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Abstract

In this paper we propose efficient algorithms for solving constrained online convex optimization
problems. Our motivation stems from the observation that most algorithms proposed for online
convex optimization require a projection onto the convex set K from which the decisions are made.
While the projection is straightforward for simple shapes (e.g., Euclidean ball), for arbitrary com-
plex sets it is the main computational challenge and may be inefficient in practice. In this paper,
we consider an alternative online convex optimization problem. Instead of requiring that decisions
belong to K for all rounds, we only require that the constraints, which define the set K , be satis-
fied in the long run. By turning the problem into an online convex-concave optimization problem,
we propose an efficient algorithm which achieves O(

√
T ) regret bound and O(T 3/4) bound on the

violation of constraints. Then, we modify the algorithm in order to guarantee that the constraints
are satisfied in the long run. This gain is achieved at the price of getting O(T 3/4) regret bound.
Our second algorithm is based on the mirror prox method (Nemirovski, 2005) to solve variational
inequalities which achieves O(T 2/3) bound for both regret and the violation of constraints when the
domain K can be described by a finite number of linear constraints. Finally, we extend the results
to the setting where we only have partial access to the convex set K and propose a multipoint bandit
feedback algorithm with the same bounds in expectation as our first algorithm.

Keywords: online convex optimization, convex-concave optimization, bandit feedback, varia-
tional inequality

1. Introduction

Online convex optimization has recently emerged as a primitive framework for designing efficient

algorithms for a wide variety of machine learning applications (Cesa-Bianchi and Lugosi, 2006).

In general, an online convex optimization problem can be formulated as a repeated game between

a learner and an adversary: at each iteration t, the learner first presents a solution xt ∈ K , where

K ⊆ Rd is a convex domain representing the solution space; it then receives a convex function

ft(x) : K $→ R+ and suffers the loss ft(xt) for the submitted solution xt . The objective of the learner

is to generate a sequence of solutions xt ∈ K , t = 1,2, · · · ,T that minimizes the regret RT defined

as

c©2012 Mehrdad Mahdavi, Rong Jin and Tianbao Yang.
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RT =
T

∑
t=1

ft(xt)−min
x∈K

T

∑
t=1

ft(x). (1)

Regret measures the difference between the cumulative loss of the learner’s strategy and the mini-

mum possible loss had the sequence of loss functions been known in advance and the learner could

choose the best fixed action in hindsight. When RT is sub-linear in the number of rounds, that is,

o(T ), we call the solution Hannan consistent (Cesa-Bianchi and Lugosi, 2006), implying that the

learner’s average per-round loss approaches the average per-round loss of the best fixed action in

hindsight. It is noticeable that the performance bound must hold for any sequence of loss functions,

and in particular if the sequence is chosen adversarially.

Many successful algorithms have been developed over the past decade to minimize the regret

in the online convex optimization. The problem was initiated in the remarkable work of Zinkevich

(2003) which presents an algorithm based on gradient descent with projection that guarantees a re-

gret of O(
√

T ) when the set K is convex and the loss functions are Lipschitz continuous within the

domain K . In Hazan et al. (2007) and Shalev-Shwartz and Kakade (2008) algorithms with logarith-

mic regret bound were proposed for strongly convex loss functions. In particular, the algorithm in

Hazan et al. (2007) is based on online Newton step and covers the general class of exp-concave loss

functions. Notably, the simple gradient based algorithm also achieves an O(logT ) regret bound for

strongly convex loss functions with an appropriately chosen step size. Bartlett et al. (2007) general-

izes the results in previous works to the setting where the algorithm can adapt to the curvature of the

loss functions without any prior information. A modern view of these algorithms casts the problem

as the task of following the regularized leader (Rakhlin, 2009). In Abernethy et al. (2009), using

game-theoretic analysis, it has been shown that both O(
√

T ) for Lipschitz continuous and O(logT )
for strongly convex loss functions are tight in the minimax sense.

Examining the existing algorithms, most of the techniques usually require a projection step

at each iteration in order to get back to the feasible region. For the performance of these online

algorithms, the computational cost of the projection step is of crucial importance. To motivate

the setting addressed in this paper, let us first examine a popular online learning algorithm for

minimizing the regret RT based on the online gradient descent (OGD) method (Zinkevich, 2003).

At each iteration t, after receiving the convex function ft(x), the learner computes the gradient

∇ ft(xt) and updates the solution xt by solving the following optimization problem

xt+1 = ΠK (xt −η∇ ft(xt)) = argmin
x∈K

‖x−xt +η∇ ft(xt)‖2 , (2)

where ΠK (·) denotes the projection onto K and η > 0 is a predefined step size. Despite the sim-

plicity of the OGD algorithm, the computational cost per iteration is crucial for its applicability. For

general convex domains, solving the optimization problem in (2) is an offline convex optimization

problem by itself and can be computationally expensive. For example, when one envisions a posi-

tive semidefinitive cone in applications such as distance metric learning and matrix completion, the

full eigen-decomposition of a matrix is required to project the updated solutions back into the cone.

Recently several efficient algorithms have been developed for projection onto specific domains, for

example, !1 ball (Duchi et al., 2008; Liu and Ye, 2009); however, when the domain K is complex,

the projection step is a more involved task or computationally burdensome.
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To tackle the computational challenge arising from the projection step, we consider an alterna-

tive online learning problem. Instead of requiring xt ∈ K , we only require the constraints, which

define the convex domain K , to be satisfied in a long run. Then, the online learning problem be-

comes a task to find a sequence of solutions xt , t ∈ [T ] that minimizes the regret defined in (1), under

the long term constraints, that is, ∑T
t=1 xt/T ∈ K . We refer to this problem as online learning with

long term constraints. In other words, instead of solving the projection problem in (2) on each

round, we allow the learner to make decisions at some iterations which do not belong to the set K ,

but the overall sequence of chosen decisions must obey the constraints at the end by a vanishing

convergence rate.

From a different perspective, the proposed online optimization with long term constraints setup

is reminiscent of regret minimization with side constraints or constrained regret minimization ad-

dressed in Mannor and Tsitsiklis (2006), motivated by applications in wireless communication. In

regret minimization with side constraints, beyond minimizing regret, the learner has some side con-

straints that need to be satisfied on average for all rounds. Unlike our setting, in learning with side

constraints, the set K is controlled by adversary and can vary arbitrarily from trial to trial. It has

been shown that if the convex set is affected by both decisions and loss functions, the minimax

optimal regret is generally unattainable online (Mannor et al., 2009).

One interesting application of the constrained regret minimization is multi-objective online clas-

sification where the learner aims at simultaneously optimizing more than one classification perfor-

mance criteria. In the simple two objective online classification considered in Bernstein et al. (2010),

the goal of the online classifier is to maximize the average true positive classification rate with an

additional performance guarantee in terms of the false positive rate. Following the Neyman-Pearson

risk, the intuitive approach to tackle this problem is to optimize one criterion (i.e., maximizing the

true positive rate) subject to explicit constraint on the other objective (i.e., false positive rate) that

needs to be satisfied on average for the sequence of decisions. The constrained regret matching

(CRM) algorithm, proposed in Bernstein et al. (2010), efficiently solves this problem by relaxing

the objective under mild assumptions on the single-stage constraint. The main idea of the CRM

algorithm is to incorporate the penalty, that should be paid by the learner to satisfy the constraint,

in the objective (i.e., true positive rate) by subtracting a positive constant at each decision step. It

has been shown that the CRM algorithm asymptotically satisfies the average constraint (i.e., false

positive rate) provided that the relaxation constant is above a certain threshold.

Finally, it is worth mentioning that the proposed setting can be used in certain classes of online

learning such as online-to-batch conversion (Cesa-Bianchi et al., 2004), where it is sufficient to

guarantee that constraints are satisfied in the long run. More specifically, under the assumption

that received examples are i.i.d samples, the solution for batch learning is to average the solutions

obtained over all the trials. As a result, if the long term constraint is satisfied, it is guaranteed that

the average solution will belong to the domain K .

In this paper, we describe and analyze a general framework for solving online convex optimiza-

tion with long term constraints. We first show that a direct application of OGD fails to achieve

a sub-linear bound on the violation of constraints and an O(
√

T ) bound on the regret. Then, by

turning the problem into an online convex-concave optimization problem, we propose an efficient

algorithm which is an adaption of OGD for online learning with long term constraints. The proposed

algorithm achieves the same O(
√

T ) regret bound as the general setting and O(T 3/4) bound for the

violation of constraints. We show that by using a simple trick we can turn the proposed method

into an algorithm which exactly satisfies the constraints in the long run by achieving O(T 3/4) re-
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gret bound. When the convex domain K can be described by a finite number of linear constraints,

we propose an alternative algorithm based on the mirror prox method (Nemirovski, 2005), which

achieves O(T 2/3) bound for both regret and the violation of constraints. Our framework also han-

dles the cases when we do not have full access to the domain K except through a limited number of

oracle evaluations. In the full-information version, the decision maker can observe the entire con-

vex domain K , whereas in a partial-information (a.k.a bandit setting) the decision maker may only

observe the cost of the constraints defining the domain K at limited points. We show that we can

generalize the proposed OGD based algorithm to this setting by only accessing the value oracle for

domain K at two points, which achieves the same bounds in expectation as the case that has a full

knowledge about the domain K . In summary, the present work makes the following contributions:

• A general theorem that shows, in online setting, a simple penalty based method attains linear

bound O(T ) for either the regret or the long term violation of the constraints and fails to

achieve sub-linear bound for both regret and the long term violation of the constraints at the

same time.

• A convex-concave formulation of online convex optimization with long term constraints, and

an efficient algorithm based on OGD that attains a regret bound of O(T 1/2), and O(T 3/4)
violation of the constraints.

• A modified OGD based algorithm for online convex optimization with long term constraints

that has no constraint violation but O(T 3/4) regret bound.

• An algorithm for online convex optimization with long term constraints based on the mirror

prox method that achieves O(T 2/3) regret and constraint violation.

• A multipoint bandit version of the basic algorithm with O(T 1/2) regret bound and O(T 3/4)
violation of the constraints in expectation by accessing the value oracle for the convex set K
at two points.

The remainder of the paper is structured as follows: In Section 3, we first examine a simple penalty

based strategy and show that it fails to attain sub-linear bound for both regret and long term violation

of the constraints. Then, we formulate regret minimization as an online convex-concave optimiza-

tion problem and apply the OGD algorithm to solve it. Our first algorithm allows the constraints

to be violated in a controlled way. It is then modified to have the constraints exactly satisfied in

the long run. Section 4 presents our second algorithm which is an adaptation of the mirror prox

method. Section 5 generalizes the online convex optimization with long term constraints problem

to the setting where we only have a partial access to the convex domain K . Section 6 concludes the

work with a list of open questions.

2. Notation and Setting

Before proceeding, we define the notations used throughout the paper and state the assumptions

made for the analysis of algorithms. Vectors are shown by lower case bold letters, such as x ∈ Rd .

Matrices are indicated by upper case letters such as A and their pseudoinverse is represented by

A†. We use [m] as a shorthand for the set of integers {1,2, . . . ,m}. Throughout the paper we

denote by ‖ · ‖ and ‖ · ‖1 the !2 (Euclidean) norm and !1-norm, respectively. We use E and Et to
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denote the expectation and conditional expectation with respect to all randomness in early t − 1

trials, respectively. To facilitate our analysis, we assume that the domain K can be written as an

intersection of a finite number of convex constraints, that is,

K = {x ∈ Rd : gi(x)≤ 0, i ∈ [m]},

where gi(·), i ∈ [m], are Lipschitz continuous functions. Like many other works for online convex

optimization such as Flaxman et al. (2005), we assume that K is a bounded domain, that is, there

exist constants R > 0 and r < 1 such that K ⊆ RB and rB ⊆ K where B denotes the unit !2 ball

centered at the origin. For the ease of notation, we use B = RB.

We focus on the problem of online convex optimization, in which the goal is to achieve a low

regret with respect to a fixed decision on a sequence of loss functions. The difference between the

setting considered here and the general online convex optimization is that, in our setting, instead of

requiring xt ∈ K , or equivalently gi(xt) ≤ 0, i ∈ [m], for all t ∈ [T ], we only require the constraints

to be satisfied in the long run, namely ∑T
t=1 gi(xt) ≤ 0, i ∈ [m]. Then, the problem becomes to find

a sequence of solutions xt , t ∈ [T ] that minimizes the regret defined in (1), under the long term

constraints ∑T
t=1 gi(xt) ≤ 0, i ∈ [m]. Formally, we would like to solve the following optimization

problem online,

min
x1,...,xT∈B

T

∑
t=1

ft(xt)−min
x∈K

T

∑
t=1

ft(x) s.t.
T

∑
t=1

gi(xt)≤ 0 , i ∈ [m]. (3)

For simplicity, we will focus on a finite-horizon setting where the number of rounds T is known

in advance. This condition can be relaxed under certain conditions, using standard techniques (see,

e.g., Cesa-Bianchi and Lugosi, 2006). Note that in (3), (i) the solutions come from the ball B ⊇ K
instead of K and (ii) the constraint functions are fixed and are given in advance.

Like most online learning algorithms, we assume that both loss functions and the constraint

functions are Lipschitz continuous, that is, there exists constants L f and Lg such that | ft(x)−
ft(x′)| ≤ L f ‖x− x′‖, |gi(x)− gi(x′)| ≤ Lg‖x− x′‖ for any x ∈ B and x′ ∈ B , i ∈ [m]. For sim-

plicity of analysis, we use G = max{L f ,Lg} and

F = max
t∈[T ]

max
x,x′∈K

ft(x)− ft(x
′)≤ 2L f R,

D = max
i∈[m]

max
x∈B

gi(x)≤ LgR.

Finally, we define the notion of a Bregman divergence. Let φ(·) be a strictly convex function

defined on a convex set K . The Bregman divergence between x and x′ is defined as Bφ(x,x′) =
φ(x)−φ(x′)− (x−x′),∇φ(x′) which measures how much the function φ(·) deviates at x from it’s

linear approximation at x′.

3. Online Convex Optimization with Long Term Constraints

In this section we present and analyze our gradient descent based algorithms for online convex

optimization problem with long term constraints. We first describe an algorithm which is allowed

to violate the constraints and then, by applying a simple trick, we propose a variant of the first

algorithm which exactly satisfies the constraints in the long run.
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Before we state our formulation and algorithms, let us review a few alternative techniques that

do not need explicit projection. A straightforward approach is to introduce an appropriate self-

concordant barrier function for the given convex set K and add it to the objective function such

that the barrier diverges at the boundary of the set. Then we can interpret the resulting optimization

problem, on the modified objective functions, as an unconstrained minimization problem that can

be solved without projection steps. Following the analysis in Abernethy et al. (2012), with an

appropriately designed procedure for updating solutions, we could guarantee a regret bound of

O(
√

T ) without the violation of constraints. A similar idea is used in Abernethy et al. (2008) for

online bandit learning and in Narayanan and Rakhlin (2010) for a random walk approach for regret

minimization which, in fact, translates the issue of projection into the difficulty of sampling. Even

for linear Lipschitz cost functions, the random walk approach requires sampling from a Gaussian

distribution with covariance given by the Hessian of the self-concordant barrier of the convex set K
that has the same time complexity as inverting a matrix. The main limitation with these approaches

is that they require computing the Hessian matrix of the objective function in order to guarantee that

the updated solution stays within the given domain K . This limitation makes it computationally

unattractive when dealing with high dimensional data. In addition, except for well known cases, it

is often unclear how to efficiently construct a self-concordant barrier function for a general convex

domain.

An alternative approach for online convex optimization with long term constraints is to introduce

a penalty term in the loss function that penalizes the violation of constraints. More specifically, we

can define a new loss function f̂t(·) as

f̂t(x) = ft(x)+δ
m

∑
i=1

[gi(x)]+, (4)

where [z]+ = max(0,1− z) and δ > 0 is a fixed positive constant used to penalize the violation of

constraints. We then run the standard OGD algorithm to minimize the modified loss function f̂t(·).
The following theorem shows that this simple strategy fails to achieve sub-linear bound for both

regret and the long term violation of constraints at the same time.

Theorem 1 Given δ > 0, there always exists a sequence of loss functions { ft(x)}T
t=1 and a con-

straint function g(x) such that either ∑T
t=1 ft(xt)−ming(x)≤0 ∑T

t=1 ft(x) = O(T ) or ∑T
t=1[g(xt)]+ =

O(T ) holds, where {xt}T
t=1 is the sequence of solutions generated by the OGD algorithm that mini-

mizes the modified loss functions given in (4).

We defer the proof to Appendix A along with a simple analysis of the OGD when applied to the

modified functions in (4). The analysis shows that in order to obtain O(
√

T ) regret bound, linear

bound on the long term violation of the constraints is unavoidable. The main reason for the failure

of using modified loss function in (4) is that the weight constant δ is fixed and independent from the

sequence of solutions obtained so far. In the next subsection, we present an online convex-concave

formulation for online convex optimization with long term constraints, which explicitly addresses

the limitation of (4) by automatically adjusting the weight constant based on the violation of the

solutions obtained so far.

As mentioned before, our general strategy is to turn online convex optimization with long term

constraints into a convex-concave optimization problem. Instead of generating a sequence of solu-

tions that satisfies the long term constraints, we first consider an online optimization strategy that

2508



ONLINE CONVEX OPTIMIZATION WITH LONG TERM CONSTRAINTS

allows the violation of constraints on some rounds in a controlled way. We then modify the online

optimization strategy to obtain a sequence of solutions that obeys the long term constraints. Al-

though the online convex optimization with long term constraints is clearly easier than the standard

online convex optimization problem, it is straightforward to see that optimal regret bound for on-

line optimization with long term constraints should be on the order of O(
√

T ), no better than the

standard online convex optimization problem.

3.1 An Efficient Algorithm with O(
√

T ) Regret Bound and O(T 3/4) Bound on the Violation

of Constraints

The intuition behind our approach stems from the observation that the constrained optimization

problem minx∈K ∑T
t=1 ft(x) is equivalent to the following convex-concave optimization problem

min
x∈B

max
λ∈Rm

+

T

∑
t=1

ft(x)+
m

∑
i=1

λigi(x), (5)

where λ = (λ1, . . . ,λm), is the vector of Lagrangian multipliers associated with the constraints

gi(·), i = 1, . . . ,m and belongs to the nonnegative orthant Rm
+. To solve the online convex-concave

optimization problem, we extend the gradient based approach for variational inequality (Nemirovski,

1994) to (5). To this end, we consider the following regularized convex-concave function as

Lt(x,λ) = ft(x)+
m

∑
i=1

{
λigi(x)−

δη

2
λ2

i

}
, (6)

where δ > 0 is a constant whose value will be decided by the analysis. Note that in (6), we introduce

a regularizer δηλ2
i /2 to prevent λi from being too large. This is because, when λi is large, we may

encounter a large gradient for x because of ∇xLt(x,λ)∝ ∑m
i=1 λi∇gi(x), leading to unstable solutions

and a poor regret bound. Although we can achieve the same goal by restricting λi to a bounded

domain, using the quadratic regularizer makes it convenient for our analysis.

Algorithm 1 shows the detailed steps of the proposed algorithm. Unlike standard online convex

optimization algorithms that only update x, Algorithm 1 updates both x and λ. In addition, unlike the

modified loss function in (4) where the weights for constraints {gi(x)≤ 0}m
i=1 are fixed, Algorithm 1

automatically adjusts the weights {λi}m
i=1 based on {gi(x)}m

i=1, the violation of constraints, as the

game proceeds. It is this property that allows Algorithm 1 to achieve sub-linear bound for both

regret and the violation of constraints.

To analyze Algorithm 1, we first state the following lemma, the key to the main theorem on the

regret bound and the violation of constraints.

Lemma 2 Let Lt(·, ·) be the function defined in (6) which is convex in its first argument and concave

in its second argument. Then for any (x,λ) ∈ B ×Rm
+ we have

Lt(xt ,λ)−Lt(x,λt)≤
1

2η
(‖x−xt‖2 +‖λ−λt‖2 −‖x−xt+1‖2 −‖λ−λt+1‖2)

+
η

2
(‖∇xLt(xt ,λt)‖2 +‖∇λLt(xt ,λt)‖2).

Proof Following the analysis of Zinkevich (2003), convexity of Lt(·,λ) implies that

Lt(xt ,λt)−Lt(x,λt)≤ (xt −x),∇xLt(xt ,λt) (7)
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Algorithm 1 Gradient based Online Convex Optimization with Long Term Constraints

1: Input: constraints gi(x)≤ 0, i ∈ [m], step size η, and constant δ > 0

2: Initialization: x1 = 0 and λ1 = 0

3: for t = 1,2, . . . ,T do

4: Submit solution xt

5: Receive the convex function ft(x) and experience loss ft(xt)
6: Compute ∇xLt(xt ,λt) = ∇ ft(xt)+∑m

i=1 λi
t∇gi(xt) and ∇λi

Lt(xt ,λt) = gi(xt)−ηδλi
t

7: Update xt and λt by

xt+1 = ΠB (xt −η∇xLt(xt ,λt))

λt+1 = Π[0,+∞)m(λt +η∇λLt(xt ,λt))

8: end for

and by concavity of Lt(x, ·) we have

Lt(xt ,λ)−Lt(xt ,λt)≤ (λ−λt)
,∇λLt(xt ,λt). (8)

Combining the inequalities (7) and (8) results in

Lt(xt ,λ)−Lt(x,λt)≤ (xt −x),∇xLt(xt ,λt)− (λ−λt)
,∇λLt(xt ,λt). (9)

Using the update rule for xt+1 in terms of xt and expanding, we get

‖x−xt+1‖2 ≤ ‖x−xt‖2 −2η(xt −x),∇xLt(xt ,λt)+η2‖∇xLt(xt ,λt)‖2, (10)

where the first inequality follows from the nonexpansive property of the projection operation. Ex-

panding the inequality for ‖λ − λt+1‖2 in terms of λt and plugging back into the (9) with (10)

establishes the desired inequality.

Proposition 3 Let xt and λt , t ∈ [T ] be the sequence of solutions obtained by Algorithm 1. Then for

any x ∈ B and λ ∈ Rm
+, we have

T

∑
t=1

Lt(xt ,λ)−Lt(x,λt) (11)

≤
R2 +‖λ‖2

2η
+

ηT

2

(
(m+1)G2 +2mD2

)
+

η

2

(
(m+1)G2 +2mδ2η2

) T

∑
t=1

‖λt‖2.

Proof We first bound the gradient terms in the right hand side of Lemma 2. Using the inequality

(a1 + a2 + . . . ,an)2 ≤ n(a2
1 + a2

2 + . . .+ a2
n), we have ‖∇xLt(xt ,λt)‖2 ≤ (m+ 1)G2

(
1+‖λt‖2

)
and

‖∇λLt(xt ,λt)‖2 ≤ 2m(D2 + δ2η2‖λt‖2). In Lemma 2, by adding the inequalities of all iterations,

and using the fact ‖x‖ ≤ R we complete the proof.

The following theorem bounds the regret and the violation of the constraints in the long run for

Algorithm 1.

2510



ONLINE CONVEX OPTIMIZATION WITH LONG TERM CONSTRAINTS

Theorem 4 Define a=R
√
(m+1)G2 +2mD2. Set η=R2/[a

√
T ]. Assume T is large enough such

that 2
√

2η(m+1)≤ 1. Choose δ such that δ ≥ (m+1)G2+2mδ2η2. Let xt , t ∈ [T ] be the sequence

of solutions obtained by Algorithm 1. Then for the optimal solution x∗ = minx∈K ∑T
t=1 ft(x) we have

T

∑
t=1

ft(xt)− ft(x∗)≤ a
√

T = O(T 1/2), and

T

∑
t=1

gi(xt)≤

√

2
(

FT +a
√

T
) √

T

(
δR2

a
+

ma

R2

)
= O(T 3/4).

Proof We begin by expanding (11) using (6) and rearranging the terms to get

T

∑
t=1

[ ft(xt)− ft(x)]+
m

∑
i=1

{

λi

T

∑
t=1

gi(xt)−
T

∑
t=1

λi
tgi(x)

}

−
δηT

2
‖λ‖2

≤−
δη

2

T

∑
t=1

‖λt‖2 +
R2 +‖λ‖2

2η
+

ηT

2

(
(m+1)G2 +2mD2

)

+
η

2

(
(m+1)G2 +2mδ2η2

) T

∑
t=1

‖λt‖2.

Since δ ≥ (m+1)G2+2mδ2η2, we can drop the ‖λt‖2 terms from both sides of the above inequality

and obtain

T

∑
t=1

[ ft(xt)− ft(x)]+
m

∑
i=1

{

λi

T

∑
t=1

gi(xt)−
(

δηT

2
+

m

2η

)
λ2

i

}

≤
m

∑
i=1

T

∑
t=1

λi
tgi(x)+

R2

2η
+

ηT

2

(
(m+1)G2 +2mD2)

)
.

The left hand side of above inequality consists of two terms. The first term basically measures the

difference between the cumulative loss of the Algorithm 1 and the optimal solution and the second

term includes the constraint functions with corresponding Lagrangian multipliers which will be used

to bound the long term violation of the constraints. By taking maximization for λ over the range

(0,+∞), we get

T

∑
t=1

[ ft(xt)− ft(x)]+
m

∑
i=1

{ [
∑T

t=1 gi(xt)
]2
+

2(δηT +m/η)
−

T

∑
t=1

λi
tgi(x)

}

≤
R2

2η
+

ηT

2

(
(m+1)G2 +2mD2)

)
.

Since x∗ ∈ K , we have gi(x∗)≤ 0, i ∈ [m], and the resulting inequality becomes

T

∑
t=1

ft(xt)− ft(x∗)+
m

∑
i=1

[
∑T

t=1 gi(xt)
]2

+

2(δηT +m/η)
≤

R2

2η
+

ηT

2

(
(m+1)G2 +2mD2)

)
.

The statement of the first part of the theorem follows by using the expression for η. The second part

is proved by substituting the regret bound by its lower bound as ∑T
t=1 ft(xt)− ft(x∗)≥−FT .
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Remark 5 We observe that the introduction of quadratic regularizer δη‖λ‖2/2 allows us to turn

the expression λi ∑T
t=1 gi(xt) into

[
∑T

t=1 gi(xt)
]2
+, leading to the bound for the violation of the con-

straints. In addition, the quadratic regularizer defined in terms of λ allows us to work with un-

bounded λ because it cancels the contribution of the ‖λt‖ terms from the loss function and the

bound on the gradients ‖∇xLt(x,λ)‖. Note that the constraint for δ mentioned in Theorem 4 is

equivalent to

2

1/(m+1)+
√
(m+1)−2 −8G2η2

≤ δ ≤
1/(m+1)+

√
(m+1)−2 −8G2η2

4η2
, (12)

from which, when T is large enough (i.e., η is small enough), we can simply set δ = 2(m+ 1)G2

that will obey the constraint in (12).

By investigating Lemma 2, it turns out that the boundedness of the gradients is essential to obtain

bounds for Algorithm 1 in Theorem 4. Although, at each iteration, λt is projected onto the Rm
+,

since K is a compact set and functions ft(x) and gi(x), i ∈ [m] are convex, the boundedness of the

functions implies that the gradients are bounded (Bertsekas et al., 2003, Proposition 4.2.3).

3.2 An Efficient Algorithm with O(T 3/4) Regret Bound and without Violation of Constraints

In this subsection we generalize Algorithm 1 such that the constrained are satisfied in a long run. To

create a sequence of solutions {xt , t ∈ [T ]} that satisfies the long term constraints ∑T
t=1 gi(xt)≤ 0, i∈

[m], we make two modifications to Algorithm 1. First, instead of handling all of the m constraints,

we consider a single constraint defined as g(x) = maxi∈[m] gi(x). Apparently, by achieving zero

violation for the constraint g(x) ≤ 0, it is guaranteed that all of the constraints gi(·), i ∈ [m] are

also satisfied in the long term. Furthermore, we change Algorithm 1 by modifying the definition of

Lt(·, ·) as

Lt(x,λ) = ft(x)+λ(g(x)+ γ)−
ηδ

2
λ2, (13)

where γ > 0 will be decided later. This modification is equivalent to considering the constraint

g(x) ≤ −γ, a tighter constraint than g(x) ≤ 0. The main idea behind this modification is that by

using a tighter constraint in our algorithm, the resulting sequence of solutions will satisfy the long

term constraint ∑T
t=1 g(xt)≤ 0, even though the tighter constraint is violated in many trials.

Before proceeding, we state a fact about the Lipschitz continuity of the function g(x) in the

following proposition.

Proposition 6 Assume that functions gi(·), i ∈ [m] are Lipschitz continuous with constant G. Then,

function g(x) = maxi∈[m] gi(x) is Lipschitz continuous with constant G, that is,

|g(x)−g(x′)|≤ G‖x−x′‖ for any x ∈ B and x′ ∈ B.
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Proof First, we rewrite g(x) = maxi∈[m] gi(x) as g(x) = maxα∈∆m ∑m
i=1 αigi(x) where ∆m is the m-

simplex, that is, ∆m = {α ∈ Rm
+;∑m

i=1 αi = 1}. Then, we have

|g(x)−g(x′)| =

∣∣∣∣∣max
α∈∆m

m

∑
i=1

αigi(x)− max
α∈∆m

m

∑
i=1

αigi(x
′)

∣∣∣∣∣

≤ max
α∈∆m

∣∣∣∣∣

m

∑
i=1

αigi(x)−
m

∑
i=1

αigi(x
′)

∣∣∣∣∣

≤ max
α∈∆m

m

∑
i=1

αi

∣∣gi(x)−gi(x
′)
∣∣≤ G‖x−x′‖,

where the last inequality follows from the Lipschitz continuity of gi(x), i ∈ [m].

To obtain a zero bound on the violation of constraints in the long run, we make the following

assumption about the constraint function g(x).

Assumption 1 Let K ′ ⊆ K be the convex set defined as K ′ = {x ∈ Rd : g(x)+ γ ≤ 0} where γ ≥ 0.

We assume that the norm of the gradient of the constraint function g(x) is lower bounded at the

boundary of K ′, that is,

min
g(x)+γ=0

‖∇g(x)‖ ≥ σ.

A direct consequence of Assumption 1 is that by reducing the domain K to K ′, the optimal value

of the constrained optimization problem minx∈K f (x) does not change much, as revealed by the

following theorem.

Theorem 7 Let x∗ and xγ be the optimal solutions to the constrained optimization problems defined

as ming(x)≤0 f (x) and ming(x)≤−γ f (x), respectively, where f (x) = ∑T
t=1 ft(x) and γ ≥ 0. We have

| f (x∗)− f (xγ)|≤
G

σ
γT.

Proof We note that the optimization problem ming(x)≤−γ f (x) = ming(x)≤−γ ∑T
t=1 ft(x), can also be

written in the minimax form as

f (xγ) = min
x∈B

max
λ∈R+

T

∑
t=1

ft(x)+λ(g(x)+ γ), (14)

where we use the fact that K ′ ⊆ K ⊆ B . We denote by xγ and λγ the optimal solutions to (14). We

have

f (xγ) = min
x∈B

max
λ∈R+

T

∑
t=1

ft(x)+λ(g(x)+ γ)

= min
x∈B

T

∑
t=1

ft(x)+λγ(g(x)+ γ)

≤
T

∑
t=1

ft(x∗)+λγ(g(x∗)+ γ)≤
T

∑
t=1

ft(x∗)+λγγ,

2513



MAHDAVI, JIN AND YANG

where the second equality follows the definition of the xγ and the last inequality is due to the opti-

mality of x∗, that is, g(x∗)≤ 0.

To bound | f (xγ)− f (x∗)|, we need to bound λγ. Since xγ is the minimizer of (14), from the optimal-

ity condition we have

−
T

∑
t=1

∇ ft(xγ) = λγ∇g(xγ). (15)

By setting v = −∑T
t=1 ∇ ft(xγ), we can simplify (15) as λγ∇g(xγ) = v. From the KKT optimality

condition (Boyd and Vandenberghe, 2004), if g(xγ)+ γ < 0 then we have λγ = 0; otherwise accord-

ing to Assumption 1 we can bound λγ by

λγ ≤
‖v‖

‖∇g(xγ)‖
≤

GT

σ
.

We complete the proof by applying the fact f (x∗)≤ f (xγ)≤ f (x∗)+λγγ.

As indicated by Theorem 7, when γ is small, we expect the difference between two optimal values

f (x∗) and f (xγ) to be small. Using the result from Theorem 7, in the following theorem, we show

that by running Algorithm 1 on the modified convex-concave functions defined in (13), we are able

to obtain an O(T 3/4) regret bound and zero bound on the violation of constraints in the long run.

Theorem 8 Set a = 2R/
√

2G2 +3(D2 +b2), η = R2/[a
√

T ], and δ = 4G2. Let xt , t ∈ [T ] be the

sequence of solutions obtained by Algorithm 1 with functions defined in (13) with γ = bT−1/4 and

b = 2
√

F(δR2a−1 +aR−2). Let x∗ be the optimal solution to minx∈K ∑T
t=1 ft(x). With sufficiently

large T , that is, FT ≥ a
√

T , and under Assumption 1, we have xt , t ∈ [T ] satisfy the global con-

straint ∑T
t=1 g(xt)≤ 0 and the regret RT is bounded by

RT =
T

∑
t=1

ft(xt)− ft(x∗)≤ a
√

T +
b

σ
GT 3/4 = O(T 3/4).

Proof Let xγ be the optimal solution to ming(x)≤−γ ∑T
t=1 ft(x). Similar to the proof of Theorem 4

when applied to functions in (13) we have

T

∑
t=1

ft(xt)−
T

∑
t=1

ft(x)+λ
T

∑
t=1

(g(xt)+ γ)−

(
T

∑
t=1

λt

)

(g(x)+ γ)−
δηT

2
λ2

≤ −
δη

2

T

∑
t=1

λ2
t +

R2 +λ2

2η
+

ηT

2

(
2G2 +3(D2 + γ2)

)
+

η

2

(
2G2 +3δ2η2

) T

∑
t=1

λ2
t .

By setting δ ≥ 2G2 + 3δ2η2 which is satisfied by δ = 4G2, we cancel the terms including λt from

the right hand side of above inequality. By maximizing for λ over the range (0,+∞) and noting that

γ ≤ b, for the optimal solution xγ, we have

T

∑
t=1

[
ft(xt)− ft(xγ)

]
+

[
∑T

t=1 g(xt)+ γT
]2

+

2(δηT +1/η)
≤

R2

2η
+

ηT

2

(
2G2 +3(D2 +b2)

)
,
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which, by optimizing for η and applying the lower bound for the regret as ∑T
t=1 ft(xt)− ft(xγ) ≥

−FT , yields the following inequalities

T

∑
t=1

ft(xt)− ft(xγ)≤ a
√

T (16)

and

T

∑
t=1

g(xt)≤

√

2
(

FT +a
√

T
) √

T

(
δR2

a
+

a

R2

)
− γT, (17)

for the regret and the violation of the constraint, respectively. Combining (16) with the result of

Theorem 7 results in ∑T
t=1 ft(xγ) ≤ ∑T

t=1 ft(x∗)+ a
√

T +(G/σ)γT . By choosing γ = bT−1/4 we

attain the desired regret bound as

T

∑
t=1

ft(xt)− ft(x∗)≤ a
√

T +
bG

σ
T 3/4 = O(T 3/4).

To obtain the bound on the violation of constraints, we note that in (17), when T is sufficiently

large, that is, FT ≥ a
√

T , we have ∑T
t=1 g(xt) ≤ 2

√
F(δR2a−1 +aR−2)T 3/4 − bT 3/4. Choos-

ing b = 2
√

F(δR2a−1 +aR−2)T 3/4 guarantees the zero bound on the violation of constraints as

claimed.

4. A Mirror Prox Based Approach

The bound for the violation of constraints for Algorithm 1 is unsatisfactory since it is significantly

worse than O(
√

T ). In this section, we pursue a different approach that is based on the mirror prox

method in Nemirovski (2005) to improve the bound for the violation of constraints. The basic idea is

that solving (5) can be reduced to the problem of approximating a saddle point (x,λ) ∈ B × [0,∞)m

by solving the associated variational inequality.

We first define an auxiliary function F (x,λ) as

F (x,λ) =
m

∑
i=1

{
λigi(x)−

δη

2
λ2

i

}
.

In order to successfully apply the mirror prox method, we follow the fact that any convex domain

can be written as an intersection of linear constraints, and make the following assumption:

Assumption 2 We assume that gi(x), i ∈ [m] are linear, that is, K = {x ∈ Rd : gi(x) = x,ai −bi ≤
0, i ∈ [m]} where ai ∈ Rd is a normalized vector with ‖ai‖= 1 and bi ∈ R .

The following proposition shows that under Assumptions 2, the function F (x,λ) has Lipschitz

continuous gradient, a basis for the application of the mirror prox method.

Proposition 9 Under Assumption 2, F (x,λ) has Lipschitz continuous gradient, that is,

∥∥∇xF (x,λ)−∇x′F (x′,λ′)
∥∥2

+
∥∥∇λF (x,λ)−∇λ′F (x′,λ′)

∥∥2 ≤ 2(m+δ2η2)(‖x−x′‖2 +‖λ−λ′‖2).
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Algorithm 2 Prox Method with Long Term Constraints

1: Input: constraints gi(x)≤ 0, i ∈ [m], step size η, and constant δ
2: Initialization: z1 = 0 and µ1 = 0

3: for t = 1,2, . . . ,T do

4: Compute the solution for xt and λt as

xt = ΠB (zt −η∇xF (zt ,µt))

λt = Π[0,+∞)m(µt +η∇λF (zt ,µt))

5: Submit solution xt

6: Receive the convex function ft(x) and experience loss ft(xt)

7: Compute Lt(x,λ) = ft(x)+F (x,λ) = ft(x)+∑m
i=1

{
λigi(x)− δη

2 λ2
i

}

8: Update zt and µt by

zt+1 = ΠB (zt −η∇xLt(xt ,λt))

µt+1 = Π[0,+∞)m(µt +η∇λLt(xt ,λt))

9: end for

Proof
∥∥∇xF (x,λ)−∇x′F (x′,λ′)

∥∥2
+
∥∥∇λF (x,λ)−∇λ′F (x′,λ′)

∥∥2

=

∥∥∥∥∥

m

∑
i=1

(λi −λ′
i)ai

∥∥∥∥∥

2

+

∥∥∥∥∥

m

∑
i=1

a,i (x−x′)+δη
m

∑
i=1

(λ′
i −λi)

∥∥∥∥∥

2

≤ ‖A,(λ−λ′)‖2 +2‖A(x−x′)‖2 +2δ2η2‖λ−λ′‖2

≤ 2σ2
max(A)‖x−x′‖2 +(σ2

max(A)+2δ2η2)‖λ−λ′‖2.

Since

σmax(A) =
√

λmax(AA,)≤
√

Tr(AA,)≤
√

m,

we have σ2
max(A)≤ m, leading to the desired result.

Algorithm 2 shows the detailed steps of the mirror prox based algorithm for online convex optimiza-

tion with long term constraints defined in (5). Compared to Algorithm 1, there are two key features

of Algorithm 2. First, it introduces auxiliary variables zt and µt besides the variables xt and λt . At

each iteration t, it first computes the solutions xt and λt based on the auxiliary variables zt and µt ; it

then updates the auxiliary variables based on the gradients computed from xt and λt . Second, two

different functions are used for updating (xt ,λt) and (zt ,µt): function F (x,λ) is used for computing

the solutions xt and λt , while function Lt(x,λ) is used for updating the auxiliary variables zt and µt .

Our analysis is based on the Lemma 3.1 from Nemirovski (2005) which is restated here for

completeness.

Lemma 10 Let B(x,x′) be a Bregman distance function that has modulus α with respect to a norm

‖ ·‖, that is, B(x,x′)≥ α‖x−x′‖2/2. Given u ∈ B , a, and b, we set

w = argmin
x∈B

a,(x−u)+B(x,u), u+ = argmin
x∈B

b,(x−u)+B(x,u).
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Then for any x ∈ B and η > 0, we have

ηb,(w−x)≤ B(x,u)−B(x,u+)+
η2

2α
‖a−b‖2

∗ −
α

2

[
‖w−u‖2 +‖w−u+‖2

]
.

We equip B × [0,+∞)m with the norm ‖ ·‖ defined as

‖(z,µ)‖2 =
‖z‖2 +‖µ‖2

2
,

where ‖ · ‖2 is the Euclidean norm defined separately for each domain. It is immediately seen that

the Bregman distance function defined as

B(zt ,µt ,zt+1,µt+1) =
1

2
‖zt − zt+1‖2 +

1

2
‖µt −µt+1‖2

is α = 1 modules with respect to the norm ‖ ·‖.

To analyze the mirror prox algorithm, we begin with a simple lemma which is the direct appli-

cation of Lemma 10 when applied to the updating rules of Algorithm 3.

Lemma 11 If η(m+δ2η2)≤ 1
4 holds, we have

Lt(xt ,λ)−Lt(x,λt)

≤
‖x− zt‖2 −‖x− zt+1‖2

2η
+

‖λ−µt‖2 −‖λ−µt+1‖2

2η
+η‖∇ ft(xt)‖2.

Proof To apply Lemma 10, we define u, w, u+, a and b as follows

u = (zt ,µt),u+ = (zt+1,µt+1),w = (xt ,λt),

a = (∇xF (zt ,µt),−∇λF (zt ,µt)),b = (∇xLt(xt ,λt),−∇λLt(xt ,λt)).

Using Lemmas 2 and 10, we have

Lt(xt ,λ)−Lt(x,λt)−
‖x− zt‖2 −‖x− zt+1‖2

2η
−

‖λ−µt‖2 −‖λ−µt+1‖2

2η

≤
η

2

{
‖∇xF (zt ,µt)−∇xLt(xt ,λt)‖2 +‖∇λF (zt ,µt)−∇λLt(xt ,λt)‖2

}

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
I

−
1

2

{
‖zt −xt‖2 +‖µt −λt‖2

}

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
II

.

By expanding the gradient terms and applying the inequality (a+b)2 ≤ 2(a2+b2), we upper bound

(I) as:

(I) =
η

2
{2‖∇ ft(xt)‖2 +2‖∇xF (zt ,µt)−∇xF (xt ,λt)‖2 +‖∇λF (zt ,µt)−∇λF (xt ,λt)‖2}

≤ η‖∇ ft(xt)‖2 +η
{
‖∇xF (zt ,µt)−∇xF (xt ,λt)‖2 +‖∇λF (xt ,λt)−∇λF (xt ,λt)‖2

}

≤ η‖∇ ft(xt)‖2 +2η(m+δ2η2)
{
‖zt −xt‖2 +‖µt −λt‖2

}
, (18)
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where the last inequality follows from Proposition 9. Combining (II) with (18) results in

Lt(xt ,λ)−Lt(x,λt)−
‖x− zt‖2 −‖x− zt+1‖2

2η
−

‖λ−µt‖2 −‖λ−µt+1‖2

2η

≤ η‖∇ ft(xt)‖2
2 +

(
2η(m+δ2η2)−

1

2

){
‖zt −xt‖2 +‖µt −λt‖2

2

}
.

We complete the proof by rearranging the terms and setting η(m+δ2η2)≤ 1
4 .

Theorem 12 Set η = T−1/3 and δ = T−2/3. Let xt , t ∈ [T ] be the sequence of solutions obtained by

Algorithm 2. Then for T ≥ 164(m+1)3 we have

T

∑
t=1

ft(xt)− ft(x∗)≤ O(T 2/3) and
T

∑
t=1

gi(xt)≤ O(T 2/3).

Proof Similar to the proof of Theorem 4, by summing the bound in Lemma 11 for all rounds

t = 1, · · · ,T , and taking maximization for λ we have the following inequality for any x∗ ∈ K ,

T

∑
t=1

[ ft(xt)− ft(x∗)]+
m

∑
i=1

[
∑T

t=1 gi(xt)
]2
+

2(δηT +m/η)
≤

R2

2η
+

ηT

2
G2.

By setting δ = 1
ηT and using the fact that ∑T

t=1 ft(xt)− ft(x∗)≥−FT we have:

T

∑
t=1

[ ft(xt)− ft(x)]≤
R2

2η
+

ηT

2
G2

and
T

∑
t=1

gi(xt)≤

√

(1+
m

η
)

(
R2

η
+ηT G2 +FT

)
.

Substituting the stated value for η, we get the desired bounds as mentioned in the theorem. Note

that the condition η(m+δ2η2)≤ 1
4 in Lemma 11 is satisfied for the stated values of η and δ as long

as T ≥ 164(m+1)3.

Using the same trick as Theorem 8, by introducing appropriate γ, we will be able to establish the

solutions that exactly satisfy the constraints in the long run with an O(T 2/3) regret bound as shown

in the following corollary. In the case when all the constraints are linear, that is, gi(x) = a,i x ≤
bi, i ∈ [m], Assumption 1 is simplified into the following condition,

min
α∈∆m

∥∥∥∥∥

m

∑
i=1

αiai

∥∥∥∥∥≥ σ, (19)

where ∆m is a m dimensional simplex, that is, ∆m = {α ∈ Rm
+ : ∑m

i=1 αi = 1}. This is because

g(x) = maxα∈∆m ∑m
i=1 αigi(x) and as a result, the (sub)gradient of g(x) can always be written as

∂g(x) = ∑m
i=1 αi∇gi(x) = ∑m

i=1 αiai where α ∈ ∆m. As an illustrative example, consider the case

when the norm vectors ai, i ∈ [m] are linearly independent. In this case the condition mentioned

in (19) obviously holds which indicates that the assumption does not limit the applicability of the

proposed algorithm.
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Corollary 13 Let η = δ = T−1/3. Let xt , t ∈ [T ] be the sequence of solutions obtained by Al-

gorithm 2 with γ = bT−1/3 and b = 2
√

F. With sufficiently large T , that is, FT ≥ R2T 1/3 +
G2T 2/3, under Assumptions 2 and condition in (19), we have xt , t ∈ [T ] satisfy the global constraints

∑T
t=1 gi(xt)≤ 0, i ∈ [m] and the regret RT is bounded by

RT =
T

∑
t=1

ft(xt)− ft(x∗)≤
R2

2
T 1/3 +

(
G2

2
+

2G
√

F

σ

)

T 2/3 = O(T 2/3).

The proof is similar to that of Theorem 8 and we defer it to Appendix B. As indicated by Corollary

13, for any convex domain defined by a finite number of halfspaces, that is, Polyhedral set, one can

easily replace the projection onto the Polyhedral set with the ball containing the Polyhedral at the

price of satisfying the constraints in the long run and achieving O(T 2/3) regret bound.

5. Online Convex Optimization with Long Term Constraints under Bandit Feedback
for Domain

We now turn to extending the gradient based convex-concave optimization algorithm discussed

in Section 3 to the setting where the learner only receives partial feedback for constraints. More

specifically, the exact definition of the domain K is not exposed to the learner, only that the solution

is within a ball B . Instead, after receiving a solution xt , the oracle will present the learner with

the convex loss function ft(x) and the maximum violation of the constraints for xt , that is, g(xt) =
maxi∈[m] gi(xt). We remind that the function g(x) defined in this way is Lipschitz continuous with

constant G as proved in Proposition 6. In this setting, the convex-concave function defined in (6)

becomes as

Lt(x,λ) = ft(x)+λg(x)− (δη/2)λ2.

The mentioned setting is closely tied to the bandit online convex optimization. In the bandit set-

ting, in contrast to the full information setting, only the cost of the chosen decision (i.e., the incurred

loss ft(xt)) is revealed to the algorithm, not the function itself. There is a rich body of literature that

deals with the bandit online convex optimization. In the seminal papers of Flaxman et al. (2005) and

Awerbuch and Kleinberg (2004) it has been shown that one could design algorithms with O(T 3/4)
regret bound even in the bandit setting where only evaluations of the loss functions are revealed at

a single point. If we specialize to the online bandit optimization of linear loss functions, Dani et al.

(2007) proposed an inefficient algorithm with O(
√

T ) regret bound and Abernethy et al. (2008)

obtained O(
√

T logT ) bound by an efficient algorithm if the convex set admits an efficiently com-

putable self-concordant barrier. For general convex loss functions, Agarwal et al. (2010) proposed

optimal algorithms in a new bandit setting, in which multiple points can be queried for the cost val-

ues. By using multiple evaluations, they showed that the modified online gradient descent algorithm

can achieve O(
√

T ) regret bound in expectation.

Algorithm 3 gives a complete description of the proposed algorithm under the bandit setting,

which is a slight modification of Algorithm 1. Algorithm 3 accesses the constraint function g(x) at

two points. To facilitate the analysis, we define

L̂t(x,λ) = ft(x)+λĝ(x)−
ηδ

2
λ2,
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Algorithm 3 Multipoint Bandit Online Convex Optimization with Long Term Constraints

1: Input: constraint g(x), step size η, constant δ > 0, exploration parameter ζ > 0, and shrinkage

coefficient ξ
2: Initialization: x1 = 0 and λ1 = 0

3: for t = 1,2, . . . ,T do

4: Submit solution xt

5: Select unit vector ut uniformly at random

6: Query g(x) at points xt +ζut and xt −ζut and incur average of them as violation of constraints

7: Compute g̃x,t = ∇ ft(xt)+λt

[
d
2ζ(g(xt +ζut)−g(xt −ζut))ut

]

8: Compute g̃λ,t =
1
2(g(xt +ζut)+g(xt −ζut))−ηδλt

9: Receive the convex function ft(x) and experience loss ft(xt)
10: Update xt and λt by

xt+1 = Π(1−ξ)B (xt −ηg̃x,t)

λt+1 = Π[0,+∞)(λt +ηg̃λ,t)

11: end for

where ĝ(x) is the smoothed version of g(x) defined as ĝ(x) = Ev∈S[
d
ζ g(x+ζv)v] at point xt where S

denotes the unit sphere centered at the origin. Note that ĝ(x) is Lipschitz continuous with the same

constant G, and it is always differentiable even though g(x) is not in our case.

Since we do not have access to the function ĝ(·) to compute ∇xL̂(x,λ), we need a way to

estimate its gradient at point xt . Our gradient estimation closely follows the idea in Agarwal et al.

(2010) by querying g(x) function at two points. The main advantage of using two points to estimate

the gradient with respect to one point gradient estimation used in Flaxman et al. (2005) is that the

former has a bounded norm which is independent of ζ and leads to improved regret bounds.

The gradient estimators for ∇xL̂(xt ,λt) = ∇ f (xt)+λt∇ĝ(xt) and ∇λL̂(xt ,λt) = ĝ(xt)−δηλt in

Algorithm 3 are computed by evaluating the g(x) function at two random points around xt as

g̃x,t = ∇ ft(xt)+λt

[
d

2ζ
(g(xt +ζut)−g(xt −ζut))ut

]

and

g̃λ,t =
1

2
(g(xt +ζut)+g(xt −ζut))−ηδλt ,

where ut is chosen uniformly at random from the surface of the unit sphere. Using Stock’s theorem,

Flaxman et al. (2005) showed that 1
2ζ(g(xt + ζut)−g(xt − ζut))ut is a conditionally unbiased esti-

mate of the gradient of ĝ(x) at point xt . To make sure that randomized points around xt live inside

the convex domain B , we need to stay away from the boundary of the set such that the ball of radius

ζ around xt is contained in B . In particular, in Flaxman et al. (2005) it has been shown that for any

x ∈ (1−ξ)B and any unit vector u it holds that (x+ζu) ∈ B as soon as ζ ∈ [0,ξr].
In order to facilitate the analysis of the Algorithm 3, we define the convex-concave function

Ht(·, ·) as

Ht(x,λ) = L̂t(x,λ)+
(

g̃x,t −∇xL̂(xt ,λt)
)

x+
(

g̃λ,t −∇λL̂(xt ,λt)
)

λ. (20)
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It is easy to check that ∇xH (xt ,λt) = g̃x,t and ∇λH (xt ,λt) = g̃λ,t . By defining functions Ht(x,λ),
Algorithm 3 reduces to Algorithm 1 by doing gradient descent on functions Ht(x,λ) except the pro-

jection is made onto the set (1−ξ)B instead of B .

We begin our analysis by reproducing Proposition 3 for functions Ht(·, ·).

Lemma 14 If the Algorithm 1 is performed over convex set K with functions Ht defined in (20),

then for any x ∈ K we have

T

∑
t=1

Ht(xt ,λ)−Ht(x,λt)≤
R2 +‖λ‖2

2

2η
+η(D2 +G2)T +η(d2G2 +η2δ2)

T

∑
t=1

λ2
t .

Proof We have ∇xHt(xt ,λt) = g̃x,t and ∇λHt(xt ,λt) = g̃λ,t . It is straightforward to show that
1
2ζ(g(xt + ζut)− g(xt − ζut))ut has norm bounded by Gd (Agarwal et al., 2010). So, the norm of

gradients are bounded as ‖g̃x,t‖2
2 ≤ 2(G2 + d2G2λ2

t ) and ‖g̃λ,t‖2
2 ≤ 2(D2 +η2δ2λ2

t ). Using Lemma

2, by adding for all rounds we get the desired inequality.

The following theorem gives the regret bound and the expected violation of the constraints in the

long run for Algorithm 3.

Theorem 15 Let c =
√

D2 +G2(
√

2R+
√

2D
δR

)+ (D
r +1)GD

r . Set η = R/
√

2(D2 +G2)T . Choose

δ such that δ ≥ 2(d2G2 +η2δ2). Let ζ = δ
T and ξ = ζ

r . Let xt , t ∈ [T ] be the sequence of solutions

obtained by Algorithm 3. We then have

T

∑
t=1

ft(xt)− ft(x)≤
GD

r
+ c

√
T = O(T 1/2), and

E

[ T

∑
t=1

g(xt)
]
≤ Gδ+

√
(δR2 +2(D2 +G2)

R
√

D2 +G2

)
(
GD

r
+ c

√
T +FT )

√
T = O(T 3/4).

Proof Using Lemma 2 for the functions L̂t(·, ·) and Ht(·, ·) we have

L̂t(xt ,λ)− L̂t(x,λt)≤ (xt −x),∇xL̂t(xt ,λt)− (λ−λt)
,∇λL̂t(xt ,λt),

and also

Ht(xt ,λ)−Ht(x,λt)≤ (xt −x),g̃x,t − (λ−λt)
,g̃λ,t .

Subtracting the preceding inequalities, taking expectation, and summing for all t from 1 to T we get

E

[
T

∑
t=1

L̂t(xt ,λ)− L̂t(x,λt)

]

= E

[
T

∑
t=1

Ht(xt ,λ)−Ht(x,λt)

]

(21)

+E

[
T

∑
t=1

(xt −x),(∇xL̂t(xt ,λt)−Et [g̃xt ,t ])+(λt −λ),(∇λL̂t(xt ,λt)−Et [g̃λt ,t ])

]

.
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Next we provide an upper bound on the difference between the gradients of two functions. First,

Et [g̃x,t ] = ∇xL̂t(xt ,λt), so g̃x,t is an unbiased estimator of ∇xL̂t(xt ,λt). Considering the update rule

for λt+1 we have |λt+1|≤ (1−η2δ)|λt |+ηD which implies that |λt |≤ D
δη for all t. So we obtain

(λt −λ),(∇λL̂t(xt ,λt)−Et [g̃λt ,t ])

≤ |λt −λ|Et

[
‖∇λL̂t(xt ,λt)− g̃λt ,t‖2

]

≤
D

δη

∣∣∣∣
1

2
(g(xt +ζut)+g(xt −ζut))− ĝ(xt)

∣∣∣∣≤
DG

δη
ζ‖ut‖ ≤

DG

δη
ζ, (22)

where the last inequality follows from Lipschitz property of the functions g(x) and ĝ(x) with the

same constant G. Combining the inequalities (21) and (22) and using Lemma 14, we have

E

[ T

∑
t=1

L̂t(xt ,λ)− L̂t(x,λt)
]
≤

R2 +λ2

2η
+η(D2 +G2)T +η(d2G2 +η2δ2)

T

∑
t=1

λ2
t +

DGζ

δη
T.

By expanding the right hand side of above inequality, we obtain

T

∑
t=1

[ ft(xt)− ft((1−ξ)x)]+λE
[ T

∑
t=1

ĝ(xt)
]
−E
[
ĝ((1−ξ)x)

] T

∑
t=1

λt −
ηδT

2
λ2 +

ηδ

2

T

∑
t=1

λ2
t

≤
R2 +λ2

2η
+η(D2 +G2)T +η(d2G2 +η2δ2)

T

∑
t=1

λ2
t +

DGζ

δη
T.

By choosing δ ≥ 2(d2G2 +η2δ2) we cancel λ2
t terms from both sides and have

T

∑
t=1

[ ft(xt)− ft((1−ξ)x)]+λE
[ T

∑
t=1

ĝ(xt)
]
−E
[
ĝ((1−ξ)x)

] T

∑
t=1

λt −
ηδT

2
λ2

≤
R2 +λ2

2η
+η(D2 +G2)T +

DGζ

δη
T. (23)

By convexity and Lipschitz property of ft(x) and g(x) we have

ft((1−ξ)x)≤ (1−ξ) ft(x)+ξ ft(0)≤ ft(x)+DGξ, (24)

g(x)≤ ĝ(x)+Gζ , and ĝ((1−ξ)x)≤ g((1−ξ)x)+Gζ ≤ g(x)+Gζ+DGξ. (25)

Plugging (24) and (25) back into (23), for any optimal solution x∗ ∈ K we get

T

∑
t=1

[ ft(xt)− ft(x)]+λE
[ T

∑
t=1

g(xt)
]
−

ηδT

2
λ2 −λGζT

≤
R2 +λ2

2η
+η(D2 +G2)T +

DGζ

δη
T +DGξT +(DGξ+Gζ)

T

∑
t=1

λt . (26)

Considering the fact that λt ≤ D
δη we have ∑T

t=1 λt ≤ DT
δη . Plugging back into the (26) and rearranging

the terms we have

T

∑
t=1

[ ft(xt)− ft(x)]+λE
[ T

∑
t=1

g(xt)
]
−

ηδT

2
λ2 −λGζT −

λ2

2η

≤
R2

2η
+η(D2 +G2)T +

DGζ

δη
T +DGξT +(DGξ+Gζ)

DT

δη
.
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By setting ξ = ζ
r and ζ = 1

T we get

T

∑
t=1

[ ft(xt)− ft(x)]≤
R2

2η
+η(D2 +G2)T +

DGζ

δη
T +

ζDGT

r
+(

D

r
+1)ζ

DGT

δη
,

which gives the mentioned regret bound by optimizing for η. Maximizing for λ over the range

(0,+∞) and using ∑T
t=1 ft(xt)− ft(x∗) ≥ −FT , yields the following inequality for the violation of

constraints
[

E
[
∑T

t=1 g(xt)
]
−GζT

]2

+

4(δηT/2+1/2η)
≤

DG

r
+ c

√
T +FT.

Plugging in the stated values of parameters completes the proof. Note that δ = 4d2G2 obeys the

condition specified in the theorem.

6. Conclusion

In this study we have addressed the problem of online convex optimization with constraints, where

we only need the constraints to be satisfied in the long run. In addition to the regret bound which

is the main tool in analyzing the performance of general online convex optimization algorithms, we

defined the bound on the violation of constraints in the long term which measures the cumulative

violation of the solutions from the constraints for all rounds. Our setting is applied to solving

online convex optimization without projecting the solutions onto the complex convex domain at

each iteration, which may be computationally inefficient for complex domains. Our strategy is to

turn the problem into an online convex-concave optimization problem and apply online gradient

descent algorithm to solve it. We have proposed efficient algorithms in three different settings; the

violation of constraints is allowed, the constraints need to be exactly satisfied, and finally we do

not have access to the target convex domain except it is bounded by a ball. Moreover, for domains

determined by linear constraints, we used the mirror prox method, a simple gradient based algorithm

for variational inequalities, and obtained an O(T 2/3) bound for both regret and the violation of the

constraints.

Our work leaves open a number of interesting directions for future work. In particular it would

be interesting to see if it is possible to improve the bounds obtained in this paper, i.e., getting an

O(
√

T ) bound on the regret and better bound than O(T 3/4) on the violation of constraints for general

convex domains. Proving optimal lower bounds for the proposed setting also remains as an open

question. Also, it would be interesting to consider strongly convex loss or constraint functions.

Finally, relaxing the assumption we made to exactly satisfy the constraints in the long run is an

interesting problem to be investigated.
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Appendix A. Proof of Theorem 1

We first show that when δ < 1, there exists a loss function and a constraint function such that the

violation of constraint is linear in T . To see this, we set ft(x) = w,x, t ∈ [T ] and g(x) = 1−w,x.

Assume we start with an infeasible solution, that is, g(x1) > 0 or x,1 w < 1. Given the solution xt

obtained at tth trial, using the standard gradient descent approach, we have xt+1 = xt −η(1−δ)w.

Hence, if x,t w < 1, since we have x,t+1w < x,t w < 1, if we start with an infeasible solution, all the

solutions obtained over the trails will violate the constraint g(x)≤ 0, leading to a linear number of

violation of constraints. Based on this analysis, we assume δ > 1 in the analysis below.

Given a strongly convex loss function f (x) with modulus γ, we consider a constrained optimiza-

tion problem given by

min
g(x)≤0

f (x),

which is equivalent to the following unconstrained optimization problem

min
x

f (x)+λ[g(x)]+,

where λ ≥ 0 is the Lagrangian multiplier. Since we can always scale f (x) to make λ ≤ 1/2, it is

safe to assume λ ≤ 1/2 < δ. Let x∗ and xa be the optimal solutions to the constrained optimization

problems argming(x)≤0 f (x) and argmin
x

f (x)+ δ[g(x)]+, respectively. We choose f (x) such that

‖∇ f (x∗)‖ > 0, which leads to xa ! x∗. This holds because according to the first order optimality

condition, we have

∇ f (x∗) =−λ∇g(x∗), ∇ f (xa) =−δ∇g(x∗),

and therefore ∇ f (x∗) ! ∇ f (xa) when λ < δ. Define ∆ = f (xa)− f (x∗). Since ∆ ≥ γ‖xa − x∗‖2/2

due to the strong convexity of f (x), we have ∆ > 0.

Let {xt}T
t=1 be the sequence of solutions generated by the OGD algorithm that minimizes the

modified loss function f (x)+δ[g(x)]+. We have

T

∑
t=1

f (xt)+δ[g(xt)]+ ≥ T min
x

f (x)+δ[g(x)]+

= T ( f (xa)+δ[g(xa)]+)≥ T ( f (xa)+λ[g(xa)]+)

= T ( f (x∗)+λ[g(x∗)]+)+T ( f (xa)+λ[g(xa)]+− f (x∗)−λ[g(x∗)])

≥ T min
g(x)≤0

f (x)+T ∆.

As a result, we have
T

∑
t=1

f (xt)+δ[g(xt)]+− min
g(x)≤0

f (x) = O(T ),

implying that either the regret ∑T
t=1 f (xt)−T f (x∗) or the violation of the constraints ∑T

t=1[g(x)]+ is

linear in T .
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To better understand the performance of penalty based approach, here we analyze the perfor-

mance of the OGD in solving the online optimization problem in (3). The algorithm is analyzed

using the following lemma from Zinkevich (2003).

Lemma 16 Let x1,x2, . . . ,xT be the sequence of solutions obtained by applying OGD on the se-

quence of bounded convex functions f1, f2, . . . , fT . Then, for any solution x∗ ∈ K we have

T

∑
t=1

ft(xt)−
T

∑
t=1

ft(x∗)≤
R2

2η
+

η

2

T

∑
t=1

‖∇ ft(xt)‖2.

We apply OGD to functions f̂t(x), t ∈ [T ] defined in (4), that is, instead of updating the solution

based on the gradient of ft(x), we update the solution by the gradient of f̂t(x). Using Lemma 16, by

expanding the functions f̂t(x) based on (4) and considering the fact that ∑m
i=1 [gi(x∗)]2+ = 0, we get

T

∑
t=1

ft(xt)−
T

∑
t=1

ft(x∗)+
δ

2

T

∑
t=1

m

∑
i=1

[gi(x)]
2
+ ≤

R2

2η
+

η

2

T

∑
t=1

‖∇ f̂t(xt)‖2. (27)

From the definition of f̂t(x), the norm of the gradient ∇ f̂t(xt) is bounded as follows

‖∇ f̂t(x)‖2 = ‖∇ ft(x)+δ
m

∑
i=1

[gi(x)]+∇gi(x)‖2 ≤ 2G2(1+mδ2D2), (28)

where the inequality holds because (a1 + a2)2 ≤ 2(a2
1 + a2

2). By substituting (28) into the (27) we

have:

T

∑
t=1

ft(xt)−
T

∑
t=1

ft(x∗)+
δ

2

T

∑
t=1

m

∑
i=1

[gi(xt)]
2
+ ≤

R2

2η
+ηG2(1+mδ2D2)T. (29)

Since [·]2+ is a convex function, from Jensen’s inequality and following the fact that ∑T
t=1 ft(xt)−

ft(x∗)≥−FT , we have:

δ

2T

m

∑
i=1

[
T

∑
t=1

gi(xt)

]2

+

≤
δ

2

m

∑
i=1

T

∑
t=1

[gi(xt)]
2
+ ≤

R2

2η
+ηG2(1+mδ2D2)T +FT.

By minimizing the right hand side of (29) with respect to η, we get the regret bound as

T

∑
t=1

ft(xt)−
T

∑
t=1

ft(x∗)≤ RG

√
2(1+mδ2D2)T = O(δ

√
T ) (30)

and the bound for the violation of constraints as

T

∑
t=1

gi(xt)≤

√(
R2

2η
+ηG2(1+mδ2D2)T +FT

)
2T

δ
= O(T 1/4δ1/2 +T δ−1/2). (31)

Examining the bounds obtained in (30) and (31), it turns out that in order to recover O(
√

T ) regret

bound, we need to set δ to be a constant, leading to O(T ) bound for the violation of constraints in

the long run, which is not satisfactory at all.
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Appendix B. Proof of Corollary 13

Let xγ be the optimal solution to ming(x)≤−γ ∑T
t=1 ft(x). Similar to the proof of Theorem 12, we have

T

∑
t=1

[
ft(xt)− ft(xγ)

]
+

[
∑T

t=1 g(xt)+ γT
]2
+

2(δηT +1/η)
≤

R2

2η
+

ηT

2
G2.

Using the stated values for the parameters η = δ = T−1/3, and applying the fact that ∑T
t=1 ft(xt)−

ft(xγ)≥−FT we obtain,

T

∑
t=1

ft(xt)− ft(xγ)≤
R2

2
T 1/3 +

G2

2
T 2/3 (32)

and
[

T

∑
t=1

g(xt)+ γT

]2

+

≤ 2
(
R2T 1/3 +G2T 2/3 +FT

)
T 1/3. (33)

From Theorem 7, we have the bound

T

∑
t=1

ft(xγ)≤
T

∑
t=1

ft(x∗)+
G

σ
γT. (34)

Combining inequalities (32) and (34) with substituting the stated value of γ = bT−1/3 yields the

regret bound as desired. To obtain the bound for the violation of the constraints, from (33) we have

T

∑
t=1

g(xt)≤
√

2
(
R2T 1/3 +G2T 2/3 +FT

)
T 1/3 −bT 2/3.

For sufficiently large values of T , that is, FT ≥R2T 1/3+G2T 2/3 we can simplify above inequality as

∑T
t=1 g(xt)≤ 2

√
FT 2/3−bT 2/3. By setting b = 2

√
F the zero bound on the violation of constraints

is guaranteed.
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Abstract
We propose a method for nonparametric density estimation that exhibits robustness to contamina-
tion of the training sample. This method achieves robustness by combining a traditional kernel
density estimator (KDE) with ideas from classicalM-estimation. We interpret the KDE based on a
positive semi-definite kernel as a sample mean in the associated reproducing kernel Hilbert space.
Since the sample mean is sensitive to outliers, we estimate it robustly via M-estimation, yielding a
robust kernel density estimator (RKDE).

An RKDE can be computed efficiently via a kernelized iteratively re-weighted least squares
(IRWLS) algorithm. Necessary and sufficient conditions are given for kernelized IRWLS to con-
verge to the global minimizer of the M-estimator objective function. The robustness of the RKDE
is demonstrated with a representer theorem, the influence function, and experimental results for
density estimation and anomaly detection.
Keywords: outlier, reproducing kernel Hilbert space, kernel trick, influence function,M-estimation

1. Introduction

The kernel density estimator (KDE) is a well-known nonparametric estimator of univariate or multi-
variate densities, and numerous articles have been written on its properties, applications, and exten-
sions (Silverman, 1986; Scott, 1992). However, relatively little work has been done to understand
or improve the KDE in situations where the training sample is contaminated. This paper addresses
a method of nonparametric density estimation that generalizes the KDE, and exhibits robustness to
contamination of the training sample.1

Consider training data following a contamination model

X1, . . . ,Xn
iid∼ (1− p) f0+ p f1,

where f0 is the “nominal” density to be estimated, f1 is the density of the contaminating distribution,
and p < 1

2 is the proportion of contamination. Labels are not available, so that the problem is
unsupervised. The objective is to estimate f0 while making no parametric assumptions about the
nominal or contaminating distributions.

∗. Also in the Department of Statistics.
1. Shorter versions of this work previously appeared at the International Conference on Acoustics, Speech, and Signal
Processing (Kim and Scott, 2008) and the International Conference on Machine Learning (Kim and Scott, 2011).

c©2012 JooSeuk Kim and Clayton D. Scott.
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Clearly f0 cannot be recovered if there are no assumptions on f0, f1 and p. Instead, we will
focus on a set of nonparametric conditions that are reasonable in many practical applications. In
particular, we will assume that, relative to the nominal data, the contaminated data are

(a) outlying: the densities f0 and f1 have relatively little overlap

(b) diffuse: f1 is not too spatially concentrated relative to f0

(c) not abundant: a minority of the data come from f1

Although we will not be stating these conditions more precisely, they capture the intuition behind
the quantitative results presented below.

As a motivating application, consider anomaly detection in a computer network. Imagine that
several multi-dimensional measurementsX1, . . . ,Xn are collected. For example, eachXi may record
the volume of traffic along certain links in the network, at a certain instant in time (Chhabra et al.,
2008). If each measurement is collected when the network is in a nominal state, these data could be
used to construct an anomaly detector by first estimating the density f0 of nominal measurements,
and then thresholding that estimate at some level to obtain decision regions. Unfortunately, it is
often difficult to know that the data are free of anomalies, because assigning labels (nominal vs.
anomalous) can be a tedious, labor intensive task. Hence, it is necessary to estimate the nominal
density (or a level set thereof) from contaminated data. Furthermore, the distributions of both nom-
inal and anomalous measurements are potentially complex, and it is therefore desirable to avoid
parametric models.

The proposed method achieves robustness by combining a traditional kernel density estimator
with ideas fromM-estimation (Huber, 1964; Hampel, 1974). The KDE based on a translation invari-
ant, positive semi-definite (PSD) kernel is interpreted as a sample mean in the reproducing kernel
Hilbert space (RKHS) associated with the kernel. Since the sample mean is sensitive to outliers, we
estimate it robustly via M-estimation, yielding a robust kernel density estimator (RKDE). We de-
scribe a kernelized iteratively re-weighted least squares (KIRWLS) algorithm to efficiently compute
the RKDE, and provide necessary and sufficient conditions for the convergence of KIRWLS to the
RKDE.

We also offer three arguments to support the claim that the RKDE robustly estimates the nominal
density and its level sets. First, we characterize the RKDE by a representer theorem. This theorem
shows that the RKDE is a weighted KDE, and the weights are smaller for more outlying data points.
Second, we study the influence function of the RKDE, and show through an exact formula and
numerical results that the RKDE is less sensitive to contamination by outliers than the KDE. Third,
we conduct experiments on several benchmark data sets that demonstrate the improved performance
of the RKDE, relative to competing methods, at both density estimation and anomaly detection.

One motivation for this work is that the traditional kernel density estimator is well-known to
be sensitive to outliers. Even without contamination, the standard KDE tends to overestimate the
density in regions where the true density is low. This has motivated several authors to consider
variable kernel density estimators (VKDEs), which employ a data-dependent bandwidth at each data
point (Breiman et al., 1977; Abramson, 1982; Terrell and Scott, 1992). This bandwidth is adapted
to be larger where the data are less dense, with the aim of decreasing the aforementioned bias.
Such methods have been applied in outlier detection and computer vision applications (Comaniciu
et al., 2001; Latecki et al., 2007), and are one possible approach to robust nonparametric density
estimation. We compare against these methods in our experimental study.
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Density estimation with positive semi-definite kernels has been studied by several authors. Vap-
nik and Mukherjee (2000) optimize a criterion based on the empirical cumulative distribution func-
tion over the class of weighted KDEs based on a PSD kernel. Shawe-Taylor and Dolia (2007)
provide a refined theoretical treatment of this approach. Song et al. (2008) adopt a different cri-
terion based on Hilbert space embeddings of probability distributions. Our approach is somewhat
similar in that we attempt to match the mean of the empirical distribution in the RKHS, but our
criterion is different. These methods were also not designed with contaminated data in mind.

We show that the standard kernel density estimator can be viewed as the solution to a certain
least squares problem in the RKHS. The use of quadratic criteria in density estimation has also
been previously developed. The aforementioned work of Song et al. optimizes the norm-squared
in Hilbert space, whereas Kim (1995), Girolami and He (2003), Kim and Scott (2010) and Ma-
hapatruni and Gray (2011) adopt the integrated squared error. Once again, these methods are not
designed for contaminated data.

Previous work combining robust estimation and kernel methods has focused primarily on su-
pervised learning problems. M-estimation applied to kernel regression has been studied by various
authors (Christmann and Steinwart, 2007; Debruyne et al., 2008a,b; Zhu et al., 2008; Wibowo,
2009; Brabanter et al., 2009). Robust surrogate losses for kernel-based classifiers have also been
studied (Xu et al., 2006). In unsupervised learning, a robust way of doing kernel principal com-
ponent analysis, called spherical KPCA, has been proposed, which applies PCA to feature vectors
projected onto a unit sphere around the spatial median in a kernel feature space (Debruyne et al.,
2010). The kernelized spatial depth was also proposed to estimate depth contours nonparametrically
(Chen et al., 2009). To our knowledge, the RKDE is the first application of M-estimation ideas in
kernel density estimation.

In Section 2 we propose robust kernel density estimation. In Section 3 we present a representer
theorem for the RKDE. In Section 4 we describe the KIRWLS algorithm and its convergence. The
influence function is developed in Section 5, Section 6 describes a straightforward extension to non-
reproducing kernels, and experimental results are reported in Section 7. Conclusions are offered
in Section 8. Section 9 contains proofs of theorems. Matlab code implementing our algorithm is
available at www.eecs.umich.edu/˜cscott.

2. Robust Kernel Density Estimation

Let X1, . . . ,Xn ∈ Rd be a random sample from a distribution F with a density f . The kernel density
estimate of f , also called the Parzen window estimate, is a nonparametric estimate given by

f̂KDE (x) =
1
n

n

∑
i=1

kσ (x,Xi)

where kσ is a kernel function with bandwidth σ. To ensure that f̂KDE(x) is a density, we assume
the kernel function satisfies kσ( · , ·) ≥ 0 and

∫
kσ (x, ·) dx = 1. We will also assume that kσ(x,x′)

is translation invariant, in that kσ(x− z,x′ − z) = kσ(x,x′) for all x,x′, and z.
In addition, we require that kσ be positive semi-definite, which means that the matrix

(kσ(xi,x j))1≤i, j≤m is positive semi-definite for all positive integers m and all x1, . . . ,xm ∈ Rd . Well-
known examples of kernels satisfying all of the above properties are the Gaussian kernel

kσ(x,x′) =
(

1√
2πσ

)d
exp

(
−
‖x−x′‖2
2σ2

)
, (1)
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the multivariate Student kernel

kσ(x,x′) =
(

1√
πσ

)d
·
Γ
(
(ν+d)/2

)

Γ(ν/2)
·
(
1+

1
ν
·
‖x−x′‖2

σ2

)− ν+d
2
,

and the Laplacian kernel

kσ(x,x′) =
cd
σd
exp

(
−
‖x−x′‖

σ

)

where cd is a constant depending on the dimension d that ensures
∫
kσ (x, ·) dx = 1 (Scovel et al.,

2010).
Every PSD kernel kσ is associated with a unique Hilbert space of functions called its reproducing

kernel Hilbert space (RKHS) which we will denote H , and kσ is called the reproducing kernel of
H . For every x, Φ(x)! kσ(·,x) is an element of H , and therefore so too is the KDE. See Steinwart
and Christmann (2008) for a thorough treatment of PSD kernels and RKHSs. For our purposes,
the critical property of H is the so-called reproducing property. It states that for all g ∈ H and all
x ∈ Rd , g(x) = 〈Φ(x),g〉H . As a special case, taking g= kσ(·,x′), we obtain

kσ(x,x′) = 〈Φ(x),Φ(x′)〉H

for all x,x′ ∈ Rd . We also note that, by translation invariance, the functions Φ(x) have constant
norm in H because

‖Φ(x)‖2
H
= 〈Φ(x),Φ(x)〉H = kσ(x,x) = kσ(0,0).

We will denote τ= ‖Φ(x)‖H .
From this point of view, the KDE can be expressed as

f̂KDE(·) =
1
n

n

∑
i=1

kσ(·,Xi)

=
1
n

n

∑
i=1

Φ(Xi),

the sample mean of the Φ(Xi)’s in H . Equivalently, f̂KDE ∈H is the solution of

min
g∈H

n

∑
i=1

‖Φ(Xi)−g‖2
H
.

Being the solution of a least squares problem, the KDE is sensitive to the presence of outliers
among the Φ(Xi)’s. To reduce the effect of outliers, we propose to useM-estimation (Huber, 1964)
to find a robust sample mean of the Φ(Xi)’s. For a robust loss function ρ(x) on x ≥ 0, the robust
kernel density estimate is defined as

f̂RKDE = argmin
g∈H

n

∑
i=1

ρ
(
‖Φ(Xi)−g‖H

)
. (2)

Well-known examples of robust loss functions are Huber’s or Hampel’s ρ. Unlike the quadratic loss,
these loss functions have the property that ψ! ρ′ is bounded. Huber’s ρ and ψ are given by

ρ(x) =

{
x2/2 , 0≤ x≤ a
ax−a2/2 , a< x
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ψ(x) =

{
x , 0≤ x≤ a
a , a< x,

(3)

and Hampel’s ρ and ψ are

ρ(x) =






x2/2 , 0≤ x< a
ax−a2/2 , a≤ x< b
a(x− c)2/2(b− c)+a(b+ c−a)/2 , b≤ x< c
a(b+ c−a)/2 , c≤ x

ψ(x) =






x , 0≤ x< a
a , a≤ x< b
a · (c− x)/(c−b) , b≤ x< c
0 , c≤ x.

(4)

The functions ρ(x),ψ(x), and ψ(x)/x are plotted in Figure 1, for the quadratic, Huber, and Hampel
losses. Note that while ψ(x)/x is constant for the quadratic loss, for Huber’s or Hampel’s loss,
this function is decreasing in x. This is a desirable property for a robust loss function, which will
be explained later in detail. While our examples and experiments employ Huber’s and Hampel’s
losses, many other losses can be employed.

We will argue below that f̂RKDE is a valid density, having the form ∑n
i=1wikσ(·,Xi) with weights

wi that are nonnegative and sum to one. To illustrate the estimator, Figure 2 (a) shows a contour
plot of a Gaussian mixture distribution on R2. Figure 2 (b) depicts a contour plot of a KDE based
on a training sample of size 200 from the Gaussian mixture. As we can see in Figure 2 (c) and
(d), when 20 contaminating data points are added, the KDE is significantly altered in low density
regions, while the RKDE is much less affected.

We remark that the definition of the RKDE does not require that kσ be a reproducing kernel,
only that the functions Φ(x) = kσ(·,x) belong to a Hilbert space. Indeed, almost all of the results
presented below hold in this more general setting. However, we restrict our attention to reproducing
kernels for two reasons. First, with reproducing kernels, inner products inH can be easily computed
via the kernel, leading to efficient implementation. Second, the reproducing property allows us to
interpret the representer theorem and influence function to infer robustness of the RKDE. With non-
reproducing kernels, these interpretations are less clear. The extension to non-RKHS Hilbert spaces
is discussed in Section 6, with specific examples.

Throughout this paper, we define ϕ(x)! ψ(x)/x and consider the following assumptions on ρ,
ψ, and ϕ:

(A1) ρ is non-decreasing, ρ(0) = 0, and ρ(x)/x→ 0 as x→ 0

(A2) ϕ(0)! limx→0
ψ(x)
x exists and is finite

(A3) ψ and ϕ are continuous

(A4) ψ and ϕ are bounded

(A5) ϕ is Lipschitz continuous

which hold for Huber’s and Hampel’s losses, as well as several others.
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(b) ψ functions
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ψ
(x

)/x

Quadratic
Huber
Hampel

(c) ψ(x)/x

Figure 1: The comparison between three different ρ(x), ψ(x), and ψ(x)/x: quadratic, Huber’s, and
Hampel’s.

3. Representer Theorem

In this section, we will describe how f̂RKDE can be expressed as a weighted combination of the
kσ( · ,Xi)’s. A formula for the weights explains how a robust sample mean in H translates to a
robust nonparametric density estimate. We also present necessary and sufficient conditions for a
function to be an RKDE. From (2), f̂RKDE = argming∈H J(g), where

J(g) =
1
n

n

∑
i=1

ρ(‖Φ(Xi)−g‖H ). (5)
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(b) KDE without outliers

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(c) KDE with outliers
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(d) RKDE with outliers

Figure 2: Contours of a nominal density (a) and kernel density estimates (b-d) along with data
samples from the nominal density (o) and contaminating density (x). 200 points are from
the nominal distribution and 20 contaminating points are from a uniform distribution.

First, let us find necessary conditions for g to be a minimizer of J. Since the space over which
we are optimizing J is a Hilbert space, the necessary conditions are characterized through Gateaux
differentials of J. Given a vector space X and a function T : X → R, the Gateaux differential of T
at x ∈ X with incremental h ∈ X is defined as

δT (x;h) = lim
α→0

T (x+αh)−T (x)
α

.
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If δT (x0;h) is defined for all h ∈ X , a necessary condition for T to have a minimum at x0 is that
δT (x0;h) = 0 for all h ∈ X (Luenberger, 1997). From this optimality principle, we can establish the
following lemma.

Lemma 1 Suppose assumptions (A1) and (A2) are satisfied. Then the Gateaux differential of J at
g ∈H with incremental h ∈H is

δJ(g;h) =−
〈
V (g),h

〉
H

where V :H →H is given by

V (g) =
1
n

n

∑
i=1

ϕ(‖Φ(Xi)−g‖H ) ·
(
Φ(Xi)−g

)
.

A necessary condition for g= f̂RKDE is V (g) = 0.

Lemma 1 is used to establish the following representer theorem, so named because f̂RKDE can
be represented as a weighted combination of kernels centered at the data points. Similar results are
known for supervised kernel methods (Schölkopf et al., 2001).

Theorem 2 Suppose assumptions (A1) and (A2) are satisfied. Then,

f̂RKDE(x) =
n

∑
i=1

wikσ(x,Xi) (6)

where wi ≥ 0, ∑n
i=1wi = 1. Furthermore,

wi ∝ ϕ(‖Φ(Xi)− f̂RKDE‖H ). (7)

It follows that f̂RKDE is a density. The representer theorem also gives the following interpretation
of the RKDE. If ϕ is decreasing, as is the case for a robust loss, then wi will be small when ‖Φ(Xi)−
f̂RKDE‖H is large. Now for any g ∈H ,

‖Φ(Xi)−g‖2
H
= 〈Φ(Xi)−g,Φ(Xi)−g〉H
= ‖Φ(Xi)‖2H −2〈Φ(Xi),g〉H +‖g‖2

H

= τ2−2g(Xi)+‖g‖2
H
,

where the last step follows from the reproducing property. Taking g= f̂RKDE , we see that wi is small
when f̂RKDE(Xi) is small. Therefore, the RKDE is robust in the sense that it down-weights outlying
points.

Theorem 2 provides a necessary condition for f̂RKDE to be the minimizer of (5). With an addi-
tional assumption on J, this condition is also sufficient.

Theorem 3 Suppose that assumptions (A1) and (A2) are satisfied, and J is strictly convex. Then
(6), (7), and ∑n

i=1wi = 1 are sufficient for f̂RKDE to be the minimizer of (5).

Since the previous result assumes J is strictly convex, we give some simple conditions that imply
this property.
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Lemma 4 J is strictly convex provided either of the following conditions is satisfied:

(i) ρ is strictly convex and non-decreasing.

(ii) ρ is convex, strictly increasing, n≥ 3, and K = (kσ(Xi,X j))ni, j=1 is positive definite.

The second condition implies that J can be strictly convex even for the Huber loss, which is convex
but not strictly convex.

4. KIRWLS Algorithm and Its Convergence

In general, (2) does not have a closed form solution and f̂RKDE has to be found by an iterative
algorithm. Fortunately, the iteratively re-weighted least squares (IRWLS) algorithm used in classical
M-estimation (Huber, 1964) can be extended to a RKHS using the kernel trick. The kernelized
iteratively re-weighted least squares (KIRWLS) algorithm starts with initial w(0)

i ∈ R , i = 1, . . . ,n
such that w(0)

i ≥ 0 and ∑n
i=1w

(0)
i = 1, and generates a sequence { f (k)} by iterating on the following

procedure:

f (k) =
n

∑
i=1

w(k−1)
i Φ(Xi),

w(k)
i =

ϕ(‖Φ(Xi)− f (k)‖H )

∑n
j=1ϕ(‖Φ(X j)− f (k)‖H )

.

Intuitively, this procedure is seeking a fixed point of Equations (6) and (7). The computation of
‖Φ(X j)− f (k)‖H can be done by observing

‖Φ(X j)− f (k)‖2
H
=
〈
Φ(X j)− f (k),Φ(X j)− f (k)

〉

H

=
〈
Φ(X j),Φ(X j)

〉
H
−2

〈
Φ(X j), f (k)

〉
H
+
〈
f (k), f (k)

〉
H
.

Since f (k) = ∑n
i=1w

(k−1)
i Φ(Xi), we have
〈
Φ(X j),Φ(X j)

〉
H

= kσ(X j,X j)

〈
Φ(X j), f (k)

〉
H

=
n

∑
i=1

w(k−1)
i kσ(X j,Xi)

〈
f (k), f (k)

〉
H

=
n

∑
i=1

n

∑
l=1

w(k−1)
i w(k−1)

l kσ(Xi,Xl).

Recalling that Φ(x) = kσ(·,x), after the kth iteration

f (k)(x) =
n

∑
i=1

w(k−1)
i kσ (x,Xi) .

Therefore, KIRWLS produces a sequence of weighted KDEs. The computational complexity is
O(n2) per iteration. In our experience, the number of iterations needed is typically well below 100.
Initialization and termination are discussed in the experimental study below.

2537



KIM AND SCOTT

KIRWLS can also be viewed as a kind of optimization transfer/majorize-minimize algorithm
(Lange et al., 2000; Jacobson and Fessler, 2007) with a quadratic surrogate for ρ. This perspective
is used in our analysis in Section 9.4, where f (k) is seen to be the solution of a weighted least squares
problem in H .

The next theorem characterizes the convergence of KIRWLS in terms of {J( f (k))}∞k=1 and
{ f (k)}∞k=1.

Theorem 5 Suppose assumptions (A1) - (A3) are satisfied, and ϕ(x) is nonincreasing. Let

S =
{
g ∈H

∣∣V (g) = 0
}

and { f (k)}∞k=1 be the sequence produced by the KIRWLS algorithm. Then, J( f (k)) monotonically
decreases at every iteration and converges. Also, S .= /0 and

‖ f (k)−S‖H ! inf
g∈S

‖ f (k)−g‖H → 0

as k→ ∞.

In words, as the number of iterations grows, f (k) becomes arbitrarily close to the set of stationary
points of J, points g ∈H satisfying δJ(g;h) = 0 ∀h ∈H .

Corollary 6 Suppose that the assumptions in Theorem 5 hold and J is strictly convex. Then { f (k)}∞k=1
converges to f̂RKDE in the H -norm and the supremum norm.

Proof Convergence in the H -norm follows from the previous result because under strict convexity
of J, |S |= 1. Convergence in the supremum norm now follows from the reproducing property and
Cauchy-Schwarz because, for any x,

| f (k)(x)− f̂RKDE(x)|= |〈Φ(x), f (k)− f̂RKDE〉H |

≤ τ‖ f (k)− f̂RKDE‖H .

5. Influence Function for Robust KDE

To quantify the robustness of the RKDE, we study the influence function. First, we recall the
traditional influence function from robust statistics. Let T (F) be an estimator of a scalar parameter
based on a distribution F . As a measure of robustness of T , the influence function was proposed by
Hampel (1974). The influence function (IF) for T at F is defined as

IF(x′;T,F) = lim
s→0

T ((1− s)F+ sδx′)−T (F)
s

,

where δx′ represents a discrete distribution that assigns probability 1 to the point x′. Basically,
IF(x′;T,F) represents how T (F) changes when the distribution F is contaminated with infinitesimal
probability mass at x′. One robustness measure of T is whether the corresponding IF is bounded or
not.
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For example, the maximum likelihood estimator for the unknown mean of a Gaussian distribu-
tion is the sample mean T (F),

T (F) = EF [X ] =
∫
xdF(x). (8)

The influence function for T (F) in (8) is

IF(x′;T,F) = lim
s→0

T ((1− s)F+ sδx′)−T (F)
s

= x′ −EF [X ].

Since |IF(x′;T,F)| increases without bound as x′ goes to ±∞, the estimator is considered to be not
robust.

Now, consider a similar concept for a function estimate. Since the estimate is a function, not a
scalar, we should be able to express the change of the function value at every x.

Definition 7 (IF for function estimate) Let T (x;F) be a function estimate based on F, evaluated
at x. We define the influence function for T (x;F) as

IF(x,x′;T,F) = lim
s→0

T (x;Fs)−T (x;F)
s

where Fs = (1− s)F+ sδx′ .

IF(x,x′;T,F) represents the change of the estimated function T at x when we add infinitesimal
probability mass at x′ to F . For example, the standard KDE is

T (x;F) = f̂KDE(x;F) =
∫
kσ(x,y)dF(y)

= EF [kσ(x,X)]

where X∼ F . In this case, the influence function is

IF(x,x′; f̂KDE ,F) = lim
s→0

f̂KDE(x;Fs)− f̂KDE(x;F)
s

= lim
s→0

EFs [kσ(x,X)]−EF [kσ(x,X)]
s

= lim
s→0

−sEF [kσ(x,X)]+ sEδx′ [kσ(x,X)]
s

=−EF [kσ(x,X)]+Eδx′ [kσ(x,X)]
=−EF [kσ(x,X)]+ kσ(x,x′). (9)

With the empirical distribution Fn = 1
n ∑

n
i=1 δXi ,

IF(x,x′; f̂KDE ,Fn) =−
1
n

n

∑
i=1

kσ(x,Xi)+ kσ(x,x′). (10)

To investigate the influence function of the RKDE, we generalize its definition to a general
distribution µ, writing f̂RKDE( · ;µ) = fµ where

fµ= argmin
g∈H

∫
ρ(‖Φ(x)−g‖H )dµ(x).
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For the robust KDE, T (x,F) = f̂RKDE(x;F) = 〈Φ(x), fF〉H , we have the following characterization
of the influence function. Let q(x) = xψ′(x)−ψ(x).

Theorem 8 Suppose assumptions (A1)-(A5) are satisfied. In addition, assume that fFs → fF as
s→ 0. If ḟF ! lims→0

fFs− fF
s exists, then

IF(x,x′; f̂RKDE ,F) = ḟF(x)

where ḟF ∈H satisfies
(∫

ϕ(‖Φ(x)− fF‖H )dF
)
· ḟF

+
∫ (〈

ḟF ,Φ(x)− fF
〉
H

‖Φ(x)− fF‖3H
·q(‖Φ(x)− fF‖H ) ·

(
Φ(x)− fF

))
dF(x)

= (Φ(x′)− fF) ·ϕ(‖Φ(x′)− fF‖H ). (11)

Unfortunately, for Huber or Hampel’s ρ, there is no closed form solution for ḟF of (11). How-
ever, if we work with Fn instead of F , we can find ḟFn explicitly. Let

1= [1, . . . ,1]T ,
k′ = [kσ(x′,X1), . . . ,kσ(x′,Xn)]T ,

In be the n×n identity matrix, K ! (kσ(Xi,X j))ni=1, j=1 be the kernel matrix, Q be a diagonal matrix
with Qii = q(‖Φ(Xi)− fFn‖H )/‖Φ(Xi)− fFn‖3H ,

γ=
n

∑
i=1

ϕ(‖Φ(Xi)− fFn‖H ),

and
w= [w1, . . . ,wn]T ,

where w gives the RKDE weights as in (6).

Theorem 9 Suppose assumptions (A1)-(A5) are satisfied. In addition, assume that

• fFn,s → fFn as s→ 0 (satisfied when J is strictly convex)

• the extended kernel matrix K′ based on {Xi}ni=1
⋃
{x′} is positive definite.

Then,

IF(x,x′; f̂RKDE ,Fn) =
n

∑
i=1

αikσ(x,Xi)+α′kσ(x,x′)

where
α′ = n ·ϕ(‖Φ(x′)− fFn‖H )/γ

and α= [α1, . . . ,αn]T is the solution of the following system of linear equations:
{
γIn+(In−1 ·wT )TQ(In−1 ·wT )K

}
α

= −nϕ(‖Φ(x′)− fFn‖H )w−α′(In−1 ·wT )TQ · (In−1 ·wT ) ·k′.
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Figure 3: (a) true density and density estimates. (b) IF as a function of x when x′ =−5

Note that α′ captures the amount by which the density estimator changes near x′ in response to
contamination at x′. Now α′ is given by

α′ =
ϕ(‖Φ(x′)− fFn‖H )

1
n ∑

n
i=1ϕ(‖Φ(Xi)− fFn‖H )

.

For a standard KDE, we have ϕ ≡ 1 and α′ = 1, in agreement with (10). For robust ρ, ϕ(‖Φ(x′)−
fFn‖H ) can be viewed as a measure of “inlyingness”, with more inlying points having larger values.
This follows from the discussion just after Theorem 2, which leverages the reproducing property. If
the contaminating point x′ is less inlying than the average Xi, then α′ < 1. Thus, the RKDE is less
sensitive to outlying points than the KDE.

As mentioned above, in classical robust statistics, the robustness of an estimator can be inferred
from the boundedness of the corresponding influence function. However, the influence functions
for density estimators are bounded even if ‖x′‖ → ∞. Therefore, when we compare the robustness
of density estimates, we compare how close the influence functions are to the zero function.

Simulation results are shown in Figure 3 for a synthetic univariate distribution. Figure 3 (a)
shows the density of the distribution, and three estimates. Figure 3 (b) shows the corresponding
influence functions. As we can see in (b), for a point x′ in the tails of F , the influence functions for
the robust KDEs are overall smaller, in absolute value, than those of the standard KDE (especially
with Hampel’s loss). Additional numerical results are given in Section 7.2.

Finally, it is interesting to note that for any density estimator f̂ ,

∫
IF(x,x′; f̂ ,F)dx= lim

s→0

∫
f̂ (x;Fs)dx−

∫
f̂ (x;F)dx

s
= 0.

Thus α′ = −∑n
i=1αi for a robust KDE. This suggests that since f̂RKDE has a smaller increase at x′

(compared to the KDE), it will also have a smaller decrease (in absolute value) near the training
data. Therefore, the norm of IF(x,x′; f̂RKDE ,Fn), viewed as a function of x, should be smaller when
x′ is an outlier. We confirm this in our experiments in Section 7.
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6. Generalization to Other Hilbert Spaces

So far, we have focused our attention on PSD kernels and viewed the KDE as an element of the
RKHS associated with the kernel. However, the RKDE can be defined in a more general setting. In
particular, it is only necessary that the functions Φ(x) = kσ( · ,x) belong to a Hilbert space H . Then
one can still obtain all the previous results, that is, Lemmas 1 and 4, Theorems 2, 3, 5, 8, and 9,
and Corollary 6 (except convergence in the supremum norm). (For Theorems 8 and 9 it is necessary
to additionally assume that ‖Φ(x)‖H is bounded independent of x.) The only necessary change is
that inner products of the form 〈Φ(x),Φ(x′)〉H can no longer be computed as kσ(x,x′). Thus, K in
Lemma 4 (ii), k′,K,K′ in Theorem 9, and various terms in the KIRWLS algorithm should now be
computed with the inner product on H .

It is also interesting to note that this generalization gives a representer theorem for non-RKHS
Hilbert spaces. This contrasts with standard approaches to supervised learning that minimize an
empirical risk plus regularization term. In those cases, a representer theorem may be more difficult
to obtain when the function class is not an RKHS.

There are some examples of non-RKHS Hilbert spaces where the inner product can still be
computed efficiently. For example, consider H = L2(Rd) and denote

k̃σ(x,x′) = 〈Φ(x),Φ(x′)〉L2(Rd)

=
∫
kσ(z,x)kσ(z,x′)dz.

For the multivariate Gaussian kernel, k̃σ = k√2σ. For the multivariate Cauchy kernel (the multivari-
ate Student kernel with ν= 1; see Section 2), it holds that k̃σ(x,x′) = k2σ(x,x′) (Berry et al., 1996).
For the multivariate Laplacian product kernel,

kσ(x,x′) =
1

(2σ)d
exp

{
−
‖x−x′‖1

σ

}
,

it is true that

k̃σ(x,x′) =
1

(4σ)d
d

∏
l=1

(
1+

|xl−x′l|
σ

)
exp

{
−
‖x−x′‖1

σ

}
.

For kernels without a closed-form expression for k̃σ, the inner product may still be calculated nu-
merically. For radially symmetric kernels this entails a simple one-dimensional table, as k̃σ(x,x′)
depends only on ‖x−x′‖, and these values may be tabulated in advance.

As we noted previously, however, we rely on the reproducing property to deduce robustness of
the RKDE from the representer theorem and the influence function. For non-RKHS Hilbert spaces,
these arguments are less clear. We have not experimentally investigated non-reproducing kernels,
and so cannot comment on the robustness of RKDEs based on such kernels in practice.

7. Experiments

The experimental setup is described in 7.1, and results are presented in 7.2.

7.1 Experimental Setup

Data, methods, and evaluation are now discussed.
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7.1.1 DATA

We conduct experiments on 15 benchmark data sets (Banana, B. Cancer, Diabetes, F. Solar, Ger-
man, Heart, Image, Ringnorm, Splice, Thyroid, Twonorm, Waveform, Pima Indian, Iris, MNIST),
which were originally used in the task of classification. The data sets are available online: see
http://www.fml.tuebingen.mpg.de/Members/ for the first 12 data sets and the UCI machine learning
repository for the last 3 data sets. There are 100 randomly permuted partitions of each data set into
“training” and “test” sets (20 for Image, Splice, and MNIST).

Given X1, . . . ,Xn ∼ f = (1− p) · f0+ p · f1, our goal is to estimate f0, or the level sets of f0.
For each data set with two classes, we take one class as the nominal data from f0 and the other
class as contamination from f1. For Iris, there are 3 classes and we take one class as nominal data
and the other two as contamination. For MNIST, we choose to use digit 0 as nominal and digit 1
as contamination. For MNIST, the original dimension 784 is reduced to 8 via kernel PCA using a
Gaussian kernel with bandwidth 30. For each data set, the training sample consists of n0 nominal
data and n1 contaminating points, where n1 = ε ·n0 for ε= 0, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30.
Note that each ε corresponds to an anomaly proportion p such that p = ε

1+ε . n0 is always taken to
be the full amount of training data for the nominal class.

7.1.2 METHODS

In our experiments, we compare three density estimators: the standard kernel density estimator
(KDE), variable kernel density estimator (VKDE), and robust kernel density estimator (RKDE)
with Hampel’s loss. For all methods, the Gaussian kernel in (1) is used as the kernel function kσ and
the kernel bandwidth σ is set as the median distance of a training point Xi to its nearest neighbor.

The VKDE has a variable bandwidth for each data point,

f̂VKDE(x) =
1
n

n

∑
i=1

kσi(x,Xi),

and the bandwidth σi is set as

σi = σ ·
(

η

f̂KDE(Xi)

)1/2

where η is the mean of { f̂KDE(Xi)}ni=1 (Abramson, 1982; Comaniciu et al., 2001). There is another
implementation of the VKDE where σi is based on the distance to its k-th nearest neighbor (Breiman
et al., 1977). However, this version did not perform as well and is therefore omitted.

For the RKDE, the parameters a, b, and c in (4) are set as follows. First, we compute f̂med ,
which is the RKDE obtained with ρ= | · |, and set di = ‖Φ(Xi)− f̂med‖H . Then, a is set to be the
median of {di}, b the 75th percentile of {di}, and c the 85th percentile of {di}. After finding these
parameters, we initialize w(0)

i such that f (1) = f̂med and terminate KIRWLS when

|J( f (k+1))− J( f (k))|
J( f (k))

< 10−8.

7.1.3 EVALUATION

We evaluate the performance of the three density estimators in three different settings. First, we use
the influence function to study sensitivity to outliers. Second and third, we compare the methods
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at the tasks of density estimation and anomaly detection, respectively. In each case, an appropriate
performance measure is adopted. These are explained in detail in Section 7.2. To compare a pair of
methods across multiple data sets, we adopt the Wilcoxon signed-rank test (Wilcoxon, 1945). Given
a performance measure, and given a pair of methods and ε, we compute the difference hi between
the performance of two density estimators on the ith data set. The data sets are ranked 1 through 15
according to their absolute values |hi|, with the largest |hi| corresponding to the rank of 15. Let R1
be the sum of ranks over these data sets where method 1 beats method 2, and let R2 be the sum of the
ranks for the other data sets. The signed-rank test statistic T ! min(R1,R2) and the corresponding
p-value are used to test whether the performances of the two methods are significantly different. For
example, the critical value of T for the signed rank test is 25 at a significance level of 0.05. Thus, if
T ≤ 25, the two methods are significantly different at the given significance level, and the larger of
R1 and R2 determines the method with better performance.

7.2 Experimental Results

We begin by studying influence functions.

7.2.1 SENSITIVITY USING INFLUENCE FUNCTION

As the first measure of robustness, we compare the influence functions for KDEs and RKDEs,
given in (10) and Theorem 9, respectively. To our knowledge, there is no formula for the influence
function of VKDEs, and therefore VKDEs are excluded in the comparison. We examine α(x′) =
IF(x′,x′;T,Fn) and

β(x′) =
(∫ (

IF(x,x′;T,Fn)
)2dx

)1/2
.

In words, α(x′) reflects the change of the density estimate value at an added point x′ and β(x′) is an
overall impact of x′ on the density estimate over Rd .

In this experiment, ε is equal to 0, that is, the density estimators are learned from a pure nominal
sample. Then, we take contaminating points from the test sample, each of which serves as an x′.
This gives us multiple α(x′)’s and β(x′)’s. The performance measures are the medians of {α(x′)}
and {β(x′)} (smaller means better performance). The results using signed rank statistics are shown
in Table 1. The results clearly states that for all data sets, RKDEs are less affected by outliers than
KDEs.

7.2.2 KULLBACK-LEIBLER (KL) DIVERGENCE

Second, we present the Kullback-Leibler (KL) divergence between density estimates f̂ and f0,

DKL( f̂ || f0) =
∫
f̂ (x) log f̂ (x)

f0(x)
dx.

This KL divergence is large whenever f̂ estimates f0 to have mass where it does not. For contami-
nation characterized by properties (a), (b), and (c) in the Introduction, we expect this performance
measure to capture the robustness of a density estimator.

The computation ofDKL is done as follows. Since we do not know the nominal f0, it is estimated
as f̃0, a KDE based on a separate nominal sample, obtained from the test data for each benchmark
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method 1 method 2 α(x′) β(x′)

RKDE KDE

R1 120 120
R2 0 0
T 0 0

p-value 0.00 0.00

Table 1: The signed-rank statistics and p-values of the Wilcoxon signed-rank test using the medians
of {α(x′)} and {β(x′)} as a performance measure. If R1 is larger than R2, method 1 is
better than method 2.

data set. Then, the integral is approximated by the sample mean, that is,

DKL( f̂ || f0)≈
1
n′

n′

∑
i=1
log

f̂ (x′i)
f̃0(x′i)

where {x′i}n
′

i=1 is an i.i.d sample from the estimated density f̂ with n′ = 2n = 2(n0+n1). Note that
the estimated KL divergence can have an infinite value when f̃0(y) = 0 (to machine precision) and
f̂ (y) > 0 for some y ∈ Rd . The averaged KL divergence over the permutations are used as the
performance measure (smaller means better performance). In Table 2, the rank of the three methods
are shown for each data set and ε.

Table 3 summarizes the results using the Wilcoxon signed-rank test. When comparing RKDEs
and KDEs, the results show that KDEs have smaller KL divergence than RKDEs with ε = 0. As ε
increases, however, RKDEs estimate f0 more accurately than KDEs. The results also demonstrate
that VKDEs are the worst in the sense of KL divergence. Note that VKDEs place a total mass of
1/n at all Xi, whereas the RKDE will place a mass wi < 1/n at outlying points.

Since KL divergence is not symmetric, we also compute KL divergence between f0 and f̂ ,

DKL( f0 || f̂ ) =
∫
f0(x) log

f0(x)
f̂ (x)

dx

=
∫
f0(x) log f0(x)dx−

∫
f0(x) log f̂ (x)dx

This KL divergence is large whenever f̂ estimates f0 not to have mass where it does.
Since f0 is the same when comparing different estimate f̂ , we only have to compare the second

term, which is approximated as

−
∫
f0(x) log f̂ (x)dx≈−

1
n′′

n′′

∑
i=1
log f̂ (x′′i ),

where {x′′i }n
′′

i=1 is a separate nominal sample, obtained from the test data. Table 4 and 5 show that
with this KL divergence as performance measure, VKDE performs best for almost all data sets and
ε. When comparing RKDE and KDE based on Wilcoxon signed-rank test, T has a large value for
every ε which makes it inconclusive whether one method is better than the other.
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Data Set ε
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Banana (3,1,2) (3,1,2) (3,1,2) (3,1,2) (3,1,2) (3,1,2) (3,1,2)
B. Cancer (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Diabetes (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (1,2,3) (1,2,3)
F. Solar (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3)
German (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Heart (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Image (2,1,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)

Ringnorm (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Splice (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Thyroid (2,1,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Twonorm (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Waveform (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3)
Pima Indian (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (1,2,3)

Iris (2,1,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
MNIST (3,1,2) (2,1,3) (2,1,3) (2,1,3) (1,2,3) (1,2,3) (1,2,3)

Table 2: The ranks of (RKDE, KDE, VKDE) using DKL( f̂ || f0) as a performance measure. For
example, (2, 1, 3) means that KDE performs best, RKDE next, and VKDE worst.

7.2.3 ANOMALY DETECTION

In this experiment, we apply the density estimators in anomaly detection problems. If we had a pure
sample from f0, we would estimate f0 and use {x : f̂0(x)> λ} as a detector. For each λ, we could get
a false negative and false positive probability using test data. By varying λ, we would then obtain a
receiver operating characteristic (ROC) and area under the curve (AUC). However, since we have a
contaminated sample, we have to estimate f0 robustly. Robustness can be checked by comparing the
AUC of the anomaly detectors, where the density estimates are based on the contaminated training
data (higher AUC means better performance).

Examples of the ROCs are shown in Figure 4. The RKDE provides better detection probabilities,
especially at low false alarm rates. This results in higher AUC. For each pair of methods and each
ε, R1, R2, T and p-values are shown in Table 7. The results indicate that RKDEs are significantly
better than KDEs when ε ≥ 0.20 with significance level 0.05. RKDEs are also better than VKDEs
when ε ≥ 0.15 but the difference is not significant. We also note that we have also evaluated the
kernelized spatial depth (KSD) (Chen et al., 2009) in this setting. While this method does not yield a
density estimate, it does aim to estimate density contours robustly. We found that the KSD performs
worse in terms of AUC that either the RKDE or KDE, so those results are omitted (Kim and Scott,
2011).
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method 1 method 2 ε
0.00 0.05 0.10 0.15 0.20 0.25 0.30

RKDE KDE

R1 26 67 78 83 94 101 103
R2 94 53 42 37 26 19 17
T 26 53 42 37 26 19 17

p-value 0.06 0.72 0.33 0.21 0.06 0.02 0.01

RKDE VKDE

R1 104 117 117 117 117 119 119
R2 16 3 3 3 3 1 1
T 16 3 3 3 3 1 1

p-value 0.01 0.00 0.00 0.00 0.00 0.00 0.00

VKDE KDE

R1 0 0 0 0 0 0 0
R2 120 120 120 120 120 120 120
T 0 0 0 0 0 0 0

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: The signed-rank statistics and p-values of the Wilcoxon signed-rank test usingDKL( f̂ || f0)
as a performance measure. If R1 is larger than R2, method 1 is better than method 2.
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(b) Iris, ε= 0.1

Figure 4: Examples of ROCs.

8. Conclusions

When kernel density estimators employ a smoothing kernel that is also a PSD kernel, they may
be viewed as M-estimators in the RKHS associated with the kernel. While the traditional KDE
corresponds to the quadratic loss, the RKDE employs a robust loss to achieve robustness to con-
tamination of the training sample. The RKDE is a weighted kernel density estimate, where smaller
weights are given to more outlying data points. These weights can be computed efficiently using
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Data Set ε
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Banana (3,1,2) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)
B. Cancer (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)
Diabetes (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)
F. Solar (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
German (3,2,1) (3,2,1) (3,2,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Heart (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Image (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)

Ringnorm (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Splice (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Thyroid (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Twonorm (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Waveform (3,2,1) (3,2,1) (3,2,1) (3,2,1) (2,3,1) (2,3,1) (2,3,1)
Pima Indian (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)

Iris (3,2,1) (3,2,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
MNIST (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)

Table 4: The ranks of (RKDE, KDE, VKDE) using DKL( f0 || f̂ ) as a performance measure. For
example, (2, 1, 3) means that KDE performs best, RKDE next, and VKDE worst.

a kernelized iteratively re-weighted least squares algorithm. The decreased sensitivity of RKDEs
to contamination is further attested by the influence function, as well as experiments on anomaly
detection and density estimation problems.

Robust kernel density estimators are nonparametric, making no parametric assumptions on the
data generating distributions. However, their success is still contingent on certain conditions being
satisfied. Obviously, the percentage of contaminating data must be less than 50%; our experiments
examine contamination up to around 25%. In addition, the contaminating distribution must be outly-
ing with respect to the nominal distribution. Furthermore, the anomalous component should not be
too concentrated, otherwise it may look like a mode of the nominal component. Such assumptions
seem necessary given the unsupervised nature of the problem, and are implicit in our interpretation
of the representer theorem and influence functions.

Although our focus has been on density estimation, in many applications the ultimate goal is
not to estimate a density, but rather to estimate decision regions. Our methodology is immediately
applicable to such situations, as evidenced by our experiments on anomaly detection. It is only
necessary that the kernel be PSD here; the assumption that the kernel be nonnegative and integrate
to one can clearly be dropped. This allows for the use of more general kernels, such as polynomial
kernels, or kernels on non-Euclidean domains such as strings and trees. The learning problem here
could be described as one-class classification with contaminated data.

In future work it would be interesting to investigate asymptotics, the bias-variance trade-off,
and the efficiency-robustness trade-off of robust kernel density estimators, as well as the impact of
different losses and kernels.
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method 1 method 2 ε
0.00 0.05 0.10 0.15 0.20 0.25 0.30

RKDE KDE

R1 47 52 55 58 64 65 68
R2 73 68 65 62 56 55 52
T 47 52 55 58 56 55 52

p-value 0.49 0.68 0.80 0.93 0.85 0.80 0.68

RKDE VKDE

R1 0 0 0 0 0 0 0
R2 120 120 120 120 120 120 120
T 0 0 0 0 0 0 0

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VKDE KDE

R1 119 120 120 120 120 120 120
R2 1 0 0 0 0 0 0
T 1 0 0 0 0 0 0

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: The signed-rank statistics and p-values of the Wilcoxon signed-rank test usingDKL( f0 || f̂ )
divergence as a performance measure. If R1 is larger than R2, method 1 is better than
method 2.

9. Proofs

We begin with three lemmas and proofs. The first lemma will be used in the proofs of Lemma 11
and Theorem 9, the second one in the proof of Lemma 4, and the third one in the proof of Theorem
5.

Lemma 10 Let z1, . . . ,zm be distinct points in Rd. If K = (k(zi,z j))ni, j=1 is positive definite, then
Φ(zi) = k( · ,zi)’s are linearly independent.

Proof ∑m
i=1αiΦ(zi) = 0 implies

0=
∥∥∥∥
m

∑
i=1

αiΦ(zi)
∥∥∥∥
2

H

=

〈 m

∑
i=1

αiΦ(zi),
m

∑
j=1

α jΦ(z j)
〉

H

=
m

∑
i=1

m

∑
j=1

αiα jk(zi,z j)

and from positive definiteness of K, α1 = · · ·= αm = 0.

Lemma 11 Let H be a RKHS associated with a kernel k, and x1, x2, and x3 be distinct points in
Rd. Assume that K = (k(xi,x j))3i, j=1 is positive definite. For any g,h ∈H with g .= h, Φ(xi)−g and
Φ(xi)−h are linearly independent for some i ∈ {1,2,3}.
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Data Set ε
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Banana (3,2,1) (3,2,1) (3,2,1) (1,3,2) (1,3,2) (1,3,2) (1,3,2)
B. Cancer (2,1,3) (2,1,3) (2,1,3) (1,3,2) (1,3,2) (1,3,2) (2,3,1)
Diabetes (3,1,2) (3,2,1) (2,3,1) (1,3,2) (1,3,2) (1,3,2) (1,3,2)
F. Solar (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (3,1,2)
German (2,1,3) (2,1,3) (2,1,3) (2,1,3) (1,2,3) (1,2,3) (1,2,3)
Heart (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Image (3,1,2) (3,1,2) (3,1,2) (2,3,1) (2,3,1) (1,3,2) (1,3,2)

Ringnorm (2,1,3) (2,1,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Splice (1,2,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3)
Thyroid (3,1,2) (3,2,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Twonorm (3,2,1) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2)
Waveform (2,3,1) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2)
Pima Indian (3,1,2) (3,2,1) (2,3,1) (2,3,1) (2,3,1) (1,3,2) (1,3,2)

Iris (3,1,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2)
MNIST (3,1,2) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)

Table 6: The ranks of (RKDE, KDE, VKDE) using DKL( f0 || f̂ ) as a performance measure. For
example, (2, 1, 3) means that KDE performs best, RKDE next, and VKDE worst.

method 1 method 2 ε
0.00 0.05 0.10 0.15 0.20 0.25 0.30

RKDE KDE

R1 26 46 67 90 95 96 99
R2 94 74 53 30 25 24 21
T 26 46 53 30 25 24 21

p-value 0.06 0.45 0.72 0.09 0.05 0.04 0.03

RKDE VKDE

R1 33 49 58 75 80 90 86
R2 87 71 62 45 40 30 34
T 33 49 58 45 40 30 34

p-value 0.14 0.56 0.93 0.42 0.28 0.09 0.15

VKDE KDE

R1 38 70 79 91 95 96 99
R2 82 50 41 29 25 24 21
T 38 50 41 29 25 24 21

p-value 0.23 0.60 0.30 0.08 0.05 0.04 0.03

Table 7: The signed-rank statistics of the Wilcoxon signed-rank test using AUC as a performance
measure. If R1 is larger than R2, method 1 is better than method 2.

Proof We will prove the lemma by contradiction. Suppose Φ(xi)− g and Φ(xi)− h are linearly
dependent for all i= 1,2,3. Then, there exists (αi,βi) .= (0,0) for i= 1,2,3 such that
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α1(Φ(x1)−g)+β1(Φ(x1)−h) = 0 (12)
α2(Φ(x2)−g)+β2(Φ(x2)−h) = 0 (13)
α3(Φ(x3)−g)+β3(Φ(x3)−h) = 0. (14)

Note that αi+βi .= 0 since g .= h.
First consider the case α2 = 0. This gives h = Φ(x2), and α1 .= 0 and α3 .= 0. Then, (12) and

(13) simplify to

g=
α1+β1
α1

Φ(x1)−
β1
α1
Φ(x2),

g=
α3+β3
α3

Φ(x3)−
β3
α3
Φ(x2),

respectively. This is contradiction because Φ(x1), Φ(x2), and Φ(x3) are linearly independent by
Lemma 10 and

α1+β1
α1

Φ(x1)+
(
β3
α3

−
β1
α1

)
Φ(x2)−

α3+β3
α3

Φ(x3) = 0

where (α1+β1)/α1 .= 0.
Now consider the case where α2 .= 0. Subtracting (13) multiplied by α1 from (12) multiplied

by α2 gives
(α1β2−α2β1)h=−α2(α1+β1)Φ(x1)+α1(α2+β2)Φ(x2).

In the above equation α1β2−α2β1 .= 0 because this implies α2(α1+β1) = 0 and α1(α2+β2) = 0,
which, in turn, implies α2 = 0. Therefore, h can be expressed as h= λ1Φ(x1)+λ2Φ(x2) where

λ1 =−
α2(α1+β1)
α1β2−α2β1

, λ2 =
α1(α2+β2)
α1β2−α2β1

.

Similarly, from (13) and (14), h= λ3Φ(x2)+λ4Φ(x3) where

λ3 =−
α3(α2+β2)
α2β3−α3β2

, λ4 =
α2(α3+β3)
α2β3−α3β2

.

Therefore, we have h= λ1Φ(x1)+λ2Φ(x2) = λ3Φ(x2)+λ4Φ(x3). Again, from the linear indepen-
dence of Φ(x1), Φ(x2), and Φ(x3), we have λ1 = 0, λ2 = λ3, λ4 = 0. However, λ1 = 0 leads to
α2 = 0.

Therefore Φ(xi)−g and Φ(xi)−h are linearly independent for some i ∈ {1,2,3}.

