provides input to a next layer M. The mapping of the input signal vector L

onto an output signal vector M, f : L → M, is characterized by a conditional probability

density function (“pdf”) P(M|L). The set S of allowed mappings f is specified. The

input pdf PL(L) is also given. The infomax principle states that a mapping f should

be chosen for which the Shannon information rate [the authors: that is, the mutual

information I(L;M)] is a maximum (over all f in the set S).

The Infomax Principle (Linsker, 1988, p. 486): An equivalent statement of this prin-

ciple is: The L-to-M transformation is chosen so as to minimize the amount of infor-

mation that would be conveyed by the input values L to someone who already knows

the output values M. [The authors: that is, the Shannon conditional entropy H(M|L) is

the quantity to be minimized.]

As an optimization principle, Infomax has been employed to devise learning algorithms for

a wide range of applications. For instance, Linsker (1989) used it to identify independent input

signals fed into a linear system from the system’s output. His work was later extended by Bell and

Sejnowski (1995) to nonlinear systems, yielding an independent component analysis algorithm that

is capable of successfully separating unknown mixtures of up to ten speakers.

Another important example is the family of information theoretic filtering methods for feature

selection and extraction (Guyon and Elisseeff, 2003; Torkkola, 2003; Duch, 2006). In feature se-

lection (for classification problems), the input signal could be any subset of features, Xθ, where,

following Brown et al. (2012), θ is a binary vector with a 1 indicating the corresponding feature

is selected and a 0 indicating it is discarded. The output signal is the class label Y . The Infomax

principle in this context can thus be stated as:

A subset of features Xθ should be chosen so that the mutual information I(Xθ;Y ) is

maximized, or, equivalently, the conditional entropy H(Y |Xθ) is minimized.

Indeed, this is well justified by Fano’s inequality and the monotonically increasing relationship

between Fano’s bound on error probability and conditional entropy (see Figure 1). As shown by

Brown et al. (2012), most of the mutual-information-based feature selection filters in the literature

are in fact heuristic approximations of the above Infomax principle, under different independence

2. While Linsker directly introduced it as a heuristic principle, we highlight the close relationship between Infomax and

the error rate minimization principle; and regard the former as a “derived” principle of the latter.
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assumptions on features. It seems that people have been taking Infomax for granted: many believe

that choosing those features sharing the maximum mutual information with the class label will best

facilitate the subsequent classification procedure. In this paper, however, we will show that this

is not necessarily the case when F-score or cost-sensitive risk is concerned, via both analytical

analysis and numerical examples.
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Figure 1: The lower (Fano) and upper (Hellman & Raviv) bounds on the Bayes error rate in terms of

Shannon’s conditional entropy, for the two-class problem. As both bounds are increasing

functions of the conditional entropy, minimizing the conditional entropy would implicitly

minimize the Bayes error rate.

Inspired by Fano’s result and its widespread utility in machine learning, over the past several

decades many researchers have focused on deriving new lower/upper bounds of the Bayes error rate,

using various definitions of conditional entropy. We have already mentioned the works of Tebbe

and Dwyer III (1968) and Hellman and Raviv (1970). Besides that, Ben-Bassat (1978) derived

the lower and upper bounds by means of f -entropies, following the lines originally proposed by

Kovalevsky (1968). Using the same method, Golic (1987) discussed the lower and upper bounds

based on what he called concave measures and information measures. Later, Feder and Merhav

(1994) re-derived the same upper bound in terms of Shannon’s conditional entropy. More recently,

Erdogmus and Principe (2004) proposed a family of lower/upper bounds in terms of the Rényi

entropy (Rényi, 1961). These bounds are all increasing functions of the concerned entropy. This

extends our understanding of the Infomax principle, since there are dozens of definitions of entropy

in the literature (Taneja, 2001) of which most can be used as the objective function. For instance,

Hild II et al. (2006) proposed a mutual information measure based on Rényi’s quadratic entropy;

and use it to perform feature extraction in the Infomax framework.

All the above bounds are on the Bayes error rate; and to date no analytical investigation has

been reported on the relationship between conditional entropy and other performance criteria of
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classifiers such as F-score and balanced error rate.3 On the other hand, both balanced error rate and

F-score are widely employed in practice; and under certain circumstances they are of more interest

than the error rate. Indeed, F-score is used widely in the field of information retrieval (Manning

et al., 2008); whereas balanced error rate is suitable for situations where the distribution of objects

is biased among classes. Another situation for which the error rate alone is of little interest is that

when different decision errors incur different penalties. In this case, the cost difference between

different kinds of errors should be taken into account; the resulting performance measure is called

cost-sensitive risk in this paper.

As we have discussed above, it is the monotonicity of Fano’s and Hellman’s bounds that justifies

Infomax as an optimization principle for minimizing the error rate. An important question arises:

“is it still a rational principle when the ultimate goal is to minimize the balanced error rate, to

maximize the F-score, or to minimize the cost-sensitive risk?” In this work, we provide an answer

to this question, by first deriving the tight lower/upper bounds on the minimum balanced error rate,

the maximum F-score and the minimum cost-sensitive risk, as functions of conditional entropy; and

then examining the monotonicity of these bounds.

1.1 Paper Outline

For binary classification problems Fano’s and Hellman’s inequalities provide respectively the tight

lower and upper bounds on the Bayes error rate (the minimal achievable error rate), in terms of the

Shannon conditional entropy. Analogously, in this paper we concentrate on the two-class problem

and aim to derive the tight lower and upper bounds on the minimum balanced error rate, on the

maximum F-score, and on the minimum cost-sensitive risk. We however shall do this using a general

definition of conditional entropy that includes Shannon’s as a special case, in three steps:

1. Derive the analytical expressions of balanced error rate, F-score and cost-sensitive risk for a

given classifier applied to a given classification task. These three quantities will be denoted as

BER, FSC and CSR, respectively. See Table 1 for a list of the notations consistently employed

in this paper.

2. Compute the optimum values of BER, FSC and CSR over all classifiers. The resulting quan-

tities are denoted as BER, FSC and CSR, respectively. Note here that we use the underline

(overline) to indicate that a quantity has been minimized (maximized).

3. Derive the tight lower and upper bounds on BER, on FSC and on CSR, by means of the condi-

tional entropy (of the considered problem) as given by Definition 2 (page 1043).

Notice that while the values of BER, FSC and CSR depend on both the given task and the con-

cerned classifier, their optimum values BER, FSC and CSR are classifier-independent. In other words,

here we emphasize that the paper is mainly concerned with problems, rather than classifiers or al-

gorithms. More precisely, one main target of this paper is to establish the universal relationship

between the conditional entropy and one of the three optimum performance measures: BER, FSC

and CSR. Here the word “universal” refers to that our results hold for any classification task instead

of a particular one. To make this point even clearer, a formal expression unifying the main results of

this paper will be highlighted at the end of Section 3, after we have set forth the necessary notions.

3. That being said, we should point out that empirical analysis and comparison of different performance criteria does

exist in the literature. See Caruana and Niculescu-Mizil (2004) for example.
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Symbol Meaning

X space of feature vectors (or objects)

x, y; x, y feature vector of an object and its true class label, the sans-serif

font is used when they are treated as random variables

ŷ(·); ŷ(x), ŷ(x) classifiers, or the predicted class label for a given object

X0, X1 decision region corresponding to class 0 and class 1, see Equation (1)

µ marginal distribution of the feature vector x, see Equation (2)

η(x), η(x) posterior probability of class 1 given the object x, see Equation (2);

the symbol η(x) is used when it is seen as a random variable

(µ,η) the pair (µ,η) is called a (classification) task, see page 1038

t̃ for t ∈ [0,1] shorthand of 1− t, for example, η̃(x) = Pr{y = 0 | x= x} (cf. Equation (2))

t+ for t ∈ R shorthand of max{0, t}, used in Equation (47) and thereafter

π, π̃ prior probability of class 1 and 0, see Equations (4) and (5)

TP, FP, TN, FN proportion of true positive, false positive, true negative,

false negative; see also Table 2

c0,c1 the cost of false positive and false negative, see Equation (15)

PREC, REC, SPEC precision, recall and specificity of classifiers, see page 1039

ERR, BER, CSR, FSC error rate, balanced error rate, F-score and cost-sensitive risk

of a given classifier ŷ(·); see Equations (11), (13), (15) and (17)

ERR, BER, CSR, FSC the optimum value of ERR, BER, CSR or FSC in a given task

hbin(η), η ∈ [0,1] binary entropy function, see Equation (19) for its definition

Table 1: List of symbols consistently used in the paper and their meaning

The rest of the paper is organized as follows. Section 2 explains some terminologies and no-

tations to be used in this paper; these include the asymptotic expressions of (balanced) error rate

(Section 2.2), cost-sensitive risk (Section 2.3) and F-score (Section 2.4). In Section 3, after briefly

introducing Fano’s and Hellman’s inequalities, we present a novel geometric derivation of the two

for the case where the conditional entropy is defined by a concave function. We then derive the

analytical expression of the minimum cost-sensitive risk, as well as its tight lower and upper bounds

in Section 4. The expression of minimum balanced error rate and its lower/upper bounds are given

in Section 5. While Section 6 is devoted to computing the maximum F-score, in Section 7 we

examine the relationship between the maximum F-score and conditional entropy. In Section 8, we

show that minimizing conditional entropy does not necessarily maximize the F-score or minimize the

cost-sensitive risk. Consequently, standard mutual information is not a proper criterion for learning

if the final target is to minimize the cost-sensitive risk or maximize the F-score of the subsequent

classification process. A proper information measure for cost-sensitive risk, called cost-sensitive

conditional entropy, is proposed in Section 8.2. Finally, Section 9 concludes the paper with a sum-

mary of the main contributions and some possible extensions of this work.
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2. Background

In this section we introduce the necessary background and establish the appropriate formal notions

to frame the contributions of the paper.

2.1 Classification Tasks and Binary Classifiers

In this paper, we denote by X the space of feature vectors; and identify each object with its feature

vector x ∈ X . In the binary classification problem, each object x is assumed to belong to one of two

classes which are labeled as y = 0 (negative) and y = 1 (positive), respectively. A classifier can then

be described as a binary-valued function, ŷ : X →{0,1}, that maps each object x ∈X to its predicted

class label ŷ(x).4 Each such classifier ŷ(·) induces naturally a partition of the feature space X into

two decision regions, X0 and X1, as defined respectively by

X0 = {x ∈ X | ŷ(x) = 0} , X1 = {x ∈ X | ŷ(x) = 1} . (1)

By definition, it is obvious that X0∪X1 = X and X0∩X1 =∅ for any classifier. Conversely, any pair

(X0,X1) satisfying the two conditions defines a binary classifier ŷ(x) that takes the value 0 for x ∈ X0

and 1 for x ∈ X1. In this paper we shall use the two representations of classifiers interchangeably.

In the traditional probabilistic framework, both the feature vector and the class label are seen

as random variables. For the sake of clarity, we shall use the sans-serif font for random variables;

so x ∈ X represents the feature vector of an object and y ∈ {0,1} the corresponding class label.

To specify the joint distribution of x and y, we denote by µ the (marginal) distribution of x and by

η(x) ∈ [0,1] the conditional probability of class 1 given that x= x—the two symbols are borrowed

from Devroye et al. (1996, Chapter 2). Formally, for any measurable subset A of X and any feature

vector x ∈ X , we write

µ(A) := Pr{x ∈ A} , η(x) := Pr{y = 1 | x= x} . (2)

Furthermore, for any t ∈ [0,1], we define t̃ := 1− t. Then η̃(x) = Pr{y = 0 | x = x} for any x ∈ X ;

and the joint distribution of (x,y) can be written as

Pr{x ∈ A,y = 1}=
∫

A η(x)dµ , Pr{x ∈ A,y = 0}=
∫

A η̃(x)dµ . (3)

We shall call (µ,η) a classification task, or simply a task, as it completely describes the problem

in the sense that other quantities can all be computed from the pair. For instance, putting A = X in

the two equations of Equation (3), we get the (marginal) probability of the two classes, which will

be denoted as π and π̃, respectively:

π := Pr{y = 1}=
∫

X
η(x)dµ , (4)

π̃ = Pr{y = 0}=
∫

X
η̃(x)dµ . (5)

4. Such classifiers are sometimes called deterministic in the literature; the other type being probabilisitc, which produce

a vector of estimated class probabilities instead of a class label for each given object (Garg and Roth, 2001). A more

general variant of the latter is a discriminant function, which outputs vectors of continuous scores (often bearing no

probabilistic interpretations). See Steinwart (2007) and Tewari and Bartlett (2007) for instance. In this paper we

consider only deterministic classifiers.
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2.2 Error Rate and Balanced Error Rate of a Classifier

The error rate of a classifier is the proportion of misclassified examples in a test data set; and the

balanced error rate is the arithmetic mean of the misclassification rate in each class. So the value

of (balanced) error rate depends not only on the classifier, but also on the test data set selected.

To remove finite sample effects, we consider a data set of infinite size and hence the asymptotic

expressions of error rate and balanced error rate. In particular, for the two-class problem, these can

be defined based on the notions of true positive, true negative, false positive and false negative.

Let ŷ(·) be a classifier applied to the task (µ,η); and {(xi,yi)}
n
i=1 a set of test examples inde-

pendently drawn from the distribution (3). According to the value of true class labels yi and their

predictions ŷi = ŷ(xi), i = 1, . . . ,n, the n examples fall into four categories, as shown in Table 2.

Denote by TP, FP, FN and TN the proportion5 of examples in the four types, then, as these are also

the frequency of the respective events, when n → ∞ they tend to

TP → Pr{ŷ(x) = 1,y = 1}= Pr{x ∈ X1,y = 1}=
∫

X1
η(x)dµ , (6)

FP → Pr{ŷ(x) = 1,y = 0}= Pr{x ∈ X1,y = 0}=
∫

X1
η̃(x)dµ , (7)

FN → Pr{ŷ(x) = 0,y = 1}= Pr{x ∈ X0,y = 1}=
∫

X0
η(x)dµ , (8)

TN → Pr{ŷ(x) = 0,y = 0}= Pr{x ∈ X0,y = 0}=
∫

X0
η̃(x)dµ , (9)

respectively, where the subsets X0 and X1 are defined by Equation (1); and the last equality in each

equation follows from Equation (3).

y = 1 y = 0

ŷ = 1 true positive (TP); cost: c11 false positive (FP); cost: c10

ŷ = 0 false negative (FN); cost: c01 true negative (TN); cost: c00

Table 2: Confusion matrix for two possible outcomes and the associated cost matrix

We now define some commonly known performance criteria of binary classifiers for later use.

As shown in Nguyen et al. (2009), these can all be written as functions of the above four quantities.

• The error rate of a classifier is denoted as ERR in this paper, which is the proportion of

misclassified objects, that is, ERR := Pr{ŷ(x) 6= y}= FN+ FP.

• The precision, PREC, is the proportion of predicted positives (ŷ = 1) which are actual positive

(ŷ = y = 1), that is, PREC := Pr{y = 1 | ŷ(x) = 1}= TP/(TP+ FP).

• The recall, denoted REC, is the proportion of actual positives (y = 1) which are predicted

positive (y = ŷ = 1), that is, REC := Pr{ŷ(x) = 1 | y = 1}= TP/(TP+ FN).

• Finally, the balanced error rate is defined as the arithmetic mean of the error rate within the

two classes 0 and 1, that is,

BER := 1
2

Pr{ŷ(x) = 1 | y = 0}+ 1
2

Pr{ŷ(x) = 0 | y = 1}

= 1
2
{FP/(TN+ FP)+ FN/(TP+ FN)} . (10)

5. Typically, the four quantities refer to the number of examples; by “rescaling” them to the proportion we are able to

discuss the case where the test set contains infinitely many examples, that is, n → ∞.
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We now derive the analytical expressions of error rate and balanced error rate. By the asymptotic

expressions of FP and FN, Equations (7) and (8), we immediately obtain

ERR = FN+ FP =
∫

X0
η(x)dµ+

∫
X1

η̃(x)dµ . (11)

Furthermore, by Equations (6)–(9) and the facts that X1 ∩X0 =∅ and X1 ∪X0 = X , we know

TP+ FN =
∫

X
η(x)dµ = π , TN+ FP =

∫
X

η̃(x)dµ = π̃ . (12)

It then follows that

FN

TP+ FN
= π−1 ·

∫
X0

η(x)dµ ,
FP

TN+ FP
= π̃−1 ·

∫
X1

η̃(x)dµ .

Therefore, by Equation (10),

BER = 1
2

(

π−1
∫

X0
η(x)dµ+ π̃−1

∫
X1

η̃(x)dµ
)

. (13)

2.3 Cost-Sensitive Risk

According to Table 2, when an object gets misclassified, it can be either a false positive or a false

negative. In the criterion of error rate, the two types of errors are treated equally. In some applica-

tions, however, the two kinds of errors may have significantly different consequences. In medical

testing, for instance, a false negative (i.e., a mistaken diagnosis that a disease is absent, when it is

actually present) is typically more serious than a false positive.

One common way to capture the different effects of false positive and false negative is to assign

a (different) cost to each of the four outcomes in Table 2. Following the convention of Elkan (2001),

we denote by cŷy the cost of classifying an object to the class ŷ, when it is actually from the class y.

For the two-class problem, this gives rise to a 2×2 matrix called the cost matrix, which is presented

also in Table 2. The expected cost of a given classifier ŷ(·) is called the cost-sensitive risk and

denoted CSR in the paper—here the modifier “cost-sensitive” is borrowed from Elkan (2001). From

Table 2, we see that

CSR = c11 · TP+ c10 · FP+ c01 · FN+ c00 · TN . (14)

As has been pointed out by Elkan (2001), for a “reasonable” cost matrix, the cost of labeling an

example incorrectly should always be greater than the cost of labeling it correctly. In our notation,

this is equivalent to requiring that c10 > c00 and c01 > c11. In this paper, we further assume that

c11 = c00 = 0;6 and, to simplify our notations, write c0 = c10 and c1 = c01—that is, the first sub-

script (which is ŷ) is dropped; so cy (y = 0,1) is the cost incurred when an object in the class y is

misclassified. Using these notations and Equations (7), (8), we can rewrite Equation (14) as

CSR = c01 · FN+ c10 · FP = c1 ·
∫

X0
η(x)dµ+ c0 ·

∫
X1

η̃(x)dµ . (15)

Obviously, the above expression degenerates into Equation (11) when c1 = c0 = 1. This confirms

that the error rate ERR is in fact a special case of the family of cost-sensitive risks.

6. This condition can actually be weakened to c11 = c00; in other words, the cost of labeling an object correctly is a

constant, regardless of the true class of that object. In this case, we have CSR = c00+(c10−c00) ·FP+(c01−c00) ·FN;

so by subtracting the constant c00 from CSR, we obtain essentially the same expression as in Equation (15).
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The relationship between BER and CSR is little more subtle. At first glance one may think of

BER also as a special case of CSR, since we can get Equation (13) by putting

c1 =
1
2
π−1 , c0 =

1
2
π̃−1 (16)

in Equation (15). But a closer look at the expressions of BER and CSR reveals that they are both

functionals of the task (µ,η) and the classifier (X0,X1) under consideration. Moreover, the value

of CSR depends on the two costs c0 and c1, whereas BER does not—the two coefficients in Equa-

tion (16) are computed from (µ,η). Hence the two quantities should be written, in a more for-

mal way, as BER(µ,η, ŷ) and CSR(µ,η, ŷ;c0,c1), respectively. It is now clear that in general we

cannot treat BER as a special CSR, because there is no uniform setting of c0 and c1 such that

BER(µ,η, ŷ) = CSR(µ,η, ŷ;c0,c1). On the other hand, most machine learning papers are about learn-

ing algorithms, with the underlying distribution (µ,η) assumed to be fixed. In that case, or, more

generally, as far as only the tasks (µ,η) with fixed priors π and π̃ are concerned, BER can be regarded

as the cost-sensitive risk as defined by Equations (15) and (16). We will discuss this problem further

in Section 5 when we derive bounds on the minimum BER.

2.4 Information Retrieval and F-Score

Manning et al. (2008, p. 1) defines information retrieval as:

Information retrieval (IR) is finding material (usually documents) of an unstructured

nature (usually text) that satisfies an information need from within large collections

(usually stored on computers).

As an illustrative example, let us consider a typical document retrieval system which accepts a

query from the user and returns a subset of “matched” documents retrieved from a huge collection.

To evaluate the performance of the system, we assume that each document is known to be either

relevant or non-relevant to a particular query. This has formulated the process as a two-class problem

in which the positive class consists of those relevant documents; and the negative class corresponds

to the set of irrelevant ones. Accordingly, the retrieval system acts as a classifier: the retrieved

documents are (seen as) predicted positive. Therefore, we can rewrite, for example,

precision as: PREC =
TP

TP+ FP
=

|{relevant documents}∩{retrieved documents}|

|{retrieved documents}|
,

recall as: REC =
TP

TP+ FN
=

|{relevant documents}∩{retrieved documents}|

|{relevant documents}|
.

From the above two expressions, we see that precision can be seen as the probability that a re-

trieved document is truly relevant to the query. Therefore, a high value of precision can be obtained

by only returning those documents that are relevant with high confidence. In this way, however, we

probably will miss lots of relevant documents. Similarly, the recall can be viewed as the probability

that a relevant document is retrieved for the query. So it is trivial to achieve recall of 100% by

returning all documents in response to any query. In conclusion, neither precision nor recall alone

is enough to serve as a performance measure of information retrieval systems; and we need to take

the two into account simultaneously.
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A well-known criterion in the community of information retrieval is F-score, defined as the

harmonic mean of precision and recall,

FSC :=
2× PREC× REC

PREC+ REC
=

2× TP

(TP+ FN)+(TP+ FP)
=

2 ·
∫

X1
η(x)dµ

π+µ(X1)
. (17)

In the above computation, we have used the first equality of Equation (12) and the identity

TP+ FP =
∫

X1
η(x)dµ+

∫
X1

η̃(x)dµ =
∫

X1
1dµ = µ(X1) .

F-score is also known as F1 measure. It is a member of a broader family of performance mea-

sures called Fβ, where β varies the emphasis on precision versus recall. In this paper we shall focus

on the case of β = 1, and consistently use the term “F-score”.

3. Extending Fano’s and Hellman’s Bounds for the Two-Class Problem

For a given classification problem, the minimum achievable error rate by any classifier is called its

Bayes error rate, and denoted as ERR in this paper. In the introduction section, we have already

mentioned the main results in the literature that are related to our work. They are all about bounding

the quantity ERR by means of different conditional entropies, to which a unifying introduction will

be given shortly. Although these known bounds hold for the multi-class problem in general, here we

shall review only the binary case, leaving a brief introduction to the multi-class case to Appendix A.

More precisely, in this section we will present a novel geometric derivation of Fano’s and Hellman’s

inequalities for the two-class case and extend it to a broad family of conditional entropies. We do

this because the same technique will be used throughout the paper to derive bounds on other optimal

performance criteria.

For the two-class problem, it is well known that the classifier which predicts all objects x with

the posterior η(x) = Pr{y= 1 | x= x}> 0.5 as positive (and others as negative) minimizes the error

rate; and the minimum error rate is7

ERR =
∫

X
min{η(x), η̃(x)}dµ . (18)

It is also well known that for a binary random variable with the distribution (η,1−η) = (η, η̃), its

Shannon entropy is defined by the binary entropy function

hbin(η) :=−η · logη− η̃ · log η̃ , η ∈ [0,1] . (19)

For binary classification, the value of η depends on the input object x ∈ X , as given by Equation (2).

The expectation of the above function with respect to the object distribution, x∼ µ, is the Shannon

conditional entropy (of the class y given the object x):

Hs(y|x) := Ex∼µ[hbin(η(x))] =
∫

X
hbin(η(x))dµ , (20)

where the subscript s stands for “Shannon”.

Fano’s inequality connects the Shannon conditional entropy, Hs(y|x), to the Bayes error rate,

ERR, by hbin(ERR) > Hs(y|x). As ERR 6 0.5 and the function hbin(η) is monotonically increasing

7. These facts will become clear after we have derived the expression of the minimum cost-sensitive risk in Section 4.
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for 0 6 η 6 0.5, this actually provides a lower bound on ERR in terms of Hs(y|x). The upper bound

is defined by Hellman’s inequality, which can be written in our notation as ERR 6
1
2
Hs(y|x). The

two bounds had been graphically shown in Figure 1.

In the literature, the two inequalities were proven using different methods; see, for example,

Cover and Thomas (2006, Section 2.10) and Hellman and Raviv (1970). Here we propose a novel

geometric proof that they can be obtained simultaneously, based upon an “obvious” fact which we

state as a theorem (because of its fundamental importance in the paper).

Theorem 1 The expectation of a random vector (assume it exists) in the Euclidean space R
m lies

in the convex hull of the range of that random vector.

This proposition, probably well known and intuitively clear—since the expectation of a random

vector is essentially the convex combination of the vectors in its range, is in fact nontrivial. To the

best of our knowledge (and to our surprise), there is no proof to Theorem 1 in the literature (we

thought it should be in some textbooks on probability theory, but we cannot find one). We hence

provide one of ourselves in Appendix B.4.

Theorem 1 gives rise to a general geometric strategy for deriving/proving inequalities like

Fano’s, as outlined in Scheme 3, where the derivation of the lower and upper bounds on Hs(y|x)
has been used as a demonstration. One should have no difficulty to see that this geometric method

can be extended, straightforwardly, to the family of concave and symmetric functions h(η), instead

of the particular function hbin(η). In fact, we even can go one step further, by dropping the require-

ment that h(η) be symmetric. We hence introduce the following general definition of conditional

entropy.

Definition 2 Let h(η) with η ∈ [0,1] be a concave function satisfying8 h(0) = h(1) = 0. The con-

ditional entropy of a given classification task (µ,η) is defined as

H(y|x) := Ex∼µ[h(η(x))] =
∫

X
h(η(x))dµ . (21)

This definition of conditional entropy is general enough to include most of entropies in the lit-

erature. For example, the Shannon entropy is obtained by setting h(η) = hbin(η); and letting

h(η) = − log(η2 + η̃2), we get Rényi’s quadratic entropy (Principe and Xu, 1999). Another ex-

ample is weighted entropy (Guiasu, 1971), which for the binary case is defined by the function

h(η) = −w1η · logη−w0η̃ · log η̃, where w0,w1 > 0 are two weights. Note that this function is

asymmetric when w0 6= w1.

Scheme 3 A general geometric strategy for deriving tight lower and upper bounds on one perfor-

mance/information measure in terms of another measure

Assume we want to derive the tight lower/upper bounds on Hs(y|x) in terms of ERR:

1. The first step is to find a random vector with expectation [ERR,Hs(y|x)] (the vector com-

prising the concerned quantities). In fact, by Equations (20) and (18) we easily see that

[ERR,Hs(y|x)] = Ex∼µ[e(η(x)),hbin(η(x))], where the function e(·) is defined by

e(η) := min{η, η̃} , η ∈ [0,1] . (22)

So the random vector [e(η(x)),hbin(η(x))] is what we want.

8. As subtracting a linear function (of η) from a concave function still gives a concave function, imposing the condition

h(0) = h(1) = 0 on the definition will result in no loss of generality.
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2. Next, we need to find the range of [e(η(x)),hbin(η(x))], the random vector obtained in Step

1. Apparently, this is the curve ℓ := {[e(η),hbin(η)] | η ∈ [0,1]}.9 But hbin(η) is a symmetric

function, that is, hbin(η) = hbin(η̃), by the definition of e(η) we know the curve ℓ is in fact the

left half of hbin(η), as depicted in Figure 2-a.

3. We then construct the convex hull of the curve ℓ, which for this example is the bow shape

OABCO bounded by the curve OCB (i.e., h = h(e)) from above and by the line segment OAB

(i.e., h = 2e) from below—see Appendix B.2 and B.3 for a rigorous discussion on the convex

hull of a given curve or subset.

4. Now Theorem 1 shows the point [ERR,Hs(y|x)] is in the area OABCO. We can thus directly

“read”, for any given value of ERR, the lower and upper bounds of Hs(y|x) from the convex

hull of ℓ, in an obvious way and simultaneously. The correctness of the bounds so obtained

is guaranteed by Theorem 1. For this example, the two bounds are 2e|e=ERR
6 Hs(y|x) 6

h(e)|e=ERR
, that is, 2ERR 6 Hs(y|x) 6 h(ERR), which are exactly Fano’s and Hellman’s re-

sults.

5. Last but not least, it is easy to show that each point in the convex hull of ℓ can be attained by

some classification task (see the proof to Theorem 5). Thus, the bounds obtained as above are

tight.

To illustrate the generality of the proposed geometric scheme, we apply it to a general concave

function h(η) which might be asymmetric. For this, only the second and third steps in Scheme 3

need to be adapted slightly, as follows.

2. For an asymmetric function h(η), the curve ℓ = {[e(η),h(η)] | η ∈ [0,1]} consists of two

parts which can be expressed as h = h(e)—as e(η) = η for η ∈ [0,0.5], and h = h(1−e)—as

e(η) = η̃ = 1−η for η ∈ [0.5,1]. Graphically, this means that ℓ is the left half of the curve

h = h(η) plus its right half flipped along the vertical line η = 0.5, as is shown in Figure 2-b.

3. The convex hull of ℓ, denoted coℓ, can then be expressed as10 (recall that ẽ = 1− e)

coℓ= {(e,h) | e ∈ [0,0.5], [min{h(e),h(ẽ)}]⌣ 6 h 6 [max{h(e),h(ẽ)}]⌢} , (23)

where, for any real-valued function f (·) defined on a convex set, f⌣ denotes the convex hull

of f , that is, the greatest convex function with the same domain as f that does not exceed f ;

and f⌢ is the concave hull of f , the smallest concave function that is larger than or equal to

f at each point in the domain of f .

We are now ready to “read” the lower and upper bounds of H(y|x) from the set coℓ, as Theorem

1 has already told us that [ERR,H(y|x)] ∈ coℓ. But before that, we would first simplify the two

bounds [. . .]⌣ and [. . .]⌢ in Equation (23), to get a cleaner result. The function h(·) is concave, so is

9. Strictly speaking, this should be ℓ := {[e(η(x)),hbin(η(x))] | x ∈ X }. But as we are investigating the universal

relationship, the “wildest” case where the range of η(x) is [0,1] should be considered.

10. See Appendix B.3 for a proof for this.
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Figure 2: a. The graph of the function hbin(η) (solid line), with η as the x-axis and hbin as the y-axis.

As this is a symmetric function, its left part BCO represents the curve ℓ= {[e(η),hbin(η)] |
η ∈ [0,1]}—now the x-axis stands for e(η). The convex hull of ℓ is hence the region

bounded by the solid curve (left half) and the dashed line OAB—now we have ERR for

the x-axis and H(y|x) for the y-axis. By flipping this bow shape along the diagonal line

through the points [0,0] and [1,1], we get exactly Figure 1, that is, Fano’s and Hellman’s

bounds.

b. The graph of an asymmetric function h(η)—the broken line ODBFGH, and the curve

ℓ= {[e(η),h(η)] |η∈ [0,1]}, which consists of the broken lines ODB and OCEB (obtained

from HGFB through a right-to-left flipping). The convex hull of ℓ is then the polygon

OBEDCO (dotted line). As in the symmetric case, here the upper/lower bounds on ERR

can be obtained by flipping this polygon along the diagonal line.

min{h(e),h(1−e)} as a function of e ∈ [0,0.5], as it is the minimum of two concave functions. But

the convex hull of a concave function is an affine function through its two endpoints. Therefore,

[min{h(e),h(1− e)}]⌣ = 2 ·h(0.5) · e .

Here we have used the assumption that h(0) = h(1) = 0. Moreover, if h(·) is symmetric, that

is, h(e) = h(ẽ), then max{h(e),h(ẽ)} = h(e) is a concave function; and its concave hull is itself:

[max{h(e),h(ẽ)}]⌢ = h(e).

Putting the above discussion together, we obtain the following theorem that extends Fano’s and

Hellman’s results to that using an arbitrary concave function h : [0,1]→ R in the definition of the

conditional entropy.

Theorem 4 (extension of Fano’s and Hellman’s inequalities) Let h : [0,1]→R be a concave func-

tion with h(0) = h(1) = 0. Then for any classification task (µ,η) we have

2 ·h(0.5) · ERR 6 H(y|x)6 [max{h(ERR),h(1− ERR)}]⌢ . (24)
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In particular, for symmetric functions h(·) the above inequality can be simplified to

2 ·h(0.5) · ERR 6 H(y|x)6 h(ERR) .

In next section we shall extend the above theorem further to a relationship between the conditional

entropy H(y|x) and the minimum cost-sensitive risk CSR—of which ERR is a special case.

Furthermore, from Theorem 1 and the definition of the convex hull of a set, we can easily see

the two bounds of H(y|x) given by Equation (24) are tight, in the sense that for any concave function

h(·) and any given value of ERR, both bounds are reachable by some task (µ,η). In fact, we have an

even stronger result, for which a short proof is presented as the “template” for other similar tightness

proofs in the paper.

Theorem 5 For any concave function h : [0,1] → R with h(0) = h(1) = 0, and any point [e0,h0]
inside the convex set coℓ as given by Equation (23), there exists a task (µ,η) for which it holds that

ERR = e0 and H(y|x) = h0.

Proof Since the point [e0,h0] lies in the convex hull of ℓ = {[e(η),h(η)] | η ∈ [0,1]}, there are n

points on the curve ℓ, say {[e(ηi),h(ηi)]}i=1,...,n, such that [e0,h0] is the convex combination of the

n points with the coefficients {βi}i=1,...,n, that is,

e0 = ∑n
i=1 βie(ηi) , h0 = ∑n

i=1 βih(ηi) ,

where βi > 0 satisfy ∑n
i=1 βi = 1. We can thus construct a classification task in which the feature

space X consists exactly of n points, {x(1), . . . ,x(n)}, with the probability mass µ(x(i)) and the pos-

terior η(x(i)) given by

µ(x(i)) = Pr{x= x(i)}= βi , η(x(i)) = Pr{y = 1 | x= x(i)}= ηi .

Clearly, for this task (µ,η) we have ERR = e0 and H(y|x) = h0.

Corollary 6 In Theorem 4 (Equation (24)), the two bounds on H(y|x) are tight. That is, given any

concave function h : [0,1]→ R with h(0) = h(1) = 1 and any value of ERR ∈ [0,0.5], there are two

(different) tasks for which the two inequalities in Equation (24) become equalities, respectively.

Proof Apply Theorem 5 to the point [e0,h0] = [ERR, 2 · h(0.5) · ERR] and to the point [e0,h0] =
[ERR, [max{h(ERR),h(1− ERR)}]⌢].

To summarize, in this fundamental section we proposed a general geometric approach to de-

riving/proving inequalities that links the conditional entropy of classification tasks with an optimal

performance measure, for example, the Bayes error rate ERR. By Theorem 1, Theorem 5 and Corol-

lary 6, the inequalities obtained in this way are guaranteed to be correct and sharp. They are also

universal in that Theorem 4 holds for any task (µ,η).
Following the discussion at the end of Section 2.3, here we would emphasize again that the two

quantities in the inequality, ERR and H(x|y), are actually functionals of tasks; and should be written

respectively as ERR(µ,η) and Hh(µ,η) in a more formal way. Here the subscript h is used to stress
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the role of the function h(·) in the definition of conditional entropy. In accordance, Equation (24)

should be written as

2 ·h(0.5) · ERR(µ,η)6 Hh(µ,η)6 [max{h(ERR(µ,η)),h(1− ERR(µ,η))}]⌢ ;

and it holds for any concave function h : [0,1]→R satisfying h(0) = h(1) = 0 and any classification

task (µ,η), as has been asserted by Theorem 4.

In the next four sections we will derive the similar inequalities for the quantities CSR, BER and

FSC, which have the following uniform form:

f (XX(µ,η))6 Hh(µ,η)6 g(XX(µ,η)) , XX stands for CSR,BER or FSC , (25)

where f (·) is a proper convex function and g(·) a proper concave function. Like Equation (24), for

CSR and FSC the corresponding inequality holds for any task (µ,η). The quantity BER is special, for

which the two “bounding” functions f (·) and g(·) involve an extra parameter: the positive prior π,

which presents also in the expression of BER—see Equation (32) in page 1052. Consequently, the

result holds only for the tasks (µ,η) with fixed class priors, namely, Pr{y= 1}= π and Pr{y= 0}=
π̃. But when π is also seen as a functional of (µ,η), then the inequality (25)—which now links BER,

Hh and π, becomes universal.

4. Bounds on the Minimum Cost-Sensitive Risk

We now study the relationship between the conditional entropy H(y|x) and the minimum cost-

sensitive risk CSR, using the same geometric strategy as given in the preceeding section. To this

end, we need first to derive the expression of CSR.

We have already derived in Section 2.3 the analytical expression of the cost-sensitive risk for

a given classifier, which, as shown in Equation (15), is the sum of two integrals of the functions

c1η(x) and c0η̃(x) over the disjoint subsets X0 and X1 of the space X , respectively. To obtain its

minimum (over all possible classifiers), we use that both c1η(x) and c0η̃(x) are larger than or equal

to the minimum of the two. It thus follows that

CSR =
∫

X0
c1η(x)dµ+

∫
X1

c0η̃(x)dµ

>
∫

X0
min{c1η(x),c0η̃(x)}dµ+

∫
X1

min{c1η(x),c0η̃(x)}dµ .

But as X0 ∩ X1 = ∅ and X0 ∪ X1 = X , the above two integrals
∫

Xi
min{. . .}dµ, i = 0,1, can be

combined into one (over the whole space X ), yielding CSR >
∫

X
min{c1η(x),c0η̃(x)}dµ. Moreover,

this inequality becomes equality when (and only when) the condition:

c1η(x) = min{c1η(x),c0η̃(x)} on X0 ; and

c0η̃(x) = min{c1η(x),c0η̃(x)} on X1

is fulfilled. This is equivalent to requiring that c1η(x)6 c0η̃(x), that is, η(x)6 c0

c0+c1
for (and only

for) all x ∈ X0. Therefore, the minimum cost-sensitive risk is

CSR =
∫

X
min{c1η(x),c0η̃(x)}dµ ; (26)

and this minimum is achieved by the classifier ŷ(x)= [[η(x)> c0

c0+c1
]], where [[·]] denotes the indicator

function which takes value 1 if the bracketed statement is true and 0 otherwise. This result is well

known in Bayesian decision theory; see, for example, Duda et al. (2001, page 26).
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Note that the error rate can be seen as a special cost-sensitive risk with c0 = c1 = 1, so its

minimum can be obtained from Equation (26) by putting c0 = c1 = 1. This gives us exactly the ex-

pression Equation (32), and the corresponding optimal classifier is ŷ(x) = [[η(x)> c0

c0+c1
]] = [[η(x)>

0.5]], which have been stated in Section 3 as well established in the literature.

We now derive, in terms of CSR, the lower and upper bounds on the conditional entropy H(y|x)
as given by Definition 2. Following the geometric lines in Scheme 3, we define the function e(η) as

(again, this is reduced to Equation (22) for c0 = c1 = 1)

e(η) := min{c1η,c0η̃} , η ∈ [0,1] . (27)

Then, Equations (21) and (26) can rewritten as the mathematical expectations of h(η(x)) and

e(η(x)), respectively:

[CSR,H(y|x)] = Ex∼µ[e(η(x)),h(η(x))]. (28)

We thus have accomplished the first step in Scheme 3. By Theorem 1, in the e-h plane the point

[CSR,H(y|x)] lies in the convex hull of the curve ℓ := {[e(η),h(η)] | η ∈ [0,1]}. The problem then

amounts to finding the convex hull of ℓ which we shall discuss shortly.

By the definition of e(η), Equation (27), one easily sees that e = c1η when η 6
c0

c0+c1
and that

e = c0η̃ = c0 −c0η when η >
c0

c0+c1
. It then follows that 0 6 e(η)6 c0c1

c0+c1
, with the minimum value

0 attained at η = 0 or η = 1; and the maximum c0c1

c0+c1
obtained at η = c0

c0+c1
. At this point, we find

it most convenient to normalize the two costs c0 and c1 (by multiplying them by a common factor)

to such that c0c1

c0+c1
= 0.5, that is, c−1

0 + c−1
1 = 2. Then the range of e is always [0,0.5].

To simplify the derivation procedure we further assume, without loss of generality, that c1 > c0.

In Section 5, this assumption will be used to obtain bounds on BER from that on CSR, see the proof

to Corollary 8. The inequality c1 > c0 is equivalent to c−1
1 6 c−1

0 , which together with c−1
0 +c−1

1 = 2

implies that 1 6 c−1
0 < 2 and 0 < c−1

1 6 1. We thus get c0 ∈ (0.5,1], c1 ∈ [1,∞) and c0

c0+c1
= 1

2c1
6

1
2
.

Furthermore, from the equality c−1
0 + c−1

1 = 2 we know c0 = c1

2c1−1
. So the cost matrix is now

characterized by a single parameter c1 ∈ [1,∞), as shown in Figure 3.
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Figure 3: The relationship between the values of c0 and c1 (left) and the cost-matrix as characterized

by the cost c1 (right).

We now study the curve ℓ = {[e(η),h(η)] | η ∈ [0,1]} (Step 2 in Scheme 3). Based on the

above assumptions, we see that when η changes from 0 to 1
2c1

, e = c1η changes from 0 to 0.5;

and when η changes from 1
2c1

further to 1, e = c0 − c0η changes from 0.5 back to 0, both in a

linear manner. Therefore, the curve ℓ= {[e(η),h(η)] | η ∈ [0,1]} consists of two parts, namely h =
h(c−1

1 e), e ∈ [0,0.5] (corresponding to η ∈ [0, 1
2c1

]) and h = h(1− c−1
0 e), e ∈ [0,0.5] (corresponding

to η ∈ [ 1
2c1

,1]). The first part h = h(c−1
1 e) is obtained from the graph of h(η), η ∈ [0, 1

2c1
] by

linearly lengthening it from the interval [0, 1
2c1

] to that on the interval [0,0.5]. The second part
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h = h(1− c−1
0 e) is obtained from the graph of h(η), η ∈ [ 1

2c1
,1] by first linearly shrinking it from

the interval [ 1
2c1

,1] to over the interval [ 1
2
,1], and then flipping the resulting curve along the vertical

line at η = 0.5.

The above dynamical procedure is demonstrated in Figure 4-a for the settings c1 = 2.5, c0 =
0.625 and h(η) =−η · logη− (1−η) log(1−η) (Shannon). In Figure 4-a, we start with the graph

of h = h(η), the curve OABF. This curve is divided into two parts by the point A whose coordinate

is ( 1
2c1

,h( 1
2c1

)). To obtain the curve ℓ, we first move horizontally A to the point C which has the

coordinate of (0.5,h( 1
2c1

)). The other points on the curve OABF are moved linearly, with the two

endpoints O and F being fixed. This gives us the curve OCDF, whose left part OC represents the

function h = h(c−1
1 e), e ∈ [0,0.5]; and its right half CDF is described by the function h = h(1−

c−1
0 (1− e)), e ∈ [0.5,1]. Next, we flip the right part CDF along the vertical line at η = 0.5, yielding

the curve OHEC which is the graph of h = h(1−c−1
0 e), e ∈ [0,0.5]. The curve ℓ is then the union of

the curve OHEC and the curve OC, that is, the closed curve OHECO.
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Figure 4: a. The procedure for getting the curve ℓ = {[e(η),h(η)] | η ∈ [0,1]} (OHECO) from the

graph of h(η) (the curve OABF), for the settings of c0 = 0.625, c1 = 2.5 and h(η) =
−η logη− η̃ log η̃. See the text for more explanation.

b. The tight lower (the line OGC) and upper (the curve OHEG) bounds on H(y|x) as

functions of CSR. Stated in the other way, if the conditional entropy H(y|x) is known,

then the upper bound of CSR is determined by the curve OGCE; and its lower bound is

given by the curve OHE.

The next step is to find the convex hull of ℓ. By Definition 2, h(η) is a concave function. So

both h = h(c−1
1 e) and h = h(1− c−1

0 e) are concave functions (of e). Moreover, for any symmetric

function h(η), from Figure 4-a we see that the curve OHEC is above the curve OC. Mathematically,

this can be expressed as h(c−1
1 e) 6 h(1− c−1

0 e), which is true for all symmetric concave functions
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h(η).11 Therefore, the convex hull of the curve OHECO can be obtained by simply connecting the

points O and C with a straight line. This is plotted in Figure 4-b, where the region OHECGO is the

convex hull of the curve OHECO; it also represents the reachable region of the point [CSR,H(y|x)].
It is now clear that the value of H(y|x) is lower bounded by the straight line OC, which is the

graph of the function h = 2h( 1
2c1

)e, e ∈ [0,0.5], and upper bounded by the curve OHEC, which is

described by the function h = h(1− c−1
0 e) = h(c−1

0 e), e ∈ [0,0.5]—since h(·) has been assumed to

be symmetric here. We thus obtain

2 ·h( 1
2c1

) · CSR 6 H(y|x)6 h(c−1
0 · CSR) . (29)

By a similar discussion to that above Theorem 4, we can extend Equation (29) to asymmetric

functions h(·). In this case it is not necessarily that h(c−1
1 e) 6 h(1 − c−1

0 e) for e ∈ [0,0.5]. In

Figure 4-b, this means that the dashed curve OC, that is, h = h(c−1
1 e), could intersect with the curve

OHEC, that is, h = h(1− c−1
0 e), at points other than O and C. Consequently, the right hand side of

Equation (29) should now be replaced by the concave hull function of the maximum of h(c−1
1 e) and

h(1− c−1
0 e). That is,

2 ·h( 1
2c1

) · CSR 6 H(y|x)6 [max{h(c−1
1 · CSR), h(1− c−1

0 · CSR)}]⌢ .

Moreover, analogous to Theorem 5 and Corollary 6, we can prove the above two bounds on H(y|x)
are both tight. These results are summarized in the following theorem.

Theorem 7 (tight bounds on H(y|x) as functions of CSR) Let h : [0,1]→R be a concave function

that satisfies h(0) = h(1) = 0. Then for any binary classification problem (µ,η) we have

2 ·h( 1
2c1

) · CSR 6 H(y|x)6 [max{h(c−1
1 · CSR), h(1− c−1

0 · CSR)}]⌢ , (30)

where H(y|x) is defined as in Definition 2, and CSR given by Equation (26). In particular, when h(·)
is a symmetric function, it holds that 2 ·h( 1

2c1
) · CSR 6 H(y|x)6 h(c−1

0 · CSR).

One observes that when c0 = c1 = 1 the above theorem is reduced to Theorem 4, so it is the extension

of Fano’s and Hellman’s results to the cost-sensitive case.

To simplify the discussion, let us return to the symmetric case. To get the lower/upper bounds

on CSR in terms of H(y|x) from Theorem 7, we notice that the function h(η) is symmetric on the

interval [0,1] and hence monotonically non-decreasing on [0,0.5]. It thus follows from the inequality

H(y|x)6 h(c−1
0 · CSR) that

h−1
[0,0.5](H(y|x))6 c−1

0 · CSR 6 1−h−1
[0,0.5](H(y|x)) ,

where h−1
[0,0.5] denotes the inverse of the function h(η) restricted on [0,0.5]. This inequality together

with 2h( 1
2c1

) · CSR 6 H(y|x) implies

c0 ·h
−1
[0,0.5](H(y|x))6 CSR 6 min

{

c0 − c0 ·h
−1
[0,0.5](H(y|x)), 1

2
· [h( 1

2c1
)]−1 ·H(y|x)

}

. (31)

In Figure 4-b, the above lower bound c0 · h−1
[0,0.5](H(y|x)) corresponds to the curve OHE; and the

upper bound min{. . .} corresponds to the curve OGCE (see the description of Figure 4-b).

11. Here is a short proof. As h(η) is symmetric and concave, it attains its maximum at η = 0.5; and it is monotonically

non-decreasing on the interval [0,0.5] and monotonically non-increasing on [0.5,1]. So to prove h(c−1
1 e) 6 h(1−

c−1
0 e) it suffices to show that c−1

1 e 6 1 − c−1
0 e 6 1 − c−1

1 e, of which the first inequality follows from the facts

e ∈ [0,0.5] and c−1
0 + c−1

1 = 2; and the second inequality is clear from the assumption c0 6 c1.
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Figure 5: The lower (solid line) and upper (dashed line) bounds on the minimum cost-sensitive

risk, CSR, in terms of Shannon’s conditional entropy. From left to right the cost of false

negative is set to be c1 = 1, 5
3

and 20, respectively; and the cost of false positive is de-

termined by the condition c−1
0 + c−1

1 = 2. Attached with each graph is the corresponding

cost matrix, where p (n) refers to the real positive (negative); and p̂ (n̂) is the predicted

positive (negative). Note that the left figure reproduces Fano’s and Hellman’s bounds (see

Figure 1).

To give the reader an intuitive feeling about how the two bounds on the minimum cost-sensitive

risk as shown in Equation (31) vary in accordance with different settings of c0 and c1, we plotted in

Figure 5 curves of these lower/upper bounds for c1 = 1, c1 =
5
3

and c1 = 20, with the corresponding

cost matrix attached for each subfigure. From the figure we see that when the parameter c1 increases

from 1 to ∞, the peak point C (at which CSR takes the maximum value 0.5) moves left from the top

right corner [1,0.5] to the top left corner [0,0.5]; whereas another extreme point E (at which H(y|x)
takes the maximum value 1) moves down from the point [1,0.5] to the point [1,0.25].

A fact one should notice is that here the (tight) upper bound on CSR is no longer monotoni-

cally increasing with H(y|x), especially when c1 is large, that is, the positive class is regarded as

much more important than the negative class. This implies a non-intuitive situation. Usually with

classification problems, as we decrease the conditional entropy, we would expect the worst case

classification scenario to improve. With cost-sensitive risk, however, as we decrease entropy, in

the worst case the cost-sensitive risk could possibly become larger—compare the points C and E in

Figure 5. This important observation was not noted before in the literature. We will discuss it in

more detail in Section 8.

5. Bounding the Minimum Balanced Error Rate by Conditional Entropy

The main goal in this section is to derive the tight lower and upper bounds on minimum balanced

error rate, BER, for binary classification problems with given conditional entropy H(y|x) and (prior)

class probabilities, π= Pr{y= 1} and π̃= Pr{y= 0}. To do so, we need first to derive the expression

of BER.
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As we have already mentioned at the end of Section 2.3, for any given task (µ,η) the balanced

error rate BER as a functional of classifiers ŷ(·) can be seen as a special cost-sensitive risk with

c1 =
1
2
π−1 and c0 =

1
2
π̃−1. This observation allows us to re-use the analysis presented in Section

4 to obtain the expression of the minimum balanced error rate, BER. In fact, putting c1 = 1
2
π−1

and c0 = 1
2
π̃−1 in Equation (26)—note that the derivation of Equation (26) does not rely on the

conditions c−1
0 + c−1

1 = 2 and c0 6 c1, we at once get

BER = 1
2

∫
X

min{π−1η(x), π̃−1η̃(x)}dµ ; (32)

and the corresponding optimal classifier is ŷ(x) = [[η(x)> c0

c0+c1
]] = [[η(x)> π]].

We have also pointed out that, as far as only those tasks (µ,η) with constant class probabilities

π = Pr{y= 1} and π̃ = Pr{y= 0} are concerned, the quantity BER can still be regarded as a special

case of CSR. Accordingly, BER as a functional of tasks (µ,η) is a special case of CSR, that is,

BER(µ,η) = CSR(µ,η;c0,c1) with c0 =
1
2
π̃−1 and c1 =

1
2
π−1. (Conceptually, however, the two are

totally different, as we will see soon.) We thus get from Theorem 7 the following corollary.

Corollary 8 (bounds on H(y|x) as functions of BER) Let h(η), η ∈ [0,1], be a concave function

satisfying h(0) = h(1) = 0 and h(η) = h(1−η) (symmetric). Then for any binary classification task

(µ,η) with Pr{y = 1}= π it holds that

2 ·h(π) · BER 6 H(y|x)6

{

h(2π̃ · BER) if π 6 0.5
h(2π · BER) if π > 0.5

, (33)

where H(y|x) is defined as in Definition 2, and BER is given by Equation (32).

Proof If π 6
1
2
, the settings c1 = 1

2
π−1 and c0 = 1

2
π̃−1 satisfy the two conditions c0 6 c1 and

c−1
0 + c−1

1 = 2. So from Equation (29) we get h(π) ·2BER 6 H(y|x) 6 h(2π̃ · BER). For the case of

π >
1
2
, we still set c1 =

1
2
π−1 and c0 =

1
2
π̃−1 but interchange the roles of c0 and c1 in Equation (29).

This gives us h(π) · 2BER 6 H(y|x) 6 h(2π · BER). Here we have used the fact that h(π) = h(π̃)—
notice that h(·) is a symmetric function.

As we have just said, balanced error rate and cost-sensitive risk are two different concepts. The

main difference is that in the expression of CSR, Equation (15), the two coefficients c0 and c1 depend

on neither µ nor η; whereas for BER, Equation (13), the values of c0 and c1 depend on the concerned

problem (µ,η). This difference results in that the two bounds on H(y|x) as claimed by Corollary 8

are not necessarily tight any more. The reason is that, in terms of CSR, the lower/upper bounds on

H(y|x) are obtained over all tasks with a fixed value of CSR; whereas in terms of BER, we implicitly

imposed an additional condition on the tasks, namely, the class probabilities should also be fixed as

π and π̃. Consequently, the development presented in Section 4 can not be directly applied here to

obtain the tight bounds.

We now use Scheme 3 to derive the tight bounds on H(y|x) in terms of BER and π. The resulting

bounds are presented in Theorem 11.—This is only for theoretical convenience: in practice we are

often more interested in using H(y|x) to bound BER, which can be obtained from Theorem 11 by

simply interchanging the axes of H(y|x) and BER, as has been done in Figure 6-b. In fact, we have

already used this technique to study the bounds on CSR in terms of H(y|x), see the derivation of

Equation (31) in page 1050.
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In Equation (21), we have already expressed H(y|x) as the mathematical expectation of some

function of η(x). The other two quantities involved, π and BER, can also be written in this way.

In fact, by Equations (32) and (4), one easily sees that BER = 1
2
Ex∼µ[r(η(x))] and π = Ex∼µ[η(x)],

where the function r(η) is defined as

r(η) := min{π−1η, π̃−1η̃} , η ∈ [0,1] .

So Equations (4), (32) and (21) can be rewritten together in vector notation as

[π,2BER,H(y|x)] = Ex∼µ[η(x),r(η(x)),h(η(x))] . (34)

It then follows from Theorem 1 that the point [π,2BER,H(y|x)] is in the convex hull of the curve

ℓ= {[η,r(η),h(η)] | η ∈ [0,1]} in the three dimensional η-r-h space.

Next we would implement the second and third steps in Scheme 3, for which we use the graph

of ℓ and its convex hull with π = 0.3 and h(η) =−η logη− η̃ log η̃ (Shannon) as the example (see

Figure 6-a). For any given value of π, the function r(η) is piecewise linear: it equals to π−1η if

η 6 π and π̃−1η̃ otherwise. The curve ℓ is hence divided into two parts by the point [π,1,h(π)]—the

point A in Figure 6-a. The part with η 6 π is in the plane η = πr (plane AOD); and the part with

η > π is in the plane η̃ = π̃r (plane ABD). For such a curve simple geometry tells us that its convex

hull is bounded by the triangle OAB, the two bow shapes OAO and ABA, and the minimal “concave”

curved surface OAB bordered by the curve ℓ and the line segment OB—see Appendix B.3 for more

detail.

Finally, we want to compute the tight lower and upper bounds on H(y|x) from the convex hull

of ℓ. For any fixed value of π, this is equivalent to seeking the intersection of the plane η = π and the

convex hull of ℓ. From Figure 6-a, it is easy to see that H(y|x) is lower bounded by the line segment

AC, the intersection of the planes ADC (the plain η = π) and OAB (the “tight lower bound” of the

convex hull of ℓ). It is also obvious that the two endpoints of AC have the coordinates A(π,1,h(π))
and C(π,0,0). Therefore,

h(π) ·2BER 6 H(y|x) . (35)

This inequality is same as the first inequality in Equation (33); they are nevertheless obtained by

different methods. The most important difference is that here we can safely claim the sharpness of

the inequality (by an argument similar to that in Theorem 5 and Corollary 6), which is not clear

from Corollary 8.

Analogously, the tight upper bound on H(y|x) is determined by the intersection curve of plane

η = π (plane ADC) and the aforementioned curved surface OAB. Therefore, to compute this tight

upper bound we need to find the maximal value of h such that the point [π,2BER,h] is in the convex

hull of ℓ. By the definition of convex hull, this can be done as follows. Pick any two points, say M

and N (not plotted in Figure 6-a), on the curve ℓ or the line segment OB, so that the line segment MN

meets the vertical line defined by η = π and r = 2BER, say the line EF in the figure, at some point

K. By definition, we know point K is in the convex hull. So its h-coordinate, Kh, is no more than the

maximal value of H(y|x); and the maximum of Kh (over all possible pairs M and N) is exactly the

tight upper bound of H(y|x).
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Figure 6: a. The curve ℓ= {[η,r(η),h(η)] | η ∈ [0,1]} and its convex hull in the η-r-h space.

b. The tight lower (solid lines) and upper (dashed lines) bounds on BER versus the Shan-

non conditional entropy for π = 0.1 (A) and π = 0.3 (B). Note the difference between

the bow shape (B) here and that in the middle graph of Figure 5—the two use the same

parameters: π = 0.3, that is, c1 =
5
3
.

To compute the maximal value of Kh, let M, N be as above and write ρ := 2BER. Then, as K is

on the line segment MN, there exists a unique t ∈ (0,1) such that

Kη = t̃ ·Mη + t ·Nη = π , (36)

Kr = t̃ ·Mr + t ·Nr = ρ , (37)

Kh = t̃ ·Mh + t ·Nh , (38)

where the subscript η,r or h denotes the corresponding coordinate of the concerned point. We shall

discuss two different cases separately.

Case 1: One of M and N, say M, is on line segment OB. That is, Mr = Mh = 0 and 0 6 Mη 6 1.

If 0 6 Mη 6 π, by Equation (36), Nη > π and so Nr = π̃−1(1−Nη). This equation, together with

Equations (36) and (37), implies that Nη = 1− t−1π̃ρ and Mη = 1− t̃−1π̃ρ̃. So from Equation (38)

we know Kh = t ·h(1−t−1π̃ρ), where the range of t is determined by the condition 06Mη 6 π, from

which we obtain t ∈ [ρ,ρ+πρ̃]. Similarly, for π 6 Mη 6 1 it holds that Nη 6 π and Nr = π−1Nη; and

by solving the three equations (36)–(38) we get Nη = t−1πρ, Mη = t̃−1πρ̃, and Kh = t · h(t−1πρ),
with t ∈ [ρ,ρ+ π̃ρ̃].

Case 2: Both M and N are on the curve ℓ. Without loss of generality, assume Mη 6 Nη. Then by

Equation (36) we know Mη 6 π 6 Nη; and hence Mr = π−1Mη and Nr = π̃−1(1−Nη). Substituting

the two equations into Equation (37) and solving the resulting linear equations (36) and (37), we
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arrive at Mη = π− t̃−1ππ̃ρ̃ and Nη = π+ t−1ππ̃ρ̃. It then follows from Equation (38) that Kh =
t̃ · h(π− t̃−1ππ̃ρ̃) + t · h(π+ t−1ππ̃ρ̃), where t ∈ [πρ̃,ρ+ πρ̃], as is determined by the conditions

Mη > 0 and Nη 6 1.

Summing up the above discussion, we conclude that the tight upper bound on H(y|x) is the

maximum of the three maxima:

K
(1)
h = max{ f1(t) := t ·h(1− t−1π̃ρ) | t ∈ [ρ,ρ+πρ̃]} , (39)

K
(2)
h = max{ f2(t) := t ·h(t−1πρ) | t ∈ [ρ,ρ+ π̃ρ̃]} , (40)

K
(3)
h = max{ f3(t) := t̃ ·h(π− t̃−1ππ̃ρ̃)+ t ·h(π+ t−1ππ̃ρ̃) | t ∈ [πρ̃,ρ+πρ̃]} . (41)

Lemma 9 Let h : [0,1]→ R be a concave function. Let u,v,w ∈ [0,1] and α,β,γ > 0 be such that

α+β = γ and αu+βv = γw. Then

α ·h(u)+β ·h(v)6 γ ·h(w) . (42)

Proof The case of α = β = γ = 0 is trivial. If at least one of the three is nonzero, then γ > 0 since

γ = α+β. Equation (42) is then just a reformulation of the characterizing (defining) inequality of

concave functions, t ·h(u)+ t̃ ·h(v)6 h(t ·u+ t̃ · v), with t = γ−1α.

Lemma 10 In Equations (39)–(41), (a) the functions f1(t) and f2(t) are monotonically non-decreasing,

so K
(1)
h = f1(ρ+πρ̃) and K

(2)
h = f2(ρ+ π̃ρ̃); (b) the function f3(t) is concave, and its value at the

two endpoints are f3(ρ+πρ̃) = K
(1)
h and f3(πρ̃) = K

(2)
h , respectively.

Proof (a) For t1, t2 ∈ [ρ,ρ+ πρ̃] satisfying t1 6 t2, we need to show that f1(t1) 6 f1(t2), that is,

t1 · h(1− t−1
1 π̃ρ) 6 t2 · h(1− t−1

2 π̃ρ). This can be obtained by substituting (α,β,γ) = (t1, t2 − t1, t2)
and (u,v,w) = (1− t−1

1 π̃ρ,1,1− t−1
2 π̃ρ) into Equation (42) and using the fact that h(1) = 0.

Similarly, the inequality f2(t1)6 f2(t2), that is, t1 ·h(t
−1
1 πρ)6 t2 ·h(t

−1
2 πρ) can be proven using

the settings (α,β,γ) = (t1, t2 − t1, t2) and (u,v,w) = (t−1
1 πρ,0, t−1

2 πρ) for Equation (42), as well as

the fact that h(0) = 0.

(b) For any t1, t2 ∈ [πρ̃,ρ+ πρ̃] and α ∈ (0,1), write t = α · t1 + α̃ · t2. We want to prove that

f3(t)> α · f3(t1)+ α̃ · f3(t2). But Lemma 9 implies that

t̃ ·h(π− t̃−1ππ̃ρ̃)> αt̃1 ·h(π− t̃−1
1 ππ̃ρ̃)+ α̃t̃2 ·h(π− t̃−1

2 ππ̃ρ̃) ,

t ·h(π+ t−1ππ̃ρ̃)> αt1 ·h(π+ t−1
1 ππ̃ρ̃)+ α̃t2 ·h(π+ t−1

2 ππ̃ρ̃) .

The sum of the above two inequalities is exactly what we want: f3(t)>α · f3(t1)+ α̃ · f3(t2). Finally,

the two identities f3(ρ+πρ̃) = f1(ρ+πρ̃) = K
(1)
h and f3(πρ̃) = f2(ρ+ π̃ρ̃) = K

(2)
h can be verified

by direct computation.

As a consequence of the above lemma, we see that H(y|x) is actually upper bounded by the

quantity K
(3)
h as defined in Equation (41), that is,

H(y|x)6 max
{

f3(t) = t̃ ·h(π− t̃−1ππ̃ρ̃)+ t ·h(π+ t−1ππ̃ρ̃) | t ∈ [πρ̃,ρ+πρ̃]
}

, (43)

1055



ZHAO, EDAKUNNI, POCOCK AND BROWN

where ρ = 2BER is two times of the minimum balanced error rate and π = Pr{y = 1} the prior

probability of the positive class. Furthermore, using an argument similar to that for Theorem 5 and

Corollary 6, we can prove the above upper bound on H(y|x) is tight.

Combining Equation (35) and Equation (43), we get

Theorem 11 (tight bounds on H(y|x) in terms of BER and π) Let h(η), η ∈ [0,1], be a concave

function satisfying h(0)= h(1)= 0. Then for any binary classification task (µ,η) with Pr{y= 1}= π

it holds that

2 ·h(π) · BER 6 H(y|x)6 max{ f3(t) | t ∈ [πρ̃,ρ+πρ̃]}= K
(3)
h , (44)

where ρ = 2BER and the function f3(t) is defined by Equation (43).

Notice that Theorem 11 does not require that h(·) be symmetric. Furthermore, as has been pointed

out earlier, there are two ways to understand this theorem. The first way is to see π as a given

parameter, then Equation (44) describes the relationship between the functionals H(y|x) and BER;

and it holds for any task with Pr{y = 1} = π. We can also regard π as a functional of tasks, then

Equation (44) connects the three quantities: π, BER and H(y|x); and holds for any classification task

(µ,η).
In Theorem 11, the tight upper bound on H(y|x) has been written as the maximum of a concave

function f3(t) = t̃ ·h(π− t̃−1ππ̃ρ̃)+ t ·h(π+ t−1ππ̃ρ̃) over the interval [πρ̃,ρ+πρ̃]. This maximum

has no closed-form expression in general, we therefore resort to numerical methods. If the function

h(·) is differentiable, so is f3(t)—the derivative of f3(t) is

f ′3(t) =−h(π− t̃−1ππ̃ρ̃)− t̃−1ππ̃ρ̃ ·h′(π− t̃−1ππ̃ρ̃)

+h(π+ t−1ππ̃ρ̃)− t−1ππ̃ρ̃ ·h′(π+ t−1ππ̃ρ̃) .

In this case, the maximum of f3(t) can be obtained by checking the values of its derivative f ′3(t).

First at the two endpoints πρ̃ and ρ+ πρ̃: if f ′3(πρ̃) 6 0, then K
(3)
h = f3(πρ̃); if f ′3(ρ+ πρ̃) > 0,

then K
(3)
h = f3(ρ+πρ̃). Otherwise we need to calculate the unique solution t0 ∈ (πρ̃,ρ+πρ̃) to the

equation f ′3(t) = 0 and obtain K
(3)
h = f3(t0). This can be done very efficiently by simple numerical

methods such as bisection, since f ′3(t) is a non-increasing function of t. If h(·) is not differentiable,

one still can use simple numerical methods such as the Fibonacci search and the golden section

search (Brent, 1973, p. 68) to locate the maximum of f3(t), since f3(t) is a unimodal function.

For the Shannon conditional entropy, h(η) = −η log p− η̃ log η̃ and the value of f ′3(t) at the

two endpoints are f ′3(ρ+πρ̃) = −∞ and f ′3(πρ̃) = ∞, respectively. The problem is thus reduced to

solving the equation f ′3(t) = 0, which can be simplified to

π log(1− t̃−1π̃ρ̃)+ π̃ log(1+ t̃−1πρ̃) = π log(1+ t−1π̃ρ̃)+ π̃ log(1− t−1πρ̃) .

Its solution t0 is then substituted into the expression of f3(t), yielding the tight upper bound of

H(y|x). In Figure 6-b the lower and upper bounds on H(y|x) are plotted versus minimum balanced

error rate BER = 1
2
ρ for π = 0.1 and 0.3—corresponding to c1 =

1
2
π−1 = 5 and 5

3
. The graph has

used the x-axis for H(y|x) and the y-axis for BER, so that one can easily check the bounds on BER

for given values of H(y|x). One may compare the middle graph of Figure 5 with Figure 6-b, to

confirm that the upper bound on H(y|x) stated by Corollary 8 is indeed untight (for those tasks with

0 < BER < 0.5). In Appendix C, we will show that the upper bound of H(y|x) given by Theorem 11

is never looser than that in Corollary 8.
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To conclude, we have used the proposed geometric method to derive the tight lower and upper

bounds on H(y|x) in terms of BER and π. By flipping the curve of these bounds along the diagonal

line, we can also get the tight lower and upper bounds on BER as functions of H(y|x) and π, as we

have done for the quantity CSR—see Equation (31). As shown by Corollary 8, these tight bounds are

not obtained by simply taking the balanced error rate as a special cost-sensitive risk, even though

here the value of π is assumed to be a constant. This confirms that balanced error rate and cost-

sensitive risk are two essentially different performance measures.

6. Maximum F-score in the Binary Classification Problem

We now consider the relationship between F-score and conditional entropy. As before, we shall first

derive the maximum value of F-score for a given classification problem (µ,η). By Equation (17),

this amounts to maximizing the set function

Γ(X1) := 1
2

FSC = [π+µ(X1)]
−1 ·

∫
X1

η(x)dµ , (45)

under the assumption that the object distribution µ and the conditional class probability η(x) are

constants (so the class probability π is also a constant).

Lemma 12 Let the set function Γ(X1) be as in Equation (45). For any measurable subset X1 of X ,

let X
′
1 = {x ∈ X | η(x)> Γ(X1)}. Then Γ(X ′

1)> Γ(X1).

Proof Write θ = Γ(X1). Let A = {x ∈ X1 | η(x)6 θ} and B = {x /∈ X1 | η(x)> θ}. Then A ⊆ X1,

B∩X1 =∅ and X
′
1 = (X1 \A)∪B. Thus, by Equation (45),

Γ(X ′
1) =

∫
X

′
1
η(x)dµ

π+µ(X ′
1)

=

∫
X1

η(x)dµ+
∫

B η(x)dµ−
∫

A η(x)dµ

π+µ(X1)+µ(B)−µ(A)
.

As η(x) > θ on B,
∫

B η(x)dµ > θµ(B). Similarly,
∫

A η(x)dµ 6 θµ(A). Furthermore, by the def-

inition of Γ(X1), we have
∫

X1
η(x)dµ = θ[π + µ(X1)]. All these three facts together imply that

Γ(X ′
1)> θ = Γ(X1).

This theorem allows us to consider only classifiers of the form ŷ(x) = [[η(x) > θ]] when max-

imizing the F-score, where θ ∈ [0,1] is a threshold. To determine the optimal threshold θ so that

the F-score, or, equivalently, the function Γ(X1) is maximized, where the set X1 is defined via θ as

X1(θ) = {x ∈ X | η(x)> θ}, we rewrite Equation (45) as a function of θ:

Γ(θ) =

∫
X1

η(x)dµ

π+µ(X1)
=

θµ(X1)+
∫

X1
[η(x)−θ]dµ

π+µ(X1)
= θ+

∫
X1
[η(x)−θ]dµ−πθ

π+µ(X1)
. (46)

For any r ∈R, write r+ := max{0,r}. By the definition of X1, η(x)−θ > 0 iff x ∈ X1. So for x ∈ X1,

[η(x)−θ]+ = η(x)−θ; and for x /∈ X1, [η(x)−θ]+ = 0. It therefore follows that
∫

X1
[η(x)−θ]dµ =∫

X
[η(x)−θ]+dµ . Substituting this into Equation (46), we obtain

Γ(θ) =
θµ(X1)+

∫
X
[η(x)−θ]+dµ

π+µ(X1)
= θ+

∫
X
[η(x)−θ]+dµ−πθ

π+µ(X1)
. (47)
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Lemma 13 The function g(θ) :=
∫

X
[η(x)−θ]+dµ−πθ, where θ ∈ [0,1], is continuous and strictly

decreasing, with g(0) = π and g(1) =−π.

Proof Since |(η− θ1)
+− (η− θ2)

+| 6 |θ1 − θ2|, we have |g(θ1)− g(θ2)| 6 (1+π)|θ1 − θ2|, so

g(θ) is continuous. It is strictly decreasing because its first term is non-increasing (with respect to θ)

and its second term, −πθ, is strictly decreasing. Finally, as 0 6 η(x)6 1, we know [η(x)]+ = η(x)
and [η(x)−1]+ = 0; so g(0) = π and g(1) =−π.

By this lemma, we know there exists a unique θ∗ ∈ (0,1) such that g(θ∗) = 0, that is,

∫
X
[η(x)−θ∗]+dµ−πθ∗ = 0 . (48)

We now prove it is this θ∗ that maximizes the function Γ(θ); and the maximum value is Γ(θ∗) = θ∗,

as can be easily seen from Equation (47) and Equation (48).

Lemma 14 The function Γ(θ) as given by Equation (46) is maximized at θ∗.

Proof We shall use the first expression of Γ(θ) from Equation (46), in which the subset X1 is

defined as X1 = {x ∈ X | η(x) > θ}. If θ < θ∗, define A := {x ∈ X | η(x) > θ∗} and B := {x ∈ X |
θ∗ > η(x)> θ}. Then it is clear that A∩B =∅ and A∪B = X1. Thus,

Γ(θ) =

∫
A η(x)dµ+

∫
B η(x)dµ

π+µ(A)+µ(B)
.

Now, as θ∗ = Γ(θ∗) = [π+ µ(A)]−1 ·
∫

A η(x)dµ, we have
∫

A η(x)dµ = θ∗ · [π+ µ(A)]. Moreover,∫
B η(x)dµ 6 θ∗µ(B) since η(x)6 θ∗ on B. Therefore, Γ(θ)6 θ∗ = Γ(θ∗).

If θ > θ∗, define A as before and B := {x ∈ X | θ > η(x) > θ∗}. Then B ⊆ A and X1 = A \B.

Thus,

Γ(θ) =

∫
A η(x)dµ−

∫
B η(x)dµ

π+µ(A)−µ(B)
.

Since η(x) > θ∗ for x ∈ B, it holds that
∫

B η(x)dµ > θ∗µ(B); whereas the equality
∫

A η(x)dµ =
θ∗ · [π+µ(A)] remains true. So, again, we obtain Γ(θ)6 θ∗ = Γ(θ∗).

In summary, to determine the maximum F-score for a given classification problem, one needs

only to find the unique solution θ∗ to the equation (48). The maximum F-score is then FSC =
2 · Γ(θ∗) = 2θ∗; and the corresponding optimal classifier is ŷ(x) = [[η(x) > θ∗]]. An interesting

implication of the equality FSC = 2θ∗ is that θ∗ 6
1
2

(as FSC 6 1). That is, for F-score the optimal

threshold is always less than or equal to 0.5.

7. Bounds on the Maximum F-score in Terms of Conditional Entropy

In this section, we derive bounds on maximum F-score, FSC, in terms of the conditional entropy

H(y|x) as defined by Equation (21). As before, we shall first examine the range of H(y|x) for any

given value of FSC.
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In the preceding section we have proved that θ∗ := 1
2

FSC ∈ [0,0.5] (as FSC 6 1) is the unique

solution to the equation (48), which, by Equation (4), can be rewritten as

∫
X
{θ∗ ·η(x)− [η(x)−θ∗]+}dµ = 0; i.e., Ex∼µ[u(η(x))] = 0 ,

where u(η) := θ∗η− (η−θ∗)+ is a function on [0,1]. For any fixed value of θ∗, we know from the

above equation and Equations (4) and (21) that

[π,0,H(y|x)] = Ex∼µ[η(x),u(η(x)),h(η(x))] . (49)

By Theorem 1, in the η-u-h space [π,0,H(y|x)] is a point in the convex hull of the curve ℓ =
{[η,u(η),h(η)] | η ∈ [0,1]}.—We have completed (a variant of) the first step in Scheme 3.

In Figure 7-a the graph of the curve ℓ is plotted for θ∗= 0.3 and the Shannon conditional entropy.

By the definition of u(η), we have u(η) = θ∗η for η 6 θ∗ and u(η) = θ∗− θ̃∗η for η > θ∗. Thus,

as in the case of balanced error rate, here the curve ℓ consists also of two parts each of which is in

a plane. Consequently, its convex hull is bounded by three flat facets and one curved surface OAB

(O is the origin) which is the minimum concave surface with line segment OB and curve ℓ as its

boundary.—These are the second and third steps in Scheme 3.

As its second coordinate is a constant 0, the point [π,0,H(y|x)] lies in the intersection of the

plane u = 0 and the convex hull of ℓ. Therefore, as shown by Figure 7-a, H(y|x) is lower bounded

by the line OD; and upper bounded by the curve OE that is the intersection of the plane u = 0 and

the curved surface OAB we just mentioned. Notice here that, π is not fixed, but may take values

between the points O and C (C is the intersection point of line u = h = 0 and plane u = θ∗− θ̃∗η).

That is, π ∈ [0,θ∗/θ̃∗]. Thus, the lower bound of H(y|x) is given by the minimum h-coordinate of

points on the line segment OD. Obviously, this equals to 0, the h-coordinate of the origin point O,

which happens when π tends to zero. That means, for any given value of θ∗, the tight lower bound

of H(y|x) is always 0.

Similarly, the maximum h-coordinate of points on the curve OE is the upper bound of H(y|x).
For symmetric functions h(·), we shall soon prove that the endpoint E has the maximum h-coordinate

(over all points on the curve OE). Furthermore, from Figure 7-a we know the η-coordinate of E is

Eη = θ∗/θ̃∗, so its h-coordinate Eh = h(θ∗/θ̃∗) = h
(

FSC

2−FSC

)

.

From the above discussion we obtain the tight lower and upper bounds on H(y|x), as follows

(the fourth step in Scheme 3).

Theorem 15 (tight bounds on H(y|x) in terms of FSC) Let H(y|x) be the conditional entropy de-

fined by a symmetric concave function h : [0,1]→R. Then for any two-class problem (µ,η), it holds

that

0 6 H(y|x)6 h
(

FSC

2−FSC

)

, (50)

and the two inequalities are sharp.

A remark on Theorem 15: As we have used a variant of Scheme 3 to derive the inequality (50),

the two general theorems 1 and 5 cannot be directly applied here and we need to prove it sepa-

rately. In fact, in the above we have established the one-to-one correspondence between FSC and

the equation Ex∼µ[u(η(x))] = 0 with u(η) = θ∗η− (η−θ∗)+ and θ∗ = 1
2

FSC. That is, a task with

the optimum F-score FSC must satisfy the condition Ex∼µ[u(η(x))] = 0; and conversly, a task sat-

isfying this condition must have the optimum F-score FSC. Therefore, although we cannot find a
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Figure 7: a. The curve ℓ= {[η,u(η),h(η)] | η ∈ [0,1]} and its convex hull in the η-u-h space; ODE

is the intersection of the plane u = 0 and the convex hull, in which we are interested.

b. An geometric interpretation of Lemma 18: draw from a point K on the line η = θ 6
1
2

two tangent lines of h(η), the height of the left tangent point L is less than that of the right

one R, provided that h(η) is symmetric. To prove the second inequality in Equation (50),

here the right tangent point R is set to be on the line η = θ̃−1θ; so it corresponds to the

point E in Figure a.

random variable with expectation FSC, we still can apply Theorem 1 to the auxiliary random vari-

able u(η(x)) in which θ∗ = 1
2

FSC serves as a parameter. The resulting tight bounds on H(y|x) are in

fact 0 6 H(y|x)6 h(θ∗/θ̃∗), which can be rewritten as Equation (50).—So here we see an implicit

use of Scheme 3.