Lemma 12 Given X1, . . . ,Xn, let Dn ⊂H be defined as

Dn =

{
g
∣∣∣∣g=

n

∑
i=1

wi ·Φ(Xi), wi ≥ 0,
n

∑
i=1

wi = 1
}

Then Dn is compact.
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Proof Define

A=

{
(w1, . . . ,wn) ∈ R

n
∣∣∣∣wi ≥ 0,

n

∑
i=1

wi = 1
}
,

and a mappingW

W : (w1, . . . ,wn) ∈ A→
n

∑
i=1

wi ·Φ(Xi) ∈H .

Note that A is compact,W is continuous, and Dn is the image of A underW . Since the continuous
image of a compact space is also compact (Munkres, 2000), Dn is compact.

9.1 Proof of Lemma 1

We begin by calculating the Gateaux differential of J. We consider the two cases: Φ(x)−(g+αh)=
0 and Φ(x)− (g+αh) .= 0.

For Φ(x)− (g+αh) .= 0,

∂
∂α

ρ
(
‖Φ(x)− (g+αh)‖H

)

= ψ
(
‖Φ(x)− (g+αh)‖H

)
·
∂
∂α

‖Φ(x)− (g+αh)‖H

= ψ
(
‖Φ(x)− (g+αh)‖H

)
·
∂
∂α

√
‖Φ(x)− (g+αh)‖2

H

= ψ
(
‖Φ(x)− (g+αh)‖H

)
·

∂
∂α‖Φ(x)− (g+αh)‖2

H

2
√
‖Φ(x)− (g+αh)‖2

H

=
ψ
(
‖Φ(x)− (g+αh)‖H

)

2‖Φ(x)− (g+αh)‖H
·
∂
∂α

(
‖Φ(x)−g‖2

H
−2

〈
Φ(x)−g,αh

〉
H
+α2‖h‖2

H

)

=
ψ
(
‖Φ(x)− (g+αh)‖H

)

‖Φ(x)− (g+αh)‖H
·
(
−
〈
Φ(x)−g,h

〉
H
+α‖h‖2

H

)

= ϕ
(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
. (15)
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For Φ(x)− (g+αh) = 0,

∂
∂α

ρ
(
‖Φ(x)− (g+αh)‖H

)

= lim
δ→0

ρ
(
‖Φ(x)− (g+(α+δ)h)‖H

)
−ρ

(
‖Φ(x)− (g+αh)‖H

)

δ

= lim
δ→0

ρ
(
‖δh‖H

)
−ρ

(
0
)

δ

= lim
δ→0

ρ
(
δ‖h‖H

)

δ

=

{
limδ→0

ρ(0)
δ , h= 0

limδ→0
ρ(δ‖h‖H )
δ‖h‖H

·‖h‖H , h .= 0
= 0
= ϕ

(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
(16)

where the second to the last equality comes from (A1) and the last equality comes from the facts
that Φ(x)− (g+αh) = 0 and ϕ(0) is well-defined by (A2).

From (15) and (16), we can conclude that for any g, h ∈H , and x ∈ Rd ,

∂
∂α

ρ
(
‖Φ(x)− (g+αh)‖H

)

= ϕ
(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
(17)

Therefore,

δJ(g;h) =
∂
∂α

J(g+αh)
∣∣
α=0

=
∂
∂α

(
1
n

n

∑
i=1

ρ
(
‖Φ(Xi)− (g+αh)‖H

))∣∣∣∣
α=0

=
1
n

n

∑
i=1

∂
∂α

ρ
(
‖Φ(Xi)− (g+αh)‖H

)∣∣∣∣
α=0

=
1
n

n

∑
i=1

ϕ
(
‖Φ(Xi)− (g+αh)‖H

)
·
(
−
〈
Φ(Xi)− (g+αh),h

〉
H

)∣∣∣∣
α=0

= −
1
n

n

∑
i=1

ϕ
(
‖Φ(Xi)−g‖H

)
·
〈
Φ(Xi)−g,h

〉
H

= −
〈
1
n

n

∑
i=1

ϕ
(
‖Φ(Xi)−g‖H

)
·
(
Φ(Xi)−g

)
,h
〉

H

= −
〈
V (g),h

〉
H
.

The necessary condition for g to be a minimizer of J, that is, g = f̂RKDE , is that δJ(g;h) =
0, ∀h ∈H , which leads to V (g) = 0.
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9.2 Proof of Theorem 2

From Lemma 1, V ( f̂RKDE) = 0, that is,

1
n

n

∑
i=1

ϕ(‖Φ(Xi)− f̂RKDE‖H ) · (Φ(Xi)− f̂RKDE) = 0.

Solving for f̂RKDE , we have f̂RKDE = ∑n
i=1wiΦ(Xi) where

wi =
( n

∑
j=1

ϕ(‖Φ(X j)− f̂RKDE‖H )

)−1
·ϕ(‖Φ(Xi)− f̂RKDE‖H ).

Since ρ is non-decreasing, wi ≥ 0. Clearly ∑n
i=1wi = 1

9.3 Proof of Lemma 4

J is strictly convex on H if for any 0< λ< 1, and g,h ∈H with g .= h

J(λg+(1−λ)h)< λJ(g)+(1−λ)J(h).

Note that

J(λg+(1−λ)h) =
1
n

n

∑
i=1

ρ
(
‖Φ(Xi)−λg− (1−λ)h‖H

)

=
1
n

n

∑
i=1

ρ
(
‖λ(Φ(Xi)−g)+(1−λ)(Φ(Xi)−h)‖H

)

≤
1
n

n

∑
i=1

ρ
(
λ‖Φ(Xi)−g‖H +(1−λ)‖Φ(Xi)−h‖H

)

≤
1
n

n

∑
i=1

λρ
(
‖Φ(Xi)−g‖H

)
+(1−λ)ρ

(
‖Φ(Xi)−h‖H

)

= λJ(g)+(1−λ)J(h).

The first inequality comes from the fact that ρ is non-decreasing and

‖λ(Φ(Xi)−g)+(1−λ)(Φ(Xi)−h)‖H ≤ λ‖Φ(Xi)−g‖H +(1−λ)‖Φ(Xi)−h‖H ,

and the second inequality comes from the convexity of ρ.
Under condition (i), ρ is strictly convex and thus the second inequality is strict, implying J is

strictly convex. Under condition (ii), we will show that the first inequality is strict using proof by
contradiction. Suppose the first inequality holds with equality. Since ρ is strictly increasing, this
can happen only if

‖λ(Φ(Xi)−g)+(1−λ)(Φ(Xi)−h)‖H = λ‖Φ(Xi)−g‖H +(1−λ)‖Φ(Xi)−h‖H ,

for i= 1, . . . ,n. Equivalently, it can happen only if (Φ(Xi)−g) and (Φ(X j)−h) are linearly depen-
dent for all i= 1, . . . ,n. However, from n≥ 3 and positive definiteness of K, there exist three distinct
Xi’s, say Z1, Z2, and Z3 with positive definite K′ = (kσ(Zi,Z j))3i, j=1. By Lemma 11, it must be the
case that for some i ∈ {1,2,3}, (Φ(Zi)− g) and (Φ(Zi)− h) are linearly independent. Therefore,
the inequality is strict, and thus J is strictly convex.
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9.4 Proof of Theorem 5

First, we will prove the monotone decreasing property of J( f (k)). Given r ∈ R, define

u(x;r) = ρ(r)−
1
2
rψ(r)+

1
2
ϕ(r)x2.

If ϕ is nonincreasing, then u is a surrogate function of ρ, having the following property (Huber,
1981):

u(r;r) = ρ(r) (18)
u(x;r)≥ ρ(x), ∀x. (19)

Define
Q(g; f (k)) =

1
n

n

∑
i=1

u
(
‖Φ(Xi)−g‖H ,‖Φ(Xi)− f (k)‖H

)
.

Note that since ψ and ϕ are continuous, Q( · ; ·) is continuous in both arguments.
From (18) and (19), we have

Q( f (k); f (k)) =
1
n

n

∑
i=1

u
(
‖Φ(Xi)− f (k)‖H ,‖Φ(Xi)− f (k)‖H

)

=
1
n

n

∑
i=1

ρ(‖Φ(Xi)− f (k)‖H )

= J( f (k)) (20)

and

Q(g; f (k)) =
1
n

n

∑
i=1

u
(
‖Φ(Xi)−g‖H ,‖Φ(Xi)− f (k)‖H

)

≥
1
n

n

∑
i=1

ρ
(
‖Φ(Xi)−g‖H )

= J(g), ∀g ∈H (21)

The next iterate f (k+1) is the minimizer of Q(g; f (k)) since

f (k+1) =
n

∑
i=1

w(k)
i Φ(Xi)

=
n

∑
i=1

ϕ(‖Φ(Xi)− f (k)‖H )

∑n
j=1ϕ(‖Φ(X j)− f (k)‖H )

Φ(Xi)

= argmin
g∈H

n

∑
i=1

ϕ(‖Φ(Xi)− f (k)‖H ) ·‖Φ(Xi)−g‖2
H

= argmin
g∈H

Q(g; f (k)) (22)

From (20), (21), and (22),

J( f (k)) = Q( f (k); f (k))≥ Q( f (k+1); f (k))≥ J( f (k+1))
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and thus J( f (k)) monotonically decreases at every iteration. Since {J( f (k))}∞k=1 is bounded below
by 0, it converges.

Next, we will prove that every limit point f ∗ of { f (k)}∞k=1 belongs to S . Since the sequence
{ f (k)}∞k=1 lies in the compact set Dn (see Theorem 2 and Lemma 12), it has a convergent subse-
quence { f (kl)}∞l=1. Let f ∗ be the limit of { f (kl)}∞l=1. Again, from (20), (21), and (22),

Q( f (kl+1); f (kl+1)) = J( f (kl+1))

≤ J( f (kl+1))

≤ Q( f (kl+1); f (kl))

≤ Q(g; f (kl)) ,∀g ∈H ,

where the first inequality comes from the monotone decreasing property of J( f (k)). By taking the
limit on the both side of the above inequality, we have

Q( f ∗; f ∗)≤ Q(g; f ∗) ,∀g ∈H .

Therefore,

f ∗ = argmin
g∈H

Q(g; f ∗)

=
n

∑
i=1

ϕ(‖Φ(Xi)− f ∗‖H )

∑n
j=1ϕ(‖Φ(X j)− f ∗‖H )

Φ(Xi)

and thus
n

∑
i=1

ϕ(‖Φ(Xi)− f ∗‖H ) · (Φ(Xi)− f ∗) = 0.

This implies f ∗ ∈ S .
Now we will prove ‖ f (k)−S‖H → 0 by contradiction. Suppose infg∈S ‖ f (k)−g‖H ! 0. Then,

there exists ε> 0 such that ∀K ∈N, ∃k> K with infg∈S ‖ f (k)−g‖H ≥ ε. Thus, we can construct an
increasing sequence of indices {kl}∞l=1 such that infg∈S ‖ f (kl)− g‖H ≥ ε for all l = 1,2, . . . . Since
{ f (kl)}∞l=1 lies in the compact set Dn, it has a subsequence converging to some f †, and we can
choose j such that ‖ f (k j)− f †‖H < ε/2. Since f † is also a limit point of { f (k)}∞k=1, f † ∈ S . This is
a contradiction because

ε≤ inf
g∈S

‖ f (k j)−g‖H ≤ ‖ f (k j)− f †‖H ≤ ε/2.

9.5 Proof of Theorem 8

Since the RKDE is given as f̂RKDE(x;F) = fF(x), the influence function for the RKDE is

IF(x,x′; f̂RKDE ,F) = lim
s→0

f̂RKDE(x;Fs)− f̂RKDE(x;F)
s

= lim
s→0

fFs(x)− fF(x)
s
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and thus we need to find ḟF ! lims→0
fFs− fF
s .

As we generalize the definition of RKDE from f̂RKDE to fF , the necessary condition V ( f̂RKDE)
also generalizes. However, a few things must be taken care of since we are dealing with integral
instead of summation. Suppose ψ and ϕ are bounded by B′ and B′′, respectively. Given a probability
measure µ, define

Jµ(g) =
∫
ρ(‖Φ(x)−g‖H )dµ(x). (23)

From (17),

δJµ(g;h) =
∂
∂α

Jµ(g+αh)
∣∣
α=0

=
∂
∂α

∫
ρ
(
‖Φ(x)− (g+αh)‖H

)
dµ(x)

∣∣∣∣
α=0

=
∫

∂
∂α

ρ
(
‖Φ(x)− (g+αh)‖H

)
dµ(x)

∣∣∣∣
α=0

=
∫
ϕ
(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
dµ(x)

∣∣∣∣
α=0

= −
∫
ϕ
(
‖Φ(x)−g‖H

)
·
〈
Φ(x)−g,h

〉
H
dµ(x)

= −
∫ 〈

ϕ
(
‖Φ(x)−g‖H

)
·
(
Φ(x)−g

)
,h
〉

H

dµ(x).

The exchange of differential and integral is valid (Lang, 1993) since for any fixed g,h ∈ H , and
α ∈ (−1,1)

∣∣∣∣
∂
∂α

ρ
(
‖Φ(x)− (g+αh)‖H

)∣∣∣∣

= ϕ
(
‖Φ(x)− (g+αh)‖

)
·
∣∣−

〈
Φ(x)− (g+αh),h

〉
H

∣∣

≤ B′′ ·‖Φ(x)− (g+αh)‖ ·‖h‖H
≤ B′′ ·

(
‖Φ(x)‖H +‖g‖H +‖h‖H

)
·‖h‖H

≤ B′′ ·
(
τ+‖g‖H +‖h‖H

)
·‖h‖H < ∞.

Since ϕ(‖Φ(x)−g‖H ) ·
(
Φ(x)−g

)
is strongly integrable, that is,

∫ ∥∥ϕ
(
‖Φ(x)−g‖H

)
·
(
Φ(x)−g

)∥∥
H
dµ(x)≤ B′ < ∞,

its Bochner-integral (Berlinet and Thomas-Agnan, 2004)

Vµ(g)!
∫
ϕ(‖Φ(x)−g‖H ) · (Φ(x)−g)dµ(x)

is well-defined. Therefore, we have

δJµ(g;h) =−
〈∫

ϕ
(
‖Φ(x)−g‖H

)
·
(
Φ(x)−g

)
dµ(x),h

〉

H

=−
〈
Vµ(g),h

〉
H
.
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and Vµ( fµ) = 0.
From the above condition for fFs , we have

0=VFs( fFs)
= (1− s) ·VF( fFs)+ sVδx′ ( fFs), ∀s ∈ [0,1)

Therefore,

0= lim
s→0

(1− s) ·VF( fFs)+ lims→0s ·Vδx′ ( fFs)

= lim
s→0

VF( fFs).

Then,

0= lim
s→0

1
s

(
VFs( fFs)−VF( fF)

)

= lim
s→0

1
s

(
(1− s)VF( fFs)+ sVδx′ ( fFs)−VF( fF)

)

= lim
s→0

1
s

(
VF( fFs)−VF( fF)

)
− lim

s→0
VF( fFs)+ lims→0Vδx′ ( fFs)

= lim
s→0

1
s

(
VF( fFs)−VF( fF)

)
+ lim

s→0
Vδx′ ( fFs)

= lim
s→0

1
s

(
VF( fFs)−VF( fF)

)
+ lim

s→0
ϕ(‖Φ(x′)− fFs‖) · (Φ(x′)− fFs)

= lim
s→0

1
s

(
VF( fFs)−VF( fF)

)
+ϕ(‖Φ(x′)− fF‖) · (Φ(x′)− fF). (24)

where the last equality comes from the facts that fFs → fF and continuity of ϕ.
LetU denote the mapping µ 5→ fµ. Then,

ḟF ! lim
s→0

fFs − fF
s

= lim
s→0

U(Fs)−U(F)
s

= lim
s→0

U
(
(1− s)F+ sδx′

)
−U(F)

s

= lim
s→0

U
(
F+ s(δx′ −F)

)
−U(F)

s
= δU(F ;δx′ −F) (25)
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where δU(P;Q) is the Gateaux differential ofU at P with increment Q. The first term in (24) is

lim
s→0

1
s

(
VF

(
fFs
)
−VF

(
fF
))

= lim
s→0

1
s

(
VF

(
U(Fs)

)
−VF

(
U(F)

))

= lim
s→0

1
s

(
(VF ◦U)

(
Fs)− (VF ◦U)(F)

)

= lim
s→0

1
s

(
(VF ◦U)

(
F+ s(δx′ −F)

)
− (VF ◦U)(F)

)

= δ(VF ◦U)(F;δx′ −F)
= δVF

(
U(F);δU(F;δx′ −F)

)

= δVF
(
fF ; ḟF

)
(26)

where we apply the chain rule of Gateaux differential, δ(G◦H)(u;x) = δG(H(u);δH(u;x)), in the
second to the last equality. Although ḟF is technically not a Gateaux differential since the space of
probability distributions is not a vector space, the chain rule still applies.

Thus, we only need to find the Gateaux differential of VF . For g,h ∈H

δVF(g;h) = lim
s→0

1
s

(
VF(g+ s ·h)−VF(g)

)

= lim
s→0

1
s

(∫
ϕ(‖Φ(x)−g− s ·h‖H ) · (Φ(x)−g− s ·h)dF(x)

−
∫
ϕ(‖Φ(x)−g‖H ) · (Φ(x)−g)dF(x)

)

= lim
s→0

1
s

∫ (
ϕ(‖Φ(x)−g− s ·h‖H )−ϕ(‖Φ(x)−g‖H )

)
· (Φ(x)−g)dF(x)

− lim
s→0

1
s

∫ (
ϕ(‖Φ(x)−g− s ·h‖H ) · s ·h

)
dF(x)

=
∫
lim
s→0

1
s

(
ϕ(‖Φ(x)−g− s ·h‖H )−ϕ(‖Φ(x)−g‖H )

)
· (Φ(x)−g)dF(x)

−h ·
∫
lim
s→0

ϕ(‖Φ(x)−g− s ·h‖H )dF(x)

= −
∫ (

ψ′(‖Φ(x)−g‖H ) ·‖Φ(x)−g‖H −ψ(‖Φ(x)−g‖H )

‖Φ(x)−g‖2
H

·
〈h,Φ(x)−g〉H
‖Φ(x)−g‖H

)

·
(
Φ(x)−g

)
dF(x)

−h ·
∫
ϕ(‖Φ(x)−g‖H )dF(x) (27)

where in the last equality, we use the fact

∂
∂s
ϕ(‖Φ(x)−g− s ·h‖H ) = ϕ′(‖Φ(x)−g− s ·h‖H ) ·

〈Φ(x)−g− s ·h,h〉H
‖Φ(x)−g− s ·h‖H
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and
ϕ′(x) =

d
dx

ψ(x)
x

=
ψ′(x)x−ψ(x)

x2
.

The exchange of limit and integral is valid due to the dominated convergence theorem since under
the assumption that ϕ is bounded and Lipschitz continuous with Lipschitz constant L,

∣∣ϕ(‖Φ(x)−g− s ·h‖)
∣∣< ∞, ∀x

and
∥∥∥∥
1
s

(
ϕ(‖Φ(x)−g− s ·h‖H )−ϕ(‖Φ(x)−g‖H )

)
·
(
Φ(x)−g

)∥∥∥∥
H

=
1
s
∣∣ϕ(‖Φ(x)−g− s ·h‖H )−ϕ(‖Φ(x)−g‖H )

∣∣ ·‖Φ(x)−g‖H

≤
1
s
L ·‖s ·h‖H ·

(
‖Φ(x)‖H +‖g‖H

)

≤ L ·‖h‖H ·
(
‖Φ(x)‖H +‖g‖H

)
< ∞, ∀x.

By combining (24), (25), (26), and (27), we have
(∫

ϕ(‖Φ(x)− fF‖)dF
)
· ḟF

+
∫ (〈

ḟF ,Φ(x)− fF
〉
H

‖Φ(x)− fF‖3
·q(‖Φ(x)− fF‖) ·

(
Φ(x)− fF

))
dF(x)

= (Φ(x′)− fF) ·ϕ(‖Φ(x′)− fF‖)

where q(x) = xψ′(x)−ψ(x).

9.6 Proof of Theorem 9

With Fn instead of F , (11) becomes
(
1
n

n

∑
i=1

ϕ(‖Φ(Xi)− fFn‖)
)
· ḟFn

+
1
n

n

∑
i=1

(〈
ḟFn ,Φ(Xi)− fFn

〉
H

‖Φ(Xi)− fFn‖3
·q(‖Φ(Xi)− fFn‖) ·

(
Φ(Xi)− fFn

))

= (Φ(x′)− fFn) ·ϕ(‖Φ(x′)− fFn‖). (28)

Let ri = ‖Φ(Xi)− fFn‖, r′ = ‖Φ(x′)− fFn‖, γ= ∑n
i=1ϕ(ri) and

di =
〈
ḟFn ,Φ(Xi)− fFn

〉
H
·
q(ri)
r3i

.

Then, (28) simplifies to

γ · ḟFn +
n

∑
i=1

di ·
(
Φ(Xi)− fFn

)
= n · (Φ(x′)− fFn) ·ϕ(r

′)
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Since fFn =∑n
i=1wiΦ(Xi), we can see that ḟFn has a form of∑n

i=1αiΦ(Xi)+α′Φ(x′). By substituting
this, we have

γ
n

∑
j=1

α jΦ(X j)+ γ ·α′Φ(x′)+
n

∑
i=1

di
(
Φ(Xi)−

n

∑
k=1

wkΦ(Xk)
)

= n ·
(
Φ(x′)−

n

∑
k=1

wkΦ(Xk)
)
·ϕ(r′).

SinceK′ is positive definite,Φ(Xi)’s andΦ(x′) are linearly independent (see Lemma 10). Therefore,
by comparing the coefficients of the Φ(X j)’s and Φ(x′) in both sides, we have

γ ·α j+d j−wj ·
( n

∑
i=1

di
)
=−wj

ψ(r′)
r′

·n (29)

γα′ = n ·ϕ(r′). (30)

From (30), α′ = nϕ(r′)/γ. Let qi = q(ri)/r3i and Φ(Xi)− fFn = ∑n
k=1wk,iΦ(Xk) where

wk,i =

{
−wk , k .= i
1−wk , k = i.

Then,

di =
q(ri)
r3i

〈
ḟFn ,Φ(Xi)− fFn

〉

H

= qi
〈 n

∑
j=1

α jΦ(X j)+α′Φ(x′),
n

∑
k=1

wk,iΦ(Xk)
〉

H

= qi
( n

∑
j=1

n

∑
k=1

α jwk,ikσ(X j,Xk)+α′
n

∑
k=1

wk,ikσ(x′,Xk)
)

= qi(ei−w)TKα+qiα′ · (ei−w)Tk′

= qi(ei−w)T
(
Kα+α′k′

)

where K := (kσ(Xi,X j))ni, j=1 is a kernel matrix, ei denotes the ith standard basis vector, and k′ =
[kσ(x′,X1, . . . ,kσ(x′,Xn)]T . By letting Q= diag([q1, . . . ,qn]),

d= Q · (In−1wT )(Kα+α′ ·k′).

Thus, (29) can be expressed in matrix-vector form,

γα+Q · (In−1 ·wT )(Kα+α′ ·k′)−w ·
(
1TQ · (In−1 ·wT )(Kα+α′ ·k′)

)

=−n ·wϕ(r′).

Thus, α can be found solving the following linear system of equations,
{
γIn+(In−1 ·wT )TQ · (In−1 ·wT ) ·K

}
α

= −n ·ϕ(r′)w−α′(In−1 ·wT )TQ · (In−1 ·wT )k′.
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Therefore,

IF(x,x′; f̂RKDE ,Fn) =
〈
Φ(x), ḟFn

〉

H

=

〈
Φ(x),

n

∑
i=1

αiΦ(Xi)+α′Φ(x′)
〉

H

=
n

∑
i=1

αikσ(x,Xi)+α′kσ(x,x′).

The condition lims→0 fFn,s = fFn is implied by the strict convexity of J. Given X1, . . . ,Xn and x′,
define Dn+1 as in Lemma 12. From Theorem 2, fFn,s and fFn are in Dn+1. With the definition in
(23),

JFn,s(g) =
∫
ρ(‖Φ(x)−g‖H )dFn,s(x)

=
(1− s)
n

n

∑
i=1

ρ(‖Φ(Xi)−g‖H )+ s ·ρ(‖Φ(x′)−g‖H ).

Note that JFn,s uniformly converges to J on Dn+1, that is, supg∈Dn+1 |JFn,s(g)− J(g)|→ 0 as s→ 0,
since for any g ∈Dn+1

∣∣JFn,s(g)− J(g)
∣∣

=

∣∣∣∣
(1− s)
n

n

∑
i=1

ρ(‖Φ(Xi)−g‖H )+ s ·ρ(‖Φ(x′)−g‖H )−
1
n

n

∑
i=1

ρ(‖Φ(Xi)−g‖H )

∣∣∣∣

=
s
n

n

∑
i=1

ρ(‖Φ(Xi)−g‖H )+ s ·ρ(‖Φ(x′)−g‖H )

≤
s
n

n

∑
i=1

ρ(2τ)+ s ·ρ(2τ)

= 2s ·ρ(2τ)

where in the inequality we use the fact that ρ is nondecreasing and

‖Φ(x)−g‖H ≤ ‖Φ(x)‖+‖g‖H
≤ 2τ.

since g ∈Dn+1, and by the triangle inequality.
Now, let ε > 0 and Bε( fFn) ⊂ H be the open ball centered at fFn with radius ε. Since Dε

n+1 !

Dn+1 \Bε( fFn) is also compact, infg∈Dε
n+1
J(g) is attained by some g∗ ∈ Dε

n+1 by the extreme value
theorem (Adams and Franzosa, 2008). Since fFn is unique,Mε= J(g∗)−J( fFn)> 0. For sufficiently
small s, supg∈Dn+1 |JFn,s(g)− J(g)|<Mε/2 and thus

J(g)−
Mε

2
< JFn,s(g)< J(g)+

Mε

2
, ∀g ∈Dn+1.
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Therefore,

inf
g∈Dε

n+1

JFn,s(g)> inf
g∈Dε

n+1

J(g)−
Mε

2

= J(g∗)−
Mε

2

= J( fFn)+Mε−
Mε

2

= J( fFn)+
Mε

2
> JFn,s( fFn).

Since the minimum of JFn,s is not attained onDε
n+1, fFn,s ∈ Bε( fFn). Since ε is arbitrary, lims→0 fFn,s =

fFn .
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Abstract

While unsupervised learning has long been useful for density modeling, exploratory data analysis
and visualization, it has become increasingly important for discovering features that will later be
used for discriminative tasks. Discriminative algorithms often work best with highly-informative
features; remarkably, such features can often be learned without the labels. One particularly ef-
fective way to perform such unsupervised learning has been to use autoencoder neural networks,
which find latent representations that are constrained but nevertheless informative for reconstruc-
tion. However, pure unsupervised learning with autoencoders can find representations that may
or may not be useful for the ultimate discriminative task. It is a continuing challenge to guide
the training of an autoencoder so that it finds features which will be useful for predicting labels.
Similarly, we often have a priori information regarding what statistical variation will be irrelevant
to the ultimate discriminative task, and we would like to be able to use this for guidance as well.
Although a typical strategy would be to include a parametric discriminative model as part of the
autoencoder training, here we propose a nonparametric approach that uses a Gaussian process to
guide the representation. By using a nonparametric model, we can ensure that a useful discrimina-
tive function exists for a given set of features, without explicitly instantiating it. We demonstrate
the superiority of this guidance mechanism on four data sets, including a real-world application to
rehabilitation research. We also show how our proposed approach can learn to explicitly ignore sta-
tistically significant covariate information that is label-irrelevant, by evaluating on the small NORB
image recognition problem in which pose and lighting labels are available.

Keywords: autoencoder, gaussian process, gaussian process latent variable model, representation
learning, unsupervised learning

1. Introduction

One of the central tasks of machine learning is the inference of latent representations. Most often

these can be interpreted as representing aggregate features that explain various properties of the data.

c©2012 Jasper Snoek, Ryan P. Adams and Hugo Larochelle.
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In probabilistic models, such latent representations typically take the form of unobserved random

variables. Often this latent representation is of direct interest and may reflect, for example, cluster

identities. It may also be useful as a way to explain statistical variation as part of a density model.

In this work, we are interested in the discovery of latent features which can be later used as alternate

representations of data for discriminative tasks. That is, we wish to find ways to extract statistical

structure that will make it as easy as possible for a classifier or regressor to produce accurate labels.

We are particularly interested in methods for learning latent representations that result in fast

feature extraction for out-of-sample data. We can think of these as devices that have been trained

to perform rapid approximate inference of hidden values associated with data. Neural networks

have proven to be an effective way to perform such processing, and autoencoder neural networks,

specifically, have been used to find representatons for a variety of downstream machine learning

tasks, for example, image classification (Vincent et al., 2008), speech recognition (Deng et al.,

2010), and Bayesian nonparametric modeling (Adams et al., 2010).

The critical insight of the autoencoder neural network is the idea of using a constrained (typ-

ically either sparse or low-dimensional) representation within a feedforward neural network. The

training objective induces the network to learn to reconstruct its input at its output. The constrained

central representation at the bottleneck forces the network to find a compact way to explain the

statistical variation in the data. While this often leads to representations that are useful for dis-

criminative tasks, it does require that the salient variations in the data distribution be relevant for

the eventual labeling. This assumption does not necessarily always hold; often irrelevant factors

can dominate the input distribution and make it poorly-suited for discrimination (Larochelle et al.,

2007). In previous work to address this issue, Bengio et al. (2007) introduced weak supervision into

the autoencoder training objective by adding label-specific output units in addition to the recon-

struction. This approach was also followed by Ranzato and Szummer (2008) for learning document

representations.

The difficulty of this approach is that it complicates the task of learning the autoencoder repre-

sentation. The objective now is to learn not only a hidden representation that is good for reconstruc-

tion, but also one that is immediately good for discrimination under the simplified choice of model,

for example, logistic regression. This is undesirable because it potentially prevents us from dis-

covering informative representations for the more sophisticated nonlinear classifiers that we might

wish to use later. We are forced to solve two problems at once, and the result of one of them (the

classifier) will be immediately thrown away.

Here we propose a different take on the issue of introducing supervised guidance into autoen-

coder representations. We consider Gaussian process priors on the discriminative function that maps

the latent codes into labels. The result of this choice is a Gaussian process latent variable model

(GPLVM) (Lawrence, 2005) for the labels. This not only allows us to flexibly represent a wide class

of classifiers, but also prevents us from having to commit to a particular function at training time.

We are then able to combine the efficient parametric feed-forward aspects of the autoencoder with a

flexible Bayesian nonparametric model for the labels. This also leads to an interesting interpretation

of the back-constrained GPLVM itself as a limiting case of an autoencoder in which the decoder has

been marginalized out. In Section 4, we empirically examine our proposed approach on four data

sets, including a real-world rehabilitation problem. We also examine a data set that highlights the

value of our approach, in which we cannot only use guidance from desired labels, but also introduce

guidance away from irrelevant representations.
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2. Unsupervised Learning of Latent Representations

The nonparametrically-guided autoencoder presented in this paper is motivated largely by the rela-

tionship between two different approaches to latent variable modeling. In this section, we review

these two approaches, the GPLVM and autoencoder neural network, and examine precisely how

they are related.

2.1 Autoencoder Neural Networks

The autoencoder (Cottrell et al., 1987) is a neural network architecture that is designed to create a

latent representation that is informative of the input data. Through training the model to reproduce

the input data at its output, a latent embedding must arise within the hidden layer of the model. Its

computations can intuitively be separated into two parts:

• An encoder, which maps the input into a latent (often lower-dimensional) representation.

• A decoder, which reconstructs the input through a map from the latent representation.

We will denote the latent space by X and the visible (data) space by Y and assume they are real

valued with dimensionality J and K respectively, that is, X =RJ and Y =RK . The encoder, then, is

defined as a function g(y ; φ) : Y → X and the decoder as f (x ; ψ) : X → Y . Given N data exam-

ples D={y(n)}N
n=1, y(n) ∈ Y , we jointly optimize the parameters of the encoder φ and decoder ψ

over the least-squares reconstruction cost:

φ!,ψ!=argmin
φ,ψ

N

∑
n=1

K

∑
k=1

(y
(n)
k − fk(g(y

(n);φ);ψ))2, (1)

where fk(·) is the kth output dimension of f (·). It is easy to demonstrate that this model is equivalent

to principal components analysis when f and g are linear projections. However, nonlinear basis

functions allow for a more powerful nonlinear mapping. In our empirical analysis we use sigmoidal

g(y;φ) = (1+ exp(−yT
+φ))−1

and noisy rectified linear

g(y;φ) = max{0,yT
+φ + ε}, ε ∼N(0,1)

basis functions for the encoder where y+ denotes y with a 1 appended to account for a bias term.

The noisy rectified linear units or NReLU (Nair and Hinton, 2010)) exhibit the property that they

are more equivariant to the scaling of the inputs (the non-noisy version being perfectly equivariant

when the bias term is fixed to 0). This is a useful property for image data, for example, as (in contrast

to sigmoidal basis functions) global lighting changes will cause uniform changes in the activations

across hidden units.

Recently, autoencoders have regained popularity as they have been shown to be an effective

module for “greedy pre-training” of deep neural networks (Bengio et al., 2007). Denoising autoen-

coders (Vincent et al., 2008) are of particular interest, as they are robust to the trivial “identity”

solutions that can arise when trying to learn overcomplete representations. Overcomplete represen-

tations, which are of higher dimensionality than the input, are considered to be ideal for discrim-

inative tasks. However, these are difficult to learn because a trivial minimum of the autoencoder
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reconstruction objective is reached when the autoencoder learns the identity transformation. The

denoising autoencoder forces the model to learn more interesting structure from the data by provid-

ing as input a corrupted training example, while evaluating reconstruction on the noiseless original.

The objective of Equation (1) then becomes

φ!,ψ!=argmin
φ,ψ

N

∑
n=1

K

∑
k=1

(y
(n)
k − fk(g(ỹ

(n);φ);ψ))2,

where ỹ(n) is the corrupted version of y(n). Thus, in order to infer missing components of the input

or fix the corruptions, the model must extract a richer latent representation.

2.2 Gaussian Process Latent Variable Models

While the denoising autoencoder learns a latent representation that is distributed over the hidden

units of the model, an alternative strategy is to consider that the data intrinsically lie on a lower-

dimensional latent manifold that reflects their statistical structure. Such a manifold is difficult to

define a priori, however, and thus the problem is often framed as learning the latent embedding

under an assumed smooth functional mapping between the visible and latent spaces. Unfortunately,

a major challenge arising from this strategy is the simultaneous optimization of the latent embedding

and the functional parameterization. The Gaussian process latent variable model (Lawrence, 2005)

addresses this challenge under a Bayesian probabilistic formulation. Using a Gaussian process

prior, the GPLVM marginalizes over the infinite possible mappings from the latent to visible spaces

and optimizes the latent embedding over a distribution of mappings. The GPLVM results in a

powerful nonparametric model that analytically integrates over the infinite number of functional

parameterizations from the latent to the visible space.

Similar to the autoencoder, linear kernels in the GPLVM recover principal components analysis.

Under a nonlinear basis, however, the GPLVM can represent an arbitrarily complex continuous

mapping, depending on the functions supported by the Gaussian process prior. Although GPLVMs

were initially introduced for the visualization of high dimensional data, they have been used to

obtain state-of-the-art results for a number of tasks, including modeling human motion (Wang et al.,

2008), classification (Urtasun and Darrell, 2007) and collaborative filtering (Lawrence and Urtasun,

2009).

The GPLVM assumes that the N data examples D={y(n)}N
n=1 are the image of a homologous

set {x(n)}N
n=1 arising from a vector-valued “decoder” function f (x) : X → Y . Analogously to the

squared-loss of the previous section, the GPLVM assumes that the observed data have been cor-

rupted by zero-mean Gaussian noise: y(n)= f (x(n))+ε with ε∼N(0,σ2IK). The innovation of the

GPLVM is to place a Gaussian process prior on the function f (x) and then optimize the latent

representation {x(n)}N
n=1, while marginalizing out the unknown f (x).

2.2.1 GAUSSIAN PROCESS PRIORS

Rather than requiring a specific finite basis, the Gaussian process provides a distribution over ran-

dom functions of a particular family, the properties of which are specified via a positive definite

covariance function. Typically, Gaussian processes are defined in terms of a distribution over

scalar functions and in keeping with the convention for the GPLVM, we shall assume that K in-

dependent GPs are used to construct the vector-valued function f (x). We denote each of these

functions as fk(x) : X → R. The GP requires a covariance kernel function, which we denote as
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C(x,x′) : X×X → R. The defining characteristic of the GP is that for any finite set of N data in X

there is a corresponding N-dimensional Gaussian distribution over the function values, which in the

GPLVM we take to be the components of Y . The N×N covariance matrix of this distribution is the

matrix arising from the application of the covariance kernel to the N points in X . We denote any

additional parameters governing the behavior of the covariance function by θ.

Under the component-wise independence assumptions of the GPLVM, the Gaussian process

prior allows one to analytically integrate out the K latent scalar functions from X to Y . Allowing

for each of the K Gaussian processes to have unique hyperparameter θk, we write the marginal

likelihood, that is, the probability of the observed data given the hyperparameters and the latent

representation, as

p({y(n)}N
n=1 |{x(n)}N

n=1,{θk}
K
k=1,σ

2) =
K

∏
k=1

N(y
(·)
k |0,Σθk

+σ2
IN),

where y
(·)
k refers to the vector [y

(1)
k , . . . ,y

(N)
k ] and where Σθk

is the matrix arising from {xn}N
n=1 and θk.

In the basic GPLVM, the optimal xn are found by maximizing this marginal likelihood.

2.2.2 COVARIANCE FUNCTIONS

Here we will briefly describe the covariance functions used in this work. For a more thorough

treatment, we direct the reader to Rasmussen and Williams (2006, Chapter 4).

A common choice of covariance function for the GP is the automatic relevance determination

(ARD) exponentiated quadratic (also known as squared exponential) kernel

KEQ(x,x
′) = exp

{
−

1

2
r2(x,x′)

}
, r2(x,x′) = (x−x′)TΨ(x−x′)

where the covariance between outputs of the GP depends on the distance between corresponding in-

puts. Here Ψ is a symmetric positive definite matrix that defines the metric (Vivarelli and Williams,

1999). Typically, Ψ is a diagonal matrix with Ψd,d = 1/"2
d , where the length-scale parameters, "d ,

scale the contribution of each dimension of the input independently. In the case of the GPLVM,

these parameters are made redundant as the inputs themselves are learned. Thus, in this work we

assume these kernel hyperparameters are set to a fixed value.

The exponentiated quadratic construction is not appropriate for all functions. Consider a func-

tion that is periodic in the inputs. The covariance between outputs should then depend not on the

Euclidian distance between inputs but rather on their phase. A solution is to warp the inputs to

capture this property and then apply the exponentiated quadratic in this warped space. To model a

periodic function, MacKay (1998) suggests applying the exponentiated quadratic covariance to the

output of an embedding function u(x), where for a single dimensional input x, u(x) = [sin(x),cos(x)]
expands from R to R2. The resulting periodic covariance becomes

KPER(x,x
′) = exp

{

−
2sin2 x−x′

2

"2

}

.

The exponentiated quadratic covariance can be shown (MacKay, 1998) to be the similarity be-

tween inputs after they are projected into a feature space by an infinite number of centered radial

basis functions. Williams (1998) derived a kernel that similarly, under a specific activation function,
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reflects a feature projection by a neural network in the limit of infinite units. This results in the

neural network covariance

KNN(x,x
′) =

2

π
sin−1

(
2x̃T Ψx̃′

√
(1+2x̃T Ψx̃′)(1+2x̃T Ψx̃′)

)

, (2)

where x̃ is x with a 1 prepended. An important distinction from the exponentiated quadratic is that

the neural net covariance is non-stationary. Unlike the exponentiated quadratic, the neural network

covariance is not invariant to translation. We use the neural network covariance primarily to draw

a theoretical connection between GPs and autoencoders. However, the non-stationary properties of

this covariance in the context of the GPLVM, which can allow the GPLVM to capture more complex

structure, warrant further investigation.

2.2.3 THE BACK-CONSTRAINED GPLVM

Although the GPLVM constrains the mapping from the latent space to the data to be smooth, it

does not enforce smoothness in the inverse mapping. This can be an undesirable property, as data

that are intrinsically close in observed space need not be close in the latent representation. Not

only does this introduce arbitrary gaps in the latent manifold, but it also complicates the encoding

of novel data points into the latent space as there is no direct mapping. The latent representations

of out-of-sample data must thus be optimized, conditioned on the latent embedding of the train-

ing examples. Lawrence and Quiñonero-Candela (2006) reformulated the GPLVM to address these

issues, with the constraint that the hidden representation be the result of a smooth map from the ob-

served space. They proposed multilayer perceptrons and radial-basis-function networks as possible

implementations of this smooth mapping. We will denote this “encoder” function, parameterized

by φ, as g(y ; φ) : Y → X . The marginal likelihood objective of this back-constrained GPLVM can

now be formulated as finding the optimal φ under:

φ!=argmin
φ

K

∑
k=1

ln |Σθk,φ+σ2
IN |+ y

(·)
k

T

(Σθk,φ+σ2
IN)

−1y
(·)
k , (3)

where the kth covariance matrix Σθk,φ now depends not only on the kernel hyperparameters θk, but

also on the parameters of g(y ; φ), that is,

[Σθk,φ]n,n′ =C(g(y(n);φ),g(y(n
′);φ) ; θk). (4)

Lawrence and Quiñonero-Candela (2006) motivate the back-constrained GPLVM partially

through the NeuroScale algorithm of Lowe and Tipping (1997). The NeuroScale algorithm is a

radial basis function network that creates a one-way mapping from data to a latent space using

a heuristic loss that attempts to preserve pairwise distances between data cases. Thus, the back-

constrained GPLVM can be viewed as a combination of NeuroScale and the GPLVM where the

pairwise distance loss is removed and rather the loss is backpropagated from the GPLVM.

2.3 GPLVM as an Infinite Autoencoder

The relationship between Gaussian processes and artificial neural networks was established by Neal

(1996), who showed that the prior over functions implied by many parametric neural networks

becomes a GP in the limit of an infinite number of hidden units. Williams (1998) subsequently
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derived a GP covariance function corresponding to such an infinite neural network (Equation 2)

with a specific activation function.

An interesting and overlooked consequence of this relationship is that it establishes a connection

between autoencoders and the back-constrained Gaussian process latent variable model. A GPLVM

with the covariance function of Williams (1998), although it does not impose a density over the data,

is similar to a density network (MacKay, 1994) with an infinite number of hidden units in the single

hidden layer. We can transform this density network into a semiparametric autoencoder by applying

a neural network as the backconstraint network of the GPLVM. The encoder of the resulting model

is a parametric neural network and the decoder a Gaussian process.

We can alternatively derive this model starting from an autoencoder. With a least-squares re-

construction cost and a linear decoder, one can integrate out the weights of the decoder assuming

a zero-mean Gaussian prior over the weights. This results in a Gaussian process for the decoder

and learning thus corresponds to the minimization of Equation (3) with a linear kernel for Equa-

tion (4). Incorporating any non-degenerate positive definite kernel, which corresponds to a decoder

of infinite size, also recovers the general back-constrained GPLVM algorithm.

This infinite autoencoder exhibits some attractive properties. After training, the decoder network

of an autoencoder is generally superfluous. Learning a parametric form for this decoder is thus

a nuisance that complicates the objective. The infinite decoder network, as realized by the GP,

obviates the need to learn a parameterization and instead marginalizes over all possible decoders.

The parametric encoder offers a rapid encoding and persists as the training data changes, permitting,

for example, stochastic gradient descent. A disadvantage, however, is that the decoder naturally

inherits the computational costs of the GP by memorizing the data. Thus, for very high dimensional

data, a standard autoencoder may be more desirable.

3. Supervised Guidance of Latent Representations

Unsupervised learning has proven to be effective for learning latent representations that excel in

discriminative tasks. However, when the salient statistics of the data are only weakly informative

about a desired discriminative task, it can be useful to incorporate label information into unsuper-

vised learning. Bengio et al. (2007) demonstrated, for example, that while a purely supervised

signal can lead to overfitting, mild supervised guidance can be beneficial when initializing a dis-

criminative deep neural network. Therefore, Bengio et al. (2007) proposed a hybrid approach under

which the unsupervised model’s latent representation also be trained to predict the label informa-

tion, by adding a parametric mapping c(x ; Λ) : X → Z from the latent space X to the labels Z and

backpropagating error gradients from the output. Bengio et al. (2007) used a linear logistic regres-

sion classifier for this parametric mapping. This “partial supervision” thus encourages the model to

encode statistics within the latent representation that are useful for a specific (but learned) param-

eterization of such a linear mapping. Ranzato and Szummer (2008) adopted a similar strategy to

learn compact representations of documents.

There are disadvantages to this approach. The assumption of a specific parametric form for

the mapping c(x ; Λ) restricts the supervised guidance to classifiers within that family of mappings.

Also, the learned representation is committed to one particular setting of the parameters Λ. Consider

the learning dynamics of gradient descent optimization for this strategy. At every iteration t of

descent (with current state φt ,ψt ,Λt), the gradient from supervised guidance encourages the latent

representation (currently parametrized by φt ,ψt) to become more predictive of the labels under the
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current label map c(x ; Λt). Such behavior discourages moves in φ,ψ space that make the latent

representation more predictive under some other label map c(x ; Λ!) where Λ! is potentially distant

from Λt . Hence, while the problem would seem to be alleviated by the fact that Λ is learned jointly,

this constant pressure towards representations that are immediately useful increases the difficulty of

learning the unsupervised component.

3.1 Nonparametrically Guided Autoencoder

Instead of specifying a particular discriminative regressor for the supervised guidance and jointly

optimizing for its parameters and those of an autoencoder, it seems more desirable to enforce only

that a mapping to the labels exists while optimizing for the latent representation. That is, rather

than learning a latent representation that is tied to a specific parameterized mapping to the labels,

we would instead prefer to find a latent representation that is consistent with an entire class of

mappings. One way to arrive at such a guidance mechanism is to marginalize out the parameters Λ
of a label map c(x ; Λ) under a distribution that permits a wide family of functions. We have seen

previously that this can be done for reconstructions of the input space with a decoder f (x ; ψ). We

follow the same reasoning and do this instead for c(x ; Λ). Integrating out the parameters of the label

map yields a back-constrained GPLVM acting on the label space Z, where the back constraints are

determined by the input space Y . The positive definite kernel specifying the Gaussian process then

determines the properties of the distribution over mappings from the latent representation to the

labels. The result is a hybrid of the autoencoder and back-constrained GPLVM, where the encoder

is shared across models. For notation, we will refer to this approach to guided latent representation

as a nonparametrically guided autoencoder, or NPGA.

Let the label space Z be an M-dimensional real space,1 that is, Z=RM, and the nth training

example has a label vector z(n) ∈ Z. The covariance function that relates label vectors in the NPGA

is

[Σθm,φ,Γ]n,n′ =C(Γ ·g(y(n);φ),Γ ·g(y(n
′);φ) ; θm),

where Γ ∈ RH×J is an H-dimensional linear projection of the encoder output. For H ( J, this

projection improves efficiency and reduces overfitting. Learning in the NPGA is then formulated as

finding the optimal φ,ψ,Γ under the combined objective:

φ!,ψ!,Γ!=arg min
φ,ψ,Γ

(1−α)Lauto(φ,ψ)+αLGP(φ,Γ)

where α ∈ [0,1] linearly blends the two objectives

Lauto(φ,ψ) =
1

K

N

∑
n=1

K

∑
k=1

(y
(n)
k − fk(g(y

(n);φ);ψ))2,

LGP(φ,Γ) =
1

M

M

∑
m=1

[
ln |Σθm,φ,Γ+σ2

IN | +z
(·)
m

T

(Σθm,φ,Γ+σ2
IN)

−1z
(·)
m

]
.

We use a linear decoder for f (x ; ψ), and the encoder g(y;φ) is a linear transformation followed

by a fixed element-wise nonlinearity. As is common for autoencoders and to reduce the number

of free parameters in the model, the encoder and decoder weights are tied. As proposed in the

1. For discrete labels, we use a “one-hot” encoding.
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denoising autoencoder variant of Vincent et al. (2008), we always add noise to the encoder inputs

in cost Lauto(φ,ψ), keeping the noise fixed during each iteration of learning. That is, we update

the denoising autoencoder noise every three iterations of conjugate gradient descent optimization.

For the larger data sets, we divide the training data into mini-batches of 350 training cases and

perform three iterations of conjugate gradient descent per mini-batch. The optimization proceeds

sequentially over the batches such that model parameters are updated after each mini-batch.

3.2 Related Models

An example of the hybridization of an unsupervised connectionist model and Gaussian processes

has been explored in previous work. Salakhutdinov and Hinton (2008) used restricted Boltzmann

machines (RBMs) to initialize a multilayer neural network mapping into the covariance kernel of a

Gaussian process regressor or classifier. They then adjusted the mapping through backpropagating

gradients from the Gaussian process through the neural network. In contrast to the NPGA, this

model did not use a Gaussian process in the initial learning of the latent representation and relies on

a Gaussian process for inference at test time. Unfortunately, this poses significant practical issues

for large data sets such as NORB or CIFAR-10, as the computational complexity of GP inference

is cubic in the number of data examples. Note also that when the salient variations of the data are

not relevant to a given discriminative task, the initial RBM training will not encourage the encoding

of the discriminative information in the latent representation. The NPGA circumvents these issues

by applying a GP to small mini-batches during the learning of the latent representation and uses the

GP to learn a representation that is better even for a linear discriminative model.

Previous work has merged parametric unsupervised learning and nonparametric supervised

learning. Salakhutdinov and Hinton (2007) combined autoencoder training with neighborhood com-

ponent analysis (Goldberger et al., 2004), which encouraged the model to encode similar latent rep-

resentations for inputs belonging to the same class. Hadsell et al. (2006) employ a similar objective

in a fully supervised setting to preserve distances in label space in a latent representation. They

used this method to visualize the different latent embeddings that can arise from using additional

labels on the NORB data set. Note that within the NPGA, the backconstrained-GPLVM performs an

analogous role. In Equation 3, the first term, the log determinant of the kernel, regularizes the latent

space. Since the determinant is minimized when the covariance between all pairs is maximized, it

pulls all examples together in the latent space. The second term, however, pushes examples that

are distant in label space apart in the latent space. For example, when a one-hot coding is used, the

labels act as indicator variables reflecting same-class pairs in the concentration matrix. This pushes

apart examples that are of different class and pulls together examples of the same class. Thus, the

GPLVM enforces that examples close in label space will be closer in the latent representation than

examples that are distant in label space.

There are several important differences, however, between the aforementioned approaches and

the NPGA. First, the NPGA can be intuitively interpreted as using a marginalization over mappings

to labels. Second, the NPGA naturally accommodates continuous labels and enables the use of

any covariance function within the wide library from the Gaussian process literature. Incorporating

periodic labels, for example, is straightforward through using a periodic covariance. Encoding

such periodic signals in a parametric neural network and blending this with unsupervised learning

can be challenging (Zemel et al., 1995). Similarly to a subset of the aforementioned work, the

NPGA exhibits the property that it not only enables the learning of latent representations that encode
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information that is relevant for discrimination but as we show in Section 4.3, it can ignore salient

information that is not relevant to the discriminative representation.

Although it was originally developed as a model for unsupervised dimensionality reduction, a

number of approaches have explored the addition of auxiliary signals within the GPLVM. The Dis-

criminative GPLVM (Urtasun and Darrell, 2007), for example, added a discriminant analysis based

prior that enforces inter-class separability in the latent space. The DGPLVM is, however, restricted

to discrete labels, requires that the latent dimensionality be smaller than the number of classes and

uses a GP mapping to the data, which is computationally prohibitive for high dimensional data. A

GPLVM formulation in which multiple GPLVMs mapping to different signals share a single latent

space, the shared GPLVM (SGPLVM), was introduced by Shon et al. (2005). Wang et al. (2007)

showed that using product kernels within the context of the GPLVM results in a generalisation of

multilinear models and allows one to separate the encoding of various signals in the latent repre-

sentation. As discussed above, the reliance on a Gaussian process mapping to the data prohibits

the application of these approaches to large and high dimensional data sets. Our model overcomes

these limitations through using a natural parametric form of the GPLVM, the autoencoder, to map

to the data.

4. Empirical Analyses

We now present experiments with NPGA on four different classification data sets. In all experi-

ments, the discriminative value of the learned representation is evaluated by training a linear (logis-

tic) classifier, a standard practice for evaluating latent representations.

4.1 Oil Flow Data

We begin our emprical analysis by exploring the benefits of using the NPGA on a multi-phase oil

flow classification problem (Bishop and James, 1993). The data are twelve-dimensional, real-valued

gamma densitometry measurements from a simulation of multi-phase oil flow. The relatively small

sample size of these data—1,000 training and 1,000 test examples—makes this problem useful for

exploring different models and training procedures. We use these data primarily to explore two

questions:

• To what extent does the nonparametric guidance of an unsupervised parametric autoencoder

improve the learned feature representation with respect to the classification objective?

• What additional benefit is gained through using nonparametric guidance over simply incor-

porating a parametric mapping to the labels?

In order to address these concerns, we linearly blend our nonparametric guidance cost LGP(φ,Γ)
with the one Bengio et al. (2007) proposed, referred to as LLR(φ,Λ):

L(φ,ψ,Λ,Γ ; α,β) = (1−α)Lauto(φ,ψ)+α((1−β)LLR(φ,Λ)+βLGP(φ,Γ)), (5)

where β ∈ [0,1] and Λ are the parameters of a multi-class logistic regression mapping to the labels.

Thus, α allows us to adjust the relative contribution of the unsupervised guidance while β weighs

the relative contributions of the parametric and nonparametric supervised guidance.

To assess the benefit of the nonparametric guidance, we perform a grid search over the range

of settings for α and β at intervals of 0.1. For each of these intervals, a model was trained for 100
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Figure 1: We explore the benefit of the NPGA on the oil data through adjusting the relative con-

tributions of the autoencoder, logistic regressor and GP costs in the hybrid objective by

modifying α and β. (a) Classification error on the test set on a linear scale from 6%

(dark) to 1% (light) (b) Cross-sections of (a) at β=0 (a fully parametric model) and β=1

(NPGA). (c & d) Latent projections of the 1000 test cases within the two dimensional la-

tent space of the GP, Γ, for a NPGA (α = 0.5) and a back-constrained GPLVM.

iterations of conjugate gradient descent and classification performance was assessed by applying

logistic regression on the hidden units of the encoder. 250 NRenLU units were used in the encoder,

and zero-mean Gaussian noise with a standard deviation of 0.05 was added to the inputs of the

denoising autoencoder cost. The GP label mapping used an RBF covariance with H=2. To make

the problem more challenging, a subset of 100 training samples was used. Each experiment was

repeated over 20 different random initializations.
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Figure 2: A sample of filters learned on the CIFAR 10 data set. This model achieved a test accuracy

of 65.71%. The filters are sorted by norm.

The results of this analysis are visualized in Figure 1. Figure 1b demonstrates that, even when

compared with direct optimization under the discriminative family that will be used at test time

(logistic regression), performance improves by integrating out the label map. However, in Figure 1a

we can see that some parametric guidance can be beneficial, presumably because it is from the same

discriminative family as the final classifier. A visualisation of the latent representation learned by

an NPGA and a standard back-constrained GPLVM is provided in Figures 1c and 1d. The former

clearly embeds much more class-relevant structure than the latter.

We observe also that using a GP with a linear covariance function within the NPGA outperforms

the parametric guidance (see Fig. 1b). While the performance of the model does depend on the

choice of kernel, this helps to confirm that the benefit of our approach is achieved mainly through

integrating out the label mapping, rather than having a more powerful nonlinear mapping to the

labels. Another interesting result is that the results of the linear covariance NPGA are significantly

noisier than the RBF mapping. Presumably, this is due to the long-range global support of the linear

covariance causing noisier batch updates.

4.2 CIFAR 10 Image Data

We also apply the NPGA to a much larger data set that has been widely studied in the connectionist

learning literature. The CIFAR 10 object classification data set2 is a labeled subset of the 80 million

tiny images data (Torralba et al., 2008) with a training set of 50,000 32×32 color images and a test

set of an additional 10,000 images. The data are labeled into ten classes. As GPs scale poorly on

large data sets we consider it pertinent to explore the following:

Are the benefits of nonparametric guidance still observed in a larger scale classification

problem, when mini-batch training is used?

To answer this question, we evaluate the use of nonparametric guidance on three different com-

binations of preprocessing, architecture and convolution. For each experiment, an autoencoder is

2. CIFAR data set at http://www.cs.utoronto.ca/˜kriz/cifar.html.
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Experiment α Accuracy

1. Full Images

0.0 46.91%

0.1 56.75%

0.5 52.11%

1.0 45.45%

2. 28x28 Patches
0.0 63.20%

0.8 65.71%

3. Convolutional
0.0 73.52%

0.1 75.82%

Sparse Autoencoder (Coates et al., 2011) 73.4%

Sparse RBM (Coates et al., 2011) 72.4%

K-means (Hard) (Coates et al., 2011) 68.6%

K-means (Triangle) (Coates et al., 2011) 77.9%

Table 1: Results on CIFAR 10 for various training strategies, varying the nonparametric guidance

α. Recently published convolutional results are shown for comparison.

compared to a NPGA by modifying α. Experiments3 were performed following three different

strategies:

1. Full images: A one-layer autoencoder with 2400 NReLU units was trained on the raw data

(which was reduced from 32×32×3 = 3072 to 400 dimensions using PCA). A GP mapping

to the labels operated on a H = 25 dimensional space.

2. 28× 28 patches: An autoencoder with 1500 logistic hidden units was trained on 28×28×3

patches subsampled from the full images, then reduced to 400 dimensions using PCA. All

models were fine tuned using backpropagation with softmax outputs and predictions were

made by taking the expectation over all patches (i.e., to classify an image, we consider all

28×28 patches obtained from that image and then average the label distributions over all

patches). A H=25 dimensional latent space was used for the GP.

3. Convolutional: Following Coates et al. (2011), 6×6 patches were subsampled and each patch

was normalized for lighting and contrast. This resulted in a 36×3 = 108 dimensional fea-

ture vector as input to the autoencoder. For classification, features were computed densely

over all 6×6 patches. The images were divided into 4×4 blocks and features were pooled

through summing the feature activations in each block. 1600 NReLU units were used in the

autoencoder but the GP was applied to only 400 of them. The GP used a H=10 dimensional

space.

3. When PCA preprocessing was used for autoencoder training, the inputs were corrupted with zero-mean Gaussian

noise with standard deviation 0.05. Otherwise, raw pixels were corrupted by deleting (i.e., set to zero) 10% of the

pixels. Autoencoder training then corresponds to reconstructing the original input. Each model used a neural net

(MLP) covariance with fixed hyperparameters.
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After training, a logistic regression classifier was applied to the features resulting from the hid-

den layer of each autoencoder to evaluate their quality with respect to the classification objective.

The results, presented in Table 1, show that supervised guidance helps in all three strategies. The use

of different architectures, methodologies and hidden unit activations demonstrates that the nonpara-

metric guidance can be beneficial for a wide variety of formulations. Although, we do not achieve

state of the art results on this data set, these results demonstrate that nonparametric guidance is

beneficial for a wide variety of model architechtures. We note that the optimal amount of guidance

differs for each experiment and setting α too high can often be detrimental to performance. This is

to be expected, however, as the amount of discriminative information available in the data differs for

each experiment. The small patches in the convolutional strategy, for example, likely encode very

weak discriminative information. Figure 2 visualises the encoder weights learned by the NPGA on

the CIFAR data.

4.3 Small NORB Image Data

In the following empirical analysis, the use of the NPGA is explored on the small NORB data (Le-

Cun et al., 2004). The data are stereo image pairs of fifty toys belonging to five generic categories.

Each toy was imaged under six lighting conditions, nine elevations and eighteen azimuths. The

108×108 images were subsampled to half their size to yield a 48×48×2 dimensional input vector

per example. The objects were divided evenly into test and training sets yielding 24,300 examples

each. The objective is to classify to which object category each of the test examples belongs.

This is an interesting problem as the variations in the data due to the different imaging conditions

are the salient ones and will be the strongest signal learned by the autoencoder. This is nuisance

structure that will influence the latent embedding in undesirable ways. For example, neighbors in

the latent space may reflect lighting conditions in observed space rather than objects of the same

class. Certainly, the squared pixel difference objective of the autoencoder will be affected more by

significant lighting changes than object categories. Fortunately, the variations due to the imaging

conditions are known a priori. In addition to an object category label, there are two real-valued vec-

tors (elevation and azimuth) and one discrete vector (lighting type) associated with each example.

In our empirical analysis we examine the following:

As the autoencoder attempts to coalesce the various sources of structure into its hidden

layer, can the NPGA guide the learning in such a way as to separate the class-invariant

transformations of the data from the class-relevant information?

An NPGA was constructed with Gaussian processes mapping to each of the four label types to

address this question. In order to separate the latent embedding of the salient information related

to each label, the GPs were applied to disjoint subsets of the hidden units of the autoencoder. The

autoencoder’s 2400 NReLU units were partitioned such that half were used to encode structure

relevant for classification and the other half were evenly divided to encode the remaining three

labels. Thus a GP mapping from a four dimensional latent space, H=4, to class labels was applied

to 1200 hidden units. GPs, with H=2, mapping to the three auxiliary labels were applied each

to 400 hidden units. As the lighting labels are discrete, we used a one-hot coding, similarly to

the class labels. The elevation labels are continuous, so the GP was mapped directly to the labels.

Finally, because the azimuth is a periodic signal, a periodic kernel was used for the azimuth GP.

This highlights a major advantage of our approach, as the broad library of GP covariance functions

facilitate a flexibility to the mapping that would be challenging with a parametric model.
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Class Elevation Lighting

Figure 3: Visualisations of the NORB training (top) and test (bottom) data latent space representa-

tions in the NPGA, corresponding to class (first column), elevation (second column), and

lighting (third column). The visualizations are in the GP latent space, Γ, of a model with

H = 2 for each GP. Colors correspond to the respective labels.

To validate this configuration, we empirically compared it to a standard autoencoder (i.e., α=0),

an autoencoder with parametric logistic regression guidance and an NPGA with a single GP applied

to all hidden units mapping to the class labels. For comparison, we also provide results obtained by

a back-constrained GPLVM and SGPLVM.4 For all models, a validation set of 4300 training cases

was withheld for parameter selection and early stopping. Neural net covariances were used for each

GP except the one applied to azimuth, which used a periodic RBF kernel. GP hyperparameters

were held fixed as their influence on the objective would confound the analysis of the role of α. For

denoising autoencoder training, the raw pixels were corrupted by setting 20% of pixels to zero in the

inputs. Each image was lighting- and contrast-normalized and the error on the test set was evaluated

using logistic regression on the hidden units of each model. A visualisation of the structure learned

by the GPs is shown in Figure 3. Results of the empirical comparison are presented in Table 2.

4. The GPLVM and SGPLVM were applied to a 96 dimensional PCA of the data for computional tractability, used a

neural net covariance mapping to the data, and otherwise used the same back-constraints, kernel configuration, and

mini-batch training as the NPGA. The SGPLVM consisted of a GPLVM with a latent space that is shared by multiple

GPLVM mappings to the data and each of the labels
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Model Accuracy

Autoencoder + 4(Log)reg (α = 0.5) 85.97%

GPLVM 88.44%

SGPLVM (4 GPs) 89.02%

NPGA (4 GPs Lin – α=0.5) 92.09%

Autoencoder 92.75%

Autoencoder + Logreg (α = 0.5) 92.91%

NPGA (1 GP NN – α=0.5) 93.03%

NPGA (1 GP Lin – α=0.5) 93.12%

NPGA (4 GPs Mix – α=0.5) 94.28%

K-Nearest Neighbors (LeCun et al., 2004) 83.4%

Gaussian SVM (Salakhutdinov and Larochelle, 2010) 88.4%

3 Layer DBN (Salakhutdinov and Larochelle, 2010) 91.69%

DBM: MF-FULL (Salakhutdinov and Larochelle, 2010) 92.77%

Third Order RBM (Nair and Hinton, 2009) 93.5%

Table 2: Experimental results on the small NORB data test set. Relevant published results are

shown for comparison. NN, Lin and Mix indicate neural network, linear and a combination

of neural network and periodic covariances respectively. Logreg indicates that a parametric

logistic regression mapping to labels is blended with the autoencoder.

The NPGA model with four nonlinear kernel GPs significantly outperforms all other models,

with an accuracy of 94.28%. This is to our knowledge the best (non-convolutional) result for a

shallow model on this data set. The model indeed appears to separate the irrelevant transformations

of the data from the structure relevant to the classification objective. In fact, a logistic regression

classifier applied to only the 1200 hidden units on which the class GP was applied achieves a test

error rate of 94.02%. This implies that the half of the latent representation that encodes the infor-

mation to which the model should be invariant can be discarded with virtually no discriminative

penalty. Given the significant difference in accuracy between this formulation and the other models,

it appears to be very important to separate the encoding of different sources of variation within the

autoencoder hidden layer.

The NPGA with four linear covariance GPs performed more poorly than the NPGA with a single

linear covariance GP to class labels (92.09% compared to 93.03%). This interesting observation

highlights the importance of using an appropriate mapping to each label. For example, it is unlikely

that a linear covariance would be able to appropriately capture the structure of the periodic azimuth

signal. An autoencoder with parametric guidance to all four labels, mimicking the configuration of

the NPGA, achieved the poorest performance of the models tested, with 86% accuracy. This model

incorporated two logistic and two Gaussian outputs applied to separate partitions of the hidden units.

These results demonstrate the advantage of the GP formulation for supervised guidance, which gives

the flexibility of choosing an appropriate kernel for different label mappings (e.g., a periodic kernel

for the rotation label).
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(a) The Robot (b) Using the Robot

(c) Depth Image (d) Skeletal Joints

Figure 4: The rehabilitation robot setup and sample data captured by the sensor.

4.4 Rehabilitation Data

As a final analysis, we demonstrate the utility of the NPGA on a real-world problem from the

domain of assistive technology for rehabilitation. Rehabilitation patients benefit from performing

repetitive rehabilitation exercises as frequently as possible but are limited due to a shortage of re-

habilitation therapists. Thus, Kan et al. (2011), Huq et al. (2011), Lu et al. (2011) and Taati et al.

(2012) developed a system to automate the role of a therapist guiding rehabilitation patients through

repetitive upper limb rehabilitation exercises. The system allows users to perform upper limb reach-

ing exercises using a robotic arm (see Figures 4a, 4b) while tailoring the amount of resistance to

match the user’s ability level. Such a system can alleviate the burden on therapists and significantly

expedite rehabilitation for patients.

Critical to the effectiveness of the system is its ability to discriminate between various types of

incorrect posture and prompt the user accordingly. The current system (Taati et al., 2012) uses a

Microsoft Kinect sensor to observe a patient performing upper limb reaching exercises and records

their posture as a temporal sequence of seven estimated upper body skeletal joint angles (see Figures

4c, 4d for an example depth image and corresponding pose skeleton captured by the system). A

classifier is then employed to discriminate between five different classes of posture, consisting of

good posture and four common forms of improper posture resulting from compensation due to

limited agility. Taati et al. (2012) obtained a data set of seven users each performing each class

of action at least once, creating a total of 35 sequences (23,782 frames). They compare the use of
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Model Accuracy

SVMMulticlass Taati et al. (2012) 80.0%

Hidden Markov SVM Taati et al. (2012) 85.9%

"2-Regularized Logistic Regression 86.1%

NPGA (α = 0.8147,β = 0.3227,H = 3, 242 hidden units) 91.7%

Table 3: Experimental results on the rehabilitation data. Per-frame classification accuracies are

provided for different classifiers on the test set. Bayesian optimization was performed on

a validation set to select hyperparameters for the "2-regularized logistic regression and the

best performing NPGA algorithm.

a multiclass support vector machine and a hidden Markov support vector machine in a leave-one-

subject-out test setting to distinguish these classes and report best per-frame classification accuracy

rates of 80.0% and 85.9% respectively.

In our analysis of this problem we use a NPGA to encode a latent embedding of postures that

facilitates better discrimination between different posture types. The same formulation as presented

in Section 4.1 is applied here. We interpolate between a standard autoencoder (α = 0), a classifi-

cation neural net (α = 1,β = 1), and a nonparametrically guided autoencoder by linear blending of

their objectives according to Equation 5. Rectified linear units were used in the autoencoder. As in

Taati et al. (2012), the input to the model is the seven skeletal joint angles, that is, Y = R7, and the

label space Z is over the five classes of posture.

In this setting, rather than perform a grid search for parameter selection as in Section 4.1, we

optimize validation set error over the hyperparameters of the model using Bayesian optimization

(Mockus et al., 1978). Bayesian optimization is a methodology for globally optimizing noisy, black-

box functions based on the principles of Bayesian statistics. Particularly, given a prior over functions

and a limited number of observations, Bayesian optimization explicitly models uncertainty over

functional outputs and uses this to determine where to search for the optimum. For a more in-

depth overview of Bayesian optimization see Brochu et al. (2010). We use the Gaussian process

expected improvement algorithm with a Matern- 5
2 covariance, as described in Snoek et al. (2012),

to search over α ∈ [0,1], β ∈ [0,1], 10−1000 hidden units in the autoencoder and the GP latent

dimensionality H ∈ {1..10}. The best validation set error observed by the algorithm, on the twelfth

of thirty-seven iterations, was at α=0.8147, β=0.3227, H=3 and 242 hidden units. These settings

correspond to a per-frame classification error rate of 91.70%, which is significantly higher than that

reported by Taati et al. (2012). Results obtained using various models are presented in Table 3.

The relatively low number of experiments required by Bayesian optimization to find a state-of-

the-art result implies that the validation error is a well behaved function of the various hyperparam-

eters. The relationship between the model hyperparameters and validation error is challenging to

visualize, but it is important to assess their relative effect on the performance of the model. Thus, in

Figure 5 we explore how the relationship between validation error and the amount of nonparametric

guidance α, and parametric guidance β is expected to change as the number of autoencoder hidden

units is varied. That is, we show the expected value of the validation error for unobserved points

under a Gaussian process regression. Similarly to the results observed in Section 4.1, it seems clear

that the best region in hyperparameter space is a combination of all three objectives, the parametric
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Figure 5: The posterior mean learned by Bayesian optimization over the validation set classification

error (in percent) for α and β with H fixed at 2 and three different settings of autoencoder

hidden units: (a) 10, (b) 500, and (c) 1000. This shows how the relationship between val-

idation error and the amount of nonparametric guidance, α, and parametric guidance, β,

is expected to change as the number of autoencoder hidden units is increased. The red x’s

indicate points that were explored by the Bayesian optimization routine.

guidance, nonparametric guidance and unsupervised learning. This reinforces the theory that al-

though incorporating a parametric logistic regressor to the labels more directly reflects the ultimate

goal of the model, it is more prone to overfit the training data than the GP. Also, as we increase the

number of hidden units in the autoencoder, the amount of guidance required appears to decrease.

As the capacity of the autoencoder is increased, it is likely that the autoencoder encodes increas-

ingly subtle statistical structure in the data. When there are fewer hidden units, this structure is not

encoded unless the autoencoder objective is augmented to reflect a preference for it. Interestingly,

the validation error for H = 2 was significantly better than H = 1 but it did not appear to change

significantly for 2 ≥ H ≤ 10.

An additional interesting result is that, on this problem, the classification performance is worse

when the nearest neighbors algorithm is used on the learned representation of the NPGA for dis-

crimination. With the best performing NPGA reported above, a nearest neighbors classifier applied

to the hidden units of the autoencoder achieved an accuracy of 85.05%. Adjusting β in this case

also did not improve accuracy. This likely reflects the fact that the autoencoder must still encode

information that is useful for reconstruction but not discrimination.

In this example, the resulting classfier must operate in real time to be useful for the rehabili-

tation task. The final product of our system is a simple softmax neural network, which is directly

applicable to this problem. It is unlikely that a Gaussian process based classifier would be feasible

in this context.

5. Conclusion

In this paper we present an interesting theoretical link between the autoencoder neural network

and the back-constrained Gaussian process latent variable model. A particular formulation of the

back-constrained GPLVM can be interpreted as an autoencoder in which the decoder has an in-
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finite number of hidden units. This formulation exhibits some attractive properties as it allows

one to learn the encoder half of the autoencoder while marginalizing over decoders. We exam-

ine the use of this model to guide the latent representation of an autoencoder to encode auxiliary

label information without instantiating a parametric mapping to the labels. The resulting nonpara-

metric guidance encourages the autoencoder to encode a latent representation that captures salient

structure within the input data that is harmonious with the labels. Conceptually, this approach en-

forces simply that a smooth mapping exists from the latent representation to the labels rather than

choosing or learning a specific parameterization. The approach is empirically validated on four

data sets, demonstrating that the nonparametrically guided autoencoder encourages latent represen-

tations that are better with respect to a discriminative task. Code to run the NPGA is available

at http://hips.seas.harvard.edu/files/npga.tar.gz. We demonstrate on the NORB data

that this model can also be used to discourage latent representations that capture statistical struc-

ture that is known to be irrelevant through guiding the autoencoder to separate multiple sources

of variation. This achieves state-of-the-art performance for a shallow non-convolutional model on

NORB. Finally, in Section 4.4, we show that the hyperparameters introduced in this formulation can

be optimized automatically and efficiently using Bayesian optimization. With these automatically

selected hyperparameters the model achieves state of the art performance on a real-world applied

problem in rehabilitation research.
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Abstract

We present a probabilistic framework to automatically learn models of recurring signs from mul-
tiple sign language video sequences containing the vocabulary of interest. We extract the parts of
the signs that are present in most occurrences of the sign in context and are robust to the variations
produced by adjacent signs. Each sentence video is first transformed into a multidimensional time
series representation, capturing the motion and shape aspects of the sign. Skin color blobs are ex-
tracted from frames of color video sequences, and a probabilistic relational distribution is formed
for each frame using the contour and edge pixels from the skin blobs. Each sentence is represented
as a trajectory in a low dimensional space called the space of relational distributions. Given these
time series trajectories, we extract signemes from multiple sentences concurrently using iterated
conditional modes (ICM). We show results by learning single signs from a collection of sentences
with one common pervading sign, multiple signs from a collection of sentences with more than
one common sign, and single signs from a mixed collection of sentences. The extracted signemes
demonstrate that our approach is robust to some extent to the variations produced within a sign due
to different contexts. We also show results whereby these learned sign models are used for spotting
signs in test sequences.

Keywords: pattern extraction, sign language recognition, signeme extraction, sign modeling,
iterated conditional modes

1. Introduction

Sign language research in the computer vision community has primarily focused on improving

recognition rates of signs either by improving the motion representation and similarity measures

(Yang et al., 2002; Al-Jarrah and Halawani, 2001; Athitsos et al., 2004; Cui and Weng, 2000; Wang

et al., 2007; Bauer and Hienz, 2000) or by adding linguistic clues during the recognition process

c©2012 Sunita Nayak, Kester Duncan, Sudeep Sarkar and Barbara Loeding.
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(Bowden et al., 2004; Derpanis et al., 2004). Ong and Ranganath (2005) presented a review of

the automated sign language research and also highlighted one important issue in continuous sign

language recognition. While signing a sentence, there exists transitions of the hands between two

consecutive signs that do not belong to either sign. This is called movement epenthesis (Liddell and

Johnson, 1989). This needs to be dealt with first before dealing with any other phonological issues

in sign language (Ong and Ranganath, 2005). Most of the existing work in sign language assumes

that the training signs are already available and often signs used in the training set are the isolated

signs with the boundaries chopped off, or manually selected frames from continuous sentences.

The ability to recognize isolated signs does not guarantee the recognition of signs in continuous

sentences. Unlike isolated signs, a sign in a continuous sentence is strongly affected by its context

in the sentence. Figure 1 shows two sentences ‘I BUY TICKET WHERE?’ and ‘YOU CAN BUY

THIS FOR HER’ with a common sign ‘BUY’ between them. The frames representing the sign

‘BUY’ and the neighboring signs are marked. The unmarked frames between the signs indicate

the frames corresponding to movement epenthesis. It can be observed that the same sign ‘BUY’ is

preceded and succeeded by movement epenthesis that depends on the end and start of the preceding

and succeeding sign respectively. The movement epenthesis also affects how the sign is signed.

This effect makes the automated extraction, modeling and recognition of signs from continuous

sentences more difficult when compared to just plain gestures, isolated signs, or finger spelling.

In this paper, we address the problem of automatically extracting the part of a sign that is most

common in all occurrences of the sign, and hence expected to be robust with respect to the variation

of adjacent signs. These common parts can be used for spotting or recognition of signs in continuous

sign language sentences. They can also be used by sign language experts for teaching or studying

variations between instances of signs in continuous sign language sentences, or in automated sign

language tutoring systems. Furthermore, they can be used even in the process of translating sign

language videos directly to spoken words.

In a related work inspired by the success of the use of phonemes in speech recognition, the

authors sought to extract common parts in different instances of a sign and thus arrive at a phoneme-

analogue for signs (Bauer and Kraiss, 2002). But unlike speech, sign language does not have a

completely defined set of phonemes. Hence, we consider extracting commonalities at the sentence

and sub-sentence level.

A different but a closely related problem is the extraction of common subsequences, also called

motifs, from very long multiple gene sequences in biology (Bailey and Elkan, 1995; Lawrence et al.,

1993; Pevzner and Sze, 2000; Rigoutsos and Floratos, 1998). Lawrence et al. (1993) used a Gibbs

sampling approach based on discrete matches or mismatches of subsequences that were strings of

symbols of gene sequences. Bailey and Elkan (1995) used expectation maximization to find com-

mon subsequences in univariate biopolymer sequences. In biology, researchers deal with univariate

discrete sequences, and hence their algorithms are not always directly applicable to other multi-

variate continuous domains in time series like speech or sign language. Some researchers tried to

symbolize a continuous time series into discrete sequences and used existing algorithms from bioin-

formatics. For example, Chiu et al. (2003) symbolized the time series into a sequence of symbols

using local approximations and used random projections to extract common subsequences in noisy

data. Tanaka et al. (2005) extended their work by performing principal component analysis on the

multivariate time series data and projected them onto a single dimension and symbolized the data

into discrete sequences. However, it is not always possible to get all the important information in
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(a) Continuous Sentence ‘I BUY TICKET WHERE?’

(b) Continuous Sentence ‘YOU CAN BUY THIS FOR HER’

Figure 1: Movement epenthesis in sign language sentences. Frames corresponding to the common

sign ‘BUY’ are marked in red. Signs adjacent to BUY are marked in magenta. Frames

between marked frames represent movement epenthesis that is, the transition between

signs. Note that the sign itself is also affected by having different signs preceding or

following it.

the first principal component alone. Further extending his work, Duchne et al. (2007) find recurrent

patterns from multivariate discrete data using time series random projections.

Due to the inherent continuous nature of many time series data like gesture and speech, new

methods were developed that do not require approximating the data to a sequence of discrete sym-

bols. Denton (2005) used a continuous random-walk noise model to cluster similar substrings.

Nayak et al. (2005) and Minnen et al. (2007) use continuous multivariate sequences and dynamic

time warping to find distances between the substrings. Oates (2002); Nayak et al. (2005) and Nayak

et al. (2009a) are among the few works in finding recurrent patterns that address non-uniform sam-

pling of time series. The recurrent pattern extraction approach proposed in this paper is based
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on multivariate continuous time series, uses dynamic time warping to find distances between sub-

strings, and handles length variations of common patterns.

Following the success of Hidden Markov Models (HMMs) in speech recognition, they were

used by sign language researchers (Vogler and Metaxas, 1999; Starner and Pentland, 1997; Bowden

et al., 2004; Bauer and Hienz, 2000; Starner et al., 1998) for representing and recognizing signs.

However, HMMs require a large number of training data and unlike speech, data from native sign-

ers is not as easily available as speech data. Hence, non-HMM-based approaches have been used

(Farhadi et al., 2007; Nayak et al., 2009a; Yang et al., 2010; Buehler et al., 2009; Nayak et al.,

2009b; Oszust and Wysocki, 2010; Han et al., 2009). In this paper, we use a continuous trajectory

representation of signs in a multidimensional space and use dynamic time warping to match sub-

sequences. The relative configuration of the two hands and face in each frame is represented by a

relational distribution (Vega and Sarkar, 2003; Nayak et al., 2005), which in itself is a probability

density function. The motion dynamics of the signer is captured as changes in the relational distri-

butions. It also allows us to interpolate motion, if required, for data sets with lower frame capture

rates. It should also be noted that, unlike many of the previous works in sign language that perform

tracking of the hands using 3D magnetic trackers or color gloves (Fang et al., 2004; Vogler and

Metaxas, 2001; Wang et al., 2002; Ma et al., 2000; Cooper and Bowden, 2009), our representation

does not require tracking and relies on skin segmentation.

We present a Bayesian framework to extract the common subsequences or signemes from all

the given sentences simultaneously. Figure 2 depicts the overview of our approach. With this

framework, we can extract the first most common sign, the second most common sign, the third

most common sign and so on. We represent each sentence as a trajectory in a multi-dimensional

space that implicitly captures the shape and motion in the video. Skin color blobs are extracted

from frames of color video, and a relational distribution is formed for each frame using the edge

pixels in the skin blobs. Each sentence is then represented as a trajectory in a low dimensional space

called the space of relational distributions, which is arrived at by performing principal component

analysis (PCA) on the relational distributions. There are other alternatives to PCA that are possible

and discussed in Nayak et al. (2009b). The other choices do not change the nature of the signeme

finding approach, they only affect the quality of the features. The starting locations (a1, ...an) and

widths (w1, ...wn) of the candidate signemes in all the n sentences are together represented by a

parameter vector. The starting locations are initialized with random starting locations, based on

uniform random sampling from each sentence, and the initial width values are randomly selected

from a given range of values. The parameter vector is updated sequentially by sampling the starting

point and width of the possible signeme in each sentence from a joint conditional distribution that is

based on the locations and widths of the target possible signeme in all other sentences. The process

is iterated till the parameter values converge to a stable solution. Monte Carlo approaches like

Gibbs sampling (Robert and Casella, 2004; Gilks et al., 1998; Casella and George, 1992), which

is a special case of the Metropolis-Hastings algorithm (Chib and Greenberg, 1995) can be used for

global optimization while updating the parameter vector by performing importance sampling on the

conditional probability distribution. However, this has a high burn-in period.

In this paper, we adopt a greedy approach based on the use of iterated conditional modes (ICM)

(Besag, 1986). ICM converges much faster than a Gibbs sampler, but is known to be largely de-

pendent on the initialization. We overcome this limitation by performing ICM a number of times

equal to the average length of the n sentences, with different initializations. The most frequently

occurring solution from all the ICM runs is considered as the final solution.
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Figure 2: Overview of our approach. Each of the n sentences is represented as a sequence in the

Space of Relational Distributions, and common patterns are extracted using iterated con-

ditional modes (ICM). The parameter set {a1,w1, ...an,wn} is initialized using uniform

random sampling and the conditional density corresponding to each sentence is updated

in a sequential manner.

The work in this paper builds on the work of Nayak et al. (2009a) and is different in multiple

respects. We propose a system that is generalized to extract more than one common sign from a

collection of sentences (first most common sign, second most common sign and so on), whereas
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in the previous work, only single signs were extracted. We also extract single signs from a mixed

collection of sentences where there are more than one common sign in context. In addition to this,

we present a more in-depth exposition of the underlying theory.

The contributions of this paper can be summarized as follows: (i) we present an unsupervised

approach to automatically extract parts of signs that are robust to the variation of adjacent signs si-

multaneously from multiple sign language sentences, (ii) our approach does not consider all possible

parameter combinations, instead samples each of them in a sequential manner until convergence,

which saves a lot of computation, (iii) we show results on extracting signs from plain color videos

of continuous sign language sentences without using any color gloves or magnetic trackers, and (iv)

we show results whereby the learned signs are used for spotting signs in test sequences.

We organize the paper as follows. Section 2 presents a short review of relational distributions. In

Section 3, we present the definition of signeme and then formulate the problem of finding signemes

from a given set of sequences in a probabilistic framework. We describe how we solve it using

iterated conditional modes. It is then followed by a description of our experiments and results in

Section 4. Finally, Section 5 concludes the paper and discusses possible future work.

2. Relational Distributions

We use relational distributions to capture the global and relative configuration of the hands and the

face in an image. Motion is then captured as the changes in the relational distributions. They were

originally introduced by Vega and Sarkar (2003) for human gait recognition. They have also been

used before for representing sign language sentences without the use of color gloves or magnetic

trackers (Nayak et al., 2005, 2009b). We briefly review them here in this section.

How do we capture the global configuration of the object? We start with low-level primitives

that are most likely to come from the articulated object. The exact nature of the low-level primitives

can vary. Some common choices include edges, salient points, Gabor filter outputs and so on. We

use edges in this work. We start from some level of segmentation of the object from the scene.

These processes are fairly standard and have been used widely in gesture and sign recognition.

They may involve color-based segmentation, skin-color segmentation, or background subtraction.

In this work, we perform skin-color segmentation using histogram-based Bayesian classification

(Phung et al., 2005). We use the contours of the skin blobs and Canny edges within the blobs as our

low-level image primitives. The global configuration is captured by considering the relationships

between these primitives.

We use the distance between two primitives in the vertical and horizontal directions (dx,dy) as

relational attributes. Let vector u = {dx,dy} represent the vector of relational attributes. The joint

probability function P(u) then describes the distribution of primitives within an image and captures

the shape of the pattern in the image. This probability is called a relational distribution. It captures

the global configuration of the low-level primitives. Figure 3(c) illustrates how motion is captured

using relational distributions. It shows the top view of the distributions. The region near to center

represents points closer to each other, for example, the edge points within the face or within the

hand, while farther from center represents the farther away points, for example, the relationship

between edge points of a hand and the face. Notice the change in the relational distribution as

the signer moves one of her hands. To be able to discriminate symmetrically opposite motion, we

maintain the signs (or directions) of the horizontal and vertical distances between the edge pixels in

each ordered pair. This leads to representing the probability distribution in a four quadrant system.
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(a) (b) (c)

Figure 3: Variations in relational distributions with motion. (a) Motion sequence. (b) Edge pixels

from the skin color blobs. (c) Relational distributions constructed from the low level

features (edge pixels) of the images in the motion sequence. The horizontal axis of the

relational distribution represents the horizontal distance between the edge pixels and its

vertical axis represents the vertical distance between edge pixels.

Given that these relational distributions exhibit complicated shapes that are difficult to be modeled

readily using a combination of simple shaped distributions such as Gaussian mixtures, we adopt

non-parametric histogram-based representation. For better discrimination of the probabilities, we

do not add counts to the center of the histogram which represents the distance of the edge pixels

from itself or very close adjacent pixels. Each bin then counts the pairs of edge pixels between

which the horizontal and vertical distances each lie in some fixed range that depends on the location

of the bin in the histogram.

In our experiments, we found that an empirically-determined fixed histogram size of 51× 51

was sufficient. The above range is then defined using linear mapping between the image size and

the histogram size, for example, image size along the horizontal direction corresponds to half the

histogram size in the horizontal direction. One could use histogram bin size optimization techniques

for optimizing the histograms, but we do not address them in this paper. We then reduce the dimen-

sionality of the relational distributions by performing PCA on the set of relational distributions from

all the input sentences and retain the number of dimensions required to keep a certain percentage
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of energy, typically 95%. The new subspace arrived at is called the space of relational distributions

(SoRD). Each video sequence is thus represented as a sequence of points in the SoRD space.

Note that the choice of the relational distribution is not a central requirement for the signeme

learning process discussed in this paper. We use relational distributions to enable us to work with

pure video data, without the use of markers or colored gloves. If magnetic markers or colored gloves

are available then one could use their attributes to construct a different feature space and consider

trajectories in them. One advantage of our representation is that the face and head locations are

implicitly taken into account in addition to the hands. In short, the first step of the process is to

construct a time series representation in an appropriate feature space.

3. Problem Formulation

Sign language sentences are series of signs. Figure 4 illustrates the traces of the first vs. second

dimension in the feature space, of three sentences S1, S2 and S3 with only one common sign, R,

among them. The signeme represents the portion of the sign that is most similar across the sentences.

Table 3 defines the notations that will be used in this paper. We formulate the signeme extraction

Figure 4: Concept of signemes. First vs. second dimensions of sentences S1 with signs R11,R,R12 in order,
S2 with signs R21,R,R22 and S3 with signs R31,R,R32. The common sign is R. The portion of R

that is most similar across sentences is the signeme representative of R.

problem as finding the most recurring patterns among a set of n sentences {!S1, · · · ,!Sn}, that have

at least one common sign present in all the sentences. The commonality concept underlying the

definition of a signeme can be cast in terms of distances. Let !swi
ai

represent a substring from the

sequence !Si consisting of the points with indices ai, · · ·ai +wi− 1, and d(!x,!y) denote the distance

between two substrings !x and !y based on dynamic time warping. We define the set of signemes to

be the set of substrings denoted by {!sw1
a1
, · · · ,!swn

an
} that is most similar among all possible substrings

from the given set of sentences. In the generalized case where C most common signs are sought, the
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{!S1, · · · ,!Sn} Set of n sentences with at least one common sign present in all the sentences. The index within

a sentence could represent time or arc length in configuration shape space

Li Length of sentence Si

!s
w j
a j Subsequence of sentence S j starting from index a j to a j +w j−1. We may sometimes use!sw

j,a to

make explicit the j-th index if it is not represented along with any other superscript or subscript

of this term.

A, B Possible choices of width for signemes of a sign include all integers from A to B. The values of

A and B are decided based on the dynamics involved in the sign.

θ Set of parameters {a1,w1, · · · ,an,wn} defining a set of substrings of the given sentences

θ(ai) Set of all parameters excluding the parameter ai. We have similar interpretations for θ(wi) or

θ(i).

d(!x,!y) Distance between the subsequences !x and !y based on a mapping found using dynamic time

warping (DTW). This distance has to be calculated carefully so that it is not biased towards

finding short subsequences only.

Table 1: Notations

set of signemes are defined as {!sw11
a11

,!sw11
a12

, · · · ,!swnC
anC

}. In theory, C can extend to the number of words

in the shortest sentence.

Let θ = {a1,w1, · · ·an,wn} denote the parameter set representing a set of substrings, at least one

from each of the n sentences, and θm denote the parameter set representing the target set of signemes

in the n sentences. We find θm using the probabilistic framework of Equation 1.

θm = argmax
θ

p(θ) (1)

Note that p(θ) is a probability over the space of all possible substrings. We define this probability

to be a function of the inter-substring distances in Equation 2:

p(θ) =
g(θ)

∑θ g(θ)
. (2)

The term g(θ) is defined in Equation 3 as follows:

g(θ) = exp

(

−β
n

∑
i=1

n

∑
j=1

d(!swi
ai
,!s

w j
a j )

)

(3)

with β being a positive constant.

Note that g(θ) varies inversely with the summation of the pair-wise distances of all the sub-

sequences given by θ. Also note that p(θ) is hard to compute or even sample from because it is

computationally expensive to compute the denominator in Equation 2, as it involves the summation

over all possible parameter combinations. β acts as a scale parameter, which controls the slopes

of the peaks in the probability space. It can also be looked upon as the smoothing parameter. If

probability sampling algorithms like Gibbs sampling (Casella and George, 1992) are used in later

steps, then the rate of convergence would be determined by this parameter.

Let θi represent the parameters from the ith sentence, that is, {ai,wi} and θ(i) represent the rest

of the parameters, {a1,w1 · · · ai−1,wi−1,ai+1,wi+1 · · · an,wn}. To make sampling easier, we construct

a conditional density function of the parameters from each sentence, that is, θi, given the values of
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the rest of the parameters, that is, θ(i). In other words, we construct a probability density function

of the possible starting points and widths in each sentence, given the estimated starting points and

widths of the common pattern in all other sentences, that is, f (θi|θ(i)). Of course, this conditional

density function has to be derived from the joint density function specified in Eq. 2. This is outlined

in Equation 4 as follows:

f (θi|θ(i)) =
p(θ)

p(θ(i))
=

p(θ)

∑θi
p(θ)

=
g(θ)

∑θi
g(θ)

. (4)

Since the normalization to arrive at this conditional density function involves summation over

one parameter, it is now easier to compute and sample from. The specific form for this conditional

density function using the dynamic time warping (DTW) distances as described in Equation 5 is

f (θi|θ(i)) =
exp
(

−β∑n
k=1 d(!swi

ai
,!swk

ak
))
)

∑θi
exp(−β∑n

k=1 d(!swi
ai ,!s

wk
ak )))

. (5)

Note that the distance terms that do not involve ai and wi, that is, do not involve the i-th sentence

appear both in the numerator and the denominator and so cancel out. For notational convenience,

this is sometimes represented using conditional g functions described below in Equation 6 as:

f (θi|θ(i)) =
g(θi|θ(i))

∑θi
g(θi|θ(i))

, (6)

where g(θi|θ(i)) = exp
(

−β∑n
k=1 d(!swi

ai
,!swk

ak
))
)

.

3.1 Distance Measure

The distance function d in the above equations needs to be chosen carefully such that it is not biased

towards the shorter subsequences. Here, we briefly describe how we compute the distance between

two substrings using dynamic time warping. Let l1 and l2 represent the length of the two substrings

and e(i, j) represent the Euclidean distance between the ith data point from the first substring and the

jth data point from the second substring. Let D represent the score matrix of size (l1+1)× (l2+1).
The 0th row and 0th column of D are initialized to infinity, except D(0,0), which is initialized to 0.

The rest of the score matrix, D, is completed using the following recursion of Equation 7:

D(i, j) = e(i, j)+min{D(i−1, j),D(i−1, j−1),D(i, j−1)}, (7)

where 1≤ i≤ l1 and 1≤ j≤ l2. The optimal warp path is then traced back from D(l1, l2) to D(0,0).
The distance measure between the two substrings is then given by D(l1, l2) normalized by the length

of the optimal warping path.

3.2 Parameter Estimation

In order to extract the common signs from a given set of sign language sentences, we need to

compute θi for each of the sentences sequentially. Gibbs sampling (Casella and George, 1992) is a

Markov Chain Monte Carlo approach (Gilks et al., 1998) that allows us to sample the conditional

probability density f (θi|θ(i)) for all the sequences sequentially and then iterate the whole process
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until convergence. Gibbs sampling results in a global optimum, but its convergence is very slow.

The burn-in period is typically thousands of iterations. Therefore, we perform the optimization

using iterated conditional modes (ICM), first proposed by Besag (1986). ICM has much faster

convergence, but it is also known to be heavily dependent on the initialization. We address this

limitation by running the optimization multiple times with different initializations and choosing the

most frequently occurring solution as the final solution.

Algorithm 1: Iterated Conditional Modes({a0
1,w

0
1, · · · ,a

0
n,w

0
n})

comment: Choose {a1,w1, · · · ,an,wn} that maximizes the distribution p(a1,w1, · · · ,an,wn)

comment: Initialization:

θ0← {a0
1,w

0
1, · · · ,a

0
n,w

0
n}

repeat


























































































for i← 0 to n

do











































































comment: Jointly sample ai,wi. Li is the length of sequence Si

for wi← A to B

do

{

for ai← 0 to Li−wi +1

do g(ai,wi|θ(ai,wi))← exp
(

−β∑n
k=1 d(!swi

ai
,!swk

ak
)
)

comment: Normalize

for wi← A to B

do

{

for ai← 0 to Li−wi +1

do f (ai,wi|θ(ai,wi))←
g(ai,wi|θ(ai,wi)

)

∑ai ,wi
g(ai,wi|θ(ai,wi)

)

ai,wi← ARG MAX ( f (ai,wi|θ(ai,wi)))

until CHANGE IN PARAMETERS({a1,w1, · · · ,an,wn}) == 0

Algorithm 1 outlines the process of ICM to extract the common patterns or signemes from

a set of sentences with a given initial parameter vector. We aim to select the set of parameters

that maximizes the probability p(θ) or p(a1,w1, · · · ,an,wn). We do that by estimating each of the

parameters a1,w1, · · ·an,wn in a sequential manner. Since we expect the starting location and width

of a subsequence representing the common sign to be strongly correlated, we estimate ai and wi

jointly. First we compute g(θi|θ(i)) that is, g(ai,wi|θ(ai,wi)) from which we compute the conditional

density functions f (θi|θ(i)) that is, f (ai,wi|θ(ai,wi)). Note that it involves a summation over ai and wi

only, which involves much less computation than that required for computing p(θ) which involves

a summation over a1,w1, · · ·an,wn. The values for ai and wi are updated with those that maximize

the conditional density f (θi|θ(i)). The process is carried out sequentially for i = 1 to n, and then

repeated iteratively till the values of the parameter vector {a1,w1,a2,w2, · · ·an,wn} do not change

any more.

Figure 5 depicts the sampling process for a single iteration, r. Note the conditional and sequen-

tial nature of sampling from various sentences within the single iteration. In Figure 6, we show

an example of how the conditional probability f (θai,wi |θ(ai,wi)) changes for the first seven sentences

from a given set of fourteen video sentences containing a common sign ‘DEPART’. The vertical axis
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Figure 5: Sequential update of the parameter values using ICM. (a), (b) and (c) respectively show

the parameter updates in the first sentence, the ith and the nth sentences. In the rth iteration,

the parameters of the common sign in ith sentence is computed based on the parameter

values of the previous (i− 1) sentences obtained in the same iteration, and those of the

(i+1)th to nth sentences obtained in the previous, that is, the (r−1)th iteration.

in the probabilities represents the starting locations and the horizontal axis represents the possible

widths. The brighter regions represent a higher probability value. Note that the probabilities are

spread out in the first iteration for each sentence and it slowly converges to a fixed starting location

for each of them. They remain more spread out across the horizontal (width) axis because we vary
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the width only in a small range of A to B for each sign, that is decided based on the amount of

motion present in the sign.
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Figure 6: Convergence of the conditional probability density f (θi|θ(i)) for sentences S1...S6 from a

given set of sentences S1...S14. The brighter regions represent a higher probability value.

The vertical axis in the probabilities represents the starting locations and the horizontal

axis represents the possible widths. Note that the probabilities are spread out in the first

iteration and it slowly converges to a particular starting location. They are still spread

across the horizontal (width) axis because we vary the width only in a small range that is

decided based on the amount of motion present in the sign.
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Figure 7: Convergence of values of the parameter set. The above plot shows the norm of the dif-

ference between two consecutive parameter vectors representing the set of starting points

and widths of the common subsequence in the given set of sequences. It shows the typical

convergence with a given initialization vector. ICM is repeated with multiple initializa-

tions and the most frequently occurring solution is considered as the final solution.

Figure 7 plots the typical convergence of the parameter values in a single ICM run. It plots the

norm of difference between consecutive parameter vectors versus the parameter vector update count,

which is incremented each time a parameter is sampled or selected from the probability distribution

f (θi|θ(i)). It shows that ICM converges in less than 56/14= 4 iterations. This, in turn, also indicates

the local nature of the optimization achieved with ICM. The initialization is very important in this

case. In the next subsection, we describe how we address this problem.

3.3 Sampling Starting Points For ICM

In order to address the local convergence nature of ICM, we adopt a uniform random sampling-

based approach. We start by randomly assigning values to the parameter vector θ. The width w0
i

is obtained by sampling a width value based on uniform random distribution from the set of all

possible widths in a given range [A,B]. The value for a0
i is obtained by sampling a starting point

based on uniform random distribution from the set of all possible starting points in the ith sequence,

that is, from the set {1 · · ·(Li−w0
i +1)}.

Different initial parameter vectors are obtained by independently sampling the sentences multi-

ple times. ICM is run using each initial parameter vector generated and the most common solution

is considered as the final solution. The uniform sampling of the frames in the sentences for select-

ing the starting locations ensures the whole parameter space is covered uniformly. The number of

times we sample the initial parameter vector and run the ICM algorithm decides how densely we

cover the whole parameter space. We run it the number of times equal to the average number of

frames in each sentence from the given set of sentences for extracting the sign. One could choose

to run a multiple of the average number of times as well, but we found the average number to be
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sufficient to show the stability of the solution in our experiments. Algorithm 2 presents the process

as a pseudocode.

Algorithm 2: Extract Signemes(L1, · · ·Ln,A,B)

comment: Generate multiple initialization vectors and call ICM with each of them.

N = MEAN(L1,L2, · · · ,Ln)
for j← 1 to N

do















for i← 1 to n

do

{

w0
i = UNIFORM(A · · ·B)

a0
i = UNIFORM(1 · · ·Li−w0

i +1)

{a
j
1,w

j
1, · · · ,a

j
n,w

j
n}= ITERATED CONDITIONAL MODES(a0

1,w
0
1,

· · · ,a0
n,w

0
n)

for i← 1 to n

do











comment: Assign most frequently occurring value as the final value for each parameter.

wi = MODE(w j
i )

ai = MODE(a j
i )

For extracting the sign ‘DEPART’ from 14 sentences, we had 89 frames per sentence on an

average. Hence we ran 89 different ICM runs for extracting the common subsequence representing

‘DEPART’. Figure 8 shows the plots of histograms of start and end location of the sign in each of

the 14 sentences from the 89 runs. It should be noted that in most of the sentences, more than 50%

of the total number of runs result in the same solution.

4. Experiments And Results

In this section, we present visual and quantitative results of our approach for extracting signemes

from video sequences representing sentences from American Sign Language. We first describe the

data set used then present the results of the automatic common pattern extraction.

4.1 Data Set

Our data set consists of 155 American Sign Language (ASL) video sequences organized into 12

groups (collections) based on the vocabulary (word that pervades the sentences of the group). For

instance, the ‘DEPART’ group is comprised of all the sentences containing the word ‘DEPART’,

the ‘PASSPORT’ group is comprised of all the sentences containing the word ‘PASSPORT’ and so

on. The breakdown of these ‘pure’ groups and the number of sentences (sequences) in each are as

follows.

• DEPART - 14 sentences

• BAGGAGE - 14 sentences

• CANT - 14 sentences
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Figure 8: Histograms showing the start and end locations of signs extracted from 14 different sen-

tences using multiple ICM runs. The initial parameter vector for each ICM run was

chosen independently using uniform random sampling. As it can be seen the start and

end points found by most of the runs converge to the same solution (denoted by single

high bars in most of sentences). The legend shown in the plot for the first sentence, S1,

holds for other sentences as well.

• BUY - 11 sentences

• SECURITY - 16 sentences

• HAVE - 6 sentences

• MOVE - 11 sentences

• TIME - 14 sentences
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• FUTURE - 12 sentences

• TABLE - 13 sentences

• PASSPORT - 14 sentences

• TICKET - 16 sentences

This data set was used to extract 12 common subsequences when we searched for the first most

common sign, and 24 common subsequences when we searched for the second most common sign.

We also organized the video sequences into 10 groups by combining two ‘pure’ groups of sentences

as described above. This was used to investigate the power of our framework for selecting the

common sequences in a ‘mixed’ collection. The breakdown of these ‘mixed’ groups and the number

of sentences in each are as follows:

• DEPART (14 sentences) + BAGGAGE (14 sentences)

• CANT (14 sentences) + BUY (11 sentences)

• TIME (14 sentences) + TABLE (13 sentences)

• PASSPORT (14 sentences) + TICKET (16 sentences)

• SECURITY (16 sentences) + FUTURE (12 sentences)

• MOVE (11 sentences) + HAVE (6 sentences)

• BUY (11 sentences) + TABLE (13 sentences)

• DEPART (14 sentences) + FUTURE (12 sentences)

• BAGGAGE (14 sentences) + TICKET (16 sentences)

• SECURITY (16 sentences) + PASSPORT (14 sentences)

All of the signs were performed by the same signer with plain clothing and background. The video

sequences were captured at 25 frames per second with a frame resolution of 490 × 370.

4.2 Common Pattern Extraction Results

In this section, we present the results of our method for extracting common patterns from sign

language sentences. We first present results for extracting the single most common sign and multiple

common signs from the ‘pure’ sentence groups, followed by results for the most common patterns

from the ‘mixed’ groups.

4.2.1 EXTRACTING THE MOST COMMON PATTERN

We perform extraction of the most common patterns from the ‘pure’ sentence groups. We possess a

priori knowledge of the most common word due to the organization of the sentence groups. How-

ever, our goal is to extract the most common sequences automatically. As an example, Figure 9

depicts the result of extraction of the sign ‘DEPART’ from 14 video sequences. It plots the SoRD

first dimension coefficients of the frames vs. the frame number for each sentence. The highlighted
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Figure 9: The first dimension of the video sequences containing a common sign ‘DEPART’. The

sequences are indicated by the dotted curves and the solid lines on each of them indicate

the common pattern or signeme. The odd columns represent the ground truth and the

even columns show the results.

portions represent the signeme. The odd columns show the ground truth and the even columns show

the corresponding results. As can be seen, the extracted patterns and the corresponding ground truth

patterns are quite similar, except for a few frames at the beginning and end of the some of the pat-

terns. Note that since we deal with continuous video sequences, a difference of one or two frames

between the ground truth and the extracted pattern is not considered a problem.
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(a) Video Start Point Estimation (b) Video End Point Estimation

Figure 10: Extraction of the most common patterns or signemes from the ‘pure’ sentence groups.

The closer the points are to the diagonal, the closer the result is to the ground truth.

Figure 10(a) shows the scatter plot of the ground truth start positions vs. the estimated start

positions of the pattern extracted from each of the 155 sentences in the video data set. Figure 10(b)

shows the corresponding scatter plot for the end position of the patterns in the sentences. As can be

seen most of the points in the scatter plots lie along the diagonal. This indicates that very few of

the extracted patterns are wrong. Incorrect results correspond to the points positioned far from the

diagonal. Figures 11 and 12 show one instance of the signeme extracted from group of sentences.

4.2.2 EXTRACTING MULTIPLE COMMON SIGNS

In this section we present some visual results for the extraction of the two most common signs from

the ‘pure’ groups of sentences. We focused on extracting only two signs because the shortest ASL

sentence contained two signs. Figure 13 shows the results for the two most common signs extracted

from the sentence ‘BAGGAGE THERE NOT MINE THERE’. The extracted subsequences corre-

spond to the ASL words ‘BAGGAGE’ and ‘MINE’. Consequently, the word ‘BAGGAGE’ appears

in all the 14 sentences of the group, whereas the word ‘MINE’ (or ‘MY’) shows up in 11 sentences

coinciding with what was expected. Similarly, Figure 14 shows the results for the two most common

signs extracted from the sentence ‘MY PASSPORT THERE STILL GOOD THERE’. The extracted

subsequences correspond to the ASL words ‘MY’ and ‘PASSPORT’. The word ‘MY’ appears in all

the 11 sentences of the group, whereas the word ‘PASSPORT’ appears in all 14 sentences. These

results are encouraging.

4.2.3 EXTRACTING THE MOST COMMON PATTERNS FROM MIXED SENTENCES

We perform extraction of the most common patterns from the collection of ‘mixed’ sentences as

outlined in Section 4.1. Figure 15(a) shows the scatter plot of the ground truth start positions vs. the

estimated start positions of the pattern extracted from each of the sentences. Similarly, Figure 15(b)
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(a) BUY

(b) CANT

(c) DEPART

(d) FUTURE

(e) MOVE

Figure 11: Signemes extracted from sentences

shows the corresponding scatter plot for the end position of the patterns in the sentences. As can

be seen, the points are more scattered as compared to the results shown in Figure 10 where the

sentences used were known to contain common words. However, this result is still encouraging. A

large proportion of the extracted patterns are incorrect, but there are many relatively near the diago-

nal. This result demonstrates the robustness of our algorithm for finding similarities in the presence

of great dissimilarity. We believe that the incorrect patterns extracted are due to the differences in

the frame width ranges for the mixed sentence sets. For example, sentences containing the word

‘MOVE’ were combined with sentences containing the word ‘HAVE’. The frame width range for

the sign ‘HAVE’ is between 4 and 6 frames with 4 being the minimum width and 6 being the max-

imum width. On the other hand, the frame width range for the sign ‘MOVE’ is between 19 and 27

frames. Combining these width ranges could be done using an average of the two or by selecting the

minimum and maximum values between the two. However, these methods produced similar results.

The correct combination of these range widths is a priority for future work.
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(f) PASSPORT

(g) SECURITY

(h) TICKET

(i) TIME

(j) TABLE

Figure 12: Signemes extracted from sentences

4.3 Sign Localization

We used the extracted signemes to localize or spot signs in test sentences. The same process that is

used for training sign models is used for sign localization. However, rather than randomly assigning

initial parameter values, we use the parameters learned. We tested with 12 test sentences from the

‘pure’ group specified in Section 4.1 and their lengths varied from 4 to 12 signs. These test sentences

were not used during training. The set of points representing the signeme were matched with the

segments of the SoRD points from the test sentences to find the segment with the minimum matching

score, which would represent the sign in the test sentence. The SoRD points of the signeme retrieved

from the test sentence are mapped to their nearest frames and compared with the ground truth frame

series representing the sign in the sentence. Localization performance is characterized as follows.

Let a1 and b1 denote the start and end frame numbers of the underlying ground truth sign in the test

sentence, and a2 and b2 denote the start and end frame numbers of the subsequence retrieved as the
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(a) Frames corresponding to the word ‘BAGGAGE’

(b) Frames corresponding to the word ‘MINE’

Figure 13: Extraction of the two most common patterns or signemes from the sentence ‘BAGGAGE

THERE NOT MINE THERE’.

(a) Frames corresponding to the word ‘MY’

(b) Frames corresponding to the word ‘PASSPORT’

Figure 14: Extraction of the two most common patterns or signemes from the sentence ‘MY PASS-

PORT THERE STILL GOOD THERE’.

signeme for the test sentence. We calculate the precision and recall values of each test sentence as
m

a2−a1+1 and m
b2−a2+1 respectively where m is the number of overlapping frames. Table 2 displays

the results acquired. The ‘Baggage’, ‘Cant’, ‘Have’, and ‘Table’ test sequences were failure cases

where there was no overlap between the extracted model frames and the localization frames (see

Figure 16). Notice that the localization results heavily depend on the extracted signeme models.

For a visual representation of this information, we define the Start Offset, ∆S, and End Offset, ∆E,

as ∆S = a1−a2 and ∆E = b1−b2. The plot of the Start Offset vs. the End Offset is shown in Figure

16. Ideally, both the offsets should be zero. The points for different signs are scattered in the four

quadrants depending on the nature of the overlap between the ground truth sign and the retrieved
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Figure 15: Extraction of the most common patterns or signemes from the ‘mixed’ sentence groups.

The closer the points are to the diagonal, the closer the result is to the ground truth.

Test Group Precision Recall

Buy 1.0 0.70

Depart 1.0 0.64

Future 0.71 0.756

Move 1.0 0.60

Passport 1.0 0.47

Security 0.57 0.67

Ticket 1.0 0.58

Time 0.63 1.0

Table 2: Localization Performance

signeme. Each point in the plot corresponds to a separate test sign. Its distance from the origin

indicates the localizing quality of the signeme in its test sentence. The closer it is to the origin, the

better the quality.

5. Conclusion And Future Work

We presented a novel algorithm to extract signemes, that is, the common pattern representing a sign,

from multiple long video sequences of American Sign Language (ASL). A signeme is a part of the

sign that is robust to the variations of the adjacent signs and the associated movement epenthe-

sis. We first represent each sequence as a series of points in a low dimensional space of relational

distributions, and then use a probabilistic framework to locate the signemes in each sequence con-

currently. We use iterative conditional modes (ICM) to sample the parameters, that is, the starting

location and width of the signemes in each sentence in a sequential manner. We show results on

ASL video sequences that do not involve using any magnetic trackers or gloves for extracting the
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Figure 16: Start Offset vs. End Offset of Localized Signs

most common signs. The extracted signemes demonstrate that our approach is robust to some extent

to the variations produced within a sign due to different contexts.

The approach in this paper can be used to speed up training set generation for ASL algorithms

by drastically reducing the manual aspect of the process. Rather than manually demarcating signs

in continuous sentences, which for our work took an expert approximately 5 minutes, we would

just need instances of sentences containing the sign whose model is sought and based on our ex-

periments this can be generated in approximately 2 minutes. Another contribution of this work is

an empirically derived robust representation of the sign that is stable with respect to the variations

due to neighboring signs and sentence context. These stable representations could be useful for

detection of signs and gestures in extended gesture sequences.

There are some ways we can advance the work in this paper. One issue is the precision of the

features used for representing the video sequences. Relational distributions when used as fixed size

histograms perform well for discriminating global motion. However, optimizing the bin size of the

histograms to the required precision might improve the accuracy. Additionally, we plan to extend

our work to address the challenge of handling the large variations encountered when automatically

recognizing signemes across different signers. Also, the algorithm is dependent to a large extent

on the distance measure and conventional dynamic time warping cannot deal with the amplitude

variations in the signs, which are very common across signers. We plan to work on a variation of

dynamic time warping that is robust to amplitude differences between various instances of signs.
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Abstract

The standard assumption of identically distributed training and test data is violated when the test
data are generated in response to the presence of a predictive model. This becomes apparent, for
example, in the context of email spam filtering. Here, email service providers employ spam fil-
ters, and spam senders engineer campaign templates to achieve a high rate of successful deliveries
despite the filters. We model the interaction between the learner and the data generator as a static
game in which the cost functions of the learner and the data generator are not necessarily antag-
onistic. We identify conditions under which this prediction game has a unique Nash equilibrium
and derive algorithms that find the equilibrial prediction model. We derive two instances, the Nash
logistic regression and the Nash support vector machine, and empirically explore their properties
in a case study on email spam filtering.

Keywords: static prediction games, adversarial classification, Nash equilibrium

1. Introduction

A common assumption on which most learning algorithms are based is that training and test data

are governed by identical distributions. However, in a variety of applications, the distribution that

governs data at application time may be influenced by an adversary whose interests are in conflict

with those of the learner. Consider, for instance, the following three scenarios. In computer and

network security, scripts that control attacks are engineered with botnet and intrusion detection

systems in mind. Credit card defrauders adapt their unauthorized use of credit cards—in particular,

amounts charged per transactions and per day and the type of businesses that amounts are charged

from—to avoid triggering alerting mechanisms employed by credit card companies. Email spam

senders design message templates that are instantiated by nodes of botnets. These templates are

c©2012 Michael Brückner, Christian Kanzow and Tobias Scheffer.
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specifically designed to produce a low spam score with popular spam filters. The domain of email

spam filtering will serve as a running example throughout the paper. In all of these applications, the

party that creates the predictive model and the adversarial party that generates future data are aware

of each other, and factor the possible actions of their opponent into their decisions.

The interaction between learner and data generators can be modeled as a game in which one

player controls the predictive model whereas another exercises some control over the process of

data generation. The adversary’s influence on the generation of the data can be formally modeled as

a transformation that is imposed on the distribution that governs the data at training time. The trans-

formed distribution then governs the data at application time. The optimization criterion of either

player takes as arguments both the predictive model chosen by the learner and the transformation

carried out by the adversary.

Typically, this problem is modeled under the worst-case assumption that the adversary desires

to impose the highest possible costs on the learner. This amounts to a zero-sum game in which

the loss of one player is the gain of the other. In this setting, both players can maximize their

expected outcome by following a minimax strategy. Lanckriet et al. (2002) study the minimax

probability machine (MPM). This classifier minimizes the maximal probability of misclassifying

new instances for a given mean and covariance matrix of each class. Geometrically, these class

means and covariances define two hyper-ellipsoids which are equally scaled such that they intersect;

their common tangent is the minimax probabilistic decision hyperplane. Ghaoui et al. (2003) derive

a minimax model for input data that are known to lie within some hyper-rectangles around the

training instances. Their solution minimizes the worst-case loss over all possible choices of the data

in these intervals. Similarly, worst-case solutions to classification games in which the adversary

deletes input features (Globerson and Roweis, 2006; Globerson et al., 2009) or performs an arbitrary

feature transformation (Teo et al., 2007; Dekel and Shamir, 2008; Dekel et al., 2010) have been

studied.

Several applications motivate problem settings in which the goals of the learner and the data

generator, while still conflicting, are not necessarily entirely antagonistic. For instance, a defrauder’s

goal of maximizing the profit made from exploiting phished account information is not the inverse

of an email service provider’s goal of achieving a high spam recognition rate at close-to-zero false

positives. When playing a minimax strategy, one often makes overly pessimistic assumptions about

the adversary’s behavior and may not necessarily obtain an optimal outcome.

Games in which a leader—typically, the learner—commits to an action first whereas the adver-

sary can react after the leader’s action has been disclosed are naturally modeled as a Stackelberg

competition. This model is appropriate when the follower—the data generator—has full informa-

tion about the predictive model. This assumption is usually a pessimistic approximation of reality

because, for instance, neither email service providers nor credit card companies disclose a com-

prehensive documentation of their current security measures. Stackelberg equilibria of adversarial

classification problems can be identified by solving a bilevel optimization problem (Brückner and

Scheffer, 2011).

This paper studies static prediction games in which both players act simultaneously; that is,

without prior information on their opponent’s move. When the optimization criterion of both play-

ers depends not only on their own action but also on their opponent’s move, then the concept of

a player’s optimal action is no longer well-defined. Therefore, we resort to the concept of a Nash

equilibrium of static prediction games. A Nash equilibrium is a pair of actions chosen such that

no player benefits from unilaterally selecting a different action. If a game has a unique Nash equi-
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librium and is played by rational players that aim at maximizing their optimization criteria, it is

reasonable for each player to assume that the opponent will play according to the Nash equilib-

rium strategy. If one player plays according to the equilibrium strategy, the optimal move for the

other player is to play this equilibrium strategy as well. If, however, multiple equilibria exist and

the players choose their strategy according to distinct ones, then the resulting combination may be

arbitrarily disadvantageous for either player. It is therefore interesting to study whether adversarial

prediction games have a unique Nash equilibrium.