Analogous to the analysis in page 1050, from Theorem 15 we can easily derive the lower and

upper bounds on the maximum F-score by means of conditional entropy. This is best illustrated by

Figure 8, where the Shannon conditional entropy is used for H(y|x). In general, as the function h(·)
is symmetric and concave, for any given value of H(y|x) in the range of h(·), there exists a unique

β ∈ [0,0.5] such that h(β) = h(1−β) = H(y|x). So from Figure 8 we know the value of FSC must

satisfy β 6
FSC

2−FSC
6 1−β, that is,

2β
1+β 6 FSC 6

2−2β
2−β . An interesting observation of this inequality is

that FSC can only assume the value 2
3

when β = 1
2
, that is, when H(y|x) = 1. This can be explained

as follows.

For the Shannon entropy it holds that 1 > H(y) > H(y|x); so H(y|x) = 1 would imply that

H(y) = 1 and I(x;y) = H(y)−H(y|x) = 0, where I(x;y) is the mutual information between x and y.

From I(x;y) = 0 we know x and y are independent; and from H(y) = 1, Pr{y= 0}= Pr{y= 1}= 1
2
.

In other words, essentially there is only one classification task whose conditional entropy is 1; and it
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is actually the most “uncertain” one. It is also the most difficult problem in that the feature vector is

completely uninformative and the class label totally random. For such a task, the error probability

on any object is always 0.5, regardless of which class is predicted. Hence, TP = FP and TN = FN.

It then follows from the second expression of FSC in Equation (17) that FSC = 2×TP

3×TP+FN
. Now, as

FN > 0, the F-score has the maximum value 2
3
; and this happens when FN = 0, which requires that

all objects be regarded as positive.
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Figure 8: The relationship between FSC and H(y|x). For given FSC, the dashed line AB is the lower

bound on H(y|x); and the solid line ACB the upper bound. Therefore, for given value of

H(y|x), the curve BC is the upper bound of FSC; and the curve AC is the lower bound.

For the remainder of the section we will complete the derivation/proof of Theorem 15 by show-

ing that E is the “highest” point on the curve OE, under the assumption that the concave function

h(·) is symmetric, that is, h(η) = h(η̃) for any η ∈ [0,1]. To simplify the proof, we further assume

that h(·) is a differentiable function.12 The following two lemmas are easy to see. They are there

only because they will be referenced several times and so help to shorten the argument that follows.

Lemma 16 Let h : [0,1] → R be a symmetric, differentiable and concave function. Then for η ∈
[0, 1

2
], h′(η)> 0, that is, h(η) is monotonically non-decreasing; and for η ∈ [ 1

2
,1], h(η) is monoton-

ically non-increasing. Moreover, h′(1−η) =−h′(η) for η ∈ [0,1].

Lemma 17 Let h : [0,1] → R be a differentiable concave function and a ∈ [0,1]. Then f (t) :=
h(t)+h′(t) · (a− t) is non-increasing on [0,a]; and non-decreasing on [a,1].

Proof For s, t ∈ [0,a] satisfying s < t, the mean value theorem implies that, for some u ∈ (s, t),
h(s)−h(t) = h′(u) · (s− t). Since h is concave, its derivative h′ is monotonically non-increasing. In

12. This assumption is in fact unnecessary: if h(·) is non-differentiable at some point η0, we can use any number between

its right derivative h′(η0+) and left derivative h′(η0−) to replace h′(η0).

1061



ZHAO, EDAKUNNI, POCOCK AND BROWN

particular, we have h′(s)> h′(u)> h′(t). It thus follows that

f (s) = h(s)+h′(s) · (a− s)
= h(t)+h′(u) · (s− t)+h′(s) · (a− s)
> h(t)+h′(u) · (s− t)+h′(u) · (a− s)
> h(t)+h′(t) · (a− t) = f (t) .

So f (t) is a non-increasing function on [0,a]. Following a similar line, one can prove that f (t) is

non-decreasing on the interval [a,1].

Lemma 18 Let h(η) be as in Lemma 16. For θ ∈ [0, 1
2
], let a 6 θ and b > θ be such that h(a)+

h′(a)(θ−a) = h(b)−h′(b)(b−θ). Then h(a)6 h(b).

Proof If b 6
1
2
, by Lemma 16 we at once get h(a)6 h(b). Assume now b > 1

2
, by Lemma 16 we

know h′(a)> 0 and h′(b)6 0. Since θ 6
1
2
, the assumed equality implies

h(b)−h′(b)(b− 1
2
) 6 h(b)−h′(b)(b−θ) as θ 6

1
2

and h′(b)6 0

= h(a)+h′(a)(θ−a) the assumed equality

6 h(a)+h′(a)( 1
2
−a) as θ 6

1
2

and h′(a)> 0

= h(ã)−h′(ã)(ã− 1
2
) . by Lemma 16

By a 6 θ 6
1
2
, we have ã >

1
2
. By Lemma 17, h(b)− h′(b)(b− 1

2
) is non-decreasing with re-

spect to b ∈ [ 1
2
,1]. So the above inequality implies b 6 ã. As b > 1

2
, by Lemma 16 we know

h(b)> h(ã) = h(a).

In geometry (see Figure 7-b), h(a) + h′(a)(θ− a) represents the “height” of the intersection

point of the vertical line η = θ and the tangent line of h(η) at η = a. With this in mind, we see that

the assumed equality in Lemma 18 means the two tangent lines are drawn from one point on the

line η = θ. Thus, for a symmetric function h(η) and θ = 1
2
, this would give us the tangent points a

and b = ã (by symmetry); and so h(a) = h(b). When the line η = θ moves left, that is, θ < 1
2
, the

tangent points a and b also move left. This would result in h(a)6 h(b).
In Figure 7-a, we draw in the plane AFB (i.e., u = θ∗ − θ̃∗η) the tangent line of the curve ℓ

at point E, intersecting with line AF at K. From this point K we draw the tangent line of ℓ in the

plane OAF (u = θ∗η). These are represented in Figure 7-b as their projection on the plane u = 0.

Assume M and N are the intersection points of the two tangent lines with the vertical lines at B and

O, respectively. Then, by Lemma 16, the slope of KN is larger than zero; so the h-coordinate of N,

Nh, is less than that of the left tangent point L, which, by Lemma 18, is further less than that of the

right tangent point E. We thus get Nh 6 Eh.

We now “transfer” the graph in Figure 7-b back to Figure 7-a. Intuitively, one can imagine that

Figure 7-b is folded along the line FA; and then put on the broken-line OFB in Figure 7-a (after

the obvious lengthening operation). As h is concave, in the η-u-h space the broken line NKM is

obviously “above” curve ℓ, that is, the curve OAEB. So the plane KMN is above the convex hull of

ℓ. It follows that line NE, the intersection line of the two planes KMN and u = 0, is above the curve

OE (the one in Figure 7-a), the intersection of plane u = 0 and the convex hull of ℓ. Therefore, the

maximum h-coordinate of points on line NE is larger than that of the curve OE. But we have already

shown that Nh 6 Eh, so Eh = h(θ∗/θ̃∗) is larger than the maximum h-coordinate of points on the

curve OE. The second inequality in Equation (50) now gets proved.
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8. Infomax Is Not Proper for Optimizing Cost-Sensitive Risk or F-Score

In the introduction section, we pointed out that the Infomax principle is consistent with the learning

target of minimizing the error rate. The reason is that both Fano’s bound and Hellman’s bound

are monotonically increasing with the conditional entropy; so minimizing the conditional entropy

normally results in lower error rate. The same phenomenon is also observed between conditional en-

tropy and balanced error rate (see Figure 6-b). In this sense, Infomax is suitable also for minimizing

the balanced error rate.

As for F-score, however, the lower bound on the maximum F-score, FSC, is an increasing func-

tion of conditional entropy, as is depected in Figure 8. This implies a counterintuitive situation.

Usually with classification problems, as we decrease the conditional entropy, we can expect the

worst case (measured by the maximum F-score) classification scenario to improve. With F-score,

however, as we decrease entropy, the worst case F-score gets even worse, decreasing to zero when

H(y|x) tends to zero. As we have briefly mentioned at the end of Section 4, the same non-intuitve

scenario is observed for the upper bound on the minimum cost-sensitive risk—see, Figure 4-b.

Moreover, from Figure 8 we see that FSC may take any value between 0 and 1 when H(y|x) tends

to zero. This also seems non-intuitive as H(y|x) = 0 means y is a deterministic function of x, for

which the best classifier should have F-score 1.

In this section, we discuss the possible reasons of these inconsistencies through some simple

examples. The first example is constructed to illustrate that for any given value of FSC, there are

classification problems whose maximum F-score is FSC; but the conditional entropy H(y|x) can be

arbitrary small.—If the maximum F-score of a problem is small, we would think of it as a difficult

task, since no classifier would perform well (as measured by F-score) on it. Intuitively, this means

the relationship between x and y is quite uncertain, hence the conditional entropy H(y|x) should be

large. However, our first example shows that is is not necessarily the case.

Example 1 Here the feature space consists only of two distinct vectors, say, X = {x(1),x(2)}. The

joint distribution of x and y is given by

[Pr{x(1),0}, Pr{x(2),0}, Pr{x(1),1}, Pr{x(2),1}] = [a, b, 0, π] ,

where a,b,π are positive numbers with sum 1.

For this task there are four different classifiers which can be encoded naturally as 00, 01, 10 and

11, according to the predicted label on x(1) and x(2). The F-score of these classifiers are FSC(00) =
FSC(10) = 0, FSC(01) = 2π

2π+b
and FSC(11) = 2π

2π+a+b
. The computation procedure is detailed in

Table 3, where the top-left corner is the joint distribution of x and y. It thus follows that FSC =
FSC(01) = 2π

2π+b
. The (Shannon) conditional entropy of this task is calculated as

H(y|x) = H(xy)−H(x) = (b+π) log(b+π)−b logb−π logπ.

Now let λ = b
π , then the above FSC and H(y|x) can be written respectively as

FSC = 2
2+λ , H(y|x) = π · [(λ+1) log(λ+1)−λ logλ] =: π · f (λ) .

In the above computation, we have factorized H(y|x) as the product of two terms. The first term

π describes the imbalance between the two classes; the second term f (λ) is an increasing function
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y = 0 1 ŷ(x) ŷ(x) ŷ(x) ŷ(x)

x= x(1) a 0 0 0 1 1

x= x(2) b π 0 1 0 1

TP 0 π 0 π

TN a+b a b 0

FN π 0 π 0

FP 0 b a a+b

FSC 0 2π
2π+b

0 2π
2π+a+b

Table 3: Computing the maximum F-score for Example 1

of the ratio λ = b
π = Pr(0|x2)

Pr(1|x2)
, which reflects the uncertainty of the task. In particular, for any fixed

FSC or λ, H(y|x) can be arbitrarily small if we let π → 0. This certainly does not hint the involved

problem is deterministic.

Next, we will see a more instructive example. It can be seen as the “dual” of Example 1, in

that now the value of FSC is shown to be variable (by tuning a free parameter) with the conditional

entropy being fixed.

Example 2 In this example, the feature space consists of three vectors, X = {x(1),x(2),x(3)}. The

marginal distribution of x ∈ X (i.e., the probability measure µ, see Table 1) is given by

[Pr{x(1)}, Pr{x(2)}, Pr{x(3)}] = [a, b, c] ,

where a,b,c are positive numbers with sum 1. The conditional probability of class 1 is denoted as

ηi = Pr{y = 1 | x= x(i)} for i = 1,2,3; and set to be [η1,η2,η3] = [0.5,0,1].

According to Definition 2, the conditional entropy of the above task can be written as

H(y|x) = a ·h(η1)+b ·h(η2)+ c ·h(η3) = a ,

since for the binary entropy function it holds that h(0.5) = 1 and h(0) = h(1) = 0. There are eight

different classifiers though, we actually need only to compute the F-score for two of them to get the

maximum F-score. This is because the object x(2) should be classified as negative and x(3) as positive

for sure, by any F-score-maximizing classifier—see, the results of Section 6. Only the classification

of x(1) is unclear; so we calculate the F-score of the two classifiers 001 and 101. Letting η1 = 0.5 in

Table 4 we get FSC(001) = 2c
2c+0.5a

and FSC(101) = 2c+a
2c+1.5a

. It is clear that FSC(001) 6 FSC(101),
therefore

FSC = FSC(101) =
2c+a

2c+1.5a
.

Although the example is very simple, it does reveal quite a few insights into the notions of

conditional entropy and F-score. First of all, for any given value of H(y|x) = a, one can freely

adjust the value of the maximum F-score by tuning the parameter c. In more detail, FSC is an

increasing function of c. As 0 6 c 6 1− a, it is easy to see that FSC ranges from 2
3

(at c = 0) to
2−a

2−0.5a
(at c = 1−a) for the particular problem considered here.

Secondly, the quantity b does not present in the expressions of H(y|x) and FSC. In general,

based on the conditional probability η(x) = Pr{y = 1 | x = x}, we can classify the objects (feature
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y = 0 1 ŷ(x) ŷ(x)

x= x(1) η̃1a η1a 0 1

x= x(2) b 0 0 0

x= x(3) 0 c 1 1

TP c η1a+ c

TN η̃1a+b b

FN η1a 0

FP 0 η̃1a

FSC
2c

2c+η1a
2c+2η1a

2c+(1+η1)a

Table 4: Computing the maximum F-score for Example 2

vectors) in a given task into three catrgories, namely, those belong surely to the positive (η(x) = 1)

or the negative (η(x) = 0) class and those might be in either class (0 < η(x) < 1). The proportion

of the three types are denoted here as c, b, and a, respectively. Then from the example we see

that the conditional entropy H(y|x) is independent of the “certain” objects (due to the fact that

h(0) = h(1) = 0). In other words, it measures purely the amount of “uncertainty” for a classification

task, which includes two factors, a and h(η1). The former factor represents the “population” of

uncertain objects; and the latter represents the (average) degree of uncertainty of these objects.

On the other hand, the maximum F-score depends on the uncertain objects and the positive

objects; but not on the negative objects. This is because the definition of F-score, Equation (17),

does not take the true negative term, TN, into account. Consequently, classifiers aiming to maximize

the F-score would intend to classify objects as positive, as this will increase the true positive and

so increase the F-score—it will decrease the true negative at the same time, which however is not

captured by F-score. This phenomenon is also reflected in the expression of the optimal classifier,

ŷ(x) = [[η(x)> θ∗]] (cf. the last paragraph of Section 6). Here the threshold θ∗ is determined by the

condition FSC(θ∗) = 2θ∗, which, as has been explained at the end of Section 6, is below 0.5. So an

object would be regarded as positive even if the conditional probability of the positive class is less

than half.

Finally, in this example the minimum value of FSC is 2
3

(the horizontal line through the point C

in Figure 8), far from the lower bound. This is due to that we have set η1 = 0.5; by using a lower

value for η1, we can in principle hit the lower bound curve AC in Figure 8. For instance, in the next

example, we will see a setup with FSC = 0.625 < 2
3
.

8.1 On Information-Theoretic Feature Filtering Methods

Feature selection is a key step when dealing with high-dimensional data; it aims to find useful

features and discard others, hence reduces the dimensionality. There are three major categories of

feature selection techniques (Guyon and Elisseeff, 2003). Embedded methods (Lal et al., 2006)

exploit the structure of specific classes of classifiers to guide the feature selection process. Wrapper

methods (Kohavi and John, 1997) search the space of feature subsets, using the training/validation

performance of a particular classifier to measure the utility of a candidate subset. These two are

classifier-dependent, with the disadvantage of a considerable computational load, and may produce

subsets that are overly specific to the classifiers used. In contrast, filter methods (Duch, 2006)

separate the classification and feature selection components, and select features using a heuristic
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scoring criterion that measures how potentially useful a feature or feature subset may be when used

in a classifier.

Information-theoretic feature filters use an information measure (usually the mutual information

between the selected features and class label) as the scoring criterion. The idea behind is that fea-

tures showing maximum mutual information with class label are usually most useful for predicting

the class label. This is well justified when the (balanced) error rate is concerned, as we have argued

earlier. In this section, however, we will illustrate, using a simple example, that feature selection

methods based on mutual information may fail to choose the optimal features when the classification

performance is measured by F-score or cost-sensitive risk. Here we assume the perfect classifier,

that is, the classifier with maximum F-score or minimum cost-sensitive risk, can be derived once

the feature subset is determined.

Example 3 In this example, we assume the objects are described by two features, x1 and x2, both

of which take three distinct values. That is, xi ∈ {x
(1)
i ,x

(2)
i ,x

(3)
i } for i = 1,2. The joint distribution of

x1, x2, and y are set to be

y = 0 x2 = x
(1)
2 x

(2)
2 x

(3)
2

x1 = x
(1)
1 0.33 0 0

x
(2)
1 0.174 0.1 0

x
(3)
1 0 0 0

y = 1 x
(1)
2 x

(2)
2 x

(3)
2

x
(1)
1 0.15 0 0.18

x
(2)
1 0 0 0

x
(3)
1 0.066 0 0

The target here is to select one feature to predict the class label.

As we can see here, by selecting either feature we are actually comparing two different problems

that are described respectively by the distribution of the pairs (x1,y) and (x2,y). So we compute the

two distributions from the given joint distribution of (x1,x2,y), which gives us

Pr{x1,y}=





0.33 0.33

0.274 0

0 0.066



 ; Pr{x2,y}=





0.504 0.216

0.1 0

0 0.18



 . (51)

Both Pr{x1,y} and Pr{x2,y} are structurally similar to the one in Example 2, with the parameters

[a,b,c;η1] = [0.66,0.274,0.066;0.5] and [0.72,0.1,0.18;0.3] respectively. So we can reuse the

computation there to obtain the Shannon conditional entropy

H(y|x1) = a ·h(η1) = 0.66 ·h(0.5) = 0.66 ,

H(y|x2) = a ·h(η1) = 0.72 ·h(0.3) = 0.6345 .

Thus, according to the Infomax principle, the second feature x2 should be selected as the class label

predictor.

However, the maximum F-score of the two problems tells us a different story. For (x1,y), we

already have (see Example 2)

FSC = FSC(101) =
2c+a

2c+1.5a
=

2×0.066+0.66

2×0.066+1.5×0.66
= 0.7059 . (52)
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For (x2,y), we need to compare the F-score of the classifiers 001 and 101. It follows from Table 4

that

FSC(001) =
2c

2c+η1a
=

2×0.18

2×0.18+0.3×0.72
= 0.625 ,

FSC(101) =
2c+2η1a

2c+(1+η1)a
=

2×0.18+0.6×0.72

2×0.18+1.3×0.72
= 0.6111 .

Thus, FSC = FSC(001) = 0.625, which is less than that of (x1,y) at 0.7059 in Equation (52). This

reveals that while the feature x2 is selected by Infomax, it is in fact possible to design a better

classifier (as measured by F-score) using the first feature x1. The constructed problem shows that

to minimize error rate and balanced error rate we should pick feature x2; whereas to minimize

cost-sensitive risk we should pick a different feature, x1.

We now examine the minimum cost-sensitive risk of the two problems (x1,y) and (x2,y). As-

sume the cost of a false negative is c1 = 2.5 and that of a false positive is c0 = 0.625. If the feature x1

is used, then, by Equation (51), the optimal classifier is 101 (which produces a false positive on x(1)

with probability 0.33); and the corresponding minimum cost-sensitive risk is CSR = CSR(101) =
0.625×0.33= 0.2063. When the feature x2 is selected, we compute CSR(001) = 2.5×0.216= 0.54

and CSR(101) = 0.625×0.504= 0.315. Thus, CSR = CSR(101) = 0.315. It thus follows that choos-

ing the feature x1 would (potentially) obtain a lower cost-sensitive risk 0.2063, contradicting the

selection suggested by Infomax.

On the other hand, the minimum (balanced) error rate of the problem (x1,y) is

ERR = 0.33 , BER = 0.33
2×(0.33+0.274) = 0.2732 .

For both criteria, the optimal classifier is 101. For the problem (x2,y), we have

ERR = 0.216 , BER = 0.216
2×(0.216+0.18) = 0.2727 ,

with both minima obtained at the classifier 001. Therefore, selecting x2 will do better than x1 as to

minimize the (balanced) error rate, in agreement with Infomax.

8.2 Towards Proper Information Measures for Cost-Sensitive Risk

In the preceding section, we constructed an example demonstrating that Shannon’s mutual informa-

tion is generally not a proper criterion for feature selection when the cost-sensitive risk or F-score

is concerned. A natural question one would immediately raise is what is the proper information

measure for the two criteria then? So far, this problem is not completely solved; and we only have

partial solution.

In Section 4 we derived the tight lower and upper bounds on the conditional entropy H(y|x) in

terms of the minimum cost-sensitive risk CSR (see Figure 4-b); and noticed that the upper bound is

not an increasing function of CSR. On the other hand, as we have emphasized several times, it is the

monotonicity of Fano’s and Hellman’s bounds that justifies the Infomax principle. This motivates us

to construct concave functions h(η) such that the conditional entropy H(y|x) as defined in Definition

2 has lower and upper bounds that are monotonically increasing with respect to CSR.

As we can see in Figure 4, the curve OCDF plays an important role in determining the lower and

upper bounds on H(y|x). It is obtained from the graph of the function h(η) by a simple piecewise
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Figure 9: a. To get a symmetric concave curve OCF after the transform as indicated by the arrow AC

in Figure 4-a, we apply an inverse transform to the target curve OCF. That is, we move the

peak point C back to the point A with the η-coordinate 1
2c1

, yielding the curve OAF that

represents the function h(η) in the definition of conditional entropy—see Equation (21).

b. The lower (the line OGC) and upper (the curve OC) bounds on Hcs(y|x) are obtained

from the curve OCF in Figure 9-a using the same transform as in Figure 4. Both bounds

are now monotonically increasing functions of CSR. This can be contrasted with the

standard conditional entropy bounds in Figure 4-b.

linear transformation on the input η. Its left part OC determines the lower bound; and its right part

CDF (after flipping along the central vertical line) corresponds to the upper bound. Thus, if we can

construct a concave function h(η) that makes the curve OCDF symmetric (for example, coincide

with the curve OABF), then the lower and upper bounds on H(y|x) would be very similar to Fano’s

and Hellman’s, respectively. As shown in Figure 9, this can be done by applying a piecewise linear

transform to the input variable of a symmetric concave function, so that the peak point C on its

graph is moved left to the point A with the first coordinate 1
2c1

.

Denote by g(η), η ∈ [0,1], the function corresponding to the curve OCF in Figure 9-a. Then the

curve OAF is described by the function13

h(η) =

{

g(c1η) if η ∈ [0, 1
2c1

) ,

g(1− c0η̃) if η ∈ [ 1
2c1

,1] ,
(53)

13. This can be easily verified by checking the value of h(η) at η = 0, 1
2c1

,1, which should be g(0), g( 1
2 ) and g(1),

respectively.
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where the costs c0 and c1 satisfy the conditions c1 > c0 and c−1
0 + c−1

1 = 2. In particular, when

g(η) = hbin(η) =−η logη− (1−η) log(1−η) (Shannon), we have

h(η) =

{

−(c1η) log(c1η)− (1− c1η) log(1− c1η) = hbin(c1η) if η ∈ [0, 1
2c1

) ,

−(c0η̃) log(c0η̃)− (1− c0η̃) log(1− c0η̃) = hbin(c0η̃) if η ∈ [ 1
2c1

,1] .
(54)

Substituting the above expression into Equation (21), we get a new definition of conditional entropy

which we call the cost-sensitive conditional entropy and denote as Hcs(y|x). That is, Hcs(y|x) :=
Ex∼µ[h(η(x))], with h(η) defined as above.

We now compute the value of Hcs(y|x) for the two classification tasks (x1,y) and (x2,y) as

defined in Example 3, under the settings of c0 = 0.625, c1 = 0.25. By Equation (51), we know that

the marginal distribution of x1 is Pr{x1 = x
(1,2,3)
1 }= [0.66,0.274,0.066]; the conditional probability

of the positive class is η1,2,3 = Pr{y = 1 | x1 = x
(1,2,3)
1 } = [0.5,0,1]. By Equation (54), we have

h(η1) = hbin(c0η̃1) = hbin(0.625 · 0.5) = 0.6211; h(η2) = hbin(c1η2) = hbin(0) = 0; and h(η3) =
hbin(c0η̃3) = hbin(0) = 0. Thus,

Hcs(y|x1) = Pr{x1 = x
(1)
1 } ·h(η1) = 0.66×0.6211 = 0.4099 .

Similarly, for the feature x2, we have η1,2,3 = Pr{y = 1 | x2 = x
(1,2,3)
2 }= [0.3,0,1] and Pr{x2 =

x
(1,2,3)
2 } = [0.72,0.1,0.18]. Thus, h(η1) = hbin(c0η̃1) = hbin(0.625 · 0.7) = 0.6853 and h(η2) =

h(η3) = 0. We thus get

Hcs(y|x2) = Pr{x2 = x
(1)
2 } ·h(η1) = 0.72×0.6853 = 0.4934 .

Since Hcs(y|x1)< Hcs(y|x2), the feature x1 would be selected according to the cost-sensitive condi-

tional entropy. This coincides with the decision we previously obtained by directly comparing the

value of CSR.

In conclusion, Shannon’s mutual information or conditional entropy is not a proper surrogate

learning objective in dealing with a cost-sensitive situation or when the subsequent classification

process is assessed by the metric of F-score. Conversely, we have proven the positive result that

Shannon’s information is appropriate for balanced error rate. For cost-sensitive risk minimization

problems, we suggest to use a cost-sensitive variant of normal symmetric conditional entropies

as defined by Equation (53). As far as the authors know, this definition of conditional entropy

has not been studied in the context of feature selection. The work by Elkan (2001) might be the

closest to ours, where he investigated the possibility of adapting a given learning algorithm to the

cost-sensitive situation by simply adjusting the prior probability of each class (whereas here we

intend to change the posterior probabilities). For F-score maximization, we have not found a proper

information measure so far.

9. Conclusion and Future Work

Inspired by the widespread use of Fano’s inequality in machine learning—in particular, in feature

selection, the paper has extended Fano’s and Hellman’s bounds (on error probability) to the bounds

on other commonly used criteria including balanced error rate, F-score and cost-sensitive risk. To

this end, we developed a general geometric method which enables us to derive the tight bounds

on the above mentioned criteria using a general definition of conditional entropy (see Definition
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2), in a uniform way. These bounds are presented in three main theorems of the paper: Theorems

7, 11 and 15. Our work extends previous knowledge on the relationship between classification

performance criteria and conditional entropy (Ben-Bassat, 1978; Golic, 1987; Feder and Merhav,

1994; Erdogmus and Principe, 2004).

The advantage of the proposed geometric approach is clear: it provides a visible and intuitive

insight into the relationship between the concerned criteria and information measures. Moreover,

defining the conditional entropy through a general concave function h(η) in fact gives us much

more than what we have stated so far. For example, let h(η) = min{η, η̃} in Theorem 15, we

immediately get the bounds on the Bayes error rate in terms of maximum F-score: 0 6 ERR 6

min{ FSC

2−FSC
,1− FSC

2−FSC
}.

When deriving the bounds on the maximum F-score and the minimum cost-sensitive risk, some

new findings were noticed, which, interestingly, might be of more interest than the bounds them-

selves. Firstly, as a by-product of the bounds on the maximum F-score, FSC, in Section 6 we proved

that the optimal classifiers for maximizing the F-score have the form ŷ(x) = [[η(x)> θ]]. This prop-

erty is called the probability thresholding principle for binary classifications by Lewis (1995); and

has been proved by Lewis (1995) and Jansche (2007) independently for finite input spaces X . Here

we presented a proof for the general case where X is an arbitrary set, which, to the best of our

knowledge, is novel.

The most important new finding in the paper is that the Infomax principle based on standard

information measures could be misleading when F-score or cost-sensitive risk is used as the per-

formance measure. We illustrated this by analytical argument and a simple example in the field of

feature selection. For cost-sensitive risk, we proposed an alternative information measure, whose

usefulness is justified by the same example (and by the monotonicity of the resulting bounds, see

Figure 9-b). To summarize,

Shannon’s conditional entropy is not a proper criterion for feature selection when the

subsequent classification process is measured by F-score or cost-sensitive risk. Instead,

we suggest to use a cost-sensitive variant as defined by Equation (53).

A corresponding measure for F-score is left as an open problem for further research. This is

a challenging question due to the fact that F-score is defined on the whole object space, whereas

information measures are usually defined through the conditional probabilities on single objects,

Pr{y = 1 | x = x}. To find a proper information measure for the F-score maximization problem is

a research topic in our group to be pursued in the future. As the presented bounds hold only for

binary problems, extending them to the multi-class problem is also a topic of interest in the group.

We finish the paper with an important remark. The paper is theory-oriented; it is concerned with

problems, not with classifiers or algorithms. More precisely, while the performance of a classifier

could be measured by error rate, balanced error rate, F-score or cost-sensitive risk, their optimum

value over all classifiers can be seen as different difficulty measures of the concerned problem. On

the other hand, the conditional entropy H(y|x) measures the amount of uncertainty about the class

label remaining after we have observed the object. Thus, it can also be seen as a difficulty measure

of classification tasks. From this perspective, in this paper we are examining the relationship be-

tween two different types of difficulty measures of classification problems. Our main finding is that

Shannon’s conditional entropy as a difficulty measure is inconsistent with the maximum F-score and

the minimum cost-sensitive risk. This fact has serious implications in the field of feature selection,

as we have discussed in Section 8.
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Appendix A. Bounds on the Bayes Error Rate: the Multi-Class Case

We have already mentioned in the introduction section the main work in the literature that are

related to ours. These are all about bounding the Bayes error rate by means of different conditional

entropies. This section briefly introduces a unifying derivation of these bounds, based on the work

of Tebbe and Dwyer III (1968), Ben-Bassat (1978) and Golic (1987). As Fano’s bound and others’

actually hold for the multi-class problem, we need to extend the notations introduced in Section 2

to catch up with the multi-class case.14 These new notations are used only in this section and not

listed in Table 1.

Assume there are m classes which are labeled by the integers 1 to m. Then a classifier can be

written as a function ŷ(x) on X that takes values in the set {1, . . . ,m}. Similar to the binary case,

we decompose the joint distribution of (x,y) as the product of the marginal distribution of x and the

conditional distribution of y given x. As such, the definition of µ(A) is unchanged, see Equation (2).

But the quantity η(x) is now replaced by an m-dimensional vector η(x) = [η1(x), . . . ,ηm(x)], with

ηy(x) := Pr{y = y | x= x} , ∀x ∈ X , ∀y ∈ {1, . . . ,m} .

By the above definition we see that the elements of η(x) are non-negative and sum to 1. Such vectors

are called probability vectors in statistics. We shall denote by Pm the set of probability vectors of

dimension m, which is also known as the probability simplex in R
m:

Pm := {η ∈ R
m | ηy > 0 for all y = 1, . . . ,m; and ∑m

y=1 ηy = 1} .

In terms of µ and η, the joint distribution of (x,y) can be written as

Pr{x ∈ A,y = y}=
∫

A ηy(x)dµ , ∀A ⊆ X measurable , ∀y ∈ {1, . . . ,m} .

Letting A = X in the above formula, we get the (prior) probability of each class,

πy := Pr{y = y}=
∫

X
ηy(x)dµ , ∀y ∈ {1, . . . ,m} .

Note that the vector of class probabilities, π := [π1, . . . ,πm], is also a probability vector.

As before, we call the pair (µ,η) a (classification) task, whose conditional entropy is defined as

follows.

Definition 19 Let h : Pm → R be a symmetric concave function—the word “symmetric” refers to

that, for any η = [η1, . . . ,ηm] ∈ Pm and any permutation (i1, . . . , im) of {1, . . . ,m}, it holds that

h(η1, . . . ,ηm) = h(ηi1 , . . . ,ηim). The conditional entropy of a task (µ,η) is

H(y|x) :=
∫

X
h(η(x))dµ = Ex∼µ[h(η(x))] .

14. Only in this section we discuss the multi-class problem; the rest of the paper is devoted to the binary case.
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In particular, letting h(η) =−∑m
i=1 ηi logηi, we get the Shannon conditional entropy.

For any classification task (µ,η), the (expected) error rate of a given classifier ŷ : X →{1, . . . ,m}
can be computed as

ERR = Pr{y 6= ŷ(x)}

= 1−Pr{y = ŷ(x)}

= 1−∑m
y=1 Pr{y = y, ŷ(x) = y}

= 1−∑m
y=1

∫
Xy

ηy(x)dµ ,

where Xy are subsets of the feature space X determined by the classifier ŷ(x) via Xy := {x ∈ X |
ŷ(x) = y}, for y = 1, . . . ,m. Therefore, the error rate is minimized when ηy(x) is the maximum

element in the whole vector η(x) on the set Xy. That is,

ERR = 1−∑m
y=1

∫
Xy

max{η(x)}dµ = 1−
∫

X
max{η(x)}dµ = Ex∼µ[1−max{η(x)}] ,

where, for any vector η, max{η} denotes its maximum entry.

Following the line presented in Section 3, here we need to examine the range of the point

[ERR,H(y|x)] = Ex∼µ[e(η(x)),h(η(x))] in the error rate versus conditional entropy plane. Here the

function e(η) is defined as e(η) = 1−max{η}; for the binary case, this becomes e(η) = min{η, η̃}.

So the problem is now reduced to finding the convex hull of the set {[e(η),h(η)] | η ∈ Pm}, which

further amounts to computing the extreme values of h(η) given that e(η) is fixed.

Lemma 20 Let h : Pm → R be a symmetric concave function. Let η ∈ Pm be such that e(η) = r.

Then h(η) is maximized when one element of η equals to 1− r and the others are all r
m−1

; and it is

minimized when all entries of η are either 1− r or 0, except one whose value is determined by the

condition that η has element sum 1.

In particular, for the function h(η) =−∑m
i=1 ηi logηi, we have

hmax(r) := max
η∈Pm,e(η)=r

h(η) =−(1− r) · log(1− r)− r · log
(

r
m−1

)

,

hmin(r) := min
η∈Pm,e(η)=r

h(η) =−k · (1− r) · log(1− r)−β · logβ ,

where k is the maximum integer such that k · (1− r)6 1 and β = 1− k · (1− r).
The graphs of hmax(r) and hmin(r) are plotted in Figure 10 for the case of m = 5 classes. Notice

that for m = 5, max{η} > 0.2, so the range of r = e(η) = 1−max{η} is [0,0.8]. From the figure

we see that while hmax(r) is a smooth function, the curve of hmin(r) consists of m−1 = 4 segments,

connected by the endpoints A, B, and C. The r-coordinate of these endpoints are determined by the

condition k · (1− r) = 1, for k = 1, . . . ,m corresponding to the points O, A, . . . , D, respectively.

By definition, the region between the curves of hmax(r) and hmin(r) is exactly the set {[e(η),h(η)] |
η ∈ Pm}. Moreover, it can be proven that hmax(r) is concave and hmin(r) concave within each seg-

ment; their graph also shows this. Therefore, the convex hull of {[e(η),h(η)] | η ∈ Pm} is bounded

by the curve OD and the broken line OABCD, which represent the tight lower (Fano) and upper

(Tebbe) bounds on the Bayes error rate, ERR, in terms of the conditional entropy, H(y|x). Fur-

thermore, the broken line OABCD forms a convex function, so it is lower bounded by its most left

segment OA. This actually gives us the Hellman inequality, ERR 6
1
2
H(y|x).
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Figure 10: Graphs of the functions hmax(r) (solid line) and hmin(r) (dashed line) for the m = 5 class

problem. From the two curves we obtain the tight lower bound (Fano), the tight upper

bound (Tebbe, the dotted broken line OABCD) on the Bayes error rate, and the Hellman

bound.

The above derivation is simple and elegant. However, it can not be directly applied to the case

of balanced error rate (for multi-class problems). The main difficulty is that now we have an extra

condition on the posterior probabilities η(x), namely, its integral over the space X should be equal

to the class probability π. So the problem of bounding balanced error rate actually amounts to

min or max H(y|x) =
∫

X
h(η(x))dµ

subject to
∫

X
η(x)dµ = π ,

1
m

∫
X

miny=1,...,m{π−1
y ηy(x)}dµ = BER ,

which is a very difficult optimization problem, even for the case of m = 2.

In this paper, we restrict ourselves to the binary case (so the vector η(x) can be represented by a

scalar η(x), as is shown in the paper) and consider the reachable region of the 3-dimensional point

[η,r(η),h(η)]—where r(η) = min{π−1η, π̃−1η̃}, rather than the 2-dimensional point [r(η),h(η)].
As such, we avoid solving the above optimization problem, which is extremely hard as we can tell.

Finally, we should also mention that extending our method to the multi-class case is also diffi-

cult, if not impossible. Because that will involve the reachable region of the high (m+ 2) dimen-

sional point [η,r(η),h(η)] with r(η) := miny=1,...,m{π−1
y ηy}.

Appendix B. Mathematical Foundation

In this section we discuss three fundamental points which support the content of the paper and

provide a mathematically more rigorous foundation.15

15. We thank two anonymous reviewers for pointing out these imperfection to us.

1073



ZHAO, EDAKUNNI, POCOCK AND BROWN

1. The concept of a true label can be very messy in the commonly used setup for pattern classi-

fication which involves only the jointly-distributed random variables (x,y).

2. The convex hull of the curves ℓ in the paper are obtained heuristically, a more rigorous treate-

ment is needed.

3. The geometric arguments in this paper are based on the proposition: the expectation of a

random vector u ∈ R
n lies in the convex hull of its range. While this is correct in intuition, it

needs a mathematical proof.

As the above three problems make sense not only for the specific topic studied here, but also from a

broader viewpoint of pattern classification and probability theory, we place the discussion of them

in a separate section.

B.1 A Mathematical Definition of True Class Labels

To describe the classification problem in a mathematical framework, many textbooks on machine

learning start off with a joint distribution of the feature vector x and the class label y. For example,

in Devroye et al. (1996, Chapter 1) the authors wrote:

. . . More formally, an observation is a d-dimensional vector x. The unknown nature of

the observation is called a class. It is denoted by y . . .

and in Chapter 2 they continued with:

. . . The random pair (x,y) may be described in a variety of ways: for example, it is de-

fined by the pair (µ,η), where µ is the probability measure for x and η is the regression

of y on x. . . .

While this treatment has the advantages of simplicity and ease to understand, it fails to capture some

natural notions rised in real applications such as the true label of an object. It is also not a uniform

framework in the sense that, whenever a new feature is added, we have to extend the vector x by one

component and redefine the joint distribution.

We now introduce an alternative framework that allows for a clear definition of true class labels.

The key idea is to distinguish between an object and the features describing it. For this, we denote

by Ω the set of all objects ω16 in the considered problem. In medical diagnosis, for example, this

could be (the set of) all people in a country or an area. We can then define a σ-algebra F of subsets

of Ω and a probability measure P on F , yielding a probability space (Ω,F ,P). Note that, here

(Ω,F ,P) serves only as a uniform base for discussion; and the concrete definition of F and P are

not important.

According to the problem at hand, the set Ω is often naturally divided into several (measurable)

subsets that are pairwise disjoint, say Ω = Ω0 ∪Ω1. For example, Ω1 may represent those people

who are affected by a certain disease; and Ω0 is the set of the others. This can be conveniently

described by a function y : Ω → {0,1} that sends each ω ∈ Ωi to the value i (i = 0,1). Since the

subsets Ωi are pairwise disjoint and their union equals to Ω, the function y is well defined. We can

now define the value of y at a particular ω as the true class label of the object ω.

16. More rigorously speaking, here ω is in fact the “name” of the object it represented.
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One main goal in pattern classification is to predict the true class label y(ω), for which we

need to make some measurements on the object ω—obviously, the object itself cannot be used as a

predictor here. The measuring procedure is also described as a measurable function x : Ω → X . For

example, x(ω) might be the vector of heart rate, body temperature and blood pressure of the person

ω. The joint distribution of x and y is induced from the probability measure P, as follows: for any

A ⊆ X measurable and y ∈ {0,1},

Pr{x ∈ A,y = y} := P({ω ∈ Ω | x(ω) ∈ A, y(ω) = y}) .

Thus, every notion in the traditional framework can also be well defined in the new framework, but

not vice versa.

The target of pattern classification is to design a classifier ŷ : X → {0,1} so that some criterion

is minimized or maximized. Since ŷ is a function on X rather than Ω, for each x ∈ X it does not

discriminate between the objects in the set Ωx = {ω ∈ Ω | x(ω) = x}, which may belong to different

classes—that is, y(ω) may not assume a constant value on Ωx. So the best thing we can do is to

choose the best class label (according to the concerned criterion) for each feature vector x ∈ X ; and

assign it to all objects in the set Ωx, regardless of their true class label.

To recapitulate, the concept of a true class label can only be defined for objects, not for feature

vectors; so it is not well defined under the traditional probabilistic framework, which identify an

object with its feature vector. At the feature vector level, the notion of best class labels can be

defined; and its definition depends on the performance criterion used. We however had better keep

using the term “true label” anyway, for otherwise some commonly used notions such as true positive

and misclassification rate would cause even more confusion. Also, dropping this term will make the

discussion in Elkan (2001) about “reasonableness” conditions of cost matrices (see also page 1040

of this paper) meaningless. For this reason, we have abused the notion of true labels in the paper

even though the traditional framework is adopted. It actually should be understood as the true class

label of the particular object ω we are talking about whose feature vector is x.

B.2 On the Convex Hull of a Given Set in R
m

In this section, we propose a recursive procedure to construct the convex hull of a general subset in

the Euclidean space R
m, for which we introduce some basic terminologies first. A set D ⊆ R

m is

said to be convex if αu+ α̃v ∈ D for any u,v ∈ D and any α ∈ [0,1]—recall that α̃ := 1−α. Let

D be a convex set in R
m. A function f : D → R is convex if for any u,v ∈ D and α ∈ [0,1], it holds

that f (αu+ α̃v)6 α · f (u)+ α̃ · f (v) . If, instead, the reversed inequality holds, then f is a concave

function. Notice that convex (concave) functions are defined on convex sets. For any D ⊆ R
m, its

convex hull, denoted as coD in the paper, is defined as the set of all (finite) convex combinations of

points in D,

coD := {∑n
i=1 αiui | n ∈ N, ui ∈ D, αi > 0, ∑n

i=1 αi = 1} .

Another equivalent definition of coD is that it is the smallest convex set that contains D as a subset.

Both definitions will be usee (in proving certain propositions). Furthermore, for any u ∈ R
m we

shall call the sum ∑n
i=1 αiui or the set {(αi,ui)}

n
i=1 a convex decomposition of u in D if it holds that

αi > 0, ∑n
i=1 αi = 1, ui ∈ D and u= ∑n

i=1 αiui. Notice that a vector u ∈ coD if and only if it has at

least one convex decomposition in D.

Lemma 21 The convex hull of any subset D of the real line R is an interval with the endpoints

a = infD and b = supD. Moreover, a ∈ coD iff a ∈ D and b ∈ coD iff b ∈ D.
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Proof We only consider the case where a ∈ D and b /∈ D; the other three possibilities can be

discussed analogously. It is clear that D ⊆ [a,b) and that [a,b) is a convex set. But coD is the

smallest convex set that contains D, thus coD ⊆ [a,b). It now remains to show that [a,b) ⊆ coD

(hence coD = [a,b) and we are done). For any c ∈ [a,b), as b = supD, there exists a t ∈ D such that

c < t < b. Put α = t−c
t−a

, then c = α ·a+ α̃ · t ∈ coD.

Although simple, the above lemma characterizes completely the convex hull of subsets in the 1-

dimensional space. For the high dimensional case, we need further to introduce some new symbols.

For any m ∈N and any E ⊆R
m+1, denote by E↓ the projection of E onto R

m (the subspace of Rm+1

spanned by the first m unit vectors):

E↓ := {u= [u1, . . . ,um] ∈ R
m | [u,s] = [u1, . . . ,um,s] ∈ E for some s ∈ R} .

For each u ∈ R
m, we define E

↑
u := {s ∈ R | [u,s] ∈ E}. Intuitively, E

↑
u ⊆ R can be seen as the

intersection of the set E and the real line “vertically” placed at the point u. Observe that E
↑
u 6=∅ iff

u ∈ E↓ and that [u,s] ∈ E iff s ∈ E
↑
u. Furthermore, with the notions of E↓ and E

↑
u, any E ⊆ R

m+1

can be expressed as E = {[u,s] | u ∈ E↓, s ∈ E
↑
u}. In particular, replacing the set E by its convex

hull in this identity, we obtain

coE = {[u,s] | u ∈ (coE)↓, s ∈ (coE)↑
u
} . (55)

Lemma 22 For any E ⊆ R
m+1, it holds that (coE)↓ = coE↓.

Proof The set coE is convex, so is its projection (coE)↓—see, for example, Rockafellar (1970,

p. 19, Corollary 3.4.1). Moreover, from E ⊆ coE we know E↓ ⊆ (coE)↓. It then follows from the

minimality of coE↓ that coE↓ ⊆ (coE)↓. We now show that (coE)↓ ⊆ coE↓. Let u ∈ (coE)↓,

then [u,s] ∈ coE for some s ∈ R. Hence the vector [u,s] has a convex decomposition in E, say

[u,s] = ∑n
i=1 αi · [ui,si]. It follows from [ui,si] ∈ E that ui ∈ E↓ and so u= ∑n

i=1 αiui ∈ coE↓. This

proves (coE)↓ ⊆ coE↓.

Lemma 22 links the convex hull of a set in R
m+1 to that in R

m and hence simplifies the first

ingredient of Equation (55), (coE)↓. We now analyze its second ingredient, (coE)↑u with u ∈

(coE)↓ = coE↓. First of all, since coE is a convex set, so is (coE)↑u. To see this, let s1,s2 ∈

(coE)↑u, then [u,s1], [u,s2] ∈ coE. But coE is a convex set, so for any α ∈ [0,1] it holds that

α[u,s1] + α̃[u,s2] = [u,αs1 + α̃s2] ∈ coE, that is, αs1 + α̃s2 ∈ (coE)↑u. Secondly, (coE)↑u is a

subset of R, it hence must be an interval—one should have no difficulty to see that every convex set

in R is an interval. The problem is thus reduced to determining the two endpoints of the interval,

that is, the infimum and supremum of (coE)↑u, for which the following two symbols g(·|·) and g(·|·)
are useful.

By the definition of E↓ and E
↑
u, it is obvious that E

↑
u is nonempty for each u ∈ E↓. Now assume

that E ⊆R
m+1 is bounded, that is, E ⊆ [−b,b]m+1 for some b ∈R, then the set E

↑
u is also bounded—

in fact, E
↑
u ⊆ [−b,b] for any u ∈ E↓. For such sets E, the functions

g(·|E) : E↓ → R, u 7→ supE↑
u
, g(·|E) : E↓ → R, u 7→ infE↑

u
(56)
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are well defined (and bounded). Note that for general sets E ⊆ R
m+1, the above functions could be

±∞ at some points u. So the boundness of the set E is necessary for g and g to be real-valued. The

notation g(·|·) and g(·|·) allows us to rewrite the supremum of the set (coE)↑u as g(u|coE) and its

infimum as g(u|coE). Here the functions g(·|coE) and g(·|coE) are also defined by Equation (56),

but with the set E replaced by coE. That is,

g(·|coE) : (coE)↓ → R, u 7→ sup(coE)↑
u
,

g(·|coE) : (coE)↓ → R, u 7→ inf(coE)↑
u
. (57)

In the following we aim to relate the above two functions to g(·|E) and g(·|E).

Lemma 23 Let E ⊆ R
m+1 be a bounded convex set. Then g(·|E) is a convex function and g(·|E) a

concave function on E↓.

Proof Since E is convex, so is its projection E↓. Thus, αu+ α̃v ∈ E↓ for any u,v ∈ E↓ and

α ∈ [0,1]. By the definition of g(·|E), Equation (56), to prove its convexity we need to show

infE
↑
αu+α̃v 6 α · infE↑

u
+ α̃ · infE↑

v
. (58)

For any ε > 0, by the definition of E
↑
u we know there is an s ∈R such that [u,s]∈ E and s < infE

↑
u+

ε. Similarly, there exists a t ∈R satisfying [v, t]∈ E and t < infE
↑
v+ε. Then [αu+ α̃v,αs+ α̃t]∈ E

since E is convex. This means that αs+ α̃t ∈ E
↑
αu+α̃v and so

infE
↑
αu+α̃v 6 αs+ α̃t < α · infE↑

u
+ α̃ · infE↑

v
+ ε .

Since ε > 0 can be arbitrarily small, we get the desired inequality (58).

The concavity of the function g(·|E) can be proven in the similar way.

By this lemma, we at once see that the function g(·|coE) is convex and g(·|coE) concave.

Moreover, as E ⊆ coE and hence E
↑
u ⊆ (coE)↑u for any u ∈ R

m, we know from Equations (56)–

(57) that

g(u|coE)6 g(u|E)6 g(u|E)6 g(u|coE) , ∀u ∈ E↓ .

Here the domain of g(·|E) and g(·|E), E↓, does not need to be convex; and the domain of g(·|coE)

and g(·|coE), (coE)↓ = coE↓, is the convex hull of the domain of g(·|E) and g(·|E). These obser-

vations motivate us to introduce the concepts of the convex/concave hull of functions defined on a

subset of Rm which is not necessarily convex.

Let D ⊆R
m and f : D →R. The concave hull of f is the smallest concave function f⌢ : coD →

R such that f⌢(u) > f (u) for all u ∈ D; and the convex hull of f is the greatest convex function

f⌣ : coD → R with f⌣(u) 6 f (u) for u ∈ D. In particular, if the domain D is itself a convex

set, then coD = D and our definition of f⌣ and f⌢ degenerates into the standard definition. Here

both f⌣ and f⌢ are required to be real-valued. As such, some functions might have no convex or

concave hull. For instance, the function f (t) = t2, t ∈ R does not have concave hull—it would be

f⌢(t) = ∞ if the extended real line is considered instead of R.
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Lemma 24 For any bounded subset E ⊆ R
m+1, the function g(·|coE) is the convex hull of g(·|E);

and g(·|coE) is the concave hull of g(·|E).

Proof We have shown that g(·|coE) : coE↓ → R is a convex function which for any u ∈ E↓

satisfies g(u|coE)6 g(u|E). It thus remains to show that g(·|coE)> f (·) for any convex function

f : coE↓ → R satisfying the same condition.

Let u ∈ coE↓, by definition, g(u|coE) = inf(coE)↑u. Thus, for any ε > 0, there is an s ∈

(coE)↑u such that s < g(u|coE) + ε. By s ∈ (coE)↑u we know [u,s] ∈ coE, so it has a convex

decomposition in E, say [u,s] = ∑n
i=1 αi · [ui,si]. It follows from [ui,si] ∈ E that si ∈ E

↑
ui and hence

g(ui|E) = infE
↑
ui 6 si. Since f : coE↓ → R is a convex function and since f (·)6 g(·|E) on E↓, by

Jensen’s inequality we have

f (u) = f (∑n
i=1 αiui)6 ∑n

i=1 αi · f (ui)6 ∑n
i=1 αi ·g(ui|E) . . .

. . . 6 ∑n
i=1 αisi = s < g(u|coE)+ ε .

As ε > 0 can be arbitrarily small, the above inequality implies f (u) 6 g(u|coE). We thus have

proved that g(·|coE) is the convex hull of g(·|E). By the similar argument, we can prove g(·|coE)
is the concave hull of g(·|E).

Lemma 25 Let D ⊂ R
m be an arbitrary set. Then any lower (upper) bounded function f : D → R

allows for a convex (concave) hull f⌣( f⌢) : coD → R.

Proof On the set coD define two functions f ∗(u) and f∗(u) by

f ∗(u) := sup{∑n
i=1 αi · f (ui) | {(αi,ui)}

n
i=1 a conv. decomp. of u in D} , (59)

f∗(u) := inf{∑n
i=1 αi · f (ui) | {(αi,ui)}

n
i=1 a conv. decomp. of u in D} . (60)

As any u ∈ coD allows for at least one convex decomposition in D, the above set {∑ . . .} is

nonempty and hence its supremum and infimum are well defined. We claim that f⌣ = f∗ when

f is lower bounded and that f⌢ = f ∗ when f is upper bounded.

By the definition of f⌣, to see that f⌣ = f∗ it suffices to show

(a) f∗(·) is a convex function on coD: Let u,v ∈ coD and t ∈ [0,1], we need to prove f∗(tu+
t̃v)6 t · f∗(u)+ t̃ · f∗(v). For any ε > 0, by the definition of f∗(u), there is a convex decomposition

of u in D, {(αi,ui)}
n
i=1, such that f∗(u)>∑n

i=1 αi · f (ui)−ε. Analogously, f∗(v)>∑k
i=1 βi · f (vi)−

ε for some convex decomposition of v, {(βi,vi)}
k
i=1. We thus get

t · f∗(u)+ t̃ · f∗(v)> ∑n
i=1 tαi · f (ui)+∑k

i=1 t̃βi · f (vi)− ε.

But the set {(tαi,ui)}
n
i=1 ∪{(t̃βi,vi)}

k
i=1 forms a convex decomposition of tu+ t̃v, so

f∗(tu+ t̃v)6 ∑n
i=1 tαi · f (ui)+∑k

i=1 t̃βi · f (vi) .

It hence follows that f∗(tu+ t̃v)< t · f∗(u)+ t̃ · f∗(v)+ ε. Since ε > 0 can be arbitrarily small, we

conclude that f∗(tu+ t̃v)6 t · f∗(u)+ t̃ · f∗(v).
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(b) f∗(u)6 f (u) for all u ∈ D: This is obvious as {(1,u)} is a convex decomposition of u in

D.

(c) g(u) 6 f∗(u) for any g : coD → R satisfying the above conditions (a) and (b), and any

u ∈ coD: For any ε > 0, by the definition of f∗(u), there is a convex decomposition of u in D,

{(αi,ui)}
n
i=1, such that f∗(u) > ∑n

i=1 αi · f (ui)− ε. As g(·) is a convex function, and as g 6 f on

D, by Jensen’s inequality we have

∑n
i=1 αi · f (ui)> ∑n

i=1 αi ·g(ui)> g(∑n
i=1 αiui) = g(u),

where the last equality follows from that {(αi,ui)}
n
i=1 is a convex decomposition of u. We thus

know f∗(u)+ ε > g(u) and so f∗(u)> g(u), since ε > 0 can be arbitrarily small.

By the similar argument, one shows that f⌢ = f ∗ for upper bounded functions f .

The above two lemmas enable us to describe the functions g(·|coE) and g(·|coE) in terms of

g(·|E) and g(·|E), respectively. In fact, by putting f (·) = g(·|E) in Equation (59) and f (·) = g(·|E)
in Equation (60), we get

g(u|coE) = sup{∑n
i=1 αig(ui|E) | {(αi,ui)}

n
i=1 a conv. decomp. of u in E↓} , (61)

g(u|coE) = inf{∑n
i=1 αig(ui|E) | {(αi,ui)}

n
i=1 a conv. decomp. of u in E↓} . (62)

Now let us return to the expression (55), coE = {[u,s] | u ∈ (coE)↓, s ∈ (coE)↑u}. As has

been pointed out earlier, for any u ∈ (coE)↓ = coE↓, the set (coE)↑u is an interval in R with the

two endpoints g(u|coE), g(u|coE) determined respectively by Equation (61) and Equation (62).

This interval might be open, closed, or half-open-half-closed, depending on whether or not the

respective endpoint is in the interval. For simplicity we restrict ourselves to bounded and closed

sets E. Then their convex hull coE are also bounded and closed—see, for example, Aliprantis and

Border (2006, p. 185, Corollary 5.33), which in turn implies the set (coE)↑u can only be a closed

interval, (coE)↑u = [g(u|coE),g(u|coE)]. Equation (55) can thus be rewritten as

coE = {[u,s] | u ∈ coE↓, g(u|coE)6 s 6 g(u|coE)} . (63)

The projection E↓ of a bounded closed set E is also bounded and closed, so the above expression

of coE gives naturally rise to a recursive algorithm to construct the convex hull of any bounded and

closed set E, as follows. To get coE we need only to find coE↓ and the functions g(·|coE) and

g(·|coE) as given by Equations (56), (61) and (62); to get coE↓ we need to find coE↓↓ and the

functions g(·|coE↓) and g(·|coE↓); and so forth. As E↓ ⊆ R
m for any E ⊆ R

m+1, this procedure

terminates with the 1-dimensional case after m steps, which has been fully discussed in Lemma 21.

B.3 The Convex Hull of Three Curves ℓ in the Paper

We now apply the recursive procedure presented in the preceding section to three curves occurred

in the paper, to get their convex hull. These curves have been parameterized by the posterior prob-

ability η ∈ [0,1], as listed below—to distinguish, a subscript is used to indicate the quantity with
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which the curve is associated:

ℓCSR = {[e(η),h(η)] | η ∈ [0,1]} , e(η) = min{c1η,c0η̃} ; (64)

ℓBER = {[η,r(η),h(η)] | η ∈ [0,1]} , r(η) = min{π−1η, π̃−1η̃} ; (65)

ℓFSC = {[η,u(η),h(η)] | η ∈ [0,1]} , u(η) = θ∗η− (η−θ∗)+ and θ∗ = 1
2

FSC . (66)

In the above, the function h : [0,1]→ R is concave and satisfies h(0) = h(1) = 0.

B.3.1 THE CONVEX HULL OF ℓCSR

The curve ℓCSR lies in the e-h plane; and, by Equation (63), its convex hull can be expressed as

coℓCSR = {[e0,h0] | e0 ∈ coℓ↓CSR, g(e0|coℓCSR)6 h0 6 g(e0|coℓCSR)} . (67)

As c−1
0 + c−1

1 = 2, the range of e(η) is [0,0.5]—see the analysis in page 1048. We thus have

ℓ↓CSR = {e(η) | η ∈ [0,1]} = [0,0.5] and hence coℓ↓CSR = [0,0.5]. For each e0 ∈ [0,0.5], the set

(ℓCSR)
↑
e0 is computed as follows: (ℓCSR)

↑
e0 = {h0 ∈ R | [e0,h0] ∈ ℓCSR} = {h(η) | e(η) = e0}. But

e(η) = e0 implies η = c−1
1 e0 or η = 1− c−1

0 e0, so (ℓCSR)
↑
e0 = {h(c−1

1 e0),h(1− c−1
0 e0)}. It then

follows from Equation (56) that

g(e0|ℓCSR) = max{h(c−1
1 e0),h(1− c−1

0 e0)} , ∀e0 ∈ [0,0.5] ;

g(e0|ℓCSR) = min{h(c−1
1 e0),h(1− c−1

0 e0)} , ∀e0 ∈ [0,0.5] .

By Lemma 24, we know g(e0|coℓCSR) is the concave hull of g(e0|ℓCSR) and g(e0|coℓCSR) the convex

hull of g(e0|ℓCSR), that is,

g(e0|coℓCSR) = [max{h(c−1
1 e0),h(1− c−1

0 e0)}]
⌢ ,

g(e0|coℓCSR) = [min{h(c−1
1 e0),h(1− c−1

0 e0)}]⌣ = 2 ·h( 1
2c1

) · e0 ,

where the last equality holds because both h(c−1
1 e0) and h(1− c−1

0 e0) are concave functions of e0

and they have the same endpoints: [0,0] and [ 1
2
,h( 1

2c1
)]. Substituting the identity coℓ↓CSR = [0,0.5]

and the above expressions of g(e0|coℓCSR) and g(e0|coℓCSR) into Equation (67), we obtain

coℓCSR = {[e0,h0] | e0 ∈ [0,0.5], 2e0 ·h(
1

2c1
)6 h0 6 [. . .]⌢} , (68)

where the expression in the brackets [. . .] is max{h(c−1
1 e0),h(1− c−1

0 e0)}.

B.3.2 THE CONVEX HULL OF ℓBER AND ℓFSC

The curves ℓBER and ℓFSC are of the same nature: both r(η) and u(η) are piecewise affine functions

whose graph consists of two line segments. They can hence be treated together. By the definition of

r(η) and u(η), we have

r(η) =

{

π−1η if η 6 π

π̃−1η̃ otherwise
, u(η) =

{

θ∗η if η 6 θ∗

θ∗− θ̃∗η otherwise
. (69)

The graph of the two functions for π = θ∗ = 0.3 are shown in Figure 11; they also represent the

curves ℓ↓BER = {[η,r(η)] | η ∈ [0,1]} and ℓ↓
FSC

= {[η,u(η)] | η ∈ [0,1]}, respectively. As both r(η)
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and u(η) are concave functions, by Equation (63) it is easy to see that (the detailed derivation is just

a routine work and omitted here)

coℓ↓BER = {[η,r0] | η ∈ [0,1], 0 6 r0 6 r(η)} ,

coℓ↓
FSC

= {[η,u0] | η ∈ [0,1], (θ∗− θ̃∗)η 6 u0 6 u(η)} . (70)

This is also clear from Figure 11: they are just the triangles OAB.
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Figure 11: a. The graph of the function r(η) (the solid line OAB), which can also be expressed as

ℓ↓BER = {[η,r(η)] | η ∈ [0,1]}. From the graph one easily sees that the convex hull of

ℓ↓BER is the area bounded by the triangle OAB.

b. The same graph and curve (ℓ↓CSR) for the function u(η).

As before, to derive the convex hull of the curve ℓFSC, we use Equation (63) and obtain

coℓFSC = {[η,u0,h0] | [η,u0] ∈ coℓ↓
FSC

, g(η,u0|coℓFSC)6 h0 6 g(η,u0|coℓFSC)}. (71)

The set coℓ↓
FSC

is already known, so it remains to find the expressions of g(η,u0|coℓFSC) and

g(η,u0|coℓFSC), for which we need first to determine the values of g(η,u0|ℓFSC) and g(η,u0|ℓFSC) for

[η,u0]∈ ℓ↓
FSC

—see Equation (61) and Equation (62). By the definition of ℓFSC, we know [η,u0]∈ ℓ↓
FSC

if and only if u0 = u(η); and (ℓFSC)
↑
[η,u0]

= {h(η)} for any [η,u0] ∈ ℓ↓
FSC

. It thus follows from

Equation (56) that g(η,u0|ℓFSC) = g(η,u0|ℓFSC) = h(η) for any point [η,u0] ∈ ℓ↓
FSC

, that is, for any

η ∈ [0,1] and u0 = u(η).

Based upon the above discussion and Equations (61) and (62), we have

g(η,u0|coℓFSC) = sup{∑n
i=1 αi ·h(ηi) | condition on (αi,ηi)} , (72)

g(η,u0|coℓFSC) = inf{∑n
i=1 αi ·h(ηi) | condition on (αi,ηi)} , (73)
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for any [η,u0] ∈ coℓ↓
FSC

, where the unspecified condition is that {(αi,ηi,u(ηi))}
n
i=1 forms a convex

decomposition of the point [η,u0] in ℓ↓
FSC

. In other words, here the parameters αi,ηi ∈ [0,1] should

satisfy ∑n
i=1 αi = 1, ∑n

i=1 αiηi = η and ∑n
i=1 αi ·u(ηi) = u0. Next we shall prove that n 6 2 when the

supremum in Equation (72) is obtained; and that the infimum in Equation (73) is attained at n 6 3

with ηi ∈ {0,θ∗,1}.

We discuss Equation (73) first. For each ηi in a convex decomposition {(αi,ηi,u(ηi))}
n
i=1 of

[η,u0], ηi ∈ [0,θ∗] or ηi ∈ [θ∗,1]. For the former case, we “split up” the item (αi,ηi,u(ηi)) into two

items at η = 0 and θ∗, with the α-parameter computed from the condition that the weighted sum of

the new items equals to the original one. That is, we construct (α1
i ,η

1
i ,u(η

1
i )) and (α2

i ,η
2
i ,u(η

2
i ))

with η1
i = 0 and η2

i = θ∗, such that

α1
i +α2

i = αi , α1
i η1

i +α2
i η2

i = αiηi , α1
i ·u(η

1
i )+α2

i ·u(η
2
i ) = αi ·u(ηi) . (74)

The third equality of Equation (74) is actually an implication of the first two, because u(η) is an

affine function on the interval [0,θ∗]—see Equation (69). By the first two equations in Equation (74),

we know α1
i = αi ·

θ∗−ηi

θ∗ and α2
i = αi ·

ηi

θ∗ . For the case of ηi ∈ [θ∗,1], the split is computed also from

Equation (74), but with η1
i = θ∗ and η2

i = 1. This gives us α1
i = αi ·

1−ηi

1−θ∗ and α2
i = αi ·

ηi−θ∗

1−θ∗ .

In geometry (see Figure 11), the above splitting operation replaces any point M (resp. N) on the

line segment OA (resp. AB) by a (unique) convex combination of the two endpoints O and A (resp.

A and B). We thus get a new set {(α1
i ,η

1
i ,u(η

1
i )),(α

2
i ,η

2
i ,u(η

2
i ))}

n
i=1, which, by Equation (74), is

obviously a convex decomposition of the point [η,u0] in ℓ↓
FSC

. Now, as h(η) is a concave function,

we know from Lemma 9 that α1
i · h(η

1
i )+α2

i · h(η
2
i ) 6 αi · h(ηi). This implies that the sum ∑i αi ·

h(ηi) of the new convex decomposition is no more than that of the original one. Moreover, by its

construction, the η-parameter of this new convex decomposition assumes one of the three values:

0, θ∗ and 1. We can thus “merge” all items with same η-value into one item (in an obvious way),

yielding a convex decomposition of [η,u0] with no more than three items—we wrote “no more than”

because any item with αi = 0 can be removed without changing the whole convex decomposition

and the value of ∑i αi ·h(ηi).
Thus far, we have shown that for any convex decomposition of [η,u0] another convex decompo-

sition can be constructed which has at most three items whose η-parameter are in the set {0,θ∗,1},

and for which the sum ∑i αi ·h(ηi) is less than or equal to that of the original convex decomposition.

Therefore, Equation (73) can be simplified to

g(η,u0|coℓFSC) = inf{α1 ·h(0)+α2 ·h(θ
∗)+α3 ·h(1) | condition on α1,2,3} .

In the above expression, αi > 0 are the coefficients occurred when [η,u0] ∈ coℓ↓
FSC

is written as the

(unique) convex combination of the three points [0,u(0)], [θ∗,u(θ∗)] and [1,u(1)]. In Figure 11, this

corresponds with that a point K in the triangle OAB is written as a convex combination of the three

extreme points O, A and B. As is well know in geometry, such a convex combination is unique.

By the above discussion, the expression of g(η,u0|coℓFSC) can be simplified further to

g(η,u0|coℓFSC) = α1 ·h(0)+α2 ·h(θ
∗)+α3 ·h(1) = α2 ·h(θ

∗) ,

where we have employed the fact h(0) = h(1) = 0, and the coefficients αi are (uniquely) determined

by the linear equations with η and u0 as known constants:

α1 +α2 +α3 = 0 , α1 · [0,u(0)]+α2 · [θ
∗,u(θ∗)]+α3 · [1,u(1)] = [η,u0] .
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As u(0)= 0, u(θ∗)= (θ∗)2 and u(1)= θ∗− θ̃∗, solving the above equations results in α2 =(θ∗θ̃∗)−1 ·
[u0 +η(θ̃∗−θ∗)]. Therefore,

g(η,u0|coℓFSC) = (θ∗θ̃∗)−1 ·h(θ∗) · [u0 +η(θ̃∗−θ∗)] , ∀ [η,u0] ∈ coℓ↓
FSC

. (75)

The expression of g(η,r0|coℓBER) can be derived in a similar way, yielding

g(η,r0|coℓBER) = r0 ·h(π) , ∀ [η,r0] ∈ coℓ↓BER . (76)

Note that both g(η,u0|coℓFSC) and g(η,r0|coℓBER) are affine functions. This fact and Equa-

tion (71) reveal that in Figure 6-a (resp. Figure 7-a) the convex hull of the curve ℓBER (resp. ℓFSC) is

bounded from below by the triangle OAB in the η-r-h (resp. η-u-h) space.

We now study the expression of g(η,u0|coℓFSC), Equation (72). For simplicity, assume that a

convex decomposition {(αi,ηi,u(ηi))}
n
i=1 of [η,u0] have been ordered such that ηi < θ∗ for i < k

and ηi > θ∗ for i > k. We can then “merge” the items {(αi,ηi,u(ηi))}
k−1
i=1 into one, namely, their

weighted sum (α′,η′,u(η′)) with α′ =∑
k−1
i=1 αi and η′ = 1

α′ ·∑
k−1
i=1 αiηi. Similarly, {(αi,ηi,u(ηi))}

n
i=k

can be “merged” into (α′′,η′′,u(η′′)) with α′′ = ∑n
i=k αi and η′′ = 1

α′′ ·∑
n
i=k αiηi. As u(η) is an affine

function on the intervals [0,θ∗] and [θ∗,1]—see Equation (69), one easily verifies that

{(α′,η′,u(η′)),(α′′,η′′,u(η′′))} is a convex decomposition of [η,u0] in ℓ↓
FSC

. Furthermore, by the

concavity of h(η) we know α′ · h(η′) > ∑
k−1
i=1 αi · h(ηi) and α′′ · h(η′′) > ∑n

i=k αi · h(ηi). Hence

α′ · h(η′) +α′′ · h(η′′) > ∑n
i=1 αi · h(ηi). This enables us to consider only convex decompositions

with at most two items when dealing with the function g(η,u0|coℓFSC). That is, Equation (72) can

now be simplified to

g(η,u0|coℓFSC) = sup{t̃ ·h(η′)+ t ·h(η′′) | condition on t,η′ and η′′} , (77)

where t, η′ and η′′ should be such that η′ < θ∗ 6 η′′ and {(t̃,η′,u(η′)),(t,η′′,u(η′′))} forms a

convex decomposition of [η,u0].

In Figure 11, Equation (77) means that for any point K = [η,u0] in the triangle OAB, we need to

find a point M = [η′,u(η′)] on the line segment OA and a point N = [η′′,u(η′′)] on the line segment

AB, such that K is on the line segment MN, that is, K = t̃ ·M+ t ·N. The value of g(η,u0|coℓFSC) is

then the supremum of t ·h(η′)+ t̃ ·h(η′′) over all such pairs (M,N). For the curve ℓBER, we actually

have already carried out this computation in Section 5—see Equations (36)–(38) and (41), whose

correctness gets verified by the discussion here. Moreover, the analysis in this section shows that

calculating Equations (39) and (40) is in fact unnecessary, which was previously proven in Lemma

10. The similar method can be used to simplify the expression of g(η,u0|coℓFSC) to the maximum

of a function of t, like Equation (41).

For the purpose of deriving Theorem 11 and Theorem 15, we will focus only on the case of

u0 = 0 for g(η,u0|coℓFSC) and the case of η= π for g(η,r0|coℓBER). The corresponding expressions

for these two cases are listed below (the detailed computation is omitted):

g(η,0|coℓFSC) = sup{t̃ ·h(t̃−1(ηθ̃∗− tθ∗))+ t ·h(θ∗+ t−1ηθ∗) | t ∈ [η θ∗

θ̃∗
,η θ̃∗

θ∗ ]} , (78)

g(π,r0|coℓBER) = sup{t̃ ·h(π− t̃−1ππ̃r̃0)+ t ·h(π+ t−1ππ̃r̃0) | t ∈ [πr̃0,r0 +πr̃0]} . (79)

Note that the above Equation (79) is same as Equation (41) (if we replace ρ by r0).
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B.4 The Expectation of a Random Vector and the Convex Hull of Its Range

This section is devoted to proving that any random vector in R
m has the expectation lying in the

convex hull of its range. We actually will prove a stronger theorem, which are to be stated in a

formal way after we have introduced the necessary definitions and notations.

Modern probability theory defines a random variable as a measurable function on some prob-

ability space (Ω,F ,P). In particular, a random vector is a measurable function from Ω into the

Euclidean space R
m equipped with the σ-algebra of Borel sets. For any A ∈ F with P(A) > 0 and

any random vector u : Ω → R
m, we write

u(A) := {u(ω) | ω ∈ A} ,

EA[u] := P(A)−1 ·
∫

A u(ω)dP .

Intuitively, u(A)⊆ R
m is the image of the set A ⊆ Ω under the mapping u; and EA[u] is the average

value (weighted by probability) of u on the set A. Note that, when A = Ω the above two quantities

are the range and the expectation of u, respectively.

We are now ready to formally state the main result of this section.

Theorem 26 Let u : Ω → R
m be a random vector and A ∈ F satisfy P(A) > 0. Then EA[u] ∈

cou(A).

The following two lemmas discuss the 1-dimensional case (i.e., m = 1) and are useful for proving

the theorem.

Lemma 27 Let A ∈ F be such that P(A)> 0 and the random variable u : Ω → R satisfy u(ω)> 0

for any ω ∈ A. Then
∫

A u(ω)dP > 0.

Proof For each n ∈ N, define An := {ω ∈ A | u(ω)> 1
n
}, then A1 ⊆ A2 ⊆ ·· · ⊆ An ⊆ ·· · . Further-

more, as u(ω) > 0 for ω ∈ A, we have A =
⋃∞

n=1 An. The continuity of probability measures then

implies limn→∞ P(An) = P(A) > 0. Thus, there exists an N ∈ N such that P(AN) > 0. We thus get∫
A u(ω)dP =

∫
AN

u(ω)dP+
∫

A\AN
u(ω)dP >

1
N
·P(AN)> 0.

Lemma 28 Let u : Ω → R be a real-valued random variable and let A ∈ F be such that P(A)> 0.

Then EA[u] ∈ cou(A).

Proof Write a = infu(A), b = supu(A) and assume that a ∈ u(A) and b /∈ u(A)—there are three

other possibilities to which a similar discussion to the one presented here applies. Then by Lemma

21 we have cou(A) = [a,b); so it suffices to show a 6 EA[u]< b.

As a = infu(A), we have u(ω)> a for all ω ∈ A. Thus, P(A) ·EA[u] =
∫

A u(ω)dP > a ·P(A) and

hence EA[u] > a. To show that EA[u] < b, we define v = b− u. Then v > 0 is a random variable;

and it follows from Lemma 27 that EA[v] = P(A)−1 ·
∫

A v(ω)dP > 0. But EA[v] = b−EA[u], we thus

get EA[u]< b.

We now prove Theorem 26, by inducting on the dimensionality m.
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Proof The case of m = 1 has been established in Lemma 28. Assume that the theorem is true

in R
m−1; and we want to show that it holds also for Rm. If this is not the case, then there exist a

random vector u : Ω → R
m and a set A ∈ A such that P(A)> 0 and EA[u] /∈ cou(A). Without loss

of generality, we can, and do, further assume that EA[u] = 0 (otherwise we turn to considering the

random vector u′(ω) := u(ω)−EA[u]).

As EA[u] = 0 is a point not in the convex set cou(A), there is a hyperplane separating the two—

see for example, Boyd and Vandenberghe (2004, Chapter 2.5). That is, there exist w ∈R
m and c∈R

such that w ·u+c> 0 for all u∈ cou(A) and that w ·0+c= c6 0, where w ·u denotes the standard

inner product of w and u. Thus, w ·u > −c > 0 for any u ∈ cou(A). To simplify the discussion,

we assume w is the first standard unit vector, w = [1,0, . . . ,0]—this can always be obtained by

applying a proper rotation operator on the random vector u, so it causes no loss of generality. Under

this assumption, the inequality w ·u> 0 now reads u1 > 0, for any u= [u1, . . . ,um] ∈ cou(A).

A side remark: intuitively, the above argument says that, since cou(A) is convex and EA[u] /∈
cou(A), we can first move the origin to the point EA[u]; then rotate the axes so that cou(A) lies in

the half space H>0 := {u= [u1, . . . ,um] ∈ R
m | u1 > 0} after the rotation.

We return and continue the proof. Define

H0 := {u ∈ R
m | u1 = 0} , A0 := {ω ∈ A | u(ω) ∈ H0} ,

H>0 := {u ∈ R
m | u1 > 0} , A1 := {ω ∈ A | u(ω) ∈ H>0} .

Then it is clear that A0 ∩A1 =∅. Furthermore, from u(A)⊆ cou(A)⊆ H>0 we know A0 ∪A1 = A.

It hence follows from EA[u] = 0 that

0 = P(A) ·EA[u] =
∫

A u(ω)dP =
∫

A0
u(ω)dP+

∫
A1
u(ω)dP . (80)

Extracting the first component of this equality results in
∫

A1
u1(ω)dP = 0. This is because u1(ω) = 0

on A0 and hence
∫

A0
u1(ω)dP = 0. But u1(ω)> 0 for ω ∈ A1, so by Lemma 27 we know P(A1) = 0,

which in turn implies
∫

A1
u(ω)dP=0 and P(A0)=P(A)> 0 (as A=A0∪A1). Equation (80) can then

be rewritten as 0=P(A0)
−1 ·EA[u] =

∫
A0
u(ω)dP, that is, EA[u] = 0=P(A0)

−1 ·
∫

A0
u(ω)dP=EA0

[u].

On the other hand, A0 ⊆ A implies cou(A0) ⊆ cou(A). So it follows from the assumptions

EA[u] /∈ cou(A) and EA[u] = 0 that 0 /∈ cou(A0). Write u = [u1, . . . ,um] = [u1,v], that is, v =
[u2, . . . ,um]. As u1(ω) = 0 for all ω ∈ A0, we have the following “decomposition”:

u(A0) = {[u1(ω),v(ω)] | ω ∈ A0}

= {(0,v(ω)) | ω ∈ A0}

= {0}×{v(ω) | ω ∈ A0}

= {0}× v(A0) ,

and hence cou(A0) = {0}×cov(A0). This fact together with 0 /∈ cou(A0) implies that 0 /∈ cov(A0).
For the (m− 1)-dimensional random vector v, the induction hypothesis gives EA0

[v] ∈ cov(A0). It

thus follows that EA0
[v] 6= 0, which further implies EA0

[u] 6= 0.

We have proved both EA0
[u] = 0 and EA0

[u] 6= 0; this contradiction reveals that the assumption

EA[u] /∈ cou(A) must not be true. We thus accomplished the proof.
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Appendix C. Proofs to the Main Theorems

For those readers who are not satisfied with the presented derivations and who are really enthusiastic

about rigorous mathematical proofs, we translate in this section the geometric proofs to the main

theorems into the analytical one. We have already done the main job in the preceding section; all

we need to do here is to assemble the discussion presented in that section into a proper proof.

C.1 Proof to Theorem 7

By Equations (28), (64) and Theorem 1, we have [CSR,H(y|x)] ∈ coℓCSR. It then follows from

Equation (68) that

2 ·h( 1
2c1

) · CSR 6 H(y|x)6 [max{h(c−1
1 · CSR), h(1− c−1

0 · CSR)}]⌢ .

This proves Equation (30). Furthermore, the proofs to Theorem 5 and Corollary 6 can be moved

straightforwardly here to show the tightness of the two bounds in Equation (30).

C.2 Proof to Theorem 11

By Equations (34), (65) and Theorem 1, we know [π,2BER,H(y|x)] is in the set coℓBER, which, by

Equation (63), can be written as

coℓBER = {[η,r0,h0] | [η,r0] ∈ coℓ↓BER, g(η,r0|coℓBER)6 h0 6 g(η,r0|coℓBER)}.

Now fix η = π in the above expression, and we obtain from Equations (76) and (79) the desired

inequality, Equation (44). The tightness of the obtained bounds can be proven similarly to that in

Theorem 5 and Corollary 6.

C.3 Theorem 11 is Stronger Than Corollary 8

In this section, we intend to show the upper bound of H(y|x) as given by Equation (33) is never

tighter than that in Equation (44). Mathematically, this amount to proving that

max{ f3(t) | t ∈ [πρ̃,πρ̃+ρ]}6

{

h(π̃ρ) if π 6 0.5
h(πρ) if π > 0.5

,

where f3(t) = t̃ ·h(π− t̃−1ππ̃ρ̃)+ t ·h(π+ t−1ππ̃ρ̃), ρ = 2BER ∈ [0,1], and h : [0,1]→ R is a sym-

metric concave function satisfying h(0) = h(1) = 1.

To simplify the proof and notation, we shall consider only the case of π6 0.5 under an additional

condition that the function h(·) is differentiable17. For any function as such and any numbers η,η0 ∈
[0,1], by the concavity of h(η) we know h(η) 6 h(η0)+ h′(η0) · (η−η0). If π̃ρ >

1
2
, put η0 =

1− π̃ρ= π+ π̃ρ̃6
1
2
. Since h(η) is symmetric and concave, we know h(η0) = h(π̃ρ) and h′(η0)> 0.

It then follows that

h(π− t̃−1ππ̃ρ̃)6 h(η0)+h′(η0) · (π− t̃−1ππ̃ρ̃−η0) = h(π̃ρ)−h′(η0) · π̃ρ̃ · (1+ t̃−1π) ,

h(π+ t−1ππ̃ρ̃)6 h(η0)+h′(η0) · (π+ t−1ππ̃ρ̃−η0) = h(π̃ρ)−h′(η0) · π̃ρ̃ · (1− t−1π) ,

17. The case where π > 0.5 can be discussed similarly. As before, the differentiability assumption is unnecessary: if h(·)
is non-differentiable at some point η0, we can use any number between its right derivative h′(η0+) and left derivative

h′(η0−) to replace h′(η0).
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and hence f3(t) = t̃ · h(π− t̃−1ππ̃ρ̃)+ t · h(π+ t−1ππ̃ρ̃) 6 h(π̃ρ)− h′(η0) · π̃ρ̃ 6 h(π̃ρ) for any t ∈
[0,1].

Now suppose that π̃ρ < 1
2
. As h(·) is symmetric, by Jensen’s inequality we know

f3(t) = t̃ ·h(π− t̃−1ππ̃ρ̃)+ t ·h(π̃− t−1ππ̃ρ̃)6 h(t̃π+ tπ̃−2ππ̃ρ̃).

For t ∈ [πρ̃,πρ̃+ρ], by direct computation we have t̃π+ tπ̃−2ππ̃ρ̃ ∈ [πρ, π̃ρ]. By π 6 0.5 we know

πρ 6 π̃ρ < 1
2

and so h(πρ) 6 h(π̃ρ). Thus f3(t) 6 h(π̃ρ) for any t ∈ [πρ̃,πρ̃+ρ]. So far we have

proved that max{ f3(t) | t ∈ [πρ̃,ρ+πρ̃]}6 h(π̃ρ).

C.4 Proof to Theorem 15

For any binary classification task (µ,η), let θ∗ = 1
2

FSC(µ,η) and let the function u(η) be as in

Equation (69). Then Ex∼µ[u(η(x))] = 0 and hence Equation (49) holds. It follows from Equa-

tion (66) and Theorem 1 that [π,0,H(y|x)] is in the set coℓFSC. So by Equation (71) we know

g(π,0|coℓFSC) 6 H(y|x) 6 g(π,0|coℓFSC), where the range of π is determined by the condition

[π,0] ∈ coℓ↓
FSC

, which by Equation (70) implies π ∈ [0,θ∗/θ̃∗]. It thus follows that

infπ∈[0,θ∗/θ̃∗] g(π,0|coℓFSC)6 H(y|x)6 supπ∈[0,θ∗/θ̃∗] g(π,0|coℓFSC) . (81)

By Equation (75), we have g(π,0|coℓFSC) = (θ∗θ̃∗)−1 ·h(θ∗) ·π(θ̃∗−θ∗), so the infimum in Equa-

tion (81) is 0, which is obtained at π = 0. Next we will prove briefly that the right hand side of

Equation (81) equals to h(θ∗/θ̃∗) = h
(

FSC

2−FSC

)

, with the help of Figure 7-b.

For any concave function h : [0,1] → R and η0 ∈ (0,1), it is well known that the left deriva-

tive h′(η0−) and the right derivative h′(η0+) exist and satisfy h′(η0+) 6 h′(η0−). Moreover, for

η1,η2 ∈ (0,1) with η1 > η2, we have h′(η1−)6 h′(η2+). Let s(η0) be a number between h′(η0+)
and h′(η0−) and define f (η) := s(η0) · (η−η0)+ h(η0), η ∈ [0,1]. As is well known, the affine

function f (η) satisfies f (η0) = h(η0) and f (η)> h(η) for any η ∈ [0,1]. Such an affine function is

called a supporting line of h(η) and η0.

Let f1(η) = s(η1) · (η− η1) + h(η1) be a supporting line of h(η) at η1 = θ∗/θ̃∗. This line

intersects with the line η = θ∗ at point K = [θ∗, f1(θ
∗)]. Through the point K there is a supporting

line of h(η) at η2 6 θ∗, which we denote as f2(η) = s(η2) · (η−η2)+h(η2). As h(η) is symmetric

and η2 6 θ∗ 6
1
2
, we have s(η2)> 0. Moreover, since f1(θ

∗) = f2(θ
∗) and η2 6 θ∗ 6 η1, by Lemma

18 we know h(η2)6 h(η1).

In Equation (78) let η = π and relax the resulting expression to

g(π,0|coℓFSC)6 sup{t̃ · f2(t̃
−1(πθ̃∗− tθ∗))+ t · f1(θ

∗+ t−1πθ∗) | t ∈ [π θ∗

θ̃∗
,π θ̃∗

θ∗ ]}

= f1(θ
∗)− s(η2) ·θ

∗+π · [s(η1)θ
∗+ s(η2)θ̃

∗] =: f0(π) .

Since π ∈ [0,θ∗/θ̃∗] and f0(π) is an affine function, the above inequality further implies

g(π,0|coℓFSC)6 max{ f0(0), f0(θ
∗/θ̃∗)} .

As s(η2)> 0, we know f0(0) = f2(θ
∗)− s(η2) ·θ

∗ = f2(0)6 f2(η2) = h(η2). Furthermore,

f0(θ
∗/θ̃∗) = f1(θ

∗)+ s(η1) · (θ
∗)2/θ̃∗ = f1

(

θ∗+(θ∗)2/θ̃∗
)

= f1(η1) = h(η1) .
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It thus follows that f0(0) 6 f0(θ
∗/θ̃∗) and so g(π,0|coℓFSC) 6 h(η1) = h(θ∗/θ̃∗) for any π ∈

[0,θ∗/θ̃∗]. Thus, supπ∈[0,θ∗/θ̃∗] g(π,0|coℓFSC)6 h(θ∗/θ̃∗).

On the other hand, let η = π and t = π · θ̃∗/θ∗ in Equation (78), we obtain

g(π,0|coℓFSC)> t̃ ·h(0)+ t ·h(θ∗/θ̃∗) = π · θ̃∗/θ∗ ·h(θ∗/θ̃∗).

Thus, supπ∈[0,θ∗/θ̃∗] g(π,0|coℓFSC)> g(θ∗/θ̃∗,0|coℓFSC)> h(θ∗/θ̃∗).
So far, we have finished the proof to Equation (50). The tightness of the two inequalities in

Equation (50) can be proven by considering the convex decomposition of the extreme points O =
[0,0,0] (or a point arbitrary close to O) and E = [θ∗/θ̃∗,0,h(θ∗/θ̃∗)] in Figure 7-a. The detail is

similar to that in Theorem 5 and Corollary 6 and omitted here.
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Abstract

Sparseness is a useful regularizer for learning in a wide range of applications, in particular in neural

networks. This paper proposes a model targeted at classification tasks, where sparse activity and

sparse connectivity are used to enhance classification capabilities. The tool for achieving this is a

sparseness-enforcing projection operator which finds the closest vector with a pre-defined sparse-

ness for any given vector. In the theoretical part of this paper, a comprehensive theory for such a

projection is developed. In conclusion, it is shown that the projection is differentiable almost every-

where and can thus be implemented as a smooth neuronal transfer function. The entire model can

hence be tuned end-to-end using gradient-based methods. Experiments on the MNIST database of

handwritten digits show that classification performance can be boosted by sparse activity or sparse

connectivity. With a combination of both, performance can be significantly better compared to

classical non-sparse approaches.

Keywords: supervised learning, sparseness projection, sparse activity, sparse connectivity

1. Introduction

Sparseness is a concept of efficiency in neural networks, and exists in two variants in that context

(Laughlin and Sejnowski, 2003). The sparse activity property means that only a small fraction of

neurons is active at any time. The sparse connectivity property means that each neuron is connected

to only a limited number of other neurons. Both properties have been observed in mammalian

brains (Hubel and Wiesel, 1959; Olshausen and Field, 2004; Mason et al., 1991; Markram et al.,

1997) and have inspired a variety of machine learning algorithms. A notable result was achieved

through the sparse coding model of Olshausen and Field (1996). Given small patches from images

of natural scenes, the model is able to produce Gabor-like filters, resembling properties of simple

cells found in mammalian primary visual cortex (Hubel and Wiesel, 1959; Vinje and Gallant, 2000).

Another example is the optimal brain damage method of LeCun et al. (1990), which can be used

to prune synaptic connections in a neural network, making connectivity sparse. Although only a

small fraction of possible connections remains after pruning, this is sufficient to achieve equivalent

classification results. Since then, numerous approaches on how to measure sparseness have been

proposed, see Hurley and Rickard (2009) for an overview, and how to achieve sparse solutions of

classical machine learning problems.

c©2013 Markus Thom and Günther Palm.
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The L0 pseudo-norm is a natural sparseness measure. Its computation consists of counting the

number of non-vanishing entries in a vector. Using it rather than other sparseness measures has

been shown to induce biologically more plausible properties (Rehn and Sommer, 2007). However,

finding of optimal solutions subject to the L0 pseudo-norm turns out to be NP-hard (Natarajan,

1995; Weston et al., 2003). Analytical properties of this counting measure are very poor, for it is

non-continuous, rendering the localization of approximate solutions difficult. The Manhattan norm

of a vector is a convex relaxation of the L0 pseudo-norm (Donoho, 2006), and has been employed in

a vast range of applications. This sparseness measure has the significant disadvantage of not being

scale-invariant, so that an intuitive notion of sparseness cannot be derived from it.

1.1 Hoyer’s Normalized Sparseness Measure

A normalized sparseness measure σ based on the ratio of the L1 or Manhattan norm and the L2 or

Euclidean norm of a vector has been proposed by Hoyer (2004),

σ : Rn \{0}→ [0, 1] , x 7→
√

n− ‖x‖1/‖x‖2√
n−1

,

where higher values indicate more sparse vectors. σ is well-defined because ‖x‖2 ≤‖x‖1 ≤
√

n‖x‖2

holds for all x ∈ Rn (Laub, 2004). As σ(αx) = σ(x) for all α , 0 and all x ∈ Rn \ {0}, σ is also

scale-invariant. As composition of differentiable functions, σ is differentiable on its entire domain.

This sparseness measure fulfills all criteria of Hurley and Rickard (2009) except for Dalton’s

fourth law, which states that the sparseness of a vector should be identical to the sparseness of the

vector resulting from multiple concatenation of the original vector. This property, however, is not

crucial for a proper sparseness measure. For example, sparseness of connectivity in a biological

brain increases quickly with its volume, so that connectivity in a human brain is about 170 times

more sparse than in a rat brain (Karbowski, 2003). It follows that σ features all desirable properties

of a proper sparseness measure.

A sparseness-enforcing projection operator, suitable for projected gradient descent algorithms,

was proposed by Hoyer (2004) for optimization with respect to σ. For a pre-defined target degree

of sparseness σ∗ ∈ (0, 1), the operator finds the closest vector of a given scale that has sparseness

σ∗ given an arbitrary vector. This can be expressed formally as Euclidean projection onto parame-

terizations of the sets

S(λ1,λ2) := { s ∈Rn | ‖s‖1 = λ1 and ‖s‖2 = λ2 } and S
(λ1,λ2)
≥0 := S(λ1,λ2)∩Rn

≥0.

The first set is for achieving unrestricted projections, whereas the latter set is useful in situations

where only non-negative solutions are feasible, for example in non-negative matrix factorization

problems. The constants λ1,λ2 > 0 are target norms and can be chosen such that all points in

these sets achieve a sparseness of σ∗. For example, if λ2 was set to unity for yielding normalized

projections, then λ1 can be easily derived from the definition of σ.

Hoyer’s original algorithm for computation of such a projection is an alternating projection onto

a hyperplane representing the L1 norm constraint, a hypersphere representing the L2 norm constraint,

and the non-negative orthant. A slightly modified version of this algorithm has been proved to be

correct by Theis et al. (2005) in the special case when exactly one negative entry emerges that is

zeroed out in the orthant projection. However, there is still no mathematically satisfactory proof for

the general case.
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1.2 Contributions of this Paper

This paper improves upon previous work in the following ways. Section 2 proposes a simple algo-

rithm for carrying out sparseness-enforcing projections with respect to Hoyer’s sparseness measure.

Further, an improved algorithm is proposed and compared with Hoyer’s original algorithm. Because

the projection itself is differentiable, it is the ideal tool for achieving sparseness in gradient-based

learning. This is exploited in Section 3, where the sparseness projection is used to obtain a classifier

that features both sparse activity and sparse connectivity in a natural way. The benefit of these two

key properties is demonstrated on a real-world classification problem, proving that sparseness acts

as regularizer and improves classification results. The final sections give an overview of related

concepts and conclude this paper.

On the theoretical side, a first rigorous and mathematically satisfactory analysis of the properties

of the sparseness-enforcing projection is provided. This is lengthy and technical and therefore

deferred into several appendixes. Appendix A fixes the notation and gives an introduction to general

projections. In Appendix B, certain symmetries of subsets of the Euclidean space and their effect

on projections onto such sets is studied. The problem of finding projections onto sets where Hoyer’s

sparseness measure attains a constant value is addressed in Appendix C. Ultimately, the algorithms

proposed in Section 2 are proved to be correct. Appendix D investigates analytical properties of

the sparseness projection and concludes with an efficient algorithm that computes its gradient. The

gradients for optimization of the parameters of the architecture proposed in Section 3 are collected

in the final Appendix E.

2. Algorithms for the Sparseness-Enforcing Projection Operator

The projection onto a set is a fundamental concept, for example see Deutsch (2001):

Definition 1 Let x ∈Rn and ∅ ,M ⊆Rn. Then every point in

projM(x) := {y ∈ M | ‖y− x‖2 ≤ ‖z− x‖2 for all z ∈ M }

is called Euclidean projection of x onto M. When there is exactly one point y in projM(x), then

y = projM(x) is used as an abbreviation.

Because Rn is finite-dimensional, projM(x) is nonempty for all x ∈ Rn if and only if M is closed,

and projM(x) is a singleton for all x ∈Rn if and only if M is closed and convex (Deutsch, 2001). In

the literature, the elements from projM(x) are also called best approximations to x from M.

Projections onto sets that fulfill certain symmetries are of special interest in this paper and are

formalized and discussed in Appendix B in greater detail. It is notable that projections onto a

permutation-invariant set M, that is a set where membership is stable upon coordinate permuta-

tion, are order-preserving. This is proved in Lemma 9(a). As a consequence, when a vector is

sorted in ascending or descending order, then its projection onto M is sorted accordingly. If M is

reflection-invariant, that is when the signs of arbitrary coordinates can be swapped without violat-

ing membership in M, then the projection onto M is orthant-preserving, as shown in Lemma 9(b).

This means that a point and its projection onto M are located in the same orthant. By exploiting this

property, projections onto M can be yielded by recording and discarding the signs of the coordinates

of the argument, projecting onto M ∩Rn
≥0, and finally restoring the signs of the coordinates of the

result using the signs of the argument. This is formalized in Lemma 11.

1093



THOM AND PALM

As an example for these concepts, consider the set Z := {x ∈Rn | ‖x‖0 = κ} of all vectors

with exactly κ ∈N non-vanishing entries. Z is clearly both permutation-invariant and reflection-

invariant. Therefore, the projection with respect to an L0 pseudo-norm constraint must be both

order-preserving and orthant-preserving. In fact, the projection onto Z consists simply of zeroing

out all entries but the κ that are greatest in absolute value (Blumensath and Davies, 2009). This

trivially fulfills the aforementioned properties of order-preservation and orthant-preservation.

Permutation-invariance and reflection-invariance are closed under intersection and union oper-

ations. Therefore, the unrestricted target set S(λ1,λ2) for the σ projection is permutation-invariant

and reflection-invariant. It is hence enough to handle projections onto S
(λ1,λ2)
≥0 in the first place, as

projections onto the unrestricted target set can easily be recovered.

In the remainder of this section, let n ∈N be the problem dimensionality and let λ1,λ2 > 0 be

the fixed target norms, which must fulfill λ2 ≤ λ1 ≤ √
nλ2 to avoid the existence of only trivial

solutions. In the applications of the sparseness projection in this paper, λ2 is always set to unity

to achieve normalized projections, and λ1 is adjusted as explained in Section 1.1 to achieve the

target degree of sparseness σ∗. The related problem of finding the best approximation to a point x

regardless of the concrete scaling, that is computing projections onto { s ∈Rn \{0} | σ(s) = σ∗ },

can be solved by projecting x onto S(λ1,λ2) and rescaling the result p such as to minimize ‖x−αp‖2

under variation of α ∈ R, which yields α = 〈x, p〉/‖p‖2
2. This method is justified theoretically by

Remark 5.

2.1 Alternating Projections

First note that the target set can be written as an intersection of simpler sets. Let e1, . . . ,en ∈Rn be

the canonical basis of the n-dimensional Euclidean space Rn. Further, let e := ∑n
i=1 ei ∈ Rn be the

vector where all entries are identical to unity. Then H := {a ∈Rn | eT a = λ1 } denotes the target

hyperplane where the coordinates of all points sum up to λ1. In the non-negative orthant Rn
≥0, this

is equivalent to the L1 norm constraint. Further, define K := {q ∈Rn | ‖q‖2 = λ2 } as the target

hypersphere of all points satisfying the L2 norm constraint. This yields the following factorization:

S
(λ1,λ2)
≥0 =Rn

≥0 ∩H ∩K =: D.

For computation of projections onto an intersection of a finite number of closed and convex sets, it

is enough to perform alternating projections onto the members of the intersection (Deutsch, 2001).

As K is clearly non-convex, this general approach has to be altered to work in this specific setup.

First, consider L := H ∩K, which denotes the intersection of the L1 norm target hyperplane and

the L2 norm target hypersphere. L essentially possesses the structure of a hypercircle, that is, all

points in L lie also in H and there is a central point m ∈ H and a real number ρ ≥ 0 such that all

points in L have squared distance ρ from m. It will be shown in Appendix C that m = λ1/n · e ∈ Rn

and ρ = λ2
2 − λ2

1/n. The intersection of the non-negative orthant with the L1 norm hyperplane, C :=
Rn

≥0∩H, is a scaled canonical simplex. Its barycenter coincides with the barycenter m of L. Finally,

for an index set I ⊆{1, . . . ,n} let LI := {a ∈ L | ai = 0 for all i < I } denote the subset of points from

L, where all coordinates with index not in I vanish. Its barycenter is given by mI = λ1/d ·∑i∈I ei ∈Rn.

With these preparations, a simple algorithm can be proposed; it computes the sparseness-enforcing

projection with respect to a constraint induced by Hoyer’s sparseness measure σ.

Theorem 2 For every x ∈Rn, Algorithm 1 computes an element from projD(x). If r ,m after line 1

and r , mI after line 4 in all iterations, then projD(x) is a singleton.

1094



SPARSE ACTIVITY AND SPARSE CONNECTIVITY IN SUPERVISED LEARNING

Algorithm 1: Proposed algorithm for computing the sparseness-enforcing projection operator

for Hoyer’s sparseness measure σ.

Input: x ∈Rn and λ1,λ2 ∈R>0 with λ2 ≤ λ1 ≤
√

nλ2.

Output: s ∈ projD(x) where D = S
(λ1,λ2)
≥0 .

// Project onto target hyperplane H and target hypercircle L.

1 r := projH(x);
2 s ∈ projL(r);
// Perform alternating projections until feasible solution is found.

3 while s <Rn
≥0 do

// Project onto scaled canonical simplex C.

4 r := projC(s);
// Project onto L keeping already vanished coordinates at zero.

5 s ∈ projLI
(r) where I := { i ∈ {1, . . . ,n} | ri , 0};

6 end

As already pointed out, the idea of Algorithm 1 is that projections onto D can be computed by

alternating projections onto the geometric structures just defined. The rigorous proof of correctness

from Appendix C proceeds by showing that the set of solutions is not tampered by projection onto

the intermediate structures H, C, L and LI . Because of the non-convexity of L and LI , the relation

between these sets and the simplex C is non-trivial and needs long arguments to be described further,

see especially Lemma 26 and Corollary 27.

The projection onto the hyperplane H is straightforward and discussed in Section C.1.1. As L is

essentially a hypersphere embedded in a subspace H of Rn, projections of points from H onto L are

achieved by shifting and scaling, see Section C.1.2. The alternating projection onto H and L in the

beginning of Algorithm 1 make the result of the projection onto D invariant to positive scaling and

arbitrary shifting of the argument, as shown in Corollary 19. This is especially useful in practice,

alleviating the need for certain pre-processing methods. The formula for projections onto L can

be generalized for projections onto LI for an index set I ⊆ {1, . . . ,n}, by keeping already vanished

coordinates at zero, see Section C.3.

Projections onto the simplex C are more involved and discussed at length in Section C.2. The

most relevant result is that if x ∈Rn \C, then there exists a separator t̂ ∈R such that p := projC(x) =
max(x− t̂ · e, 0), where the maximum is taken element-wise (Chen and Ye, 2011). In the cases

considered in this paper it is always t̂ ≥ 0 as shown in Lemma 28. This implies that all entries in

x that are less than t̂ do not survive the projection, and hence the L0 pseudo-norm of x is strictly

greater than that of p. The simplex projection therefore enhances sparseness.

The separator t̂ and the number of nonzero entries in the projection onto C can be computed

with Algorithm 2, which is an adapted version of the algorithm of Chen and Ye (2011). In line 1, Sn

denotes the symmetric group and Pτ denotes the permutation matrix associated with a permutation

τ ∈ Sn. The algorithm works by sorting its argument x and then determining t̂ as the mean value of

the largest entries of x minus the target L1 norm λ1. The number of relevant entries for computation

of t̂ is equal to the L0 pseudo-norm of the projection and is found by trying all feasible values,

starting with the largest ones. The computational complexity of Algorithm 2 is dominated by sorting

the input vector and is thus quasilinear.
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Algorithm 2: Computation of information for performing projections onto C, which is a

scaled canonical simplex. This is an adapted version of the algorithm of Chen and Ye (2011).

Input: x ∈Rn \C and λ1 ∈R>0.

Output: (t̂, d) ∈R×N such that projC(x) = max(x− t̂ · e, 0) and ‖projC(x)‖0 = d.

// Sort the input vector in descending order.

1 Let τ ∈ Sn such that xτ(1) ≥ ·· · ≥ xτ(n) and y := Pτx ∈Rn;

// Find the only feasible separator t̂.

2 s := 0;

3 for i := 1 to n−1 do

4 s := s+ yi; t := s−λ1

i
;

5 if t ≥ yi+1 then return (t, i);

6 end

7 s := s+ yn; t := s−λ1

n
; return (t, n);

Algorithm 3: Explicit and optimized variant of Algorithm 1.

Input: x ∈Rn and λ1,λ2 ∈R>0 with λ2 ≤ λ1 ≤
√

nλ2.

Output: s ∈ projD(x) where D = S
(λ1,λ2)
≥0 .

1 procedure proj_L(y ∈Rd)
2 ρ := λ2

2 − λ2
1/d; // Compute squared radius of LI (Lemma 15).

3 ϕ := ∑d
i=1 y2

i − λ2
1/d; // ϕ := ‖y−mI‖2

2 (Remark 14).

4 if ϕ = 0 then

5 (y1, . . . , yd−1)
T

:= λ1/d +
√

ρ/
√

d(d−1); // y equals the barycenter of LI,

6 yd := λ1/d −
√

ρ(d−1)/
√

d; // pick a sorted projection (Remark 18).

7 else y := λ1/d · e+
√

ρ/ϕ · (y− λ1/d · e); // Pick unique projection (Lemma 17).

8 end

// Beginning of main body.

9 Let τ ∈ Sn such that xτ(1) ≥ ·· · ≥ xτ(n) and y := Pτx ∈Rn; // Sort the input vector.

10 y := y+ 1/n · (λ1 −∑n
i=1 yi)e; // Project onto H (Lemma 13).

11 proj_L(y1, . . . ,yn); // Project in-place onto L.

// Perform alternating projections until feasible solution is found.

12 d := n; // Store current number of relevant entries of y.

13 while (y1, . . . , yd)
T
<Rd

≥0 do

14 (t̂, d) := proj_C(y1, . . . ,yd); // This is carried out by Algorithm 2.

15 (y1, . . . , yd)
T

:= (y1, . . . , yd)
T − t̂; // Project onto C (Proposition 24).

16 proj_L(y1, . . . ,yd); // Project onto LI where I = {1, . . . ,d} (Lemma 30).

17 end

// Undo sorting permutation and set remaining entries to zero.

18 s ∈ {0}n
; for i := 1 to d do sτ(i) := yi;
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2.2 Optimized Variant

Because of the permutation-invariance of the sets involved in the projections, it is enough to sort

the vector that is to be projected onto D once. This guarantees that the working vector that emerges

from subsequent projections is sorted also. No additional sorting has then to be carried out when us-

ing Algorithm 2 for projections onto C. This additionally has the side effect that the non-vanishing

entries of the working vector are always concentrated in its first entries. Hence all relevant infor-

mation can always be stored in a small unit-stride array, to which access is more efficient than to a

large sparse array. Further, the index set I of non-vanishing entries in the working vector is always

of the form I = {1, . . . ,d}, where d is the number of nonzero entries.

Algorithm 3 is a variant of Algorithm 1 where these optimizations were applied, and where the

explicit formulas for the intermediate projections were used. The following result, which is proved

in Appendix C, states that both algorithms always compute the same result:

Theorem 3 Algorithm 1 is equivalent to Algorithm 3.

Projections onto C increase the amount of vanishing entries in the working vector, which is of finite

dimension n. Hence, at most n alternating projections are carried out, and the algorithm terminates

in finite time. Further, the complexity of each iteration is at most linear in the L0 pseudo-norm of

the working vector. The theoretic overall computational complexity is thus at most quadratic in

problem dimensionality n.

2.3 Comparison with Hoyer’s Original Algorithm

The original algorithm for the sparseness-enforcing projection operator proposed by Hoyer (2004)

is hard to understand, and correctness has been proved by Theis et al. (2005) in a special case only.

A simple alternative has been proposed with Algorithm 1 in this paper. Based on the symmetries

induced by Hoyer’s sparseness measure σ and by exploiting the projection onto a simplex, an im-

proved method was given in Algorithm 3.

The improved algorithm proposed in this paper always requires at most the same number of

iterations of alternating projections as the original algorithm. The original algorithm uses a pro-

jection onto the non-negative orthant Rn
≥0 to achieve vanishing coordinates in the working vector.

This operation can be written as projRn
≥0
(x) = max(x, 0). In the improved algorithm, a simplex

projection is used for this purpose, expressed formally as projC(x) = max(x− t̂ · e, 0) with t̂ ∈ R
chosen accordingly. Due to the theoretical results on simplex geometry from Section C.2 and their

application in Lemma 28 in Section C.3, the number t̂ is always non-negative. Therefore, at least the

same amount of entries is set to zero in the simplex projection compared to the projection onto the

non-negative orthant, see also Corollary 29. Hence with induction for the number of non-vanishing

entries in the working vector, the number of iterations the proposed algorithm needs to terminate is

bounded by the number of iterations the original method needs to terminate given the same input.

The experimental determination of an estimate of the number of iterations required was carried

out as follows. Random vectors with sparseness 0.15 were sampled and their sparse projections were

computed using the respective algorithms, to gain the best normalized approximations with a target

sparseness degree of σ∗ := 0.90. For both algorithms the very same vectors were used as input.

During the run-time of the algorithms, the number of iterations that were necessary to compute

the result were counted. Additionally, the number of nonzero entries in the working vector was
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Figure 1: Comparison of the number of iterations of the original algorithm for the projection onto D

with the improved version as proposed in this paper. The sparseness-enforcing projection

with target sparseness 0.90 was carried out for input vectors of sparseness 0.15. The thick

lines indicate the mean number of iterations required for the projection, and the thin lines

indicate the minimum and maximum number of iterations, respectively. Even for input

vectors with a million entries, less than 14 iterations are required to find the projection.

With the improved algorithm, this reduces to at most 10 iterations.

recorded in each iteration. This was done for different dimensionalities, and for each dimensionality

1000 vectors were sampled.

Figure 1 shows statistics on the number of iterations the algorithms needed to terminate. As

was already observed by Hoyer (2004), the number of required iterations grows very slowly with

problem dimensionality. For n = 106, only between 12 and 14 iterations were needed with the

original algorithm to compute the result. With Algorithm 3, this can be improved to requiring 9

to 10 iterations, which amounts to roughly 30% less iterations. Due to the small slope in the number

of required iterations, it can be conjectured that this quantity is at most logarithmic in problem

dimensionality n. If this applies, the complexity of Algorithm 3 is at most quasilinear. Because the

input vector is sorted in the beginning, it is also not possible to fall below this complexity class.

The progress of working dimensionality reduction for problem dimensionality n = 1000 is de-

picted in Figure 2, averaged over the 1000 input vectors from the experiment. After the first iteration,

that is after projecting onto H and L, the working dimensionality still matches the input dimension-

ality. Starting with the second iteration, dimensions are discarded by projecting onto Rn
≥0 in the

original algorithm and onto C in the improved variant, which yields vanishing entries in the work-

ing vectors. With the original algorithm, in the mean 54% of all entries are nonzero after the second

iteration, while with the improved algorithm only 27% of the original 1000 dimensions remain in

the mean. This trend continues in subsequent iterations such that the final working dimensionality

is reached more quickly with the algorithm proposed in this paper. Although using Algorithm 2

to perform the simplex projection is more expensive than just setting negative entries to zero in the

orthant projection, the overhead quickly amortizes because of the boost in dimensionality reduction.
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Figure 2: Comparison of the number of non-vanishing entries in the working vectors of the original

algorithm and the improved algorithm during run-time. The algorithms were run with

input vectors of dimensionality 1000 and initial sparseness 0.15 to compute projections

with sparseness 0.90. Standard deviations were always less than 1%; they were omitted

in the plot to avoid clutter. The algorithm proposed in this paper reduces dimensionality

more quickly and terminates earlier than the original algorithm.
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Figure 3: Ratio of the computation time of the original algorithm and the improved algorithm for

a variety of input dimensionality and initial vector sparseness. Numbers greater than

one indicate parameterizations where the proposed algorithm is more efficient than the

original one. There is a large region where the speedup is decent.
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For determination of the relative speedup incorporated with both the simplex projection and the

access to unit-stride arrays due to the permutation-invariance, both algorithms were implemented as

C++ programs using an optimized implementation of the BLAS library for carrying out the vector

operations. The employed processor was an Intel Core i7-990X. For a range of different dimension-

alities, a set of vectors with varying initial sparseness were sampled. The number of the vectors for

every pair of dimensionality and initial sparseness was chosen such that the processing time of the

algorithms was several orders of magnitudes greater than the latency time of the operation system.

Then the absolute time needed for the algorithms to compute the projections with a target sparseness

of 0.90 were measured, and their ratio was taken to compute the relative speedup. The results of

this experiment are depicted in Figure 3. It is evident that the maximum speedup is achieved for

vectors with a dimensionality between 29 and 215, and an initial sparseness greater than 0.40. For

low initial sparseness, as is achieved by randomly sampled vectors, a speedup of about 2.5 can be

achieved for a broad spectrum of dimensionality between 24 and 213.

The improvements to the original algorithm are thus not only theoretical, but also noticeable

in practice. The speedup is especially useful when the projection is used as a neuronal transfer

function in a classifier as proposed in Section 3, because then the computational complexity of the

prediction of class membership of unknown samples can be reduced.

2.4 Function Definition and Differentiability

It is clear from Theorem 2 that the projection onto D is unique almost everywhere. Therefore the

set R := { x ∈Rn | |projD(x)| , 1} is a null set. However, R ,∅ as for example the projection is not

unique for vectors where all entries are identical. In other words, for x := ξe ∈Rn for some ξ ∈R
follows projH(x) = m and projL(m) = L. If n = 2 a possible solution is given by (α,β)T ∈ projD(x)
with α and β given as stated in Remark 18, as in this case α and β are positive. Additionally, another

solution is given by (β,α)T ∈ projD(x) which is unequal to the other solution because of α , β. A

similar argument can be used to show non-uniqueness for all n ≥ 2. As R is merely a small set,

non-uniqueness is not an issue in practical applications.

The sparseness-enforcing projection operator that is restricted to non-negative solutions can thus

be cast almost everywhere as a function

π≥0 : Rn \R → D, x 7→ projD(x).

Exploiting reflection-invariance implies that the unrestricted variant of the projection

π : Rn \R → S(λ1,λ2), x 7→ s◦π≥0 (|x|) ,

is well-defined, where s ∈ {±1}n
is given as described in Lemma 11. Note that computation of π≥0

is a crucial prerequisite to computation of the unrestricted variant π. It will be used exclusively in

Section 3 because non-negativity is not necessary in the application proposed there.

If π or π≥0 is employed in an objective function that is to be optimized, the information whether

these functions are differentiable is crucial for selecting an optimization strategy. As an example,

consider once more projections onto Z := {x ∈Rn | ‖x‖0 = κ} where κ ∈N is a constant. It was

already mentioned in Section 2 that the projection onto Z consists simply of zeroing out the elements

that are smallest in absolute value. Let x ∈ Rn be a point and let τ ∈ Sn be a permutation such

that
∣

∣xτ(1)

∣

∣ ≥ ·· · ≥
∣

∣xτ(n)

∣

∣. Clearly, if
∣

∣xτ(κ)

∣

∣ ,
∣

∣xτ(κ+1)

∣

∣ then projZ(x) = y where yi = xi for i ∈
{τ(1), . . . ,τ(κ)} and yi = 0 for i ∈ {τ(κ+ 1), . . . ,τ(n)}. Moreover, when

∣

∣xτ(κ)

∣

∣ ,
∣

∣xτ(κ+1)

∣

∣ then

1100



SPARSE ACTIVITY AND SPARSE CONNECTIVITY IN SUPERVISED LEARNING

there exists a neighborhood U of x such that projZ(s) = ∑κ
i=1 sτ(i)eτ(i) for all s ∈U . With this closed-

form expression, s 7→ projZ(s) is differentiable in x with gradient ∂projZ(x)/∂x = diag
(

∑κ
i=1 eτ(i)

)

, that

is the identity matrix where the entries on the diagonal belonging to small absolute values of x have

been zeroed out. If the requirement on x is not fulfilled, then a small distortion of x is sufficient to

find a point in which the projection onto Z is differentiable.

In contrast to the L0 projection, differentiability of π and π≥0 is non-trivial. A full-length dis-

cussion is given in Appendix D, and concludes that both π and π≥0 are differentiable almost every-

where. It is more efficient when only the product of the gradient with an arbitrary vector needs to

be computed, see Corollary 36. Such an expression emerges in a natural way by application of the

chain rule to an objective function where the sparseness-enforcing projection is used. In practice

this weaker form is thus mostly no restriction and preferable for efficiency reasons over the more

general complete gradient as given in Theorem 35.

The derivative of π≥0 is obtained by exploiting the structure of Algorithm 1. Because the projec-

tion onto D is essentially a composition of projections onto H, C, L and LI , the overall gradient can

be computed using the chain rule. The gradients of the intermediate projections are simple expres-

sions and can be combined to yield one matrix for each iteration of alternating projections. Since

these iteration gradients are basically sums of dyadic products, their product with an arbitrary vector

can be computed by primitive vector operations. With matrix product associativity, this process can

be repeated to efficiently compute the product of the gradient of π≥0 with an arbitrary vector. For

this, it is sufficient to record some intermediate quantities during execution of Algorithm 3, which

does not add any major overhead to the algorithm itself. The gradient of the unrestricted variant π

can be deduced in a straightforward way from the gradient of π≥0 because of their close relationship.

3. Sparse Activity and Sparse Connectivity in Supervised Learning

The sparseness-enforcing projection operator can be cast almost everywhere as vector-valued func-

tion π, which is differentiable almost everywhere, see Section 2.4. This section proposes a hybrid

of an auto-encoder network and a two-layer neural network, where the sparseness projection is

employed as a neuronal transfer function. The proposed model is called supervised online auto-

encoder (SOAE) and is intended for classification by means of a neural network that features sparse

activity and sparse connectivity. Because of the analytical properties of the sparseness-enforcing

projection operator, the model can be optimized end-to-end using gradient-based methods.

3.1 Architecture

Figure 4 depicts the data flow in the proposed model. There is one module for reconstruction ca-

pabilities and one module for classification capabilities. The reconstruction module, depicted on

the left of Figure 4, operates by converting an input sample x ∈ Rd into an internal representation

h ∈Rn, and then computing an approximation x̃ ∈Rd to the original input sample. In doing so, the

product u ∈ Rn of the input sample with a matrix of bases W ∈ Rd×n is computed, and a transfer

function f : Rn →Rn is applied. For sparse activity, f can be chosen to be the sparseness-enforcing

projection operator π or the projection with respect to the L0 pseudo-norm. This guarantees that the

internal representation is sparsely populated and close to u. The reconstruction is achieved like in

a linear generative model, by multiplication of the matrix of bases with the internal representation.

Hence the same matrix W is used for both encoding and decoding, rendering the reconstruction

module symmetric, or in other words with tied weights. This approach is similar to principal com-
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W ∈Rd×n

θout ∈Rc

Wout ∈Rn×c

f : Rn →Rn g : Rc →Rc

W ∈Rd×n

Wh =: x̃ ≈ x ∈Rd

u :=W T x ∈Rn v :=W T
outh+θout ∈Rc

h := f (u) ∈Rn g(v) =: y ≈ t ∈Rc

Figure 4: Architecture and data flow of supervised online auto-encoder (SOAE). The circle on the

left, mapping from an input sample x to its approximation x̃ comprises the reconstruction

module. The classification module consists of the mapping from x to the classification

decision y. The matrix of bases W shall be sparsely populated to account for the sparse

connectivity property. If the transfer function f is set to the sparseness projection, the

internal representation h will be sparsely populated, fulfilling the sparse activity property.

ponent analysis (Hotelling, 1933), restricted Boltzmann machines for deep auto-encoder networks

(Hinton et al., 2006) and to sparse encoding symmetric machine (Ranzato et al., 2008).

By enforcing W to be sparsely populated, the sparse connectivity property holds as well. More

formally, the aim is that σ(Wei) = σW holds for all i ∈ {1, . . . ,n}, where σW ∈ (0, 1) is the target

degree of connectivity sparseness and Wei is the i-th column of W . This condition was adopted

from non-negative matrix factorization with sparseness constraints (Hoyer, 2004). In the context of

neural networks, the synaptic weights of individual neurons are stored in the columns of the weight

matrix W . The interpretation of this formal sparseness constraint is then that each neuron is only

allowed to be sparsely connected with the input layer.

The classification module is shown on the right-hand side of Figure 4. It computes a classi-

fication decision y ∈ Rc by feeding h through a one-layer neural network. The network output

y is yielded through computation of the product with a matrix of weights Wout ∈ Rn×c, addition

of a threshold vector θout ∈ Rc and application of a transfer function g : Rc → Rc. This module

shares the inference of the internal representation with the reconstruction module, which can also

be considered a one-layer neural network. Therefore the entire processing path from x to y forms

a two-layer neural network (Rumelhart et al., 1986), where W stores the synaptic weights of the

hidden layer, and Wout and θout are the parameters of the output layer.

The input sample x shall be approximated by x̃, and the target vector for classification t ∈ Rc

shall be approximated by y. This is achieved by optimization of the parameters of SOAE, that

is the quantities W , Wout and θout. The goodness of the approximation x ≈ x̃ is estimated using
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a differentiable similarity measure sR : Rd ×Rd → R, and the approximation y ≈ t is assessed by

another similarity measure sC : Rc×Rc →R. For minimizing the deviation in both approximations,

the objective function

ESOAE (W, Wout, θout) := (1−α) · sR (x̃, x)+α · sC (y, t)

shall be optimized, where α ∈ [0, 1] controls the trade-off between reconstruction and classification

capabilities. To incorporate sparse connectivity, feasible solutions are restricted to fulfill σ(Wei) =
σW for all i ∈ {1, . . . ,n}. If α = 0, then SOAE is identical to a symmetric auto-encoder network with

sparse activity and sparse connectivity. In the case of α= 1, SOAE forms a two-layer neural network

for classification with a sparsely connected hidden layer and where the activity in the hidden layer is

sparse. The parameter α can also be used to blend continuously between these two extremes. Note

that x̃ only depends on W but not on Wout or θout, but y depends on W , Wout and θout. Hence Wout

and θout are only relevant when α > 0, whereas W is essential for all choices of α.

An appropriate choice for sR is the correlation coefficient (see for example Rodgers and Nice-

wander, 1988), because it is normed to values in the interval [−1, 1], invariant to affine-linear trans-

formations, and differentiable. If f is set to π, then a model that is invariant to the concrete scaling

and shifting of the occurring quantities can be yielded. This follows because π is also invariant

to such transformations, see Corollary 19. The similarity measure for classification capabilities sC

is chosen to be the cross-entropy error function (Bishop, 1995), which was shown empirically by

Simard et al. (2003) to induce better classification capabilities than the mean squared error func-

tion. The softmax transfer function (Bishop, 1995) is used as transfer function g of the output layer.

It provides a natural pairing together with the cross-entropy error function (Dunne and Campbell,

1997) and supports multi-class classification.

3.2 Learning Algorithm

The proposed optimization algorithm for minimization of the objective function ESOAE is projected

gradient descent (Bertsekas, 1999). Here, each update to the degrees of freedom is followed by ap-

plication of the sparseness projection to the columns of W to enforce sparse connectivity. There are

theoretical results on the convergence of projected gradient methods when projections are carried

out onto convex sets (Bertsekas, 1999), but here the target set for projection is non-convex. Never-

theless, the experiments described below show that projected gradient descent is an adequate heuris-

tic in the situation of the SOAE framework to tune the network parameters. For completeness, the

gradients of ESOAE with respect to the network parameters are given in Appendix E. Update steps

are carried out after every presentation of a pair of an input sample and associated target vector.

This online learning procedure results in faster learning and improves generalization capabilities

over batch learning (Wilson and Martinez, 2003; Bottou and LeCun, 2004).

A learning set with samples from Rd and associated target vectors from {0,1}c
as one-of-c-

codes is input to the algorithm. The dimensionality of the internal representation n and the target

degree of sparseness with respect to the connectivity σW ∈ (0, 1) are parameters of the algorithm.

Sparseness of connectivity increases for larger σW , as Hoyer’s sparseness measure is employed in

the definition of the set of feasible solutions.

Two possible choices for the hidden layer’s transfer function f to achieve sparse activity were

discussed in this paper. One possibility is to carry out the projection with respect to the L0 pseudo-

norm. The more sophisticated method is to use the unrestricted sparseness-enforcing projection
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operator π with respect to Hoyer’s sparseness measure σ, which can be carried out by Algorithm 3.

In both cases, a target degree for sparse activity is a parameter of the learning algorithm. In case of

the L0 projection, this sparseness degree is denoted by κ ∈ {1, . . . ,n}, and sparseness increases with

smaller values of it. For the σ projection, σH ∈ (0, 1) is used, where larger values indicate more

sparse activity.

Initialization of the columns of W is achieved by selecting a random subset of the learning set,

similar to the initialization of radial basis function networks (Bishop, 1995). This ensures significant

activity of the hidden layer from the very start, resulting in strong gradients and therefore reducing

training time. The parameters of the output layer, that is Wout and θout, are initialized by sampling

from a zero-mean Gaussian distribution with a standard deviation of 1/100.

In every epoch, a randomly selected subset of samples and associated target vectors from the

learning set is used for stochastic gradient descent to update W , Wout and θout. The results from

Appendix E can be used to efficiently compute the gradient of the objective function. There, the

gradient for the transfer function f only emerges as a product with a vector. The gradient for the L0

projection is trivial and was given as an example in Section 2.4. If f is Hoyer’s sparseness-enforcing

projection operator, it is possible to exploit that only the product of the gradient with a vector is

needed. In this case, it is more efficient to compute the result of the multiplication implicitly using

Corollary 36 and thus avoid the computation of the entire gradient of π.

After every epoch, a sparseness projection is applied to the columns of W . This guarantees that

σ(Wei) = σW holds for all i ∈ {1, . . . ,n}, and therefore the sparse connectivity property is fulfilled.

The trade-off variable α which controls the weight of the reconstruction and the classification term

is adjusted according to α(ν) := 1− exp(−ν/100), where ν ∈N denotes the number of the current

epoch. Thus α starts at zero, increases slowly and asymptotically reaches one. The emphasis at

the beginning of the optimization is thus on reconstruction capabilities. Subsequently, classification

capabilities are incorporated slowly, and in the final phase of training classification capabilities ex-

clusively are optimized. This continuous variant of unsupervised pre-training (Hinton et al., 2006)

leads to parameters in the vicinity of a good minimizer for classification capabilities before classi-

fication is preferred over reconstruction through the trade-off parameter α. Compared to the choice

α ≡ 1 this strategy helps to stabilize the trajectory in parameter space and makes the objective

function values settle down more quickly, such that the termination criterion is satisfied earlier.

3.3 Description of Experiments

To assess the classification capabilities and the impact of sparse activity and sparse connectivity,

the MNIST database of handwritten digits (LeCun and Cortes, 1998) was employed. It is a popular

benchmark data set for classification algorithms, and numerous results with respect to this data set

are reported in the literature. The database consists of 70 000 samples, divided into a learning set

of 60 000 samples and an evaluation set of 10 000 samples. Each sample represents a digit of size

28×28 pixels and has a class label from {0, . . . ,9} associated with it. Therefore the input and output

dimensionalities are d := 282 = 784 and c := 10, respectively. The classification error is given in

percent of all 10 000 evaluation samples, hence 0.01% corresponds to a single misclassified digit.

For generation of the original data set, the placement of the digits has been achieved based on

their barycenter (LeCun and Cortes, 1998). Because of sampling and rounding errors, the localiza-

tion uncertainty can hence be assumed to be less than one pixel in both directions. To account for

this uncertainty, the learning set was augmented by jittering each sample in each of eight possible
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directions by one pixel, yielding 540 000 samples for learning in total. The evaluation set was left

unchanged to yield results that can be compared to the literature. As noted by Hinton et al. (2006),

the learning problem is no more permutation-invariant due to the jittering, as information on the

neighborhood of the pixels is implicitly incorporated in the learning set.

However, classification results improve dramatically when such prior knowledge is used. This

was demonstrated by Schölkopf (1997) using the virtual support vector method, which improved

a support vector machine with polynomial kernel of degree five from an error of 1.4% to 1.0% by

jittering the support vectors by one pixel in four principal directions. This result was extended by

DeCoste and Schölkopf (2002), where a support vector machine with a polynomial kernel of degree

nine was improved from an error of 1.22% to 0.68% by jittering in all possible eight directions.

Further improvements can be achieved by generating artificial training samples using elastic distor-

tions (Simard et al., 2003). This reduced the error of a two-layer neural network with 800 hidden

units to 0.7%, compared to the 1.1% error yielded when training on samples created by affine dis-

tortions. Very big and very deep neural networks possess a large number of adaptable weights. In

conjunction with elastic and affine distortions such neural networks can yield errors as low as 0.35%

(Cireşan et al., 2010). The current record error of 0.23% is held by an approach that combines dis-

torted samples with a committee of convolutional neural networks (Cireşan et al., 2012). This is an

architecture that has been optimized exclusively for input data that represents images, that is where

the neighborhood of the pixels is hard-wired in the classifier. To allow for a plain evaluation that

does not depend on additional parameters for creating artificial samples, the jittered learning set

with 540 000 samples is used throughout this paper.

The experimental methodology was as follows. The number of hidden units was chosen to be

n := 1000 in all experiments that are described below. This is an increased number compared to

the 800 hidden units employed by Simard et al. (2003), but promises to yield better results when

an adequate number of learning samples is used. As all tested learning algorithms are essentially

gradient descent methods, an initial step size had to be chosen. For each candidate step size, five

runs of a two-fold cross validation were carried out on the learning set. Then, for each step size

the median of the ten resulting classification errors was computed. The winning step size was then

determined to be the one that achieved a minimum median of classification errors.

In every epoch, 21 600 samples were randomly chosen from the learning set and presented to

the network. This number of samples was chosen as it is 1/25-th of the jittered learning set. The

step size was multiplicatively annealed using a factor of 0.999 after every epoch. Optimization

was terminated once the relative change in the objective function became very small and no more

significant progress on the learning set could be observed. The resulting classifiers were then applied

to the evaluation set, and misclassifications were counted.

3.4 Experimental Results

Two variants of the supervised online auto-encoder architecture as proposed in this section were

trained on the augmented learning set. In both variants, the target degree of sparse connectivity was

set to σW := 0.75. This choice was made because 96% of all samples in the learning set possess

a sparseness which is less than 0.75. Therefore, the resulting bases are forced to be truly sparsely

connected compared to the sparseness of the digits.

The first variant is denoted by SOAE-σ. Here, the sparseness-enforcing projection operator π

was used as transfer function f in the hidden layer. Target degrees of sparse activity σH with respect
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to Hoyer’s sparseness measure σ were chosen from the interval [0.20, 0.95] in steps of size 0.05.

This variant was then trained on the jittered learning set using the method described in Section 3.2.

For every value of σH , the resulting sparseness of activity was measured after training using the

L0 pseudo-norm. For this, each sample of the learning set was presented to the networks, and the

number of active units in the hidden layer was counted. Figure 5 shows the resulting mean value and

standard deviation of sparse activity. If σH = 0.20 is chosen, then in the mean about 800 of the total

1000 hidden units are active upon presentation of a sample from the learning set. For σH = 0.80 only

one hundred units are active at any one time, and for σH = 0.95 there are only eleven active units.

The standard deviation of the activity decreases when sparseness increases, hence the mapping from

σH to the resulting number of active units becomes more accurate.

The second variant, denoted SOAE-L0, differs from SOAE-σ in that the projection with respect

to the L0 pseudo-norm as transfer function f was used. The target sparseness of activity is given by

a parameter κ ∈ {1, . . . ,n}, which controls the exact number of units that are allowed to be active

at any one time. For the experiments, the values for κ were chosen to match the mean activities

from the SOAE-σ experiments. This way the results of both variants can be compared based on a

unified value of activity sparseness. The results are depicted in Figure 6. Usage of the σ projection

consequently outperforms the L0 projection for all sparseness degrees. Even for high sparseness of

activity, that is when only about ten percent of the units are allowed to be active at any one time,

good classification capabilities can be obtained with SOAE-σ. For κ ∈ [242, 558], the classifica-

tion results of SOAE-L0 reach an optimum. SOAE-σ is more robust, as classification capabilities

first begin to collapse when sparseness is below 5%, whereas SOAE-L0 starts to degenerate when

sparseness falls below 20%. For σH ∈ [0.45, 0.85], roughly translating to between 5% and 50%

activity, about equal classification performance is achieved using SOAE-σ.

It can thus be concluded that using the sparseness-enforcing projection operator as described in

this paper yields better results than when the simple L0 projection is used to achieve sparse activity.

To assess the benefit more precisely and to investigate the effect of individual factors, several com-

parative experiments have been carried out. A summary of these experiments and their outcome is

given in Table 1. The variants SOAE-σ and SOAE-L0 denote the entirety of the respective exper-

iments where sparseness of activity lies in the intervals described above, that is σH ∈ [0.45, 0.85]
and κ ∈ [242, 558], respectively. Using these intervals, SOAE-σ and SOAE-L0 achieved a median

error of 0.75% and 0.82% on the evaluation set, respectively. Variant SOAE-σ-conn is essentially

equal to SOAE-σ, except for sparse connectivity not being incorporated. Sparseness of activity here

was also chosen to be σH ∈ [0.45, 0.85], which resulted in about equal classification results over

the entire range. Dropping of sparse connectivity increases misclassifications, for the median error

of SOAE-σ-conn is 0.81% and thereby greater than the median error of SOAE-σ.

The other five approaches included in the comparison are multi-layer perceptrons (MLPs) with

the same topology and dynamics as the classification module of supervised online auto-encoder,

with two exceptions. First, the transfer function of the hidden layer f was set to a hyperbolic tangent,

thus not including explicit sparse activity. Second, in all but one experiment sparse connectivity was

either not incorporated, or achieved through other means than by performing a σ projection after

each learning epoch. Besides the variation in sparseness of connectivity, the experiments differ in

the initialization of the network parameters.

For each variant, 55 runs were carried out and the resulting classifiers were applied to the eval-

uation set to compute the classification error. Then, the best four and the worst four results were

discarded and not included in further analysis. Hence a random sample of size 47 was achieved,
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Sparseness Degree with Respect to Sparseness Measure σ
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Figure 5: Resulting amount of nonzero entries in an internal representation h with 1000 entries,

depending on the target degree of sparseness for activity σH with respect to Hoyer’s

sparseness measure σ. For low values of σH , about 80% of the entries are nonzero,

whereas for very high sparseness degrees only 1% of the entries do not vanish. The error

bars indicate ± one standard deviation distance from the mean value. Standard deviation

shrinks with increasing sparseness degree, making the mapping more accurate.
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Figure 6: Resulting classification error on the MNIST evaluation set for the supervised online auto-

encoder network, in dependence of sparseness of activity in the hidden layer. The pro-

jection onto an L0 pseudo-norm constraint for variant SOAE-L0 and the projection onto a

constraint determined by sparseness measure σ for variant SOAE-σ were used as transfer

functions. The error bars indicate ± one standard deviation difference from the mean.

1107



THOM AND PALM

Approach Sparse Sparse Result (W, p) of Evaluation

Connectivity Activity Shapiro-Wilk Test Error [%]

SOAE-σ σW = 0.75 σH ∈ [0.45, 0.85] (0.9802, 0.60) 0.75±0.04

SOAE-L0 σW = 0.75 κ ∈ [242, 558] (0.9786, 0.53) 0.82±0.05

SOAE-σ-conn none σH ∈ [0.45, 0.85] (0.9747, 0.40) 0.81±0.04

SMLP-SCFC σW = 0.75 none (0.9770, 0.47) 0.81±0.05

MLP-OBD γ = 12.5% none (0.9807, 0.62) 0.89±0.04

MLP-random none none (0.9798, 0.58) 0.88±0.03

MLP-samples none none (0.9773, 0.49) 0.91±0.05

MLP-SCFC none none (0.9794, 0.57) 0.91±0.06

Table 1: Overview of comparative experiments. The second and third columns indicate whether

sparse connectivity or sparse activity was incorporated, respectively. The fourth column

reports the result of a statistical test for normality, which is interpreted in Section 3.5.

The final column gives the median ± one standard deviation of the achieved classification

error on the MNIST evaluation set. The results for each experiment were trimmed to gain

a sample of size 47, allowing for statistical robust estimates.

where 15% of the original data were trimmed away. This procedure was also applied to the results

of SOAE-σ, SOAE-σ-conn, and SOAE-L0, to obtain a total of eight random samples of equal size

for comparison with another.

The most basic variant, denoted the baseline in this discussion, is MLP-random, where all net-

work parameters were initialized randomly. This achieved a median error of 0.88% on the evalua-

tion set, being considerably worse than SOAE-σ. For variant MLP-samples, the hidden layer was

initialized by replication of n randomly chosen samples from the learning set. This did decrease

the overall learning time. However, the median classification error was slightly worse with 0.91%

compared to MLP-random.

For variant MLP-SCFC, the network parameters were initialized in an unsupervised manner us-

ing the sparse coding for fast classification (SCFC) algorithm (Thom et al., 2011a). This method

is a precursor to the SOAE proposed in this paper. It also features sparse connectivity and sparse

activity but differs in some essential parts. First, sparseness of activity is achieved through a latent

variable that stores the optimal sparse code words of all samples simultaneously. Using this matrix

of code words, the activity of individual units was enforced to be sparse over time on the entire

learning set. SOAE achieves sparseness over space, as for each sample only a pre-defined fraction

of units is allowed to be active at any one time. A second difference is that sparse activity is achieved

only indirectly by approximation of the latent matrix of code words with a feed-forward represen-

tation. With SOAE, sparseness of activity is guaranteed by construction. MLP-SCFC achieved a

median classification error of 0.91% on the MNIST evaluation set, rendering it slightly worse than

MLP-random and equivalent to MLP-samples.

The first experiment that incorporates only sparse connectivity is SMLP-SCFC. Initialization

was done as for MLP-SCFC, but during training sparseness of connectivity was yielded by ap-

plication of the sparseness-enforcing projection operator to the weights of the hidden layer after
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every learning epoch. Hence the sparseness gained from unsupervised initialization was retained.

MLP-SCFC features sparse connectivity only after initialization, but loses this property when train-

ing proceeds. With this slight modification, the median error of SMLP-SCFC decreases to 0.81%,

which is significantly better than the baseline result.

The effect of better generalization due to sparse connectivity has also been observed by LeCun

et al. (1990) in the context of convolutional neural networks. It can be explained by the bias-variance

decomposition of the generalization error (Geman et al., 1992). When the effective number of the

degrees of freedom is constrained, overfitting will be less likely and hence classifiers produce better

results on average. The same argument can be applied to SOAE-σ, where additional sparse activity

further improves classification results.

The last variant is called MLP-OBD. Here, the optimal brain damage (OBD) algorithm (LeCun

et al., 1990) was used to prune synaptic connections in the hidden layer that are irrelevant for the

computation of the classification decision of the network. The parameters of the network were first

initialized randomly and then optimized on the learning set. Then the impact for each synaptic

connection on the objective function was estimated using the Taylor series of the objective function,

where a diagonal approximation of the Hessian was employed and terms of cubic or higher order

were neglected. Using this information, the number of connections was halved by setting the weight

of connections with low impact to zero. The network was then retrained with weights of removed

connections kept at zero. This procedure was repeated until a target percentage γ of active synaptic

connections in the hidden layer was achieved. For the results reported here, γ = 12.5% was chosen

as this reflects the sparse connectivity σW = 0.75 of the other approaches best. MLP-OBD achieved

a median classification error of 0.89%, which is comparable to the baseline result.

3.5 Statistical Analysis and Conclusions

A statistical analysis was carried out to assess the significance of the differences in the performance

of the eight algorithms. The procedure follows the proposals of Pizarro et al. (2002) and Demšar

(2006) for hypothesis testing, and is concluded by effect size estimation as proposed by Grissom

(1994) and Acion et al. (2006). For each algorithm, a sample of size 47 was available, allowing for

robust analysis results.

First, all results were tested for normality using the test developed by Shapiro and Wilk (1965).

The resulting test statistics W and p-values are given in Table 1. As all p-values are large, it cannot

be rejected that the samples came from normally distributed populations. Thus normality is assumed

in the remainder of this discussion. Next, the test proposed by Levene (1960) was applied to deter-

mine whether equality of variances of the groups holds. This resulted in a test statistic F = 2.7979

with 7 and 368 degrees of freedom, and therefore a p-value of 0.0075. Hence the hypothesis that

all group variances are equal can be rejected with very high significance. Consequently, parametric

omnibus and post-hoc tests cannot be applied, as they require the groups to have equal variance.

As an alternative, the nonparametric test by Kruskal and Wallis (1952) which is based on rank

information was employed to test whether all algorithms produced classifiers with equal classifi-

cation errors in the mean. The test statistic was H = 214.44 with 7 degrees of freedom, and the

p-value was less than 10−15. There is hence a statistically significant difference in the mean classi-

fication results. To locate this deviation, a critical difference for comparing the mean ranks of the

algorithms was computed. A Tukey-Kramer type modification applied to Dunn’s procedure yields

this critical difference, which is less conservative than Nemenyi’s procedure for the Kruskal-Wallis
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Figure 7: Diagram for multiple comparison of algorithms following Demšar (2006). For each algo-

rithm, the mean rank was computed during the Kruskal-Wallis test. Then, a critical dif-

ference (CD) was computed at the α = 0.01 significance level. Two algorithms produce

classification results that are statistically not equal if the difference between their mean

ranks is greater than the critical difference. This induced three groups of algorithms that

produced statistically equivalent results, which are marked with black bars.

test (Hochberg and Tamhane, 1987). Note that this approach is nevertheless similar to the post-hoc

procedure proposed by Demšar (2006) for paired observations, such that the diagrams proposed

there can be adapted to the case for unpaired observations. The result is depicted in Figure 7, where

the critical difference for statistical significance at the α = 0.01 level is given. This test induces a

highly significant partitioning of the eight algorithms, namely three groups A, B and C given by

A := {SOAE-σ} , B := {SOAE-σ-conn, SOAE-L0, SMLP-SCFC} ,

and C := {MLP-OBD, MLP-random, MLP-samples, MLP-SCFC} .

This partition in turn induces an equivalence relation. Statistical equivalence is hence unambiguous

and well-defined at α = 0.01. Moreover, the p-value for this partition is 0.007. If the significance

level α would have been set lower than this, then groups A and B would blend together.

To assess the benefit when an algorithm from one group is chosen over an algorithm from

another group, the probability of superior experiment outcome was estimated (Grissom, 1994; Acion

et al., 2006). For this, the classification errors were pooled with respect to membership in the three

groups. It was then tested whether these pooled results still come from normal distributions. As

group A is a singleton, this is trivially fulfilled with the result from Table 1. For group B, the

Shapiro-Wilk test statistic was W = 0.9845 and the p-value was 0.11. Group C achieved a test

statistic of W = 0.9882 and a p-value of 0.12. If a standard significance level of α = 0.01 is chosen,

then B and C can be assumed to be normally distributed also.

Let EG be the random variable modeling the classification results of the algorithms from group

G ∈ {A,B,C}. It is assumed that EG is normally distributed with unknown mean and unknown vari-

ance for all G. Then EG −EG̃ is clearly normally distributed also for two groups G, G̃ ∈ {A,B,C}.

Therefore, the probability P(EG < EG̃) that one algorithm produces a better classifier than another

could be computed from the Gaussian error function if the group means and variances were known.

However, using Rao-Blackwell theory a minimum variance unbiased estimator R̂2 of this proba-

bility can be computed easily (Downton, 1973). Evaluation of the expression for R̂2 shows that

P(EA < EB) can be estimated by 0.87, P(EB < EC) can be estimated by 0.88, and P(EA < EC)
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can be estimated by 0.99. Therefore, the effect of choosing SOAE-σ over any of the seven other

algorithms is dramatic (Grissom, 1994).

These results can be interpreted as follows. When neither sparse activity nor sparse connectivity

is incorporated, then the worst classification results are obtained regardless of the initialization of the

network parameters. The exception is MLP-OBD which incorporates sparse connectivity, although,

as its name says, in a destructive way. Once a synaptic connection has been removed, it cannot be

recovered, as the measure for relevance of LeCun et al. (1990) vanishes for synaptic connections of

zero strength. The statistics for SMLP-SCFC shows that when sparse connectivity is obtained using

the sparseness-enforcing projection operator, then superior results can be achieved. Because of the

nature of projected gradient descent, it is possible here to restore deleted connections if it helps to

decrease the classification error during learning. For SOAE-σ-conn only sparse activity was used,

and classification results were statistically equivalent to SMLP-SCFC.

Therefore, using either sparse activity or sparse connectivity improves classification capabilities.

When both are used, then results improve even more as variant SOAE-σ shows. This does not

hold for SOAE-L0 however, where the L0 projection was used as transfer function. As Hoyer’s

sparseness measure σ and the according projection possess desirable analytical properties, they can

be considered smooth approximations to the L0 pseudo-norm. It is this smoothness which seems to

produce this benefit in practice.

4. Related Work

This section reviews work related with the contents of this paper. First, the theoretical foundations of

the sparseness-enforcing projection operator are discussed. Next, its application as neuronal trans-

fer function to achieve sparse activity in a classification scenario is put in context with alternative

approaches, and possible advantages of sparse connectivity are described.

4.1 Sparseness-Enforcing Projection Operator

The first major part of this paper dealt with improvements to the work of Hoyer (2004) and Theis

et al. (2005). Here, an algorithm for the sparseness-enforcing projection with respect to Hoyer’s

sparseness measure σ was proposed. The technical proof of correctness is given in Appendix C.

The set that should be projected onto is an intersection of a simplex C and a hypercircle L, which is a

hypersphere lying in a hyperplane. The overall procedure can be described as performing alternating

projections onto C and certain subsets of L. This approach is common for handling projections

onto intersections of individual sets. For example, von Neumann (1950) proposed essentially the

same idea when the investigated sets are closed subspaces, and has shown that this converges to a

solution. A similar approach can be carried out for intersections of closed, convex cones (Dykstra,

1983), which can be generalized to translated cones that can be used to approximate any convex

set (Dykstra and Boyle, 1987). For these alternating methods, it is only necessary to know how

projections onto individual members of the intersection can be achieved.

Although these methods exhibit great generality, they have two severe drawbacks in the scenario

of this paper. First, the target set for projection must be an intersection of convex sets. The scaled

canonical simplex C is clearly convex, but the hypercircle L is non-convex if it contains more than

one point. The condition that generates L cannot easily be weakened to achieve convexity. If the

original hypersphere were replaced with a closed ball, then L would be convex. But this changes

the meaning of the problem dramatically, as now virtually any sparseness below the original target
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degree of sparseness can be obtained. This is because when the target L1 norm λ1 is fixed, the

sparseness measure σ decreases whenever the target L2 norm decreases. In geometric terms, the

method proposed in this paper performs a projection from within a circle onto its boundary to

increase the sparseness of the working vector. This argument is given in more detail in Figure 11

and the proof of Lemma 28(f).

The second drawback of the general methods for projecting onto intersections is that a solution

is only achieved asymptotically, even when the convexity requirements are fulfilled. Due to the

special structure of C and L, the number of alternating projections that have to be carried out to find

a solution using Algorithm 3 is bounded from above by the problem dimensionality. Thus an exact

projection is always found in finite time. Furthermore, the solution is guaranteed to be found in time

that is at most quadratic in problem dimensionality.

A crucial point is the computation of the projection onto C and certain subsets of L. Due to

the nature of the L2 norm, the latter is straightforward. For the former, efficient algorithms have

been proposed recently (Duchi et al., 2008; Chen and Ye, 2011). When only independent solutions

are required, the projection of a point x onto a scaled canonical simplex of L1 norm λ1 can also be

carried out in linear time (Liu and Ye, 2009), without having to sort the vector that is to be projected.

This can be achieved by showing that the separator t̂ for performing the simplex projection is the

unique zero of the monotonically decreasing function t 7→ ‖max(|x|− t · e, 0)‖1 −λ1. The zero of

this function can be found efficiently using the bisection method, and exploiting the special structure

of the occurring expressions (Liu and Ye, 2009).

In the context of this paper an explicit closed-form expression for t̂ is preferable as it permits

additional insight into the properties of the projected point. The major part in proving the correctness

of Algorithm 1 is the interconnection between C and L, that is that the final solution has zero

entries at the according positions in the working vector and thus a chain monotonically decreasing

in L0 pseudo-norm is achieved. This result is established through Lemma 26, which characterizes

projections onto certain faces of a simplex, Corollary 27 and their application in Lemma 28.

Analysis of the theoretical properties of the sparseness-enforcing projection is concluded with

its differentiability in Appendix D. The idea is to exploit the finiteness of the projection sequence

and to apply the chain rule of differential calculus. It is necessary to show that the projection chain

is robust in a neighborhood of the argument. This reduces analysis to individual projection steps

which have already been studied in the literature. For example, the projection onto a closed, convex

set is guaranteed to be differentiable almost everywhere (Hiriart-Urruty, 1982). Here non-convexity

of L is not an issue, as the only critical point is its barycenter. For the simplex C, a characterization

of critical points is given with Lemma 32 and Lemma 33, and it is shown that the expression for

the projection onto C is invariant to local changes. An explicit expression for construction of the

gradient of the sparseness-enforcing projection operator is given in Theorem 35. In Corollary 36 it

is shown that the computation of the product of the gradient with an arbitrary vector can be achieved

efficiently by exploiting sparseness and the special structure of the gradient.

Similar approaches for sparseness projections are discussed in the following. The iterative hard

thresholding algorithm is a gradient descent algorithm, where a projection onto an L0 pseudo-norm

constraint is performed (Blumensath and Davies, 2009). Its application lies in compressed sensing,

where a linear generative model is used to infer a sparse representation for a given observation.

Sparseness here acts as regularizer which is necessary because observations are sampled below the

Nyquist rate. In spite of the simplicity of the method, it can be shown that it achieves a good

approximation to the optimal solution of this NP-hard problem (Blumensath and Davies, 2009).
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Closely related with the work of this paper is the generalization of Hoyer’s sparseness measure

by Theis and Tanaka (2006). Here, the L1 norm constraint is replaced with a generalized Lp pseudo-

norm constraint, such that the sparseness measure becomes σp(x) := ‖x‖p/‖x‖2. For p = 1, Hoyer’s

sparseness measure up to a constant normalization is obtained. When p converges decreasingly to

zero, then σp(x)
p converges point-wise to the L0 pseudo-norm. Hence for small values of p a more

natural sparseness measure is obtained. Theis and Tanaka (2006) also proposed an extension of

Hoyer’s projection algorithm. It is essentially von Neumann’s alternating projection method, where

closed subspaces have been replaced by "spheres" that are induced by Lp pseudo-norms. Note that

these sets are non-convex when p < 1, such that convergence is not guaranteed. Further, no closed-

form solution for the projection onto an "Lp-sphere" is known for p < {1,2,∞}, such that numerical

methods have to be employed.

A problem where similar projections are employed is to minimize a convex function subject to

group sparseness (see for example Friedman et al., 2010). In this context, mixed norm balls are of

particular interest (Sra, 2012). For a matrix X ∈ Rn×g, the mixed Lp,q norm is defined as the Lp

norm of the Lq norms of the columns of X , that is ‖X‖p,q :=
∥

∥

(

‖Xe1‖q , . . . , ‖Xeg‖q

)T∥
∥

p
. Here,

X can be interpreted to be a data point with entries partitioned into g groups. When p = 1, then the

projection onto a simplex can be generalized directly for q = 2 (van den Berg et al., 2008) and for

q = ∞ (Quattoni et al., 2009). The case when p = 1 and q ≥ 1 is more difficult, but can be solved as

well (Liu and Ye, 2010; Sra, 2012).

The last problem discussed here is the elastic net criterion (Zou and Hastie, 2005), which is

a constraint on the sum of an L1 norm and an L2 norm. The feasible set can be written as the

convex set N := {s ∈Rn | λ1 ‖s‖1 +λ2 ‖s‖2
2 ≤ 1}, where λ1,λ2 ≥ 0 control the shape of N. Note

that in N only the sum of two norms is considered, whereas the non-convex set S(λ1,λ2) consists of

the intersection of two different constraints. Therefore, the elastic net induces a different notion

of sparseness than Hoyer’s sparseness measure σ does. As is the case for mixed norm balls, the

projection onto a simplex can be generalized to achieve projections onto N (Mairal et al., 2010).

4.2 Supervised Online Auto-Encoder

The sparseness-enforcing projection operator π with respect to Hoyer’s sparseness measure σ and

the projection onto an L0 pseudo-norm constraint are differentiable almost everywhere. Thus they

are suitable for gradient-based optimization algorithms. In Section 3, they were used as transfer

functions in a hybrid of an auto-encoder network and a two-layer neural network to infer a sparse

internal representation. This representation was subsequently employed to approximate the input

sample and to compute a classification decision. In addition, the matrix of bases which was used

to compute the internal representation was enforced to be sparsely populated by application of the

sparseness projection after each learning epoch. Hence the supervised online auto-encoder proposed

in this paper features both sparse activity and sparse connectivity.

These two key properties have also been investigated and exploited in the context of auto-

associative memories for binary inputs. If the entries of the training patterns are sparsely populated,

the weight matrix of the memory will be sparsely populated as well after training if Hebbian-like

learning rules are used (Kohonen, 1972). The assumption of sparsely coded inputs also results in

increased completion capacity and noise resistance of the associative memory (Palm, 1980). If the

input data is not sparse inherently, feature detectors can perform a sparsification prior to the actual

processing through the memory (Baum et al., 1988).
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A purely generative model that also possesses these two key properties is non-negative matrix

factorization with sparseness constraints (Hoyer, 2004). This is an extension to plain non-negative

matrix factorization (Paatero and Tapper, 1994) which was shown to achieve sparse connectivity

on certain data sets (Lee and Seung, 1999). However, there are data sets on which this does not

work (Li et al., 2001; Hoyer, 2004). Although Hoyer’s model makes sparseness easily controllable

by explicit constraints, it is not inherently suited to classification tasks. An extension intended to

incorporate class membership information to increase discriminative capabilities was proposed by

Heiler and Schnörr (2006). In their approach, an additional constraint was added ensuring that

every internal representation is close to the mean of all internal representations that belong to the

same class. In other words, the method can be interpreted as supervised clustering, with the number

of clusters equal to the number of classes. However, there is no guarantee that a distribution of

internal representations exists such that both the reproduction error is minimized and the internal

representations can be arranged in such a pattern. Unfortunately, Heiler and Schnörr (2006) used

only a subset of a small data set for handwritten digit recognition to evaluate their approach.

A precursor to the supervised online auto-encoder was proposed by Thom et al. (2011a). There,

inference of sparse internal representations was achieved by fitting a one-layer neural network to

approximate a latent variable of optimal sparse representations. The transfer function used for

this approximation was a hyperbolic tangent raised to an odd power greater or equal to three. This

resulted in a depression of activities with small magnitude, favoring sparseness of the result. Similar

techniques to achieve a shrinkage-like effect for increasing sparseness of activity in a neural network

were used by Gregor and LeCun (2010) and Glorot et al. (2011). Information processing is here

purely local, that is a scalar function is evaluated entrywise on a vector, and thus no information is

interchanged among individual entries.

The use of non-local shrinkage to reduce Gaussian noise in sparse coding has already been de-

scribed by Hyvärinen et al. (1999). Here, a maximum likelihood estimate with only weak assump-

tions yields a shrinkage operation, which can be conceived as projection onto a scaled canonical

simplex. In the use case of object recognition, a hard shrinkage was also employed to de-noise

filter responses (Mutch and Lowe, 2006). Whenever a best approximation from a permutation-

invariant set is used, a shrinkage-like operation must be employed. Using a projection operator as

neural transfer function is hence a natural extension of these ideas. When the projection is suf-

ficiently smooth, the entire model can be tuned end-to-end using gradient methods to achieve an

auto-encoder or a classifier.

The second building block from Thom et al. (2011a) that was incorporated into supervised on-

line auto-encoder is the architectural concept for classification. It is well-known that two layers

in a neural network are sufficient to approximate any continuous function on a compactum with

arbitrary precision (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989). Similar architectures

have also been proposed for classification in combination with sparse coding of the inputs. How-

ever, sparse connectivity was not considered in this context. Bradley and Bagnell (2009) used the

Kullback-Leibler divergence as implicit sparseness penalty term and combined this with the back-

propagation algorithm to yield a classifier that achieved a 1.30% error rate on the MNIST evaluation

set. The Kullback-Leibler divergence was chosen to replace the usual L1 norm penalty term, as it is

smoother than the latter and therefore sparsely coded internal representations are more stable sub-

ject to subtle changes of the input. A related technique is supervised dictionary learning by Mairal

et al. (2009), where the objective function is an additive combination of a classification error term,

a term for the reproduction error, and an L1 norm constraint. Inference of sparse internal represen-
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tations is achieved through solving an optimization problem. Such procedures are time-consuming

and greatly increase the computational complexity of classification. With this approach, a classifi-

cation error of 1.05% on the MNIST evaluation set was achieved. These two approaches used the

original MNIST learning set without jittering the digits and can thus be considered permutation-

invariant. Augmentation of the learning set with virtual samples would have contributed to improve

classification performance, as demonstrated by Schölkopf (1997).

Finally consider once more the sparse connectivity property, which is mostly neglected in the

literature in favor of sparse activity. It was shown in this paper that sparse connectivity helps to

improve generalization capabilities. In practice, this property can also be used to reduce the com-

putational complexity of classification by one order of magnitude (Thom et al., 2011b). This results

from exploiting sparseness and using sparse matrix-vector multiplication algorithms to infer the in-

ternal representation, which is the major computational burden in class membership prediction. It

was shown in this paper and by Thom et al. (2011b) that a small number of nonzero entries in the

weight matrix of the hidden layer is sufficient for achieving good classification results. Further-

more, the additional savings in required storage capacity and bandwidth allow using platforms with

modest computational power for practical implementations. Sparseness is therefore an elementary

concept of efficiency in artificial processing systems.