Our work builds on an approach that Brückner and Scheffer (2009) developed for finding a

Nash equilibrium of a static prediction game. We will discuss a flaw in Theorem 1 of Brückner

and Scheffer (2009) and develop a revised version of the theorem that identifies conditions under

which a unique Nash equilibrium of a prediction game exists. In addition to the inexact linesearch

approach to finding the equilibrium that Brückner and Scheffer (2009) develop, we will follow a

modified extragradient approach and develop Nash logistic regression and the Nash support vector

machine. This paper also develops a kernelized version of these methods. An extended empirical

evaluation explores the applicability of the Nash instances in the context of email spam filtering.

We empirically verify the assumptions made in the modeling process and compare the performance

of Nash instances with baseline methods on several email corpora including a corpus from an email

service provider.

The rest of this paper is organized as follows. Section 2 introduces the problem setting. We

formalize the Nash prediction game and study conditions under which a unique Nash equilibrium

exists in Section 3. Section 4 develops strategies for identifying equilibrial prediction models, and

in Section 5, we detail on two instances of the Nash prediction game. In Section 6, we report on

experiments on email spam filtering; Section 7 concludes.

2. Problem Setting

We study static prediction games between two players: The learner (v =−1) and an adversary, the

data generator (v =+1). In our running example of email spam filtering, we study the competition

between recipient and senders, not competition among senders. Therefore, v = −1 refers to the

recipient whereas v =+1 models the entirety of all legitimate and abusive email senders as a single,

amalgamated player.

At training time, the data generator v = +1 produces a sample D = {(xi,yi)}n
i=1 of n training

instances xi ∈ X with corresponding class labels yi ∈ Y = {−1,+1}. These object-class pairs are

drawn according to a training distribution with density function p(x,y). By contrast, at application

time the data generator produces object-class pairs according to some test distribution with density

ṗ(x,y) which may differ from p(x,y).
The task of the learner v = −1 is to select the parameters w ∈ W ⊂ Rm of a predictive model

h(x) = sign fw(x) implemented in terms of a generalized linear decision function fw : X → R with

fw(x) = wTφ(x) and feature mapping φ : X → Rm. The learner’s theoretical costs at application

time are given by

θ−1(w, ṗ) = ∑
Y

∫
X

c−1(x,y)!−1( fw(x),y) ṗ(x,y)dx,

where weighting function c−1 : X × Y → R and loss function !−1 : R× Y → R compose the

weighted loss c−1(x,y)!−1( fw(x),y) that the learner incurs when the predictive model classifies
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instance x as h(x) = sign fw(x) while the true label is y. The positive class- and instance-specific

weighting factors c−1(x,y) with EX,Y[c−1(x,y)] = 1 specify the importance of minimizing the loss

!−1( fw(x),y) for the corresponding object-class pair (x,y). For instance, in spam filtering, the cor-

rect classification of non-spam messages can be business-critical for email service providers while

failing to detect spam messages runs up processing and storage costs, depending on the size of the

message.

The data generator v =+1 can modify the data generation process at application time. In prac-

tice, spam senders update their campaign templates which are disseminated to the nodes of botnets.

Formally, the data generator transforms the training distribution with density p to the test distribu-

tion with density ṗ. The data generator incurs transformation costs by modifying the data generation

process which is quantified by Ω+1(p, ṗ). This term acts as a regularizer on the transformation and

may implicitly constrain the possible difference between the distributions at training and application

time, depending on the nature of the application that is to be modeled. For instance, the email sender

may not be allowed to alter the training distribution for non-spam messages, or to modify the nature

of the messages by changing the label from spam to non-spam or vice versa. Additionally, changing

the training distribution for spam messages may incur costs depending on the extent of distortion

inflicted on the informational payload. The theoretical costs of the data generator at application

time are the sum of the expected prediction costs and the transformation costs,

θ+1(w, ṗ) = ∑
Y

∫
X

c+1(x,y)!+1( fw(x),y) ṗ(x,y)dx+Ω+1(p, ṗ),

where, in analogy to the learner’s costs, c+1(x,y)!+1( fw(x),y) quantifies the weighted loss that

the data generator incurs when instance x is labeled as h(x) = sign fw(x) while the true label is

y. The weighting factors c+1(x,y) with EX,Y[c+1(x,y)] = 1 express the significance of (x,y) from

the perspective of the data generator. In our example scenario, this reflects that costs of correctly or

incorrectly classified instances may vary greatly across different physical senders that are aggregated

into the amalgamated player.

Since the theoretical costs of both players depend on the test distribution, they can, for all practi-

cal purposes, not be calculated. Hence, we focus on a regularized, empirical counterpart of the the-

oretical costs based on the training sample D. The empirical counterpart Ω̂+1(D, Ḋ) of the data gen-

erator’s regularizer Ω+1(p, ṗ) penalizes the divergence between training sample D = {(xi,yi)}n
i=1

and a perturbated training sample Ḋ = {(ẋi,yi)}n
i=1 that would be the outcome of applying the trans-

formation that translates p into ṗ to sample D. The learner’s cost function, instead of integrating

over ṗ, sums over the elements of the perturbated training sample Ḋ. The players’ empirical cost

functions can still only be evaluated after the learner has committed to parameters w and the data

generator to a transformation. However this transformation needs only be represented in terms of

the effects that it will have on the training sample D. The transformed training sample Ḋ must not

be mistaken for test data; test data are generated under ṗ at application time after the players have

committed to their actions.
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The empirical costs incurred by the predictive model h(x) = sign fw(x) with parameters w and

the shift from p to ṗ amount to

θ̂−1(w, Ḋ) =
n

∑
i=1

c−1,i!−1( fw(ẋi),yi)+ρ−1Ω̂−1(w), (1)

θ̂+1(w, Ḋ) =
n

∑
i=1

c+1,i!+1( fw(ẋi),yi)+ρ+1Ω̂+1(D, Ḋ), (2)

where we have replaced the weighting terms 1
n cv(ẋi,yi) by constant cost factors cv,i > 0 with ∑i cv,i =

1. The learner’s regularizer Ω̂−1(w) in (1) accounts for the fact that Ḋ does not constitute the test

data itself, but is merely a training sample transformed to reflect the test distribution and then used

to learn the model parameters w. The trade-off between the empirical loss and the regularizer is

controlled by each player’s regularization parameter ρv > 0 for v ∈ {−1,+1}.

Note that either player’s empirical costs θ̂v depend on both players’ actions: w ∈ W and Ḋ ⊆
X ×Y . Because of the potentially conflicting players’ interests, the decision process for w and Ḋ

becomes a non-cooperative two-player game, which we call a prediction game. In the following

section, we will refer to the Nash prediction game (NPG) which identifies the concept of an optimal

move of the learner and the data generator under the assumption of simultaneously acting players.

3. The Nash Prediction Game

The outcome of a prediction game is one particular combination of actions (w∗, Ḋ∗) that incurs costs

θ̂v(w∗, Ḋ∗) for the players. Each player is aware that this outcome is affected by both players’ action

and that, consequently, their potential to choose an action can have an impact on the other player’s

decision. In general, there is no action that minimizes one player’s cost function independent of the

other player’s action. In a non-cooperative game, the players are not allowed to communicate while

making their decisions and therefore they have no information about the other player’s strategy. In

this setting, any concept of an optimal move requires additional assumptions on how the adversary

will act.

We model the decision process for w∗ and Ḋ∗ as a static two-player game with complete in-

formation. In a static game, both players commit to an action simultaneously, without information

about their opponent’s action. In a game with complete information, both players know their oppo-

nent’s cost function and action space.

When θ̂−1 and θ̂+1 are known and antagonistic, the assumption that the adversary will seek

the greatest advantage by inflicting the greatest damage on θ̂−1 justifies the minimax strategy:

argminw maxḊ θ̂−1(w, Ḋ). However, when the players’ cost functions are not antagonistic, assuming

that the adversary will inflict the greatest possible damage is overly pessimistic. Instead assuming

that the adversary acts rationally in the sense of seeking the greatest possible personal advantage

leads to the concept of a Nash equilibrium. An equilibrium strategy is a steady state of the game in

which neither player has an incentive to unilaterally change their plan of actions.

In static games, equilibrium strategies are called Nash equilibria, which is why we refer to the

resulting predictive model as Nash prediction game (NPG). In a two-player game, a Nash equi-

librium is defined as a pair of actions such that no player can benefit from changing their action
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unilaterally; that is,

θ̂−1(w
∗, Ḋ∗) = min

w∈W
θ̂−1(w, Ḋ∗),

θ̂+1(w
∗, Ḋ∗) = min

Ḋ⊆X×Y
θ̂+1(w

∗, Ḋ),

where W and X ×Y denote the players’ action spaces.

However, a static prediction game may not have a Nash equilibrium, or it may possess multi-

ple equilibria. If (w∗, Ḋ∗) and (w′, Ḋ′) are distinct Nash equilibria and each player decides to act

according to a different one of them, then combinations (w∗, Ḋ′) and (w′, Ḋ∗) may incur arbitrarily

high costs for both players. Hence, one can argue that it is rational for an adversary to play a Nash

equilibrium only when the following assumption is satisfied.

Assumption 1 The following statements hold:

1. both players act simultaneously;

2. both players have full knowledge about both (empirical) cost functions θ̂v(w, Ḋ) defined in (1)

and (2), and both action spaces W and X ×Y ;

3. both players act rational with respect to their cost function in the sense of securing their

lowest possible costs;

4. a unique Nash equilibrium exists.

Whether Assumptions 1.1-1.3 are adequate—especially the assumption of simultaneous actions—

strongly depends on the application. For example, in some applications, the data generator may uni-

laterally be able to acquire information about the model fw before committing to Ḋ. Such situations

are better modeled as a Stackelberg competition (Brückner and Scheffer, 2011). On the other hand,

when the learner is able to treat any executed action as part of the training data D and update the

model w, the setting is better modeled as repeated executions of a static game with simultaneous

actions. The adequateness of Assumption 1.4, which we discuss in the following sections, depends

on the chosen loss functions, the cost factors, and the regularizers.

3.1 Existence of a Nash Equilibrium

Theorem 1 of Brückner and Scheffer (2009) identifies conditions under which a unique Nash equi-

librium exists. Kanzow located a flaw in the proof of this theorem: The proof argues that the

pseudo-Jacobian can be decomposed into two (strictly) positive stable matrices by showing that the

real part of every eigenvalue of those two matrices is positive. However, this does not generally

imply that the sum of these matrices is positive stable as well since this would require a common

Lyapunov solution (cf. Problem 2.2.6 of Horn and Johnson, 1991). But even if such a solution

exists, the positive definiteness cannot be concluded from the positiveness of all eigenvalues as the

pseudo-Jacobian is generally non-symmetric.

Having “unproven” prior claims, we will now derive sufficient conditions for the existence of a

Nash equilibrium. To this end, we first define

x :=
[

φ(x1)
T,φ(x2)

T, . . . ,φ(xn)
T

]T

∈ φ(X )n ⊂ R
m·n,

ẋ :=
[

φ(ẋ1)
T,φ(ẋ2)

T, . . . ,φ(ẋn)
T

]T

∈ φ(X )n ⊂ R
m·n,
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as long, concatenated, column vectors induced by feature mapping φ, training sample D= {(xi,yi)}n
i=1,

and transformed training sample Ḋ = {(ẋi,yi)}n
i=1, respectively. For terminological harmony, we re-

fer to vector ẋ as the data generator’s action with corresponding action space φ(X )n.

We make the following assumptions on the action spaces and the cost functions which enables

us to state the main result on the existence of at least one Nash equilibrium in Lemma 1.

Assumption 2 The players’ cost functions defined in Equations 1 and 2, and their action sets W
and φ(X )n satisfy the properties:

1. loss functions !v(z,y) with v ∈ {−1,+1} are convex and twice continuously differentiable

with respect to z ∈ R for all fixed y ∈ Y ;

2. regularizers Ω̂v are uniformly strongly convex and twice continuously differentiable with re-

spect to w ∈ W and ẋ ∈ φ(X )n, respectively;

3. action spaces W and φ(X )n are non-empty, compact, and convex subsets of finite-dimensional

Euclidean spaces Rm and Rm·n, respectively.

Lemma 1 Under Assumption 2, at least one equilibrium point (w∗, ẋ∗) ∈ W ×φ(X )n of the Nash

prediction game defined by

min
w

θ̂−1(w, ẋ∗) min
ẋ

θ̂+1(w∗, ẋ)

s.t. w ∈ W s.t. ẋ ∈ φ(X )n
(3)

exists.

Proof. Each player v’s cost function is a sum over n loss terms resulting from loss function !v and

regularizer Ω̂v. By Assumption 2, these loss functions are convex and continuous, and the regu-

larizers are uniformly strongly convex and continuous. Hence, both cost functions θ̂−1(w, ẋ) and

θ̂+1(w, ẋ) are continuous in all arguments and uniformly strongly convex in w ∈ W and ẋ ∈ φ(X )n,

respectively. As both action spaces W and φ(X )n are non-empty, compact, and convex subsets

of finite-dimensional Euclidean spaces, a Nash equilibrium exists—see Theorem 4.3 of Basar and

Olsder (1999).

3.2 Uniqueness of the Nash Equilibrium

We will now derive conditions for the uniqueness of an equilibrium of the Nash prediction game

defined in (3). We first reformulate the two-player game into an (n+1)-player game. In Lemma 2,

we then present a sufficient condition for the uniqueness of the Nash equilibrium in this game, and

by applying Proposition 4 and Lemma 5-7 we verify whether this condition is met. Finally, we state

the main result in Theorem 8: The Nash equilibrium is unique under certain properties of the loss

functions, the regularizers, and the cost factors which all can be verified easily.

Taking into account the Cartesian product structure of the data generator’s action space φ(X )n,

it is not difficult to see that (w∗, ẋ∗) with ẋ∗ =
[

ẋ∗T1 , . . . , ẋ∗Tn

]T
and ẋ∗i := φ(ẋ∗i ) is a solution of the
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two-player game if, and only if, (w∗, ẋ∗1, . . . , ẋ
∗
n) is a Nash equilibrium of the (n+ 1)-player game

defined by

min
w

θ̂−1(w, ẋ) min
ẋ1

θ̂+1(w, ẋ) · · · min
ẋn

θ̂+1(w, ẋ)

s.t. w ∈ W s.t. ẋ1 ∈ φ(X ) · · · s.t. ẋn ∈ φ(X )
, (4)

which results from (3) by repeating n times the cost function θ̂+1 and minimizing this function with

respect to ẋi ∈ φ(X ) for i = 1, . . . ,n. Then the pseudo-gradient (in the sense of Rosen, 1965) of the

game in (4) is defined by

gr(w, ẋ) :=















r0∇wθ̂−1(w, ẋ)
r1∇ẋ1 θ̂+1(w, ẋ)
r2∇ẋ2 θ̂+1(w, ẋ)

...

rn∇ẋn θ̂+1(w, ẋ)















∈ R
m+m·n, (5)

with any fixed vector r = [r0,r1, . . . ,rn]T where ri > 0 for i = 0, . . . ,n. The derivative of gr—that is,

the pseudo-Jacobian of (4)—is given by

Jr(w, ẋ) = Λr

[

∇2
w,wθ̂−1(w, ẋ) ∇2

w,ẋθ̂−1(w, ẋ)
∇2

ẋ,wθ̂+1(w, ẋ) ∇2
ẋ,ẋθ̂+1(w, ẋ)

]

, (6)

where

Λr :=











r0Im 0 · · · 0

0 r1Im · · · 0
...

...
. . .

...

0 0 · · · rnIm











∈ R
(m+m·n)×(m+m·n). (7)

Note that the pseudo-gradient gr and the pseudo-Jacobian Jr exist when Assumption 2 is satis-

fied. The above definition of the pseudo-Jacobian enables us to state the following result about the

uniqueness of a Nash equilibrium.

Lemma 2 Let Assumption 2 hold and suppose there exists a fixed vector r = [r0,r1, . . . ,rn]T with

ri > 0 for all i = 0,1, . . . ,n such that the corresponding pseudo-Jacobian Jr(w, ẋ) is positive definite

for all (w, ẋ) ∈ W ×φ(X )n. Then the Nash prediction game in (3) has a unique equilibrium.

Proof. The existence of a Nash equilibrium follows from Lemma 1. Recall from our previous

discussion that the original Nash game in (3) has a unique solution if, and only if, the game from (4)

with one learner and n data generators admits a unique solution. In view of Theorem 2 of Rosen

(1965), the latter attains a unique solution if the pseudo-gradient gr is strictly monotone; that is, if

for all actions w,w′ ∈ W and ẋ, ẋ′ ∈ φ(X )n, the inequality

(

gr(w, ẋ)−gr(w
′, ẋ′)

)T

([

w

ẋ

]

−
[

w′

ẋ′

])

> 0

holds. A sufficient condition for this pseudo-gradient being strictly monotone is the positive defi-

niteness of the pseudo-Jacobian Jr (see, e.g., Theorem 7.11 and Theorem 6, respectively, in Geiger
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and Kanzow, 1999; Rosen, 1965).

To verify whether the positive definiteness condition of Lemma 2 is satisfied, we first derive the

pseudo-Jacobian Jr(w, ẋ). We subsequently decompose it into a sum of three matrices and analyze

the definiteness of these matrices for the particular choice of vector r with r0 := 1, ri := c−1,i

c+1,i
> 0 for

all i = 1, . . . ,n, with corresponding matrix

Λr :=













Im 0 · · · 0

0
c−1,1

c+1,1
Im · · · 0

...
...

. . .
...

0 0 · · · c−1,n

c+1,n
Im













. (8)

This finally provides us with sufficient conditions which ensure the uniqueness of the Nash equilib-

rium.

3.2.1 DERIVATION OF THE PSEUDO-JACOBIAN

Throughout this section, we denote by !′v(z,y) and !′′v (z,y) the first and second derivative of the

mapping !v(z,y) with respect to z ∈ R and use the abbreviations

!′v,i := !′v(ẋ
T
i w,yi),

!′′v,i := !′′v (ẋ
T
i w,yi),

for both players v ∈ {−1,+1} and i = 1, . . . ,n.

To state the pseudo-Jacobian for the empirical costs given in (1) and (2), we first derive their

first-order partial derivatives,

∇wθ̂−1(w, ẋ) =
n

∑
i=1

c−1,i!
′
−1,iẋi +ρ−1∇wΩ̂−1(w), (9)

∇ẋi θ̂+1(w, ẋ) = c+1,i!
′
+1,iw+ρ+1∇ẋiΩ̂+1(x, ẋ). (10)

This allows us to calculate the entries of the pseudo-Jacobian given in (6),

∇2
w,wθ̂−1(w, ẋ) =

n

∑
i=1

c−1,i!
′′
−1,iẋiẋ

T
i +ρ−1∇2

w,wΩ̂−1(w),

∇2
w,ẋi

θ̂−1(w, ẋ) = c−1,i!
′′
−1,iẋiw

T+ c−1,i!
′
−1,iIm,

∇2
ẋi,wθ̂+1(w, ẋ) = c+1,i!

′′
+1,iwẋTi + c+1,i!

′
+1,iIm,

∇2
ẋi,ẋ j

θ̂+1(w, ẋ) = δi jc+1,i!
′′
+1,iwwT+ρ+1∇2

ẋi,ẋ j
Ω̂+1(x, ẋ),

where δi j denotes Kronecker’s delta which is 1 if i equals j and 0 otherwise.

We can express these equations more compact as matrix equations. Therefore, we use the

diagonal matrix Λr as defined in (7) and set Γv := diag(cv,1!′′v,1, . . . ,cv,n!′′v,n). Additionally, we define

Ẋ ∈Rn×m as the matrix with rows ẋT1 , . . . , ẋ
T
n , and n matrices Wi ∈Rn×m with all entries set to zero
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except for the i-th row which is set to wT. Then,

∇2
w,wθ̂−1(w, ẋ) = ẊTΓ−1Ẋ+ρ−1∇2

w,wΩ̂−1(w),

∇2
w,ẋi

θ̂−1(w, ẋ) = ẊTΓ−1Wi + c−1,i!
′
−1,iIm,

∇2
ẋi,wθ̂+1(w, ẋ) = WT

i Γ+1Ẋ+ c+1,i!
′
+1,iIm,

∇2
ẋi,ẋ j

θ̂+1(w, ẋ) = WT
i Γ+1W j +ρ+1∇2

ẋi,ẋ j
Ω̂+1(x, ẋ).

Hence, the pseudo-Jacobian in (6) can be stated as follows,

Jr(w, ẋ) = Λr

[

Ẋ 0 · · · 0

0 W1 · · · Wn

]T[

Γ−1 Γ−1

Γ+1 Γ+1

][

Ẋ 0 · · · 0

0 W1 · · · Wn

]

+

Λr











ρ−1∇2
w,wΩ̂−1(w) c−1,1!′−1,1Im · · · c−1,n!′−1,nIm

c+1,1!′+1,1Im ρ+1∇2
ẋ1,ẋ1

Ω̂+1(x, ẋ) · · · ρ+1∇2
ẋ1,ẋn

Ω̂+1(x, ẋ)
...

...
. . .

...

c+1,n!′+1,nIm ρ+1∇2
ẋn,ẋ1

Ω̂+1(x, ẋ) · · · ρ+1∇2
ẋn,ẋn

Ω̂+1(x, ẋ)











.

We now aim at decomposing the right-hand expression in order to verify the definiteness of the

pseudo-Jacobian.

3.2.2 DECOMPOSITION OF THE PSEUDO-JACOBIAN

To verify the positive definiteness of the pseudo-Jacobian, we further decompose the second sum-

mand of the above expression into a positive semi-definite and a strictly positive definite matrix.

Therefore, let us denote the smallest eigenvalues of the Hessians of the regularizers on the corre-

sponding action spaces W and φ(X )n by

λ−1 := inf
w∈W

λmin

(

∇2
w,wΩ̂−1(w)

)

, (11)

λ+1 := inf
ẋ∈φ(X )n

λmin

(

∇2
ẋ,ẋΩ̂+1(x, ẋ)

)

, (12)

where λmin(A) denotes the smallest eigenvalue of the symmetric matrix A.

Remark 3 Note that the minimum in (11) and (12) is attained and is strictly positive: The mapping

λmin : M k×k →R is concave on the set of symmetric matrices M k×k of dimension k×k (cf. Exam-

ple 3.10 in Boyd and Vandenberghe, 2004), and in particular, it therefore follows that this mapping

is continuous. Furthermore, the mappings u−1 : W → M m×m with u−1(w) := ∇2
w,wΩ̂−1(w) and

u+1 : φ(X )n → M m·n×m·n with u+1(ẋ) :=∇2
ẋ,ẋΩ̂+1(x, ẋ) are continuous (for any fixed x) by Assump-

tion 2. Hence, the mappings w *→ λmin(u−1(w)) and ẋ *→ λmin(u+1(ẋ)) are also continuous since

each is precisely the composition λmin◦uv of the continuous functions λmin and uv for v∈ {−1,+1}.

Taking into account that a continuous mapping on a non-empty compact set attains its minimum, it

follows that there exist elements w ∈ W and ẋ ∈ φ(X )n such that

λ−1 = λmin

(

∇2
w,wΩ̂−1(w)

)

,

λ+1 = λmin

(

∇2
ẋ,ẋΩ̂+1(x, ẋ)

)

.

Moreover, since the Hessians of the regularizers are positive definite by Assumption 2, we see that

λv > 0 holds for v ∈ {−1,+1}. !
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By the above definitions, we can decompose the regularizers’ Hessians as follows,

∇2
w,wΩ−1(w) = λ−1Im +(∇2

w,wΩ−1(w)−λ−1Im),

∇2
ẋ,ẋΩ+1(x, ẋ) = λ+1Im·n +(∇2

ẋ,ẋΩ+1(x, ẋ)−λ+1Im·n).

As the regularizers are strictly convex, λv are positive so that for each of the above equations the

first summand is positive definite and the second summand is positive semi-definite.

Proposition 4 The pseudo-Jacobian has the representation

Jr(w, ẋ) = J
(1)
r (w, ẋ)+J

(2)
r (w, ẋ)+J

(3)
r (w, ẋ) (13)

where

J
(1)
r (w, ẋ) = Λr

[

X 0 · · · 0

0 W1 · · · Wn

]T[

Γ−1 Γ−1

Γ+1 Γ+1

][

X 0 · · · 0

0 W1 · · · Wn

]

,

J
(2)
r (w, ẋ) = Λr











ρ−1λ−1Im c−1,1!′−1,1Im · · · c−1,n!′−1,nIm

c+1,1!′+1,1Im ρ+1λ+1Im · · · 0
...

...
. . .

...

c+1,n!′+1,nIm 0 · · · ρ+1λ+1Im











,

J
(3)
r (w, ẋ) = Λr

[

ρ−1∇2
w,wΩ̂−1(w)−ρ−1λ−1Im 0

0 ρ+1∇2
ẋ,ẋΩ̂+1(x, ẋ)−ρ+1λ+1Im·n

]

.

The above proposition restates the pseudo-Jacobian as a sum of the three matrices J
(1)
r (w, ẋ),

J
(2)
r (w, ẋ), and J

(3)
r (w, ẋ). Matrix J

(1)
r (w, ẋ) contains all !′′v,i terms, J

(2)
r (w, ẋ) is a composition of

scaled identity matrices, and J
(3)
r (w, ẋ) contains the Hessians of the regularizers where the diagonal

entries are reduced by ρ−1λ−1 and ρ+1λ+1, respectively. We further analyze these matrices in the

following section.

3.2.3 DEFINITENESS OF THE SUMMANDS OF THE PSEUDO-JACOBIAN

Recall, that we want to investigate whether the pseudo-Jacobian Jr(w, ẋ) is positive definite for

each pair of actions (w, ẋ) ∈ W × φ(X )n. A sufficient condition is that J
(1)
r (w, ẋ), J

(2)
r (w, ẋ), and

J
(3)
r (w, ẋ) are positive semi-definite and at least one of these matrices is positive definite. From

the definition of λv, it becomes apparent that J
(3)
r is positive semi-definite. In addition, J

(2)
r (w, ẋ)

obviously becomes positive definite for sufficiently large ρv as, in this case, the main diagonal

dominates the non-diagonal entries. Finally, J
(1)
r (w, ẋ) becomes positive semi-definite under some

mild conditions on the loss functions.

In the following we derive these conditions, state lower bounds on the regularization parameters

ρv, and provide formal proofs of the above claims. Therefore, we make the following assumptions

on the loss functions !v and the regularizers Ω̂v for v ∈ {−1,+1}. Instances of these functions

satisfying Assumptions 2 and 3 will be given in Section 5. A discussion on the practical implications

of these assumptions is given in the subsequent section.

Assumption 3 For all w ∈ W and ẋ ∈ φ(X )n with ẋ =
[

ẋT1 , . . . , ẋ
T
n

]T
the following conditions are

satisfied:
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1. the second derivatives of the loss functions are equal for all y ∈ Y and i = 1, . . . ,n,

!′′−1( fw(ẋi),y) = !′′+1( fw(ẋi),y),

2. the players’ regularization parameters satisfy

ρ−1ρ+1 > τ2 1

λ−1λ+1
cT−1c+1,

where λ−1, λ+1 are the smallest eigenvalues of the Hessians of the regularizers specified

in (11) and (12), cv = [cv,1,cv,2, . . . ,cv,n]
T, and

τ = sup
(x,y)∈φ(X )×Y

1

2

∣

∣!′−1( fw(x),y)+ !′+1( fw(x),y)
∣

∣ , (14)

3. for all i = 1, . . . ,n either both players have equal instance-specific cost factors, c−1,i = c+1,i,

or the partial derivative ∇ẋiΩ+1(x, ẋ) of the data generator’s regularizer is independent of ẋ j

for all j ,= i.

Notice, that τ in Equation 14 can be chosen to be finite as the set φ(X )×Y is assumed to be

compact, and consequently, the values of both continuous mappings !′−1( fw(x),y) and !′+1( fw(x),y)
are finite for all (x,y) ∈ φ(X )×Y .

Lemma 5 Let (w, ẋ) ∈ W × φ(X )n be arbitrarily given. Under Assumptions 2 and 3, the matrix

J
(1)
r (w, ẋ) is symmetric positive semi-definite (but not positive definite) for Λr defined as in Equa-

tion 8.

Proof. The special structure of Λr, Ẋ, and Wi gives

J
(1)
r (w, ẋ) =

[

Ẋ 0 · · · 0

0 W1 · · · Wn

]T[

r0Γ−1 r0Γ−1

ϒΓ+1 ϒΓ+1

][

Ẋ 0 · · · 0

0 W1 · · · Wn

]

,

with ϒ := diag(r1, . . . ,rn). From the assumption !′′−1,i = !′′+1,i and the definition r0 = 1, ri =
c−1,i

c+1,i
> 0

for all i = 1, . . . ,n it follows that Γ−1 = ϒΓ+1, such that

J
(1)
r (w, ẋ) =

[

Ẋ 0 · · · 0

0 W1 · · · Wn

]T[

Γ−1 Γ−1

Γ−1 Γ−1

][

Ẋ 0 · · · 0

0 W1 · · · Wn

]

,

which is obviously a symmetric matrix. Furthermore, we show that zTJ
(1)
r (w, ẋ)z ≥ 0 holds for

all vectors z ∈ Rm+m·n. To this end, let z be arbitrarily given, and partition this vector in z =
[

zT0 ,z
T
1 , . . . ,z

T
n

]T
with zi ∈ Rm for all i = 0,1, . . . ,n. Then a simple calculation shows that

zTJ
(1)
r (w, ẋ)z =

n

∑
i=1

(

zT0 xi + zTi w
)2

c−1,i!
′′
−1,i ≥ 0

since !′′−1,i ≥ 0 for all i = 1, . . . ,n in view of the assumed convexity of mapping !−1(z,y). Hence,

J
(1)
r (w, ẋ) is positive semi-definite. This matrix cannot be positive definite since we have

zTJ
(1)
r (w, ẋ)z = 0 for the particular vector z defined by z0 :=−w and zi := xi for all i = 1, . . . ,n.
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Lemma 6 Let (w, ẋ) ∈ W × φ(X )n be arbitrarily given. Under Assumptions 2 and 3, the matrix

J
(2)
r (w, ẋ) is positive definite for Λr defined as in Equation 8.

Proof. A sufficient and necessary condition for the (possibly asymmetric) matrix J
(2)
r (w, ẋ) to be

positive definite is that the Hermitian matrix

H(w, ẋ) := J
(2)
r (w, ẋ)+J

(2)
r (w, ẋ)T

is positive definite, that is, all eigenvalues of H(w, ẋ) are positive. Let Λ
1
2
r denote the square root

of Λr which is defined in such a way that the diagonal elements of Λ
1
2
r are the square roots of the

corresponding diagonal elements of Λr. Furthermore, we denote by Λ
− 1

2
r the inverse of Λ

1
2
r . Then,

by Sylvester’s law of inertia, the matrix

H̄(w, ẋ) := Λ
− 1

2
r H(w, ẋ)Λ

− 1
2

r

has the same number of positive, zero, and negative eigenvalues as matrix H(w, ẋ) itself.

Hence, J
(2)
r (w, ẋ) is positive definite if, and only if, all eigenvalues of

H̄(w, ẋ) = Λ
− 1

2
r

(

J
(2)
r (w, ẋ)+J

(2)
r (w, ẋ)T

)

Λ
− 1

2
r

= Λ
− 1

2
r Λr











ρ−1λ−1Im c−1,1!′−1,1Im · · · c−1,n!′−1,nIm

c+1,1!′+1,1Im ρ+1λ+1Im · · · 0
...

...
. . .

...

c+1,n!′+1,nIm 0 · · · ρ+1λ+1Im











Λ
− 1

2
r +

Λ
− 1

2
r











ρ−1λ−1Im c+1,1!′+1,1Im · · · c+1,n!′+1,nIm

c−1,1!′−1,1Im ρ+1λ+1Im · · · 0
...

...
. . .

...

c−1,n!′−1,nIm 0 · · · ρ+1λ+1Im











ΛrΛ
− 1

2
r

=











2ρ−1λ−1Im c̃1Im · · · c̃nIm

c̃1Im 2ρ+1λ+1Im · · · 0
...

...
. . .

...

c̃nIm 0 · · · 2ρ+1λ+1Im











are positive, where c̃i :=
√

c−1,ic+1,i(!′−1,i + !′+1,i). Each eigenvalue λ of this matrix satisfies

(

H̄(w, ẋ)−λIm+m·n
)

v = 0

for the corresponding eigenvector vT =
[

vT0 ,v
T
1 , . . . ,v

T
n

]

with vi ∈Rm for i = 0,1, . . . ,n. This eigen-

value equation can be rewritten block-wise as

(2ρ−1λ−1 −λ)v0 +
n

∑
i=1

c̃ivi = 0, (15)

(2ρ+1λ+1 −λ)vi + c̃iv0 = 0 ∀ i = 1, . . . ,n. (16)
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To compute all possible eigenvalues, we consider two cases. First, assume that v0 = 0. Then (15)

and (16) reduce to

n

∑
i=1

c̃ivi = 0 and (2ρ+1λ+1 −λ)vi = 0 ∀ i = 1, . . . ,n.

Since v0 = 0 and eigenvector v ,= 0, at least one vi is non-zero. This implies that λ = 2ρ+1λ+1 is

an eigenvalue. Using the fact that the null space of the linear mapping v *→ ∑n
i=1 c̃ivi has dimension

(n−1) ·m (we have n ·m degrees of freedom counting all components of v1, . . . ,vn and m equations

in ∑n
i=1 c̃ivi = 0), it follows that λ = 2ρ+1λ+1 is an eigenvalue of multiplicity (n−1) ·m.

Now we consider the second case where v0 ,= 0. We may further assume that λ ,= 2ρ+1λ+1

(since otherwise we get the same eigenvalue as before, just with a different multiplicity). We then

get from (16) that

vi =−
c̃i

2ρ+1λ+1 −λ
v0 ∀ i = 1, . . . ,n, (17)

and when substituting this expression into (15), we obtain
(

(2ρ−1λ−1 −λ)−
n

∑
i=1

c̃2
i

2ρ+1λ+1 −λ

)

v0 = 0.

Taking into account that v0 ,= 0, this implies

0 = 2ρ−1λ−1 −λ−
1

2ρ+1λ+1 −λ

n

∑
i=1

c̃2
i

and, therefore,

0 = λ2 −2(ρ−1λ−1 +ρ+1λ+1)λ+4ρ−1ρ+1λ−1λ+1 −
n

∑
i=1

c̃2
i .

The roots of this quadratic equation are

λ = ρ−1λ−1 +ρ+1λ+1 ±

√

(ρ−1λ−1 −ρ+1λ+1)2 +
n

∑
i=1

c̃2
i , (18)

and these are the remaining eigenvalues of H̄(w, ẋ), each of multiplicity m since there are precisely

m linearly independent vectors v0 ,= 0 whereas the other vectors vi (i= 1, . . . ,n) are uniquely defined

by (17) in this case. In particular, this implies that the dimensions of all three eigenspaces together

is (n− 1)m+m+m = (n+ 1)m, hence other eigenvalues cannot exist. Since the eigenvalue λ =
2ρ+1λ+1 is positive by Remark 3, it remains to show that the roots in (18) are positive as well. By

Assumption 3, we have

n

∑
i=1

c̃2
i =

n

∑
i=1

c−1,ic+1,i(!
′
−1,i + !′+1,i)

2 ≤ 4τ2cT−1c+1 < 4ρ−1ρ+1λ−1λ+1,

where cv = [cv,1,cv,2, · · · ,cv,n]
T. This inequality and Equation 18 give

λ = ρ−1λ−1 +ρ+1λ+1 ±

√

(ρ−1λ−1 −ρ+1λ+1)2 +
n

∑
i=1

c̃2
i

> ρ−1λ−1 +ρ+1λ+1 −
√

(ρ−1λ−1 −ρ+1λ+1)2 +4ρ−1ρ+1λ−1λ+1 = 0.
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As all eigenvalues of H̄(w, ẋ) are positive, matrix H(w, ẋ) and, consequently, also the matrix

J
(2)
r (w, ẋ) are positive definite.

Lemma 7 Let (w, ẋ) ∈ W × φ(X )n be arbitrarily given. Under Assumptions 2 and 3, the matrix

J
(3)
r (w, ẋ) is positive semi-definite for Λr defined as in Equation 8.

Proof. By Assumption 3, either both players have equal instance-specific costs, or the partial gradi-

ent ∇ẋiΩ̂+1(x, ẋ) of the sender’s regularizer is independent of ẋ j for all j ,= i and i = 1, . . . ,n. Let

us consider the first case where c−1,i = c+1,i, and consequently ri = 1, for all i = 1, . . . ,n, such that

J
(3)
r (w, ẋ) =

[

ρ−1∇2
w,wΩ̂−1(w)−ρ−1λ−1Im 0

0 ρ+1∇2
ẋ,ẋΩ̂+1(x, ẋ)−ρ+1λ+1Im·n

]

.

The eigenvalues of this block diagonal matrix are the eigenvalues of the matrix

ρ−1(∇2
w,wΩ̂−1(w)− λ−1Im) together with those of ρ+1(∇2

ẋ,ẋΩ̂+1(x, ẋ)− λ+1Im·n). From the defi-

nition of λv in (11) and (12) follows that these matrices are positive semi-definite for v ∈ {−1,+1}.

Hence, J
(3)
r (w, ẋ) is positive semi-definite as well.

Now, let us consider the second case where we assume that ∇ẋiΩ̂+1(x, ẋ) is independent of ẋ j

for all j ,= i. Hence, ∇2
ẋi,ẋ j

Ω̂+1(x, ẋ) = 0 for all j ,= i such that

J
(3)
r (w, ẋ) =













ρ−1Ω̃−1 0 · · · 0

0 ρ+1
c−1,1

c+1,1
Ω̃+1,1 · · · 0

...
...

. . .
...

0 0 · · · ρ+1
c−1,n

c+1,n
Ω̃+1,n













,

where Ω̃−1 := ∇2
w,wΩ̂−1(w)−λ−1Im and Ω̃+1,i = ∇2

ẋi,ẋi
Ω̂+1(x, ẋ)−λ+1Im. The eigenvalues of this

block diagonal matrix are again the union of the eigenvalues of the single blocks ρ−1Ω̃−1 and

ρ+1
c−1,i

c+1,i
Ω̃+1,i for i = 1, . . . ,n. As in the first part of the proof, Ω̃−1 is positive semi-definite. The

eigenvalues of ∇2
ẋ,ẋΩ̂+1(x, ẋ) are the union of all eigenvalues of ∇2

ẋi,ẋi
Ω̂+1(x, ẋ). Hence, each of

these eigenvalues is larger or equal to λ+1 and thus, each block Ω̃+1,i is positive semi-definite. The

factors ρ−1 > 0 and ρ+1
c−1,i

c+1,i
> 0 are multipliers that do not affect the definiteness of the blocks, and

consequently, J
(3)
r (w, ẋ) is positive semi-definite as well.

The previous results guarantee the existence and uniqueness of a Nash equilibrium under the

stated assumptions.

Theorem 8 Let Assumptions 2 and 3 hold. Then the Nash prediction game in (3) has a unique

equilibrium.

Proof. The existence of an equilibrium of the Nash prediction game in (3) follows from Lemma 1.

Proposition 4 and Lemma 5 to 7 imply that there is a positive diagonal matrix Λr such that Jr(w, ẋ)
is positive definite for all (w, ẋ) ∈ W ×φ(X )n. Hence, the uniqueness follows from Lemma 2.
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3.2.4 PRACTICAL IMPLICATIONS OF ASSUMPTIONS 2 AND 3

Theorem 8 guarantees the uniqueness of the equilibrium only if the cost functions of learner and

data generator relate in a certain way that is defined by Assumption 3. In addition, each of the

cost functions has to satisfy Assumption 2. This section discusses the practical implication of these

assumptions.

The conditions of Assumption 2 impose rather technical limitations on the cost functions. The

requirement of convexity is quite ordinary in the machine learning context. In addition, the loss

function has to be twice continuously differentiable, which restricts the family of eligible loss func-

tions. However, this condition can still be met easily; for instance, by smoothed versions of the

hinge loss. The second requirement of uniformly strongly convex and twice continuously differ-

entiable regularizers is, again, only a week restriction in practice. These requirements are met by

standard regularizers; they occur, for instance, in the optimization criteria of SVMs and logistic

regression. The requirement of non-empty, compact, and convex action spaces may be a restriction

when dealing with binary or multinomial attributes. However, relaxing the action spaces of the data

generator would typically result in a strategy that is more defensive than would be optimal but still

less defensive than a worst-case strategy.

The first condition of Assumptions 3 requires the cost functions of learner and data generator

to have the same curvatures. This is a crucial restriction; if the cost functions differ arbitrarily the

Nash equilibrium may not be unique. The requirement of identical curvatures is met, for instance,

if one player chooses a loss function !( fw(ẋi),y) which only depends on the term y fw(ẋi), such as

for SVM’s hinge loss or the logistic loss. In this case, the condition is met when the other player

chooses the !(− fw(ẋi),y). This loss is in some sense the opposite of !( fw(ẋi),y) as it approaches

zero when the other goes to infinity and vice versa. In this case, the cost functions may still be

non-antagonistic because the player’s cost functions may contain instance-specific cost factors cv,i

that can be modeled independently for the players.

The second part of Assumptions 3 couples the degree of regularization of the players. If the data

generator produces instances at application time that differ greatly from the instances at training

time, then the learner is required to regularize strongly for a unique equilibrium to exist. If the

distributions at training and application time are more similar, the equilibrium is unique for smaller

values of the learner’s regularization parameters. This requirement is in line with the intuition that

when the training instances are a poor approximation of the distribution at application time, then

imposing only weak regularization on the loss function will result in a poor model.

The final requirement of Assumptions 3 is, again, rather a technical limitation. It states that the

interdependencies between the players’ instance-specific costs must be either captured by the regu-

larizers, leading to a full Hessian, or by cost factors. These cost factors of learner and data generator

may differ arbitrarily if the gradient of the data generator’s costs of transforming an instance xi into

ẋi are independent of all other instances ẋ j with j ,= i. This is met, for instance, by cost models that

only depend on some measure of the distance between xi and ẋi.

4. Finding the Unique Nash Equilibrium

According to Theorem 8, a unique equilibrium of the Nash prediction game in (3) exists for suitable

loss functions and regularizers. To find this equilibrium, we derive and study two distinct methods:

The first is based on the Nikaido-Isoda function that is constructed such that a minimax solution of

this function is an equilibrium of the Nash prediction game and vice versa. This problem is then
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solved by inexact linesearch. In the second approach, we reformulate the Nash prediction game into

a variational inequality problem which is solved by a modified extragradient method.

The data generator’s action of transforming the input distribution manifests in a concatenation of

transformed training instances ẋ ∈ φ(X )n mapped into the feature space ẋi := φ(ẋi) for i = 1, . . . ,n,

and the learner’s action is to choose weight vector w ∈ W of classifier h(x) = sign fw(x) with linear

decision function fw(x) = wTφ(x).

4.1 An Inexact Linesearch Approach

To solve for a Nash equilibrium, we again consider the game from (4) with one learner and n data

generators. A solution of this game can be identified with the help of the weighted Nikaido-Isoda

function (Equation 19). For any two combinations of actions (w, ẋ) ∈ W × φ(X )n and (w′, ẋ′) ∈
W × φ(X )n with ẋ =

[

ẋT1 , . . . , ẋ
T
n

]T
and ẋ′ =

[

ẋ′T1 , . . . , ẋ′Tn
]T

, this function is the weighted sum of

relative cost savings that the n+1 players can enjoy by changing from strategy w to w′ and ẋi to ẋ′i,

respectively, while the other players continue to play according to (w, ẋ); that is,

ϑr(w, ẋ,w′, ẋ′) := r0

(

θ̂−1(w, ẋ)− θ̂−1(w
′, ẋ)
)

+
n

∑
i=1

ri

(

θ̂+1(w, ẋ)− θ̂+1(w, ẋ(i))
)

, (19)

where ẋ(i) :=
[

ẋT1 , . . . , ẋ
′T
i , . . . , ẋTn

]T
. Let us denote the weighted sum of greatest possible cost sav-

ings with respect to any given combination of actions (w, ẋ) ∈ W ×φ(X )n by

ϑ̄r(w, ẋ) := max
(w′,ẋ′)∈W×φ(X )n

ϑr(w, ẋ,w′, ẋ′), (20)

where w̄(w, ẋ), x̄(w, ẋ) denotes the corresponding pair of maximizers. Note that the maximum

in (20) is attained for any (w, ẋ), since W ×φ(X )n is assumed to be compact and ϑr(w, ẋ,w′, ẋ′) is

continuous in (w′, ẋ′).
By these definitions, a combination (w∗, ẋ∗) is an equilibrium of the Nash prediction game if,

and only if, ϑ̄r(w∗, ẋ∗) is a global minimum of mapping ϑ̄r with ϑ̄r(w∗, ẋ∗)= 0 for any fixed weights

ri > 0 and i = 0, . . . ,n, see Proposition 2.1(b) of von Heusinger and Kanzow (2009). Equivalently,

a Nash equilibrium simultaneously satisfies both equations w̄(w∗, ẋ∗) = w∗ and x̄(w∗, ẋ∗) = ẋ∗.

The significance of this observation is that the equilibrium problem in (3) can be reformulated

into a minimization problem of the continuous mapping ϑ̄r(w, ẋ). To solve this minimization prob-

lem, we make use of Corollary 3.4 (von Heusinger and Kanzow, 2009). We set the weights r0 := 1

and ri := c−1,i

c+1,i
for all i = 1, . . . ,n as in (8), which ensures the main condition of Corollary 3.4; that

is, the positive definiteness of the Jacobian Jr(w, ẋ) in (13) (cf. proof of Theorem 8). According to

this corollary, vectors

d−1(w, ẋ) := w̄(w, ẋ)−w and d+1(w, ẋ) := x̄(w, ẋ)− ẋ

form a descent direction d(w, ẋ) := [d−1(w, ẋ)T,d+1(w, ẋ)T]T of ϑ̄r(w, ẋ) at any position (w, ẋ) ∈
W ×φ(X )n (except for the Nash equilibrium where d(w∗, ẋ∗) = 0), and consequently, there exists

t ∈ [0,1] such that

ϑ̄r(w+ td−1(w, ẋ), ẋ+ td+1(w, ẋ))< ϑ̄r(w, ẋ).

Since, (w, ẋ) and (w̄(w, ẋ), w̄(w, ẋ)) are feasible combinations of actions, the convexity of the action

spaces ensures that (w+ td−1(w, ẋ), ẋ+ td+1(w, ẋ)) is a feasible combination for any t ∈ [0,1] as

well. The following algorithm exploits these properties.
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Algorithm 1 ILS: Inexact Linesearch Solver for Nash Prediction Games

Require: Cost functions θ̂v as defined in (1) and (2), and action spaces W and φ(X )n.

1: Select initial w(0) ∈ W , set ẋ(0) := x, set k := 0, and select σ ∈ (0,1) and β ∈ (0,1).

2: Set r0 := 1 and ri := c−1,i

c+1,i
for all i = 1, . . . ,n.

3: repeat

4: Set d
(k)
−1 := w̄(k)−w(k) where w̄(k) := argmaxw′∈W ϑr

(

w(k), ẋ(k),w′, ẋ(k)
)

.

5: Set d
(k)
+1 := x̄(k) − ẋ(k) where x̄(k) := argmaxẋ′∈φ(X )n ϑr

(

w(k), ẋ(k),w(k), ẋ′
)

.

6: Find maximal step size t(k) ∈
{

βl | l ∈ N
}

with

ϑ̄r

(

w(k), ẋ(k)
)

− ϑ̄r

(

w(k) + t(k)d
(k)
−1, ẋ

(k) + t(k)d
(k)
+1

)

≥ σ t(k)
(

∥

∥

∥
d
(k)
−1

∥

∥

∥

2

2
+
∥

∥

∥
d
(k)
+1

∥

∥

∥

2

2

)

.

7: Set w(k+1) := w(k) + t(k)d
(k)
−1.

8: Set ẋ(k+1) := ẋ(k) + t(k)d
(k)
+1.

9: Set k := k+1.

10: until
∥

∥w(k)−w(k−1)
∥

∥

2

2
+
∥

∥ẋ(k)− ẋ(k−1)
∥

∥

2

2
≤ ε.

The convergence properties of Algorithm 1 are discussed by von Heusinger and Kanzow (2009),

so we skip the details here.

4.2 A Modified Extragradient Approach

In Algorithm 1, line 4 and 5, as well as the linesearch in line 6, require to solve a concave maximiza-

tion problem within each iteration. As this may become computationally demanding, we derive a

second approach based on extragradient descent. Therefore, instead of reformulating the equilib-

rium problem into a minimax problem, we directly address the first-order optimality conditions of

each players’ minimization problem in (4): Under Assumption 2, a combination of actions (w∗, ẋ∗)

with ẋ∗ =
[

ẋ∗T1 , . . . , ẋ∗Tn

]T
satisfies each player’s first-order optimality conditions if, and only if, for

all (w, ẋ) ∈ W ×φ(X )n the following inequalities hold,

∇wθ̂−1(w
∗, ẋ∗)T(w−w∗) ≥ 0,

∇ẋi θ̂+1(w
∗, ẋ∗)T(ẋi − ẋ∗i ) ≥ 0 ∀ i = 1, . . . ,n.

As the joint action space of all players W × φ(X )n is precisely the full Cartesian product of the

learner’s action set W and the n data generators’ action sets φ(X ), the (weighted) sum of those

individual optimality conditions is also a sufficient and necessary optimality condition for the equi-

librium problem. Hence, a Nash equilibrium (w∗, ẋ∗) ∈ W ×φ(X )n is a solution of the variational

inequality problem,

gr(w
∗, ẋ∗)T

([

w

ẋ

]

−
[

w∗

ẋ∗

])

≥ 0 ∀(w, ẋ) ∈ W ×φ(X )n (21)

and vice versa (cf. Proposition 7.1 of Harker and Pang, 1990). The pseudo-gradient gr in (21) is

defined as in (5) with fixed vector r = [r0,r1, . . . ,rn]T where r0 := 1 and ri := c−1,i

c+1,i
for all i = 1, . . . ,n
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(cf. Equation 8). Under Assumption 3, this choice of r ensures that the mapping gr(w, ẋ) is continu-

ous and strictly monotone (cf. proof of Lemma 2 and Theorem 8). Hence, the variational inequality

problem in (21) can be solved by modified extragradient descent (see, for instance, Chapter 7.2.3

of Geiger and Kanzow, 1999). Before presenting Algorithm 2, which is an extragradient-based

algorithm for the Nash prediction game, let us denote the L2-projection of a into the non-empty,

compact, and convex set A by

ΠA(a) := arg min
a′∈A

‖a−a′‖2
2.

Notice, that if A := {a ∈ Rm | ‖a‖2 ≤ κ} is the closed l2-ball of radius κ > 0 and a /∈ A , this

projection simply reduces to a rescaling of vector a to length κ.

Based on this definition of ΠA , we can now state an iterative method (Algorithm 2), which—

apart from back projection steps—does not require solving an optimization problem in each itera-

tion. The proposed algorithm converges to a solution of the variational inequality problem in 21;

that is, the unique equilibrium of the Nash prediction game, if Assumptions 2 and 3 hold (cf. Theo-

rem 7.40 of Geiger and Kanzow, 1999).

Algorithm 2 EDS: Extragradient Descent Solver for Nash Prediction Games

Require: Cost functions θ̂v as defined in (1) and (2), and action spaces W and φ(X )n.

1: Select initial w(0) ∈ W , set ẋ(0) := x, set k := 0, and select σ ∈ (0,1) and β ∈ (0,1).

2: Set r0 := 1 and ri := c−1,i

c+1,i
for all i = 1, . . . ,n.

3: repeat

4: Set

[

d
(k)
−1

d
(k)
+1

]

:= ΠW×φ(X )n

([

w(k)

ẋ(k)

]

−gr

(

w(k), ẋ(k)
)

)

−
[

w(k)

ẋ(k)

]

.

5: Find maximal step size t(k) ∈
{

βl | l ∈ N
}

with

−gr

(

w(k) + t(k)d
(k)
−1, ẋ

(k) + t(k)d
(k)
+1

)T

[

d
(k)
−1

d
(k)
+1

]

≥ σ

(

∥

∥

∥
d
(k)
−1

∥

∥

∥

2

2
+
∥

∥

∥
d
(k)
+1

∥

∥

∥

2

2

)

.

6: Set

[

w̄(k)

x̄(k)

]

:=

[

w(k)

ẋ(k)

]

+ t(k)

[

d
(k)
−1

d
(k)
+1

]

.

7: Set step size of extragradient

γ(k) :=−
t(k)

∥

∥gr

(

w̄(k), x̄(k)
)
∥

∥

2

2

gr

(

w̄(k), x̄(k)
)T

[

d
(k)
−1

d
(k)
+1

]

.

8: Set

[

w(k+1)

ẋ(k+1)

]

:= ΠW×φ(X )n

([

w(k)

ẋ(k)

]

− γ(k)gr

(

w̄(k), x̄(k)
)

)

.

9: Set k := k+1.

10: until
∥

∥w(k)−w(k−1)
∥

∥

2

2
+
∥

∥ẋ(k)− ẋ(k−1)
∥

∥

2

2
≤ ε.
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5. Instances of the Nash Prediction Game

In this section, we present two instances of the Nash prediction game and investigate under which

conditions those games possess unique Nash equilibria. We start by specifying both players’ loss

function and regularizer. An obvious choice for the loss function of the learner !−1(z,y) is the

zero-one loss defined by

!0/1(z,y) :=

{

1 , if yz < 0

0 , if yz ≥ 0
.

A possible choice for the data generator’s loss is !0/1(z,−1) which penalizes positive decision val-

ues z, independently of the class label. The rationale behind this choice is that the data generator

experiences costs when the learner blocks an event, that is, assigns an instance to the positive class.

For instance, a legitimate email sender experiences costs when a legitimate email is erroneously

blocked just like an abusive sender, also amalgamated into the data generator, experiences costs

when spam messages are blocked. However, the zero-one loss violates Assumption 2 as it is neither

convex nor twice continuously differentiable. In the following sections, we therefore approximate

the zero-one loss by the logistic loss and a newly derived trigonometric loss, which both satisfy

Assumption 2.

Recall that Ω̂+1(D, Ḋ) is an estimate of the transformation costs that the data generator incurs

when transforming the distribution that generates the instances xi at training time into the distribu-

tion that generates the instances ẋi at application time. In our analysis, we approximate these costs

by the average squared l2-distance between xi and ẋi in the feature space induced by mapping φ, that

is,

Ω̂+1(D, Ḋ) :=
1

n

n

∑
i=1

1

2
‖φ(ẋi)−φ(xi)‖2

2 . (22)

The learner’s regularizer Ω̂−1(w) penalizes the complexity of the predictive model h(x)= sign fw(x).
We consider Tikhonov regularization, which, for linear decision functions fw, reduces to the squared

l2-norm of w,

Ω̂−1(w) :=
1

2
‖w‖2

2. (23)

Before presenting the Nash logistic regression (NLR) and the Nash support vector machine (NSVM),

we turn to a discussion on the applicability of general kernel functions.

5.1 Applying Kernels

So far, we assumed the knowledge of feature mapping φ : X → φ(X ) such that we can compute

an explicit feature representation φ(xi) of the training instances xi for all i = 1, . . . ,n. However,

in some applications, such a feature mapping is unwieldy or hard to identify. Instead, one is often

equipped with a kernel function k : X ×X →R which measures the similarity between two instances.

Generally, kernel function k is assumed to be a positive-semidefinite kernel such that it can be stated

in terms of a scalar product in the corresponding reproducing kernel Hilbert space, that is, ∃φ with

k(x,x′) = φ(x)Tφ(x′).
To apply the representer theorem (see, e.g., Schölkopf et al., 2001) we assume that the trans-

formed instances lie in the span of the mapped training instances, that is, we restrict the data gener-

ator’s action space such that the transformed instances ẋi are mapped into the same subspace of the

reproducing kernel Hilbert space as the unmodified training instances xi. By this assumption, the
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weight vector w ∈ W and the transformed instances φ(ẋi) ∈ φ(X ) for i = 1, . . . ,n can be expressed

as linear combinations of the mapped training instances, that is, ∃αi,Ξi j such that

w =
n

∑
i=1

αiφ(xi) and φ(ẋ j) =
n

∑
i=1

Ξi jφ(xi) ∀ j = 1, . . . ,n.

Further, let us assume that the action spaces W and φ(X )n can be adequately translated into dual

action spaces A ⊂ Rn and Z ⊂ Rn×n, which is possible, for instance, if W and φ(X )n are closed

l2-balls. Then, a kernelized variant of the Nash prediction game is obtained by inserting the above

equations into the players’ cost functions in (1) and (2) with regularizers in (22) and (23),

θ̂−1(α,Ξ) =
n

∑
i=1

c−1,i!−1(α
TKΞei,yi)+ρ−1

1

2
αTKα, (24)

θ̂+1(α,Ξ) =
n

∑
i=1

c+1,i!+1(α
TKΞei,yi)+ρ+1

1

2n
tr
(

(Ξ− In)
TK(Ξ− In)

)

, (25)

where ei ∈ {0,1}n is the i-th unit vector, α ∈ A is the dual weight vector, Ξ ∈ Z is the dual trans-

formed data matrix, and K ∈ Rn×n is the kernel matrix with Ki j := k(xi,x j). In the dual Nash

prediction game with cost functions (24) and (25), the learner chooses the dual weight vector

α = [α1, . . . ,αn]T and classifies a new instance x by h(x) = sign fα(x) with fα(x) = ∑n
i=1 αik(xi,x).

In contrast, the data generator chooses the dual transformed data matrix Ξ, which implicitly reflects

the change of the training distribution.

Their transformation costs are in proportion to the deviation of Ξ from the identity matrix In,

where if Ξ equals In, the learner’s task reduces to standard kernelized empirical risk minimization.

The proposed Algorithms 1 and 2 can be readily applied when replacing w by α and ẋi by Ξei for

all i = 1, . . . ,n.

An alternative approach to a kernelization of the Nash prediction game is to first construct an

explicit feature representation with respect to the given kernel function k and the training instances

and then to train the Nash model by applying this feature mapping. Here, we again assume that the

transformed instances φ(ẋi) as well as the weight vector w lie in the span of the explicitly mapped

training instances φ(x). Let us consider the kernel PCA map (see, e.g., Schölkopf and Smola, 2002)

defined by

φPCA : x *→ Λ
1
2
+

VT [k(x1,x), . . . ,k(xn,x)]
T , (26)

where V is the column matrix of eigenvectors of kernel matrix K, Λ is the diagonal matrix with the

corresponding eigenvalues such that K = VΛVT, and Λ
1
2
+

denotes the pseudo-inverse of the square

root of Λ with Λ = Λ
1
2 Λ

1
2 .

Remark 9 Notice that for any positive-semidefinite kernel function k : X ×X →R and fixed train-

ing instances x1, . . . ,xn ∈ X , the PCA map is a uniquely defined real function with φPCA : X → Rn

such that k(xi,x j) = φPCA(xi)TφPCA(x j) for any i, j ∈ {1, . . . ,n}: We first show that φPCA is a real

mapping from the input space X to the Euclidean space Rn. As x *→ [k(x1,x), . . . ,k(xn,x)]
T is a real

vector-valued function and V is a real n× n matrix, it remains to show that the pseudo-inverse of

Λ
1
2 is real as well. Since the kernel function is positive-semidefinite, all eigenvalues λi of K are

non-negative, and hence, Λ
1
2 is a diagonal matrix with real diagonal entries

√
λi for i = 1, . . . ,n. The
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pseudo-inverse of this matrix is the uniquely defined diagonal matrix Λ
1
2
+

with real non-negative

diagonal entries 1√
λi

if λi > 0 and zero otherwise. This proves the first claim. The PCA map also

satisfies k(xi,x j) = φPCA(xi)TφPCA(x j) for any pair of training instances xi and x j as

φPCA(xi) = Λ
1
2
+

VT [k(x1,xi), . . . ,k(xn,xi)]
T

= Λ
1
2
+

VTKei

= Λ
1
2
+

VTVΛVTei

= Λ
1
2
+

ΛVTei

for all i = 1, . . . ,n and consequently

φPCA(xi)
TφPCA(x j) = eTi VΛΛ

1
2
+

Λ
1
2
+

ΛVTe j

= eTi VΛΛ+ΛVTe j

= eTi VΛVTe j

= eTi Ke j = Ki j = k(xi,x j)

which proves the second claim. !

An equilibrium strategy pair w∗ ∈ W and [φPCA(ẋ∗1)
T, . . . ,φPCA(ẋ∗n)

T]T ∈ φ(X )n can be iden-

tified by applying the PCA map together with Algorithms 1 or 2. To classify a new instance

x ∈ X we may first map x into the PCA map-induced feature space and apply the linear classifier

h(x) = sign fw∗(x) with fw∗(x) = w∗TφPCA(x). Alternatively, we can derive a dual representation

of w∗ such that w∗ = ∑n
i=1 α∗

i φPCA(xi), and consequently fw∗(x) = fα∗(x) = ∑n
i=1 α∗

i k(xi,x), where

α∗ = [α∗
1, . . . ,α

∗
n]
T is a not necessarily uniquely defined dual weight vector of w∗. Therefore, we

have to identify a solution α∗ of the linear system

w∗ = Λ
1
2
+

VTKα∗. (27)

A direct calculation shows that

α∗ := VΛ
1
2
+

w∗ (28)

is a solution of (27) provided that either all elements λi of the diagonal matrix Λ are positive or that

λi = 0 implies that the same component of the vector w∗ is also equal to zero (in which case the

solution is non-unique). In fact, inserting (28) in (27) then gives

Λ
1
2
+

VTKα∗ = Λ
1
2
+

VTVΛVTVΛ
1
2
+

w∗ = Λ
1
2
+

Λ
1
2 Λ

1
2 Λ

1
2
+

w∗ = w∗

whereas in the other cases the linear system (27) is obviously inconsistent. The advantage of the

latter approach is that classifying a new instances x ∈ X requires the computation of the scalar

product ∑n
i=1 α∗

i k(xi,x) rather than a matrix multiplication when mapping x into the PCA map-

induced feature space (cf. Equation 26).

When implementing a kernelized solution, the data generator has to generate instances in the

input space with dual representation KΞ∗e1, . . . ,KΞ∗en and φPCA(ẋ∗1), . . . , φPCA(ẋ∗n), respectively.

To this end, the data generator must solve a pre-image problem which typically has a non-unique

solution. However, as every solution of this problem incurs the same costs to both players the data

generator is free to select any of them. To find such a solution, the data generator may solve a

non-convex optimization problem as proposed by Mika et al. (1999), or may apply a non-iterative

method (Kwok and Tsang, 2003) based on multidimensional scaling.
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5.2 Nash Logistic Regression

In this section we study the particular instance of the Nash prediction game where each players’ loss

function rests on the negative logarithm of the logistic function σ(a) := 1
1+e−a , that is, the logistic

loss

!l(z,y) :=− logσ(yz) = log
(

1+ e−yz
)

. (29)

We consider the regularizers in (22) and (23), respectively, which give rise to the following definition

of the Nash logistic regression (NLR).

In the following definition, column vectors x := [xT1 , . . . ,x
T
n ]

T and ẋ := [ẋT1 , . . . , ẋ
T
n ]

T again de-

note the concatenation of the original and the transformed training instances, respectively, which

are mapped into the feature space by xi := φ(xi) and ẋi := φ(ẋi).

Definition 10 The Nash logistic regression (NLR) is an instance of the Nash prediction game with

non-empty, compact, and convex action spaces W ⊂ Rm and φ(X )n ⊂ Rm·n and cost functions

θ̂l
−1(w, ẋ) :=

n

∑
i=1

c−1,i!
l(wTẋi,yi)+ρ−1

1

2
‖w‖2

2

θ̂l
+1(w, ẋ) :=

n

∑
i=1

c+1,i!
l(wTẋi,−1)+ρ+1

1

n

n

∑
i=1

1

2
‖ẋi −xi‖2

2

where !l is specified in (29).

As in our introductory discussion, the data generator’s loss function !+1(z,y) := !l(z,−1) pe-

nalizes positive decision values independently of the class label y. In contrast, instances that pass

the classifier, that is, instances with negative decision values, incur little or almost no costs. By the

above definition, the Nash logistic regression obviously satisfies Assumption 2, and according to

the following corollary, also satisfies Assumption 3 for suitable regularization parameters.

Corollary 11 Let the Nash logistic regression be specified as in Definition 10 with positive regular-

ization parameters ρ−1 and ρ+1 which satisfy

ρ−1ρ+1 ≥ ncT−1c+1, (30)

then Assumption 2 and 3 hold, and consequently, the Nash logistic regression possess a unique Nash

equilibrium.

Proof. By Definition 10, both players employ the logistic loss with !−1(z,y) := !l(z,y) and !+1(z,y) :=
!l(z,−1) and the regularizers in (22) and (23), respectively. Let

!′−1(z,y) = −y 1
1+eyz !′+1(z,y) = 1

1+e−z

!′′−1(z,y) = 1
1+ez

1
1+e−z !′′+1(z,y) = 1

1+ez
1

1+e−z

(31)

denote the first and second derivatives of the players’ loss functions with respect to z ∈ R. Further,

let
∇wΩ̂−1(w) = w ∇ẋΩ̂+1(x, ẋ) = 1

n (ẋ−x)
∇2

w,wΩ̂−1(w) = Im ∇2
ẋ,ẋΩ̂+1(x, ẋ) = 1

n Im·n

denote the gradients and Hessians of the players’ regularizers. Assumption 2 holds as:
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1. The the second derivatives of !−1(z,y) and !+1(z,y) are positive and continuous for all z ∈ R

and y∈Y . Consequently, !v(z,y) is convex and twice continuously differentiable with respect

to z for v ∈ {−1,+1} and fixed y.

2. The Hessians of the players’ regularizers are fixed, positive definite matrices and consequently

both regularizers are twice continuously differentiable and uniformly strongly convex in w ∈
W and ẋ ∈ φ(X )n (for any fixed x ∈ φ(X )n), respectively.

3. By Definition 10, the players’ action sets are non-empty, compact, and convex subsets of

finite-dimensional Euclidean spaces.

Assumption 3 holds as for all z ∈ R and y ∈ Y :

1. The second derivatives of !−1(z,y) and !+1(z,y) in (31) are equal.

2. The sum of the first derivatives of the loss functions is bounded,

!′−1(z,y)+ !′+1(z,y) =−y
1

1+ eyz
+

1

1+ e−z
=

{

1−e−z

1+e−z , if y =+1
2

1+e−z , if y =−1
∈ (−1,2),

which together with Equation 14 gives

τ = sup
(x,y)∈φ(X )×Y

1

2

∣

∣!′−1( fw(x),y)+ !′+1( fw(x),y)
∣

∣< 1.

The supremum τ is strictly less than 1 since fw(x) is finite for compact action sets W and

φ(X )n. The smallest eigenvalues of the players’ regularizers are λ−1 = 1 and λ+1 =
1
n , such

that inequalities

ρ−1ρ+1 ≥ ncT−1c+1 > τ2 1

λ−1λ+1
cT−1c+1

hold.

3. The partial gradient ∇ẋiΩ̂+1(x, ẋ) =
1
n (ẋi −xi) of the data generator’s regularizer is indepen-

dent of ẋ j for all j ,= i and i = 1, . . . ,n.

As Assumptions 2 and 3 are satisfied, the existence of a unique Nash equilibrium follows immedi-

ately from Theorem 8.

Recall, that the weighting factors cv,i are strictly positive with ∑n
i=1 cv,i = 1 for both players

v ∈ {−1,+1}. In particular, it therefore follows that in the unweighted case where cv,i =
1
n for

all i = 1, . . . ,n and v ∈ {−1,+1}, a sufficient condition to ensure the existence of a unique Nash

equilibrium is to set the learner’s regularization parameter to ρ−1 ≥ 1
ρ+1

.

5.3 Nash Support Vector Machine

The Nash logistic regression tends to non-sparse solutions. This becomes particularly apparent if

the Nash equilibrium (w∗, ẋ∗) is an interior point of the joint action set W ×φ(X )n in which case

the (partial) gradients in (9) and (10) are zero at (w∗, ẋ∗). For regularizer (23), this implies that w∗ is
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a linear combination of the transformed instances ẋi where all weighting factors are non-zero since

the first derivative of the logistic loss as well as the cost factors c−1,i are non-zero for all i = 1, . . . ,n.

The support vector machine (SVM), which employs the hinge loss,

!h(z,y) := max(0,1− yz) =

{

1− yz , if yz < 1

0 , if yz ≥ 1
,

does not suffer from non-sparsity, however, the hinge loss obviously violates Assumption 2 as it

is not twice continuously differentiable. Therefore, we propose a twice continuously differentiable

loss function that we call trigonometric loss, which satisfies Assumptions 2 and 3.

Definition 12 For any fixed smoothness factor s > 0, the trigonometric loss is defined by

!t(z,y) :=







−yz , if yz < −s
s−yz

2 − s
π cos

(

π
2s yz

)

, if |yz| ≤ s

0 , if yz > s

. (32)

The trigonometric loss is similar to the hinge loss in that it, except around the decision bound-

ary, penalizes misclassifications in proportion to the decision value z ∈ R and attains zero for cor-

rectly classified instances. Analogous to the once continuously differentiable Huber loss where a

polynomial is embedded into the hinge loss, the trigonometric loss combines the perceptron loss

!p(z,y) := max(0,−yz) with a trigonometric function. This trigonometrical embedding yields a

convex, twice continuously differentiable function.

Lemma 13 The trigonometric loss !t(z,y) is convex and twice continuously differentiable with re-

spect to z ∈ R for any fixed y ∈ Y .

Proof. Let

!t′(z,y) =







−y , if yz < −s

− 1
2 y+ 1

2 ysin
(

π
2s yz

)

, if |yz| ≤ s

0 , if yz > s

!t′′(z,y) =







0 , if yz < −s
π
4s cos

(

π
2s yz

)

, if |yz| ≤ s

0 , if yz > s

denote the first and second derivatives of !t(z,y), respectively, with respect to z ∈ R. The trigono-

metric loss !t(z,y) is convex in z∈R (for any fixed y∈Y ) as the second derivative !t′′(z,y) is strictly

positive if |z|= |yz|< s and zero otherwise. Moreover, since the second derivative is continuous,

lim
|z|→s−

!t′′(z,y) =
π

4s
cos
(

±
π

2

)

= 0 = lim
|z|→s+

!t′′(z,y),

the trigonometric loss is also twice continuously differentiable.

Because of the similarities of the loss functions, we call the Nash prediction game that is based

upon the trigonometric loss Nash support vector machine (NSVM) where we again consider the

regularizers in (22) and (23).
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Definition 14 The Nash support vector machine (NSVM) is an instance of the Nash prediction game

with non-empty, compact, and convex action spaces W ⊂Rm and φ(X )n ⊂Rm·n and cost functions

θ̂t
−1(w, ẋ) :=

n

∑
i=1

c−1,i!
t(wTẋi,yi)+ρ−1

1

2
‖w‖2

2 (33)

θ̂t
+1(w, ẋ) :=

n

∑
i=1

c+1,i!
t(wTẋi,−1)+ρ+1

1

n

n

∑
i=1

1

2
‖ẋi −xi‖2

2

where !t is specified in (32).

The following corollary states sufficient conditions under which the Nash support vector ma-

chine satisfies Assumptions 2 and 3, and consequently has a unique Nash equilibrium.

Corollary 15 Let the Nash support vector machine be specified as in Definition 14 with positive

regularization parameters ρ−1 and ρ+1 which satisfy

ρ−1ρ+1 > ncT−1c+1, (34)

then Assumptions 2 and 3 hold, and consequently, the Nash support vector machine has a unique

Nash equilibrium.

Proof. By Definition 14, both players employ the trigonometric loss with !−1(z,y) := !t(z,y) and

!+1(z,y) := !t(z,−1) and the regularizers in (22) and (23), respectively. Assumption 2 holds:

1. According to Lemma 13, !t(z,y), and consequently !−1(z,y) and !+1(z,y), are convex and

twice continuously differentiable with respect to z ∈ R (for any fixed y ∈ {−1,+1}).

2. The regularizers of the Nash support vector machine are equal to that of the Nash logistic

regression and possess the same properties as in Theorem 11.

3. By Definition 14, the players’ action sets are non-empty, compact, and convex subsets of

finite-dimensional Euclidean spaces.

Assumption 3 holds:

1. The second derivatives of !−1(z,y) and !+1(z,y) are equal for all z ∈ R since

!t′′(z,y) =

{

π
4s cos

(

π
2s z
)

, if |z| ≤ s

0 , if |z| > s

does not dependent on y ∈ Y .

2. The sum of the first derivatives of the loss functions is bounded as for y =−1:

!′−1(z,−1)+ !′+1(z,−1) = 2!t′(z,−1) =







0 , if z < −s

1− sin
(

− π
2s z
)

, if |z| ≤ s

2 , if z > s

∈ [0,2],
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and for y =+1:

!′−1(z,+1)+ !′+1(z,+1) =







−1 , if z < −s

sin
(

π
2s z
)

, if |z| ≤ s

1 , if z > s

∈ [−1,1].

Together with Equation 14, it follows that

τ = sup
(x,y)∈φ(X )×Y

1

2

∣

∣!′−1( fw(x),y)+ !′+1( fw(x),y)
∣

∣≤ 1.

The smallest eigenvalues of the players’ regularizers are λ−1 = 1 and λ+1 = 1
n , such that

inequalities

ρ−1ρ+1 > ncT−1c+1 ≥ τ2 1

λ−1λ+1
cT−1c+1

hold.

3. As for Nash logistic regression, the partial gradient ∇ẋiΩ̂+1(x, ẋ) =
1
n (ẋi −xi) of the data

generator’s regularizer is independent of ẋ j for all j ,= i and i = 1, . . . ,n.

Because Assumptions 2 and 3 are satisfied, the existence of a unique Nash equilibrium follows im-

mediately from Theorem 8.

6. Experimental Evaluation

The goal of this section is to explore the relative strengths and weaknesses of the discussed in-

stances of the Nash prediction game and existing reference methods in the context of email spam

filtering. We compare a regular support vector machine (SVM), logistic regression (LR), the SVM

with trigonometric loss (SVMT, a variant of the SVM which minimizes (33) for the given training

data), the worst-case solution SVM for invariances with feature removal (Invar-SVM, Globerson

and Roweis, 2006; Teo et al., 2007), and the Nash equilibrium strategies Nash logistic regression

(NLR) and Nash support vector machine (NSVM).

data set instances features delivery period

ESP 169,612 541,713 01/06/2007 - 27/04/2010
Mailinglist 128,117 266,378 01/04/1999 - 31/05/2006

Private 108,178 582,100 01/08/2005 - 31/03/2010
TREC 2007 75,496 214,839 04/08/2007 - 07/06/2007

Table 1: Data sets used in the experiments.

We use four corpora of chronologically sorted emails detailed in Table 1: The first data set

contains emails of an email service provider (ESP) collected between 2007 and 2010. The second

(Mailinglist) is a collection of emails from publicly available mailing lists augmented by spam

emails from Bruce Guenter’s spam trap of the same time period. The third corpus (Private) contains

2643
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newsletters and spam and non-spam emails of the authors. The last corpus is the NIST TREC 2007

spam corpus.

Feature mapping φ(x) is defined such that email x∈X is tokenized with the X-tokenizer (Siefkes

et al., 2004) and converted into the m-dimensional binary bag-of-word vector x := [0,1]m. The value

of m is determined by the number of distinct terms in the data set where we have removed all terms

which occur only once. For each experiment and each repetition, we then construct the PCA map-

ping (26) with respect to the corresponding n training emails using the linear kernel k(x,x′) := xTx′

resulting in n-dimensional training instances φPCA(xi) ∈Rn for i = 1, . . . ,n. To ensure the convexity

as well as the compactness requirement in Assumption 2, we notionally restrict the players’ action

sets by defining φ(X ) := {φPCA(x) ∈ Rn | ‖φPCA(x)‖2
2 ≤ κ} and W := {w ∈ Rn | ‖w‖2

2 ≤ κ} for

some fixed constant κ. Note that by choosing an arbitrarily large κ, the players’ action sets become

effectively unbounded.

For both algorithms, ILS and EDS, we set σ := 0.001, β := 0.2, and ε := 10−14. The algo-

rithms are stopped if l exceeds 30 in line 6 of ILS and line 5 in EDS, respectively; in this case, no

convergence is achieved. In all experiments, we use the F-measure—that is, the harmonic mean of

precision and recall—as evaluation measure and tune all parameters with respect to likelihood. The

particular protocol and results of each experiment are detailed in the following sections.

6.1 Convergence

Corollaries 11 (for Nash logistic regression) and 15 (for the Nash support vector machine) specify

conditions on the regularization parameters ρ−1 and ρ+1 under which a unique Nash equilibrium

necessarily exists. When this is the case, both the ILS and EDS algorithms will converge on that

Nash equilibrium. In the first set of experiments, we study whether repeated restarts of the algorithm

converge on the same equilibrium when the bounds in Equations 30 and 34 are satisfied, and when

they are violated to increasingly large degrees.

We set cv,i := 1
n for v ∈ {−1,+1} and i = 1, . . . ,n, such that for ρ−1 >

1
ρ+1

both bounds (Equa-

tions 30 and 34) are satisfied. For each value of ρ−1 and ρ+1 and each of 10 repetitions, we randomly

draw 400 emails from the data set and run EDS with randomly chosen initial solutions (w(0), ẋ(0))
until convergence. We run ILS on the same training set; in each repetition, we randomly choose a

distinct initial solution, and after each iteration k we compute the Euclidean distance between the

EDS solution and the current ILS iterate w(k). Figure 1 reports on these average Euclidean dis-

tances between distinctly initialized runs. The blue curves (ρ−1 = 2 1
ρ+1

) satisfy Equations 30 and

34, the yellow curves (ρ−1 =
1

ρ+1
) lie exactly on the boundary; all other curves violate the bounds.

Dotted lines show the Euclidean distance between the Nash equilibrium and the solution of logistic

regression.

Our findings are as follows. Logistic regression and regular SVM never coincide with the Nash

equilibrium—the Euclidean distances lie in the range between 10−2 and 2. ILS and EDS always

converge to identical equilibria when (30) and (34) are satisfied (blue and yellow curves). The

Euclidean distances lie at the threshold of numerical computing accuracy. When Equations 30 and

34 are violated by a factor up to 4 (turquoise and red curves), all repetitions still converge on the

same equilibrium, indicating that the equilibrium is either still unique or a secondary equilibrium

is unlikely to be found. When the bounds are violated by a factor of 8 or 16 (green and purple

curves), then some repetitions of the learning algorithms do not converge or start to converge to
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Figure 1: Average Euclidean distance between the EDS solution and the ILS solution at iteration

k = 0, . . . ,40 for Nash logistic regression on the ESP corpus. The dotted lines show the

distance between the EDS solution and the solution of logistic regression. Error bars

indicate standard deviation.

distinct equilibria. In the latter case, learner and data generator may attain distinct equilibria and

may experience an arbitrarily poor outcome when playing a Nash equilibrium.

6.2 Regularization Parameters

The regularization parameters ρv of the players v ∈ {−1,+1} play a major role in the prediction

game. The learner’s regularizer determines the generalization ability of the predictive model and

the data generator’s regularizer controls the amount of change in the data generation process. In

order to tune these parameter, one would need to have access to labeled data that are governed by

the transformed input distribution. In our second experiment, we will explore to which extent those

parameters can be estimated using a portion of the newest training data. Intuitively, the most recent

training data may be more similar to the test data than older training data.
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Figure 2: Left: Performance of NLR on the hold-out and the test data with respect to regularization

parameters. Right: Performance of NLR on the hold-out data (ho) and the test data (te)

for fixed values of ρv.

We split the data set into three parts: The 2,000 oldest emails constitute the training portion, we

use the next 2,000 emails as hold-out portion on which the parameters are tuned, and the remaining

emails are used as test set. We randomly draw 200 spam and 200 non-spam messages from the train-

ing portion and draw another subset of 400 emails from the hold-out portion. Both NPG instances

are trained on the 400 training emails and evaluated against all emails of the test portion. To tune

the parameters, we conduct a grid search maximizing the likelihood on the 400 hold-out emails.

We repeat this experiment 10 times for all four data sets and report on the resulting parameters as

well as the “optimal” reference parameters according to the maximal value of F-measure on the test

set. Those optimal regularization parameters are not used in later experiments. The intuition of the

experiment is that the data generation process has already been changed between the oldest and the

latest emails. This change may cause a distribution shift which is reflected in the hold-out portion.

We expect that one can tune each players’ regularization parameter by tuning with respect to this

hold-out set.

In Figure 2 (left) we plot the performance of the Nash logistic regression (NLR) on the hold-out

and the test data against the regularization parameters ρ−1 and ρ+1. The dashed line visualizes the

bound in (30) on the regularization parameters for which NLR is guaranteed to possess a unique

Nash equilibrium. Figure 2 (right) shows sectional views of the left plot along the ρ−1-axis (upper

diagram) and the ρ+1-axis (lower diagram) for several values of ρ+1 and ρ−1, respectively. As

expected, the effect of the regularization parameters on the test data is much stronger than on the

hold-out data.
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It turns out that the data generator’s ρ+1 has almost no impact on the value of F-measure on

the hold-out data set (see lower right diagram of Figure 2). Hence, we conclude that estimating

ρ+1 without access to labeled data from the test distribution or additional knowledge about the

data generator is difficult for this application; the most recent training data are still too different

from the test data. In all remaining experiments and for all data sets we set ρ+1 = 8 for NLR and

ρ+1 = 2 for NSVM. For those choices the Nash models performed generally best on the hold-out

set for a large variety of values of ρ−1. For Invar-SVM the regularization of the data generator’s

transformation is controlled explicitly by the number K of modifiable attributes per positive instance.

We conducted the same experiment for Invar-SVM resulting in an optimal value of K = 25; that is,

the data generator is allowed to remove up to 25 tokens of each spam email of the training data set.

From the upper right diagram of Figure 2 we see that estimating ρ−1 for any fixed ρ+1 seems

possible. Even if we slightly overestimate the learner’s optimal regularization parameter—to com-

pensate for the distributional difference between the transformed training sample and the marginal

shifted hold-out set—the determined value of ρ−1 is close to the optimum for all four data sets.

6.3 Evaluation for Adversary Following an Equilibrium Strategy

We evaluate both a regular classifier trained under the i.i.d. assumption and a model that follows a

Nash equilibrium strategy against both an adversary who does not transform the input distribution

and an adversary who executes the Nash-equilibrial transformation on the input distribution. Since

we cannot be certain that actual spam senders play a Nash equilibrium, we use the following semi-

artificial setting.

The learner observes a sample of 200 spam and 200 non-spam emails drawn from the training

portion of the data and estimates the Nash-optimal prediction model with parameters ẇ; the trivial

baseline solution of regularized empirical risk minimization (ERM) is denoted by w. The data

generator observes a distinct sample D of 200 spam and 200 non-spam messages, also drawn from

the training portion, and computes their Nash-optimal response Ḋ.

We again set cv,i := 1
n for v ∈ {−1,+1} and i = 1, . . . ,n and study the following four scenarios:

• (w,D) : Both players ignore the presence of an opponent; that is, the learner employs a regular

classifier and the sender does not change the data generation process.

• (w, Ḋ) : The learner ignores the presence of an active data generator who changes the data

generation process such that D evolves to Ḋ by playing a Nash strategy.

• (ẇ,D) : The learner expects a rational data generator and chooses a Nash-equilibrial predic-

tion model. However, the data generator does not change the input distribution.

• (ẇ, Ḋ) : Both players are aware of the opponent and play a Nash-equilibrial action to secure

lowest costs.

We repeat this experiment 100 times for all four data sets. Table 2 reports on the average values

of F-measure over all repetitions and both NPG instances and corresponding baselines; numbers in

boldface indicate significant differences (α = 0.05) between the F-measures of fw and fẇ for fixed

sample D and Ḋ, respectively.

As expected, when the data generator does not alter the input distribution, the regularized em-

pirical risk minimization baselines, logistic regression and the SVM, are generally best. However,
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NLR

vs.

LR

ESP

w ẇ

D 0.957 0.924

Ḋ 0.912 0.925

Mailinglist

w ẇ

D 0.987 0.984

Ḋ 0.958 0.976

Private

w ẇ

D 0.961 0.944

Ḋ 0.903 0.912

TREC 2007

w ẇ

D 0.980 0.979

Ḋ 0.955 0.961

NSVM

vs.

SVM

ESP

w ẇ

D 0.955 0.939

Ḋ 0.928 0.939

Mailinglist

w ẇ

D 0.987 0.985

Ḋ 0.961 0.976

Private

w ẇ

D 0.961 0.957

Ḋ 0.932 0.936

TREC 2007

w ẇ

D 0.979 0.981

Ḋ 0.960 0.968

Table 2: Nash predictor and regular classifier against passive and Nash-equilibrial data generator.

the performance of those baselines drops substantially when the data generator plays the Nash-

equilibrial action Ḋ. The Nash-optimal prediction models are more robust against this transforma-

tion of the input distribution and significantly outperform the reference methods for all four data

sets.

6.4 Case Study on Email Spam Filtering

To study the performance of the Nash prediction models and the baselines for email spam filtering,

we evaluate all methods into the future by processing the test set in chronological order. The test

portion of each data set is split into 20 chronologically sorted disjoint subsets. We average the value

of F-measure on each of those subsets over the 20 models (trained on different samples drawn from

the training portion) for each method and perform a paired t-test. In the absence of information

about player and instance-specific costs, we again set cv,i := 1
n for v ∈ {−1,+1}, i = 1, . . . ,n. Note,

that the chosen loss functions and regularizers would allow us to select any positive cost factors

without violating Assumption 1.

Figure 3 shows that, for all data sets, the NPG instances outperform logistic regression (LR),

SVM, and SVMT that do not explicitly factor the adversary into the optimization criterion. Espe-

cially for the ESP corpus, the Nash logistic regression (NLR) and the Nash support vector machine

(NSVM) are superior. On the TREC 2007 data set, the methods behave comparably with a slight

advantage for the Nash support vector machine. The period over which the TREC 2007 data have

been collected is very short; we believe that the training and test instances are governed by nearly

identical distributions. Consequently, for this data set, the game theoretic models do not gain a

significant advantage over logistic regression and the SVM that assume i.i.d. samples. With respect

to the non-game theoretic baselines, the regular SVM outperforms LR and SVMT for most of the

data sets.

Table 3 shows aggregated results over all four data sets. For each point in each of the diagrams of

Figure 3, we conduct a pairwise comparison of all methods based on a paired t-test at a confidence

level of α = 0.05. When a difference is significant, we count this as a win for the method that

achieves a higher value of F-measure. Each line of Table 3 details the wins and, set in italics, the

losses of one method against all other methods.

The Nash logistic regression and the Nash support vector machine have more wins than they

have losses against each of the other methods. The ranking continues with Invar-SVM, the regular

SVM, logistic regression and the trigonometric loss SVM which loses more frequently than it wins

against all other methods.
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Figure 3: Value of F-measure of predictive models. Error bars indicate standard errors.

method vs. method SVM LR SVMT Invar-SVM NLR NSVM

SVM 0:0 40:2 53:0 30:20 8:57 2:65

LR 2:40 0:0 49:5 19:29 5:59 2:71

SVMT 0:53 5:49 0:0 9:47 2:70 2:74

Invar-SVM 20:30 29:19 47:9 0:0 5:57 3:57

NLR 57:8 59:5 70:2 57:5 0:0 22:30

NSVM 65:2 71:2 74:2 57:3 30:22 0:0

Table 3: Results of paired t-test over all corpora: Number of trials in which each method (row)

has significantly outperformed each other method (column) vs. number of times it was

outperformed.

6.5 Efficiency versus Effectiveness

To assess the predictive performance as well as the execution time as a function of the sample size,

we train the baselines and the two NPG instances for a varying number of training examples. We
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Figure 4: Predictive performance (left) and execution time (right) for varying sizes of the training

data set.

report on the results for the ESP data set in Figure 4. The game theoretic models significantly

outperform the trivial baseline methods logistic regression, the SVM and the SVMT, especially for

small data sets. However, this comes at the price of considerably higher computational cost. The

ILS algorithm requires in general only a couple of iterations to converge; however in each iteration

several optimization problems have to be solved so that the total execution time is up to a factor

150 larger than that of the corresponding ERM baseline. In contrast to the ILS algorithm, a single

iteration of the EDS algorithm does not require solving nested optimization problems. However, the

execution time of the EDS algorithm is still higher as it often requires several thousand iterations

to fully converge. For larger data sets, the discrepancy in predictive performance between game

theoretic models and i.i.d. baseline decreases. Our results do not provide conclusive evidence

whether ILS or EDS is faster at solving the optimization problems. We conclude that the benefit of

the NPG prediction models over the classification baseline is greatest for small to medium sample

sizes.

6.6 Nash-Equilibrial Transformation

In contrast to Invar-SVM, the Nash models allow the data generator to modify non-spam emails.

However in practice most senders of legitimate messages do not deliberately change their writing

behavior in order to bypass spam filters, perhaps with the exception of senders of newsletters who

must be careful not to trigger filtering mechanisms.

In a final experiment, we want to study whether the Nash model reflects this aspect of reality,

and how the data generator’s regularizer effects this transformation. The training portion contains

again n+1 = 200 spam and n−1 = 200 non-spam instances randomly chosen from the oldest 4,000
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emails. We determine the Nash equilibrium and measure the number of additions and deletions to

spam and non-spam emails in Ḋ:

∆add
−1 := 1

n−1
∑

i:yi=−1

m

∑
j=1

max(0, ẋi, j −xi, j) ∆add
+1 := 1

n+1
∑

i:yi=+1

m

∑
j=1

max(0, ẋi, j −xi, j)

∆del
−1 := 1

n−1
∑

i:yi=−1

m

∑
j=1

max(0,xi, j − ẋi, j) ∆del
+1 := 1

n+1
∑

i:yi=+1

m

∑
j=1

max(0,xi, j − ẋi, j)

where xi, j indicates the presence of token j in the i-th training email, that is, ∆add
v and ∆del

v denote

the average number of word additions and deletions per spam and non-spam email performed by

the sender.

Figure 5 shows the number of additions and deletions of the Nash transformation as a function

of the adversary’s regularization parameter for the ESP data set. Table 4 reports on the average

number of word additions and deletions for all data sets. For Invar-SVM, we set the number of

possible deletions to K = 25.

ESP

game non-spam spam

model add del add del

Invar-SVM 0.0 0.0 0.0 24.8
NLR 0.7 1.0 22.5 31.2

NSVM 0.4 0.5 17.9 23.8

Mailinglist

game non-spam spam

model add del add del

Invar-SVM 0.0 0.0 0.0 23.9
NLR 0.3 0.4 8.6 10.9

NSVM 0.3 0.3 6.9 8.4

Private

game non-spam spam

model add del add del

Invar-SVM 0.0 0.0 0.0 24.2
NLR 0.4 0.2 24.3 11.2

NSVM 0.1 0.1 15.6 7.3

TREC 2007

game non-spam spam

model add del add del

Invar-SVM 0.0 0.0 0.0 24.7
NLR 0.2 0.2 15.0 11.4

NSVM 0.2 0.1 11.1 8.4

Table 4: Average number of word additions and deletions per training email.

The Nash-equilibrial transformation imposes almost no changes on any non-spam email; the

number of modifications declines as the regularization parameter grows (see Figure 5). We observe

for all data sets that even if the total amount of transformation differs for NLR and NSVM, both

instances behave similarly insofar as the number of word additions and deletions continues to grow

when the adversary’s regularizer decreases.

7. Conclusion

We studied prediction games in which the learner and the data generator have conflicting but not

necessarily directly antagonistic cost functions. We focused on static games in which learner and

data generator have to commit simultaneously to a predictive model and a transformation of the

input distribution, respectively.

The cost-minimizing action of each player depends on the opponent’s move; in the absence

of information about the opponent’s move, players may choose to play a Nash equilibrium strategy
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BRÜCKNER, KANZOW, AND SCHEFFER

100 101 1020

10

20

30

40

50

60

70
Amount of transformation for NLR

ρ+1

nu
m

be
r o

f m
od

ifi
ca

tio
ns

 

 

 non-spam additions Δadd
-1  

 non-spam deletions Δdel
-1  

 spam additions Δadd
+1  

 spam deletions Δdel
+1 

100 101 1020

5

10

15

20

25

30

35
Amount of transformation for NSVM

ρ+1

nu
m

be
r o

f m
od

ifi
ca

tio
ns

 

 

 non-spam additions Δadd
-1  

 non-spam deletions Δdel
-1  

 spam additions Δadd
+1  

 spam deletions Δdel
+1 

Figure 5: Average number of additions and deletions per spam/non-spam email for NLR (left)

and NSVM (right) with respect to the adversary’s regularization parameter ρ+1 for fixed

ρ−1 = n−1.

which constitutes a cost-minimizing move for each player if the other player follows the equilibrium

as well. Because a combination of actions from distinct equilibria may lead to arbitrarily high costs

for either player, we have studied conditions under which a prediction game can be guaranteed

to possess a unique Nash equilibrium. Lemma 1 identifies conditions under which at least one

equilibrium exists, and Theorem 8 elaborates on when this equilibrium is unique. We propose

an inexact linesearch approach and a modified extragradient approach for identifying this unique

equilibrium. Empirically, both approaches perform quite similarly.

We derived Nash logistic regression and Nash support vector machine models and kernelized

versions of these methods. Corollaries 11 and 15 specialize Theorem 8 and expound conditions

on the player’s regularization parameters under which the Nash logistic regression and the support

vector machine converge on a unique Nash equilibrium. Empirically, we find that both methods

identify unique Nash equilibria when the bounds laid out in Corollaries 11 and 15 are satisfied or

violated by a factor of up to 4. From our experiment on several email corpora we conclude that Nash

logistic regression and the support vector machine outperform their i.i.d. baselines and Invar-SVM

for the problem of classifying future emails based on training data from the past.
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Abstract

We present a new online learning algorithm in the selective sampling framework, where labels must
be actively queried before they are revealed. We prove bounds on the regret of our algorithm and on
the number of labels it queries when faced with an adaptive adversarial strategy of generating the
instances. Our bounds both generalize and strictly improve over previous bounds in similar settings.
Additionally, our selective sampling algorithm can be converted into an efficient statistical active
learning algorithm. We extend our algorithm and analysis to the multiple-teacher setting, where the
algorithm can choose which subset of teachers to query for each label. Finally, we demonstrate the
effectiveness of our techniques on a real-world Internet search problem.

Keywords: online learning, regret, label-efficient, crowdsourcing

1. Introduction

Human-generated labels are expensive. The active learning paradigm is built around the idea that

we should only acquire labels that actually improve our ability to make accurate predictions. Online

selective sampling (Cohn et al., 1990; Freund et al., 1997) is an active learning setting that is mod-

eled as a repeated game between a learner and an adversary. On round t of the game, the adversary

presents the learner with an instance xt ∈ Rd and the learner responds by predicting a binary label

ŷt ∈ {−1,+1}. The learner has access to a teacher,1 who knows the correct label for each instance.

The learner must now decide whether or not to pay a unit cost and query the teacher for the correct

binary label yt ∈ {−1,+1} from the teacher. If the learner decides to issue a query, he observes the

correct label and uses it to improve his future predictions. However, when we analyze the accuracy

1. Most previous publications do not distinguish between the adversary and the teacher. We make this distinction

explicitly and intentionally, in anticipation of the multiple-teacher variant of the problem.

c©2012 Ofer Dekel, Claudio Gentile and Karthik Sridharan.
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of the learner’s predictions, we account for all labels, regardless of whether they were observed by

the learner or not. The learner has two conflicting goals: to make accurate predictions and to issue

a small number of queries.

To motivate the selective sampling setting, consider an Internet search company that uses online

learning techniques to construct a (simplified) search engine. In this case, the instance xt represents

the pairing of a search-engine query with a candidate web page and the task is to predict whether

this pair is a good match or a bad match. Clearly, there is no way to manually label the millions

of daily search engine queries along with all of their candidate web pages. Instead, an intelligent

mechanism of choosing which instances to label is required. Search engine queries arrive in an

online manner and a search engine uses its index of the web to match each query with potential

candidate URLs, making this problem well suited for the selective sampling problem setting.

The first part of this paper is devoted to the selective sampling framework described above. In

Section 2 we present a selective sampling learning algorithm inspired by known ridge regression

algorithms (Hoerl and Kennard, 1970; Lai and Wei, 1982; Vovk, 2001; Azoury and Warmuth, 2001;

Cesa-Bianchi et al., 2003, 2005a; Li et al., 2008; Strehl and Littman, 2008; Cavallanti et al., 2009;

Cesa-Bianchi et al., 2009). To analyze this algorithm, we adopt the model introduced in Cavallanti

et al. (2009), Cesa-Bianchi et al. (2009) and Strehl and Littman (2008), where the adversary may

choose arbitrary instances, but the teacher is stochastic and samples each label from an instance-

dependent distribution. We evaluate the accuracy of the learner using the game-theoretic notion

of regret, which measures the extent to which the learner’s predictions disagree with the teacher’s

labels. We prove both an upper bound on the regret and an upper bound on the number of queries

issued by the learner.

Our algorithm is an online learning algorithm, designed to incrementally make binary predic-

tions on a sequence of adversarially-generated instances. However, we can also convert our algo-

rithm into an efficient statistical active learning algorithm, which receives a sample of instances

from some unknown distribution, queries the teacher for a subset of the labels, and outputs a hy-

pothesis with a small risk. The risk of a hypothesis is its error rate on new instances sampled form

the same underlying distribution. We present the details of this conversion in Section 2.5.

In the setting described above, we assumed the learner has access to a single all-knowing teacher.

To make things more interesting, we introduce multiple teachers, each with a different area of

expertise and a different level of overall competence. On round t, some of the teachers may be

experts on xt while others may not be. A teacher who is an expert on xt is likely to provide the

correct label, while a teacher who isn’t may give the wrong label. To make this setting as realistic

as possible, we assume that the areas of expertise and the overall competence levels of the different

teachers are unknown to the learner, and any characterization of a teacher must be inferred from the

observed labels.

On round t, the learner receives the instance xt from the adversary and makes the binary predic-

tion ŷt . Then, the learner has the option to query any subset of teachers: each teacher charges a unit

cost per query and provides a binary label, without any indication of his confidence and without the

option of abstaining. The labels received from the queried teachers may disagree, and the learner

has no a-priori way of knowing which teacher to trust. If the learner queries the wrong teachers,

their labels may agree but still be wrong. The algorithm’s goal remains to make accurate predictions

using a small number of queries. However, in the absence of a ground truth labeling, it is unclear

how to define what it means to make an accurate prediction. To resolve this problem, we formalize
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the assumption that different teachers have different areas of expertise, which allows us to compare

each predicted label with the labels provided by experts on the relevant topic.

Recalling the motivating example given above, assume that the Internet search company em-

ploys multiple human teachers. Some teachers may be better than others across the board and some

teachers may be experts on specific topics, such as sports or politics. Some teachers may know the

right answer, while others may think they know the right answers but in fact do not—for this reason

we do not rely on the teachers themselves to reveal their expertise regions. For example, say that the

search engine receives the web query “nhl new york team” and a candidate url is “kings.nhl.com”; a

teacher who is a hockey expert would know that this is a bad match (since New York’s NHL hockey

team is called the Rangers and not the Kings) while a non-expert may not know the answer. The

learner has no a-priori knowledge of which teacher to query for the label; yet, in our analysis we

would like to compare the learner’s prediction to the label given by the expert teacher.

The multiple-teacher selective sampling setting is the focus of the second half of this paper.

Specifically, in Section 3 we present a multiple-teacher extension of the (single-teacher) adversarial-

stochastic model mentioned earlier, along with two new learning algorithms in this setting. Our

model of the teachers’ expertise regions enables our algorithms to gradually identify the expertise

region of each teacher. Roughly speaking, the algorithm attempts to measure the consistency of the

binary labels provided by each teacher in different regions of the instance space. Our first multiple-

teacher algorithm has the property that it either queries all of the teachers or does not query any

teacher, on each round. Our second algorithm is more sophisticated and queries only those teachers

it believes to be experts on xt . Again, we provide a theoretical analysis that bounds both regret and

number of queries issued to the teachers.

Since our results rely on the specific stochastic model of the teachers, it is natural to question

how well this model approximates the real-world. To gain some confidence in our assumptions and

in our algorithms, in Section 4 we present a simple empirical study on real data that both validate

our theoretical results and demonstrates the effectiveness of our approach.

1.1 Related Work in the Single Teacher Setting

Single-teacher selective sampling lies between passive learning (where the algorithm has no control

over the learning sequence) and fully active learning (where the learning algorithm is allowed to

select the instances xt). The literature on active learning is vast, and we can hardly do it justice here.

Recent papers on active learning include the works by Balcan et al. (2006), Bach (2006), Balcan

et al. (2007), Balcan et al. (2008), Castro and Nowak (2008), Dasgupta et al. (2005), Dasgupta et al.

(2008), Hanneke (2007), Hanneke (2009) and Koltchinskii (2010). All of these papers consider

the case where instances are drawn i.i.d. from a fixed distribution (either known or unknown). In

particular, Dasgupta et al. (2005) gives an efficient Perceptron-like algorithm for learning within

accuracy ε the class of homogeneous d-dimensional half-spaces under the uniform distribution over

the unit ball, with label complexity of the form d log 1
ε
. Still in the i.i.d. setting, more general results

are given by Balcan et al. (2007). A neat analysis of previously proposed general active learning

schemes (Balcan et al., 2006; Dasgupta et al., 2008) is provided by the aforementioned paper by

Hanneke (2009). Even more recently, a general Rademacher complexity-based analysis of active

learning is given by Koltchinskii (2010). Due to their generality, many of the above results rely on

schemes that are computationally prohibitive, exceptions being the results by Dasgupta et al. (2005)

and the realizable cases analyzed by Balcan et al. (2007). For instance, the general algorithms
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proposed by Hanneke (2009); Koltchinskii (2010) do actually imply estimating ε-minimal sets (or

disagreement sets) from empirical data and (local) Rademacher complexities, which makes them

computationally hard even for simple function classes, like linear-threshold functions. Finally, pool-

based active learning scenarios are considered by Bach (2006) (and the references therein), though

the analysis therein is only asymptotic in nature and no quantification is given of the trade-off

between risk and number of labels.

To contrast our work with the papers mentioned above, it is worth stressing that our results hold

with no stochastic assumption on the source of the instances—in fact, we assume that the instances

may be generated by an adaptive adversary. However, as mentioned above, we also show how

our online learning algorithm can be converted into a statistical active learning algorithm, with a

formal risk bound. Our results in the online selective sampling setting are more in line with the

worst-case analyses by Cesa-Bianchi et al. (2006), Strehl and Littman (2008), Cesa-Bianchi et al.

(2009) and Orabona and Cesa-Bianchi (2011). These papers present variants of Recursive Least

Squares algorithms that operate on arbitrary instance sequences. The analysis by Cesa-Bianchi et al.

(2006) is completely worst case: the authors make no assumptions whatsoever on the mechanism

generating instances or labels; however, they are unable to prove bounds on the label query rate.

The setups by Strehl and Littman (2008), Cesa-Bianchi et al. (2009) and Orabona and Cesa-Bianchi

(2011) are closest to ours in that they assume the same stochastic model of the teacher. Our bounds

can be shown to be optimal with respect to certain parameters and, unlike competing works on

this subject, we are able to face the case when the instance sequence x1,x2, ... is generated by an

adaptive adversary, rather than the weaker oblivious adversary, as by, for example, Cesa-Bianchi

et al. (2009) and Orabona and Cesa-Bianchi (2011). It is actually this difference that makes it

possible the selective sampling-to-active learning conversion. A detailed comparison of our results

in the single-teacher setting with the results of the predominant papers on this topic is given in

Section 2.6, after our results are presented.

1.2 Related Work in the Multiple Teacher Setting

There is also much related work in the multiple-teacher setting, which is often motivated within

recent crowdsourcing applications. We can map the current state-of-the-art on this topic along

various interesting axes.

First, we distinguish between techniques that attempt to find the ground-truth labeling (and

evaluate each teacher’s quality) independent of the learning algorithm, and techniques that combine

the ground-truth-finding and the actual learning into a single algorithm. In the first category are the

classical work of Dawid and Skeene (1979), which presents techniques of reconciling conflicting

responses on medical questionnaires, the one of Spiegelhalter and Stovin (1983) which handles

conflicting information from repeated biopsies, the one by Smyth et al. (1995), where the authors

infer a ground truth from multiple annotations of astronomical images, and the one by Hui and Zhou

(1998) which examines the more general problem of evaluation in the absence of a ground truth.

Still in the first category, Dekel and Shamir (2009a) and Chen et al. (2010) both present general

techniques for identifying and rejecting low quality teachers. Papers in the second category discuss

supervised learning algorithms that can handle multiple-teacher input. In this category, Dekel and

Shamir (2009b) present an SVM variant that is less sensitive to bad labels generated by a small

set of malicious teachers, Raykar et al. (2010) use EM to jointly establish a ground truth labeling

and learn a maximum-likelihood estimator, Argall et al. (2009) dynamically choose which human
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demonstrator to use when teaching a policy to a robot, and Groot et al. (2011) integrate multiple-

teacher support into Gaussian process regression learning. Our work in the current paper falls in the

second category.

We can also distinguish between algorithms that rely on repeated labeling (where multiple teach-

ers label each example), versus techniques that assume that each example is labeled only once.

Sheng et al. (2008), Snow et al. (2008) and Donmez et al. (2009) collect repeated labels and aggre-

gate them (e.g., using a majority vote) to simulate the ground-truth labeling. Some of these papers

balance an explore-exploit tradeoff, which determines how many repeated labels are needed for

each example. At the opposite end of the spectrum, Dekel and Shamir (2009a) identify low-quality

teachers and labels without any repeated labeling. The technique presented in this paper falls in the

latter category, since we actively determine which subset of teachers to query on each online round.

However, while we do query multiple teachers, we do not assume that the majority vote, or any

other aggregate label, is accurate. Still, we do compare to some majority vote of teachers in both

our analysis and our experiments.

Next, we distinguish between papers that consider the overall quality score of each teacher (over

the entire input space) from papers that assume that each teacher has a specific area of expertise.

Most of the papers mentioned above fall in the first category. In the second category, Yan et al.

(2010) extend the work in Raykar et al. (2010) (again, maximizing likelihood and using EM) to

handle the case where different teachers have knowledge about different parts of the input space. In

the present paper, we also model each teacher as an expert on a different subtopic. A closely related

research topic is multi-domain adaptation (Mansour et al., 2009a,b), where multiple hypotheses

must be optimally combined, under the assumption that each hypothesis makes accurate predictions

with respect to a different distribution. Another closely related topic is learning from multiple

sources (Crammer et al., 2008), where multiple data sets are sampled from different distributions,

and the goal is to optimally combine them with a given target distribution in mind. However, in both

of these related problems we are given some prior information on the various distributions, whereas

in the multiple-teacher setting we must infer the expertise of each teacher from data.

Another interesting distinction can be made between passive multiple-teacher techniques, which

process a static data set that was collected beforehand, and active techniques that route each example

to the appropriate teacher. Most of the aforementioned work follows the static approach. The

proactive learning setting (Domnez, 2010; Yang and Carbonell, 2009a,b) assumes that the learner

has access to teachers of different global quality, with associated costs per label. Yang and Carbonell

(2009a) present a theoretical analysis of proactive learning, under the assumption that each teacher

gives the correct label most of the time. However, note that the active category fits quite nicely

with the assumption that each teacher has an area of expertise (as opposed to measuring the global

quality of each teacher): once the algorithm identifies the area of expertise of a teacher, it seems

only natural to actively route the relevant examples to that teacher. The approach presented in this

paper does precisely that. At the time of writing the extended version of our paper, other works

have been published that considered the problem of active learning from multiple annotators. The

one whose goal is closest to ours is perhaps the paper by Yan et al. (2011), where a probabilistic

multi-labeler model is formulated that allows one to learn the expertise of the labelers and to single

out the most uncertain sample (within a given pool of unlabeled instances) whose label is useful to

query. Though that paper is similar in spirit to ours, it does mainly focus on modeling and empirical

investigations. Finally, we note that Melville et al. (2005) study the closely related problem of

actively acquiring individual feature values.
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An interesting variation on the multiple-teacher theme involves allowing each teacher’s quality

to vary with time (Donmez et al., 2010).

2. The Single Teacher Case

In this section, we focus on the standard online selective sampling setting, where the learner has

to learn an accurate predictor while determining whether or not to query the label of each instance

it observes. We formally define the problem setting in Section 2.1 and introduce our algorithm in

Section 2.2. We prove upper bounds on the regret and on the number of queries in Section 2.3.

We briefly mention how to convert our online learning algorithm into a statistical active learning

algorithm in Section 2.4 and Section 2.5, and we compare our results to related work in Section 2.6.

2.1 Preliminaries and Notation

As mentioned above, on round t of the online selective sampling game, the learner receives an

instance xt ∈ Rd , predicts a binary label ŷt ∈ {−1,+1}, and chooses whether or not to query the

correct label yt ∈ {−1,+1}. We set Zt = 1 if a query is issued on round t and Zt = 0 otherwise.

The only assumption we make on the process that generates xt is that ‖xt‖ ≤ 1; for all we know,

instances may be generated by an adaptive adversary (an adversary that reacts to our previous ac-

tions). Note that most of the previous work on this topic makes stronger assumptions on the process

that generates xt , resulting in a less powerful setting. As for the labels provided by the teacher,

we adopt the standard stochastic linear noise model for this problem (Cesa-Bianchi et al., 2003;

Cavallanti et al., 2009; Cesa-Bianchi et al., 2009; Strehl and Littman, 2008) and assume that each

yt ∈ {−1,+1} is sampled according to the law

P(yt = 1 |xt ) =
1+u&xt

2
, (1)

where u ∈ Rd is a fixed but unknown vector with ‖u‖ ≤ 1. Note that E [yt |xt ] = u&xt , and we

denote this value by ∆t . Unlike much of the recent literature on active learning (see Section 1.1),

this simple noise model has the advantage of delivering time-efficient algorithms of practical use.

The learner constructs a sequence of linear predictors w0,w1, . . ., where each wt ∈ Rd , and

predicts ŷt = sign(∆̂t) where ∆̂t = wt−1
&xt . The desirable outcome is for the sequence w0,w1, . . .

to quickly converge to u. Let Pt denote the conditional probability P( ·|x1, . . . ,xt−1,xt ,y1, . . . ,yt−1).
We evaluate the accuracy of the learner’s predictions using its regret, defined as

RT =
T

∑
t=1

(

Pt(yt ∆̂t < 0)−Pt(yt∆t < 0)
)

.

Additionally, we are interested in the number of queries issued by the learner NT = ∑
T
t=1 Zt . Our

goal is to simultaneously bound the regret RT and the number of queries NT with high probability

over the random draw of labels.

Remark 1 At first glance, the linear noise model (1) might seem too restrictive. However, this

model can be made implicitly nonlinear by running our algorithm in a Reproducing Kernel Hilbert

Space H . This entails that the linear operation u&xt in (1) is replaced by h(xt), for some (typically

nonlinear) function h ∈ H . See also the comments at the end of Section 2.2, and those surrounding

Theorem 2.
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2.2 Algorithm

The single teacher algorithm is a margin-based selective sampling procedure. The algorithm “Se-

lective Sampler” (Algorithm 1) depends on a confidence parameter δ ∈ (0,1]. As in known on-

line ridge-regression-like algorithms (Hoerl and Kennard, 1970; Vovk, 2001; Azoury and War-

muth, 2001; Cesa-Bianchi et al., 2003, 2005a; Li et al., 2008; Strehl and Littman, 2008; Cavallanti

et al., 2009; Cesa-Bianchi et al., 2009), our algorithm maintains a weight vector wt (initialized as

w0 = 0) and a data correlation matrix At (initialized as A0 = I). After receiving xt and predicting

ŷt = sign(∆̂t), the algorithm computes an adaptive data-dependent threshold θt , defined as

θ2
t = x&t A−1

t−1xt

(

1+4
t−1

∑
i=1

Ziri +36log
t

δ

)

,

where ri = x&i A−1
i xi. The definition of θt follows from our analysis, and can be interpreted as the

algorithm’s uncertainty in its own predictions. More precisely, the learner believes that |∆̂t −∆t |≤
θt . A query is issued only if |∆̂t | ≤ θt , or in other words, when the algorithm is unsure about the

sign of ∆t . In Algorithm 1, this is denoted by Zt = 11
{

∆̂2
t ≤ θ2

t }, where 11
{

·
}

denotes the indicator

function.

If the label is not queried, (Zt = 0) then the algorithm does not update its internal state (and xt

is discarded). If the label is queried (Zt = 1), then the algorithm computes the intermediate vector

w′
t−1 in such a way that ∆̂′

t = w′
t−1

&
xt is at most one in magnitude. Observe that ∆̂t and ∆̂′

t have the

same sign and only their magnitudes can differ. In particular, it holds that

∆̂′
t =

{

sgn(∆̂t) if |∆̂t |> 1

∆̂t otherwise .

Next, the algorithm defines the new vector wt so that Atwt undergoes an additive update, where At

is a rank-one adjustment of At−1.

The algorithm can be run both in primal form (as in the pseudocode in Algorithm 1) and in dual

form (i.e., in a Reproducing Kernel Hilbert Space). It is not hard to show that the algorithm has

a quadratic running time per round, where quadratic means O(d2) if it is run in primal form, and

O(N2
t ) if it is run in dual form, where Nt = ∑i≤t Zi is the number of labels requested by the algorithm

up to time t. In the dual case, since the algorithm updates only when Zt = 1, the number of labels

Nt also corresponds to the number of support vectors used to define the current hypothesis.

2.3 Analysis

Before diving into a formal analysis of Algorithm 1, we attempt to give some intuition regarding our

choice of θt . Recall that θt is the radius of the algorithm’s confidence interval, and therefore a small

value of θt implies that the algorithm is highly confident that ∆t and ∆̂t are close. If, additionally, ∆t

is large, then sign(∆̂t) is likely to equal sign(∆t), and the algorithm’s prediction is correct. Therefore,

we want to show that θt can be kept small without issuing an excessive number of queries. To see

this, we notice that θt depends on the three terms: ∑
t−1
i=1 Ziri, log(t/δ), and x&t A−1

t−1xt . Later in this

section, we prove that ∑
t
i=1 Ziri grows logarithmically with the number of queries Nt , and obviously

log(t/δ) grows logarithmically with t. To show that θt remains small, we must show that the third

term, x&t A−1
t−1xt , decreases quickly when labels are queried. x&t A−1

t−1xt depends on the relationship

between the current instance xt and the previous instances on rounds where a query was issued.
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If xt lies along the directions spanned by the previous instances, we show that x&t A−1
t−1xt tends to

shrink as 1/Nt . As a result, θt is on the order of log(t/δ)/Nt , and Nt only needs to grow at a slow

logarithmic rate. On the other hand, if the adversary chooses xt outside of the subspace spanned

by the previous examples, then the term x&t A−1
t−1xt causes θt to be large, and the algorithm becomes

more likely to issue a query. Overall, to ensure a small value of θt across the instance space spanned

by the xt produced by the adversary, the algorithm must query O
(

log(t)
)

labels in each direction of

this instance space.

As noted above, the adversary can arbitrarily inflate our regret by choosing instances that induce

small values of ∆t . Recall that a small value of ∆t implies that the teacher guesses the label yt almost

at random. Following Cesa-Bianchi et al. (2009), the bounds we prove depend on how many of the

instances xt are chosen such that ∆t is very small. Formally, for any ε > 0, define

Tε =
T

∑
t=1

11{|∆t |≤ ε} . (2)

The following theorem is the main result of this section, and is stated so as to emphasize both the

data-dependent and the time-dependent aspects of our bounds.

Theorem 2 Assume that Selective Sampler is run with confidence parameter δ ∈ (0,1]. Then with

probability at least 1−δ it holds that for all T ≥ 3

RT ≤ inf
ε>0

{

εTε +
2+8log|AT |+144log(T/δ)

ε

}

= inf
ε>0

{

εTε +O
(d logT + log(T/δ)

ε

)}

NT ≤ inf
ε>0

{

Tε +O
( log |AT | log(T/δ)+ log2 |AT |

ε2

)}

= inf
ε>0

{

Tε +O
(d2 log2(T/δ)

ε2

)}

,

where |AT | is the determinant of the matrix AT .

Note that the bounds above depend on d the dimension of the instance space. In the case of a

(possibly infinite-dimensional) Reproducing Kernel Hilbert Space, d is replaced by a quantity that

depends on the spectrum of the data’s Gram matrix.

The proof of Theorem 2 splits into a series of lemmas. For every T > 0 and ε > 0, we define

UT,ε =
T

∑
t=1

Z̄t 11
{

∆t ∆̂t < 0,∆2
t > ε2

}

,

QT,ε =
T

∑
t=1

Zt 11
{

∆t ∆̂t < 0,∆2
t > ε2

}

|∆t | ,

where Z̄t = 1− Zt . In the above, UT,ε deals with rounds where the algorithm does not make a

query, while QT,ε deals with rounds where the algorithm does make a query. The proof exploits

the potential-based method for online ridge-regression-like algorithms we learned from Azoury and

Warmuth (2001). See also the works of Hazan et al. (2007), Dani et al. (2008) and Crammer and

Gentile (2011) for a similar use in different contexts. The potential function we use is the (quadratic)

Bregman divergence dt(u,w) = 1
2 (u−w)&At(u−w), where At is the matrix computed by Selective

Sampler at time t.

The proof structure is as follows. First, Lemma 3 below decomposes the regret RT into three

parts:

RT ≤ εTε +UT,ε +QT,ε .
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Algorithm 1: Selective Sampler

input confidence level δ ∈ (0,1]
initialize w0 = 0, A0 = I

for t = 1,2, . . .
receive xt ∈ Rd : ||xt ||≤ 1, and set ∆̂t = wt−1

&xt

predict ŷt = sgn(∆̂t) ∈ {−1,+1}
θ2

t = x&t A−1
t−1xt

(

1+4∑
t−1
i=1 Ziri +36log(t/δ)

)

Zt = 11
{

∆̂2
t ≤ θ2

t

}

∈ {0,1}
if Zt = 1

query yt ∈ {−1,+1}

w′
t−1 =







wt−1 − sgn(∆̂t)
(

|∆̂t |−1

x&t A−1
t−1xt

)

A−1
t−1xt if |∆̂t |> 1

wt−1 otherwise

At = At−1 +xtx
&
t , rt = x&t A−1

t xt , wt = A−1
t (At−1w′

t−1 + ytxt)
else

At = At−1, wt = wt−1, rt = 0

The bound on UT,ε is given by Lemma 4. For the bound on QT,ε and the bound on the number

of queries NT , we use Lemmas 5 and 6, respectively. However, both of these lemmas require that

(∆t − ∆̂t)2 ≤ θ2
t for all t. This assumption is taken care of by the subsequent Lemma 7. Since ε is

a positive free parameter, we can take the infimum over ε > 0 to get the required results. In turn,

many of these lemmas rely on technical lemmas given in Appendix A and Appendix B.

Lemma 3 For any ε > 0 it holds that RT ≤ εTε + UT,ε + QT,ε .

Proof We have

Pt(∆̂tyt < 0)−Pt(∆tyt < 0)

≤ 11
{

∆̂t∆t ≤ 0
}
∣
∣
∣2Pt(yt = 1)−1

∣
∣
∣

= 11
{

∆̂t∆t ≤ 0
}

|∆t |
= 11

{

∆t ∆̂t < 0,∆2
t ≤ ε2

}

|∆t |+ 11
{

∆t ∆̂t < 0,∆2
t > ε2

}

|∆t |
≤ ε 11

{

∆t ∆̂t < 0,∆2
t ≤ ε2

}

+ 11
{

∆t ∆̂t < 0,∆2
t > ε2

}

|∆t | (3)

= ε 11
{

∆t ∆̂t < 0,∆2
t ≤ ε2

}

+ 11
{

∆t ∆̂t < 0,∆2
t > ε2,Zt = 0

}

|∆t |
+ 11
{

∆t ∆̂t < 0,∆2
t > ε2,Zt = 1

}

|∆t |
≤ ε 11

{

∆t ∆̂t < 0,∆2
t ≤ ε2

}

+ Z̄t 11
{

∆t ∆̂t < 0,∆2
t > ε2

}

(4)

+Zt 11
{

∆t ∆̂t < 0,∆2
t > ε2

}

|∆t | .

The inequality in Equation (4) follows directly from |∆t | ≤ 1. Summing over t = 1 . . .T completes

the proof.
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Lemma 4 For any ε > 0 and T ≥ 3, with probability at least 1−δ, it holds that

QT,ε ≤
2+8log|AT |+144log(T/δ)

ε
= O

(
d logT + log(T/δ)

ε

)

.

Proof We begin with

QT,ε =
T

∑
t=1

Zt 11
{

∆t ∆̂t < 0
}

11
{

∆2
t > ε2

}

|∆t |

≤
1

ε

T

∑
t=1

Zt 11
{

∆̂t∆t < 0
}

∆2
t

=
1

ε

T

∑
t=1

Zt 11
{

∆̂′
t∆t < 0

}

∆2
t .

∆̂′
t∆t < 0 implies that ∆2

t ≤ (∆t − ∆̂′
t)

2, and therefore the above can be upper bounded by

1

ε

T

∑
t=1

Zt(∆t − ∆̂′
t)

2.

Next we rely on some standard technical results that are given in the appendix. Lemma 23 (i) upper

bounds the above by

2

ε

T

∑
t=1

Zt

(

(yt − ∆̂′
t)

2 − (yt −∆t)
2
)

+
144

ε
log(T/δ).

Lemma 25 (iv) further bounds this term by

4

ε

T

∑
t=1

Zt

(

dt−1(u,w
′
t−1)−dt(u,w

′
t)+2 log

|At |
|At−1|

)

+
144

ε
log(T/δ).

After telescoping and using the facts that d0(u,w′
0) = d0(u,w0) = ||u||2/2 ≤ 1/2 and |A0|= 1, the

above is bounded by
2+8log|AT |+144log(T/δ)

ε
,

which is in fact O
(

d logT+log(T/δ)
ε

)

in the finite-dimensional case. This concludes the proof.

Lemma 5 Assume that (∆t − ∆̂t)2 ≤ θ2
t holds for all t. Then, for any ε > 0, we have UT,ε = 0

Proof We rewrite our assumption (∆t − ∆̂t)2 ≤ θ2
t as

∆t ∆̂t ≥
∆̂2

t +∆2 −θ2
t

2
≥

∆̂2
t −θ2

t

2
.

However, if Z̄t = 1, then ∆̂2
t > θ2

t and so ∆t ∆̂t ≥ 0. Hence, under the above assumption, we can guar-

antee that for any t, Z̄t 11
{

∆t ∆̂t < 0
}

= 0, thereby implying UT,ε =∑
T
t=1 Z̄t 11

{

∆t ∆̂t < 0,∆2
t > ε2

}

= 0.

In the proof of the next two lemmas, we use the shorthand g(t) = ∑
t
i=1 Ziri.
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Lemma 6 Assume that (∆t − ∆̂t)2 ≤ θ2
t holds for all t. Then, for any ε > 0, and T > 0 we have

NT ≤ Tε +O

(
log |AT | log(T/δ)+ log2 |AT |

ε2

)

= Tε +O

(
d2 log2(T/δ)

ε2

)

.

Proof Let us rewrite our assumption (∆t − ∆̂t)2 ≤ θ2
t as |∆t − ∆̂t | ≤ θt . Then |∆̂t | ≤ θt implies

|∆t |≤ 2θt . We can write

Zt = 11
{

∆̂2
t ≤ θ2

t

}

≤ 11
{

∆̂2
t ≤ θ2

t ,∆
2
t ≤ 4θ2

t

}

= 11

{

∆̂2
t ≤ θ2

t ,∆
2
t ≤ 4θ2

t ,θ
2
t ≥

ε2 x&t A−1
t−1xt

8rt

}

+ 11

{

∆̂2
t ≤ θ2

t ,∆
2
t ≤ 4θ2

t ,θ
2
t <

ε2 x&t A−1
t−1xt

8rt

}

≤ 11

{

∆̂2
t ≤ θ2

t ,θ
2
t ≥

ε2 x&t A−1
t−1xt

8rt

}

+ 11

{

∆2
t ≤ 4θ2

t ,θ
2
t <

ε2 x&t A−1
t−1xt

8rt

}

. (5)

By Lemma 24 (i) we have xT
t A−1

t−1xt ≤ 2rt , hence

11

{

∆2
t ≤ 4θ2

t ,θ
2
t <

ε2 x&t A−1
t−1xt

8rt

}

≤ 11
{

∆2
t ≤ ε2

}

.

Plugging back into (5) and summing over t shows that, for any ε > 0,

NT ≤ Tε +
T

∑
t=1

11

{

∆̂2
t ≤ θ2

t ,θ
2
t ≥

ε2 x&t A−1
t−1xt

8rt

}

.

Now observe that, by definition of Zt and θt

T

∑
t=1

{

∆̂2
t ≤ θ2

t ,θ
2
t ≥

ε2 x&t A−1
t−1xt

8rt

}

=
T

∑
t=1

Zt 11
{

8rt

(

1+4g(t −1)+36log(t/δ)
)

≥ ε2
}

≤
8

ε2

T

∑
t=1

Zt rt

(

1+4g(t −1)+36log(t/δ)
)

.

Using Lemma 24 (ii), the above is upper bounded by

8

ε2
(1+36log(T/δ)) log |AT |+

32

ε2

T

∑
t=1

Ztrtg(t −1),

which is in turn upper bounded by

8

ε2
(1+36log(T/δ)) log |AT |+

16

ε2

T

∑
t=1

(

g2(t)−g2(t −1)
)

.
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Again using Lemma 24 (ii), we upper bound the above by

8

ε2
(1+36log(T/δ)) log |AT |+

16

ε2
log2 |AT |.

This term is O
(

log |AT | log(T/δ)+log2 |AT |
ε2

)

, and specifically O
(

d2 log2(T/δ)
ε2

)

in the finite-dimensional

case. Since this above holds for any ε > 0, it also holds for the best choice of ε.

Lemma 7 If Selective Sampler is run with confidence parameter δ ∈ (0,1], then with probability at

least 1−δ, the inequality (∆t − ∆̂t)2 ≤ θ2
t holds simultaneously for all t ≥ 3.

Proof First note that by Hölder’s inequality,

(∆t − ∆̂t)
2 = ((wt−1 −u)&xt)

2 ≤ 2 xT
t A−1

t−1xt dt−1(wt−1,u) . (6)

Now let t ′ := argmax j≤t−1:Z j=1 j, that is, t ′ is the last round (up to time t−1) on which the algorithm

issued a query. Then Lemma 25 (i), (ii), (iii), allows us to write

1

2

t ′

∑
i=1

Zi

(

(yi − ∆̂′
i)

2 − (yi −∆i)
2
)

≤
t ′−1

∑
i=1

Zi

(

di−1(u,w
′
i−1)−di(u,w

′
i)+2Ziri

)

+dt ′−1(u,w
′
t ′−1)−dt ′(u,wt ′)+2rt ′

≤
1

2
−dt ′(u,wt ′)+2g(t ′) ,

where the last step comes from the telescoping sum and the fact that

d0(u,w
′
0) = d0(u,w0) =

1

2
‖u‖2 ≤ 1/2.

Moreover, by definition of t ′ we see that g(t ′) = g(t−1) and Z j = 0 for any j ∈ [t ′+1, t−1]. Hence

for any such j we have w j = wt ′ . This yields

1

2

t−1

∑
i=1

Zi

(

(yi − ∆̂′
i)

2 − (yi −∆i)
2
)

≤
1

2
−dt−1(u,wt−1)+2g(t −1) .

Plugging back into (6) results in

(∆t − ∆̂t)
2 ≤ 2 xT

t A−1
t−1xt

(

1/2+2g(t −1)−
1

2

t−1

∑
i=1

Zi

(

(yi − ∆̂′
i)

2 − (yi −∆i)
2
)

)

.

A direct application of Lemma 23 (ii) shows that for any given t ≥ 3, with probability at least

1−δ/t2,

(∆t − ∆̂t)
2 ≤ x&t A−1

t−1xt (1+4g(t −1)+36log(t/δ)) = θ2
t .

Finally, a union bound allows us to conclude that (∆t − ∆̂t)2 ≤ θ2
t holds simultaneously for all t ≥ 3

with probability at least 1−δ.
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Remark 8 Computing the intermediate vector w′
t−1 from wt−1, as defined in Algorithm 1, corre-

sponds to projecting wt−1 onto the convex set Ct = {w ∈ Rd : |w&xt | ≤ 1} w.r.t. the Bregman

divergence dt−1, that is, w′
t−1 = argminu∈Ct

dt−1(u,wt−1). Notice that Ct includes the unit ball since

xt is normalized. This projection step is needed for technical purposes during the construction of a

suitable bounded-variance martingale difference sequence (see Lemma 23 in Appendix A). Unlike

similar constructions (Hazan et al., 2007; Dani et al., 2008), we do not project onto the unit ball.

In fact, computing the latter would involve a line search over matrices, which would significantly

slow down the algorithm. On the other hand, it is also interesting to observe that Selective Sampler

performs the projection onto Ct only a logarithmic number of times. This is because

T

∑
t=1

11
{

∆̂2
t ≤ θ2

t , |∆̂t |> 1
}

≤
T

∑
t=1

Zt ∆̂
2
t

≤
T

∑
t=1

Ztθ
2
t

≤ 2
T

∑
t=1

Zt rt

(

1+4g(t −1)+36log(t/δ)
)

,

which is O
(

d2 log2(T/δ)
)

by Lemma 24 (iii).

2.4 An Online-to-Batch Conversion

It is instructive to see what the bound in Theorem 2 looks like when we assume that the instances xt

are drawn i.i.d. according to an unknown distribution over the Euclidean unit sphere, and to com-

pare this bound to standard statistical learning bounds. We model the distribution of the instances

near the hyperplane {x : u&x = 0} using the well-known Mammen-Tsybakov low noise condition

(Tsybakov, 2004):2

There exist c > 0 and α ≥ 0 such that P
(

|u&x|< ε
)

≤ cεα for all ε > 0.

We now describe a simple randomized algorithm which, with high probability over the sampling

of the data, returns a linear predictor with a small expected risk (expectation is taken over the

randomization of the algorithm). The algorithm is as follows:

1. Run Algorithm 1 with confidence level δ on the data (x1,y1), ...,(xT ,yT ), and obtain the

sequence of predictors w0,w1, . . . ,wT−1

2. Pick r ∈ {0,1, . . . ,T −1} uniformly at random and return wr.

Due to the unavailability of all labels, standard conversion techniques that return a single deter-

ministic hypothesis (Cesa-Bianchi and Gentile, 2008) do not readily apply here. The following

theorem, whose proof is given in Appendix C, states a high probability bound on the risk and the

label complexity of our algorithm.

2. The constant c might actually depend on the input dimension d. For notational simplicity, Theorem 9 regards c as a

constant, hence it is hidden in the big-oh notation.
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Theorem 9 Let wr be the linear hypothesis returned by the above algorithm. Then with probability

at least 1−δ we have

Er

[

P′
r(y w&

r x < 0)
]

≤ P(y u&x < 0)+O




(d log(T/δ))

α+1
α+2

T
α+1
α+2

+
log
(

logT
δ

)

T



 ,

NT = O

(

(d2 log2(T/δ))
α

α+2 T
2

α+2 + log(1/δ)
)

,

where Er is the expectation over the randomization in the algorithm, and P′
r(·) denotes the condi-

tional probability P(· |x1, . . . ,xr−1,y1, . . . ,yr−1).3

As α goes from 0 (no assumptions on the noise) to ∞ (hard separation assumption), the above bound

on the average regret roughly interpolates between 1/
√

T and 1/T . Correspondingly, the bound on

the number of labels NT goes from T to log2 T . In particular, observe that, viewed as a function

of NT (and disregarding log factors), the instantaneous regret is of the form N
− α+1

2
T . These bounds

are sharper than those by Cavallanti et al. (2009) and, in fact, no further improvement is generally

possible (Castro and Nowak, 2008). The same rates are obtained by Hanneke (2009) under much

more general conditions, for less efficient algorithms that are based on empirical risk minimization.

2.5 Statistical Active Learning

We now briefly show how to turn our algorithm into a standard statistical active learning algorithm.

Following Koltchinskii (2010), we consider a sequential learning protocol for active learning

where on round t the algorithm has to choose a subset St of the instance space {x ∈ Rd : ||x|| ≤
1} (the Euclidean sphere) from which the next instance xt is sampled from. Specifically, xt is

sampled from the conditional distribution P( · |x ∈ St), being P(·) an unknown distribution over the

Euclidean sphere. The algorithm then observes the associated label yt , generated according to the

linear noise model of Section 2.1. Notice that the set St is typically depending on past examples

(x1,y1), . . .(xt−1,yt−1). Again, the goal is to study the high probability behavior of the regret as

a function of the number of observed labels (which now coincides with the number of sampled

instances xt).

The analysis developed in Section 2.4 immediately accommodates this model of learning, once

we let St be the querying region of Algorithm 1, that is,

St = {x : (w&
t−1x)2 ≤ θ2

t },

and think of the randomized i.i.d. algorithm described in that section as operating as follows. We

sample an independent new instance x from the Euclidean sphere, and check whether x ∈ St or

not. In the former case, the associated label y is sampled, and the subset St is updated into St+1

according to the rules of Algorithm 1 for updating wt−1 into wt and θt into θt+1. In the latter case,

x is discarded, St remains unchanged, and a new independent instance is drawn. Notice that this

is precisely what Algorithm 1 does when running with an i.i.d. sequence of examples. The same

conclusions we have drawn from Theorem 9 can be repeated here.

3. Notice the difference with the conditional probability Pr(·) defined in Section 2.1.
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2.6 Related Work

As we mentioned in Section 1.1, the results of Theorem 2 are more in line with the worst-case

analyses by Strehl and Littman (2008), Cesa-Bianchi et al. (2009) and Orabona and Cesa-Bianchi

(2011). These papers present variants of Recursive Least Squares algorithms that operate on arbi-

trary instance sequences, but assuming the same linear stochastic noise-model used in our analysis.

The algorithm presented by Strehl and Littman (2008) approximates the Bayes margin to within a

given accuracy ε, and queries Õ(d3/ε4) labels; this bound is significantly inferior to our bound, and

it seems to hold only in the finite-dimensional case. A more precise comparison can be made to

the (expectation) bounds presented by Cesa-Bianchi et al. (2009) and Orabona and Cesa-Bianchi

(2011), which are of the form RT ≤ min0<ε<1

(

εTε +
T 1−κ

ε
+ d

ε2 lnT
)

, and NT = O (d T κ lnT ) ,

where κ ∈ [0,1] is a tunable parameter of their algorithm. After a proper setting of κ, this gives

rise to an instantaneous regret which is still (up to log factors) in the form N
− α+1

2
T under the same

low-noise assumptions as in Section 2.4. On the other hand, our bound here does not require tuning

of parameters. More importantly, whereas the analysis of Cesa-Bianchi et al. (2009) and Orabona

and Cesa-Bianchi (2011) only holds for oblivious adversaries, we cover the case where the instances

can be generated adaptively.4 We emphasize that it is just the adaptivity of the adversary that enabled

us to convert our selective sampling algorithm to the statistical active learning algorithm presented

in Section 2.5.

Another relevant line of research that came to our attention at the time of writing the extended

version of our paper is the importance sampling-based active learning schemes followed by Beygelz-

imer et al. (2010, 2011). These papers are interesting in that they give up with the version space

approach followed by their predecessors (Dasgupta et al., 2008; Hanneke, 2007, 2009; Koltchin-

skii, 2010) which might deliver time-efficient active learning schemes. A direct comparison to

Beygelzimer et al. (2010, 2011) is not straightforward. While we can see that their label selection

mechanism (e.g., Algorithm 1 in Beygelzimer et al., 2010) gets similar to the one in our Selective

Sampler (once it is adapted to square loss and the class conditional distribution is (1)), their analysis

(e.g., Theorem 4 therein) seems to provide suboptimal results. For instance, under hard separation

assumptions, their bound on NT never gets as small as a logarithmic function in T . In short, we

suspect that their algorithm (or variants thereof) is a strict generalization of ours but, being more

general, the associated analysis is also significantly looser.

3. The Multiple Teacher Case

The problem is still online binary classification, where on each round t = 1,2, . . . the learner re-

ceives an input xt ∈ Rd , with ‖xt‖ ≤ 1, and outputs a binary prediction ŷt . However, there are now

K available teachers, each with his own area of expertise. The expertise area of each teacher is un-

known to the algorithm, and can only be inferred indirectly from the binary labels provided by that

teacher and by other teachers. If xt falls within the expertise region of teacher j, then that teacher

can provide an accurate label. After making each binary prediction, the learner chooses if to issue a

query to one or more of the K teachers. The learner is free to query any subset of teachers, but each

4. It is fair to say that Orabona and Cesa-Bianchi (2011) have further improvements over both Cesa-Bianchi et al. (2009)

and this paper. In particular, the DGS-Mod algorithm therein is able to handle the case when the vector u generating

the labels has unknown length ||u||. However, it does so at the cost of an exponential dependence of RT on ||u||.
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teacher charges a unit cost per label. We emphasize that a queried teacher provides only a binary

label, and does not indicate his level of confidence in that label.

From the point of view of our learning algorithm, these confidence levels have to be interpreted

as reliability rates of the teachers. Since these rates play a major role in weighting the relative

importance of the teachers, it looks wiser to let the algorithm compute these rates as a function of

past interactions among teachers, rather than relying on human “self-judgement”.

Formally, we assume that teacher j is associated with a weight vector u j ∈Rd , where ‖u j‖ ≤ 1.

If teacher j is queried on round t, he stochastically generates the binary label y j,t according to

Pt(y j,t = 1|xt) = (1+∆ j,t)/2, where ∆ j,t = u j
&xt and, as in Section 2, xt can be chosen adversarially

depending on previous x’s and y j’s. We consider |∆ j,t | to be the (hidden) confidence of teacher j in

his label for xt . When the learner issues a query, he receives nothing other than the binary label itself,

and the confidence is only part of our theoretical model of the teacher. If xt is almost orthogonal to

u j then teacher j has a very low confidence in his label, and we say that xt lies outside the expertise

region of teacher j.

It is no longer clear how we should evaluate the performance of the learner, since the K teachers

will often give inconsistent labels on the given xt , and we do not have a well-defined ground-truth to

compare against. Intuitively, we would like the learner to predict the label of xt as accurately as the

teachers who are experts on xt . To formalize this intuition,5 define the average margin of a generic

subset of teachers C ⊆ [K] as ∆C,t =
1
|C| ∑i∈C ∆i,t . We define the set of experts for each instance using

a user-specified parameter τ > 0. Define

j!t = argmax j|∆ j,t | and Ct = {i : |∆i,t |≥ |∆ j!t ,t |− τ} . (7)

In words, j!t is the most confident teacher at time t, and Ct is the set of confident teachers at time

t. Again, recall that Ct is unknown to the learning algorithm. In this setting, τ is a tolerance

parameter that defines how confident a teacher must be, compared to the most confident teacher,

to be considered a confident teacher. Although τ does not appear explicitly in the notation Ct , the

reader should keep in mind that Ct and other sets defined later on in this section all depend on τ.

Using the definitions above, ∆Ct ,t is the average margin of the confident teachers, and we abbreviate

∆t = ∆Ct ,t .

Now, let yt be the random variable that takes values in {−1,1}, with Pt(yt = 1|xt) = (1+∆t)/2.

In words, yt is the binary label generated according to the average margin of the confident teachers.

We consider the sequence y1, . . . ,yT to be our ad-hoc ground-truth, and the goal of our algorithm is to

accurately predict this sequence. Note that an equivalent way of generating yt is to pick a confident

teacher j uniformly at random from Ct and to set yt = y j,t . Indeed there are other reasonable ways

to define the ground-truth for this problem, however, we feel that our definition coincides with our

intuitions on learning from teachers with different areas of expertise. If τ is set to 1, the learner

is compared against the average margin of all K teachers, while if τ = 0, the learner is compared

against the single most confident teacher.

Remark 10 The reader might wonder whether the framework just described could be accommo-

dated by a standard experts setting (e.g., Cesa-Bianchi and Lugosi, 2006) or, perhaps, by a label-

efficient version thereof (e.g., Helmbold and Panizza, 1997; Cesa-Bianchi et al., 2005b). Due to

the absence of a ground truth, the answer is negative. Of course, we might be tempted to apply

5. Here and throughout, [K] = {1,2, . . . ,K}.

2670



SELECTIVE SAMPLING AND ACTIVE LEARNING FROM SINGLE AND MULTIPLE TEACHERS

a label-efficient expert algorithm by pretending that the missing ground-truth is provided by some

function of the teachers we query. Unfortunately, the above references contain results which are too

general to yield tight bounds for our specific noise model. Indeed, our ambition here is to leverage

the side information provided by the instance vectors so as to outperform the best single expert in

hindsight while, at the same time, querying just a small fraction of the available teachers’ labels.

We now describe and analyze two algorithms within the multiple teacher setting. We call these

algorithms “first version” and “second version”. In the first version, the algorithm queries either all

of the teachers or none of them. The second version is more refined in that the algorithm may query

a different subset of teachers on each round. In Section 4 we present experiments on real-world data

with the second version of the algorithm.

3.1 Algorithm, First Version

The learner attempts to model each weight vector u j with a corresponding weight vector w j,t . As

in the single teacher case, the learner maintains a variable threshold θt , which can be interpreted

as the learner’s confidence in its current set of weight vectors. The learner attempts to mimic the

process of generating yt by choosing its own set of confident teachers on each round. Denoting

∆̂ j,t = w j,t
&xt , the learner defines

ĵt = argmax j|∆̂ j,t | and Ĉt = {i : |∆̂i,t |≥ |∆̂ ĵt ,t
|− τ−2θt} ,

where ĵt is the learner’s estimate of the most confident teacher, and Ĉt is the learner’s estimate of

the set of confident teachers. Note that the definition of Ĉt is more inclusive than the definition of

Ct in Equation (7), in that it also includes teachers whose confidence falls below |∆̂ ĵt ,t
|− τ. This

accounts for the uncertainty regarding the learner’s set of weight vectors.

As above, we define the notation ∆̂C,t =
1
|C| ∑i∈C ∆̂i,t , and abbreviate ∆̂t = ∆̂Ĉt ,t

. The learner pre-

dicts the binary label ŷt = sgn(∆̂t). Let Pt denote the conditional probability Pt(·) =
P( ·|x1,y1,1 . . . ,yK,1,x2,y1,2 . . . ,yK,2, . . .xt−1,y1,t−1, . . .yK,t−1,xt), and define the regret of the learner

as

RT =
T

∑
t=1

(

Pt(yt ∆̂t < 0)−Pt(yt∆t < 0)
)

. (8)

Next, we proceed to describe our criterion for querying teachers. We present a simple criterion that

either sets Zt = 1 and queries all of the teachers or sets Zt = 0 and queries none of them. Therefore,

the learner either incurs a cost of K or a cost of 0 on each round. We partition the set of confident

teachers Ĉt into two sets,

Ĥt = {i : |∆̂i,t | ≥ |∆̂ ĵt ,t
|− τ+2θt},

B̂t = {i : |∆̂ ĵt ,t
|− τ−2θt ≤ |∆̂i,t | < |∆̂ ĵt ,t

|− τ+2θt} .

In words, Ĥt is the set of teachers with especially high confidence, while B̂t is the set of teachers

with borderline confidence. Intuitively, the learner is unsure whether the teachers in B̂t should or

should not be included in Ĉt . The learner issues a query (to all K teachers) in one of two cases. The

first case is when there exists a subset of borderline teachers S ⊆ B̂t that causes the predicted label

to flip, namely, ∆̂t ∆̂Ĥt∪S, t < 0. The second case is when there exists a subset of borderline teachers
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Algorithm 2: Multiple Teacher Selective Sampler—first version

input confidence level δ ∈ (0,1], tolerance parameter τ ≥ 0

initialize A0 = I, ∀ j ∈ [K] w j,0 = 0

for t = 1,2, . . .

receive xt ∈ Rd : ||xt ||≤ 1

θ2
t = x&t A−1

t−1xt

(

1+4∑
t−1
i=1 Ziri +36log(Kt/δ)

)

∀ j ∈ [K] ∆̂ j,t = w j,t−1
&xt and ĵt = argmax j|∆̂ j,t |

predict ŷt = sgn(∆̂t) ∈ {−1,+1}

Zt =

{

1 if ∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t
< 0 or |∆̂S∪Ĥt , t

|≤ θt

0 otherwise

if Zt = 1

query y1,t , . . . ,yK,t

At = At−1 +xtx
&
t , rt = x&t A−1

t xt

for j = 1, . . . ,K

w′
j,t−1 =







w j,t−1 − sgn(∆̂ j,t)
(

|∆̂ j,t |−1

x&t A−1
t−1xt

)

A−1
t−1xt if |∆̂ j,t |> 1,

w j,t−1 otherwise

w j,t = A−1
t (At−1w′

j,t−1 + y j,txt)

else

At = At−1, rt = 0 and w j,t = w j,t−1 ∀ j ∈ [K]

S ⊆ B̂t that causes the margin to be too small, namely |∆̂Ĥt∪S, t |≤ θt . In either of these cases, we say

that the set of (estimated) confident teachers is unstable. If a query is issued, each weight vector

w j,t is updated as in the single teacher case. The pseudocode of this algorithm is given in Algorithm

2.

Remark 11 At first sight, it may seem that computing Zt causes an exponential explosion due to

the need to check all possible subsets S ⊆ B̂t . The same implementation issue arises in Algorithm 3

(Section 3.3). As a matter of fact, this check can be computed efficiently by first sorting the teachers

according to their estimated confidence |∆̂ j,t |, and then greedily growing the subset S by following

this order.

3.2 Analysis, First Version

Our learning algorithm relies on labels it receives from a set of teachers, and therefore our bounds

should naturally depend on the ability of those teachers to provide accurate labels for the sequence

x1, . . . ,xT . For example, if an input xt lies outside the expertise regions of all teachers, we cannot

hope to learn anything from the labels provided by the teachers for this input. Similarly, there
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is nothing we can do on rounds where the set of confident teachers is split between two equally

confident but conflicting opinions. We count these difficult rounds by defining, for any ε > 0,

Tε =
T

∑
t=1

11{|∆t |≤ ε} . (9)

The above is just a multiple teacher counterpart to (2). However it is interesting to note that even in

a case where most teachers have low confidence in their prediction on any given round, Tε can still

be small provided that the experts in the field have a confident opinion.

A more subtle difficulty presents itself when the collective opinion expressed by the set of

confident teachers changes qualitatively with a small perturbation of the input xt or one of the

weight vectors u j. To state this formally, define for any ε > 0

Hε,t = {i : |∆i,t | ≥ |∆ j!t ,t |− τ+ ε},
Bε,t = {i : |∆ j!t ,t |− τ− ε ≤ |∆i,t | < |∆ j!t ,t |− τ+ ε} .

The set Hε,t is the subset of teachers in Ct with especially high confidence, ε higher than the minimal

confidence required for inclusion in Ct . In contrast, the set Bε,t is the set of teachers with borderline

confidence: either teachers in Ct that would be excluded if their margin were smaller by ε, or

teachers that are not in Ct that would be included if their margin were larger by ε. We say that the

average margin of the confident teachers is unstable with respect to τ and ε if |∆t | > ε but we can

find a subset S ⊆ Bε,t such that either ∆t∆S∪Hε,t , t < 0 or |∆S∪Hε,t , t |< ε. In other words, we are dealing

with the situation where ∆t is sufficiently confident, but a small ε-perturbation to the margins of the

individual teachers can cause its sign to flip, or its confidence to fall below ε. We count the unstable

rounds by defining, for any ε > 0,6

T ′
ε =

T

∑
t=1

11
{

|∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t , t < 0 ∨ |∆S∪Hε,t , t |≤ ε
}

. (10)

Intuitively T ′
ε counts the number of rounds on which an ε-perturbation of ∆t, j either changes the sign

of the average margin or results in an average margin close to zero. Like Tε, this quantity measures

an inherent hardness of the multiple teacher problem.

The following theorem is the main theoretical result of this section. It provides an upper bound

on the regret of the learner, as defined in Equation (8), and on the total cost of queries, NT =
K ∑

T
t=1 Zt . Again, we emphasize both the data and the time-dependent aspects of the bound.

6. Notice that, up to degenerate cases, both Tε and T ′
ε tend to vanish as ε → 0. Hence, as in the single teacher case, the

free parameter ε trades-off hardness terms against large deviation terms.
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Theorem 12 Assume Algorithm 2 is run with a confidence parameter δ > 0. Then with probability

at least 1−δ it holds for all T ≥ 3 that

RT ≤ inf
ε>0

{

εTε +T ′
ε +O

(
log |AT | log(KT/δ)+ log2 |AT |

ε2

)}

= inf
ε>0

{

εTε +T ′
ε +O

(
d2 log2(KT/δ)

ε2

)}

,

NT ≤ K inf
ε>0

{

Tε +T ′
ε +O

(
log |AT | log(KT/δ)+ log2 |AT |

ε2

)}

= K inf
ε>0

{

Tε +T ′
ε +O

(
d2 log2(KT/δ)

ε2

)}

.

As in the proof of Theorem 2, we begin by decomposing the regret and the number of queries.

Recall the definitions of Tε and T ′
ε in Equation (9) and Equation (10), respectively. Additionally,

define for any ε > 0

UT = ∑
T
t=1 Z̄t 11

{

∆t ∆̂t < 0
}

,

QT,ε = ∑
T
t=1 Zt 11

{

∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε
}

. (11)

Tε and T ′
ε deal with rounds on which the ground truth itself is unreliable, UT sums over rounds where

the learner does not issue a query, and QT,ε sums over rounds where the learner does issue a query.

Using these definitions, we state the following decomposition lemmas.

Lemma 13 For any ε > 0 it holds that RT ≤ εTε +T ′
ε +UT +QT,ε.

Lemma 14 For any ε > 0, it holds that NT ≤ K (Tε +T ′
ε +QT,ε).

The proofs of these lemmas are given in Appendix C. To conclude the proof of Theorem 12, it

remains to upper bound UT and QT,ε.

Lemma 15 If (∆ j,t − ∆̂ j,t)2 ≤ θ2
t holds for all j ∈ [K] and t ∈ [T ], then

QT,ε = O

(
log |AT | log(KT/δ)+ log2 |AT |

ε2

)

= O

(
d2 log2(KT/δ)

ε2

)

.

Lemma 16 If (∆ j,t − ∆̂ j,t)2 ≤ θ2
t for all j ∈ [K] and t ∈ [T ], then UT = 0.

The proofs of these lemmas are also given in Appendix C. Both lemmas rely on the assumption that

(∆ j,t − ∆̂ j,t)2 ≤ θ2
t for all t ∈ [T ] and j ∈ [K]. A straightforward stratification of Lemma 7 in Section

2 over the K teachers verifies that this condition holds with high probability. This concludes the

proof of Theorem 2.
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Algorithm 3: Multiple Teacher Selective Sampler—second version

input confidence level δ ∈ (0,1], tolerance parameter τ ≥ 0

initialize A j,0 = I, w j,0 = 0, ∀ j ∈ [K]

for t = 1,2, . . .

receive xt ∈ Rd : ||xt ||≤ 1

∀ j ∈ [K], θ2
j,t = x&t A−1

j,t−1xt

(

1+4∑
t−1
i=1 Zir j,i +36log(Kt/δ)

)

∀ j ∈ [K], ∆̂ j,t = w j,t−1
&xt and ĵt = argmax j|∆̂ j,t |

predict ŷt = sgn(∆̂t) ∈ {−1,+1}

Zt =

{

1 if ∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t
< 0 or |∆̂S∪Ĥt , t

|≤ θS∪Ĥt , t

0 otherwise

if Zt = 1 and j ∈ Ĉt

query y j,t

A j,t = A j,t−1 +xtx
&
t , r j,t = x&t A−1

j,t xt

w′
j,t−1 =







w j,t−1 − sgn(∆̂ j,t)
(

|∆̂ j,t |−1

x&t A−1
j,t−1xt

)

A−1
j,t−1xt if |∆̂ j,t |> 1,

w j,t−1 otherwise

w j,t = A−1
j,t (A j,t−1w′

j,t−1 + y j,txt)

else
A j,t = A j,t−1, r j,t = 0 and w j,t = w j,t−1

3.3 Algorithm, Second Version

The second version differs from the first one in that now each teacher j has its own threshold θ j,t ,

and also its own matrix A j,t . As a consequence, the set of confident teachers Ĉt and the partition of

Ĉt into highly confident (Ĥt) and borderline (B̂t) teachers have to be redefined as follows:

Ĉt = { j : |∆̂ j,t |≥ |∆̂ ĵt ,t
|− τ−θ j,t −θ ĵt ,t

}, where ĵt = argmax j|∆̂ j,t |,

Ĥt = {i : |∆̂i,t | ≥ |∆̂ ĵt ,t
|− τ+θ j,t +max j∈Ĉt

θ j,t},

B̂t =
{

i : |∆̂ ĵt ,t
|− τ−θ j,t −θ ĵt ,t

≤ |∆̂i,t | < |∆̂ ĵt ,t
|− τ+θ j,t +max j∈Ĉt

θ j,t
}

.

The pseudocode is given in Algorithm 3. Notice that the query condition defining Zt now depends

on an average threshold θS∪Ĥt , t
= 1

|S∪Ĥt | ∑ j∈S∪Ĥt
θ j,t .

3.4 Analysis, Second Version

The following theorem bounds the regret and the total number of queries issued by the second

version of our algorithm, with high probability. The proof is similar to the proof of Theorem 12.

We keep the definitions of the sets Hε,t and Bε,t as given in Section 3.2, but in the bound on NT in
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Theorem 17, we replace T ′
ε with the more refined quantity T ′′

ε , defined as

T ′′
ε =

T

∑
t=1

|Hε,t ∪Bε,t |
K

11
{

|∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t , t < 0 ∨ |∆S∪Hε,t , t |≤ ε
}

.

Note that T ′′
ε is similar to T ′

ε except that while T ′
ε only counts the number of times that perturbations

to the ∆ j,t’s lead to conflict or low confidence predictions, T ′′
ε also accounts for the fraction of

confident teachers involved in the conflict. We state the following bound on regret and on the

overall number of queries.

Theorem 17 Assume Algorithm 3 is run with a confidence parameter δ > 0. Then with probability

at least 1−δ it holds for all T ≥ 3 that

RT ≤ inf
ε>0

{

εTε +T ′
ε +O

(
K log |AT | log(KT/δ)+K log2 |AT |

ε2

)}

= inf
ε>0

{

εTε +T ′
ε +O

(
K d2 log2(KT/δ)

ε2

)}

,

NT ≤ K inf
ε>0

{

Tε +T ′′
ε +O

(
K log |AT | log(KT/δ)+K log2 |AT |

ε2

)}

= K inf
ε>0

{

Tε +T ′′
ε +O

(
K d2 log2(KT/δ)

ε2

)}

.

The bounds above resemble the bounds stated in Theorem 12 for the first version of the algorithm;

all of these bounds contain two kinds of terms: hardness terms (Tε, T ′
ε , and T ′′

ε ) and large deviation

terms (d logT -like factors). The regret bound for the second version of the algorithm is strictly

inferior to the regret bound for the first version, as an additional factor of K multiplies the large

deviation term. However, the bounds on the number of queries of the two algorithms are not directly

comparable. On one hand, if a typical example only has a few confident teachers, we expect T ′′
ε to

be much smaller than T ′
ε , which could make the bound on NT in Theorem 17 much smaller than its

counterpart in Theorem 12. On the other hand, the bound in Theorem 17 has an additional factor of

K multiplying its large deviation term.

As in the proofs of Theorem 2 and Theorem 12, to analyze the regret and number of queries

made by the algorithm, we start by decomposing these terms. To decompose the regret, we note that

Lemma 13 applies as before, and we have that for any ε > 0,

RT ≤ εTε +T ′
ε +UT +QT,ε,

where Tε is as defined in Equation (9), T ′
ε is as defined in Equation (10), and UT and QT,ε are defined

in Equation (11). To decompose the total number of queries, we require a new lemma.

Lemma 18 If (∆ j,t − ∆̂ j,t)2 ≤ θ2
j,t holds for all j ∈ [K] and t ∈ [T ], then for any ε > 0, it holds that

NT ≤ K

(

Tε +T ′′
ε +O

(

∑
K
j=1

(

log |A j,T | log(KT/δ)+ log2 |A j,T |
)

ε2

))

≤ K

(

Tε +T ′′
ε +O

(
Kd2 log2(KT/δ)

ε2

))

.
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Once again, proofs are given in Appendix C. We are left with the task of bounding UT and QT,ε.

Lemma 19 If (∆ j,t − ∆̂ j,t)2 ≤ θ2
j,t holds for all j ∈ [K] and t ∈ [T ], then

QT,ε = O

(

∑
K
j=1

(

log |A j,T | log(KT/δ)+ log2 |A j,T |
)

ε2

)

= O

(
K d2 log2(KT/δ)

ε2

)

.

Lemma 20 If (∆ j,t − ∆̂ j,t)2 ≤ θ2
j,t for all j ∈ [K] and t ∈ [T ], then UT = 0.

Proofs of these lemmas are also given in Appendix C. As before, these lemmas hold under the con-

dition that (∆ j,t − ∆̂ j,t)2 ≤ θ2
j,t for all t ∈ [T ] and j ∈ [K]. Again as done previously, a straightforward

union bound over Lemma 7 in Section 2 applied to each of the K teachers verifies that this condition

holds with high probability which in turn concludes the proof of Theorem 17.

Remark 21 It should be clear that a low noise analysis, akin to the one presented in Sections 2.4

and 2.5 can be attempted, once low noise conditions in the vein of Tsybakov (2004) are formulated

which take into account both the conflicting region defining Tε, and the unstable regions defining T ′
ε ,

and T ′′
ε . Rather than presenting explicit theoretical results of this sort here, we do prefer quantifying

the label saving capability implied by teacher aggregation by the nontrivial experimental results

contained in the next section.

4. Experiments in the Multiple Teacher Setting

We report on the results of an empirical study carried out on a medium-size real-world data set. The

goal of our experiments is to validate the theory and to quantify the effectiveness of our multiple

teacher query selection mechanism in different multiple-teacher scenarios. Due to our difficulty in

finding genuine multiple-teacher data sets of a significant size, we resorted to simulating the teachers

through learning. This also allowed us to obtain a much more controlled experimental setup.

4.1 Data Set and Tasks

Our data are taken from a subset of the learning-to-rank data set MSLR-WEB10K.7 This data set is

a collection of (anonymized) query-url pairs collected from a commercial search engine (Microsoft

Bing). Each query-url pair is represented by a feature vector and a human-generated relevance

label between 0 (irrelevant) to 4 (perfectly relevant). Each feature vector is made up of 136 real or

integer valued features.8 MSLR-WEB10K is partitioned into five subsets, named S1 through S5:

we only used S1 in our experiments. The S1 subset contains 241988 query-url pairs, with 2000

distinct queries, and about 121 urls per query (with a maximum of 809 urls and a minimum of 1

url per query). As a preprocessing step, we randomly shuffled the examples within each query and

normalized the feature vectors to unit length.

We generated a binary classification data set by assigning the binary label “-1” to all query-url

pairs with a relevance label of 0 and the binary label “+1” to all remaining pairs. This gave rise

to a data set with balanced classes (roughly, 48% positive and 52% negative). We then simulated

7. Available at http://research.microsoft.com/en-us/projects/mslr.

8. After a quick scrutiny of the semantics of the features, we decided to drop features 126 through 131. Hence, we

ended up with 130 usable features.
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four different multiple-teacher scenarios, distinguished by the number of teachers involved (“few”

or “many”) and the amount of overlap between expertise regions (“nonoverlapping teachers” vs.

“overlapping teachers”).

This binary classification data set simply provides a binary label per example, and does not spec-

ify the identity of the teacher that provided that label. We simulated multiple teachers as follows:

we grouped queries together in various ways (see below) and trained a linear classifier using half of

the urls associated with each query in the group. The training was done using a single random-order

pass of a full-information second-order Perceptron algorithm (Cesa-Bianchi et al., 2005a). The re-

sult is a linear classifier per query-group: we view each of these linear classifiers as a teacher. The

specific subset of training queries in each group determines the expertise region of the respective

teacher. The 119507 query-url pairs that were not used to simulate the teachers were later used to

test our algorithm.

We defined the query groups in four different ways, to simulate four different multiple-teacher

scenarios.

• Few nonoverlapping teachers. We generated 5 teachers by partitioning the 2000 queries

into 5 sets (the first teacher is defined by (half of) the first 400 queries, the second teacher by

(half of) the second 400 queries, and so on). Hence each teacher has acquired expertise in the

subset of 400 queries seen during training.

• Few overlapping teachers. We generated 5 teachers by defining 5 overlapping sets of

queries. Specifically, the first 500 queries are common to all teachers, and the remaining

1500 queries are partitioned equally among the teachers. Hence, each teacher is trained on

examples from 800 queries.

• Many nonoverlapping teachers. We generated 100 teachers by partitioning the queries into

100 disjoint sets, each containing 20 queries. The resulting teachers turned out to be quite

unreliable; some of them gave labels that were not far from random guessing at test time.

• Many overlapping teachers. We generated 100 teachers with partially overlapping exper-

tise. All teachers share the first 100 queries, and the remaining 1900 queries are partitioned

equally. Hence, each teacher is trained on examples from 100+19 = 119 queries.

Due to the variance introduced by the randomized training/test splits and the random order in which

training examples were presented to the second-order Perceptron, we repeated the above process 10

times per scenario and averaged the results.

The reader should observe that the way we generated teachers makes our results comparable

even across scenarios. In fact, despite the actual training/test split differs over scenarios, in all four

scenarios and for all 2000 queries, half the urls (and associated labels) are used for training and half

are used for test. So, in a sense, the set of teachers we generated in all scenarios collectively encode

the same amount of information. That is, the data used for training the teachers are of the same size

and query mixture across scenarios.

4.2 Algorithm and Baselines

On any given scenario, a teacher is then just a linear-threshold function. We generated teachers’

opinions on the test set just by evaluating such functions on the test set instances. Table 1 gives
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SCENARIO BEST WORST AVG STDDEV

FEW NONOVERLAPPING TEACHERS 19.9% 31.7% 24.9% 4.6%
FEW OVERLAPPING TEACHERS 20.5% 29.6% 24.5% 3.6%
MANY NONOVERLAPPING TEACHERS 16.3% 54.8% 25.5% 7.4%
MANY OVERLAPPING TEACHERS 17.0% 42.3% 24.5% 5.1%

Table 1: Performance (test set mistake rate) of the generated teachers in the four simulated scenar-

ios. Results are averaged over 10 repetitions. “best”, “worst”, and “avg” are the (average)

mistake rate of the best, worst and average performing teacher, respectively. “stddev” is the

standard deviation of the mistake rates, and gives an idea of the difference in performance

across teachers (not across repetitions).

relevant statistics about the teachers’ performance on the test set (notice that such figures can only be

computed after knowing the true labels on the test set—this information was never made available

to the multiple teacher algorithm). As expected, best and worst teachers are farther apart in the

nonoverlapping scenarios (correspondingly, ”stddev” figures are larger), with a larger variability in

the many teacher settings. Moreover, throughout the 10 repetitions, it often happened that among the

many poorly trained classifiers (as are those produced within the “many nonoverlapping” setting), a

few of them turned out to be significantly accurate on the test set. Likewise, some of them happened

to be even worse than random guessing.

After simulating the teachers, we implemented a simplified version of our second-version mul-

tiple teacher algorithm (Algorithm 3), where the thresholds θ2
j,t are simplified to

θ2
j,t = αx&t A−1

j,t−1xt log(1+ t), (12)

and α > 0 is a tunable parameter (independent of j and t). Hence our algorithm now has two param-

eters: τ ∈ [0,1] and α > 0. The reason for this simplified θ j,t is that the actual expression for θ j,t ,

as it appears in Algorithm 3, is the one suggested by the theory after significant mathematical over-

approximations (large deviations, Hölder’s inequality, etc.). This suggests that the exact expression

for θ j,t given in the pseudocode may be too conservative to work well in practice. In any event, ob-

serve that the factor α log(1+ t) in (12) is a good proxy for the factor 1+4∑
t−1
i=1 Ziri +36log(Kt/δ)

in the algorithm’s pseudocode, once we let α range over the positive reals.

The following three baselines were used in our comparative study.

• BEST TEACHER in hindsight on the test set. This is the predictor that would be learned on-the-

fly by a standard expert algorithm (e.g., Weighted Majority—see Littlestone and Warmuth,

1994; Cesa-Bianchi and Lugosi, 2006), where teachers are experts, and the algorithm has at

its disposal both the true labels of the test set and the prediction of all teachers. Recall that the

true labels of the test set are not available to our algorithm. Because this algorithm is expected

to make at least as many mistakes as the best expert, the “best” column in Table 1 delivers

optimistic approximations to the actual performance of this algorithm in the four scenarios.

The associated number of queries made to the teachers is the largest possible, that is, the

size of the test set (119507) times the number of teachers (119507×5 in the “few teacher”

scenarios, and 119507×100 in the “many teacher” scenarios).
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SCENARIO BEST TEACH. FLAT MAJORITY FULL-INFO ALG. 3

FEW NONOVERLAPPING TEACHERS 19.9% 16.7% 15.8%
FEW OVERLAPPING TEACHERS 20.5% 17.9% 15.8%
MANY NONOVERLAPPING TEACHERS 16.3% 15.6% 15.6%
MANY OVERLAPPING TEACHERS 17.0% 15.7% 15.7%

Table 2: Performance (test set mistake rate) of the three tested baselines in the four simulated sce-

narios. Results are averaged over 10 repetitions. The “Best Teacher” figures are taken

from Table 1.

• FLAT MAJORITY of teachers. This algorithm asks all teachers and predicts with their flat

majority.9 Like the BEST TEACHER baseline, this algorithm queries all of the teachers all the

time. Unlike BEST TEACHER, this algorithm does not receive any feedback on the true labels

of the test set.

• FULL-INFORMATION version of our second-version Algorithm (Algorithm (3)). This is our

algorithm with θ2
j,t fixed to the value ∞ for all j and t. Since θ2

j,t = ∞ implies Zt = 1 and

Ĉt = [K] for all t (thereby making τ immaterial), this algorithm predicts by aggregating all

teachers via a margin-based majority and, as before, querying all labels from all teachers.

Again, no ground-truth feedback is given. Hence, this baseline is just a weighted version of

FLAT MAJORITY, where the weights are given by the estimated margins ∆̂ j,t computed by

Algorithm 3 operating in a “full information” mode.

4.3 Results and Comments

We measured the error rate on the test set and the average number of requested labels per example.

Figure 1 shows test error rate as a function of the per-teacher query rate (i.e., the average fraction

of times we query the teachers). The figure displays the test error rate of our algorithm compared

to the three baselines mentioned above, in each of the four scenarios, with τ = 0.3 and different

values of α in [0.01,10]. Very similar plots are obtained for other values of τ.10 Increasing α causes

a steady increase in the (average) per-teacher query rate, but surprisingly enough, has a negligible

effect on test error rate across most of its range (hence the flattish plots in Figure 1). In particular, a

query rate of about 1% is already sufficient to get very close to the smallest test error rate achieved

by the algorithm. As for comparison to the baselines, the following comments can be made.

• Our algorithm significantly outperforms all baselines in the “few teacher” scenarios, but is

about the same as the two majority baselines in the “many teacher” scenarios. Notice, how-

ever, that this comparison is unfairly penalizing our algorithm in that the baselines do achieve

their results by asking all of the teachers all of the time. Moreover, it is worth stressing that

9. Alternatively, this algorithm picks a teacher uniformly at random and goes with its label. In our experiments, we did

not test this randomized version due to the high variance of the results, especially in the “many teacher” scenarios—

see the last two rows in Table 1.

10. For instance, in the “few nonoverlapping” setting, when τ = 0.0 and α ranges over [0.01,10] the test error rate of our

algorithm ranges between 15.5% and 15.7%; when τ = 0.7 the test error ranges between 15.6% and 15.7%. In the

“many overlapping” setting, when τ = 0.0 and α ∈ [0.01,10] we obtain a test error between 15.6% and 15.9%; When

τ = 0.7, the range is between 15.4% and 15.5%.
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Figure 1: Average per-teacher query rate vs. test error rates in the four scenarios. Results are

averaged over 10 repetitions. The query rate of the multiple selective sampler - second

version (“Our alg.”) is obtained by setting τ = 0.3, and letting α in (12) vary across the

range [0.01,10]. In any given scenario, the per-teacher query rate of our algorithm is

the average fraction of labels requested to the teachers out of the total number of labels

available in that scenario. For instance, an average per-teacher query rate of 10% achieved

in a few teacher scenario means that, averaged over the 10 repetitions, the total no. of

queries made to the five teachers was 119507×5×10% = 59753.5. Hence, each of the 5

teachers received on average 11950.7 queries. The test error rates of the three baselines

are taken from Table 2, and are plotted (as horizontal lines) just for reference.

though our plots display average rates over repetitions (i.e., over train/test splits), the above

comparative behavior did consistently occur in every single repetition.

• We found somewhat surprising that FULL-INFO does not improve on FLAT MAJORITY.

Moreover, since FULL-INFO can be obtained by our algorithm, just by setting α = ∞ in (12),

we see that more teacher labels can even be detrimental. This phenomenon is statistically

significant only in the “few teacher” scenarios.

• The more teachers we have at our disposal, the more beneficial is the process of averaging

over them. Notably, in our data set, many unreliable (but nonoverlapped) teachers queried all

the times and aggregated by a flat average (aka FLAT MAJORITY) is about as good in terms
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of accuracy as running more sophisticated weighted averages. Still, our experiments show

that there is no need to query all of the teachers in order to achieve this accuracy.

• Aggregating opinions of teachers with a good amount of overlapping expertise (as in the two

“overlapping teacher” settings), might be detrimental, as evinced by comparing the first row

in Table 2 to the second one, and the third to the fourth one. Similar conclusions are suggested

by the behavior of our algorithm as presented in Figure 1.

Finally, we make a few comments on the role of the parameter τ in our algorithm. As mentioned

above, we observed that the value of τ does not have a significant influence on the algorithm’s test

error rate or label query rate. In a sense, this is a lucky circumstance, since we initially expected

the tuning of τ to be a nontrivial task.11 The value of τ does however play an important role in

the “degree of aggregation” of teachers: When Zt = 1, setting τ close to 0 makes the algorithm

query only the (estimated) most confident teacher at time t, whereas setting τ close to 1 causes the

algorithm to query all teachers. For instance, in the “many nonoverlapping teachers” scenario, if

τ = 0.3 (as in the plot in Figure 1 (d)), and α = 0.1, the most queried teacher receives 5440 queries

(out of 119507), and the least queried teacher receives 3319. In the same scenario with τ = 0.0 and

the same value of α, the most queried teacher receives 10849 queries while the least queried teacher

gets only 1050. Hence, our algorithm exhibits a desirable fine-grained selection capability of the

subsets of teachers to query, thereby making it significantly different from the all-or-none strategy

followed by the first version of our algorithm (Algorithm 2), which we do not expect to work as

well in practice.

5. Conclusions and Open Questions

We introduced a new algorithm in the online selective sampling framework, where instances are

chosen by an adaptive adversary and labels are sampled from a linear stochastic model. We gave

sharp bounds on the regret and on the number of queries made by this algorithm, improving over

previous algorithms and closing some important open questions on this topic. The same machinery

can also be used to build efficient active learning algorithms working under standard statistical as-

sumptions. We then lifted the above to the more involved setting where multiple unreliable teachers

are available. We presented two algorithms and corresponding analyses. We concluded with a pre-

liminary empirical study that demonstrates how the second version of our algorithm outperforms

various intuitive baselines, both in terms of accuracy and total number of queries.

We leave some open problems for future research: The bound on NT in Theorem 2 is tight

w.r.t. ε (see the lower bound by Cesa-Bianchi et al., 2009), but need not be tight w.r.t. d. This

might be due to the way we constructed our martingale argument to prove Lemma 7. Resolving this

issue remains an open problem. Second, it would be interesting to generalize our results to other

stochastic label models, such as logistic models, and to understand how closely each model matches

the true behavior of human teachers. Third, the bounds in the multiple teacher setting (Theorems

12 and 17) are likely to be suboptimal, and might perhaps be improved by exploiting the interaction

structure among teachers. Fourth, it would be interesting to extend our work to a setting where

different teachers charge different rates. For example, one could imagine a setting where the cost

of each label depends on each teacher’s confidence in his own answer. This setting is closer to the

11. Consider that the absence of ground-truth feedback makes standard cross-validation techniques somewhat problem-

atic.
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proactive learning setting (Donmez and Carbonell, 2008; Yang and Carbonell, 2009a,b). These and

other open problems provide many opportunities for interesting future research on this topic.
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Appendix A.

This appendix contains the large deviation inequalities we use throughout the paper.

Lemma 22 (Kakade and Tewari, 2008)

Suppose X1,X2, ...,XT is a martingale difference sequence with |Xt | ≤ b. Let Vart(Xt) =
Var(Xt |X1, ...,Xt−1), and V = ∑

T
t=1 Vart(Xt). Then for any δ < 1/e and T ≥ 3, we have

P

(
T

∑
t=1

Xt > max
{
√

4V log
4logT

δ
,3b log

4logT

δ

}
)

≤ δ.

Lemma 23 With the notation introduced in Section 2, define

µt =
t

∑
i=1

Zi(∆i − ∆̂′
i)

2, Σt =
t

∑
i=1

Zi

(

(yi − ∆̂′
i)

2 − (yi −∆i)
2
)

.

Assume that Selective Sampler in Section 2 is run with confidence parameter δ∈ (0,1], and let t ≥ 3.

Then

(i) with probability at least 1−δ/t2 we have µt ≤ 2Σt +144log(t/δ);

(ii) with probability at least 1−δ/t2 we have − 1
2 Σt ≤ 36log(t/δ).

Proof Set Mi = Zi (∆i − yi)(∆i − ∆̂′
i), and observe that Mi can be rewritten as

Mi =
1

2
Zi

(

(∆i − ∆̂′
i)

2 −
(

(yi − ∆̂′
i)

2 − (yi −∆i)
2
))

,

which implies 1
2 (µt −Σt) = ∑

t
t=1 Mi. Now, M1, ...,Mt is a martingale difference sequence w.r.t. his-

tory and current xi. This is because Ei [Mi] = Zi (∆i −Ei [yi])(∆i − ∆̂′
i) = 0 . Since |∆t |, |∆̂t |≤ 1, we

also have that |Mi|≤ 4. Let Vari(·) denote the conditional variance Var(· |x1, . . . ,xi−1,xi,y1, . . . ,yi−1).
Observing that

Vari(Mi) = Zi (∆i − ∆̂′
i)

2Vari

(

(∆i − yi)
2
)

≤
4

3
Zi(∆i − ∆̂′

i)
2

holds, an application of Lemma 22 yields

1

2
(µt −Σt)≤ max

{√

6 µt log

(
4t2 log t

δ

)

,12log

(
4t2 log t

δ

)
}

. (13)
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We now use the inequality
√

ab ≤ a+b
2 to (13) with a = µt/2 and b = 12log

(
4t2 log t

δ

)

. This implies

1

2
(µt −Σt)≤ µt/4+12log

(
4t2 log t

δ

)

which in turn implies (i). To prove (ii), we again apply
√

ab ≤ a+b
2 to (13), this time with a = µt and

b = 6log
(

4t2 log t
δ

)

.

Appendix B.

Most of the steps in the proofs of these lemmas appear in the papers by Azoury and Warmuth (2001)

and Cesa-Bianchi et al. (2005a). The proofs are provided here for completeness.

Lemma 24 With the notation introduced in Section 2, we have that for each t = 1,2, . . . the follow-

ing inequalities hold :

(i) x&At−1xt ≤ 2rt ;

(ii) Ztrt ≤ log
|At |
|At−1| ;

(iii) ∑
t
i=1 Ziri ≤ log |At |≤ d log(1+Nt) = O(d log t).

Proof To prove (i), note that on the rounds we do not query, At = At−1 and so rt = x&t A−1
t−1xt . On

the rounds we do query, At = At−1 +xtx
&
t , and so by the matrix inversion formula

A−1
t = A−1

t−1 −
A−1

t−1xtx
&
t A−1

t−1

1+x&t A−1
t−1xt

we see that

rt = x&t A−1
t−1xt −

(x&t At−1xt)2

1+x&t A−1
t−1xt

.

This automatically gives us that rt ≤ x&t A−1
t−1xt . Further since x&t A−1

t−1xt ≤ 1, we can conclude that

rt ≥ 1
2 x&t A−1

t−1xt . Hence we conclude that for any t, rt ≤ x&At−1xt ≤ 2rt .

Now to prove (ii), note that since whenever we query, At = At−1 + xtx
&
t , using the identity,

x&t (At−1 +xtx
&
t )

−1xt = 1− |At |
|At−1| and the fact that 1− x ≤ log(x), we see that

rt ≤ log
|At |
|At−1|

.

To get (iii), we sum up and resolve the telescoping sum as

t

∑
i=1

Ziri ≤
t

∑
i=1

Zi log
|Ai|
|Ai−1|

= log |At |≤ d log(1+Nt) = O(d log t) .
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Lemma 25 With the notation introduced in Section 2, the following holds for any u : ||u||≤ 1:

(i) If t is such that Zt = 1 we have

1

2

(

(yt −w′
t−1

&
xt)

2 − (yt −u&xt)
2
)

= dt−1(u,w
′
t−1)−dt(u,wt)+dt(w

′
t−1,wt) ;

(ii) If t is such that Zt = 1 we have dt(w′
t−1,wt)≤ 2rt ;

(iii) If t is such that Zt = 1 we have dt(u,w′
t)≤ dt(u,wt) ;

(iv) For any t = 1,2, ..., we have

Zt

2

(

(yt −w′
t−1

&
xt)

2 − (yt −u&xt)
2
)

≤ Zt

(

dt−1(u,w
′
t−1)−dt(u,w

′
t)
)

+2log
|At |
|At−1|

.

Proof To prove (i), define αt := dt−1(u,w′
t−1)−dt(u,wt)+dt(w′

t−1,wt). Using the definition of dt ,

we have that

αt =
1

2
u&(At−1 −At)u+u&(Atwt −At−1w′

t−1)+
1

2
w′

t−1(At−1 +At)w
′
t−1 −w′

t−1Atwt .

Using the recursive definition At = At−1 +xtx
&
t and rearranging terms in the right-hand side above,

we get

αt =
1

2

(

(w′
t−1)

&xtx
&
t w′

t−1 −u&xtx
&
t u
)

+(u&−w′
t−1)(Atwt −At−1w′

t−1)

=
1

2

(

(w′
t−1

&
xt)

2 − (u&xt)
2
)

+(u&−w′
t−1)(Atwt −At−1w′

t−1) .

By definition, Atwt = At−1w′
t−1 + ytxt . Plugging this equality into the equation above gives

αt =
1

2

(

(w′
t−1

&
xt)

2 − (u&xt)
2
)

+ yt(u
&−w′

t−1)xt

=
1

2

(

(yt −w′
t−1

&
xt)

2 − (yt −u&xt)
2
)

,

thereby proving (i).

To prove (ii), we rewrite dt(w′
t−1,wt) as

dt(w
′
t−1,wt) =

1

2
(w′

t−1 −wt)
&At(w

′
t−1 −wt)

=
1

2
(Atw

′
t−1 −Atwt)

&A−1
t (Atw

′
t−1 −Atwt) .

Using Atwt = At−1w′
t−1 + ytxt , the above becomes

dt(w
′
t−1,wt) =

1

2

(

(At −At−1)w
′
t−1 − ytxt

)&
A−1

t

(

(At −At−1)w
′
t−1 − ytxt

)

.
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Using At = At−1 +xtx
&
t , we have

dt(w
′
t−1,wt) =

1

2

(

xtx
&
t w′

t−1 − ytxt

)

A−1
t

(

xtx
&
t w′

t−1 − ytxt

)

=
(w′

t−1
&

xt − yt)2

2
x&t A−1

t xt

=
(w′

t−1
&

xt − yt)2

2
rt

=
(∆̂′

t − yt)2

2
rt

≤ 2rt ,

where the last step uses |∆̂′
t |≤ 1

To prove (iii) we observe that, w′
t , as defined in Algorithm 1, is the projection of wt onto the

convex set Ct = {w : |w&xt | ≤ 1} w.r.t. Bregman divergence dt . By the theorem of generalized

projections we have that

0 ≤ dt(w
′
t ,wt)≤ dt(u,wt)−dt(u,w

′
t) .

holds for any u ∈Ct . Since Ct includes the unit ball {u : ||u||≤ 1} the claim follows.

Finally, to prove (iv), observe that when t is such that Zt = 0 then both sides of the inequality

are 0 (since At = At−1). On the other hand, when Zt = 1 we just combine (i), (ii), (iii), and Lemma

24 (ii) to give the required inequality.

Appendix C.

Proof sketch of Theorem 9. We rely on Theorem 2, where the role of Tε is neatly handled by the

low-noise assumption combined with a standard Chernoff bound. In particular, since E [Tε]≤ cT εα,

we can easily conclude that for any δ > 0, with probability at least 1− δ over sample x1, . . . ,xT

we have Tε ≤ 3c
2 T εα +O(log(1/δ)) . We optimize over ε the bounds on RT and NT contained in

Theorem 2. We obtain that, with the same probability,

RT = O

(

(d log(T/δ))
α+1
α+2 T

1
α+2 + log(1/δ)

)

, (14)

NT = O

(

(d2 log2(T/δ))
α

α+2 T
2

α+2 + log(1/δ)
)

.

Now define

Kt =
(

P′
t (yt ∆̂t < 0)−P′

t (yt ∆t < 0)
)

−
(

Pt(yt ∆̂t < 0)−Pt(yt ∆t < 0)
)

,

and note that K1, ...,KT forms a martingale difference sequence. Let E’t [·] denote the conditional ex-

pectation E[· |x1, . . . ,xt−1,y1, . . . ,yt−1] and Var′t(·) be the conditional variance
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Var(· |x1, . . . ,xt−1,y1, . . . ,yt−1).12 We have

Var′t [Kt ] = E’t

[

K2
t

]

≤ 2
((

P′
t (yt ∆̂t < 0)−P′

t (yt ∆t < 0)
))2

+2 E’t

[
(

Pt(yt ∆̂t < 0)−Pt(yt ∆t < 0)
)2
]

(using (a−b)2 ≤ 2a2 +2b2)

≤ 2
(

P′
t (yt ∆̂t < 0)−P′

t (yt ∆t < 0)
)

+2 E’t

[

Pt(yt ∆̂t < 0)−Pt(yt ∆t < 0)
]

(using P′
t (yt ∆̂t < 0)≥ P′

t (yt ∆t < 0) and Pt(yt ∆̂t < 0)≥ Pt(yt ∆t < 0) )

= 4
(

P′
t (yt ∆̂t < 0)−P′

t (yt ∆t < 0)
)

.

Following Lemma 22 and overapproximating we have that, with probability at least 1−δ,

T

∑
t=1

(

P′
t (yt ∆̂t < 0)−P′

t (yt ∆t < 0)
)

≤ 2 RT +O

(

log

(
logT

δ

))

= O

(

(d log(T/δ))
α+1
α+2 T

1
α+2 + log

(
logT

δ

))

,

the last equality deriving from (14). Dividing by T concludes the proof.

Proof of Lemma 13. We upper bound each of the summands in Equation (8) individually. We begin

as in Equation (3) in the proof of Lemma 3. This gives us

Pt(y∆̂t < 0)−Pt(y∆t < 0) ≤ ε 11
{

∆t ∆̂t < 0, |∆t |≤ ε
}

+ 11
{

∆t ∆̂t < 0, |∆t |> ε
}

|∆t | . (15)

The first term on the right-hand side above is simply upper bounded by ε 11
{

|∆t |≤ ε
}

. To upper

bound the second term, we recall that |∆t |≤ 1 and bound 11
{

∆t ∆̂t < 0, |∆t |> ε
}

by

11
{

∆t ∆̂t < 0, |∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t |≤ ε
}

+ 11
{

∆t ∆̂t < 0, |∆t |> ε
}

11
{

∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε
}

≤ 11
{

|∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t |≤ ε
}

+ 11
{

∆t ∆̂t < 0
}

11
{

∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε
}

≤ 11
{

|∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t |≤ ε
}

+ Z̄t 11
{

∆t ∆̂t < 0
}

+Zt 11
{

∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε
}

. (16)

We plug Equation (16) into the right-hand side of Equation (15) to obtain the desired upper-bound

on Pt(y∆̂t < 0)−Pt(y∆t < 0). Summing over t completes the proof.

Proof of Lemma 14. It is straightforward to verify that

Zt = Zt 11
{

|∆t |≤ ε
}

+Zt 11
{

|∆t |> ε
}

≤ Zt 11
{

|∆t |≤ ε
}

+ Zt 11
{

|∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t |≤ ε
}

+Zt 11
{

|∆t |> ε
}

11
{

∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε
}

≤ 11
{

|∆t |≤ ε
}

+ 11
{

|∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t |≤ ε
}

+Zt 11
{

∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε
}

.

12. Notice the difference between the conditional expectation and conditional variance used here and those used in the

proof of Lemma 23.
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Summing over t proves the bound.

Proof of Lemma 15. First, note that, by the way Algorithm 2 is defined,

Zt = 11
{

∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t
< 0 ∨ |∆̂S∪Ĥt , t

|≤ θt

}

= 11
{

∃S ⊆ B̂t : |∆̂S∪Ĥt , t
|≤ θt

}

+ 11
{

∀S ⊆ B̂t : |∆̂S∪Ĥt , t
|> θt

}

11
{

∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t
< 0
}

≤ 11
{

∃S ⊆ B̂t : |∆̂S∪Ĥt , t
|≤ θt

}

+ 11
{

|∆̂t |> θt

}

11
{

∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t
< 0, |∆̂S∪Ĥt , t

|> θt

}

.

We focus on the second term on the right-hand side above. Using the assumption that |∆ j,t − ∆̂ j,t |≤
θt for all j ∈ [K] together with Jensen’s inequality, we have that |∆̂t −∆Ĉt , t

| ≤ θt and |∆̂S∪Ĥt , t
−

∆S∪Ĥt , t
|≤ θt for any S. Now, if S is such that ∆̂t ∆̂S∪Ĥt , t

< 0, |∆̂S∪Ĥt , t
|> θt , and |∆̂t |> θt , then it also

holds that ∆Ĉt , t
∆S∪Ĥt , t

< 0. Moreover, if there exists S ⊆ B̂t such that ∆Ĉt , t
∆S∪Ĥt , t

< 0 then either

∆t∆S∪Ĥt , t
< 0 or ∆t∆Ĉt , t

< 0. Since Ĉt = Ĥt ∪ B̂t we have that

11
{

∃S ⊆ B̂t : ∆Ĉt , t
∆S∪Ĥt , t

< 0
}

≤ 11
{

∃S ⊆ B̂t : ∆t∆S∪Ĥt , t
< 0
}

.

Putting together, we can write

Zt ≤ 11
{

∃S ⊆ B̂t : |∆̂S∪Ĥt , t
|≤ θt

}

+ 11
{

∃S ⊆ B̂t : ∆t∆S∪Ĥt , t
< 0
}

.

Using the above, we can decompose Zt as follows

Zt = Zt 11
{

4θt > ε
}

+Zt 11
{

4θt ≤ ε
}

≤ Zt 11
{

4θt > ε
}

+ 11
{

∃S ⊆ B̂t : |∆̂S∪Ĥt , t
|≤ θt

}

11
{

4θt ≤ ε
}

+ 11
{

∃S ⊆ B̂t : ∆t∆S∪Ĥt , t
< 0
}

11
{

4θt ≤ ε
}

. (17)

Next, we show that B̂t can be replaced with Bt in the equation above. To do so, we use the fact that

B̂t appears only in terms that are multiplied by 11
{

4θt ≤ ε
}

. Using the definition of B̂t , the fact that

|∆̂ j!t ,t | ≤ |∆̂ ĵt ,t
| and |∆ ĵt ,t

| ≤ |∆ j!t ,t |, together with the assumption |∆ j,t − ∆̂ j,t | ≤ θ for all j ∈ [K] we

get

B̂t ⊆ {i : |∆ j!t ,t |− τ−4θt ≤ |∆i,t | ≤ |∆ j!t ,t |− τ+4θt} .

If 4θt ≤ ε then the right-hand side above is a subset of Bε,t , and therefore, under this condition,

B̂t ⊆ Bε,t . We conclude that B̂t can be replaced by Bt in Equation (17), and

Zt ≤ Zt 11
{

4θt > ε
}

+ 11
{

∃S ⊆ Bt : |∆̂S∪Ĥt , t
|≤ θt

}

11
{

4θt ≤ ε
}

+ 11
{

∃S ⊆ Bt : ∆t∆S∪Ĥt , t
< 0
}

11
{

4θt ≤ ε
}

≤ Zt 11
{

4θt > ε
}

+ 11
{

∃S ⊆ Bt : |∆̂S∪Ĥt , t
|≤ ε/4

}

+ 11
{

∃S ⊆ Bt : ∆t∆S∪Ĥt , t
< 0
}

.
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With the inequality above handy, we are now ready to upper-bound QT,ε. We have

QT,ε =
T

∑
t=1

Zt 11
{

∀S ⊆ Bε,t : ∆t∆S∪Hε,t ,t ≥ 0, |∆S∪Hε,t ,t |> ε
}

≤
T

∑
t=1

Zt 11
{

4θt > ε
}

+ 11
{

∃S ⊆ Bt : |∆̂S∪Ĥt , t
|≤ ε/4

}

11
{

∀S ⊂ Bε,t : |∆S∪Hε,t ,t |> ε
}

︸ ︷︷ ︸

=0

+ 11
{

∃S ⊆ Bt : ∆t∆S∪Ĥt , t
< 0
}

11
{

∀S ⊂ Bε,t : ∆t∆S∪Hε,t ,t ≥ 0
}

︸ ︷︷ ︸

=0

≤
16

ε2

T

∑
t=1

Ztθ
2
t .

Recall that θ2
t = x&t A−1

t−1xt

(

1 + 4∑
t−1
i=1 Ziri + 36log(Kt/δ)

)

. Using Lemma 24 (i), we obtain

QT,ε ≤ 32
ε2 ∑

T
t=1 Ztrt

(

1+ 4∑
t−1
i=1 Ziri + 36log(Kt/δ)

)

. The conclusion of the proof follows along

the lines of the proof of Lemma 6.

Proof of Lemma 16. We first prove that Ĥt ⊆Ct ⊆ Ĉt . If j ∈Ct , then |∆ j,t |≥ |∆ j!t ,t |−τ ≥ |∆ ĵt ,t
|−τ.

Using the assumption that |∆ j,t − ∆̂ j,t |≤ θt and |∆ ĵt ,t
− ∆̂ ĵt ,t

|≤ θt , we have that |∆̂ j,t |≥ |∆̂ ĵt ,t
|− τ−

2θt , and therefore j ∈ Ĉt . Similarly, if j ∈ Ĥt , then |∆̂ j,t |≥ |∆̂ ĵt ,t
|−τ+2θt ≥ |∆̂ j!t ,t |−τ+2θt . Using

the assumption that |∆ j,t − ∆̂ j,t |≤ θt and |∆ j!t ,t − ∆̂ j!t ,t |≤ θt , we get |∆ j,t |≥ |∆ j!t ,t |− τ, and therefore

j ∈Ct .

Now assume that Zt = 0. By definition, ∆̂t ∆̂S∪Ĥt ,t
≥ 0 and |∆̂S∪Ĥt ,t

| > θ for all S ⊆ B̂t , and

particularly for S =Ct \ Ĥt . Namely, ∆̂t ∆̂Ct ,t ≥ 0 and |∆̂Ct ,t | > θt . Once again using the assumption

of the lemma, this time in conjunction with Jensen’s inequality, we get that (∆t − ∆̂Ct ,t)
2 ≤ θ2

t , which

implies ∆t ∆̂Ct ,t ≥ 1
2

(

∆̂2
Ct ,t

−θ2
t

)

. Plugging in |∆̂Ct ,t |> θt gives ∆t ∆̂Ct ,t > 0 which, combined with

∆̂t ∆̂Ct ,t ≥ 0 gives ∆t ∆̂t ≥ 0. Overall we have shown that Zt = 0 implies that ∆t ∆̂t ≥ 0. Therefore,

UT = ∑
T
t=1 Z̄t 11

{

∆t ∆̂t < 0
}

= 0 .
Proof of Lemma 19. First, note that, by the way Algorithm 2 is defined,

Zt = 11
{

∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t
< 0 ∨ |∆̂S∪Ĥt , t

|≤ θS∪Ĥt , t

}

= 11
{

∃S ⊆ B̂t : |∆̂S∪Ĥt , t
|≤ θS∪Ĥt , t

}

+ 11
{

∀S ⊆ B̂t : |∆̂S∪Ĥt , t
|> θS∪Ĥt , t

}

11
{

∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t
< 0
}

≤ 11
{

∃S ⊆ B̂t : |∆̂S∪Ĥt , t
|≤ θS∪Ĥt , t

}

+ 11
{

|∆̂t |> θĈt ,t

}

11
{

∃S ⊆ B̂t : ∆̂t ∆̂S∪Ĥt , t
< 0, |∆̂S∪Ĥt , t

|> θS∪Ĥt , t

}

.

We focus on the second term on the right-hand side above. Using the assumption that |∆ j,t −
∆̂ j,t | ≤ θ j,t for all j ∈ [K] together with Jensen’s inequality, we have that |∆̂t −∆Ĉt , t

| ≤ θĈt ,t
and

|∆̂S∪Ĥt , t
−∆S∪Ĥt , t

| ≤ θS∪Ĥt , t
for any S. Now, if S is such that ∆̂t ∆̂S∪Ĥt , t

< 0, |∆̂S∪Ĥt , t
| > θS∪Ĥt , t

,

and |∆̂t | > θĈt ,t
, then it also holds that ∆Ĉt , t

∆S∪Ĥt , t
< 0. Moreover, if there exists S ⊆ B̂t such that

∆Ĉt , t
∆S∪Ĥt , t

< 0 then either ∆t∆S∪Ĥt , t
< 0 or ∆t∆Ĉt , t

< 0. Since Ĉt = Ĥt ∪ B̂t we have that

11
{

∃S ⊆ B̂t : ∆Ĉt , t
∆S∪Ĥt , t

< 0
}

≤ 11
{

∃S ⊆ B̂t : ∆t∆S∪Ĥt , t
< 0
}

.
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Putting together, we can write

Zt ≤ 11
{

∃S ⊆ B̂t : |∆̂S∪Ĥt , t
|≤ θS∪Ĥt , t

}

+ 11
{

∃S ⊆ B̂t : ∆t∆S∪Ĥt , t
< 0
}

.

Using the above, we can decompose Zt as follows

Zt = Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

+Zt 11
{

4max
j∈Ĉt

θ j,t ≤ ε
}

≤ Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

+ 11
{

∃S ⊆ B̂t : |∆̂S∪Ĥt , t
|≤ θS∪Ĥt , t

}

11
{

4max
j∈Ĉt

θ j,t ≤ ε
}

+ 11
{

∃S ⊆ B̂t : ∆t∆S∪Ĥt , t
< 0
}

11
{

4max
j∈Ĉt

θ j,t ≤ ε
}

≤ Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

+ 11
{

∃S ⊆ B̂t : |∆̂S∪Ĥt , t
|≤ ε/4

}

11
{

4max
j∈Ĉt

θ j,t ≤ ε
}

+ 11
{

∃S ⊆ B̂t : ∆t∆S∪Ĥt , t
< 0
}

11
{

4max
j∈Ĉt

θ j,t ≤ ε
}

. (18)

where the last step is because max j∈Ĉt
θ j,t ≥ θS∪Ĥt , t

. Next, we show that B̂t can be replaced with Bt

in the equation above. To do so, we use the fact that B̂t appears only in terms that are multiplied

by 11
{

4max j∈Ĉt
θ j,t ≤ ε

}

. Using the definition of B̂t , the fact that |∆̂ j!t ,t |≤ |∆̂ ĵt ,t
| and |∆ ĵt ,t

|≤ |∆ j!t ,t |,
together with the assumption |∆ j,t − ∆̂ j,t |≤ θ j,t for all j ∈ [K] we get

B̂t ⊆

{

i : |∆ j!t ,t |− τ−4max
j∈Ĉt

θ j,t ≤ |∆i,t | ≤ |∆ j!t ,t |− τ+4θĈt ,t

}

.

Hence, when 4max j∈Ĉt
θ j,t ≤ ε we are guaranteed that the right-hand side above is a subset of

Bε,t , and therefore, under this condition, B̂t ⊆ Bε,t . We conclude that B̂t can be replaced by Bε,t in

Equation (18), and so Zt is upper bounded by

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

+ 11
{

∃S ⊆ Bε,t : |∆̂S∪Ĥt , t
|≤ ε/4

}

+ 11
{

∃S ⊆ Bε,t : ∆t∆S∪Ĥt , t
< 0
}

.
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With the inequality above handy, we are now ready to upper-bound QT,ε. We have

QT,ε =
T

∑
t=1

Zt 11
{

∀S ⊆ Bε,t : ∆t∆S∪Hε,t ,t ≥ 0, |∆S∪Hε,t ,t |> ε
}

≤
T

∑
t=1

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

+ 11
{

∃S ⊆ Bε,t : |∆̂S∪Ĥt , t
|≤ ε/4

}

11
{

∀S ⊂ Bε,t : |∆S∪Hε,t ,t |> ε
}

︸ ︷︷ ︸

=0

+ 11
{

∃S ⊆ Bε,t : ∆t∆S∪Ĥt , t
< 0
}

11
{

∀S ⊂ Bε,t : ∆t∆S∪Hε,t ,t ≥ 0
}

︸ ︷︷ ︸

=0

≤
16

ε2

T

∑
t=1

Zt max
j∈Ĉt

θ2
j,t

≤
16∑

T
t=1 Zt ∑ j∈Ĉt

θ2
j,t

ε2

=
16∑ j∈[K] ∑

T
t=1 Zt 11

{

j ∈ Ĉt

}

θ2
j,t

ε2

=
16∑ j∈[K] ∑

T
t=1 Zt 11

{

j ∈ Ĉt

}

x&t A−1
j,t−1xt

(

1+4∑
t−1
i=1 Zir j,i +36log(Kt/δ)

)

ε2

=
16∑ j∈[K] ∑

T
t=1 Ztr j,t

(

1+4∑
t−1
i=1 Zir j,i +36log(Kt/δ)

)

ε2
.

Now, proceeding along the same lines as in the proof of Lemma 6 (which in turn mainly relies on

Lemma 24) we conclude that,

QT,ε ≤
16∑ j∈[K]

(

(1+36log(KT/δ)) log |A j,T |+4log2 |A j,T |
)

ε2
= O

(
Kd2 log2(KT/δ)

ε2

)

.

This concludes the proof.

Proof of Lemma 20. The proof proceeds in the same way as the proof of Lemma 16. We first

prove that Ĥt ⊆ Ct ⊆ Ĉt . If j ∈ Ct , then |∆ j,t | ≥ |∆ j!t ,t |− τ ≥ |∆ ĵt ,t
|− τ. Using the assumption that

|∆ j,t − ∆̂ j,t |≤ θ j,t and |∆ ĵt ,t
− ∆̂ ĵt ,t

|≤ θ ĵt ,t
, we have that |∆̂ j,t |≥ |∆̂ ĵt ,t

|−τ−θ j,t −θ ĵt ,t
, and therefore

j ∈ Ĉt . Similarly, if j ∈ Ĥt , then

|∆̂ j,t |≥ |∆̂ ĵt ,t
|− τ+θ j,t +max

j∈Ĉt

≥ |∆̂ j!t ,t |− τ+θ j,t +max
j∈Ĉt

.

Using the assumption that |∆ j,t − ∆̂ j,t |≤ θ j,t and |∆ j!t ,t − ∆̂ j!t ,t |≤ θ j!t ,t ≤ max j∈Ĉt
θ j,t , we get |∆ j,t |≥

|∆ j!t ,t |− τ, and therefore j ∈Ct .

Now assume that Zt = 0. By definition, ∆̂t ∆̂S∪Ĥt ,t
≥ 0 and |∆̂S∪Ĥt ,t

|> θS∪Ĥt ,t
for all S ⊆ B̂t , and

particularly for S =Ct \ Ĥt . Namely, ∆̂t ∆̂Ct ,t ≥ 0 and |∆̂Ct ,t |> θĈt ,t
. Once again using the assumption

of the lemma, this time in conjunction with Jensen’s inequality, we get that (∆t − ∆̂Ct ,t)
2 ≤ θ2

t , which

implies ∆t ∆̂Ct ,t ≥ 1
2

(

∆̂2
Ct ,t

−θ2
Ĉt ,t

)

. Plugging in |∆̂Ct ,t |> θĈt ,t
gives ∆t ∆̂Ct ,t > 0 which, combined
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with ∆̂t ∆̂Ct ,t ≥ 0, gives ∆t ∆̂t ≥ 0. Overall we have shown that Zt = 0 implies that ∆t ∆̂t ≥ 0. Therefore,

UT = ∑
T
t=1 Z̄t 11

{

∆t ∆̂t < 0
}

= 0 .
Proof of Lemma 18. We start just as in the proof of Lemma 14 and get,

Zt ≤ 11
{

|∆t |≤ ε
}

+ Zt 11
{

|∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t |≤ ε
}

+Zt 11
{

∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε
}

.

Hence,

NT =
T

∑
t=1

|Ĉt |Zt

≤
T

∑
t=1

|Ĉt | 11
{

|∆t |≤ ε
}

+
T

∑
t=1

|Ĉt |Zt 11
{

|∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t |≤ ε
}

+
T

∑
t=1

|Ĉt |Zt 11
{

∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε
}

≤ K
T

∑
t=1

11
{

|∆t |≤ ε
}

+K
T

∑
t=1

|Ĉt |
K

Zt 11
{

|∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t |≤ ε
}

+K
T

∑
t=1

Zt 11
{

∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t |> ε
}

= KTε

+K
T

∑
t=1

|Ĉt |Zt

K 11
{

|∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0∨ |∆S∪Hε,t |≤ ε
}

+KQT,ε . (19)

Now we note that by definition of Ĉt , if j ∈ Ĉt then

|∆̂ j,t |≥ |∆̂ ĵt ,t
|− τ−θ j,t −θ ĵt ,t

≥ |∆̂ j!t ,t |− τ−θ j,t −θ ĵt ,t
.

Combined with our assumption that (∆ j,t − ∆̂ j,t)2 ≤ θ2
j,t holds for all j ∈ [K] this implies

|∆ j,t |≥ |∆ j!t ,t |− τ−2θ j,t −θ ĵt ,t
−θ j!t ,t . (20)

On the other hand, by definition of j!t , we also have |∆ j!t ,t | ≥ |∆ ĵt ,t
| and, owing to our assumption,

|∆̂ j!t ,t | ≥ |∆̂ ĵt ,t
|−θ j!t ,t −θ ĵt ,t

. Hence we see that j!t ∈ Ĉt . Using this in Equation (20) gives, for any

j ∈ Ĉt ,

|∆ j,t |≥ |∆ j!t ,t |− τ−4max
j∈Ĉt

θ j,t .

Thus we see that as long as 4max j∈Ĉt
θ j,t ≤ ε, we have Ĉt ⊂ Hε,t ∪Bε,t .
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We now use this in Equation (19). We obtain

NT ≤KTε +KQT,ε

+K

(
T

∑
t=1

|Ĉt |Zt

K 11
{

4max
j∈Ĉt

θ j,t ≤ ε
}

11
{

|∆t |> ε
}

×

× 11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0∨ |∆S∪Hε,t |≤ ε
}

)

+K

(
T

∑
t=1

|Ĉt |Zt

K 11
{

4max
j∈Ĉt

θ j,t > ε
}

11
{

|∆t |> ε
}

×

× 11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0∨ |∆S∪Hε,t |≤ ε
}

)

≤ KTε +KQT,ε

+K

(
T

∑
t=1

|Bε,t ∪Hε,t |
K

11
{

|∆t |> ε
}

11
{

∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0∨ |∆S∪Hε,t |≤ ε
}

)

+K
T

∑
t=1

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

= K

(

Tε +T ′′
ε +QT,ε +

T

∑
t=1

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

)

. (21)

In order to bound last term, we notice that

T

∑
t=1

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

≤
16∑

T
t=1 Zt max j∈Ĉt

θ2
j,t

ε2

≤
16∑

T
t=1 Zt ∑ j∈Ĉt

θ2
j,t

ε2

=
16∑ j∈[K] ∑

T
t=1 Zt 11

{

j ∈ Ĉt

}

θ2
j,t

ε2

=
16∑ j∈[K] ∑

T
t=1 Zt 11

{

j ∈ Ĉt

}

x&t A−1
j,t−1xt

(

1+4∑
t−1
i=1 Zir j,i +36log(Kt/δ)

)

ε2

=
16∑ j∈[K] ∑

T
t=1 Ztr j,t

(

1+4∑
t−1
i=1 Zir j,i +36log(Kt/δ)

)

ε2
.

Now, proceeding along the lines of the proof of Lemma 6 (which in turn mainly relies on Lemma

24), we obtain

T

∑
t=1

Zt 11
{

4max
j∈Ĉt

θ j,t > ε
}

≤
16∑ j∈[K]

(

(1+36log(KT/δ)) log |A j,T |+4log2 |A j,T |
)

ε2

= O

(
Kd2 log2(KT/δ)

ε2

)

.
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Plugging these back into Equation (21) and applying the bound on QT,ε from Lemma 19 concludes

the proof.
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Abstract

Recommendation systems are important business applications with significant economic impact.
In recent years, a large number of algorithms have been proposed for recommendation systems. In
this paper, we describe an open-source toolkit implementing many recommendation algorithms as
well as popular evaluation metrics. In contrast to other packages, our toolkit implements recent
state-of-the-art algorithms as well as most classic algorithms.

Keywords: recommender systems, collaborative filtering, evaluation metrics

1. Introduction

As the demand for personalized services in E-commerce increases, recommendation systems are
emerging as an important business application. Amazon.com, for example, provides personalized
product recommendations based on previous purchases. Other examples include music recommen-
dations in pandora.com, movie recommendations in netflix.com, and friend recommendations in
facebook.com.

A wide variety of algorithms have been proposed by the research community for recommen-
dation systems. Unlike classification where comprehensive packages are available, existing recom-
mendation systems toolkits lag behind. They concentrate on implementing traditional algorithms
rather than the rapidly evolving state-of-the-art. Implementations of modern algorithms are scat-
tered over different sources which makes it hard to have a fair and comprehensive comparison.

In this paper we describe a new toolkit PREA (Personalized Recommendation Algorithms
Toolkit), implementing a wide variety of recommendation systems algorithms. PREA offers imple-
mentation of modern state-of-the-art recommendation algorithms as well as most traditional ones.
In addition, it provides many popular evaluation methods and data sets. As a result, it can be used to
conduct fair and comprehensive comparisons between different recommendation algorithms. The
implemented evaluation routines, data sets, and the open-source nature of PREA makes it easy for
third parties to contribute additional implementations.

Not surprisingly, the performance of recommendation algorithms depends on the data charac-
teristics. (Lee et al., 2012a,b) For example, some algorithms may work better or worse depending
on the amount of missing data (sparsity), distribution of ratings, and the number of users and items.
It is likely that an algorithm may perform better on one data set and worse on another. Furthermore,
the different evaluation methods that have been proposed in the literature may have conflicting
orderings over algorithms (Gunawardana and Shani, 2009). PREA’s ability to compare different

c©2012 Joonseok Lee, Mingxuan Sun and Guy Lebanon.
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algorithms using a variety of evaluation metrics may clarify which algorithms perform better under
what circumstance.

2. Implementation

PREA is a multi-platform Java Software (version 1.6 or higher required). It is compatible with MS
Windows, Linux, and Mac OS. The toolkit consists of three groups of classes, as shown in Figure 1.
The top-level routines of the toolkit may be directly called from other programming environments
like Matlab. The top two groups implement basic data structures and recommendation algorithms.
The third group (bottom) implements evaluation metrics, statistical distributions, and other utility
functions.

Figure 1: Class Structure of PREA

2.1 Input Data File Format

As in the WEKA1 toolkit PREA accepts the data in ARFF2 (Attribute-Relation File Format). Since
virtually all recommendation systems data sets are sparse, PREA implements sparse (rather than
dense) ARFF format.

2.2 Evaluation Framework

For ease of comparison, PREA provides the following unified interface for running the different
recommendation algorithms.

• Instantiate a class instance according to the type of the recommendation algorithm.
• Build a model based on the specified algorithm and a training set.
• Given a test set, predict user ratings over unseen items.
• Given the above prediction and held-out ground truth ratings, evaluate the prediction using

various evaluation metrics.

Note that lazy learning algorithms like the constant models or memory-based algorithms may skip
the second step.

A simple train and test split is constructed by choosing a certain proportion of all ratings as test
set and assigning the remaining ratings to the train set. In addition to this, K-fold cross-validation is
also supported.

1. Official web site can be found at http://www.cs.waikato.ac.nz/˜ml/weka/.

2. Full description about ARFF can be found at http://www.cs.waikato.ac.nz/˜ml/weka/arff.html.
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2.3 Data Structures

PREA uses a sparse matrix representation for the rating matrices which are generally extremely
sparse (users provide ratings for only a small subset of items). Specifically, we use Java’s data
structure HashMap to create a DataMap class and a SparseVector class. We tried some other options
including TreeMap, but we chose HashMap due to its superior performance over others. Figure 2
(left) shows an example of a sparse vector, containing data only in indices 1, 3, and 6.

We construct a SparseMatrix class using an array of SparseVector objects. To facilitate fast
access to rows and columns, both row-oriented and column-oriented arrays are kept. This design
is also useful for fast transposing of sparse matrices by interchanging rows and columns. Figure 2
(right) shows an example of sparse matrix.

Figure 2: Sparse Vector (left) and Matrix (right) Implementation

PREA also uses dense matrices in some cases. For example, dense representations are used
for low-rank matrix factorizations or other algebraic operations that do not maintain sparsity. The
dense representations are based on the matrix implementations in the Universal Java Matrix Package
(UJMP) (http://www.ujmp.org/).

2.4 Implemented Algorithms and Evaluation Metrics

PREA implements the following prediction algorithms:

• Baselines (constant, random, overall average, user average, item average): make little use of
personalized information for recommending items.

• Memory-based Neighborhood algorithms (user-based, item-based collaborative filtering and
their extensions including default vote, inverse user frequency): predict ratings of unseen
items by referring those of similar users or items.

• Matrix Factorization methods (SVD, NMF, PMF, Bayesian PMF, Non-linear PMF): build
low-rank user/item profiles by factorizing training data set with linear algebraic techniques.

• Others: recent state-of-the-art algorithms such as Fast NPCA and Rank-based collaborative
filtering.

We provide popular evaluation metrics as follows:

• Accuracy for rating predictions (RMSE, MAE, NMAE): measure how much the predictions
are similar to the actual ratings.

• Rank-based evaluation metrics (HLU, NDCG, Kendall’s Tau, and Spearman): score depend-
ing on similarity between orderings of predicted ratings and those of ground truth.
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3. Related Work

Several other open-source recommendation toolkits are available. Table 1 summarizes the imple-
mented features in these toolkits and compares them to those in PREA. Mahout,3 which incor-
porated Taste,4 provides an implementation of many memory-based algorithms. It also supports
powerful mathematical and statistical operations as it is a general-purpose machine learning toolkit.
Duine5 provides a way to combine multiple algorithms into a hybrid system and also addressed
the cold-start situation. Cofi6 implements several traditional algorithms with a simple design based
on providing wrappers for publicly available data sets. MyMedia7 is a C#-based recommendation
toolkit which supports most traditional algorithms and several evaluation metrics.

As indicated in Table 1, existing toolkits widely provide simple memory-based algorithms,
while recent state-of-the-art algorithms are often not supported. Also, these toolkits are generally
limited in their evaluation metrics (with the notable exception of MyMedia). In contrast, PREA pro-
vides a wide coverage of the the most up-to-date algorithms as well as various evaluation metrics,
facilitating a comprehensive comparison between state-of-the-art and newly proposed algorithms in
the research community.

Category Feature PREA Mahout Duine Cofi MyMedia

Baselines
Constant O O O
User/Item Average O O O O O
Random O O

Memory-based CF

User-based CF (Su and Khoshgoftaar, 2009) O O O O O
Item-based CF (Sarwar et al., 2001) O O O O O
Default Vote, Inv-User-Freq (Breese et al., 1998) O O
Slope-One (Lemire and Maclachlan, 2005) O O O

Matrix Factorization

SVD (Paterek, 2007) O O O O
NMF (Lee and Seung, 2001) O
PMF (Salakhutdinov and Mnih, 2008a) O
Bayesian PMF (Salakhutdinov and Mnih, 2008b) O
Non-linear PMF (Lawrence and Urtasun, 2009) O

Other methods
Fast NPCA (Yu et al., 2009) O
Rank-based CF (Sun et al., 2011, 2012) O

Evaluation Metric

(N)MAE O O O O O
RMSE O O O O
HLU/NDCG O O
Kendall’s Tau, Spearman O
Precision/Recall/F1 O O

Miscellaneous

Sparse Vector/Matrix O O O O O
Wrapper for other languages O O O
Item Recommender for Positive-only Data O
Release Year 2011 2005 2009 2004 2009
Language Java Java Java Java C#
License GPL LGPL LGPL GPL GPL

Table 1: Comparison of Features with other Collaborative Filtering Toolkits

4. Summary

PREA contributes to recommendation system research community and industry by (a) providing
an easy and fair comparison among most traditional recommendation algorithms, (b) supporting
state-of-the-art recommendation algorithms which have not been available on other toolkits, and (c)
implementing different evaluation criteria emphasizing different performance aspects rather than a
single evaluation measure like mean squared error.

The open-source nature of the software (available under GPL) may encourage other recommen-
dation systems experts to add their own algorithms to PREA. More documentation for developers
as well as user tutorials are available on the web (http://prea.gatech.edu).

3. Details can be found at https://cwiki.apache.org/confluence/display/MAHOUT/.

4. Details can be found at http://taste.sourceforge.net/old.html.

5. Details can be found at http://www.duineframework.org/.

6. Details can be found at http://www.nongnu.org/cofi/.

7. Details can be found at http://www.ismll.uni-hildesheim.de/mymedialite/.
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Abstract

Support vector machines (SVMs) naturally embody sparseness due to their use of hinge loss func-
tions. However, SVMs can not directly estimate conditional class probabilities. In this paper we
propose and study a family of coherence functions, which are convex and differentiable, as sur-
rogates of the hinge function. The coherence function is derived by using the maximum-entropy
principle and is characterized by a temperature parameter. It bridges the hinge function and the logit
function in logistic regression. The limit of the coherence function at zero temperature corresponds
to the hinge function, and the limit of the minimizer of its expected error is the minimizer of the
expected error of the hinge loss. We refer to the use of the coherence function in large-margin clas-
sification as “C -learning,” and we present efficient coordinate descent algorithms for the training
of regularized C -learning models.

Keywords: large-margin classifiers, hinge functions, logistic functions, coherence functions, C -
learning

1. Introduction

Large-margin classification methods have become increasingly popular since the advent of boost-

ing (Freund, 1995), support vector machines (SVM) (Vapnik, 1998) and their variants such as ψ-

learning (Shen et al., 2003). Large-margin classification methods are typically devised based on

a majorization-minimization procedure, which approximately solves an otherwise intractable opti-

mization problem defined with the 0-1 loss. For example, the conventional SVM employs a hinge

loss, the AdaBoost algorithm employs the exponential loss, and ψ-learning employs a so-called

ψ-loss, as majorizations of the 0-1 loss.

Large-margin classification methods can be unified using the tools of regularization theory; that

is, they can be expressed as the form of “loss” + “penalty” (Hastie et al., 2001). Sparseness has also

emerged as a significant theme generally associated with large-margin methods. Typical approaches

for achieving sparseness are to use either a non-differentiable penalty or a non-differentiable loss.

c©2012 Zhihua Zhang, Dehua Liu, Guang Dai and Michael I. Jordan.
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Recent developments in the former vein focus on the use of the !1 penalty (Tibshirani, 1996) or the

elastic-net penalty (a mixture of the !1 and !2 penalties) (Zou and Hastie, 2005) instead of the !2

penalty which is typically used in large-margin classification methods. As for non-differentiable

losses, the paradigm case is the hinge loss function that is used for the SVM and which leads to a

sparse expansion of the discriminant function.

Unfortunately, the conventional SVM does not directly estimate a conditional class probability.

Thus, the conventional SVM is unable to provide estimates of uncertainty in its predictions—an

important desideratum in real-world applications. Moreover, the non-differentiability of the hinge

loss also makes it difficult to extend the conventional SVM to multi-class classification problems.

Thus, one seemingly natural approach to constructing a classifier for the binary and multi-class

problems is to consider a smooth loss function, while an appropriate penalty is employed to maintain

the sparseness of the classifier. For example, regularized logistic regression models based on logit

losses (Friedman et al., 2010) are competitive with SVMs.

Of crucial concern are the statistical properties (Lin, 2002; Bartlett et al., 2006; Zhang, 2004) of

the majorization function for the original 0-1 loss function. In particular, we analyze the statistical

properties of extant majorization functions, which are built on the exponential, logit and hinge func-

tions. This analysis inspires us to propose a new majorization function, which we call a coherence

function due to a connection with statistical mechanics. We also define a loss function that we refer

to as C -loss based on the coherence function.

The C -loss is smooth and convex, and it satisfies a Fisher-consistency condition—a desirable

statistical property (Bartlett et al., 2006; Zhang, 2004). The C -loss has the advantage over the hinge

loss that it provides an estimate of the conditional class probability, and over the logit loss that one

limiting version of it is just the hinge loss. Thus, the C -loss as well as the coherence function have

several desirable properties in the context of large-margin classifiers.

In this paper we show how the coherence function can be used to develop an effective approach

to estimating the class probability of the conventional binary SVM. Platt (1999) first exploited a

sigmoid link function to map the SVM outputs into probabilities, while Sollich (2002) used loga-

rithmic scoring rules (Bernardo and Smith, 1994) to transform the hinge loss into the negative of a

conditional log-likelihood (i.e., a predictive class probability). Recently, Wang et al. (2008) devel-

oped an interval estimation method. Theoretically, Steinwart (2003) and Bartlett and Tewari (2007)

showed that the class probability can be asymptotically estimated by replacing the hinge loss with a

differentiable loss. Our approach also appeals to asymptotics to derive a method for estimating the

class probability of the conventional binary SVM.

Using the C -loss, we devise new large-margin classifiers which we refer to as C -learning. To

maintain sparseness, we use the elastic-net penalty in addition to C -learning. We in particular

propose two versions. The first version is based on reproducing kernel Hilbert spaces (RKHSs)

and it can automatically select the number of support vectors via penalization. The second version

focuses on the selection of features again via penalization. The classifiers are trained by coordinate

descent algorithms developed by Friedman et al. (2010) for generalized linear models.

The rest of this paper is organized as follows. In Section 2 we summarize the fundamental

basis of large-margin classification. Section 3 presents C -loss functions and their mathematical

properties. Section 4 gives a method for class probability estimation of the conventional SVM

outputs and Section 5 studies our C -learning algorithms. We conduct an experimental analysis in

Section 6 and conclude our work in Section 7. All proofs are deferred to the appendix.
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2. Large-Margin Classifiers

We consider a binary classification problem with a set of training data T = {xi,yi}n
1, where xi ∈

X ⊂Rd is an input vector and yi ∈ Y = {1,−1} is the corresponding class label. Our goal is to find

a decision function f (x) over a measurable function class F . Once such an f (x) is obtained, the

classification rule is y = sign( f (x)) where sign(a) = 1,0,−1 according to a > 0, a = 0 or a < 0.

Thus, we have that x is misclassified if and only if y f (x)≤ 0 (here we ignore the case that f (x) = 0).

Let η(x) = Pr(Y = 1|X = x) be the conditional probability of class 1 given x and let P(X ,Y )
be the probability distribution over X ×Y . For a measurable decision function f (x) : X → R, the

expected error at x is then defined by

Ψ( f (x)) = E(I[Y f (X)≤0]|X = x) = I[ f (x)≤0]η(x)+ I[ f (x)>0](1−η(x)),

where I[#] = 1 if # is true and 0 otherwise. The generalization error is

Ψ f = EPI[Y f (X)≤0] = EX

[

I[ f (X)≤0]η(X)+ I[ f (X)>0](1−η(X))
]

,

where the expectation EP is taken with respect to the distribution P(X ,Y ) and EX denotes the ex-

pectation over the input data X . The optimal Bayes error is Ψ̂ = EPI[Y (2η(X)−1)≤0], which is the

minimum of Ψ f with respect to measurable functions f .

A classifier is a classification algorithm which finds a measurable function fT : X → R based

on the training data T . We assume that the (xi,yi) in T are independent and identically distributed

from P(X ,Y ). A classifier is said to be universally consistent if

lim
n→∞

Ψ fT
= Ψ̂

holds in probability for any distribution P on X×Y . It is strongly universally consistent if the

condition limn→∞ Ψ fT
= Ψ̂ is satisfied almost surely (Steinwart, 2005).

The empirical generalization error on the training data T is given by

Ψemp =
1

n

n

∑
i=1

I[yi f (xi)≤0].

Given that the empirical generalization error Ψemp is equal to its minimum value zero when all

training data are correctly classified, we wish to use Ψemp as a basis for devising classification

algorithms. However, the corresponding minimization problem is computationally intractable.

2.1 Surrogate Losses

A wide variety of classifiers can be understood as minimizers of a continuous surrogate loss function

φ(y f (x)), which upper bounds the 0-1 loss I[y f (x)≤0]. Corresponding to Ψ( f (x)) and Ψ f , we denote

R( f (x)) = φ( f (x))η(x)+φ(− f (x))(1−η(x)) and

R f = EP[φ(Y f (X))] = EX

[

φ( f (X))η(X)+φ(− f (X))(1−η(X))
]

.

For convenience, we assume that η ∈ [0,1] and define the notation

R(η, f ) = ηφ( f )+(1−η)φ(− f ).
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Exponential Loss Logit Loss Hinge Loss Squared Hinge Loss

exp[−y f (x)/2] log[1+exp(−y f (x))] [1− y f (x)]+ ([1− y f (x)]+)2

Table 1: Surrogate losses for margin-based classifier.

The surrogate φ is said to be Fisher consistent, if for every η ∈ [0,1] the minimizer of R(η, f )
with respect to f exists and is unique and the minimizer (denoted f̂ (η)) satisfies sign( f̂ (η)) =
sign(η− 1/2) (Lin, 2002; Bartlett et al., 2006; Zhang, 2004). Since sign(u) = 0 is equivalent to

u = 0, we have that f̂ (1/2) = 0. Substituting f̂ (η) into R(η, f ), we also define the following

notation:

R̂(η) = inf
f

R(η, f ) = R(η, f̂ (η)).

The difference between R(η, f ) and R̂(η) is

(R(η, f ) = R(η, f )− R̂(η) = R(η, f )−R(η, f̂ (η)).

When regarding f (x) and η(x) as functions of x, it is clear that f̂ (η(x)) is the minimizer of

R( f (x)) among all measurable function class F . That is,

f̂ (η(x)) = argmin
f (x)∈F

R( f (x)).

In this setting, the difference between R f and EX [R( f̂ (η(X)))] (denoted R f̂ ) is given by

(R f = R f −R f̂ = EX(R(η(X), f (X)).

If f̂ (η) is invertible, then the inverse function f̂−1( f (x)) over F can be regarded as a class-

conditional probability estimate given that η(x) = f̂−1( f̂ (x)). Moreover, Zhang (2004) showed that

(R f is the expected distance between the conditional probability f̂−1( f (x)) and the true conditional

probability η(x). Thus, minimizing R f is equivalent to minimizing the expected distance between

f̂−1( f (x)) and η(x).
Table 1 lists four common surrogate functions used in large-margin classifiers. Here [u]+ =

max{u,0} is a so-called hinge function and ([u]+)2 = (max{u,0})2 is a squared hinge function

which is used for developing the !2-SVM (Cristianini and Shawe-Taylor, 2000). Note that we

typically scale the logit loss to equal 1 at y f (x) = 0. These functions are convex and the upper

bounds of I[y f (x)≤0]. Moreover, they are Fisher consistent. In particular, the following result has

been established by Friedman et al. (2000) and Lin (2002).

Proposition 1 Assume that 0 < η(x) < 1 and η(x) )= 1/2. Then, the minimizers of

E(exp[−Y f (X)/2]|X = x) and E(log[1+ exp(−Y f (X))]|X = x) are both f̂ (x) = log
η(x)

1−η(x) , the

minimizer of E
(

[1−Y f (X)]+|X = x
)

is f̂ (x) = sign(η(x)− 1/2), and the minimizer of E
(

([1−
Y f (X)]+)2|X = x

)

is f̂ (x) = 2η(x)−1.

When the exponential or logit loss function is used, f̂−1( f (x)) exists. It is clear that η(x) =
f̂−1( f̂ (x)). For any f (x) ∈ F , we denote the inverse function by η̃(x), which is

η̃(x) = f̂−1( f (x)) =
1

1+ exp(− f (x))
.

Unfortunately, the minimization of the hinge loss (which is the basis of the SVM) does not yield a

class probability estimate (Lin et al., 2002).
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2.2 The Regularization Approach

Given a surrogate loss function φ, a large-margin classifier typically solves the following optimiza-

tion problem:

min
f∈F

1

n

n

∑
i=1

φ(yi f (xi))+ γJ(h),

where f (x) = α+ h(x), J(h) is a regularization term to penalize model complexity and γ is the

degree of penalization.

Suppose that f = α+h ∈ ({1}+HK) where HK is a reproducing kernel Hilbert space (RKHS)

(Wahba, 1990) induced by a reproducing kernel K(·, ·) : X×X →R. Finding f (x) is then formulated

as a regularization problem of the form

min
f∈HK

{

1

n

n

∑
i=1

φ(yi f (xi))+
γ

2
‖h‖2

HK

}

, (1)

where ‖h‖2
HK

is the RKHS norm. By the representer theorem, the solution of (1) is of the form

f (xi) = α+
n

∑
j=1

β jK(xi,x j) = α+k′iβ, (2)

where β = (β1, . . . ,βn)′ and ki = (K(xi,x1), . . . ,K(xi,xn))′. Noticing that

‖h‖2
HK

= ∑n
i, j=1 K(xi,x j)βiβ j and substituting (2) into (1), we obtain the minimization problem with

respect to α and β as

min
α,β

{

1

n

n

∑
i=1

φ(yi(α+k′iβ))+
γ

2
β′Kβ

}

,

where K = [k1, . . . ,kn] is the n×n kernel matrix. Since K is symmetric and positive semidefinite,

the term β′Kβ is in fact an empirical RKHS norm on the training data.

In particular, the conventional SVM defines the surrogate φ(·) as the hinge loss and solves the

following optimization problem:

min
f∈F

1

n

n

∑
i=1

[1− yi(α+k′iβ)]++
γ

2
β′Kβ. (3)

In this paper, we are especially interested in universal kernels, namely, kernels whose induced

RKHS is dense in the space of continuous functions over X (Steinwart, 2001). The Gaussian RBF

kernel is such an example.

2.3 Methods for Class Probability Estimation of SVMs

Let f̂ (x) be the solution of the SVM problem in (3). In an attempt to address the problem of class

probability estimation for SVMs, Sollich (2002) proposed a class probability estimate

η̂(x) =

{

1
1+exp(−2 f̂ (x))

if | f̂ (x)|≤ 1,
1

1+exp[−( f̂ (x)+sign( f̂ (x)))]
otherwise.

This class probability was also used in the derivation of a so-called complete SVM studied by

Mallick et al. (2005).
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Another proposal for obtaining class probabilities from SVM outputs was developed by Platt

(1999), who employed a post-processing procedure based on the parametric formula

η̂(x) =
1

1+ exp(A f̂ (x)+B)
,

where the parameters A and B are estimated via the minimization of the empirical cross-entropy

error over the training data set.

Wang et al. (2008) proposed a nonparametric form obtained from training a sequence of weighted

classifiers:

min
f∈F

1

n

{

(1−π j) ∑
yi=1

[1− yi f (xi)]++π j ∑
yi=−1

[1− yi f (xi)]+

}

+ γJ(h) (4)

for j = 1, . . . ,m+1 such that 0 = π1 < · · · < πm+1 = 1. Let f̂π j(x) be the solution of (4). The

estimated class probability is then η̂(x) = 1
2(π∗+π∗) where π∗ = min{π j : sign( f̂π j(x)) =−1} and

π∗ = max{π j : sign( f̂π j(x)) = 1}.

Additional contributions are due to Steinwart (2003) and Bartlett and Tewari (2007). These

authors showed that the class probability can be asymptotically estimated by replacing the hinge

loss with various differentiable losses.

3. Coherence Functions

In this section we present a smooth and Fisher-consistent majorization loss, which bridges the hinge

loss and the logit loss. We will see that one limit of this loss is equal to the hinge loss. Thus, it is

applicable to the asymptotical estimate of the class probability for the conventional SVM as well as

the construction of margin-based classifiers, which will be presented in Section 4 and Section 5.

3.1 Definition

Under the 0−1 loss the misclassification costs are specified to be one, but it is natural to set the

misclassification costs to be a positive constant u > 0. The empirical generalization error on the

training data is given in this case by
1

n

n

∑
i=1

uI[yi f (xi)≤0],

where u > 0 is a constant that represents the misclassification cost. In this setting we can extend the

hinge loss as

Hu(y f (x)) = [u−y f (x)]+.

It is clear that Hu(y f (x))≥ uI[y f (x)≤0]. This implies that Hu(y f (x)) is a majorization of uI[y f (x)≤0].

We apply the maximum entropy principle to develop a smooth surrogate of the hinge loss

[u−z]+. In particular, noting that [u−z]+ = max{u−z, 0}, we maximize w(u−z) with respect to

w ∈ (0,1) under the entropy constraint; that is,

max
w∈(0,1)

{

F = w(u−z)−ρ
[

w logw+(1−w) log(1−w)
]

}

,

where −[w logw+(1−w) log(1−w)] is the entropy and ρ > 0, a Lagrange multiplier, plays the role

of temperature in thermodynamics.
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The maximum of F is

Vρ,u(z) = ρ log
[

1+exp
u−z

ρ

]

(5)

at w = exp((u−z)/ρ)/[1+ exp((u−z)/ρ)]. We refer to functions of this form as coherence func-

tions because their properties (detailed in the next subsection) are similar to statistical mechanical

properties of deterministic annealing (Rose et al., 1990).

We also consider a scaled variant of Vρ,u(z):

Cρ,u(z) =
u

log[1+exp(u/ρ)]
log

[

1+exp
u−z

ρ

]

, ρ > 0, u > 0, (6)

which has the property that Cρ,u(z) = u when z = 0. Recall that u as a misclassification cost should

be specified as a positive value. However, both Cρ,0(z) and Vρ,0(z) are well defined mathematically.

Since Cρ,0(z) = 0 is a trivial case, we always assume that u > 0 for Cρ,u(z) here and later. In the

binary classification problem, z is defined as y f (x). In the special case that u = 1, Cρ,1(y f (x)) can

be regarded as a smooth alternative to the SVM hinge loss [1− y f (x)]+. We refer to Cρ,u(y f (x)) as

C -losses.

It is worth noting that V1,0(z) is the logistic function and Vρ,0(z) has been proposed by Zhang

and Oles (2001) for binary logistic regression. We keep in mind that u ≥ 0 for Vρ,u(z) through this

paper.

3.2 Properties

It is obvious that Cρ,u(z) and Vρ,u are infinitely smooth with respect to z. Moreover, the first-order

and second-order derivatives of Cρ,u(z) with respect to z are given as

C′ρ,u(z) =−
u

ρ log[1+exp(u/ρ)]

exp u−z
ρ

1+exp u−z
ρ

,

C′′ρ,u(z) =
u

ρ2 log[1+exp(u/ρ)]

exp u−z
ρ

(1+exp u−z
ρ )2

.

Since C′′ρ,u(z) > 0 for any z ∈ R, Cρ,u(z) as well as Vρ,u(z) are strictly convex in z, for fixed ρ > 0

and u > 0.

We now investigate relationships among the coherence functions and hinge losses. First, we

have the following properties.

Proposition 2 Let Vρ,u(z) and Cρ,u(z) be defined by (5) and (6). Then,

(i) u×I[z≤0] ≤ [u−z]+ ≤Vρ,u(z)≤ ρ log2+[u−z]+;

(ii) 1
2(u−z)≤Vρ,u(z)−ρ log2;

(iii) limρ→0Vρ,u(z) = [u−z]+ and limρ→∞Vρ,u(z)−ρ log2 = 1
2(u−z);

(iv) u×I[z≤0] ≤Cρ,u(z)≤Vρ,u(z);

(v) limρ→0Cρ,u(z) = [u−z]+ and limρ→∞Cρ,u(z) = u, for u > 0.
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As a special case of u = 1, we have Cρ,1(z) ≥ I[z≤0]. Moreover, Cρ,1(z) approaches (1−z)+ as

ρ→ 0. Thus, Cρ,1(z) is a majorization of I[z≤0].

As we mentioned earlier, Vρ,0(z) are used to devise logistic regression models. We can see from

Proposition 2 that Vρ,0(z) ≥ [−z]+, which implies that a logistic regression model is possibly no

longer a large-margin classifier. Interestingly, however, we consider a variant of Vρ,u(z) as

Lρ,u(z) =
1

log(1+ exp(u/ρ))
log

[

1+exp((u− z)/ρ)
]

, ρ > 0, u≥ 0,

which always satisfies that Lρ,u(z) ≥ I[z≤0] and Lρ,u(0) = 1, for any u ≥ 0. Thus, the Lρ,u(z) for

ρ > 0 and u ≥ 0 are majorizations of I[z≤0]. In particular, Lρ,1(z) = Cρ,1(u) and L1,0(z) is the logit

function.

In order to explore the relationship of Cρ,u(z) with (u−z)+, we now consider some properties of

Lρ,u(z) when regarding it respectively as a function of ρ and of u.

Proposition 3 Assume ρ > 0 and u≥ 0. Then,

(i) Lρ,u(z) is a decreasing function in ρ if z < 0, and it is an increasing function in ρ if z≥ 0;

(ii) Lρ,u(z) is a decreasing function in u if z < 0, and it is an increasing function in u if z≥ 0.

Results similar to those in Proposition 3-(i) also apply to Cρ,u(z) because of Cρ,u(z) = uLρ,u(z).
Then, according to Proposition 2-(v), we have that u= limρ→+∞Cρ,u(z)≤Cρ,u(z)≤ limρ→0Cρ,u(z)=
(u−z)+ if z < 0 and (u−z)+ = limρ→0Cρ,u(z)≤Cρ,u(z)≤ limρ→+∞Cρ,u(z) = u if z≥ 0. It follows

from Proposition 3-(ii) that Cρ,1(z) = Lρ,1(z) ≤ Lρ,0(z) if z < 0 and Cρ,1(z) = Lρ,1(z) ≥ Lρ,0(z) if

z ≥ 0. In addition, it is easily seen that (1− z)+ ≥ ((1− z)+)2 if z ≥ 0 and (1− z)+ ≤ ((1− z)+)2

otherwise. We now obtain the following proposition:

Proposition 4 Assume ρ > 0. Then, Cρ,1(z) ≤ min
{

Lρ,0(z), [1−z]+, ([1−z]+)2
}

if z < 0, and

Cρ,1(z)≥max
{

Lρ,0(z), [1−z]+, ([1−z]+)2
}

if z≥ 0.

This proposition is depicted in Figure 1. Owing to the relationships of the C -loss Cρ,1(y f (x)) with

the hinge and logit losses, it is potentially useful in devising new large-margin classifiers.