5. Conclusions

Without sparseness in their brains, higher mammals probably would not have developed to viable

life-forms. This important concept of efficiency was discovered by neuroscientists, and practical

benefit was obtained by the engineers of artificial information processing systems. This paper stud-

ied Hoyer’s sparseness measure σ, and in particular the projection of arbitrary vectors onto sets

where σ attains a constant value. A simple yet efficient algorithm for computing this sparseness-

enforcing projection operator was proposed in this paper, and its correctness was proved. In ad-

dition, it was demonstrated that the proposed algorithm is superior in run-time to Hoyer’s original

algorithm. The analysis of the theoretical properties of this projection was concluded by showing it

is differentiable almost everywhere.

As projections onto σ constraints are well-understood, they constitute the ideal tool for building

systems that can benefit from sparseness constraints. An original use case was introduced in this

paper. Here, the σ projection was implemented as neuronal transfer function, yielding a differen-

tiable closed-form expression for inference of sparse code words. Besides this sparse activity, the

connectivity in this system was also forced to be sparse by performing the σ projection after the

presentation of learning examples. Because of its smoothness, the entire system can be optimized

end-to-end by gradient-based methods, yielding a classification architecture exhibiting true sparse

information processing.

This supervised online auto-encoder was applied on a benchmark data set for pattern recogni-

tion. Because sparseness constraints reduce the amount of feasible solutions, it is not clear in the

first place whether the same performance can be achieved at all. However, when the target degree of

sparseness of the activity is in a reasonable range, classification results are not only equivalent but

superior to classical non-sparse approaches. This result is supported by statistical evaluation show-

ing that this performance increase is not merely coincidental, but statistically significant. Therefore,

sparseness can be seen as regularizer that offers the potential to improve artificial systems in the

same way it seems to improve biological systems.
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Appendix A. Notation and Prerequisites

This appendix fixes the notation and provides prerequisites for the following appendices. N denotes

the natural numbers including zero,R the real numbers andR≥0 the non-negative real numbers. Rn

is the n-dimensional Euclidean space with canonical basis e1, . . . ,en ∈ Rn, and e := ∑n
i=1 ei ∈ Rn

denotes the vector where all entries are identical to unity. For all other vectors, a subscript denotes

the corresponding entry of the vector, that is xi = eT
i x for x ∈ Rn. The amount of nonzero entries

in a vector is given by the L0 pseudo-norm, ‖·‖0. ‖·‖1 and ‖·‖2 denote the Manhattan norm and

Euclidean norm, respectively. 〈·, ·〉 denotes the canonical dot product in the Euclidean space. Given

a vector x, diag(x) denotes the square matrix with x on its main diagonal and zero entries at all other

positions, and a◦b = diag(a)b denotes the Hadamard product or entrywise product for vectors

a and b. When A and B are square matrices, then diag(A,B) denotes the block diagonal matrix

with the blocks given by A and B. Sn is the symmetric group, and Pτ denotes the permutation

matrix for τ ∈ Sn. For a set M ⊆ U , MC denotes its complement in the universal set U , where

U ∈ {Rn,{1, . . . ,n}} is clear from the context. The power set of M is denoted by℘(M). If M ⊆Rn,

then ∂M denotes its boundary in the topological sense. The sign function is denoted by sgn(·). A

list of symbols that are frequently used throughout the paper is given in Table 2.

The important concept of the projection onto a set was given in Definition 1. The following

basic statement will be used extensively in this paper and follows from 〈x, x〉= ‖x‖2
2 for all x ∈Rn

and the fact that the scalar product is a symmetric bilinear form (Laub, 2004):

Proposition 4 Let a,b ∈ Rn. Then ‖a±b‖2
2 = ‖a‖2

2 + ‖b‖2
2 ± 2〈a, b〉. Further it is ‖a−b‖2

2 =
‖a− p‖2

2 +‖p−b‖2
2 +2〈a− p, p−b〉 for all p ∈Rn.

As an example, note that the outcome of the sparseness-enforcing projection operator depends only

on the target sparseness degree up to scaling:

Remark 5 Let λ1,λ2 > 0 and λ̃1, λ̃2 > 0 be pairs of target norms such that λ1/λ2 = λ̃1/λ̃2. Then

projS(λ1,λ2)(x) = λ̃2/λ2 ·proj
S(λ̃1,λ̃2)

(x) for all x ∈Rn.

Proof It is sufficient to show only one inclusion. Let x ∈ Rn be arbitrary, p ∈ projS(λ1,λ2)(x) and

r̃ ∈ S(λ̃1,λ̃2). Define p̃ := λ̃1/λ1 · p = λ̃2/λ2 · p ∈ Rn, then ‖ p̃‖1 =
∣

∣λ̃1/λ1

∣

∣ · ‖p‖1 = λ̃1 and analogously

‖ p̃‖2 = λ̃2, hence p̃ ∈ S(λ̃1,λ̃2). For the claim to hold it has now to be shown that ‖ p̃− x‖2 ≤‖r̃− x‖2.

Write r := λ2/λ̃2 · r̃ ∈Rn, which in fact lies in S(λ1,λ2). So ‖p− x‖2 ≤ ‖r− x‖2 by definition of p, and

with Proposition 4 follows ‖r̃− x‖2
2 −‖p̃− x‖2

2 = ‖r̃‖2
2 +‖x‖2

2 −2〈r̃, x〉−‖p̃‖2
2 −‖x‖2

2 +2〈p̃, x〉=
2〈p̃− r̃, x〉= λ̃2/λ2 ·2〈p− r, x〉= λ̃2/λ2 ·

(

‖r− x‖2
2 −‖p− x‖2

2

)

≥ 0.

Hence only the ratio of the target L1 norm to the target L2 norm is important and not their actual

scale. This argument can be generalized to projections onto any scale-invariant set and therefore

naturally holds also for S
(λ1,λ2)
≥0 .
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Symbol and Definition Meaning

σ (see Section 1.1) Sparseness measure by Hoyer (2004)

π and π≥0 (see Section 2.4) Sparseness projection cast as function

n ∈N Problem dimensionality

e1, . . . ,en ∈Rn Canonical basis of Rn

e := ∑n
i=1 ei ∈Rn Vector where all entries are one

λ1 ∈R>0 Target L1 or Manhattan norm

λ2 ∈R>0 Target L2 or Euclidean norm

S(λ1,λ2) ⊆Rn (see Section 1.1) Target set for sparseness projection

S
(λ1,λ2)
≥0 := S(λ1,λ2)∩Rn

≥0 Target set for non-negative sparseness projection

D := S
(λ1,λ2)
≥0 Short for the non-negative target set

H := {a ∈Rn | eT a = λ1 } Target hyperplane

K := {q ∈Rn | ‖q‖2 = λ2 } Target hypersphere

L := H ∩K Target hypercircle

C :=Rn
≥0 ∩H Scaled canonical simplex

m := λ1/n · e ∈Rn Barycenter of L and C

ρ := λ2
2 − λ2

1/n ∈R Squared radius of L

I ⊆ {1, . . . ,n} Index set of nonzero entries

d := |I| ∈N Working dimensionality

LI := {a ∈ L | ai = 0 for all i < I } Points in L where certain coordinates vanish

CI := {c ∈C | ci = 0 for all i < I } Face of simplex C

mI := λ1/d ·∑i∈I ei ∈Rn Barycenter of LI and CI

ρI := λ2
2 − λ2

1/d ∈R Squared radius of LI

Table 2: A list of symbols used frequently in this paper and their meaning.

Appendix B. Projections onto Symmetric Sets

This appendix investigates certain symmetries of sets and their effect on projections onto such

sets. A great variety of sparseness measures fulfills certain symmetries as vector entries are equally

weighted, see Hurley and Rickard (2009). This means that no entry is preferred over another, and

for negative entries usually the absolute value or the squared value is taken, such that the signs of

the entries are ignored. Consider the following definition of symmetries that are to be analyzed:

Definition 6 Let ∅ ,M ⊆Rn. Then M is called permutation-invariant if and only if Pτx ∈ M for all

x ∈ M and all permutations τ ∈ Sn. Further, M is called reflection-invariant if and only if b◦x ∈ M

for all x ∈ M and all b ∈ {±1}n
.

In other words, a subset M of the Euclidean space is permutation-invariant if set membership is

invariant to permutation of individual coordinates. M is reflection-invariant if single entries can be
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negated without violating set membership. This is equivalent to x−2∑i∈I xiei ∈ M for all x ∈ M and

all index sets I ⊆ {1, . . . ,n}, which is a condition that is technically easier to handle. The following

observation states that these symmetries are closed under common set operations:

Remark 7 Let ∅ , A,B ⊆ Rn. When A and B are permutation-invariant or reflection-invariant,

then so are A∪B, A∩B and AC.

The proof is obvious by elementary set algebra. Now consider the following general properties of

functions mapping to power sets:

Definition 8 Let ∅ ,M ⊆ Rn, let ℘(M) be its power set and let f : Rn →℘(M) be a function. f

is called order-preserving if and only if xi > x j implies pi ≥ p j for all x ∈Rn, for all p ∈ f (x) and

for all i, j ∈ {1, . . . ,n}. f is called absolutely order-preserving if and only if from |xi|>
∣

∣x j

∣

∣ follows

|pi| ≥
∣

∣p j

∣

∣ for all x ∈Rn, for all p ∈ f (x) and for all i, j ∈ {1, . . . ,n}. f is called orthant-preserving

if and only if sgn(xi) = sgn(pi) or xi = 0 or pi = 0 for all x ∈ M and all p ∈ f (x).

Hence, a function f is order-preserving if the relative order of entries of its arguments does not

change upon function evaluation. Thus if the entries of x are sorted in ascending or descending

order, then so are the entries of every vector in f (x). Orthant-preservation denotes the fact that x

and every vector from f (x) are located in the same orthant. The link between set symmetries and

projection properties is established by the following result. A weaker form of its statements has

been described by Duchi et al. (2008) in the special case of a projection onto a simplex.

Lemma 9 Let ∅ ,M ⊆Rn and p : Rn →℘(M), x 7→ projM(x). Then the following holds:

(a) When M is permutation-invariant, then p is order-preserving.

(b) When M is reflection-invariant, then p is orthant-preserving.

Proof (a) Let x ∈ Rn and p ∈ projM(x). Let i, j ∈ {1, . . . ,n} with xi > x j. Assume that pi < p j.

Let τ := (i, j) ∈ Sn and q := Pτ p, then q ∈ M because of M being permutation-invariant. Consider

d := ‖p− x‖2
2 −‖q− x‖2

2. Because τ is a single transposition, application of Proposition 4 yields

d = 2(p j − pi)(xi − x j). By requirement d > 0, which contradicts the minimality of p as being a

projection of x onto M. Hence pi ≥ p j must hold.

(b) Let x ∈ Rn and p ∈ projM(x). Define I := { i ∈ {1, . . . ,n} | sgn(xi) , sgn(pi)}. The claim

holds trivially if I = ∅. Assume I , ∅ and define q := p−2∑i∈I piei. It follows q ∈ M because M

is reflection-invariant. Proposition 4 implies ‖q‖2
2 = ‖p‖2

2, and clearly 〈q, x〉= 〈p, x〉−2∑i∈I pixi.

Therefore application of Proposition 4 yields d := ‖p− x‖2
2 −‖q− x‖2

2 = −4∑i∈I pixi. By the def-

inition of I one obtains pixi ∈ {−1,0}. Hence would there be an index i ∈ I with pi , 0 and

xi , 0, then d > 0, but ‖p− x‖2
2 > ‖q− x‖2

2 would contradict the minimality of p. Therefore

I = { i ∈ {1, . . . ,n} | pi = 0 or xi = 0}, and the claim follows.

When the projection onto a permutation-invariant set is unique, then equal entries of the argument

cause equal entries in the projection:

Remark 10 Let ∅ ,M ⊆Rn be permutation-invariant and x ∈Rn. When p = projM(x) is unique,

then pi = p j follows for all i, j ∈ {1, . . . ,n} with xi = x j.
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Proof Let x ∈ Rn, p = projM(x) and i, j ∈ {1, . . . ,n} with xi = x j. Assume pi , p j would hold

and let τ := (i, j) ∈ Sn and q := Pτ p , p. With the permutation-invariance of M follows q ∈ M,

and ‖q− x‖2 = ‖p− x‖2 with xi = x j. Hence q ∈ projM(x), so q = p with the uniqueness of the

projection, which contradicts q , p. Therefore, pi = p j.

The next result shows how solutions to a projection onto reflection-invariant sets can be turned into

non-negative solutions and vice-versa. Its second part was already observed by Hoyer (2004), in

the special case of the sparseness-enforcing projection operator, and by Duchi et al. (2008), when

the connection between projections onto a simplex and onto an L1 ball was studied. Both did not

provide a proof, but in the latter work a hint to a possible proof was given. With Lemma 11 it

suffices to consider non-negative solutions for projections onto reflection-invariant sets.

Lemma 11 Let ∅ , A ⊆Rn be reflection-invariant, B := A∩Rn
≥0 and p,x ∈Rn. Then:

(a) If p ∈ projA(x), then |p| ∈ projB(|x|).

(b) If p ∈ projB(|x|), then s◦ p ∈ projA(x) where s ∈ {±1}n
is given by si := 1 if xi ≥ 0 and

si :=−1 otherwise for all i ∈ {1, . . . ,n}.

Proof First note that if q ∈ projA(x), then sgn(xi) = sgn(qi) or xi = 0 or qi = 0 with Lemma 9(b).

Hence for all i∈{1, . . . ,n} follows (|qi|− |xi|)2 =(qi · sgn(qi)− xi · sgn(xi))
2 =(qi − xi)

2
, and there-

fore ‖q− x‖2
2 = ‖|q|− |x|‖2

2. Furthermore, |q| ∈ A because of A reflection-invariant and |q| ∈ Rn
≥0,

so |q| ∈ B.

(a) Let p ∈ projA(x) and q ∈ B, then |p| ∈ B and it has to be shown that ‖|p|− |x|‖2 ≤ ‖q−|x|‖2.

Define I := { i ∈ {1, . . . ,n} | xi < 0} and q̃ := q− 2∑i∈I qiei, that is the signs of entries in I are

flipped. Clearly q̃ ∈ A, so in conjunction with the remark at the beginning of the proof follows

‖|p|− |x|‖2
2 = ‖p− x‖2

2 ≤ ‖q̃− x‖2
2. For i < I one obtains xi ≥ 0 and q̃i = qi, hence q̃i−xi = qi−|xi|.

For i∈ I follows xi < 0 and q̃i =−qi, hence q̃i−xi =−(qi −|xi|). This yields (q̃i − xi)
2 = (qi −|xi|)2

for all i ∈ {1, . . . ,n}, thus ‖q̃− x‖2
2 = ‖q−|x|‖2

2, and the claim follows.

(b) Let p ∈ projB(|x|). If i ∈ {1, . . . ,n} with xi ≥ 0, then clearly si pi − xi = pi − |xi|. For i ∈
{1, . . . ,n} with xi < 0 follows si pi − xi = −(pi −|xi|). Therefore, ‖s◦ p− x‖2

2 = ‖p−|x|‖2
2. Let

q∈ projA(x), then the remark at the beginning of the proof yields ‖q− x‖2
2 = ‖|q|− |x|‖2

2 and |q| ∈B.

p ∈ projB(|x|) yields ‖p−|x|‖2
2 ≤ ‖|q|− |x|‖2

2, and the claim follows.

Using this result immediately yields a condition for projections to be absolutely order-preserving:

Lemma 12 Let∅,M ⊆Rn be both permutation-invariant and reflection-invariant. Then the func-

tion p : Rn →℘(M), x 7→ projM(x), is absolutely order-preserving.

Proof Let x ∈Rn, p ∈ projM(x), and i, j ∈ {1, . . . ,n} with |xi|>
∣

∣x j

∣

∣. Define L := M∩Rn
≥0, which

is permutation-invariant with Remark 7. Lemma 11 implies that |p| ∈ projL(|x|), and with Lemma 9

follows |pi| ≥
∣

∣p j

∣

∣.

The application of these elementary results to projections onto sets on which functions achieve

constant values is straightforward. Examples were given in Section 2 with the sets Z and S(λ1,λ2).

Appendix C. Proof of Correctness of Algorithm 1 and Algorithm 3

The purpose of this appendix is to rigorously prove correctness of Algorithm 1 and Algorithm 3,

that is that they compute projections onto S
(λ1,λ2)
≥0 . Projections onto S(λ1,λ2) can then be inferred

easily as explained in Appendix B.
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C.1 Geometric Structures and First Considerations

The aim is to compute projections onto D, which is the intersection of the non-negative orthantRn
≥0,

the target hyperplane H and the target hypersphere K, see Section 2.1. Further, the intersection of H

and K yields a hypercircle L, and the intersection of Rn
≥0 and H yields a scaled canonical simplex

C. The structure of H and L will be analyzed in Section C.1.1 and Section C.1.2, respectively. The

properties of C are discussed in Section C.2 and Section C.3. These results will then be used in

Section C.4 to prove Theorem 2 and Theorem 3.

For the analysis of subsets where certain coordinates vanish, it is useful to define the following

quantities for an index set I ⊆ {1, . . . ,n} with cardinality d := |I|. The corresponding face of C is

denoted by CI := {c ∈C | ci = 0 for all i < I } and has barycenter mI := λ1/d ·∑i∈I ei ∈ CI . Further,

LI := {a ∈ L | ai = 0 for all i < I } denotes the hypercircle with according vanishing entries, and

ρI := λ2
2 − λ2

1/d is the squared radius of LI . Note that mI is also the barycenter of LI .

With these definitions the intermediate goal is now to prove that projections onto D can be

computed by alternating projections onto the geometric structures defined earlier. The idea is to

show that the set of solutions is not tampered by alternating projections onto H, C, L and LI .

C.1.1 L1 NORM CONSTRAINT—TARGET HYPERPLANE

First, the projection onto the target hyperplane H is considered. Lemma 13 is an elaborated version

of a result from Theis et al. (2005), which is included here for completeness. Using its statements,

it can be assumed that the considered point lies on H without modification of the solution set of the

projection onto the target set D.

Lemma 13 Let x ∈Rn. Then the following holds:

(a) projH(x) = x+ 1/n ·
(

λ1 − eT x
)

e.

(b) Let r := projH(x). Then projD(x) = projD(r).

Proof (a) This is essentially a projection onto a hyperplane, yielding a unique result.

(b) With (a) follows r − x = 1/n ·
(

λ1 − eT x
)

e. Hence 〈h, r− x〉 = λ1/n ·
(

λ1 − eT x
)

holds for

arbitrary h ∈ H. This expression is independent of the entries of h, which yields 〈a−b, r− x〉= 0

for every a,b ∈ H.

Now let p ∈ projD(x), that is ‖p− x‖2 ≤ ‖q− x‖2 for all q ∈ D. Let q ∈ D be arbitrary. With

D ⊆ H follows 〈q− p, r− x〉 = 0, and thus Proposition 4 yields ‖q− r‖2
2 −‖p− r‖2

2 = ‖q− x‖2
2 −

‖p− x‖2
2 +2〈q− p, x− r〉= ‖q− x‖2

2 −‖p− x‖2
2 ≥ 0, hence ‖p− r‖2

2 ≤ ‖q− r‖2
2, so p ∈ projD(r).

For the converse let p ∈ projD(r). Analogously ‖q− x‖2
2 −‖p− x‖2

2 = ‖q− r‖2
2 −‖p− r‖2

2 ≥ 0,

hence p ∈ projD(x).

Therefore, the barycenter m is the projection of the origin onto H. The next remark gathers addi-

tional information on the norm of m and dot products with this point.

Remark 14 It is ‖m‖2
2 = λ2

1/n. Further, 〈m, h〉= λ2
1/n for all h ∈ H, and thus ‖h−m‖2

2 = ‖h‖2
2− λ2

1/n

with Proposition 4.

C.1.2 L1 AND L2 NORM CONSTRAINT—TARGET HYPERSPHERE

After the projection onto the target hyperplane H has been carried out, consider now the joint con-

straint of H and the target hypersphere K. First note that L = H ∩K is a hypercircle, that is a

hypersphere in the subspace H, with intrinsic dimensionality reduced by one:
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Lemma 15 Consider L = H ∩K and ρ = λ2
2 − λ2

1/n. Then the following holds:

(a) L = L̃ := {q ∈ H | ‖q−m‖2
2 = ρ}.

(b) L , ∅ if and only if λ2 ≥ λ1/
√

n.

Proof (a) Follows immediately from Remark 14.

(b) L is nonempty if and only if ρ ≥ 0 using (a), and ρ = (λ2 + λ1/
√

n)(λ2 − λ1/
√

n). Hence, with

λ1,λ2 > 0 one obtains ρ ≥ 0 if and only if λ2 − λ1/
√

n ≥ 0.

Hence L , ∅ by the requirement that λ2 ≤ λ1 ≤
√

nλ2. Further, the following observation follows

immediately from Proposition 4 and ‖a‖2 = ‖b‖2 = λ2 for all a,b ∈ L:

Remark 16 For all a,b ∈ L it is ‖a−b‖2
2 = 2

(

λ2
2 −〈a, b〉

)

, hence 〈a, b〉= λ2
2 − 1/2 · ‖a−b‖2

2.

Therefore, on L the dot product is equal to the Euclidean norm up to an additive constant. Next

consider projections onto L and note that the solution set with respect to D is not changed by this

operation. The major arguments for this result have been taken over from Theis et al. (2005). Here,

the statements from Lemma 15 have been incorporated and the resulting quadratic equation was

solved explicitly, simplifying the original version of Theis et al. (2005).

Lemma 17 Let r ∈ H with r , m. Let s := m+δ(r−m) where δ :=
√

ρ/‖r−m‖2. Then:

(a) δ > 0, s ∈ L, and ‖q− r‖2
2 −‖s− r‖2

2 = 1/δ · ‖q− s‖2
2 for all q ∈ L.

(b) s = projL(r).

(c) projD(r) = projD(s).

Proof (a) First note that δ > 0 because of r ,m. Clearly s = (1−δ)m+δr. Further, s ∈ H because

of eT s = λ1, and s ∈ L because of ‖s−m‖2
2 = ρ and Lemma 15.

Let q ∈ L be arbitrary. One obtains ‖q‖2 = ‖s‖2 with q,s ∈ K and therefore application of

Proposition 4 yields ‖q− r‖2
2 −‖s− r‖2

2 = 2〈s−q, r〉. With Remark 14 follows 〈m, r〉 = λ2
1/n and

‖r‖2
2 = ‖r−m‖2

2 + λ2
1/n. Hence, 〈s, r〉 = (1− δ)〈m, r〉+ δ〈r, r〉 = λ2

1/n+ δ‖r−m‖2
2. On the other

hand, from s−m = δ(r−m) and hence r = (1− 1/δ)m+ 1/δ · s, and using Remark 16 it follows that

〈q, r〉= (1− 1/δ)λ2
1/n+ 1/δ ·

(

λ2
2 − 1/2 · ‖q− s‖2

2

)

. Therefore with δ‖r−m‖2
2 = ρ/δ one obtains

〈s−q, r〉= δ‖r−m‖2
2 + 1/δ ·

(

λ2
1/n−λ2

2 + 1/2 · ‖q− s‖2
2

)

= 1
2δ ‖q− s‖2

2 ,

and the claim follows directly by substitution.

(b) Let q ∈ L, then (a) implies ‖q− r‖2
2 −‖s− r‖2

2 = 1/δ · ‖q− s‖2
2 ≥ 0 with equality if and only

if q = s because of ‖·‖2 being positive definite. Thus s is the unique projection of r onto L.

(c) With (a) follows ‖q− s‖2
2 −‖p− s‖2

2 = δ
(

‖q− r‖2
2 −‖p− r‖2

2

)

for all p,q ∈ D because of

D ⊆ L. For projD(r)⊆ projD(s), let p ∈ projD(r) and q ∈ D. By definition ‖p− r‖2
2 ≤ ‖q− r‖2

2, and

thus ‖q− s‖2
2 −‖p− s‖2

2 ≥ 0 with δ > 0, hence p ∈ projD(s). For the converse, let p ∈ projD(s) and

q ∈ D. Similarly, ‖q− r‖2
2 −‖p− r‖2

2 = 1/δ ·
(

‖q− s‖2
2 −‖p− s‖2

2

)

≥ 0, thus p ∈ projD(r).

Lemma 17 does not hold when r = m, which forms a null set. In practice, however, this can occur

when the input vector x for Algorithm 1 is poorly chosen, for example if all entries are equal. In this

case, projL(r) = L, hence any point from L can be chosen for further processing.
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Remark 18 One possibility in the case r = m would be to choose the point s := α∑n−1
i=1 ei + βen

where α,β ∈ R for s ∈ projL(r), that is forcing the last entry to be unequal to the other ones. For

satisfying s ∈ L, set α := λ1/n+
√

ρ/
√

n(n−1) and β := λ1−α(n−1) = λ1/n−
√

ρ(n−1)/
√

n. This yields

α−β =
√

ρ
(

1/
√

n(n−1)+
√

n−1/
√

n
)

> 0, hence α , β. This choice has the convenient side effect of

s being sorted in descending order.

Combining these properties of H and L, it can now be shown that projections onto D are invariant

to affine-linear transformations with positive scaling:

Corollary 19 Let α > 0, β ∈R and x ∈Rn. Then projD(αx+βe) = projD(x).

Proof Let α > 0, β ∈ R and x ∈ Rn. With Lemma 13 and Lemma 17 it is enough to show

that projL(projH(αx+βe)) = projL(projH(x)). Let x̃ := αx+βe, r̃ := projH(x̃) and s̃ := projL(r̃).
Lemma 13 and eT e = n yield r̃ = (αx+βe)+ 1/n ·

(

λ1 −αeT x−βeT e
)

e = αx+ 1/n ·
(

λ1 −αeT x
)

e.

Hence r̃ is independent of β. Lemma 17 yields s̃=m+ δ̃(r̃−m), where δ̃ :=
√

ρ/‖r̃−m‖2. Application

of Proposition 4 yields

‖r̃‖2
2 = ‖αx‖2

2 +
∥

∥1/n ·
(

λ1 −αeT x
)

e
∥

∥

2

2
+2

〈

αx, 1/n ·
(

λ1 −αeT x
)

e
〉

= α2 ‖x‖2
2 + 1/n ·

(

λ1 −αeT x
)(

λ1 +αeT x
)

= α2 ‖x‖2
2 + 1/n ·

(

λ2
1 −α2(eT x)2

)

,

and with Remark 14 follows ‖r̃−m‖2
2 = ‖r̃‖2

2−λ2
1/n =α2

(

‖x‖2
2−1/n ·(eT x)2

)

. Let r := projH(x) and

s := projL(r), then Lemma 13 and Lemma 17 imply r = x+ 1/n ·
(

λ1 − eT x
)

e and s = m+δ(r−m),

where δ :=
√

ρ/‖r−m‖2. Likewise ‖r−m‖2
2 = ‖x‖2

2 − 1/n · (eT x)2, and hence δ/δ̃ = ‖r̃−m‖2/‖r−m‖2 = α,

where α > 0 must hold. This yields

s̃ = m+ δ̃(r̃−m) = m+ δ/α ·
(

αx+ λ1/n · e− α/n · eT xe− λ1/n · e
)

= m+δ
(

x− 1/n · eT xe
)

= s,

which shows that the projection is invariant.

Therefore, shifting and positive scaling of the argument of Algorithm 1 do not change the outcome.

An overview of the steps carried out this far is given in Figure 8. Consider a point x ∈ Rn and

s := projL(projH(x)). When s ∈ Rn
≥0, then already s ∈ D and hence s ∈ projD(x). Therefore only

situations in which s <Rn
≥0 holds are relevant in the remainder of this discussion.

C.2 Simplex Geometry

The joint constraint of the target hyperplane H with non-negativity yields simplex C. The following

definition is likewise to definitions from Chen and Ye (2011) and Michelot (1986):

Definition 20 For n ∈N, n ≥ 1, the set △n := {α ∈Rn
≥0 | eT α = 1} is called canonical n-simplex.

It is clear that C =Rn
≥0 ∩H = {λ1α | α ∈△n } is a scaled canonical simplex. Further, for an index

set I ⊆ {1, . . . ,n} the set CI = {c ∈C | ci = 0 for all i < I } is a face of the simplex, which intrin-

sically possesses the structure of a simplex itself—although of reduced intrinsic dimensionality.

Consider the following observation on the topology of C embedded in the subspace H:

Proposition 21 Let c = λ1α ∈ C with α ∈ △n. Then c ∈ ∂C in the metric space (H, ‖·‖2) if and

only if there is a j ∈ {1, . . . ,n} with α j = 0.
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D
L

ρ

r

m

s

C

Figure 8: Sketch of the situation in Section C.1, projected onto target hyperplane H. r is the projec-

tion of the input point x onto H. s is the projection of r onto the hypercircle L, which has

squared radius ρ. The intersection of H with the non-negative orthant is a simplex and

denoted by C. The feasible set D is the intersection of C and L, and is marked with solid

black lines. With Lemma 13 and Lemma 17 follows that projD(x) = projD(r) = projD(s),
hence the next steps consist of projecting s onto C for finding the projection of x onto D.

The proof is simple and omitted as it does not contribute to deeper insight. Hence the faces CI are

subsets of ∂C, which is the topological border of C in (H, ‖·‖2). Using Proposition 21 a statement

on the inradius of C can be made, which in turn can be used to show that for n = 2 no simplex

projection has to be carried out at all:

Proposition 22 The squared inradius of C is ρin :=
λ2

1

n(n−1) . It is L ⊆C for n = 2.

Proof Because C is closed and convex, it is enough to consider the distance between interior

points and boundary points. Hence the insphere radius of a point p ∈ C can be computed as being

the minimum distance to any of the boundary points. With Proposition 21 these points can be

characterized as points where at least one entry vanishes. Using Lagrange multipliers it can be

shown that minc∈∂C ‖m− c‖2
2 = ρin. Further, it can be shown that no point other than m is center of

a larger insphere. This is achieved by constructing projections on certain faces of C, as is discussed

in detail in the forthcoming Lemma 26. When n = 2 and λ2 ≤ λ1, which is fulfilled by requirement

on λ1 and λ2, then ρ = λ2
2 − λ2

1/n ≤ λ2
1/2 = ρin, and L ⊆C follows with Lemma 15.

The projection within H from outside a simplex is unique and must be located on its boundary:

Remark 23 Let s ∈ H \C. Then projC(s) ∈ ∂C in (H, ‖·‖2).

The proof is obvious because C is closed and convex. By combination of Proposition 21 and Re-

mark 23, it is now evident that the projection within H onto C yields vanishing entries. After the
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first projection onto H, this subspace is never left throughout the arguments presented here, such that

Remark 23 always applies. It has yet to be shown that the projection onto D possesses zero entries in

the same coordinates. This way, a reduction of problem dimensionality can be achieved, and an it-

erative algorithm can be constructed to compute the projection onto D. The algorithm is guaranteed

to terminate at the latest when the problem dimensionality equals two with Proposition 22.

C.2.1 PROJECTION ONTO A SIMPLEX

Quite a few methods have been proposed for carrying out projections onto canonical simplexes.

An iterative algorithm was developed by Michelot (1986) which is very similar to Hoyer’s original

method for computation of the projection onto D. A simpler and more effective algorithm has been

developed by Duchi et al. (2008). Building upon this work, Chen and Ye (2011) have proposed and

rigorously proved correctness of a very similar algorithm, which is more explicit than that of Duchi

et al. (2008). Their algorithm can be adapted to better suit the needs for the sparseness-enforcing

projection. This adapted version was given by Algorithm 2 in Section 2. The following note makes

the adaptations explicit.

Proposition 24 Let x ∈Rn \C and p := projC(x). Then the following holds:

(a) There exists t̂ ∈R such that p = max(x− t̂ · e, 0), where the maximum is taken element-wise.

(b) Algorithm 2 computes t̂ such that (a) holds and the number of nonzero entries in p.

Proof The arguments from Chen and Ye (2011) hold for projections onto △n. The case of the

scaled canonical simplex can be recovered using p = λ1 · proj△n (x/λ1). Therefore lines 4 and 7 of

Algorithm 2 can be adapted from t := s−1
i

and t := s−1
n

to t := s−λ1

i
and t := s−λ1

n
, respectively. The

correct number of nonzero entries in p follows immediately from its expression from (a), the fact

that y is sorted in descending order and the termination criterion of Algorithm 2.

As already described in Section 2.2, symmetries can be exploited for projections onto C:

Remark 25 When x is already sorted in descending order, then no sorting is needed at the begin-

ning of Algorithm 2. The projection p is then sorted also, because C is permutation-invariant. In this

case, the nonzero entries of p are located in the first d := ‖p‖0 entries, while pd+1 = · · ·= pn = 0.

This fact is useful for optimizing access to the relevant entries of the working vector, which can then

be stored contiguously in memory.

C.2.2 PROJECTION ONTO A FACE OF A SIMPLEX

The projection within H onto C yields zero entries in the working vector. It still remains to be

shown that the projection onto D possesses zero entries at the same coordinates as the projection

onto C. If this holds true, then the dimensionality of the original problem can be reduced, and

iterative arguments can be applied. The main building block in the proof is the explicit construction

of projections from within the simplex onto a certain face. The next Lemma is fundamental for

proving correctness of Algorithm 1. It describes the construction of the result of the projection onto

a simplex face and poses a statement on its norm, which in turn is used to prove that the position of

vanishing entries does not change upon projection.
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Lemma 26 Let q ∈ C and let ∅ , I ⊆ {1, . . . ,n} be an arbitrary index set. Then there exists an

s ∈CI with ‖q− v‖2
2 = ‖q− s‖2

2+‖s− v‖2
2 for all v ∈CI . If additionally max j∈J q j ≤ mini∈I qi holds

for J := IC, then ‖s‖2 ≥ ‖q‖2 with equality if and only if q j = 0 for all j ∈ J.

More precisely, let h := |J| and let J = { j1, . . . , jh} such that q j1 ≤ ·· · ≤ q jh . Consider the

sequence s(0), . . . ,s(h) ∈Rn defined iteratively by s(0) := q and

s(k) := s(k−1)− s
(k−1)
jk

e jk +
1

n−k
s
(k−1)
jk

(

e−∑
k
i=1e ji

)

for k ∈ {1, . . . ,h}. Write s := s(h). Then the following holds:

(a) s(k) ∈C{ j1,..., jk}C for all k ∈ {1, . . . ,h}.

(b)
〈

s(0)− s(k), s(k)− s(k+1)
〉

= 0 for all k ∈ {0, . . . ,h−1}.

(c)
∥

∥s(k)−q
∥

∥

2

2
= ∑k

i=1

∥

∥s(i)− s(i−1)
∥

∥

2

2
for all k ∈ {0, . . . ,h}.

(d) s
(k−1)
jk

= q jk +
1

n−k+1 ∑k−1
i=1 q ji for all k ∈ {1, . . . ,h}.

(e)
〈

s(0)− s(k), s(k)− v
〉

= 0 for all k ∈ {0, . . . ,h} and for all v ∈CI .

(f) ‖q− v‖2
2 =

∥

∥q− s(k)
∥

∥

2

2
+
∥

∥s(k)− v
∥

∥

2

2
for all k ∈ {0, . . . ,h} and for all v ∈CI .

(g) s = projCI
(q).

If max j∈J q j ≤ mini∈I qi, then the following holds as well:

(h) s
(k)
j1

≤ ·· · ≤ s
(k)
jh

≤ mini∈I s
(k)
i for all k ∈ {0, . . . ,h}.

(i) s
(k−1)
jk

≤ λ1

n−k+1
for all k ∈ {1, . . . ,h}.

(j)
∥

∥s(k−1)
∥

∥

2
≤
∥

∥s(k)
∥

∥

2
for all k ∈ {1, . . . ,h}, and hence ‖s‖2 ≥ ‖q‖2.

(k) ‖s‖2 = ‖q‖2 if and only if q j = 0 for all j ∈ J.

Proof In other words, s(k) is constructed from s(k−1) by setting entry jk to zero, and adjusting all

remaining entries, but the ones previously set to zero, such that the L1 norm is preserved. This

generates a finite series of points progressively approaching CI , see (a), where the final point is from

CI . As all relevant dot products vanish, see (b) and (e), this is a process of orthogonal projections.

Hence the distance between points can be computed using the Pythagorean theorem, see (c) and (f).

In (g) it is then shown that s is the unique projection of q onto CI .

If the entry jk in s(k−1) does not vanish, then the L2 norm of the newly constructed point is

greater than that of the original point, see (j) and (k). The entries with indices from J must be

sufficiently small for this non-decreasing norm property to hold, see (h) and (i). The magnitude

of these entries, however, is strongly connected with the magnitudes of respective entries from the

original point q, that is, the rank is preserved from one point to its successor. Figure 9 gives an

example for n = 3 in which cases the non-decreasing norm property holds.

Let ak := 1
n−k

(

e−∑k
i=1 e ji

)

−e jk ∈Rn for k ∈ {1, . . . ,h}. Then s(k) = s(k−1)+s
(k−1)
jk

ak, and with

induction follows s(k) = s(0)+∑k
i=1 s

(i−1)
ji

ai for k ∈ {1, . . . ,h}.
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(a) First note that eT ak =
1

n−k
(n− k)− 1 = 0 and that ak ∈ Rn

≥0 for all k ∈ {1, . . . ,h}. It is

now shown by induction that s(k) lies on the claimed face of C. For k = 1, one obtains s
(1)
j1

= 0 and

s
(1)
i = qi+

1
n−1

q j1 for i, j1. Thus s
(1)
i ≥ 0 for all i∈ {1, . . . ,n} because of qi ≥ 0 for all i∈ {1, . . . ,n}.

Further eT s(1) = eT q+q j1eT a1 = eT q = λ1, hence s(1) ∈C{1,...,n}\{ j1 }.

For k− 1 → k, assume s
(k−1)
i = 0 for all i ∈ { j1, . . . , jk−1}, s

(k−1)
i ≥ 0 for all i ∈ {1, . . . ,n} and

eT s(k−1) = λ1. Clearly, s
(k)
i = s

(k−1)
i = 0 holds for i ∈ { j1, . . . , jk−1}. Furthermore, one obtains

s
(k)
jk

= s
(k−1)
jk

− s
(k−1)
jk

= 0. With s(k−1) ∈ Rn
≥0 and ak ∈ Rn

≥0 follows that s(k) ∈ Rn
≥0. Finally it is

eT s(k) = eT s(k−1)+ s
(k−1)
jk

eT ak = eT s(k−1) = λ1. Hence s(k) ∈C{1,...,n}\{ j1,..., jk}.

(b) For i ∈ {1, . . . ,k} follows

〈

e−∑
i
µ=1e jµ , e−∑

k+1
ν=1e jν

〉

= 〈e, e〉−
〈

e, ∑
k+1
ν=1e jν

〉

−
〈

∑
i
µ=1e jµ , e

〉

+
〈

∑
i
µ=1e jµ , ∑

k+1
ν=1e jν

〉

= n− (k+1)− i+ i = n− k−1,

and therefore

〈ai, ak+1〉= 1
(n−i)(n−k−1)

〈

e−∑
i
µ=1e jµ , e−∑

k+1
ν=1e jν

〉

+
〈

e ji , e jk+1

〉

− 1
n−i

〈

e−∑
i
µ=1e jµ , e jk+1

〉

− 1
n−k−1

〈

e ji , e−∑
k+1
ν=1e jν

〉

= n−k−1
(n−i)(n−k−1) +0− 1

n−i
− 0

n−k−1
= 0.

Thus

〈

s(0)− s(k), s(k)− s(k+1)
〉

=
〈

∑
k
i=1s

(i−1)
ji

ai, s
(k)
jk+1

ak+1

〉

= ∑
k
i=1s

(i−1)
ji

s
(k)
jk+1

〈ai, ak+1〉= 0.

(c) Follows by induction using Proposition 4 and (b).

(d) Clearly,
〈

e jk , ai

〉

= 1
n−i

for i ∈ {1, . . . ,k−1}, hence with induction follows

s
(k−1)
jk

=
〈

e jk , s(k−1)
〉

=
〈

e jk , s(0)
〉

+∑
k−1
i=1 s

(i−1)
ji

〈

e jk , ai

〉

= q jk +∑
k−1
i=1

1
n−i

s
(i−1)
ji

IH
= q jk +∑

k−1
i=1

1
n−i

q ji +∑
k−1
i=1 ∑

i−1
µ=1

1
n−i

1
n−i+1

q jµ = q jk +∑
k−1
i=1 q ji

[

1
n−i

+∑
k−1
µ=i+1

1
n−µ

1
n−µ+1

]

.

Using ∑k−1
i=1 ∑i−1

µ=1 = ∑1≤µ<i≤k−1 = ∑k−1
µ=1 ∑k−1

i=µ+1 the order of summation was changed after the in-

duction step, and then the variables i and µ were swapped. For the claim to hold it is enough to show

that 1
n−i

+∑k−1
µ=i+1

1
n−µ

1
n−µ+1

= 1
n−k+1

for all i ∈ {1, . . . ,k−1}, which follows by reverse induction.

(e) Proof by induction. Let v ∈ CI , that is eT v = λ1 and v j = 0 for all j ∈ J. For k = 0,

s(0)−s(k) = 0 and the claim follows. For k−1→ k, first note that 〈ak, q〉= 1
n−k

(

λ1 −∑k
i=1 q ji

)

−q jk ,
〈

ak, s(k−1)
〉

=
〈

ak, s(0)
〉

+∑k−1
i=1 s

(i−1)
ji

〈ak, ai〉= 〈ak, q〉 because 〈ak, ai〉= 0 for all i∈ {1, . . . ,k−1}
as shown in (b), thus

〈

ak, s(0)−2s(k−1)
〉

=−〈ak, q〉. Furthermore 〈ak, v〉= λ1

n−k
because

〈

e ji , v
〉

=

v ji = 0 for all i ∈ {1, . . . ,h}, and 〈ak, ak〉 = ‖ak‖2
2 = 1

(n−k)2

∥

∥e − ∑k
i=1 e ji

∥

∥

2

2
+
∥

∥e jk

∥

∥

2

2
= 1 + 1

n−k
.
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CI

m

mI

q

s

q̃

L

C

ρ

Figure 9: Situation of Lemma 26: The projection of a point q from within the simplex C onto one

of its faces CI yields point s. When q is sufficiently close to CI , then ‖s‖2 ≥ ‖q‖2. This

does not hold when the point projected onto CI is too far away. For example, the point q̃

which is located outside the dashed square with edge length 2‖mI −m‖2 would yield a

projection with a smaller Euclidean norm.

Therefore,

〈

s(0)− s(k), s(k)− v
〉

=
〈

s(0)− s(k−1)− s
(k−1)
jk

ak, s(k−1)+ s
(k−1)
jk

ak − v
〉

=
〈

s(0)− s(k−1), s(k−1)− v
〉

+ s
(k−1)
jk

〈

ak, s(0)−2s(k−1)− s
(k−1)
jk

ak + v
〉

IH
= s

(k−1)
jk

(

−〈ak, q〉− s
(k−1)
jk

〈ak, ak〉+ 〈ak, v〉
)

= s
(k−1)
jk

(

− λ1

n−k
+ 1

n−k ∑
k
i=1q ji +q jk − s

(k−1)
jk

(

1+ 1
n−k

)

+ λ1

n−k

)

= s
(k−1)
jk

(

q jk

(

1+ 1
n−k

)

+ 1
n−k ∑

k−1
i=1 q ji − s

(k−1)
jk

(

1+ 1
n−k

)

)

= 0,

where the final equality was yielded using the statement from (d) and
(

1+ 1
n−k

)

· 1
n−k+1

= 1
n−k

.

(f) Follows using Proposition 4 and (e).

(g) A unique Euclidean projection exists because CI is closed and convex. s ∈CI with (a), and

‖q− s‖2
2 ≤ ‖q− v‖2

2 for all v ∈CI with (f). Therefore s = projCI
(q).

(h) In the remainder of the proof assume that max j∈J q j ≤ mini∈I qi holds. It is first shown by

induction that s
(k)
j1

≤ ·· · ≤ s
(k)
jh

for all k ∈ {0, . . . ,h}. For k = 0 this is fulfilled as requirement on q

and by definition of J. For k− 1 → k, let µ,ν ∈ { j1, . . . , jh} with µ < ν. Then with χ denoting the
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indicator function and with A := χ{ jk }(µ)−χ{ jk }(ν)+
1

n−k

(

χ{ j1,..., jk}C(ν)−χ{ j1,..., jk}C(µ)
)

follows

s
(k)
ν − s

(k)
µ = s

(k−1)
ν − s

(k−1)
µ + s

(k−1)
jk

A. Clearly, when A ≥ 0 then the claim follows with the induction

hypothesis and with s
(k−1)
jk

≥ 0 due to (a).

First consider the case of µ∈ { j1, . . . , jk−1}. If ν∈ { j1, . . . , jk−1} also, then A= 0. If ν= jk, then

A =−1, and hence s
(k)
ν − s

(k)
µ = s

(k−1)
ν − s

(k−1)
µ − s

(k−1)
ν =−s

(k−1)
µ which however vanishes with (a).

If ν ∈ { jk+1, . . . , jh}, then A = 1
n−k

≥ 0. If µ = jk, then ν ∈ { jk+1, . . . , jh}, and then A = 1+ 1
n−k

≥ 0.

If µ ∈ { jk+1, . . . , jh}, then ν ∈ { jµ+1, . . . , jh}, thus A = 0. Hence the first claim is always fulfilled.

Next, it is shown that max j∈J s
(k)
j ≤ mini∈I s

(k)
i for all k ∈ {0, . . . ,h}. For k = 0 this is the

requirement on q. For k − 1 → k, let i ∈ I and j ∈ J. It is then χ{ jk }(i) = 0, χ{ jk }( j) ∈ {0,1},

χ{ j1,..., jk}C(i) = 1 and χ{ j1,..., jk}C( j) = 0, therefore

s
(k)
i − s

(k)
j = s

(k−1)
i − s

(k−1)
jk

χ{ jk }(i)+
1

n−k
s
(k−1)
jk

χ{ j1,..., jk}C(i)

− s
(k−1)
j + s

(k−1)
jk

χ{ jk }( j)− 1
n−k

s
(k−1)
jk

χ{ j1,..., jk}C( j)

= s
(k−1)
i − s

(k−1)
j + s

(k−1)
jk

(

1
n−k

+χ{ jk }( j)
)

≥ 0,

where s
(k−1)
i − s

(k−1)
j ≥ 0 holds by induction hypothesis.

(i) With (a) follows λ1 = eT s(k−1) and s
(k−1)
ji

= 0 for all i ∈ {1, . . . ,k−1}. s
(k−1)
i ≥ s

(k−1)
jk

holds

for all i ∈ I with (h), and s
(k−1)
ji

≥ s
(k−1)
jk

for all i ∈ {k+1, . . . ,h}. Therefore,

λ1 = ∑
n
i=1s

(k−1)
i = ∑i∈Is

(k−1)
i +∑

k−1
i=1 s

(k−1)
ji

+ s
(k−1)
jk

+∑
h
i=k+1s

(k−1)
ji

≥
(

(n−h)+1+(h− k)
)

s
(k−1)
jk

= (n− k+1)s
(k−1)
jk

,

and the claim follows because n− k+1 > 0.

(j) In (e) it was shown that ‖ak‖2
2 = 1+ 1

n−k
. Furthermore,

〈

s(k−1), ak

〉

= 1
n−k

(

λ1 −∑
k−1
i=1 s

(k−1)
ji

− s
(k−1)
jk

)

− s
(k−1)
jk

= 1
n−k

(

λ1 − s
(k−1)
jk

)

− s
(k−1)
jk

,

because all s
(k−1)
ji

vanish for i ∈ {1, . . . ,k−1} using (a). Application of Proposition 4 yields

∥

∥s(k)
∥

∥

2

2
−
∥

∥s(k−1)
∥

∥

2

2
=
∥

∥s
(k−1)
jk

ak

∥

∥

2

2
+2s

(k−1)
jk

〈

s(k−1), ak

〉

= s
(k−1)
jk

[

s
(k−1)
jk

(

1+ 1
n−k

)

+ 2
n−k

(

λ1 − s
(k−1)
jk

)

−2s
(k−1)
jk

]

= s
(k−1)
jk

[

2λ1

n−k
− s

(k−1)
jk

(

1+ 1
n−k

)

]

,

which is non-negative when s
(k−1)
jk

≤
(

1+ 1
n−k

)−1 · 2λ1

n−k
= 2λ1

n−k+1
. With (i) this is always fulfilled,

hence
∥

∥s(k−1)
∥

∥

2
≤
∥

∥s(k)
∥

∥

2
, and ‖s‖2 ≥‖q‖2 follows immediately using a telescoping sum argument.

(k) When q j = 0 for all j ∈ J, then s = q and the claim follows. When there is a jk ∈ { j1, . . . , jh}
with q jk , 0, let k be minimal such that either k = 1 or q jk−1

= 0, hence s
(k−1)
jk

= q jk . With (i) follows

0 < s
(k−1)
jk

≤ λ1

n−k+1
< 2λ1

n−k+1
, and hence

∥

∥s(k)
∥

∥

2

2
−
∥

∥s(k−1)
∥

∥

2

2
> 0 with (j), thus

∥

∥s
∥

∥

2
>
∥

∥q
∥

∥

2
.
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LI

CI

p

mI

v

t

s

ρI

Figure 10: Sketch of the proof of Corollary 27: The projection of v onto D must be located on

simplex face CI . Assume there is a projection q <CI , then it must be sufficiently close

to CI for application of Lemma 26. The projection s of q onto CI is located outside

LI = {a ∈ L | ai = 0 for all i < I }. Hence the intersection t of the line between v and

s and LI is in CI due to its convexity, and it is farther than the projection p of v onto

D̃ = {a ∈ D | ai = 0 for all i < I }. Therefore q cannot be the projection of v onto D.

The application of Lemma 26 then shows that the projection of a point from a face CI of C onto D

must reside on the same face CI , given the original point is located within a sphere with squared

radius ρI around mI . As will be shown in Lemma 28, this is automatically fulfilled for projections

from L onto C.

Corollary 27 Let I ⊆ {1, . . . ,n}, let v ∈CI with ‖v‖2 < λ2, and let q ∈ projD(v). Then q ∈CI .

Proof Let J := {1, . . . ,n}\ I, and let q ∈ projD(v). Assume there is at least one j ∈ J with q j , 0.

For showing max j∈J q j ≤ mini∈I qi, assume there are i ∈ I and j ∈ J with q j > qi. Then vi > 0 and

v j = 0 because of v ∈CI . D is permutation-invariant using Remark 7 as intersection of permutation-

invariant sets. Hence let τ := (i, j) ∈ Sn be the transposition swapping i and j, and consider

d := ‖q− v‖2
2 −‖Pτq− v‖2

2 = 2(q j −qi)(vi − v j) .

It is d > 0 because of q j −qi > 0 and vi − v j = vi > 0. Hence ‖Pτq− v‖2 < ‖q− v‖2 and Pτq ∈ D,

which violates the minimality of q. Therefore, max j∈J q j ≤ mini∈I qi must hold.

A drawing for the next arguments is given in Figure 10. With Lemma 26 there is an s ∈CI such

that ‖q− v‖2
2 = ‖q− s‖2

2 +‖s− v‖2
2 and ‖s‖2 > λ2. Consider f : [0, 1]→ R, β 7→ ‖v+β(s− v)‖2.

Clearly f (0) = ‖v‖2 < λ2 and f (1) = ‖s‖2 > λ2, hence with the intermediate value theorem there
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CI

m

mI

r

u

L

s

C

ρ

ρI

Figure 11: Situation of Lemma 28 and Lemma 30: The point s is projected onto simplex C yield-

ing r, which resides on one of its faces CI . From there point u can be constructed by

projecting within CI onto the target hypersphere.

exists a β∗ ∈ (0, 1) with f (β∗) = λ2. Let t := v+ β∗ (s− v) ∈ Rn, which lies in CI because of

v,s ∈CI and CI is convex. By construction ‖t‖2 = λ2, hence t ∈ D̃ := {a ∈ D | ai = 0 for all i < I }.

Clearly, ‖v− t‖2 +‖t − s‖2 = |β∗| · ‖s− v‖2 + |1−β∗| · ‖v− s‖2 = ‖s− v‖2. Let p ∈ projD̃(v), then

‖v− p‖2 ≤ ‖v− t‖2. Therefore,

‖q− v‖2
2 = ‖q− s‖2

2 +‖s− v‖2
2 = ‖q− s‖2

2 +(‖v− t‖2 +‖t − s‖2)
2 > ‖v− t‖2

2 ≥ ‖v− p‖2
2 .

Because of D̃ ⊆ D, p ∈ D also, hence ‖q− v‖2 ≤ ‖p− v‖2, which contradicts ‖q− v‖2 > ‖v− p‖2.

Hence, q j = 0 for all j ∈ J must hold, and thus q ∈CI .

Because CI is isomorphic to a simplex, but with lower dimensionality than C, an algorithm can be

constructed to compute the projection onto D, as discussed in the following.

C.3 Self-Similarity of the Feasible Set

The next Lemma summarizes previous results and analyzes projections from L onto C in greater

detail. It shows that the solution set with respect to the projection onto D is not tampered, and

that all solutions have zeros at the same positions as the projection onto C. Figure 11 provides

orientation on the quantities discussed in Lemma 28.

Lemma 28 Let s ∈ L\C and r ∈ projC(s). Let I := { i ∈ {1, . . . ,n} | ri , 0} and d := |I|. Then:

(a) There exists t̂ ∈R≥0 such that r = max(s− t̂ · e, 0), with the maximum taken element-wise.

(b) I , ∅ and I , {1, . . . ,n}.

(c) si > t̂ and si − ri = t̂ for all i ∈ I. si ≤ t̂ and si − ri = si for all i < I.

(d) 〈r, s− r〉= λ1t̂ .

(e) 〈mI, s− r〉= λ1t̂ , thus 〈mI − r, s− r〉= 0.

(f) projD(r)⊆CI , hence from q ∈ projD(r) follows qi = 0 for all i < I.
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(g) Let q ∈ projD(r). Then 〈q− r, s− r〉= 0, and thus ‖q− s‖2
2 = ‖q− r‖2

2 +‖r− s‖2
2.

(h) projD(r) = projD(s)⊆CI .

Proof (a) The existence of t̂ ∈ R such that r = max(s− t̂ · e, 0) is guaranteed by Proposition 24.

It remains to be shown that t̂ ≥ 0. Consider the index set J := { j ∈ {1, . . . ,n} | s j ≥ 0} of non-

negative entries of s. Because of s ∈ L\C one obtains eT s = λ1 and there is an index i with si < 0,

hence J , {1, . . . ,n}. Therefore, λ1 = ∑ j∈J s j+∑ j<J s j < ∑ j∈J s j. Now assume t̂ < 0, then s j− t̂ > 0

for all j ∈ J, and hence r j = s j − t̂ for all j ∈ J. Using r ∈C yields

λ1 = ∑
n
j=1r j ≥ ∑ j∈Jr j = ∑ j∈J (s j − t̂) = ∑ j∈Js j −|J| · t̂ > ∑ j∈Js j,

which contradicts ∑ j∈J s j > λ1. Hence t̂ ≥ 0 must hold.

(b) Would I = ∅ hold, then r = 0, which is impossible because of r ∈ C. I = {1, . . . ,n} would

violate the existence of vanishing entries in r, as is guaranteed by Remark 23.

(c) Using (a): When i ∈ I, then 0 < ri = si − t̂ and the claim follows. When i < I, then ri = 0,

hence si − t̂ ≤ 0 and the claim follows.

(d) eT r = eT s = λ1 because r,s ∈ H, hence using (c) yields

0 = 〈e, s− r〉= ∑i∈I (si − ri)+∑i<I (si − ri) = ∑i∈I t̂ +∑i<Isi = dt̂ +λ1 −∑i∈Isi,

thus

〈r, s− r〉= ∑i∈Iri (si − ri) = ∑i∈I (si − t̂) t̂ = t̂
(

∑i∈Isi −dt̂
)

= λ1t̂.

(e) 〈mI, s− r〉= λ1/d ·∑i∈I (si − ri) = λ1/d ·∑i∈I t̂ = λ1t̂ with (c), and the claim follows with (d).

(f) r ∈CI by definition of I. Using this, (c) and t̂ ≥ 0 from (a) yields

λ2
2 = ‖s‖2

2 = ∑i∈Is
2
i +∑i<Is

2
i = ∑i∈I (ri + t̂)2 +∑i<Is

2
i

> ∑i∈Ir
2
i +dt̂2 +2t̂∑i∈Iri = ‖r‖2

2 +dt̂2 +2λ1t̂ ≥ ‖r‖2
2 ,

thus the claim holds using Corollary 27.

(g) With (f) follows q ∈CI . Hence 〈q, s− r〉= ∑i∈I qi (si − ri) = t̂ ∑i∈I qi = λ1t̂ with (c), and the

claims follow with (d) and Proposition 4.

(h) Let p ∈ projD(s) and q ∈ projD(r). Then using (g) and Proposition 4 one obtains that

‖q− s‖2
2 −‖p− s‖2

2 = ‖q− r‖2
2 −‖p− r‖2

2 +2〈p− r, s− r〉. With (c) and (d) follows

〈p− r, s− r〉= ∑i∈I pi (si − ri)+∑i<I pi (si − ri)−〈r, s− r〉= ∑i∈I pit̂ +∑i<I pisi −λ1t̂

= t̂
(

λ1 −∑i<I pi

)

+∑i<I pisi −λ1t̂ = ∑i<I pi (si − t̂)≤ 0.

Now q ∈ projD(r) yields ‖q− r‖2
2 ≤ ‖p− r‖2

2, and hence ‖q− s‖2
2−‖p− s‖2

2 ≤ 0, thus q ∈ projD(s).
Similarly, ‖q− s‖2

2−‖p− s‖2 ≥ 0 with p∈ projD(s), so ‖q− r‖2
2−‖p− r‖2

2 ≥−2〈p− r, s− r〉 ≥ 0,

therefore p ∈ projD(r).

The following corollary states a similar result as in Theis et al. (2005). However, the proof here

uses the notion of simplex projections instead of relying on pure analytical statements. The result

presented here is stronger, as multiple entries of the vector can be set to zero simultaneously, while

in Theis et al. (2005) at most one entry can be zeroed out in a single iteration.

Corollary 29 Let s ∈ L\C and p ∈ projD(s). Then pi = 0 for all i ∈ {1, . . . ,n} with si ≤ 0.
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Proof Let i ∈ {1, . . . ,n} with si ≤ 0. Let r ∈ projC(s). With Lemma 28(a) follows ri = 0 because

t̂ ≥ 0, and the claim follows with Lemma 28(h).

The final step is to meet the hypersphere constraint again. For this, the simplex projection r is pro-

jected onto the target hypersphere, simultaneously keeping already vanished entries at zero, yielding

a point u. Lemma 30 gives an explicit formulation of this projection and shows that the solution

set with respect to the projection onto D stays the same. Refer to Figure 11 for a sketch of the

construction of u.

Lemma 30 Let s ∈ L \C, r := projC(s) = max(s− t̂ · e, 0) with t̂ ∈ R≥0 using Lemma 28. Let

I := { i ∈ {1, . . . ,n} | ri , 0} and d := |I|. Let u := mI +δ(r−mI) where δ :=
√

ρI/‖r−mI‖2. Then:

(a) u ∈ L and ui = 0 for all i < I, hence u ∈ LI .

(b) projD(u)⊆CI .

(c) u = projLI
(r).

(d) projD(u) = projD(r) = projD(s)⊆CI .

Proof (a) Clearly u∈H. With mI ,r ∈H and Remark 14 follows that 〈m, mI〉= 〈m, r〉= λ2
1/n. More-

over, 〈mI , mI〉= λ2
1/d and 〈r, mI〉= ∑i∈I ri · λ1/d = λ2

1/d, therefore 〈r, mI −m〉= 〈mI , mI −m〉. With

u = (1−δ)mI +δr it is 〈u, mI −m〉= 〈mI , mI −m〉 = λ2
1 (1/d − 1/n). Hence 〈u−mI, mI −m〉= 0.

Further, ‖m−mI‖2
2 = ‖m‖2

2 +‖mI‖2
2 −2〈m, mI〉= λ2

1 (1/d − 1/n).
Thus with Proposition 4, ‖u−m‖2

2 = ‖u−mI‖2
2+‖mI −m‖2

2 = ρI +λ2
1 (1/d − 1/n) = ρ, and with

Lemma 15 follows u ∈ L. For i < I, one obtains ui = (1−δ)eT
i mI +δri = 0, hence u ∈ LI .

(b) If u ∈ C, then u ∈ D because of u ∈ L with (a), and hence u = projD(u). The claim then

follows with ui = 0 for all i < I.

If u <C, then let q ∈ projD(u). With Corollary 29 applied to u follows that qi = 0 for all i with

ui ≤ 0, especially for all i < I. Hence the claim follows.

(c) Write I = {i1, . . . , id} and consider ϕ : Rn → Rd , (x1, . . . , xn)
T 7→ (xi1 , . . . , xid )

T
. Further,

let H̃ := {a ∈Rd | eT a = λ1 }, K̃ := {q ∈Rd | ‖q‖2 = λ2 }, L̃ := H̃ ∩ K̃ and D̃ := Rd
≥0 ∩ H̃ ∩ K̃.

Clearly, when xi = 0 for all i < I, then eT x = eT ϕ(x) and ‖x‖2 = ‖ϕ(x)‖2. Thus in this case mem-

bership of x in one of H, K, L or D implies membership of ϕ(x) in H̃, K̃, L̃ or D̃, respectively.

Application of Lemma 17 to ϕ(r) and ϕ(u) implies that ϕ(u) = projL̃(ϕ(r)). Let q ∈ LI , then

ϕ(q) ∈ L̃, hence ‖ϕ(u)−ϕ(r)‖2 ≤ ‖ϕ(q)−ϕ(r)‖2. From i < I follows ri = ui = qi = 0, hence

‖u− r‖2 = ‖ϕ(u)−ϕ(r)‖2 and ‖q− r‖2 = ‖ϕ(q)−ϕ(r)‖2, and the claim follows.

(d) For the converse of ϕ, let ψ : Rd → Rn, x̃ 7→ x where xi = 0 for all i < I and xi = x̃ j when

there is a j ∈ {1, . . . ,d} with i = i j. Analogous to the above, membership of ỹ in one of H̃, K̃, L̃ or

D̃ implies membership of ψ(ỹ) in H, K, L or D, respectively.

With Lemma 28(f) and Lemma 28(h) it is enough to show projD(u) = projD(r). Like in (c), from

Lemma 17 follows as well that projD̃(ϕ(r)) = projD̃(ϕ(u)). Let p ∈ projD(u) and q ∈ projD(r), then

p∈CI with (b) and q∈CI with Lemma 28(f), and thus ϕ(p),ϕ(q)∈ D̃. Assume ϕ(p) < projD̃(ϕ(u)),
then there exists an a ∈ D̃ with ‖ψ(a)−u‖2 = ‖a−ϕ(u)‖2 < ‖ϕ(p)−ϕ(u)‖2 = ‖p−u‖2, violat-

ing the minimality of p. Hence ϕ(p) ∈ projD̃(ϕ(u)), and analogously follows ϕ(q) ∈ projD̃(ϕ(r)).
Now projD̃(ϕ(r)) = projD̃(ϕ(u)) implies that ϕ(p) ∈ projD̃(ϕ(r)) and ϕ(q) ∈ projD̃(ϕ(u)). Thus,

‖p− r‖2 = ‖ϕ(p)−ϕ(r)‖2 = ‖ϕ(q)−ϕ(r)‖2 = ‖q− r‖2, so p ∈ projD(r), and one obtains analo-

gously that q ∈ projD(u). Therefore projD(u) = projD(r).
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With Lemma 30 a point u is constructed. If u ∈C, then it is already the solution for the projection

onto D. Otherwise, Lemma 28 and Lemma 30 can be applied once more, gaining a new point u.

Lemma 28(b) states that the amount of nonzero entries of u must decrease, hence this process can

be repeated for at most n iterations. If a point with only two non-vanishing entries results, it is

guaranteed to be a solution by Proposition 22.

C.4 Proof of Theorem 2 and Theorem 3

Using the previous results it can now be shown that the proposed Algorithm 1 actually computes a

correct solution, and that the algorithm always terminates in finite time.

Proof of Theorem 2 For proving partial correctness, let x ∈ Rn be arbitrary. Lemma 13 yields

projD(x) = projD(r) after line 1, and with Lemma 17 follows projD(x) = projD(s) after line 2. There

is a pre-test loop in line 3, and it has to be shown that the loop-invariant is projD(x) = projD(s).
At the beginning of the loop, s < Rn

≥0 must hold, thus s ∈ L \C. After line 4, projD(x) = projD(r)
holds with Lemma 28. Then with Lemma 30, projD(x) = projD(s) is ensured after line 5, hence

the loop-invariant holds. Thus, after the loop it is projD(x) = projD(s) and s ∈ D, so projD(x) = s.

If r = m in line 2 or r = mI in line 5, s can be chosen to be any point from L or LI , respectively,

for example the point given in Remark 18. In this case, the projection is not unique, but a valid

representative is found.

To prove total correctness, it has to be shown that the loop in line 3 terminates. Remark 23

applied to CI guarantees that the number of nonzero entries in s is strictly less at the end of the loop

than the number of nonzero entries upon entering the loop. Hence, at most n iterations of the loop

can be carried out, and when |I| = 2 the solution is already in D with Proposition 22. Thus the

algorithm terminates in finite time.

It remains to be shown that the optimized variant is also correct.

Proof of Theorem 3 First note that Algorithm 3 consists of a procedure proj_L carrying out

projections onto L and LI in-place, and a main body. A function proj_C is called to obtain the

information on how to perform projections onto C. This is carried out by Algorithm 2. Upon entry

of the main body, the input vector x is sorted in descending order, yielding a vector y. The algorithm

then operates on the sorted vector y, and undoes the sorting permutation at the end. Because H, L

and C are permutation-invariant, the projections onto the respective sets are guaranteed to remain

sorted with Lemma 9.

Therefore, y has not to be sorted again for the simplex projection, as Algorithm 2 would require.

Also note from Lemma 28 that in the simplex projection the smallest elements are set to zero,

and the original Algorithm 1 continues working on the d non-vanishing entries. Because of the

order-preservation, entries d + 1, . . . , n of y are zero, and all relevant information is concentrated

in y1, . . . , yd . Therefore, Algorithm 3 can continue working on these first d entries only, and the

index set of non-vanishing entries is always I = {1, . . . ,d}. As the nonzero elements are stored

contiguously in memory, access to y can be realized as a small unit-stride array. This is more

efficient than working on a large and sparsely populated vector. Therefore, the loop starting at

line 13 corresponds to the loop starting at line 3 in Algorithm 1. At the end of the main body, the

sorting permutation τ is inverted and the entries from the sorted result vector y are stored in a new

vector s. Because yd+1, . . . , yn = 0, these entries can be ignored by setting the entire vector s to

zero before-hand.

The proposed optimizations hence lead to the same solution which the original algorithm computes.
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Appendix D. Analytical Properties of the Sparseness-Enforcing Projection Operator

In this appendix, it is studied in which situations π≥0 and π as defined in Section 2.4 are differ-

entiable, and hence continuous. Further, an explicit expression for their gradient is sought. It is

clear by Theorem 2 that the projection of any point onto D can be written as finite composition of

projections onto H, L, C and LI , respectively. In other words, for all points x ∈Rn \R there exists a

finite sequence of index sets I1, . . . , Ih ⊆ {1, . . . ,n} with I j ) I j+1 for j ∈ {1, . . . ,h−1} such that

π≥0(x) =
[

�
j=h
1

(

projLI j
◦projC

)

◦projL ◦projH

]

(x),

where �
j=h
1 denotes iterated composition of functions, starting with j = h and decreasing until j = 1,

that is π≥0(x) = projLIh
(projC(· · ·projLI1

(projC(projL(projH(x)))) · · ·)). The sequence I1, . . . , Ih here

depends on x. The intermediate goal is to show that this sequence remains fixed in a neighborhood

of x, and that each projection in the chain is differentiable almost everywhere. This then implies

differentiability of π≥0 except for a null set. Because of the close relationship of π with π≥0, π is

then also differentiable almost everywhere as shown in the end of this appendix.

The projection onto H is differentiable everywhere, as is clear from its explicit formula given

in Lemma 13. Considering L and LI for I ⊆ {1, . . . ,n}, the projection is unique and can be cast as

functionRn →Rn unless the point to be projected is equal to the barycenters m and mI , respectively.

By considering the explicit formulas given in Lemma 17 and Lemma 30, it is clear that these func-

tions are differentiable as composition of differentiable functions. Thus only the projection onto the

simplex C demands attention. Note that the number t̂ from Proposition 24 is equal to the mean value

of the entries of the argument, that survive the projection, modulo an additive constant:

Proposition 31 Let x ∈ Rn \C and p := projC(x). Then there is a set I ⊆ {1, . . . ,n} such that

p = max(x− t̂ · e, 0) where t̂ = 1/|I| · (∑i∈I xi −λ1).

Proof Follows directly from Proposition 24 and Algorithm 2 by undoing the permutation τ.

Note that when I = {1, . . . ,n}, this is very similar to the projection onto H, see Lemma 13. The

next result states a condition under which I is locally constant, and hence identifies points where the

projection onto C is differentiable with a closed form expression:

Lemma 32 Let x ∈ Rn \C, and let p := projC(x), I ⊆ {1, . . . ,n} and t̂ ∈ R be given as in Propo-

sition 31. When xi , t̂ for all i ∈ {1, . . . ,n}, then the following holds where u := ∑i∈I ei ∈ Rn and

v := e−u ∈Rn are the indicator vectors of I and IC, respectively:

(a) pi > 0 if and only if i ∈ I.

(b) p = x+ 1/d ·
(

λ1 −uT x
)

u− v◦x, where ◦ denotes the Hadamard product and d := |I|.

(c) There exists a constant ε > 0 and a neighborhood U := {s ∈Rn | ‖x− s‖2 < ε} of x, such

that sgn(projC(s)) = sgn(p) for all s ∈U.

(d) projC(s) = s+ 1/d ·
(

λ1 −uT s
)

u− v◦s for all s ∈U.

(e) s 7→ projC(s) is differentiable in x.
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Proof Only a sketch of a proof is presented here.

(a) Follows from the characterization of t̂ given in Proposition 31.

(b) The identity can be validated directly using (a) and Proposition 31.

(c) Follows by choosing ε := 1/2 ·mini∈{1,...,n} |xi − t̂|, which is positive by requirement on x.

(d) Validation follows like in (b) using (c).

(e) The projection onto C can be written locally in closed form using (d). In the same neigh-

borhood, the index set of vanishing entries of the projected points does not change. Hence, the

projection is differentiable as a composition of differentiable functions.

It is clear that there are points in which s 7→ projC(s) is continuous but not differentiable, for example

points that are projected onto one of the vertices of C. The structure in this situation is locally equiv-

alent to that of the absolute value function. However, for every point where the projection onto C is

not differentiable, a subtle change is sufficient to find a point where the projection is differentiable:

Lemma 33 Consider the function p : Rn \C →C, s 7→ projC(s) and let x ∈Rn \C be a point such

that p is not differentiable in x. Then for all ε > 0 there exists a point y ∈Rn with ‖x− y‖2 < ε such

that p is differentiable in y.

Proof Let t̂ ∈R be the separator from Proposition 31 for the projection onto C. Let the index set of

all collisions with t̂ be denoted by J := { j ∈ {1, . . . ,n} | x j = t̂ }, which is nonempty with Lemma 32

because p is not differentiable in x. Define δ := ε/
√

4|J| > 0 and consider y := x− δ∑ j∈J e j ∈ Rn.

Clearly, ‖x− y‖2 = ε/2. From Proposition 31 follows that the separating t̂ for the projection onto C is

independent of the entries of x with indices in J, as long as they are less than or equal to t̂. Because

δ > 0, these entries in y are strictly smaller than t̂, hence p is differentiable in y with Lemma 32.

Therefore the set on which s 7→ projC(s) is not differentiable forms a null set. The next result gathers

the gradients of the individual projections involved in the computation of the sparseness-enforcing

projection operator with respect to σ. Using the chain rule, the gradient of π≥0 can be derived

afterwards as multiplication of the individual gradients.

Lemma 34 The individual projections for π≥0 are differentiable almost everywhere. Their gradi-

ents are given as follows:

(a)
∂projH(x)

∂x
= En − 1/n · eeT , where En ∈Rn×n is the identity matrix.

(b)
∂projL(x)

∂x
=

√
ρ

‖x−m‖2

(

En − 1/‖x−m‖2
2 · (x−m)(x−m)T

)

.

(c)
∂projC(x)

∂x
= En − 1/d · uuT − diag(v). Here, I := { i ∈ {1, . . . ,n} | eT

i projC(x) , 0} is the index

set of nonzero entries of the projection onto C, d := |I|, u := ∑i∈I ei ∈Rn and v := e−u ∈Rn.

(d)
∂projLI

(x)

∂x
=

√
ρI

‖x−mI‖2

(

En − 1/‖x−mI‖2
2 · (x−mI)(x−mI)

T
)

.

Proof (a) Follows from the closed form expression in Lemma 13.

(b) Lemma 17 yields projL(x) = m+ δ(x) · (x−m) with δ(x) =
√

ρ/‖x−m‖2. With the quotient

rule follows ∂δ(x)/∂x =−√
ρ/‖x−m‖3

2 · (x−m)T
, as ρ does not depend on x. The claim then follows by

application of the product rule.

(c) Follows from Lemma 32, similar to (a), using v◦x = diag(v)x.

(d) Follows exactly as in (b).
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Clearly, the gradients for projH and for projL are special cases of the gradients of projC and projLI
,

respectively. Therefore, they need no separate handling in the computation of the overall gradient.

Exploiting the special structure of the matrices involved and the readily sorted input as in Algo-

rithm 3, the gradient computation can be further optimized. For the remainder of this appendix, let

Oa×b ∈ {0}a×b
and Ja×b ∈ {1}a×b

denote the matrices with a rows and b columns where all entries

equal zero and unity, respectively.

Theorem 35 Let x ∈ Rn be sorted in descending order and π≥0 be differentiable in x. Let h ∈N
denote the number of iterations Algorithm 3 needs to terminate. In every iteration of the algorithm,

store the following values for i ∈ {1, . . . ,h}, where line numbers reference Algorithm 3:

• di ∈N denoting the current dimensionality as determined by lines 12 and 14.

• δi :=
√

ρ/ϕ ∈R where ρ and ϕ are determined in lines 2 and 3, respectively.

• r(i) := y−mI ∈Rdi as computed in line 7.

Let N := dh = ‖π≥0(x)‖0 denote the number of nonzero entries in the projection onto D, and define

s(i) :=
(

eT
1 r(i), . . . , eT

Nr(i)
)T ∈RN as the first N entries of each r(i). For i ∈ {1, . . . ,h} let

Ai := δiEN − δi/di · JN×N −αis(i)s(i)
T + αi/di · s(i)s(i)T JN×N ∈RN×N where αi := δi/‖r(i)‖2

2,

and let A := ∏i=h
1 Ai = Ah · · ·A1 ∈ RN×N . Then the gradient of π≥0 in x is diag

(

A, O(n−N)×(n−N)

)

,

that is a block diagonal matrix where the quadratic submatrix with row and column indices from 1

to N is given by A, and where all other entries vanish.

Proof The gradient of projections onto H is merely a special case of projections onto C, which also

applies to the respective projections onto L and LI , see Lemma 34. Hence, the very first iteration is

a special case of iterations with i > 1. Consider one single iteration i ∈ {1, . . . ,h} of Algorithm 3,

that is the computation of projLI
◦projC for some I ⊆ {1, . . . ,n}. Write d := di, δ := δi, α := αi and

r := r(i) for short. Because the input vector x is sorted by requirement, all intermediate vectors that

are projected are sorted as well using Lemma 9. Thus I = {1, . . . ,d} holds.

With Lemma 34, the gradient GC ∈ Rn×n of the projection onto both H and C is of the form

GC := En−1/d ·uuT −diag(v), where u :=∑d
i=1 ei and v := e−u. Let q := (r1, . . . ,rd,0, . . . ,0)

T ∈Rn

be a copy of r padded with zeros to achieve full dimensionality n. The gradient of the projection

onto L, and in general LI , is given by GL := δEn −αqq ∈ Rn×n using Lemma 34. The gradient of

the whole iteration is then given by the chain rule, yielding

G := GLGC = δEn − δ/d ·uuT −δdiag(v)−αqqT + α/d ·qqT uuT +αqqT diag(v) ∈Rn×n.

Write O := O(n−d)×(n−d), then G is a block diagonal matrix of a matrix fromRd×d and O: Note that

En−diag(v)= diag(Ed,O), uuT = diag(Jd×d,O), and qqT = diag(rrT ,O). Therefore, qqT diag(v)=
diag(rrT ,O) ·

(

0 0
0 En−d

)

= 0, and qqT uuT = diag(rrT Jd×d,O). Thus

G = δdiag(Ed,O)− δ/d ·diag(Jd×d,O)−αdiag(rrT ,O)+ α/d ·diag(rrT Jd×d,O)

= diag
(

δEd − δ/d · Jd×d −αrrT + α/d · rrT Jd×d, O
)

.

By denoting the gradient of iteration i by matrix Gi ∈ Rn×n for i ∈ {1, . . . ,h} and by application

of the chain rule follows that the gradient of all iterations is given by ∏i=h
1 Gi. In this matrix, all
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entries but the top left submatrix of dimensionality N ×N are vanishing, where N = dh. This is

because the according statement applies to Gi for the top left submatrix of dimensionality di × di,

and d1 > · · ·> dh holds, and only the according entries survive the matrix multiplication. Therefore

it is sufficient to compute only the top left N×N entries of the gradients of the individual iterations,

as the remaining entries are not relevant for the final gradient. This is reflected by the definition of

the matrices Ai for i ∈ {1, . . . ,h} from the claim.

The gradient can thus be computed using matrix-matrix multiplications, where the matrices are

square and the edge length is the number of nonzero entries in the result of the projection. This

computation is more efficient than using the n×n matrices of the individual projections. However,

when the target degree of sparseness is low, and thus the amount of nonzero entries N in the result

of the projection is large, gradient computation can become very inefficient. In practice, often only

the product of the gradient with an arbitrary vector is required. In this case, the procedure can be

sped up by exploiting the special structure of the gradient of π≥0:

Corollary 36 Let x ∈Rn be sorted in descending order and π≥0 be differentiable in x. The product

of the gradient of π≥0 in x with an arbitrary vector can be computed using vector operations only.

Proof Note that because of the associativity of the matrix product it is enough to consider the

product of the gradient G ∈Rn×n of one iteration of Algorithm 3 with one vector y ∈Rn. Because

of the statements of Theorem 35, it suffices to consider the top left N×N entries of G and the first N

entries of y, as all other entries vanish. Therefore let A := δEN − δ/d ·JN×N −αssT +α/d · ssT JN×N ∈
RN×N be the non-vanishing block of G as given by Theorem 35, let u := JN×1 ∈RN be the vector of

ones such that uuT = JN×N , and let z := (y1, . . . , yN)
T ∈RN denote the vector with the first entries

of y. Using matrix product associativity and distributivity over multiplication with a scalar yields

Az = δ(z− 1/d · 〈z, u〉 ·u)+α(1/d · 〈s, u〉〈z, u〉−〈s, z〉)s,

where 〈z, u〉= ∑N
i=1 zi and 〈s, u〉= ∑N

i=1 si. Hence Az can be computed in-place from z by subtrac-

tion of a scalar value from all entries, rescaling by δ, and adding a scaled version of vector s.

Although in Theorem 35 and Corollary 36 it was necessary that the input vector is sorted, the general

case can easily be recovered:

Proposition 37 Let x ∈Rn be a point, τ ∈ Sn such that y := Pτx ∈Rn is sorted in descending order

and π≥0 be differentiable in y with gradient G ∈Rn×n. Then π≥0 is also differentiable in x, and the

gradient is PT
τ GPτ.

Proof Follows with PT
τ = Pτ−1 = P−1

τ , π≥0(x) = PT
τ π≥0(Pτx) = Pτπ≥0(y) and the chain rule.

Likewise, the gradient for the unrestricted projection π can be computed from the gradient for π≥0:

Proposition 38 Let x ∈Rn be a point such that π≥0 is differentiable in |x| with gradient G ∈Rn×n.

Let s ∈ {±1}n
be given such that π(x) = s◦π≥0 (|x|). Then π is differentiable in x, and the gradient

is diag(s)Gdiag(s).

Proof Follows analogously to Proposition 37, using |x|= s◦x = diag(s)x.

Summing up, the gradient of the projection onto S
(λ1,λ2)
≥0 and S(λ1,λ2) can be computed efficiently by

bookkeeping a few values as discussed in Theorem 35, and applying simple operations to recover

the general case. When only the product of the gradient with a vector is required, the computation

can be made more efficient as stated in Corollary 36. Direct application of Theorem 35 should be

avoided in this situation because of the high computational complexity.
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Appendix E. Gradients for SOAE Learning

The objective function ESOAE is a convex combination of two similarity measures sR and sC. The

degrees of freedom W , Wout and θout of the SOAE architecture should be tuned by gradient-based

methods to minimize these functions. This appendix reports the gradient information needed for

reproduction of the experiments. The first statement addresses the reconstruction module.

Proposition 39 It is (∂sR(x̃, x)/∂W)T = xgW f ′(u)+gT hT ∈Rd×n where g := ∂sR(x̃,x)/∂x̃ ∈R1×d is the

gradient of the similarity measure with respect to its first argument. Additionally, (∂sR(x̃, x)/∂Wout)
T =

0 ∈Rn×c and ∂sR(x̃, x)/∂θout = 0 ∈R1×c.

Proof As sR does not depend on Wout or θout, the respective gradients vanish. The symmetry be-

tween encoding and decoding yields x̃ :=W · f
(

W T x
)

. The gradient for W follows using the chain

rule and the product rule for matrix calculus, see Neudecker (1969) and Vetter (1970).

The correlation coefficient is the recommended choice for the similarity measure of the reconstruc-

tion module because it is normed and invariant to affine-linear transformations. It is also differen-

tiable almost everywhere:

Proposition 40 If sR is the correlation coefficient and x, x̃ ∈Rd \{0}, then

(

∂sR(x̃,x)
∂x̃

)T

= 1√
λµ

(

x− 〈e, x〉
d

e
)

− sR(x̃,x)
λ

(

x̃− 〈e, x̃〉
d

e
)

∈Rd ,

where all entries of e ∈Rd are unity, λ := ‖x̃‖2
2 − 1/d · 〈e, x̃〉2 ∈R and µ := ‖x‖2

2 − 1/d · 〈e, x〉2 ∈R.

Proof One obtains
√

λµ · sR(x̃,x) = 〈x, x̃〉− 1/d · 〈e, x̃〉〈e, x〉 because sR is the correlation coeffi-

cient. The claim then follows with the quotient rule.

The gradients of the similarity measure for classification capabilities are essentially equal to those

of an ordinary two-layer neural network, and can be computed using the back-propagation algo-

rithm (Rumelhart et al., 1986). However, the pairing of the softmax transfer function with the cross-

entropy error function provides a particularly simple structure of the gradient (Dunne and Campbell,

1997). For completeness, the gradients of the classification module of SOAE are summarized:

Proposition 41 If sC is the cross-entropy error function, g is the softmax transfer function and

the target vector for classification t is a one-of-c code, then (∂sC(y, t)/∂Wout)
T = h · (y− t)T ∈ Rn×c,

∂sC(y, t)/∂θout = (y− t)T ∈R1×c and (∂sC(y, t)/∂W)T = x ·
(

(y− t)TW T
out f ′(u)

)

∈Rd×n.

Proof Basic matrix calculus (Neudecker, 1969; Vetter, 1970) yields ∂sC(y, t)/∂θout = (∂sC(y, t)/∂y) ·g′(y),
(∂sC(y, t)/∂Wout)

T = h · (∂sC(y, t)/∂θout) and (∂sC(y, t)/∂W)T = x ·
(

(∂sC(y, t)/∂θout) ·W T
out f ′(u)

)

. By require-

ment ∂sC(y, t)/∂y =−(t⊚y)T , where ⊚ denotes the element-wise quotient, g′(y) = diag(y)− yyT and

∑c
i=1 ti = 1. Therefore (∂sC(y, t)/∂θout)

T =
(

yyT −diag(y)
)

·(t⊚y) = y · 〈y, t⊚y〉−y◦ t⊚y= y−t using

〈y, t⊚y〉= ∑c
i=1 yi · ti/yi = 1, and the claim follows.

As ESOAE is a convex combination of the reconstruction error and the classification error, its overall

gradient follows immediately from Proposition 39 and Proposition 41. Proposition 40, the results

from Appendix D, and the gradient of the L0 projection as described in Section 2.4 can then be used

to compute the explicit gradients for the procedure proposed in this paper.
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Abstract

Multidimensional scaling (MDS) is the art of reconstructing pointsets (embeddings) from pairwise

distance data, and as such it is at the basis of several approaches to nonlinear dimension reduction

and manifold learning. At present, MDS lacks a unifying methodology as it consists of a discrete

collection of proposals that differ in their optimization criteria, called “stress functions”. To correct

this situation we propose (1) to embed many of the extant stress functions in a parametric family

of stress functions, and (2) to replace the ad hoc choice among discrete proposals with a principled

parameter selection method. This methodology yields the following benefits and problem solutions:

(a) It provides guidance in tailoring stress functions to a given data situation, responding to the fact

that no single stress function dominates all others across all data situations; (b) the methodology

enriches the supply of available stress functions; (c) it helps our understanding of stress functions

by replacing the comparison of discrete proposals with a characterization of the effect of parameters

on embeddings; (d) it builds a bridge to graph drawing, which is the related but not identical art of

constructing embeddings from graphs.

Keywords: multidimensional scaling, force-directed layout, cluster analysis, clustering strength,

unsupervised learning, Box-Cox transformations

1. Introduction

In the last decade and a half an important line of work in machine learning has been nonlinear

dimension reduction and manifold learning. Many approaches used in this area are based on inter-

object distances and the faithful reproduction of such distances by so-called “embeddings,” that

is, mappings of the objects of interest (e.g., images, signals, documents, genes, network vertices)

to points in a low dimensional space such that the low-dimensional distances mimic the “true”

inter-object distances as best as possible. Examples of distance-based methods include, among

many others: kernel PCA (KPCA; Schölkopf et al., 1998) “Isomap” (Tenenbaum, De Silva, and

Langford, 2000) , kernel-based semidefinite programming (SDP; Lu, Keleş, Wright, and Wahba,

2005; Weinberger, Sha, Zhu, and Saul, 2007), and two very different methods that both go under the

name “local multidimensional scaling” by Venna and Kaski (2006) and by the present authors (Chen

c©2013 Lisha Chen and Andreas Buja.
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and Buja, 2009). These can all be understood as outgrowths of various forms of multidimensional

scaling (MDS).

MDS approaches are divided into two distinct classes: (1) classical scaling of the Torgerson-

Gower type (the older approach) is characterized by the indirect approximation of target distances

through inner products; (2) distance scaling of the Kruskal-Shepard type is characterized by the

direct approximation of target distances. The relative merits are as follows: classical scaling ap-

proaches often reduce to eigendecompositions that provide hierarchical solutions (increasing the

embedding dimension means adding more coordinates to an existing embedding); distance scal-

ing approaches are non-hierarchical and require high-dimensional optimizations, but they tend to

force more information into any given embedding dimension. It is this class of distance scaling

approaches for which the present article provides a unified methodology.

Distance scaling approaches differ in their choices of a “stress function”, that is, a criterion that

measures the mismatch between target distances (the data) and embedding distances. Distance scal-

ing and the first stress function were first introduced by Kruskal (1964a,b), followed with proposals

by Sammon (1969), Takane, Young, and De Leeuw (ALSCAL, 1977), Kamada and Kawai (1989),

among others. The problem with a proliferation of proposals is that proposers invariably manage to

find situations in which their methods shine, yet no single method is universally superior to all others

across all data situations in any meaningful sense, nor does one single stress function necessarily

exhaust all possible insights to be gained even from a single data set. For example, embeddings

from two stress functions on the same data may both be insightful in that one better reflects local

structure, the other global structure.

This situation calls for a rethinking that goes beyond the addition of further proposals. Needed

is a methodology that organizes stress functions and provides guidance to their specific performance

on any given data set. To satisfy this need we will execute the following program: (1) We embed

extant stress functions in a multi-parameter family of stress functions that ultimately extends to

incomplete distance data or distance graphs, thereby encompassing “energy functions” for graph

drawing; (2) we interpret the effects of some of these parameters on embeddings in terms of a theory

that describes how different stress functions entail different compromises in the face of conflicting

distance information; (3) we use meta-criteria to measure the quality of embeddings independently

of the stress functions, and we use these meta-criteria to select stress functions that are in well-

specified senses (near) optimal for a given data set. We have used meta-criteria earlier (Chen and

Buja, 2009) in a single-parameter selection problem, and a variation of the approach proves critical

in a multi-parameter setting.

For part (1) of the program we took a page from graph drawing which had been in a situation

similar to MDS: a collection of discrete proposals for so-called “energy functions”, the analogs of

stress functions for graph data. This state of affairs changed with the work by Noack (2003) who

embedded extant energy functions in single-parameter families of energy functions. Inspired by

this work, the first author (Chen, 2006) proposed in her thesis the four-parameter family of distance-

based stress functions presented here for the first time. These stress functions are based on Box-Cox

transforms and named the “B-C family”; it includes power laws and logarithmic laws for attracting

and repulsing energies, a power law for up- or down-weighting of small or large distances, as well

as a regularization parameter for incomplete distance data. This family provides an umbrella for

several stress functions from the MDS literature as well as energy functions from the graph drawing

literature. A related two-parameter family of energy functions for weighted graph data was proposed

by Noack (2009), and we study its connection to stress functions for distance data in Section 2.5.
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For part (2) of the program, the analysis and interpretation of the stress function parameters, we

develop the nucleus of a theory that explains the effects of the some of the parameters on embed-

dings. Here, too, we looked to Noack (2003, 2007, 2009) for a template of a theory, but it turns out

that distance data, considered by us, and weighted graph data, considered by Noack (2009), require

different theories. For one thing, distance data, unlike weighted graph data, have a natural concept

of “perfect embedding”, which is achieved when the target distance data are perfectly matched by

the embedding distances. We show that all members in the B-C family of stress functions for com-

plete distance data have the property that they are minimized by perfect embeddings if such exist

(Section 2.3) because they satisfy what we call “edgewise unbiasedness”. In the general case, when

there exists no perfect embedding, a natural question is how the minimization of stress functions

creates compromises between conflicting distance information. To answer this question we intro-

duce the notion of “scale sensitivity”, which is the degree to which the compromise is dominated

by small or large distances through the interaction of two stress function parameters (Section 2.4).

Before we outline step (3) of our program, we make a point that is of interest to machine learn-

ing: The B-C family of stress functions encompasses energy functions for graph drawing through

an extension from complete to incomplete distance data. First we note that MDS based on complete

distance data has been successfully applied to graph drawing through the device of shortest-path

length computation for all pairs of nodes in a graph; see, for example, Gansner et al. (2005). Under-

lying this device is the interpretation of (unweighted) graphs as incomplete distance data whereby

edges carry a distance of +1 and non-edges have missing distances. Similarly, the ISOMAP method

of nonlinear dimension reduction relies on a complete distance matrix consisting of shortest path

lengths computed from a local distance graph. There exists, however, another device for extend-

ing MDS to graphs: It is possible to canonically extend all B-C stress functions from complete to

incomplete distance data by constructing a limit whereby intuitively non-edges are imputed with

an infinite distance that has infinitesimally small weight, creating a pervasive repulsing energy that

spreads out embeddings and prevents them from crumpling up. This limiting process offers up a

parameter to control the relative strength of the pervasive repulsion vis-à-vis the partial stress for

the known distances, thereby acting as a regularization parameter that stabilizes embeddings by re-

ducing variance at the cost of some bias. This device, first applied by the authors (Chen and Buja,

2009) to Kruskal’s stress function, brings numerous energy functions for unweighted graphs under

the umbrella of the B-C family of stress functions.

Finally, in step (3) of our program, we turn to the problem of selecting “good embeddings” from

the multitude that can be obtained from the B-C family of stress functions. This problem can be

approached in a principled way with a method that was first used by the authors again in the case

of Kruskal’s stress function (Chen and Buja, 2009; Chen, 2006; Akkucuk and Carroll, 2006): We

employ “meta-criteria” that judge how well embeddings preserve the input topology in a manner that

is independent of the stress function used to create the embedding. These meta-criteria measure the

degree to which K-nearest neighborhoods are preserved in the mapping of objects to their images in

an embedding. K-NN structure is insensitive to nonlinear monotone transformations of the distances

in both domains, implying that the meta-criteria allow even quite biased (distorted) configurations to

be recognized as performing well in the minimalist sense of preserving K-NNs. Thus the parameters

of the B-C family of stress functions can be chosen to optimize a meta-criterion. In this way we

turn the ad hoc trial-and-error search for good embeddings into a parameter selection problem.
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This article proceeds as follows: Section 2 introduces the B-C family of stress functions in steps.

Section 3 introduces the meta-criteria, and Section 4 illustrates the methodology with simulated

examples and two sets of real data. Section 5 concludes with a discussion.

2. MDS Stress Functions Based on Power Laws

This section first interprets Kruskal’s stress (Kruskal, 1964a) in the framework of attracting and

repulsing energies (Section 2.1); it then generalizes these energies with general power laws (Sec-

tion 2.2), discusses the notions of edgewise unbiasedness (Section 2.3) and scale sensitivity (Sec-

tion 2.4), as well as the relation between distance- and weight-based approaches (Section 2.5), and

generalizes the family to the case of incomplete distance data (Section 2.6). The section concludes

with technical aspects concerning the irrelevance of the relative strengths of attracting and repulsing

energies (Section 2.7) and the unit invariance of the repulsion parameter for incomplete distance

data (Section 2.8).

2.1 Kruskal’s Stress as Sum of Attracting and Repulsing Energies

To start we assume a generic MDS situation in which a full set of target distance data

D = (Di, j)i, j=1,...,N is given for all pairs of objects of interest. We assume Di,i = 0 and Di, j > 0

for i 6= j. MDS solves what we may call the “Rand McNalley Road Atlas problem”: Given a table

showing the distances between all pairs of cities, draw a map of the cities that reproduces the given

distances.

Kruskal’s original MDS proposal (Kruskal, 1964a) solves the problem by proposing a stress

function that is essentially a residual sum of squares (RSS) between the target distances given as

data and the distances in the embedding. An embedding (configuration, graph drawing) is a set of

points X = (xi)i=1,...,N , xi ∈ IRp, so that

di, j = ‖xi −x j‖

are the embedding distances (we limit ourselves to Euclidean distances). The goal is to find an

embedding X whose distances di, j fit the target distances Di, j as best as possible. Kruskal’s stress

function is therefore

S(d|D) = ∑
i, j

(di, j −Di, j)
2,

where we let d = (di, j)i, j = (‖xi − x j‖)i, j and D = (Di, j)i, j. Optimization is carried out over all

N × p coordinates of the configuration X.

Taking a page from the graph drawing literature, we interpret Kruskal’s stress function as com-

posed of an “attracting energy” and a “repulsing energy” as follows:

S(d|D) = ∑
i, j

(di, j
2 −2Di, j di, j) + const.

The term di, j
2 represents an “attracting energy” because in isolation it is minimized by di, j = 0. The

term −2Di, jdi, j represents a “repulsing energy” because again in isolation it is minimized by di, j =
∞. (The term Di, j

2 is a constant that does not affect the minimization; it calibrates the minimum

energy level at zero.) A stress term (di, j −Di, j)
2 is therefore seen to be equivalent to a sum of

an attracting and a repulsing energy term that balance each other in such a way that the minimum

energy is achieved at di, j = Di, j.
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2.2 The B-C Family of Stress Functions

We next introduce a family of stress functions whose attracting and repulsing energies follow power

laws, in analogy to Noack’s generalized energy functions for graph drawing (Noack, 2003, 2007,

2009). However, we would like this family to also include logarithmic laws, as in Noack’s “LinLog”

energy (Noack, 2003, 2007). To accommodate logarithms in the family of power transformations,

statisticians have long used the so-called Box-Cox family of transformations, defined for d > 0 by

BCα(d) =

{

dα−1
α

(α 6= 0),
log(d) (α = 0).

This modification of the raw power transformations dα not only affords analytical fill-in with the

natural logarithm for α = 0, it also extends the family to α < 0 while preserving increasing mono-

tonicity of the transformations: for α < 0 raw powers dα are decreasing while BCα(d) is increasing.

The derivative is

BCα
′(d) = dα−1 > 0 ∀d > 0, ∀α ∈ IR .

By subtracting the (otherwise irrelevant) constant 1 in the numerator and dividing by α, Box-Cox

transformations are affinely matched to the natural logarithm at d = 1 for all powers α:

BCα(1) = 0, BCα
′(1) = 1.

See Figure 1 for an illustration of Box-Cox transformations.

Using Box-Cox transformations we construct a generalization of Kruskal’s stress function by

allowing arbitrary power laws for the attracting and the repulsing energies, subject to the constraint

that the attracting power is greater than the repulsing power to guarantee that the minimum com-

bined energy is finite (>−∞). We denote the attracting power by µ+λ and the repulsing power by

µ with the understanding that λ > 0 and −∞ < µ <+∞.

Definition 1 The B-C family of stress functions for complete distance data D = (Di j)i, j is given

by

S(d|D) = ∑
i, j=1,...,N

Di, j
ν
(

BCµ+λ(di, j) − Di, j
λ BCµ(di, j)

)

. (1)

As we assume Di, j > 0 for i 6= j the weight term Di, j
ν is meaningful for all powers −∞ < ν <

+∞. Thus Di, j
ν upweights the summands for large Di, j when ν > 0 and downweights them when

ν < 0; for ν = 0 the stress function is an unweighted sum. The parameter ν allows us to capture

a couple of extant stress functions; see Table 1. Kruskal’s stress function does not require ν as it

arises from µ = 1, λ = 1 and ν = 0. The idea of using general power laws in an attraction-repulsion

paradigm arose independently in the first author’s PhD thesis (Chen, 2006) and in Noack (2009).

For a discussion of the relationship between the two proposals see Section 2.5.

2.3 Edgewise Unbiasedness of Stress Functions

The reason for introducing the multiplier Di, j
λ in the repulsing energy is to grant what we call

edgewise unbiasedness: If there exist only two objects, N = 2, with target distance D, then the

stress function S(d) = Dν
(

BCµ+λ(d)−DλBCµ(d)
)

should be minimized by d = D:

D = argmind Dν
(

BCµ+λ(d)−DλBCµ(d)
)

.
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Figure 1: Box-Cox Transformations: y = xµ−1
µ

This property is easily verified using λ > 0: S′(d) = Dν+µ−1
(

dλ −Dλ
)

, hence S′(d) < 0 for d ∈
(0,D) and S′(d)> 0 for d ∈ (D,∞), so that S(d) is strictly descending on (0,D) and strictly ascend-

ing on (D,∞). This property holds only for this particular choice of the power Dλ in the repulsing

energy term.

Edgewise unbiasedness is essential to grant the following exact reconstruction property:

Proposition 2 If the target data Di, j form a set of Euclidean distances in the embedding dimension,

Di, j = ‖xi −x j‖ (i, j = 1, ...,N), then all B-C stress functions are minimized by the embeddings that

reproduce the target distances exactly: di, j = Di, j.

Note that embeddings are unique only up to rotations, translations and reflections. They may

have additional non-uniqueness properties that may be peculiar to the data.

2.4 Scale Sensitivity

Next we analyze the role of the parameters ν and λ. As we will see, they determine the degree

to which conflicting metric information is decided in favor of small or large target distances. It

is a major goal of MDS procedures to reach good compromises to obtain informative embeddings

in the general situation when distance data are not perfectly embeddable in a Euclidean space of

a given dimension, be it due to error in the target distances, or due to the distance interpretation
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of what is really just dissimilarity data, or due to intrinsic higher dimensionality of the underlying

objects. To gain insight into the nature of the compromises, it is beneficial to construct a simple

paradigmatic situation in which contention between conflicting distance data can be analyzed. One

such situation is as follows: Assume again that there are only two objects (N = 2), but that target

distances were obtained twice for this same pair of objects, resulting in different values D1 and D2

(due to observation error, say). In practice, one often reduces multiple distances by averaging them,

but a more principled approach is to form a stress function with multiple stress terms per object pair

(i, j). In general, if target distances Di, j,k for the object pair (i, j) are observed Ki, j times, the B-C

stress function will be

S = ∑
i, j=1,...,N

∑
k=1,...,Ki, j

Di, j,k
ν
(

BCµ+λ(di, j)−Di, j,k
λBCµ(di, j)

)

.

With this background, the paradigmatic situation of two target distances D1 and D2 observed on one

object pair is the simplest case that exhibits contention between conflicting distance information.

The stress function for the single embedding distance d is

S = D1
ν
(

BCµ+λ(d)−D1
λBCµ(d)

)

+ D2
ν
(

BCµ+λ(d)−D2
λBCµ(d)

)

.

It is minimized by

dmin =
(

α1D1
λ +α2D2

λ
)1/λ

, where α1 =
D1

ν

D1
ν +D2

ν , α2 =
D2

ν

D1
ν +D2

ν , (2)

so that α1 +α2 = 1. Thus dmin is the Lebesgue Lλ norm of the 2-vector (D1,D2) with regard to the

Bernoulli distribution with probabilities α1 and α2 (an improper norm for 0<λ<1). However, α1

and α2 are also functions of (D1,D2), hence the minimizing distance dmin = d(D1,D2) is a function

of the target distances in a complex way. Yet, the Lebesgue norm interpretation is useful because it

allows us to analyze the dependence of d on the parameters λ and ν separately:

• For fixed D1 6= D2, the minimizing distance d is a monotone increasing function of ν for

−∞ < ν < ∞, and we have

dmin =
(

α1D1
λ +α2D2

λ
)1/λ

{

↑ max(D1,D2) as ν ↑ ∞ ,
↓ min(D1,D2) as ν ↓ −∞ .

The reason is that if D1 > D2 we have α1 ↑ 1 as ν ↑ ∞, and α2 ↑ 1 as ν ↓ −∞.

• For fixed D1 6= D2, the minimizing distance d is a monotone increasing function of λ for

0 < λ < ∞, and we have

dmin =
(

α1D1
λ +α2D2

λ
)1/λ

{

↑ max(D1,D2) as λ ↑ ∞ ,
↓ D1

α1D2
α2 as λ ↓ 0 .

(These facts generalize in the obvious manner to K distances D1,D2, ...,DK observed on the pair of

objects.) While large distances win out in the limit for λ ↑+∞, fixed small distances > 0 will never

win out entirely for λ ↓ 0, although for ever smaller λ the compromise will be shifted ever more

toward the smaller distance.
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Conclusion: Embeddings that minimize B-C stress compromise ever more in favor of ...

... larger distances as λ ↑ ∞ or ν ↑ ∞, with full max-dominance in either limit;

... smaller distances as λ ↓ 0 or ν ↓ −∞, with full min-dominance only in the ν-limit.

We use the term “small scale sensitivity” for the behavior of stress functions as λ ↓ 0 and/or ν ↓
−∞. It has the effect of reinforcing local structure because object pairs with small target distances

will preferentially be placed close together in the embedding. A related observation was made

by Noack (2003) for λ ↓ 0 in graph drawing and called “clustering strength”; this concept is not

identical to small distance sensitivity, however; see Section 2.5.

2.5 Distances versus Weights

Noack (2009) presents a family of “energy functions” for weighted graphs/networks that should be

discussed here because it might be thought to be identical to the B-C family of stress functions—

which it is not, though there exists a connection. The following discussion is meant to clarify the

difference between specifying the relation among object pairs in terms of weights and in terms of

distances.

Underlying the idea of mapping weighted graph data to graph drawings is a density paradigm.

The intuition is that objects connected by edges with large weights should be represented by em-

bedding points that are near each other so as to form high density areas. Hence large weights play

a similar role as small distances in their intended effects on embeddings. Weights and distances are

therefore in an inverse relation to each other, a fact that will be made precise below.

Next we follow Noack (2009) and consider data given as edge weights wi, j ≥ 0 for all pairs (i, j)
with the interpretation that an edge in a graph “exists” between objects i and j if wi, j > 0. (He also

allows node weights wi, but we set these to 1 as they add no essential freedom of functional form.)

The family of energy functions he considers uses a general form of power laws for attracting and

repulsing energies:

U(d|W ) = ∑
i, j=1,...,N

(

wi, j
di, j

a+1

a+1
− di, j

r+1

r+1

)

, (3)

where we write W = (wi, j)i, j=1,...,N . It is assumed that a > r in order to grant finitely sized minimiz-

ing embeddings for connected graphs. In the spirit, though not the letter, of Box-Cox transforms,

Noack imputes natural logarithms for a+1 = 0 or r+1 = 0. Unweighted graphs are characterized

by wi, j ∈ {0,1}, in which case the total energy (3) amounts to (1) the sum of attracting energies

limited to the edges in the graph, and (2) the sum of repulsing energies for all pairs of nodes. This

functional form is suggested by traditional energy functions in graph drawing where an attracting

force holds the embedding points xi and x j together if there exists an edge between them and where

the repulsing force is pervasive and exists for all pairs so as to disentangle the embedding points by

spreading them out.

We now ask how the energy functions (3) and the B-C stress functions (1) relate to each other.

A simple answer can be given by drawing on the notion of edgewise unbiasedness: in a two-node

situation with single weight w, find the embedding distance dmin that minimizes the energy function

(3); this distance dmin = d(w) can be interpreted as the target distance D for which the energy

function is edgewise unbiased. Thus the canonical relation between weights and target distances

is D = d(w). For an energy function (3) the specialization to two nodes is U = wda+1/(a+ 1)−
dr+1/(r + 1), whose stationarity condition is U ′ = wda − dr = 0, hence w = 1/da−r and d(w) =
1/w1/(a−r), as noted by Noack (2009, Equation (3)). Thus the correspondence between w and its
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edgewise unbiased target distance D is

D =
1

w1/(a−r)
. (4)

Using the translation wi, j = Di, j
−(a−r) and the convention wi, j = 0 ⇒ Di, j =+∞ ⇒ Di, j

−(a−r) = 0,

we can rewrite the energy function (3) modulo irrelevant constants as

U(d|D) ∼ ∑
i, j=1,...,N

(

Di, j
−(a−r) BCa+1(di, j) − BCr+1(di, j)

)

. (5)

A comparison with (1) shows that the 2-parameter family of energy functions (5) forms a subfamily

of the 3-parameter family of distance-based B-C stress functions (1) as follows:

ν =−(a− r), µ = r+1, λ = a− r.

Thus the essential constraint is that λ=−ν, entailing ν< 0. In light of the results of Section 2.4

this constraint implies a counterbalancing of distance sensitivities implied by these parameters:

as λ ↑ ∞ large distance sensitivity increases, but simultaneously ν = −λ ↓ −∞ and hence small

scale sensitivity increases as well. Full clarity of the interplay is gained by repeating the exercise

of Section 2.4 in the case ν = −λ: Given two target distances D1 and D2 for N = 2 objects, the

minimizing distance is obtained by specializing (2) to ν =−λ:

dmin =
1

(

1
2
D1

−λ + 1
2
D2

−λ
)1/λ

{

↓ min(D1,D2) as λ ↑ ∞ ,
↑
√

D1D2 as λ ↓ 0 .

Thus the minimizing distance dmin is the reciprocal of the Lebesgue Lλ norm of the vector

(D1
−1,D2

−1) with regard to a uniform distribution α1 = α2 = 1/2. The identification ν = −λ

has therefore a considerable degree of small scale sensitivity for all values of λ > 0, and counter-

intuitively it increases with increasing λ: apparently the increasing small scale sensitivity incurred

from the parameter ν ↓ −∞ outweighs the diminished small scale sensitivity due to λ ↑+∞.

It follows that Noack’s notion of “clustering strength” (Noack, 2003) is not identical to our no-

tion of small scale sensitivity because clustering strength increases for λ=−ν ↓ 0. Rather, clustering

strength has to do with the implied translation of a fixed weight w to a target distance D=1/w1/λ

according to (4): relatively large weights w will result in relatively ever smaller target distances D

as λ ↓ 0, thus reinforcing the clustering effect by the simple translation w 7→ D. Diminishing small

scale sensitivity for λ =−ν ↓ 0 is a lesser effect by comparison.

2.6 B-C Stress Functions for Incomplete Distance Data or Distance Graphs

In order to arrive at stress functions for non-full graphs, we extend a device we used previously to

transform Kruskal-Shepard MDS into a localized or graph version called “local MDS” or “LMDS”

(Chen and Buja, 2009). We now assume target distances Di, j are given only for edges (i, j) ∈ E in a

graph. Starting with stress functions (1) for full graphs, we replace the dissimilarities Di, j for non-

edges (i, j) /∈ E with a single large dissimilarity D∞ which we let go to infinity. We down-weight

these terms with a weight w in such a way that wD∞
λ+ν = tλ+ν is constant:

S = ∑
(i, j)∈E

Di, j
ν
(

BCµ+λ(di, j) − Di, j
λ BCµ(di, j)

)

+ w ∑
(i, j)/∈E

D∞
ν
(

BCµ+λ(di, j) − D∞
λ BCµ(di, j)

)

.
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As D∞ → ∞, we have w = (t/D∞)
ν+λ → 0 and wD∞

ν → 0, hence in the limit we obtain:

S = ∑
(i, j)∈E

Di, j
ν
(

BCµ+λ(di, j) − Di, j
λ BCµ(di, j)

)

− tν+λ ∑
(i, j)/∈E

BCµ(di, j) . (6)

This procedure justifies wiping out the attracting energy outside the graph. We call (6) the B-C

family of stress functions for distance graphs. The parameter t balances the relative strength of

the combined attraction and repulsion inside the graph with the repulsion outside the graph. For

completeness, we list the assumed ranges of the parameters:

t ≥ 0 , λ > 0 , −∞ < µ < ∞ , −∞ < ν < ∞.

An interesting variation of the idea of pervasive repulsion is proposed by Koren and Çivril (2009)

who use finite rather than limiting energies.

Choice of Parameters Special Cases

E =V 2, λ = 1, µ = 1, ν = 0 MDS (Kruskal, 1964a; Kruskal and Seery, 1980)

E =V 2, λ = 2, µ = 2, ν = 0 ALSCAL (Takane, Young, and De Leeuw, 1977)

E =V 2, λ = 1, µ = 1, ν =−2 Kamada and Kawai (1989)

E =V 2, λ = 1, µ = 1, ν =−1 Sammon (1969)

E ⊂V 2, λ = 1, µ = 1, ν = 0, t > 0 LMDS (Chen and Buja, 2009)

E ⊂V 2, λ = 3, µ = 0, Di, j = 1, t = 1 Fruchterman and Reingold (1991)

E ⊂V 2, λ = 4, µ =−2,Di, j = 1, t = 1 Davidson and Harel (1996)

E ⊂V 2, λ = 1, µ = 0, Di, j = 1, t = 1 LinLog (Noack, 2003)

E ⊂V 2, λ = 1, µ = 1, Di, j = 1, t = 1 QuadLin (Noack, 2003)

E ⊂V 2, λ > 0, µ = 0, Di, j = 1, t = 1 PolyLog family (Noack, 2003, his r = λ)

Table 1: Some special cases of stress functions and their parameters in the B-C family. The first

four entries refer to stress functions for complete distance data; the last five entries refer

to energy functions for plain graphs (in which case Di, j = 1 for all edges and hence ν is

vacuous). LMDS applies to incomplete distance data or distance graphs, as do all members

of the B-C family. (Not included is the family of power laws for weighted graphs by Noack

(2009) because they become stress functions for distance graphs only after a mapping of

weights to distances.)

2.7 An Irrelevant Constant: Weighting the Attraction

Noack (2003, Section 5.5) observed that for his LinLog energy function the relative weighting of

the attracting energy relative to the repulsing energy is irrelevant in the sense that such weighting

would only change the scale of the minimizing layout but not the shape. A similar statement can be

made for all members of the B-C family of stress functions. To demonstrate this effect, we introduce

B-C stress functions whose attraction is weighted by a factor cλ (c > 0):

Sc(d) = ∑
(i, j)∈E

Di, j
ν
(

cλ BCµ+λ(di, j) − Di, j
λ BCµ(di, j)

)

− tν+λ ∑
(i, j)/∈E

BCµ(di, j) ,
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where d = (di, j) is the set of all configuration distances for all pairs (i, j), including those not in the

graph E. The repulsion terms are still differentially weighted depending on whether (i, j) is an edge

of the graph E or not, which is in contrast to most energy functions proposed in the graph layout

literature where invariably t = 1.

In analogy to Noack’s argument, we observe the following form of scale equivariance:

S1(cd) = cµ Sc(d) + const.

As a consequence, if d is a minimizing set of configuration distances for Sc(·), then the distances

cd of the scaled embedding cX minimize the original unweighted B-C stress function S1(·).
It is in this sense that Noack’s PolyLog family of stress functions can be considered as a special

case of the B-C family: PolyLog energies agree with B-C stress functions for unweighted graphs

(Di, j = 1) for µ = 0 and t = 1 up to a multiplicative factor in the attracting energy.

2.8 Unit-Invariant Forms of the Repulsion Weight

In the B-C family of stress functions (6), the relative strength of attracting and repulsing forces is

balanced by the parameter t. This parameter, however, has two deficiencies: (1) It suffers from a

lack of invariance under a change of units in the target distances Di, j; (2) it has stronger effects in

sparse graphs than dense graphs because the number of terms in the summations over E and V \E

vary with the size of the graph E. Both deficiencies can be corrected by reparametrizing t in terms

of a new parameter τ as follows:

tλ+ν =
|E|

|V 2|− |E| ·
(

median(i, j)∈E Di, j

)λ+ν · τλ+ν .

This new parameter τ is unit free and adjusted for graph size. (Obviously the median can be replaced

with any other statistic S(D) that is positively homogeneous of first order: S(cD) = cS(D) for c> 0.)

These features enable us to formulate past experience in a problem-independent fashion as follows:

in the examples we have tried, τ= 1 has yielded satisfactory results. In light of this experience, there

may arise few occasions in practice where there is a need to tune τ. As users work with different

units in Di, j or different neighborhood sizes when defining NN-graphs, the recommendation τ = 1

stands. Just the same, we will illustrate the effect of varying τ in an artificial example (Section 4.1).

3. Meta-Criteria for Parameter Selection

Following Chen and Buja (2009) and Akkucuk and Carroll (2006), we describe “meta-criteria”

to measure the quality of configurations independently of the primary stress functions. The main

purpose of these meta-criteria is to guide the selection of parameters such as those in the B-C family,

λ, µ and τ. The idea is to compare “input neighborhoods” defined in terms of Di, j with “output

neighborhoods” defined in terms of di, j by measuring the size of their overlaps. Such neighborhoods

are typically constructed as K-NN sets or, less frequently, in metric terms as ε-neighborhoods. In

a dimension reduction setting one may define for the i’th point the input neighborhood ND(i) as

the set of K-NNs with regard to Di, j and similarly the output neighborhood Nd(i) as the set of K-

NNs with regard to di, j. In an unweighted graph setting, one may define ND(i) as the metric ε = 1

neighborhood, that is, the set of points connected with the i’th point in the graph E, and hence the

neighborhood size K(i) = |ND(i)| is the degree of the i’th point in the graph E and will vary from
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point to point. The corresponding output neighborhood Nd(i) can then be defined as the K(i)-NN

set with regard to di, j. The pointwise meta-criterion at the i’th point is defined as size of the overlap

between Nd(i) and ND(i), hence it is in frequency form

Nd(i) = |Nd(i)∩ND(i)| ,

and in proportion form, using |ND(i)| as the baseline,

Md(i) =
|Nd(i)∩ND(i)|

|ND(i)|
.

The global meta-criteria are simply the averages over all points:

Nd =
1

|V | ∑i

Nd(i) and Md =
1

|V | ∑i

Md(i) .

Only when all input neighborhood sizes are equal, |ND(i)| = K, is there a simple relationship be-

tween Nd and Md : Md = 1
K

Nd . We subscript these quantities with d because they serve to compare

different outputs (xi)i=1...N (configurations, embeddings, graph drawings), but all that is used are the

interpoint distances di, j = ‖xi −x j‖. The proportion form Md is obviously advantageous because it

allows comparisons across different K (or ε).

Whether the meta-criterion values are small or large should be judged not against their possible

ranges ([0,1] for Md) but against the possibility that di, j (hence the embedding) and Di, j are entirely

unrelated and generate only random overlap in their respective neighborhoods Nd(i) and ND(i). The

expected value of random overlap is not zero, however; rather, it is E[|Nd(i)∩ND(i)|] = |Nd(i)| ·
|ND(i)|/(|V |−1) because random overlap should be modeled by a hypergeometric distribution with

|ND(i)| “defectives” and |Nd(i)| “draws” from a total of |V |− 1 “items.” The final adjusted forms

of the meta-criteria are therefore:

N
ad j

d (i) = |Nd(i)∩ND(i)| −
1

|V |−1
|Nd(i)| · |ND(i)| ,

M
ad j

d (i) =
|Nd(i)∩ND(i)|

|ND(i)|
− 1

|V |−1
|Nd(i)| ,

N
ad j

d =
1

|V | ∑i

N
ad j

d (d) , M
ad j

d =
1

|V | ∑i

M
ad j

d (d) .

When the neighborhoods are all K-NN sets, |Nd(i)|= |ND(i)|= K, these expressions simplify:

N
ad j

d (i) = |Nd(i)∩ND(i)| −
K2

|V |−1
,

M
ad j

d (i) =
|Nd(i)∩ND(i)|

K
− K

|V |−1
=

N
ad j

d (i)

K
,

N
ad j

d = Nd − K2

|V |−1
, M

ad j

d = Md − K

|V |−1
=

N
ad j

d

K
.

An important general observation is that if the neighborhoods are defined as K-NN sets, the

meta-criteria are invariant under monotone transformations of both inputs Di, j and outputs di, j.
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Methods that have this invariance are called “non-metric” in proximity analysis/multidimensional

scaling because they depend only on the ranks and not the actual values of the distances.

In what follows, we will report M
ad j

d for each configuration shown in the figures, and we will

also use the pointwise values Md(i) as a diagnostic by highlighting points with Md(i) < 1/2 as

problematic in some of the figures.

Remark 3 Venna and Kaski (2006, and references therein) introduce an interesting distinction be-

tween “trustworthiness” and “continuity” measurement. In our notation the points in Nd(i)\ND(i)
violate trustworthiness because they are shown near but are not near in truth (near = being in the

K(i)-NN), whereas the points in ND(i)\Nd(i) violate continuity because they are near in truth but

not shown as near. Venna and Kaski (2006) measure both violations separately based on distance-

ranks. We implicitly also measure both, but more crudely by unweighted counting of violations. It

turns out, however, that the two violation counts are the same: |Nd(i)\ND(i)|= |ND(i)\Nd(i)|=
K(i)−|Nd(i)∩ND(i)|. Thus our meta-criterion is simultaneously a measure of trustworthiness and

of continuity. Lee and Verleysen (2008) introduce a larger class of potentially interesting meta-

criteria that include ours and Venna and Kaski (2006) as special cases.

4. B-C Stress Functions Applied

In this section, we illustrate the methodology with simulated data (Section 4.1), the Olivetti face

data (Section 4.2) and the Frey face data (Section 4.3).

4.1 Simulated Data

We introduced three parameters in the B-C stress functions for complete distance data, namely, λ,

µ and ν, and a fourth parameter, τ, in the B-C stress functions for incomplete distance graph data.

In this subsection, we will examine how three of the four parameters affect configurations in terms

of their local and global structure by experimenting with an artificial example. We will simplify

the task and eliminate the parameter ν by setting it to zero, so that the weight Di, j
ν = 1 disappears

from the stress functions. The reason for doing so is that both parameters ν and λ play a role in

determining scale sensitivity, and, while they are not redundant, the weighting power ν is the more

dangerous of the two because it can single-handedly destabilize stress functions as ν ↓ −∞ through

unlimited outweighting of large distances. By comparison, the small scale sensitivity caused by

small values of the parameter λ > 0 is limited as the analysis of Section 2.4 shows.

To illustrate the effects of the remaining parameters λ, µ and τ on embeddings, we constructed an

artificial data example consisting of 83 points that form a geometric shape represented in Figure 2

(top). The design was inspired by a simulation example used by Trosset (2006). The distance

between any pair of adjacent points is set to 1. To define an initial local graph, as input to the

stress functions, we connected each point with its adjacent neighbors with distance 1 (Figure 2,

bottom). That is, we used metric nearest neighborhoods with radius 1. Thus, interior points have

node degree 4, corner points and connecting points have node degree 2, and the remaining peripheral

points have node degree 3. The geometry of this input graph is intended to represent three connected

clusters with an internal structure that is relatively tight compared to the connecting structure.

We produced 2-D configurations using B-C stress functions, and to explore the effect of the

parameters on the configurations, we varied each of the three parameters one at a time. For each

combination of parameters, we used two different starting configurations: the inputs from Figure
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Figure 2: The original configuration (top) and initial local graph (bottom)

2, and a random start, respectively. Starting from the true input configurations is of course not

actionable in practice, but it serves a purpose: it demonstrates the biases and distortions implied

by minimization of the stress function under the best of circumstances. Starting from a random

configuration, on the other hand, gives indications about the stability of the solutions in terms of

local minima, as well as the effort required to get from an uninformed starting configuration to a

meaningful local minimum. (In practice, one never knows how truly optimal any configuration is

that has been obtained by a numerical algorithm, and a better sense of the issue is often obtained

only by analyzing the solutions obtained from multiple restarts.)

For starts from the input configurations, the results are shown in Figures 3, 5, and 7, and for

starts from random configurations they are shown in Figures 4, 6, and 8, along with their Mad j

values that measure the local faithfulness of the configuration. We also colored red (symbolled

triangles) the points whose neighborhood structure is not well preserved in terms of a proportion

< 1/2 of shared neighbors between input and output configurations (M(i)< 1/2).

Parameter λ: We set µ = 0 and τ = 1 and let λ vary as follows: λ = 5, 2, 1, 0.5. The resulting

configurations are shown in Figures 3 and 4. The overall observation from both figures is that for

smaller λ the greater small-scale sensitivity causes the configurations to cluster more strongly. We

also notice in both figures that Mad j increases with decreasing λ, which indicates local structure

within clusters is better recovered when the clusters are well separated. To confirm this, we show

a zoom on the nearly collapsed points in the bottom right configurations and observe the square

structure in the input configuration is almost perfectly recovered. This indicates that by tuning λ

properly the resulting configurations can reveal both macro structure in terms of relative cluster

placement as well as micro structure within each cluster.

Parameter µ: In Figures 5 and 6, we examine the effect of µ. We fix λ = 5 and τ = 1 and let µ

vary as follows: µ = −1, 0, 1, 2. An overall observation is that the larger µ, the more spread out
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Figure 3: The configurations with varying λ with other parameters fixed at µ = 0, τ = 1, starting

from the input configuration (Figure 2).

are the points. This is consistent with the interpretation of µ as the power law of repulsion. With

smaller µ (such as µ = −1) the stress function flattens out as the distance increases (Figure 1) and

the points are subject to very weak repulsion. The top left plots (µ =−1) in both figures show that

weak repulsion is suitable for generating locally faithful structure. However, the repulsion can be

too weak to generate globally meaningful structure, as illustrated by the configurations obtained

from random starts (Figure 6). In the top left plot of Figure 6, the three clusters are not aligned

properly due to the weak repulsion. With stronger repulsion the points are placed in a globally more

correct position, as shown in bottom two plots in Figure 6, with a sacrifice of local faithfulness (as

reflected by the lower value of Mad j). The distortion of local structure is not surprising considering

the fact that the repulsion is stronger in the direction in which points line up, which in this case is

the horizontal direction. By comparison, points are squeezed flat in the vertical direction because

repulsion has no traction vertically.
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Figure 4: The configurations with varying λ with other parameters fixed at µ = 0, τ = 1, starting

from a random configuration.

Parameter τ: We fix λ = 5 and µ = 0 and vary τ as follows: τ = 0.01, 1, 103, 105. The

configurations starting from the original design and from a random start are shown in Figures 7

and 8. Figure 7 shows that the configuration closest to the input configuration is achieved with

relatively small τ (τ = 0.01). This indicates that the B-C stress functions for small τ are quite

successful in recreating local distances as they are supposed to. From a random start, however,

the configuration can be easily trapped in a local minimum with small τ (Figure 8, top two plots),

which indicates that the relative weight of repulsion to attraction controlled by τ plays an essential

role in achieving a stable configuration. With relatively larger τ, the points are more spread-out and

configurations reveal the underlying structure more faithfully, both locally and globally (bottom two

plots, Figure 8).
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Figure 5: The configurations with varying µ with other parameters fixed at λ = 5, τ = 1, starting

optimization from the input configuration (Figure 2).

4.2 Olivetti Faces Data

This data set, published on Sam Roweis’ website http://www.cs.toronto.edu/˜roweis/data.

html, contains 400 facial images of 40 people, 10 images for each person. All images are of size

64 by 64. Mathematically, each image can be represented by a long vector, each element of which

records the light intensity of one pixel in the image. Given this representation, we treat each image

as a data point lying in a 4096-dimensional space (64× 64 = 4096). For visualization purposes

we reduce the dimension from 4096 to 2. As the 40 faces form natural groups, we would expect

effective dimension reduction methods to show clusters in their configurations. If this expectation

is correct, then this data set provides an excellent test bed for the effect of the clustering power λ.

We first centered the data, a 400× 4096 matrix, at their row means to adjust the brightness of

the images to the same level. We constructed a pairwise distance matrix using Euclidean distances

in the original high dimensional space R4096. We then defined a local graph using 4-NN, that is,
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Figure 6: The configurations with varying µ with other parameters fixed at λ = 5, τ = 1, starting

from a random configuration.

we connected each point to its four nearest neighbors. In the resulting graph five small components

were disconnected from the main component of the graph. Each of them contained images from

a single person, with 5 images for one person and 5 images for another four persons. Since the

disconnected components are trivially pushed away from the main component in any embedding

due to the complete absence of attraction, we discarded them and kept the 355 images representing

36 people for further analysis. We created for each person a unique combination of color and symbol

to code the points representing it.

Figure 9 shows 2D configurations generated by different stress functions (6) with different clus-

tering powers, λ = 2, 1, 2/3, 1/2, while the other parameters are fixed at µ = 0 and τ = 1. For the

largest value, λ = 2, we do not see any clusters; for λ = 1, we see some fuzzy clusters forming; as

λ decreases the clusters become clearer. The colors and symbols show that these clusters are not

artificial but real, mostly representing the images of the same person. The configurations do not
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Figure 7: The configurations with varying τ with other parameters fixed at λ = 5, µ = 0, starting

from the input configuration (Figure 2).

produce exactly 36 clusters: some images of different people are not quite distinguishable in the

configurations and some images of the same person are torn apart. The former could really present

similar images; the latter could be due to the placement of images in the random start. However, the

overall impression is to confirm the clustering effect due to small scale sensitivity for small values of

λ. An interesting observation is that the meta-criterion M
ad j

k increases as the small scale sensitivity

strengthens, which assures us of the faithfulness of local topology.

For comparison, Figure 10 shows 2D configurations generated from four popular dimension

reduction methods: PCA, MDS, Isomap and LLE. PCA and MDS did not find any clusters. Isomap

and LLE did reveal a few clusters, but not as many nor as clearly as some of those obtained from

the BC-family, even though we tuned the neighborhood size for Isomap and LLE to achieve the best

visualization. For example, we chose a different neighborhood size K = 8 for LLE and Isomap
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Figure 8: The configurations with varying τ with other parameters fixed at λ = 5, µ = 0, starting

from a random configuration.

K = 4; LLE configurations degenerated to lines or lines and a big cluster when K = 4 and 6,

respectively.

4.3 Frey Face Data

In the Olivetti data we were able to show successful use of the small scale sensitivity for small values

of λ. In the present example, the Frey face data, we study the effect of µ and its interaction with

λ. The data were originally published with the LLE article (Roweis and Saul, 2000). We studied

its low dimensional configurations from various dimension reduction methods in Chen and Buja

(2009). The data contains 1965 facial images of “Branden Frey,” which are stills of a short video

clip recorded when Frey was making different facial expressions. Each image is of size 20× 28

which can be thought of as a data point in 560-dimensional space. In our experiments we use a

subset of 500 images in order to save on computations and in order to obtain less cluttered low
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Figure 9: Olivetti Faces. Configurations with varying λ with other parameters fixed at µ = 0, τ = 1.

dimensional embeddings. The fact is that the intrinsic structure of the full data set is well preserved

in this subset, partly due to the inherent redundancies in video sequences: the images close in order

are very similar because the stills are taken more frequently than Frey’s facial expression changes.

In Figure 11 we show the first two principal components of the 3D configurations for varying

µ as λ and τ are fixed at one. The neighborhood size is K = 6. The coloring/symbolling scheme

is adapted from the LMDS configurations of Chen and Buja (2009) where the points were col-

ored/symbolled to highlight the clustering structure found in those configurations. The bottom left

configuration with parameters λ = µ = 1 is an LMDS configuration. We observe that the small scale

sensitivity of a fixed value λ = 1 varies as µ varies. With smaller µ such as -1 and 0, the small scale

sensitivity is most pronounced: we see bigger clusters in the configurations with larger µ are split

into smaller ones. On the other hand, larger values such as µ = 1, 2 clearly provide connectivity be-

tween clusters and therefore better capture the global structure in the data. The local neighborhood
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Figure 10: Olivetti Faces. Configurations from PCA, MDS, Isomap and LLE.

structure, though, is better reflected in the configurations with smaller values of µ, as suggested by

the values of meta-criteria.

5. Summary and Discussion

Our work contributes to the literature on proximity analysis, nonlinear dimension reduction and

graph drawing by systematizing the class of distance-based approaches whose commonality is that

they generate embeddings (maps, configurations, graph drawings) of objects in such a way that given

input distances between the objects are well-approximated by output distances in the embedding.

The systematization consists of devising a multi-parameter family of stress functions that comprises

many published proposals from the literature on proximity analysis (MDS) and graph drawing. A

benefit is that the seemingly arbitrary selection of a loss function is turned into a parameter selection

problem based on external “meta-criteria” that measure the quality of embeddings independently of

the stress functions.
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Figure 11: Frey Face Data. Configurations with varying µ when λ = 1.

The parameters of the proposed family have the following interpretations:

• λ: This parameter determines the relative strengths of the attracting and repulsing forces to

each other, while maintaining “edgewise unbiasedness” of the stress function. In practical

terms, this parameter strongly influences “small scale sensitivity”: For decreasing λ, it in-

creases the small-scale sensitivity, that is, the tendency to group together nearby points in the

embedding. Range: λ > 0.

• µ: This parameter is the power law of the repulsing energy. The greater µ, the greater is

the tendency to suppress large discrepancies between inputs Di, j and outputs di, j. Range:

−∞ < µ <+∞.

• ν: This is a weighting parameter that allows up- and down-weighting of pairs of objects as a

function of the input distance Di, j. For example, as ν decreases below zero, stress terms for

large distances Di, j will be progressively down-weighted. Range: −∞ < ν <+∞.
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• τ: A regularization parameter that stabilizes configurations for incomplete distance data, that

is, distance graphs, at the cost of some bias (stretching of configurations), achieved by imput-

ing infinite input distances with infinitesimal repulsion. Range: τ > 0.

The power laws for attracting and repulsing energies are interpreted as Box-Cox transformations,

which has two benefits: (1) Box-Cox transformations encompass a logarithmic attracting law for

µ+λ = 0 and a logarithmic repulsing law for µ = 0; (2) they permit negative powers for both laws

because the Box-Cox transformations are monotone increasing for powers in the whole range of

real numbers. The regularization parameter τ plays a role only when the input distance matrix is

incomplete, as in the case of a distance graph or in the case of localization by restricting the loss

function to small scale (as in LMDS; Chen and Buja, 2009).

The problem of incomplete distance information is often solved by completing it with addi-

tive imputations provided by the shortest-path algorithm, so that MDS-style stress functions can be

used—the route taken by Isomap (Tenenbaum et al., 2000). The argument against such completion

is that stress functions tend to be driven by the largest distances, which are imputed and hence noisy.

Conversely the argument against not completing is that the use of pervasive repulsion to stabilize

configurations amounts to imputation also, albeit of an uninformative kind. A full understanding

of the trade-offs between completion and repulsion is currently lacking, but practitioners can mean-

while experiment with both approaches and compare them on their data. In both cases the family

of loss functions proposed here offers control over the scale sensitivity parameter λ, the repulsion

power µ, and the weighting power ν.

Another issue with distance-based approaches is that there is often much freedom in choos-

ing the distances, in particular when applied to dimension reduction. There is therefore a need to

systematize the choices and provide guidance for “distance selection.”

Appendix A. Stress Minimization

Minimizing stress functions can be a very high-dimensional optimization problem involving all co-

ordinates of all points in an embedding, amounting to N p parameters. For this reason, minimization

algorithms tend to be based on simple gradient descent (Kruskal, 1964b) or on majorization (Borg

and Groenen, 2005). We limit ourselves in this appendix to providing gradients, though with one in-

novation to solve the following problem: optimization of stress functions tends to spend much effort

on getting the size of the embedding right, which is not only unnecessary but also may cause delay

of convergence when in fact the shape of the embedding is already optimized, or misjudgement of

convergence when the size has been gotten right but the shape has not. This appendix proceeds

therefore in three steps: Section A.1 provides gradients for plain stress functions as presented in

the body of this article; Section A.2 derives size-invariant versions of stress functions; Section A.3

provides gradients for the latter. (In order to make the formulas more readable, we set the parameter

ν to zero and hence ignore it; it would be a simple matter to put it back in the formulas.)

A.1 Gradients for Stress Functions

Let the N × p matrix X = (x1, · · · ,xN)
T represent the embedding consisting of n points in d dimen-

sions. As always let Di, j be the input distances and di, j = ‖xi − x j‖ the output distances. The B-C
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stress function for µ 6= 0 and µ+λ 6= 0 (but ν = 0) is

S(x1, · · · ,xN) = ∑
(i, j)∈E

(

di, j
µ+λ −1

(µ+λ)
−Di, j

λ di, j
µ −1

µ

)

− tλ ∑
(i, j)∈EC

di, j
µ −1

µ
.

Let ∇S = (∇1, · · · ,∇N)
T be the gradient of the stress function with respect to X:

∇i =
∂S

∂xi

= ∑
j∈ND(i)

(

di, j
µ+λ−2 −Di, j

λdi, j
µ−2
)

(xi −x j)

− tλ ∑
j∈N c

D(i)

di, j
µ−2(xi −x j).

Define a N ×N matrix M as follows:

Mi j =

{

di, j
µ+λ−2 −Di, j

λdi, j
µ−2 if j ∈ E(i),

−tλdi, j
µ−2 if j /∈ E(i).

Note that M is symmetric. The gradient can be simplified to

∇i =
∂S

∂xi

= ∑
j

M ji(xi −x j)

= (∑
j

M ji)xi −∑
j

M jix j ,

and

∇S = X∗ (M ·E)−M ·X ,

where E is a N × d matrix with all elements being 1. The symbol ‘∗’ represents elementwise

multiplication of the two matrices of the same size, and the symbol ‘·’ stands for regular matrix

multiplication.

A.2 Size-Invariant Forms of B-C Stress Functions

As mentioned, it is a common experience that algorithms for minimizing stress functions spend

much effort on getting the size of the embedding right. Size, however, is not of interest—shape is.

We have therefore a desire to re-express stress in a manner that is independent of size. Fortunately,

there exists a general method that achieves this goal: For any configuration, minimize stress with

regard to size and replace the original stress with its size-minimized value. This works because the

minimization with regard to size can be carried out explicitly with elementary calculus. The result is

a new form of stress that is minimized by the same shapes as the original stress, but it is independent

of size and hence purely driven by shape. The computational advantage of size-invariant stress is

that gradient-based optimization descends along directions that change shape, not size. We sketch

the derivation (again for ν = 0 for less unwieldy formulas).

It is convenient to collect the repulsion terms inside and outside the graph because they share

the power law:

S = ∑
(i, j)∈E

BCµ+λ(di, j) − ∑
(i, j)∈V 2

D̃λ
i, j BCµ(di, j) ,
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where

D̃i, j =

{

Di, j, (i, j) ∈ E,
t (i, j) /∈ E.

Next, consider a configuration X = (xi)i=1...N and resized versions sX = (sxi)i=1...N thereof (s > 0).

The configuration distances scale along with size: di, j(sX) = sdi, j(X). To find the stationary size

factor s of the stress as a function of s, S = S(s), we observe that

∂

∂s
BCµ(sdi, j) = sµ−1di, j

µ (∀µ ∈ IR).

In particular, this holds even for µ = 0. Next we solve the stationary equation and check second

derivatives:

S(sd) = ∑
E

BCµ+λ(sdi, j) − ∑
V 2

D̃λ
i, j BCµ(sdi, j) ,

S′(sd) = sµ+λ−1 Tden − sµ−1Tnum , (7)

S′′(sd) = (µ+λ−1) sµ+λ−2 Tden − (µ−1)sµ−1Tnum , (8)

where Tden = Tden(d) and Tnum = Tnum(d) are defined for d = (di, j) by

Tden = ∑
E

di, j
µ+λ , Tnum = ∑

V 2

D̃λ
i, j di, j

µ.

Again (7) and (8) hold even for µ = 0 and µ+ λ = 0. The stationary size factor s∗ that satisfies

S′(s∗) = 0 is

s∗ =

(

Tnum

Tden

)λ

(∀µ ∈ IR, λ > 0). (9)

The factor s∗ is a strict minimum:

S′′(s∗d) = λ
T

λµ+1−2λ
num

T
λµ−2λ

den

> 0 (∀µ ∈ IR, λ > 0).

Evaluating S(s∗) we arrive at a size-invariant yet shape-equivalent form of the stress function. For

the evaluation we need to separate power laws from the two logarithmic cases:

S(sd) ≈











1
µ+λ

sµ+λ Tden − 1
µ

sµ Tnum (µ+λ 6= 0, µ 6= 0),

|E| log(s) + ∑E log(di, j) − 1
µ

sµ Tnum (µ+λ = 0),

λsλ Tden − ∑V 2 D̃λ
i, j (log(s)+ log(di, j)) (µ = 0),

where “≈” means “equal up to additive constants that are irrelevant for optimization.” We calculate

S̃ = S(s∗) separately in the three cases with s∗ from (9):

• µ+λ 6= 0, µ 6= 0: Several algebraic simplifications produce the following.

S̃ =

(

1

µ+λ
− 1

µ

)

T
λµ+1

num

T
λµ

den

=

(

1

µ+λ
− 1

µ

)

(

∑V 2 D̃λ
i, j di, j

µ
)λµ+1

(

∑E di, j
µ+λ
)λµ

. (10)

[Note that S̃ gets minimized, hence the ratio on the right gets minimized when the left factor

is positive (i.e., µ < 0 < µ+1/λ), and it gets maximized when the left factor is negative (i.e.,

µ > 0 or µ+1/λ < 0).]
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• µ+λ = 0: We take advantage of the fact that Tden = |E| and µ =−λ. We have

S̃ ≈ |E|λ log ∑
V 2

(

D̃i, j

di, j

)λ

+ ∑
E

log(di, j).

• µ = 0: We take advantage of the fact that Tden = ∑E di, j
λ and also that Tnum = ∑V 2 D̃λ

i, j is a

constant for optimization with regard to d = (di, j), and any additive term that is just a function

of D̃i, j but not di, j can be neglected. We have

S̃ ≈ λ

(

∑
V 2

D̃λ
i, j

)

log(∑
E

di, j
λ) − ∑

V 2

D̃λ
i, j log(di, j).

Even though size-invariance holds by construction, one checks it easily in all three cases: S̃(sd) =
S̃(d).

A.3 Gradients for Size-Invariant Stress Functions

To describe the gradient of the size-invariant stress function S̃ (d). We only consider the case µ+λ 6=
0 and µ 6= 0, which is shown in Equation (10).

Let ∇S = ((∇S)1 , ...,(∇S)n)
T

be the gradient the S̃ (d) with respect to configuration

X = (x1, ...,xn)
T

. We have

(∇S)i =

(

1

µ+λ
− 1

µ

)

[

(λµ+1)

(

Tnum

Tden

)λµ

(∇Tnum)i − (λµ)

(

Tnum

Tden

)λµ+1

(∇Tden)i

]

,

(∇Tnum)i =
∂Tnum (d)

∂xi

= µ∑
j

D̃i, jd
µ−2
i, j (xi −x j) ,

(∇Tden)i =
∂Tden (d)

∂xi

= (µ+λ) ∑
j∈E(i)

d
µ+λ−2
i, j (xi −x j) .

Plug (∇Tnum)i and (∇Tden)i into the (∇S)i, and we have

(∇S)i =

(

Tnum

Tden

)λµ
(

Tnum

Tden
∑

j∈E(i)

d
µ+λ−2
i, j (xi −x j)−∑

j

D̃i, jd
µ−2
i, j (xi −x j)

)

=

(

Tnum

Tden

)λµ
(

∑
j∈E(i)

(

Tnum

Tden

d
µ+λ−2
i, j −Dλ

jid
µ−2
i, j

)

(xi −x j)− ∑
j∈Ec(i)

t d
µ−2
i, j (xi −x j)

)

.

Define a N ×N matrix M by

Mi j =







(

Tnum

Tden
d

µ+ 1
λ
−2

i, j −Di, j
λd

µ−2
i, j

)

for j ∈ E (i) ,

t d
µ−2
i, j for j /∈ E (i) .
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The gradient can be simplified to

(∇S)i =

(

Tnum

Tden

)λµ

∑
j

Mi j (xi −x j)

=

(

Tnum

Tden

)λµ
(

∑
j

Mi jxi −∑
j

Mi jx j

)

,

and

∇S =

(

Tnum

Tden

)λµ

(X∗ (M ·E)−M ·X) .

We did the calculation separately for µ = 0 and λ+µ = 0 which resulted in the following:

µ = 0 : S̃ (d)∼ λ

(

∑
(i, j)∈V 2

D̃i j

)

log

(

∑
(i, j)∈E

Di, j
λ

)

− ∑
(i, j)∈V 2

D̃i j logDi, j,

µ+λ = 0 : S̃ (d)∼ λ

(

∑
(i, j)∈E

)

log

(

∑
(i, j)∈V 2

D̃i jDi, j
µ

)

+ ∑
(i, j)∈E

logDi, j.
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Abstract

The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools

required for Bayesian inference. The tools include, among others, various inference methods,

sparse approximations and model assessment methods.

Keywords: Gaussian process, Bayesian hierarchical model, nonparametric Bayes

1. Introduction

Gaussian process (GP) prior provides a flexible building block for many hierarchical Bayesian mod-

els (Rasmussen and Williams, 2006). GPstuff (v4.1) is a versatile collection of computational tools

for GP models and it has already been used in several published projects, for example, in epidemiol-

ogy, species distribution modeling and building energy usage modeling (see Vanhatalo et al., 2013,

and project web pages for references). GPstuff combines models and inference tools in a modular

format. It also provides various sparse GP models and methods for model assessment. The tool-

box is compatible with Unix and Windows Matlab (at least r2009b or later). Most features work

also with Octave (tested with 3.6.4). The toolbox is available from http://becs.aalto.fi/en/

research/bayes/gpstuff/ and also http://mloss.org/software/view/451/.

2. Implementation

In many practical GP models, the observations y = [y1, ...,yn]
T related to inputs (covariates) X =

{xi = [xi,1, ...xi,d]
T}n

i=1 are assumed to be conditionally independent given a latent function (or pre-

dictor) f (x) so that the likelihood p(y|f,γ) = ∏n
i=1 p(yi| fi,γ), where f = [ f (x1), ..., f (xn)]

T, fac-

∗. Work done mainly while at BECS, Aalto University.
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torizes over cases. The latent function is given a GP prior, f ∼ GP(m(x|φ),k(x,x′|θ)) which is

defined by the mean and covariance function, m(x|φ) and k(x,x′|θ) respectively. The parameters,

ϑ = {γ,φ,θ}, are given a hyperprior after which the posterior p(f|y,X) is approximated and used

for prediction. Most of the models in GPstuff follow the above single latent dependency, but there

are also models where each factor depends on multiple latent values.
We illustrate the construction and inference of a GP model with a regression example. First,

we assume yi = f (xi) + εi, εi ∼ N(0,σ2), and give f (x) a GP prior with a squared exponential

covariance function, k(x,x′) = σ2
se exp(||x−x′||2/2l2).

lik = lik_gaussian(’sigma2’, 0.2ˆ2); % init. the likelihood

gpcf = gpcf_sexp(’lengthScale’, 1, ’magnSigma2’, 0.2ˆ2) % init. the cov. function

gp = gp_set(’lik’, lik, ’cf’, gpcf); % init. the model struct

% Find MAP estimate of the parameters and predict to new inputs

opt=optimset(’TolFun’,1e-3,’TolX’,1e-3,’Display’,’iter’); % optimization settings

gp=gp_optim(gp,x,y,’optimf’,@fminscg,’opt’,opt); % x,y = training data

[Ef, Varf] = gp_pred(gp, x, y, xt); % xt = test inputs

The model is constructed modularly so that each mathematical function or distribution is repre-

sented by an “object” style structure. The structures lik and gpcf contain all the essential informa-

tion about the likelihood and covariance function such as parameter values and function handles to

construct a covariance matrix and its gradient with respect to the parameters. All the model blocks

are collected into a GP structure constructed by gp set.

There are two lines of approach for the inference. The first assumes a Gaussian observation

model which enables an analytic solution for the marginal likelihood p(y|X,ϑ) and the conditional

posterior p(f|X,y,ϑ). Using the relation p(ϑ|y,X) ∝ p(y|X,ϑ)p(ϑ) the parameters, ϑ, can be

optimized to the maximum a posterior (MAP) estimate or marginalized over with grid, central com-

posite design (CCD), importance sampling (IS) or Markov chain Monte Carlo (MCMC) integration

(Vanhatalo et al., 2010). With other observation models the marginal likelihood and the conditional

posterior have to be approximated either with Laplace’s method (LA) or expectation propagation

(EP) (Rasmussen and Williams, 2006). An alternative approach is to sample from the joint posterior

p(f,ϑ|X,y) with MCMC by alternating sampling from p(f|X,y,ϑ) and p(ϑ|X,y, f).

Above, gp optim returns a redefined model structure with parameter values optimized to their

MAP estimate. Any optimizer with similar arguments to Matlab’s optimizers can be used. gp pred

returns the conditional posterior predictive mean, E[ f |y,X,ϑ] and variance Var[ f |y,X,ϑ] at the test

inputs.
Many sparse GPs have been proposed to speed up the computations with large data sets. GPstuff

includes FI(T)C, PIC, SOR, DTC (Quiñonero-Candela and Rasmussen, 2005), VAR (Titsias, 2009),
CS+FIC (Vanhatalo and Vehtari, 2008) sparse approximations, and several compactly supported
(CS) covariance functions. For example, CS+FIC can be used with the following modification to
the model initialization.

gpcf2 = gpcf_ppcs2(’nin’, nin, ’lengthScale’, 5, ’magnSigma2’, 1);

gp = gp_set(’type’,’CS+FIC’,’lik’,lik,’cf’,{gpcf,gpcf2},’X_u’,Xu)

In the first line, a CS covariance function, piecewise polynomial of second order, is created. It is

then given to the GP structure together with inducing inputs (Xu) and sparse GP type definition.
We can tailor the above model, for example, by replacing the Gaussian observation model with

a more robust Student-t observation model (Jylänki et al., 2011).
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lik = lik_t(’nu’, 4, ’sigma2’, 10, ’nu_prior’, prior_logunif);

gp = gp_set(’lik’, lik, ’cf’, gpcf, ’jitterSigma2’, 1e-6, ’latent_method’, ’EP’);

Here we set explicitly the prior for the degrees of freedom parameter, ν in the Student-t distribution,

add jitter on the diagonal of the covariance matrix and define EP as the means to approximate the

marginal likelihood.

GPstuff has wide variety of observation models (see Table 1) of which we want to highlight im-

plementations of recently proposed multinomial probit with EP (Riihimäki et al., 2013) and logistic

GP density estimation and regression with Laplace approximation (Riihimäki and Vehtari, 2012).

The constructed models could be compared, for example, with deviance information criterion

(DIC), widely applicable information criterion (WAIC), leave-one-out or k-fold cross-validation

(LOO/kf-CV) (Vehtari and Ojanen, 2012) with functions gp dic, gp waic, gp loopred and gp kfcv.

New models can be implemented by modifying the existing model blocks, such as covariance

functions. Adding new inference methods is more laborious since they require summaries from

model blocks which may not be provided by the current version of GPstuff. A thorough introduction

to GPstuff is provided by demo programs and Vanhatalo et al. (2013).

3. Related Software

Perhaps the best known GP software packages are the Gaussian processes for Machine Learn-

ing (GPML) (Rasmussen and Nickisch, 2010) and the flexible Bayesian modelling (FBM) (Neal,

1998). Overviews of alternatives are provided by the Gaussian processes website (http://www.

gaussianprocess.org/) and the R Archive Network (http://cran.r-project.org/). The

main advantage of GPstuff over the other GP software is its versatile collection of models and

computational tools. Its most important features and comparison to GPML and FBM are presented

in Table 1. GPstuff project was started in 2006 based on the MCMCstuff-toolbox (http://becs.

aalto.fi/en/research/bayes/mcmcstuff/), which was based on Netlab (Nabney, 2001) and

influenced by FBM. The INLA software (Rue et al., 2009) and the book by Rasmussen and Williams

(2006) have motivated some of the technical details in GPstuff. In addition, the implementation of

sparse matrix routines, used with the CS covariance functions, rely on the SuiteSparse toolbox

(Davis, 2005).
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GPstuff GPML FBM

Covariance functions

number of elementary functions 13 10 4

sums of elements, masking of inputs x x x

delta distance x x

products, positive scaling of elements x x

Mean functions

number of elementary functions 4 4 0

sums of elements, masking of inputs x x

products, power, scaling of elements x

marginalized parameters x

Single latent likelihood/observation models

Gaussian x x x

logistic/logit, erf/probit x x MCMC

Poisson x LA/EP/MCMC MCMC

Gaussian scale mixture MCMC MCMC

Student-t x LA/VB/MCMC

Laplacian EP/VB/MCMC

mixture of likelihoods LA/EP/MCMC

sech-squared, uniform for classification x

derivative observations for sexp covf only

binomial, negative binomial, zero-trunc. negative binomial, log-Gaussian Cox pro-

cess; Weibull, log-Gaussian and log-logistic with censoring

x

quantile regression MCMC/EP

Multilatent likelihood/observation models

multinomial, Cox proportional hazard model, density estimation, density regression,

input dependent noise, input dependent overdispersion in Weibull, zero-inflated

negative binomial

MCMC/LA

multinomial logit (softmax) MCMC/LA MCMC

multinomial probit EP MCMC

Priors for parameters (ϑ)

several priors, hierarchical priors x x

Sparse models

FITC x exact/EP/LA

CS, FIC, CS+FIC, PIC, VAR, DTC, SOR x

PASS-GP LA/EP

Latent inference

exact (Gaussian only) x x x

scaled Metropolis, HMC x x

LA, EP, elliptical slice sampling x x

variational Bayes (VB) x

scaled HMC (with inverse of prior cov.) x

scaled HMC (whitening with approximate posterior covariance) x

parallel EP, robust EP x

marginal corrections (cm2 and fact) x

Hyperparameter inference

type II ML x x x

type II MAP, Metropolis, HMC x x

LOO-CV for Gaussian x x

least squares LOO-CV for non-Gaussian some likelihoods

LA/EP LOO-CV for non-Gaussian, k-fold CV x

NUTS, slice sampling (SLS), surrogate SLS, shrinking-rank SLS, covariance-

matching SLS, grid, CCD, importance sampling

x

Model assessment

marginal likelihood MAP,ML ML

LOO-CV for fixed hyperparameters x x

LOO-CV for integrated hyperparameters, k-fold CV, WAIC, DIC x

average predictive comparison x

Table 1: The comparison of features in GPstuff (v4.1), GPML (v3.2) and FBM (2004-11-10) tool-

boxes. In case of model blocks the notation x means that it can be inferred with any

inference method (EP, LA (Laplace), MCMC and in case of GPML also with VB). In case

of sparse approximations, inference methods and model assessment methods x means that

the method is available for all model blocks.
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Håvard Rue, Sara Martino, and Nicolas Chopin. Approximate Bayesian inference for latent Gaus-

sian models by using integrated nested Laplace approximations. Journal of the Royal Statistical

Society B, 71(2):1–35, 2009.

Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. JMLR

Workshop and Conference Proceedings, 5:567–574, 2009.

Jarno Vanhatalo and Aki Vehtari. Modelling local and global phenomena with sparse Gaussian pro-

cesses. In David A. McAllester and Petri Myllymäki, editors, Proceedings of the 24th Conference
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Abstract

We consider the discrete-time infinite-horizon optimal control problem formalized by Markov de-

cision processes (Puterman, 1994; Bertsekas and Tsitsiklis, 1996). We revisit the work of Bertsekas

and Ioffe (1996), that introduced λ policy iteration—a family of algorithms parametrized by a pa-

rameter λ—that generalizes the standard algorithms value and policy iteration, and has some deep

connections with the temporal-difference algorithms described by Sutton and Barto (1998). We

deepen the original theory developed by the authors by providing convergence rate bounds which

generalize standard bounds for value iteration described for instance by Puterman (1994). Then,

the main contribution of this paper is to develop the theory of this algorithm when it is used in an

approximate form. We extend and unify the separate analyzes developed by Munos for approxi-

mate value iteration (Munos, 2007) and approximate policy iteration (Munos, 2003), and provide

performance bounds in the discounted and the undiscounted situations. Finally, we revisit the use

of this algorithm in the training of a Tetris playing controller as originally done by Bertsekas and

Ioffe (1996). Our empirical results are different from those of Bertsekas and Ioffe (which were

originally qualified as “paradoxical” and “intriguing”). We track down the reason to be a minor

implementation error of the algorithm, which suggests that, in practice, λ policy iteration may be

more stable than previously thought.

Keywords: stochastic optimal control, reinforcement learning, Markov decision processes, anal-

ysis of algorithms

1. Introduction

We consider the discrete-time infinite-horizon optimal control problem formalized by Markov de-

cision processes (Puterman, 1994; Bertsekas and Tsitsiklis, 1996). We revisit the λ policy iteration

algorithm introduced by Bertsekas and Ioffe (1996), also published in the reference textbook of

Bertsekas and Tsitsiklis (1996),1 that (as stated by the authors) ”is primarily motivated by the case

of large and complex problems where the use of approximation is essential”. It is a family of

algorithms parametrized by a parameter λ that generalizes the standard dynamic-programming al-

gorithms value iteration (which corresponds to the case λ = 0) and policy iteration (case λ = 1),

and has some deep connections with the temporal-difference algorithms that are well known to the

reinforcement-learning community (Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996).

1. The work of Bertsekas and Ioffe (1996) being historically anterior to the textbook of Bertsekas and Tsitsiklis (1996),

we only refer to the former in the rest of the paper.
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In their original paper, Bertsekas and Ioffe (1996) show the convergence of λ policy iteration for

its exact version and provide its asymptotic convergence rate. The authors also describe a case study

involving an instance of approximate λ policy iteration, but neither their paper nor (to the best of

our knowledge) any subsequent work show that this makes sense: two important issues are whether

approximations can be controlled throughout the iterations and checking that the approach does not

break when considering an undiscounted problem like Tetris. In this paper, we extend the theory on

this algorithm in several ways. We derive its non-asymptotic convergence rate for its exact version.

More importantly, we develop the theory of λ policy iteration for its main purpose, that is—recall

the above quote—when it is run in an approximate form. We show that the performance loss due to

using the greedy policy with respect to the current value estimate instead of the optimal policy can

be made arbitrarily small by controlling the error along the iterations. Last but not least, we show

that our analysis can be extended to the undiscounted case.