We now turn to the derivatives of Cρ,u(z) and (u−z)+. It is immediately verified that −1 ≤
C′ρ,u(z)≤ 0. Moreover, we have

lim
ρ→0

C′ρ,u(z) = lim
ρ→0

V ′ρ,u(z) =







0 z > u,
− 1

2 z = u,
−1 z < u.

Note that (u−z)′+ = −1 if z < u and (u−z)′+ = 0 if z > u. Furthermore, ∂(u−z)+|z=u = [−1,0]
where ∂(u−z)+|z=u denotes the subdifferential of (u−z)+ at z = u. Hence,

Proposition 5 For a fixed u > 0, we have that limρ→0C′ρ,u(z) ∈ ∂(u−z)+.

This proposition again establishes a connection of the hinge loss with the limit of Cρ,u(z) at

ρ = 0. Furthermore, we obtain from Propositions 2 and 5 that ∂(u−z)+ = ∂ limρ→0Cρ,u(z) .
limρ→0 ∂Cρ,u(z).
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Figure 1: These functions are regarded as a function of z = y f (x). (a) Coherence functions Vρ,1(z)
with ρ = 0.01, ρ = 0.1, ρ = 1 and ρ = 2. (b) A variety of majorization loss functions,

C -loss: C1,1(z); Logit loss: L1,0(z); Exponential loss: exp(−z/2); Hinge loss: [1−z]+;

Squared Hinge Loss: ([1−z]+)2. (c) Cρ,1(z) (or Lρ,1(z)) with ρ = 0.1, ρ = 1, ρ = 10 and

ρ = 100 (see Proposition 3-(i)). (d) L1,u(z) with u = 0, u = 0.1, u = 1 and u = 10 (see

Proposition 3-(ii)).

3.3 Consistency in Classification Methods

We now apply the coherence function to the development of classification methods. Recall that

C′ρ,u(0) exists and is negative. Thus, the C -loss Cρ,u(y f (x)) is Fisher-consistent (or classification

calibrated) (Bartlett et al., 2006). In particular, we have the following theorem.

Theorem 6 Assume 0 < η < 1 and η )= 1
2 . Consider the optimization problem

min
f∈R

R( f ,η) :=Vρ,u( f )η+Vρ,u(− f )(1−η)
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for fixed ρ > 0 and u≥ 0. Then, the minimizer is unique and is given by

f∗(η) = ρ log
(2η−1)exp( u

ρ)+
√

(1−2η)2 exp( 2u
ρ )+4η(1−η)

2(1−η)
. (7)

Moreover, we have f∗ > 0 if and only if η > 1/2. Additionally, the inverse function f−1
∗ ( f ) exists

and it is given by

η̃( f ) := f−1
∗ ( f ) =

1+ exp( f−u
ρ )

1+ exp(− u+ f
ρ )+1+ exp( f−u

ρ )
, for f ∈ R. (8)

The minimizer f∗(x) of R( f (x)) := E(Vρ,u(Y f (X))|X = x) and its inverse η̃(x) are imme-

diately obtained by replacing f with f (x) in (7) and (8). Since for u > 0 the minimizers of

E(Cρ,u(Y f (X))|X = x) and E(Vρ,u(Y f (X))|X = x) are the same, this theorem shows that Cρ(y f (x),u)
is also Fisher-consistent. We see from Theorem 6 that the explicit expressions of f∗(x) and its in-

verse η̃(x) exist. In the special case that u= 0, we have f∗(x)= ρ log
η(x)

1−η(x) and η̃(x)= 1
1+exp(− f (x)/ρ) .

Furthermore, when ρ = 1, as expected, we recover logistic regression. In other words, the result is

identical with that in Proposition 1 for logistic regression.

We further consider properties of f∗(η). In particular, we have the following proposition.

Proposition 7 Let f∗(η) be defined by (7). Then,

(i) sign( f∗(η)) = sign(η−1/2).

(ii) limρ→0 f∗(η) = u×sign(η−1/2).

(iii) f ′∗(η) =
d f∗(η)

dη ≥ ρ
η(1−η) with equality if and only if u = 0.

Proposition 7-(i) shows that the classification rule with f∗(x) is equivalent to the Bayes rule.

In the special case that u = 1, we have from Proposition 7-(ii) that limρ→0 f∗(x) = sign(η(x)−
1/2). This implies that the current f∗(x) approaches the solution of E((1−Y f (X))+|X = x), which

corresponds to the conventional SVM method (see Proposition 1).

We now treat η̃( f ) as a function of ρ. The following proposition is easily proven.

Proposition 8 Let η̃( f ) be defined by (8). Then, for fixed f ∈ R and u > 0, limρ→∞ η̃( f ) = 1
2 and

lim
ρ→0

η̃( f ) =























1 if f > u,
2
3 if f = u,
1
2 if −u < f < u,
1
3 if f =−u,
0 if f <−u.

As we discuss in the previous subsection, Vρ,u(z) is obtained when w = exp((u−z)/ρ)/(1+
exp((u−z)/ρ)) by using the maximum entropy principle. Let z = y f (x). We further write w as

w1( f )= 1/[1+exp(( f−u)/ρ)] when y= 1 and w as w2( f )= 1/[1+exp(−( f+u)/ρ)] when y=−1.
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We now explore the relationship of η̃( f ) with w1( f ) and w2( f ). Interestingly, we first find that

η̃( f ) =
w2( f )

w1( f )+w2( f )
.

It is easily proven that w1( f )+w2( f ) ≥ 1 with equality if and only if u = 0. We thus have that

η̃( f )≤w2( f ), with equality if and only if u= 0; that is, the loss becomes logit function Vρ,0(z). Note

that w2( f ) represents the probability of the event {u+ f > 0} and η̃( f ) represents the probability

of the event { f > 0}. Since the event { f > 0} is a subset of the event {u + f > 0}, we have

η̃( f ) ≤ w2( f ). Furthermore, the statement that η̃( f ) = w2( f ) if and only if u = 0 is equivalent to

{u+ f > 0} = { f > 0} if and only if u = 0. This implies that only the logit loss induces η̃( f ) =
w2( f ).

As discussed in Section 2.1, η̃(x) can be regarded as a reasonable estimate of the true class

probability η(x). Recall that (R(η, f ) = R(η, f )−R(η, f∗(η)) and (R f = EX [(R(η(X), f (X))]
such that(R f can be viewed as the expected distance between η̃(x) and η(x).

For an arbitrary fixed f ∈ R, we have

(R(η, f ) = R(η, f )−R(η, f∗(η)) = ηρ log
1+ exp u− f

ρ

1+ exp
u− f∗(η)

ρ

+(1−η)ρ log
1+ exp u+ f

ρ

1+ exp
u+ f∗(η)

ρ

.

The first-order derivative of(R(η, f ) with respect to η is

d(R(η, f )

dη
= ρ log

1+ exp u− f
ρ

1+ exp
u− f∗(η)

ρ

−ρ log
1+ exp u+ f

ρ

1+ exp
u+ f∗(η)

ρ

.

The Karush-Kuhn-Tucker (KKT) condition for the minimization problem is as follows:

η
exp

u− f∗(η)
ρ

1+exp
u− f∗(η)

ρ

+(1−η)
exp

u+ f∗(η)
ρ

1+exp
u+ f∗(η)

ρ

= 0,

and the second-order derivative of(R(η, f ) with respect to η is given by

d2(R(η, f )

dη2
=
( 1

1+ exp(−u− f∗(η)
ρ )

+
1

1+ exp(−u+ f∗(η)
ρ )

)

f ′∗(η) =
[

w1( f∗(η))+w2( f∗(η))
]

f ′∗(η).

According to Proposition 7-(iii) and using w1( f∗(η))+w2( f∗(η))≥ 1, we have

d2(R(η, f )

dη2
≥

ρ

η(1−η)
,

with equality if and only if u = 0. This implies
d2(R(η, f )

dη2 > 0. Thus, for a fixed f , (R(η, f ) is

strictly convex in η. Subsequently, we have that(R(η, f )≥ 0 with equality η = η̃, or equivalently,

f = f∗.
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Using the Taylor expansion of(R(η, f ) at η̃ := η̃( f ) = f−1
∗ ( f ), we thus obtain a lower bound

for(R(η, f ); namely,

(R(η, f ) =(R(η̃, f )−
d(R(η̃, f )

dη
(η− η̃)+

1

2

d2(R(η̄, f )

dη2
(η− η̃)2

=
1

2

d2(R(η̄, f )

dη2
(η− η̃)2 ≥

ρ

2η̄(1− η̄)
(η− η̃)2 ≥ 2ρ(η− η̃)2,

where η̄ ∈ (η̃,η) ⊂ [0,1]. In particular, we have that (R(η,0) ≥ 2ρ(η− 0.5)2. According to

Theorem 2.1 and Corollary 3.1 in Zhang (2004), the following theorem is immediately established.

Theorem 9 Let ε1 = inf f (·)∈F EX [(R(η(X), f (X))], and let f∗(x) ∈ F such that

EX [R(η(X), f∗(X))]≤ inf
f (·)∈F

EX [R(η(X), f (X))]+ ε2

for ε2 ≥ 0. Then for ε = ε1 + ε2,

(R f∗ = EX [(R(η(X), f∗(X))]≤ ε

and

Ψ f∗ ≤ Ψ̂+
(

2ε/ρ
)1/2

,

where Ψ f∗ = EPI[Y f∗(X)≤0], and Ψ̂ = EPI[Y (2η(X)−1)≤0] is the optimal Bayes error.

3.4 Analysis

For notational simplicity, we will use Cρ(z) for Cρ,1(z). Considering f (x) = α+β′k, we define a

regularized optimization problem of the form

min
α, β

{1

n

n

∑
i=1

Cρ(yi f (xi))+
γn

2
β′Kβ

}

. (9)

Here we assume that the regularization parameter γ relies on the number n of training data points,

thus we denote it by γn.

Since the optimization problem (9) is convex with respect to α and β, the solution exists and is

unique. Moreover, since Cρ is infinitely smooth, we can resort to the Newton-Raphson method to

solve (9).

Proposition 10 Assume that γn in (9) and γ in (3) are same. Then the minimizer of (9) approaches

the minimizer of (3) as ρ→ 0.

This proposition is obtained directly from Proposition 5. For a fixed ρ, we are also concerned

with the universal consistency of the classifier based on (9) with and without the offset term α.

Theorem 11 Let K(·, ·) be a universal kernel on X×X . Suppose we are given such a positive

sequence {γn} that γn→ 0. If

nγ2
n/ logn→ ∞,

then the classifier based on (9) is strongly universally consistent. If

nγ2
n→ ∞,

then the classifier based on (9) with α = 0 is universally consistent.
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Finally, we explore the convergence rate of the classification model in (9). It is worth point-

ing out that Lin (2002) studied the convergence rate of the !2-SVM based on Theorem 4.1 in Lin

(2000). Additionally, Lin (2002) argued that it is harder for the standard SVM to establish a similar

convergence rate result due to two main reasons. The first one is that (1− z)+ is not differentiable

and the second one is that the target function sign(η− 1/2) is not in the assumed RKHS. We note

that Theorem 4.1 in Lin (2000) is elaborated only for the least squares problem. It is also difficult

to apply this theorem to our case, although the above two reasons no longer exist in our case. In

Section 6.1 we illustrate how our classification model in (9) approaches the corresponding target

function given in (7) using the same simulation data set as in Lin (2002). Moreover, under certain

conditions, we can have the following theorem about convergence rate.

Theorem 12 Suppose x takes values in a finite region with density p(x) and f (x) = α+h(x) with

α taking values in a finite open interval. Assume that h belongs to a bounded open set of RKHS

HK with positive definite kernel K(·, ·) and that there exists an M0 > 0 such that |K(x1,x2)| < M0

if (x1,x2) are bounded. Let φ(z) be a strictly convex function and twice continuously differentiable.

We define

f ∗ = argmin
f

∫
φ(y f (x))dF(x,y),

f̂n = argmin
f

∫
φ(y f (x))dFn(x,y)+

γ

2
‖h‖2

HK
.

where F(x,y) is the distribution of (x,y) and Fn(x,y) is the empirical distribution of (x,y). Then we

have ∫
| f̂n(x)− f ∗(x)|p(x)dx = O(γ)+Op(

1√
n
).

Obviously, the Gaussian RBF kernel satisfies the condition in Theorem 12. Since Cρ(z) is

strictly convex and infinitely smooth, we can directly apply Theorem 12 to the classification model

in (9). In particular, let f̂n be the minimizer of Problem (9) and f∗(η) be defined in (7). Under the

conditions in Theorem 12, we have

∫
∣

∣ f̂n(x)− f∗(η(x))
∣

∣p(x)dx = O(γ)+Op(
1√
n
).

4. Class Probability Estimation of SVM Outputs

As discussed earlier, the limit of the coherence function, Vρ,1(y f (x)), at ρ = 0 is just the hinge loss.

Moreover, Proposition 7 shows that the minimizer of Vρ,1( f )η+Vρ,1(− f )(1−η) approaches that of

H( f )η+H(− f )(1−η) as ρ→ 0. Thus, Theorem 6 provides us with an approach to the estimation

of the class probability for the conventional SVM.

In particular, let f̂ (x) be the solution of the optimization problem (3) for the conventional SVM.

In terms of Theorem 6, we suggest that the estimated class probability η̂(x) is defined as

η̂(x) =
1+ exp( f̂ (x)−1

ρ )

1+ exp(− 1+ f̂ (x)
ρ )+1+ exp( f̂ (x)−1

ρ )
. (10)
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Proposition 7 would seem to motivate setting ρ to a very small value in (10). However, as shown

in Proposition 8, the probabilistic outputs degenerate to 0, 1/3, 1/2, 2/3 and 1 in this case. Addi-

tionally, the classification function f̂ (x) = α̂+∑n
i=1 β̂iK(x,xi) is obtained via fitting a conventional

SVM model on the training data. Thus, rather than attempting to specify a fixed value of ρ via a

theoretical argument, we instead view it as a hyperparameter to be fit empirically.

In particular, we fit ρ by minimizing the generalized Kullback-Leibler divergence (or cross-

entropy error) between η̂(X) and η(X), which is given by

GKL(η, η̂) = EX

[

η(X) log
η(X)

η̂(X)
+(1−η(X)) log

1−η(X)

1−η̂(X)

]

.

Alternatively, we formulate the optimization problem for obtaining ρ as

min
ρ>0

EKL(η̂) :=−
1

n

n

∑
i=1

{1

2
(yi +1) log η̂(xi)+

1

2
(1− yi) log(1− η̂(xi))

}

. (11)

The problem can be solved by the Newton method. In summary, one first obtains f̂ (x) = α̂ +
∑n

i=1 β̂iK(x,xi) via the conventional SVM model, and estimates ρ via the optimization problem

in (11) based on the training data; one then uses the formula in (10) to estimate the class probabilities

for the training samples as well as the test samples.

5. C -Learning

Focusing on the relationships of the C -loss Cρ(y f (x)) (i.e., Cρ,1(y f (x))) with the hinge and logit

losses, we illustrate its application in the construction of large-margin classifiers. Since Cρ(y f (x))
is smooth, it does not tend to yield a sparse classifier. However, we can employ a sparsification

penalty J(h) to achieve sparseness. We use the elastic-net penalty of Zou and Hastie (2005) for the

experiments in this section. Additionally, we study two forms of f (x): kernel expansion and feature

expansion. Built on these two expansions, sparseness can subserve the selection of support vectors

and the selection of features, respectively. The resulting classifiers are called C -learning.

5.1 The Kernel Expansion

In the kernel expansion approach, given a reproducing kernel K(·, ·) : X ×X → R, we define the

kernel expansion as f (x) = α+∑n
i=1 βiK(xi,x) and solve the following optimization problem:

min
α,β

1

n

n

∑
i=1

Cρ(yi f (xi))+ γ
(

(1−ω)
1

2
β′Kβ+ω‖β‖1

)

, (12)

where K = [K(xi,x j)] is the n×n kernel matrix.

It is worth pointing out that the current penalty is slightly different from the conventional elastic-

net penalty, which is (1−ω) 1
2 β′β+ω‖β‖1. In fact, the optimization problem (12) can be viewed

equivalently as the optimization problem

min
α,β

1

n

n

∑
i=1

Cρ(yi f (xi))+
γ

2
β′Kβ (13)
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under the !1 penalty ‖β‖1. Thus, the method derived from (12) enjoys the generalization ability of

the conventional kernel supervised learning method derived from (13) but also the sparsity of the !1

penalty.

Recently, Friedman et al. (2010) devised a pathwise coordinate descent algorithm for regular-

ized logistic regression problems in which the elastic-net penalty is used. In order to solve the

optimization problem in (12), we employ this pathwise coordinate descent algorithm.

Let the current estimates of α and β be α̂ and β̂. We first form a quadratic approximation to
1
n ∑n

i=1Cρ(yi f (xi)), which is

Q(α,β) =
1

2nρ

n

∑
i=1

q(xi)(1−q(xi))
(

α+k′iβ− zi

)2
+Const,

where

zi = α̂+k′iβ̂+
ρ

yi(1−q(xi))
,

q(xi) =
exp[(1− yi(α̂+k′iβ̂)/ρ]

1+ exp[(1− yi(α̂+k′iβ̂))/ρ]
,

ki = (K(x1,xi), . . . ,K(xn,xi))
′.

We then employ coordinate descent to solve the weighted least-squares problem as follows:

min
α,β

G(α,β) := Q(α,β)+ γ
(

(1−ω)
1

2
β′Kβ+ω‖β‖1

)

. (14)

Assume that we have estimated β̃ for β using G(α,β). We now set
∂G(α,

˜β)
∂α = 0 to find the new

estimate of α:

α̃ =
∑n

i=1 q(xi)(1−q(xi))
(

zi−k′iβ̃
)

∑n
i=1 q(xi)(1−q(xi))

. (15)

On the other hand, assume that we have estimated α̃ for α and β̃l for βl (l = 1, . . . ,n, l )= j). We

now optimize β j. In particular, we only consider the gradient at β j )= 0. If β j > 0, we have

∂G(α̃, β̃)

∂β j
=

1

nρ

n

∑
i=1

Ki jq(xi)(1−q(xi))
(

α+k′iβ̃−zi

)

+ γ(1−ω)(Kj jβ j+k jβ̌)+ γω

and, hence,

β̃ j =
S(t− γ(1−ω)k′jβ̌,γω)

1
nρ ∑n

i=1 K2
i jq(xi)(1−q(xi))+ γ(1−ω)Kj j

, (16)

where t = 1
nρ ∑n

i=1 Ki jq(xi)(1 − q(xi))
(

zi − α̃ − k′iβ̌
)

, β̌ = (β̃1, . . . , β̃ j−1,0, β̃ j+1, . . . , β̃n)′,

Ki j = K(xi,x j), and S(µ,ν) is the soft-thresholding operator:

S(µ,ν) = sign(µ)(|µ|−ν)+

=







µ−ν if µ > 0 and µ < |ν|
µ+ν if µ < 0 and µ < |ν|
0 if µ > |ν|.

Algorithm 1 summarizes the coordinate descent algorithm for binary C -learning.
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Algorithm 1 The coordinate descent algorithm for binary C -learning

Input: T = {xi,yi}n
i=1, γ, ω, εm, εi, ρ;

Initialize: α̃ = α0, β̃ = β0

repeat

Calculate G(α̃, β̃) using (14);

α"← α̃;

β"← β̃;

repeat

ᾱ← α̃;

β̄← β̃;

Calculate α̃ using (15);

for j = 1 to n do

Calculate β̃ j using (16);

end for

until ‖α̃− ᾱ‖+‖β̃− β̄‖< εi

until ‖α̃−α"‖+‖β̃−β"‖< εm

Output: α̃, β̃, and f (x) = α̃+∑n
i=1 K(xi,x)β̃i.

5.2 The Linear Feature Expansion

In the linear feature expansion approach, we let f (x) = a+x′b, and pose the following optimization

problem:

min
a,b

1

n

n

∑
i=1

Cρ(yi f (xi))+ γJω(b), (17)

where for ω ∈ [0,1]

Jω(b) = (1−ω)
1

2
‖b‖2

2 +ω‖b‖1 =
d

∑
j=1

[1

2
(1−ω)b2

j +ω|b j|
]

.

The elastic-net penalty maintains the sparsity of the !1 penalty, but the number of variables to be

selected is no longer bounded by n. Moreover, this penalty tends to generate similar coefficients for

highly-correlated variables. We also use a coordinate descent algorithm to solve the optimization

problem (17). The algorithm is similar to that for the kernel expansion and the details are omitted

here.

6. Experimental Results

In Section 6.1 we illustrate convergence analysis of our classification method based on the C -loss.

In Section 6.2 we report the results of experimental evaluations of our method for class probability

estimation of the conventional SVM given in Section 4. In Section 6.3 we present results for the

C -learning method given in Section 5.

6.1 Simulation Analysis for Convergence of C−Learning

In Section 3.4 we have presented a theoretical analysis for convergence rate of the classification

model defined in (9). We now conduct an empirical analysis to illustration how our model in (9)

2720



COHERENCE FUNCTIONS WITH APPLICATIONS IN LARGE-MARGIN CLASSIFICATION METHODS

approaches the target function f∗(η) given in (7) and how the class probability estimate η̃( f̂n(x)) in

(8) approaches the underlying class probability η(x).
For the purpose of visualization, we employ the same simulation data set as in Lin (2002). In

particular, we take n equidistant points on the interval [0,1]; that is, xi = (i−1)/n for i = 1, . . . ,n.

Let η(x) = Pr(Y = 1|X = x) = 1− |1− 2x|. Then the target function f∗(η(x)) for our model is

computed by (7). We randomly generate yi to be 1 or −1 with probability η(xi) and 1−η(xi), and

form a training data set {(xi,yi); i = 1 . . . ,n}. Following the setting in Lin (2002), we implement

our simulations on RKHS H m([0,1]) (i.e., the Sobolev Hilbert space with order m of univariate

functions on domain [0,1]) and four data sets with size n = 33, 65, 129 and 257. The parameters

γ and ρ are chosen to minimize the generalized KL (GKL) divergence by the grid search. The

implementation is based on the C -learning algorithm in Section 5 where the hyperparameter ω is

approximately set as 0.

Figures 2 and 3 respectively depict the solutions f̂n to the regularization problem in (9) and the

class probability estimates η̃( f̂n) given in (8), when the sample size is n = 33, 65, 129, and 257. We

can see that the solution f̂n is close the target function f∗(η) and that the class probability estimate

η̃( f̂n) is close the underlying class probability η, as n increases. Thus, our simulation example

shows that our method based on C -loss not only can approach its corresponding target function

f∗(η) but also can estimate the underlying class probability η(x). It should be pointed out that the

similar experimental results can be found on the Gaussian RBF kernel, so here we do not include

the results with the Gaussian RBF kernel.

6.2 Simulation for Class Probability Estimation of SVM Outputs

We validate our estimation method for the class probability of SVM outputs (“Ours for SVM”),

comparing it with several alternatives: Platt’s method (Platt, 1999), Sollich’s method (Sollich,

2002), and the method of Wang et al. (2008) (WSL’s). Since penalized (or regularized) logistic

regression (PLR) and C -learning can directly calculate class probability, we also implement them.

Especially, the class probability of C -learning outputs is based on (8) where we set ρ = 1 and u = 1

since C -learning itself employs the same setting.

We conducted our analysis over two simulation data sets which were used by Wang et al. (2008).

The first simulation data set, {(xi1,xi2;yi)}1000
i=1 , was generated as follows. The {(xi1,xi2)}1000

i=1 were

uniformly sampled from a unit disk {(x1,x2) : x2
1 + x2

2 ≤ 1}. Next, we set yi = 1 if xi1 ≥ 0 and

yi = −1 otherwise, i = 1, . . . ,1000. Finally, we randomly chose 20% of the samples and flipped

their labels. Thus, the true class probability η(Yi = 1|xi1,xi2) was either 0.8 or 0.2.

The second data set, {(xi1,xi2;yi)}1000
i=1 , was generated as follows. First, we randomly assigned

1 or −1 to yi for i = 1, . . . ,1000 with equal probability. Next, we generated xi1 from the uniform

distribution over [0,2π], and set xi2 = yi(sin(xi1)+ εi) where εi ∼ N(εi|1,0.01). For the data, the

true class probability of Y = 1 was given by

η(Y = 1|x1,x2) =
N(x2|sin(x1)+1,0.01)

N(x2|sin(x1)+1,0.01)+N(x2|− sin(x1)−1,0.01)
.

The simulation followed the same setting as that in Wang et al. (2008). That is, we randomly

selected 100 samples for training and the remaining 900 samples for test. We did 100 replications

for each data set. The values of generalized Kullback-Leibler loss (GKL) and classification error

rate (CER) on the test sets were averaged over these 100 simulation replications. Additionally, we
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(a) n = 33, γ = 5.9186×10−5, ρ = 0.5695 (b) n = 65, γ = 7.5120×10−6, ρ = 0.5695
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(c) n = 129, γ = 1.5141×10−5, ρ = 0.5695 (d) n = 257, γ = 3.7999×10−6, ρ = 0.5695

Figure 2: The underlying class probabilities η(x) (“blue + dashed line”) and estimated class proba-

bilities η̃(x) = η̃( f̂n(x)) (“red + solid line”) on RKHS H m([0,1]) and the simulation data

sets with the size n = 33, 65, 129, and 257. Here the values of parameters γ and ρ in each

data set are obtained by minimizing the GKL divergence.

employed a Gaussian RBF kernel K(xi,x j) = exp(−‖xi−x j‖2/σ2) where the parameter σ was set

as the median distance between the positive and negative classes. We reported GKL and CER as

well as the corresponding standard deviations in Tables 2 and 3 in which the results with the PLR

method, the tuned Platt method and the WSL method are directly cited from Wang et al. (2008).

Note that the results with PLR were averaged only over 66 nondegenerate replications (Wang

et al., 2008). Based on GKL and CER, the performance of C -learning is the best in these two

simulations. With regard to GKL, our method for SVM outperforms the original and tuned versions

of Platt’s method as well as the method of Wang et al. (2008). Since our estimation method is

based on the η̂(x) in (10), the CER with this class probability η̂(x) is identical to that with the

conventional SVM. This also applies to Sollich’s method, thus we did not include the CER of this

method. However, Table 3 shows that this does not necessarily hold for Platt’s method for SVM
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(c) n = 129, γ = 1.5141×10−5, ρ = 0.5695 (d) n = 257, γ = 3.7999×10−6, ρ = 0.5695

Figure 3: The target decision function f∗(η) (“blue + dashed line”) and estimated decision functions

f̂n (“red + solid line”) on RKHS H m([0,1]) and the toy data sets with the size n = 33, 65,

129, and 257. The parameters are identical to the settings in Figure 2.

probability outputs. In other words, η̂(x) > 1/2 is not equivalent to f̂ (x) > 0 for Platt’s method.

In fact, Platt (1999) used the sigmoid-like function to improve the classification accuracy of the

conventional SVM. As for the method of Wang et al. (2008) which is built on a sequence of weighted

classifiers, the CERs of the method should be different from those of the original SVM. With regard

to CER, the performance of PLR is the worst in most cases.

6.3 The Performance Analysis of C -Learning

To evaluate the performance of our C -learning method, we further conducted empirical studies

on several benchmark data sets and compared C -learning with two closely related classification

methods: the hybrid huberized SVM (HHSVM) of Wang et al. (2007) and the regularized logistic

regression model (RLRM) of Friedman et al. (2010), both with the elastic-net penalty. All the three

classification methods were implemented in both the feature and kernel expansion settings.
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PLR Platt’s Tuned Platt WSL’s Sollich’s Ours for SVM C -learning

Data 1
0.579 0.582 0.569 0.566 0.566 0.558 0.549

(±0.0021) (±0.0035) (±0.0015) (±0.0014) (±0.0021) (±0.0015) (±0.0016)

Data 2
0.138 0.163 0.153 0.153 0.155 0.142 0.134

(±0.0024) (±0.0018) (±0.0013) (±0.0010) (±0.0017) (±0.0016) (±0.0014)

Table 2: Values of GKL over the two simulation test sets (standard deviations are shown in paren-

theses).

PLR Platt’s WSL’s Ours for SVM C -learning

Data 1
0.258 0.234 0.217 0.219 0.214

(±0.0053) (±0.0026) (±0.0021) (±0.0021) (±0.0015)

Data 2
0.075 0.077 0.069 0.065 0.061

(±0.0018) (±0.0024) (±0.0014) (±0.0015) (±0.0019)

Table 3: Values of CER over the two simulation test sets (standard deviations are shown in paren-

theses).

In the experiments we used 11 binary classification data sets. Table 4 gives a summary of these

benchmark data sets. The seven binary data sets of digits were obtained from the publicly available

USPS data set of handwritten digits as follows. The first six data sets were generated from the digit

pairs {(1, 7), (2, 3), (2, 7), (3, 8), (4, 7), (6,9)}, and 200 digits were chosen within each class of each

data set. The USPS (odd vs. even) data set consisted of the first 80 images per digit in the USPS

training set.

The two binary artificial data sets of “g241c” and “g241d” were generated via the setup pre-

sented by Chapelle et al. (2006). Each class of these two data sets consisted of 750 samples.

The two binary gene data sets of “colon” and “leukemia” were also used in our experiments.

The “colon” data set, consisting of 40 colon tumor samples and 22 normal colon tissue samples

with 2,000 dimensions, was obtained by employing an Affymetrix oligonucleotide array to analyze

more than 6,500 human genes expressed in sequence tags (Alon et al., 1999). The “leukemia” data

set is of the same type as the “colon” cancer data set (Golub et al., 1999), and it was obtained with

respect to two variants of leukemia, that is, acute myeloid leukemia (AML) and acute lymphoblastic

leukemia (ALL). It initially contained expression levels of 7129 genes taken over 72 samples (AML,

25 samples, or ALL, 47 samples), and then it was pre-feature selected, leading to a feature space

with 3571 dimensions.

In our experiments, each data set was randomly partitioned into two disjoint subsets as the

training and test, with the percentage of the training data samples also given in Table 4. Twenty

random partitions were chosen for each data set, and the average and standard deviation of their

classification error rates over the test data were reported.

Although we can seek an optimum ρ using computationally intensive methods such as cross-

validation, the experiments showed that when ρ takes a value in [0.1,2], our method is always able

to obtain promising performance. Here our reported results are based on the setting of ρ = 1, due to
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Data Set m d k n/k

USPS (1 vs. 7) 2 256 400 3%

USPS (2 vs. 3) 2 256 400 3%

USPS (2 vs. 7) 2 256 400 3%

USPS (3 vs. 8) 2 256 400 3%

USPS (4 vs. 7) 2 256 400 3%

USPS (6 vs. 9) 2 256 400 3%

USPS (Odd vs. Even) 2 256 800 3%

g241c 2 241 1500 10%

g241d 2 241 1500 10%

colon 2 2000 62 25.8%

leukemia 2 3571 72 27.8%

Table 4: Summary of the benchmark data sets: m—the number of classes; d—the dimension of the

input vector; k—the size of the data set; n—the number of the training data.

Data Set HHSVM RLRM C -learning

(1 vs. 7) 2.29±1.17 2.06±1.21 1.60±0.93

(2 vs. 3) 8.13±2.02 8.29±2.76 8.32±2.73

(2 vs. 7) 5.82±2.59 6.04±2.60 5.64±2.44

(3 vs. 8) 12.46±2.90 10.77±2.72 11.74±2.83

(4 vs. 7) 7.35±2.89 6.91±2.72 6.68±3.53

(6 vs. 9) 2.32±1.65 2.15±1.43 2.09±1.41

(Odd vs. Even) 20.94±2.02 19.83±2.82 19.74±2.81

g241c 22.30±1.30 21.38±1.12 21.34±1.11

g241d 24.32±1.53 23.81±1.65 23.85±1.69

colon 14.57±1.86 14.47±2.02 12.34±1.48

leukemia 4.06±2.31 4.43±1.65 3.21±1.08

Table 5: Classification error rates (%) and standard deviations on the 11 data sets for the feature

expansion setting.

the relationship of the C -loss C(z) with the hinge loss (1− z)+ and the logit loss log(1+ exp(−z))
(see our analysis in Section 3 and Figure 1).

As for the parameters γ and ω, they were selected by cross-validation for all the classification

methods. In the kernel expansion, the RBF kernel K(xi,x j) = exp(−‖xi−x j‖2/σ2) was employed,

and σ was set to the mean Euclidean distance among the input samples. For C -learning, the other

parameters were set as follows: εm = εi = 10−5.

Tables 5 and 6 show the test results corresponding to the linear feature expansion and RBF kernel

expansion, respectively. From the tables, we can see that for the overall performance of C -learning

is slightly better than the two competing methods in the feature and kernel settings generally.

Figure 4 reveals that the values of the objective functions for the linear feature and RBF kernel

versions in the outer and inner iterations tend to be significantly reduced as the number of iterations

in the coordinate descent procedure increases. Although we report only the change of the values of
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Data Set HHSVM RLRM C -learning

(1 vs. 7) 1.73±1.64 1.39±0.64 1.37±0.65

(2 vs. 3) 8.55±3.36 8.45±3.38 8.00±3.32

(2 vs. 7) 5.09±2.10 4.02±1.81 3.90±1.79

(3 vs. 8) 12.09±3.78 10.58±3.50 10.36±3.52

(4 vs. 7) 6.74±3.39 6.92±3.37 6.55±3.28

(6 vs. 9) 2.12±0.91 1.74±1.04 1.65±0.99

(Odd vs. Even) 28.38±10.51 26.92±6.52 26.29±6.45

g241c 21.38±1.45 21.55±1.42 21.62±1.35

g241d 25.89±2.15 22.34±1.27 20.37±1.20

colon 14.26±2.66 14.79±2.80 13.94±2.44

leukemia 2.77±0.97 2.74±0.96 2.55±0.92

Table 6: Classification error rates (%) and standard deviations on the 11 data sets for the RBF kernel

setting.

the objective function for the data set USPS (1 vs. 7) similar results were found on all other data

sets. This shows that the coordinate descent algorithm is very efficient.

We also conducted a systematic study of sparseness from the elastic-net penalty. Indeed, the

elastic-net penalty does give rise to sparse solutions for our C -learning methods. Moreover, we

found that similar to other methods the sparseness of the solution is dependent on the parameters γ
and ω that were set to different values for different data sets using cross validation.
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Figure 4: Change of the value of the objective function for the C -learning as the number of itera-

tions in the coordinate descent procedure increases in the linear feature and RBF kernel

cases on the data set USPS (1 vs. 7): (a) the values of the objective function (12) in the

outer iteration; (b) the objective function values G(α,β) for the fature and RBF kernel

cases in the inner iteration.
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7. Conclusions

In this paper we have studied a family of coherence functions and considered the relationship be-

tween coherence functions and hinge functions. In particular, we have established some important

properties of these functions, which lead us to a feasible approach for class probability estimation in

the conventional SVM. Moreover, we have proposed large-margin classification methods using the

C -loss function and the elastic-net penalty, and developed pathwise coordinate descent algorithms

for parameter estimation. We have theoretically established the Fisher-consistency of our classifica-

tion methods and empirically tested the classification performance on several benchmark data sets.

Our approach establishes an interesting link between SVMs and logistic regression models due to

the relationship of the C -loss with the hinge and logit losses.
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Appendix A. The Proof of Proposition 2

First, we have

ρ log2+[u− z]+−Vρ,u(z) = ρ log
2exp

[u−z]+
ρ

1+exp u−z
ρ

≥ 0.

Second, note that

ρ log2+
u− z

2
−Vρ,u(z) = ρ log

2exp 1
2

u−z
ρ

1+exp u−z
ρ

≤ ρ log
exp u−z

ρ

1+exp u−z
ρ

≤ 0,

where we use the fact that exp(·) is convex.

Third, it immediately follows from Proposition (i) that limρ→0Vρ,u(z) = [u− z]+. Moreover, it

is easily obtained that

lim
ρ→∞

Vρ,u(z)−ρ log2 = lim
ρ→∞

log
1+exp u−z

ρ

2
1
ρ

= lim
α→0

log
1+expα(u−z)

2

α

= lim
α→0

1
2 [u−z]exp[α(u−z)]

1+expα(u−z)
2

=
1

2
(u−z).

Since log(1+a)≥ log(a) for a > 0, we have

u

log[1+exp(u/ρ)]
log

[

1+exp
u−z

ρ

]

≤
u

u/ρ
log

[

1+exp
u−z

ρ

]

= ρ log
[

1+exp
u−z

ρ

]

.
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We now consider that

lim
ρ→∞

Cρ,u(z) = u lim
ρ→∞

log
[

1+exp u−z
ρ

]

log[1+exp(u/ρ)]
= u.

Finally, since

lim
α→∞

log[1+exp(uα)]

αu
= lim

α→∞

exp(uα)]

1+exp(uα)
= 1 for u > 0,

we obtain limρ→0Cρ,u(z) = [u− z]+.

Appendix B. The Proof of Proposition 3

Before we prove Proposition 3, we establish the following lemma.

Lemma 13 Assume that x > 0, then f1(x) =
x

1+x
logx

log(1+x) and f2(x) =
x

1+x
1

log(1+x) are increasing and

decreasing, respectively.

Proof The first derivatives of f1(x) and f2(x) are

f ′1(x) =
1

(1+ x)2 log2(1+ x)

[

logx log(1+ x)+ log(1+ x)+ x log(1+ x)− x logx
]

f ′2(x) =
1

(1+ x)2 log2(1+ x)
[log(1+ x)− x]≤ 0.

This implies that f2(x) is decreasing. If logx ≥ 0, we have x log(1+ x)− x logx ≥ 0. Otherwise, if

logx < 0, we have logx[log(1+ x)− x] ≥ 0. This implies that f ′1(x) ≥ 0 is always satisfied. Thus,

f1(x) is increasing.

Let α = 1/ρ and use h1(α) for Lρ,u(z) to view it as a function of α. We now compute the

derivative of h1(α) w.r.t. α:

h′1(α) =
log[1+ exp(α(u−z))]

log[1+exp(uα)]
×

[ exp(α(u−z))

1+exp(α(u−z))

u−z

log[1+exp(α(u−z))]
−

exp(αu)

1+exp(αu)

u

log[1+exp(αu)]

]

=
log[1+ exp(α(u−z))]

α log[1+exp(uα)]
×

[ exp(α(u−z))

1+exp(α(u−z))

logexp(α(u−z))

log[1+exp(α(u−z))]
−

exp(αu)

1+exp(αu)

logexp(αu)

log[1+exp(αu)]

]

.

When z < 0, we have exp(α(u− z)) > exp(αu). It then follows from Lemma 13 that h′1(α) ≥ 0.

When z≥ 0, we have h′1(α)≤ 0 due to exp(α(u− z))≤ exp(αu). The proof of (i) is completed.

To prove part (ii), we regard Lρ,u(z) as a function of u and denote it with h2(u). The first

derivative h′2(u) is given by

h′2(u) =
α log[1+ exp(α(u−z))]

log[1+exp(uα)]
×

[ exp(α(u−z))

1+exp(α(u−z))

1

log[1+exp(α(u−z))]
−

exp(αu)

1+exp(αu)

1

log[1+exp(αu)]

]

.
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Using Lemma 13, we immediately obtain part (ii).

Appendix C. The Proof of Theorem 6

We write the objective function as

L( f ) =Vρ,u( f )η+Vρ,u(− f )(1−η)

= ρ log
[

1+exp
u− f

ρ

]

η+ρ log
[

1+exp
u+ f

ρ

]

(1−η).

The first-order and second-order derivatives of L w.r.t. f are given by

dL

d f
=−η

exp u− f
ρ

1+exp u− f
ρ

+(1−η)
exp u+ f

ρ

1+exp u+ f
ρ

,

d2L

d f 2
=

η

ρ

exp u− f
ρ

1+exp u− f
ρ

1

1+exp u− f
ρ

+
1−η

ρ

exp u+ f
ρ

1+exp u+ f
ρ

1

1+exp u+ f
ρ

.

Since d2L
d f 2 > 0, the minimum of L is unique. Moreover, letting dL

d f = 0 yields (7).

Appendix D. The Proof of Proposition 7

First, if η > 1/2, we have 4η(1−η)> 4(1−η)2 and (2η−1)exp(u/ρ) > 0. This implies f∗ > 0.

When η < 1/2, we have (2η−1)exp(u/ρ)> 0. In this case, since

(1−2η)2 exp(2u/ρ)+4η(1−η)< (1−2η)2 exp(2u/ρ)+4(1−η)2 +4(1−η)(1−2η)exp(u/ρ),

we obtain f∗ < 0.

Second, letting α = 1/ρ, we express f∗ as

f∗ =
1

α
log

(2η−1)exp(uα)+
√

(1−2η)2 exp(2uα)+4η(1−η)

2(1−η)

=
1

α
log

(2η−1)
|2η−1| +

√

1+ 4η(1−η)
(1−2η)2 exp(2uα)

2(1−η)exp(−uα)/|2η−1|

=
1

α
log

[

(2η−1)

|2η−1|
+

√

1+
4η(1−η)

(1−2η)2 exp(2uα)

]

−
1

α
log

[2(1−η)

|2η−1|

]

+u.

Thus, if η > 1/2, it is clear that limα→∞ f∗ = u. In the case that η < 1/2, we have

lim
α→∞

f∗ = u−u lim
α→∞

1

−1+
√

1+ 4η(1−η)
(1−2η)2 exp(2uα)

1
√

1+ 4η(1−η)
(1−2η)2 exp(2uα)

4η(1−η)

(1−2η)2
exp(−2uα)

= u−
4η(1−η)u

(1−2η)2
lim

α→∞

exp(−2uα)

−1+
√

1+ 4η(1−η)
(1−2η)2 exp(2uα)

= u−2u lim
α→∞

√

1+
4η(1−η)

(1−2η)2 exp(2uα)

=−u.
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Here we use l’Hôpital’s rule in calculating limits.

Third, let α = exp(u/ρ). It is then immediately calculated that

f ′∗(η) = 2ρ
α+ (1−2η)(1−α2)√

(1−2η)2α2+4η(1−η)

(2η−1)α+
√

(1−2η)2α2 +4η(1−η)
+

ρ

1−η
.

Consider that

A =
2α+ 2(1−2η)(1−α2)√

(1−2η)2α2+4η(1−η)

(2η−1)α+
√

(1−2η)2α2 +4η(1−η)
−

1

η

=
α− 2η+(1−2η)α2√

(1−2η)2α2+4η(1−η)

η(2η−1)α+η
√

(1−2η)2α2 +4η(1−η)
.

It suffices for f ′∗(η)≥
ρ

η(1−η) to show A≥ 0. Note that

(2η+(1−2η)α2)2

(1−2η)2α2 +4η(1−η)
−α2 =

4η2(1−α2)

(1−2η)2α2 +4η(1−η)
≤ 0

due to α ≥ 1, with equality when and only when α = 1 or, equivalently, u = 0. Accordingly, we

have α− 2η+(1−2η)α2√
(1−2η)2α2+4η(1−η)

≥ 0.

Appendix E. The Proof of Theorem 11

In order to prove the theorem, we define

δγ := sup{t : γt2 ≤ 2Vρ(0)}=
√

2/γ

for γ> 0 and let V
(γ)
ρ (y f ) be the coherence function Vρ(y f ) restricted to Y ×[−δγkmax,δγkmax], where

kmax = maxx∈X K(x,x). For the Gaussian RBF kernel, we have kmax = 1.

It is clear that

‖V (γ)
ρ ‖∞ := sup

{

V
(γ)
ρ (y f ),(y, f ) ∈ Y ×[−δγkmax,δγkmax]

}

= ρ log
(

1+ exp
u+kmax

√

2/γ

ρ

)

.

Considering that

lim
γ→0

‖V (γ)
ρ ‖∞

kmax

√

2/γ
= lim

α→∞

exp u+α
ρ

1+ exp u+α
ρ

= 1,

we have limγ→0 ‖V
(γ)
ρ ‖∞/

√

1/γ =
√

2kmax. Hence, we have ‖V (γ)
ρ ‖∞ ∼

√

1/γ.

On the other hand, since

V
(γ)
ρ (y f ) =V

(γ)
ρ (y f1)−

∂V
(γ)
ρ (y f2)

∂ f
( f − f1),
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where f2 ∈ [ f , f1]⊆ [−δγkmax,δγkmax], we have

|V (γ)
ρ |1 := sup

{

|V (γ)
ρ (y f )−V

(γ)|
ρ (y f1)

| f − f1|
, y ∈ Y , f , f1 ∈ [−δγkmax,δγkmax], f )= f1

}

= sup

{

∣

∣

∣

∂V
(γ)
ρ (y f2)

∂ f

∣

∣

∣
, y ∈ Y , f2 ∈ [−δγkmax,δγkmax]

}

=
exp

u+kmax

√
2/γ

ρ

1+ exp
u+kmax

√
2/γ

ρ

.

In this case, we have limγ→0 |V
(γ)
ρ |1 = 1, which implies that |V (γ)

ρ |1 ∼ 1.

We now immediately conclude Theorem 11 from Corollary 3.19 and Theorem 3.20 of Steinwart

(2005).

Appendix F. The Proof of Theorem 12

Note that the condition for function in the theorem implies that φ′′(z)> 0 in R, then it follows that

φ′′(z)> δ for some positive δ in a compact region (and certainly also holds in any bounded region).

We also denote

f̄n = argmin
f

∫
φ(y f (x))dFn(x,y)

and

L( f ) =
∫

φ(y f (x))dF(x,y),

Ln1( f ) =
∫

φ(y f (x))dFn(x,y)+
γ

2
‖h‖2

HK
,

Ln2( f ) =
∫

φ(y f (x))dFn(x,y).

We have f ∗, f̄n, f̂n are all unique, because the corresponding objective functions are strictly convex.

Taking the derivative of the functional L( f ) w.r.t. f yields
∫

yvφ′(y f ∗)dF(x,y) = 0 for any v ∈HK . (18)

Differentiating the functional Ln2( f ) w.r.t. f , we have
∫

yvφ′(y f̄n)dFn(x,y) = 0 for any v ∈HK . (19)

It follows from the derivative of the functional Ln1( f ) w.r.t. h that
∫

yvφ′(y f̂n)dFn(x,y)+ γ〈ĥn,v〉= 0 for any v ∈HK (20)

with f̄n = h̄n+ ᾱn and f̂n = α̂n+ ĥn. Since {ĥn} is uniformly bounded (the condition of the theorem),

and from the property |ĥn(x)| ≤ ‖ĥn‖K(x,x)1/2, we have supn,x | f̂n(x)| < M1 for some M1 > 0.

Similarly, supn,x | f̄n(x)|< M2 for some M2 > 0.
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The left-hand side of (20) is a linear functional, so it has a representer which is of the form

G1(ĥn, α̂n,γ) = ψ(α̂+ ĥn)+ γĥn. Hence, the Equation (20) can be written as

〈ψ(α̂+ ĥn)+ γĥn,v〉= 0

for any v. This implies G1(ĥn, α̂n,γ) = 0.

Differentiating Ln1( f ) w.r.t. α, we get
∫

yφ′(y f̂n(x))dFn(x,y) = 0 which is of the form

G2(ĥn, α̂n,γ) = 0. Note that the second-order derivative of Ln1( f ) w.r.t. h and α (simply denoted

as D2) is bounded and bounded away from zero, because |yi f̂n(xi)| is uniformly bounded and φ′′(z)
satisfies the conditions in the theorem. Based on the implicit function theorem, (ĥn, α̂n) can be

represented as (ĥn, α̂n)T = ζ(γ) for some function ζ(·) (here we omit the other arguments), and

ζ′(γ) =−(D2)−1(ĥn,0)T . As a result, |ζ′(γ)|≤M3 for some M3 > 0. Then we have

sup
n
{‖ĥn− h̄n‖+ |α̂n− ᾱn|}→ 0 if γ→ 0.

We need to estimate f̂n− f ∗ which is represented as the sum of f̄n− f ∗ and f̂n− f̄n. Expanding

the function φ′(y f̂n) as

φ′(y f̂n) = φ′(y f̄n)+ yφ′′(y f̄n)( f̂n− f̄n)+o( f̂n− f̄n)

and substituting them in Equation (20), we obtain (also keep in mind that (19) holds)

∫
v
[

φ′′(y f̄n)+o(1)
]

( f̂n− f̄n)dFn(x,y) =−γ〈ĥn,v〉,

which is just
1

n

n

∑
i=1

[vφ′′(yi f̄n(xi))+o(1)]( f̂n− f̄n) =−γ〈ĥn,v〉.

Note that we can chose v to be bounded, say, ‖v‖ ≤ 1. From the property of φ′′(z) and uniformly

boundedness of {yi f̄n(xi)} , we find that vφ′′(yi f̄n(xi))+ o(1) is uniformly bounded away from 0

if γ is sufficiently small. Hence we get supn,x | f̂n(x)− f̄n(x)| = O(γ), which implies
∫
| f̂n(x)−

f̄n(x)|p(x)dx = O(γ).
The next step is to estimate

∫
| f̄n(x)− f ∗(x)|p(x)dx. Note that

E(vyφ′((y f̄n(x)) =
∫

vyφ′(y f̄n(x))dF(x,y).

Based on the central limit theorem, we have

0 =
∫

vyφ′(y f̄n(x)))dFn(x,y) =
∫

vyφ′(y f̄n(x)))dF(x,y)+Op(
1√
n
).

Together with Equation (18), we have

∫
vy[φ′(y f̄n(x))−φ′(y f ∗(x))]dF(x,y) = Op(

1√
n
),

∣

∣

∣

∫
vφ′′(y f ∗(x))( f̄n(x)− f ∗(x))dF(x,y)

∣

∣

∣
= Op(

1√
n
). (21)
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If f̄n(x)− f ∗(x) )= 0, we substitute v(x) = f̄n(x)− f ∗(x)
| f̄n(x)− f ∗(x)| into the Equation (21). From the boundedness

of f ∗(x) and the property stated at the beginning of the proof, we conclude

∫
∣

∣ f̄n(x)− f ∗(x)
∣

∣p(x)dx = Op(
1√
n
).

Summarily, we have

∫
| f̂n(x)− f ∗(x)|p(x)dx = O(γ)+Op(

1√
n
).
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Abstract

We investigate a method for regression that makes use of a randomly generated subspace GP ⊂ F
(of finite dimension P) of a given large (possibly infinite) dimensional function space F , for ex-
ample, L2([0,1]d ;R). GP is defined as the span of P random features that are linear combinations
of a basis functions of F weighted by random Gaussian i.i.d. coefficients. We show practical mo-
tivation for the use of this approach, detail the link that this random projections method share with
RKHS and Gaussian objects theory and prove, both in deterministic and random design, approx-
imation error bounds when searching for the best regression function in GP rather than in F , and
derive excess risk bounds for a specific regression algorithm (least squares regression in GP). This
paper stresses the motivation to study such methods, thus the analysis developed is kept simple for
explanations purpose and leaves room for future developments.

Keywords: regression, random matrices, dimension reduction

1. Introduction

We consider a standard regression problem. Thus let us introduce X an input space, and Y = R the

real line. We denote by P an unknown probability distribution over the product space Z = X ×R

and by PX its first marginal, that is, dPX (x) =
∫
R

P (x,dy). In order for this quantity to be well

defined we assume that X is a Polish space (i.e., metric, complete, separable), see Dudley (1989,

Th. 10.2.2). Finally, let L2,PX (X ;R) be the space of real-valued functions on X that are squared

integrable with respect to (w.r.t.) PX , equipped with the quadratic norm

‖ f‖PX

def
=

√∫
X

f 2(x)dPX (x) .

In this paper, we consider that P has some structure corresponding to a model of regression with

random design; there exists a (unknown) function f ! : X → R such that if (xn,yn)n!N ∈ X ×R are

independently and identically distributed (i.i.d.) according to P , then one can write

yn = f !(xn)+ηn ,

where ηn is a centered noise, independent from PX , introduced for notational convenience. In terms

of random variables, we will often simply write Y = f !(X)+η where (X ,Y )∼ P .

c©2012 Odalric-Ambrym Maillard and Rémi Munos.
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Let F ⊂ L2,PX (X ;R) be some given class of functions. The goal of the statistician is to build,

from the observations only, a regression function f̂ ∈F that is closed to the so-called target function

f !, in the sense that it has a low excess risk R( f )−R( f !), where the risk of any f ∈ L2,PX (X ;R) is

defined as

R( f )
def
=

∫
X×R

(y− f (x))2dP (x,y) .

Similarly, we introduce the empirical risk of a function f to be

RN( f )
def
=

1

N

N

∑
n=1

[yn − f (xn)]
2 ,

and we define the empirical norm of f as ‖ f ‖N
def
=

√
1

N

N

∑
n=1

f (xn)2 .

Function spaces and penalization. In this paper, we consider that F is an infinite dimensional

space that is generated by the span over a denumerable family of functions {ϕi}i"1 of L2,PX (X ;R):
We call the {ϕi}i"1 the initial features and thus refer to F as to the initial feature space:

F
def
=

{
fα(x)

def
= ∑

i"1

αiϕi(x),‖α‖< ∞
}
.

Examples of initial features include Fourier basis, multi-resolution basis such as wavelets, and

also less explicit features coming from a preliminary dictionary learning process.

In the sequel, for the sake of simplicity we focus our attention to the case when the target

function f ! = fα! belongs to the space F , in which case the excess risk of a function f can be

written as R( f )−R( f !) = ‖ f − f !‖PX . Since F is an infinite dimensional space, empirical risk

minimization in F defined by argmin
f∈F

RN( f ) is certainly subject to overfitting. Traditional methods

to circumvent this problem consider penalization techniques, that is, one searches for a function that

satisfies

f̂ = argmin
f∈F

RN( f )+pen( f ),

where typical examples of penalization include pen( f ) = λ‖ f‖p
p for p = 1 or 2, where λ is a pa-

rameter and usual choices for the norm are "2 (ridge-regression: Tikhonov 1963) and "1 (LASSO:

Tibshirani 1994).

Motivation. In this paper we follow a complementary approach introduced in Maillard and Munos

(2009) for finite dimensional space, called Compressed Least Squares Regression, and extended in

Maillard and Munos (2010), which considers generating randomly a space GP ∈ F of finite dimen-

sion P and then returning an empirical estimate in GP. The empirical risk minimizer in GP, that is,

argming∈GP RN(g) is a natural candidate, but other choices of estimates are possible, based on tra-

ditional literature on regression when P < N (penalization, projection, PAC-Bayesian estimates...).

The generation of the space GP makes use of random matrices, that have already demonstrated

their benefit in different settings (see for instance Zhao and Zhang 2009 about spectral clustering or

Dasgupta and Freund 2008 about manifold learning).

Our goal is first to give some intuition about this method by providing approximation error and

simple excess risk bounds (which may not be the tightest possible ones as explained in Section 4.2)
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for the proposed method, and also by providing links to other standards approaches, in order to

encourage research in that direction, which, as showed in the next section, has already been used in

several applications.

Outline of the paper. In Section 2, we quickly present the method and give practical motivation

for investigating this approach. In Section 3, we give a short overview of Gaussian objects theory

(Section 3.1), which enables us to show how to relate the choice of the initial features {ϕi}i"1 to the

construction of standard function spaces via Gaussian objects (Section 3.2), and we finally state a

useful version of the Johnson-Lindenstrauss Lemma for our setting (Section 3.3).

In Section 4, we describe a typical algorithm (Section 4.1), and then provide some quick survey

of classical results in regression while discussing the validity of their assumptions in our setting

(Section 4.2). Then our main results are stated in Section 4.3, where we provide bounds on approxi-

mation error of the random space GP in the framework of regression with deterministic and random

designs, and in Section 4.4, where we derive excess risk bounds for a specific estimate.

Section 5 provides some discussion about existing results and finally appendix A contains the

proofs of our results.

2. Summary Of The Random Projection Method

From now on, we assume that the set of features {ϕi}i"1 are continuous and satisfy the assumption

that,

sup
x∈X

‖ϕ(x)‖2 < ∞, where ϕ(x)
def
= (ϕi(x))i"1 ∈ "2 and ‖ϕ(x)‖2 def

= ∑
i"1

ϕi(x)
2.

Let us introduce a set of P random features (ψp)1!p!P defined as linear combinations of the

initial features {ϕi}1"1 weighted by random coefficients:

ψp(x)
def
= ∑

i"1

Ap,iϕi(x), for 1 ! p ! P , (1)

where the (infinitely many) coefficients Ap,i are drawn i.i.d. from a centered distribution (e.g., Gaus-

sian) with variance 1/P. Then let us define GP to be the (random) vector space spanned by those

features, that is,

GP
def
=

{
gβ(x)

def
=

P

∑
p=1

βpψp(x),β ∈ R
P
}
.

In the sequel, PG will refer to the law of the Gaussian variables, Pη to the law of the observation

noise and PY to the law of the observations. Remember also that PX refers to the law of the inputs.

One may naturally wish to build an estimate g
β̂

in the linear space GP. For instance in the case of

deterministic design, if we consider the ordinary least squares estimate, that is,

β̂ = argminβ∈RP RN(gβ), then we can derive the following result (see Section 4.4 for a similar result

with random design):

Theorem 1 (Deterministic design) Assuming that the random variable Y is such that |Y |! B, then

for all P " 1, for all δ ∈ (0,1) there exists an event of PY ×PG -probability larger than 1− δ such
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that on this event, the excess risk of the least squares estimate g
β̂

is bounded as

‖g
β̂
− f !‖2

N !
12log(8N/δ)

P
‖α!‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 +κB2 P+ log(2/δ)

N
, (2)

for some numerical constant κ > 0.

Example: Let us consider as an example the features {ϕi}i"1 to be a set of functions defined by

rescaling and translation of a mother one-dimensional hat function (illustrated in Figure 1, middle

column) and defined precisely in paragraph 3.2.2. Then in this case we can show that

‖α!‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 !
1

2
‖ f !‖2

H1 ,

where H1 = H1([0,1]) is the Sobolev space of order 1. Thus we deduce that the excess risk is

bounded as ‖g
β̂
− f !‖2

N = O(
B‖ f !‖

H1 log(N/δ)√
N

) for P of the order
√

N.

Similarly, the analysis given in paragraph 3.2.1 below shows that when the features {ϕi}i"1 are

wavelets rescaled by a factor σi = σ j,l = 2− js for some real number s > 1/2, where j, l are the

scale and position index corresponding to the ith element of the family, and that the mother wavelet

enables to generate the Besov space Bs,2,2([0,1]) (see paragraph 3.2.1), then for some constant c, it

holds that

‖α!‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 !
c

1−2−2s+1
‖ f !‖2

s,2,2 .

Thus the excess risk in this case is bounded as ‖g
β̂
− f !‖2

N = O(B‖ f !‖s,2,2 log(N/δ)√
N

).

2.1 Comments

The second term in the bound (2) is a usual estimation error term in regression, while the first term

comes from the additional approximation error of the space GP w.r.t. F . It involves the norm of the

parameter α!, and also the norm ‖ϕ(x)‖ at the sample points.

The nice aspects of this result:

• The weak dependency of this bound with the dimension of the initial space F . This appears

implicitly in the terms ‖α!‖2 and 1
N ∑N

n=1 ‖ϕ(xn)‖2, and we will show that for a large class of

function spaces, these terms can be bounded by a function of the norm of f ! only.

• The result does not require any specific smoothness assumptions on the initial features {ϕi}i"1;

by optimizing over P, we get a rate of order N−1/2 that corresponds to the minimax rates under

such assumptions up to logarithmic factors.

• Because the choice of the subspace GP within which we perform the least-squares estimate is

random, we avoid (with high probability) degenerated situations where the target function f !

cannot be well approximated with functions in GP. Indeed, in methods that consider a given

deterministic finite-dimensional subspace G of the big space F (such as linear approximation

using a predefined set of wavelets), it is often possible to find a target function f ! such that
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infg∈GP ‖ f !−g‖N is large. On the other hand when we use the random projection method, the

random choice of GP implies that for any f ! ∈ F , the approximation error infg∈GP ‖ f !−g‖N

can be controlled (by the first term of the bound (2)) in high probability. See section 5.2

for an illustration of this property. Thus the results we obtain is able to compete with non-

linear approximation (Barron et al., 2008) or kernel ridge regression (Caponnetto and De Vito,

2007).

• In terms of numerical complexity, this approach is more efficient than non-linear regression

and kernel ridge regression. Indeed, once the random space has been generated, we simply

solve a least squares estimate in a low-dimensional space. The computation of the Gram

matrix involves performing random projections (which can be computed efficiently for several

choices of the random coefficients Ap,i, see Liberty et al. 2008; Ailon and Chazelle 2006;

Sarlos 2006 and many other references therein). Numerical aspects of the algorithms are

described in Section 5.4.

Possible improvements. As mentioned previously we do not make specific assumptions about

the initial features {ϕi}i"1. However, considering smoothness assumptions on the features would

enable to derive a better approximation error term (first term of the bound (2)); typically with a

Sobolev assumption or order s, we would get a term of order P−2s instead of P−1. For simplicity of

the presentation, we do not consider such assumptions here and report the general results only.

The log(N) factor may be seen as unwanted and one would like to remove it. However, this

term comes from a variant of the Johnson-Lindenstrauss lemma combined with a union bound, and

it seems difficult to remove it, unless the dimension of F is small (e.g., we can then use covers) but

this case is not interesting for our purpose.

Possible extensions of the random projection method. It seems natural to consider other construc-

tions than the use of i.i.d. Gaussian random coefficients. For instance we may consider Gaussian

variables with variance σ2
i /P different for each i instead of homeoscedastic variables, which is ac-

tually equivalent to considering the features {ϕ′
i}i"1 with ϕ′

i = σiϕi instead.

Although in the paper we develop results using Gaussian random variables, such method will

essentially work similarly for matrices with sub-Gaussian entries as well.

A more important modification of the method would be to consider, like for data-driven pe-

nalization techniques, a data-dependent construction of the random space GP, that is, using a data-

driven distribution for the random variable Ap,i instead of a Gaussian distribution. However the

analysis developed in this paper will not work for such modification, due to the fact we longer have

independent variables, and thus a different analysis is required.

Illustration. In order to illustrate the method, we show in figure 1 three examples of initial

features {ϕi} (top row) and random features {ψp} (bottom row). The first family of features is

the basis of wavelet Haar functions. The second one consists of multi-resolution hat functions

(see paragraph 3.2.2) and the last one shows multi-resolution Gaussian functions. For example,

in the case of multi-resolution hat functions (middle column), the corresponding random features

are Brownian motions. The linear regression with random projections approach described here

simply consists in performing least-squares regression using the set of randomly generated features

{ψp}1!p!P (e.g., Brownian motions).
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Figure 1: Three representative of initial features ϕ (top row) and a sample of a corresponding ran-

dom feature ψ (bottom row). The initial set of features are (respectively) Haar functions

(left), multi-resolution hat functions (middle) and multi-resolution Gaussian functions

(right).

2.2 Motivation From Practice

We conclude this introduction with some additional motivation to study such objects coming from

practical applications. Let us remind that the use of random projections is well-known in many

domains and applications, with different names according to the corresponding field, and that the

corresponding random objects are widely studied and used. Our contribution is to provide an anal-

ysis of this method in a regression setting.

For instance, in Sutton and Whitehead (1993) the authors mentioned such constructions under

the name random representation as a tool for performing value function approximation in practical

implementations of reinforcement learning algorithms, and provided experiments demonstrating the

benefit of such methods. They also pointed out that such representations were already used in 1962

in Rosenblatt’s perceptron as a preprocessing layer. See also Sutton (1996) for other comments

concerning the practical benefit of “random collapsing” methods.

Another example is in image processing, when the initial features are chosen to be a wavelet

(rescaled) system, in which case the corresponding random features {ψp}1!p!P are special cases of

random wavelet series, objects that are well studied in signal processing and mathematical physics

(see Aubry and Jaffard 2002; Durand 2008 for a study of the law of the spectrum of singularities of

these series).

Noise model and texture generation. The construction of Gaussian objects (see paragraph 3.2.1)

is highly flexible and enables to do automatic noise-texture generation easily, as explained in Deguy
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Figure 2: Example of an initial large texture (left), subsampled (middle), and possible recovery

using regression with random projections (right)

and Benassi (2001). In their paper, the authors show that with the appropriate choice of the wavelet

functions and when using rescaling coefficients of the form σ j,l = 2− js with scale index j an position

index l (see paragraph 3.2.1), where s is not a constant but is now a function of j and l, we can

generate fractional Brownian motions, multi-scale fractional Brownian motions, and more generally

what is called intermittent locally self-similar Gaussian processes.

In particular, for image texture generation they introduce a class of functions called morphlets

that enables to perform approximations of intermittent locally self-similar Gaussian processes.

These approximations are both numerically very efficient and have visually imperceptible differ-

ences to the targeted images, which make them very suitable for texture generation. The authors

also allow other distributions than the Gaussian for the random variables ξ (which thus does not

fit the theory presented here), and use this additional flexibility to produce an impressive texture

generator.

Figure 2 illustrates an example performed on some simple texture model1 where an image of

size 512×512 is generated (two-dimensional Brownian sheet with Hurst index H = 1.1) (left) and

then subsampled at 32× 32 (middle), which provides the data samples for generating a regression

function (right) using random features (generated from the symlets as initial features, in the simplest

model when s is constant).

3. Gaussian Objects

We now describe some tools of Gaussian object theory that would be useful in later analysis of

the method. Each random feature ψp built from Equation (1), when the coefficients are Gaussian,

qualifies as a Gaussian object. It is thus natural to study some important features of Gaussian

objects.

1. The authors wish to thank Pierre Chainais for performing experimental study of random projection methods applied

to image processing, and for providing us with interesting pointers to related works.
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3.1 Reminder of Gaussian Objects Theory

In all this section, S will refer to a vector space, S ′ to its topological dual, and (·, ·) to its duality

product. The reader mostly interested in application of the random projection method may skip this

section and directly go to Subsection 3.2 that provides examples of function spaces together with

explicit construction of the abstract objects considered here.

Definition 2 (Gaussian objects) A random variable W ∈ S is called a Gaussian object if for all

ν ∈ S ′, (ν,W ) is a Gaussian (real-valued) variable. We further call any a ∈ S to be an expectation

of W if

∀ν ∈ S ′ , E(ν,W ) = (ν,a)< ∞ ,

and any K : S ′ → S to be a covariance operator of W if

∀ν,ν′ ∈ S ′ ,Cov((ν,W )(ν′,W )) = (ν,Kν′)< ∞ ,

where Cov refers to the correlation between two real-valued random variables.

Whenever there exist such a and K, we say that W follows the law N (a,K). Moreover, W is

called a centered Gaussian object if a = 0.

Kernel space. We only provide a brief introduction to this notion and refer the interested reader

to Lifshits (1995) or Janson (1997) for refinements.

Let I′ : S ′ → L2(S ,N (0,K)) be the canonical injection from the space of continuous linear

functionals S ′ to the space of measurable linear functionals

L2(S ;R,N (0,K)) =
{

z : S → R,EW∼N (0,K)|z(W )|2 < ∞
}
,

endowed with inner product 〈z1,z2〉=E(z1(W )z2(W )), that is, for any ν∈ S ′, I′ is defined by I′(ν) =
(ν, ·). It belongs to L2(S ;R,N (0,K)) since by definition of K we have (ν,Kν) = E(ν,W )2 < ∞.

Then note that the space defined by S ′
N

def
= I′(S ′), that is, the closure of the image of S ′ by I′ in the

sense of L2(S ;R,N (0,K)), is a Hilbert space with inner product inherited from L2(S ;R,N (0,K)).
Now under the assumption that I′ is continuous (see Section 4.1 for practical conditions ensuring

that this is the case), we can define the adjoint I : S ′
N → S of I′, by duality. Indeed for any µ ∈ S ′

and z ∈ I′(S ′), we have by definition that

(µ, Iz) =
〈
I′µ,z

〉
S ′

N
= EW ((µ,W )z(W )) ,

from which we deduce by continuity that Iz = EW (Wz(W )). For the sake of clarity, this specifies

for instance in the case when S = L2(X ;R), for all x ∈ X as

(Iz)(x) = EW (W (x)z(W )) .

Now that the two injection mappings I, I′ have been defined, we are ready to provide the formal

(though slightly abstract) definition for our main object of interest:

Definition 3 (Kernel space) Provided that the mapping I′ is continuous, then we define the kernel

space of a centered Gaussian object W as K
def
= I(I′(S ′))⊂ S .
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A more practical way of dealing with kernels is given by the two following lemmas that we use

extensively in Section 3.2. First, the kernel space can be built alternatively based on a separable

Hilbert space H as follows (Lifshits, 1995):

Lemma 4 (Construction of the Kernel space.) Let J : H → S be an injective linear mapping such

that K = JJ′, where J′ is the adjoint operator of J. Then the kernel space of N (0,K) is K = J(H ),

endowed with inner product 〈Jh1,Jh2〉H
def
= 〈h1,h2〉H .

We then conclude this section with the following Lemma from Lifshits (1995) that enables to

define the expansion of a Gaussian object W .

Lemma 5 (Expansion of a Gaussian object) Let {ϕi}i"1 be an orthonormal basis of K for the

inner product 〈·, ·〉K and {ξi
i.i.d.∼ N (0,1)}i"1. Then ∑∞

i=1 ξiϕi is a Gaussian object following the

law N (0,K). It is called an expansion for N (0,K).

Note that from Lemma 4, one can build an orthonormal basis {ϕi}i"1 by defining, for all i " 1,

ϕi = Jhi where {hi}i"1 is an orthonormal basis of H and J satisfies conditions of Lemma 4.

3.2 Interpretation of Some Function Spaces with Gaussian Objects Theory

In this section, we precise the link between Gaussian objects theory and reproducing kernel Hilbert

spaces (RKHS) in order to provide more intuition about such objects. Indeed in many cases, the

kernel space of a Gaussian object is a RKHS. Note, however, that in general, depending on the

Gaussian object we consider, the former space may also be a more general space for instance when

the Hilbert assumption is dropped (see Canu et al. 2002 about RKS). Therefore, there is no one-to-

one correspondence between RKHS and kernel spaces of Gaussian objects and it is worth explaining

when the two notions coincide. More importantly, this section shows various examples of classical

function spaces, related to the construction of the space GP for different choices of initial features

{ϕi}i"1, and that can be useful for applications.

3.2.1 GAUSSIAN OBJECTS WITH A SUPPORTING HILBERT SPACE

In this subsection only, we make the assumption that S = H is a Hilbert space and we introduce

{ei}i"1 an orthonormal basis of H . Let us now consider ξi ∼ N (0,1) i.i.d., and positive coefficients

σi " 0 such that ∑i σ2
i < ∞. Since ∑i σ2

i < ∞, the Gaussian object W = ∑i ξiσiei is well defined and

our goal is to identify the kernel of the law of W .

To this aim we first identify the function I′. Since S is a Hilbert space, then its dual is S ′ = S ,

thus we consider f = ∑i ciei ∈ S ′ for some c ∈ "2. For such an f , we deduce by the previous section

that the injection mapping is given by (I′ f )(g) = ∑i ci(g,ei), and that we also have

‖I′ f‖2
S ′

N
= E

(
(I′ f ,W )2

)
= E

((
∑
i"1

σiξici

)2)
= ∑

i"1

σ2
i c2

i .

Now, since ‖ f‖S = ‖c‖"2 , the continuity of I′ is insured by the assumption that ∑i σ2
i < ∞, and

thus I is defined as in the previous section. Therefore, a function in the space K corresponding to f

is of the form ∑i σiciei, and one can easily check that the kernel space of the law of W is thus given

by

K =
{

fc = ∑
i"1

ciei ; ∑
i"1

( ci

σi

)2
< ∞

}
,
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endowed with inner product ( fc, fd)K = ∑i"1
cidi

σ2
i

.

Reproducing Kernel Hilbert Spaces (RKHS). Note that if we now introduce the functions {ϕi}i"1

defined by ϕi
def
= σiei ∈ H , then we get

K =
{

fα = ∑
i"1

αiϕi ; ‖α‖l2 < ∞
}
,

endowed with inner product ( fα, fβ)K = 〈α,β〉l2 . For instance, if we consider that H ⊂ L2,µ(X ;R)
for some reference measure µ, and that {ei}i"1 are orthonormal w.r.t. L2,µ(X ;R), then K appears

to be a RKHS that can be made fully explicit; its kernel is defined by k(x,y) = ∑∞
i=1 σ2

i ei(x)ei(y) ,
and {σi}i"1 and {ei}i"1 are trivially the eigenvalues and eigenfunctions of the integral operator

Tk : L2,µ(X )→ L2,µ(X ) defined by (Tk( f ))(x) =
∫

X k(x,y) f (y)dµ(y).

Wavelet basis and Besov spaces. In this paragraph, we now apply the previous construction to

the case when the {ei}i"1 are chosen to be a wavelet basis of functions defined on X = [0,1] with

reference measure µ being the Lebesgue measure. Let e denote the mother wavelet function, and let

us write e j,l the ith element of the basis, with j ∈ N a scale index and l ∈ {0, . . . ,2 j −1} a position

index, where we re-index all families indexed by i with the indice j, l. Let us define the coefficients

{σi}i"1 to be exponentially decreasing with the scale index:

σ j,l
def
= 2− js for all j " 0 and l ∈ {0, . . . ,2 j −1} ,

where we introduced some positive real number s.

Now assume that for some q ∈ N \ {0} such that q > s, the mother wavelet function e belongs

to C q(X ), the set of q-times continuously differentiable functions on X , and admits q vanishing

moments. The reason to consider such case is that the (homogeneous) Besov space Bs,2,2([0,1]d)
then admits the following known characterization (independent of the choice of the wavelets, see

Frazier and Jawerth 1985; Bourdaud 1995):

Bs,2,2(X ;µ) =
{

f ∈ L2,µ(X ) ; ‖ f‖2
s,2,2

def
=

∞

∑
j=1

[
22 js

2 j−1

∑
l=0

|
〈

f ,e j,l
〉
|2
]
< ∞

}
.

On the other hand, with the notations above, where in particular ϕ j,l = σ j,lε j,l , we deduce that

the kernel space of the Gaussian object W = ∑ j,l ξ j,lϕ j,l (that we call a Scrambled wavelet), is

simply the space

K =
{

fα = ∑
j,l

α j,lϕ j,l ; ∑
j,l

α2
j,l < ∞

}
,

and a straightforward computation shows that ‖α‖2
l2
= ‖ fα‖2

s,2,2, so that K =Bs,2,2(X ;µ). Moreover,

assuming that the mother wavelet is bounded by a constant λ and has compact support [0,1], then

we have the property that is useful in view of our main Theorem

sup
x∈X

‖ϕ(x)‖2 !
λ2

1−2−2s+1
.

Note that a similar construction applies to the case when the orthonormal basis {ei}i"1 is chosen

to be a Fourier basis of functions, and the coeficients {σi}i"1 are chosen to be of the form σi = i−s.
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3.2.2 GAUSSIAN OBJECTS DEFINED BY A CARLEMAN EXPANSION

We now no longer assume that the supporting space S is a Hilbert space. In this case, it is still

possible to generate a Gaussian object with kernel space being a RKHS by resorting to Carleman

operators.

A Carleman operator is a linear injective mapping J : H .→ S (where H is a Hilbert space) such

that J(h)(t) =
∫

Γt(s)h(s)ds where (Γt)t is a collection of functions of H . As shown for instance

in Canu et al. (2002); Saitoh (1988), there is a bijection between Carleman operators and the set of

RKHSs. In particular, J(H ) is a RKHS.

A Gaussian object admitting J(H ) as a kernel space can be built as follows. By application of

Lemma 5, we have that K = J(H ) endowed with the inner product 〈Jh1,Jh2〉K
def
= 〈h1,h2〉H is the

kernel space of N (0,JJ′). Now, if we consider an orthonormal basis {ei}i"1 of H , an application

of Lemma 5 shows that the functions {ϕi}i"1 defined by ϕi
def
= J(ei) form an orthonormal basis of

J(H ) and are such that the object W = ∑i"1 ξiϕ is first a well-defined Gaussian object and then

an expansion for the law N (0,JJ′). We call this expansion a Carleman expansion. Note that this

expansion is bottom-up whereas the Mercer expansion of a kernel via the spectral Theorem is top-

down, see, for example, Zaanen (1960).

Cameron-Martin space. We apply as an example this construction to the case of the Brownian

motion and the Cameron-Martin space.

Let S = C ([0,1]) be the space of continuous real-valued functions of the unit interval. Then

S ′ is the set of signed measures and we can define the dual product by (ν, f ) =
∫
[0,1] f dν. It is

straightforward to check that the Brownian motion indexed by [0,1] is a Gaussian object W ∈ S ,

with a ≡ 0 and K defined by (Kν)(t) =
∫
[0,1] min(s, t)ν(ds).

Kernel space. We consider the Hilbert space H = L2([0,1]) and define the mapping J : H .→ S
by

(Jh)(t) =
∫
[0,t]

h(s)ds ;

simple computations show that (J′ν)(t) = ν([t,1]), K = JJ′ and that J is a Carleman operator.

Therefore, the kernel space K is equal to J(L2([0,1])), or more explicitly

K =
{

k ∈ H1([0,1]);k(0) = 0
}
,

where H1([0,1]) is the Sobolev space of order 1.

Expansion of the Brownian motion. We build a Carleman expansion for the Brownian motion

thanks to the Haar basis of L2([0,1]), whose image by J defines an orthonormal basis of K ; the Haar

basis (e0,{e j,l} j,l∈N ) is defined in a wavelet-way via a mother function e(x) = I[0,1/2[− I[1/2,1[ and

father function e0(x) = I[0,1](x) with functions {e j,l} j,l∈N defined for any scale j " 1 and translation

index 0 ! l ! 2 j −1 by

e j,l(x)
def
= 2 j/2e(2 jx− l) .

An orthonormal basis of the kernel space of the Brownian motion W and an expansion of W is thus

obtained by

W = ∑
j,l"1

ξ j,lϕ j,l +ξ0ϕ0,

with ϕ j,l(x) = Je j,l(x) = 2− j/2Λ(2 jx− l) and ϕ0(x) = Je0(x) = x ,
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where Λ(x) = xI[0,1/2[ + (1− x)I[1/2,1[ is the mother hat function.

Bounded energy. Note that the rescaling factor inside ϕ j,l naturally appears as 2− j/2, and not

as 2 j/2 as usually defined in wavelet-like transformations. Note also that since the support of the

mother function Λ is [0,1], and also ‖Λ‖∞ ! 1/2, then for any x ∈ [0,1]d , for all j there exists at

most one l = l(x) such that ϕ j,l(x) 0= 0, and we have the property that

‖ϕ(x)‖2 = ∑
j"1

ϕ j,l(x)(x)
2 ! ∑

j"1

(2− j/2‖Λ‖∞)
2 !

1

2
.

Remark 6 This construction can be extended to the dimension d > 1 in at least two ways. Consider

the space S = C ([0,1]d), and the Hilbert space H = L2([0,1]d). Then if we define J to be the volume

integral (Jh)(t) =
∫
[0,t] h(s)ds where [0, t]⊂ [0,1]d, this corresponds to the covariance operator de-

fined by (Kν)(t) =
∫
[0,1]d Πd

i=1 min(si, ti)ν(ds), that is, to the Brownian sheet defined by tensorization

of the Brownian motion. The corresponding kernel space in this case is thus K = J(L2([0,1]d)),

endowed with the norm ‖ f‖K = ‖ ∂d f
∂x1...∂xd

‖L2([0,1]d). It corresponds to the Cameron-Martin space

(Janson, 1997) of functions having a d-th order crossed (weak) derivative ∂d f
∂x1...∂xd

that belongs to

L2([0,1]d), vanishing on the “left” boundary (edges containing 0) of the unit d-dimensional cube.

A second possible extension that is not detailed here would be to consider the isotropic Brownian

sheet.

3.3 A Johnson-Lindenstrauss Lemma for Gaussian Objects

In this section, we derive a version of the Johnson-Lindenstrauss’ lemma that applies to the case of

Gaussian objects.

The original Johnson-Lindenstrauss’ lemma can be stated as follows; its proof directly uses

concentration inequalities (Cramer’s large deviation Theorem from 1938) and may be found, for

example, in Achlioptas (2003).

Lemma 7 Let A be a P×F matrix of i.i.d. Gaussian N (0,1/P) entries. Then for any vector α in

RF , the random (with respect to the choice of the matrix A) variable ‖Aα‖2 concentrates around its

expectation ‖α‖2 when P is large: for ε ∈ (0,1), we have

P

(
‖Aα‖2 " (1+ ε)‖α‖2

)
! e−P(ε2/4−ε3/6) ,

and P

(
‖Aα‖2 ! (1− ε)‖α‖2

)
! e−P(ε2/4−ε3/6) .

Remark 8 Note the Gaussianity is not mandatory here, and this is also true for other distributions,

such as:

• Rademacher distributions, that is, which takes values ±1/
√

P with equal probability 1/2,

• Distribution taking values ±
√

3/P with probability 1/6 and 0 with probability 2/3.

What is very important is the scaling factor 1/P appearing in the variance of N (0,1/P).

This Lemma together with the measurability properties of Gaussian objects enable us to derive

the following statement.
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Lemma 9 Let {xn}n!N be N (deterministic) points of X . Let A : "2(R) .→RP be the operator defined

with i.i.d. Gaussian N (0,1/P) variables (Ai,p)i"1,p!P, such that for all α ∈ "2(R), then

(Aα)p = ∑
i"1

αiAi,p .

Let us also define ψp = ∑
i"1

Ai,pϕi, fα = ∑
i"1

αiϕi and gβ =
P

∑
p=1

βpψp.

Then, A is well-defined and for all P " 1, for all ε ∈ (0,1), with probability larger than 1−
4Ne−P(ε2/4−ε3/6) w.r.t. the Gaussian random variables,

‖ fα −gAα‖2
N ! ε2‖α‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 ,

where we recall that by assumption, for any x, ϕ(x)
def
= (ϕi(x))i"1 is in "2.

This result is natural in view of concentration inequalities, since for all x ∈ X , the expecta-

tion satisfies EPG (gAα(x)) = fα(x) and the variance VPG (gAα(x)) =
1
P( f 2

α(x)+ ‖α‖2‖ϕ(x)‖2). See

Appendix A.1 for the full proof.

Note also that a natural idea in order to derive generalization bounds would be to derive a similar

result uniformly over X instead of a union bound over the samples. However, while such extension

would be possible for finite dimensional spaces F (by resorting to covers) these kind of results are

not possible in the general case, since F is typically big.

More intuition. Let us now provide some more intuition about when such a result is interesting.

In interesting situations described in Section 4 we consider a number of projections P lower than

the number of data samples N, typically P is of order
√

N. Thus, it may seem counter-intuitive

that we can approximate—at a set of N points—a function fα that lies in a high (possibly infinite)

dimensional space F by a function gAα in a space G of dimension P < N.

Of course in general this is not possible. To illustrate this case, let us consider that there is no

noise, assume that all points (xn)n!N belong to the unit sphere, and that ϕ is the identity of X = RD.

Thus a target function f is specified by some α∈RD (where D is assumed to be large, that is, D>N)

and the response values are yn = fα(xn) = αT xn. Write ŷ ∈ RD the estimate gAα at the points, that is,

such that ŷn = gAα(xn). In that case, the bound of Lemma 9 provides an average quadratic estimation

error 1
N ‖y− ŷ‖2 of order

log(N/δ)

P
||α||2, with probability 1−δ.

On the other hand the zero-value regressor has an estimation error of

1

N
‖y‖2 =

1

N

N

∑
n=1

(αT xn)
2 = αT Sα , where S

def
=

1

N

N

∑
n=1

xnxT
n ∈ R

D×D .

This shows that the result of Lemma 9 is essentially interesting when
αT Sα

‖α‖2
1

log(N/δ)

P
, which

may not happen in certain cases: Indeed if we specifically choose xn = en ∈ RD, for n ! N ! D,

where (e1, . . . ,eD) denotes the Euclidean basis of RD, then for such a choice, we have

αT Sα

||α||2
=

∑N
d=1 α2

d

N ∑D
d=1 α2

d

!
1

N
!

log(N/δ)

P
,
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which means that the random projection method fails to recover a better solution than a trivial one.

The reason why it fails is that in that case the points {xn}n!N lie in a subspace of RD of high-

dimension N, that is, such that the information at any set of points does not help us to predict the

value at any other point. Essentially, what Lemma 9 tells us is that the random projection method

will work when the points {xn}n!N lie in a vector subspace of smaller dimension d0 < N and that

the d0 corresponding coefficients of α contain most information about α (i.e., the other D− d0

coordinates are small). Let us illustrate this case by considering the case where xn = e1+(n mod d0)
for all n ! N. In that case, we have (for N multiple of d0),

αT Sα

||α||2
=

∑
d0

d=1 α2
d

d0 ∑D
d=1 α2

d

,

which is larger than
log(N/δ)

P whenever the components {αd}d>d0 decrease fast and P is large enough,

in which case, the random projection method will work well.

Now introducing features, the condition says that the number of relevant features should be rela-

tively small, in the sense that the parameter should mostly contain information at the corresponding

coordinates, which is the case in many functional spaces, such as the Sobolev and Besov spaces

(for which D = ∞) described in Section 2 and Section 3.2.1, paragraph ”Wavelet basis and Besov

spaces”, for which ‖α‖ equals the norm of the function fα in the corresponding space. Thus a

”smooth” function fα (in the sense of having a low functional norm) has a low norm of the param-

eter ‖α‖, and is thus well approximated with a small number of wavelets coefficients. Therefore,

Lemma 9 is interesting and the random projection method will work in such cases (i.e., the addi-

tional projection error is controlled by a term of order ‖α‖2 log(N/δ)
P ).

4. Regression With Random Subspaces

In this section, we describe the construction of the random subspace GP ⊂ F defined as the span

of the random features {ψp}p!P generated from the initial features {ϕi}i"1. This method was

originally described in Maillard and Munos (2009) for the case when F is of finite dimension, and

we extend it here to the non-obvious case of infinite dimensional spaces F , which relies on the fact

that the randomly generated features {ψp}p!P are well-defined Gaussian objects.

The next subsection is devoted to the analysis of the approximation power of the random features

space. We first give a survey of existing results on regression together with the standard hypothesis

under which they hold in section 4.2, then we describe in section 4.4 an algorithm that builds the

proposed regression function and provide excess risk bounds for this algorithm.

4.1 Construction of Random Subspaces

Assumption on initial features. In this paper we assume that the set of features {ϕi}i"1 are con-

tinuous and satisfy the assumption that,

sup
x∈X

‖ϕ(x)‖2 < ∞, where ‖ϕ(x)‖2 def
= ∑

i"1

ϕi(x)
2. (3)

Note that all examples in Section 3 satisfy this condition.
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Random features. The random subspace GP is generated by building a set of P random fea-

tures {ψp}1!p!P defined as linear combinations of the initial features {ϕi}1"1 weighted by random

coefficients:

ψp(x)
def
= ∑

i"1

Ap,iϕi(x), for 1 ! p ! P ,

where the (infinitely many) coefficients Ap,i are drawn i.i.d. from a centered distribution with vari-

ance 1/P. Here we explicitly choose a Gaussian distribution N (0,1/P). Such a definition of

the features ψp as an infinite sum of random variable is not obvious (this is an expansion of a

Gaussian object) and we refer to the Section 3 for elements of theory about Gaussian objects and

Lemma 5 for the expansion of a Gaussian object. It is shown that under Assumption (3), the ran-

dom features are well defined. Actually, they are random samples of a centered Gaussian process

indexed by the space X with covariance structure given by 1
P 〈ϕ(x),ϕ(x

′)〉, where we use the notation

〈u,v〉 def
= ∑i uivi for two square-summable sequences u and v. Indeed, EAp [ψp(x)] = 0, and

CovAp(ψp(x),ψp(x
′)) = EAp [ψp(x)ψp(x

′)] =
1

P ∑
i"1

ϕi(x)ϕi(x
′) =

1

P

〈
ϕ(x),ϕ(x′)

〉
.

The continuity of each of the initial features {ϕi}i"1 guarantees that there exists a continuous version

of the process ψp that is thus a Gaussian process.

Random subspace. We finally define GP ⊂ F to be the (random) vector space spanned by those

features, that is,

GP
def
=

{
gβ(x)

def
=

P

∑
p=1

βpψp(x),β ∈ R
P
}
.

We now want to compute a high probability bound on the excess risk of an estimator built using

the random space GP. To this aim, we first quickly review known results in regression and see

what kind of estimator can be considered and what results can be applied. Then we compute a high

probability bound on the approximation error of the considered random space w.r.t. to initial space

F . Finally, we combine both bounds in order to derive a bound on the excess risk of the proposed

estimate.

4.2 Reminder of Results on Regression

Short review of existing results. For the sake of completeness, we now review other existing

results in regression that may or may not apply to our setting. Indeed it seems natural to apply

existing results for regression to the space GP. For that purpose, we focus on the randomness

coming from the data points only, and not from the Gaussian entries. We will thus consider in this

subsection only a space G that is the span over a deterministic set of P functions {ψp}p!P, and we

will write, for a convex subset Θ ⊂ RP,

GΘ
def
=

{
gθ ∈ G ;θ ∈ Θ

}
.

Similarly, we write g!
def
= argmin

g∈G
R(g) and g!Θ

def
= argmin

g∈GΘ

R(g). Examples of well studied estimates

are:
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• ĝols def
= argming∈G RN(g), the ordinary least-squares (ols) estimate.

• ĝerm def
= argming∈GΘ

RN(g) the empirical risk minimizer (erm) that coincides with the ols when

Θ = RP.

• ĝridge def
= argming∈G RN(g)+λ‖θ‖, ĝlasso def

= argming∈G RN(g)+λ‖θ‖1.

We also introduce for convenience gB, the truncation at level ±B of some g ∈ G , defined by gB(x)
def
=

TB[g(x)], where TB(u)
def
=

{
u if |u|! B,
B sign(u) otherwise.

There are at least 9 different theorems that one may want to apply in our setting. Since those

theorems hold under some assumptions, we list them now. Unfortunately, as we will see, these

assumptions are usually slightly too strong to apply in our setting, and thus we will need to build

our own analysis instead.

Assumptions Let us list the following assumptions.

• Noise assumptions: (for some constants B,B1,σ,ξ)

(N1) |Y |! B1,

(N2) supx∈X E(Y |X = x)! B,

(N3) supx∈X V(Y |X = x)! σ2,

(N4) ∀k " 3 supx∈X E(|Y |k|X = x)! σ2k!ξk−2 .

• Moment assumptions: (for some constants σ,a,M)

(M1) supx∈X E([Y −g!Θ(X)]2|X = x)! σ2,

(M2) supx∈X E(exp[a|Y −g!Θ(X)|]|X = x)! M,

(M3) ∃g0 ∈ GΘ supx∈X E(exp[a|Y −g0(X)|]|X = x)! M .

• Function space assumptions for G : (for some constant D)

(G1) supg1,g2∈GΘ
‖g1 −g2‖∞ ! D,

(G2) ∃g0 ∈ GΘ, known, such that ‖g0 −g!Θ‖∞ ! D .

• Dictionary assumptions:

(D1) L = max
1!p!P

‖ψp‖∞ < ∞,

(D2) L = supx∈X ‖ψ(x)‖2 < ∞,

(D3) esssup‖ψ(X)‖2 ! L,

(D4) L = inf
{ψ′

p}p!P

sup
θ∈Rd−{0}

‖∑P
p=1 θpψ′

p‖∞

‖θ‖∞
< ∞ where the infimum is over all orthonormal ba-

sis of G w.r.t. to L2,PX (X ;R) .

• Orthogonality assumptions:

(O1) {ψp}p!P is an orthonormal basis of G w.r.t. to L2,PX (X ;R),
(O2) det(Ψ)> 0 , where Ψ = E(ψ(X)ψ(X)T ) is the Gram matrix.

• Parameter space assumptions:

(P1) supθ∈Θ ‖θ‖∞ < ∞,

(P2) ‖θ!‖1 ! S where θ! is such that gθ! = g!Θ and S is known,

(P3) supθ∈Θ ‖θ‖2 ! 1 .
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Theorem 10 (Györfi et al. 2002) Let Θ = RP. Under assumption (N2) and (N3), the truncated

estimator ĝL = TL(ĝols) satisfies

ER(ĝL)−R( f (reg))! 8[R(g∗)−R( f (reg))]+κ
(σ2 ∨B2)P log(N)

N
,

where κ is some numerical constant and f (reg)(x)
def
= E(Y |X = x).

Theorem 11 (Catoni 2004) Let Θ ⊂ RP. Under assumption (M3), (G1) and (O2), there exists

constants C1,C2 > 0 (depending only on a, M and D) such that with probability 1−δ, provided that

{
g ∈ G ; RN(g)! RN(ĝ

ols)+C1
P

N

}
⊂ GΘ ,

then the ordinary least squares estimate satisfies

R(ĝols)−R(g!Θ)!C2

P+ log(δ−1)+ log( detΨ̂
detΨ)

N
,

where Ψ̂ = 1
N ∑N

i=1 ψ(Xi)ψ(Xi)T is the empirical Gram matrix.

Theorem 12 (Audibert and Catoni 2010 from Alquier 2008) Let Θ=RP. Under assumption (N1)
and (G2), there exists a randomized estimate ĝ that only depends on g0,L,C, such that for all δ > 0,

with probability larger than 1−δ w.r.t. all sources of randomness,

R(ĝ)−R(g!)! κ(B2
1 +D2)

P log(3ν−1
min)+ log(log(N)δ−1)

N
,

where κ does not depend on P and N, and νmin is the smallest eigenvalue of Ψ.

Theorem 13 (Koltchinskii 2006) Let Θ ⊂ RP. Under assumption (N1), (D3) and (P3), ĝerm satis-

fies, for any δ > 0 with probability higher than 1−δ,

R(ĝerm)−R(g!Θ)! κ(B1 +L)2 rank(Ψ)+ log(δ−1)

N
,

where κ is some constant.

Theorem 14 (Birgé and Massart 1998) Let Θ ⊂ RP. Under assumption (M3), (G1) and (D4), for

all δ > 0 with probability higher than 1−δ,

R(ĝerm)−R(g!Θ)! κ(a−2 +D2)
P log(2+(L2/N)∧ (N/P))+ log(δ−1)

N
,

where κ is some constant depending only on M.

Theorem 15 (Tsybakov 2003) Let Θ = RP. Under assumption (N2), (N3) and (O1), the projection

estimate ĝpro j satisfies

E(R(ĝpro j))−R(g!)!
(σ2 +B2)P

N
.
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Theorem 16 (Caponnetto and De Vito 2007) Under assumption (M2) and (D2), for all δ > 0 for

λ = PL2 log2(δ−1)/N ! νmin, with probability higher than 1−δ,

R(ĝridge)−R(g!Θ)! κ(a−2 +
λL2‖θ!‖2 log2(δ−1)

νmin
)
P log2(δ−1)

N
,

where κ is some constant depending only on M.

Theorem 17 (Alquier and Lounici 2011) Let Θ=RP and define for all α∈ (0,1) the prior πα(J)=
α|J|

∑N
i=0 αi

(
P
|J|
)−1

for all J ⊂ 2P. Under assumption (N2),(N3), (N4), (D1) and (P2), by setting λ = N
2C

where

C
def
= max{64σ2 +(2B+L(2S+

1

N
))2,64[ξ+2B+L(2S+

1

N
)]L(2S+

1

N
)} ,

the randomized aggregate estimator ĝ defined in Alquier and Lounici (2011) based on prior πα

satisfies, for any δ > 0 with probability higher than 1−δ,

R(ĝ)−R(g!Θ)!C
S! log( (S+c)eNP

αS! )+ log(2δ−1/(1−α))

N
+

3L2

N2
,

where S! = ‖θ!‖0.

Theorem 18 (Audibert and Catoni 2010) Let Θ ⊂ RP. Under assumption (M1), (G1) and (P1) so

that one can define the uniform probability distribution over Θ, there exists a random estimator ĝ

(drawn according to a Gibbs distribution π̂) that satisfies, with probability higher than 1− δ w.r.t.

all source of randomness,

R(ĝ)−R(g!Θ)! (2σ+D)2 16.6P+12.5log(2δ−1)

N
.

Note that Theorem 10 and Theorem 15 provide a result in expectation only, which is not enough

for our purpose, since we need high probability bounds on the excess risk in order to be able to

handle the randomness of the space GP.

Assumptions satisfied by the random space GP

We now discuss the assumptions that are satisfied in our setting where G is a random space GP

built from the random features {ψp}p!P, in terms of assumptions on the underlying initial space F .

• The noise assumptions (N) do not concern G .

• The moment assumptions (M) are not restrictive. By combining similar assumptions on F ,

the results on approximation error of Section 4.3 can be shown to hold (with different con-

stants).

• Assumptions (P) are generally too strong. For (P1), the reason is that there is no high prob-

ability link between ‖Aα‖∞ and ‖α‖ for usual norms. Now even if α! is sparse or has low

l1-norm, this does not imply this is the case for β! = argminβ∈RP R(gβ) or Aα! in general, thus

(P2) cannot be assumed either. Finally (P3) may be assumed in some cases: Let us assume

that we know that ‖α!‖2 ! 1. Then ‖Aα!‖2 ! 1+ε with high probability, thus it is enough to

consider the space GP(Θ) with parameter space Θ = {β;‖β‖2 ! (1+ ε)}, and thus Aα! ∈ Θ
with high probability.
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• Assumptions (G) are strong assumptions. The reason is that it is difficult to relate the vector

coefficient β! or even Aα! to the vector coefficient α! of f ! = fα! in l∞ norm. Thus even if

we know some f0 close to f ! in "∞-norm, this does not imply that we can build a function g0

close to g! = gβ! .

• Assumptions (D) will not be valid a.s. w.r.t. the law of the Gaussian variables. The assump-

tions (D1) and (D4) are difficult to satisfy since they concern ‖.‖∞. For assumption (D2) and

(D3), we have the property that for each x, ‖ψ(x)‖2
2 is close to ‖ϕ(x)‖2

2 with high probability.

However, we need here a uniform result over x ∈ X which seems difficult to get since the

space F is actually big (not of finite dimension).

• Assumptions (O), which are typically strong assumptions for specific features ϕ appear to be

almost satisfied. The reason is due to the covariance structure of the random features. Indeed

whatever the distribution PX (independent of PG ), we have that 〈ψp,ψq〉 concentrates around

EPG 〈ψp,ψq〉=
1

P
‖∑

i"1

ϕi‖2
PX

δp,q ,

where δp,q is the Kronecker symbol between p and q. Thus the orthogonality assumption

is satisfied with high probability. Note that the knowledge of PX is still needed in order to

rescale the features and obtain orthonormality. Similar argument shows that (O2) is also valid.

As a consequence, only Theorems 10 and 15 would apply safely, but unfortunately these Theo-

rems do not give results in high probability.

In the next two sections, we derive similar results but in high probability with assumptions that

correspond to our setting. We provide a hand-made Theorem that makes use of the technique intro-

duced in Györfi et al. (2002) and that can be applied without too restrictive assumptions, although

not being optimal in terms of constant and logarithmic factors.

4.3 Approximation Power of Random Spaces

We assume from now on that we are in the case when f ! = fα! ∈ F .

Theorem 19 (Approximation error with deterministic design) For all P " 1, for all δ ∈ (0,1)
there exists an event of PG -probability higher than 1−δ such that on this event,

inf
g∈GP

‖ f !−g‖2
N ! 12

log(4N/δ)

P
‖α!‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 .

Theorem 20 (Approximation error with random design) Under assumption (N2),
then for all P " 1, for all δ ∈ (0,1), the following bound holds with PG -probability higher than

1−δ:

inf
g∈GP

‖ f !−TB(g)‖2
PX

! 25
‖α!‖2 supx ‖ϕ(x)‖2

P

(
1+

1

2
log

(P log(8P/γ2δ)

18γ2δ

))
,

where γ
def
= 1

B‖α!‖supx ‖ϕ(x)‖ and TB is the truncation operator at level B.
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The result is not trivial because of the randomness of the space GP. Thus in order to keep

the explanation simple, the proof (detailed in the Appendix) makes use of Hoeffding’s Lemma

only, which relies on the bounded assumption of the features (which can be seen either as a nice

assumption, since it is simple and easy to check, or as a too strong assumption for some cases).

Note that this result can be further refined by making use, for instance, of moment assumptions on

the feature space instead.

4.4 Excess Risk of Random Spaces

In this section, we analyze the excess risk of the random projection method. Thus for a proposed

random estimate ĝ, we are interested in bounding R(ĝ)−R( f !) in high probability with respect to

any source of randomness.

4.4.1 REGRESSION ALGORITHM

From now on we consider the estimate ĝ to be the least-squares estimate g
β̂
∈ GP that is the function

in GP with minimal empirical error, that is,

g
β̂

def
= arg min

gβ∈GP

RN(gβ), (4)

and that is the solution of a least-squares regression problem, that is, β̂ = Ψ†Y ∈ RP with matrix-

wise notations, where Y ∈ RN is here the vector of observations (not to be confused with the random

variable Y that shares the same notation), Ψ is the N ×P-matrix composed of the elements: Ψn,p
def
=

ψp(xn), and Ψ† is the Moore-Penrose pseudo-inverse2 of Ψ. The final prediction function ĝ(x) is

the truncation (at level ±B) of g
β̂
, that is, ĝ(x)

def
= TB[gβ̂

(x)].

In the next subsection, we provide excess risk bounds w.r.t. f ! in GP.

4.4.2 REGRESSION WITH DETERMINISTIC DESIGN

Theorem 21 Under assumption (N1), then for all P " 1, for all δ ∈ (0,1) there exists an event of

PY ×PG -probability higher than 1−δ such that on this event, the excess risk of the estimator g
β̂

is

bounded as

‖ f !−g
β̂
‖2

N !
12log(8N/δ)

P
‖α!‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 +κB2
1

P+ log(2/δ)

N
,

for some numerical constant κ > 0.

Note that from this theorem, we deduce (without further assumptions on the features {ϕi}i"1)

that for instance for the choice P =
√

N
log(N/δ) then

‖ f !−g
β̂
‖2

N ! κ′
[
‖α!‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2

√
log(N/δ)

N
+

log(1/δ)

N

]
,

for some positive constant κ′. Note also that whenever an upper-bound on the square terms

‖α!‖2 1
N ∑N

n=1 ‖ϕ(xn)‖2 is known, this can be used in the definition of P in order to improve this

bound.

2. In the full rank case when N " P, Ψ† = (ΨT Ψ)−1ΨT .
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4.4.3 REGRESSION WITH RANDOM DESIGN

In the regression problem with random design, the analysis of the excess risk of a given method is

not straightforward, since the assumptions to apply standard techniques may not be satisfied without

further knowledge on the structure of the features. In a general case, we can use the techniques

introduced in Györfi et al. (2002), which yields to the following (not optimal) result:

Theorem 22 Under assumption (N1) and (N2), provided that N log(N) " 4
P (thus whenever

min(N,P)" 2), then with PG ×P -probability at least 1−δ,

R(TB(gβ̂
))−R( f !) ! κ

[ log(12N/δ)

P
‖α!‖2 sup

x∈X
‖ϕ(x)‖2

+ max{B2
1,B

2}
P+P log(N)+ log(3/δ)

N

]
,

for some positive constant κ.

Let us now provide some intuition about the proof of this result. We first start by explaining

what does not work. A natural idea in order to derive this result would be to consider the following

decomposition:

R(TB(gβ̂
))−R( f !)! [R(TB(g

!
B))−R( f !)]+ [R(TB(gβ̂

))−R(TB(g
!
B))] ,

where g!B ∈ argmin
g∈G

R(TB(g))−R( f !) .

Indeed the first term is controlled on an event ΩG of high PG -probability by Theorem 20, and

since R(g
β̂
)−R(g!B) ! R(g

β̂
)−R(g!), the second term is controlled for each fixed ωG ∈ ΩG with

high P -probability by standard Theorems for regression, provided that we can relate R(TB(gβ̂
))−

R(TB(g!B)) to R(g
β̂
)−R(g!B). Thus by doing the same careful analysis of the events involved, this

should lead to the desired result.

However, the difficulty lies first in ensuring that the conditions of application of standard Theo-

rems are satisfied with high PG -probability and then in relating the excess risk of the truncated func-

tion to that of the non-truncated ones, since it is not true in general that R(TB(gβ̂
))−R(TB(g!B)) !

R(g
β̂
)−R(g!B). Thus we resort to a different decomposition in order to derive our results. The sketch

of proof of Theorem 22 actually consists in applying the following lemma.

Lemma 23 The following decomposition holds for all C > 0

‖TB(gβ̂
)− f !‖2

PX
! C‖ f !−gβ̃‖

2
N +C‖gβ̃ −g

β̂
‖2

N

+ sup
g∈G

(
‖ f !−TB(g)‖2

PX
−C‖ f !−TB(g)‖2

N

)
,

where gβ̃ = Π‖.‖N
( f !,G) and g

β̂
= Π‖.‖N

(Y,G) are the projections of the target function f ! and

observation Y onto the random linear space G with respect to the empirical norm ‖.‖N.

We then call the first term ‖ f !− gβ̃‖
2
N an approximation error term, the second ‖gβ̃ − g

β̂
‖2

N a

noise error term and the third one supg∈G

(
‖ f !−TB(g)‖2

PX
−C‖ f !−TB(g)‖2

N

)
an estimation of the

error term.
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In order to prove Theorem 22, we then control each of these terms: We apply Lemma 19 to the

first term, Lemma 24 below to the second term and finally Theorem 11.2 of Györfi et al. (2002) to

the last term with C = 8, and the result follows by gathering all the bounds.

Let us now explain the contribution to each of the three terms in details.

Approximation error term The first term, ‖ f !−gβ̃‖
2
N , is an approximation error term in empirical

norm, it contains the number of projections as well as the norm of the target function. This term

plays the role of the approximation term that exists for regression with penalization by a factor

λ‖ f‖2. This term is controlled by application of Theorem 19 conditionally on the random samples,

and then w.r.t. all source of randomness by independence of the Gaussian random variables with

the random samples.

Noise error term The second term, ‖gβ̃ − g
β̂
‖2

N , is an error term due to the observation noise η.

This term classically decreases at speed Dσ2

N where σ2 is the variance of the noise and D is related

to the log entropy of the space of function G considered. Without any more assumption, we only

know that this is a linear space of dimension P, so this term finally behaves like Pσ2

N , but note that

this dependency with P may be improved depending on the knowledge about the functions ψ (for

instance, if G is included in a Sobolev space of order s, we would have P1/2s instead of P).

Lemma 24 Under assumption (N1), then for each realization of the Gaussian variables, with P -

probability higher than 1−δ, the following holds true:

‖gβ̃ −g
β̂
‖2

N ! 6B2
1

1616P+200log(6/δ)+ log(3/δ)

N
.

Note that we may consider different assumptions on the noise term. Here we considered only

that the noise is upper-bounded as ‖η‖∞ ! B1, but another possible assumption is that the noise has

finite variance σ2 or that the tail of the distribution of the noise behaves nicely, for example, that

‖η‖ψα ! B, where ψα is the Orlicz norm or order α, with α = 1 or 2.

Estimation error term The third term, supg∈GP
(‖ f ! − TB(g)‖2

PX
−C‖ f ! − TB(g)‖2

N), is an esti-

mation of the error term due to finiteness of the data. This term also depends on the log entropy

of the space of functions, thus the same remark applies to the dependency with P as for the noise

error term. We bound the third term by applying Theorem 11.2 of Györfi et al. (2002) to the class of

functions G0 = { f !−TB(g),g ∈ GP}, for fixed random Gaussian variables. Note that for all f ∈ G0,

‖ f‖∞ ! 2B. The precise result of Györfi et al. (2002) is the following :

Theorem 25 Let F be a class of functions f : Rd → R bounded in absolute value by B. Let ε > 0.

Then

P(sup
f∈F

‖ f‖PX −2‖ f‖N > ε)! 3E(N (

√
2

24
ε,F ,‖.‖2N))exp(−

Nε2

288B2
).

We now have the following lemma whose proof is given in the Appendix:

Lemma 26 Assuming that N log(N)" 4
P , then for each realization of the Gaussian variables, with

P -probability higher than 1−δ, the following holds true:

sup
g∈GP

‖ f !−TB(g)‖2
PX

−8‖ f !−TB(g)‖2
N ! (24B)2 4 log(3/δ)+2P log(N)

N
.
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5. Discussion

In this section, we now provide more insights about the main results of this paper by reminding some

closely related existing works, showing some numerical illustration of the method and discussing

some numerical issues.

5.1 Non-linear Approximation

In the work of Barron et al. (2008), the authors provide excess risk bounds for greedy algorithms

(i.e., in a non-linear approximation setting). The precise result they derive in their Theorem 3.1 is

reported now, using the notations of section 4.2:

Theorem 27 (Barron et al. 2008) Consider spaces {GP}P"1 generated respectively by the span of

features {ep}p!P with increasing dimension P (thus Θ = RP for each P). For each GP we compute

a corresponding greedy empirical estimate ĝP ∈ GP provided by some algorithm (see Barron et al.,

2008), then we define P̂ = argmin‖y−TB1 f̂P‖2
N +κ P log(N)

N for some constant κ, and finally define

ĝ = TB1(ĝP̂), and fix some P0.

Under assumption (N1), there exists κ0 depending only on B1 and a where P0 = #Na$ such that

if κ " κ0, then for all P > 0 and for all functions gθ in GP0 , the estimator ĝ satisfies

ER(ĝ)−R( f (reg))! 2[R(gθ)−R( f (reg))]+8
‖θ‖2

1

P
+C

P logN

N
,

where the constant C only depends on κ, B1 and a.

The bound is thus similar to that of Theorem 22 in Section 4.4. One difference is that this bound

contains the l1 norm of the coefficients θ∗ while the "2 norm of the coefficients α! appears in our

setting. We leave as an open question to understand whether this difference is a consequence of the

non-linear aspect of their approximation or if it results from the different assumptions made about

the approximation spaces, in terms of rate of decrease of the coefficients.

The main difference is actually about the tractability of the proposed estimator, since the result

of Theorem 27 relies on greedy estimation that is computationally heavy while on the other hand,

random projection is cheap (see Subsection 5.4).

5.2 Adaptivity

Randomization enables to define approximation spaces such that the approximation error, either in

expectation or in high probability on the choice of the random space, is controlled, whatever the

measure P that is used to assess the performance. This is specially interesting in the regression

setting where P is unknown. As mentioned in the introduction, because the choice of the subspace

GP within which we perform the least-squares estimate is random, we avoid (with high probability)

degenerated situations where the target function f ! cannot be well approximated with functions in

GP. Indeed, in methods that consider a given deterministic finite-dimensional subspace G of the big

space F (such as linear approximation using a predefined set of wavelets), it is often possible to

find a target function f ! such that infg∈GP ‖ f !−g‖N is large, whereas using the random projection

method, the random choice of GP implies that for any f ! ∈F , the approximation error infg∈GP ‖ f !−
g‖N can be controlled (by the first term of the bound (2)) in high probability. We now illustrate this

property on a simple example.
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Example Let us consider a very peaky (a spot) distribution P . Regular linear approximation,

say with wavelets (see, e.g., DeVore, 1997), will most probably miss the specific characteristics

of f ! at the spot, since the first wavelets have large support. On the contrary, the random features

{ψp}p!P that are functions that contain (random combinations of) all wavelets, will be able to detect

correlations between the data and some high frequency wavelets, and thus discover relevant features

of f ! at the spot. This is illustrated in the numerical experiment below.

Here P is a very peaky Gaussian distribution and f ! is a 1-dimensional periodic function. We

consider as initial features {ϕi}i"1 the set of hat functions defined in Section 3.2.2. Figure 3 shows

the target function f !, the distribution P , and the data (xn,yn)1!n!100 (left plots). The middle

plots represents the least-squares estimate ĝ using P = 40 scrambled objects {ψp}1!p!40 that are

here Brownian motions. The right plots shows the least-squares estimate using the initial features

{ϕi}1!i!40. The top figures represent a high level view of the whole domain [0,1]. No method is

able to learn f ! on the whole space (this is normal since the available data are only generated from

a peaky distribution). The bottom figures shows a zoom [0.45,0.51] around the data. Least-squares

regression using scrambled objects is able to learn the structure of f ! in terms of the measure P ,

while least-squares regression with the initial features completely fails.

5.3 Other Related Work

In Rahimi and Recht (2008, 2007), the authors consider, for a given parameterized function Φ :

X ×Θ → R bounded by 1, and a probability measure µ over Θ, the space F of functions f (x) =∫
Θ α(θ)Φ(x,θ)dθ such that ‖ f‖µ = supθ |

α(θ)
µ(θ) | < ∞. They show that this is a dense subset of the

RKHS with kernel k(x,y) =
∫

Θ µ(θ)Φ(x,θ)Φ(y,θ)dθ, and that if f ∈ F , then with high probability

over {θp}p!P
i.i.d∼ µ, there exist coefficients {cp}p!P such that f̂ (x) = ∑P

p=1 cpΦ(x,θp) satisfies ‖ f̂ −
f‖2

2 ! O(
‖ f‖µ√

P
). The method is analogous to the construction of the empirical estimates gAα ∈ GP of

function fα ∈K in our setting. Indeed we may formally identify Φ(x,θp) with ψp(x) =∑i Ap,iϕi(x),
θp with the sequence (Ap,i)i, and the distribution µ with the distribution of this infinite sequence.

However, in our setting we do not require the condition supx,θ Φ(x,θ)! 1 to hold and the fact that Θ
is a set of infinite sequences makes the identification tedious without the Gaussian random functions

theory used here. Anyway, we believe that this link provides a better mutual understanding of both

approaches (i.e., Rahimi and Recht 2008 and this paper).

5.4 Tractability

In practice, in order to build the least-squares estimate, one needs to compute the values of the

random features {ψp}1!p!P at the data points {xn}1!n!N , that is, the matrix Ψ = (ψp(xn))p!P,n!N .

Moreover, due to finite memory and precision of computers, numerical implementations can only

handle a finite number F of initial features {ϕi}1!i!F .

Approximation error Using a finite F introduces an additional approximation (squared) error term

in the final excess risk bounds. This additional error that is due to the numerical approximation is

of order O(F− 2s
d ) for a wavelet basis adapted to Hs([0,1]d) and can be made arbitrarily small, for

example, o(N−1/2), whenever the depth of the wavelet dyadic-tree is bigger than logN
d . Our main

concern is thus about efficient computation.
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Figure 3: Least squares estimates of f !, using N = 100 data generated from a peaky distribution P
(dashed line in top plots), using 40 Brownian motions {ψp} (middle plots) and using 40

hat functions {ϕi} (bottom plots). The target function f ! is plotted with thick line while

the two estimates are plotted with thin line. The right column shows a zoom around the

data.

2759



MAILLARD AND MUNOS

Numerical complexity In Maillard and Munos (2009) it was mentioned that the computation of

Ψ, which makes use of the random matrix A = (Ap,i)p!P,i!F , has a complexity O(FPN).

In the multi-resolution schemes described now, provided that the mother function has compact

support (such as the hat functions), we can significantly speed up the computation of the matrix

Ψ by resorting to a tree-based lazy expansion, that is, where the expansion of the random features

{ψp}p!P is built only when needed for the evaluation at the points {xn}n. Note that in the specific

case of wavelets, we can even think to combine random projection with tools like fast wavelet trans-

form which would be even faster (which we do not do here for simplicity and generality purpose).

Example: Consider the example of the scrambled wavelets. In dimension 1, using a wavelet

dyadic-tree of depth H (i.e., F = 2H+1), the numerical cost for computing Ψ is O(HPN) (using one

tree per random feature). Now, in dimension d the classical extension of one-dimensional wavelets

uses a family of 2d − 1 wavelets, thus requires 2d − 1 trees each one having 2dH nodes. While the

resulting number of initial features F is of order 2d(H+1), thanks to the lazy evaluation (notice that

one never computes all the initial features), one needs to expand at most one path of length H per

training point, and the resulting complexity to compute Ψ is O(2dHPN). Thus the method is linear

with N and reduces the amount of computation by an exponential factor (from 2dH to 2dH).

Note that one may alternatively use the so-called sparse-grids instead of wavelet trees, which

have been introduced by Griebel and Zenger (see Zenger, 1990; Bungartz and Griebel, 2004). The

main result is that one can reduce significantly the total number of features to F = O(2HHd) (while

preserving a good approximation for sufficiently smooth functions). Similar lazy evaluation tech-

niques can be applied to sparse-grids.

Thus, using P = O(
√

N) random features, we deduce that the complexity of building the matrix

Ψ is at most O(2dN3/2 logN). Then in order to solve the least squares system, one has to compute

ΨT Ψ, that has cost at most O(P2N), and then solve the system by inversion, which has numerical

cost O(P2.376) by Coppersmith and Winograd (1987). Thus, with P=O(
√

N), the overall cost of the

algorithm is at most O(2dN3/2 logN+N2), without using any fancy computations designed for ran-

dom matrices, and the numerical complexity to make a new prediction is at most O(2dN1/2 log(N)).
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Appendix A. Technical Details

In this technical section we gathered the proofs of the important Lemmas and of the main Theo-

rems 19, 20, 21 and 22.
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A.1 Proof of Lemma 9

Proof Step 1. First, we derive a result similar to Lemma 7 that holds for dot products, by polarisation

of the Euclidean norm. The precise statement for our purpose is the following one.

Lemma 28 Let A be a P×F matrix of i.i.d. elements drawn from one of the previously defined

distributions. Let (un)1!n!N and v be N +1 vectors of RF .

Then for any ε ∈ (0,1), with probability at least 1− 4Ne−P(ε2/4−ε3/6), simultaneoulsy for all

n ! N,

|Aun ·Av−un · v|! ε‖un‖‖v‖ .

We apply Lemma 7 to any couple of vectors u+w and u−w, where u and w are vectors of norm 1.

By polarisation, we have that

4Au ·Aw = ‖Au+Aw‖2 −‖Au−Aw‖2

! (1+ ε)‖u+w‖2 − (1− ε)‖u−w‖2

= 4u ·w+ ε(‖u+w‖2 +‖u−w‖2)

= 4u ·w+2ε(‖u‖2 +‖w‖2) = 4u ·w+4ε ,

fails with probability 2e−P(ε2/4−ε3/6) (we applied the previous lemma twice at line 2).