The rest of the paper is organized as follows. In Section 2, we introduce the framework of

Markov decision processes, describe the two standard algorithms, value and policy iteration. Sec-

tion 3 describes λ policy iteration in an original way that makes its connection with these standard

algorithms obvious. We discuss there the close connection with TD(λ) (Sutton and Barto, 1998)

and recall the main results obtained by Bertsekas and Ioffe (1996): convergence and asymptotic

rate of convergence of the exact algorithm. Our main results are stated in Section 4. We first ar-

gue that the analysis of λ policy iteration is more involved than that of value and policy iteration

since neither contraction nor monotonicity arguments, that analysis of these two algorithms rely on,

hold for λ policy iteration. We provide a non-asymptotic analysis of λ policy iteration and several

asymptotic performance bounds for its approximate version. We close this section by presenting

performance bounds of approximate λ policy iteration that also apply to the undiscounted case. We

discuss in Section 5 the relations between our results and those previously obtained for approximate

value and policy iteration by Munos (2003, 2007). Last but not least, Section 6 revisits the empirical

part of the work of Bertsekas and Ioffe (1996), where an approximate version of λ policy iteration

is used for training a Tetris controller.

2. Framework And Standard Algorithms

We begin by describing the framework of Markov decision processes we consider throughout the

paper. We go on by describing the two main algorithms of the literature, value and policy iteration,

for solving the related problem.

We consider a discrete-time dynamic system whose state transition depends on a control. We

assume that there is a state space X of finite2 size N. When at state i∈ {1, ..,N}, an action is chosen

from a finite action space A. The action a∈ A specifies the transition probability pi j(a) to the next

state j. At each transition, the system is given a reward r(i,a, j) where r is the instantaneous reward

function. In this context, we look for a stationary deterministic policy (a function π : X → A that

maps states into actions3) that maximizes the expected discounted sum of rewards from any state i,

2. We restrict our attention to finite state space problems for simplicity. The extension of our study to infinite/continuous

state spaces is straightforward.

3. Restricting our attention to stationary deterministic policies is not a limitation. Indeed, for the optimality criterion to

be defined soon, it can be shown that there exists at least one stationary deterministic policy that is optimal (Puterman,

1994).
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called the value of policy π at state i:

vπ(i) := Eπ

[
∞

∑
k=0

γkr(ik,π(ik), ik+1)

∣
∣
∣
∣
∣
i0 = i

]

where Eπ denotes the expectation conditional on the fact that the actions are selected with the policy

π, and 0 < γ < 1 is a discount factor.4 The tuple 〈X ,A, p,r,γ〉 is called a Markov decision process

(MDP) (Puterman, 1994; Bertsekas and Tsitsiklis, 1996).

The optimal value starting from state i is defined as

v∗(i) := max
π

vπ(i).

We write Pπ for the N ×N stochastic matrix whose elements are pi j(π(i)) and rπ the vector

whose components are ∑ j pi j(π(i))r(i,π(i), j). The value functions vπ and v∗ can be seen as vectors

on X . It is well known that vπ is a solution of the following Bellman equation:

vπ = rπ + γPπvπ.

The value function vπ is thus a fixed point of the linear operator T πv := rπ + γPπv. As Pπ is a

stochastic matrix, its eigenvalues cannot be greater than 1, and consequently I− γPπ is invertible.

This implies that

vπ = (I− γPπ)−1rπ =
∞

∑
i=0

(γPπ)irπ. (1)

It is also well known that the optimal value v∗ satisfies the following Bellman equation:

v∗ = max
π

(rπ + γPπv∗) = max
π

T πv∗

where the max operator is component-wise. In other words, v∗ is a fixed point of the nonlinear

operator T v := maxπ T πv. For any value vector v, we call a greedy policy with respect to the value

v a policy π that satisfies:

π ∈ argmax
π′

T π′v

or equivalently T πv = T v. We write, with some abuse of notation5 greedy(v) any policy that is

greedy with respect to v. The notions of optimal value function and greedy policies are fundamental

to optimal control because of the following property: any policy π∗ that is greedy with respect to

the optimal value is an optimal policy and its value vπ∗ is equal to v∗.

The operators T π and T are γ-contraction mappings with respect to the max norm ‖.‖∞ (Puter-

man, 1994) defined as follows for all vector u:

‖u‖∞ := max
x
|u(x)|.

In what follows, we only describe what this means for T but the same holds for T π. Being a γ-

contraction mapping for the max norm means that for all pairs of vectors (v,w),

‖T v−Tw‖∞ ≤ γ‖v−w‖∞ .

4. We will consider the undiscounted situation (γ = 1) in Section 4.4, and introduce appropriate related assumptions

there.

5. There might be several policies that are greedy with respect to some value v.
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Algorithm 1 Value iteration

Input: An MDP, an initial value v0

Output: An (approximately) optimal policy

k← 0

repeat

vk+1← T vk // Update the value

k← k+1

until some stopping criterion

Return greedy(vk)

This ensures that the fixed point v∗ of T exists and is unique. Furthermore, for any initial vector v0,

lim
k→∞

T kv0 = v∗. (2)

Given an MDP, standard algorithmic solutions for computing an optimal value-policy pair are

value and policy iteration (Puterman, 1994). The rest of this section describes both algorithms with

some of the relevant properties for the subject of this paper.

The value iteration algorithm for computing the value of a policy π and the value of the optimal

policy π∗ rely on Equation 2. Algorithm 1 provides a description of value iteration for computing an

optimal policy (replace T by T π in it and one gets value iteration for computing the value of some

policy π). The contraction property induces some interesting properties for value iteration. Not

only does it ensure convergence, but it also implies a linear rate of convergence of the value vk to

v∗: for all k ≥ 0,

‖v∗− vk‖∞ ≤ γk ‖v∗− v0‖∞ .

It is possible to derive a performance bound, that is a bound on the difference between the real value

of a policy produced by the algorithm and the value of the optimal policy π∗ by using the following

well-known property (Puterman, 1994): For all v, if π =greedy(v) then

‖v∗− vπ‖∞ ≤
2γ

1− γ
‖v∗− v‖∞ .

Let πk denote the policy that is greedy with respect to vk−1. Then,

‖v∗− vπk‖∞ ≤
2γk

1− γ
‖v∗− v0‖∞ . (3)

Policy iteration is an alternative method for computing an optimal policy for an infinite-horizon

discounted Markov decision process. This algorithm is based on the following property: if π is

some policy, then any policy π′ that is greedy with respect to the value of π, that is any π′ satisfying

π′ = greedy(vπ), is better than π in the sense that vπ′ ≥ vπ. Policy iteration exploits this property

in order to generate a sequence of policies with increasing values. It is described in Algorithm 2.

Note that we use the analytical form of the value of a policy given by Equation 1. When the state

space and the action space are finite, policy iteration converges to an optimal policy π∗ in a finite

number of iterations (Puterman, 1994; Bertsekas and Tsitsiklis, 1996). In infinite state spaces, if

the function v 7→ Pgreedy(v) is Lipschitz, then it can be shown that policy iteration has a quadratic

convergence rate (Puterman, 1994).
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Algorithm 2 Policy iteration

Input: An MDP, an initial policy π0

Output: An (approximately) optimal policy

k← 0

repeat

vk← (I− γPπk)−1rπk // Estimate the value of πk

πk+1← greedy(vk) // Update the policy

k← k+1

until some stopping criterion

Return πk

3. The λ Policy Iteration Algorithm

In this section, we describe the family of algorithms that is the main topic of this paper, “λ policy

iteration,”6 originally introduced by Bertsekas and Ioffe (1996). λ policy iteration is parametrized

by a coefficient λ ∈ (0,1) and generalizes value and policy iteration. When λ = 0, λ policy itera-

tion reduces to value iteration while it reduces to policy iteration when λ = 1. We also recall the

fact discussed by Bertsekas and Ioffe (1996) that λ policy iteration draws some connections with

temporal-difference algorithms (Sutton and Barto, 1998).

We begin by giving some intuition about how one can make a connection between value and pol-

icy iteration. At first sight, value iteration builds a sequence of value functions and policy iteration

a sequence of policies. In fact, both algorithms can be seen as updating a sequence of value-policy

pairs. With some little rewriting—by decomposing the (nonlinear) Bellman operator T into (i) the

maximization step and (ii) the application of the (linear) Bellman operator—it can be seen that each

iterate of value iteration is equivalent to the two following updates:

{
πk+1 ← greedy(vk)
vk+1 ← T πk+1vk

⇔

{
πk+1 ← greedy(vk)
vk+1 ← rπk+1 + γPπk+1vk.

The left hand side of the above equation uses the operator T πk+1 while the right hand side uses its

definition. Similarly—by inverting in Algorithm 2 the order of (i) the estimation of the value of the

current policy and (ii) the update of the policy, and by using the fact that the value of the policy πk+1

is the fixed point of T πk+1 (Equation 2)—it can be argued that every iteration of policy iteration does

the following:

{
πk+1 ← greedy(vk)
vk+1 ← (T πk+1)∞vk

⇔

{
πk+1 ← greedy(vk)
vk+1 ← (I− γPπk+1)−1rπk+1 .

This rewriting makes both algorithms look close to each other. Both can be seen as having an

estimate vk of the value of policy πk, from which they deduce a potentially better policy πk+1. The

corresponding value vπk+1 of this better policy may be regarded as a target which is tracked by the

next estimate vk+1. The difference is in the update that enables to go from vk to vk+1: while policy

iteration directly jumps to the value of πk+1 (by applying the Bellman operator T πk+1 an infinite

number of times), value iteration only makes one step towards it (by applying T πk+1 only once).

6. It was also called “temporal-difference based policy iteration” in the original paper, but we take the name λ policy

iteration, as it was the name picked by most subsequent works.
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From this common view of value iteration, it is natural to introduce the well-known modified policy

iteration algorithm (Puterman and Shin, 1978) which makes n steps at each update:
{

πk+1 ← greedy(vk)
vk+1 ← (T πk+1)nvk

⇔

{
πk+1 ← greedy(vk)
vk+1 ←

[
I + ...+(γPπk+1)n−1

]
rπk+1 +(γPπk+1)nvk.

The above common view is actually here interesting because it also leads to a natural introduction

Figure 1: Visualizing λ policy iteration in the greedy partition. Following Bertsekas and Tsitsiklis

(1996, p. 226), one can decompose the value space as a collection of polyhedra, such that

each polyhedron corresponds to a region where one policy is greedy. This is called the

greedy partition. In the above example, there are only 3 policies, π1, π2 and π∗. vk is the

initial value. greedy(vk) = π2, greedy(vπ2) = π1, and greedy(vπ1) = π∗. Therefore policy

iteration (or “1 policy iteration”) generates the sequence ((π2,v
π2),(π1,v

π1),(π∗,v
π∗)).

Value iteration (or “0 policy iteration”) starts by slowly updating vk towards vπ2 until it

crosses the boundary π1/π2, after which it tracks alternatively vπ1 and vπ2 , until it reaches

the π∗ part. In other words, value iteration makes small steps. λ policy iteration is doing

something intermediate: it makes steps of which the length is controlled by λ.

of λ policy iteration. λ policy iteration is doing a λ-adjustable step towards the value of πk+1:
{

πk+1 ← greedy(vk)
vk+1 ← (1−λ)∑∞

j=0 λ j(T πk+1) j+1vk

⇔

{
πk+1 ← greedy(vk)
vk+1 ← (I−λγPπk+1)−1(rπk+1 +(1−λ)γPπk+1vk).

The equivalence between the left and the right representation of λ policy iteration needs here to be

proved. For all k≥ 0 and all function v, Bertsekas and Ioffe (1996) introduce the following operator7

Mkv := (1−λ)T πk+1vk +λT πk+1v (4)

= rπk+1 +(1−λ)γPπk+1vk +λγPπk+1v (5)

7. The equivalence between Equations 4 and 5 follows trivially from the definition of T πk+1 .
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Algorithm 3 λ policy iteration

Input: An MDP, λ ∈ (0,1), an initial value v0

Output: An (approximately) optimal policy

k← 0

repeat

πk+1← greedy(vk) // Update the policy

vk+1← T
πk+1

λ vk + εk+1 // Update the estimate of the value of policy πk+1

k← k+1

until some convergence criterion

Return greedy(vk)

and prove that

• Mk is a contraction mapping of modulus λγ for the max norm ;

• The next iterate vk+1 of λ policy iteration is the (unique) fixed point of Mk.

The left representation of λ policy iteration is obtained by “unrolling” Equation 4 an infinite number

of times, while the right one is obtained by using Equation 5 and solving the linear system vk+1 =
Mkvk+1.

As illustrated in figure 1, the parameter λ (or n in the case of modified policy iteration) can

informally be seen as adjusting the size of the step for tracking the target vπk+1 : the bigger the value,

the longer the step. Formally, λ policy iteration (consider the above left hand side) consists in doing

a geometric average of parameter λ of the terms (T πk+1) jvk for all values of j. The right hand side

is here interesting because it clearly shows that λ policy iteration generalizes value iteration (when

λ = 0) and policy iteration (when λ = 1). The operator Mk gives some insight on how one may

concretely implement one iteration of λ policy iteration: it can for instance be done through a value-

iteration like algorithm which applies Mk iteratively. Then, the fact that its contraction factor is λγ

is interesting: when λ < 1, finding the corresponding fixed point can generally be done in fewer

iterations than that of T πk+1 , which is only γ-contracting.

In order to fully describe the λ policy iteration algorithm, we introduce an operator that corre-

sponds to the computation of the fixed point of Mk. For any value v and any policy π, define:

T π
λ v := v+(I−λγPπ)−1(T πv− v) (6)

= (I−λγPπ)−1(v−λγPπv+T πv− v)

= (I−λγPπ)−1(rπ +(1−λ)γPπv) (7)

= (I−λγPπ)−1(λrπ +(1−λ)T πv),

where the different equalities are due to basic algebra and the fact that T πv = rπ + γPπv.

λ policy iteration is formally described in Algorithm 3. Our description includes a potential

error term εk when updating the value, which stands for several possible sources of error at each

iteration: this error might be the computer round off, the fact that we use an approximate archi-

tecture for representing v, a stochastic approximation of Pπk , etc... or a combination of these. It is
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Figure 2: λ policy iteration, a fundamental algorithm for reinforcement learning. We represent a

picture of the family of algorithms corresponding to λ policy iteration. The vertical axis

corresponds to whether one does full backup (exact computation of the expectations) or

stochastic approximation (estimation through samples). The horizontal axis corresponds

to the depth of the backups, and is controlled by the parameter λ. This drawing is reminis-

cent of the picture that appears in chapter 10.1 of the textbook by Sutton and Barto (1998)

that represents “two of the most important dimensions” of reinforcement-learning meth-

ods along the same dimensions. In that drawing, from top to bottom and left to right, the

authors labeled the corners “Dynamic Programming”, “Exhaustive search”, “Temporal-

Difference learning” and “Monte-Carlo”. It is interesting to notice that Sutton and Barto

(1998) comment their drawing as follows: “At three of the four corners of the space are

the three primary methods for estimating values: DP, TD, and Monte Carlo”. They do

not recognize the fourth corner as one of the reinforcement-learning primary methods.

Our representation of λ policy iteration actually suggests that in place of “Exhaustive

search”, policy iteration, which consists in computing the value of the current policy, is

the deepest backup method, and can be considered as the batch version of Monte Carlo.

straightforward to see that the λ policy iteration reduces to value iteration (Algorithm 1) when λ = 0

and to policy iteration8 (Algorithm 2) when λ = 1.

The definition of the operator T π
λ given by Equation 7 is the form we have used for the intro-

duction of λ policy iteration as an intermediate algorithm between value and policy iteration. The

equivalent form given by Equation 6 can be used to make a connection with the TD(λ) algorithm9

8. Policy iteration starts with an initial policy while λ policy iteration starts with some initial value. To be precise, “1

policy iteration” starting with v0 is equivalent to policy iteration starting with the greedy policy with respect to v0.

9. TD stands for temporal difference. As we have mentioned in Footnote 6, λ policy iteration was originally also

called “temporal-difference based policy iteration” and the presentation of Bertsekas and Ioffe (1996) starts from the

formulation of Equation 6 (which is close to TD(λ)), and afterwards makes the connection with value and policy

iteration.
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(Sutton and Barto, 1998). Indeed, through Equation 6, the evaluation phase of λ policy iteration can

be seen as an incremental additive procedure:

vk+1← vk +∆k

where

∆k := (I−λγPπk+1)−1(T πk+1vk− vk)

is zero if and only if the value vk is equal to the optimal value v∗. It can be shown (Bertsekas and

Ioffe, 1996) that the vector ∆k has components given by:

∆k(i) = Eπk+1

[
∞

∑
t=0

(λγ)tδk(it , it+1)

∣
∣
∣
∣
∣
i0 = i

]

(8)

with

δk(i, j) := r(i,πk+1(i), j)+ γv( j)− v(i)

being the temporal difference associated to transition i→ j, as defined by Sutton and Barto (1998).

When one uses a stochastic approximation of λ policy iteration, that is when the expectation Eπt+1
is

approximated by sampling, λ policy iteration reduces to the algorithm TD(λ) which is described in

chapter 7 of Sutton and Barto (1998). In particular, when λ = 1, the terms in the above sum collapse

and become the exact discounted return:

∞

∑
j=0

γ jδk(i j, i j+1) =
∞

∑
j=0

γ j [r(i j,πk+1(i j), i j+1)+ γv(i j+1)− v(i j)]

=
∞

∑
j=0

γ jr(i j,πk+1(i j), i j+1)

and the stochastic approximation matches the Monte-Carlo method. Also, Bertsekas and Ioffe

(1996) show that approximate TD(λ) with a linear feature architecture, as described in chapter

8.2 of Sutton and Barto (1998), corresponds to a natural approximate version of λ policy iteration

where the value is updated by least squares fitting using a gradient-type iteration after each sam-

ple. Last but not least, as illustrated in figure 2, the reader might notice that the “unified view” of

reinforcement-learning algorithms which is depicted in chapter 10.1 of Sutton and Barto (1998) is

in fact a picture of λ policy iteration.

To our knowledge, little has been done concerning the analysis of λ policy iteration: the only

results available concern the exact case (when εk = 0). Define the following factor

β =
(1−λ)γ

1−λγ
. (9)

We have 0 ≤ β ≤ γ < 1. If λ = 0 (value iteration) then β = γ, and if λ = 1 (policy iteration) then

β = 0. In the original article introducing λ policy iteration, Bertsekas and Ioffe (1996) show the

convergence and provide the following asymptotic rate of convergence.

Proposition 1 (Convergence of λPI, Bertsekas and Ioffe, 1996)

The sequence vk converges to v∗. Furthermore, after some index k∗, the rate of convergence is linear

in β as defined in Equation 9, that is

∀k ≥ k∗, ‖vk+1− v∗‖ ≤ β‖vk− v∗‖.
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Figure 3: This simple deterministic MDP is used to show that λ policy iteration cannot be analyzed

in terms of contraction (see text for details).

By making λ close to 1, β can be arbitrarily close to 0 so the above rate of convergence might

look overly impressive. This needs to be put into perspective: the index k∗ is the index after which

the policy πk does not change anymore (and is equal to the optimal policy π∗). As we said when

we introduced the algorithm, λ controls the speed at which one wants vk to “track the target” vπk+1 ;

when λ = 1, this is done in one step (and if πk+1 = π∗ then vk+1 = v∗).

4. Analysis Of λ Policy Iteration

λ policy iteration is conceptually nice since it generalizes the two most well-known algorithms for

solving Markov decision processes. In the literature, lines of analysis are different for value and

policy iteration. Analyzes of value iteration are based on the fact that it computes the fixed point

of the Bellman operator which is a γ-contraction mapping in max norm (Bertsekas and Tsitsiklis,

1996). Unfortunately, it can be shown that the operator by which policy iteration updates the value

from one iteration to the next is in general not a contraction in max norm. In fact, this observation

can be drawn for λ policy iteration as soon as it does not reduce to value iteration:

Proposition 2 If λ > 0, there exists no norm for which the operator v 7→ T
greedy(v)

λ v by which

λ policy iteration updates the value from one iteration to the next is a contraction.

Proof To see this, consider the deterministic MDP (shown in figure 3) with two states {1,2} and

two actions {change,stay}. The instantaneous rewards of being in state 1 and 2 are respectively

r1 = 0 and r2 = 1 (they do not depend on the action nor the resulting state), and the transitions are

characterized as follows: Pchange(2|1) = Pchange(1|2) = Pstay(1|1) = Pstay(2|2) = 1. Consider the

following two value functions v = (ε,0) and v′ = (0,ε) with ε > 0. Their corresponding greedy

policies are π = (stay,change) and π′ = (change,stay). Then, we can compute the next iterates of v
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and v′ (using Equation 7):

rπ +(1−λγ)Pπv =

(
(1−λ)γε

1+(1−λ)γε

)

,

T π
λ v =

(
(1−λ)γε

1−λγ

1+ (1−λ)γε
1−λγ

)

,

rπ′+(1−λγ)Pπ′v′ =

(
(1−λ)γε

1+(1−λ)γε

)

,

and T π′

λ v′ =

(
1+(1−λ)γε

1−λγ −1
1+(1−λ)γε

1−λγ

)

.

Then

T π′

λ v′−T π
λ v =

(
1

1−λγ −1
1

1−λγ −1

)

while

v′− v =

(
−ε

ε

)

.

As ε can be arbitrarily small, the norm of T π
λ v− T π′

λ v′ can be arbitrarily larger than that of v− v′

when λ > 0.

Analyzes of policy iteration usually rely on the fact that the sequence of values generated is non-

decreasing (Bertsekas and Tsitsiklis, 1996; Munos, 2003). Unfortunately, it can easily be seen that

as soon as λ is smaller than 1, the value functions may decrease (it suffices to take a very high initial

value). For non trivial values of λ, λ policy iteration is neither contracting nor non-decreasing, so

we need a new proof technique.

4.1 Main Proof Ideas

The rest of this section provides an overview of our analysis. We show how to compute an upper

bound of the loss for λ policy iteration in the general (possibly approximate) case. It is the basis for

the derivation of component-wise bounds for exact λ policy iteration (Section 4.2) and approximate

λ policy iteration (Section 4.3). Consider λ policy iteration as described in Algorithm 3, and the

sequence of value-policy-error triplets (vk,πk,εk) it generates.

Our goal is to provide a bound of the loss of using policy πk instead of the optimal policy:

lk := v∗− vπk .

Our analysis amounts to decompose the loss as follows:

v∗− vπk = v∗−wk
︸ ︷︷ ︸

dk

+wk− vπk

︸ ︷︷ ︸

sk

,

where wk is the value of the kth before the approximation εk is incurred:

wk := vk− εk = T
πk

λ vk−1.

1191



SCHERRER

We shall call the term dk = v∗−wk the distance as it is a measure of distance between the optimal

value and the kth value wk. Similarly, we shall call the term sk = wk− vπk the shift as it shows the

shift between the kth value wk and the value of the kth policy (as mentioned before, the former can

indeed be understood as tracking the latter). As it will appear shortly, we will be able to bound both

quantities, and thus deduce a bound on the loss. Actual bounds on dk and sk will be based on a

bound on the Bellman residual of the kth value:

bk := Tk+1vk− vk = T vk− vk.

To lighten the notations, from now on we write: Pk := Pπk , Tk := T πk , P∗ := Pπ∗ . We refer to the

factor β as introduced by Bertsekas and Ioffe (Equation 9 page 1189). Also, the following stochastic

matrix plays a recurrent role in our analysis:10

Ak := (1−λγ)(I−λγPk)
−1Pk.

For a vector u, we use the notation u for an upper bound of u and u for a lower bound.

Our analysis relies on a series of lemmas that we now state (for clarity, all the proofs are deferred

to appendix B).

Lemma 3 The shift is related to the Bellman residual as follows:

sk = β(I− γPk)
−1Ak(−bk−1).

Lemma 4 The Bellman residual at iteration k+1 cannot be much lower than that at iteration k:

bk+1 ≥ βAk+1bk + xk+1

where xk := (γPk− I)εk only depends on the approximation error.

As a consequence, a lower bound of the Bellman residual is:11

bk ≥
k

∑
j=1

βk− j (AkAk−1...A j+1)x j +βk (AkAk−1...A1)b0 := bk.

Using Lemma 3, the bound on the Bellman residual also provides an upper bound on the shift:12

sk ≤ β(I− γPk)
−1Ak(−bk−1) := sk.

Lemma 5 The distance at iteration k+1 cannot be much greater than that at iteration k:

dk+1 ≤ γP∗dk + yk

where yk := λγ
1−λγ Ak+1(−bk)− γP∗εk depends on the lower bound of the Bellman residual and the

approximation error.

10. The fact that this is indeed a stochastic matrix is explained at the beginning of the appendices.

11. We use the property here that if some vectors satisfy the component-wise inequality x ≤ y, and if P is a stochastic

matrix, then the component-wise inequality Px≤ Py holds.

12. We use the fact that (1− γ)(I− γPk)
−1 is a stochastic matrix (see Footnote 10) and Footnote 11.
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Then, an upper bound of the distance is:13

dk ≤
k−1

∑
j=0

γk−1− j(P∗)
k−1− jy j + γk(P∗)

kd0 = dk.

Eventually, as

lk = dk + sk ≤ dk + sk,

the upper bounds on the distance and the shift enable us to derive the upper bound on the loss.

The above derivation is a generalization of that of Munos (2003) for approximate policy iter-

ation. Note however that it is not a trivial generalization: when λ = 1, that is when both proofs

coincide, β = 0 and Lemmas 3 and 4 have the following particularly simple form: sk = 0 and

bk+1 ≥ xk+1.

The next two subsections contain our main results, which take the form of performance bounds

when using λ policy iteration. Section 4.2 gathers the results concerning exact λ policy iteration,

while Section 4.3 presents those concerning approximate λ policy iteration.

4.2 Performance Bounds For Exact λ Policy Iteration

Consider exact λ policy iteration for which we have εk = 0 for all k. By exploiting the recursive

relations we have described in the previous section (this process is detailed in appendix C), we can

derive the following component-wise bounds for the loss.

Lemma 6 (Component-Wise rate of convergence of exact λPI)

For all k > 0, the following matrices

Ek := (1− γ)(P∗)
k(I− γP∗)

−1,

E ′k :=

(
1− γ

γk

)(

λγ

1−λγ

k−1

∑
j=0

γk−1− jβ j(P∗)
k−1− jA j+1A j...A1

+βk(I− γPk)
−1AkAk−1...A1

)

,

and Fk := (1− γ)Pk
∗ + γE ′kP∗

are stochastic and the performance of the policies generated by λ policy iteration satisfies

v∗− vπk ≤
γk

1− γ

[
Fk−E ′k

]
(v∗− v0), (10)

v∗− vπk ≤
γk

1− γ

[
Ek−E ′k

]
(T v0− v0), and (11)

v∗− vπk ≤ γk
[

(P∗)
k
(

(v∗− v0)−min
s
[v∗(s)− v0(s)]e

)

+‖v∗− vπ1‖∞ e
]

(12)

where e is the vector of which all components are 1.

In order to derive (more interpretable) max norm bounds from the above component-wise bound,

we rely on the following lemma, which for clarity of exposition is proved in appendix G.

13. See Footnote 11.
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Lemma 7 If for some non-negative vectors x and y, some constant K ≥ 0, and some stochastic

matrices X and X ′ we have

x≤ K(X−X ′)y,

then

‖x‖∞ ≤ 2K ‖y‖∞ .

With this, the component-wise bounds of Lemma 6 become:

Proposition 8 (Non-asymptotic bounds for exact λ policy iteration)

For any k > 0,

‖v∗− vπk‖∞ ≤
2γk

1− γ
‖v∗− v0‖∞ , (13)

‖v∗− vπk‖∞ ≤
2γk

1− γ
‖T v0− v0‖∞ , (14)

and ‖v∗− vπk‖∞ ≤ γk (2‖v∗− v0‖∞ +‖v∗− vπ1‖∞) . (15)

These non-asymptotic bounds supplement the asymptotic bound of Proposition 1 from Bertsekas

and Ioffe (1996). Remarkably, these max-norm bounds show no dependence on the value λ. The

bound of Equation 13 is expressed in terms of the initial distance between the value function and the

optimal value function, and constitutes a generalization of the rate of convergence of value iteration

by Puterman (1994) that we described in Equation 3 page 1184. The second inequality, Equation 14,

is expressed in terms of the initial Bellman residual and is also well-known for value iteration

(Puterman, 1994). The last inequality described in Equation 15 relies on the distance between the

value function and the optimal value function and the value difference between the optimal policy

and the first greedy policy; compared to the others, it has the advantage of not containing a 1
1−γ

factor. To our knowledge, this bound is even new for the specific cases of value and policy iteration.

4.3 Performance Bounds For Approximate λ Policy Iteration

We now turn to the (slightly more involved) results on approximate λ policy iteration. We provide

component-wise bounds of the loss lk = v∗−vπk ≥ 0 of using policy πk instead of using the optimal

policy, with respect to the approximation error εk, the policy Bellman residual Tkvk − vk and the

Bellman residual T vk − vk = Tk+1vk − vk. Note the subtle difference between the two Bellman

residuals: the policy Bellman residual says how much vk differs from the value of πk while the

Bellman residual says how much vk differs from the value of the policies πk+1 and π∗.

The core of our analysis, and the main contribution of this article, is described in the following

lemma.
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Lemma 9 (Component-Wise performance bounds for app. λ policy iteration)

For all k ≥ j ≥ 0, the following matrices

Bk j :=
1− γ

γk− j

[

λγ

1−λγ

k−1

∑
i= j

γk−1−iβi− j(P∗)
k−1−iAi+1Ai...A j+1

+βk− j(I− γPk)
−1AkAk−1...A j+1

]

,

B′k j := γBk jPj +(1− γ)(P∗)
k− j,

Ck j := (1− γ)(P∗)
k− j(I− γPj)

−1,

C′k j := (1− γ)(P∗)
k− j−1Pj+1(I− γPj+1)

−1,

D := (1− γ)P∗(I− γP∗)
−1

and D′k := (1− γ)Pk(I− γPk)
−1

are stochastic and for all k,

v∗− vπk ≤
1

1− γ

k−1

∑
j=0

γk− j
[
Bk j−B′k j

]
ε j +O(γk), (16)

v∗− vπk ≤
1

1− γ

k−1

∑
j=0

γk− j
[
Ck j−C′k j

]
(Tjv j− v j)+O(γk), (17)

and v∗− vπk ≤
γ

1− γ

[
D−D′k

]
(T vk−1− vk−1). (18)

The first relation (Equation 16) involves the errors (εk), is based on Lemmas 3-5 (presented in

Section 4.1) and is proved in appendix D. The two other inequalities (the asymptotic performance

of approximate λ policy iteration with respect to the Bellman residuals in Equations 17 and 18) are

somewhat simpler and are proved independently in appendix E.

By taking the max norm in the above component-wise performance bounds, we obtain, for all

k,

‖v∗− vπk‖∞ ≤
2

1− γ

k−1

∑
j=0

γk− j
∥
∥ε j

∥
∥

∞
+O(γk),

‖v∗− vπk‖∞ ≤
2

1− γ

k−1

∑
j=0

γk− j
∥
∥Tjv j− v j

∥
∥

∞
+O(γk),

and ‖v∗− vπk‖∞ ≤
2γ

1− γ
‖T vk−1− vk−1‖∞ . (19)

In the specific context of value and policy iteration, Munos (2003, 2007) has argued that most

supervised learning algorithms (such as least squares regression) that are used in practice for ap-

proximating each iterate control the errors (εk) for some weighted Lp norm ‖·‖p,µ, defined for some

distribution µ on the state space X as follows:

‖u‖µ,p =

(

∑
x

µ(x)|u(x)|p
)1/p

.
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As a consequence, Munos (2007, 2003) explained how to derive an analogue of the above result

where the approximation error εk is expressed in terms of this Lp norm. Based on Munos’ works,

we provide below a useful technical lemma (proved in appendix G) that shows how the performance

of approximate λ policy iteration can be translated into Lp norm bounds.

Lemma 10 Let xk, yk be vectors and Xk j, X ′k j stochastic matrices satisfying for all k

|xk| ≤ K
k−1

∑
j=0

ξk− j(Xk j−X ′k j)y j +O(γk),

where (ξi)i≥1 is a sequence of non-negative weights satisfying

∞

∑
i=1

ξi = K′ < ∞.

Then, for all distribution µ,

µk j :=
1

2
(Xk j +X ′k j)

T
µ

are distributions and

limsup
k→∞

‖xk‖p,µ ≤ 2KK′ lim
l→∞

[

sup
k≥ j≥l

∥
∥y j

∥
∥

p,µk j

]

.

Thus, using this lemma and the fact that ∑∞
i=1 γi = γ

1−γ , Lemma 9 can be turned into the following

proposition.

Proposition 11 (Lp norm performance of approximate λPI)

With the notations of Lemma 9, for all p, k ≥ j ≥ 0 and all distribution µ,

µk j :=
1

2

(
Bk j +B′k j

)T
µ,

µ′k j :=
1

2

(
Ck j +C′k j

)T
µ

and µ′′k :=
1

2

(
D+D′k

)T
µ

are distributions and the performance of the policies generated by λ policy iteration satisfies:

limsup
k→∞

‖v∗− vπk‖p,µ ≤
2γ

(1− γ)2
lim
l→∞

[

sup
k≥ j≥l

∥
∥ε j

∥
∥

p,µk j

]

,

limsup
k→∞

‖v∗− vπk‖p,µ ≤
2γ

(1− γ)2
lim
l→∞

[

sup
k≥ j≥l

∥
∥Tjv j− v j

∥
∥

p,µ′k j

]

,

∀k, ‖v∗− vπk‖p,µ ≤
2γ

1− γ
‖T vk−1− vk−1‖p,µ′′k

.

Proposition 11 means that in order to control the performance loss (the left hand side) for some

µ-weighted Lp norm, one needs to control the errors ε j, the policy Bellman residual Tj jk− v j or

the Bellman residual T vk−1− vk−1 (the right hand sides) respectively for the norms µk j, µ′k j and µ′′k .
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Unfortunately, these distributions depend on unknown quantities (such as the stochastic matrix of

the optimal policy, see the definitions in Lemma 9) and cannot be used in practice by the algorithm.

To go round this issue, we follow Munos (2003, 2007) and introduce some assumption on the

stochasticity of the MDP in terms of a so-called concentrability coefficient. Assume there exists a

distribution ν and a real number C(ν) such that

C(ν) := max
i, j,a

pi j(a)

ν( j)
. (20)

For instance, if one chooses the uniform law ν, then there always exists such a C(ν) ∈ (1,N) where

N is the size of the state space. More generally, a small value of C(ν) requires that the underlying

MDP has a significant amount of stochasticity; see (Munos, 2003, 2007) for more discussion on this

coefficient. Given this definition, we have the following property.

Lemma 12 Let X be a convex combination of products of stochastic matrices of the MDP. For any

distribution µ, vector y, and p,

‖y‖p,XT µ ≤ (C(ν))1/p ‖y‖p,ν .

Proof It can be seen from the definition of the concentrability coefficient C(ν) that µT X ≤C(ν)νT .

Thus,

(

‖y‖p,XT µ

)p

=
(

‖y‖p,XT µ

)p

= µT X |y|p

≤ C(ν)νT |y|p

= C(ν)
(

‖y‖p,ν

)p

= C(ν)
(

‖y‖p,ν

)p

.

Using this lemma, and the fact that for any p, ‖x‖∞ = maxµ ‖x‖p,µ, the Lp bounds of Proposition 11

lead to the following proposition.

Proposition 13 (L∞/Lp norm performance of approximate λPI)

Let C(ν) be the concentrability coefficient defined in Equation 20. For all p,

limsup
k→∞

‖v∗− vπk‖∞ ≤
2γ

(1− γ)2
[C(ν)]1/p

limsup
k→∞

‖εk‖p,ν ,

limsup
k→∞

‖v∗− vπk‖∞ ≤
2γ

(1− γ)2
[C(ν)]1/p

limsup
k→∞

‖Tkvk− vk‖p,ν ,

and ∀k, ‖v∗− vπk‖∞ ≤
2γ

1− γ
[C(ν)]1/p ‖T vk−1− vk−1‖p,ν .

It is, once again, remarkable that these bounds do not explicitly depend on the value of λ. However,

it should be clear that, with respect to the previous bounds, the influence of λ is now hidden in the

concentrability coefficient C(ν). Furthermore, as it is the case in TD(λ) methods, and as will be
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illustrated in the case study in Section 6, the value of λ will directly influence the errors
∥
∥ε j

∥
∥

p,ν
and

the Bellman residual terms ‖Tkvk− vk‖p,ν and ‖T vk−1− vk−1‖p,ν.

In general, one cannot give the guarantee that approximate λ policy iteration will converge.

However, the performance bounds with respect to the approximation error can be improved if we

observe empirically that the value or the policy converges. Note that the former condition implies

the latter (while the opposite is not true: the policy may converge while the value still oscillates).

Indeed, we have the following corollary (proved in appendix F).

Corollary 14 (L∞/Lp norm performance of app. λPI in case of convergence)

If the value converges to some v, then the approximation error converges to some ε, and the corre-

sponding greedy policy π satisfies

‖v∗− vπ‖∞ ≤
2γ

1− γ
[C(ν)]1/p ‖ε‖p,ν .

If the policy converges to some π, then

‖v∗− vπ‖∞ ≤
2γ(1−λγ)

(1− γ)2
[C(ν)]1/p

limsup
j→∞

∥
∥ε j

∥
∥

p,ν
.

It is interesting to notice that in the latter weaker situation where only the policy converges, the

constant decreases from 1
(1−γ)2 to 1

1−γ when λ varies from 0 to 1; in other words, the closer to policy

iteration, the better the bound in that situation.

4.4 Extension To The Undiscounted Case

The results we have described so far only apply to the situation where the discount factor γ is smaller

than 1. Indeed, all our bounds involve terms of the form 1
1−γ that diverge to infinity as γ tends to

1. In this last subsection, we show how the component-wise analysis of Lemma 9 can be exploited

to also cover the case where we have an undiscounted MDP (γ = 1), as for instance in the the case

study on the Tetris domain presented in Section 6.

In undiscounted infinite horizon control problems, it is generally assumed that there exists a

N +1th termination absorbing state 0. Once the system reaches this state, it remains there forever

with no further reward, that is formally:

∀a, p00(a) = 1 and r(0,a,0) = 0.

In order to derive our results, we will introduce conditions that ensure that termination is guaranteed

in finite time with probability 1 under any sequence of actions. Formally, we will assume that there

exists an integer n0 ≤ N and a real number α < 1 such that for all initial distributions µ, all actions

a0,a1, ...,an0−1, the following relation

P [in0
6= 0|i0 ∼ µ,a0, ...,an0−1]≤ α (21)

holds.14 We can think of the MDP as only defined on the N non-terminal states, that is on {1, ...N}.
Then, for any policy π, the matrix Pπ is sub-stochastic, and the above assumption implies that for

14. In the literature, a stationary policy that reaches the terminal state in finite time with probability 1 is said to be proper.

The usual assumptions in undiscounted infinite horizon control problems are: (i) there exists at least one proper

policy and (ii) for every improper policy π, the corresponding value equals−∞ for at least one state. The situation we

consider here is simpler, since we assume that all (non-necessarily stationary nor deterministic) policies are proper.
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all set of n0 policies π1,π2, · · · ,πn0
,

∥
∥
∥Pπ1

Pπ2
· · ·Pπn0

∥
∥
∥

∞
≤ α.

The component-wise analysis of λ policy iteration is here identical to what we have done before,

except that we have15 γ = 1 and β = 1. The matrix Ak that appeared recurrently in our analysis has

the following special form:

Ak := (1−λ)(I−λPk)
−1Pk.

and is a sub-stochastic matrix. The first bound of the component-wise analysis of λ policy iteration

(Lemma 9 page 1194) can be generalized as follows (see appendix H for details).

Lemma 15 (Component-Wise bounds in the undiscounted case)

Assume that there exist n0 and α such that Equation 21 holds. Write η := 1−λn0

1−λn0 α . For all i, write

δi := α

⌊
i

n0

⌋[(
1−λn0

1−λ

)(
λ

1−λn0α

)(
1−ηi

1−η

)

+
n0ηi

1−α

]

.

For all j < k, the following matrices

Gk j :=
1

δk− j

[

λ

1−λ

k−1

∑
i= j

(P∗)
k−1−iAi+1Ai...A j+1 +(I−Pk)

−1AkAk−1...A j+1

]

and G′k j :=
1

δk− j

Gk jPj

are sub-stochastic and the performance of the policies generated by λ policy iteration satisfies

∀k, v∗− vπk ≤
k−1

∑
j=0

δk− j

[
Gk j−G′k j

]
ε j +O(γk). (22)

By observing that η ∈ (0,1), and that for all x ∈ (0,1), 0 ≤ 1−xn0

1−x
≤ n0, it can be seen that the

coefficients δi are finite for all i. Furthermore, when n0 = 1 (which matches the discounted case

with α = γ), one can observe that δi =
γi

1−γ and that one recovers the result of Lemma 9.

This lemma can then be exploited to show that λ policy iteration enjoys an Lp norm guarantee.

Indeed, an analogue of Proposition 11 (whose proof is detailed in appendix H) is the following

proposition.

Proposition 16 (Lp norm bound in the undiscounted case)

Let C(ν) be the concentrability coefficient defined in Equation 20 page 1197. Let the notations and

conditions of Lemma 15 hold. For all distribution µ on (1, · · · ,N) and k ≥ j ≥ 0,

µk j :=
1

2

(
Gk j +G′k j

)T
µ

15. For simplicity in our discussion, we consider λ < 1 to avoid the special case λ = 1 for which β may be indefinite (see

the definition of β in Equation 9 page 1189). The interested reader may however check that the results that we state

are continuous in the neighborhood of λ = 1.
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are non-negative vectors and

µ̃k j :=
µk j
∥
∥µk j

∥
∥

1

are distributions on (1, · · · ,N). Then for all p, the loss of the policies generated by λ policy iteration

satisfies

limsup
k→∞

‖v∗− vπk‖p,µ ≤ 2K(λ,n0)(C(ν))1/p lim
j→∞

∥
∥ε j

∥
∥

p,ν

where

K(λ,n0) := λ f (λ)
f (1)− f (η)

1−η
+ f (1) f (η)− f (1),

∀x < 1, f (x) :=
(1− xn0)

(1− x)(1− xn0α)
, and by continuity f (1) :=

n0

1−α
.

There are two main differences with respect to the results we have presented for the discounted case:

1. The fact that we considered the model (and thus the algorithm) only on the non-terminal states

(1, · · · ,N) means that we made the assumption that there is no error incurred in the terminal

state 0. Note, however, that this is not a strong assumption since the value of the terminal

state is necessarily 0.

2. The constant K(λ,n0) is dependent on λ. More precisely, it can be observed that:

lim
λ→0

K(λ,n0) = lim
λ→1

K(λ,n0) =
n0

2

(1−α)2
−

n0

1−α

and that this is the minimal value of λ 7→ K(λ,n0). Although we took particular care in

deriving this bound, we leave for future work the question whether one could prove a similar

result with the constant n0
2

(1−α)2 −
n0

1−α for all λ ∈ (0,1). When n0 = 1 (which matches the

discounted case with α = γ), K(λ,1) does not depend anymore on λ and we recover, without

surprise, the bound of Proposition 11 since

∀λ, K(λ,1) =
α

(1−α)2
.

5. Related Work

The study of approximate versions of value and policy iteration has been the topic of a rich literature

(Bertsekas and Tsitsiklis, 1996), in particular in the discounted case on which we focus in what

follows. The most well-known results, due to Bertsekas and Tsitsiklis (1996, pp. 332-333 for value

iteration and Prop. 6.2 p. 276 for policy iteration), states that the performance loss due to using the

policies πk instead of the optimal policy π∗ satisfies:

limsup
k→∞

‖v∗− vπk‖∞ ≤
2γ

(1− γ)2
sup
k≥0

‖εk‖∞ . (23)

As mentioned earlier (after Equation 19 page 1195), Munos (2003, 2007) has argued that the above

bound does not directly apply to practical implementations that usually control some Lp norm of the
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errors. Munos extended the error analysis of Bertsekas and Tsitsiklis (1996) to this situation. His

analysis begins by the following error propagation for value iteration—taken from (Munos, 2007,

Lemma 4.1)—and for policy iteration—adapted from16 (Munos, 2003, Lemma 4).

Lemma 17 (Asymptotic component-wise performance of AVI and API)

For all k > j ≥ 0, the following matrices

Qk j := (1− γ)(I− γPk)
−1PkPk−1...Pj+1,

Q′k j := (1− γ)(I− γPk)
−1(P∗)

k− j,

Rk j := (1− γ)(P∗)
k−1− jPj+1(I− γPj+1)

−1,

R′k j := (1− γ)(P∗)
k−1− j

(
γPj+1(I− γPj+1)

−1Pj +P∗
)

and R′′k j := (1− γ)(P∗)
k−1(I− γPj)

−1

are stochastic. The asymptotic performance of the policies generated by approximate value iteration

satisfies

limsup
k→∞

v∗− vπk ≤ limsup
k→∞

1

1− γ

k−1

∑
j=0

γk− j
[
Qk j−Q′k j

]
ε j. (24)

The asymptotic performance of the policies generated by approximate policy iteration satisfies

limsup
k→∞

v∗− vπk ≤ limsup
k→∞

1

1− γ

k−1

∑
j=0

γk− j
[
Rk j−R′k j

]
ε j (25)

and limsup
k→∞

v∗− vπk ≤ limsup
k→∞

1

1− γ

k−1

∑
j=0

γk− j
[
R′′k j−Rk j

]
(T πk vk− vk). (26)

Then, introducing the concentrability coefficient C(ν) (Equation 20 page 1197) and using the

techniques that we described through Lemmas 10 and 12, Munos (2003, 2007) turned these component-

wise bounds into L∞/Lp norm bounds that match those of our (more general) Proposition 13. In

particular he obtains the following bound for both value and policy iteration,

limsup
k→∞

‖v∗− vπk‖∞ ≤
2γ

(1− γ)2
[C(ν)]1/p

limsup
k→∞

‖εk‖p,ν ,

that generalizes that of Bertsekas and Tsitsiklis (1996) (Equation 23) since [C(ν)]1/p
tends to 1 when

p tends to infinity. Munos also provides some improved bounds when value iteration converges to

some value (Munos, 2007, sections 5.2 and 5.3), or when policy iteration converges to some policy

(Munos, 2003, Remark 4); similarly, these are special cases of our Corollary 14 page 1198.

At a somewhat more technical level, our key result on approximations, stated in Lemma 9

page 1194, gives a component-wise analysis for the whole family of algorithms λ policy iteration.

It is thus natural to look at the relations between our bounds for general λ and the bounds derived

separately by Munos for value iteration (Equation 24) and policy iteration (Equations 25 and 26).

16. We provide here a correction of the result stated by Munos (2003, Theorem 1) that is obtained by an inappropriate

exchange of an expectation and a sup operator (Munos, 2003, Proofs of Corollaries 1 and 2). Note, however that the

concentrability coefficient based results (Munos, 2003, Theorems 2 and 3) are not affected.
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In the case where λ = 0 (and thus when λ policy iteration reduces to value iteration), consider the

bound we gave in Equation 16. Since λ = 0, we have β = γ, Ak = Pk and

Bk j = (1− γ)(I− γPk)
−1PkPk−1...Pj+1.

Our bound thus implies that

limsup
k→∞

v∗− vπk ≤ limsup
k→∞

k−1

∑
j=0

γk− j
[

(I− γPk)
−1PkPk−1...Pj+1

−
(

γ(I− γPk)
−1PkPk−1...Pj +(P∗)

k− j
)]

ε j. (27)

The bound derived by Munos for approximate value iteration (Equation 24) is

limsup
k→∞

v∗− vπk ≤ limsup
k→∞

(I− γPk)
−1

k−1

∑
j=0

γk− j
[

PkPk−1...Pj+1− (P∗)
k− j
]

ε j

= limsup
k→∞

k−1

∑
j=0

γk− j
[

(I− γPk)
−1PkPk−1...Pj+1− (I− γPk)

−1(P∗)
k− j
]

ε j

= limsup
k→∞

k−1

∑
j=0

γk− j
[

(I− γPk)
−1PkPk−1...Pj+1

−
(

γ(I− γPk)
−1Pk(P∗)

k− j +(P∗)
k− j
)]

ε j. (28)

The above bounds are very close to each other: we can go from Equation 27 to Equation 28

by replacing Pk−1...Pj by (P∗)
k− j. Now, when λ = 1 (when λ policy iteration reduces to policy

iteration), we have β = 0, Ak = (1− γ)(I− γPk)
−1Pk and it is straightforward to see that Bk j = Rk j

and B′k j = R′k j, and the bound given in Equation 16 matches that of Munos in Equation 25. Finally, it

can easily be observed that the stochastic matrices involved in Equation 26 (with the policy Bellman

residual) match those of the one we gave in Equation 17: formally, we have R′′k j =Ck j and Rk j =C′k j.

Thus, up to some little details, our component-wise analysis unifies those of Munos. It is not

a surprise that we fall back on the result of Munos for approximate policy iteration because, as

already mentioned at the end of Section 4.1, our proof is a generalization of his. If we do not

exactly recover the component-wise analysis of Munos for approximate value iteration, this is not

really fundamental as we saw that it does not affect the results once stated in terms of concentrability

coefficients.

All our Lp norm bounds involve the use of some simple concentrability coefficient C(ν) (defined

in Equation 20 page 1197). Munos (2007) introduced some concentrability coefficients that are finer

than C(ν). In the same spirit, Farahmand et al. (2010) recently revisited the error propagation of

Munos (2007, 2003) and improved (among other things) the constant in the bound related to these

concentrability coefficients. In (Scherrer et al., 2012), we have further enhanced this constant by

providing even finer coefficients, and provided a practical lemma (Scherrer et al., 2012, Lemma

3) to convert any component-wise bound into an Lp norm bound. Thus, rewriting our results for

λ policy iteration with these refined coefficients is straightforward, and is not pursued here.
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Figure 4: Modeling the Tetris game as an MDP

6. Application Of λ Policy Iteration To The Game Of Tetris

In the final part of this paper, we consider (and describe for the sake of keeping this paper self-

contained) exactly the same application (Tetris) and implementation as Bertsekas and Ioffe (1996).

Our main motivation here comes from the fact that we obtain empirical results that are different

(and much less intriguing) than those of the original study. This gives us the opportunity to describe

what we think are the reasons for such a difference. But before doing so, we begin by describing

the Tetris domain.

6.1 The Game of Tetris And Its Model As An MDP

Tetris is a popular video game created in 1985 by Alexey Pajitnov. The game is played on a 10×20

grid where pieces of different shapes fall from the top. The player has to choose where each piece

is added: he can move it horizontally and rotate it. When a row is filled, it is removed and all cells

above it move one row downwards. The goal is to remove as many lines as possible before the game

is over, that is when there is not enough space remaining on the top of the pile to put the current

new piece.

Instead of mimicking the original game, precisely described by Fahey (2003), Bertsekas and

Ioffe (1996) have focused on the main problem, that is choosing where and in which orientation to

1203



SCHERRER

drop each coming piece. The corresponding MDP model, illustrated in figure 4, is straightforward:

the state consists of the wall configuration and the shape of the current piece. An action is the

horizontal translation and the rotation which are applied to the piece before it is dropped on the

wall. The reward is the number of lines which are removed after we have dropped the piece. As

one considers the maximization of the score (the total number of lines removed during a game), the

natural choice for the discount factor is γ = 1, that is we model Tetris as an undiscounted MDP, of

which the terminal state corresponds to “game over”.

In a bit more details, the dynamics of Tetris is made of two components: the place where one

drops the current piece and the choice of a new piece. As the latter component is uncontrollable (a

new piece is chosen with uniform probability), the value functions does not need to be computed

for all wall-piece pairs configurations but only for all wall configurations (Bertsekas and Ioffe,

1996). Also considering that the first component of the dynamics is deterministic, the optimal value

function satisfies the following Bellman equation:

∀s ∈ S, v∗(s) =
1

|P | ∑
p∈P

max
a∈A(p)

r(s, p,a)+ v∗(succ(s, p,a)), (29)

where S is the set of wall configurations, P is the set of pieces, A(p) is the set of translation-rotation

pairs that can be applied to a piece p, r(s, p,a) and succ(s, p,a) are respectively the number of

lines removed and the (deterministic) next wall configuration if one puts a piece p on the wall s in

translation-orientation a. The only function that satisfies the above Bellman equation gives, for each

wall configuration s, the average best score that can be achieved from s. If we know this function, a

one step look-ahead strategy (that is a greedy policy) performs optimally.

6.2 An Instance Of Approximate λ Policy Iteration

For large scale problems, many approximate dynamic-programming algorithms are based on two

complementary tricks:

• one uses samples to approximate the expectations such as that of Equation 8;

• one only looks for a linear approximation of the optimal value function:

vθ(s) = θ(0)+
K

∑
k=1

θ(k)Φk(s)

where θ = (θ(0) . . .θ(K)) is the parameter vector and Φk(s) are some predefined feature func-

tions on the state space. Thus, each value of θ characterizes a value function vθ over the entire

state space.

The instance of approximate λ policy iteration of Bertsekas and Ioffe (1996) follows these ideas.

More specifically, this algorithm is devoted to MDPs which have a termination state, that has 0

reward and is absorbing. For this algorithm to be run, one must further assume that all policies are

proper, which means that all policies reach the termination state with probability one in finite time.17

17. Bertsekas and Ioffe (1996) consider a weaker assumption for exact λ policy iteration and its analysis, namely that

there exists at least one proper policy. However, this assumption is not sufficient for their approximate algorithm,

because this builds sample trajectories that need to reach a termination state. If the terminal state were not reachable

in finite time, this algorithm may not terminate in finite time.
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This condition holds in the case of Tetris; in fact, Burgiel (1997) has shown that, whatever the

strategy, some sequence of pieces (which necessarily occurs in finite time with probability 1) leads

to game-over whatever the decisions taken. In particular, this implies that the condition required for

our analysis (Equation 21 page 1198) holds.

Similarly to exact λ policy iteration, this approximate λ policy iteration maintains a compact

value-policy pair (θt ,πt). Given θt , πt+1 is the greedy policy with respect to vθt , and can easily

be computed exactly in any given state as the argmax in Equation 29. This policy πt+1 is used to

simulate a batch of M trajectories: for each trajectory m, (sm,0,sm,1, . . . ,sm,Nm−1,sm,Nm
) denotes the

sequence of states of the mth trajectory, with sm,Nm
being the termination state. Then, for approx-

imating the temporal-difference equation (Equation 8 page 1189), a reasonable choice for θt+1 is

one that satisfies:

vθt+1(sm,Nm
) ≃ 0, (30)

vθt+1(sm,Nm−1) ≃ vθt (sm,Nm−1)+δt(sm,Nm−1,sm,Nm
),

vθt+1(sm,Nm−2) ≃ vθt (sm,Nm−2)+δt(sm,Nm−2,sm,Nm−1)+ γλδt(sm,Nm−1,sm,Nm
),

...
...

vθt+1(sm,k) ≃ vθt (sm,k)+
Nm−1

∑
j=k

(γλ)s−kδt(sm, j,sm, j+1),

...
...

vθt+1(sm,0) ≃ vθt (sm,0)+
Nm−1

∑
j=0

(γλ)sδt(sm, j,sm, j+1)

for all trajectories m, where

δt(sm,Nm−1,sm,Nm
) = r(sm,Nm−1,πt+1(sm,Nm−1),sm,Nm

)− vθt (sm,Nm−1), (31)

and for all j < Nm−1,

δt(sm, j,sm, j+1) = r(sm, j,πt+1(sm, j),sm, j+1)+ γvθt (sm, j+1)− vθt (sm, j)

are the temporal differences. Note that Equations 30 and 31 correspond to the terminal states after

which there is no subsequent reward. A standard and efficient solution to this problem consists in

minimizing the least-squares error, that is to choose θt+1 as follows:

θt+1 = argmin
θ

M

∑
m=1

Nm

∑
k=0

(

vθ(sm,k)− vθt (sm,k)−
Nm−1

∑
j=k

(γλ) j−kδt(sm, j,sm, j+1)

)2

.

This approximate version of λ policy iteration generalizes well-known algorithms. When λ = 0, the

generic term becomes a sample of [T πk+1v](sm,k):

vθt+1(sm,k)≃ vθt (sm,k)+δt(sm,k,sm,k+1)

= r(sm,k,πt+1(sm,k),sm,k+1)+ γvθt (sm,k+1). (32)
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When λ = 1, the generic term becomes the sampled discounted return from sm,k until the end of the

trajectory:

vθt+1(sm,k)≃ vθt (sm,k)+
Nm−1

∑
j=k

γs−kδt(sm, j,sm, j+1)

=
Nm−1

∑
j=k

γ j−kr(sm, j,πt+1(sm, j),sm, j+1). (33)

In other words, for these limit values of λ, the algorithms correspond to approximate versions of

value and policy iteration as described by Bertsekas and Tsitsiklis (1996). Also, as explained by

Bertsekas and Ioffe (1996) and already mentioned in the introduction, the TD(λ) algorithm with

linear features described by Sutton and Barto (1998, chapter 8.2) matches the algorithm we have

just described when the above fitting problem is approximated using gradient iterations after each

sample.

We follow the same protocol as originally proposed by Bertsekas and Ioffe (1996). Let w = 10

be the width of the board. We consider approximating the value function as a linear combination of

2w+2 = 22 feature functions:

vθ(s) = θ(0)+
w

∑
k=1

θ(k)hk +
w−1

∑
k=1

θ(k+w)∆hk +θ(2w)H +θ(2w+1)L,

where

• for all k ∈ {1,2, · · · ,w}, hk is the height of the kth column of the wall;

• for all k ∈ {1,2, · · · ,w− 1}, ∆hk is the height difference |hk− hk+1| between columns k and

k+1;

• H is the maximum wall height, that is maxk hk;

• L is the number of holes (the number of empty cells covered by at least one full cell).

We started our experiments with the initial following vector: θ(2w) =−10, θ(2w+1) =−1 and

θ(k) = 0 for all k < 2w, so that the initial greedy policy scores in the low tens (Bertsekas and Ioffe,

1996). We used M = 100 training games for each policy update. As this implementation of λ policy

iteration is stochastic, we ran each experiment 10 times. figure 5 displays the learning curves. The

left graph shows the 10 runs (each point is the average score computed with the M = 100 games)

and the corresponding point-wise average for a single value of λ, while the right graph shows such

point-wise average curves for different values of λ: 0.0, 0.3, 0.5, 0.7 and 0.9. We chose to display

on the left graph the runs corresponding to the value of λ = 0.9 that seemed to be the best on the

right graph.

We can make the following observations.

• Although we initialized with not so bad a policy (the first value is around 30), the performance

first drops to 0 and it really starts improving after a few iterations (typically around ten). This

is due to the fact that the initial value function is really bad: with the given parameters, the

initial value is negative whereas it is clear that the optimal value function (the average best

score) is positive. Further experiments showed that the overall behavior of the algorithm was

not affected by the weight initialization.
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Figure 5: Average Score versus the number of iterations. Left: 10 runs of λ policy iteration with

λ = 0.9. Each point of each run is the average score computed with M = 100 games.

The dark curve is a point-wise average of the 10 runs. Right: Point-wise average of 10

runs of λ policy iteration for different values of λ; the curve which appears to be the best

(λ = 0.9) is the same as the bold curve of the left graph.

• The rise of performance globally happens sooner for larger values of λ, that is for values that

make the algorithm closer to policy iteration. This is not surprising as it complies with the

fact that λ modulates the speed at which the value estimate tracks the real value of the current

policy. However, the performance did not rise for λ = 1 (when it is equivalent to approximate

policy iteration). We believe this is due to the fact that the variance of the value update is too

high.

• Quantitatively, the scores reach an overall level of 4000 lines per games for a big range of

values of λ.

The empirical results we have just described qualitatively and quantitatively differ from those

of Bertsekas and Ioffe (1996), even though it is the exact same experimental setup. About their

results, the authors wrote: “An interesting and somewhat paradoxical observation is that a high

performance is achieved after relatively few policy iterations, but the performance gradually drops

significantly. We have no explanation for this intriguing phenomenon, which occurred with all of

the successful methods that we tried”. As we explain now, we believe that the “intriguing” character

of the results of Bertsekas and Ioffe (1996) might be related to a subtle implementation difference.

Indeed, we can reproduce learning curves that are similar to those of Bertsekas and Ioffe (1996) with

a little modification in our implementation of λ policy iteration, that removes the special treatments

for the terminal states done through Equations 30 and 31. More precisely, if we replace them by the

following equations:

vθt+1(sm,Nm
)≃ vθt (sm,Nm

), (34)

δt(sm,Nm−1,sm,Nm
) = r(sm,Nm−1,πt+1(sm,Nm−1))+ γvθt (sm,Nm

)− vθt (sm,Nm−1), (35)

that is if we replace the terminal value 0 by the value vθt (sm,Nm
) which is computed through the

features of the terminal wall configuration sm,Nm
, then we get the performance shown in figure 6.
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Figure 6: Average score versus the number of iterations of λ policy iteration, modified so that it

resembles the results of Bertsekas and Ioffe (1996) (see text for details).

We observe that the performance evolution qualitatively matches the performance curves published

in Bertsekas and Ioffe (1996) and illustrates the above quotation describing the “intriguing phe-

nomenon.”18

In such a modified form, the approximate λ policy iteration algorithm makes much less sense.

In particular, it is not true anymore that it reduces to approximate value iteration and approximate

policy iteration when λ = 0 and λ = 1 respectively: Equations 34 and 35 induce a bias so that we

cannot recover the identities of Equations 32 and 33. A closer examination of these experiments

showed that the weights (θk) were diverging. This is not a surprise, since the use of Equations 34

and 35 violates the condition (expressed at the end of Section 4.4) that there should be no error in

the terminal state.

7. Conclusion And Future Work

We have considered the λ policy iteration algorithm introduced by Bertsekas and Ioffe (1996) that

generalizes the standard algorithms value and policy iteration. We have extended the preliminary

analysis of this algorithm provided by Bertsekas and Ioffe (1996) in various ways:

1. We have derived non-asymptotic convergence rates for its exact version. In particular, one

such rate (Equation 13 page 1194) generalizes that for value iteration by Puterman (1994),

and another one (Equation 15) is to our knowledge new even when λ policy iteration reduces

to value or policy iteration.

18. A watchful reader may have noticed that the performance that we obtain is about twice that of Bertsekas and Ioffe

(1996). A close inspection of the Tetris domain description given by Bertsekas and Ioffe (1996) shows that the

authors consider the game of Tetris on a 10× 19 board instead of our 10× 20 setting, and as argued in a recent

review on Tetris (Thiéry and Scherrer, 2009), this small difference is sufficient for explaining such a big performance

difference.
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2. We have provided asymptotic performance bounds when the algorithm is run with approxi-

mation, that generalize those made separately for value iteration (Munos, 2007) and policy

iteration (Munos, 2003).

3. Furthermore, under assumptions ensuring that a terminal is reached in finite time with proba-

bility 1, we have extended our bounds to the undiscounted situation.

More generally, we believe that an important contribution of this paper is of conceptual nature: we

have provided a unified view on some of the main approximate dynamic programming algorithms.

Though the usual contraction or monotonicity arguments do not apply anymore, we explained in

Section 4.1 how series of component-wise inequalities on objects we called the value, the distance,

the shift and the Bellman residuals could lead to bounds on the performance loss. This line of

analysis has recently been reused in variations of λ policy iteration. In (Scherrer et al., 2012), this

has allowed us to provide an Lp norm performance bound for the modified policy iteration family

of algorithms (Puterman and Shin, 1978). In (Thiéry and Scherrer, 2010; Scherrer and Thiéry,

2010), we have given L∞ norm performance bounds19 of an algorithm, named optimistic policy

iteration, that makes any convex combination of the modified policy iteration possible updates, and

thus generalizes both λ policy iteration and modified policy iteration. We hope that this original

line of analysis will be useful for the study of other dynamic-programming/reinforcement-learning

algorithms in the future.

Regarding λ policy iteration, an important research direction would be to study the implications

of the choice of the parameter λ, as for instance is done by Singh and Dayan (1998) for the value

estimation problem. On this matter, the original analysis by Bertsekas and Ioffe (1996) shows how

one can concretely implement λ policy iteration. Each iteration requires the computation of the fixed

point of the β-contracting operator Mk (see Equation 5 page 1186). We plan to study the trade-off

between the ease for computing this fixed point (the smaller β, the faster) and the time for λ policy

iteration to converge to the optimal policy (the bigger β, the faster). Although the reader might have

noticed that most of our bounds have no explicit dependence on λ, the algorithm implicitly depends

on λ through the stochastic matrices that are involved along the iterations, and the variance of the

error terms. Understanding better the influence of this main parameter constitutes interesting future

work.

Last but not least, we should insist on the fact that the implementation that we have described in

Section 6.2, and which is borrowed from Bertsekas and Ioffe (1996), is just one possible instance of

λ policy iteration. In the case of linear approximation architectures, Thiéry and Scherrer (2010) have

proposed an implementation of λ policy iteration that is based on LSPI (Lagoudakis and Parr, 2003),

in which the fixed point of Mk is approximated using LSTD(0) (Bradtke and Barto, 1996). Recently,

Bertsekas (2011) proposed to compute this very fixed point with a variation of LSPE(λ′) (Bertsekas

and Ioffe, 1996; Nedić and Bertsekas, 2003) for some λ′ potentially different from λ. Because of

their very close structure, any existing implementation of approximate policy iteration may probably

be turned into some implementation of λ policy iteration. Proposing such implementations and

assessing their relative merits constitutes interesting future research. This may in particular be done

through some finite sample analysis, as recently done for approximate value and policy iteration

implementations (Antos et al., 2007, 2008; Munos and Szepesvári, 2008; Lazaric et al., 2010).

19. The extension to Lp norm is straightforward.
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Appendix A.

The following appendices contain all the proofs concerning the analysis of λ policy iteration. We

write Pk = Pπk for the stochastic matrix corresponding to the policy πk which is greedy with respect

to vk−1, P∗ for the stochastic matrix corresponding to the optimal policy π∗. Similarly we write Tk

and T for the associated Bellman operators.

The proof techniques we have developed are inspired by those of Munos (2003, 2007). Most of

the inequalities appear from the definition of the greedy operator:

π = greedy(v)⇔∀π′,T π′v≤ T πv.

We often use the property that a convex combination of stochastic matrices is also a stochastic

matrix. A recurrent instance of this property is: if P is some stochastic matrix, then the geometric

average

(1−α)
∞

∑
i=0

(αP)i = (1−α)(I−αP)−1

with 0 ≤ α < 1 is also a stochastic matrix. We use the property that if some vectors x and y are

such that x ≤ y, then Px ≤ Py for any stochastic matrix P. Eventually, we will use the following

equivalent forms of the operator T π
λ (three of them were introduced in page 1187): for any value v

and any policy π, we have

T π
λ v := v+(I−λγPπ)−1(T πv− v)

= (I−λγPπ)−1(T πv−λγPπv) (36)

= (I−λγPπ)−1(rπ +(1−λ)γPπv) (37)

= (I−λγPπ)−1(λrπ +(1−λ)T πv).

Appendix B. Proofs Of Lemmas 3-5 (Core Lemmas Of The Error Propagation)

In this section, we prove the series of Lemmas that are at the heart of our analysis of the error

propagation of λ policy iteration.
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B.1 Proof Of Lemma 3 (A Relation Between The Shift And the Bellman Residual)

Using the definition of wk = T
πk

λ vk−1 and the formulation of Equation 37, we can see that we have:

(I− γPk)sk = (I− γPk)(wk− vπk)

= (I− γPk)wk− rk

= (I−λγPk +λγPk− γPk)wk− rk

= (I−λγPk)wk +(λγPk− γPk)wk− rk

= rk +(1−λ)γPkvk−1 +(λ−1)γPkwk− rk

= (1−λ)γPk(vk−1−wk)

= (1−λ)γPk(I−λγPk)
−1(vk−1−Tkvk−1)

= (1−λ)γPk(I−λγPk)
−1(−bk−1).

Therefore

sk = β(I− γPk)
−1Ak(−bk−1)

with

Ak := (1−λγ)Pk(I−λγPk)
−1.

Suppose that we have a lower bound of the Bellman residual: bk−1 ≥ bk−1 (we shall derive one

soon). Since (I− γPk)
−1Ak only has non-negative elements then

sk ≤ β(I− γPk)
−1Ak(−bk−1) := sk.

B.2 Proof Of Lemma 4 (A Lower Bound On The Bellman Residual)

From the definition of the algorithm, and using the fact that Tkvπk = vπk , we see that:

bk = Tk+1vk− vk

= Tk+1vk−Tkvk +Tkvk− vk

≥ Tkvk− vk

= Tkvk−Tkvπk + vπk − vk

= γPk(vk− vπk)+ vπk − vk

= (γPk− I)(sk + εk).

= βAkbk−1 +(γPk− I)εk

where we eventually used the relation between sk and bk (Lemma 3). In other words:

bk+1 ≥ βAk+1bk + xk+1

with

xk := (γPk− I)εk.

Since Ak is a stochastic matrix and β≥ 0, we get by induction:

bk ≥
k

∑
j=1

βk− j (AkAk−1...A j+1)x j +βk (AkAk−1...A1)b0 := bk.
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B.3 Proof Of Lemma 5 (An Upper Bound On The Distance)

Given that T∗v∗ = v∗, we have

v∗ = v∗+(I−λγPk+1)
−1(T∗v∗− v∗)

= (I−λγPk+1)
−1(T∗v∗−λγPk+1v∗).

Using the definition of wk+1 = T
πk+1

λ vk and the formulation of Equation 36, one can see that the

distance satisfies:

dk+1 = v∗−wk+1

= (I−λγPk+1)
−1[(T∗v∗−λγPk+1v∗)− (Tk+1vk−λγPk+1vk)]

= (I−λγPk+1)
−1[T∗v∗−Tk+1vk +λγPk+1(vk− v∗)]

= λγPk+1dk+1 +T∗v∗−Tk+1vk +λγPk+1(vk− v∗)

= λγPk+1dk+1 +T∗v∗−Tk+1vk +λγPk+1(wk + εk− v∗)

= λγPk+1dk+1 +T∗v∗−Tk+1vk +λγPk+1(εk−dk)

= T∗v∗−Tk+1vk +λγPk+1(εk +dk+1−dk).

Since πk+1 is greedy with respect to vk, we have Tk+1vk ≥ T∗vk and therefore:

T∗v∗−Tk+1vk = T∗v∗−T∗vk +T∗vk−Tk+1vk

≤ T∗v∗−T∗vk

= γP∗(v∗− vk)

= γP∗(v∗− (wk + εk))

= γP∗dk− γP∗εk.

As a consequence, the distance satisfies:

dk+1 ≤ γP∗dk +λγPk+1(εk +dk+1−dk)− γP∗εk.

Noticing that:

εk +dk+1−dk = εk +wk−wk+1

= vk−wk+1

= −(I−λγPk+1)
−1(Tk+1vk− vk)

= (I−λγPk+1)
−1(−bk)

≤ (I−λγPk+1)
−1(−bk),

we get:

dk+1 ≤ γP∗dk + yk

where

yk :=
λγ

1−λγ
Ak+1(−bk)− γP∗εk.

Since P∗ is a stochastic matrix and γ≥ 0, we have by induction:

dk ≤
k−1

∑
j=0

γk−1− j(P∗)
k−1− jy j + γk(P∗)

kd0 = dk.
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Appendix C. Proof Of Lemma 6 (Performance Of Exact λ Policy Iteration

We here derive the convergence rate bounds for exact λ policy iteration (as expressed in Lemma 6

page 1193). We rely on the loss bound analysis of appendix B with εk = 0. In this specific case, we

know that the loss lk ≤ dk + sk where

−bk = βkAkAk−1...A1(−b0),

dk =
λγ

1−λγ

k−1

∑
j=0

γk−1− j(P∗)
k−1− jA j+1(−b j)+ γk(P∗)

kd0,

and sk = β(I− γPk)
−1Ak(−bk−1).

Introducing the following stochastic matrices:

Xi,k := (P∗)
k−1−iAi+1Ai...A1

and Yk := (1− γ)(I− γPk)
−1AkAk−1...A1,

we have

dk =
λγ

1−λγ

k−1

∑
j=0

γk−1− jβ jX j,k(−b0)+ γk(P∗)
kd0

and

sk =
βk

1− γ
Yk(−b0).

Therefore the loss satisfies:

lk ≤ dk + sk

≤

(
γk

1− γ

)

E ′k(−b0)+ γk(P∗)
kd0 (38)

with

E ′k :=

(
1− γ

γk

)(

λγ

1−λγ

k−1

∑
j=0

γk−1− jβ jX j,k +
βk

1− γ
Yk

)

.

To end the proof, we simply need to prove the following lemma:

Lemma 18 E ′k is a stochastic matrix.

Proof Using the facts that
λγ

γ−β = 1
1−β and (1−β)(1−λγ) = 1− γ, one can observe that

1− γ

γk

(

λγ

1−λγ

k−1

∑
j=0

γk−1− jβ j +
βk

1− γ

)

=
1− γ

γk

(
λγ

1−λγ

γk−βk

γ−β
+

βk

1− γ

)

=
1− γ

γk

(
γk−βk

1− γ
+

βk

1− γ

)

= 1

and deduce that E ′k is a stochastic matrix, since it is a convex combination of stochastic matrices.
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C.1 Proof Of Equation 11 (A Bound With Respect To The Bellman Residual)

We first need the following lemma:

Lemma 19 The bias and the distance are related as follows:

bk ≥ (I− γP∗)dk.

Proof Since πk+1 is greedy with respect to vk, Tk+1vk ≥ T∗vk and

bk = Tk+1vk− vk

= Tk+1vk−T∗vk +T∗vk−T∗v∗+ v∗− vk

≥ γP∗(vk− v∗)+ v∗− vk

= (I− γP∗)dk.

We thus have:

d0 ≤ (I− γP∗)
−1b0.

Then Equation 38 becomes

lk ≤

[

γk(P∗)
k(I− γP∗)

−1−

(
γk

1− γ

)

E ′k

]

b0

=
γk

1− γ

[
Ek−E ′k

]
b0

where:

Ek := (1− γ)(P∗)
k(I− γP∗)

−1

is a stochastic matrix.

C.2 Proof Of Equation 10 (A Bound With Respect To The Distance)

From Lemma 19, we know that

−b0 ≤ (I− γP∗)(−d0).

Then, Equation 38 becomes

lk ≤

[

γk(P∗)
k−

(
γk

1− γ

)

E ′k(I− γP∗)

]

d0

=
γk

1− γ

[
Fk−E ′k

]
d0

where

Fk := (1− γ)Pk
∗ + γE ′kP∗

is a stochastic matrix.
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C.3 Proof Of Equation 12 (A Bound With Respect To The Distance And The Loss Of The

Greedy Policy)

Define v̂0 := v0−Ke where K is some constant and e denotes the vector of which all components

are 1. The following statements are equivalent:

b̂0 ≥ 0,

T1v̂0 ≥ v̂0,

r1 + γP1(v0−Ke) ≥ v0−Ke,

(I− γP1)Ke ≥ −r1 +(I− γP1)v0,

Ke ≥ (I− γP1)
−1(−r1)+ v0,

Ke ≥ v0− vπ1 .

The minimal K for which b̂0 ≥ 0 is thus K := maxs[v0(s)− vπ1(s)]. As v̂0 and v0 only differ by a

constant vector, they generate the same sequence of policies π1,π2... Then, as b̂0 ≥ 0, Equation 38

implies that

‖v∗− vπk‖∞ ≤ γk ‖v∗− v̂0‖∞

≤ γk (‖v∗− v0‖∞ +K) .

The result is obtained by noticing that

K = max
s

[v0(s)− v∗(s)+ v∗(s)− vπ1(s)]

≤ ‖v∗− v0‖∞ +‖v∗− vπ1‖∞ .

Appendix D. Proof Of Equation 16 In Lemma 9 (Component-Wise Bounds On The

Error Propagation)

We here use the loss bound analysis of appendix B to derive an asymptotic analysis of approximate

λ policy iteration with respect to the approximation error. The results stated here constitute a proof

of the first inequality of Lemma 9 page 1194.

D.1 Proof Of Equation 16

Since the loss satisfies

lk = dk + sk ≤ dk + sk, (39)

an upper bound of the loss can be derived from the upper bound of the distance and the shift.

Let us first concentrate on the bound dk of the distance. Lemmas 4 and 5 imply that:

dk =
k−1

∑
i=0

γk−1−i(P∗)
k−1−iyi +O(γk),

yi =
λγ

1−λγ
Ai+1(−bi)− γP∗εi,

−bi =
i

∑
j=0

βi− j (AiAi−1...A j+1)(−x j)+O(βi), (40)

and − x j = (I− γPj)ε j.
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Writing

Xi, j,k := (P∗)
k−1−iAi+1Ai...A j+1

and putting all things together, we see that:

dk =
λγ

1−λγ

k−1

∑
i=0

γk−1−i

(
i

∑
j=0

βi− jXi, j,k(I− γPj)ε j +O(βi)

)

−
k−1

∑
i=0

γk−i(P∗)
k−iεi +O(γk)

=
λγ

1−λγ

k−1

∑
i=0

i

∑
j=0

γk−1−iβi− jXi, j,k(I− γPj)ε j−
k−1

∑
i=0

γk−i(P∗)
k−iεi +O(γk)

=
λγ

1−λγ

k−1

∑
j=0

k−1

∑
i= j

γk−1−iβi− jXi, j,k(I− γPj)ε j−
k−1

∑
j=0

γk− j(P∗)
k− jε j +O(γk)

=
k−1

∑
j=0

[(

λγ

1−λγ

k−1

∑
i= j

γk−1−iβi− jXi, j,k(I− γPj)

)

− γk− j(P∗)
k− j

]

ε j +O(γk) (41)

where between the first two lines, we used the fact that:

λγ

1−λγ

k−1

∑
i=0

γk−1−iβi =
λγ

1−λγ

γk−βk

γ−β
=

γk−βk

1− γ
= O(γk)

using the identities λγ = γ−β
1−β and 1− γλ = 1−γ

1−β .

Let us now consider the bound sk of the shift. From Lemma 3 and the bound on bk in Equa-

tion 40, we have

sk = β(I− γPk)
−1Ak(−bk−1)

= β(I− γPk)
−1Ak

[(
k−1

∑
j=0

βk−1− j (Ak−1Ak−2...A j+1)(−x j)

)

+O(γk)

]

=
k−1

∑
j=0

βk− j

1− γ
Yj,k(I− γPj)ε j +O(γk) (42)

with

Yj,k := (1− γ)(I− γPk)
−1AkAk−1...A j+1.