Thus for each n ! N, we have with same probability:

Aun ·Av ! un · v+ ε‖un‖‖v‖.

Now the symmetric inequality holds with the same probability, and using a union bound for consid-

ering all (un)n!N , we have that

|Aun ·Av−un · v|! ε‖un‖‖v‖,

holds for all n ! N, with probability 1−4Ne−P(ε2/4−ε3/6).

Step 2. We now extend this Lemma to the case of infinite sequences. This is made possible thanks

to the measurability properties of Gaussian Objects. Indeed, for any given F , Lemma 28 applies to

the two truncated sequences αF = (α1, . . . ,αF) and ϕF(xn) = (ϕ1(xn), . . . ,ϕF(xn)); this gives that

for all n simultaneoulsy,

|
F

∑
i=1

αiϕi(xn)−
1

P

P

∑
p=1

( F

∑
i=1

ξi,pαi

)( F

∑
i=1

ξi,pϕi(xn)
)
|! ε‖αF‖‖ϕF(xn)‖ ,

happens with probability higher than 1− 4Ne−P(ε2/4−ε3/6), where we introduced ξi,p
def
=

√
PAi,p ∼

N (0,1) in order to avoid confusion with the section on Gaussian objects. Now by the assumption

that α ∈ "2(R) and ϕ(x) ∈ "2(R) for all x, then the Gaussian objects ∑∞
i=1 ξi,pαi and ∑∞

i=1 ξi,pϕi(xn)
are well-defined square integrable random variables. Thus, taking the limit of the above inequality

when F tends to ∞ yields that with same probability, for all n ! N

| fα(xn)−gAα(xn)| ! ε‖α‖‖ϕ(xn)‖ .
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A.2 Proof of Lemma 24

Proof We can bound the noise term ‖gβ̃ − g
β̂
‖2

N using a simple Chernoff bound together with a

chaining argument. Indeed, by definition of gβ̃ and g
β̂
, if we introduce the noise vector η defined by

η = Y − f , we have

‖gβ̃ −g
β̂
‖2

N = 〈gβ̃ −g
β̂
,η〉N

=
1

N

N

∑
i=1

ηi(gβ̃ −g
β̂
)(Xi)

!

(
sup
g∈G

1
N ∑N

i=1 ηig(Xi)

‖g‖N

)
‖gβ̃ −g

β̂
‖N

!

(
sup
g∈G

1
N ∑N

i=1 ηig(Xi)

‖g‖N

)2
.

Thus, we focus on the set G1 = {g ∈ G ;‖g‖N = 1}. Note that since G1 is a sphere in a space

of dimension P, its ε-packing number in empirical norm is bounded above by M (ε,G1,‖.‖N) !
N (ε/2,G1,‖.‖N) ! N (ε/2,{g ∈ G ;‖g‖N ! 1},‖.‖N) ! ( 4

ε + 1)P ! max( 5
ε ,5)

P, where N refers

here to the covering number.

We now introduce for convenience the following notation, for fixed Gaussian random variables

and data points (Xi)i=1..n:

ρ(t)
def
= PY

(
∃g ∈ G

1
N ∑N

i=1 ηig(Xi)

‖g‖N
> t

)
= PY

(
∃g ∈ G1 1

N

N

∑
i=1

ηig(Xi)> t
)
.

For j = 0...∞, let us consider ε j-packings Cj of G1 for the empirical norm ‖.‖N , with C0 = g0,

such that Cj+1 is a refinement of Cj and ε j ! ε j−1. Then for a given g ∈ G1, we define g j = Π(g,Cj)

the projection of g into Cj, for the norm ‖g‖N . Thus, g−g0 = (g−gJ)+
J

∑
j=1

(g j −g j−1). Note that

since by definition of G1 we have ‖g−g0‖N ! 2, we need to consider ε0 " 2.

Thus if we now introduce real numbers γ and (γ j) j"1 such that
J

∑
j=1

γ j ! γ, then we have

ρ(γt1 + t2 + t3) ! P

(
∃g ∈ G1 1

N

N

∑
i=1

ηi(g−g0)(Xi)> γt1 + t2

)
+exp(−

t2
3 N

2B2
1

)

! P

(
g ∈ ∃G1 1

N

N

∑
i=1

ηi(g−gJ)(Xi)+

J

∑
j=1

1

N

N

∑
i=1

ηi(g j −g j−1)(Xi)"
J

∑
j=1

γ jt1 + t2

)
+exp(−

t2
3 N

2B2
1

) ,

where we applied Hoeffding’s inequality in the first line. We further have:
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ρ(γt1 + t2 + t3) !

J

∑
j=1

P

(
∃g ∈ G1 1

N

N

∑
i=1

ηi(g j −g j−1)(Xi)> t1γ j

)

+exp(−
t2
2 N

2B2
1ε2

J

)+ exp(−t2
3 N2B2

1)

! E

J

∑
j=1

M jM j−1P

( 1

N

N

∑
i=1

ηi(g j −g j−1)(Xi)> t1γ j

)

+exp(−
t2
2 N

2B2
1ε2

J

)+ exp(−
t2
3 N

2B2
1

) ,

where we introduced for convenience the notation M j
def
= M (ε j,G1,‖.‖N). Now, note that since

ε j ! ε j−1, then M j−1 ! M j. Note also that ‖g j − g j−1‖N ! η j since Cj is a refinement of Cj−1.

Finally, we can bound the packing number by M j ! Nj = max( 5
ε j
,5)P where P is the dimension of

G . Thus we deduce that:

ρ(γt1 + t2 + t3) !

J

∑
j=1

N2
j exp(−

t2
1 Nγ2

j

2B2
1ε2

j

)+ exp(−
t2N

2B2
1ε2

J

)+ exp(−
t2
3 N

2B2
1

).

Now, we define γ j =
2ε jB1

t1

√
2log(Nj)

N , t2 = B1εJ

√
2log(1/δ2)

N and t3 = B1

√
2log(1/δ3)

N , for some δ2,δ3 ∈
(0,1]. Thus, we get:

ρ(ηt1 + t2 + t3) !

J

∑
j=1

1

N2
j

+δ2 +δ3.

Thus, it remains to define ε j. Since Nj = max( 5
ε j
,5)P, we define the covering radius ε j to be ε j =

2− j5δ
1/2P
1 (22P − 1)1/2P for some δ1 ∈ (0,1], which entails that ∑J

j=1
1

N2
j
! δ1. Now since ε j → 0

when j → ∞, we can make the sum goes to infinity. We deduce that:

ρ(γt1 +B1

√
2log(1/δ3)

N
)! δ1 +δ2 +δ3.
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Now, in order to bound the term γt1 + t2 + t3,we look at the following term:

γt1 = 2
∞

∑
j=1

ε jB1

√
2log(Nj)

N

!
20B1√

N

∞

∑
j=1

2− j
√

2 jP log(2)+ log(1/δ1)− log(22P −1)

!
20B1√

N

∞

∑
j=1

2− j
√

2( j−1)P log(2)+ log(2/δ1)

!
20B1√

N

( ∞

∑
j=1

2− j
√

2( j−1)P log(2)+
√

log(2/δ1)
)

!
20B1√

N

(
(1+

√
2)
√

2P log(2)+
√

log(2/δ1)
)
.

where we use the fact that ∑∞
j=1 2− j ! 1, and that ∑∞

j=1 2− j
√

( j−1)! 1+
√

2.

Using the inequalities
√

a+
√

b+
√

c !
√

3(a+b+ c), we thus deduce the following bound:

γt1 + t2 + t3 !
B1√

N

(
20(1+

√
2)
√

2P log(2)+20
√

log(2/δ1)+
√

2log(1/δ3)
)

!

√
6B1√
N

√
400log(2)(1+

√
2)2P+200log(2/δ1)+ log(1/δ3).

Thus, by setting δ1 = δ2 = δ3 = δ/3, we deduce that with P -probability higher than 1−δ,

sup
g∈GP

1
N ∑N

i=1 εig(Xi)

‖g‖N
!

B1

√
6√

N

√
400log(2)(1+

√
2)2P+200log(6/δ)+ log(3/δ) .

A.3 Proof of Lemma 26

Proof Indeed, let us introduce the space of functions G0 = { f !−TB(g),g ∈ GP}. Then we have for

g ∈ G0, ‖g‖N ! ‖g‖∞ ! 2B. Thus Theorem 11.2 of Györfi et al. (2002) gives the following bound:

P( sup
g∈GP

‖ f !−TB(g)‖PX −2‖ f !−TB(g)‖N > ε)! 3E(N (

√
2

24
ε,G0,‖.‖2N))exp

(
−

Nε2

288(2B)2

)
.

Then, since G0 = f !+TB(GP), we bound the entropy number by:

N (

√
2

24
ε,G0,‖.‖2N)! N (

√
2

24
ε,TB(GP),‖.‖2N)! (

2(2B).24√
2ε

+1)P.

Thus we deduce that if ε " 24.4B√
2

u, then with probability higher than 1−δ w.r.t P, for fixed random

Gaussian variables,

sup
g∈GP

‖ f !−TB(g)‖PX −2‖ f !−TB(g)‖N ! ε = 24B

√
log(3/δ)+P log(

1

u
+1)

√
2

N
.
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Thus,we consider u = 1
N−1 , and deduce that, provided that N log(N)" 4

P , then with probability

higher than 1−δ w.r.t P, for fixed random Gaussian variables (i.e., conditionally on them),

sup
g∈GP

‖ f !−TB(g)‖PX −2‖ f !−TB(g)‖N ! 24B

√
2log(3/δ)+P log(N)

N
.

Thus, we deduce that on this event, for all g ∈ GP

‖ f !−TB(g)‖2
PX

! (2‖ f !−TB(g)‖N +24B

√
2log(3/δ)+P log(N)

N
)2

! 8‖ f !−TB(g)‖2
N +(24B)2 4 log(3/δ)+2P log(N)

N
.

This gives the following upper bound, that holds with probability higher than 1−δ:

sup
g∈GP

‖ f !−TB(g)‖2
PX

−8‖ f !−TB(g)‖2
N ! (24B)2 4 log(3/δ)+2P log(N)

N
.

A.4 Proof of Theorem 19

Proof Since by assumption f ! = fα! for some α!, we have by direct application of Lemma 9

inf
g∈G

‖ f !−g‖2
N ! ‖ fα! −gAα!‖2

N .

Now let us define for some N " 1 the quantity ε = εN(δ) that appears in Lemma 9, such that

log(4N/δ)

P
=

ε2

4
−

ε3

6
.

Thus, since ε ∈ (0,1), this means in particular that we have

ε2

3
! 4

log(4N/δ)

P
! ε2 .

A.5 Proof of Theorem 20

Proof By assumption, we consider that f ! ∈ F . Thus there exists a sequence α! ∈ RN such that

one can write:

f ! = fα! = ∑
i"1

α!
i ϕi ,

Thus we consider in the sequel one such α!. This enables to derive the following upper bound:

inf
g∈G

‖ f !−TL(g)‖2
PX

! ‖ fα∗ −TL(gAα∗)‖2
PX
.

where we applied the gaussian operator A to the sequence α!.

2765



MAILLARD AND MUNOS

Step 1. Applying Johnson-Lindenstrauss’ Lemma. Let us introduce m ghost samples (X ′
j) j!m

i.i.d. according to PX , and thus consider the following associated norm

‖ fα∗ −TL(gAα∗)‖2
m =

1

m

m

∑
j=1

( fα∗ −TL(gAα∗))2(X ′
j) .

We now make explicit the probability spaces corresponding to the different sources of random-

ness. Consider the probability space defined over the product sample space ΩX ×ΩG , where ΩX

consists of all the possible realizations of J states X ′
1, . . . ,X

′
m drawn i.i.d. from PX , and ΩG is the set

of all possible realizations of the random elements (Ap,i)1!p!P,i"1 (which define the random feature

space GP).

Let us fix some ωG ∈ ΩG (which defines the random subspace GP(ωG )). Since for all j, we

have that ( fα∗ −TL(gAα∗))2(X ′
j) ∈ [0,4L2] PX -a.s., then Hoeffding’s inequality applies; we deduce

that there exists an event ΩX (ωG ) of PX -probability higher than 1−δX such that on this event

‖ fα∗ −TL(gAα∗)‖2
PX

! ‖ fα∗ −TL(gAα∗)‖2
m +(2L)2

√
log(1/δ)

2m
.

Now by independence between the Gaussian random variables and the sample, the same in-

equality is valid on the event

Ω1 = {ωX ×ωG ;ωG ∈ ΩG ,ωX ∈ ΩX (ωG )} ,

and this event has PX ×PG -probability higher than 1−δX .

In order to bound the first term of the right hand side of this inequality, we first notice that since

‖ fα∗‖∞ ! L, then

‖ fα∗ −TL(gAα∗)‖2
m ! ‖ fα∗ −gAα∗‖2

m ,

then for some fixed ωX ∈ ΩX , that last term is bounded by ε2‖α!‖2 supx ‖ϕ(x)‖2 on an event

ΩG (ωX ) of PG -probability higher than 1−4me−P(ε2/4−ε3/6) by application of Lemma 9.

Thus still by independence, the same inequality is valid on the event

Ω2 = {(ωX ,ωG);ωX ∈ ΩX ,ωG ∈ ΩG (ωX )} ,

and this event has PX ×PG -probability higher than 1−4me−P(ε2/4−ε3/6).

Thus, we deduce, by a union bound that for all ε ∈ (0,1) and m " 1 there exists an event Ω1∩Ω2

of PX ×PG -probability higher than 1−δX −4me−P(ε2/4−ε3/6) such that on this event,

inf
g∈G

‖ f !−TL(g)‖2
PX

! ε2‖α!‖2 sup
x
‖ϕ(x)‖2 +(2L)2

√
log(1/δ)

2m
.

Finally in order to get a bound in high PG -probability only, we introduce for any ωG ∈ ΩG the

event Ω′
X (ωG )

def
= {ωX ∈ ΩX ;(ωX ,ωG) ∈ Ω1 ×Ω2} and then define for all λ > 0 the event

Λ
def
= {ωG ∈ ΩG ;PX (Ω

′
X (ωG ))" 1−λ} .
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Using this notation, we deduce that for all ωG ∈ Λ, the following bound holds

inf
g∈GP(ωG )

‖ f !−TL(g)‖2
PX

!

∫
Ω′

X (ωG )
inf

g∈GP(ωG )
‖ f !−TL(g)‖2

PX
dωX

+
∫

Ω′
X (ωG )c

inf
g∈GP(ωG )

‖ f !−TL(g)‖2
PX

dωX

! ε2‖α!‖2 sup
x
‖ϕ(x)‖2 +(2L)2

√
log(1/δ)

2m
+(2L)2λ .

Moreover, since PX×G (Ω1 ∩Ω2)" 1−δX −4me−P(ε2/4−ε3/6) and on the other side

PX×G (Ω1 ∩Ω2) =
∫

ΩG

PX (Ω
′
X (ωG ))dωG

!

∫
ΩG

IPX (Ω′
X (ωG ))"1−λdωG +(1−λ)

∫
ΩG

IPX (Ω′
X (ωG ))<1−λdωG

! PG (Λ)+(1−λ)(1−PG(Λ)) ,

then we deduce that PG (Λ))" 1− δX +4me−P(ε2/4−ε3/6)

λ .

Step 2. Tuning the parameters ε. Now let us introduce δG and define for some m " 1 the quantity

ε = εm(δG ) such that

log(4m/δG)

P
=

ε2

4
−

ε3

6
.

Thus, since ε ∈ (0,1), this means in particular that we have

ε2

3
! 4

log(4m/δG )

P
! ε2 .

Now by rewriting the bound using δ =
δX +δG

λ , we deduce that for all δ, for all m and λ, there

exists an event of PG -probability higher than 1−δ such that

inf
g∈G

‖ f !−TL(g)‖2
PX

! 12
log( 8m

λδ )

P
‖α!‖2 sup

x
‖ϕ(x)‖2 +(2L)2

(
√

log( 2
λδ)

2m
+λ

)
.

Step 3. Optimizing over λ and m. Now, it remains to optimize the free parameter m and λ in this

last bound; the optimal value for m is given by

mopt =
P2L4 log( 2

λδ)

72‖α‖4 supx ‖ϕ(x)‖4
,

and the corresponding bound is thus

inf
g∈G

‖ f !−TL(g)‖2
PX

! 24
‖α!‖2 supx ‖ϕ(x)‖2

P

(
1+ log

(PL2
√

log(2/λδ)/λδ

3‖α!‖2 supx ‖ϕ(x)‖2

))
+(2L)2λ .

Now one can take λ
def
= ‖α!‖2 supx ‖ϕ(x)‖2

(2L)2P
and deduce the final bound.
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A.6 Proof of Theorem 21

Proof We make use of the following decomposition:

‖ f !−g
β̂
‖2

N ! ‖ f !−gβ̃‖
2
N +‖gβ̃ −g

β̂
‖2

N ,

and introduce the sets ΩG that consists of all possible realizations of the random elements

(Ap,i)1!p!P,i"1, and ΩY that corresponds to the observation variables Y .

High PY ×PG -probability bound. We again make explicit the probability spaces. For the first

term on right hand side, an application of Theorem 19 ensures that there exists an event Ω′
G ⊂ ΩG

of PG -probability higher than 1−δ such that for all ωG ∈ Ω′
G ,

‖ f !−gβ̃‖
2
N ! 12

log(4N/δ)

P
‖α!‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 .

Since no random variable Y appears in this term, this is also true on the event

Ω1
def
= {(ωY ,ωG) ∈ ΩY ×ΩG ;ωG ∈ Ω′

G} ,

and Ω1 has PY ×PG -probability higher than 1−δ.

For the second term, let us fix some ωG ∈ ΩG . Then Lemma 24 below shows that there exists

an event ΩY (ωG )⊂ ΩG of PY -probability higher than 1−δ′ such that for all ωY ∈ ΩY (ωG ),

‖gβ̃ −g
β̂
‖2

N ! κB2 P+ log(1/δ′)

N
,

for some numerical constant κ > 0. Thus by independence of the noise term with the Gaussian

variables, we deduce that a similar bound holds on the event

Ω2
def
= {(ωY ,ωG ) ∈ ΩY ×ΩG ;ωY ∈ ΩY (ωG )} ,

and that Ω2 has PY ×PG -probability higher than 1−δ′. Thus, we conclude by a simple union bound

in order te get a result in high PY ×PG -probability.

A.7 Proof of Theorem 22

Proof

Similarly to the proof of Theorem 20, we introduce the sets ΩX ,Ωη and ΩG that consist of

all possible realizations of the input, noise and Gaussian random variables. We then define Ω
def
=

ΩX ×Ωη ×ΩG .

Step 1. High P ×PG -probability bound. In order to get a high probability bound, we use the

decomposition given by Lemma 23. Now let us consider some fixed ωG ∈ ΩG . One can apply

Lemma 24 and Lemma 26 below for the noise and estimation term.

Thus when N log(N)" 4
P , there exists an event Ω1(ωG ) of P -probability higher than 1−δ1 and

an event Ω2(ωG ) of P -probability higher than 1−δ2 such that for all (ωX ,ωη) ∈ Ω1(ωG ) we have

‖gβ̃ −g
β̂
‖2

N ! 6B2 (1616P+200log(6/δ)+ log(3/δ))

N
,
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and for all (ωX ,ωη) ∈ Ω2(ωG ) we have

sup
g∈GP

‖ f !−TL(g)‖2
PX

−8‖ f !−TL(g)‖2
N ! (24L)2 4 log(3/δ)+2P log(N)

N
.

On the other hand, by application of Theorem 19, for any given (ωX ,ωη), there exists an event

ΩG (ωX ,ωη)⊂ ΩG of PG -probability higher than 1−δ3 such that on this event

‖ f !−gβ̃‖
2
N ! 12

log(4N/δ3)

P
‖α!‖2 sup

x∈X
‖ϕ(x)‖2 .

Thus by independence of the noise, data points and Gaussian variables, the three previous in-

equalities are valid respectively on the events

Ω1 = {(ωX ,ωη,ωG) ∈ Ω;(ωX ,ωη) ∈ Ω1(ωG )} ,
Ω2 = {(ωX ,ωη,ωG) ∈ Ω;(ωX ,ωη) ∈ Ω2(ωG )} ,

Ω3 = {(ωX ,ωη,ωG ) ∈ Ω;ωG ∈ ΩG (ωX )} .

Moreover Ω1 has P ×PG -probability higher than 1− δ1, Ω2 has P ×PG -probability higher than

1− δ2, and Ω1 has P ×PG -probability higher than 1− δ3. We thus conclude by a simple union

bound, and then by some cosmetic simplifications introducing some constant κ.
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(CNRS/ENS/INRIA UMR 8548)
23, avenue d’Italie, CS 81321
75214 Paris Cedex 13, France

Editor: Tong Zhang

Abstract
In this paper we study the kernel multiple ridge regression framework, which we refer to as multi-
task regression, using penalization techniques. The theoretical analysis of this problem shows that
the key element appearing for an optimal calibration is the covariance matrix of the noise between
the different tasks. We present a new algorithm to estimate this covariance matrix, based on the
concept of minimal penalty, which was previously used in the single-task regression framework
to estimate the variance of the noise. We show, in a non-asymptotic setting and under mild as-
sumptions on the target function, that this estimator converges towards the covariance matrix. Then
plugging this estimator into the corresponding ideal penalty leads to an oracle inequality. We illus-
trate the behavior of our algorithm on synthetic examples.
Keywords: multi-task, oracle inequality, learning theory

1. Introduction

A classical paradigm in statistics is that increasing the sample size (that is, the number of observa-
tions) improves the performance of the estimators. However, in some cases it may be impossible
to increase the sample size, for instance because of experimental limitations. Hopefully, in many
situations practicioners can find many related and similar problems, and might use these problems
as if more observations were available for the initial problem. The techniques using this heuristic
are called “multi-task” techniques. In this paper we study the kernel ridge regression procedure in a
multi-task framework.

c©2012 Solnon, Arlot and Bach.
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One-dimensional kernel ridge regression, which we refer to as “single-task” regression, has been
widely studied. As we briefly review in Section 3 one has, given n data points (Xi,Yi)ni=1, to estimate
a function f , often the conditional expectation f (Xi) = E[Yi|Xi], by minimizing the quadratic risk
of the estimator regularized by a certain norm. A practically important task is to calibrate a regu-
larization parameter, that is, to estimate the regularization parameter directly from data. For kernel
ridge regression (a.k.a. smoothing splines), many methods have been proposed based on different
principles, for example, Bayesian criteria through a Gaussian process interpretation (see, e.g., Ras-
mussen and Williams, 2006) or generalized cross-validation (see, e.g., Wahba, 1990). In this paper,
we focus on the concept of minimal penalty, which was first introduced by Birgé and Massart (2007)
and Arlot and Massart (2009) for model selection, then extended to linear estimators such as kernel
ridge regression by Arlot and Bach (2011).

In this article we consider p ≥ 2 different (but related) regression tasks, a framework we refer
to as “multi-task” regression. This setting has already been studied in different papers. Some em-
pirically show that it can lead to performance improvement (Thrun and O’Sullivan, 1996; Caruana,
1997; Bakker and Heskes, 2003). Liang et al. (2010) also obtained a theoretical criterion (unfortu-
nately non observable) which tells when this phenomenon asymptotically occurs. Several different
paths have been followed to deal with this setting. Some consider a setting where p# n, and formu-
late a sparsity assumption which enables to use the group Lasso, assuming all the different functions
have a small set of common active covariates (see for instance Obozinski et al., 2011; Lounici et al.,
2010). We exclude this setting from our analysis, because of the Hilbertian nature of our problem,
and thus will not consider the similarity between the tasks in terms of sparsity, but rather in terms of
an Euclidean similarity. Another theoretical approach has also been taken (see for example, Brown
and Zidek (1980), Evgeniou et al. (2005) or Ando and Zhang (2005) on semi-supervised learn-
ing), the authors often defining a theoretical framework where the multi-task problem can easily
be expressed, and where sometimes solutions can be computed. The main remaining theoretical
problem is the calibration of a matricial parameter M (typically of size p), which characterizes the
relationship between the tasks and extends the regularization parameter from single-task regression.
Because of the high dimensional nature of the problem (i.e., the small number of training observa-
tions) usual techniques, like cross-validation, are not likely to succeed. Argyriou et al. (2008) have a
similar approach to ours, but solve this problem by adding a convex constraint to the matrix, which
will be discussed at the end of Section 5.

Through a penalization technique we show in Section 2 that the only element we have to estimate
is the correlation matrix Σ of the noise between the tasks. We give here a new algorithm to estimate
Σ, and show that the estimation is sharp enough to derive an oracle inequality for the estimation
of the task similarity matrix M, both with high probability and in expectation. Finally we give
some simulation experiment results and show that our technique correctly deals with the multi-task
settings with a low sample-size.

1.1 Notations

We now introduce some notations, which will be used throughout the article.

• The integer n is the sample size, the integer p is the number of tasks.

• For any n× p matrix Y , we define

y= vec(Y ) := (Y1,1, . . . ,Yn,1,Y1,2, . . . ,Yn,2, . . . ,Y1,p, . . . ,Yn,p) ∈ R
np,
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that is, the vector in which the columns Y j := (Yi, j)1≤i≤n are stacked.

• Mn(R) is the set of all matrices of size n.

• Sp(R) is the set of symmetric matrices of size p.

• S+
p (R) is the set of symmetric positive-semidefinite matrices of size p.

• S++
p (R) is the set of symmetric positive-definite matrices of size p.

• ' denotes the partial ordering on Sp(R) defined by: A' B if and only if B−A ∈ S+
p (R).

• 1 is the vector of size p whose components are all equal to 1.

• ‖·‖2 is the usual Euclidean norm on Rk for any k ∈ N: ∀u ∈ Rk, ‖u‖22 := ∑k
i=1 u2i .

2. Multi-task Regression: Problem Set-up

We consider p kernel ridge regression tasks. Treating them simultaneously and sharing their com-
mon structure (e.g., being close in some metric space) will help in reducing the overall prediction
error.

2.1 Multi-task with a Fixed Kernel

Let X be some set and F a set of real-valued functions over X . We suppose F has a reproducing
kernel Hilbert space (RKHS) structure (Aronszajn, 1950), with kernel k and feature mapΦ :X →F .
We observe Dn = (Xi,Y 1i , . . . ,Y

p
i )

n
i=1 ∈ (X ×Rp)n, which gives us the positive semidefinite kernel

matrix K = (k(Xi,X!))1≤i,!≤n ∈ S+
n (R). For each task j ∈ {1, . . . , p}, D j

n = (Xi,y ji )ni=1 is a sample
with distribution P j, for which a simple regression problem has to be solved. In this paper we
consider for simplicity that the different tasks have the same design (Xi)ni=1. When the designs of
the different tasks are different the analysis is carried out similarly by defining Xi = (X1i , . . . ,X

p
i ),

but the notations would be more complicated.
We now define the model. We assume ( f 1, . . . , f p) ∈ F p, Σ is a symmetric positive-definite

matrix of size p such that the vectors (ε ji )
p
j=1 are i.i.d. with normal distribution N (0,Σ), with mean

zero and covariance matrix Σ, and

∀i ∈ {1, . . . ,n},∀ j ∈ {1, . . . , p}, y ji = f j(Xi)+ ε ji . (1)

This means that, while the observations are independent, the outputs of the different tasks can be
correlated, with correlation matrix Σ between the tasks. We now place ourselves in the fixed-design
setting, that is, (Xi)ni=1 is deterministic and the goal is to estimate

(
f 1(Xi), . . . , f p(Xi)

)n
i=1. Let us

introduce some notation:

• µmin = µmin(Σ) (resp. µmax) denotes the smallest (resp. largest) eigenvalue of Σ.

• c(Σ) := µmax/µmin is the condition number of Σ.

To obtain compact equations, we will use the following definition:
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Definition 1 We denote by F the n× p matrix ( f j(Xi))1≤i≤n ,1≤ j≤p and introduce the vector f :=
vec(F) = ( f 1(X1), . . . , f 1(Xn), . . . , f p(X1), . . . , f p(Xn)) ∈ Rnp, obtained by stacking the columns of
F. Similarly we define Y := (y ji ) ∈Mn×p(R), y := vec(Y ), E := (ε ji ) ∈Mn×p(R) and ε := vec(E).

In order to estimate f , we use a regularization procedure, which extends the classical ridge
regression of the single-task setting. Let M be a p× p matrix, symmetric and positive-definite.
Generalizing the work of Evgeniou et al. (2005), we estimate ( f 1, . . . , f p) ∈ F p by

f̂M ∈ argmin
g∈F p

{
1
np

n

∑
i=1

p

∑
j=1

(y ji −g j(Xi))2+
p

∑
j=1

p

∑
!=1

Mj,l〈g j,g!〉F

}

. (2)

AlthoughM could have a general unconstrained form we may restrictM to certain forms, for either
computational or statistical reasons.

Remark 2 Requiring that M . 0 implies that Equation (2) is a convex optimization problem, which
can be solved through the resolution of a linear system, as explained later. Moreover it allows an
RKHS interpretation, which will also be explained later.

Example 3 The case where the p tasks are treated independently can be considered in this setting:
taking M =Mind(λ) := 1

p Diag(λ1, . . . ,λp) for any λ ∈ Rp leads to the criterion

1
p

p

∑
j=1

[
1
n

n

∑
i=1

(y ji −g j(Xi))2+λ j‖g j‖2F

]

, (3)

that is, the sum of the single-task criteria described in Section 3. Hence, minimizing Equation (3)
over λ ∈ Rp amounts to solve independently p single task problems.

Example 4 As done by Evgeniou et al. (2005), for every λ,µ∈ (0,+∞)2, define

Msimilar(λ,µ) := (λ+ pµ)Ip−µ11/ =




λ+(p−1)µ −µ

. . .
−µ λ+(p−1)µ



 .

Taking M =Msimilar(λ,µ) in Equation (2) leads to the criterion

1
np

n

∑
i=1

p

∑
j=1

(y ji −g j(Xi))2+λ
p

∑
j=1

∥∥g j
∥∥2
F +

µ
2

p

∑
j=1

p

∑
k=1

∥∥g j−gk
∥∥2
F . (4)

Minimizing Equation (4) enforces a regularization on both the norms of the functions g j and the
norms of the differences g j − gk. Thus, matrices of the form Msimilar(λ,µ) are useful when the
functions g j are assumed to be similar in F . One of the main contributions of the paper is to go
beyond this case and learn from data a more general similarity matrix M between tasks.

Example 5 We extend Example 4 to the case where the p tasks consist of two groups of close tasks.
Let I be a subset of {1, . . . , p}, of cardinality 1≤ k ≤ p−1. Let us denote by Ic the complementary
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of I in {1, . . . , p}, 1I the vector v with components vi = 1i∈I , and Diag(I) the diagonal matrix d with
components di,i = 1i∈I . We then define

MI(λ,µ,ν) := λIp+µDiag(I)+νDiag(Ic)−
µ
k
1I1/I −

ν
p− k

1Ic1/Ic .

This matrix leads to the following criterion, which enforces a regularization on both the norms of
the functions g j and the norms of the differences g j−gk inside the groups I and Ic:

1
np

n

∑
i=1

p

∑
j=1

(y ji −g j(Xi))2+λ
p

∑
j=1

∥∥g j
∥∥2
F +

µ
2k∑j∈I∑k∈I

∥∥g j−gk
∥∥2
F +

ν
2(p− k) ∑j∈Ic ∑k∈Ic

∥∥g j−gk
∥∥2
F .

(5)
As shown in Section 6, we can estimate the set I from data (see Jacob et al., 2008 for a more general
formulation).

Remark 6 Since Ip and 11/ can be diagonalized simultaneously, minimizing Equation (4) and
Equation (5) is quite easy: it only demands optimization over two independent parameters, which
can be done with the procedure of Arlot and Bach (2011).

Remark 7 As stated below (Proposition 8), M acts as a scalar product between the tasks. Selecting
a general matrix M is thus a way to express a similarity between tasks.

Following Evgeniou et al. (2005), we define the vector-space G of real-valued functions over X ×
{1, . . . , p} by

G := {g : X ×{1, . . . , p}→ R/∀ j ∈ {1, . . . , p} , g(·, j) ∈ F } .

We now define a bilinear symmetric form over G ,

∀g,h ∈ G , 〈g,h〉G :=
p

∑
j=1

p

∑
l=1

Mj,l〈g(·, j),h(·, l)〉F ,

which is a scalar product as soon asM is positive semi-definite (see proof in Appendix A) and leads
to a RKHS (see proof in Appendix B):

Proposition 8 With the preceding notations 〈·, ·〉G is a scalar product on G .

Corollary 9 (G ,〈·, ·〉G) is a RKHS.

In order to write down the kernel matrix in compact form, we introduce the following notations.

Definition 10 (Kronecker Product) Let A ∈ Mm,n(R), B ∈ Mp,q(R). We define the Kronecker
product A⊗B as being the (mp)× (nq) matrix built with p× q blocks, the block of index (i, j)
being Ai, j ·B:

A⊗B=




A1,1B . . . A1,nB
... . . . ...

Am,1B . . . Am,nB



 .
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The Kronecker product is a widely used tool to deal with matrices and tensor products. Some of its
classical properties are given in Section E; see also Horn and Johnson (1991).

Proposition 11 The kernel matrix associated with the design X̃ := (Xi, j)i, j ∈ X × {1, . . . , p} and
the RKHS (G ,〈·, ·〉G) is K̃M :=M−1⊗K.

Proposition 11 is proved in Appendix C. We can then apply the representer’s theorem (Schölkopf
and Smola, 2002) to the minimization problem (2) and deduce that f̂M = AMy with

AM = AM,K := K̃M(K̃M+npInp)−1 = (M−1⊗K)
(
(M−1⊗K)+npInp

)−1
.

2.2 Optimal Choice of the Kernel

Now when working in multi-task regression, a set M ⊂ S++
p (R) of matrices M is given, and the

goal is to select the “best” one, that is, minimizing over M the quadratic risk n−1‖ f̂M − f‖22. For
instance, the single-task framework corresponds to p= 1 andM = (0,+∞). The multi-task case is
far richer. The oracle risk is defined as

inf
M∈M

{∥∥∥ f̂M− f
∥∥∥
2

2

}
. (6)

The ideal choice, called the oracle, is any matrix

M" ∈ argmin
M∈M

{∥∥∥ f̂M− f
∥∥∥
2

2

}
.

Nothing here ensures the oracle exists. However in some special cases (see for instance Example
12) the infimum of ‖ f̂M− f‖2 over the set { f̂M, M ∈M } may be attained by a function f ∗ ∈ F p—
which we will call “oracle” by a slight abuse of notation—while the former problem does not have
a solution.

From now on we always suppose that the infimum of {‖ f̂M− f‖2} overM is attained by some
function f " ∈ F p. However the oracleM" is not an estimator, since it depends on f .

Example 12 (Partial computation of the oracle in a simple setting) It is possible in certain sim-
ple settings to exactly compute the oracle (or, at least, some part of it). Consider for instance the
set-up where the p functions are taken to be equal (that is, f 1 = · · ·= f p). In this setting it is natural
to use the set

Msimilar :=
{
Msimilar (λ,µ) = (λ+ pµ)Ip−

µ
p
11/ /(λ,µ) ∈ (0,+∞)2

}
.

Using the estimator f̂M = AMy we can then compute the quadratic risk using the bias-variance
decomposition given in Equation (36):

E

[∥∥∥ f̂M− f
∥∥∥
2

2

]
= ‖(AM− Inp) f‖22+ tr(A/

MAM · (Σ⊗ In)) .

Computations (reported in Appendix D) show that, with the change of variables µ̃= λ+ pµ, the bias
does not depend on µ̃ and the variance is a decreasing function of µ̃. Thus the oracle is obtained
when µ̃=+∞, leading to a situation where the oracle functions f 1,", . . . , f p," verify f 1," = · · ·= f p,".
It is also noticeable that, if one assumes the maximal eigenvalue of Σ stays bounded with respect to
p, the variance is of order O(p−1) while the bias is bounded with respect to p.
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As explained by Arlot and Bach (2011), we choose

M̂ ∈ argmin
M∈M

{crit(M)} with crit(M) =
1
np

∥∥∥y− f̂M
∥∥∥
2

2
+pen(M) ,

where the penalty term pen(M) has to be chosen appropriately.

Remark 13 Our model (1) does not constrain the functions f 1, . . . , f p. Our way to express the
similarities between the tasks (that is, between the f j) is via the set M , which represents the a
priori knowledge the statistician has about the problem. Our goal is to build an estimator whose
risk is the closest possible to the oracle risk. Of course using an inappropriate setM (with respect
to the target functions f 1, . . . , f p) may lead to bad overall performances. Explicit multi-task settings
are given in Examples 3, 4 and 5 and through simulations in Section 6.

The unbiased risk estimation principle (introduced by Akaike, 1970) requires

E [crit(M)]≈ E

[
1
np

∥∥∥ f̂M− f
∥∥∥
2

2

]
,

which leads to the (deterministic) ideal penalty

penid(M) := E

[
1
np

‖ f̂M− f‖22
]
−E

[
1
np

∥∥∥y− f̂M
∥∥∥
2

2

]
.

Since f̂M = AMy and y= f + ε, we can write

∥∥∥ f̂M− y
∥∥∥
2

2
=
∥∥∥ f̂M− f

∥∥∥
2

2
+‖ε‖22−2〈ε,AMε〉+2〈ε,(Inp−AM) f 〉 .

Since ε is centered and M is deterministic, we get, up to an additive factor independent ofM,

penid(M) =
2E [〈ε,AMε〉]

np
,

that is, as the covariance matrix of ε is Σ⊗ In,

penid(M) =
2tr
(
AM · (Σ⊗ In)

)

np
. (7)

In order to approach this penalty as precisely as possible, we have to sharply estimate Σ. In the
single-task case, such a problem reduces to estimating the variance σ2 of the noise and was tackled
by Arlot and Bach (2011). Since our approach for estimating Σ heavily relies on these results, they
are summarized in the next section.

Note that estimating Σ is a mean towards estimatingM. The technique we develop later for this
purpose is not purely a multi-task technique, and may also be used in a different context.
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3. Single Task Framework: Estimating a Single Variance

This section recalls some of the main results from Arlot and Bach (2011) which can be considered
as solving a special case of Section 2, with p = 1, Σ = σ2 > 0 and M = [0,+∞]. Writing M = λ
with λ ∈ [0,+∞], the regularization matrix is

∀λ ∈ (0,+∞) , Aλ = Aλ,K = K(K+nλIn)−1 ,

A0 = In and A+∞ = 0; the ideal penalty becomes

penid(λ) =
2σ2 tr(Aλ)

n
.

By analogy with the case where Aλ is an orthogonal projection matrix, df(λ) := tr(Aλ) is called the
effective degree of freedom, first introduced by Mallows (1973); see also the work by Zhang (2005).
The ideal penalty however depends on σ2; in order to have a fully data-driven penalty we have to
replace σ2 by an estimator σ̂2 inside penid(λ). For every λ ∈ [0,+∞], define

penmin(λ) = penmin(λ,K) :=
(2tr(Aλ,K)− tr(A/

λ,KAλ,K))
n

.

We shall see now that it is a minimal penalty in the following sense. If for everyC > 0

λ̂0(C) ∈ argmin
λ∈[0,+∞]

{
1
n
∥∥Aλ,KY −Y

∥∥2
2+Cpenmin(λ,K)

}
,

then—up to concentration inequalities—λ̂0(C) acts as a mimimizer of

gC(λ) = E

[
1
n
‖AλY −Y‖22+Cpenmin(λ)

]
−σ2 =

1
n
‖(Aλ− In) f‖22+(C−σ2)penmin(λ) .

The former theoretical arguments show that

• ifC < σ2, gC(λ) decreases with df(λ) so that df(̂λ0(C)) is huge: the procedure overfits;

• if C > σ2, gC(λ) increases with df(λ) when df(λ) is large enough so that df(̂λ0(C)) is much
smaller than whenC < σ2.

The following algorithm was introduced by Arlot and Bach (2011) and uses this fact to estimate σ2.

Algorithm 14 Input: Y ∈ Rn, K ∈ S++
n (R)

1. For every C > 0, compute

λ̂0(C) ∈ argmin
λ∈[0,+∞]

{
1
n
∥∥Aλ,KY −Y

∥∥2
2+Cpenmin(λ,K)

}
.

2. Output: Ĉ such that df(̂λ0(Ĉ)) ∈ [n/10,n/3].
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An efficient algorithm for the first step of Algorithm 14 is detailed by Arlot and Massart (2009), and
we discuss the way we implemented Algorithm 14 in Section 6. The output Ĉ of Algorithm 14 is a
provably consistent estimator of σ2, as stated in the following theorem.

Theorem 15 (Corollary of Theorem 1 of Arlot and Bach, 2011) Let β = 150. Suppose
ε∼N (0,σ2In) with σ2 > 0, and that λ0 ∈ (0,+∞) and dn ≥ 1 exist such that

df(λ0)≤
√
n and

1
n
∥∥(Aλ0 − In)F

∥∥2
2 ≤ dnσ2

√
lnn
n

. (8)

Then for every δ ≥ 2, some constant n0(δ) and an event Ω exist such that P(Ω) ≥ 1− n−δ and if
n≥ n0(δ), on Ω,

(

1−β(2+δ)

√
lnn
n

)

σ2 ≤ Ĉ ≤

(

1+β(2+δ)dn

√
ln(n)
n

)

σ2 . (9)

Remark 16 The values n/10 and n/3 in Algorithm 14 have no particular meaning and can be
replaced by n/k, n/k′, with k > k′ > 2. Only β depends on k and k′. Also the bounds required in
Assumption (8) only impact the right hand side of Equation (9) and are chosen to match the left
hand side. See Proposition 10 of Arlot and Bach (2011) for more details.

4. Estimation of the Noise Covariance Matrix Σ

Thanks to the results developped by Arlot and Bach (2011) (recapitulated in Section 3), we know
how to estimate a variance for any one-dimensional problem. In order to estimate Σ, which has
p(p+ 1)/2 parameters, we can use several one-dimensional problems. Projecting Y onto some
direction z ∈ Rp yields

Yz := Y · z= F · z+E · z= Fz+ εz , (10)

with εz ∼ N (0,σ2z In) and σ2z := Var[ε · z] = z/Σz. Therefore, we will estimate σ2z for z ∈ Z a well
chosen set, and use these estimators to build back an estimation of Σ.

We now explain how to estimate Σ using those one-dimensional projections.

Definition 17 Let a(z) be the output Ĉ of Algorithm 14 applied to problem (10), that is, with inputs
Yz ∈ Rn and K ∈ S++

n (R).

The idea is to apply Algorithm 14 to the elements z of a carefully chosen setZ. Noting ei the i-th
vector of the canonical basis ofRp, we introduce Z = {ei, i∈ {1, . . . , p}}∪{ei+e j, 1≤ i< j≤ p}.
We can see that a(ei) estimates Σi,i, while a(ei+ e j) estimates Σi,i+Σ j, j+ 2Σi, j. Henceforth, Σi, j
can be estimated by (a(ei+e j)−a(ei)−a(e j))/2. This leads to the definition of the following map
J, which builds a symmetric matrix using the latter construction.

Definition 18 Let J : R
p(p+1)
2 → Sp(R) be defined by

J(a1, . . . ,ap,a1,2, . . . ,a1,p, . . . ,ap−1,p)i,i = ai if 1≤ i≤ p ,

J(a1, . . . ,ap,a1,2, . . . ,a1,p, . . . ,ap−1,p)i, j =
ai, j−ai−a j

2
if 1≤ i< j ≤ p .
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This map is bijective, and for all B ∈ Sp(R)

J−1(B) = (B1,1, . . . ,Bp,p,B1,1+B2,2+2B1,2, . . . ,Bp−1,p−1+Bp,p+2Bp−1,p) .

This leads us to defining the following estimator of Σ:

Σ̂ := J (a(e1), . . . ,a(ep),a(e1+ e2), . . . ,a(e1+ ep), . . . ,a(ep−1+ ep)) . (11)

Remark 19 If a diagonalization basis (e′1, . . . ,e′p) (whose basis matrix is P) of Σ is known, or if Σ
is diagonal, then a simplified version of the algorithm defined by Equation (11) is

Σ̂simplified = P/Diag(a(e′1), . . . ,a(e′p))P . (12)

This algorithm has a smaller computational cost and leads to better theoretical bounds (see Remark
24 and Section 5.2).

Let us recall that ∀λ ∈ (0,+∞), Aλ = Aλ,K = K(K+nλIn)−1. Following Arlot and Bach (2011)
we make the following assumption from now on:

∀ j ∈ {1, . . . , p} , ∃λ0, j ∈ (0,+∞) ,

df(λ0, j)≤
√
n and

1
n

∥∥∥(Aλ0, j − In)Fej
∥∥∥
2

2
≤ Σ j, j

√
lnn
n





(13)

We can now state the first main result of the paper.

Theorem 20 Let Σ̂ be defined by Equation (11), α = 2 and assume (13) holds. For every δ ≥ 2,
a constant n0(δ), an absolute constant L1 > 0 and an event Ω exist such that P(Ω) ≥ 1− p(p+
1)/2×n−δ and if n≥ n0(δ), on Ω,

(1−η)Σ' Σ̂' (1+η)Σ (14)

where η := L1(2+δ)p
√
ln(n)
n

c(Σ)2 .

Theorem 20 is proved in Section E. It shows Σ̂ estimates Σ with a “multiplicative” error controlled
with large probability, in a non-asymptotic setting. The multiplicative nature of the error is crucial
for deriving the oracle inequality stated in Section 5, since it allows to show the ideal penalty defined
in Equation (7) is precisely estimated when Σ is replaced by Σ̂.

An important feature of Theorem 20 is that it holds under very mild assumptions on the mean f
of the data (see Remark 22). Therefore, it shows Σ̂ is able to estimate a covariance matrix without
prior knowledge on the regression function, which, to the best of our knowledge, has never been
obtained in multi-task regression.

Remark 21 (Scaling of (n, p) for consistency) A sufficient condition for ensuring Σ̂ is a consistent
estimator of Σ is

pc(Σ)2
√
ln(n)
n

−→ 0 ,

which enforces a scaling between n, p and c(Σ). Nevertheless, this condition is probably not nec-
essary since the simulation experiments of Section 6 show that Σ can be well estimated (at least for
estimator selection purposes) in a setting where η# 1.
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Remark 22 (On assumption (13)) Assumption (13) is a single-task assumption (made indepen-
dently for each task). The upper bound

√
ln(n)/n can be multiplied by any factor 1 ≤ dn 9√

n/ ln(n) (as in Theorem 15), at the price of multiplying η by dn in the upper bound of Equa-
tion (14). More generally the bounds on the degree of freedom and the bias in (13) only influence
the upper bound of Equation (14). The rates are chosen here to match the lower bound, see Propo-
sition 10 of Arlot and Bach (2011) for more details.

Assumption (13) is rather classical in model selection, see Arlot and Bach (2011) for instance.
In particular, (a weakened version of ) (13) holds if the bias n−1‖(Aλ − In)Fei‖22 is bounded by
C1 tr(Aλ)−C2 , for some C1,C2 > 0.

Remark 23 (Choice of the set Z) Other choices could have been made for Z, however ours seems
easier in terms of computation, since |Z| = p(p+ 1)/2. Choosing a larger set Z leads to theoret-
ical difficulties in the reconstruction of Σ̂, while taking other basis vectors leads to more complex
computations. We can also note that increasing |Z| decreases the probability in Theorem 20, since
it comes from an union bound over the one-dimensional estimations.

Remark 24 When Σ̂= Σ̂simplified as defined by Equation (12), that is, when a diagonalization basis
of Σ is known, Theorem 20 still holds on a set of larger probability 1−κpn−δ with a reduced error
η = L1(α+ δ)

√
ln(n)/n. Then, a consistent estimation of Σ is possible whenever p = O(nδ) for

some δ≥ 0.

5. Oracle Inequality

This section aims at proving “oracle inequalities”, as usually done in a model selection setting:
given a set of models or of estimators, the goal is to upper bound the risk of the selected estimator
by the oracle risk (defined by Equation (6)), up to an additive term and a multiplicative factor. We
show two oracle inequalities (Theorems 26 and 29) that correspond to two possible definitions of Σ̂.

Note that “oracle inequality” sometimes has a different meaning in the literature (see for instance
Lounici et al., 2011) when the risk of the proposed estimator is controlled by the risk of an estimator
using information coming from the true parameter (that is, available only if provided by an oracle).

5.1 A General Result for Discrete Matrix SetsM

We first show that the estimator introduced in Equation (11) is precise enough to derive an oracle
inequality when plugged in the penalty defined in Equation (7) in the case whereM is finite.

Definition 25 Let Σ̂ be the estimator of Σ defined by Equation (11). We define

M̂ ∈ argmin
M∈M

{∥∥∥ f̂M− y
∥∥∥
2

2
+2tr

(
AM · (Σ̂⊗ In)

)}
.

We assume now the following holds true:

∃(C,αM ) ∈ (0,+∞)2, card(M )<CnαM . (15)
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Theorem 26 Let α = max(αM ,2), δ ≥ 2 and assume (13) and (15) hold true. Absolute constants
L2,κ′ > 0, a constant n1(δ) and an event Ω̃ exist such that P(Ω̃) ≥ 1− κ′p(p+C)n−δ and the
following holds as soon as n≥ n1(δ). First, on Ω̃,

1
np

∥∥∥ f̂M̂− f
∥∥∥
2

2
≤
(
1+

1
ln(n)

)2
inf
M∈M

{
1
np

∥∥∥ f̂M− f
∥∥∥
2

2

}
+L2c(Σ)4 tr(Σ)(α+δ)2

p3 ln(n)3

np
. (16)

Second, an absolute constant L3 exists such that

E

[
1
np

∥∥∥ f̂M̂− f
∥∥∥
2

2

]
≤
(
1+

1
ln(n)

)2
E

[
inf
M∈M

{
1
np

∥∥∥ f̂M− f
∥∥∥
2

2

}]

+L2c(Σ)4 tr(Σ)(α+δ)2
p3 ln(n)3

np
+L3

√
p(p+C)
nδ/2

(

|||Σ|||+
‖ f‖22
np

)

.

(17)

Theorem 26 is proved in Section F.

Remark 27 If Σ̂ = Σ̂simplified is defined by Equation (12) the result still holds on a set of larger
probability 1−κ′p(1+C)n−δ with a reduced error, similar to the one in Theorem 29.

5.2 A Result for a Continuous Set of Jointly Diagonalizable Matrices

We now show a similar result when matrices inM can be jointly diagonalized. It turns out a faster
algorithm can be used instead of Equation (11) with a reduced error and a larger probability event
in the oracle inequality. Note that we no longer assume M is finite, so it can be parametrized by
continuous parameters.

Suppose now the following holds, which means the matrices ofM are jointly diagonalizable:

∃P ∈ Op(R) , M ⊆
{
P/Diag(d1, . . . ,dp)P , (di)pi=1 ∈ (0,+∞)p

}
. (18)

Let P be the matrix defined in Assumption (18), Σ̃= PΣP/ and recall that Aλ =K(K+nλIn)−1 .
Computations detailed in Appendix D show that the ideal penalty introduced in Equation (7) can be
written as

∀M = P/Diag(d1, . . . ,dp)P ∈M ,

penid(M) =
2tr
(
AM · (Σ⊗ In)

)

np
=
2
np

(
p

∑
j=1
tr(Apdj)Σ̃ j, j

)

.
(19)

Equation (19) shows that under Assumption (18), we do not need to estimate the entire matrix
Σ in order to have a good penalization procedure, but only to estimate the variance of the noise in p
directions.

Definition 28 Let (e1, . . . ,ep) be the canonical basis of Rp, (u1, . . . ,up) be the orthogonal basis
defined by ∀ j ∈ {1, . . . , p}, u j = P/e j. We then define

Σ̂HM = PDiag(a(u1), . . . ,a(up))P/ ,

where for every j ∈ {1, . . . , p}, a(u j) denotes the output of Algorithm 14 applied to Problem (Puj),
and

M̂HM ∈ argmin
M∈M

{∥∥∥ f̂M− y
∥∥∥
2

2
+2tr

(
AM · (Σ̂HM⊗ In)

)}
. (20)
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Theorem 29 Let α= 2, δ≥ 2 and assume (13) and (18) hold true. Absolute constants L2 > 0, and
κ′′, a constant n1(δ) and an event Ω̃ exist such that P(Ω̃)≥ 1−κ′′pn−δ and the following holds as
soon as n≥ n1(δ). First, on Ω̃,

1
np

∥∥∥ f̂M̂HM
− f
∥∥∥
2

2
≤
(
1+

1
ln(n)

)2
inf
M∈M

{
1
np

∥∥∥ f̂M− f
∥∥∥
2

2

}
+L2 tr(Σ)(2+δ)2

ln(n)3

n
. (21)

Second, an absolute constant L4 exists such that

E

[
1
np

∥∥∥ f̂M̂HM
− f
∥∥∥
2

2

]
≤
(
1+

1
ln(n)

)2
E

[
inf
M∈M

{
1
np

∥∥∥ f̂M− f
∥∥∥
2

2

}]

+L4 tr(Σ)(2+δ)2
ln(n)3

n
+

p
nδ/2

‖ f‖22
np

.

(22)

Theorem 29 is proved in Section F.

5.3 Comments on Theorems 26 and 29

Remark 30 Taking p = 1 (hence c(Σ) = 1 and tr(Σ) = σ2 ), we recover Theorem 3 of Arlot and
Bach (2011) as a corollary of Theorem 26.

Remark 31 (Scaling of (n, p)) When assumption (15) holds, Equation (16) implies the asymptotic
optimality of the estimator f̂M̂ when

c(Σ)4
trΣ
p

×
p3 (ln(n))3

n
9 inf

M∈M

{
1
np

∥∥∥ f̂M− f
∥∥∥
2

2

}
.

In particular, only (n, p) such that p3 9 n/(ln(n))3 are admissible. When assumption (18) holds,
the scalings required to ensure optimality in Equation (21) are more favorable:

trΣ×
(ln(n))3

n
9 inf

M∈M

{
1
np

∥∥∥ f̂M− f
∥∥∥
2

2

}
.

It is to be noted that p still influences the left hand side via trΣ.

Remark 32 Theorems 26 and 29 are non asymptotic oracle inequalities, with a multiplicative term
of the form 1+ o(1). This allows us to claim that our selection procedure is nearly optimal, since
our estimator is close (with regard to the empirical quadratic norm) to the oracle one. Furthermore
the term 1+(ln(n))−1 in front of the infima in Equations (16), (21), (17) and (22) can be further
diminished, but this yields a greater remainder term as a consequence.

Remark 33 (On assumption (18)) Assumption (18) actually means all matrices in M can be di-
agonalized in a unique orthogonal basis, and thus can be parametrized by their eigenvalues as in
Examples 3, 4 and 5.

In that case the optimization problem is quite easy to solve, as detailed in Remark 36. If not,
solving (20) may turn out to be a hard problem, and our theoretical results do not cover this setting.
However, it is always possible to discretize the setM or, in practice, to use gradient descent.
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Compared to the setting of Theorem 26, assumption (18) allows a simpler estimator for the
penalty (19), with an increased probability and a reduced error in the oracle inequality.

The main theoretical limitation comes from the fact that the probabilistic concentration tools
used apply to discrete sets M (through union bounds). The structure of kernel ridge regression
allows us to have a uniform control over a continuous set for the single-task estimators at the
“cost” of n pointwise controls, which can then be extended to the multi-task setting via (18). We
conjecture Theorem 29 still holds without (18) as long as M is not “too large”, which could be
proved similarly up to some uniform concentration inequalities.

Note also that ifM1, . . . ,MK all satisfy (18) (with different matrices Pk), then Theorem 29 still
holds forM =

⋃K
k=1Mk with the penalty defined by Equation (20) with P= Pk when M ∈Mk, and

P(Ω̃)≥ 1−9Kp2n−δ, by applying the union bound in the proof.

Remark 34 (Relationship with the trace norm) Our approach relies on the minimization of Equa-
tion (2) with respect to f . Argyriou et al. (2008) has shown that if we also minimize Equation (2)
with respect to the matrix M subject to the constraint trM−1 = 1, then we obtain an equivalent
regularization by the nuclear norm (a.k.a. trace norm), which implies the prior knowledge that
our p prediction functions may be obtained as the linear combination of r9 p basis functions. This
situation corresponds to cases where the matrix M−1 is singular.

Note that the link between our framework and trace norm (i.e., nuclear norm) regularization is
the same than between multiple kernel learning and the single task framework of Arlot and Bach
(2011). In the multi-task case, the trace-norm regularization, though efficient computationally, does
not lead to an oracle inequality, while our criterion is an unbiased estimate of the generalization
error, which turns out to be non-convex in the matrix M. While DC programming techniques (see,
e.g., Gasso et al., 2009, and references therein) could be brought to bear to find local optima, the
goal of the present work is to study the theoretical properties of our estimators, assuming we can
minimize the cost function (e.g., in special cases, where we consider spectral variants, or by brute
force enumeration).

6. Simulation Experiments

In all the experiments presented in this section, we consider the framework of Section 2 with
X = Rd , d = 4, and the kernel defined by ∀x,y ∈ X , k(x,y) = ∏d

j=1 e−|x j−y j|. The design points
X1, . . . ,Xn ∈ Rd are drawn (repeatedly and independently for each sample) independently from
the multivariate standard Gaussian distribution. For every j ∈ {1, . . . , p}, f j(·) = ∑m

i=1α
j
i k(·,zi)

where m = 4 and z1, . . . ,zm ∈ Rd are drawn (once for all experiments except in Experiment D) in-
dependently from the multivariate standard Gaussian distribution, independently from the design
(Xi)1≤i≤n. Thus, the expectations that will be considered are taken conditionally to the zi. The
coefficients (α j

i )1≤i≤m ,1≤ j≤p differ according to the setting. Matlab code is available online.1

6.1 Experiments

Five experimental settings are considered:

A; Various numbers of tasks: n= 10 and ∀i, j, α j
i = 1, that is, ∀ j, f j = fA := ∑m

i=1 k(·,zi). The
number of tasks is varying: p ∈ {2k/k = 1, . . . ,25}. The covariance matrix is Σ= 10 · Ip.

1. Matlab code can be found at http://www.di.ens.fr/˜solnon/multitask_minpen_en.html.
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B; Various sample sizes: p= 5, ∀ j, f j = fA and Σ= ΣB has been drawn (once for all) from the
Whishart W (I5,10,5) distribution; the condition number of ΣB is c(ΣB) ≈ 22.05. The only
varying parameter is n ∈ {50k/k = 1, . . . ,20}.

C; Various noise levels: n= 100, p= 5 and ∀ j, f j = fA . The varying parameter is Σ= ΣC,t :=
5t · I5 with t ∈ {0.2k/k = 1, . . . ,50}. We also ran the experiments for t = 0.01 and t = 100.

D; Clustering of two groups of functions: p = 10, n = 100, Σ = ΣE has been drawn (once
for all) from the WhishartW (I10,20,10) distribution; the condition number of ΣE is c(ΣE)≈
24.95. We pick the function fD := ∑m

i=1αik(·,zi) by drawing (α1, . . . ,αm) and (z1, . . . ,zm)
from standard multivariate normal distribution (independently in each replication) and finally
f 1 = · · ·= f 5 = fD, f 6 = · · ·= f 10 =− fD.

E; Comparison to cross-validation parameter selection: p= 5, Σ= 10 · I5, ∀ j, f j = fA. The
sample size is taken in {10,50,100,250}.

6.2 Collections of Matrices

Two different sets of matrices M are considered in the Experiments A–C, following Examples 3
and 4:

Msimilar :=
{
Msimilar (λ,µ) = (λ+ pµ)Ip−

µ
p
11/ /(λ,µ) ∈ (0,+∞)2

}

and Mind := {Mind(λ) = Diag(λ1, . . . ,λp)/λ ∈ (0,+∞)p} .

In Experiment D, we also use two different sets of matrices, following Example 5:

Mclus :=
⋃

I⊂{1,...,p},I /∈{{1,...,p}, /0}

{
MI (λ,µ,µ) /(λ,µ) ∈ (0,+∞)2

}
∪Msimilar

and Minterval :=
⋃

1≤k≤p−1

{
MI (λ,µ,µ) /(λ,µ) ∈ (0,+∞)2, I = {1, . . . ,k}

}
∪Msimilar .

Remark 35 The setMclus contains 2p−1 models, a case we will denote by “clustering”. The other
set, Minterval, only has p models, and is adapted to the structure of the Experiment D. We call this
setting “segmentation into intervals”.

6.3 Estimators

In Experiments A–C, we consider four estimators obtained by combining two collections M of
matrices with two formulas for Σ which are plugged into the penalty (7) (that is, either Σ known or
estimated by Σ̂):

∀α ∈ {similar, ind} , ∀S ∈
{
Σ, Σ̂HM

}
, f̂α,S := f̂M̂α,S

= AM̂α,S
y

where M̂α,S ∈ argmin
M∈Mα

{
1
np

∥∥∥y− f̂M
∥∥∥
2

2
+
2
np
tr(AM · (S⊗ In))

}

and Σ̂HM is defined in Section 5.2. As detailed in Examples 3–4, f̂ind,Σ̂HM and f̂ind,Σ are concatena-
tions of single-task estimators, whereas f̂similar,Σ̂HM and f̂similar,Σ should take advantage of a setting
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where the functions f j are close in F thanks to the regularization term ∑ j,k ‖ f j − f k‖2F . In Ex-
periment D we consider the following three estimators, that depend on the choice of the collection
M :

∀β ∈ {clus, interval, ind} , f̂β := f̂M̂β
= AM̂β

y

where M̂β ∈ argmin
M∈Mβ

{
1
np

∥∥∥y− f̂M
∥∥∥
2

2
+
2
np
tr
(
AM · (Σ̂⊗ In)

)}

and Σ̂ is defined by Equation (11).
In Experiment E we consider the estimator f̂similar,Σ̂HM. As explained in the following remark the

parameters of the former estimator are chosen by optimizing (20), in practice by choosing a grid.
We also consider the estimator f̂similar,CV where the parameters are selected by performing 5-fold
cross-validation on the mentionned grid.

Remark 36 (Optimization of (20)) Thanks to Assumption (18) the optimization problem (20) can
be solved easily. It suffices to diagonalize in a common basis the elements of M and the problem
splits into several multi-task problems, each with one real parameter. The optimization was then
done by using a grid on the real parameters, chosen such that the degree of freedom takes all
integer values from 0 to n.

Remark 37 (Finding the jump in Algorithm 14) Algorithm 14 raises the question of how to de-
tect the jump of df(λ), which happens around C = σ2. We chose to select an estimator Ĉ of σ2

corresponding to the smallest index such that df(̂λ0(Ĉ))< n/2. Another approach is to choose the
index corresponding to the largest instantaneous jump of df(̂λ0(C)) (which is piece-wise constant
and non-increasing). This approach has a major drawback, because it sometimes selects a jump far
away from the “real” jump around σ2, when the real jump consists of several small jumps. Both
approaches gave similar results in terms of prediction error, and we chose the first one because of
its direct link to the theoretical criterion given in Theorem 15.

6.4 Results

In each experiment, N = 1000 independent samples y ∈ Rnp have been generated. Expectations
are estimated thanks to empirical means over the N samples. Error bars correspond to the classical
Gaussian 95% confidence interval (that is, empirical standard-deviation over the N samples multi-
plied by 1.96/

√
N). The results of Experiments A–C are reported in Figures 2–8. The results of

Experiments C–E are reported in Tables 1–3. The p-values correspond to the classical Gaussian
difference test, where the hypotheses tested are of the shape H0 = {q> 1} against the hypotheses
H1 = {q≤ 1}, where the different quantities q are detailed in Tables 2–3.

6.5 Comments

As expected, multi-task learning significantly helps when all f j are equal, as soon as p is large
enough (Figure 1), especially for small n (Figure 6) and large noise-levels (Figure 8 and Table 1).
Increasing the number of tasks rapidly reduces the quadratic error with multi-task estimators (Fig-
ure 2) contrary to what happens with single-task estimators (Figure 3).
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Figure 1: Increasing the number of tasks p (Experiment A), improvement of multi-task compared
to single-task: E[‖ f̂similar,Σ̂− f‖2/‖ f̂ind,Σ̂− f‖2].
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Figure 2: Increasing the number of tasks p (Experiment A), quadratic errors of multi-task estima-
tors (np)−1E[‖ f̂similar,S− f‖2]. Blue: S= Σ̂. Red: S= Σ.
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Figure 3: Increasing the number of tasks p (Experiment A), quadratic errors of single-task estima-
tors (np)−1E[‖ f̂ind,S− f‖2]. Blue: S= Σ̂. Red: S= Σ.
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Figure 4: Increasing the sample size n (Experiment B), quadratic errors of multi-task estimators
(np)−1E[‖ f̂similar,S− f‖2]. Blue: S= Σ̂. Red: S= Σ.
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Figure 5: Increasing the sample size n (Experiment B), quadratic errors of single-task estimators
(np)−1E[‖ f̂ind,S− f‖2]. Blue: S= Σ̂. Red: S= Σ.
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Figure 6: Increasing the sample size n (Experiment B), improvement of multi-task compared to
single-task: E[‖ f̂similar,Σ̂− f‖2/‖ f̂ind,Σ̂− f‖2].
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Figure 7: Increasing the signal-to-noise ratio (Experiment C), quadratic errors of multi-task estima-
tors (np)−1E[‖ f̂similar,S− f‖2]. Blue: S= Σ̂. Red: S= Σ.
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Figure 8: Increasing the signal-to-noise ratio (Experiment C), improvement of multi-task compared
to single-task: E[‖ f̂similar,Σ̂− f‖2/‖ f̂ind,Σ̂− f‖2].
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t 0.01 100
E[‖ f̂similar,Σ̂− f‖2/‖ f̂ind,Σ̂− f‖2] 1.80±0.02 0.300±0.003

E[‖ f̂similar,Σ̂− f‖2] (2.27±0.38)×10−2 0.357±0.048
E[‖ f̂similar,Σ− f‖2] (1.20±0.28)×10−2 0.823±0.080
E[‖ f̂ind,Σ̂− f‖2] (1.26±0.26)×10−2 1.51±0.07
E[‖ f̂ind,Σ− f‖2] (1.20±0.24)×10−2 4.47±0.13

Table 1: Results of Experiment C for the extreme values of t.

q E [q] Std[q] p-value for H0 = {q> 1}
‖ f̂clus− f‖2/‖ f̂ind− f‖2 0.668 0.294 < 10−15

‖ f̂interval− f‖2/‖ f̂ind− f‖2 0.660 0.270 < 10−15

‖ f̂interval− f‖2/‖ f̂clus− f‖2 1.00 0.165 0.50

Table 2: Clustering and segmentation (Experiment D).

q n E [q] Std[q] p-value for H0 = {q> 1}
‖ f̂similar,Σ̂HM − f‖2/‖ f̂similar,CV− f‖2 10 0.35 0.46 < 10−15

‖ f̂similar,Σ̂HM − f‖2/‖ f̂similar,CV− f‖2 50 0.56 0.42 < 10−15

‖ f̂similar,Σ̂HM − f‖2/‖ f̂similar,CV− f‖2 100 0.71 0.34 < 10−15

‖ f̂similar,Σ̂HM − f‖2/‖ f̂similar,CV− f‖2 250 0.87 0.19 < 10−15

Table 3: Comparison of our method to 5-fold cross-validation (Experiment E).

A noticeable phenomenon also occurs in Figure 2 and even more in Figure 3: the estimator
f̂ind,Σ (that is, obtained knowing the true covariance matrix Σ) is less efficient than f̂ind,Σ̂ where the
covariance matrix is estimated. It corresponds to the combination of two facts: (i) multiplying the
ideal penalty by a small factor 1<Cn< 1+o(1) is known to often improve performances in practice
when the sample size is small (see Section 6.3.2 of Arlot, 2009), and (ii) minimal penalty algorithms
like Algorithm 14 are conjectured to overpenalize slightly when n is small or the noise-level is
large (Lerasle, 2011) (as confirmed by Figure 7). Interestingly, this phenomenon is stronger for
single-task estimators (differences are smaller in Figure 2) and disappears when n is large enough
(Figure 5), which is consistent with the heuristic motivating multi-task learning: “increasing the
number of tasks p amounts to increase the sample size”.

Figures 4 and 5 show that our procedure works well with small n, and that increasing n does not
seem to significantly improve the performance of our estimators, except in the single-task setting
with Σ known, where the over-penalization phenomenon discussed above disappears.

Table 2 shows that using the multitask procedure improves the estimation accuracy, both in the
clustering setting and in the segmentation setting. The last line of Table 2 does not show that the
clustering setting improves over the “segmentation into intervals” one, which was awaited if a model
close to the oracle is selected in both cases.

Table 3 finally shows that our parameter tuning procedure outperforms 5-fold cross-validation.
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7. Conclusion and Future Work

This paper shows that taking into account the unknown similarity between p regression tasks can
be done optimally (Theorem 26). The crucial point is to estimate the p× p covariance matrix Σ
of the noise (covariance between tasks), in order to learn the task similarity matrix M. Our main
contributions are twofold. First, an estimator of Σ is defined in Section 4, where non-asymptotic
bounds on its error are provided under mild assumptions on the mean of the sample (Theorem 20).
Second, we show an oracle inequality (Theorem 26), more particularly with a simplified estimation
of Σ and increased performances when the matrices of M are jointly diagonalizable (which often
corresponds to cases where we have a prior knowledge of what the relations between the tasks
would be). We do plan to expand our results to larger setsM , which may require new concentration
inequalities and new optimization algorithms.

Simulation experiments show that our algorithm works with reasonable sample sizes, and that
our multi-task estimator often performs much better than its single-task counterpart. Up to the
best of our knowledge, a theoretical proof of this point remains an open problem that we intend to
investigate in a future work.
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We give in Appendix the proofs of the different results stated in Sections 2, 4 and 5. The proofs
of our main results are contained in Sections E and F.

Appendix A. Proof of Proposition 8

Proof It is sufficient to show that 〈·, ·〉G is positive-definite on G . Take g ∈G and S= (Si, j)1≤i≤ j≤p
the symmetric postive-definite matrix of size p verifying S2=M, and denote T = S−1=(Ti, j)1≤i, j≤p.
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Let f be the element of G defined by ∀i ∈ {1 . . . p}, g(·, i) = ∑n
k=1Ti,k f (·,k). We then have:

〈g,g〉G =
p

∑
i=1

p

∑
j=1

Mi, j〈g(·, i),g(·, j)〉F

=
p

∑
i=1

p

∑
j=1

p

∑
k=1

p

∑
l=1

Mi, jTi,kTj,l〈 f (·,k), f (·, l)〉F

=
p

∑
j=1

p

∑
k=1

p

∑
l=1

Tl, j〈 f (·,k), f (·, l)〉F
p

∑
i=1

Mj,iTi,k

=
p

∑
j=1

p

∑
k=1

p

∑
l=1

Tl, j〈 f (·,k), f (·, l)〉F (M ·T ) j,k

=
p

∑
k=1

p

∑
l=1

Tl, j〈 f (·,k), f (·, l)〉F
p

∑
j=1

Tl, j(M ·T ) j,k

=
p

∑
k=1

p

∑
l=1

〈 f (·,k), f (·, l)〉F (T ·M ·T )k,l

=
p

∑
k=1

‖ f (·,k)‖2F .

This shows that 〈g,g〉G ≥ 0 and that 〈g,g〉G = 0⇒ f = 0⇒ g= 0.

Appendix B. Proof of Corollary 9

Proof If (x, j) ∈ X × {1, . . . , p}, the application ( f 1, . . . , f p) =→ f j(x) is clearly continuous. We
now show that (G ,〈·, ·〉G) is complete. If (gn)n∈N is a Cauchy sequence of G and if we define, as
in Section A, the functions fn by ∀n ∈ N, ∀i ∈ {1 . . . p}, gn(·, i) = ∑

p
k=1Ti,k fn(·,k). The same com-

putations show that ( fn(·, i))n∈N are Cauchy sequences of F , and thus converge. So the sequence
( fn)n∈N converges in G , and (gn)n∈N does likewise.

Appendix C. Proof of Proposition 11

Proof We define

Φ̃(x, j) =M−1 ·




δ1, jΦ(x)

...
δp, jΦ(x)



 ,

with δi, j = 1i= j being the Kronecker symbol, that is, δi, j = 1 if i= j and 0 otherwise. We now show
that Φ̃ is the feature function of the RKHS. For g ∈ G and (x, l) ∈ X ×{1, . . . , p}, we have:
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〈g,Φ̃(x, l)〉G =
p

∑
j=1

p

∑
i=1

Mj,i〈g(·, j),Φ̃(x, l)i〉F

=
p

∑
j=1

p

∑
i=1

p

∑
m=1

Mj,iM−1
i,mδm,l〈g(·, j),Φ(x)〉F

=
p

∑
j=1

p

∑
m=1

(M ·M−1) j,mδm,lg(x, j)

=
p

∑
j=1

δ j,lg(x, j) = g(x, l) .

Thus we can write:

k̃((x, i),(y, j)) = 〈Φ̃(x, i),Φ̃(y, j)〉G

=
p

∑
h=1

p

∑
h′=1

Mh,h′ 〈M−1
h,i Φ(x),M

−1
h′, jΦ(y)〉F

=
p

∑
h=1

p

∑
h′=1

Mh,h′M−1
h,i M

−1
h′, jK(x,y)

=
p

∑
h=1

M−1
h,i (M ·M−1)h, jK(x,y)

=
p

∑
h=1

M−1
h,i δh, jK(x,y) =M−1

i, j K(x,y) .

Appendix D. Computation of the Quadratic Risk in Example 12

We consider here that f 1 = · · ·= f p. We use the setMsimilar:

Msimilar :=
{
Msimilar (λ,µ) = (λ+ pµ)Ip−

µ
p
11/ /(λ,µ) ∈ (0,+∞)2

}

Using the estimator f̂M = AMy we can then compute the quadratic risk using the bias-variance
decomposition given in Equation (36):

E

[∥∥∥ f̂M− f
∥∥∥
2

2

]
= ‖(AM− Inp) f‖22+ tr(A/

MAM · (Σ⊗ In)) .

Les us denote by (e1, . . . ,ep) the canonical basis of Rp. The eigenspaces of p−111/ are:

• span{e1+ · · ·+ ep} corresponding to eigenvalue p,
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• span{e2− e1, . . . ,ep− e1} corresponding to eigenvalue 0.
Thus, with µ̃= λ+ pµ we can diagonalize in an orthonormal basis any matrix Mλ,µ ∈M as M =
P/Dλ,µ̃P, with D = Dλ,µ̃ = Diag{λ, µ̃, . . . , µ̃}. Les us also diagonalise in an orthonormal basis K:
K =Q/ΔQ, Δ=Diag{µ1, . . . ,µn}. Thus we can write (see Properties 38 and 39 for basic properties
of the Kronecker product):

AM = AMλ,µ = (P/⊗Q/)
[
(D−1⊗Δ)

(
(D−1⊗Δ)+npInp

)−1]
(P⊗Q) .

We can then note that (D−1⊗Δ)
(
(D−1⊗Δ)+npInp

)−1 is a diagonal matrix, whose diagonal entry
of index ( j−1)n+ i (i ∈ {1, . . . ,n}, j ∈ {1, . . . , p}) is

{
µi

µi+npλ if j = 1 ,
µi

µi+npµ̃ if j > 1 .

We can now compute both bias and variance.
Bias: We can first remark that (P/ ⊗Q/) = (P⊗Q)/ is an orthogonal matrix and that P× 1 =

(1,0, . . . ,0)/. Thus, as in this setting f 1 = · · ·= f p, we have f = 1⊗ ( f 1(X1), . . . , f 1(Xn))/
and (P/⊗Q/) f = (1,0, . . . ,0)/⊗Q( f 1(X1), . . . , f 1(Xn))/. To keep notations simple we note
Q( f 1(X1), . . . , f 1(Xn))/ := (g1, . . . ,gn)/. Thus

‖(AM− Inp) f‖22 = ‖(P⊗Q)/
[
(D−1⊗K)

(
(D−1⊗K)+npInp

)−1− Inp
]
(P⊗Q) f‖22

= ‖
[
(D−1⊗Δ)

(
(D−1⊗Δ)+npInp

)−1− Inp
]

× (1,0, . . . ,0)/⊗ (g1, . . . ,gn)/‖22 .

As only the first n terms of (P⊗Q) f are non-zero we can finally write

‖(AM− Inp) f‖22 =
n

∑
i=1

(
npλ

µi+npλ

)2
g2i .

Variance: First note that
(P⊗Q)(Σ⊗ In)(P⊗Q)/ = (PΣP/⊗ In) .

We can also note that Σ̃ := PΣP/ is a symmetric positive definite matrix, with positive diag-
onal coefficients. Thus we can finally write

tr(A/
MAM · (Σ⊗ In)) = tr

(
P⊗Q)/

[
(D−1⊗Δ)

(
(D−1⊗Δ)+npInp

)−1]2

× (P⊗Q)(Σ⊗ In)
)

= tr
([

(D−1⊗Δ)
(
(D−1⊗Δ)+npInp

)−1]2

× (P⊗Q)(Σ⊗ In)(P⊗Q)/
)

=
n

∑
i=1

[(
µi

µi+npλ

)2
Σ̃1,1+

(
µi

µi+npµ̃

)2 p

∑
j=2

Σ̃ j, j

]

.

As noted at the end of Example 12 this leads to an oracle which has all its p functions equal.
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D.1 Proof of Equation (19) in Section 5.2

Let M ∈ S++
p (R), P ∈ Op(R) such that M = P/Diag(d1, . . . ,dp)P and Σ̃ = PΣP/. We recall that

Aλ = K(K+nλIn)−1. The computations detailed above also show that the ideal penalty introduced
in Equation (7) can be written as

penid(M) =
2tr
(
AM · (Σ⊗ In)

)

np
=
2
np

(
p

∑
j=1
tr(Apdj)Σ̃ j, j

)

.

Appendix E. Proof of Theorem 20

Theorem 20 is proved in this section, after stating some classical linear algebra results (Section E.1).

E.1 Some Useful Tools

We now give two properties of the Kronecker product, and then introduce a useful norm on Sp(R),
upon which we give several properties. Those are the tools needed to prove Theorem 20.

Property 38 The Kronecker product is bilinear, associative and for every matrices A,B,C,D such
that the dimensions fit, (A⊗B)(C⊗D) = (AC)⊗ (BD).

Property 39 Let A ∈Mn(R), B ∈MB(R), (A⊗B)/ = (A/⊗B/).

Definition 40 We now introduce the norm ||| · ||| on Sp(R), which is the modulus of the eigenvalue of
largest magnitude, and can be defined by

|||S||| := sup
z∈Rp,‖z‖2=1

∣∣∣z/Sz
∣∣∣ .

This norm has several interesting properties, some of which we will use are stated below.

Property 41 The norm ||| · ||| is a matricial norm: ∀(A,B) ∈ Sp(R)2, |||AB|||≤ |||A||||||B|||.

We will use the following result, which is a consequence of the preceding Property.

∀S ∈ Sp(R), ∀T ∈ S++
p (R), |||T− 1

2 ST− 1
2 |||≤ |||S||||||T−1||| .

We also have:

Proposition 42
∀Σ ∈ Sp(R), |||Σ⊗ In|||= |||Σ||| .

Proof We can diagonalize Σ in an orthonormal basis: ∃U ∈ On(R), ∃D = Diag(µ1, . . . ,µp), Σ =
U/DU . We then have, using the properties of the Kronecker product:

Σ⊗ In = (U/⊗ In)(D⊗ In)(U⊗ In)
= (U⊗ In)/(D⊗ In)(U⊗ In) .
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We just have to notice thatU⊗ In ∈ Onp(R) and that:

D⊗ In = Diag(µ1, . . . ,µ1︸ ︷︷ ︸
n times

, . . . ,µp, . . . ,µp︸ ︷︷ ︸
n times

) .

This norm can also be written in other forms:

Property 43 If M ∈Mn(R), the operator norm ‖M‖2 := supt∈Rn\{0}

{
‖Mt‖2
‖t‖2

}
is equal to the great-

est singular value of M:
√
ρ(M/M). Henceforth, if S is symmetric, we have |||S|||= ‖S‖2

E.2 The Proof

We now give a proof of Theorem 20, using Lemmas 46, 48 and 49, which are stated and proved in
Section E.3. The outline of the proof is the following:

1. Apply Theorem 15 to problem (10) for every z ∈ Z in order to

2. control ‖s−ζ‖∞ with a large probability, where s,ζ ∈ Rp(p+1)/2 are defined by

s := (Σ1,1, . . . ,Σp,p,Σ1,1+Σ2,2+2Σ1,2, . . . ,Σi,i+Σ j, j+2Σi, j, . . .)
and ζ := (a(e1), . . . ,a(ep),a(e1+ e2), . . . ,a(e1+ ep),a(e2+ e3), . . . ,a(ep−1+ ep)) .

3. Deduce that Σ̂= J(ζ) is close to Σ= J(s) by controlling the Lipschitz norm of J.

Proof 1. Apply Theorem 15: We start by noticing that Assumption (13) actually holds true with all
λ0, j equal. Indeed, let (λ0, j)1≤ j≤p be given by Assumption (13) and define λ0 := min j=1,...,pλ0, j.
Then, λ0 ∈ (0,+∞) and df(λ0) since all λ0, j satisfy these two conditions. For the last condition,
remark that for every j ∈ {1, . . . , p}, λ0 ≤ λ0, j and λ =→ ‖(Aλ− I)Fej‖22 is a nonincreasing function
(as noticed in Arlot and Bach, 2011 for instance), so that

1
n
∥∥(Aλ0 − In)Fej

∥∥2
2 ≤

1
n

∥∥∥(Aλ0, j − In)Fej
∥∥∥
2

2
≤ Σ j, j

√
ln(n)
n

. (23)

In particular, Equation (8) holds with dn = 1 for problem (10) whatever z ∈ {e1, . . . ,ep}.
Let us now consider the case z = ei+ e j with i >= j ∈ {1, . . . , p}. Using Equation (23) and that

Fei+e j = Fei +Fej , we have
∥∥(Bλ0 − In)Fei+e j

∥∥2
2 ≤

∥∥(Bλ0 − In)Fei
∥∥2
2+
∥∥(Bλ0 − In)Fej

∥∥2
2+2〈(Bλ0 − In)Fei ,(Bλ0 − In)Fej〉 .

The last term is bounded as follows:

2〈(Bλ0 − In)Fei ,(Bλ0 − In)Fej〉 ≤ 2‖(Bλ0 − In)Fei‖ ·‖(Bλ0 − In)Fej‖

≤ 2
√
n ln(n)

√
Σi,iΣ j, j

≤
√
n ln(n)(Σi,i+Σ j, j)

≤ (1+ c(Σ))
√
n ln(n)(Σi,i+Σ j, j+2Σi, j)

= (1+ c(Σ))
√
n ln(n)σ2ei+e j ,
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because Lemma 46 shows

2(Σi,i+Σ j, j)≤ (1+ c(Σ))(Σi,i+Σ j, j+2Σi, j) .

Therefore, Equation (8) holds with dn = 1+ c(Σ) for problem (10) whatever z ∈ Z.
2. Control ‖s−ζ‖∞: Let us define

η1 := β(2+δ)(1+ c(Σ))
√
ln(n)
n

.

By Theorem 15, for every z ∈ Z, an event Ωz of probability greater than 1−n−δ exists on which, if
n≥ n0(δ),

(1−η1)σ
2
z ≤ a(z)≤ (1+η1)σ

2
z .

So, on Ω :=
⋂
z∈ZΩz,

‖ζ− s‖∞ ≤ η1 ‖s‖∞ , (24)
and P(Ω)≥ 1− p(p+1)/2×n−δ by the union bound. Let

‖Σ‖∞ := sup
i, j

∣∣Σi, j
∣∣ and C1(p) := sup

Σ∈Sp(R)

{
‖Σ‖∞
|||Σ|||

}
.

Since ‖s‖∞ ≤ 4‖Σ‖∞ and C1(p) = 1 by Lemma 48, Equation (24) implies that on Ω,

‖ζ− s‖∞ ≤ 4η1 ‖Σ‖∞ ≤ 4η1|||Σ||| . (25)

3. Conclusion of the proof: Let

C2(p) := sup
ζ∈Rp(p+1)/2

{
|||J(ζ)|||
‖ζ‖∞

}
.

By Lemma 49,C2(p)≤ 3
2 p. By Equation (25), on Ω,

|||Σ̂−Σ|||= |||J(ζ)− J(s)|||≤C2(p)‖ζ− s‖∞ ≤ 4η1C2(p)|||Σ||| . (26)

Since
|||Σ−

1
2 Σ̂Σ−

1
2 − Ip|||= |||Σ−

1
2 (Σ− Σ̂)Σ−

1
2 |||≤ |||Σ−1||||||Σ− Σ̂||| ,

and |||Σ||||||Σ−1|||= c(Σ), Equation (26) implies that on Ω,

|||Σ−
1
2 Σ̂Σ−

1
2 − Ip|||≤ 4η1C2(p)|||Σ||||||Σ−1|||= 4η1C2(p)c(Σ)≤ 6η1pc(Σ) .

To conclude, Equation (14) holds on Ω with

η= 6pc(Σ)β(2+δ)(1+ c(Σ))
√
ln(n)
n

≤ L1(2+δ)p
√
ln(n)
n

c(Σ)2 (27)

for some numerical constant L1.

Remark 44 As stated in Arlot and Bach (2011), we need
√
n0(δ)/ ln(n0(δ)) ≥ 504 and√

n0(δ)/ ln(n0(δ))≥ 24(290+δ).

Remark 45 To ensure that the estimated matrix Σ̂ is positive-definite we need that η< 1, that is,
√ n
ln(n)

> 6β(2+δ)pc(Σ)(1+ c(Σ)) .
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E.3 Useful Lemmas

Lemma 46 Let p≥ 1, Σ ∈ S++
p (R) and c(Σ) its condition number. Then,

∀1≤ i< j ≤ p , Σi, j ≥−
c(Σ)−1
c(Σ)+1

Σi,i+Σ j, j
2

, (28)

Remark 47 The proof of Lemma 46 shows the constant c(Σ)−1c(Σ)+1 cannot be improved without addi-
tional assumptions on Σ.

Proof It suffices to show the result when p = 2. Indeed, (28) only involves 2× 2 submatrices
Σ̃(i, j) ∈ S++

2 (R) for which

1≤ c(Σ̃)≤ c(Σ) hence 0≤
c(Σ̃)−1
c(Σ̃)+1

≤
c(Σ)−1
c(Σ)+1

.

So, some θ ∈ R exists such that Σ= |||Σ|||R/
θ DRθ where

Rθ :=
(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
D=

(
1 0
0 λ

)
and λ :=

1
c(Σ)

.

Therefore,

Σ= |||Σ|||
(
cos2(θ)+λsin2(θ) 1−λ

2 sin(2θ)
1−λ
2 sin(2θ) λcos2(θ)+ sin2(θ)

)
.

So, Equation (28) is equivalent to

(1−λ)sin(2θ)
2

≥−
1−λ
1+λ

1+λ
2

,

which holds true for every θ ∈ R, with equality for θ≡ π/2 (mod. π).

Lemma 48 For every p≥ 1, C1(p) := supΣ∈Sp(R)
‖Σ‖∞
|||Σ||| = 1 .

Proof With Σ= Ip we have ‖Σ‖∞ = |||Σ|||= 1, soC1(p)≥ 1.
Let us introduce (i, j) such that |Σi, j| = ‖Σ‖∞. We then have, with ek being the kth vector of the
canonical basis of Rp,

|Σi, j|= |e/i Σe j|≤ |e/i Σei|1/2|e/j Σe j|1/2 ≤ (‖Σ‖1/22 )2 .

Lemma 49 For every p≥ 1, let C2(p) := supζ∈Rp(p+1)/2
|||J(ζ)|||
‖ζ‖∞ . Then,

p
4
≤C2(p)≤

3
2
p .

2801



SOLNON, ARLOT AND BACH

Proof For the lower bound, we consider

ζ1 = (1, . . . ,1︸ ︷︷ ︸
p times

, 4, . . . ,4︸ ︷︷ ︸
p(p−1)
2 times

) , then J(ζ1) =




1 . . . 1
... . . . ...
1 . . . 1





so that |||J(ζ)|||= p and ‖ζ‖∞ = 4.
For the upper bound, we have for every ζ ∈ Rp(p+1)/2 and z ∈ Rp such that ‖z‖2 = 1

z/J(ζ)z=

∣∣∣∣∣ ∑1≤i, j≤p
ziz jJ(ζ)i, j

∣∣∣∣∣≤ ∑
1≤i, j≤p

|zi|
∣∣z j
∣∣ |J(ζ)|≤ ‖J(ζ)‖∞ ‖z‖

2
1 .

By definition of J, ‖J(ζ)‖∞ ≤ 3/2‖ζ‖∞. Remarking that ‖z‖21 ≤ p‖z‖22 yields the result.

Appendix F. Proof of Theorem 26

The proof of Theorem 26 is similar to the proof of Theorem 3 in Arlot and Bach (2011). We give
it here for the sake of completeness. We also show how to adapt its proof to demonstrate Theo-
rem 29. The two main mathematical results used here are Theorem 20 and a gaussian concentration
inequality from Arlot and Bach (2011).

F.1 Key Quantities and their Concentration Around their Means

Definition 50 We introduce, for S ∈ S++
p (R),

M̂o(S) ∈ argmin
M∈M

{∥∥∥F̂M−Y
∥∥∥
2
+2tr(AM · (S⊗ In))

}
(29)

Definition 51 Let S ∈ Sp(R), we note S+ the symmetric matrix where the eigenvalues of S have
been thresholded at 0. That is, if S=U/DU, with U ∈ Op(R) and D= Diag(d1, . . . ,dp), then

S+ :=U/Diag(max{d1,0} , . . . ,max{dn,0})U .

Definition 52 For every M ∈M , we define

b(M) = ‖(AM− Inp) f‖22 ,

v1(M) = E [〈ε,AMε〉] = tr(AM · (Σ⊗ In)) ,

δ1(M) = 〈ε,AMε〉−E [〈ε,AMε〉] = 〈ε,AMε〉− tr(AM · (Σ⊗ In)) ,

v2(M) = E
[
‖AMε‖22

]
= tr(A/

MAM · (Σ⊗ In)) ,

δ2(M) = ‖AMε‖22−E
[
‖AMε‖22

]
= ‖AMε‖22− tr(A/

MAM · (Σ⊗ In)) ,

δ3(M) = 2〈AMε,(AM− Inp) f 〉 ,

δ4(M) = 2〈ε,(Inp−AM) f 〉 ,

Δ̂(M) =−2δ1(M)+δ4(M) .

2802



MULTI-TASK REGRESSION USING MINIMAL PENALTIES

Definition 53 Let CA,CB,CC,CD,CE ,CF be fixed nonnegative constants. For every x≥ 0 we define
the event

Ωx =Ωx(M ,CA,CB,CC,CD,CE ,CF)

on which, for every M ∈M and θ1,θ2,θ3,θ4 ∈ (0,1]:

|δ1(M)|≤ θ1 tr
(
A/
MAM · (Σ⊗ In)

)
+(CA+CBθ−11 )x|||Σ||| (30)

|δ2(M)|≤ θ2 tr
(
A/
MAM · (Σ⊗ In)

)
+(CC+CDθ−12 )x|||Σ||| (31)

|δ3(M)|≤ θ3 ‖(Inp−AM) f‖22+CEθ
−1
3 x|||Σ||| (32)

|δ4(M)|≤ θ4 ‖(Inp−AM) f‖22+CFθ
−1
4 x|||Σ||| (33)

Of key interest is the concentration of the empirical processes δi, uniformly over M ∈M . The
following Lemma introduces such a result, whenM contains symmetric matrices parametrized with
their eigenvalues (with fixed eigenvectors).

Lemma 54 Let

CA = 2, CB = 1, CC = 2, CD = 1, CE = 306.25, CF = 306.25 .

Suppose that (18) holds. Then P(Ωx(M ,CA,CB,CC,CD,CE ,CF)) ≥ 1− pe1027+ln(n)e−x. Suppose
that (15) holds. Then P(Ωx(M ,CA,CB,CC,CD,CE ,CF))≥ 1−6pcard(M )e−x.

.

Proof

First common step. Let M ∈M , PM ∈ Op(R) such that M = P/
MDPM, with D= Diag(d1, . . . ,dp).

We can write:

AM = Ad1,...,dp = (PM⊗ In)/
[
(D−1⊗K)

(
D−1⊗K+npInp

)−1]
(PM⊗ In)

= Q/Ãd1,...,dpQ ,

with Q = PM ⊗ In and Ãd1,...,dp = (D−1⊗K)(D−1⊗K+ npInp)−1. Remark that Ãd1,...,dp is
block-diagonal, with diagonal blocks being Bd1 , . . . ,Bdp using the notations of Section 3. With
ε̃= Qε= (ε̃1

/, . . . , ε̃p
/)/ and f̃ = Qf = ( f̃1

/
, . . . , f̃ p

/
)/ we can write

|δ1(M)|= 〈ε̃, Ãd1,...,dp ε̃〉−E

[
〈ε̃, Ãd1,...,dp ε̃〉

]
,

|δ2(M)|=
∥∥∥Ãd1,...,dp ε̃

∥∥∥
2

2
−E

[∥∥∥Ãd1,...,dp ε̃
∥∥∥
2

2

]
,

|δ3(M)|= 2〈Ãd1,...,dp ε̃,(Ãd1,...,dp − Inp) f̃ 〉 ,

|δ4(M)|= 2〈ε̃,(Inp− Ãd1,...,dp) f̃ 〉 .
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We can see that the quantities δi decouple, therefore

|δ1(M)|=
p

∑
i=1

〈ε̃i,Apdi ε̃i〉−E [〈ε̃i,Apdi ε̃〉] ,

|δ2(M)|=
p

∑
i=1

‖Apdi ε̃i‖
2
2−E

[
‖Apdi ε̃i‖

2
2

]
,

|δ3(M)|=
p

∑
i=1
2〈Apdi ε̃i,(Apdi − In) f̃i〉 ,

|δ4(M)|=
p

∑
i=1
2〈ε̃i,(In−Apdi) f̃i〉 .

Supposing (18). Assumption (18) implies that the matrix P used above is the same for all the
matricesM ofM . Using Lemma 9 of Arlot and Bach (2011), where we have p concentration
results on the sets Ω̃i, each of probability at least 1− e1027+ln(n)e−x we can state that, on the
set

⋂p
i=1 Ω̃i, we have uniformly onM

|δ1(M)|≤
p

∑
i=1

θ1Var[̃εi] tr(A/
pdiApdi)+(CA+CBθ−11 )xVar[̃εi] ,

|δ2(M)|≤
p

∑
i=1

θ2Var[̃εi] tr(A/
pdiApdi)+(CC+CDθ−12 )xVar[̃εi] ,

|δ3(M)|≤
p

∑
i=1

θ3
∥∥∥(In−Apdi) f̃i

∥∥∥
2

2
+CEθ−13 xVar[̃εi] ,

|δ4(M)|≤
p

∑
i=1

θ4
∥∥∥(In−Apdi) f̃i

∥∥∥
2

2
+CFθ−14 xVar[̃εi] .

Supposing (15). We can use Lemma 8 of Arlot and Bach (2011) where we have p concentration
results on the sets Ω̃ j,M, each of probability at least 1− 6e−x we can state that, on the set⋂p
j=1

⋂
M∈M Ω̃i, we have uniformly onM the same inequalities written above.

Final common step. To conclude, it suffices to see that for every i ∈ {1, . . . , p}, Var[̃εi]≤ |||Σ|||.

F.2 Intermediate Result

We first prove a general oracle inequality, under the assumption that the penalty we use (with an
estimator of Σ) does not underestimate the ideal penalty (involving Σ) too much.
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Proposition 55 Let CA,CB,CC,CD,CE ≥ 0 be fixed constants, γ > 0, θS ∈ [0,1/4) and KS ≥ 0. On
Ωγ ln(n)(M ,CA,CB,CC,CD,CE), for every S ∈ S++

p (R) such that

tr
(
AM̂o(S) · ((S−Σ)⊗ In)

)

≥−θS tr
(
AM̂o(S) · (Σ⊗ In)

)
inf
M∈M

{
b(M)+ v2(M)+KS ln(n)|||Σ|||

v1(M)

} (34)

and for every θ ∈ (0,(1−4θS)/2), we have:

1
np

∥∥∥ f̂M̂o(S)− f
∥∥∥
2

2
≤

1+2θ
1−2θ−4θS

inf
M∈M

{
1
np

∥∥∥F̂M−F
∥∥∥
2

2
+
2tr(AM · ((S−Σ)+⊗ In))

np

}

+
1

1−2θ−4θS

[
(2CA+3CC+6CD+6CE +

2
θ
(CB+CF))γ+

θSKS
4

]
ln(n)|||Σ|||

np
(35)

Proof The proof of Proposition 55 is very similar to the one of Proposition 5 in Arlot and Bach
(2011). First, we have

∥∥∥ f̂M− f
∥∥∥
2

2
= b(M)+ v2(M)+δ2(M)+δ3(M) , (36)

∥∥∥ f̂M− y
∥∥∥
2

2
= ‖ f̂M− f‖22−2v1(M)−2δ1(M)+δ4(M)+‖ε‖22 . (37)

Combining Equation (29) and (37), we get:
∥∥∥ f̂M̂o(S)− f

∥∥∥
2

2
+2tr

(
AM̂o(S) · ((S−Σ)+⊗ In)

)
+ Δ̂(M̂o(S))

≤ inf
M∈M

{∥∥∥ f̂M− f
∥∥∥
2

2
+2tr(AM · ((S−Σ)⊗ In))+ Δ̂(M)

}
.

(38)

On the eventΩγ ln(n), for every θ∈ (0,1] andM ∈M , using Equation (30) and (33) with θ= θ1= θ4,

|Δ̂(M)|≤ θ(b(M)+ v2(M))+(CA+
1
θ
(CB+CF))γ ln(n)|||Σ||| . (39)

Using Equation (31) and (32) with θ2 = θ3 = 1/2 we get that for everyM ∈M Equation
∥∥∥F̂M−F

∥∥∥
2

2
≥
1
2
(b(M)+ v2(M))− (CC+2CD+2CE)γ ln(n)|||Σ||| ,

which is equivalent to

b(M)+ v2(M)≤ 2
∥∥∥F̂M−F

∥∥∥
2

2
+2(CC+2CD+2CE)γ ln(n)|||Σ||| . (40)

Combining Equation (39) and (40), we get

|Δ̂(M)|≤ 2θ
∥∥∥F̂M−F

∥∥∥
2

2
+

(
CA+(2CC+4CD+4CE)θ+(CB+CF)

1
θ

)
γ ln(n)|||Σ||| .
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With Equation (38), and with C1 =CA,C2 = 2CC+4CD+4CE andC3 =CB+CF we get

(1−2θ)
∥∥∥ f̂M̂o(S)− f

∥∥∥
2

2
+2tr

(
AM̂o(S) · ((S−Σ)+⊗ In)

)
≤

inf
M∈M

{∥∥∥ f̂M− f
∥∥∥
2

2
+2tr(AM · ((S−Σ)⊗ In))

}
+

(
C1+C2θ+

C3
θ

)
γ ln(n)|||Σ||| .

(41)

Using Equation (34) we can state that

tr
(
AM̂o(S) · ((S−Σ)⊗ In)

)
≥
b(M̂o(S))+ v2(M̂o(S))+KS ln(n)|||Σ|||

v1(M̂o(S))
tr
(
AM̂o(S) · (Σ⊗ In)

)

so that

tr
(
AM̂o(S) · ((S−Σ)⊗ In)

)
≥−θS

(
(b(M̂o(S))+ v2(M̂o(S))+KS ln(n)|||S|||

)
,

which then leads to Equation (35) using Equation (40) and (41).

F.3 The Proof Itself

We now show Theorem 26 as a consequence of Proposition 55. It actually suffices to show that Σ̂
does not underestimate Σ too much, and that the second term in the infimum of Equation (35) is
negligible in front of the quadratic error (np)−1‖ f̂M− f‖2.
Proof On the event Ω introduced in Theorem 20, Equation (14) holds. Let

γ= pc(Σ)(1+ c(Σ)) .

By Lemma 56 below, we have:

inf
M∈M

{
b(M)+ v2(M)+KS ln(n)|||Σ|||

v1(M)

}
≥ 2

√
KS ln(n)|||Σ|||

n tr(Σ)
.

We supposed Assumption (15) holds. Using elementary algebra it is easy to show that, for every
symmetric positive definite matrices A,M and N of size p,M . N implies that tr(AM)≥ tr(AN). In
order to have M̂o(Σ̂) satisfying Equation (34), Theorem 20 shows that it suffices to have, for every
θS > 0,

2θS

√
KS ln(n)|||Σ|||

n tr(Σ)
= 6β(2+δ)γ

√
ln(n)
n

,

which leads to the choice

KS =
(
3β(α+δ)γ tr(Σ)

θS|||Σ|||

)2
.

We now take θS = θ = (9ln(n))−1. Let Ω be the set given by Theorem 20. Using Equation (35)
and requiring that ln(n) ≥ 6 we get, on the set Ω̃ = Ω∩Ω(α+δ) ln(n)(M ,CA,CB,CC,CD,CE ,CF) of
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probability 1− (p(p+1)/2+6pC)n−δ, using that α≥ 2:

1
np

∥∥∥ f̂M̂− f
∥∥∥
2
≤
(
1+

1
ln(n)

)
inf
M∈M





1
np

∥∥∥ f̂M− f
∥∥∥
2

2
+
2tr
(
AM · ((Σ̂−Σ)+⊗ In)

)

np






+

(
1−

2
3ln(n)

)−1[
2CA+3CC+6CD+6CE + ln(n)

(
18CB+18CF +

729β2γ2 tr(Σ)2

4|||Σ|||2

)]

× (α+δ)2
ln(n)2|||Σ|||

np
.

Using Equation (27) and defining

η2 := 12β(α+δ)γ

√
ln(n)
n

,

we get

1
np

∥∥∥ f̂M̂− f
∥∥∥
2
≤
(
1+

1
ln(n)

)
inf
M∈M

{
1
np

∥∥∥ f̂M− f
∥∥∥
2

2
+η2

tr(AM · (Σ⊗ In))
np

}

+

(
1−

2
3ln(n)

)−1[
2CA+3CC+6CD+6CE + ln(n)

(
18CB+18CF +

729β2γ2 tr(Σ)2

4|||Σ|||2

)]

×(α+δ)2
ln(n)2|||Σ|||

np
.

(42)

Now, to get a classical oracle inequality, we have to show that η2v1(M) = η2 tr(AM · (Σ⊗ In)) is
negligible in front of ‖ f̂M− f‖2. Lemma 56 ensures that:

∀M ∈M , ∀x≥ 0 , 2

√
x|||Σ|||
n tr(Σ)

v1(M)≤ v2(M)+ x|||Σ||| .

With 0<Cn < 1, taking x to be equal to 72β2 ln(n)γ2 tr(Σ)/(Cn|||Σ|||) leads to

η2v1(M)≤ 2Cnv2(M)+
72β2 ln(n)γ2 tr(Σ)

Cn
. (43)

Then, since v2(M)≤ v2(M)+b(M) and using also Equation (36), we get

v2(M)≤
∥∥∥ f̂M− f

∥∥∥
2

2
+ |δ2(m)|+ |δ3(M)| .

On Ω̃ we have that for every θ ∈ (0,1), using Equation (31) and (32),

|δ2(M)|+ |δ3(M)|≤ 2θ
(∥∥∥ f̂M− f

∥∥∥
2

2
− |δ2(M)|− |δ3(M)|

)
+(CC+(CD+CE)θ−1)(α+δ) ln(n)|||Σ||| ,

which leads to

|δ2(M)|+ |δ3(M)|≤
2θ

1+2θ

∥∥∥ f̂M− f
∥∥∥
2

2
+
CC+(CD+CE)θ−1

1+2θ
(α+δ) ln(n)|||Σ||| .
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Now, combining this equation with Equation (43), we get

η2v1(M)≤
(
1+

4Cnθ
1+2θ

)∥∥∥ f̂M− f
∥∥∥
2

2
+2Cn

CC+(CD+CE)θ−1

1+2θ
(α+δ) ln(n)|||Σ|||

+
72β2 ln(n)γ2 tr(Σ)

Cn
.

Taking θ= 1/2 then leads to

η2v1(M)≤ (1+Cn)
∥∥∥ f̂M− f

∥∥∥
2

2
+Cn(CC+2(CD+CE))(α+δ) ln(n)|||Σ|||

+
72β2 ln(n)γ tr(Σ)

Cn
.

We now takeCn = 1/ ln(n). We now replace the constantsCA,CB,CC,CD,CE ,CF by their values in
Lemma 54 and we get, for some constant L2,

(
1−

2
3ln(n)

)−1[
1851.5+ ln(n)

(
5530.5+

729β2γ2

4|||Σ|||2

)
+616.5

(
1+

1
ln(n)

)
1

ln(n)

]

+
72β2 ln(n)γ2 tr(Σ)

Cn
≤ L2 ln(n)γ2

tr(Σ)2

|||Σ|||2

From this we can deduce Equation (16) by noting that γ≤ 2pc(Σ)2.
Finally we deduce an oracle inequality in expectation by noting that if n−1‖ fM̂− f‖2 ≤ Rn,δ on

Ω̃, using Cauchy-Schwarz inequality

E

[
1
np

∥∥∥ f̂M̂− f
∥∥∥
2

2

]
= E

[1Ω̃
np

∥∥∥ f̂M̂− f
∥∥∥
2

2

]
+E

[1Ω̃c

np

∥∥∥ f̂M̂− f
∥∥∥
2

2

]

≤ E
[
Rn,δ

]
+
1
np

√
4p(p+1)+6pC

nδ

√

E

[∥∥∥ f̂M̂− f
∥∥∥
4

2

]
. (44)

We can remark that, since |||AM|||≤ 1,
∥∥∥ f̂M− f

∥∥∥
2

2
≤ 2‖AMε‖22+2‖(Inp−AM) f‖22 ≤ 2‖ε‖

2
2+8‖ f‖

2
2 .

So
E

[∥∥∥ f̂M̂− f
∥∥∥
4

2

]
≤ 12

(
np|||Σ|||+4‖ f‖22

)2
,

together with Equation (42) and Equation (44), induces Equation (17), using that for some constant
L3 > 0,

12
√
p(p+1)/2+6pC

nδ

(
|||Σ|||+

4
np

‖ f‖22

)
≤ L3

√
p(p+C)
nδ/2

(
|||Σ|||+

1
np

‖ f‖22

)
.
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Lemma 56 Let n, p≥ 1 be two integers, x≥ 0 and Σ ∈ S++
p (R). Then,

inf
A∈Mnp(R),|||A|||≤1

{
tr(A/A · (Σ⊗ In))+ x|||Σ|||

tr(A · (Σ⊗ In))

}
≥ 2

√
x|||Σ|||
n tr(Σ)

Proof First note that the bilinear form onMnp(R), (A,B) =→ tr(A/B · (Σ⊗ In)) is a scalar product.
By Cauchy-Schwarz inequality, for every A ∈Mnp(R),

tr(A · (Σ⊗ In))2 ≤ tr(Σ⊗ In) tr(A/A · (Σ⊗ In)) .

Thus, since tr(Σ⊗ In) = n tr(Σ), if c= tr(A · (Σ⊗ In))> 0,

tr(A/A · (Σ⊗ In))≥
c2

n tr(Σ)
.

Therefore

inf
A∈Mnp(R),|||A|||≤1

{
tr(A/A · (Σ⊗ In))+ x|||Σ|||

tr(A · (Σ⊗ In))

}
≥ inf

c>0

{
c

n tr(Σ)
+
x|||Σ|||
c

}

≥ 2

√
x|||Σ|||
n tr(Σ)

.

F.4 Proof of Theorem 29

We now prove Theorem 29, first by proving that Σ̂HM leads to a sharp enough approximation of the
penalty.

Lemma 57 Let Σ̂HM be defined as in Definition 28, α= 2, κ> 0 be the numerical constant defined
in Theorem 15 and assume (13) and (18) hold. For every δ ≥ 2, a constant n0(δ), an absolute
constant L1 > 0 and an event Ω exist such that P(ΩHM) ≥ 1− pn−δ and for every n ≥ n0(δ), on
ΩHM, for every M inM

(1−η) tr(AM · (Σ⊗ In))≤ tr(AM · (Σ̂HM⊗ In))≤ (1+η) tr(AM · (Σ⊗ In)) , (45)

where η := L1(α+δ)

√
ln(n)
n

.

Proof Let P be defined by (18). Let M ∈ M , and (d1, . . . ,dp) ∈ (0,+∞)p such that
M = P/Diag(d1, . . . ,dp)P. Thus, as shown in Section D, we have with Σ̃= PΣP/:

tr(AM · (Σ⊗ In)) =
p

∑
j=1
tr(Apdj)Σ̃ j, j .
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let σ̃ j be defined as in Definition 28 (and thus Σ̂HM = PDiag(σ̃1, . . . , σ̃p)P/), we then have by
Theorem 15 that for every j ∈ {1, . . . , p} an event Ω j of probability 1−κn−δ exists such that on Ω j

|Σ̃ j, j− σ̃ j|≤ ηΣ̃ j, j. Since

tr(AM · (Σ̂HM⊗ In)) =
p

∑
j=1
tr(Apdj)σ̃ j ,

taking ΩHM = ∩p
j=1Ω

j suffices to conclude.

Proof [of Theorem 26] Adapting the proof of Theorem 26 to Assumption (18) first requires to take
γ = 1 as Lemma 57 allows us. It then suffices to take the set
Ω̃=ΩHM∩Ω(2+δ) ln(n)(M ,CA,CB,CC,CD,CE ,CF) (thus replacing α by 2) of probability 1− (p(p+
1)/2+ p)n−δ ≥ 1− p2n−δ—supposing p≥ 2—if we require that 2 ln(n)≥ 1027.

To get to the oracle inequality in expectation we use the same technique than above, but we note
that

√
P(Ω̃c)≤ L̃4× p/nδ/2. We can finally define the constant L4 by:

L3 tr(Σ)(2+δ)2
p ln(n)3

np
+

p
nδ/2

|||Σ|||≤ L4γ2 tr(Σ)(α+δ)2
p ln(n)3

np
.
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Abstract

Many performance metrics have been introduced in the literature for the evaluation of classification
performance, each of them with different origins and areas of application. These metrics include
accuracy, unweighted accuracy, the area under the ROC curve or the ROC convex hull, the mean
absolute error and the Brier score or mean squared error (with its decomposition into refinement and
calibration). One way of understanding the relations among these metrics is by means of variable
operating conditions (in the form of misclassification costs and/or class distributions). Thus, a
metric may correspond to some expected loss over different operating conditions. One dimension
for the analysis has been the distribution for this range of operating conditions, leading to some
important connections in the area of proper scoring rules. We demonstrate in this paper that there
is an equally important dimension which has so far received much less attention in the analysis of
performance metrics. This dimension is given by the decision rule, which is typically implemented
as a threshold choice method when using scoring models. In this paper, we explore many old and
new threshold choice methods: fixed, score-uniform, score-driven, rate-driven and optimal, among
others. By calculating the expected loss obtained with these threshold choice methods for a uniform
range of operating conditions we give clear interpretations of the 0-1 loss, the absolute error, the
Brier score, the AUC and the refinement loss respectively. Our analysis provides a comprehensive
view of performance metrics as well as a systematic approach to loss minimisation which can be
summarised as follows: given a model, apply the threshold choice methods that correspond with
the available information about the operating condition, and compare their expected losses. In
order to assist in this procedure we also derive several connections between the aforementioned
performance metrics, and we highlight the role of calibration in choosing the threshold choice
method.

Keywords: classification performance metrics, cost-sensitive evaluation, operating condition,
Brier score, area under the ROC curve (AUC), calibration loss, refinement loss
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HERNÁNDEZ-ORALLO, FLACH AND FERRI

1. Introduction

The choice of a proper performance metric for evaluating classification (Hand, 1997) is an old
but still lively debate which has incorporated many different performance metrics along the way.
Besides accuracy (Acc, or, equivalently, the error rate or 0-1 loss), many other performance metrics
have been studied. The most prominent and well-known metrics are the Brier Score (BS, also
known as Mean Squared Error) (Brier, 1950) and its decomposition in terms of refinement and
calibration (Murphy, 1973), the absolute error (MAE), the log(arithmic) loss (or cross-entropy)
(Good, 1952) and the area under the ROC curve (AUC, also known as the Wilcoxon-Mann-Whitney
statistic, linearly related to the Gini coefficient and to the Kendall’s tau distance to a perfect model)
(Swets et al., 2000; Fawcett, 2006). There are also many graphical representations and tools for
model evaluation, such as ROC curves (Swets et al., 2000; Fawcett, 2006), ROC isometrics (Flach,
2003), cost curves (Drummond and Holte, 2000, 2006), DET curves (Martin et al., 1997), lift charts
(Piatetsky-Shapiro and Masand, 1999), and calibration maps (Cohen and Goldszmidt, 2004). A
survey of graphical methods for classification predictive performance evaluation can be found in
the work of Prati et al. (2011).

Many classification models can be regarded as functions which output a score for each example
and class. This score represents a probability estimate of each example to be in one of the classes
(or may just represent an unscaled magnitude which is monotonically related with a probability
estimate). A score can then be converted into a class label using a decision rule. One of the reasons
for evaluation being so multi-faceted is that models may be learnt in one context (misclassification
costs, class distribution, etc.) but deployed in a different context. A context is usually described
by a set of parameters, known as operating condition. When we have a clear operating condition
at deployment time, there are effective tools such as ROC analysis (Swets et al., 2000; Fawcett,
2006) to establish which model is best and what its expected loss will be. However, the question is
more difficult in the general case when we do not have information about the operating condition
where the model will be applied. In this case, we want our models to perform well in a wide
range of operating conditions. In this context, the notion of ‘proper scoring rule’, see, for example,
the work of Murphy and Winkler (1970), sheds some light on some performance metrics. Some
proper scoring rules, such as the Brier Score (MSE loss), the logloss, boosting loss and error rate
(0-1 loss) have been shown by Buja et al. (2005) to be special cases of an integral over a Beta
density of costs, see, for example, the works of Gneiting and Raftery (2007), Reid and Williamson
(2010, 2011) and Brümmer (2010). Each performance metric is derived as a special case of the Beta
distribution. However, this analysis focusses on scoring rules which are ‘proper’, that is, metrics that
are minimised for well-calibrated probability assessments or, in other words, get the best (lowest)
score by forecasting the true beliefs. Much less is known (in terms of expected loss for varying
distributions) about other performance metrics which are non-proper scoring rules, such as AUC.
Moreover, even its role as a classification performance metric has been put into question (Hand,
2009, 2010; Hand and Anagnostopoulos, 2011).

All these approaches make some (generally implicit and poorly understood) assumptions on
how the model will work for each operating condition. In particular, it is generally assumed that the
threshold which is used to discriminate between the classes will be set according to the operating
condition. In addition, it is assumed that the threshold will be set in such a way that the estimated
probability where the threshold is set is made equal to the operating condition. This is natural if
we focus on proper scoring rules. Once all this is settled and fixed, different performance metrics
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Figure 1: Histograms of the score distribution for model A (left) and model B (right).

represent different expected losses by using the distribution over the operating condition as a pa-
rameter. However, this threshold choice is only one of the many possibilities, as some other works
have explored or mentioned in a more or less explicit way (Wieand et al., 1989; Drummond and
Holte, 2006; Hand, 2009, 2010).

In our work we make these assumptions explicit through the concept of a threshold choice
method, which systematically links performance metrics and expected loss. A threshold choice
method sets a single threshold on the scores of a model in order to arrive at classifications, possibly
taking circumstances in the deployment context into account, such as the operating condition (the
class or cost distribution) or the intended proportion of positive predictions (the predicted positive
rate). Building on this notion of threshold choice method, we are able to systematically explore how
known performance metrics are linked to expected loss, resulting in a range of results that are not
only theoretically well-founded but also practically relevant.

The basic insight is the realisation that there are many ways of converting a model (understood
throughout this paper as a function assigning scores to instances) into a classifier that maps instances
to classes (we assume binary classification throughout). Put differently, there are many ways of
setting the threshold given a model and an operating condition. We illustrate this with an example
concerning a very common scenario in machine learning research. Consider two models A and B,
a naive Bayes model and a decision tree respectively (induced from a training data set), which are
evaluated against a test data set, producing a score distribution for the positive and negative classes
as shown in Figure 1. We see that scores are in the [0,1] interval and in this example are interpreted
as probability estimates for the negative class. ROC curves of both models are shown in Figure
2. We will assume that at this evaluation time we do not have information about the operating
condition, but we expect that this information will be available at deployment time.

If we ask the question of which model is best we may rush to calculate its AUC and BS (and per-
haps other metrics), as given by Table 1. However, we cannot give an answer because the question is
underspecified. First, we need to know the range of operating conditions the model will work with.
Second, we need to know how we will make the classifications, or in other words, we need a deci-
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Figure 2: ROC Curves for model A (left) and model B (right).

sion rule, which can be implemented as a threshold choice method when the model outputs scores.
For the first dimension (already considered by the work on proper scoring rules), if we have no pre-
cise knowledge about the operating condition, we can assume any of many distributions, depending
on whether we have some information about how the cost may be distributed or no information at
all. For instance, we can use a symmetric Beta distribution (Hand, 2009), an asymmetric Beta dis-
tribution (Hand and Anagnostopoulos, 2011) or, a partial or truncated distribution only considering
a range of costs, or a simple uniform distribution (Drummond and Holte, 2006), as we also do here,
which considers all operating conditions equally likely. For the second (new) dimension, we also
have many options.

performance metric model A model B
AUC 0.791 0.671

Brier score 0.328 0.231

Table 1: Results from two models on a data set.

For instance, we can just set a fixed threshold at 0.5. This is what naive Bayes and decision
trees do by default. This decision rule works as follows: if the score is greater than 0.5 then predict
negative (1), otherwise predict positive (0). With this precise decision rule, we can now ask the
question about the expected misclassification loss for a range of different misclassification costs
(and/or class distributions), that is, for a distribution of operating conditions. Assuming a uniform
distribution for operating conditions (cost proportions), we can effectively calculate the answer on
the data set: 0.51.