Eventually, from Equations 39, 41 and 42 we get:

lk ≤
k−1

∑
j=0

[(

λγ

1−λγ

k−1

∑
i= j

γk−1−iβi− jXi, j,k +
βk− j

1− γ
Yj,k

)

(I− γPj)− γk− j(P∗)
k− j

]

ε j

+O(γk). (43)

Introduce the following matrices:

Bk j :=
1− γ

γk− j

[

λγ

1−λγ

k−1

∑
i= j

γk−1−iβi− jXi, j,k +
βk− j

1− γ
Yj,k

]

B′k j := γBk jPj +(1− γ)(P∗)
k− j.
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Lemma 20 Bk j and B′k j are stochastic matrices.

Proof Using the identities: λγ = γ−β
1−β and (1−β)(1− γλ) = 1− γ, one can see that

(1− γ)

γk− j

[

λγ

1−λγ

k−1

∑
i= j

γk−1−iβi− j +
βk− j

1− γ

]

=
(1− γ)

γk− j

[
λγ

1−λγ

γk− j−βk− j

γ−β
+

βk− j

1− γ

]

=
(1− γ)

γk− j

[
γk− j−βk− j

(1−λγ)(1−β)
+

βk− j

1− γ

]

=
(1− γ)

γk− j

[
γk− j−βk− j

1− γ
+

βk− j

1− γ

]

= 1

and deduce that Bk j is a stochastic, since it is a convex combination of stochastic matrices. Then it

is also clear that B′k j is a stochastic matrix.

Thus, Equation 43 can be rewritten as follows:

lk ≤
k−1

∑
j=0

[
γk− j

1− γ
Bk j(I− γPj)− γk− j(P∗)

k− j

]

ε j +O(γk)

=
1

1− γ

k−1

∑
j=0

γk− j
[
Bk j−B′k j

]
ε j +O(γk).

Appendix E. Proofs Of Equations 17-18 In Lemma 9 (Component-Wise Bounds

With Respect To The Bellman Residuals)

In this section, we study the loss

lk := v∗− vπk

with respect to the two following Bellman residuals:

b′k := Tkvk− vk

and bk := Tk+1vk− vk = T vk− vk.

The term b′k says how much vk differs from the value of πk while bk says how much vk differs from

the value of the policies πk+1 and π∗. The results stated here prove the last two inequalities of

Lemma 9 page 1194.

E.1 Proof Of Equation 17 (Bounds With Respect To The Policy Bellman Residual)

Our analysis relies on the following lemma

Lemma 21 Suppose that we have a policy π, a function v that is an approximation of the value vπ

of π in the sense that its residual b′ := T πv− v is small. Taking the greedy policy π′ with respect to

v reduces the loss as follows:

v∗− vπ′ ≤ γP∗(v∗− vπ)+
(
γP∗(I− γP)−1− γP′(I− γP′)−1

)
b′

where P and P′ are the stochastic matrices which correspond to π and π′.

1217



SCHERRER

Proof We have:

v∗− vπ′ = T∗v∗−T π′vπ′

= T∗v∗−T∗v
π +T∗v

π−T∗v+T∗v−T π′v+T π′v−T π′vπ′

≤ γP∗(v∗− vπ)+ γP∗(v
π− v)+ γP′(v− vπ′) (44)

where we used the fact that T∗v≤ T π′v. One can see that:

vπ− v = T πvπ− v

= T πvπ−T πv+T πv− v

= γP(vπ− v)+b′

= (I− γP)−1b′ (45)

and that

v− vπ′ = v−T π′vπ′

= v−T πv+T πv−T π′v+T π′v−T π′vπ′

≤ −b′+ γP′(v− vπ′)

≤ (I− γP′)−1(−b′). (46)

where we used the fact that T πv≤ T π′v. We get the result by putting back Equations 45 and 46 into

Equation 44.

To derive a bound for λ policy iteration, we simply apply the above lemma to π = πk, v = vk and

π′ = πk+1. We thus get:

lk+1 ≤ γP∗lk +
(
γP∗(I− γPk)

−1− γPk+1(I− γPk+1)
−1
)

b′k.

By induction, we obtain for all k,

lk ≤
1

1− γ

k−1

∑
j=0

γk− j
[
Ck j−C′k j

]
b′j +O(γk)

where we have defined the following stochastic matrices:

Ck j := (1− γ)(P∗)
k− j(I− γPj)

−1

C′k j := (1− γ)(P∗)
k− j−1Pj+1(I− γPj+1)

−1.

E.2 Proof Of Equation 18 (Bounds With Respect To The Bellman Residual)

We rely on the following lemma, that is for instance proved by Munos (2007).

Lemma 22 Suppose that we have a function v. Let π be the greedy policy with respect to v. Then

v∗− vπ ≤ γ
[
P∗(I− γP∗)

−1−Pπ(I− γPπ)−1
]
(T πv− v).
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We provide a proof for the sake of completeness:

Proof Using the fact that T∗v≤ T πv, we see that

v∗− vπ = T∗v∗−T πvπ

= T∗v∗−T∗v+T∗v−T πv+T πv−T πvπ

≤ T∗v∗−T∗v+T πv−T πvπ

= γP∗(v∗− v)+ γPπ(v− vπ)

= γP∗(v∗− vπ)+ γP∗(v
π− v)γPπ(v− vπ)

≤ (I− γP∗)
−1(γP∗− γPπ)(vπ− v).

Using Equation 45 we see that:

vπ− v = (I− γPπ)−1(T πv− v).

Thus,

v∗− vπ ≤ (I− γP∗)
−1(γP∗− γPπ)(I− γPπ)−1(T πv− v)

= (I− γP∗)
−1(γP∗− I + I− γPπ)(I− γPπ)−1(T πv− v)

=
[
(I− γP∗)

−1− (I− γPπ)−1
]
(T πv− v)

= γ
[
P∗(I− γP∗)

−1−Pπ(I− γPπ)−1
]
(T πv− v).

To derive a bound for λ policy iteration, we simply apply the above lemma to v = vk−1 and

π = πk. We thus get:

lk ≤
γ

1− γ

[
D−D′k

]
bk−1 (47)

where

D := (1− γ)P∗(I− γP∗)
−1

and D′k := (1− γ)Pk(I− γPk)
−1

are stochastic matrices.

Appendix F. Proofs Of Corollary 14

This section provides a proof of Corollary 14 page 1198, in which we refine the bounds when the

value or the policy converges.

F.1 Proof Of The First Inequality Of Corollary 14 (When The Value Converges)

Suppose that λ policy iteration converges to some value v. Let policy π be the corresponding greedy

policy, with stochastic matrix P. Let b be the Bellman residual of v. It is also clear that the approxi-

mation error also converges to some ε. Indeed from Algorithm 3 and Equation 6, we get:

b = T v− v = (I−λγP)(−ε).
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From the bound with respect to the Bellman residual (Equation 47 page 1219), we can see that:

v∗− vπ ≤
[
(I− γP∗)

−1− (I− γP)−1
]

b

=
[
(I− γP)−1− (I− γP∗)

−1
]
(I−λγP)ε

=
[
(I− γP)−1(I−λγP)− (I− γP∗)

−1(I−λγP)
]

ε

=
[
(I− γP)−1(I− γP+ γP−λγP)− (I− γP∗)

−1(I−λγP)
]

ε

=
[(

I +(1−λ)(I− γP)−1γP+λ(I− γP∗)
−1γP

)
− (I− γP∗)

−1
]

ε

=
[(
(1−λ)(I− γP)−1γP+λ(I− γP∗)

−1γP
)
− (I− γP∗)

−1γP∗
]

ε

=
γ

1− γ
[Bv−D]ε.

where

Bv := (1− γ)
(
(1−λ)(I− γP)−1P+λ(I− γP∗)

−1P
)

D := (1− γ)P∗(I− γP∗)
−1.

Lemma 23 Bv and D are stochastic matrices.

Proof It is clear that D is a stochastic matrix. For Bv, we simply observe that

(1− γ)

(

1+
(1−λ)γ

1− γ
+

λγ

1− γ

)

= (1− γ)

(

1+
γ

1− γ

)

= 1

and deduce that Bv is a stochastic matrix, as a convex combination of stochastic matrices. Then, the

first bound of Corollary 14 follows from the application of Lemmas 10 and 12.

F.2 Proof Of The Second Inequality Of Corollary 14 (When The Policy Converges)

Suppose that λ policy iteration converges to some policy π. Write P the corresponding stochastic

matrix and

Aπ := (1−λγ)P(I−λγP)−1.

Then for some big enough k0, we have:

lk ≤
k−1

∑
j=0

[
γk− j

1− γ
Aπ

k jA
π(I− γP)− γk− j(P∗)

k− j

]

ε j +O(γk)

where

Aπ
k j :=

1− γ

γk− j

[

λγ

1−λγ

k−1

∑
i= j

γk−1−iβi− j(P∗)
k−1−i(Aπ)i− j +βk− j(I− γP)−1(Aπ)k−1− j

]

is a stochastic matrix (for the same reasons why Bk j is a stochastic matrix in Lemma 20). Noticing

that

Aπ(I− γP) = (1−λγ)P(I−λγP)−1(I− γP)

= (1−λγ)P(I−λγP)−1(I−λγP+λγP− γP)

= (1−λγ)P(I− (1−λ)(I−λγP)−1γP)

= (1−λγ)P− γ(1−λ)AπP
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we can deduce that

lk ≤
k−1

∑
j=0

[
γk− j

1− γ
Aπ

k j [(1−λγ)P− γ(1−λ)AπP]− γk− j(P∗)
k− j

]

ε j +O(γk)

=
k−1

∑
j=0

γk− j

[
1−λγ

1− γ
Aπ

k jP−

[
γ(1−λ)

1− γ
Aπ

k jA
πP+(P∗)

k− j

]]

ε j +O(γk)

=
1−λγ

1− γ

k−1

∑
j=0

γk− j
[
Bπ

k j−B′πk j

]
ε j +O(γk)

where

Bπ
k j := Aπ

k jP

B′πk j :=
1− γ

1−λγ

[
γ(1−λ)

1− γ
Aπ

k jA
πP+(P∗)

k− j

]

.

Lemma 24 Bπ
k j and B′πk j are stochastic matrices.

Proof It is clear that Bπ
k j is a stochastic matrix. Also, since

1− γ

1−λγ

(

1+
γ(1−λ)

1− γ

)

=
1− γ

1−λγ

1− γ+ γ−λγ

1− γ

= 1,

B′πk j is a convex combination of stochastic matrices, and thus a stochastic matrix. Then, the second

bound of Corollary 14 follows from the application of Lemmas 10 and 12.

Appendix G. Proofs Of Lemmas 7 And 10 (From Component-Wise Bounds To Lp

Norm Bounds)

This section contains the proofs of Lemmas 7 (page 1194) and 10 (page 1196) that enable us to

derive Lp norm performance bounds from component-wise bounds. It is easy to see that Lemma 7

is a special case of Lemma 10, so we only prove the latter.

Consider the notations of Lemma 10. We have for all k,

|xk| ≤ K
k−1

∑
j=0

ξk− j(Xk j−X ′k j)y j +O(γk).

By taking the absolute value and using the fact that Xk j and X ′k j are stochastic matrices, we get for

all k,

|xk| ≤ K
k−1

∑
j=0

ξk− j(Xk j +X ′k j)|y j|+O(γk).
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It can then be seen that

limsup
k→∞

(

‖xk‖p,µ

)p

= K p limsup
k→∞

µT (|xk|)
p

≤ K p limsup
k→∞

µT

[
k−1

∑
j=0

ξk− j(Xk j +X ′k j)|y j|

]p

= K p limsup
k→∞

µT





(

∑k−1
j=0 ξk− j

1
2
(Xk j +X ′k j)2|y j|

)

∑k−1
j=0 ξk− j





p(
k−1

∑
j=0

ξk− j

)p

.

By using Jensen’s inequality (with the convex function x 7→ xp), we get:

limsup
k→∞

(

‖xk‖p,µ

)p

≤ K p limsup
k→∞

µT
∑k−1

j=0 ξk− j
1
2
(Xk j +X ′k j)(2|y j|)

p

∑k−1
j=0 ξk− j

(
k−1

∑
j′=0

ξk− j′

)p

= K p limsup
k→∞

k−1

∑
j=0

ξk− jµk j
T (2|y j|)

p

(
k−1

∑
j′=0

ξk− j′

)p−1

≤ K p limsup
k→∞

k−1

∑
j=0

ξk− j

(

2
∥
∥y j

∥
∥

p,µk j

)p

K′
p−1

= 2pK pK′
p−1

limsup
k→∞

k−1

∑
j=0

ξk− j

(∥
∥y j

∥
∥

p,µk j

)p

≤ 2pK pK′
p−1

limsup
k→∞

k−1

∑
j=0

ξk− j

(

sup
k′≥ j′≥0

∥
∥y j′
∥
∥

p,µk′ j′

)p

= 2pK pK′
p−1

K′

(

sup
k′≥ j′≥0

∥
∥y j′
∥
∥

p,µk′ j′

)p

= 2pK pK′
p

(

sup
k′≥ j′≥0

∥
∥y j′
∥
∥

p,µk′ j′

)p

where we used ∑k−1
j=0 ξk− j ≤K′. We can apply the exact same analysis to any starting index l (instead

of 0) and since the function l 7→ supk′≥ j′≥l

∥
∥y j′
∥
∥

p,µk′ j′
is non-decreasing, we deduce that:

limsup
k→∞

(

‖xk‖p,µ

)p

≤ 2pK pK′
p

lim
l→∞

(

sup
k′≥ j′≥l

∥
∥y j′
∥
∥

p,µk′ j′

)p

and the result follows.

Appendix H. Proofs Of Lemma 15 And Proposition 16 (Analysis Of The

Undiscounted Case)

This last section contains the proofs of Lemma 15 and Proposition 16 that provide the analysis of

an undiscounted problem.
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H.1 Proof Of Lemma 15 (Component-Wise Bound)

First of all, we recall the relation expressed in Equation 22 page 1199 between the loss and the

stochastic matrices:

∀k0, limsup
k→∞

v∗− vπk ≤ limsup
k→∞

k−1

∑
j=0

δk− j

[
Gk j−G′k j

]
ε j.

It is obtained by simply rewriting the first inequality of Lemma 9 with γ = 1 and β = 1 (note in

particular that the terms δk− j collapse through the definition of Gk j and G′k j).

To complete the proof of the lemma, we need to show that the matrices Gk j and G′k j are sub-

stochastic matrices. By construction, these matrices are sum of non-negative matrices so we only

need to show that their max norm is smaller than or equal to 1.

For all n, write Mn the set of matrices that is defined as follows:

• for all sets of n policies (π1,π2, · · · ,πn), Pπ1
Pπ2
· · ·Pπn

∈Mn;

• for all η ∈ (0,1), and (P,Q) ∈Mn×Mn, ηP+(1−η)Q ∈Mn.

The motivation for introducing this set is that we have the following properties: For all n, P ∈Mn

is a sub-stochastic matrix such that ‖P‖∞ ≤ α

⌊
n

n0

⌋

. We use the somewhat abusive notation Πn

for denoting any element of Mn. For instance, for some matrix P, writing P = aΠi + bΠ jΠk =
aΠi +bΠ j+k should be read as follows: there exist P1 ∈Mi, P2 ∈M j, P3 ∈Mk and P4 ∈Mk+ j such

that P = aP1 +bP2P3 = aP1 +bP4.

Recall the definition of the sub-stochastic matrix

Ak = (1−λ)(I−λPk)
−1Pk = (1−λ)

∞

∑
i=0

λiΠi+1.

Let i≤ j < k. It can be seen that

(P∗)
k−1−iAi+1Ai...A j+1 = Πk−1−i

(

(1−λ)
∞

∑
i=0

λiΠi+1

)

· · ·

(

(1−λ)
∞

∑
i=0

λiΠi+1

)

︸ ︷︷ ︸

i− j+1 terms

= Πk− j

(

(1−λ)
∞

∑
i=0

λiΠi

)

· · ·

(

(1−λ)
∞

∑
i=0

λiΠi

)

︸ ︷︷ ︸

i− j+1 terms

. (48)
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Now, observe that

∥
∥
∥
∥
∥

∞

∑
i=0

λiΠi

∥
∥
∥
∥
∥

∞

≤
∞

∑
i=0

λi ‖Πi‖∞

≤
∞

∑
i=0

λiα

⌊
i

n0

⌋

=
∞

∑
j=0

n0−1

∑
i=0

λ jn0+iα j

=
∞

∑
j=0

(λn0α) j
n0−1

∑
i=0

λi

=
1−λn0

(1−λn0α)(1−λ)
. (49)

As a consequence, writing η := 1−λn0

1−λn0 α , we see from Equation 48 that

∥
∥(P∗)

k−1−iAi+1Ai...A j+1

∥
∥

∞
≤ α

⌊
k− j
n0

⌋

ηi− j+1.

Similarly, by using Equation 49 and noticing that 1−λn0

1−λ

λ→1
−→ n0, it can be seen that

∥
∥(I−Pk)

−1AkAk−1 · · ·A j+1

∥
∥

∞
≤

n0

1−α
α

⌊
k− j
n0

⌋

ηk− j.

We are ready to bound the norm of the matrix Gk j:

∥
∥Gk j

∥
∥

∞
≤

α

⌊
k− j
n0

⌋

δk− j

[

λ

1−λ

k−1

∑
i= j

ηi− j+1 +
n0ηk− j

1−α

]

=
α

⌊
k− j
n0

⌋

δk− j

[(
λ

1−λ

)

η

(
1−ηk− j

1−η

)

+
n0ηk− j

1−α

]

=
α

⌊
k− j
n0

⌋

δk− j

[(
λ

1−λ

)(
1−λn0

1−λn0α

)(
1−ηk− j

1−η

)

+
n0ηk− j

1−α

]

=
α

⌊
k− j
n0

⌋

δk− j

[(
1−λn0

1−λ

)(
λ

1−λn0α

)(
1−ηk− j

1−η

)

+
n0ηk− j

1−α

]

= 1.

where we used the definition of η. Therefore Gk j is a sub-stochastic matrix. It trivially follows that

G′k j is also a sub-stochastic matrix.

H.2 Proof Of Proposition 16 (Lp Norm Bound)

In order to prove the Lp norm bound of Proposition 16, we rely on the following variation of

Lemma 10.
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Lemma 25 If xk and yk are sequences of vectors and Xk j, X ′k j sequences of sub-stochastic matrices

satisfying

∀k, |xk| ≤ K
k−1

∑
j=0

ξk− j(Xk j−X ′k j)y j +O(γk),

where (ξi)i≥1 is a sequence of non-negative weights satisfying

∞

∑
i=1

ξi = K′ < ∞,

then, for all distribution µ,

µk j :=
1

2
(Xk j +X ′k j)

T
µ

is a non-negative vector and µ̃k j :=
µk j

‖µk j‖1

is a distribution, and

limsup
k→∞

‖xk‖p,µ ≤ 2KK′ lim
l→∞

[

sup
k≥ j≥l

∥
∥y j

∥
∥

p,µ̃k j

]

.

Proof The proof follows the lines of that of Lemma 10 in appendix G. The only difference is that

in order to express the bound in terms of the distributions µ̃k j, we use the fact that µk j ≤ µ̃k j which

derives from
∥
∥µk j

∥
∥

1
≤ 1 since Xk j and X ′k j are sub-stochastic matrices.

Proposition 16 is obtained by applying this Lemma and an analogue of Lemma 12 for Lp norm on

the component-wise bound (Lemma 15, see previous subsection). The only remaining thing that

needs to be checked is that ∑∞
i=1 δi has the right value. This is what we do now.

Similarly to Equation 49, one can see that:

∞

∑
i=0

α

⌊
i

n0

⌋

ηi =
1−ηn0

(1−ηn0α)(1−η)

and

∞

∑
i=0

α

⌊
i

n0

⌋

(1−ηi) =
n0

1−α
−

1−ηn0

(1−ηn0α)(1−η)
.

As a consequence,

∞

∑
i=0

δi =
∞

∑
i=0

α

⌊
i

n0

⌋(
1−λn0

1−λ

)(
λ

1−λn0α

)(
1−ηi

1−η

)

+
n0ηi

1−α

=

(
1−λn0

1−λ

)(
λ

1−λn0α

)



∑∞

i=0 α

⌊
i

n0

⌋

(1−ηi)

1−η



+
n0 ∑∞

i=0 α

⌊
i

n0

⌋

ηi

1−α

=

(
1−λn0

1−λ

)(
λ

1−λn0α

)(
1

1−η

)(
n0

1−α
−

1−ηn0

(1−ηn0α)(1−η)

)

+

(
n0

1−α

)(
1−ηn0

(1−ηn0α)(1−η)

)

= λ f (λ)
1

1−η
( f (1)− f (η))+ f (1) f (η)
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where for all x, f (x) := (1−xn0 )
(1−x)(1−xn0 α) and f (1) = n0

1−α by continuity. Now, we can conclude by

noticing that
∞

∑
i=1

δi =
∞

∑
i=0

δi−δ0

and δ0 =
n0

1−α = f (1).
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Abstract
Manifold regularization (Belkin et al., 2006) is a geometrically motivated framework for machine
learning within which several semi-supervised algorithmshave been constructed. Here we try to
provide some theoretical understanding of this approach. Our main result is to expose the natural
structure of a class of problems on which manifold regularization methods are helpful. We show
that for such problems, no supervised learner can learn effectively. On the other hand, a manifold
based learner (that knows the manifold or “learns” it from unlabeled examples) can learn with
relatively few labeled examples. Our analysis follows a minimax style with an emphasis on finite
sample results (in terms ofn: the number of labeled examples). These results allow us to properly
interpret manifold regularization and related spectral and geometric algorithms in terms of their
potential use in semi-supervised learning.
Keywords: semi-supervised learning, manifold regularization, graph Laplacian, minimax rates

1. Introduction

The last decade has seen a flurry of activity within machine learning on two topics that are the
subject of this paper:manifold methodandsemi-supervised learning. While manifold methods are
generally applicable to a variety of problems, the framework of manifold regularization (Belkin
et al., 2006) is especially suitable for semi-supervised applications.

Manifold regularization provides a framework within which many graph based algorithms for
semi-supervised learning have been derived (see Zhu, 2008, for a survey). There are many things
that are poorly understood about this framework.First, manifold regularization is not a single algo-
rithm but rather a collection of algorithms. So what exactly is “manifold regularization”? Second,
while many semi-supervised algorithms have been derived from this perspective and many have en-
joyed empirical success, there are few theoretical analyses that characterize the class of problems on
which manifold regularization approaches are likely to work. In particular,there is some confusion
on a seemingly fundamental point. Even when the data might have a manifold structure, it is not
clear whether learning the manifold isnecessaryfor good performance. For example, recent results
(Bickel and Li, 2007; Lafferty and Wasserman, 2007) suggest that when data lives on a low dimen-
sional manifold, it may be possible to obtain good rates of learning using classical methods suitably

∗. This article had been accepted subject to minor revisions by JMLR at the time the author sadly passed away. JMLR
thanks Mikhail Belkin and Richard Maclin for their help in preparing the finalversion.

c©2013 Partha Niyogi.
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adapted without knowing very much about the manifold in question beyond its dimension. This has
led some people (e.g., Lafferty and Wasserman, 2007) to suggest that manifold regularization does
not provide any particular advantage.

What is particularly missing in the prior research so far is a crisp theoreticalstatement which
shows the benefits of manifold regularization techniques quite clearly. This paper provides such
a theoretical analysis, and explicates the nature of manifold regularization inthe context of semi-
supervised learning. Our main theorems (Theorems 2 and 4) show that there can be classes of learn-
ing problems on which (i) a learner that knows the manifold (alternatively learns it from large (in-
finite) unlabeled data via manifold regularization) obtains a fast rate of convergence (upper bound)
while (ii) without knowledge of the manifold (via oracle access or manifold learning),no learning
schemeexists that is guaranteed to converge to the target function (lower bound). This provides for
the first time a clear separation between a manifold method and alternatives fora suitably chosen
class of problems (problems that have intrinsic manifold structure). To illustrate this conceptual
point, we have defined a simple class of problems where the support of the data is simply a one
dimensional manifold (the circle) embedded in an ambient Euclidean space. Our result is the first of
this kind. However, it is worth emphasizing that this conceptual point may alsoobtain in far more
general manifold settings. The discussion of Section 2.3 and the theorems ofSection 3.2 provide
pointers to these more general results that may cover cases of greater practical relevance.

The plan of the paper: Against this backdrop, the rest of the paper is structured as follows.
In Section 1.1, we develop the basic minimax framework of analysis that allows us to compare
the rates of learning for manifold based semi-supervised learners and fully supervised learners.
Following this in Section 2, we demonstrate a separation between the two kinds oflearners by
proving an upper bound on the manifold based learner and a lower boundon any alternative learner.
In Section 3, we take a broader look at manifold learning and regularizationin order to expose
some subtle issues around these subjects that have not been carefully considered by the machine
learning community. This section also includes generalizations of our main theorems of Section 2.
In Section 4, we consider the general structure that learning problems must have for semi-supervised
approaches to be viable. We show how both the classical results of Castelliand Cover (1996, one
of the earliest known examples of the power of semi-supervised learning)and the recent results of
manifold regularization relate to this general structure. Finally, in Section 5 we reiterate our main
conclusions.

1.1 A Minimax Framework for Analysis

A learning problem is specified by a probability distributionp onX×Y according to which labelled
exampleszi = (xi ,yi) pairs are drawn and presented to a learning algorithm (estimation procedure).
We are interested in an understanding of the case in whichX = R

D, Y ⊂ R but pX (the marginal
distribution ofp on X) is supported on some submanifoldM ⊂ X. In particular, we are interested
in understanding how knowledge of this submanifold may potentially help a learning algorithm. To
this end, we will consider two kinds of learning algorithms:

1. Algorithms that have no knowledge of the submanifoldM but learn from(xi ,yi) pairs in a
purely supervised way.

2. Algorithms that have perfect knowledge of the submanifold. This knowledge may be acquired
by a manifold learning procedure through unlabeled examplesxi ’s and having access to an
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essentially infinite number of them. Such a learner may be viewed as a semi-supervised
learner.

Our main result is to elucidate the structure of a class of problems on which there is a difference
in the performance of algorithms of Type 1 and 2.

LetP be a collection of probability distributionsp and thus denote a class of learning problems.
For simplicity and ease of comparison with other classical results, we place some regularity con-
ditions onP . Every p ∈ P is such that its marginalpX has support on ak-dimensional manifold
M ⊂ X. Different p’s may have different supports. For simplicity, we will consider the case where
pX is uniform onM : this corresponds to a situation in which the marginal is the most regular.

Given such aP we can naturally define the classPM to be

PM = {p∈ P|pX is uniform onM }.

Clearly, we have
P = ∪M PM .

Considerp∈ PM . This denotes a learning problem and the regression functionmp is defined as

mp(x) = E[y|x] whenx∈M .

Note thatmp(x) is not defined outside ofM . We will be interested in cases whenmp belongs to
some restricted family of functionsHM (for example, a Sobolev space). Thus assuming a family
HM is equivalent to assuming a restriction on the class of conditional probability distributionsp(y|x)
wherep∈P . For simplicity, we will assume the noiseless case wherep(y|x) is either 0 or 1 for every
x and everyy, that is, there is no noise in the Y space.

SinceX\M has measure zero (with respect topX), we can definemp(x) to be anything we want
whenx∈ X\M . We definemp(x) = 0 whenx /∈M .

For a learning problemp, the learner is presented with a collection of labeled examples{zi =
(xi ,yi), i = 1, . . . ,n} where eachzi is drawn i.i.d. according top. A learning algorithm A maps the
collection of dataz= (z1, . . . ,zn) into a functionA(z). Now we can define the following minimax
rate (for the classP ) as

R(n,P ) = inf
A

sup
p∈P

Ez||A(z)−mp||L2(pX).

This is the best possible rate achieved by any learner that hasno knowledge of the manifoldM . We
will contrast it with a learner that has oracle access endowing it with knowledge of the manifold. To
begin, note that sinceP = ∪M PM , we see that

R(n,P ) = inf
A

sup
M

sup
p∈PM

Ez||A(z)−mp||L2(pX).

Now a manifold based learnerA′ is given a collection of labeled examplesz= (z1, . . . ,zn) just
like the supervised learner. However, in addition, it also has knowledge of M (the support of the
unlabeled data). It might acquire this knowledge through manifold learning or through oracle access
(the limit of infinite amounts of unlabeled data). ThusA′ maps(z,M ) into a function denoted by
A′(z,M ). The minimax rate for such a manifold based learner for the classPM is given by

inf
A′

sup
p∈PM

Ez||A′(z,M )−mp||L2(pX).
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Taking the supremum over all possible manifolds (just as in the supervised case), we have

Q(n,P ) = sup
M

inf
A′

sup
p∈PM

Ez||A′−mp||L2(pX).

1.2 The Manifold Assumption for Semi-supervised Learning

So the question at hand is: for what class of problemsP with the structure as described above, might
one expect a gap betweenR(n,P ) andQ(n,P ). This is a class of problems for which knowing the
manifold confers an advantage to the learner.

There are two main assumptions behind the manifold based approach to semi-supervised learn-
ing. First, one assumes that the support of the probability distribution is on some low dimensional
manifold. The motivation behind this assumption comes from the intuition that although natural
data in its surface form lives in a high dimensional space (speech, image, text, etc.), they are often
generated by systems with much fewer underlying degrees of freedom and therefore have lower
intrinsic dimensionality. This assumption and its corresponding motivation has been articulated
many times in papers on manifold methods (see Roweis and Saul, 2000, for example). Second, one
assumes that the underlying target function one is trying to learn (for prediction) is smooth with
respect to this underlying manifold. A smoothness assumption lies at the heartof many machine
learning methods including especially splines (Wahba, 1990), regularization networks (Evgeniou
et al., 2000), and kernel based methods (using regularization in reproducing kernel Hilbert spaces;
Scḧolkopf and Smola, 2002). However, smoothness in these approaches is typically measured in
the ambient Euclidean space. In manifold regularization, a geometric smoothness penalty is instead
imposed.

Thus, for a manifoldM, let φ1,φ2, . . . , be the eigenfunctions of the manifold Laplacian (ordered
by frequency). Then,mp(x) may be expressed in this basis asmp = ∑i αiφi or

mp = sign(∑
i

αiφi)

where theαi ’s have a sharp decay to zero.
Against this backdrop, one might now consider manifold regularization to get some better under-

standing of when and why it might be expected to provide good semi-supervised learning. First off,
it is worthwhile to clarify what is meant by manifold regularization. The term “manifold regulariza-
tion” was introduced by Belkin et al. (2006) to describe a class of algorithmsin which geometrically
motivated regularization penalties were used. One unifying framework adopts a setting of Tikhonov
regularization over a Reproducing Kernel Hilbert Space of functions toyield algorithms that arise
as special cases of the following:

f̂ = arg min
f∈HK

1
n

n

∑
i=1

V( f (xi),yi)+ γA|| f ||2K + γI || f ||2I . (1)

HereK : X×X → R is a p.d. kernel that defines a suitable RKHS (HK) of functions that are ambi-
ently defined. The ambient RKHS norm|| f ||K and an “intrinsic norm”|| f ||I are traded-off against
each other. Intuitively the intrinsic norm|| f ||I penalizes functions by considering onlyfM the
restriction of f to M and essentially considering various smoothness functionals. Since the eigen-
functions of the Laplacian provide a basis forL2 functions intrinsically defined onM , one might
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expressfM = ∑i αiφi in this basis and consider constraints on the coefficients.

Remarks:

1. Various choices of|| f ||2I include: (i) iteratedLaplacian given by
∫
M f (∆i f ) = ∑ j α2

j λi
j , (ii)

heat kernelgiven by∑ j e
tλ j α2

j , and (iii)band limitinggiven by|| f ||2I = ∑i µiα2
i whereµi = ∞

for all i > p.

2. The loss functionV can vary from squared loss to hinge loss to the 0–1 loss for classification
giving rise to different kinds of algorithmic procedures.

3. While Equation 1 is regularization in the Tikhonov form, one could considerother kinds of
model selection principles that are in the spirit of manifold regularization. Forexample, the
method of Belkin and Niyogi (2003) is a version of the method of sieves that may be inter-
preted as manifold regularization with bandlimited functions where one allows thebandwidth
to grow as more and more data becomes available.

4. The formalism provides a class of algorithmsA′ that have access to labeled examplesz and
the manifoldM from which all the terms in the optimization of Equation 1 can be computed.
ThusA′(z,M ) = f̂ .

5. Finally it is worth noting that in practice when the manifold is unknown, the quantity || f ||2I =∫
M f (∆i f ) is approximated by collecting unlabeled pointsxi ∈M , making a suitable nearest

neighbor graph with the vertices identified with the unlabeled points, and regularizing the
function using the graph Laplacian. The graph is viewed as a proxy for the manifold and
in this sense, many graph based approaches to semi-supervised learning(see Zhu, 2008, for
review) may be accommodated within the purview of manifold regularization.

The point of these remarks is that manifold regularization combines the perspective of kernel
based methods with the perspective of manifold and graph based methods. Itadmits a variety
of different algorithms that incorporate a geometrically motivated complexity penalty. We will
later demonstrate (in Section 3) one such canonical algorithm for the class of learning problems
considered in Section 2 of this paper.

2. A Prototypical Example: Embeddings of the Circle into Euclidean Space

In this section, we will construct a class of learning problemsP that have manifold structureP =
∪M PM and demonstrate a separation betweenR(n,P ) andQ(n,P ). For simplicity, we will show a
specific construction where everyM considered is a different embedding of the circle into Euclidean
space. In particular, we will see thatR(n) = Ω(1) while limn→∞Q(n) = 0 at a fast rate. Thus the
learner with knowledge of the manifold learns easily while the learner with no such knowledge
cannot learn at all.

Let φ : S1 → X be an isometric embedding of the circle into a Euclidean space. Now consider
the family of such isometric embeddings and let this be the family of one-dimensional submanifolds
that we will deal with. Thus eachM ⊂ X is of the formM = φ(S1) for someφ.

Let HS1 be the set of functions defined on the circle that take the value+1 on half the circle and
−1 on the other half. Thus in local coordinates (θ denoting the coordinate of a point inS1), we can
write the classHS1 as
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HS1 = {hα : S1 → R|hα(θ) = sign(sin(θ+α));α ∈ [0,2π)}.

Now for eachM = θ(S1) we can define the classHM as

HM = {h : M → R|h(x) = hα(φ−1(x)) for somehα ∈ HS1}. (2)

This defines a class of regression functions (also classification functions) for our setting. Cor-
respondingly, in our noiseless setting, we can now definePM as follows. For each,h ∈ HM , we

can define the probability distributionp(h) on X×Y by letting the marginalp(h)X be uniform onM
and the conditionalp(h)(y|x) be a probability mass function concentrated on two pointsy=+1 and
y=−1 such that

p(h)(y=+1|x) = 1⇐⇒ h(x) = +1

Thus

PM = {p(h)|h∈ HM }

In our setting, we can therefore interpret the learning problem as an instantiation either of re-
gression or of classification based on our interest.

Now thatPM is defined, the setP = ∪M PM follows naturally. A picture of the situation is
shown in Figure 1.

Remark 1 Recall that many machine learning methods (notably splines and kernel methods) con-
struct classifiers from spaces of smooth functions. The Sobolev spaces(see Adams and Fournier,
2003) are spaces of functions whose derivatives up to a certain order are square integrable. These
spaces arise in theoretical analysis of such machine learning methods and it is often the case that
predictors are chosen from such spaces or regression functions are assumed to be in such spaces
depending on the context of the work. For example, Lafferty and Wasserman (2007) make precisely
such an assumption. In our setting, note that HS1 and correspondingly HM as defined above is not
itself a Sobolev space. However, it is obtained by thresholding functions in aSobolev space. In
particular, we can write

HS1 = {sign(h)|h= αφ+βψ}

whereφ(θ) = sin(θ) and ψ(θ) = cos(θ) are eigenfunctions of the Laplacian∆S1 on the circle.
These are the eigenfunctions corresponding toλ = 1 and define the corresponding two dimensional
eigenspace. More generally one could consider a family of functions obtained by thresholding
functions in a Sobolev space of any chosen order and clearly HS1 is contained in any such family.
Finally it is worth noting that the arguments presented below do not depend on thresholding and
would work with functions that are bandlimited or in a Sobolev space just as well.
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+1

−1

+1

−1

Μ Μ1 2

Figure 1: Shown are two embeddings ofM1 andM2 of the circle in Euclidean space (the plane in
this case). The two functions, one fromM1 →R and the other fromM2 →R are denoted
by labelings+1,−1 correspond to half circles shown.

2.1 Upper Bound on Q(n,P )

Let us begin by noting that if the manifoldM is known, the learner knows the classPM . The
learner merely needs to approximate one of the target functions inHM . It is clear that the spaceHM

is a family of 0 – 1 valued functions whose VC-dimension is 2. Therefore, analgorithm that does

empirical risk minimization over the classHM will yield an upperbound of O(
√

log(n)
n ) by the usual

arguments. Therefore the following theorem is obtained.

Theorem 2 Following the notation of Section 1, let HM be the family of functions defined by Equa-
tion 2 andP be the corresponding family of learning problems. Then the learner with knowledge of
the manifold converges at a fast rate given by

Q(n,P )≤ 2

√

3log(n)
n

and this rate is optimal. Thus every problem in this class P can be learned efficiently.

Remark 3 If the class HM is a a parametric family of the form∑p
i=1 αiφi whereφi are the eigen-

functions of the Laplacian, one obtains the same parametric rate. Similarly, ifthe class HM is a
ball in a Sobolev space of appropriate order, suitable rates on the family may be obtained by the
usual arguments.

2.2 Lower Bound on R(n,P )

We now prove the following.

Theorem 4 Let P = ∪M PM where eachM = φ(S1) is an isometric embedding of the circle into
X as shown. For each p∈ P , the marginal pX is uniform on someM and the conditional p(y|x) is
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given by the construction in the previous section. Then

R(n,P ) = inf
A

sup
p∈P

Ez||A(z)−mp||L2(pX) = Ω(1)

Thus, it is not the case that every problem in the classP can be learned efficiently. In other words,
for every n, there exists a problem inP that requires more than n examples.

We provide the proof below. A specific role in the proof is played by a construction (Construc-
tion 1 later in the proof) that is used to show the existence of a family of geometrically structured
learning problems (probability measures) that will end up becoming unlearnable as a family.
Proof Given n, choose a numberd = 2n. Following Construction 1, there exist a set (denoted
by Pd ⊂ P ) of 2d probability distributions that may be defined. Our proof uses the probabilistic
method. We show that there exists a universal constantK (independent ofn) such that

∀A,
1
2d ∑

p∈Pd

Ez||A(z)−mp||L2(pX) ≥ K

from which we conclude that

∀A, sup
p∈Pd

Ez||A(z)−mp||L2(pX) ≥ K

SincePd ⊂ P , the result follows.
To begin, consider ap∈ P . Let z= (z1, . . . ,zn) be a set of i.i.d. examples drawn according to

p. Note that this is equivalent to drawingx = (x1, . . . ,xn) i.i.d. according topX and for eachxi ,
drawingyi according top(y|xi). Since the conditionalp(y|x) is concentrated on one point, theyi ’s
are deterministically assigned. Accordingly, we can denote this dependence by writingz= zp(x).

Now consider
Ez||A(z)−mp||L2(pX).

This is equal to
∫

Zn
dP(z)||A(z)−mp||L2(pX) =

∫
Xn

dpn
X(x)||A(zp(x))−mp||L2(pX).

(To clarify notation, we observe thatdpn
X is the singular measure onXn with support onM n which

is the natural product measure corresponding to the distribution ofn data pointsx1, . . . ,xn drawn
i.i.d. with eachxi distributed according topX.) The above in turn is lowerbounded by

≥
n

∑
l=0

∫
x∈Sl

dpn
X(x)||A(zp(x))−mp||L2(pX)

where
Sl = {x∈ Xn| exactlyl segments contain data and links do not}.

More formally,

Sl = {x∈ Xn|x∩ci 6= φ for exactlyl segmentsci andx∩B= /0}.
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Now we concentrate on lowerbounding
∫

x∈Sl
dpn

X(x)||A(zp(x))−mp||L2(pX). Using the fact that
pX is uniform, we have thatdpn

X(x) = cd(x) (wherec is a normalizing constant andd(x) is the
Lebesgue measure or volume form on the associated product space) and therefore

∫
x∈Sl

dpn
X(x)||A(zp(x))−mp||L2(pX) =

∫
x∈Sl

cd(x)||A(zp(x))−mp||L2(pX).

Thus, we have

Ez||A(z)−mp||L2(pX) ≥
n

∑
l=0

∫
x∈Sl

cd(x)||A(zp(x))−mp||L2(pX). (3)

Now we see that

[l ]
1
2d ∑

p∈Pd

Ez||A(zp(x))−mp||L2(pX) ≥
1
2d ∑

p∈Pd

n

∑
l=0

c
∫

x∈Sl

d(x)||A−mp||

≥
n

∑
l=0

c
∫

x∈Sl

(

1
2d ∑

p
||A−mp||

)

d(x).

By Lemma 5, we see that for eachx∈ Sl , we have

1
2d ∑

p
||A−mp|| ≥ (1−α−β)

d−n
4d

from which we conclude that

1
2d ∑

p
Ez||A(z)−mp||L2(pX) ≥ (1−α−β)

d−n
4d

n

∑
l=0

∫
x∈Sl

cd(x).

Now we note that
n

∑
l=0

∫
x∈Sl

cd(x) = Prob(x∩B= /0)≥ (1−β)n.

Therefore,

sup
p

Ez||A(z)−mp||L2(pX) ≥ (1−α−β)
d−n
4d

(1−β)n ≥ (1−α−β)
1
8
(1−β)n. (4)

Sinceα andβ (and for that matter,d) are in our control, we can choose them to make the right-
hand side of Inequality 4 greater than some constant. This proves our theorem.

We now construct a family of intersecting manifolds such that given two pointson any manifold
in this family, it is difficult to judge (without knowing the manifold) whether these points are near
or far in geodesic distance. The class of learning problems consists of probability distributionsp
such thatpX is supported on some manifold in this class. This construction plays a central role in
the proof of the lower bound.
Construction 1. Consider a set of 2d manifolds where each manifold has a structure shown in
Figure 2. Each manifold has three disjoint subsets:A (loops),B (links), andC (chain) such that

M = A∪B∪C.
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Loops (A) Loops (A)

C C C C C1 4 532

Links

Links

Figure 2: Figure accompanying Construction 1.

The chainC consists ofd segments denoted byC1,C2, . . . ,Cd such thatC= ∪Ci . The links connect
the loops to the segments as shown in Figure 2 so that one obtains a closed curve corresponding to
an embedding of the circle intoRD. For each choiceS⊂ {1, . . . ,d} one constructs a manifold (we
can denote this byMS) such that the links connectCi (for i ∈ S) to the “upper half” of the loop and
they connectCj (for j ∈ {1, . . . ,d} \S) to the “bottom half” of the loop as indicated in the figure.
Thus there are 2d manifolds altogether where eachMS differs from the others in the link structure
but the loops and chain are common to all, that is,

A∪C⊂ ∩SMS.

For manifoldMS, let
l(A)

l(MS)
=

∫
A

p(S)X (x)dx= αS

wherep(S)X is the probability density function on the manifoldMS. Similarly

l(B)
l(MS)

=
∫

B
p(S)X (x)dx= βS

and
l(C)

l(MS)
=

∫
C

p(S)X (x)dx= γS.

It is easy to check that one can construct these manifolds so that

βS≤ β;γS≥ γ.

Thus for each manifoldMS, we have the associated class of probability distributionsPMS
. These

are used in the construction of the lower bound. Now for each such manifold MS, we pick one
probability distributionp(S) ∈ PMS

such that for everyk∈ S, we have

For allk∈ S, p(S)(y=+1|x) = 1 for all x∈Ck
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and for everyk∈ {1, . . . ,d}\S, we have

For allk∈ {1, . . . ,d}\S, p(S)(y=−1|x) = 1 for all x∈Ck.

Furthermore, thep(S) are all chosen so that the associated conditionalsp(S)(y=+1|x) agree on
the loops, that is, for anyS,S′ ∈ {1, . . . ,d},

p(S)(y=+1|x) = p(S′)(y=+1|x) for all x∈ A

This defines 2d different probability distributions that satisfy for eachp: (i) the support of the
marginalpX includesA∪C, (ii) the support ofpX for different p have different link structures (iii)
the conditionalsp(y|x) disagree on the the chain. We now prove the following technical lemma that
proves an inequality that holds when the data only lives on the segments and not on the links that
constitute the embedded circle of Construction 1. This inequality is used in the proof of Theorem 4.

Lemma 5 Let x∈ Sl be a collection of n points such that no point belongs to the links and exactly
l segments contain at least one point.

1
2d ∑

p∈Pd

||A(zp(x))−mp||L2(pX) ≥ (1−α−β)
d−n
4d

.

Proof Sincex ∈ Sl , there ared− l segments of the chainC such that no data is seen from them.
We let A(zp(x)) be the function hypothesized by the learner on receiving the data setzp(x). We
begin by noting that the familyPd may be naturally divided into 2l subsets in the following way.
Following the notation of Construction 1, recall that every element ofPd may be identified with
a setS⊂ {1, . . . ,d}. We denote this element byp(S). Now let L denote the set of indices of the
segmentsCi that contain data, that is,

L = {i|Ci ∩x 6= /0}.

Then for every subsetD ⊂ L, we have

PD = {p(S) ∈ Pd|S∩L = D}.

Thus all the elements ofPD agree in their labelling of the segments containing data but disagree
in their labelling of segments not containing data. Clearly there are 2l possible choices forD and
each such choice leads to a family containing 2dl probability distributions. Let us denote these 2l

families byP1 throughP2l .
ConsiderPi . By construction, for all probability distributionsp,q ∈ Pi , we have thatzp(x) =

zq(x). Let us denote this byzi(x), that is,zi(x) = zp(x) for all p∈ Pi .
Now f = A(zi(x)) is the function hypothesized by the learner on receiving the data setzi(x).

For anyp∈ P and any segmentck, we say thatp “disagrees” withf on ck if | f (x)mp(x)| ≥ 1 on a
majority ofck, that is, ∫

A
pX(x)≥

∫
ck\A

pX(x)

whereA= {x∈ ck|| f (x)mp(x)| ≥ 1}. Therefore, iff andp disagree onck, we have
∫

ck

( f (x)−mp(x))
2pX(x)≥

1
2

∫
ck

pX(x)≥
1
2d

(1−α−β).
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It is easy to check that for every choice ofj unseen segments, there exists ap ∈ Pi such thatp
disagrees withf on each of the chosen segments. Therefore, for such ap, we have

||(A(zp(x))−mp||2L2(pX)
≥ 1

2
j
d
(1−α−β).

Counting all the 2dl elements ofPi based on the combinatorics of unseen segments, we see (using

the fact that||A(zp(x))−mp|| ≥
√

1
2

j
d(1−α−β)≥ 1

2
j
d(1−α−β))

∑
p∈Pi

||A(xp(x)−mp|| ≥
d−l

∑
j=0

(

d− l
j

)

1
2

j
d
(1−α−β) = 2d−l (1−α−β)

d− l
4d

.

Therefore, sincel ≤ n, we have

2l

∑
i=1

∑
p∈Pi

||A(xp(x))−mp|| ≥ 2d(1−α−β)
d−n
4d

.

2.3 Discussion

Thus we see that knowledge of the manifold can have profound consequences for learning. The
proof of the lower bound reflects the intuition that has always been at the root of manifold based
methods for semi-supervised learning. Following Figure 2, if one knows themanifold, one sees that
C1 andC4 are “close” whileC1 andC3 are “far.” But this is only one step of the argument. We
must further have the prior knowledge that the target function varies smoothly along the manifold
and so “closeness on the manifold” translates to similarity in function values (orlabel probabilities).
However, this closeness is not obvious from the ambient distances alone.This makes the task of
the learner who does not know the manifold difficult: in fact impossible in the sense described in
Theorem 4.

Some further remarks are in order. These provide an idea of the ways in which our main the-
orems can be extended. Thus we may appreciate the more general circumstances under which we
might see a separation between manifold methods and alternative methods.

1. While we provide a detailed construction for the case of different embeddings of the circle
into R

N, it is clear that the argument is general and similar constructions can be madefor
many different classes ofk-manifolds. Thus ifM is taken to be ak-dimensional submanifold
of RN, then one could letM be a family ofk-dimensional submanifolds ofRN and letP be
the naturally associated family of probability distributions that define a collection of learning
problems. Our proof of Theorem 4 can be naturally adapted to such a setting.

2. Our example explicitly considers a classHM that consists of a one-parameter family of func-
tions. It is important to reiterate that many different choices ofHM would provide the same
result. For one, thresholding is not necessary, and if the classHM was simply defined as
bandlimited functions, that is, consisting of functions of the form∑p

i=1 αiφi (whereφi are
the eigenfunctions of the Laplacian ofM ), the result of Theorem 4 holds as well. Similarly
Sobolev spaces (constructed from functionsf = ∑i αiφi whereα2

i λs
i < ∞) also work with and

without thresholding.
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3. We have considered the simplest case where there is no noise in theY-direction, that is, the
conditionalp(y|x) is concentrated at one pointmp(x) for eachx. Considering a more general
setting with noise does not change the import of our results. The upper bound of Theorem 2
makes use of the fact thatmp belongs to a restricted (uniformly Glivenko-Cantelli) family
HM . With a 0 – 1 loss function defined asV(h,z) = 1[y6=h(x)], the rate may be as good as
O∗(1

n) in the noise-free case but drops toO∗( 1√
n) in the noisy case. The lower bound of

Theorem 4 for the noiseless case also holds for the noisy case by immediate implication.
Both upper and lower bounds are valid also for arbitrary marginal distributions pX (not just
uniform) that have support on some manifoldM .

4. Finally, one can consider a variety of loss functions other than theL2 loss function considered
here. The natural 0 – 1-valued loss function (which for the special case of binary valued
functions coincides with the theL2 loss) can be interpreted as the probability of error of the
classifier in the classification setting.

3. Manifold Learning and Manifold Regularization

3.1 Knowing the Manifold and Learning It

In the discussion so far, we have implicitly assumed that an oracle can provide perfect information
about the manifold in whatever form we choose. We see that access to such an oracle can provide
great power in learning from labeled examples for classes of problems that have a suitable structure.

Yet, the whole issue ofknowing the manifoldis considerably more subtle than appears at first
blush and in fact has never been carefully considered by the machine learning community. For
example, consider the following oracles that all provide knowledge of the manifold but in different
forms.

1. One could knowM as a set through some kind of set-membership oracle. For example, a
membership oracle that makes sense is of the following sort: given a pointx and a numberr >
0, the oracle tells us whetherx is in a tubular neighborhood of radiusr around the manifold.

2. One could know a system of coordinate charts on the manifold. For example, maps of the
form ψi : Ui → R

D whereUi ⊂ R
k is an open set.

3. One could know in some explicit form the harmonic functions on the manifold,the Laplacian
∆M , and the Heat KernelHt(p,q) on the manifold.

4. One could know the manifold up to some geometric or topological invariants. For exam-
ple, one might know just the dimension of the manifold. Alternatively, one might know the
homology, the homeomorphism or diffeomorphism type, etc. of the manifold.

5. One could have metric information on the manifold. One might know the metric tensor at
points on the manifold, one might know the geodesic distances between points on the mani-
fold, or one might know the heat kernel from which various derived distances (such as diffu-
sion distance) are obtained.

Depending upon the kind of oracle access we have, the task of the learner might vary from
simple to impossible. For example, in the problem described in Section 2 of this paper, the natural
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algorithm that realizes the upper bound of Theorem 2 performs empirical risk minimization over the
classHM . To do this it needs, of course, to be able to representHM in a computationally efficient
manner. In order to do this, it needs to know the eigenfunctions (in the specific example, only the
first two, but in general some arbitrary number depending on the choice of HM ) of the Laplacian on
theM . This is immediately accessible from Oracle 3. It can be computed from Oracles 1, 2, and 5
but this computation is intractable in general. From Oracle 4, it cannot be computed at all.

The next question one needs to address is: In the absence of an oraclebut given random samples
of example points on the manifold, can onelearn the manifold? In particular, can one learn it in a
form that is suitable for further processing. In the context of this paper, the answer is yes.

Let us recall the following fundamental fact from Belkin and Niyogi (2005) that has some
significance for the problem in this paper.

Let M be a compact, Riemannian submanifold (without boundary) ofR
N and let∆M be the

Laplace operator (on functions) on this manifold. Letx= {x1, . . . ,xm} be a collection ofm points
sampled in i.i.d. fashion according to the uniform probability distribution onM . Then one may
define the point cloud Laplace operatorLt

m as follows:

Lt
m f (x) =

1
t

1

(4πt)d/2

1
m

m

∑
i=1

( f (x)− f (xi))e
− ||x−xi ||2

4t

The point cloud Laplacian is a random operator that is the natural extension of the graph Lapla-
cian operator to the whole space. For any thrice differentiable functionf : M → R, we have

Theorem 6
lim

t→0,m→∞
Lt

m f (x) = ∆M f (x).

Some remarks are in order:

1. Givenx ∈M as above, consider the graph with vertices (letV be the vertex set) identified

with the points inx and adjacency matrixWi j =
1
mt

1
(4πt)d/2 e−

||x−xi ||2
4t . Given f : M → R, the

restriction fV : x→R is a function defined on the vertices of this graph. Correspondingly, the
graph LaplacianL = (D−W) acts onfV and it is easy to check that

(Lt
m f )|xi = (L fV)|xi .

In other words, the point cloud Laplacian and graph Laplacian agree onthe data. However,
the point cloud Laplacian is defined everywhere while the graph Laplacianis only defined on
the data.

2. The quantityt (similar to a bandwidth) needs to go to zero at a suitable rate (tmd+2 → ∞)
so there exists a sequencetm such that the point cloud Laplacian converges to the manifold
Laplacian asm→ ∞.

3. It is possible to show (see Belkin and Niyogi, 2005; Coifman and Lafon,2006; Gińe and
Koltchinskii, 2006; Hein et al., 2005) that this basic convergence is true for arbitrary proba-
bility distributions (not just the uniform distribution as stated in the above theorem) in which
case the point cloud Laplacian converges to an operator of the Laplace type that may be
related to the weighted Laplacian (Grigoryan, 2006).

1242



MANIFOLD REGULARIZATION THEORY

4. While the above convergence is pointwise, it also holds uniformly over classes of functions
with suitable conditions on their derivatives (Belkin and Niyogi, 2008; Giné and Koltchinskii,
2006).

5. Finally, and most crucially (see Belkin and Niyogi, 2006), ifλ(i)
m andφ(i)

m are theith (in in-
creasing order) eigenvalue and corresponding eigenfunction respectively of the operatorLtm

m,
then with probability 1, asmgoes to infinity,

limm→∞|λi −λ(i)
m |= 0

and
limm→∞|φ(i)

m −φi |L2(M ) = 0.

In other words, the eigenvalues and eigenfunctions of the point cloud Laplacian converge to
those of the manifold Laplacian as the number of data pointsmgo to infinity.

These results enable us to present a semi-supervised algorithm that learns the manifold from
unlabeled data and uses this knowledge to realize the upper bound of Theorem 2.

3.2 A Manifold Regularization Algorithm For Semi-supervised Learning

Let z= (z1, . . . ,zn) be a set ofn i.i.d. labeled examples drawn according top andx= (x1, . . . ,xm)
be a set ofm i.i.d. unlabeled examples drawn according topX. Then a semi-supervised learner’s
estimate may be denoted byA(z,x). Let us consider the following kind of manifold regularization
based semi-supervised learner.

1. Construct the point cloud Laplacian operatorLtm
m from theunlabeleddatax.

2. Solve for the eigenfunctions ofLtm
m and take the first two (orthogonal to the constant unction).

Let these beφm andψm respectively.

3. Perform empirical risk minimization with the empirical eigenfunctions by minimizing

f̂m = arg min
f=αφm+βψm

1
n

n

∑
i=1

V( f (xi),yi)

subject toα2
i +β2

i = 1. HereV( f (x),y) = 1
4|y− sign( f (x))|2 is the 0−1 loss. This is equiva-

lent to Ivanov regularization with an intrinsic norm that forces candidate hypothesis functions
to be bandlimited.

Note that if the empirical risk minimization was performed with the true eigenfunctions (φ and
ψ respectively), then the resulting algorithm achieves the rate of Theorem 2. Since for largem, the
empirical eigenfunctions are close to the true ones by the result in Belkin andNiyogi (2006), we may
expect the above algorithm to perform well. Thus we may compare the two manifold regularization
algorithms (an empirical one with unlabeled data and an oracle one that knowsthe manifold):

A(z,x) = sign( f̂m) = sign(α̂mφm+ β̂mψm)

and
Aoracle(z,M ) = sign( f̂ ) = sign(α̂φ+ β̂ψ).

We can now state the following:
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Theorem 7 For anyε > 0, we have

sup
p∈PM

Ez||mp−A||2L2(pX)
≤ 4

2π
(arcsin(ε))+

1
ε2(||φ−φm||2+ ||ψ−ψm||2)+3

√

3log(n)
n

.

Proof Considerp∈ P and letmp = sign(αpφ+βpψ). Let gm= αpφm+βpψm. Now, first note that
by the fact of empirical risk minimization, we have

1
n ∑

z∈z
V(A(x),y)≤ 1

n ∑
z∈z

V(sign(gm(x)),y).

Second, note that the set of functionsF = {sign( f )| f = αφm+βψm} has VC dimension equal
to 2. Therefore the empirical risk converges to the true risk uniformly overthis class so that with
probability> 1−δ, we have

[l ]Ez[V(A(x),y)]−
√

2log(n)+ log(1/δ)
n

≤ 1
n ∑

z∈z
V(A(x),y)

≤ 1
n ∑

z∈z
V(sign(gm(x)),y)≤ Ez[V(sign(gm(x)),y)]+

√

2log(n)+ log(1/δ)
n

.

Using the fact thatV(h(x),y) = 1
4(y−h)2, we have in general for anyh

Ez[V(h(x),y)] =
1
4

Ez(y−mp)
2+

1
4
||mp−h||2L(pX)

from which we obtain with probability> 1−δ over choices of labeled training setsz,

||mp−A||2 ≤ ||mp− sign(gm)||2+2

√

2log(n)+ log(1/δ)
n

.

Settingδ = 1
n and noting that||mp−A||2 ≤ 1, we have after some straightforward manipulations,

Ez||mp−A||2 ≤ ||mp− sign(gm)||2+3

√

3log(n)
n

.

Using Lemma 8, we get for anyε > 0,

sup
p∈PM

Ez||mp−A||2 ≤ 4
2π

(arcsin(ε))+
1
ε2(||φ−φm||2+ ||ψ−ψm||2)+3

√

3log(n)
n

.

Lemma 8 Let f,g be any two functions. Then for anyε > 0,

||sign( f )−sign(g)||2L2(pX)
≤ µ(Xε, f )+

1
ε2 || f −g||2L2(pX)

1244



MANIFOLD REGULARIZATION THEORY

where Xε, f = {x | | f (x)| ≤ ε} and µ is the measure corresponding the the marginal distribution pX.
Further, if f = αφ+ βψ (α2+ β2 = 1) and g= αφm+ βψm whereφ,ψ are eigenfunctions of

the Laplacian onM while φm,ψm are eigenfunctions of point cloud Laplacian as defined in the
previous developments. Then for anyε > 0

||sign( f )−sign(g)||2L2(pX)
≤ 4

2π
(arcsin(ε))+

1
ε2(||φ−φm||2+ ||ψ−ψm||2).

Proof We see that

||sign( f )−sign(g)||2L2(pX)
=

∫
Xε, f

|sign( f (x))−sign(g(x))|2+
∫
M \Xε, f

|sign( f (x))−sign(g(x))|2

≤ 4µ(Xε, f )+
∫
M \Xε, f

|sign( f (x))−sign(g(x))|2.

Note that ifx∈M \Xε, f , we have that

|sign( f (x))−sign(g(x))| ≤ 2
ε
| f (x)−g(x)|.

Therefore,
∫
M \Xε, f

|sign( f (x))−sign(g(x))|2 ≤ 4
ε2

∫
M \Xε, f

| f (x)−g(x)|2 ≤ 4
ε2 || f −g||2L2(pX)

.

This proves the first part. The second part follows by a straightforward calculation on the circle.

Some remarks:

1. While we have stated the above theorem for our running example of embeddings of the circle
into R

D, it is clear that the results can be generalized to cover arbitrary k-manifolds, more
general classes of functionsHM , noise, and loss functionsV. Many of these extensions are
already implicit in the proof and associated technical discussions.

2. A corollary of the above theorem is relevant for the (m= ∞) case that has been covered in
Castelli and Cover (1996). We will discuss this in the next section. The corollary is

Corollary 9 Let P = ∪M PM be a collection of learning problems with the structure de-
scribed in Section 2, that is, each p∈ P is such that the marginal pX has support on a
submanifoldM of RD which corresponds to a particular isometric embedding of the circle
into Euclidean space. For each such p, the regression function mp = E[p(y|x)] belongs to
a class of functions HM which consists of thresholding bandlimited functions onM . Then
no supervised learning algorithm exists that is guaranteed to converge forevery problem in
P (Theorem 4). Yet the semi-supervised manifold regularization algorithm described above
(with infinite amount of unlabeled data) converges at a fast rate as a function of labelled data.
In other words,

sup
M

lim
m→∞

sup
PM

||mp−A(z,x)||2L2(pX)
= 3

√

3log(n)
n

.
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3. It is natural to ask what it would take to move the limitm→ ∞ outside. In order to do this,
one will need to put additional constraints on the class of possible manifoldsM that we
are allowed to consider. But putting such constraints we can construct classes of learning
problems where for any realistic number of labeled examplesn, there is a gap between the
performance of a supervised learner and the manifold based semi-supervised learner. An
example of such a theorem is:

Theorem 10 Fix any number N. Then there exists a class of learning problemsPN such that
for all n < N

R(n,PN) = inf
A

sup
p∈PN

Ez||mp−A(z)|| ≥ 1/100

while

Q(n,PN) = lim
m→∞

sup
p∈PN

||mp−Amanreg(z,x)||2 ≤
√

3log(n)
n

.

Proof We provide only a sketch of the argument and avoid technical details. We begin by
choosing a family of submanifolds of[−M,M]D with a uniform bound on their curvature. One
form such a bound can take is the following: Letτ be the largest number such that the open
normal bundle of radiusr aboutM is an imbedding for anyr < τ. This provides a bound on
the norm of the second fundamental form (curvature) and nearness toself intersection of the
submanifold. NowPN will contain probability distributionsp such thatpX is supported on
someM with a τ curvature bound andp(y|x) is 0 or 1 for everyx,y such that the regression
functionmp = E[y|x] belongs toHM . As before, we chooseHM to be the span of the firstK
eigenfunctions of the Laplacian∆ onM . For a lower boundR(n), we follow Construction
1 and choosed = 2N (from the proof of the lower bound of Theorem 4). Following Con-
struction 1, the circle can be embedded in[−M,M]D by twisting in all directions. Letl be
the length of a single segment of the chain. Since theτ condition needs to be respected for
every embedding, the circle cannot twist too much and come too close to self intersection. In
particular, this will imply that 2NlVτ < MD whereVτ is the volume of theD−1 dimensional
ball of radiusτ. For an upper boundQ(n), we follow the the manifold regularization algo-
rithm of the previous section and note that eigenfunctions of the Laplacian can be estimated
for compact manifolds with a curvature bound.

However, asymptotically,R(n) andQ(n) have the same rate forn >> N. SinceN can be
arbitrarily chosen to be astronomically large, this asymptotic rate is of little consequence in
practical learning situations. This suggests the limitations of asymptotic analysis without a
careful consideration of the finite sample situation.

4. The Structure of Semi-supervised Learning

It is worthwhile to reflect on why the manifold regularization algorithm is able to display improved
performance in semi-supervised learning. The manifold assumption is a device that allows us to link
the marginalpX with the conditionalp(y|x). Through unlabeled datax, we can learn the manifold
M thereby greatly reducing the class of possible conditionalsp(y|x) that we need to consider. More
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generally, semi-supervised learning will be feasible only if such a link is made. To clarify the
structure of problems on which semi-supervised learning is likely to be meaningful, let us define a
mapπ : p→ pX that takes any probability distributionp onX×Y and maps it to the marginalpX.

Given any collection of learning problemsP , we have

π : P → PX

wherePX = {pX|p∈ P}. Consider the case in which the structure ofP is such that for anyq∈ PX,
the family of conditionalsπ−1(q) = {p∈ P |pX = q} is “small.” For a situation like this, knowing
the marginal tells us a lot about the conditional and therefore unlabeled datacan be useful.

4.1 Castelli and Cover Interpreted

Let us consider the structure of the class of learning problems considered by Castelli and Cover
(1996). They consider a two-class problem with the following structure. The class of learning
problemsP is such that for eachp∈ P , the marginalq= pX can be uniquely expressed as

q= µ f +(1−µ)g

where 0≤ µ ≤ 1 and f ,g belong to some classG of possible probability distributions. In other
words, the marginal is always a mixture (identifiable) of two distributions. Furthermore, the class
P of possible probability distributions is such that there are precisely two probability distributions
p1, p2 ∈ P such that their marginals are equal toq. In other words,

π−1(q) = {p1, p2}

wherep1(y= 1|x) = µ f(x)
q(x) andp2(y= 1|x) = (1−µ)g(x)

q(x) .
In this setting, unlabeled data allows the learner to estimate the marginalq. Once the marginal

is obtained, the class of possible conditionals is reduced toexactly two functions. Castelli and
Cover (1996) show that the risk now converges to the Bayes’ risk exponentially as a function of
labeled data (i.e., the analog of an upper bound onQ(n,P ) is approximatelye−n). The reason semi-
supervised learning is successful in this setting is that the marginalq tells us a great deal about the
class of possible conditionals. It seems that a precise lower bound on purely supervised learning
(the analog ofR(n,P )) has never been clearly stated in that setting.

4.2 Manifold Regularization Interpreted

In its most general form, manifold regularization encompasses a class of geometrically motivated
approaches to learning. Spectral geometry provides the unifying point of view and the spectral
analysis of a suitable geometrically motivated operator yields a “distinguished basis.” Since (i) only
unlabeled examples are needed for the spectral analysis and the learningof this basis, and (ii) the
target function is assumed to be compactly representable in this basis, the ideahas the possibility
to succeed in semi-supervised learning. Indeed, the previous theorems clarify the theoretical basis
of this approach. This, together with the empirical success of algorithms based on these intuitions
suggest there is some merit in this point of view.

In general, letq be a probability density function onX = R
D. The support ofq may be a

submanifold ofX (with possibly many connected components). Alternatively, it may lie close to a
submanifold, it may be all ofX, or it may be a subset ofX. As long asq is far from uniform, that
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is, it has a “shape,” one may consider the following “weighted Laplacian” (see Grigoryan, 2006)
defined as

∆q f (x) =
1

q(x)
div(qgradf )

where the gradient (grad) and divergence (div) are with respect tothe support ofq (which may
simply be all ofX).

The heat kernel associated with this weighted Laplacian (essentially the Fokker-Planck operator)
is given bye−t∆q . Laplacian eigenmaps and Diffusion maps are thus defined in this more general
setting.

If φ1,φ2, . . . represent an eigenbasis for this operator, then, one may consider the regression
functionmq to belong to the family (parameterized bys= (s1,s2, . . .)) where eachsi ∈ R∪{∞}.

HS
q = {h : X → R such thath= ∑

i

αiφi and∑
i

α2
i si < ∞}.

Some natural choices ofs are (i)∀i > p,si = ∞ : this gives us bandlimited functions (ii)si = λt
i

is theith eigenvalue of∆q : this gives us spaces of Sobolev type (iii)∀i ∈A,si = 1, elsesi = ∞ where
A is a finite set: this gives us functions that are sparse in that basis.

The class of learning problemsP (s) may then be factored as

P(s) = ∪qP
(s)
q

where
P

(s)
q = {p|px = q andmp ∈ HS

q}.
The logic of the geometric approach to semi-supervised learning is as follows:

1. Unlabeled data allow us to approximateq, the eigenvalues and eigenfunctions of∆q, and
therefore the spaceHs.

2. If s is such thatπ−1(q) is “small” for everyq, then a small number of labeled examples suffice
to learn the regression functionmq.

In problems that have this general structure, we expect manifold regularization and related al-
gorithms (that use the graph Laplacian or a suitable spectral approximation)to work well. Precise
theorems showing the correctness of these algorithms for a variety of choices of s remains part of
future work. The theorems in this paper establish results for some choices of s and are a step in a
broader understanding of this question.

5. Conclusions

We have considered a minimax style framework within which we have investigatedthe potential
role of manifold learning in learning from labeled and unlabeled examples. Wedemonstrated the
natural structure of a class of problems on which knowing the manifold makesa big difference. On
such problems, we see that manifold regularization is provably better than any supervised learning
algorithm.

Our proof clarifies a potential source of confusion in the literature on manifold learning. We
see that if data lives on an underlying manifold but this manifold isunknownand belongs to a class
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of possible smooth manifolds, it is possible that supervised learning (classification and regression
problems) may be ineffective, even impossible. In contrast, if the manifold is fixed though unknown,
it may be possible to (e.g., Bickel and Li, 2007) learn effectively by a classical method suitably
modified. In between these two cases lie various situations that need to be properly explored for a
greater understanding of the potential benefits and limitations of manifold methods and the need for
manifold learning.

Our analysis allows us to see the role of manifold regularization in semi-supervised learning
in a clear way. Several algorithms using manifold and associated graph-based methods have seen
some empirical success recently. Our paper provides a framework within which we may be able to
analyze and possibly motivate or justify such algorithms.
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Abstract

We investigate the problem of sequentially predicting the binary labels on the nodes of an arbitrary

weighted graph. We show that, under a suitable parametrization of the problem, the optimal number

of prediction mistakes can be characterized (up to logarithmic factors) by the cutsize of a random

spanning tree of the graph. The cutsize is induced by the unknown adversarial labeling of the

graph nodes. In deriving our characterization, we obtain a simple randomized algorithm achieving

in expectation the optimal mistake bound on any polynomially connected weighted graph. Our

algorithm draws a random spanning tree of the original graph and then predicts the nodes of this

tree in constant expected amortized time and linear space. Experiments on real-world data sets

show that our method compares well to both global (Perceptron) and local (label propagation)

methods, while being generally faster in practice.

Keywords: online learning, learning on graphs, graph prediction, random spanning trees

1. Introduction

A widespread approach to the solution of classification problems is representing data sets through

a weighted graph where nodes are the data items and edge weights quantify the similarity between

pairs of data items. This technique for coding input data has been applied to several domains,

including Web spam detection (Herbster et al., 2009b), classification of genomic data (Tsuda and

c©2013 Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale and Giovanni Zappella.
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Schölkopf, 2009), face recognition (Chang and Yeung, 2006), and text categorization (Goldberg and

Zhu, 2004). In many applications, edge weights are computed through a complex data-modeling

process and typically convey information that is relevant to the task of classifying the nodes.

In the sequential version of this problem, nodes are presented in an arbitrary (possibly adversar-

ial) order, and the learner must predict the binary label of each node before observing its true value.

Since real-world applications typically involve large data sets (i.e., large graphs), online learning

methods play an important role because of their good scaling properties. An interesting special case

of the online problem is the so-called transductive setting, where the entire graph structure (includ-

ing edge weights) is known in advance. The transductive setting is interesting in that the learner has

the chance of reconfiguring the graph before learning starts, so as to make the problem look easier.

This data preprocessing can be viewed as a kind of regularization in the context of graph prediction.

When the graph is unweighted (i.e., when all edges have the same common weight), it was

found in previous works (Herbster et al., 2005; Herbster and Pontil, 2007; Herbster, 2008; Herbster

and Lever, 2009) that a key parameter to control the number of online prediction mistakes is the

size of the cut induced by the unknown adversarial labeling of the nodes, that is, the number of

edges in the graph whose endpoints are assigned disagreeing labels. However, while the number

of mistakes is obviously bounded by the number of nodes, the cutsize scales with the number of

edges. This naturally led to the idea of solving the prediction problem on a spanning tree of the

graph (Cesa-Bianchi et al., 2009; Herbster et al., 2009a,b), whose number of edges is exactly equal

to the number of nodes minus one. Now, since the cutsize of the spanning tree is smaller than that

of the original graph, the number of mistakes in predicting the nodes is more tightly controlled. In

light of the previous discussion, we can also view the spanning tree as a “maximally regularized”

version of the original graph.

Since a graph has up to exponentially many spanning trees, which one should be used to maxi-

mize the predictive performance? This question can be answered by recalling the adversarial nature

of the online setting, where the presentation of nodes and the assignment of labels to them are both

arbitrary. This suggests to pick a tree at random among all spanning trees of the graph so as to

prevent the adversary from concentrating the cutsize on the chosen tree (Cesa-Bianchi et al., 2009).

Kirchoff’s equivalence between the effective resistance of an edge and its probability of being in-

cluded in a random spanning tree allows to express the expected cutsize of a random spanning tree

in a simple form. Namely, as the sum of resistances over all edges in the cut of G induced by the

adversarial label assignment.

Although the results of Cesa-Bianchi et al. (2009) yield a mistake bound for arbitrary un-

weighted graphs in terms of the cutsize of a random spanning tree, no general lower bounds are

known for online unweighted graph prediction. The scenario gets even more uncertain in the case

of weighted graphs, where the only previous papers we are aware of Herbster and Pontil (2007),

Herbster (2008), and Herbster and Lever (2009) essentially contain only upper bounds. In this pa-

per we fill this gap, and show that the expected cutsize of a random spanning tree of the graph

delivers a convenient parametrization1 that captures the hardness of the graph learning problem in

the general weighted case. Given any weighted graph, we prove that any online prediction algo-

rithm must err on a number of nodes which is at least as big as the expected cutsize of the graph’s

random spanning tree (which is defined in terms of the graph weights). Moreover, we exhibit a sim-

ple randomized algorithm achieving in expectation the optimal mistake bound to within logarithmic

1. Different parametrizations of the node prediction problem exist that lead to bounds which are incomparable to ours—

see Section 2.
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factors. This bound applies to any sufficiently connected weighted graph whose weighted cutsize is

not an overwhelming fraction of the total weight.

Following the ideas of Cesa-Bianchi et al. (2009), our algorithm first extracts a random spanning

tree of the original graph. Then, it predicts all nodes of this tree using a generalization of the method

proposed by Herbster et al. (2009a). Our tree prediction procedure is extremely efficient: it only

requires constant amortized time per prediction and space linear in the number of nodes. Again, we

would like to stress that computational efficiency is a central issue in practical applications where

the involved data sets can be very large. In such contexts, learning algorithms whose computation

time scales quadratically, or slower, in the number of data points should be considered impractical.

As in the work by Herbster et al. (2009a), our algorithm first linearizes the tree, and then operates

on the resulting line graph via a nearest neighbor rule. We show that, besides running time, this

linearization step brings further benefits to the overall prediction process. In particular, similar to

Herbster and Pontil (2007, Theorem 4.2), the algorithm turns out to be resilient to perturbations of

the labeling, a clearly desirable feature from a practical standpoint.

In order to provide convincing empirical evidence, we also present an experimental evaluation of

our method compared to other algorithms recently proposed in the literature on graph prediction. In

particular, we test our algorithm against the Perceptron algorithm with Laplacian kernel by Herbster

and Pontil (2007); Herbster et al. (2009b), and against a version of the label propagation algorithm

by Zhu et al. (2003). These two baselines can viewed as representatives of global (Perceptron) and

local (label propagation) learning methods on graphs. The experiments have been carried out on

five medium-sized real-world data sets. The two tree-based algorithms (ours and the Perceptron

algorithm) have been tested using spanning trees generated in various ways, including committees

of spanning trees aggregated by majority votes. In a nutshell, our experimental comparison shows

that predictors based on our online algorithm compare well to all baselines while being very efficient

in most cases.

The paper is organized as follows. Next, we recall preliminaries and introduce our basic nota-

tion. Section 2 surveys related work in the literature. In Section 3 we prove the general lower bound

relating the mistakes of any prediction algorithm to the expected cutsize of a random spanning

tree of the weighted graph. In the subsequent section, we present our prediction algorithm WTA

(Weighted Tree Algorithm), along with a detailed mistake bound analysis restricted to weighted

trees. This analysis is extended to weighted graphs in Section 5, where we provide an upper bound

matching the lower bound up to log factors on any sufficiently connected graph. In Section 6, we

quantify the robustness of our algorithm to label perturbation. In Section 7, we provide the constant

amortized time implementation of WTA. Based on this implementation, in Section 8 we present the

experimental results. Section 9 is devoted to conclusive remarks.

1.1 Preliminaries and Basic Notation

Let G = (V,E,W ) be an undirected, connected, and weighted graph with n nodes and positive edge

weights wi, j > 0 for (i, j) ∈ E. A labeling of G is any assignment y = (y1, . . . ,yn) ∈ {−1,+1}n of

binary labels to its nodes. We use (G,y) to denote the resulting labeled weighted graph.

The online learning protocol for predicting (G,y) can be defined as the following game be-

tween a (possibly randomized) learner and an adversary. The game is parameterized by the graph

G = (V,E,W ). Preliminarily, and hidden to the learner, the adversary chooses a labeling y of G.

Then the nodes of G are presented to the learner one by one, according to a permutation of V , which
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is adaptively selected by the adversary. More precisely, at each time step t = 1, . . . ,n the adversary

chooses the next node it in the permutation of V , and presents it to the learner for the prediction of

the associated label yit . Then yit is revealed, disclosing whether a mistake occurred. The learner’s

goal is to minimize the total number of prediction mistakes. Note that while the adversarial choice

of the permutation can depend on the algorithm’s randomization, the choice of the labeling is obliv-

ious to it. In other words, the learner uses randomization to fend off the adversarial choice of labels,

whereas it is fully deterministic against the adversarial choice of the permutation. The requirement

that the adversary is fully oblivious when choosing labels is then dictated by the fact that the ran-

domized learners considered in this paper make all their random choices at the beginning of the

prediction process (i.e., before seeing the labels).