But we can use other decision rules. We can use decision rules which adapt to the operating
condition. One of these decision rules is the score-driven threshold choice method, which sets
the threshold equal to the operating condition or, more precisely, to a cost proportion c. Another
decision rule is the rate-driven threshold choice method, which sets the threshold in such a way that
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the proportion of predicted positives (or predicted positive rate), simply known as ‘rate’ and denoted
by r, equals the operating condition. Using these three different threshold choice methods for the
models A and B, and assuming cost proportions are uniformly distributed, we get the expected losses
shown in Table 2.

threshold choice method expected loss model A expected loss model B
Fixed (T = 0.5) 0.510 0.375

Score-driven (T = c) 0.328 0.231
Rate-driven (T s.t. r = c) 0.188 0.248

Table 2: Extension of Table 1 where two models are applied with three different threshold choice
methods each, leading to six different classifiers and corresponding expected losses. In all
cases, the expected loss is calculated over a range of cost proportions (operating condi-
tions), which is assumed to be uniformly distributed. We denote the threshold by T , the
cost proportion by c and the predicted positive rate by r).

In other words, only when we specify or assume a threshold choice method can we convert
a model into a classifier for which it makes sense to consider its expected loss (for a range or
distribution of costs). In fact, as we can see in Table 2, very different expected losses are obtained
for the same model with different threshold choice methods. And this is the case even assuming the
same uniform cost distribution for all of them.

Once we have made this (new) dimension explicit, we are ready to ask new questions. How
many threshold choice methods are there? Table 3 shows six of the threshold choice methods we
will analyse in this work, along with their notation. Only the score-fixed and the score-driven
methods have been analysed in previous works in the area of proper scoring rules. The use of
rates, instead of scores, is assumed in screening applications where an inspection, pre-diagnosis or
coverage rate is intended (Murphy et al., 1987; Wieand et al., 1989), and the idea which underlies
the distinction between rate-uniform and rate-driven is suggested by Hand (2010). In addition, a
seventh threshold choice method, known as optimal threshold choice method, denoted by To, has
been (implicitly) used in a few works (Drummond and Holte, 2000, 2006; Hand, 2009).

Threshold choice method Fixed Chosen uniformly Driven by o.c.
Using scores score-fixed (T s f ) score-uniform (T su) score-driven (T sd)
Using rates rate-fixed (T r f ) rate-uniform (T ru) rate-driven (T rd)

Table 3: Possible threshold choice methods. The first family uses scores (as they were probabilities)
and the second family uses rates (using scores as rank indicators). For both families we
can fix a threshold or assume them ranging uniformly, which makes the threshold choice
method independent from the operating condition. Only the last column takes the oper-
ating condition (o.c.) into account, and hence are the most interesting threshold choice
methods.
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We will see that each threshold choice method is linked to a specific performance metric. This
means that if we decide (or are forced) to use a threshold choice method then there is a recom-
mended performance metric for it. The results in this paper show that accuracy is the appropriate
performance metric for the score-fixed method, MAE fits the score-uniform method, BS is the ap-
propriate performance metric for the score-driven method, and AUC fits both the rate-uniform and
the rate-driven methods. The latter two results assume a uniform cost distribution. It is important to
make this explicit since the uniform cost distribution may be unrealistic in many particular situations
and it is only one of many choices for a reference standard in the general case. As we will mention
at the end of the paper, this suggests that new metrics can be derived by changing this distribution,
as Hand (2009) has already done for the optimal threshold choice method with a Beta distribution.

The good news is that inter-comparisons are still possible: given a threshold choice method we
can calculate expected loss from the relevant performance metric. The results in Table 2 allow us to
conclude that model A achieves the lowest expected loss for uniformly sampled cost proportions, if
we are wise enough to choose the appropriate threshold choice method (in this case the rate-driven
method) to turn model A into a successful classifier. Notice that this cannot be said by just looking at
Table 1 because the metrics in this table are not comparable to each other. In fact, there is no single
performance metric that ranks the models in the correct order, because, as already said, expected
loss cannot be calculated for models, only for classifiers.

1.1 Contributions and Structure of the Paper

The contributions of this paper to the subject of model evaluation for classification can be sum-
marised as follows.

1. The expected loss of a model can only be determined if we select a distribution of operating
conditions and a threshold choice method. We need to set a point in this two-dimensional
space. Along the second (usually neglected) dimension, several new threshold choice meth-
ods are introduced in this paper.

2. We answer the question: “if one is choosing thresholds in a particular way, which perfor-
mance metric is appropriate?” by giving an explicit expression for the expected loss for each
threshold choice method. We derive linear relationships between expected loss and many
common performance metrics.

3. Our results reinvigorate AUC as a well-founded measure of expected classification loss for
both the rate-uniform and rate-driven methods. While Hand (2009, 2010) raised objections
against AUC for the optimal threshold choice method only, noting that AUC can be consis-
tent with other threshold choice methods, we encountered a widespread misunderstanding
in the machine learning community that the AUC is fundamentally flawed as a performance
metric—a clear misinterpretation of Hand’s papers that we hope that this paper helps to fur-
ther rectify.

4. One fundamental and novel result shows that the refinement loss of the convex hull of a ROC
curve is equal to expected optimal loss as measured by the area under the optimal cost curve.
This sets an optimistic (but also unrealistic) bound for the expected loss.

5. Conversely, from the usual calculation of several well-known performance metrics we can
derive expected loss. Thus, classifiers and performance metrics become easily comparable.
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With this we do not choose the best model but rather the best classifier (a model with a
particular threshold choice method).

6. By cleverly manipulating scores we can connect several of these performance metrics, either
by the notion of evenly-spaced scores or perfectly calibrated scores. This provides an addi-
tional way of analysing the relation between performance metrics and, of course, threshold
choice methods.

7. We use all these connections to better understand which threshold choice method should be
used, and in which cases some are better than others. The analysis of calibration plays a
central role in this understanding, and also shows that non-proper scoring rules do have their
role and can lead to lower expected loss than proper scoring rules, which are, as expected,
more appropriate when the model is well-calibrated.

This set of contributions provides an integrated perspective on performance metrics for classifi-
cation around the systematic exploration of the notion of threshold choice method that we develop
in this paper.

The remainder of the paper is structured as follows. Section 2 introduces some notation, the
basic definitions for operating condition, threshold, expected loss, and particularly the notion of
threshold choice method, which we will use throughout the paper. Section 3 investigates expected
loss for fixed threshold choice methods (score-fixed and rate-fixed), which are the base for the rest.
We show that, not surprisingly, the expected loss for these threshold choice method are the 0-1
loss (weighted or unweighted accuracy depending on whether we use cost proportions or skews).
Section 4 presents the results that the score-uniform threshold choice method has MAE as associate
performance metric and the score-driven threshold choice method leads to the Brier score. We also
show that one dominates over the other. Section 5 analyses the non-fixed methods based on rates.
Somewhat surprisingly, both the rate-uniform threshold choice method and the rate-driven threshold
choice method lead to linear functions of AUC, with the latter always been better than the former.
All this vindicates the rate-driven threshold choice method but also AUC as a performance metric
for classification. Section 6 uses the optimal threshold choice method, connects the expected loss
in this case with the area under the optimal cost curve, and derives its corresponding metric, which
is refinement loss, one of the components of the Brier score decomposition. Section 7 analyses
the connections between the previous threshold choice methods and metrics by considering several
properties of the scores: evenly-spaced scores and perfectly calibrated scores. This also helps to
understand which threshold choice method should be used depending on how good scores are.
Finally, Section 8 closes the paper with a thorough discussion of results, related work, and an overall
conclusion with future work and open questions. Two appendices include a derivation of univariate
operating conditions for costs and skews and some technical results for the optimal threshold choice
method.

2. Background

In this section we introduce some basic notation and definitions we will need throughout the paper.
Further definitions will be introduced when needed. The most important definitions we will need
are introduced below: the notion of threshold choice method and the expression of expected loss.
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2.1 Notation and Basic Definitions

A classifier is a function that maps instances x from an instance space X to classes y from an
output space Y . For this paper we will assume binary classifiers, that is, Y = {0,1}. A model is a
functionm : X →R that maps examples to real numbers (scores) on an unspecified scale. We use the
convention that higher scores express a stronger belief that the instance is of class 1. A probabilistic
model is a function m : X → [0,1] that maps examples to estimates p̂(1|x) of the probability of
example x to be of class 1. Throughout the paper we will use the term score (usually denoted by s)
both for unscaled values (in an unbounded interval) and probability estimates (in the interval [0,1]).
Nonetheless, we will make the interpretation explicit whenever we use them in one way or the other.
We will do similarly for thresholds. In order to make predictions in the Y domain, a model can be
converted to a classifier by fixing a decision threshold t on the scores. Given a predicted score
s= m(x), the instance x is classified in class 1 if s> t, and in class 0 otherwise.

For a given, unspecified model and population from which data are drawn, we denote the score
density for class k by fk and the cumulative distribution function by Fk. Thus, F0(t) =

∫ t
−∞ f0(s)ds=

P(s≤ t|0) is the proportion of class 0 points correctly classified if the decision threshold is t, which is
the sensitivity or true positive rate at t. Similarly, F1(t) =

∫ t
−∞ f1(s)ds= P(s≤ t|1) is the proportion

of class 1 points incorrectly classified as 0 or the false positive rate at threshold t; 1−F1(t) is the
true negative rate or specificity. Note that we use 0 for the positive class and 1 for the negative class,
but scores increase with p̂(1|x). That is, F0(t) and F1(t) are monotonically non-decreasing with
t. This has some notational advantages and is the same convention as used by, for example, Hand
(2009).

Given a data set D ⊂ 〈X ,Y 〉 of size n = |D|, we denote by Dk the subset of examples in class
k ∈ {0,1}, and set nk = |Dk| and πk = nk/n. Clearly π0 + π1 = 1. We will use the term class
proportion for π0 (other terms such as ‘class ratio’ or ‘class prior’ have been used in the literature).
Given a model and a threshold t, we denote by R(t) the predicted positive rate, that is, the proportion
of examples that will be predicted positive (class 0) if the threshold is set at t. This can also be
defined as R(t) = π0F0(t)+π1F1(t). The average score of actual class k is sk =

∫ 1
0 s fk(s)ds. Given

any strict order for a data set of n examples we will use the index i on that order to refer to the i-th
example. Thus, si denotes the score of the i-th example and yi its true class.

We define partial class accuracies as Acc0(t) = F0(t) and Acc1(t) = 1 − F1(t). From here,
(weighted or micro-average) accuracy is defined as Acc(t) = π0Acc0(t)+π1Acc1(t) and (unweight-
ed or macro-average) accuracy as uAcc(t) = (Acc0(t)+Acc1(t))/2 (also known as ‘average recall’,
Flach, 2012), which computes accuracy while assuming balanced classes.

We denote byUS(x) the continuous uniform distribution of variable x over an interval S⊂R. If
this interval S is [0,1] then S can be omitted. The family of continuous distributions Beta is denoted
by βα,β. The Beta distributions are always defined in the interval [0,1]. Note that the uniform
distribution is a special case of the Beta family, that is, β1,1 =U .

2.2 Operating Conditions and Expected Loss

When a model is deployed for classification, the conditions might be different to those during train-
ing. In fact, a model can be used in several deployment contexts, with different results. A context
can entail different class distributions, different classification-related costs (either for the attributes,
for the class or any other kind of cost), or some other details about the effects that the application
of a model might entail and the severity of its errors. In practice, a deployment context or operating
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condition is usually defined by a misclassification cost function and a class distribution. Clearly,
there is a difference between operating when the cost of misclassifying 0 into 1 is equal to the cost
of misclassifying 1 into 0 and doing so when the former is ten times the latter. Similarly, operating
when classes are balanced is different from when there is an overwhelming majority of instances of
one class.

One general approach to cost-sensitive learning assumes that the cost does not depend on the
example but only on its class. In this way, misclassification costs are usually simplified by means of
cost matrices, where we can express that some misclassification costs are higher than others (Elkan,
2001). Typically, the costs of correct classifications are assumed to be 0. This means that for binary
models we can describe the cost matrix by two values ck ≥ 0 with at least one of both being strictly
greater than 0, representing the misclassification cost of an example of class k. Additionally, we can
normalise the costs by setting b= c0 +c1, which will be referred to as the cost magnitude (which is
clearly strictly greater than 0), and c= c0/b; we will refer to c as the cost proportion Since this can
also be expressed as c= (1+ c1/c0)−1, it is often called ‘cost ratio’ even though, technically, it is a
proportion ranging between 0 and 1.

Under these assumptions, an operating condition can be defined as a tuple θ = 〈b,c,π0〉. The
space of operating conditions is denoted by Θ. These three parameters are not necessarily inde-
pendent, as we will discuss in more detail below. The loss for an operating condition is defined as
follows:

Q(t;θ) = Q(t;〈b,c,π0〉)! b{cπ0(1−F0(t))+(1− c)π1F1(t)}
= c0π0(1−F0(t))+ c1π1F1(t). (1)

It is important to distinguish the information we may have available at each stage of the process. At
evaluation time we may not have access to some information that is available later, at deployment
time. In many real-world problems, when we have to evaluate or compare models, we do not know
the operating condition that will apply during deployment. One general approach is to evaluate
the model on a range of possible operating points. In order to do this, we have to set a weight or
distribution for operating conditions.

A key issue when applying a model under different operating conditions is how the threshold
is chosen in each of them. If we work with a classifier, this question vanishes, since the threshold
is already settled. However, in the general case when we work with a model, we have to decide
how to establish the threshold. The key idea proposed in this paper is the notion of a threshold
choice method, a function which converts an operating condition into an appropriate threshold for
the classifier.

Definition 1 Threshold choice method. A threshold choice method1 is a (possibly non-determinis-
tic) function T : Θ→R such that given an operating condition it returns a decision threshold.

When we say that T may be non-deterministic, it means that the result may depend on a random
variable and hence may itself be a random variable according to some distribution. We introduce

1. The notion of threshold choice method could be further generalised to cover situations where we have some informa-
tion about the operating condition which cannot be expressed in terms of a specific value of Θ, such a distribution on
Θ or information about E{b}, E{bc}, etc. This generalisation could be explored, but it is not necessary for the cases
discussed in this paper.
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the threshold choice method as an abstract concept since there are several reasonable options for
the function T , essentially because there may be different degrees of information about the model
and the operating conditions at evaluation time. We can set a fixed threshold ignoring the operating
condition; we can set the threshold by looking at the ROC curve (or its convex hull) and using the
cost proportion to intersect the ROC curve (as ROC analysis does); we can set a threshold looking at
the estimated scores; or we can set a threshold independently from the rank or the scores. The way
in which we set the threshold may dramatically affect performance. But, not less importantly, the
performance metric used for evaluation must be in accordance with the threshold choice method.

Given a threshold choice function T , the loss for a particular operating condition θ is given
by Q(T (θ);θ). However, if we do not know the operating condition precisely, we can define a
distribution for operating conditions as a multivariate distribution, w(θ). From here, we can now
calculate expected loss as a weighted average over operating conditions (Adams and Hand, 1999):

L!

∫
Θ
Q(T (θ);θ)w(θ)dθ. (2)

Calculating this integral for a particular case depends on the threshold choice method and the
kind of model, but particularly on the space of operating conditions Θ and its associated distribution
w(θ). Typically, the representation of operating conditions is simplified from a three-parameter tuple
〈b,c,π0〉 to a single parameter. This reduces w to a univariate distribution. However, this reduction
must carry some assumptions. For instance, the cost magnitude b is not always independent of c and
π0, since costs in very imbalanced cases tend to have higher magnitude. For instance, we may have
two different operating conditions, one with c0 = 10 and c1 = 1 and another with c0 = 5 and c1 = 50.
While the cost ratios are symmetric (10:1 with c= 10/11 for the first case, 1:10 with c= 1/11 for
the second), the second operating condition will clearly have more impact on the expected loss,
because its magnitude is five times higher. Moreover, c is usually closely linked to π0, since the
higher the imbalance (class proportion), the higher the cost proportion. For instance, if positives are
rare, we usually want them to be detected (especially in diagnosis and fault detection applications),
and false negatives (i.e., a positive which has not been detected but misclassified as negative) will
have higher cost.

Despite these dependencies, one common option for this simplified operating condition is to
consider that costs are normalised (the cost matrix always sums up to a constant, that is, the cost
magnitude b is constant), or less strongly, that b and c are independent. Another option which does
not require independence of b and c relies on noticing that b is a multiplicative factor in Equation (1).
From here, we just need to assume that the threshold choice method is independent of b. This is not
a strong assumption, since all the threshold choice methods that have been used systematically in the
literature (e.g., the optimal threshold choice method and the score-driven method) are independent
of b and so are the rest of methods we work with in this paper. With this, as deployed in appendix
A, we can incorporate b in a bivariate distribution vH(〈c,π0〉) for cost and class proportions. This
does not mean that we ignore the magnitude b or assume it constant, but that we can embed its
variability in vH . From here, we just derive two univariate cost functions and the corresponding
expected losses.

The first one assumes π0 constant, leading to a loss expression which only depends on cost
proportions c:

Qc(t;c)! E{b}{cπ0(1−F0(t))+(1− c)π1F1(t)}. (3)
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Using this expression, expected loss will be derived as an integral using the univariate distribution
wc, which incorporates the variability of b jointly with c (see appendix A for details).

A different approach to reducing the operating condition to a single parameter is the notion of
skew, which is a normalisation of the product between cost proportion and class proportion:

z!
cπ0

cπ0 +(1− c)(1−π0)
.

This means that π0 is no longer fixed, but neither is it independent of c. What z does is to combine
both parameters. This is a different way of reducing the operating condition to one single parameter.
We thus (re-)define loss as depending solely on z.

Qz(t;z)! z(1−F0(t))+(1− z)F1(t).

Similarly, we also define a weight wz(z) which also incorporates the variability of b and π0 (see
appendix A for details), which will be used in the integral for calculating the expected loss below.

As a result, in what follows, we will just work with operating conditions which are either defined
by the cost proportion c (assuming a fixed class distribution π0) or by the skew z (which combines
c and π0). For convenience, as justified in appendix A, we will assume E{b}= 2. Interestingly, we
can relate both approaches (using costs and skews) with the following lemma (proven in appendix
A):

Lemma 2 Assuming E{b}= 2, if π0 = π1 then z= c and Qz(t;z) = Qc(t;c).

This will allow us to translate the results for cost proportions to skews.
From now on, since the operating condition can be either a cost proportion c or a skew z we will

use the subscript c or z to differentiate them. In fact, threshold choice methods will be represented
by Tc and Tz and they will be defined as Tc : [0,1]→R and Tz : [0,1]→R respectively. Superscripts
will be used to identify particular threshold choice methods. Some threshold choice methods we
consider in this paper take additional information into account, such as a default threshold or a
target predicted positive rate; such information is indicated by square brackets. So, for example, the
score-fixed threshold choice method for cost proportions considered in the next section is indicated
thus: T s fc [t](c). In the rest of this paper, we explore a range of different methods to choose the
threshold (some deterministic and some non-deterministic). We will give proper definitions of all
these threshold choice methods in its due section.

The expected loss for costs and skews is then adapted from Equation (2) as follows:

Definition 3 Given a threshold choice method for cost proportions Tc and a probability density
function over cost proportions wc, expected loss Lc is defined as

Lc !
∫ 1

0
Qc(Tc(c);c)wc(c)dc. (4)

Incorporating the class distribution into the operating condition as skews and defining a distribution
over skews wz, we obtain expected loss over a distribution of skews:

Lz !
∫ 1

0
Qz(Tz(z);z)wz(z)dz. (5)
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It is worth noting that if we plot Qc or Qz against c and z, respectively, we obtain cost curves as
defined by Drummond and Holte (2000, 2006). Cost curves are also known as risk curves (e.g.,
Reid and Williamson, 2011, where the plot can also be shown in terms of priors, that is, class
proportions).

Equations (4) and (5) illustrate the space we explore in this paper. Two parameters determine
the expected loss: wc(c) and Tc(c) (respectively wz(z) and Tz(z)). While much work has been done
on a first dimension, by changing wc(c) or wz(z), particularly in the area of proper scoring rules,
no work has systematically analysed what happens when changing the second dimension, Tc(c) or
Tz(z).

This means that in this paper we focus on this second dimension, and just make some simple
choices for the first dimension. Except for cases where the threshold choice is independent of the
operating condition, we will assume a uniform distribution for wc(c) and wz(z). This is of course
just one possible choice, but not an arbitrary choice for a number of reasons:

• The uniform distribution is arguably the simplest distribution for a value between 0 and 1 and
requires no parameters.

• This distribution makes the representation of the loss straightforward, since we can plot Q on
the y-axis versus c (or z) on the x-axis, where the x-axis can be shown linearly from 0 to 1,
without any distribution warping. This makes metrics correspond exactly with the areas under
many cost curves, such as the optimal cost curves (Drummond and Holte, 2006), the Brier
curves (Hernández-Orallo et al., 2011) or the rate-driven/Kendall curves (Hernández-Orallo
et al., 2012).

• The uniform distribution is a reasonable choice if we want a model to behave well in a wide
range of situations, from high costs for false positives to the other extreme. In this sense,
it gives more relevance to models which perform well when the cost matrices or the class
proportions are highly imbalanced.

• Most of the connections with the existing metrics are obtained with this distribution and not
with others, which is informative about what the metrics implicitly assume (if understood as
measures of expected loss).

Many expressions in this paper can be fine-tuned with other distributions, such as the Beta distri-
bution β(2,2), as suggested by Hand (2009), or using imbalance (Hand, 2010). However, it is the
uniform distribution which leads us to many well-known evaluation metrics.

3. Expected Loss for Fixed-Threshold Classifiers

The easiest way to choose the threshold is to set it to a pre-defined value tfixed, independently from
the model and also from the operating condition. This is, in fact, what many classifiers do (e.g.,
Naive Bayes chooses tfixed = 0.5 independently from the model and independently from the operat-
ing condition). We will see the straightforward result that this threshold choice method corresponds
to 0-1 loss. Part of these results will be useful to better understand some other threshold choice
methods.

Definition 4 The score-fixed threshold choice method is defined as follows:

T s fc [t](c)! T s fz [t](z)! t. (6)
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This choice has been criticised in two ways, but is still frequently used. Firstly, choosing 0.5
as a threshold is not generally the best choice even for balanced data sets or for applications where
the test distribution is equal to the training distribution (see, for example, the work of Lachiche and
Flach, 2003 on how to get much more from a Bayes classifier by simply changing the threshold).
Secondly, even if we are able to find a better value than 0.5, this does not mean that this value is best
for every skew or cost proportion—this is precisely one of the reasons why ROC analysis is used
(Provost and Fawcett, 2001). Only when we know the deployment operating condition at evaluation
time is it reasonable to fix the threshold according to this information. So either by common choice
or because we have this latter case, consider then that we are going to use the same threshold t
independently of skews or cost proportions. Given this threshold choice method, then the question
is: if we must evaluate a model before application for a wide range of skews and cost proportions,
which performance metric should be used? This is what we answer below.

If we plug T s fc (Equation 6) into the general formula of the expected loss for a range of cost
proportions (Equation 4) we have:

Ls fc (t)!
∫ 1

0
Qc(T s fc [t](c);c)wc(c)dc.

We obtain the following straightforward result.

Theorem 5 If a classifier sets the decision threshold at a fixed value t irrespective of the operating
condition or the model, then expected loss for any cost distribution wc is given by:

Ls fc (t) = 2Ewc{c}(1−Acc(t))+4π1F1(t)
(

1
2
−Ewc{c}

)

.

Proof

Ls fc (t) =
∫ 1

0
Qc(T s fc [t](c);c)wc(c)dc=

∫ 1

0
Qc(t;c)wc(c)dc

=
∫ 1

0
2{cπ0(1−F0(t))+(1− c)π1F1(t)}wc(c)dc

= 2π0(1−F0(t))
∫ 1

0
cwc(c)dc+2π1F1(t)

∫ 1

0
(1− c)wc(c)dc

= 2π0(1−F0(t))Ewc{c}+2π1F1(t)(1−Ewc{c})

= 2π0(1−F0(t))Ewc{c}+2π1F1(t)
(

Ewc{c}+2
(

1
2
−Ewc{c}

))

= 2Ewc{c}(π0(1−F0(t))+π1F1(t))+4π1F1(t)
(

1
2
−Ewc{c}

)

= 2Ewc{c}(1−Acc(t))+4π1F1(t)
(

1
2
−Ewc{c}

)

.
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This gives an expression of expected loss which depends on error rate and false positive rate at
t and the expected value for the distribution of costs.2 Similarly, if we plug T s fz (Equation 6) into
the general formula of the expected loss for a range of skews (Equation 5) we have:

Ls fz (t)!
∫ 1

0
Qz(T s fz [t](z);z)wz(z)dz.

Using Lemma 2 we obtain the equivalent result for skews:

Ls fz (t) = 2Ewz{z}(1−uAcc(t))+2F1(t)
(

1
2
−Ewz{z}

)

.

Corollary 6 If a classifier sets the decision threshold at a fixed value irrespective of the operating
condition or the model, then expected loss under a distribution of cost proportions wc with expected
value Ewc{c}= 1/2 is equal to the error rate at that decision threshold.

Ls f
E{c}=1/2(t) = π0(1−F0(t))+π1F1(t) = 1−Acc(t).

Using Lemma 2 we obtain the equivalent result for skews:

Ls f
E{z}=1/2(t) = (1−F0(t))/2+F1(t)/2 = 1−uAcc(t).

So the expected loss under a distribution of cost proportions with mean 1/2 for the score-fixed
threshold choice method is the error rate of the classifier at that threshold. Clearly, a uniform
distribution is a special case, but the result also applies to, for instance, a symmetric Beta distribution
centered at 1/2. That means that accuracy can be seen as a measure of classification performance
in a range of cost proportions when we choose a fixed threshold. This interpretation is reasonable,
since accuracy is a performance metric which is typically applied to classifiers (where the threshold
is fixed) and not to models outputting scores. This is exactly what we did in Table 2. We calculated
the expected loss for the fixed threshold at 0.5 for a uniform distribution of cost proportions, and we
obtained 1−Acc = 0.51 and 0.375 for models A and B respectively.

The previous results show that 0-1 losses are appropriate to evaluate models in a range of oper-
ating conditions if the threshold is fixed for all of them and we do not have any information about a
possible asymmetry in the cost matrix at deployment time. In other words, accuracy and unweighted
accuracy can be the right performance metrics for classifiers even in a cost-sensitive learning sce-
nario. The situation occurs when one assumes a particular operating condition at evaluation time
while the classifier has to deal with a range of operating conditions in deployment time.

In order to prepare for later results we also define a particular way of setting a fixed classification
threshold, namely to achieve a particular predicted positive rate. One could say that such a method
quantifies the proportion of positive predictions made by the classifier. For example, we could say
that our threshold is fixed to achieve a rate of 30% positive predictions and the rest negatives. This

2. As mentioned above, the value of t is usually calculated disregarding the information (if any) about the operating
condition, and frequently set to 0.5. In fact, this threshold choice method is called ‘fixed’ because of this. However,
we can estimate and fix the value of t by taking the expected value for the operating condition Ewc{c} into account,
if we have some information about the distribution wc. For instance, we may choose t = Ewc{c} or we may choose
the value of t which minimises the expression of expected loss in Theorem 5.
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of course involves ranking the examples by their scores and setting a cutting point at the appropriate
position, something which is frequent in ‘screening’ applications (Murphy et al., 1987; Wieand
et al., 1989).

Let us denote the predicted positive rate at threshold t as R(t) = π0F0(t)+π1F1(t). Then,

Definition 7 If R is invertible, then we define the rate-fixed threshold choice method for rate r as:

T r fc [r](c)! R−1(r).

Similarly to the cost case, the rate-fixed threshold choice method for skews, assuming R is
invertible, is defined as:

T r fz [r](z)! R−1
z (r).

where Rz(t) = F0(t)/2+F1(t)/2.

If R is not invertible, it has plateaus and so does R. This can be handled by deriving t from the
centroid of a plateau. Nonetheless, in what follows, we will explicitly state when the invertibility of
R is necessary. The corresponding expected loss for cost proportions is

Lr fc !

∫ 1

0
Qc(T r fc [r](c);c)wc(c)dc=

∫ 1

0
Qc(R−1(r);c)wc(c)dc.

As already mentioned, the notion of setting a threshold based on a rate is typically seen in
screening applications but it also closely related to the task of class prevalence estimation (Neyman,
1938; Tenenbein, 1970; Alonzo et al., 2003), which is also known as quantification in machine
learning and data mining (Forman, 2008; Bella et al., 2010). The goal of this task is to correctly
estimate the proportion for each of the classes. This threshold choice method allows the user to set
the quantity of positives, which might be known (from a sample of the test) or can be estimated using
a quantification method. In fact, some quantification methods can be seen as methods to determine
an absolute fixed threshold t that ensures a correct proportion for the test set. Fortunately, it is
immediate to get the threshold which produces a rate; it can just be derived by sorting the examples
by their scores and placing the cutpoint where the rate equals the rank divided by the number of
examples (e.g., if we have n examples, the cutpoint i makes r = i/n).

4. Threshold Choice Methods Using Scores

In the previous section we looked at accuracy and error rate as performance metrics for classifiers
and gave their interpretation as expected losses. In this and the following sections we consider per-
formance metrics for models that do not require fixing a threshold choice method in advance. Such
metrics include AUC which evaluates ranking performance and the Brier score or mean squared er-
ror which evaluates the quality of probability estimates. We will deal with the latter in this section.
For the rest of this section, we will therefore assume that scores range between 0 and 1 and represent
posterior probabilities for class 1, unless otherwise stated. This means that we can sample thresh-
olds uniformly or derive them from the operating condition. We first introduce two performance
metrics that are applicable to probabilistic scores.

The Brier score is a well-known performance metric for probabilistic models. It is an alternative
name for the Mean Squared Error or MSE loss (Brier, 1950), especially for binary classification.
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Definition 8 The Brier score, BS, is defined as follows:

BS! π0BS0 +π1BS1.

where the partial expressions for the positive and negative class are given by:

BS0 !

∫ 1

0
s2 f0(s)ds.

BS1 !

∫ 1

0
(1− s)2 f1(s)ds.

From here, we can define a prior-independent version of the Brier score (or an unweighted Brier
score) as follows:

uBS!
BS0 +BS1

2
.

The Mean Absolute Error (MAE) is another simple performance metric which has been redis-
covered many times under different names.

Definition 9 The Mean Absolute Error, MAE, is defined as follows:

MAE ! π0MAE0 +π1MAE1.

where the partial expressions for the positive and negative class are given by:

MAE0 !

∫ 1

0
s f0(s)ds= s0.

MAE1 !

∫ 1

0
(1− s) f1(s)ds= 1− s1.

We can define an unweighted MAE as follows:

uMAE !
MAE0 +MAE1

2
=
s0 +(1− s1)

2
.

It can be shown that MAE is equivalent to the Mean Probability Rate (MPR) (Lebanon and Lafferty,
2002) for discrete classification (Ferri et al., 2009).

4.1 The Score-Uniform Threshold Choice Method Leads to MAE

We now demonstrate how varying a model’s threshold leads to an expected loss that is different from
accuracy. First, we explore a threshold choice method which considers that we have no information
at all about the operating condition, neither at evaluation time nor at deployment time. We just
employ the interval between the maximum and minimum value of the scores, and we randomly
select the threshold using a uniform distribution over this interval. It can be argued that this threshold
choice method is unrealistic, because we almost always have some information about the operating
condition, especially at deployment time. A possible interpretation is that this threshold choice
method is useful to make a worst-case evaluation. In other words, expected loss using this method
gives a robust assessment for situations where the information about the operating condition is not
only unavailable, but maybe unrealiable or even malicious. So what we show next is that there
are evaluation metrics which can be expressed as an expected loss under these assumptions, adding
support to the idea that the metrics related to this threshold choice method are blind to (or unaware
of) any cost information.
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Definition 10 Assuming a model’s scores are expressed on a bounded scale [l,u], the score-uniform
threshold choice method is defined as follows:

T suc (c)! T suz (z)! T s fc [Ul,u](c).

Given this threshold choice method, then the question is: if we must evaluate a model before
application for a wide range of skews and cost proportions, which performance metric should be
used?

Theorem 11 Assuming probabilistic scores and the score-uniform threshold choice method, ex-
pected loss under a distribution of cost proportions wc is equal to:

Lsuc = 2{Ewc{c}π0(s0)+(1−Ewc{c})π1(1− s1)}.

Proof First we derive Qc:

Qc(T suc (c);c) = Qc(T s fc [Ul,u](c);c) =
∫ u

l
Qc(T s fc [t](c);c)

1
u− l

dt

=
1

u− l

∫ u

l
Qc(t;c)dt =

1
u− l

∫ u

l
2{cπ0(1−F0(t))+(1− c)π1F1(t)}dt

= 2
cπ0(s0 − l)+(1− c)π1(u− s1)

(u− l)
.

The last step makes use of the following useful property.∫ u

l
Fk(t)dt = [tFk(t)]ul −

∫ u

l
t fk(t)dt = uFk(u)− lFk(l)− sk = u− sk.

Setting l = 0 and u= 1 for probabilistic scores, we obtain the final result:

Qc(T suc (c);c) = 2{cπ0(s0)+(1− c)π1(1− s1)}.

And now, we calculate the expected loss for the distribution wc(c).

Lsuc =
∫ 1

0
Qc(T suc (c);c)wc(c)dc

=
∫ 1

0
2{cπ0(s0)+(1− c)π1(1− s1)}wc(c)dc

= 2{Ewc{c}π0(s0)+(1−Ewc{c})π1(1− s1)}.

Corollary 12 Assuming probabilistic scores and the score-uniform threshold choice method, ex-
pected loss under a distribution of cost proportions wc with expected value Ewc{c} = 1/2 is equal
to the model’s mean absolute error.

Lsu
E{c}=1/2 = π0s0 +π1(1− s1) =MAE.

This gives a baseline loss if we choose thresholds randomly and independently of the model.
Using Lemma 2 we obtain the equivalent result for skews:

Lsu
E{z}=1/2 =

s0 +(1− s1)

2
= uMAE.
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4.2 The Score-Driven Threshold Choice Method Leads to the Brier Score

We will now consider the first threshold choice method to take the operating condition into account.
Since we are dealing with probabilistic scores, this method simply sets the threshold equal to the
operating condition (cost proportion or skew). This is a natural criterion as it has been used espe-
cially when the model is a probability estimator and we expect to have perfect information about the
operating condition at deployment time. In fact, this is a direct choice when working with proper
scoring rules, since when rules are proper, scores are assumed to be a probabilistic assessment. The
use of this threshold choice method can be traced back to Murphy (1966) and, perhaps, implicitly,
much earlier. More recently, and in a different context from proper scoring rules, Drummond and
Holte (2006) say “the performance independent criterion, in this case, is to set the threshold to cor-
respond to the operating conditions. For example, if PC(+) = 0.2 the Naive Bayes threshold is set
to 0.2”. The term PC(+) is equivalent to our ‘skew’.

Definition 13 Assuming the model’s scores are expressed on a probability scale [0,1], the score-
driven threshold choice method is defined for cost proportions as follows:

T sdc (c)! c (7)

and for skews as
T sdz (z)! z.

Given this threshold choice method, then the question is: if we must evaluate a model before
application for a wide range of skews and cost proportions, which performance metric should be
used? This is what we answer below.

Theorem 14 (Hernández-Orallo et al., 2011) Assuming probabilistic scores and the score-driven
threshold choice method, expected loss under a uniform distribution of cost proportions is equal to
the model’s Brier score.

Proof If we plug T sdc (Equation 7) into the general formula of the expected loss (Equation 4) we
have the expected score-driven loss:

Lsdc !

∫ 1

0
Qc(T sdc (c);c)wc(c)dc=

∫ 1

0
Qc(c;c)wc(c)dc. (8)

And if we use the uniform distribution and the definition of Qc (Equation 3):

LsdU(c) =
∫ 1

0
Qc(c;c)U(c)dc=

∫ 1

0
2{cπ0(1−F0(c))+(1− c)π1F1(c)}dc. (9)

In order to show this is equal to the Brier score, we expand the definition of BS0 and BS1 using
integration by parts:

BS0 =
∫ 1

0
s2 f0(s)ds=

[

s2F0(s)
]1
s=0 −

∫ 1

0
2sF0(s)ds= 1−

∫ 1

0
2sF0(s)ds

=
∫ 1

0
2sds−

∫ 1

0
2sF0(s)ds=

∫ 1

0
2s(1−F0(s))ds.

BS1 =
∫ 1

0
(1− s)2 f1(s)ds=

[

(1− s)2F1(s)
]1
s=0 +

∫ 1

0
2(1− s)F1(s)ds=

∫ 1

0
2(1− s)F1(s)ds.

2830



A UNIFIED VIEW OF PERFORMANCE METRICS

Taking their weighted average, we obtain

BS= π0BS0 +π1BS1 =
∫ 1

0
{π02s(1−F0(s))+π12(1− s)F1(s)}ds. (10)

which, after reordering of terms and change of variable, is the same expression as Equation (9).

It is now clear why we just put the Brier score from Table 1 as the expected loss in Table 2. We
calculated the expected loss for the score-driven threshold choice method for a uniform distribution
of cost proportions as its Brier score.

Theorem 14 was obtained by Hernández-Orallo et al. (2011) (the threshold choice method there
was called ‘probabilistic’) but it is not completely new in itself. Murphy (1966) found a similar rela-
tion to expected utility (in our notation, −(1/4)PS+(1/2)(1+π0), where the so-called probability
score PS = 2BS). Apart from the sign (which is explained because Murphy works with utilities
and we work with costs), the difference in the second constant term is explained because Murphy’s
utility (cost) model is based on a cost matrix where we have a cost for one of the classes (in meteo-
rology the class ‘protect’) independently of whether we have a right or wrong prediction (‘adverse’
or ‘good’ weather). The only case in the matrix with a 0 cost is when we have ‘good’ weather and
‘no protect’. It is interesting to see that the result only differs by a constant term, which supports the
idea that whenever we can express the operating condition with a cost proportion or skew, the results
will be portable to each situation with the inclusion of some constant terms (which are the same for
all classifiers). In addition to this result, it is also worth mentioning another work by Murphy (1969)
where he makes a general derivation for the Beta distribution.

After Murphy, in the last four decades, there has been extensive work on the so-called proper
scoring rules, where several utility (cost) models have been used and several distributions for the cost
have been used. This has led to relating Brier score (square loss), logarithmic loss, 0-1 loss and other
losses which take the scores into account. For instance, Buja et al. (2005) give a comprehensive
account of how all these losses can be obtained as special cases of the Beta distribution. The result
given in Theorem 14 would be a particular case for the uniform distribution (which is a special
case of the Beta distribution) and a variant of Murphy’s results. In fact, the BS decomposition can
also be connected to more general decompositions of Bregman divergences (Reid and Williamson,
2011). Nonetheless, it is important to remark that the results we have just obtained in Section 4.1
(and those we will get in Section 5) are new because they are not obtained by changing the cost
distribution but rather by changing the threshold choice method. The threshold choice method used
(the score-driven one) is not put into question in the area of proper scoring rules. But Theorem 14
can now be seen as a result which connects these two different dimensions: cost distribution and
threshold choice method, so placing the Brier score at an even more predominant role.

Hernández-Orallo et al. (2011) derive an equivalent result using empirical distributions. In that
paper we show how the loss can be plotted in cost space, leading to the Brier curve whose area
underneath is the Brier score.

Finally, using skews we arrive at the prior-independent version of the Brier score.

Corollary 15 LsdU(z) = uBS= (BS0 +BS1)/2.

It is interesting to analyse the relation between LsuU(c) and LsdU(c) (similarly between LsuU(z) and
LsdU(z)). Since the former gives the MAE and the second gives the Brier score (which is the MSE),
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from the definitions of MAE and Brier score, we get that, assuming scores are between 0 and 1:

MAE = LsuU(c) ≥ LsdU(c) = BS.

uMAE = LsuU(z) ≥ LsdU(z) = uBS.

Since MAE and BS have the same terms but the second squares them, and all the values which are
squared are between 0 and 1, then the BS must be lower or equal. This is natural, since the expected
loss is lower if we get reliable information about the operating condition at deployment time. So,
the difference between the Brier score and MAE is precisely the gain we can get by having (and
using) the information about the operating condition at deployment time. Notice that all this holds
regardless of the quality of the probability estimates.

Finally, the difference between the results of Section 3 (Corollary 6) and these results fits well
with a phenomenon which is observed when trying to optimise classification models: good proba-
bility estimation does not imply good classification and vice versa (see, for example, the work of
Friedman, 1997). In the context of these results, we can re-interpret this phenomenon from a new
perspective. The Brier score is seen as expected loss for the score-driven threshold choice method,
while accuracy assumes a fixed threshold. The expected losses shown in Table 2 are a clear example
of this.

5. Threshold Choice Methods Using Rates

We show in this section that AUC can be translated into expected loss for varying operating con-
ditions in more than one way, depending on the threshold choice method used. We consider two
threshold choice methods, where each of them sets the threshold to achieve a particular predicted
positive rate: the rate-uniform method, which sets the rate in a uniform way; and the rate-driven
method, which sets the rate equal to the operating condition. Some of these approaches have been
used or mentioned in the literature, but choosing or ranging over sensitivity (or, complementary,
specificity) instead of ranging over the rate (which is a weighted sum of sensitivity, that is, F0, and
1− specificity, that is, F1). For instance, Wieand et al. (1989) take a uniform distribution on a re-
stricted range of sensitivities (or, similarly, specificities, Wieand et al., 1989). Also, Hand (2010)
mentions that AUC can be seen as ‘the mean specificity value, assuming a uniform distribution for
the sensitivity’.

We recall the definition of a ROC curve and its area first.

Definition 16 The ROC curve (Swets et al., 2000; Fawcett, 2006) is defined as a plot of F1(t) (i.e.,
false positive rate at decision threshold t) on the x-axis against F0(t) (true positive rate at t) on the
y-axis, with both quantities monotonically non-decreasing with increasing t (remember that scores
increase with p̂(1|x) and 1 stands for the negative class). The Area Under the ROC curve (AUC) is
defined as:

AUC !

∫ 1

0
F0(s)dF1(s) =

∫ +∞

−∞
F0(s) f1(s)ds=

∫ +∞

−∞

∫ s

−∞
f0(t) f1(s)dtds

=
∫ 1

0
(1−F1(s))dF0(s) =

∫ +∞

−∞
(1−F1(s)) f0(s)ds=

∫ +∞

−∞

∫ +∞

s
f1(t) f0(s)dtds.

Note that in this section scores are not necessarily assumed to be probability estimates and so s
ranges from −∞ to ∞.
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5.1 The Rate Uniform Threshold Choice Method Leads to AUC

The rate-fixed threshold choice method places the threshold in such a way that a given predictive
positive rate is achieved. However, this proportion may change, or we might not have reliable
information about the operating condition at deployment time. An option in this case is to fix a
predictive positive rate equal to 0.5 (predict exactly half of the examples as positive), which boils
down to a special case of Theorem 5, but another option is to consider a non-deterministic choice
or a distribution for this quantity. One natural choice can be a uniform distribution. This complete
absence of information will hardly ever be the case, as we discussed for the score-uniform threshold
choice method, but it is still instructive to explore what the outcome would be with this choice.

Definition 17 The rate-uniform threshold choice method non-deterministically sets the threshold to
achieve a uniformly randomly selected rate:

T ruc (c)! T r fc [U0,1](c).
T ruz (z)! T r fz [U0,1](z).

In other words, it sets a relative quantity (from 0% positives to 100% positives) in a uniform way,
and obtains the threshold from this uniform distribution over rates. Note that for a large number of
examples, this is the same as defining a uniform distribution over examples or, alternatively, over
cutpoints (between examples), as explored by Flach et al. (2011).

This threshold choice method is a generalisation of the rate-fixed threshold choice method which
considers all the imbalances (class proportions) equally likely whenever we make a classification.
It is important to clearly state that this makes the strong assumption that we will not have any
information about the operating condition at deployment time.

As done before for other threshold choice methods, we analyse the question: given this threshold
choice method, if we must evaluate a model before application for a wide range of skews and cost
proportions, which performance metric should be used?

The corresponding expected loss for cost proportions is (assuming R is invertible)

Lruc !

∫ 1

0
Qc(T ruc (c);c)wc(c)dc=

∫ 1

0

∫ 1

0
Qc(R−1(r);c)U(r)wc(c)dr dc.

We then have the following result.

Theorem 18 Assuming the rate-uniform threshold choice method and invertible R, expected loss
under a distribution of cost proportions wc decreases linearly with AUC as follows:

Lruc = π0π1(1−2AUC)+π0Ewc{c}+π1(1−Ewc{c}).
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Proof First of all we note that r= R(t) and henceU(r)dr= R′(t)dt = {π0 f0(t)+π1 f1(t)}dt. Under
the same change of variable, Qc(R−1(r);c) =Qc(t;c) = 2{cπ0(1−F0(t))+(1−c)π1F1(t)}. Hence:

Lruc =
∫ 1

0

∫ ∞

−∞
{cπ0(1−F0(t))+(1− c)π1F1(t)}wc(c){π0 f0(t)+π1 f1(t)}dt dc

=
∫ ∞

−∞

∫ 1

0
2{cπ0(1−F0(t))+(1− c)π1F1(t)}{π0 f0(t)+π1 f1(t)}wc(c)dc dt

=
∫ ∞

−∞
2{Ewc{c}π0(1−F0(t))+(1−Ewc{c})π1F1(t)}{π0 f0(t)+π1 f1(t)}dt

= 2π0π1Ewc{c}
∫ ∞

−∞
(1−F0(t)) f1(t)dt+2π0π1(1−Ewc{c})

∫ ∞

−∞
F1(t) f0(t)dt

+2π2
0Ewc{c}

∫ ∞

−∞
(1−F0(t)) f0(t) dt+2π2

1(1−Ewc{c})
∫ ∞

−∞
F1(t) f1(t) dt.

The first two integrals in this last expression are both equal to 1−AUC. The remaining two integrals
reduce to a constant:

∫ ∞

−∞
(1−F0(t)) f0(t) dt =−

∫ 0

1
(1−F0(t)) d(1−F0(t)) = 1/2.

∫ ∞

−∞
F1(t) f1(t) dt =

∫ 1

0
F1(t) dF1(t) = 1/2.

Putting everything together we obtain

Lruc = 2π0π1Ewc{c}(1−AUC)+2π0π1(1−Ewc{c})(1−AUC)+π2
0Ewc{c}+π2

1(1−Ewc{c})
= 2π0π1(1−AUC)+π2

0Ewc{c}+π2
1(1−Ewc{c})

= π0π1(1−2AUC)+π0π1 +π2
0Ewc{c}+π2

1(1−Ewc{c})
= π0π1(1−2AUC)+π0π1Ewc{c}+π2

0Ewc{c}+π0π1(1−Ewc{c})+π2
1(1−Ewc{c})

and the result follows.

The following two results were originally obtained by Flach, Hernández-Orallo, and Ferri
(2011) for the special case of uniform cost and skew distributions. We are grateful to David Hand
for suggesting that the earlier results might be generalised.

Corollary 19 Assuming the rate-uniform threshold choice method, invertible R, and a distribution
of cost proportions wc with expected value Ewc{c} = 1/2, expected loss decreases linearly with
AUC as follows:

Lru
E{c}=1/2 = π0π1(1−2AUC)+1/2.

Corollary 20 For any distribution of skews wz, assuming the rate-uniform threshold choice method
and invertible R, expected loss decreases linearly with AUC as follows:

Lruz = (1−2AUC)/4+1/2.
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Proof By assuming a uniform class distribution in Theorem 18 we obtain:

Lruc =
1
2

1
2
(1−2AUC)+

1
2
Ewc{c}+

1
2
(1−Ewc{c}) = (1−2AUC)/4+1/2.

By Lemma 2 this is equal to Lruz .

Notice that Corollary 20 does not make any assumption about the expected value of wz, and in that
sense is more general than Corollary 19 for cost proportions. We see that expected loss for uniform
skew ranges from 1/4 for a perfect ranker that is harmed by sub-optimal threshold choices, to 3/4
for the worst possible ranker that puts positives and negatives the wrong way round, yet gains some
performance by putting the threshold at or close to one of the extremes.

Intuitively, a result like Corollary 20 can be understood as follows. Setting a randomly sampled
rate is equivalent to setting the decision threshold to the score of a randomly sampled example.
With probability π0 we select a positive and with probability π1 we select a negative. If we select
a positive, then the expected true positive rate is 1/2 (as on average we select the middle one); and
the expected false positive rate is 1−AUC (as one interpretation of AUC is the expected proportion
of negatives ranked correctly wrt. a random positive). Similarly, if we select a negative then the
expected true positive rate is AUC and the expected false positive rate is 1/2. Put together, the
expected true positive rate is π0/2+π1AUC and the expected false positive rate is π1/2+π0(1−
AUC). The proportion of true positives among all examples is thus

π0 (π0/2+π1AUC) =
π2

0
2
+π0π1AUC

and the proportion of false positives is

π1 (π1/2+π0(1−AUC)) =
π2

1
2
+π0π1(1−AUC).

We can summarise these expectations in the following contingency table (all numbers are propor-
tions relative to the total number of examples):

Predicted + Predicted −
Actual + π2

0/2+π0π1AUC π2
0/2+π0π1(1−AUC) π0

Actual − π2
1/2+π0π1(1−AUC) π2

1/2+π0π1AUC π1
1/2 1/2 1

The column totals are, of course, as expected: if we randomly select an example to split on, then the
expected split is in the middle.

While in this paper we concentrate on the case where we have access to population densities
fk(s) and distribution functions Fk(t), in practice we have to work with empirical estimates. Flach
et al. (2011) provides an alternative formulation of the main results in this section, relating empirical
loss to the AUC of the empirical ROC curve. For instance, the expected loss for uniform skew and
uniform instance selection is calculated by Flach et al. (2011) to be

( n
n+1

) 1−2AUC
4 + 1

2 , showing that
for smaller samples the reduction in loss due to AUC is somewhat smaller.
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5.2 The Rate-Driven Threshold Choice Method Leads to AUC

Naturally, if we can have precise information of the operating condition at deployment time, we
can use the information about the skew or cost to adjust the rate of positives and negatives to that
proportion. This leads to a new threshold selection method: if we are given skew (or cost proportion)
z (or c), we choose the threshold t in such a way that we get a proportion of z (or c) positives. This
is an elaboration of the rate-fixed threshold choice method which does take the operating condition
into account.

Definition 21 The rate-driven threshold choice method for cost proportions is defined as

T rdc (c)! T r fc [c](c) = R−1(c). (11)

The rate-driven threshold choice method for skews is defined as

T rdz (z)! T r fz [z](z) = R−1
z (z).

Given this threshold choice method, the question is again: if we must evaluate a model before
application for a wide range of skews and cost proportions, which performance metric should be
used? This is what we answer below.

If we plug T rdc (Equation 11) into the general formula of the expected loss for a range of cost
proportions (Equation 4) we have:

Lrdc !

∫ 1

0
Qc(T rdc (c);c)wc(c)dc.

And now, from this definition, if we use the uniform distribution for wc(c), we obtain this new
result.

Theorem 22 Expected loss for uniform cost proportions using the rate-driven threshold choice
method is linearly related to AUC as follows:

LrdU(c) = π1π0(1−2AUC)+1/3.

Proof

LrdU(c) =
∫ 1

0
Qc(T rdc (c);c)U(c)dc=

∫ 1

0
Qc(R−1(c);c)dc

= 2
∫ 1

0
{cπ0(1−F0(R−1(c)))+(1− c)π1F1(R−1(c))}dc

= 2
∫ 1

0
{cπ0 − cπ0F0(R−1(c)))+π1F1(R−1(c))− cπ1F1(R−1(c))}dc.

Since π0F0(R−1(c)))+π1F1(R−1(c)) = R(R−1(c)) = c,

LrdU(c) = 2
∫ 1

0
{cπ0 − c2 +π1F1(R−1(c))}dc

= π0 −
2
3
+2π1

∫ 1

0
F1(R−1(c))dc.
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Taking the rightmost term and using the change of variable R−1(c) = t we have c= R(t) and hence
dc= R′(t)dt = {π0 f0(t)+π1 f1(t)}dt = R′(t)dt, and thus this term is rewritten as

2π1

∫ 1

0
F1(R−1(c))dc = 2π1

∫ ∞

∞
F1(t){π0 f0(t)+π1 f1(t)}dt

= 2π1π0

∫ 1

0
F1(t)dF0(t)+2π2

1

∫ 1

0
F1(t)dF1(t)

= 2π1π0(1−AUC)+2π2
1

1
2
= 2π1π0(1−AUC)+π1(1−π0).

Putting everything together we have:

LrdU(c) = π0 −
2
3
+2π1π0(1−AUC)+π1(1−π0)

=
1
3
+π1π0(1−2AUC).

Now we can unveil and understand how we obtained the results for the expected loss in Table 2
for the rate-driven method. We just took the AUC of the models and applied the previous formula:
π1π0(1−2AUC)+ 1

3 .

Corollary 23 Expected loss for uniform skews using the rate-driven threshold choice method is
linearly related to AUC as follows:

LrdU(z) = (1−2AUC)/4+1/3.

If we compare Corollary 20 with Corollary 23, we see that LruU(z) > LrdU(z), more precisely:

LruU(z) = (1−2AUC)/4+1/2 = LrdU(z) +1/6.

So we see that taking the operating condition into account when choosing thresholds based on
rates reduces the expected loss with 1/6, regardless of the quality of the model as measured by AUC.
This term is clearly not negligible and demonstrates that the rate-driven threshold choice method is
superior to the rate-uniform method. Figure 3 illustrates this. Logically, LrdU(c) and LrdU(z) work upon
information about the operating condition at deployment time, while LruU(c) and LruU(z) may be suited
when this information is unavailable or unreliable.

6. The Optimal Threshold Choice Method

The last threshold choice method we investigate is based on the optimistic assumption that (1)
we are having complete information about the operating condition (class proportions and costs) at
deployment time and (2) we are able to use that information (also at deployment time) to choose
the threshold that will minimise the loss using the current model. ROC analysis is precisely based
on these two points since we can calculate the threshold which gives the smallest loss by using the
skew and the convex hull.

This threshold choice method, denoted by Toc , is defined as follows:
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Figure 3: Illustration of the rate-driven threshold choice method. We assume uniform misclassifi-
cation costs (c0 = c1 = 1), and hence skew is equal to the proportion of positives (z= π0).
The majority class is class 1 on the left and class 0 on the right. Unlike the rate-uniform
method, the rate-driven method is able to take advantage of knowing the majority class,
leading to a lower expected loss.

Definition 24 The optimal threshold choice method is defined as:

T oc (c) ! argmin
t

{Qc(t;c)}= argmin
t

2{cπ0(1−F0(t))+(1− c)π1F1(t)} (12)

and similarly for skews:

Toz (z)! argmin
t

{Qz(t;z)}.

Note that in both cases, the argmin will typically give a range (interval) of values which give the
same optimal value. So these methods can be considered non-deterministic. This threshold choice
method is analysed by Fawcett and Provost (1997), and used by Drummond and Holte (2000, 2006)
for defining their cost curves and by Hand (2009) to define a new performance metric.

If we plug Equations (12) and (3) into Equation (4) using a uniform distribution for cost propor-
tions, we get:

LoU(c) =
∫ 1

0
Qc(argmin

t
{Qc(t,c)};c)dc=

∫ 1

0
min
t
{Qc(t;c)}dc

=
∫ 1

0
min
t
{2cπ0(1−F0(t))+2(1− c)π1F1(t)}dc. (13)

The connection with the convex hull of a ROC curve (ROCCH) is straightforward. The convex
hull is a construction over the ROC curve in such a way that all the points on the convex hull
have minimum loss for some choice of c or z. This means that we restrict attention to the optimal
threshold for a given cost proportion c, as derived from Equation (12).
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6.1 Convexification

We can give a corresponding, and more formal, definition of the convex hull as derived from the
score distributions. First, we need a more precise definition of a convex model. For that, we rely on
the ROC curve, and we use the slope of the curve, defined as usual:

slope(T ) =
f0(T )
f1(T )

.

A related expression we will also use is:

c(T ) =
π1 f1(T )

π0 f0(T )+π1 f1(T )
.

Sometimes we will use subindices for c(T ) depending on the model we are using. In this way, we
have, π0

π1
slope(T ) = π0 f0(T )

π1 f1(T ) =
1

c(T ) −1.

Definition 25 (Convex model) A model m is convex, if for every threshold T , we have that c(T ) is
non-decreasing (or, equivalently, slope(T ) is non-increasing).

In order to make any model convex, it is not sufficient to repair local concavities, we need to
calculate the convex hull. This is clear if we categorise the types of segments. Some threshold
values t will never minimise Qc(t;c) = 2cπ0(1−F0(t))+2(1−c)π1F1(t)} for any value of c. These
values will be in one or more intervals of which only the end points will minimise Qc(t;c) for some
value of c. We will call these intervals non-hull intervals, and all the rest will be referred to as hull
intervals. It clearly holds that hull intervals are convex. Non-hull intervals may contain convex and
concave subintervals.

From here, a definition of convex hull for continuous distributions is given as follows:

Definition 26 (Convexification) Let m be any model with score distributions f0(T ) and f1(T ).
Define convexified score distributions e0(T ) and e1(T ) as follows.

1. For every hull interval ti−1 ≤ s≤ ti: e0(T ) = f0(T ) and e1(T ) = f1(T ).

2. For every non-hull interval t j−1 ≤ s≤ t j:

e0(T ) = e0, j =
1

t j− t j−1

∫ t j

t j−1
f0(T )dT.

e1(T ) = e1, j =
1

t j− t j−1

∫ t j

t j−1
f1(T )dT.

The function Conv returns the model Conv(m) defined by the score distributions e0(T ) and e1(T ).

We can also define the cumulative distributions Ex(t) =
∫ t

0 ex(T )dT , where x represents either 0
or 1. By construction we have that for every interval [t j−1, t j] identified above:

[Ex(t)]
t j
t j−1 =

∫ t j

t j−1
ex(T )dT = (t j− t j−1)ex, j =

∫ t j

t j−1
fx(T )dT = [Fx(t)]

t j
t j−1 (14)
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and so the convexified score distributions are proper distributions. Furthermore, since the new score
distributions are constant in the convexified intervals—and hence monotonically non-decreasing for
the new c(T ), denoted by cConv(m)(T )—so is

cConv(m)(T ) = c j =
π1e1, j

π0e0, j+π1e1, j
.

It follows that Conv(m) is everywhere convex. In addition,

Theorem 27 Optimal loss is invariant under Conv, that is: LoU(c)(Conv(m)) = LoU(c)(m) for every
m.

Proof By Equation (13) we have that optimal loss is:

LoU(c)(m) =
∫ 1

0
min
t
{2cπ0(1−F0(t))+2(1− c)π1F1(t)}dc.

By definition, the hull intervals have not been modified by Conv(m). Only the non-hull intervals
have been modified. A non-hull interval was defined as those where there is no t which minimises
Qc(t;c) = 2cπ0(1−F0(t))+2(1−c)π1F1(t)} for any value of c, and only the endpoints attained the
minimum. Consequently, we only need to show that the new e0(T ) and e1(T ) do not introduce any
new minima.

We now focus on each non-hull segment (t j−1, t j) using the definition of Conv. We only need to
check the expression for the minimum:

min
t j≤t≤t j−1

{2cπ0(1−E0(t))+2(1− c)π1E1(t)}.

From Equation (14) we derive that Ex(t) = Ex(t j−1)+ (t j − t j−1)ex, j inside the interval (they are
straight lines in the ROC curve), and we can see that the expression to be minimised is constant (it
does not depend on t). Since the end points were the old minima and were equal, we see that this
expression cannot find new minima.

It is not difficult to see that if we plot Conv(m) in the cost space defined by Drummond and Holte
(2006) with Qz(t;z) on the y-axis against skew z on the x-axis, we have a cost curve. Its area is then
the expected loss for the optimal threshold choice method. In other words, this is the area under the
(optimal) cost curve. Similarly, the new performance metric H introduced by Hand (2009) is simply
a rescaled version of the area under the optimal cost curve using the β2,2 distribution instead of the
β1,1 (i.e., uniform) distribution, and using cost proportions instead of skews (so being dependent to
class priors). This is further discussed by Flach et al. (2011). While all of these distributions are
symmetric, the Beta distribution can be non-symmetric if required by a specific application. In fact,
Hand and Anagnostopoulos (2012) suggest that the parameters of the distribution should be linked
to class proportion π0.

6.2 The Optimal Threshold Choice Method Leads to Refinement Loss

Once again, the question now must be stated clearly. Assume that the optimal threshold choice
method is set as the method we will use for every application of our model. Furthermore, assume
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that each and every application of the model is going to find the perfect threshold. Then, if we
must evaluate a model before application for a wide range of skews and cost proportions, which
performance metric should be used? In what follows, we will find the answer by relating this
expected loss with a genuine performance metric: refinement loss. We will now introduce this
performance metric.

The Brier score, being a sum of squared probabilistic residuals, can be decomposed in various
ways. The most common decomposition of the Brier score is due to Murphy (1973) and decomposes
the Brier score into Reliability, Resolution and Uncertainty. Frequently, the two latter components
are joined together and the decomposition gives two terms: calibration loss and refinement loss.

This decomposition is usually applied to empirical distributions, requiring a binning of the
scores. Scores are assumed to be probability estimates in the interval [0,1]. The decomposition
is based on a partition PD = {b j} j=1..B where D is the data set, B the number of bins, and each bin
is denoted by b j ⊂ D. Since it is a partition

⋃B
j=1 b j = D. With this partition the decompoistion is:

BS≈ CLPD +RLPD =
1
n

B

∑
j=1

|b j|
(

sb j − ybj
)2

+
1
n

B

∑
j=1

|b j|ybj
(

1− ybj
)

.

Here we use the notation sb j = 1
|b j| ∑i∈b j si and ybj = 1

|b j| ∑i∈b j yi for the average predicted scores and
the average actual classes respectively for bin b j.

For many partitions the empirical decomposition is not exact. It is only exact for partitions
which are coarser than the partition induced by the ROC curve (i.e., ties cannot be spread over
different partitions), as shown by Flach and Matsubara (2007). We denote by CLROC and RLROC
the calibration loss and the refinement loss, respectively, using the segments of the empirical ROC
curve as bins. In this case, BS= CLROC+RLROC.

In this paper we will use a variant of the above decomposition based on the ROC convex hull
of a model. In this decomposition, we take each bin as each segment in the convex hull. Naturally,
the number of bins in this decomposition is lower or equal than the number of bins in the ROC
decomposition. In fact, we may find different values of si in the same bin. In some way, we can
think about this decomposition as an optimistic/optimal version of the ROC decomposition, as Flach
and Matsubara (2007, Th. 3) show. We denote by CLROCCH and RLROCCH the calibration loss and
the refinement loss, respectively, using the segments of the convex hull of the empirical ROC curve
as bins (Flach et al., 2011).

We can define the same decomposition in continuous terms considering Definition 8. We can
see that in the continuous case, the partition is irrelevant. Any partition will give the same result,
since the composition of consecutive integrals is the same as the whole integral.

Theorem 28 The continuous decomposition of the Brier Score, BS = CL+RL, is exact and gives
CL and RL as follows.

CL=
∫ 1

0

(s(π0 f0(s)+π1 f1(s))−π1 f1(s))2

π0 f0(s)+π1 f1(s)
ds.

RL=
∫ 1

0

π1 f1(s)π0 f0(s)
π0 f0(s)+π1 f1(s)

ds.
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Proof

BS=
∫ 1

0

[

s2π0 f0(s)+(1− s)2π1 f1(s)
]

ds

=
∫ 1

0

[

s2(π0 f0(s)+π1 f1(s))−2sπ1 f1(s)+π1 f1(s)
]

ds

=
∫ 1

0

s2(π0 f0(s)+π1 f1(s))2 −2s(π0 f0(s)+π1 f1(s))π1 f1(s)+π1 f1(s)(π1 f1(s)+π0 f0(s))
(π0 f0(s)+π1 f1(s))

ds

=
∫ 1

0

(s(π0 f0(s)+π1 f1(s))−π1 f1(s))2 +π1 f1(s)π0 f0(s)
π0 f0(s)+π1 f1(s)

ds

=
∫ 1

0

(s(π0 f0(s)+π1 f1(s))−π1 f1(s))2

π0 f0(s)+π1 f1(s)
ds+

∫ 1

0

π1 f1(s)π0 f0(s)
π0 f0(s)+π1 f1(s)

ds.

This proof keeps the integral from start to end. That means that the decomposition is not only
true for the integral as a whole, but also pointwise for every single score s. Note that ybj in the
empirical case (see Definition 15) corresponds to c(s) = π1 f1(s)

π0 f0(s)+π1 f1(s) (as given by Equation 14) in
the continuous case above, and also note that sb j corresponds to the cardinality π0 f0(s)+π1 f1(s).
The decomposition for empirical distributions as introduced by Murphy (1973) is still predominant
for any reference to the decomposition. To our knowledge this is the first explicit derivation of a
continuous version of the decomposition.

And now we are ready for relating the optimal threshold choice method with a performance
metric as follows:

Theorem 29 For every convex model m, we have that:

LoU(c)(m) = RL(m).

The proof of this theorem is found in the appendix as Theorem 48.

Corollary 30 For every model m the expected loss for the optimal threshold choice method LoU(c) is
equal to the refinement loss using the convex hull.

LoU(c)(m) = RL(Conv(m))! RLConv(m).

Proof We have LoU(c)(m) = LoU(c)(Conv(m)) by Theorem 27, and LoU(c)(Conv(m)) = RL(Conv(m))
by Theorem 29 and the convexity of Conv(m).

It is possible to obtain a version of this theorem for empirical distributions which states that LoU(c) =

RLROCCH where RLROCCH is the refinement loss of the empirical distribution using the segments of
the convex hull for the decomposition.

Before analysing what the meaning of this threshold choice method is and how it relates to the
rest, we have to consider whether this threshold choice method is realistic or not. In the beginning of
this section we said that the optimal method assumes that (1) we are having complete information
about the operating condition at deployment time and (2) we are able to use that information to
choose the threshold that will minimise the loss at deployment time.
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While (1) is not always true, there are many occasions where we know the costs and distribu-
tions at application time. This is the base of the score-driven and rate-driven methods. However,
having this information does not mean that the optimal threshold for a data set (e.g., the training or
validation data set) ensures an optimal choice for a test set (2). Drummond and Holte (2006) are
conscious of this problem and they reluctantly rely on a threshold choice method which is based
on “the ROC convex hull [...] only if this selection criterion happens to make cost-minimizing se-
lections, which in general it will not do”. But even if these cost-minimising selections are done, as
mentioned above, it is not clear how reliable they are for a test data set. As Drummond and Holte
(2006, p. 122) recognise: “there are few examples of the practical application of this technique.
One example is given by Fawcett and Provost (1997), in which the decision threshold parameter
was tuned to be optimal, empirically, for the test distribution”.

In the example shown in Table 2 in Section 1, the evaluation technique was training and test.
However, with cross-validation, the convex hull cannot be estimated reliably in general, and the
thresholds derived from each fold might be inconsistent. Even with a large validation data set, the
decision threshold may be suboptimal. This is one of the reasons why the area under the convex hull
has not been used as a performance metric. In any case, we can calculate the values as an optimistic
limit, leading to LoU(c) = RLROCCH = 0.0953 for model A and 0.2094 for model B.

7. Relating Performance Metrics

So far, we have repeatedly answered the following question: “If threshold choice method X is used,
which is the corresponding performance metric?” The answers are summarised in Table 4. The
seven threshold choice methods are shown in the first column (the two fixed methods are grouped
in the same row). The integrated view of performance metrics for classification is given by the
next two columns. The expected loss of a model for a uniform distribution of cost proportions or
skews for each of these seven threshold choice methods produces most of the common performance
metrics in classification: 0-1 loss (either weighted or unweighted accuracy), the Mean Absolute
Error (equivalent to Mean Probability Rate), the Brier score, AUC (which equals the Wilcoxon-
Mann-Whitney statistic and the Kendall tau distance of the model to the perfect model, and is
linearly related to the Gini coefficient) and, finally, the refinement loss using the bins given by the
convex hull.

All the threshold choice methods seen in this paper consider model scores in different ways.
Some of them disregard the score, since the threshold is fixed, some others consider the ‘magnitude’
of the score as an (accurate) estimated probability, leading to the score-based methods, and others
consider the ‘rank’, ‘rate’ or ‘proportion’ given by the scores, leading to the rate-based methods.
Since the optimal threshold choice is also based on the convex hull, it is apparently more related to
the rate-based methods. This is consistent with the taxonomy proposed by Ferri et al. (2009) based
on correlations over more than a dozen performance metrics, where three families of metrics were
recognised: performance metrics which account for the quality of classification (such as accuracy),
performance metrics which account for a ranking quality (such as AUC), and performance metrics
which evaluate the quality of scores or how well the model does in terms of probability estimation
(such as the Brier score or logloss).

This suggests that the way scores are distributed is crucial in understanding the differences and
connections between these metrics. In addition, this may shed light on which threshold choice
method is best. We have already seen some relations, such as LsuU(c) ≥ LsdU(c), and LruU(c) > LrdU(c), but
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Threshold
choice
method

Cost proportions Skews Equivalent (or related) performance metrics

fixed Ls fU(c) = 1−Acc Ls fU(z) = 1−uAcc 0-1 loss: Weighted and unweighted accuracy.
score-
uniform

LsuU(c) =MAE LsuU(z) = uMAE Absolute error, Average score, pAUC (Ferri et al., 2005)
, Probability Rate (Ferri et al., 2009).

score-driven LsdU(c) = BS LsdU(z) = uBS Brier score (Brier, 1950), Mean Squared Error (MSE).
rate-uniform LruU(c) = π0π1(1−2AUC)+ 1

2 LruU(z) =
1−2AUC

4 + 1
2 AUC (Swets et al., 2000) and variants (wAUC) (Fawcett,

2001; Ferri et al., 2009), Kendall tau, WMW statistic,
Gini coefficient.

rate-driven LrdU(c) = π0π1(1−2AUC)+ 1
3 LrdU(z) =

1−2AUC
4 + 1

3 AUC (Swets et al., 2000) and variants (wAUC) (Fawcett,
2001; Ferri et al., 2009), Kendall tau, WMW statistic,
Gini coefficient.

optimal LoU(c) = RLConv LoU(z) = uRLConv ROCCH Refinement loss (Flach and Matsubara, 2007),
Refinement Loss (Murphy, 1973), Area under the Cost
Curve (‘Total Expected Cost’) (Drummond and Holte,
2006), Hand’s H (Hand, 2009).

Table 4: Threshold choice methods and their expected loss for cost proportions and skews. The u
in uAcc, uMAE, uBS and uRL mean that these metrics are unweighted, that is, calculated
as if π0 = π1, while the w in wAUC refers to a weighted version of the AUC, and the x-axis
and y-axis are proportional to π0 and π1.

what about LsdU(c) and LrdU(c)? Are they comparable? And what about LoU(c)? It gives the minimum
expected loss by definition over the training (or validation) data set, but when does it become a good
estimation of the expected loss for the test data set?

In order to answer these questions we need to analyse transformations on the scores and see how
these affect the expected loss given by each threshold choice method. For the rest of the section we
assume that scores are in the interval [0,1]. Given a model, its scores establish a total order over
the examples: σ = (s1,s2, ...,sn) where si ≤ si+1. Since there might be ties in the scores, this total
order is not necessarily strict. A monotonic transformation is any alteration of the scores, such that
the order is kept. We will consider two transformations: the evenly-spaced transformation and PAV
calibration.

7.1 Evenly-Spaced Scores. Relating Brier Score, MAE and AUC

If we are given a ranking or order, or we are given a set of scores but its reliability is low, a quite
simple way to assign (or re-assign) the scores is to set them evenly-spaced (in the [0,1] interval).

Definition 31 A discrete evenly-spaced transformation is a procedure EST(σ)→ σ′ which converts
any sequence of scores σ= (s1,s2, ...,sn) where si < si+1 into scores σ′ = (s′1,s′2, ...,s′n) where s′i =
i−1
n−1 .

Notice that such a transformation does not affect the ranking and hence does not alter the AUC.
The previous definition can be applied to continuous score distribution as follows:

Definition 32 A continuous evenly-spaced transformation is a any strictly monotonic transforma-
tion function on the score distribution, denoted by Even, such that for the new scores s′ it holds that
P(s′ ≤ t) = t.
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It is easy to see that EST is idempotent, that is, EST(EST(σ)) = EST(σ). So we say a set of
scores σ is evenly-spaced if EST(σ) = σ.

Lemma 33 Given a model and data set with set of scores σ, such that they evenly-spaced, when
n→ ∞ then we have R(t) = t.

Proof Remember that by definition the true positive rate F0(t) = P(s ≤ t|0) and the false positive
rate F1(t)=P(s≤ t|1). Consequently, from the definition of rate we have R(t)= π0F0(t)+π1F1(t)=
π0P(s ≤ t|0)+ π1P(s ≤ t|1) = P(s ≤ t). But, since the scores are evenly-spaced, the number of
scores such that s≤ t is ∑n

i=1 I(si ≤ t) =∑n
i=1 I( i−1

n−1 ≤ t) with I being the indicator function (1 when
true, 0 otherwise). This number of scores is ∑tni=1 1 when n→ ∞, which clearly gives tn. So the
probability P(s≤ t) is tn/n= t. Consequently R(t) = t.

The following results connect the score-driven threshold choice method with the rate-driven
threshold choice method:

Theorem 34 Given a model and data set with set of scores σ, such that they are evenly-spaced,
when n→ ∞:

BS= LsdU(c) = LrdU(c) = π0π1(1−2AUC)+
1
3
.

Proof By Lemma 33 we have R(t) = t, and so the rate-driven and score-driven threshold choice
methods select the same thresholds.

Corollary 35 Given a model and data set with set of scores σ such that they are evenly-spaced,
when n→ ∞:

uBS= LsdU(z) = LrdU(z) =
1−2AUC

4
+

1
3
.

These straightforward results connect AUC and Brier score for evenly-spaced scores. This connec-
tion is enlightening because it says that AUC and BS are equivalent performance metrics (linearly
related) when we set the scores in an evenly-spaced way. In other words, it says that AUC is like a
Brier score which considers all the scores evenly-spaced. Although the condition is strong, this is
the first linear connection which, to our knowledge, has been established so far between AUC and
the Brier score.

Similarly, we get the same results for the score-uniform threshold choice method and the rate-
uniform threshold choice method.

Theorem 36 Given a model and data set with set of scores σ such that they are evenly-spaced,
when n→ ∞:

MAE = LsuU(c) = LruU(c) = π0π1(1−2AUC)+
1
2

with similar results for skews. This also connects MAE with AUC and clarifies when they are
linearly related.
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7.2 Perfectly-Calibrated Scores. Relating BS, CL and RL

In this section we will work with a different condition on the scores. We will study what interesting
connections can be established if we assume the scores to be perfectly calibrated.

The informal definition of perfect calibration usually says that a model is calibrated when the
estimated probabilities are close to the true probabilities. From this informal definition, we would
derive that a model is perfectly calibrated if the estimated probability given by the scores (i.e.,
p̂(1|x)) equals the true probability. However, if this definition is applied to single instances, it im-
plies not only perfect calibration but a perfect model. In order to give a more meaningful definition,
the notion of calibration is then usually defined in terms of groups or bins of examples, as we did,
for instance, with the Brier score decomposition. So, we need to apply this correspondence between
estimated and true (actual) probabilities over bins. We say a bin partition is invariant on the scores
if for any two examples with the same score they are in the same bin. In other words, two equal
scores cannot be in different bins (equivalence classes cannot be broken). From here, we can give a
definition of perfect calibration:

Definition 37 (Perfectly-calibrated for empirical distribution models) A model is perfectly cal-
ibrated if for any invariant bin partition P we have that yb j = sb j for all its bins: that is, the average
actual probability equals the average estimated probability, thus making CLP = 0.

Note that it is not sufficient to have CL= 0 for one partition, but for all the invariant partitions. Also
notice that the bins which are generated by a ROC curve are the minimal invariant partition on the
scores (i.e., the quotient set). So, we can give an alternative definition of perfectly calibrated model:
a model is perfectly calibrated if and only if CLROC = 0. For the continuous case, the partition is
irrelevant and the definition is as follows:

Definition 38 (Perfectly-calibrated for continuous distribution models) A continuous model is
perfectly calibrated if and only if s= π1 f1(s)

π0 f0(s)+π1 f1(s) which is exactly c(s) given by Equation (14).

Note that the previous definition is equivalent to saying that CL= 0, as in the empirical case, since
CL can be rewritten as follows, following the decomposition of Theorem 28:

CL =
∫ 1

0

(s(π0 f0(s)+π1 f1(s))−π1 f1(s))2

π0 f0(s)+π1 f1(s)
ds

=
∫ 1

0
(π0 f0(s)+π1 f1(s))

(

s−
π1 f1(s)

π0 f0(s)+π1 f1(s)

)2
ds.

Lemma 39 For a perfectly calibrated classifier m:

1− s
s

=
f0(s)
f1(s)

π0
π1

and m is convex.

Proof The expression is a direct transformation of Definition 38 and convexity just follows from
Definition 25.
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Now that we have two proper and operational definitions of perfect calibration, we define a
calibration transformation as follows.

Definition 40 Cal is a monotonic function over the scores which converts any model m into another
calibrated model m∗ such that CL= 0 and RL is not modified.

Cal always produces a convex model, so Conv(Cal(m)) = Cal(m), but a convex model is not always
perfectly calibrated (e.g., a binormal model with same variances is always convex but it can be
uncalibrated), so Cal(Conv(m) -= Conv(m). This is summarised in Table 5. If the model is strictly
convex, then Cal is strictly monotonic. An instance of the function Cal is the transformation T .→

s = c(T ) where c(T ) = π1 f1(T )
π0 f0(T )+π1 f1(T ) as given by Equation (14). This transformation is shown to

keep RL unchanged in the appendix and makes CL= 0.
The previous function is defined for continuous score distributions. The corresponding function

for empirical distributions is known as the Pool Adjacent Algorithm (PAV) (Ayer et al., 1955).
Following Fawcett and Niculescu-Mizil (2007), the PAV function converts any modelm into another
calibrated model m∗ such that the following property sb j = ybj holds for every segment in its convex
hull.

Evenly-spaced Convexification Perfect Calibration
Continuous distributions Even Conv Cal
Empirical distributions EST ROCCH PAV

Table 5: Transformations on scores. Perfect calibration implies a convex model but not vice versa.

Fawcett and Niculescu-Mizil (2007) have shown that isotonic-based calibration (Robertson
et al., 1988) is equivalent to the PAV algorithm, and closely related to ROCCH, since, for every
m and data set, we have:

BS(PAV (m)) = CLROC(PAV (m))+RLROC(PAV (m)) = CLROCCH(PAV (m))+RLROCCH(PAV (m))
= RLROC(PAV (m)) = RLROCCH(PAV (m)).

It is also insightful to see that isotonic regression (calibration) is the monotonic function defined as
argmin f ∑(yi− f (si))2, that is, the monotonic function over the scores which minimises the Brier
score. This leads to the same function if we use any other proper scoring function (such as logloss).

The similar expression for the continuous case is

BS(Cal(m)) = CL(Cal(m))+RL(Cal(m)) = RL(Cal(m)).

Now we analyse what happens with perfectly calibrated models for the score-driven threshold
choice and the score-uniform threshold choice methods. This will help us understand the similarities
and differences between the threshold choices and their relation with the optimal method. Along
the way, we will obtain some straightforward, but interesting, results.

Theorem 41 If a model is perfectly calibrated then we have:

π0  s0 = π1(1−  s1) (15)

or equivalently,

π0MAE0 = π1MAE1.
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Proof For perfectly calibrated models, we have that for every bin in an invariant partition on the
scores we have that ybj = sb j . Just taking a partition consisting of one single bin (which is an
invariant partition), we have that this is the same as saying that π1 = π1  s1 + π0  s0. This leads to
π1(1−  s1) = π0  s0.

Equation (15) is an interesting formula in its own right. It gives a necessary condition for
calibration: the extent to which the average score over all examples (which is the weighted mean of
per-class averages π0s0 +π1s1) deviates from π1.

We now give a first result which connects two performance metrics:

Theorem 42 If a model is perfectly calibrated then we have:

BS= π0  s0 = π1(1−  s1) =MAE/2.

Proof We use the continuous decomposition (Theorem 28):

BS= CL+RL.

Since it is perfectly calibrated, CL= 0. Then we have:

BS = RL=
∫ 1

0

π1 f1(s)π0 f0(s)
π0 f0(s)+π1 f1(s)

ds=
∫ 1

0
(π1 f1(s))

(

1−
π1 f1(s)

π0 f0(s)+π1 f1(s)

)

ds

=
∫ 1

0

(

π1 f1(s)−
[π1 f1(s)]2

π0 f0(s)+π1 f1(s)

)

ds=
∫ 1

0
π1 f1(s)ds−

∫ 1

0

[π1 f1(s)]2

π0 f0(s)+π1 f1(s)
ds

= π1 −
∫ 1

0

π1 f1(s)
π0 f0(s)
π1 f1(s) +1

ds.

Since it is perfectly calibrated, we have, by Lemma 39:

f0(s)
f1(s)

=
1− s
s

π1
π0

.

So:

BS = π1 −
∫ 1

0

π1 f1(s)
π0
π1

1−s
s

π1
π0
+1

ds= π1 −
∫ 1

0

sπ1 f1(s)
(1− s)+ s

ds

= π1 −π1

∫ 1

0
s f1(s)ds= π1(1−

∫ 1

0
s f1(s))ds= π1(1−  s1).

We will now use the expressions for expected loss to analyse where this result comes from
exactly. In the following result, we see that for a calibrated model the optimal threshold T for a
given cost proportion c is T = c, which is exactly the score-driven threshold choice method. In
other words:
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Theorem 43 For a perfectly calibrated model:
T oc (c) = T sdc (c) = c.

Proof We first take Equation (12):

Toc (c) = argmin
t

2{cπ0(1−F0(t))+(1− c)π1F1(t)}.

We calculate the derivative and equal it to 0 to get t, but we isolate c:

2{cπ0(1− f0(t))+(1− c)π1 f1(t)}= 0

c=
π1 f1(t)

π0 f0(t)+π1 f1(t)
.

From Definition 38 (perfect calibration) we have that the right expression above equals t, so we
have t = c. The proof is identical for T sdc .

And now we can express and relate many of the expressions for the expected loss seen so far.
Starting with the expected loss for the optimal threshold choice method, that is, Loc (which uses
Toc ), we have, from Theorem 43, that Toc (c) = T sdc (c) = c when the model is perfectly calibrated.
Consequently, we have the same as Equation (8), and since we know that BS = π0  s0 for perfectly
calibrated models, we have:

LoU(c) = BS= π0  s0 =MAE/2.

The following theorem summarises all the previous results.

Theorem 44 For perfectly calibrated models:

LsdU(c) = LoU(c) = RL=
LsuU(c)

2
=
MAE

2
= BS= π0  s0 = π1(1− s1).

Proof Since LsdU(c) = BS it is clear that LsdU(c) = π0  s0, as seen above for LoU(c) as well. Additionally,
from Theorem 12, we have that LsuU(c) = π0s0 +π1(1− s1), which reduces to 2LsuU(c) = 2BS= 2π0s0.
We also use the result of Theorem 29 which states that, in general (not just for perfectly calibrated
models), LoU(c)(m) = RL(Conv(m)).

All this gives an interpretation of the optimal threshold choice method as a method which cal-
culates expected loss by assuming perfect calibration. Note that this is clearly seen by the relation
LsdU(c) = LoU(c) =

LsuU(c)
2 , since the loss drops to the half if we use scores to adjust to the operating

condition. In this situation, we get the best possible result.

7.3 Choosing a Threshold Choice Method

It is enlightening to see that many of the most popular classification performance metrics are just
expected losses by changing the threshold choice method and the use of cost proportions or skews.
However, it is even more revealing to see how (and under which conditions) these performance
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General relations:

LruU(c) = π0π1(1−2AUC)+
1
2
> LrdU(c) = π0π1(1−2AUC)+

1
3
≥ LoU(c) = RLConv

LsuU(c) =MAE ≥ LsdU(c) = BS≥ LoU(c) = RLConv

If scores are evenly-spaced:

LruU(c) = π0π1(1−2AUC)+
1
2
= LsuU(c) =MAE = π0  s0 +π1(1− s1)

LrdU(c) = π0π1(1−2AUC)+
1
3
= LsdU(c) = BS

If scores are perfectly calibrated:

LsdU(c) = LoU(c) = RL=
LsuU(c)

2
=
MAE

2
= BS= π0  s0 = π1(1− s1)

If the model has perfect ranking:

LruU(c) =
1
4
> LrdU(c) =

1
12

> LoU(c) = 0

If the model is random (and π0 = π1):

LsuU(c) = LsdU(c) = LruU(c) =
1
2
> LrdU(c) =

1
3
> LoU(c) =

1
4

Figure 4: Comparison of losses and performance metrics, in general and under several score con-
ditions.

metrics can be related (in some cases with inequalities and in some other cases with equalities).
The notion of score transformation is the key idea for these connections, and is more important that
it might seem at first sight. Some threshold choice methods can be seen as a score transformation
followed by the score-driven threshold choice method. Even the fixed threshold choice method
can be seen as a crisp transformation where scores are set to 1 if si > t and 0 otherwise. Another
interesting point of view is to see the values of extreme models, such as a model with perfect ranking
(AUC= 1, RLROCCH = 0) and a random model (AUC= 0.5, RLROCCH = 0.25 when π0 = π1). Figure
4 summarises all the relations found so far and these extreme cases.

The first apparent observation is that LoU(c) seems the best loss, since it derives from the optimal
threshold choice method. We already argued in Section 6 that this is unrealistic. The result given
by Theorem 29 is a clear indication of this, since this makes expected loss equal to RLConv. Hence,
this threshold choice method assumes that the calibration which is performed with the convex hull
over the training (or a validation data set) is going to be perfect and hold for the test set. Figure 4
also gives the impression that LsuU(c) and LruU(c) are so bad that their corresponding threshold choice
methods and metrics are useless. In order to refute this simplistic view, we must realise (again) that
not every threshold choice method can be applied in every situation. Some require more information
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or more assumptions than others. Table 6 completes Table 3 to illustrate the point. If we know
the deployment operating condition at evaluation time, then we can fix the threshold and get the
expected loss. If we do not know this information at evaluation time, but we expect to be able
to have it and use it at deployment time, then the score-driven, rate-driven and optimal threshold
choice methods seem the appropriate ones. Finally, if no information about the operating condition
is going to be available at any time then the score-uniform and the rate-uniform may be alternative
options, which could account for a worst-case estimation.

Threshold choice method Fixed Driven by o.c. Chosen uniformly
Using scores score-fixed (Ts f ) score-driven (Tsd) score-uniform (T su)
Using rates rate-fixed (T r f ) rate-driven (T rd) rate-uniform (Tru)
Using optimal thresholds optimal (To)
Required information o.c. at evaluation time o.c. at deployment time no information

Table 6: Information which is required (and when) for the seven threshold choice methods so that
they become reasonable (or just not totally unreasonable). Operating condition is denoted
by o.c.

From the cases shown in Table 6, the methods driven by the operating condition require further
discussion. The relations shown in Figure 4 illustrate that, in addition to the optimal threshold
choice method, the other two methods that seem more competitive are the score-driven and the rate-
driven. One can argue that the rate-driven threshold choice has an expected loss which is always
greater than 1/12 (if AUC = 1, we get −1/4+ 1/3), while the others can be 0. But things are not
so clear-cut.

• The score-driven threshold choice method considers that the scores are estimated probabili-
ties and that they are reliable, in the tradition of proper scoring rules. So it just uses these
probabilities to set the thresholds.

• The rate-driven threshold choice method completely ignores the scores and only considers
their order. It assumes that the ranking is reliable while the scores are not accurate prob-
abilities. It derives the thresholds using the predictive positive rate. It can be seen as the
score-driven threshold choice method where the scores have been set evenly-spaced by a
transformation.

• The optimal threshold choice method also ignores the scores completely and only considers
their order. It assumes that the ranking is reliable while the scores are not accurate probabili-
ties. However, this method derives the thresholds by keeping the order and using the slopes of
the segments of the convex hull (typically constructed over the training data set or a validation
data set). It can be seen as the score-driven threshold choice method where the scores have
been calibrated by the PAV method.

Now that we better understand the meaning of the threshold choice methods we may state the diffi-
cult question more clearly: given a model, which threshold choice method should we use to make
classifications? The answer is closely related to the calibration problem. Some theoretical and ex-
perimental results (Robertson et al., 1988; Ayer et al., 1955; Platt, 1999; Zadrozny and Elkan, 2001,
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2002; Niculescu-Mizil and Caruana, 2005; Niculescu-Mizil and Caruana, 2005; Bella et al., 2009;
Gebel, 2009) have shown that the PAV method (also known as isotonic regression) is not frequently
the best calibration method. Some other calibration methods could do better, such as Platt’s calibra-
tion or binning averaging. In particular, it has been shown that “isotonic regression is more prone to
overfitting, and thus performs worse than Platt scaling, when data is scarce” (Niculescu-Mizil and
Caruana, 2005). Even with a large validation data set which allows the construction of an accurate
ROC curve and an accurate convex hull, the resulting choices are not necessarily optimal for the test
set, since there might be problems with outliers (Rüping, 2006). In fact, if the validation data set is
much smaller (or biased) than the training set, the resulting probabilities can be even worse than the
original probabilities, as it may happen with cross-validation. So, we have to feel free to use other
(possibly better) calibration methods instead and do not stick to the PAV method just because it is
linked to the optimal threshold choice method.

So the question of whether we keep the scores or not (and how we replace them in case) depends
on our expectations on how well-calibrated the model is, and whether we have tools (calibration
methods and validation data sets) to calibrate the scores.

But we can turn the previous question into a much more intelligent procedure. Calculating the
three expected losses discussed above (and perhaps the other threshold choice methods as well) pro-
vides a rich source of information about how our models behave. This is what performance metrics
are all about. It is only after the comparison of all the results and the availability of (validation) data
sets when we can make a decision about which threshold choice method to use.

This is what we did with the example shown in Table 2 in Section 1. We evaluated the model for
several threshold choice methods and from there we clearly saw which models were better calibrated
and we finally made a decision about which model to use and with which threshold choice methods.

In any case, note that the results and comparisons shown in Figure 4 are for expected loss; the
actual loss does not necessarily follow these inequalities. In fact, the expected loss calculated over a
validation data set may not hold over the test data set, and even some threshold choice methods we
have discarded from the discussion above (the fixed ones or the score-uniform and rate-uniform, if
probabilities or rankings are very bad respectively) could be better in some particular situations.

8. Discussion

This paper builds upon the notion of threshold choice method and the expected loss we can obtain
for a range of cost proportions (or skews) for each of the threshold choice methods we have inves-
tigated. The links between threshold choice methods, between performance metrics, in general and
for specific score arrangements, have provided us with a much broader (and more elaborate) view of
classification performance metrics and the way thresholds can be chosen. In this last section we link
our results to the extensive bulk of work on classification evaluation and analyse the most important
contributions and open questions which are derived from this paper.

8.1 Related Work

One decade ago there was a scattered view of classification evaluation. Many performance metrics
existed and it was not clear what their relationships were. One first step in understanding some of
these performance metrics in terms of costs was the notion of cost isometrics (Flach, 2003). With
cost isometrics, many classification metrics (and decision tree splitting criteria) are characterised by
its skew landscape, that is, the slope of its isometric at any point in the ROC space. Another com-
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prehensive view was the empirical evaluation made by Ferri et al. (2009). The analysis of Pearson
and Spearman correlations between 18 different performance metrics shows the pairs of metrics for
which the differences are significant. However, this work does not elaborate, at least theoretically,
on what exactly each metric measures, but rather on whether they give different choices in general.

In addition to these, there have been three lines of research in this area which provide further
pieces to understand the whole picture.

• First, the notion of ‘proper scoring rules’ (which was introduced in the sixties, see for exam-
ple, the work by Murphy and Winkler, 1970), has been developed to a degree (Buja et al.,
2005) in which it has been shown that the Brier score (MSE loss), logloss, boosting loss
and error rate (0-1 loss) are all special cases of an integral over a Beta density, and that
all these performance metrics can be understood as averages (or integrals), at least theoret-
ically, over a range of cost proportions (see, e.g., the works of Gneiting and Raftery, 2007;
Reid and Williamson, 2010 and Brümmer, 2010), so generalising the early works by Murphy
on probabilistic predictions when cost-loss ratio is unknown (Murphy, 1966, 1969). Addi-
tionally, further connections have been found between proper scoring rules and distribution
divergences ( f -divergences and Bregman divergences) (Reid and Williamson, 2011).

• Second, the translation of the Brier decomposition using ROC curves (Flach and Matsubara,
2007) suggests a connection between the Brier score and ROC curves, and particularly be-
tween refinement loss and AUC, since both are performance metrics which do not require the
magnitude of the scores of the model.

• Third, an important coup d’effet has been given by Hand (2009), stating that the AUC can-
not be used as a performance metric for evaluating models (for a range of cost proportions),
assuming the optimal threshold choice method, because the distribution for these cost pro-
portions depends on the model. This seemed to suggest a definitive rupture between ranking
quality and classification performance over a range of cost proportions.

Each of the three lines mentioned above provides a partial view of the problem of classifier evalua-
tion, and suggests that some important connections between performance metrics were waiting to be
unveiled. The starting point of this unifying view is that all the previous works above worked with
only two threshold choice methods, which we have called the score-driven threshold choice method
and the optimal threshold choice method. Only a few works mention these two threshold choice
methods together. For instance, Drummond and Holte (2006) talk about ‘selection criteria’ (instead
of ‘threshold choice methods’) and they distinguish between ‘performance-independent’ selection
criteria and ‘cost-minimizing’ selection criteria. Hand (personal communication) says that ‘Hand
(2009) (top of page 122) points out that there are situations where one might choose thresholds
independently of cost, and go into more detail in Hand (2010)’. This is related to the fixed threshold
choice method, or the rate-uniform and score-uniform threshold choice methods used here. Finally,
Flach et al. (2011) explore the rate-uniform threshold choice method while Hernández-Orallo et al.
(2011) explore the score-driven threshold choice method.

The notion of proper scoring rule works with the score-driven threshold choice method. This
implies that this notion cannot be applied to AUC—Reid and Williamson (2011) connects the area
under the convex hull (AUCH) with other proper scoring rules but not AUC—and to RL. As a
consequence, the Brier score, log-loss, boosting loss and error rate would only be minor choices
depending on the information about the distribution of costs.
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Hand (2009) takes a similar view of the cost distribution, as a choice that depends on the infor-
mation we may have about the problem, but makes an important change over the tradition in proper
scoring rules tradition. He considers ‘optimal thresholds’ (see Equation 12) instead of the score-
driven choice. With this threshold choice method, Hand is able to derive AUC (or yet again AUCH)
as a measure of aggregated classification performance, but the distribution he uses (and criticises)
depends on the model itself. Then he defines a new performance metric which is proportional to the
area under the optimal cost curve. Hand (2010) and Hand and Anagnostopoulos (2011) elaborate
on this by the consideration of asymmetries in the cost distribution.

8.2 A Plethora of Evaluation Metrics

The unifying view under the systematic exploration of threshold choice methods in this paper has
established a set of connections which portray a much more comprehensive view of the landscape
of evaluation metrics for classification. However, it has to be emphasised that each connection be-
tween a metric and a kind of expected loss is associated to a particular set of assumptions. The most
important assumption is the cost model. For the whole paper, we have assumed that the operating
condition θ is simplified to a single parameter, c or z, from a three-dimensional vector θ= 〈b,c,π0〉.
In order to make this reduction, we have assumed that the threshold choice method ignores the
magnitude b. In addition, we have either assumed π0 fixed or have linked it to c through the notion
of skew (see appendix A). However, in general, we could consider trivariate distributions for the
parameters in θ. We could also consider threshold choice methods which are sensitive to the mag-
nitude b or other combinations of the three parameters. For instance, we could consider a threshold
choice method which is more ‘conservative’ when b is high and more ‘risky’ when b is low. More-
over, in some applications, the operating condition can have even more parameters, since it may
be instance-dependent (Turney, 2000) or can change depending on previous errors. Certainly, for
a specific application one must consider the distribution which better fits the expectation or knowl-
edge about the possible operating conditions. This first dimension, the distribution of operating
conditions, has been varied in many different ways by Wieand et al. (1989), Gneiting and Raftery
(2007), Reid and Williamson (2010), Reid and Williamson (2011), Brümmer (2010), Hand (2009),
Hand (2010) and Hand and Anagnostopoulos (2011), as mentioned above. Here we have considered
the simplest option, a uniform distribution (except for the fixed threshold choice methods where the
results are more general), but many other options can be explored, including partial, asymmetric or
multimodal distributions.

As said in the introduction, this paper works and varies on a different dimension, by changing
the threshold choice method systematically. The choice of a particular threshold choice method
reflects many things: the information one may have at evaluation time or deployment time, the
reliability or calibration degree one expect from a model or the very character of the model, which
may be a crisp classifier, a ranker or a probability estimator. Also, the choice can also be just a matter
of practice, since some threshold choice methods are simpler than others and develop into simpler
decision rules. In fact, we have explored seven possibilities here. Some of them may look more
reasonable than others, and some may correspond to frequent practical situations, while others have
just been set in order to derive the relation between expected loss and a relevant evaluation metric.
And there might be other possibilites. For instance, a particular case of the fixed threshold choice
method can be defined by choosing the threshold at E{c}, which can be generalised, for example,
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in an online setting, if this expected value evolves (or is refined) after the information we get from
the actual costs example after example.

All this suggests that many other combinations could be explored by using different options
for the two dimensions, and possibly relaxing some other assumptions, such as Hand did with his
measure H (Hand, 2009), when using the β2,2 distribution for the optimal threshold choice method
instead of the uniform (β1,1) distribution. We think that the same thing could be done with the rate-
driven threshold choice method, possibly leading to new variants of the AUC. This is related to the
extensive work where several distributions are presented for calculating an average of sensitivities
over a restricted range of specificities (Wieand et al., 1989), leading to other variants of AUC (such
as partial AUC). And, of course, this has also been done with proper scoring rules for the score-
driven threshold choice method with many loss functions.

It is, however, also worthwhile to underline the limitations of aggregated metrics for comparing
classification models. Graphical plots, where performance is shown in a range of operating con-
ditions, are more powerful than aggregated metrics, since we can keep several methods provided
they are not completely dominated by others. Many threshold choice methods give rise to particular
kinds of curves that provide at each operating point, rather than just an aggregate.

8.3 Conclusions and Future Work

As a conclusion, if we want to evaluate a model for a wide range of operating conditions (i.e., cost
proportion or skews), we have to determine first which threshold choice method is to be used. If it
is fixed because we have a non-probabilistic classifier or we are given the actual operating condition
at evaluation time, then we get accuracy (and unweighted accuracy) as a good performance metric.
If we have no access to the operating condition at evaluation time but neither do we at deploy-
ment time, then the score-uniform and the rate-uniform may be considered, with MAE and AUC
as corresponding performance metrics. Finally, in the common situation when we do not know the
operating condition at evaluation time but we expect that it will be known and used at deployment
time, then we have more options. If a model has no reliable scores or probability estimations, we
recommend the refinement loss (RLConv, which is equivalent to area under the optimal cost curve)
if thresholds are being chosen using the convex hull of a reliable ROC curve, or, alternatively, we
recommend the area under the ROC curve (AUC) if the estimation of this convex hull is not reliable
enough to choose thresholds confidently. More readily, if a model has reliable scores because it is
a good probability estimator or it has been processed by a calibration method, then we recommend
to choose the thresholds according to scores. In this case, the corresponding performance metric is
the Brier score.

From this paper, now we have a much better understanding on the relation between the Brier
score, the AUC and refinement loss. We also know much better what is happening when models
are not convex and/or not calibrated. In addition, we find that using evenly-spaced scores, we get
that the Brier score and the AUC are linearly related. Furthermore, we see that if the model is
perfectly calibrated, the expected loss using the score-driven threshold choice method equals the
optimal threshold choice method.

The collection of new findings introduced in this paper leads to many other avenues to follow
and some questions ahead. For instance, the duality between cost proportions and skews suggests
that we could work with loglikelihood ratios as well. Also, there is always the problem of multi-
class evaluation. This is as challenging as interesting, since there are many more threshold choice
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methods in the multiclass case and the corresponding expected losses could be connected to some
multiclass extensions of the binary performance metrics. Finally, more work is needed on the rela-
tion between the ROC space and the cost space, and the representation of all these expected losses
in the latter space. The notion of Brier curve (Hernández-Orallo et al., 2011) is a first step in this
direction, but all the other threshold choice methods also lead to other curves.
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Appendix A. Univariate Operating Conditions Using Cost Proportions and Skews

This appendix develops the expressions for univariate operating conditions from the general notion
of operating condition introduced in Section 2.2. One possibility of reducing an operating condition
with three parameters θ= 〈b,c,π0〉 into one single parameter, without assuming independence of b
and c, relies on noticing that b is a multiplicative factor in Equation (1). So, we can express loss as
follows:

Q(t;θ) = b{cπ0(1−F0(t))+(1− c)π1F1(t)}= bQη(t;η). (16)

where η= 〈c,π0〉. The set of these normalised operating conditions is denoted byH. In other words,
loss is just a product of the cost magnitude b and normalised loss. When calculating expected loss
for a particular threshold choice method, we can write

Q(T (θ);θ) = bQη(Tη(η),η). (17)

Note that this assumes that the threshold choice method is defined in terms of η, and hence it is
independent of b.

From here, we can just work with Equation (17) and derive expected loss from Equation (2) as
follows:

L =
∫
Θ
Q(T (θ);θ)w(θ)dθ=

∫
Θ
bQη(Tη(η),η)w(θ)dθ

=
∫
H

{∫ ∞

0
bQη(Tη(η),η)wB|H(b|η)db

}

wH(η)dη

=
∫
H
Qη(Tη(η),η)

{∫ ∞

0
bwB|H(b|η)db

}

wH(η)dη

=
∫
H
Qη(Tη(η),η)E{b|η}wH(η)dη.

withwH(η) being the marginal distribution density for η, that is, wH(η)=
∫ ∞

0 w(θ)db, andwB|H(b|η)
the conditional density for b given η, that is, wB|H(b|η) = w(θ)/wH(η). And now, let us define
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vH(η) = wH(η)E{b|η}/E{b} with E{b} =
∫
H E{b|η}wH(η)dη, leading to the following expres-

sion:

L = E{b}
∫
H
Qη(Tη(η),η)vH(η)dη. (18)

So now we have an expression which seems to isolate b (more precisely, E{b}) as a constant factor.
Obviously, this is possible since we have constructed vH(η) in terms of the conditional expected
value b, incorporating the variability of b, while isolating its average magnitude. This is interesting
and very useful, because if we have knowledge about the dependency between b and η, we can
incorporate that information into v, without affecting Qη at all. For instance, if π0 is fixed and
we assume (or know) wH(η) to be a Beta distribution β2,2 and we also assume (or know) that the
values for b are higher for extreme values of c (closer to 1 or 0), then the resulting distribution v
could be assumed to account for these two things. This would make increase the probability for
extreme values of c, making the resulting distribution flatter and closer, for example, to a uniform
distribution. Consequently, in this paper we will frequently assume vH(η) to be uniform (either
fixing π0 or combining π0 and c into a single parameter z). This really makes it explicit that it is
wH(η)E{b|η}

E{b} what we are assuming to be uniform.
Now, we will derive the two approaches for univariate operating conditions (costs and skews)

that we use in this paper. In one of them, we assume that the class proportion (i.e., π0) is fixed,
leading to the marginal distribution wc(c) = vH(〈c,π0〉).

Since we now only have a relevant free parameter c in Qη, we can now express the normalised
loss as a function of c. However, for a mere convenience that will become clear below, we include
the factor E{b} in the loss produced at a decision threshold t and a cost proportion c, adapting
Equation (16):

Qc(t;c)! E{b}Qη(t;〈c,π0〉) = E{b}{cπ0(1−F0(t))+(1− c)π1F1(t)}. (19)

With this inclusion of E{b} we just have the following simple expression for the calculation of
expected loss, derived from Equation (18):

Lc =
∫ 1

0
Qc(T (c);c)wc(c)dc. (20)

Recall that wc incorporates the variability of b jointly with c.
A different approach to reducing the operating condition to a single parameter is the notion of

skew, which is a normalisation of the product between cost proportion and class proportion:

z!
c0π0

c0π0 + c1π1
=

cπ0
cπ0 +(1− c)(1−π0)

.

This means that π0 is no longer fixed, but neither is it independent of c. What z does is to combine
both parameters. This is a different way of reducing the operating condition to one single parameter.
We thus define loss as depending solely on z. From Equation (19) we obtain

Qc(t;c)
E{b}[cπ0 +(1− c)(1−π0)]

= z(1−F0(t))+(1− z)F1(t)! Qz(t;z). (21)

This gives an expression for standardised] loss at a threshold t and a skew z.
We then have the following simple but useful result.
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Lemma 45 If π0 = π1 then z= c and Qz(t;z) = 2
E{b}Qc(t;c).

Proof If classes are balanced we have cπ0 +(1− c)(1− π0) = 1/2, and the result follows from
Equation (21).

This justifies taking the expected value of the cost magnitude E{b} = 2, which means that Qz and
Qc are expressed on the same 0-1 scale, and are also commensurate with error rate which assumes
c = 1/2. The upshot of Lemma 45 is that we can transfer any expression for loss in terms of cost
proportion to an equivalent expression in terms of skew by just setting π0 = π1 = 1/2 and z = c.
Notice that if c = 1/2 then z = π0, so in that case skew denotes the class distribution as operating
condition.

In fact, we can also define wz(z) by incorporating the variability of b (and also π0 and c). We
could choose wz(z)dz = 1

E{b}[cπ0+(1−c)(1−π0)]
wc(c)dc, but we can use any other distribution. In the

paper we will use the uniform distribution for wz(z). In any case, this leads to the corresponding
expression of standardised expected loss (as Equation 20):

Lz =
∫ 1

0
Qz(T (z);z)wz(z)dz.

So, with this isolation of the average magnitude of b, and the incorporation of its variability into
the univariate distribution, in the paper we will just work with operating conditions which are either
defined by the cost proportion c (assuming a fixed class distribution π0) or by the skew z (which
combines c and π0).

Appendix B. Proof of Theorem 29

In this appendix, we give the proof for Theorem 29 in the paper. The theorem works with convex
models as given by Definition 25.

In this appendix, we will use:

c(T ) =
π1 f1(T )

π0 f0(T )+π1 f1(T )
.

throughout, as introduced by Equation (14). Sometimes we will use subindices for c(T ) depending
on the model we are using. We will also use slope(T ) = π1 f1(T ) = π1

π0

(

1
c(T ) −1

)

. A convex model
is the same as saying that c(T ) is non-decreasing or that slope(T ) is non-increasing.

We use c−1(s) for the inverse of c(T ) (wherever it is well defined). We will use the following
transformation T .→ s = c(T ) and the resulting model will be denoted by m(c). We will use s, c or
σ for elements in the codomain of this transformation (cost proportions or scores between 0 and 1)
and we will use T or τ for elements in the domain.

For continuous and strictly convex models for which c(0) = 0 and c(1) = 1, the proof is signif-
icantly simpler. In general, for any convex model, including discontinuities and straight segments,
things become a little bit more elaborate, as we see below.

B.1 Intervals

Since the model is convex, we know that c(T ) is monotone, more precisely, non-decreasing. We
can split the codomain and domain of this function into intervals. Intervals in the codomain of
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thresholds will be represented with the letter τ and intervals in the domain of cost proportions or
scores between 0 and 1 will be denoted by letter σ. The series of intervals are denoted as follows:

Iσ = (σ0,σ1),(σ1,σ2) . . .(σi,σi+1) . . .(σn−1,σn)

⇑ c(τ) ⇓ c−1(σ)

Iτ = (τ0,τ1),(τ1,τ2) . . .(τi,τi+1) . . .(τn−1,τn)

where σ0 = 0, σn = 1, τ0 =−∞ and τn = ∞. Even though we cannot make a bijective mapping for
every point, we can construct a bijective mapping between Iσ and Iτ. Because of this bijection, we
may occasionally drop the subindex for Iσ and Iτ.

We need to distinguish three kinds of intervals:

• Intervals where c(T ) is strictly increasing, denoted by Í. We call these intervals bijective,
since c(T ) is invertible. These correspond to non-straight parts of the ROC curve. Each point
inside these segments is optimal for one specific cost proportion.

• Intervals where c(T ) is constant, denoted by  I. We call these non-injective intervals constant.
These correspond to straight parts of the ROC curve. All the points inside these segments
are optimal for just one cost proportion, and we only need to consider any of them (e.g., the
extremes).

• Intervals in the codomain where no value T for c(T ) has an image, denoted by İ. We call
these ‘intervals’ singular, and address non-surjectiveness. In the codomain they may usually
correspond to one single point, but also can correspond to an actual interval when the density
functions are 0 for some intervals in the codomain. In the end, these correspond to discontin-
uous points of the ROC curve. The points at (0,0) and (1,1) are generally (but not always)
discontinuous. These points are optimal for many cost proportions.

Table 7 shows how these three kinds of intervals work.

bijective constant singular
Í  I İ

]σi,σi+1[ [σi,σi+1] ]σi,σi+1[
↑↑↑↑↑ ↗↖ ↖↗
]τi,τi+1[ ]τi,τi+1[ [τi,τi+1]

Table 7: Illustration for the three types of intervals.

Now we are ready to get some results:

Lemma 46 If the model m is convex, we have that minimal expected loss can be expressed as:

LoU(c)(m) = Λ́(m)+ Λ̇(m)

where:

Λ́(m) = ∑
]τi,τi+1[∈Íτ

∫ τi+1

τi
2c(T )π0(1−F0(T ))+2(1− c(T ))π1F1(T )}c′(T )dT (22)
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where c′(T ) is the derivative of c(T ) and:

Λ̇(m) = ∑
]σi,σi+1[∈İσ

∫ σi+1

σi
2cπ0(1−F0(τi))+2(1− c)π1F1(τi)}dc (23)

= ∑
]σi,σi+1[∈İσ

{

π0(1−F0(τi))(σi+1
2 −σi2)+π1F1(τi)(2σi+1 −σi+1

2 −2σi+σi2)
}

. (24)

Note that the constant intervals in  Iσ are not considered (their loss is 0).

Proof We take the expression for optimal loss from Equation (13):

LoU(c) =
∫ 1

0
min
t
{2cπ0(1−F0(t))+2(1− c)π1F1(t)}dc. (25)

In order to calculate the minimum, we make the derivative of the min expression equal to 0:

2cπ0(0− f0(t))+2(1− c)π1 f1(t) = 0

−2c ·
π0
π1
slope(T )+2(1− c) = 0

π0
π1
slope(T ) =

1− c
c

1
c(T )

−1 =
1− c
c

c(T ) = c.

We now check the sign of the second derivative, which is:

−2c ·
π0
π1
slope′(t) =−2c× (

1
c(T )

−1)′ =−2c
−c′(T )
c(T )2 = 2c

c′(T )
c(T )2 .

For the bijective intervals Íσ, where the model is strictly convex and c(T ) is strictly decreasing,
its derivative is > 0. Also, c is always between 0 and 1, so the above expression is positive, and it is
a minimum. And this cannot be a ‘local’ minimum, since the model is convex.

For the constant intervals  Iσ where the model is convex (but not strictly), this means that c(T ) is
constant, and its derivative is 0. That means that the minimum can be found at any point T in these
intervals ]τi,τi+1[ for the same [σi = σi+1]. But their contribution to the loss will be 0, as can be
seen since c′(T ) equals 0.

For the singular intervals İσ, on the contrary, all the values in each interval ]σi,σi+1[ will give a
minimum for the same [τi = τi+1].

So we decompose the loss with the bijective and singular intervals only:

LoU(c)(m) = Λ́(m)+ Λ̇(m).

For the strictly convex (bijective) intervals, we now know that the minimum is at c(T ) = c, and
c(T ) is invertible. We can use exactly this change of variable over Equation (25) and express this
for the series of intervals ]τi,τi+1[.
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Λ́(m) = ∑
]τi,τi+1[∈Íσ

∫ τi+1

τi
2c(T )π0(1−F0(T ))+2(1− c(T ))π1F1(T )}c′(T )dT.

which corresponds to Equation (22). Note that when there is only one bijective interval (the model
is continuous and strictly convex), we have that there is only one integral in the sum and its limits go
from c−1(0) to c−1(1), which in some cases can go from −∞ to ∞, if the scores are not understood
as probabilities.

For the singular intervals, we can work from Equation (25):

Λ̇(m) = ∑
]σi,σi+1[∈İσ

∫ σi+1

σi
min{2cπ0(1−F0(t))+2(1− c)π1F1(t)}dc.

As said, all the values in each interval ]σi,σi+1[ will give a minimum for the same [τi = τi+1],
so this reduces to:

Λ̇(m) = ∑
]σi,σi+1[∈İσ

∫ σi+1

σi
{2cπ0(1−F0(τi))+2(1− c)π1F1(τi)}dc

= 2 ∑
]σi,σi+1[∈İσ

{

π0(1−F0(τi))
∫ σi+1

σi
cdc+π1F1(τi)

∫ σi+1

σi
(1− c)dc

}

= 2 ∑
]σi,σi+1[∈İσ

{

π0(1−F0(τi))

[

c2

2

]σi+1

σi

+π1F1(τi)

[

c−
c2

2

]σi+1

σi

}

= ∑
]σi,σi+1[∈İσ

{

π0(1−F0(τi))(σi+1
2 −σi2)+π1F1(τi)(2σi+1 −σi+1

2 −2σi+σi2)
}

.

which corresponds to Equation (24).

B.2 c(T ) is Idempotent

Now we work with the transformation T .→ s= c(T ). The resulting model using this transformation
will be denoted by m(c). We will use H0(s) and H1(s) for the cumulative distributions, which are
defined as follows. Since s = c(T ) by definition we have that F0(T ) = H0(c(T )) = H0(s) and
similarly F1(T ) = H1(c(T )) = H1(s).

For the intervals ]τi,τi+1[ in Íτ, we have c(T ) is strictly convex we just use c−1(s) to derive H0
andH1. This may imply discontinuities at τi or τi+1 for those values of s for which constant intervals
have been mapped, namely σi and σi+1. So, we need to define the density functions as follows. For
the bijective intervals we just use h0(s)ds = f0(T )dT and h1(s)ds = f1(T )dT as a shorthand for
a change of variable, and we can clear h0 and h1 using c−1(s). We do that using open intervals
]τi,τi+1[ in T . These correspond to ]c(τi),c(τi+1)[ = ]σi,σi+1[.
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The constant intervals are [τi,τi+1] in  Iτ. There is probability mass for every constant interval
[τi,τi+1] mapping to a point si = c(τi) = c(τi+1) = σi = σi+1, as follows:

[H0(T )]σi+1
σi =

∫ τi+1

τi
f0(T )dt = [F0(T )]τi+1

τi = F0(τi+1)−F0(τi). (26)

[H1(T )]σi+1
σi =

∫ τi+1

τi
f1(T )dt = [F1(T )]τi+1

τi = F1(τi+1)−F1(τi). (27)

Finally, we just define h0(s) = h1(s) = 0 for those s ∈ [σi,σi+1] ∈ İσ, since for the singular
intervals there is only one point τi and the mass to share is 0.

This makes m(c) well-defined for convex models (not necessarily continuous and strictly con-
vex).

Lemma 47 For model m(c) we have that, for the non-singular intervals, cm(c) (s) = π1h1(s)
π0h0(s)+π1h1(s) is

idempotent, that is:
cm(c) (s) = s.

Proof For the bijective (strictly convex) intervals ]τi,τi+1[ mapped into ]c(τi),c(τi+1)[, that is,
]σi,σi+1[:

cm(c) (s) =
π1h1(s)

π0h0(s)+π1h1(s)
=

π1h1(s)ds
π0h0(s)ds+π1h1(s)ds

=
π1 f1(T )dT

π0 f0(T )dT +π1 f1(T )dT
=

π1 f1(T )
π0 f0(T )+π1 f1(T )

= c(T ) = s.

For the points si = c(τi) = c(τi+1) corresponding to constant intervals, we have that using Equation
(26) and (27):

cm(c) (si) =
π1h1(si)

π0h0(si)+π1h1(si)
=

π1[F1(T )]τi+1
τi

π0[F0(T )]ai+1
τi+1 +π1[F1(T )]τi+1

τi

.

Since c(T ) is constant in the interval ]τi,τi+1[, we have:

cm(c) (si) =
π1 f1(T )

π0 f0(T )+π1 f1(T )
= c(T ) = si.

B.3 Main Result

Finally, we are ready to prove the theorem treating the three kinds of intervals.

Theorem 48 (Theorem 29 in the paper) For every convex model m, we have that:

LoU(c)(m) = RL(m).
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Proof
Let us start from Lemma 46:

LoU(c)(m) = Λ́(m)+ Λ̇(m).
working with Equation (22) first for the bijective intervals:

Λ́(m) = ∑
]τi,τi+1[∈Íτ

∫ τi+1

τi
2c(T )π0(1−F0(T ))+2(1− c(T ))π1F1(T )}c′(T )dT.

Since this only includes the bijective intervals, we can use the correspondence between the H
and the F , and making the change s= c(T ).