Now, it is reasonable to expect that prediction performance degrades with the increase of “ran-

domness” in the labeling. For this reason, our analysis of graph prediction algorithms bounds from

above the number of prediction mistakes in terms of appropriate notions of graph label regularity. A

standard notion of label regularity is the cutsize of a labeled graph, defined as follows. A φ-edge of

a labeled graph (G,y) is any edge (i, j) such that yi 6= y j. Similarly, an edge (i, j) is φ-free if yi = y j.

Let Eφ ⊆ E be the set of φ-edges in (G,y). The quantity ΦG(y) =
∣∣Eφ
∣∣ is the cutsize of (G,y), that

is, the number of φ-edges in Eφ (independent of the edge weights). The weighted cutsize of (G,y)
is defined by

ΦW
G (y) = ∑

(i, j)∈Eφ

wi, j .

For a fixed (G,y), we denote by rW
i, j the effective resistance between nodes i and j of G. In the

interpretation of the graph as an electric network, where the weights wi, j are the edge conductances,

the effective resistance rW
i, j is the voltage between i and j when a unit current flow is maintained

through them. For (i, j) ∈ E, let also pi, j = wi, jr
W
i, j be the probability that (i, j) belongs to a random

spanning tree T —see, for example, the monograph of Lyons and Peres (2009). Then we have

EΦT (y) = ∑
(i, j)∈Eφ

pi, j = ∑
(i, j)∈Eφ

wi, jr
W
i, j , (1)

where the expectation E is over the random choice of spanning tree T . Observe the natural weight-

scale independence properties of (1). A uniform rescaling of the edge weights wi, j cannot have an in-

fluence on the probabilities pi, j, thereby making each product wi, jr
W
i, j scale independent. In addition,

since ∑(i, j)∈E pi, j is equal to n−1, irrespective of the edge weighting, we have 0 ≤EΦT (y)≤ n−1.

Hence the ratio 1
n−1

EΦT (y) ∈ [0,1] provides a density-independent measure of the cutsize in G,

and even allows to compare labelings on different graphs.

Now contrast EΦT (y) to the more standard weighted cutsize measure ΦW
G (y). First, ΦW

G (y) is

clearly weight-scale dependent. Second, it can be much larger than n on dense graphs, even in the

unweighted wi, j = 1 case. Third, it strongly depends on the density of G, which is generally related

to ∑(i, j)∈E wi, j. In fact, EΦT (y) can be much smaller than ΦW
G (y) when there are strongly connected

regions in G contributing prominently to the weighted cutsize. To see this, consider the following

scenario: If (i, j) ∈ Eφ and wi, j is large, then (i, j) gives a big contribution to ΦW
G (y) (it is easy

to see that in such cases ΦW
G (y) can be much larger than n). However, this does not necessarily

happen with EΦT (y). In fact, if i and j are strongly connected (i.e., if there are many disjoint paths

connecting them), then rW
i, j is very small and so are the terms wi, jr

W
i, j in (1). Therefore, the effect of

the large weight wi, j may often be compensated by the small probability of including (i, j) in the

random spanning tree. See Figure 1 for an example.
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A different way of taking into account graph connectivity is provided by the covering ball ap-

proach taken by Herbster (2008) and Herbster and Lever (2009)—see the next section.

Figure 1: A barbell graph. The weight of the two thick black edges is equal to
√

V , all the other

edges have unit weight. If the two labels y1 and y2 are such that y1 6= y2, then the contri-

bution of the edges on the left clique C1 to the cutsizes ΦG(y) and ΦW
G (y) must be large.

However, since the probability of including each edge of C1 in a random spanning tree

T is O(1/|V |), C1’s contribution to EΦT (y) is |V | times smaller than ΦC1
(y) = ΦW

C1
(y).

If y3 6= y4, then the contribution of edge (3,4) to ΦW
G (y) is large. Because this edge is

a bridge, the probability of including it in T is one, independent of w3,4. Indeed, we

have p3,4 = w3,4 rW
3,4 = w3,4/w3,4 = 1. If y5 6= y6, then the contribution of the right clique

C2 to ΦW
G (y) is large. On the other hand, the probability of including edge (5,6) in T

is equal to p5,6 = w5,6 rW
5,6 = O(1/

√
|V |). Hence, the contribution of (5,6) to EΦT (y)

is small because the large weight of (5,6) is offset by the fact that nodes 5 and 6 are

strongly connected (i.e., there are many different paths among them). Finally, note that

pi, j = O(1/|V |) holds for all edges (i, j) in C2, implying (similar to clique C1) that C2’s

contribution to EΦT (y) is |V | times smaller than ΦW
C2
(y).

2. Related Work

With the above notation and preliminaries in hand, we now briefly survey the results in the existing

literature which are most closely related to this paper. Further comments are made at the end of

Section 5.

Standard online linear learners, such as the Perceptron algorithm, are applied to the general

(weighted) graph prediction problem by embedding the n vertices of the graph in R
n through a map

i 7→ K−1/2ei, where ei ∈R
n is the i-th vector in the canonical basis of Rn, and K is a positive definite

n× n matrix. The graph Perceptron algorithm (Herbster et al., 2005; Herbster and Pontil, 2007)

uses K = LG + 11⊤, where LG is the (weighted) Laplacian of G and 1 = (1, . . . ,1). The resulting

mistake bound is of the form ΦW
G (y)DW

G , where DW
G = maxi, j rW

i, j is the resistance diameter of G.

As expected, this bound is weight-scale independent, but the interplay between the two factors in it

may lead to a vacuous result. At a given scale for the weights wi, j, if G is dense, then we may have

DW
G = O(1) while ΦW

G (y) is of the order of n2. If G is sparse, then ΦW
G (y) = O(n) but then DW

G may

become as large as n.

The idea of using a spanning tree to reduce the cutsize of G has been investigated by Herbster

et al. (2009b), where the graph Perceptron algorithm is applied to a spanning tree T of G. The
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resulting mistake bound is of the form ΦW
T (y)DW

T , that is, the graph Perceptron bound applied to

tree T . Since ΦW
T (y)≤ ΦW

G (y) this bound has a smaller cutsize than the previous one. On the other

hand, DW
T can be much larger than DW

G because removing edges may increase the resistance. Hence

the two bounds are generally incomparable.

Herbster et al. (2009b) suggest to apply the graph Perceptron algorithm to the spanning tree T

with smallest geodesic diameter. The geodesic diameter of a weighted graph G is defined by

∆W
G = max

i, j
min
Πi, j

∑
(r,s)∈Πi, j

1

wi, j
,

where the minimum is over all paths Πi, j between i and j. The reason behind this choice of T is

that, for the spanning tree T with smallest geodesic diameter, it holds that DW
T ≤ 2∆W

G . However,

one the one hand DW
G ≤ ∆W

G , so there is no guarantee that DW
T = O

(
DW

G

)
, and on the other hand the

adversary may still concentrate all φ-edges on the chosen tree T , so there is no guarantee that ΦW
T (y)

remains small either.

Herbster et al. (2009a) introduce a different technique showing its application to the case of

unweighted graphs. After reducing the graph to a spanning tree T , the tree is linearized via a depth-

first visit. This gives a line graph S (the so-called spine of G) such that ΦS(y) ≤ 2ΦT (y). By

running a Nearest Neighbor (NN) predictor on S, Herbster et al. (2009a) prove a mistake bound

of the form ΦS(y) log
(
n
/

ΦS(y)
)
+ΦS(y). As observed by Fakcharoenphol and Kijsirikul (2008),

similar techniques have been developed to solve low-congestion routing problems.

Another natural parametrization for the labels of a weighted graph that takes the graph structure

into account is clusterability, that is, the extent to which the graph nodes can be covered by a few

balls of small resistance diameter. With this inductive bias in mind, Herbster (2008) developed the

Pounce algorithm, which can be seen as a combination of graph Perceptron and NN prediction. The

number of mistakes has a bound of the form

min
ρ>0

(
N (G,ρ)+ΦW

G (y)ρ
)
, (2)

where N (G,ρ) is the smallest number of balls of resistance diameter ρ it takes to cover the nodes

of G. Note that the graph Perceptron bound is recovered when ρ = DW
G . Moreover, observe that,

unlike graph Perceptron’s, bound (2) is never vacuous, as it holds uniformly for all covers of G

(even the one made up of singletons, corresponding to ρ → 0). A further trick for the unweighted

case proposed by Herbster et al. (2009a) is to take advantage of both previous approaches (graph

Perceptron and NN on line graphs) by building a binary tree on G. This “support tree” helps in

keeping the diameter of G as small as possible, for example, logarithmic in the number of nodes n.

The resulting prediction algorithm is again a combination of a Perceptron-like algorithm and NN,

and the corresponding number of mistakes is the minimum over two earlier bounds: a NN-based

bound of the form ΦG(y)(logn)2 and an unweighted version of bound (2).

Generally speaking, clusterability and resistance-weighted cutsize EΦT (y) exploit the graph

structure in different ways. Consider, for instance, a barbell graph made up of two m-cliques joined

by k unweighted φ-edges with no endpoints in common (hence k ≤ m). This is one of the examples

considered by Herbster and Lever (2009). If m is much larger than k, then bound (2) scales linearly

with k (the two balls in the cover correspond to the two m-cliques). On the other hand, EΦT (y)
tends to be constant: Because m is much larger than k, the probability of including any φ-edge in

T tends to 1/k, as m increases and k stays constant. On the other hand, if k gets close to m the
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resistance diameter of the graph decreases, and (2) becomes a constant. In fact, one can show that

when k = m even EΦT (y) is a constant, independent of m. In particular, the probability that a φ-

edge is included in the random spanning tree T is upper bounded by 3m−1
m(m+1) , that is, EΦT (y)→ 3

when m grows large. This can be shown by computing the effective resistance of φ-edge (i, j) as the

minimum, over all unit-strength flow functions with i as source and j as sink, of the squared flow

values summed over all edges, see, for example, Lyons and Peres (2009).

When the graph at hand has a large diameter, for example, an m-line graph connected to an

m-clique (this is sometimes called a “lollipop” graph) the gap between the covering-based bound

(2) and EΦT (y) is magnified. Yet, it is fair to say that the bounds we are about to prove for our

algorithm have an extra factor, beyond EΦT (y), which is logarithmic in m. A similar logarithmic

factor is achieved by the combined algorithm proposed by Herbster et al. (2009a).

An even more refined way of exploiting cluster structure and connectivity in graphs is contained

in the paper of Herbster and Lever (2009), where the authors provide a comprehensive study of the

application of dual-norm techniques to the prediction of weighted graphs, again with the goal of

obtaining logarithmic performance guarantees on large diameter graphs. In order to trade-off the

contribution of cutsize ΦW
G and resistance diameter DW

G , the authors develop a notion of p-norm

resistance. The obtained bounds are dual norm versions of the covering ball bound (2). Roughly

speaking, one can select the dual norm parameter of the algorithm to obtain a logarithmic contri-

bution from the resistance diameter at the cost of squaring the contribution due to the cutsize. This

quadratic term can be further reduced if the graph is well connected. For instance, in the unweighted

barbell graph mentioned above, selecting the norm appropriately leads to a bound which is constant

even when k ≪ m.

Further comments on the comparison between the results presented by Herbster and Lever

(2009) and the ones in our paper are postponed to the end of Section 5.

Departing from the online learning scenario, it is worth mentioning the significantly large liter-

ature on the general problem of learning the nodes of a graph in the train/test transductive setting:

Many algorithms have been proposed, including the label-consistent mincut approach of Blum and

Chawla (2001), Blum et al. (2004) and a number of other “energy minimization” methods—for

example, the ones by Zhu et al. (2003) and Belkin et al. (2004) of which label propagation is an

instance. See the work of Bengio et al. (2006) for a relatively recent survey on this subject.

Our graph prediction algorithm is based on a random spanning tree of the original graph. The

problem of drawing a random spanning tree of an arbitrary graph has a long history—see, for

example, the monograph by Lyons and Peres (2009). In the unweighted case, a random spanning

tree can be sampled with a random walk in expected time O(n lnn) for “most” graphs, as shown by

Broder (1989). Using the beautiful algorithm of Wilson (1996), the expected time reduces to O(n)—
see also the work of Alon et al. (2008). However, all known techniques take expected time Θ(n3)
on certain pathological graphs. In the weighted case, the above methods can take longer due to the

hardness of reaching, via a random walk, portions of the graph which are connected only via light-

weighted edges. To sidestep this issue, in our experiments we tested a viable fast approximation

where weights are disregarded when building the spanning tree, and only used at prediction time.

Finally, the space complexity for generating a random spanning tree is always linear in the graph

size.

To conclude this section, it is worth mentioning that, although we exploit random spanning trees

to reduce the cutsize, similar approaches can also be used to approximate the cutsize of a weighted

graph by sparsification—see, for example, the work of Spielman and Srivastava (2008). However,
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Figure 2: The adversarial strategy. Numbers on edges are the probabilities pi, j of those edges being

included in a random spanning tree for the weighted graph under consideration. Numbers

within nodes denote the weight of that node based on the pi, j—see main text. We set the

budget K to 6, hence the subset S contains the 6 nodes having smallest weight. The adver-

sary assigns a random label to each node in S thus forcing |S|/2 mistakes in expectation.

Then, it labels all nodes in V \S with a unique label, chosen in such a way as to minimize

the cutsize consistent with the labels previously assigned to the nodes of S.

because the resulting graphs are not as sparse as spanning trees, we do not currently see how to use

those results.

3. A General Lower Bound

This section contains our general lower bound. We show that any prediction algorithm must err at

least 1
2
EΦT (y) times on any weighted graph.

Theorem 1 Let G= (V,E,W ) be a weighted undirected graph with n nodes and weights wi, j > 0 for

(i, j)∈E. Then for all K ≤ n there exists a randomized labeling y of G such that for all (deterministic

or randomized) algorithms A, the expected number of prediction mistakes made by A is at least K/2,

while EΦT (y)< K.

Proof The adversary uses the weighting P induced by W and defined by pi, j = wi, jr
W
i, j. By (1), pi, j

is the probability that edge (i, j) belongs to a random spanning tree T of G. Let Pi = ∑ j pi, j be the

sum over the induced weights of all edges incident to node i. We call Pi the weight of node i. Let

S ⊆ V be the set of K nodes i in G having the smallest weight Pi. The adversary assigns a random

label to each node i ∈ S. This guarantees that, no matter what, the algorithm A will make on average

K/2 mistakes on the nodes in S. The labels of the remaining nodes in V \S are set either all +1 or

all −1, depending on which one of the two choices yields the smaller ΦP
G(y). See Figure 2 for an

illustrative example. We now show that the weighted cutsize ΦP
G(y) of this labeling y is less than K,

independent of the labels of the nodes in S.

Since the nodes in V \ S have all the same label, the φ-edges induced by this labeling can only

connect either two nodes in S or one node in S and one node in V \S. Hence ΦP
G(y) can be written

as

ΦP
G(y) = Φ

P,int
G (y)+Φ

P,ext
G (y) ,
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where Φ
P,int
G (y) is the cutsize contribution within S, and Φ

P,ext
G (y) is the one from edges between S

and V \ S. We can now bound these two terms by combining the definition of S with the equality

∑(i, j)∈E pi, j = n−1 as in the sequel. Let

Pint
S = ∑

(i, j)∈E : i, j∈S

pi, j and Pext
S = ∑

(i, j)∈E : i∈S, j∈V\S

pi, j .

From the very definition of Pint
S and Φ

P,int
G (y) we have Φ

P,int
G (y)≤ Pint

S . Moreover, from the way the

labels of nodes in V \S are selected, it follows that Φ
P,ext
G (y)≤ Pext

S /2. Finally,

∑
i∈S

Pi = 2Pint
S +Pext

S

holds, since each edge connecting nodes in S is counted twice in the sum ∑i∈S Pi. Putting everything

together we obtain

2Pint
S +Pext

S = ∑
i∈S

Pi ≤
K

n
∑
i∈V

Pi =
2K

n
∑

(i, j)∈E

pi, j =
2K(n−1)

n
,

the inequality following from the definition of S. Hence

EΦT (y) = ΦP
G(y) = Φ

P,int
G (y)+Φ

P,ext
G (y)≤ Pint

S +
Pext

S

2
≤ K(n−1)

n
< K

concluding the proof.

4. The Weighted Tree Algorithm

We now describe the Weighted Tree Algorithm (WTA) for predicting the labels of a weighted tree.

In Section 5 we show how to apply WTA to the more general weighted graph prediction problem.

WTA first transforms the tree into a line graph (i.e., a list), then runs a fast nearest neighbor method

to predict the labels of each node in the line. Though this technique is similar to that one used

by Herbster et al. (2009a), the fact that the tree is weighted makes the analysis significantly more

difficult, and the practical scope of our algorithm significantly wider. Our experimental comparison

in Section 8 confirms that exploiting the weight information is often beneficial in real-world graph

prediction problem.

Given a labeled weighted tree (T,y), the algorithm initially creates a weighted line graph L′

containing some duplicates of the nodes in T . Then, each duplicate node (together with its incident

edges) is replaced by a single edge with a suitably chosen weight. This results in the final weighted

line graph L which is then used for prediction. In order to create L from T , WTA performs the

following tree linearization steps:

1. An arbitrary node r of T is chosen, and a line L′ containing only r is created.

2. Starting from r, a depth-first visit of T is performed. Each time an edge (i, j) is traversed

(even in a backtracking step) from i to j, the edge is appended to L′ with its weight wi, j, and j

becomes the current terminal node of L′. Note that backtracking steps can create in L′ at most

one duplicate of each edge in T , while nodes in T may be duplicated several times in L′.
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Figure 3: Top: A weighted graph G with 9 nodes. Initially, WTA extracts a random spanning tree

T out of G. The weights on the edges in T are the same as those of G. Middle: The

spanning tree T is linearized through a depth-first traversal starting from an arbitrary

node (node 2 in this figure). For simplicity, we assume the traversal visits the siblings

from left to right. As soon as a node is visited it gets stored in a line graph L′ (first line

graph from top). Backtracking steps produce duplicates in L′ of some of the nodes in

T . For instance, node 7 is the first node to be duplicated when the visit backtracks from

node 8. The duplicated nodes are progressively eliminated from L′ in the order of their

insertion in L′. Several iterations of this node elimination process are displayed from the

top to the bottom, showing how L′ is progressively shrunk to the final line L (bottom

line). Each line represents the elimination of a single duplicated node. The crossed nodes

in each line are the nodes which are scheduled to be eliminated. Each time a new node

j is eliminated, its two adjacent nodes i and k are connected by the lighter of the two

edges (i, j) and ( j,k). For instance: the left-most duplicated 7 is dropped by directly

connecting the two adjacent nodes 8 and 1 by an edge with weight 1/2; the right-most

node 2 is eliminated by directly connecting node 6 to node 9 with an edge with weight

1/2, and so on. Observe that this elimination procedure can be carried out in any order

without changing the resulting list L. Bottom: We show WTA’s prediction on the line

L so obtained. In this figure, the numbers above the edges denote the edge weights, the

ones below are the resistors, that is, weight reciprocals. We are at time step t = 3 where

two labels have so far been revealed (gray nodes). WTA predicts on the remaining nodes

according to a nearest neighbor rule on L, based on the resistance distance metric. All

possible predictions made by WTA at this time step are shown.
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3. L′ is traversed once, starting from terminal r. During this traversal, duplicate nodes are elim-

inated as soon as they are encountered. This works as follows. Let j be a duplicate node,

and ( j′, j) and ( j, j′′) be the two incident edges. The two edges are replaced by a new edge

( j′, j′′) having weight w j′, j′′ = min
{

w j′, j,w j, j′′
}

.2 Let L be the resulting line.

The analysis of Section 4.1 shows that this choice of w j′, j′′ guarantees that the weighted cutsize of

L is smaller than twice the weighted cutsize of T .

Once L is created from T , the algorithm predicts the label of each node it using a nearest-

neighbor rule operating on L with a resistance distance metric. That is, the prediction on it is the

label of is∗ , being s∗ = argmins<t d(is, it) the previously revealed node closest to it , and d(i, j) =

∑k
s=1 1/wvs,vs+1

is the sum of the resistors (i.e., reciprocals of edge weights) along the unique path

i = v1 → v2 → ·· · → vk+1 = j connecting node i to node j. Figure 3 gives an example of WTA at

work.

4.1 Analysis of WTA

The following lemma gives a mistake bound on WTA run on any weighted line graph. Given any

labeled graph (G,y), we denote by RW
G the sum of resistors of φ-free edges in G,

RW
G = ∑

(i, j)∈E\Eφ

1

wi, j
.

Also, given any φ-free edge subset E ′ ⊂ E \Eφ, we define RW
G (¬E ′) as the sum of the resistors of

all φ-free edges in E \ (Eφ ∪E ′),

RW
G (¬E ′) = ∑

(i, j)∈E\(Eφ∪E ′)

1

wi, j
.

Note that RW
G (¬E ′)≤ RW

G , since we drop some edges from the sum in the defining formula.

Finally, we use f
O
= g as shorthand for f = O(g). The following lemma is the starting point of

our theoretical investigation—please see Appendix A for proofs.

Lemma 2 If WTA is run on a labeled weighted line graph (L,y), then the total number mL of

mistakes satisfies

mL
O
= ΦL(y)

(
1+ log

(
1+

RW
L (¬E ′) ΦW

L (y)

ΦL(y)

))
+ |E ′|

for all subsets E ′ of E \Eφ.

Note that the bound of Lemma 2 implies that, for any K = |E ′| ≥ 0, one can drop from the bound the

contribution of any set of K resistors in RW
L at the cost of adding K extra mistakes. We now provide

an upper bound on the number of mistakes made by WTA on any weighted tree T = (V,E,W ) in

terms of the number of φ-edges, the weighted cutsize, and RW
T .

2. By iterating this elimination procedure, it might happen that more than two adjacent nodes get eliminated. In this

case, the two surviving terminal nodes are connected in L by the lightest edge among the eliminated ones in L′.
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Theorem 3 If WTA is run on a labeled weighted tree (T,y), then the total number mT of mistakes

satisfies

mT
O
= ΦT (y)

(
1+ log

(
1+

RW
T (¬E ′) ΦW

T (y)

ΦT (y)

))
+ |E ′|

for all subsets E ′ of E \Eφ.

The logarithmic factor in the above bound shows that the algorithm takes advantage of labelings

such that the weights of φ-edges are small (thus making ΦW
T (y) small) and the weights of φ-free

edges are high (thus making RW
T small). This matches the intuition behind WTA’s nearest-neighbor

rule according to which nodes that are close to each other are expected to have the same label. In

particular, observe that the way the above quantities are combined makes the bound independent of

rescaling of the edge weights. Again, this has to be expected, since WTA’s prediction is scale insen-

sitive. On the other hand, it may appear less natural that the mistake bound also depends linearly on

the cutsize ΦT (y), independent of the edge weights. The specialization to trees of our lower bound

(Theorem 1 in Section 3) implies that this linear dependence of mistakes on the unweighted cut-

size is necessary whenever the adversarial labeling is chosen from a set of labelings with bounded

ΦT (y).

5. Predicting a Weighted Graph

In order to solve the more general problem of predicting the labels of a weighted graph G, one can

first generate a spanning tree T of G and then run WTA directly on T . In this case, it is possible

to rephrase Theorem 3 in terms of the properties of G. Note that for each spanning tree T of G,

ΦW
T (y) ≤ ΦW

G (y) and ΦT (y) ≤ ΦG(y). Specific choices of the spanning tree T control in different

ways the quantities in the mistake bound of Theorem 3. For example, a minimum spanning tree

tends to reduce the value of R̃W
T , betting on the fact that φ-edges are light. The next theorem relies

on random spanning trees.

Theorem 4 If WTA is run on a random spanning tree T of a labeled weighted graph (G,y), then

the total number mG of mistakes satisfies

EmG
O
= E

[
ΦT (y)

](
1+ log

(
1+wφ

maxE
[
RW

T

]))
, (3)

where wφ
max = max

(i, j)∈Eφ
wi, j.

Note that the mistake bound in (3) is scale-invariant, since E
[
ΦT (y)

]
= ∑(i, j)∈Eφ wi, jr

W
i, j cannot be

affected by a uniform rescaling of the edge weights (as we said in Section 1.1), and so is the product

w
φ
maxE

[
RW

T

]
= w

φ
max ∑(i, j)∈E\Eφ rW

i, j.

We now compare the mistake bound (3) to the lower bound stated in Theorem 1. In particular,

we prove that WTA is optimal (up to logn factors) on every weighted connected graph in which

the φ-edge weights are not “superpolynomially overloaded” w.r.t. the φ-free edge weights. In order

to rule out pathological cases, when the weighted graph is nearly disconnected, we impose the

following mild assumption on the graphs being considered.

We say that a graph is polynomially connected if the ratio of any pair of effective resistances

(even those between nonadjacent nodes) in the graph is polynomial in the total number of nodes
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n. This definition essentially states that a weighted graph can be considered connected if no pair of

nodes can be found which is substantially less connected than any other pair of nodes. Again, as one

would naturally expect, this definition is independent of uniform weight rescaling. The following

corollary shows that if WTA is not optimal on a polynomially connected graph, then the labeling

must be so irregular that the total weight of φ-edges is an overwhelming fraction of the overall

weight.

Corollary 5 Pick any polynomially connected weighted graph G with n nodes. If the ratio of the

total weight of φ-edges to the total weight of φ-free edges is bounded by a polynomial in n, then the

total number of mistakes mG made by WTA when run on a random spanning tree T of G satisfies

EmG
O
= E

[
ΦT (y)

]
logn .

Note that when the hypothesis of this corollary is not satisfied the bound of WTA is not necessar-

ily vacuous. For example, E
[
RW

T

]
w

φ
max = npolylog(n) implies an upper bound which is optimal up to

polylog(n) factors. In particular, having a constant number of φ-free edges with exponentially large

resistance contradicts the assumption of polynomial connectivity, but it need not lead to a vacuous

bound in Theorem 4. In fact, one can use Lemma 2 to drop from the mistake bound of Theorem 4

the contribution of any set of O(1) resistances in E
[
RW

T

]
= ∑(i, j)∈E\Eφ rW

i, j at the cost of adding just

O(1) extra mistakes. This could be seen as a robustness property of WTA’s bound against graphs

that do not fully satisfy the connectedness assumption.

We further elaborate on the robustness properties of WTA in Section 6. In the meanwhile, note

how Corollary 5 compares to the expected mistake bound of algorithms like graph Perceptron (see

Section 2) on the same random spanning tree. This bound depends on the expectation of the product

ΦW
T (y)DW

T , where DW
T is the diameter of T in the resistance distance metric. Recall from the discus-

sion in Section 2 that these two factors are negatively correlated because ΦW
T (y) depends linearly on

the edge weights, while DW
T depends linearly on the reciprocal of these weights. Moreover, for any

given scale of the edge weights, DW
T can be linear in the number n of nodes.

Another interesting comparison is to the covering ball bounds of Herbster (2008) and Herbster

and Lever (2009). Consider the case when G is an unweighted tree with diameter D. Whereas the

dual norm approach of Herbster and Lever (2009) gives a mistake bound of the form ΦG(y)
2 logD,

our approach, as well as the one by Herbster et al. (2009a), yields ΦG(y) logn. Namely, the de-

pendence on ΦG(y) becomes linear rather than quadratic, but the diameter D gets replaced by n,

the number of nodes in G. Replacing n by D seems to be a benefit brought by the covering ball

approach.3 More generally, one can say that the covering ball approach seems to allow to replace

the extra logn term contained in Corollary 5 by more refined structural parameters of the graph

(like its diameter D), but it does so at the cost of squaring the dependence on the cutsize. A typical

(and unsurprising) example where the dual-norm covering ball bounds are better then the one in

Corollary 5 is when the labeled graph is well-clustered. One such example we already mentioned

in Section 2: On the unweighted barbell graph made up of m-cliques connected by k ≪ m φ-edges,

the algorithm of Herbster and Lever (2009) has a constant bound on the number of mistakes (i.e.,

independent of both m and k), the Pounce algorithm has a linear bound in k, while Corollary 5

delivers a logarithmic bound in m+ k. Yet, it is fair to point out that the bounds of Herbster (2008)

3. As a matter of fact, a bound of the form ΦG(y) logD on unweighted trees is also achieved by the direct analysis of

Cesa-Bianchi et al. (2009).
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and Herbster and Lever (2009) refer to computationally heavier algorithms than WTA: Pounce has a

deterministic initialization step that computes the inverse Laplacian matrix of the graph (this is cu-

bic in n, or quadratic in the case of trees), the minimum (Ψ, p)-seminorm interpolation algorithm of

Herbster and Lever (2009) has no initialization, but each step requires the solution of a constrained

convex optimization problem (whose time complexity was not quantified by the authors). Further

comments on the time complexity of our algorithm are given in Section 7.

6. The Robustness of WTA to Label Perturbation

In this section we show that WTA is tolerant to noise, that is, the number of mistakes made by WTA on

most labeled graphs (G,y) does not significantly change if a small number of labels are perturbed

before running the algorithm. This is especially the case if the input graph G is polynomially

connected (see Section 5 for a definition).

As in previous sections, we start off from the case when the input graph is a tree, and then we

extend the result to general graphs using random spanning trees.

Suppose that the labels y in the tree (T,y) used as input to the algorithm have actually been

obtained from another labeling y′ of T through the perturbation (flipping) of some of its labels.

As explained at the beginning of Section 4, WTA operates on a line graph L obtained through the

linearization process of the input tree T . The following theorem shows that, whereas the cutsize

differences |ΦW
T (y)−ΦW

T (y′)| and |ΦT (y)−ΦT (y
′)| on tree T can in principle be very large, the

cutsize differences |ΦW
L (y)−ΦW

L (y′)| and |ΦL(y)−ΦL(y
′)| on the line graph L built by WTA are

always small.

In order to quantify the above differences, we need a couple of ancillary definitions. Given a

labeled tree (T,y), define ζT (K) to be the sum of the weights of the K heaviest edges in T ,

ζT (K) = max
E ′⊆E : |E ′|=K

∑
(i, j)∈E ′

wi, j .

If T is unweighted we clearly have ζT (K) = K. Moreover, given any two labelings y and y′ of T ’s

nodes, we let δ(y,y′) be the number of nodes for which the two labelings differ, that is, δ(y,y′) =∣∣{i = 1, . . . ,n : yi 6= y′i}
∣∣ .

Theorem 6 On any given labeled tree (T,y) the tree linearization step of WTA generates a line

graph L such that:

1. ΦW
L (y)≤ min

y′∈{−1,+1}n
2
(

ΦW
T (y′)+ζT

(
δ(y,y′)

))
;

2. ΦL(y)≤ min
y′∈{−1,+1}n

2
(
ΦT (y

′)+δ(y,y′)
)

.

In order to highlight the consequences of WTA’s linearization step contained in Theorem 6, consider

as a simple example an unweighted star graph (T,y) where all labels are +1 except for the central

node c whose label is −1. We have ΦT (y) = n−1, but flipping the sign of yc we would obtain the

star graph (T,y′) with ΦT (y
′) = 0. Using Theorem 6 (Item 2) we get ΦL(y)≤ 2. Hence, on this star

graph WTA’s linearization step generates a line graph with a constant number of φ-edges even if the

input tree T has no φ-free edges. Because flipping the labels of a few nodes (in this case the label

of c) we obtain a tree with a much more regular labeling, the labels of those nodes can naturally be

seen as corrupted by noise.
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The following theorem quantifies to what extent the mistake bound of WTA on trees can take

advantage of the tolerance to label perturbation contained in Theorem 6. Introducing shorthands for

the right-hand side expressions in Theorem 6,

Φ̃W
T (y) = min

y′∈{−1,+1}n
2
(

ΦW
T (y′)+ζT

(
δ(y,y′)

))

and

Φ̃T (y) = min
y′∈{−1,+1}n

2
(
ΦT (y

′)+δ(y,y′)
)
,

we have the following robust version of Theorem 3.

Theorem 7 If WTA is run on a weighted and labeled tree (T,y), then the total number mT of

mistakes satisfies

mT
O
= Φ̃T (y)

(
1+ log

(
1+

RW
T (¬E ′) Φ̃W

T (y)

Φ̃T (y)

))
+ΦT (y)+ |E ′|

for all subsets E ′ of E \Eφ.

As a simple consequence, we have the following corollary.

Corollary 8 If WTA is run on a weighted and polynomially connected labeled tree (T,y), then the

total number mT of mistakes satisfies

mT
O
= Φ̃T (y) logn .

Theorem 7 combines the result of Theorem 3 with the robustness to label perturbation of WTA’s

tree linearization procedure. Comparing the two theorems, we see that the main advantage of the

tree linearization lies in the mistake bound dependence on the logarithmic factors occurring in the

formulas: Theorem 7 shows that, when Φ̃T (y)≪ ΦT (y), then the performance of WTA can be just

linear in ΦT (y). Theorem 3 shows instead that the dependence on ΦT (y) is in general superlinear

even in cases when flipping few labels of y makes the cutsize ΦT (y) decrease in a substantial way.

In many cases, the tolerance to noise allows us to achieve even better results: Corollary 8 states that,

if T is polynomially connected and there exists a labeling y′ with small δ(y,y′) such that ΦT (y
′) is

much smaller than ΦT (y), then the performance of WTA is about the same as if the algorithm were

run on (T,y′). In fact, from Lemma 2 we know that when T is polynomially connected the mistake

bound of WTA mainly depends on the number of φ-edges in (L,y), which can often be much smaller

than those in (T,y). As a simple example, let T be an unweighted star graph with a labeling y and z

be the difference between the number of +1 and the number of −1 in y. Then the mistake bound of

WTA is linear in z logn irrespective of ΦT (y) and, specifically, irrespective of the label assigned to

the central node of the star, which can greatly affect the actual value of ΦT (y).
We are now ready to extend the above results to the case when WTA operates on a general

weighted graph (G,y) via a uniformly generated random spanning tree T . As before, we need some

shorthand notation. Define Φ∗
G(y) as

Φ∗
G(y) = min

y′∈{−1,+1}n

(
E
[
ΦT (y

′)
]
+δ(y,y′)

)
,

where the expectation is over the random draw of a spanning tree T of G. The following are the

robust versions of Theorem 4 and Corollary 5.
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Theorem 9 If WTA is run on a random spanning tree T of a labeled weighted graph (G,y), then

the total number mG of mistakes satisfies

EmG
O
= Φ∗

G(y)
(

1+ log
(

1+wφ
maxE

[
RW

T

]))
+E

[
ΦT (y)

]
,

where wφ
max = max

(i, j)∈Eφ
wi, j.

Corollary 10 If WTA is run on a random spanning tree T of a labeled weighted graph (G,y) and

the ratio of the weights of each pair of edges of G is polynomial in n, then the total number mG of

mistakes satisfies

EmG
O
= Φ∗

G(y) logn .

The relationship between Theorem 9 and Theorem 4 is similar to the one between Theorem 7 and

Theorem 3. When there exists a labeling y′ such that δ(y,y′) is small and E
[
ΦT (y

′)
]
≪ E

[
ΦT (y)

]
,

then Theorem 9 allows a linear dependence on E
[
ΦT (y)

]
. Finally, Corollary 10 quantifies the

advantages of WTA’s noise tolerance under a similar (but stricter) assumption as the one contained

in Corollary 5.

7. Implementation

As explained in Section 4, WTA runs in two phases: (i) a random spanning tree is drawn; (ii) the tree

is linearized and labels are sequentially predicted. As discussed in Section 1.1, Wilson’s algorithm

can draw a random spanning tree of “most” unweighted graphs in expected time O(n). The analysis

of running times on weighted graphs is significantly more complex, and outside the scope of this

paper. A naive implementation of WTA’s second phase runs in time O(n logn) and requires linear

memory space when operating on a tree with n nodes. We now describe how to implement the

second phase to run in time O(n), that is, in constant amortized time per prediction step.

Once the given tree T is linearized into an n-node line L, we initially traverse L from left to

right. Call j0 the left-most terminal node of L. During this traversal, the resistance distance d( j0, i)
is incrementally computed for each node i in L. This makes it possible to calculate d(i, j) in constant

time for any pair of nodes, since d(i, j) = |d( j0, i)−d( j0, j)| for all i, j ∈ L. On top of L, a complete

binary tree T ′ with 2⌈log2 n⌉ leaves is constructed.4 The k-th leftmost leaf (in the usual tree repre-

sentation) of T ′ is the k-th node in L (numbering the nodes of L from left to right). The algorithm

maintains this data-structure in such a way that at time t: (i) the subsequence of leaves whose labels

are revealed at time t are connected through a (bidirectional) list B, and (ii) all the ancestors in T ′ of

the leaves of B are marked. See Figure 4.

When WTA is required to predict the label yit , the algorithm looks for the two closest revealed

leaves i′ and i′′ oppositely located in L with respect to it . The above data structure supports this

operation as follows. WTA starts from it and goes upwards in T ′ until the first marked ancestor

anc(it) of it is reached. During this upward traversal, the algorithm marks each internal node of T ′

on the path connecting it to anc(it). Then, WTA starts from anc(it) and goes downwards in order to

find the leaf i′ ∈ B closest to it . Note how the algorithm uses node marks for finding its way down:

For instance, in Figure 4 the algorithm goes left since anc(it) was reached from below through the

4. For simplicity, this description assumes n is a power of 2. If this is not the case, we could add dummy nodes to L

before building T ′.
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Figure 4: Constant amortized time implementation of WTA. The line L has n = 27 nodes (the ad-

jacent squares at the bottom). Shaded squares are the revealed nodes, connected through

a dark grey doubly-linked list B. The depicted tree T ′ has both unmarked (white) and

marked (shaded) nodes. The arrows indicate the traversal operations performed by WTA

when predicting the label of node it : The upward traversal stops as soon as a marked

ancestor anc(it) is found, and then a downward traversal begins. Note that WTA first de-

scends to the left, and then keeps going right all the way down. Once i′ is determined, a

single step within B suffices to determine i′′.

right child node, and then keeps right all the way down to i′. Node i′′ (if present) is then identified

via the links in B. The two distances d(it , i
′) and d(it , i

′′) are compared, and the closest node to it
within B is then determined. Finally, WTA updates the links of B by inserting it between i′ and i′′.

In order to quantify the amortized time per trial, the key observation is that each internal node

k of T ′ gets visited only twice during upward traversals over the n trials: The first visit takes place

when k gets marked for the first time, the second visit of k occurs when a subsequent upward visit

also marks the other (unmarked) child of k. Once both of k’s children are marked, we are guaranteed

that no further upward visits to k will be performed. Since the preprocessing operations take O(n),
this shows that the total running time over the n trials is linear in n, as anticipated. Note, however,

that the worst-case time per trial is O(logn). For instance, on the very first trial T ′ has to be traversed

all the way up and down.

This is the way we implemented WTA on the experiments described in the next section.

8. Experiments

We now present the results of an experimental comparison on a number of real-world weighted

graphs from different domains: text categorization, optical character recognition, spam detection

and bioinformatics. Although our theoretical analysis is for the sequential prediction model, all

experiments are carried out using a more standard train-test scenario. This makes it easy to compare

WTA against popular non-sequential baselines, such as Label Propagation.

We compare our algorithm to the following other methods, intended as representatives of two

different ways of coping with the graph prediction problem: global vs. local prediction.
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Perceptron with Laplacian kernel: Introduced by Herbster and Pontil (2007) and here abbre-

viated as GPA (graph Perceptron algorithm). This algorithm sequentially predicts the nodes of a

weighted graph G = (V,E) after mapping V via the linear kernel based on L+
G + 11⊤, where LG is

the Laplacian matrix of G. Following Herbster et al. (2009b), we run GPA on a spanning tree T of

the original graph. This is because a careful computation of the Laplacian pseudoinverse of a n-node

tree takes time Θ(n+m2+mD) where m is the number of training examples plus the number of test

examples (labels to predict), and D is the tree diameter—see the work of Herbster et al. (2009b) for

a proof of this fact. However, in most of our experiments m = n, implying a running time of Θ(n2)
for GPA.

Note that GPA is a global approach, in that the graph topology affects, via the inverse Laplacian,

the prediction on all nodes.

Weighted Majority Vote: Introduced here and abbreviated as WMV. Since the common under-

lying assumption to graph prediction algorithms is that adjacent nodes are labeled similarly, a very

intuitive and fast algorithm for predicting the label of a node i is via a weighted majority vote on the

available labels of the adjacent nodes. More precisely, WMV predicts using the sign of

∑
j :(i, j)∈E

y jwi, j ,

where y j = 0 if node j is not available in the training set. The overall time and space requirements

are both of order Θ(|E|), since we need to read (at least once) the weights of all edges. WMV is also

a local approach, in the sense that prediction at each node is only affected by the labels of adjacent

nodes.

Label Propagation: Introduced by Zhu et al. (2003) and here abbreviated as LABPROP. This is a

batch transductive learning method based on solving a (possibly sparse) linear system of equations

which requires Θ(|E||V |) time. This bad scalability prevented us from carrying out comparative

experiments on larger graphs of 106 or more nodes. Note that WMV can be viewed as a fast approx-

imation of LABPROP.

In our experiments, we combined WTA and GPA with spanning trees generated in different ways

(note that WMV and LABPROP do not use spanning trees).

Random Spanning Tree (RST). Each spanning tree is taken with probability proportional to the

product of its edge weights—see, for example, the monograph by Lyons and Peres (2009, Chapter

4). In addition, we also tested WTA combined with RST generated by ignoring the edge weights

(which were then restored before running WTA). This second approach gives a prediction algorithm

whose total expected running time, including the generation of the spanning tree, is Θ(|V |) on most

graphs. We abbreviate this spanning tree as NWRST (non-weighted RST).

Depth-first spanning tree (DFST). This spanning tree is created via the following randomized

depth-first visit: A root is selected at random, then each newly visited node is chosen with proba-

bility proportional to the weights of the edges connecting the current vertex with the adjacent nodes

that have not been visited yet. This spanning tree is faster to generate than RST, and can be viewed

as an approximate version of RST.

Minimum Spanning Tree (MST). The spanning tree minimizing the sum of the resistors of all

edges. This is the tree whose Laplacian best approximates the Laplacian of G according to the

trace norm criterion—see, for example, the paper of Herbster et al. (2009b). Note that the expected

running time for the creation of a MST is O(|E|), see the work by Karger et al. (1995), while the
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worst-case time is O
(
|E|α(|E|, |V |)

)
where α is the inverse of the Ackermann function (Chazelle,

2000).

Shortest Path Spanning Tree (SPST). Herbster et al. (2009b) use the shortest path tree because

it has a small diameter (at most twice the diameter of G). This allows them to better control the

theoretical performance of GPA. We generated several shortest path spanning trees by choosing the

root node at random, and then took the one with minimum diameter.

In order to check whether the information carried by the edge weight has predictive value for

a nearest neighbor rule like WTA, we also performed a test by ignoring the edge weights during

both the generation of the spanning tree and the running of WTA’s nearest neighbor rule. This is

essentially the algorithm analyzed by Herbster et al. (2009a), and we denote it by NWWTA (non-

weighted WTA). We combined NWWTA with weighted and unweighted spanning trees. So, for

instance, NWWTA+RST runs a 1-NN rule (NWWTA) that does not take edge weights into account

(i.e., pretending that all weights are unitary) on a random spanning tree generated according to the

actual edge weights. NWWTA+NWRST runs NWWTA on a random spanning tree that also disregards

edge weights.

Finally, in order to make the classifications based on RST’s more robust with respect to the

variance associated with the random generation of the spanning tree, we also tested committees

of RST’s. For example, K*WTA+RST denotes the classifier obtained by drawing K RST’s, running

WTA on each one of them, and then aggregating the predictions of the K resulting classifiers via a

majority vote. For our experiments we chose K = 7,11,17.

We ran our experiments on five real-world data sets.

RCV1: The first 10,000 documents (in chronological order) of Reuters Corpus Volume 1, with

TF-IDF preprocessing and Euclidean normalization. This data set is available at trec.nist.gov/

data/reuters/reuters.html.

USPS: The USPS data set with features normalized into [0,2]. This data set is available at

www-i6.informatik.rwth-aachen.de/˜keysers/usps.html.

KROGAN: This is a high-throughput protein-protein interaction network for budding yeast. It

has been used by Krogan et al. (2006) and Pandey et al. (2007).

COMBINED: A second data set from the work of Pandey et al. (2007). It is a combination of

three data sets: Gavin et al.’s (2002), Ito et al.’s (2001), and Uetz et al.’s (2000).

WEBSPAM: A large data set (110,900 nodes and 1,836,136 edges) of inter-host links created

for the Web Spam Challenge 2008 (Yahoo Research and Univ. of Milan, 2007). The data set is

available at barcelona.research.yahoo.net/webspam/datasets/. This is a weighted graph

with binary labels and a pre-defined train/test split: 3,897 training nodes and 1,993 test nodes (the

remaining ones being unlabeled).5

We created graphs from RCV1 and USPS with as many nodes as the total number of examples

(xi,yi) in the data sets. That is, 10,000 nodes for RCV1 and 7291+2007 = 9298 for USPS. Following

previous experimental settings (Zhu et al., 2003; Belkin et al., 2004), the graphs were constructed

using k-NN based on the standard Euclidean distance
∥∥xi − x j

∥∥ between node i and node j. The

weight wi, j was set to wi, j = exp
(
−
∥∥xi − x j

∥∥2/
σ2

i, j

)
, if j is one of the k nearest neighbors of i, and

0 otherwise. To set σ2
i, j, we first computed the average square distance between i and its k nearest

neighbors (call it σ2
i ), then we computed σ2

j in the same way, and finally set σ2
i, j =

(
σ2

i +σ2
j

)/
2. We

5. We do not compare our results to those obtained in the challenge since we are only exploiting the graph (weighted)

topology here, disregarding content features.
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generated two graphs for each data set by running k-NN with k = 10 (RCV1-10 and USPS-10) and

k = 100 (RCV1-100 and USPS-100). The labels were set using the four most frequent categories in

RCV1 and all 10 categories in USPS.

In KROGAN and COMBINED we only considered the biggest connected components of both

data sets, obtaining 2,169 nodes and 6,102 edges for KROGAN, and 2,871 nodes and 6,407 edges

for COMBINED. In these graphs, each node belongs to one or more classes, each class representing

a gene function. We selected the set of functional labels at depth one in the FunCat classification

scheme of the MIPS database (Ruepp, 2004), resulting in seventeen classes per data set.

In order to associate binary classification tasks with the six non-binary data sets/graphs (RCV1-

10, RCV1-100, USPS-10, USPS-100, KROGAN, COMBINED) we binarized the corresponding

multiclass problems via a standard one-vs-rest scheme. We thus obtained: four binary classification

tasks for RCV1-10 and RCV1-100, ten binary tasks for USPS-10 and USPS-100, seventeen binary

tasks for both KROGAN and COMBINED. For a given a binary task and data set, we tried different

proportions of training set and test set sizes. In particular, we used training sets of size 5%, 10%,

25% and 50%. For any given size, the training sets were randomly selected.

We report error rates and F-measures on the test set, after macro-averaging over the binary tasks.

The results are contained in Tables 1–7 (Appendix B) and in Figures 5–6. Specifically, Tables 1–6

contain results for all combinations of algorithms and train/test split for the first six data sets (i.e.,

all but WEBSPAM).

The WEBSPAM data set is very large, and requires us a lot of computational resources in order

to run experiments on this graph. Moreover, GPA has always shown inferior accuracy performance

than the corresponding version of WTA (i.e., the one using the same kind of spanning tree) on all

other data sets. Hence we decided not to go on any further with the refined implementation of GPA

on trees we mentioned above. In Table 7 we only report test error results on the four algorithms

WTA, WMV, LABPROP, and WTA with a committee of seven (nonweighted) random spanning trees.

In our experimental setup we tried to control the sources of variance in the first six data sets as

follows:

1. We first generated ten random permutations of the node indices for each one of the six

graphs/data sets;

2. on each permutation we generated the training/test splits;

3. we computed MST and SPST for each graph and made (for WTA, GPA, WMV, and LABPROP)

one run per permutation on each of the 4+4+10+10+17+17 = 62 binary problems, averaging

results over permutations and splits;

4. for each graph, we generated ten random instances for each one of RST, NWRST, DFST, and

then operated as in step 2, with a further averaging over the randomness in the tree generation.

Figure 5 extracts from Tables 1–6 the error levels of the best spanning tree performers, and compared

them to WMV and LABPROP. For comparison purposes, we also displayed the error levels achieved

by WTA operating on a committee of seventeen random spanning trees (see below). Figure 6 (left)

contains the error level on WEBSPAM reported in Table 7. Finally, Figure 6 (right) is meant to

emphasize the error rate differences between RST and NWRST run with WTA.

Several interesting observations and conclusions can be drawn from our experiments.
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Figure 5: Macroaveraged test error rates on the first six data sets as a function of the training set

size. The results are extracted from Tables 1–6 in Appendix B. Only the best performing

spanning tree (i.e., MST) is shown for the algorithms that use spanning trees. These results

are compared to WMV, LABPROP, and 17*WTA+RST.
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Figure 6: Left: Error rate levels on WEBSPAM taken from Table 7 in Appendix B. Right: Average

error rate difference across data sets when using WTA+NWRST rather than WTA+RST.

1. WTA outperforms GPA on all data sets and with all spanning tree combinations. In particular,

though we only reported aggregated results, the same relative performance pattern among

the two algorithms repeats systematically over all binary classification problems. In addition,

WTA runs significantly faster than GPA, requires less memory storage (linear in |V |, rather

than quadratic), and is also fairly easy to implement.

2. By comparing NWWTA to WTA, we see that the edge weight information in the nearest neigh-

bor rule increases accuracy, though only by a small amount.

3. WMV is a fast and accurate approximation to LABPROP when either the graph is dense (RCV1-

100, and USPS-100) or the training set is comparatively large (25%–50%), although neither

of the two situations often occurs in real-world applications.

4. The best performing spanning tree for both WTA and GPA is MST. This might be explained by

the fact that MST tends to select light φ-edges of the original graph.

5. NWRST and DFST are fast approximations to RST. Though the use of NWRST and DFST

does not provide theoretical performance guarantees as for RST, in our experiments they do

actually perform comparably. Hence, in practice, NWRST and DFST might be viewed as fast

and practical ways to generate spanning trees for WTA.

6. The prediction performance of WTA+MST is sometimes slightly inferior to LABPROP’s. How-

ever, it should be stressed that LABPROP takes time Θ(|E||V |), whereas a single sweep of

WTA+MST over the graph just takes time O(|E|α(|E|, |V |)), where α is the inverse of the

Ackermann function (Chazelle, 2000). Committees of spanning trees are a simple way to

make WTA approach, and sometimes surpass, the performance of LABPROP. One can see

1272



RANDOM SPANNING TREES AND THE PREDICTION OF WEIGHTED GRAPHS

that on sparse graphs using committees gives a good performances improvement. In partic-

ular, committees of WTA can reach the same performances of LABPROP while adding just a

constant factor to their (linear) time complexity.

9. Conclusions and Open Questions

We introduced and analyzed WTA, a randomized online prediction algorithm for weighted graph

prediction. The algorithm uses random spanning trees and has nearly optimal performance guaran-

tees in terms of expected prediction accuracy. The expected running time of WTA is optimal when

the random spanning tree is drawn ignoring edge weights. Thanks to its linearization phase, the

algorithm is also provably robust to label noise.

Our experimental evaluation shows that WTA outperforms other previously proposed online

predictors. Moreover, when combined with an aggregation of random spanning trees, WTA also

tends to beat standard batch predictors, such as label propagation. These features make WTA (and

its combinations) suitable to large scale applications.

There are two main directions in which this work can improved. First, previous analyses (Cesa-

Bianchi et al., 2009) reveal that WTA’s analysis is loose, at least when the input graph is an un-

weighted tree with small diameter. This is the main source of the Ω(ln |V |) slack between WTA

upper bound and the general lower bound of Theorem 1. So we ask whether, at least in certain

cases, this slack could be reduced. Second, in our analysis we express our upper and lower bounds

in terms of the cutsize. One may object that a more natural quantity for our setting is the weighted

cutsize, as this better reflects the assumption that φ-edges tend to be light, a natural notion of bias

for weighted graphs. In more generality, we ask what are other criteria that make a notion of bias

better than another one. For example, we may prefer a bias which is robust to small perturbations

of the problem instance. In this sense Φ∗
G, the cutsize robust to label perturbation introduced in

Section 6, is a better bias than EΦT . We thus ask whether there is a notion of bias, more natural

and robust than EΦT , which captures as tightly as possible the optimal number of online mistakes

on general weighted graphs. A partial answer to this question is provided by the recent work of

Vitale et al. (2012). It would also be nice to tie this machinery with recent results in the active node

classification setting on trees developed by Cesa-Bianchi et al. (2010).
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Appendix A.

This appendix contains the proofs of Lemma 2, Theorem 3, Theorem 4, Corollary 5, Theorem 6,

Theorem 7, Corollary 8, Theorem 9, and Corollary 10. Notation and references are as in the main

text. We start by proving Lemma 2.

Proof [Lemma 2] Let a cluster be any maximal sub-line of L whose edges are all φ-free. Then L

contains exactly ΦL(y)+ 1 clusters, which we number consecutively, starting from one of the two
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terminal nodes. Consider the k-th cluster ck. Let v0 be the first node of ck whose label is predicted

by WTA. After yv0
is revealed, the cluster splits into two edge-disjoint sub-lines c′k and c′′k , both

having v0 as terminal node.6 Let v′k and v′′k be the closest nodes to v0 such that (i) yv′k
= yv′′k

6= yv0
and

(ii) v′k is adjacent to a terminal node of c′k, and v′′k is adjacent to a terminal node of c′′k . The nearest

neighbor prediction rule of WTA guarantees that the first mistake made on c′k (respectively, c′′k ) must

occur on a node v1 such that d(v0,v1) ≥ d(v1,v
′
k) (respectively, d(v0,v1) ≥ d(v1,v

′′
k )). By iterating

this argument for the subsequent mistakes we see that the total number of mistakes made on cluster

ck is bounded by

1+

⌊
log2

R′
k +(w′

k)
−1

(w′
k)

−1

⌋
+

⌊
log2

R′′
k +(w′′

k )
−1

(w′′
k )

−1

⌋

where R′
k is the resistance diameter of sub-line c′k, and w′

k is the weight of the φ-edge between v′k and

the terminal node of c′k closest to it (R′′
k and w′′

k are defined similarly). Hence, summing the above

displayed expression over clusters k = 1, . . . ,ΦL(y)+1 we obtain

mL
O
= ΦL(y)+∑

k

(
log
(
1+R′

kw′
k

)
+ log

(
1+R′

kw′′
k

))

O
= ΦL(y)

(
1+ log

(
1+

1

ΦL(y)
∑
k

R′
kw′

k

)
+ log

(
1+

1

ΦL(y)
∑
k

R′′
k w′′

k

))

O
= ΦL(y)

(
1+ log

(
1+

RW
L ΦW

L (y)

ΦL(y)

))
,

where in the second step we used Jensen’s inequality and in the last one the fact that ∑k(R
′
k +R′′

k ) =

RW
L and maxk w′

k

O
= ΦW

L (y), maxk w′′
k

O
= ΦW

L (y). This proves the lemma in the case E ′ ≡ /0.

In order to conclude the proof, observe that if we take any semi-cluster c′k (obtained, as before,

by splitting cluster ck, being v0 ∈ ck the first node whose label is predicted by WTA), and pretend to

split it into two sub-clusters connected by a φ-free edge, we could repeat the previous dichotomic

argument almost verbatim on the two sub-clusters at the cost of adding an extra mistake. We now

make this intuitive argument more precise. Let (i, j) be a φ-free edge belonging to semi-cluster c′k,

and suppose without loss of generality that i is closer to v0 than to j. If we remove edge (i, j) then c′k
splits into two subclusters: c′k(v0) and c′k( j), containing node v0 and j, respectively (see Figure 7).

Let mc′k
, mc′k(v0) and mc′k( j) be the number of mistakes made on c′k, c′k(v0) and c′k( j), respectively. We

clearly have mc′k
= mc′k(v0)+mc′k( j).

Let now γ′k be the semi-cluster obtained from c′k by contracting edge (i, j) so as to make i

coincide with j (we sometimes write i ≡ j). Cluster γ′k can be split into two parts which overlap

only at node i ≡ j: γ′k(v0), with terminal nodes v0 and i (coinciding with node j), and γ′k( j). In a

similar fashion, let mγ′k
, mγ′k(v0), and mγ′k( j) be the number of mistakes made on γ′k, γ′k(v0) and γ′k( j),

respectively. We have mγ′k
= mγ′k(v0)+mγ′k( j)− 1, where the −1 takes into account that γ′k(v0) and

γ′k( j) overlap at node i ≡ j.

Observing now that, for each node v belonging to c′k(v0) (and γ′k(v0)), the distance d(v,v′k) is

smaller on γk than on c′k, we can apply the above-mentioned dichotomic argument to bound the

mistakes made on c′k, obtaining mγ′k(v0) ≤ mc′k(v0). Since mc′k( j) = mγ′k( j), we can finally write mc′k
=

mc′k(v0)+mc′k( j) ≤ mγ′k(v0)+mγ′k( j) = mγ′k
+1. Iterating this argument for all edges in E ′ concludes the

6. With no loss of generality, we assume that neither of the two sub-lines is empty, so that v0 is not a terminal node of

ck.
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Figure 7: We illustrate the way we bound the number of mistakes on semi-cluster c′k by dropping the

resistance contribution of any (possibly very light) edge (i, j), at the cost of increasing the

mistake bound on c′k by 1. The removal of (i, j) makes c′k split into subclusters c′k(v0) and

c′k( j). We can then drop edge (i, j) by making node i coincide with node j. The resulting

semi-cluster is denoted γ′k. This shortened version of c′k can be viewed as split into sub-

cluster γ′k(v0) and subcluster γ′k( j), corresponding to c′k(v0) and c′k( j), respectively. Now,

the number of mistakes made on c′k(v0) and c′k( j) can be bounded by those made on γ′k(v0)
and γ′k( j). Hence, we can bound the mistakes on c′k through the ones made on γ′k, with the

addition of a single mistake, rather than two, due to the double node i ≡ j of γ′k.

proof.

In view of proving Theorem 3, we now prove the following two lemmas.

Lemma 11 Given any tree T , let E(T ) be the edge set of T , and let E(L′) and E(L) be the edge

sets of line graphs L′ and L obtained via WTA’s tree linearization of T . Then the following holds.

1. There exists a partition PL′ of E(L′) in pairs and a bijective mapping µL′ : PL′ → E(T ) such

that the weight of both edges in each pair S′ ∈ PL′ is equal to the weight of the edge µL′(S′).

2. There exists a partition PL of E(L) in sets S such that |S| ≤ 2, and there exists an injective

mapping µL : PL → E(T ) such that the weight of the edges in each pair S ∈ PL is equal to the

weight of the edge µL(S).

Proof We start by defining the bijective mapping µL′ : PL′ → E(T ). Since each edge (i, j) of T is

traversed exactly twice in the depth-first visit that generates L′,7 once in a forward step and once in

a backward step, we partition E(L′) in pairs S′ such that µL′(S′) = (i, j) if and only if S′ contains the

pair of distinct edges created in L′ by the two traversals of (i, j). By construction, the edges in each

7. For the sake of simplicity, we are assuming here that the depth-first visit of T terminates by backtracking over all

nodes on the path between the last node visited in a forward step and the root.
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pair S′ have weight equal to µL′(S′). Moreover, this mapping is clearly bijective, since any edge of

L′ is created by a single traversal of an edge in T . The second mapping µL : P (L)→ E(T ) is created

as follows. PL is created from PL′ by removing from each S′ ∈ PL′ the edges that are eliminated

when L′ is transformed into L. Note that we have
∣∣PL

∣∣≤
∣∣PL′

∣∣ and for any S ∈ PL there is a unique

S′ ∈ PL′ such that S ⊆ S′. Now, for each S ∈ PL let µL(S) = µL′(S′), where S′ is such that S ⊆ S′.
Since µL′ is bijective, µL is injective. Moreover, since the edges in S′ have the same weight as the

edge µL′(S′), the same property holds for µL.

Lemma 12 Let (T,y) be a labeled tree, let (L,y) be the linearization of T , and let L′ be the line

graph with duplicates (as described above). Then the following holds.8

1. ΦW
L (y)≤ ΦW

L′ (y)≤ 2ΦW
T (y);

2. ΦL(y)≤ ΦL′(y)≤ 2ΦT (y).

Proof From Lemma 11 (Item 1) we know that L′ contains a duplicated edge for each edge of T .

This immediately implies ΦL′(y)≤ 2ΦT (y) and ΦW
L′ (y)≤ 2ΦW

T (y).
To prove the remaining inequalities, note that from the description of WTA in Section 4 (Step 3),

we see that when L′ is transformed into L the pair of edges ( j′, j) and ( j, j′′) of L′, which are

incident to a duplicate node j, gets replaced in L (together with j) by a single edge ( j′, j′′). Now

each such edge ( j′, j′′) cannot be a φ-edge in L unless either ( j, j′) or ( j, j′′) is a φ-edge in L′, and

this establishes ΦL(y)≤ ΦL′(y). Finally, if ( j′, j′′) is a φ-edge in L, then its weight is not larger than

the weight of the associated φ-edge in L′ (Step 3 of WTA), and this establishes ΦW
L (y)≤ ΦW

L′ (y).

Recall that, given a labeled graph G = (V,E) and any φ-free edge subset E ′ ⊂ E \Eφ, the quantity

RW
G (¬E ′) is the sum of the resistors of all φ-free edges in E \ (Eφ ∪E ′).

Lemma 13 If WTA is run on a weighted line graph (L,y) obtained through the linearization of a

given labeled tree (T,y) with edge set E, then the total number mT of mistakes satisfies

mT
O
= ΦL(y)

(
1+ log2

(
1+

RW
T (¬E ′) ΦW

L (y)

ΦL(y)

))
+ΦT (y)+ |E ′| ,

where E ′ is an arbitrary subset of E \Eφ.

Proof Lemma 11 (Item 2), exhibits an injective mapping µL : P → E, where P is a partition of

the edge set E(L) of L, such that every S ∈ P satisfies |S| ≤ 2. Hence, we have |E ′(L)| ≤ 2|E ′|,
where E ′(L) is the union of the pre-images of edges in E ′ according to µL—note that some edge in

E ′ might not have a pre-image in E(L). By the same argument, we also establish |E0(L)| ≤ 2ΦT ,

where E0(L) is the set of φ-free edges of L that belong to elements S of the partition PL such that

µL(S) ∈ Eφ.

Since the edges of L that are neither in E0(L) nor in E ′(L) are partitioned by PL in edge sets

having cardinality at most two, which in turn can be injectively mapped via µL to E \ (Eφ ∪E ′), we

have RW
L

(
¬
(
E ′(L)∪E0(L)

))
≤ 2RW

T (¬E ′) . Finally, we use |E ′(L)| ≤ 2|E ′| and |E0(L)| ≤ 2ΦT (y)

(which we just established) and apply Lemma 2 with E ′ ≡ E ′(L)∪E0(L). This concludes the proof.

8. Item 2 in this lemma is essentially contained in the paper by Herbster et al. (2009a).
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Proof [of Theorem 3] We use Lemma 12 to establish ΦL(y) ≤ 2ΦT (y) and ΦW
L (y) ≤ 2ΦW

T (y). We

then conclude with an application of Lemma 13.

Lemma 14 If WTA is run on a weighted line graph (L,y) obtained through the linearization of

random spanning tree T of a labeled weighted graph (G,y), then the total number mG of mistakes

satisfies

EmG
O
= E

[
ΦL(y)

](
1+ log

(
1+wφ

maxE
[
RW

T

])
+E

[
ΦT (y)

])
,

where w
φ
max = max(i, j)∈Eφ wi, j.

Proof Using Lemma 13 with E ′ ≡ /0 we can write

EmG
O
= E

[
ΦL(y)

(
1+ log

(
1+

RW
T ΦW

L (y)

ΦL(y)

))
+ΦT

]

O
= E

[
ΦL(y)

(
1+ log

(
1+RW

T wφ
max

))
+ΦT

]

O
= E

[
ΦL(y)

](
1+ log

(
1+E

[
RW

T

]
wφ

max

))
+E

[
ΦT (y)

]
,

where the second equality follows from the fact that ΦW
L (y) ≤ ΦL(y)w

φ
max, which in turn follows

from Lemma 11, and the third one follows from Jensen’s inequality applied to the concave function

(x,y) 7→ x
(

1+ log
(

1+ yw
φ
max

))
for x,y ≥ 0.

Proof [Theorem 4] We apply Lemma 14 and then Lemma 12 to get ΦL(y)≤ 2ΦT (y).

Proof [Corollary 5] Let f > poly(n) denote a function growing faster than any polynomial in

n. Choose a polynomially connected graph G and a labeling y. For the sake of contradiction,

assume that WTA makes more than O(E
[
ΦT (y)

]
logn) mistakes on (G,y). Then Theorem 4 im-

plies w
φ
maxE

[
RW

T

]
> poly(n). Since E

[
RW

T

]
= ∑(i, j)∈E\Eφ rW

i, j, we have that w
φ
max max(i, j)∈E\Eφ rW

i, j >

poly(n). Together with the assumption of polynomial connectivity for G, this implies w
φ
maxrW

i, j >

poly(n) for all φ-free edges (i, j). By definition of effective resistance, wi, jr
W
i, j ≤ 1 for all (i, j) ∈ E.

This gives w
φ
max/wi, j > poly(n) for all φ-free edges (i, j), which in turn implies

∑(i, j)∈Eφ wi, j

∑(i, j)∈E\Eφ wi, j
> poly(n) .

As this contradicts our hypothesis, the proof is concluded.

Proof [Theorem 6] We only prove the first part of the theorem. The proof of the second part

corresponds to the special case when all weights are equal to 1.
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Let ∆(y,y′) ⊆ V be the set of nodes i such that yi 6= y′i. We therefore have δ(y,y′) = |∆(y,y′)|.
Since in a line graph each node is adjacent to at most two other nodes, the label flip of any node

j ∈ ∆(y,y′) can cause an increase of the weighted cutsize of L by at most wi′, j +w j,i′′ , where i′ and i′′

are the two nodes adjacent to j in L (in the special case when j is terminal node we can set w j,i′′ = 0).

Hence, flipping the labels of all nodes in ∆(y,y′), we have that the total cutsize increase is bounded

by the sum of the weights of the 2δ(y,y′) heaviest edges in L, which implies

ΦW
L (y)≤ ΦW

L (y′)+ζL

(
2δ(y,y′)

)
.

By Lemma 12, ΦW
L (u) ≤ 2ΦW

T (u). Moreover, Lemma 11 gives an injective mapping µL : PL → E

(E is the edge set of T ) such that the elements of P have cardinality at most two, and the weight of

each edge µL(S) is the same as the weights of the edges in S. Hence, the total weight of the 2δ(y,y′)
heaviest edges in L is at most twice the total weight of the δ(y,y′) heaviest edges in T . Therefore

ζL

(
2δ(y,y′)

)
≤ 2ζT

(
δ(y,y′)

)
. Hence, we have obtained

ΦW
L (y)≤ 2ΦW

T (y′)+2ζT

(
δ(y,y′)

)
,

concluding the proof.

Proof [Theorem 7] We use Theorem 6 to bound ΦL(y) and ΦW
L (y) in the mistake bound of Lemma 13.

Proof [Corollary 8] Recall that the resistance between two nodes i and j of any tree is simply the

sum of the inverse weights over all edges on the path connecting the two nodes. Since T is poly-

nomially connected, we know that the ratio of any pair of edge weights is polynomial in n. This

implies that RW
L ΦW

L (y) is polynomial in n, too. We apply Theorem 6 to bound ΦL(y) in the mistake

bound of Lemma 2 with E ′ = /0. This concludes the proof.

Lemma 15 If WTA is run on a line graph L obtained by linearizing a random spanning tree T of a

labeled and weighted graph (G,y), then we have

E
[
ΦL(y)

] O
= Φ∗

G(y) .

Proof Recall that Theorem 6 holds for any spanning tree T of G. Thus it suffices to apply part 2 of

Theorem 6 and use E
[
minX

]
≤ minE[X ] .

Proof [Theorem 9] We apply Lemma 15 to bound E
[
ΦL(y)

]
in Lemma 14.

Proof [Corollary 10] We can use Lemma 2 with the setting E ′ ≡ /0, and bound E
[
ΦL(y)

]
via

Lemma 15. To conclude, observe that since the ratio of the weights of any pair of edges in G is

polynomial in n, then RW
L ΦW

L (y) is polynomial in n, too.
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Appendix B.

This appendix summarizes all our experimental results. For each combination of data set, algorithm,

and train/test split, we provide macro-averaged error rates and F-measures on the test set. The

algorithms are WTA, NWWTA, and GPA (all combined with various spanning trees), WMV, LABPROP,

and WTA run with committees of random spanning trees. WEBSPAM was too large a data set to

perform as thorough an investigation. Hence we only report test error results on the four algorithms

WTA, WMV, LABPROP, and WTA with a committee of 7 (nonweighted) random spanning trees.

Train/test split 5% 10% 25% 50%

Predictors Error F Error F Error F Error F

WTA+RST 25.54 0.81 22.67 0.84 19.06 0.86 16.57 0.88

WTA+NWRST 25.81 0.81 22.70 0.83 19.24 0.86 17.00 0.87

WTA+MST 21.09 0.84 17.94 0.87 13.93 0.90 11.40 0.91

WTA+SPST 25.47 0.81 22.65 0.83 19.31 0.86 17.24 0.87

WTA+DFST 26.02 0.81 22.34 0.84 17.73 0.87 14.89 0.89

NWWTA+RST 25.28 0.81 22.45 0.84 19.12 0.86 17.16 0.87

NWWTA+NWRST 25.97 0.81 23.14 0.83 19.54 0.86 17.84 0.87

NWWTA+MST 21.18 0.84 18.17 0.87 14.51 0.89 12.44 0.91

NWWTA+SPST 25.49 0.81 22.81 0.83 19.64 0.86 17.55 0.87

NWWTA+DFST 26.08 0.81 22.82 0.83 17.93 0.87 15.64 0.88

GPA+RST 32.75 0.75 29.85 0.78 27.67 0.80 24.44 0.82

GPA+NWRST 34.27 0.74 30.36 0.78 28.90 0.79 25.99 0.81

GPA+MST 27.98 0.79 24.89 0.82 21.80 0.84 20.27 0.85

GPA+SPST 27.18 0.79 25.13 0.82 22.20 0.84 20.27 0.85

GPA+DFST 47.11 0.61 45.65 0.64 43.08 0.66 38.20 0.71

7*WTA+RST 17.40 0.87 14.85 0.90 12.15 0.91 10.39 0.92

7*WTA+NWRST 17.81 0.87 15.15 0.89 12.51 0.91 10.92 0.92

11*WTA+RST 16.40 0.88 13.86 0.90 11.38 0.92 9.71 0.93

11*WTA+NWRST 16.78 0.88 14.22 0.90 11.73 0.92 10.20 0.93

17*WTA+RST 15.78 0.89 13.23 0.91 10.85 0.92 9.22 0.94

17*WTA+NWRST 16.07 0.89 13.55 0.90 11.18 0.92 9.65 0.93

WMV 31.82 0.76 22.27 0.84 11.82 0.91 8.76 0.93

LABPROP 16.33 0.89 13.00 0.91 10.00 0.93 8.77 0.94

Table 1: RCV1-10. Average error rate and F-measure on 4 classes.
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Train/test split 5% 10% 25% 50%

Predictors Error F Error F Error F Error F
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Table 3: USPS-10. Average error rate and F-measure on 10 classes.
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Train/test split 5% 10% 25% 50%

Predictors Error F Error F Error F Error F

WTA+RST 9.62 0.95 8.29 0.95 6.55 0.96 5.36 0.97

WTA+NWRST 10.32 0.94 9.00 0.95 7.17 0.96 5.83 0.97

WTA+MST 1.90 0.99 1.49 0.99 1.22 0.99 0.94 0.99

WTA+SPST 8.68 0.95 7.27 0.96 5.78 0.97 4.88 0.97

WTA+DFST 10.36 0.94 8.13 0.96 5.62 0.97 4.21 0.98

NWWTA+RST 9.71 0.95 8.38 0.95 6.78 0.96 5.89 0.97

NWWTA+NWRST 10.39 0.94 9.08 0.95 7.46 0.96 6.45 0.96

NWWTA+MST 1.91 0.99 1.60 0.99 1.23 0.99 1.09 0.99
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NWWTA+DFST 10.46 0.94 8.30 0.95 6.00 0.97 4.65 0.97

GPA+RST 14.81 0.91 13.38 0.92 11.94 0.93 9.81 0.94

GPA+NWRST 17.34 0.90 13.68 0.92 11.39 0.94 11.46 0.94

GPA+MST 3.57 0.98 2.26 0.99 1.77 0.99 1.39 0.99

GPA+SPST 8.42 0.95 7.94 0.95 7.20 0.96 5.71 0.97

GPA+DFST 46.09 0.67 42.59 0.71 37.66 0.75 28.45 0.82

7*WTA+RST 5.28 0.97 4.24 0.98 3.05 0.98 2.37 0.99
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17*WTA+RST 5.17 0.97 3.96 0.98 2.72 0.99 2.05 0.99
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Table 4: USPS-100. Average error rate and F-measure on 10 classes.
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Train/test split 5% 10% 25% 50%

Predictors Error F Error F Error F Error F

WTA+RST 21.73 0.86 21.37 0.86 19.89 0.87 19.09 0.88

WTA+NWRST 21.86 0.86 21.50 0.86 20.03 0.87 19.33 0.88

WTA+MST 21.55 0.86 20.86 0.87 19.35 0.88 18.36 0.88

WTA+SPST 21.86 0.86 21.58 0.86 20.38 0.87 19.40 0.88

WTA+DFST 21.78 0.86 21.22 0.86 19.88 0.87 18.60 0.88

NWWTA+RST 21.83 0.86 21.43 0.86 20.08 0.87 19.64 0.88

NWWTA+NWRST 21.98 0.86 21.55 0.86 20.26 0.87 19.75 0.87

NWWTA+MST 21.55 0.86 20.91 0.87 19.55 0.88 18.89 0.88

NWWTA+SPST 21.86 0.86 21.57 0.86 20.50 0.87 19.81 0.87

NWWTA+DFST 21.79 0.86 21.33 0.86 20.00 0.87 19.09 0.88

GPA+RST 22.70 0.85 22.75 0.85 22.14 0.86 21.28 0.86

GPA+NWRST 23.83 0.84 23.28 0.85 22.48 0.85 21.53 0.86

GPA+MST 21.99 0.86 21.34 0.86 20.77 0.86 20.48 0.87

GPA+SPST 22.33 0.84 21.34 0.86 20.71 0.86 20.74 0.86

GPA+DFST 39.77 0.72 31.93 0.78 25.70 0.83 24.09 0.84

7*WTA+RST 16.83 0.90 16.63 0.90 15.78 0.90 15.29 0.90

7*WTA+NWRST 16.85 0.90 16.60 0.90 15.89 0.90 15.41 0.90

11*WTA+RST 16.28 0.90 16.11 0.90 15.36 0.91 14.92 0.91

11*WTA+NWRST 16.28 0.90 16.08 0.90 15.55 0.90 14.99 0.91

17*WTA+RST 15.93 0.90 15.78 0.90 15.17 0.91 14.63 0.91

17*WTA+NWRST 15.98 0.90 15.69 0.91 15.23 0.91 14.68 0.91

WMV 42.98 0.70 38.88 0.73 29.85 0.80 22.66 0.85

LABPROP 15.26 0.91 15.21 0.91 14.94 0.91 15.13 0.91

Table 5: KROGAN. Average error rate and F-measure on 17 classes.
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Train/test split 5% 10% 25% 50%

Predictors Error F Error F Error F Error F

WTA+RST 21.68 0.86 21.05 0.87 20.08 0.87 18.99 0.88

WTA+NWRST 21.47 0.87 21.29 0.86 20.18 0.87 19.17 0.88

WTA+MST 21.57 0.86 20.63 0.87 19.61 0.88 18.37 0.88

WTA+SPST 21.39 0.87 21.34 0.86 20.52 0.87 19.57 0.88

WTA+DFST 21.88 0.86 21.09 0.87 19.82 0.87 18.83 0.88

NWWTA+RST 21.50 0.87 21.15 0.87 20.43 0.87 19.95 0.87

NWWTA+NWRST 21.61 0.86 21.26 0.87 20.52 0.87 20.09 0.87

NWWTA+MST 21.53 0.86 20.95 0.87 20.35 0.87 19.81 0.88

NWWTA+SPST 21.37 0.87 21.06 0.87 20.55 0.87 20.06 0.87

NWWTA+DFST 21.88 0.86 21.05 0.87 20.50 0.87 19.74 0.88

GPA+RST 23.56 0.85 22.27 0.86 21.86 0.86 21.68 0.86

GPA+NWRST 23.91 0.85 23.11 0.85 22.47 0.86 21.30 0.86

GPA+MST 23.32 0.85 21.60 0.86 21.77 0.86 21.67 0.86

GPA+SPST 22.55 0.85 21.89 0.85 21.64 0.85 21.70 0.85

GPA+DFST 41.69 0.71 30.82 0.79 26.75 0.82 23.56 0.84

7*WTA+RST 16.39 0.90 16.09 0.90 15.77 0.91 15.29 0.91

7*WTA+NWRST 16.35 0.90 16.10 0.90 15.77 0.90 15.47 0.91

11*WTA+RST 15.89 0.91 15.61 0.91 15.32 0.91 14.84 0.91

11*WTA+NWRST 15.82 0.91 15.57 0.91 15.34 0.91 14.98 0.91

17*WTA+RST 15.54 0.91 15.31 0.91 14.97 0.91 14.55 0.91

17*WTA+NWRST 15.45 0.91 15.29 0.91 15.05 0.91 14.66 0.91

WMV 44.74 0.68 40.75 0.72 32.97 0.78 25.28 0.84

LABPROP 14.93 0.91 14.98 0.91 15.23 0.91 15.31 0.90

Table 6: COMBINED. Average error rate and F-measure on 17 classes.

Predictors Error F

WTA+NWRST 10.03 0.95

3*WTA+NWRST 6.44 0.97

7*WTA+NWRST 5.91 0.97

WMV 44.1 0.71

LABPROP 12.84 0.93

Table 7: WEBSPAM. Test set error rate and F-measure. WTA operates only on NWRST.
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