Λ́(m) = ∑
]τi,τi+1[∈Íτ

∫ τi+1

τi
2c(T )π0(1−H0(c(T )))+2(1− c(T ))π1H1(c(T ))}c′(T )dT

= ∑
]c(τi),c(τi+1)[∈Íσ

∫ c(τi+1)

c(τi)
2sπ0(1−H0(s))+2(1− s)π1H1(s)}ds

= ∑
]σi,σi+1[∈Íσ

∫ σi+1

σi
2sπ0(1−H0(s))+2(1− s)π1H1(s)}ds.

and now working with Equation (23) for the singular intervals and also using the correspondence
between the H and the F :

Λ̇(m) = ∑
]σi,σi+1[∈İσ

∫ σi+1

σi
2cπ0(1−F0(τi))+2(1− c)π1F1(τi)}dc

= ∑
]σi,σi+1[∈İσ

∫ σi+1

σi
2cπ0(1−H0(c(τi)))+2(1− c)π1H1(c(τi))}dc

= ∑
]σi,σi+1[∈İσ

∫ σi+1

σi
2sπ0(1−H0(σi))+2(1− s)π1H1(σi)}ds.

The last step also uses the renaming of the variable. But since h0(s) = h1(s) = 0 for the singular
intervals, we have that H0(s) and H1(s) are constant in these intervals, so this can be rewritten as:

Λ̇(m) = ∑
]σi,σi+1[∈İσ

∫ σi+1

σi
2sπ0(1−H0(s))+2(1− s)π1H1(s)}ds.

Putting Λ́(m) and Λ̇(m) together, because the constant intervals (  Iσ) have length 0 (and loss 0), we
have:

LoU(c)(m) = ∑
]σi,σi+1[∈Iσ

∫ σi+1

σi
2sπ0(1−H0(s))+2(1− s)π1H1(s)}ds.

We can join the integrals into a single one, even though the whole integral has to be calculated by
intervals if it is discontinuous:

LoU(c)(m) =
∫ σn

σ0
{2sπ0(1−H0(s))+2(1− s)π1H1(s)}ds

=
∫ 1

0
{2sπ0(1−H0(s))+2(1− s)π1H1(s)}ds.
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By Theorem 14 (Equation 10) in the paper (and also because this theorem holds pointwise) we
have that the last expression equals the Brier score, so this leads to:

LoU(c)(m) = BS(m(c)).

And now we have that using Definition 8 for the BS:

BS(m(c)) =
∫ 1

0
{π0s2h0(s)+π1(1− s)2h1(s)}ds.

This is 0 when h0(s) = h1(s) = 0, so we can ignore the singular intervals for the rest of the proof.
The calibration loss for model m(c) can be expanded as follows, and using Lemma 47 (which is
applicable except for non-singular intervals) we have:

CL(m(c)) =
∫ 1

0

(

s−
π1h1(s)

π0h0(s)+π1h1(s)

)2
(π0h0(s)+π1h1(s))ds

=
∫ 1

0
(s− s)2 (π0h0(s)+π1h1(s))ds= 0.

So, we have that:
LoU(c)(m) = RL(m(c)). (28)

And now we need to work with RL:

RL(m(c)) =
∫ 1

0

π1h1(s)π0h0(s)
π0h0(s)+π1h1(s)

ds=
∫ 1

0
π0h0(s)

π1h1(s)
π0h0(s)+π1h1(s)

ds

=
∫ 1

0
π0h0(s)cm(c)(s)ds=

∫ 1

0
π0h0(s)sds.

The last step applies Lemma 47 again.
We now need to treat the bijective and the constant intervals separately, otherwise the integral

cannot be calculated when h0 and h1 are discontinuous.

RL(m(c)) = ∑
]σi,σi+1[∈Íσ

∫ σi+1

σi
π0h0(s)sds+ ∑

]σi,σi+1[∈  Iσ
π0h0(σi)σi.

We apply the variable change s= c(T ) for the expression on the left:

∑
]c(τi),c(τi+1)[∈Íσ

∫ c(τi+1)

c(τi)
π0h0(s)sds = ∑

]τi,τi+1[∈Íτ

∫ τi+1

τi
π0h0(c(T ))c(T )

dc(T )
dT

dT

= ∑
]τi,τi+1[∈Íτ

∫ τi+1

τi
π0h0(c(T ))

π1 f1(T )
π1 f1(T )+π0 f0(T )

dc(T )
dT

dT

= ∑
]τi,τi+1[∈Íτ

∫ τi+1

τi
π0h0(c(T ))

dc(T )
dT

π1 f1(T )
π1 f1(T )+π0 f0(T )

dT

= ∑
]τi,τi+1[∈Íτ

∫ τi+1

τi
π0 f0(T )

π1 f1(T )
π1 f1(T )+π0 f0(T )

dT.
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We now work with the expression on the right using Equation (26):

∑
]c(τi),c(τi+1)[∈  Iσ

π0h0(c(τi))c(τi) = ∑
]τi,τi+1[∈  Iτ

π0[F0(T )]τi+1
τi c(τi) = ∑

]τi,τi+1[∈  Iτ
π0

∫ τi+1

τi
f0(T )dTc(τi)

= ∑
]τi,τi+1[∈  Iτ

∫ τi+1

τi
π0 f0(T )c(T )dT

= ∑
]τi,τi+1[∈  Iτ

∫ τi+1

τi
π0 f0(T )

π1 f1(T )
π1 f1(T )+π0 f0(T )

dT.

The change from c(τi) to c(T ) inside the integral can be performed since c(T ) is constant, because
here we are working with the constant intervals.

Putting everything together again:

RL(m(c)) = ∑
]τi,τi+1[∈Íτ

∫ τi+1

τi
π0 f0(T )

π1 f1(T )
π1 f1(T )+π0 f0(T )

dT + ∑
]τi,τi+1[∈  Iτ

∫ τi+1

τi
π0 f0(T )

π1 f1(T )
π1 f1(T )+π0 f0(T )

dT

=
∫ τn

τ0

π0 f0(T )π1 f1(T )
π1 f1(T )+π0 f0(T )

dT =
∫ ∞

−∞

π0 f0(T )π1 f1(T )
π1 f1(T )+π0 f0(T )

dT = RL(m).

This and Equation (28) complete the proof.

References

N. M. Adams and D. J. Hand. Comparing classifiers when the misallocation costs are uncertain.
Pattern Recognition, 32(7):1139–1147, 1999.

T. A. Alonzo, M. S. Pepe, and T. Lumley. Estimating disease prevalence in two-phase studies.
Biostatistics, 4(2):313–326, 2003.

M. Ayer, H.D. Brunk, G.M. Ewing, W.T. Reid, and E. Silverman. An empirical distribution function
for sampling with incomplete information. Annals of Mathematical Statistics, 5:641–647, 1955.

A. Bella, C. Ferri, J. Hernandez-Orallo, and M.J. Ramirez-Quintana. Calibration of machine learn-
ing models. In Handbook of Research on Machine Learning Applications, pages 128–146. IGI
Global, 2009.

A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Quantification via probability
estimators. In 2010 IEEE International Conference on Data Mining, pages 737–742. IEEE, 2010.

G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly Weather Review,
78(1):1–3, 1950.
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Abstract
‘Hubness’ has recently been identified as a general problem of high dimensional data spaces, man-
ifesting itself in the emergence of objects, so-called hubs, which tend to be among the k nearest
neighbors of a large number of data items. As a consequence many nearest neighbor relations in
the distance space are asymmetric, that is, object y is amongst the nearest neighbors of x but not
vice versa. The work presented here discusses two classes of methods that try to symmetrize near-
est neighbor relations and investigates to what extent they can mitigate the negative effects of hubs.
We evaluate local distance scaling and propose a global variant which has the advantage of being
easy to approximate for large data sets and of having a probabilistic interpretation. Both local and
global approaches are shown to be effective especially for high-dimensional data sets, which are
affected by high hubness. Both methods lead to a strong decrease of hubness in these data sets,
while at the same time improving properties like classification accuracy. We evaluate the methods
on a large number of public machine learning data sets and synthetic data. Finally we present a
real-world application where we are able to achieve significantly higher retrieval quality.
Keywords: local and global scaling, shared near neighbors, hubness, classification, curse of
dimensionality, nearest neighbor relation

1. Introduction

In a recent publication in this journal, Radovanović et al. (2010) describe the so-called ‘hubness’
phenomenon and explore it as a general problem of machine learning in high-dimensional data
spaces. Hubs are data points which keep appearing unwontedly often as nearest neighbors of a
large number of other data points. This effect is particularly problematic in algorithms for similarity
search (for example, similarity-based recommenders), as the same similar objects are found over
and over again and other objects are never recommended. The effect has been shown to be a natural
consequence of high dimensionality and as such is yet another aspect of the curse of dimensionality
(Bellman, 1961).

A direct consequence of the presence of hubs is that a large number of nearest neighbor rela-
tions in the distance space are asymmetric, that is, object y is amongst the nearest neighbors of x
but not vice versa. A hub is by definition the nearest neighbor of a large number of objects, but

c©2012 Dominik Schnitzer, Arthur Flexer, Markus Schedl and Gerhard Widmer.
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these objects cannot possibly all be the nearest neighbor of the hub. This observation connects
the hub problem to methods that attempt to symmetrize nearest neighbor relations, such as ‘shared
near neighbors’ (Jarvis and Patrick, 1973) and ‘local scaling’ (Zelnik-Manor and Perona, 2005).
While these methods require knowledge of the local neighborhood of every data point, we propose
a global variant that combines the idea of ‘shared near neighbor’ approaches with a transformation
of distances to nearest neighbor ‘probabilities’ to define a concept we call Mutual Proximity. The
approach is unsupervised and transforms an arbitrary distance function to a probabilistic similarity
(distance) measure. Contrary to the local variants, this new approach lends itself to fast approxima-
tion for very large data bases and enables easy combination of multiple distance spaces due to its
probabilistic nature.

In experiments with a large number of public machine learning databases we show that both
local and global scaling methods lead to: (i) a significant decrease of hubness, (ii) an increase of k-
nearest neighbor classification accuracy, and (iii) a strengthening of the pairwise class stability of the
nearest neighbors. To demonstrate the practical relevance, we apply our global scaling algorithm
to a real-world music recommendation system and show that doing so significantly improves the
retrieval quality.

To permit other researchers to reproduce the results of this paper, all databases and the main
evaluation scripts used in this work have been made publicly available.1

2. Related Work

The starting point for our investigations is a field where the existence of hubs has been well doc-
umented and established, namely, Music Information Retrieval (MIR). One of the central notions
in MIR is that of music similarity. Proper modeling of music similarity is at the heart of many ap-
plications involving the automatic organization and processing of music data bases. In Aucouturier
and Pachet (2004), hub songs were defined as songs which are, according to an audio similarity
function, similar to very many other songs and therefore keep appearing unwontedly often in rec-
ommendation lists, preventing other songs from being recommended at all. Such songs that do not
appear in any recommendation list have been termed ‘orphans’. Similar observations about false
positives in music recommendation that are not perceptually meaningful have been made elsewhere
(Pampalk et al., 2003; Flexer et al., 2010; Karydis et al., 2010). The existence of the hub problem
has also been reported for music recommendation based on collaborative filtering instead of audio
content analysis (Celma, 2008). Similar effects have been observed in image (Doddington et al.,
1998; Hicklin et al., 2005) and text retrieval (Radovanović et al., 2010), making this phenomenon a
general problem in multimedia retrieval and recommendation.

In the MIR literature, Berenzweig (2007) first suspected a connection between the hub problem
and the high dimensionality of the feature space. The hub problem was seen as a direct result of
the curse of dimensionality (Bellman, 1961), a term that refers to a number of challenges related to
the high dimensionality of data spaces. Radovanović et al. (2010) were able to provide more insight
by linking the hub problem to the property of concentration (François et al., 2007) which occurs as
a natural consequence of high dimensionality. Concentration is the surprising characteristic of all
points in a high dimensional space to be at almost the same distance to all other points in that space.
It is usually measured as a ratio between some measure of spread and magnitude. For example, the
ratio between the standard deviation of all distances to an arbitrary reference point and the mean of

1. Databases and scripts can be found at http://www.ofai.at/~dominik.schnitzer/mp.
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these distances. If this ratio converges to zero as the dimensionality goes to infinity, the distances are
said to concentrate. For example, in the case of the Euclidean distance and growing dimensionality,
the standard deviation of distances converges to a constant while the mean keeps growing. Thus the
ratio converges to zero and the distances are said to concentrate.

The effect of distance concentration has been studied for Euclidean spaces and other !p norms
(Aggarwal et al., 2001; François et al., 2007). Radovanović et al. (2010) presented the argument that
in the finite case, due to this phenomenon some points are expected to be closer to the data-set mean
than other points and are at the same time closer, on average, to all other points. Such points closer
to the data-set mean have a high probability of being hubs, that is, of appearing in nearest neighbor
lists of many other points. Points which are further away from that mean have a high probability of
being ‘orphans’, that is, never appearing in any nearest neighbor list.

Nearest neighbor search is an essential method in many areas of computer science, such as pat-
tern recognition, multimedia search, vector compression, computational statistics and data mining
(Shakhnarovich et al., 2006) and, of course, information retrieval and recommendation. It is a well
defined task: given an object x, find the most similar object in a collection of related objects. In the
case of recommendation, the k most similar objects are retrieved with k << n (n being the number
of all objects in the data base). Since hubs appear in very many nearest neighbor lists, they tend
to render many nearest neighbor relations asymmetric, that is, a hub y is the nearest neighbor of x,
but the nearest neighbor of the hub y is another point a (a "= x). This is because hubs are nearest
neighbors to very many data points but only k data points can be nearest neighbors to a hub since
the size of a nearest neighbor list is fixed. This behavior is especially problematic in classification
or clustering if x and y belong to the same class but a does not, violating what Bennett et al. (1999)
called the pairwise stability of clusters. Radovanović et al. (2010) coined the term bad hubs for
points that show a disagreement of class information for the majority of data points they are nearest
neighbors to. Figure 1 illustrates the effect: although a is, in terms of the distance measure, the
correct answer to the nearest neighbor query for y, it may be beneficial to use a distance measure
that enforces symmetric nearest neighbors. Thus a small distance between two objects should be
returned only if their nearest neighbors concur.

This links the hub problem to ‘shared near neighbor’ (SNN) approaches, which try to sym-
metrize nearest neighbor relations. The first work to use common near neighbor information dates
back to the 1970s. Jarvis and Patrick (1973) proposed a ‘shared near neighbor’ similarity measure
to improve the clustering of ‘non-globular’ clusters. As the name suggests, the shared near neighbor
(SNN) similarity is based on computing the overlap between the k nearest neighbors of two objects.
Shared near neighbor similarity was also used by Ertöz et al. (2003) to find the most representative
items in a set of objects. Pohle et al. (2006) define a related similarity measure based on the rank of
nearest neighbors. They call their method ‘proximity verification’ and use it to enhance audio sim-
ilarity search. Jin et al. (2006) use the reverse nearest neighbor (RNN) relation to define a general
measure for outlier detection.

Related to SNN approaches are local scaling methods, which use local neighborhood informa-
tion to rescale distances between data points. The intention is to find specific scaling parameters for
each point, to be used to tune the pairwise distances in order to account for different local densities
(scales) of the neighborhoods. Local scaling in this sense was first introduced as part of a spectral
clustering method by Zelnik-Manor and Perona (2005). It transforms arbitrary distances using the
distance between object x and its k’th nearest neighbor (see Section 3.1 below). In the context of im-
age retrieval, Jegou et al. (2010) describe a related method called ‘contextual dissimilarity measure’
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(a) Original nearest neighbor rela-
tions



(b) Desired nearest neighbor rela-
tions

Figure 1: Schematic plot of two classes (black/white filled circles). Each circle has its nearest
neighbor marked with an arrow: (a) violates the pairwise stability clustering assumption,
(b) fulfills the assumption. In many classification and retrieval scenarios, (b) would be
the desired nearest neighbor relation for the data set.

(CDM) and show that it reduces the error rates of the retrieval algorithm significantly, observing
that “the neighborhood symmetry rate increases”, while at the same time “the percentage of never
seen images decreases”, and in addition that “the most frequent image is returned 54 times in the
first 10 positions with the CDM, against 1062 times using the standard L1 distance”. While they do
not explicitly make reference to the notion of hubs, their observations indicate the potential of local
distance scaling to mitigate hub-related problems.

3. Scaling Methods

In the previous section we have seen that (i) the emergence of hubs leads to asymmetric nearest
neighbor relations and that (ii) literature already contains hints that local scaling methods seem to
improve the situation. However a detailed analysis of these facts and a systematic connection to the
investigations of Radovanović et al. (2010) has not yet been done.

In what follows we review the local scaling methods and introduce a new global variant, which
is also very simple to use. Due to its probabilistic modeling it possesses certain advantages over the
local variant. Both methods are evaluated in regard to their effects on hubness in Section 4.

All the methods described here assume an underlying distance (divergence) measure with the
following properties:

Definition 1 Given a non-empty set M with n objects, each element mx ∈ M is assigned an index
x= 1 . . .n. We define a divergence measure d :M×M→R satisfying the condition of non-negativity
in its distances:
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• non-negativity: d(mx,my)≥ 0, mx,my ∈M,

Individual objects mx ∈M are referenced in the text by their index x. The distance between two
objects x and y is denoted as dx,y.

3.1 Local Scaling

Local scaling (Zelnik-Manor and Perona, 2005) transforms arbitrary distances to so-called affinities
(that is, similarities) according to:

LS(dx,y) = exp

(

−
dx,y2

σxσy

)

, (1)

where σx denotes the distance between object x and its k’th nearest neighbor. LS(dx,y) tends to
make neighborhood relations more symmetric by including local distance statistics of both data
points x and y in the scaling. The exponent in Equation 1 can be rewritten as dx,y2/σxσy =
(dx,y/σx)(dx,y/σy): only when both parts in this product are small will the locally scaled similarity
LS(dx,y) be high. That is, x and y will be considered close neighbors only if the distance dx,y is small
relative to both local scales σx and σy. Jegou et al. (2007) introduce a closely related variant called
non-iterative contextual dissimilarity measure (NICDM). Instead of using the distance to the k’th
nearest neighbor to rescale the distances, the average distance of the k nearest neighbors is used.
This should return more stable scaling numbers and will therefore be used in all our evaluations.
The non-iterative contextual dissimilarity measure (NICDM) transforms distances according to:

NICDM(dx,y) =
dx,y√µx µy

,

where µx denotes the average distance to the k nearest neighbors of object x. The iterative version
of this algorithm performs the same transformation multiple times until a stopping criterion is met.
Since these iterations yield only very minor improvements at the cost of increased computation
time, we used the non-iterative version in our evaluations.

3.2 Global Scaling - Mutual Proximity

In this section we introduce a global scaling method that is based on: (i) transforming a distance
between points x and y into something that can be interpreted as the probability that y is the closest
neighbor to x given the distribution of the distances of all points to x in the data base; and (ii)
combining these probabilistic distances from x to y and y to x via their joint probability. The result is
a general unsupervised method to transform arbitrary distance matrices to matrices of probabilistic
mutual proximity (MP). In contrast to local scaling methods, which use the local neighborhood
information, MP uses information about all objects—thus the term global scaling.

The general idea of MP is to reinterpret the original distance space so that two objects sharing
similar nearest neighbors are more closely tied to each other, while two objects with dissimilar
neighborhoods are repelled from each other. This is done by reinterpreting the distance of two
objects as a mutual proximity in terms of their distribution of distances.
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(a) Original space: A tight cluster
(gray dots in the center) placed in
a loose background cluster (black
dots).

(b) The affinity of two points in
the original space is indicated by
the thickness of the line connecting
two points.

(c) Affinities after applying Mutual
Proximity to the distances.

Figure 2: The effect of scaling techniques. Objects with similar nearest neighbors are tied together
closely, while objects with dissimilar neighbors are repelled.

Figure 2 illustrates the effect of this reinterpretation in an example. The effect which can be seen
here is similar to the intuitive repair of nearest neighbor relation as it was discussed in the beginning
in Section 2 (Figure 1).

Figure 2a plots points from two classes on a two dimensional plane. A tight cluster (the gray
dots in the center) is placed in a loose background cluster (black dots). Figure 2b connects close
neighbors with lines according to a Delaunay triangulation.2 The thickness of the lines shows the
affinity of two neighboring points according to their Euclidean distance. The third plot (Figure 2c)
plots the affinities after applying MP. It can be clearly seen that points from the loose cluster as well
as points from the tight cluster now both have a high intra-class affinity. However, at the cluster
borders there is weak affinity and strong separation as points from the tight cluster have different
nearest neighbors than points from the background cluster.

This visible increase in class separation can also be measured in terms of classification rates.
Simple two class k-nearest neighbor classification (tight vs. loose cluster) with this artificially gen-
erated data yields the following results: In the original space 96.4% of the nearest neighbors (at
k = 1) are classified correctly; after applying MP, all (100%) of the nearest neighbors can be classi-
fied correctly. For k = 5 the classification rate increases from 95.2% to 98.8%.

3.2.1 COMPUTING MUTUAL PROXIMITY (MP)

To compute MP, we assume that the distances dx,i=1..n from an object x to all other objects in our
collection follow a certain probability distribution. For example, Casey et al. (2008) and Cai et al.
(2007) show that the !p distances they compute follow a Gamma distribution. Ferencz et al. (2005)
used the Gamma distribution to model !2 distances from image regions. Pȩkalska and Duin (2000)
show in general that based on the central limit theorem and if the feature vectors are independent and

2. A Delaunay triangulation ensures that the circumcircle associated with each triangle contains no other point in its
interior, that is, no lines cross. This restriction is helpful for visualization purposes.
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identically distributed (i.i.d.), their !2 distances approximately follow a normal distribution. As real
data is not i.i.d., this can not be assumed. We, however, note that the accuracy of this approximation
increases with increasing intrinsic dimensionality (François et al., 2007).

Under the assumption that all distances in a data set follow a certain distribution, any distance
dx,y can now be reinterpreted as the probability of y being the nearest neighbor of x, given their
distance dx,y and the probability distribution P(X). P(X) is defined by the distances of x to all other
objects in the collection. In fact the probability that a randomly drawn element zwill have a distance
dx,z > dx,y can then be computed:

P(X > dx,y) = 1−P(X ≤ dx,y) = 1−Fx(dx,y).

Fx denotes the cumulative distribution function (cdf) which is assumed for the distribution of
distances dx,i=1..n. This way the probability of an element being a nearest neighbor of x increases
with decreasing distance.

For illustration purposes we assume that in our collection the distances are normally distributed.
Figure 3a shows a schematic plot of the probability density function (pdf) that was estimated for
the distances of some object x. The mean distance or expected distance from x (µ̂x) is in the center
of the density function. Objects with a small distance to x (that is, objects with high similarity in
the original space) find their distance towards the left of the density function. Note that the leftmost
possible distance in this sketch is dx,x = 0.3 Figure 3b plots the probability of y being the nearest
neighbor of x given dx,y (the gray filled area). The probability increases the smaller the distance to
x is, or the farther left its distance is on the x-axis of the pdf.

Note that this reinterpretation naturally leads to asymmetric probabilities for a given distance,
as the distance distribution estimated for xmay be different from the one estimated for y; xmight be
the nearest neighbor of y but not vice versa. Contrary to the original distances the probabilities now
encode this asymmetric information. This allows for a convenient way to combine the asymmetric
probabilities into a single expression, expressing the probability of x being a nearest neighbor of y
and vice versa.

Definition 2 We compute the probability that y is the nearest neighbor of x given P(X) (the pdf
defined by the distances dx,i=1...n) and x is the nearest neighbor of y given P(Y ) (the pdf defined
by the distances dy,i=1...n), with their joint distribution P(X ,Y ). The resulting probability is called
Mutual Proximity (MP):

MP(dx,y) = P(X > dx,y∩Y > dy,x)
= 1−P(X ≤ dx,y∪Y ≤ dx,y)
= 1− [P(X ≤ dx,y)+P(Y ≤ dy,x)−P(X ≤ dx,y∩Y ≤ dy,x)] .

Figure 4 illustrates MP for the distance dx,y and the joint distance distribution of X and Y ,
P(X ,Y ). Each point of the plot refers to an object in the collection and its distance to points x and y.
The shaded area (II) then defines the probability which is computed by MP. Sectors I+III correspond

3. Strictly speaking, then, the interpretation of this as a normal distribution is incorrect, since distances < 0 are not
possible. However, we find the interpretation useful as a metaphor that helps understand why it makes sense to
combine different views. We will do so in this section.
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(a) The closer other elements are to x, the more to the left is their distance located on
the x-axis of the density function plot. The leftmost possible observation in the data
is the distance dx,x = 0.
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(b) The shaded area shows the probability that y is the nearest neighbor of x based
on the distance dx,y and X . The closer y is to x (the smaller dx,y) the higher the
probability.

Figure 3: Schematic plot of the probability density function of a normal distribution which was
estimated from the distances dx,i=1...n: X ! N(µ̂x, σ̂x).

to the probability of x being the nearest neighbor of y, IV+III to the probability of y being a nearest
neighbor of x and III to their joint probability:

II =MP(dx,y) = 1− [(I+ III)+(IV + III)− III].

It is straightforward to compute MP using the empirical distribution, as illustrated in Figure 4.
If the number of observations is large enough, we will tend to model the true underlying distribution
closely. Computing MP for a given distance dx,y in a collection of n objects and using the empirical
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Figure 4: Visualizing the Mutual Proximity for the two points x, y, and their distances dx,y, dy,x.

distribution boils down to simply counting the number of objects j having a distance to x and y
which is greater than dx,y:

MP(dx,y) =
∣

∣

{

j : dx, j > dx,y
}

∩
{

j : dy, j > dy,x
}
∣

∣

n
.

For distances where the underlying distribution is known, estimating its parameters can be
straightforward. For example, the parameters of normal distributions N(µ̂, σ̂2), or Gamma distri-
butions Γ(k̂, θ̂) can be estimated quickly with the sample mean µ̂x and variance σ̂2x of the distances
dx,i=1..n:

Nx ! µ̂x =
1
n

n

∑
i=1

dx,i, σ̂2x =
1
n

n

∑
i=1

(dx,i− µ̂x)2, (2)

Γx ! k̂x =
µ̂2x
σ̂2x

, θ̂x =
σ̂2x
µ̂x

.

In our experiments we will generally estimate MP directly from the empirical distribution. In ad-
dition we will also evaluate MP with different underlying parametric distance distributions, such as
the Gauss or Gamma distribution (Section 4).

3.2.2 APPROXIMATIONS

The definition of MP (Definition 2) requires estimating a joint distribution P(X ,Y ) for all distance
pairs dx,y, which is usually expensive to compute. On the other hand, if independence could be as-
sumed between distributions P(X) and P(Y ), the computation of MP would simplify in accordance
with the product rule:

MPI(dx,y) = P(X > dx,y) ·P(Y > dy,x). (3)
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We will show in our experiments that assuming independence in the computation of MP does not
affect the results in an adverse way (Section 4).

In the base case where MP is computed from the empirical distribution as well as all other vari-
ants presented so far, the computational cost of computing MP grows quadratically with the size
of the data set as all methods require the full distance matrix (that is, all possible distances) to be
computed. To circumvent this, we propose to estimate the distribution parameters by randomly se-
lecting a small fraction of objects to compute the mean and standard deviation of distances for each
object using only the subset of objects. We denote MP where the parameters have been estimated
by sampling from the collection with MPS. The parameter S specifies how many objects have been
randomly sampled. The appropriate sample size is naturally dependent on the underlying distri-
bution. However if a normal distribution may be assumed, a sample size as small as S = 30 will
already yield stable results for MP.

The difference to the original estimation of the parameters in Equation 2 is that only a small
fraction of distances (S× n) needs to be computed, which, for constant S, reduces the complexity
from quadratic to linear in n. This is also more efficient than local scaling, where the actual nearest
neighbors of points x and y need to be identified. While local scaling methods can of course be used
with fast nearest neighbor search algorithms indexing the high dimensional spaces, the complexity
is far higher than randomly sampling only a constant number of distances.

Experimental verification that these approximations of the original idea are still valid will be
presented in Section 4.

3.2.3 LINEAR COMBINATION OF DISTANCE MEASURES

Another nice property ofMPwhich can be useful in some contexts is that MP yields [0,1]-normalized
similarities. Thus, the MP transformation can easily be used to linearly combine multiple different
distance measures d1 and d2 for some combination weights ω1,2:

d = ω1MP(d1)+ω2MP(d2).

Similar to a global zero-mean unit-variance normalization, each object’s distances are also stan-
dardized by their respective mean and standard deviation. Thus, no distance measure can dominate
the other in this combination. This property is useful in scenarios where multiple different dis-
tance measures (describing different aspects of a phenomenon) need to be linearly combined. A
real-world example where this is necessary is presented in Section 5.

4. Evaluation

To investigate the effects of using local neighborhood scaling methods and MP, we first evaluate the
methods on 30 public machine learning data sets. Each data set is characterized by the following
parameters: name/origin, number of classes, size/number of items n and data dimensionality d.
For each data set we evaluate the original distance space and compare it to the distances that are
generated by the local scaling method and by MP.

After showing the impact of the scaling methods in regard to the hub problem on real data sets
in the first set of experiments, a second series of experiments investigates the effects of the methods
more deeply. Synthetic as well as real data is used.
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4.1 Benchmarks

To quantify the impact of the two methods, a number of properties and quality measures are com-
puted for the original and the new distances. The characteristics which we compute for each data
set are:

4.1.1 LEAVE-ONE-OUT k-NEAREST NEIGHBOR CLASSIFICATION ACCURACY (Ck)

We report the k-nearest neighbor (kNN) classification accuracy using leave-one-out cross-validation,
where classification is performed via a majority vote among the k nearest neighbors, with the class
of the nearest neighbor used for breaking ties. We denote the k-NN accuracy as Ck. In the context
of a retrieval problem, higher values would indicate better retrieval quality.4

To test for statistical significance differences in classification accuracy between two algorithms,
we use McNemar’s test (see Salzberg, 1997 and Dietterich, 1998 for a discussion of using this test
in conjunction with leave-one-out classification). When comparing two algorithms A and B, only
classification instances where A and B disagree are being analyzed. More specifically, it is tested
whether the number of times that A classifies correctly and B does not is significantly different from
the number of times B classifies correctly and A does not.

4.1.2 K-OCCURRENCE (Nk(x))

Defines the k-occurrences of object x, that is, the number of times x occurs in the k nearest neighbor
lists of all other objects in the collection.

4.1.3 HUBNESS (Sk)

We also compute the hubness of the distance space of each collection according to Radovanović
et al. (2010). Hubness is defined as the skewness of the distribution of k-occurrences Nk:

Sk =
E
[

(Nk−µNk)3
]

σ3Nk
.

Positive skewness indicates high hubness, negative values low hubness.

4. To clarify the cross-validation (CV) process: We first compute the distance matrix for the entire data set of n instances,
transform this into an MP matrix, and then perform leave-one-out cross-validation on the data set of n instances, in
each iteration i using one of the n instances (xi) as a test case to be classified by its nearest neighbors among the
remaining n− 1 instances. It might seem that the ‘test’ example xi plays an undue role in this process, having
contributed to the the normalization of the distance matrix before being used as a ‘new’ test case. However, in a
‘real’ classification scenario, where we would have a fixed training set Xn−1 (consisting of n− 1 instances) and are
presented with a new object xi to classify (not contained in Xn−1), we would also first have to compute the full
distance matrix over Xn−1∪{xi} in order to then be able to compute MP over this matrix. (That is because MP needs
information about all distances to and from xi.)

The result of this would be exactly the MP matrix we compute beforehand in our cross-validation process—and
it is the exact same matrix for all other ‘test’ instances from X . Thus, it is legitimate to compute this once and for
all before the CV. On the other hand, the above means that using MP in a ‘real’ classification scenario is expensive,
because before being able to classify a new instance, first a complete distance and MP matrix have to be computed.
What makes this process feasible in practice is the MP approximation MPS described in Section 3.2.2.
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4.1.4 GOODMAN-KRUSKAL INDEX (IGK )

The Goodman-Kruskal Index (Günter and Bunke, 2003) is a clustering quality measure that relates
the number of concordant (Qc) and discordant (Qd) tuples (di, j, dk,l) of a distance matrix.

• A tuple is concordant if its items i, j are from the same class, items k, l are from different
classes and di, j < dk,l .

• A tuple is discordant if its items i, j are from the same class, items k, l are from different
classes and di, j > dk,l .

• A tuple is not counted if it is neither concordant nor discordant, that is, if di, j = dk,l .

The Goodman-Kruskal Index (IGK) is defined as:

IGK =
Qc−Qd
Qc+Qd

.

IGK is bounded to the interval [−1,1], and the higher IGK , the more concordant and fewer dis-
cordant quadruples are present in the data set. Thus a large index value indicates a good clustering
(in terms of pairwise stability—see Section 2).

Other indices to compare clustering algorithms like the classic Dunn’s Index or Davies-Bouldin
Index (Bezdek and Pal, 1998) cannot be used here as their values do not allow a comparison across
different distance measures.

4.1.5 INTRINSIC DIMENSIONALITY (dmle)

To further characterize each data set we compute an estimate of the intrinsic dimensionality of
the feature spaces. Whereas the embedding dimension is the actual number of dimensions of a
feature space, the intrinsic dimension is the—often much smaller—number of dimensions necessary
to represent a data set without loss of information. It has also been demonstrated that hubness
depends on the intrinsic rather than embedding dimensionality (Radovanović et al., 2010). We use
the maximum likelihood estimator proposed by Levina and Bickel (2005), which was also used by
Radovanović et al. (2010) to characterize the data sets.

4.1.6 PERCENTAGE OF SYMMETRIC NEIGHBORHOOD RELATIONS

We call a nearest neighbor relation between two points x and y ‘symmetric’ if the following holds:
object x is a nearest neighbor of y if and only if y is also the nearest neighbor of x. As both exam-
ined methods aim at symmetrizing neighborhood relations, we report the percentage of symmetric
relations at different neighborhood sizes k.

4.2 Public Machine Learning Data Sets

We evaluate the proposed method by applying it to 30 different public machine learning data sets.
The data sets include problems from the general machine learning field, and the bio-medical, image,
text and music retrieval domains. We use the following data sets:
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• The UCI Machine Learning Repository (UCI, see Frank and Asuncion, 2010) data sets:
arcene, gisette, mfeat-pixels/karhunen/factors, dexter, mini-newsgroups, dorothea, reuters-
transcribed.5

• The Kent Ridge bio-medical data sets (KR): amlall, lungcancer and ovarian-61902.6

• The LibSVM data sets (LibSVM, see Chang and Lin, 2001): australian, diabetes, german
numbers, liver-disorders, breast-cancer, duke (train), heart, sonar, colon-cancer, fourclass,
ionosphere, splice.7

• TheMusic Information Retrieval Evaluation eXchange (MIREX) data sets (Mirex, see Downie,
2008): ballroom and ismir2004.8

• Two music artist web pages and tweets data sets (CP, see Schedl, 2010): c1ka-twitter and
c224a-web.9

For the general machine learning data sets from the statistical or biological domains no feature
extraction is necessary. The feature vectors can be downloaded directly from the respective repos-
itories. These general machine learning data sets use the standard Euclidean distance (denoted as
!2) as similarity measure.

The text retrieval data sets (reuters-transcribed, c224a-web, movie-reviews, dexter,
mini-newsgroups, c1ka-twitter) need to be preprocessed before evaluating them.10 To this end we
employ stop-word removal and stemming. They are transformed into the bag-of-words representa-
tion, and standard t f · id f (term frequency · inverse document frequency) weights are computed (see
for example Baeza-Yates and Ribeiro-Neto, 1999). The word vectors are normalized to the average
document length. Individual document vectors are compared with the cosine distance (denoted as
cos).

For the image retrieval data set (corel) normalized color histograms are computed as features.
They show reasonable classification performance despite their simplicity, as Chapelle et al. (1999)
show. The three 64-dimensional color histograms are concatenated into a single vector and com-
pared using the Euclidean distance (!2).

To extract the features for the twomusic information retrieval data sets (ismir2004, ballroom) we
use a standard algorithm from Mandel and Ellis (2005) which computes Mel Frequency Cepstrum
Coefficients (Logan, 2000) and models each object as a multivariate normal distribution over these.
Objects (models) are compared using the symmetrized Kullback-Leibler divergence (denoted as
skl).

4.3 Results

In the following experiments we compute all previously introduced benchmark numbers for the
original data and the distance spaces after applying the scaling methods (NICDM, MP). We use MP
as defined in Section 3.2 and model the distance distributions with the empirical distribution.

5. The UCI Repository can be found at http://archive.ics.uci.edu/ml/.
6. The Kent Ridge data sets can be found at http://datam.i2r.a-star.edu.sg/datasets/krbd/.
7. LibSVM can be found at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
8. The MIREX data sets can be found at http://www.music-ir.org/mirex.
9. These data sets can be found at http://www.cp.jku.at/people/schedl/datasets.html.
10. Set c1ka-twitter equals c3ka-twitter from CP, omitting artists classified as ‘rock’ to balance the data.
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Tables 1 and 2 show the results of the evaluations conducted on the 30 previously introduced
public data sets. The collections have very diverse properties. There are collections like fourclass
or liver-disorders with very low dimensionality (d = 2 and d = 6), as well as data sets with very
high embedding dimensionality, such as dorothea (d = 100000) or c1ka-twitter (d = 49820). Re-
lated to that, column dmle lists the intrinsic dimensionality according to the maximum likelihood
estimator. Using the intrinsic dimensionality estimate we can see that there are data sets where the
data is originally represented using high-dimensional feature vectors, although the data’s intrinsic
dimensionality is quite low. For example the ovarian_61902 data set has an embedding dimension
of d = 15154 but its estimated intrinsic dimension is only dmle = 9.

The evaluation results in Tables 1 and 2 are sorted by the hubness Sk=5 of the original distance
space (printed in bold). In subsequent plots individual collections are referenced by their numbers
as given in Tables 1 and 2. The columnsCk=1/Ck=5 show the k-nearest neighbor classification rates
of the collections. The classification rates with the original distances, the local scaling (NICDM)
and the global scaling (MP) are documented. For convenience the column +/- shows the difference
in classification accuracy, in terms of absolute percentage points, between the original distances
and NICDM/MP. All improvements compared to the original distances are printed in bold. Statis-
tically significant differences are marked with an asterisk (McNemar’s test, df = 1, α = .05 error
probability).

Looking at the tables, a first observation is that very high-dimensional data sets (in terms of
their intrinsic as well as their embedding dimensionality) also tend to have high hubness. This is in
agreement with the results of Radovanović et al. (2010) and the theory that hubness is a consequence
of high dimensionality.

By looking at the classification rates (columnsCk=1 andCk=5) it can also clearly be observed that
the higher the hubness and intrinsic dimensionality, the more beneficial, in terms of classification
accuracy, NICDM and MP. For data sets with high hubness (in the collections we used, a value
above 1.4 seems to be a limit) the increase in classification rates is notable. For Ck=1, the accuracy
gain ranges from rather moderate 1 to up to 7−8 percentage points, and in the case of c1ka-twitter it
is 15.9 percentage points for NICDM and 17.1 percentage points for MP. ForCk=5 the trend is even
clearer. Whereas only three changes in accuracy (relative to the original distances) are significant
for data sets with low hubness (Sk=5 ≤ 1.4, data sets 1–17), 34 changes in accuracy are significant
for data sets with high hubness (Sk=5 > 1.4, data sets 18–30). There is no statistically significant
negative change in terms of classification accuracies.

Figures 5 and 6 (left hand sides) present these results in bar plots where the y-axis shows the
index of the data sets (ordered according to hubness as in Tables 1 and 2) and the bars show the
increase or decrease of classification rates. The bar plots also directly show how MP compares to
NICDM in terms of classification accuracy for k = 1,5. Generally speaking, results for MP and
NICDM are very comparable. As for k = 1, MP and NICDM perform equally well and there is
no statistically significant difference between MP and NICDM (McNemar’s test, df = 1, α = .05
error probability). Based on the same statistical testing procedure, results for NICDM and k= 5 are
significantly better than for MP for data sets 18, 20, 22 (marked with asterisks in Figure 6). The
general tendency of both MP and NICDM is comparable in the sense that if there is an improvement
compared to the original distances, it can be seen for both MP and NICDM.

Another observation from the results listed in Tables 1 and 2 is that both NICDM and MP
reduce the hubness of the distance space for all data sets to relatively low values. The hubness Sk=5
decreases from an average value of 2.5 (original) to 0.29 (MP) and 0.94 (NICDM), indicating a
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Name/Src. Cls. n d dmle Dist. Ck=1 +/- Ck=5 +/- Sk=5 IGK%-pts %-pts
fourclass (sc) 2 862 2 2 !2 100% 100% 0.15 0.22
1. LibSVM NICDM 100% 0 100% 0 0.06 0.21

MP 100% 0 100% 0 0.04 0.23

arcene 2 100 10 000 399 !2 82.0% 75.0% 0.25 0.07
2. UCI NICDM 81.0% -1.0 77.0% 2.0 -0.27 0.06

MP 80.0% -2.0 81.0% 6.0 0.15 0.10

liver-disorders (sc) 2 345 6 6 !2 62.6% 60.6% 0.39 0.00
3. UCI NICDM 63.2% 0.6 65.8% *5.2 -0.04 0.03

MP 62.9% 0.3 65.5% *4.9 -0.03 0.01

australian 2 690 14 3 !2 65.5% 68.8% 0.44 0.13
4. LibSVM NICDM 65.7% 0.2 69.4% 0.6 -0.09 0.14

MP 65.4% -0.1 68.4% -0.4 0.08 0.14

diabetes (sc) 2 768 8 6 !2 70.6% 74.1% 0.49 0.20
5. UCI NICDM 69.8% -0.8 74.1% 0 0.04 0.15

MP 70.3% -0.3 73.2% -0.9 -0.02 0.19

heart (sc) 2 270 13 7 !2 75.6% 80.0% 0.50 0.35
6. LibSVM NICDM 75.9% 0.3 79.3% -0.7 -0.00 0.27

MP 75.6% 0 80.4% 0.4 0.08 0.39

ovarian-61902 2 253 15 154 10 !2 95.3% 93.7% 0.66 0.20
7. KR NICDM 95.7% 0.4 93.3% -0.4 -0.10 0.19

MP 94.1% -1.2 94.1% 0.4 -0.28 0.19

breast-cancer (sc) 2 683 10 5 !2 95.6% 97.4% 0.71 0.89
8. LibSVM NICDM 95.8% 0.2 97.1% -0.3 0.19 0.42

MP 96.0% 0.4 97.1% -0.3 0.22 0.91

mfeat-factors 10 2 000 216 7 !2 95.0% 94.7% 0.79 0.71
9. UCI NICDM 94.8% -0.2 94.7% 0 0.15 0.76

MP 94.5% -0.5 94.9% 0.2 0.01 0.77

colon-cancer 2 62 2 000 11 !2 72.6% 77.4% 0.81 0.19
10. LibSVM NICDM 69.4% -3.2 82.3% 4.9 0.08 0.18

MP 67.7% -4.9 82.3% 4.9 -0.11 0.19

ger.num (sc) 2 1 000 24 8 !2 67.5% 71.7% 0.81 0.07
11. LibSVM NICDM 66.8% -0.7 72.0% 0.3 0.32 0.03

MP 67.6% 0.1 71.4% -0.3 0.11 0.07

amlall 2 72 7 129 32 !2 91.7% 93.1% 0.83 0.31
12. KR NICDM 93.1% 1.4 97.2% 4.1 0.56 0.33

MP 88.9% -2.8 91.7% -1.4 -0.01 0.34

mfeat-karhunen 10 2 000 64 15 !2 97.4% 97.4% 0.84 0.76
13. UCI NICDM 97.2% -0.2 97.6% 0.2 0.27 0.74

MP 97.0% -0.4 97.5% 0.1 0.08 0.79

lungcancer 2 181 12 533 60 !2 98.9% 100% 1.07 0.56
14. KR NICDM 99.4% 0.5 98.9% -1.1 0.31 0.50

MP 98.3% -0.6 97.8% -2.2 0.01 0.56

c224a-web 14 224 1 244 41 cos 86.2% 89.3% 1.09 0.79
15. CP NICDM 87.9% 1.7 92.4% *3.1 0.42 0.89

MP 88.4% 2.2 92.4% 3.1 0.22 0.89

Table 1: Evaluation results ordered by ascending hubness (Sk=5) of the original distance space.
This table reports data sets with small hubness. Each evaluated data set (Name/Src) is
described by its number of classes (Cls.), its size (n), its extrinsic (d) and intrinsic (dmle)
data dimension and the distance measure used (Dist). ColumnsCk report the classification
accuracies at a given k, the respective adjacent column +/- the difference in classification
accuracy between the original distances and NICDM/MP (in percentage points), column
IGK the Goodman-Kruskal Index. See Section 4.1 for an explanation of the individual
benchmarks.
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Name/Src. Cls. n d dmle Dist. Ck=1 +/- Ck=5 +/- Sk=5 IGK%-pts %-pts
mfeat-pixels 10 2 000 240 12 !2 97.6% 97.7% 1.25 0.75
16. UCI NICDM 97.2% -0.4 97.8% 0.1 0.28 0.75

MP 97.2% -0.4 97.5% -0.2 0.13 0.79

duke (train) 2 38 7 129 16 !2 73.7% 68.4% 1.37 0.02
17. UCI NICDM 81.6% 7.9 68.4% 0 0.43 0.06

MP 76.3% 2.6 68.4% 0 0.21 0.03

corel1000 10 1 000 192 9 !2 70.7% 65.2% 1.45 0.33
18. Corel NICDM 72.9% *2.2 72.0% *6.8 0.39 0.47

MP 71.6% 0.9 70.3% *5.1 0.31 0.50

sonar (sc) 2 208 60 11 !2 87.5% 82.2% 1.54 0.07
19. UCI NICDM 87.0% -0.5 87.0% 4.8 0.47 0.08

MP 87.5% 0 84.1% 1.9 0.32 0.08

ionosphere (sc) 2 351 34 13 !2 86.9% 85.5% 1.55 0.31
20. UCI NICDM 92.3% *5.4 94.3% *8.8 0.28 0.07

MP 91.7% *4.8 89.7% *4.2 0.50 0.27

reuters-transcribed 10 201 2 730 70 cos 44.3% 49.3% 1.61 0.38
21. UCI NICDM 45.3% 1.0 52.7% 3.4 0.63 0.32

MP 42.3% -2.0 55.2% *5.9 0.18 0.43

ballroom 8 698 820 12 skl 54.3% 48.1% 2.98 0.15
22. Mirex NICDM 57.2% 2.9 51.6% *3.5 1.09 0.20

MP 56.6% 2.3 54.3% *6.2 0.30 0.18

ismir2004 6 729 820 25 skl 80.4% 74.1% 3.20 0.37
23. Mirex NICDM 83.8% *3.4 79.0% *4.9 0.77 0.21

MP 83.4% *3.0 77.0% *2.9 0.46 0.45

movie-reviews 2 2 000 10 382 28 cos 71.1% 75.7% 4.07 0.05
24. PaBo NICDM 72.0% 0.9 76.0% 0.3 1.22 0.07

MP 71.8% 0.7 76.7% 1.0 0.36 0.07

dexter 2 300 20 000 161 cos 80.3% 80.3% 4.22 0.10
25. UCI NICDM 84.3% 4.0 86.0% *5.7 2.02 0.13

MP 83.0% 2.7 90.0% *9.7 0.58 0.13

gisette 2 6 000 5 000 149 !2 96.0% 96.3% 4.48 0.16
26. UCI NICDM 97.2% *1.2 98.1% *1.8 0.78 0.20

MP 97.4% *1.4 97.9% *1.6 0.34 0.20

splice (sc) 2 1 000 60 27 !2 69.6% 69.4% 4.55 0.07
27. LibSVM NICDM 73.3% *3.7 79.3% *9.9 1.51 0.11

MP 72.4% 2.8 77.2% *7.8 0.48 0.10

mini-newsgroups 20 2 000 8 811 188 cos 64.4% 65.6% 5.14 0.47
28. UCI NICDM 67.2% *2.8 68.5% *2.9 1.32 0.52

MP 67.7% *3.3 68.4% *2.8 0.60 0.57

dorothea 2 800 100 000 201 !2 90.6% 90.2% 12.91 0.21
29. UCI NICDM 92.2% 1.6 93.0% *2.8 11.72 0.21

MP 91.5% 0.9 93.1% *2.9 1.66 0.20

c1ka-twitter 17 969 49 820 46 cos 31.9% 26.6% 14.63 0.08
30. CP NICDM 47.8% *15.9 53.0% *26.4 2.94 0.33

MP 49.0% *17.1 50.8% *24.2 1.79 0.16

Table 2: Evaluation results ordered by ascending hubness (Sk=5) of the original distance space.
This table reports data sets with large hubness. Each evaluated data set (Name/Src) is
described by its number of classes (Cls.), its size (n), its extrinsic (d) and intrinsic (dmle)
data dimension and the distance measure used (Dist). ColumnsCk report the classification
accuracies at a given k, the respective adjacent column +/- the difference in classification
accuracy between the original distances and NICDM/MP (in percentage points), column
IGK the Goodman-Kruskal Index. See Section 4.1 for an explanation of the individual
benchmarks.
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Figure 5: Improvements in accuracy (absolute percentage points) and hubness evaluated with k= 1.
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Figure 6: Improvements in accuracy (absolute percentage points, significant differences marked
with an asterisk) and hubness evaluated with k = 5.
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Figure 7: Percentage of symmetric neighborhood relations at k = 5 (above) and k = 10% (below)
of the respective collection size.

well balanced distribution of nearest neighbors. The impact of MP and NICDM on the hubness per
data set is plotted in Figures 5 and 6 (right hand sides). It can be seen that both MP and NICDM
lead to lower hubness (measured for Sk=1,5) compared to the original distances. The effect is more
pronounced for data sets having large hubness values according to the original distances.11

11. A notable exception is data set 29 (‘dorothea’) where the reduction in hubness is not so pronounced. This may be
due to the extremely unbalanced distribution of its two classes (9:1).
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More positive effects in the distances can also be seen in the increase of concordant (see Sec-
tion 4 for the definition) distance quadruples indicated by higher Goodman-Kruskal index values
(IGK). This index improves or remains unchanged for 27 out of 30 data sets in the case of using MP.
The effect is not so clear for NICDM, which improves the index or leaves it unchanged for only 17
out of 30 data sets. The effect of NICDM on IGK is especially unclear for data with low hubness
(data sets 1–17).

Finally we also checked whether both MP and NICDM are able to raise the percentage of sym-
metric neighborhood relations. Results for k = 5 and k set to 10% of the collection size (denoted
by k = 10%) are shown in Figure 7. As can be seen, the symmetry in the nearest neighbors for all
data sets increases with both MP and NICDM. For NICDM there are two cases (data set 13 and 16)
where the neighborhood symmetry does not increase. The average percentage of symmetric neigh-
borhoods across all data sets for k= 5 is 46% for the original distances, 69% for MP, and 70.8% for
NICDM. The numbers for k = 10% are 53% (original), 73.7% (MP), and 71.1% (NICDM).

4.4 Approximations

The general definition of MP (Definition 2, Section 3.2.1) allows for more specific uses if the under-
lying distribution of distances is known. All experiments conducted up until now use MP with the
all-purpose empirical distribution. This section evaluates the use of different distributions in MP.
Specifically, we will compare a Gaussian and a Gamma modeling to using the empirical distribu-
tion. For the two selected distributions, parameter estimation is straightforward (see Section 3.2.1).
In case of the Gaussian, we will compute MP as it was defined. In our experiments this configura-
tion will be denoted and referenced with ‘MP (Gauss)’. As this variant involves computing a joint
distribution in every step and this is expensive to calculate, there is no advantage to the original
MP. Where things get interesting from a computational point of view, is using MP and assuming
independence (MPI, see Equation 3). In this case computing the joint distribution can be omitted.
In our experiments we use the Gamma (denoted with, ‘MP (i.Gamma)’) and Gauss (denoted with
‘MP (i.Gauss)’) distribution with MP assuming independence.

Figure 8 plots the result of this experiment in the same way as we have done in the previous
section. We compare the decrease/increase of classification accuracies and hubness at k = 5. Look-
ing at the results, we can see that all methods seem to perform equally in terms of reducing hubness
and increasing classification accuracies. More importantly, we notice that the simple variant (‘MP
(i.Gauss)’), which assumes a Gaussian distribution of distances and independence, performs simi-
larly to all other variants.

This leads to the next experiment where we compare MP to a very simple approximation MPS
(see Section 3.2.2). As discussed in Section 3.2.2, assuming a Gaussian or Gamma distance distri-
bution requires only a small sample size (S= 30) for a good estimate of the distribution parameters.
Paired with the already evaluated simplification of MP assuming independence when computing
the joint probability, MP is ready to be used instantly with any data collection. Figure 9 shows the
results of a comparison of MPS to MP. The classification accuracies are averages over ten approx-
imations, that is, based on using ten times thirty randomly drawn data points for every data set.
As can be seen, accuracy results are very comparable. We recorded three statistically significantly
different results for MPS using the approximative Gamma and Gauss variant (data sets 2, 10, 21,
McNemar’s test, df = 1, α= .05 error probability). We also notice that with a sample size of S= 30
the decrease in hubness is not as pronounced for MPS as for MP.
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Figure 8: Comparison of different distance distributions in MP in terms of classification rates and
hubness.
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Figure 9: Improvements in accuracy (absolute percentage points, significant differences marked
with an asterisk) and hubness evaluated with k = 5 for MP (black) and its approximative
variant MPS (gray).
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4.5 Further Evaluations and Discussion

The previous experimental results suggest that the considered distance scaling methods work well
as they tend to reduce hubness and improve the classification/retrieval accuracy. In the following
three experiments we examine the scaling methods on artificial data as well as real data in order to
investigate the following three questions:

1. Does NICDM/MP work by effectively reducing the intrinsic dimensionality of the data?

2. What is the impact of NICDM/MP on hubs and orphans?

3. Is the changing role of hubs responsible for improved classification accuracy?

The artificial data used in the experiments is generated by randomly sampling i.i.d. high-dimensional
data vectors (n= 1000) in the hypercube [0,1]d from the standard uniform distribution. We use the
Euclidean distance function and MP with the empirical distribution in all experiments.

4.5.1 DIMENSIONALITY

As we have already shown that hubs tend to occur in high dimensional spaces, the first experiment
examines the consequential question if the scaling methods actually reduce the intrinsic dimension-
ality of the data. In order to test this hypothesis, the following simple experiment was performed:
We increase the dimensions of artificial data (generated as described above) to create high hubness,
and measure the intrinsic dimensionality of the data spaces before and after scaling the distances
with NICDM/MP.

We start with a low data dimensionality (d = 5) and increase the dimensionality to a maximum
of d = 50. In each iteration we measure the hubness of the data and its intrinsic dimensionality.
The maximum likelihood estimator proposed by Levina and Bickel (2005) is used to estimate the
intrinsic dimensionality of the generated vector spaces.

In Figure 10a we can see that a vector space dimension as low as 30 already leads to a distance
space with very high hubness (Sk=5 > 2). We can further see that NICDM/MP are able to reduce
the hubness of the data spaces as expected. Figure 10b shows the measured intrinsic dimensionality
of the original data. As anticipated it increases with its embedding dimensionality. However, to
measure the intrinsic dimensionality of the data spaces created by MP and NICDM, we first have to
map their distance space to a vector space. We perform this vector mapping using multidimensional
scaling (MDS), doubling the target dimensionality to ensure a good mapping.

Figure 11 shows the results. For verification purposes, we (i) also map the original distance
space with MDS and (ii) re-compute the hubness for the new data spaces (Figure 11a). Figure 11b
finally compares the measured intrinsic dimensionality. We can clearly see that neither MP or
NICDM decreases the intrinsic dimensionality notably. In none of the experiments does the esti-
mated intrinsic dimensionality of the new distance space fall below the one measured in the original
space.

4.5.2 IMPACT ON HUBS/ORPHANS

In the second experiment, we evaluate the question of what exactly happens to the hub and anti-hub
(orphan) objects. Do hubs, after scaling the distances, still remain hubs (but ‘less severely’ so), or do
they stop being hubs altogether? To look into this, we repeatedly generate a random, artificial, and
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Figure 10: Increasing the dimensionality of artificially generated random data. Measuring (a) hub-
ness of the original and scaled data, (b) the intrinsic dimensionality of the original data.
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Figure 11: A vector space mapping of the distance spaces generated in Figure 10 allows to compare
the intrinsic dimensionality of the original, MP, and NICDM data-spaces. No decrease
of the intrinsic data dimensionality by using NICDM/MP can be observed.

high-dimensional (d = 50) data sample to (i) track hub and anti-hub objects and (ii) compute their
k-occurrence (Nk) in the original space and in the distance spaces created after applying MP and
NICDM.We define ‘hub’ objects as objects with a k-occurrence in the nearest neighbors greater than
5k and ‘orphan’ objects as having a k-occurrence of zero (k = 5). The experiment is repeated 100
times and for each iteration the observed mean k-occurrence of hubs/orphans is plotted in Figure 12.

Looking at the figure we can confirm that for the two studied cases (hubs/orphans) a weakening
of the effects can be observed: after scaling the distances, hubs do not occur as often as nearest
neighbors any more, while orphans re-appear in some nearest-neighbor lists. The k-occurrence of
all other objects stays constant. Another observation is that in no instance of the experiment do hubs
become orphans or orphans become hubs, as the measured Nk=5 never cross for the two classes.
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Figure 12: The k-occurrence (Nk=5) of hub and orphan data points before and after applying any of
the scaling methods (NICDM, MP). Orphans re-appear in the nearest neighbor lists and
the strength of hubs is reduced.

4.5.3 IMPACT OF HUBS/ORPHANS

In the final experiment we examine the increase in classification accuracies we observed previously
when using NICDM or MP on the high dimensional machine learning data sets. To learn where
the increase in classification accuracy came from, we distinguish between hubs, orphans, and all
other objects. For each of the three classes we compute the so-called ‘badness’ (BNk=5) as defined
by Radovanović et al. (2010). Badness of an object x is the number of its occurrences as nearest
neighbor at a given k where it appears with a different (that is, ‘bad’) class label. As this experiment
makes only sense in collections with more than one class showing high hubness, we select machine
learning data sets with high hubness of Sk=5 > 2 from the 30 previously used databases. Table 3
documents the results of this experiment on the nine selected data sets.

For each collection the table shows the absolute number of hubs, orphans, and all other objects
in the original data space. We then compute their badness before (columnsOrig.) and after applying
MP and NICDM. It can be clearly seen that indeed in each of the tested collections the badness of
hubs decreases noticeably. In fact, on average BNk=5 decreases more than 10 percentage points
from 46.3% in the original space to 35.6% (NICDM) and 35.3% (MP). Another visible effect is
that orphans re-appear in the nearest neighbor lists (see previous experiment, Figure 12) with an
average badness of 36.5% (NICDM) and 35.1% (MP). The measured badness of orphan objects is
comparable to the values reported for hubs, but is still notably higher than the numbers computed
for the rest of the objects (‘Other’). The badness of all other objects tends to stay the same: In three
cases the badness increases slightly, in all other cases a slight decrease in badness can be observed.
On average, badness decreases from 29.3% to 28.4% for both methods (MP and NICDM).

4.6 Summary of Results

Our main result is that both global (MP) and local (NICDM) scaling show very beneficial effects
concerning hubness on data sets that exhibit high hubness in the original distance space. Both
methods are able to decrease the hubness, raise classification accuracy, and improve other indicators
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Hubs, BNk=5 (%) Orphans, BNk=5 (%) Other, BNk=5 (%)
Data Set # Orig. NICDM MP # Orig. NICDM MP # Orig. NICDM MP

c1ka-twitter 13 83.5 54.0 55.7 540 / 59.3 59.2 416 46.2 47.9 50.1
dorothea 19 10.2 9.7 6.8 730 / 10.4 10.6 51 8.6 7.1 4.9
mini-newsgroups 38 67.2 62.2 60.7 304 / 45.6 43.5 1 658 42.2 41.5 41.6
splice (sc) 28 36.5 29.3 28.6 289 / 31.8 30.9 683 35.0 31.5 31.7
gisette 49 18.9 10.9 9.8 635 / 7.9 8.1 5316 4.7 4.0 3.9
dexter 11 44.3 27.9 28.4 80 / 33.5 30.5 209 18.2 18.1 17.7
movie-reviews 50 37.5 35.4 36.2 293 / 36.0 36.3 1 657 31.5 32.0 32.3
ismir2004 10 50.3 27.8 27.3 120 / 44.2 38.0 599 25.7 24.4 25.0
ballroom 12 67.9 62.8 63.8 148 / 59.5 58.6 538 51.6 49.0 48.3

Average (%-points): 46.3 35.6 35.3 / 36.5 35.1 29.3 28.4 28.4

Table 3: Relative badness (BNk=5) of hub objects (Nk=5 > 5k), orphan objects (Nk=5 = 0), and all
other objects. Data sets with Sk=5 > 2.

like percentage of concordant distance quadruples or symmetric neighborhood relations. In case of
MP, its approximation MPS is able to perform at equal level with substantially less computational
cost (O(n), as opposed to O(n2) for both MP and local scaling). For data sets exhibiting low
hubness in the original distance space, improvements are much smaller or non-existent, but there is
no degradation of performance.

We have also shown that while MP and NICDM reduce hubness, which tends to occur as a
consequence of high dimensional data, both methods do not decrease the intrinsic dimensionality
of the distance spaces (at least for the type of data and measure of intrinsic dimensionality used in
our experiments). By enforcing symmetry in the neighborhood of objects, both methods are able to
naturally reduce the occurrence of hubs in nearest neighbor lists. Interestingly, at the same time as
the occurrence of hubs in nearest neighbor lists decreases, hubs also lose their badness in terms of
classification accuracy.

5. Mutual Proximity and Content-Based Music Similarity

This section presents an application where we can use Mutual Proximity, its approximation MPS
(Section 3.2.2) and a linear combination of multiple similarity measures (Section 3.2.3) to improve
the retrieval quality of the similarity algorithm significantly. We chose to include this example as it
demonstrates how MPS with all its aspects introduced above can improve the quality of a real world
application: the FM4 Soundpark.

The FM4 Soundpark is a web platform run by the Austrian public radio station FM4, a sub-
sidiary of the Austrian Broadcasting Corporation (ORF).12 The FM4 Soundpark was launched in
2001 and has gained significant public attention since then. Registered artists can upload and present
their music free of charge. After a short editorial review period, new tracks are published on the
front-page of the website. Older tracks remain accessible in the order of their publication date and
in a large alphabetical list. Visitors of the website can listen to and download all the music at no
cost. The FM4 Soundpark attracts a large and lively community interested in up and coming music,

12. FM4 Soundpark can be found at http://fm4.orf.at/soundpark.

2895



SCHNITZER, FLEXER, SCHEDL AND WIDMER

Figure 13: The FM4 Soundpark music player web interface.

and the radio station FM4 also picks out selected artists and plays them on terrestrial radio. At the
time of writing, there are more than 11 000 tracks by about 5 000 artists listed in the on-line catalog.

Whereas chronological publishing is suitable to promote new releases, older releases tend to
disappear from the users’ attention. In the case of the FM4 Soundpark this had the effect of users
mostly listening to music that is advertised on the front-page, and therefore missing the full musical
bandwidth. To allow access to the full database regardless of publication date of a song, we imple-
mented a recommendation system using a content-based music similarity measure (see Gasser and
Flexer, 2009 for a more detailed discussion of the system).

The user interface to the music recommender has been implemented as an Adobe Flash-based
MP3 player with integrated visualization of the five songs most similar to the one currently playing.
This web player can be launched from within an artist’s web page on the Soundpark website by
clicking on one of the artist’s songs. Additionally to offering the usual player interface (start, stop,
skipping forward/backward) it shows songs similar to the currently playing one in a text list and
in a graph-based visualization (see Figure 13). The similar songs are retrieved by using an audio
similarity function.

The graph visualization displays an incrementally constructed nearest neighbor graph (number
of nearest neighbors = 5).

5.1 Similarity

The distance function used in the Soundpark to quantify music similarity was described by Pampalk
(2006). To compute a similarity value between twomusic tracks (x, y), the method linearly combines
rhythmic (dr) and musical timbre (dt) similarities into a single general music similarity (d) value. To
combine the different similarities, they are normalized to zero-mean and unit-variance using static
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normalization values (µr/σr, µt /σt) precomputed from a fixed training collection:

d(x,y) = 0.3
dr(x,y)−µr

σr
+0.7

dt(x,y)−µt
σt

. (4)

5.2 Limitations

The above algorithm for computing music similarity creates nearest neighbor lists which exhibit
very high hubness. In the case of the FM4 Soundpark application, which always displays the top-5
nearest neighbors of a song, a similarity space with high hubness has an immediate negative impact
on the quality of the results of the application. High hubness leads to circular recommendations and
to the effect that some songs never occur in the nearest neighbor lists at all—hubs push out other
objects from the k = 5 nearest neighbors. As a result of high hubness only 72.63% of the songs are
reachable in the recommendation interface using the standard algorithm, that is, over a quarter of
songs can never be reached in the application (more details are discussed in the next section).

In the following, we show that MP can improve this considerably. We use MP with two of the
above mentioned aspects: (i) the linear combination of multiple similarity measures to combine
timbre and rhythm similarities, and (ii) the approximation of the MP parameters, as computing all
pairwise similarities would be highly impractical in a collection of this size.

5.3 Evaluation and Results

To evaluate the impact of MPS on the application, we use MPS in the linear combination of the
rhythmic dr and timbre dt similarities:

dMPS(x,y) = 0.3MPS=30(dr(x,y)+0.7MPS=30(dt(x,y)),

and compare the result to the standard variant (Equation 4) of the algorithm. Table 5 shows the
results of the comparison (including a random baseline algorithm). As with the machine learning
data sets evaluated previously, we observe that the hubness Sk=5 (which is particularly relevant for
the application) decreases from 5.65 to 2.32. This is also visible in the k-occurrence (Nk) of the
biggest hub object, Nk

max, which for k = 5 decreases from 242, with the standard algorithm, to 70.
We also compute the retrieval accuracy Rk (the average ratio of song genre labels matching the

query object’s genre) for k = 1,5,10. For a query song x and a list of recommendations i = 1 . . .k,
the retrieval accuracy over their multiple genres is computed as:

Rk(x) =
1
k

k

∑
i=1

|Genres(x)∩Genres(i)|
|Genres(x)∪Genres(i)|

.

Similarly to the increase in classification accuracies for the machine learning data sets, Rk increases
in all configurations. The music genre labels used in this evaluations originate from the artists who
uploaded their songs to the Soundpark (see Table 4 for the music genres and their distribution in the
collection).

The decrease of hubness produced by MPS leads to a concurrent increase in the reachability
of songs in the nearest neighbor graphs. Instead of only 72.6%, 86.2% of all songs are reachable
via k = 5 nearest neighbor recommendation lists. If the application were to randomly sample 5
recommendations from the k= 10 nearest neighbors, the reachability with MPS would even increase
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Pop Rock Electronica Hip-Hop Funk Reggae
37.6% 46.3% 44.0% 14.3% 19.7% 5.3%

Table 4: Music genre/class distribution of the songs in the FM4 Soundpark collection used for
our experiments. Each artist can assign a newly uploaded song to one or more of these
predefined genres. There are a total of 11 229 songs in our collection snapshot. As every
song is allowed to belong to more than one genre, the percentages in the table add up to
more than 100%.
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Figure 14: Nk=5-occurrences of songs in the nearest neighbors for (a) the standard algorithm, (b)
the linear combination using MPS, and (c) random distances.

to 93.7% (from 81.9%) while the retrieval accuracy Rk for k= 10 would only slightly drop compared
to k = 5.

Figure 14 shows a histogram plot of the Nk=5 occurrence of songs for the standard algorithm
and MPS. The decrease of skewness is clearly visible as the number of songs that are never rec-
ommended drops from about 3000 to 1500—thus a more even distribution of objects in the nearest
neighbors is achieved. The positive effects of using MPS in this application are thus clearly visible:
we obtain an improvement of retrieval accuracy and a decrease of hubness, paired with an increase
of reachability in the nearest neighbors.

6. Conclusion

We have presented a possible remedy for the ‘hubness’ problems, which tend to occur when learning
in high-dimensional data spaces. Considerations on the asymmetry of neighbor relations involving
hub objects led us to evaluate a recent local scaling method, and to propose a new global variant
named ‘mutual proximity’ (MP). In a comprehensive empirical study we showed that both scaling
methods are able to reduce hubness and improve classification accuracy as well as other perfor-
mance indices. Local and global methods perform at about the same level. Both methods are fully
unsupervised and very easy to implement. Our own global scaling variant MP presented in this pa-
per offers the additional advantage of being easy to approximate for large data sets which we show
in an application to a real-world music recommendation service.
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Characteristic Standard MPS (Random)
Retrieval Accuracy Rk=1 51.9% 54.5% 29.0%
Retrieval Accuracy Rk=5 48.2% 50.1% 28.5%
Retrieval Accuracy Rk=10 47.1% 48.6% 28.4%

Hubness Sk=5 5.65 2.31 0.46
Maximum Hub size Nk=5

max 242 70 17
Reachability k = 5 72.6% 86.2% 99.4%

Hubness Sk=10 5.01 2.14 0.36
Maximum Hub size Nk=10

max 416 130 25
Reachability k = 10 81.9% 93.7% 99.9%

Table 5: Evaluation results of the FM4 Soundpark data set comparing the standard method to MPS.
A random algorithm is added as baseline.

Our results indicate that both global and local scaling show very beneficial effects concerning
hubness on a wide range of diverse data sets. They are especially effective for data sets of high
dimensionality which are most affected by hubness. There is only little impact but no degradation
of performance with data sets of low dimensionality. It is our hope that this empirical study will
be the starting point of more theoretical work and consideration concerning the connection between
hubness, asymmetric neighbor relations, and the benefits of similarity space transformations.

The main evaluation scripts used in this work are publicly available to permit reproduction of
our results.13
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Abstract
We consider an online decision problem over a discrete space in which the loss function is submod-
ular. We give algorithms which are computationally efficient and are Hannan-consistent in both the
full information and partial feedback settings.
Keywords: submodular optimization, online learning, regret minimization

1. Introduction

Online decision-making is a learning problem in which one needs to choose a decision repeatedly
from a given set of decisions, in an effort to minimize costs over the long run, even in the face
of complete uncertainty about future outcomes. The performance of an online learning algorithm
is measured in terms of its regret, which is the difference between the total cost of the decisions it
chooses, and the cost of the optimal decision chosen in hindsight. AHannan-consistent algorithm is
one that achieves sublinear regret (as a function of the number of decision-making rounds). Hannan-
consistency implies that the average per round cost of the algorithm converges to that of the optimal
decision in hindsight.

In the past few decades, a variety of Hannan-consistent algorithms have been devised for a wide
range of decision spaces and cost functions, including well-known settings such as prediction from
expert advice (Littlestone and Warmuth, 1989), online convex optimization (Zinkevich, 2003), and
more (see the book by Cesa-Bianchi and Lugosi, 2006 for an extensive survey of prediction algo-
rithms). Most of these algorithms are based on an online version of convex optimization algorithms.
Despite this success, many online decision-making problems still remain open, especially when the
decision space is discrete and large (say, exponential size in the problem parameters) and the cost
functions are non-linear.

In this paper, we consider just such a scenario. Our decision space is now the set of all subsets
of a ground set of n elements, and the cost functions are assumed to be submodular. This property
is widely seen as the discrete analogue of convexity, and has proven to be a ubiquitous property in
various machine learning tasks (see Guestrin and Krause, 2008 for references). A crucial compo-

∗. Supported by ISF Grant 810/11 and a Google Research Award.
†. Part of this work was done while the author was at Microsoft Research.

c©2012 Elad Hazan and Satyen Kale.



HAZAN AND KALE

nent in these latter results are the celebrated polynomial time algorithms for submodular function
minimization (Iwata et al., 2001).

To motivate the online decision-making problem with submodular cost functions, here is an
example from the survey by McCormick (2006). Consider a factory capable of producing any
subset from a given set of n products E. Let f : 2E #→R be the cost function for producing any such
subset (here, 2E stands for the set of all subsets of E). Economics tells us that this cost function
should satisfy the law of diminishing returns: that is, the additional cost of producing an additional
item is lower the more we produce. Mathematically stated, for all sets S,T ⊆ E such that T ⊆ S,
and for all elements i ∈ E, we have

f (T ∪{i})− f (T ) ≥ f (S∪{i})− f (S).

Such cost functions are called submodular, and frequently arise in real-world economic and other
scenarios. Now, for every item i, let pi be the market price of the item, which is only determined
in the future based on supply and demand. Thus, the profit from producing a subset S of the items
is P(S) = ∑i∈S pi− f (S). Maximizing profit is equivalent to minimizing the function −P, which is
submodular as well.

The online decision problem which arises is now to decide which set of products to produce,
to maximize profits in the long run, without knowing in advance the cost function or the market
prices. A more difficult version of this problem, perhaps more realistic, is when the only information
obtained is the actual profit of the chosen subset of items, and no information on the profit possible
for other subsets.

In general, the Online Submodular Minimization problem is the following. In each iteration,
we choose a subset of a ground set of n elements, and then observe a submodular cost function
which gives the cost of the subset we chose. The goal is to minimize the regret, which is the
difference between the total cost of the subsets we chose, and the cost of the best subset in hindsight.
Depending on the feedback obtained, we distinguish between two settings, full-information and
bandit. In the full-information setting, we can query each cost function at as many points as we
like. In the bandit setting, we only get to observe the cost of the subset we chose, and no other
information is revealed.

Obviously, if we ignore the special structure of these problems, standard algorithms for learning
with expert advice and/or with bandit feedback can be applied to this setting. However, the com-
putational complexity of these algorithms would be proportional to the number of subsets, which
is 2n. In addition, for the submodular bandits problem, even the regret bounds have an exponential
dependence on n. It is hence of interest to design efficient algorithms for these problems. For the
bandit version an even more basic question arises: does there exist an algorithm with regret which
depends only polynomially on n?

In this paper, we answer these questions in the affirmative. We give efficient algorithms for
both problems, with regret which is bounded by a polynomial in n, the underlying dimension, and
sublinearly in the number of iterations. For the full information setting, we give two different
randomized algorithms.

One of these algorithms is based on the follow-the-perturbed-leader approach (Hannan, 1957;
Kalai and Vempala, 2005). We give a new way of analyzing such an algorithm. We hope this
analysis technique will be applicable to other problems with large decision spaces as well. This
algorithm is combinatorial, strongly polynomial, and can be generalized to arbitrary distributive
lattices, rather than just all subsets of a given set.
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The second algorithm is based on convex analysis. We make crucial use of a continuous ex-
tension of a submodular function known as the Lovász extension. We obtain our regret bounds by
running a (sub)gradient descent algorithm in the style of Zinkevich (2003). The expected regret of
this latter algorithm is shown to be bounded by O(

√
nT ), and we show this to be optimal.

For the bandit setting, we give a randomized algorithm with expected regret at most O(nT 2/3).
This algorithm also makes use of the Lovász extension and gradient descent. The algorithm folds
exploration and exploitation steps into a single sample and obtains the stated regret bound. We also
give high-probability bounds on regret of the same order for both settings of online submodular
minimization.

An extended abstract of the results of this paper was originally presented in NIPS 2009 (Hazan
and Kale, 2009). The present paper contains additional results with detailed proofs and tighter
bounds, as well as several corrections.

1.1 Related Work

Submodular optimization has found numerous applications in machine learning and optimization in
recent years, see, for example, the survey of Krause and Guestrin (2011). The prediction framework
of online convex optimization was put forth by Zinkevich (2003), and found numerous applications
since. Flaxman et al. (2005) show how to obtain sub linear regret bounds in the bandit setting. The
latter technique is applicable to our setting when applied to the Lovász extension of a submodular
function, although this gives weaker regret bounds than the ones presented hereby. Following our
work, Jegelka and Bilmes (2011) study constrained submodular minimization over specific combi-
natorial structures.

2. Preliminaries and Problem Statement

In this section we review the basic concepts of submodular functions, prediction and online convex
optimization, and state our main results.

2.1 Submodular Functions

The decision space is the set of all subsets of a universe of n elements, [n] = {1,2, . . . ,n}. The set
of all subsets of [n] is denoted 2[n]. For a set S⊆ [n], denote by χS its characteristic vector in {0,1}n,
that is, χS(i) = 1 if i ∈ S, and 0 otherwise.

A function f : 2[n] →R is called submodular if for all sets S,T ⊆ [n] such that T ⊆ S, and for all
elements i ∈ [n], we have

f (T + i)− f (T ) ≥ f (S+ i)− f (S).

Here, we use the shorthand notation S+ i to indicate S∪{i}. An explicit description of f would take
exponential space. We assume therefore that the only way to access f is via a value oracle, that is,
an oracle that returns the value of f at any given set S⊆ [n].

Given access to a value oracle for a submodular function, it is possible to minimize it in poly-
nomial time (Grötschel et al., 1988), and indeed, even in strongly polynomial time (Grötschel et al.,
1988; Iwata et al., 2001; Schrijver, 2000; Iwata, 2003; Orlin, 2009; Iwata and Orlin, 2009). The
current fastest strongly polynomial algorithm is due to Orlin (2009) and takes time O(n5EO+n6),
where EO is the time taken to run the value oracle. The fastest weakly polynomial algorithm are
given by Iwata (2003) and Iwata and Orlin (2009) and run in time Õ(n4EO+n5).
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2.2 Online Submodular Minimization

In the Online Submodular Minimization problem, over a sequence of iterations t = 1,2, . . ., an online
decision maker has to repeatedly chose a subset St ⊆ [n]. In each iteration, after choosing the set
St , the cost of the decision is specified by a submodular function ft : 2[n] → [−M,M]. The decision
maker incurs cost ft(St). The regret of the decision maker is defined to be

RegretT :=
T

∑
t=1

ft(St)−min
S⊆[n]

T

∑
t=1

ft(S).

If the sets St are chosen by a randomized algorithm, then we consider the expected regret over the
randomness in the algorithm.

An online algorithm to choose the sets St will be said to be Hannan-consistent if it ensures that
RegretT = o(T ). The algorithm will be called efficient if it computes each decision St in poly(n, t)
time. Depending on the kind of feedback the decision maker receives, we distinguish between two
settings of the problem:

• Full information setting. In this case, in each round t, the decision maker has unlimited access
to the value oracles of the previously seen cost function f1, f2, . . . ft−1.

• Bandit setting. In this case, in each round t, the decision maker only observes the cost of her
decision St , viz. ft(St), and receives no other information.

2.3 Statement of Main Results

In the setup of the Online Submodular Minimization, we have the following results:

Theorem 1 In the full information setting of Online Submodular Minimization, there is an efficient
randomized algorithm that attains the following regret bound:

E[RegretT ] = O(M
√
nT ).

Furthermore, RegretT = O(M(
√
n+
√

log(1/ε))
√
T ) with probability at least 1− ε.

We also prove a lower bound that shows that the algorithm of Theorem 1 has optimal regret up
to constants:

Theorem 2 In the full information setting of Online Submodular Minimization, for any algorithm,
there is a sequence of submodular cost functions such that the algorithm has regret at leastΩ(M

√
nT ).

Theorem 3 In the bandit setting of Online Submodular Minimization, there is an efficient random-
ized algorithm that attains the following regret bound:

E[RegretT ] = O(MnT 2/3).

Furthermore, RegretT = O(M(n+
√

n log(1/ε))T 2/3) with probability at least 1− ε.

Both Theorem 1 and Theorem 3 hold against both oblivious as well as adaptive adversaries, that
is, the cost functions can be chosen adversarially with knowledge of the distribution over subsets
chosen by the decision maker.
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2.4 The Lovász Extension

A major technical construction we need for the algorithms is the Lovász extension f̂ of the submod-
ular function f . This is defined on the unit hypercube K = [0,1]n and takes real values. Before
defining the Lovász extension, we need the concept of a chain of subsets of [n]:

Definition 4 A chain of subsets of [n] is a collection of sets A0,A1, . . . ,Ap such that

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ap.

A maximal chain is one where p= n. For a maximal chain, we have A0 = /0, An = [n], and there is
a unique associated permutation π : [n]→ [n] such that for all i ∈ [n], we have Aπ(i) = Aπ(i)−1+ i.
For this permutation π, we have Aπ(i) = { j ∈ [n] : π( j)≤ π(i)} for all i ∈ [n].

Now let x∈K . There is a unique chain A0⊂A1⊂ · · ·Ap such that x can be expressed as a convex
combination x= ∑

p
i=0µiχAi where µi > 0 and ∑

p
i=0µi = 1. A nice way to construct this combination

is the following random process: choose a threshold τ ∈ [0,1] uniformly at random, and consider
the level set Sτ = {i : xi > τ}. The sets in the required chain are exactly the level sets which are
obtained with positive probability, and for any such set Ai, µi = Pr[Sτ = Ai]. In other words, we
have x = Eτ[χSτ ]. This follows immediately by noting that for any i, we have Prτ[i ∈ Sτ] = xi. Of
course, the chain and the weights µi can also be constructed deterministically simply by sorting the
coordinates of x.

Now, we are ready to define1 the Lovász extension f̂ :

Definition 5 Let x ∈K . Let A0 ⊂ A1 ⊂ · · ·Ap such that x can be expressed as a convex combination
x=∑

p
i=0µiχAi where µi > 0 and ∑

p
i=0µi = 1. Then the value of the Lovász extension f̂ at x is defined

to be
f̂ (x) :=

p

∑
i=0

µi f (Ai).

The preceding discussion gives an equivalent way of defining the Lovász extension: choose a
threshold τ ∈ [0,1] uniformly at random, and consider the level set Sτ = {i : xi > τ}. Then we have

f̂ (x) = Eτ[ f (Sτ)].

Note that the definition immediately implies that for all sets S⊆ [n], we have f̂ (χS) = f (S).
We will also need the notion of a maximal chain associated to a point x ∈ K in order to define

subgradients of the Lovász extension:

Definition 6 Let x∈K , and let A0 ⊂ A1 ⊂ · · ·Ap be the unique chain such that x=∑
p
i=0µiχAi where

µi > 0 and ∑p
i=0µi = 1. A maximal chain associated with x is any maximal completion of the Ai

chain, that is, a maximal chain /0 = B0 ⊂ B1 ⊂ B2 ⊂ · · ·Bn = [n] such that all sets Ai appear in the
B j chain.

We have the following key properties of the Lovász extension. For proofs, refer to the book by
Fujishige (2005, chapter IV).

Proposition 7 For a submodular function f , the following properties of its Lovász extension f̂ :
K → R hold:

1. Note that this is not the standard definition of the Lovász extension, but an equivalent characterization.
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1. f̂ is convex.

2. Let x ∈ K . Let /0 = B0 ⊂ B1 ⊂ B2 ⊂ · · ·Bn = [n] be an arbitrary maximal chain associated
with x, and let π : [n]→ [n] be the corresponding permutation. Then, a subgradient g of f̂ at
x is given as follows:

gi = f (Bπ(i))− f (Bπ(i)−1).

With the notation above, the following Lemma is from the paper by Jegelka and Bilmes (2011):

Lemma 8 (Lemma 1 from Jegelka and Bilmes, 2011) The subgradients g of the Lovász extension
f̂ :K → [−M,M] of a submodular function are bounded by ‖g‖2 ≤ ‖g‖1 ≤ 4M.

We provide a proof of this lemma in the appendix for completeness.

3. The Full Information Setting

In this section we give two algorithms for regret minimization in the full information setting. The
first is a randomized combinatorial algorithm, based on the “follow the leader” approach of Hannan
(1957) and Kalai and Vempala (2005) which attain the regret bound of O(Mn

√
T ).

The second is an analytical algorithm based on (sub)gradient descent on the Lovász extension.
It attains the regret bound ofO(M

√
nT ). We also prove a lower bound ofΩ(M

√
nT ) on the regret of

any algorithm for online submodular minimization, implying that the analytical algorithm is optimal
up to constants.

Both algorithms have pros and cons: while the second algorithm is much simpler and more
efficient, we do not know how to extend it to distributive lattices, for which the first algorithm
readily applies.

3.1 A Combinatorial Algorithm

In this section we analyze a combinatorial, strongly polynomial, algorithm for minimizing regret in
the full information Online Submodular Minimization setting:

Algorithm 1 Submodular Follow-The-Perturbed-Leader
1: Input: parameter η> 0.
2: Initialization: For every i ∈ [n], choose a random number ri ∈ [−M/η,M/η] uniformly at ran-
dom. Define R : 2[n] → R as R(S) = ∑i∈S ri.

3: for t = 1 to T do
4: Use the set St = argminS⊆[n]∑

t−1
τ=1 fτ(S)+R(S), and obtain cost ft(St).

5: end for

Define Φt : 2[n] → R as Φt(S) = ∑t−1τ=1 fτ(S)+R(S). Note that R is a submodular function, and
Φt , being the sum of submodular functions, is itself submodular. Furthermore, it is easy to construct
a value oracle for Φt simply by using the value oracles for the fτ. Thus, the optimization in step 3
is poly-time solvable given oracle access to Φt .

While the algorithm itself is a simple extension of Hannan (1957) follow-the-perturbed-leader
algorithm, previous analysis (such as the one given by Kalai and Vempala, 2005), which rely on
linearity of the cost functions, cannot be made to work here. Instead, we introduce a new analysis
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technique: we divide the decision space using n different cuts so that any two decisions are separated
by at least one cut, and then we give an upper bound on the probability that the chosen decision
switches sides over each such cut. This new technique may have applications to other problems as
well. We now prove the regret bound of Theorem 1:

Theorem 9 Algorithm 1 run with parameter η= 1√
T achieves the following regret bound:

E[RegretT ] ≤ 6Mn
√
T .

Proof We note that the algorithm is essentially running a “follow-the-leader” algorithm on the cost
functions f0, f1, . . . , ft−1, where f0=R is a fictitious “period 0” cost function used for regularization.
The first step to analyzing this algorithm is to use a stability lemma, essentially proved by Kalai and
Vempala (2005) and reproved in the appendix as Lemma 21 for completeness, which bounds the
regret as follows:

RegretT ≤
T

∑
t=1

[ ft(St)− ft(St+1)]+R(S∗)−R(S1).

Here, S∗ = argminS⊆[n]∑
T
t=1 ft(S).

To bound the expected regret, by linearity of expectation, it suffices to bound E[ f (St)− f (St+1)],
where for the purpose of analysis, we assume that we re-randomize in every round (that is, choose
a fresh random function R : 2[n] → R). Naturally, the expectation E[ f (St)− f (St+1)] is the same
regardless of when R is chosen.

To bound this, we need the following lemma:

Lemma 10
Pr[St .= St+1] ≤ 2nη.

Proof First, we note the following simple union bound:

Pr[St .= St+1] ≤ ∑
i∈[n]

Pr[i ∈ St and i /∈ St+1]+Pr[i /∈ St and i ∈ St+1]. (1)

Now, fix any i, and we aim to bound Pr[i∈ St and i /∈ St+1]. For this, we condition on the randomness
in choosing r j for all j .= i. Define R′ : 2[n] →R as R′(S) =∑ j∈S, j .=i r j, and Φ′

t : 2[n] →R as Φ′
t(S) =

∑t−1τ=1 fτ(S)+R′(S). Note that if i /∈ S, then R′(S) = R(S) and Φ′
t(S) =Φt(S). Let

A = arg min
S⊆[n]:i∈S

Φ′(S) and B = arg min
S⊆[n]:i/∈S

Φ′(S).

Now, we note that the event i∈ St happens only ifΦ′
t(A)+ri<Φ′

t(B), and St =A. But ifΦ′
t(A)+ri<

Φ′
t(B)−2M, then we must have i ∈ St+1, since for any C such that i /∈C,

Φt+1(A) = Φ′
t(A)+ ri+ ft(A) < Φ′

t(B)−M < Φ′
t(C)+ ft(C) = Φt(C).

The inequalities above use the fact that ft(S)∈ [−M,M] for all S⊆ [n]. Thus, if v :=Φ′
t(B)−Φ′

t(A),
we have

Pr[i ∈ St and i /∈ St+1 | r j, j .= i] ≤ Pr[ri ∈ [v−2M,v] | r j, j .= i] ≤ η,

since ri is chosen uniformly from [−M/η,M/η]. We can now remove the conditioning on r j for
j .= i, and conclude that

Pr[i ∈ St and i /∈ St+1] ≤ η.
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Similarly, we can bound Pr[i /∈ St and i ∈ St+1] ≤ η. Finally, the union bound (1) over all choices
of i yields the required bound on Pr[St .= St+1].

Continuing the proof, we have (since | f (S)|≤M)

E[ f (St)− f (St+1)] = E[ f (St)− f (St+1) | St .= St+1] ·Pr[St .= St+1]
≤ 2M ·Pr[St .= St+1]
≤ 4Mnη.

The last inequality follows from Lemma 10. Now, we have R(S∗)−R(S1)≤ 2Mn/η, and so

E[RegretT ] ≤
T

∑
t=1
E[ f (St)− f (St+1)]+E[R(S∗)−R(S1)]

≤ 4MnηT +
2Mn
η

≤ 6Mn
√
T ,

since η= 1√
T .

3.2 An Analytical Algorithm

In this section, we give a different algorithm based on the Online Gradient Descent method of
Zinkevich (2003). We apply this technique to the Lovász extension of the cost function coupled
with a simple randomized construction of the subgradient, as given in definition 5. This algorithm
requires the concept of a Euclidean projection of a point in Rn on to the set K , which is a function
ΠK : Rn → K defined by

ΠK (y) := argmin
x∈K

‖x− y‖.

Since K = [0,1]n, it is easy to implement this projection: indeed, for a point y ∈ Rn, the projection
x=ΠK (y) is defined by

xi =











yi if yi ∈ [0,1]
0 if yi < 0
1 if yi > 1.

Algorithm 2 Submodular Subgradient Descent
1: Input: parameter η> 0. Let x1 ∈K be an arbitrary initial point.
2: for t = 1 to T do
3: Choose a threshold τ ∈ [0,1] uniformly at random, and use the set St = {i : xt(i) > τ} and

obtain cost ft(St).
4: Find a maximal chain associated with xt , /0 = B0 ⊂ B1 ⊂ B2 ⊂ · · ·Bn = [n], and use

ft(B0), ft(B1), . . . , ft(Bn) to compute a subgradient gt of f̂t at xt as in part 2 of Proposition 7.
5: Update: set xt+1 =ΠK (xt −ηgt).
6: end for
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In the analysis of the algorithm, we need the following regret bound. It is a simple extension of
Zinkevich’s analysis of Online Gradient Descent to vector-valued random variables whose expec-
tation is the subgradient of the cost function (the generality to random variables is not required for
this section, but it will be useful in the next section):

Lemma 11 Let f̂1, f̂2, . . . , f̂T :K →R be a sequence of convex cost functions over the cube K . Let
x1,x2, . . . ,xT ∈ K be defined by x1 = 0 and xt+1 = ΠK (xt −ηĝt), where ĝ1, ĝ2, . . . , ĝT are vector-
valued random variables such that E[ĝt |xt ] = gt , where gt is a subgradient of f̂t at xt . Then the
expected regret of playing x1,x2, . . . ,xT is bounded by

T

∑
t=1
E[ f̂t(xt)]−min

x∈K

T

∑
t=1

f̂T (x) ≤
n
2η

+2η∑
t
E[‖ĝt‖2].

Proof Let yt+1 = xt −ηĝt , so that xt+1 =ΠK (yt+1). Note that

‖yt+1− x∗‖2 = ‖xt − x∗‖2−2ηĝ0t (xt − x∗)+η2‖ĝt‖2.

Rearranging,

ĝ0t (xt − x∗) =
1
2η

[‖xt − x∗‖2−‖yt+1− x∗‖2]+
η
2
‖ĝt‖2

≤
1
2η

[‖xt − x∗‖2−‖xt+1− x∗‖2]+
η
2
‖ĝt‖2,

since ‖xt+1−x∗‖ ≤ ‖yt+1−x∗‖ by the properties of Euclidean projections onto convex sets. Hence,
we have

T

∑
t=1

ĝ0t (xt − x∗) ≤
T

∑
t=1

‖xt − x∗‖2−‖xt+1− x∗‖2

2η
+
η
2
‖ĝt‖2

≤
n
2η

+
η
2

T

∑
t=1

‖ĝt‖2,

since ‖x1− x∗‖2 ≤ n, both x1 and x∗ being in the cube K . Next, since E[ĝt |xt ] = gt , a subgradient
of f̂t at xt , we have

E[ĝ0t (xt − x∗)|xt ] = g0t (xt − x∗) ≥ f̂t(xt)− f̂t(x∗),

since f̂t is a convex function. Taking expectation over the choice of xt , we have

E[ĝ0t (xt − x∗)] ≥ E[ f̂t(xt)]− f̂t(x∗).

Thus, we can bound the expected regret as follows:

T

∑
t=1
E[ f̂t(xt)]− f̂t(x∗) ≤ E

[

T

∑
t=1

ĝ0t (xt − x∗)

]

≤
n
2η

+
η
2

T

∑
t=1
E[‖ĝt‖2].

We can now prove the following regret bound:
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Theorem 12 Algorithm 2, run with parameter η=
√ n

16MT , achieves the following regret bound:

E[RegretT ] ≤ 4M
√
nT .

Furthermore, with probability at least 1− ε, we have

RegretT ≤ 4M
√
nT +M

√

2T log(1/ε).

Proof Note that be Definition 5, we have that E[ ft(St)] = f̂t(xt). Since the algorithm runs Online
Gradient Descent (from Lemma 11) with ĝt = gt (that is, no randomness), we get the following
bound on the regret. Here, we use the bound of Lemma 8 ‖ĝt‖2 = ‖gt‖2 ≤ 16M2.

E[RegretT ] =
T

∑
t=1
E[ ft(St)]−min

S⊆[n]

T

∑
t=1

f (S)

≤
T

∑
t=1

f̂t(xt)−min
x∈K

T

∑
t=1

f̂T (x)

≤
n
2η

+
16
2
ηM2T

≤ 4M
√
nT ,

where the last inequality is due to the choice of η as in the theorem statement.
We proceed to give a high probability bound. The following Theorem is by Hoeffding (see the

book by Cesa-Bianchi and Lugosi 2006, Appendix A):

Theorem 13 (Hoeffding) Let X1, . . . ,XT be independent random variables such that |Xt | ≤ M.
Then, for ε> 0, we have

Pr

[

T

∑
t=1

Xt −E
[

T

∑
t=1

Xt

]

>M
√

2T log(1/ε)

]

≤ ε.

Note that the sequence of points x1,x2, . . . ,xT is deterministic since it is obtained by determinis-
tic gradient descent. The sets St are obtained by independent randomized rounding on the xt’s, and
so the random variables Xt = ft(St) are independent. Note that |Xt | ≤M. Applying the Hoeffding
bound above we get that with probability at least 1− ε,

T

∑
t=1

ft(St) ≤
T

∑
t=1
E[ ft(St)]+M

√

2T log(1/ε),

which implies the high probability regret bound.

3.3 Lower Bound on Regret

We give a simple lower bound (which is reminiscent of the lower bounds for the setting of prediction
from expert advice as in the book by Cesa-Bianchi and Lugosi, 2006), that in the full-information
setting any algorithm for online submodular minimization can be made to have regret Ω(M

√
nT ).

This show that the upper bound of Theorem 12 is optimal up to constants.
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Theorem 14 In the full-information setting, for any algorithm for online submodular minimization,
there is a sequence of submodular cost functions f1, f2, . . . , fT : 2[n] → [−M,M] such that the regret
of the algorithm is at least Ω(M

√
nT ).

Proof Consider the following randomized sequence of cost functions. In round t, choose the
element i(t) = (t mod n)+ 1 ∈ [n], and a Rademacher random variable σt ∈ {−1,1} chosen inde-
pendently of all other random variables. Then, define ft : 2[n] → [−M,M] as:

∀S⊆ [n] : ft(S) =

{

−σtM if i(t) /∈ S
σtM if i(t) ∈ S.

It is easy to check that ft is submodular (in fact, it is modular). Note that for any set St played by
the algorithm in round t, we have E[ ft(St)] = 0, where the expectation is taken over the choice of
σt . Thus, in expectation, the cost of the algorithm is 0. But now consider the set S ⊆ [n] defined as
follows. For all i ∈ [n], let Xi = ∑t:i(t)=iσt . Then let S= {i : Xi ≤ 0}. Observe that by construction,

∑
t
ft(S) = ∑

i
−M|Xi|,

and hence

E
[

∑
t
ft(S)

]

= E
[

∑
i
−M|Xi|

]

= n ·−M ·Ω

(

√

T
n

)

=−Ω(M
√
nT ).

Here, we used the fact that each Xi is a sum of at least 2Tn 3 independent Rademacher random
variables, and Khintchine’s inequality (see Cesa-Bianchi and Lugosi, 2006, Appendix A) implies
that if Y is a sum of m independent Rademacher random variables, then E[|Y |] ≥

√

m/2. Hence,
the expected regret of the algorithm is Ω(M

√
nT ). In particular, there is a specific choice of the

Rademacher random variables σt such that the algorithm incurs regret at least Ω(M
√
nT ).

4. The Bandit Setting

We now present an algorithm for the Bandit Online Submodular Minimization problem. The algo-
rithm is based on the Online Gradient Descent algorithm of Zinkevich (2003). The main idea is to
use just one sample for both exploration (to construct an unbiased estimator for the subgradient)
and exploitation (to construct an unbiased estimator for the point chosen by the Online Gradient
Descent algorithm).
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Algorithm 3 Bandit Submodular Subgradient Descent
1: Input: parameters η,δ> 0. Let x1 ∈K be arbitrary.
2: for t = 1 to T do
3: Find a maximal chain associated with xt , /0 = B0 ⊂ B1 ⊂ B2 ⊂ · · ·Bn = [n], and let π be the

associated permutation as in part 2 of Proposition 7. Then xt can be written as xt =∑n
i=0µiχBi ,

where µi = 0 for the extra sets Bi that were added to complete the maximal chain for xt .
4: Choose the set St as follows:

St = Bi with probability ρi = (1−δ)µi+
δ

n+1
.

Use the set St and obtain cost ft(St).
5: If St = B0, then set ĝt =− 1

ρ0
ft(St)eπ(1), and if St = Bn then set ĝt = 1

ρn
ft(St)eπ(n). Otherwise,

St = Bi for some 1≤ i≤ n−1. Choose εt ∈ {+1,−1} uniformly at random, and set:

ĝt =











2
ρi
ft(St)eπ(i) if εt = 1

− 2
ρi
ft(St)eπ(i+1) if εt =−1.

6: Update: set xt+1 =ΠK (xt −ηĝt).
7: end for

Before launching into the analysis, we define some convenient notation first. Define the filtration
F = (Ft≤T ), where Ft is the smallest σ-field with respect to which the random coin tosses of the
algorithm in rounds 1,2, . . . , t are measurable, and let Et [·] = E[·|Ft−1], and VARt [·] =VAR[·|Ft−1].

A first observation is that in expectation, the regret of the algorithm above is almost the same
as if it had played xt all along and the loss functions were replaced by the Lovász extensions of the
actual loss functions.

Lemma 15 For all t, we have E[ ft(St)]≤ E[ f̂t(xt)]+2δM.

Proof FromDefinition 5 we have that f̂t(xt)=∑i µi ft(Bi). On the other hand, Et [ ft(St)] =∑iρi ft(Bi),
and hence:

Et [ ft(St)]− f̂t(xt) =
n

∑
i=0

(ρi−µi) ft(Bi) ≤ δ
n

∑
i=0

[

1
n+1

+µi
]

| ft(Bi)| ≤ 2δM. (2)

The lemma now follows by taking expectations on both sides with respect to the randomness up to
round t−1.

Next, by Proposition 7, the subgradient of the Lovász extension of ft at point xt corresponding
to the maximal chain B0 ⊂ B1 ⊂ · · ·⊂ Bn is given by gt(i) = f (Bπ(i))− f (Bπ(i)−1). Using this fact,
it is easy to check that the random vector ĝt is constructed in such a way that E[ĝt |xt ] = Et [ĝt ] = gt .
Furthermore, we can bound the norm of this estimator as follows:

Et [‖ĝt‖2] ≤
n

∑
i=0

4
ρ2i
ft(Bi)2 ·ρi ≤

4M2(n+1)2

δ
≤
16M2n2

δ
. (3)
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We can now remove the conditioning, and conclude that E[‖ĝt‖2]≤ 16M2n2
δ .

Theorem 16 Algorithm 3, run with parameters δ= n
T 1/3 , η= 1

4MT 2/3 , achieves the following regret
bound:

E[RegretT ] ≤ 6MnT 2/3.

Proof We bound the expected regret as follows: using Lemma 15), we have

T

∑
t=1
E[ ft(St)]−min

S⊆[n]

T

∑
t=1

ft(S) ≤ 2δMT +
T

∑
t=1
E[ f̂t(xt)]−min

x∈K

T

∑
t=1

f̂t(x)

≤ 2δMT +
n
2η

+
η
2

T

∑
t=1
E[‖ĝt‖2] (By Lemma 11)

≤ 2δMT +
n
2η

+
8n2M2ηT

δ
. (By (3))

The bound is now obtained using the stated values for η,δ.

4.1 High Probability Bounds on the Regret

The theorem of the previous section gave a bound on the expected regret. However, a much stronger
claim can be made that essentially the same regret bound holds with very high probability (expo-
nential tail). The following gives high probability bounds against an adaptive adversary.

Theorem 17 With probability at least 1− 4ε, Algorithm 3, run with parameters δ = n
T 1/3 , η =

1
4MT 2/3 , achieves the following regret bound:

RegretT ≤ 38MnT 2/3+44M
√
nT 2/3

√

log(1/ε).

To prove the high probability regret bound, we require the following concentration lemma which
can be found in the book by Cesa-Bianchi and Lugosi (2006, Appendix A):

Lemma 18 (Bernstein inequality for martingales) Let X1, . . . ,XT be a sequence of bounded ran-
dom variables adapted to a filtration F = (Ft)t≤T . Let Et [·] := E[·|Ft−1]. Suppose that |Xt |≤ b and
let Et [X2t ]≤V for all t ≤ T . Then, for ε> 0, we have

Pr

[
∣

∣

∣

∣

∣

T

∑
t=1

Xt −Et [Xt ]

∣

∣

∣

∣

∣

>
√

2TV log(1/ε)+b log(1/ε)

]

≤ ε.

The following simple corollary will be useful in the analysis:

Corollary 19 In the setup of Lemma 18, assume that the parameters T,V,b and ε satisfy
√
TV >

b
√

log(1/ε). Then

Pr

[
∣

∣

∣

∣

∣

T

∑
t=1

Xt −Et [Xt ]

∣

∣

∣

∣

∣

> 4
√

TV log(1/ε)

]

≤ ε.
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Proof [Theorem 17] If T ≤ 2log3/2(1/ε), then the regret can be trivially bounded by

2MT ≤ 4MT 2/3
√

log(1/ε)≤ 38MnT 2/3+44M
√
nT 2/3

√

log(1/ε).

So from now on we assume that T > 2log3/2(1/ε). We need the following lemma:

Lemma 20 If T > 2log3/2(1/ε), then with probability at least 1−4ε, all of the following inequali-
ties hold:

T

∑
t=1

‖ĝt‖2 ≤
T

∑
t=1
Et [‖ĝt‖2]+64M2T 4/3

√

log(1/ε), (4)

T

∑
t=1

g0t xt ≤
T

∑
t=1

ĝ0t xt +16M
√
nT 2/3

√

log(1/ε), (5)

∀S⊆ [n],
T

∑
t=1

ĝ0t χS ≤
T

∑
t=1

g0t χS+16M
√
nT 2/3

√

log(2n/ε), (6)

and
T

∑
t=1

ft(St) ≤
T

∑
t=1
Et [ ft(St)]+4M

√

T log(1/ε). (7)

Proof We use Lemma 18 to bound the probability of each of the four events not happening by ε,
and then we apply a union bound. In the following, we use the lower bound

ρi ≥
δ

n+1
≥

1
2T 1/3

. (8)

Recall the filtration F = (Ft≤T ), where Ft is the smallest σ-field with respect to which the random
coin tosses of the algorithm in rounds 1,2, . . . , t are measurable. In the following we will consider
sequences of random variables X1,X2, . . . ,XT adapted to F .
Proof of (4). Consider the random variables Xt := ‖ĝt‖2 for t ≤ T , that are adapted to F . To

apply Corollary 19, we estimate the parameters b,V . If Bi was sampled in step t, we have, using (3),

|Xt | = ‖ĝt‖2 ≤
4
ρ2i
f 2t (Bi) ≤ 16M2T 2/3,

using (8). Thus, we can choose b= 16M2T 2/3. Next, we have

E[‖ĝt‖4|Ft−1] ≤
n

∑
i=0

16
ρ4i

ft(Bi)4 ·ρi ≤ (n+1) ·16 ·8T ·M4 ≤ 256M4nT.

Thus, we can choose V = 256M4nT . Now,
√
TV = 16M2√nT > b

√

log(1/ε) for T > log3/2(1/ε).
The required bound follows from Corollary 19 using the overestimation

√
n≤ T 1/3.

Proof of (5). Consider the random variables Xt := ĝ0t xt for t ≤ T , that are adapted to F . First
note that Et [ĝ0t xt ] = g0t xt . To apply Corollary 19, we estimate the parameters b,V . First, if Bi was
sampled in step t, then we have, using Hölder’s inequality,

|Xt | ≤ ‖ĝt‖1‖xt‖∞ ≤
2
ρi
| ft(Bi)| ≤ 4MT 1/3,
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using (8). Thus, we choose b= 4MT 1/3. Next, again using Hölder’s inequality we have

Et [(ĝ0t xt)2] ≤ Et [‖ĝt‖21‖xt‖2∞] ≤
n

∑
i=0

4
ρ2i
f 2t (Bi) ·ρi ≤ 16M2nT 1/3,

using (8). Thus, we can choose V = 16M2nT 1/3. Note that
√
TV = 4M

√
nT 2/3 > b

√

log(1/ε)) for
T > log3/2(1/ε). The required bound follows from Corollary 19.

Proof of (6). This bound follows exactly as the previous one, except we use the random variables
Xt := ĝ0t χS for every fixed set S ⊆ [n], with error parameter ε/2n. With this value of the error
parameter, the conditions of Corollary 19 are met for T > 2log3/2(1/ε). We then take a union
bound over the 2n choices of S to obtain the required bound.

Proof of (7). Consider the random variables Xt := ft(St) for t ≤ T , that are adapted to F . To
apply Corollary 19, we estimate the parameters b,V . We have

|Xt | = | ft(St)| ≤ M.

So we can use b = M. As for V , we use the trivial bound V = b2 = M2. Again,
√
TV =

√
Tb >

b
√

log(1/ε) for T > log(1/ε). The required bound follows from Corollary 19.

Finally, we can imagine the points x1,x2, . . . ,xT as being produced by running Online Gradient
Descent with linear cost functions ĝ0t x, thinking of ĝt as deterministic vectors. Thus, by Lemma 11,
we get that for any S⊆ [n], we have

T

∑
t=1

ĝ0t (xt −χS) ≤
n
2η

+
η
2

T

∑
t=1

‖ĝt‖2. (9)
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Thus, with probability 1−4ε, for any S⊆ [n], we have

T

∑
t=1

ft(St)− ft(S)

≤
T

∑
t=1
Et [ ft(St)]− ft(S)+4M

√

T log(1/ε) (By (7))

≤
T

∑
t=1

f̂t(xt)− f̂t(χS)+2nMT 2/3+4M
√

T log(1/ε) (By (2))

≤
T

∑
t=1

g0t (xt −χS)+2MnT 2/3+4M
√

T log(1/ε) (by convexity of f̂t)

≤
T

∑
t=1

ĝ0t (xt −χS)+2MnT 2/3+4M
√

T log(1/ε)

+32M
√
nT 2/3

√

log(2n/ε) (By (5), (6))

≤
T

∑
t=1

ĝ0t (xt −χS)+34MnT 2/3+36M
√
nT 2/3

√

log(1/ε)

≤
n
η
+
η
2

T

∑
t=1

‖ĝt‖2+34MnT 2/3+36M
√
nT 2/3

√

log(1/ε) (By (9))

≤
n
2η

+
η
2

[

T

∑
t=1
Et [‖ĝt‖2]+64M2T 4/3

√

log(1/ε)

]

+34MnT 2/3+36M
√
nT 2/3

√

log(1/ε) (By (4))

≤ 4MnT 2/3+8MT 2/3
√

log(1/ε)

+34MnT 2/3+36M
√
nT 2/3

√

log(1/ε) (C.f. proof of Thm 16)

≤ 38MnT 2/3+44M
√
nT 2/3

√

log(1/ε).

This gives the required bound.

5. Conclusions and Open Questions

We have described efficient regret minimization algorithms for submodular cost functions, in both
the bandit and full information settings. This parallels the work of Streeter and Golovin (2008) who
study two specific instances of online submodular maximization (for which the offline problem is
NP-hard), and give (approximate) regret minimizing algorithms. We leave it as an open question
whether there exists an efficient algorithm that attains O(

√
T ) regret bounds for online submodular

minimization in the bandit setting.
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Appendix A. Additional Lemmas

In this section we prove auxiliary lemmas that were used in the paper for completeness.

A.1 The FTL-BTL Lemma

The following stability lemma was essentially proved in Theorem 1.1 of Kalai and Vempala (2005).
We reprove it here for completeness:

Lemma 21 Let St = argminS⊆[n]{∑t−1τ=1 fτ(S)+R(S)} as in Algorithm 1. Then

RegretT ≤
T

∑
t=1

[ ft(St)− ft(St+1)]+R(S∗)−R(S1).

Where S∗ = argminS⊆[n]∑
T
t=1 ft(S).

Proof For convenience, denote by f0 = R, and assume we start the algorithm from t = 0 with an
arbitrary S0. The lemma is now proved by induction on T .
Induction base: Note that by definition, we have that S1 = argminS{R(S)}, and thus f0(S1) ≤
f0(S∗) for all S∗, thus f0(S0)− f0(S∗)≤ f0(S0)− f0(S1).
Induction step: Assume that that for T , we have

T

∑
t=0

ft(St)− ft(S∗) ≤
T

∑
t=0

ft(St)− ft(St+1)

and let us prove for T +1. Since ST+2 = argminS{∑T+1
t=0 ft(S)} we have:

T+1

∑
t=0

ft(St)−
T+1

∑
t=0

ft(S∗) ≤
T+1

∑
t=0

ft(St)−
T+1

∑
t=0

ft(ST+2)

=
T

∑
t=0

( ft(St)− ft(ST+2))+ fT+1(St+1)− fT+1(ST+2)

≤
T

∑
t=0

( ft(St)− ft(St+1))+ fT+1(St+1)− fT+1(ST+2)

=
T+1

∑
t=0

ft(St)− ft(St+1).

Where in the third line we used the induction hypothesis for S∗ = ST+2. We conclude that
T

∑
t=1

ft(St)− ft(S∗) ≤
T

∑
t=1

ft(St)− ft(St+1)+ [− f0(S0)+ f0(S∗)+ f0(S0)− f0(S1)]

=
T

∑
t=1

ft(St)− ft(St+1)+ [R(S∗)−R(S1)] .
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A.2 Proof of Lemma 8

Next, we give a proof of Lemma 8 from the paper of Jegelka and Bilmes (2011), for completeness:

Lemma 8 restatement: The subgradients g of the Lovász extension f̂ : K → [−M,M] of a
submodular function are bounded by ‖g‖2 ≤ ‖g‖1 ≤ 4M.
Proof Recall the subgradient definition of proposition 7: Let x ∈ K . Let /0 = B0 ⊂ B1 ⊂ B2 ⊂
· · ·Bn= [n] be an arbitrary maximal chain associated with x, and let π : [n]→ [n] be the corresponding
permutation. Note that Bπ(i) = { j ∈ [n] : π( j)≤ π(i)}. Then, a subgradient g of f̂ at x is given by:

gi = f (Bπ(i))− f (Bπ(i)−1).

Let S+ = {i : gi ≥ 0}. First, we claim:

Proposition 22
∑
i∈S+

gi ≤ M− f ( /0).

Proof Let σ : S+ → {1,2, . . . , |S+|} be the one-to-one mapping that orders the elements of S+
according to π, that is, for i, j ∈ S+, we have σ(i) < σ( j) if and only if π(i) < π( j). For i ∈ [S+],
defineCi = { j ∈ S+ : σ( j)≤ i}, and defineC0 = /0. Since σ respects the ordering given by π, for all
i ∈ S+ we have

Cσ(i)−1 = { j ∈ S+ : σ( j)≤ σ(i)−1} ⊆ { j ∈ [n] : π(i)≤ π( j)−1} = Bπ(i)−1.

Note that Cσ(i) =Cσ(i)−1+ i and Bπ(i) = Bπ(i)−1+1. Thus by the submodularity of f , we have

gi = f (Bπ(i))− f (Bπ(i)−1) ≤ f (Cσ(i))− f (Cσ(i)−1).

Thus, we have

∑
i∈S+

gi ≤ ∑
i∈S+

f (Cσ(i))− f (Cσ(i)−1)

=
|S+|

∑
i=1

f (Ci)− f (Ci−1)

= f (S+)− f ( /0)
≤ M− f ( /0).

Now let S− := [n]\S+ be the subset of indices of all negative entries of g. We have

∑
i∈S−

gi = ∑
i∈[n]

gi− ∑
i∈S+

gi = f ([n])− f ( /0)− ∑
i∈S+

gi ≥ −2M.
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The second equality above follows by the definition of g. Hence, we have

‖g‖1 = ∑
i∈S+

gi− ∑
i∈S−

gi ≤ 3M− f ( /0) ≤ 4M.
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Abstract
In this paper we study the problem of designing SVM classifiers when the kernel matrix, K, is
affected by uncertainty. SpecificallyK is modeled as a positive affine combination of given positive
semi definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. We treat the
problem using the Robust Optimization methodology. This reduces the uncertain SVM problem
into a deterministic conic quadratic problem which can be solved in principle by a polynomial time
Interior Point (IP) algorithm. However, for large-scale classification problems, IP methods become
intractable and one has to resort to first-order gradient type methods. The strategy we use here is
to reformulate the robust counterpart of the uncertain SVM problem as a saddle point problem and
employ a special gradient scheme which works directly on the convex-concave saddle function.
The algorithm is a simplified version of a general scheme due to Juditski and Nemirovski (2011).
It achieves an O(1/T 2) reduction of the initial error after T iterations. A comprehensive empirical
study on both synthetic data and real-world protein structure data sets show that the proposed
formulations achieve the desired robustness, and the saddle point based algorithm outperforms the
IP method significantly.

Keywords: robust optimization, uncertain classification, kernel functions

1. Introduction

The Support Vector Machine(SVM) formulation (Vapnik, 1998) learns a classifier of the form

f (x) = sign

(
n

∑
i=1

αiyiK(xi,x)+b

)

(1)

c©2012 Aharon Ben-Tal, Sahely Bhadra, Chiranjib Bhattacharyya and Arkadi Nemirovski.
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from a training data set D = {(xi,yi)|xi ∈ X ,yi ∈ {1,−1} i = 1, . . . ,n}. The coefficients, α, are
determined by solving

max
α∈Sn,t

α$e− 1
2 t s.t. α$YKYα≤ t (2)

where Sn = {α|0 ≤ αi ≤C, ∑n
i=1αiyi = 0} and Y = diag(y1, . . . ,yn). Each entry of the matrix K, is

defined by Ki j = K(xi,x j) where K : X ×X → R, is a kernel function and it defines a dot product
in an associated Reproducing Kernel Hilbert Space (Mercer, 1909; Shawe-Taylor and Cristianini,
2000). As a consequence of K(·, ·) being a dot product, the matrix K needs to be positive semi-
definite (see, e.g., Shawe-Taylor and Cristianini, 2000) for any positive integer n.

Observations emanating from real world data are often plagued by uncertainty. The problem of
designing classifiers for uncertain observations remain an interesting open problem and has gained
considerable interest in the recent past. Previous attempts (Ghaoui et al., 2003; Bhattacharyya
et al., 2004; Shivaswamy et al., 2006; Bhadra et al., 2009; Ben-Tal et al., 2011) at designing robust
classifiers have been limited to the case of linear classification where the uncertainty is specified
over an explicitly stated feature map.

Consider the problem of automated protein structure classification, an important problem of
Computational Biology, where no such feature map is available. Protein Structures are specified by
a set of 3D coordinates and it is possible to design kernel functions for protein structures based on
the coordinates (Qiu et al., 2007; Bhattacharya et al., 2007). Unfortunately the coordinates are not
known precisely and this makes the kernel values uncertain. Motivated by this problem (Bhadra
et al., 2010) initiated a study of designing robust classifiers when the entries of the kernel matrix are
independently distributed random variables (a somewhat problematic assumption). The approach,
based on Chance-Constraints (probabilistic) formalism, leads to a non-convex problem which may
result in an invalid (i.e., indefinite) kernel matrix.

In this paper we propose a Robust Optimization(RO) approach which overcomes the above
drawbacks. The approach employs a geometric description of uncertainty instead of the probabilis-
tic description used earlier (Bhadra et al., 2010). The uncertainty in the kernel matrix K is modeled
by a bounded convex set, which encompasses several possible realizations ofK. This new approach
results first in a robust counterpart of the uncertain SVM which can be cast as a Conic Quadratic
(CQ) problem. Such problems can be solved in polynomial time by Interior Point (IP) algorithm.
However for large-scale problems IP methods become intractable. Our main contribution here is to
reformulate the robust counterpart as a saddle point problem. Due to favorable conditions satisfied
by the saddle function one can in principle refer to a gradient-based general scheme introduced in
(Juditski and Nemirovskii, 2011) for solving such saddle point problems. Using this scheme we
propose an algorithm, which has a much more simplified analysis, and achieves the same efficiency
estimate, namely it achieves the O(1/T 2) reduction in the initial error after T iterations. Experi-
mental results performed on synthetic data, as well as real-world protein structure data sets, show
that the saddle-point based algorithm outperforms the IP method considerably. We further conduct
detailed experimental evaluation to test the robustness and scalability of the obtained classifiers.

The paper is structured as follows. To motivate the paper we start with a brief discussion on
issues underlying protein structure classification and kernel based classifiers in Section 2. In Sec-
tion 3 we review the formulation in Bhadra et al. (2010) and identify the key shortcomings of the
approach. The RO approach for designing robust SVMs is discussed in Section 4. The RO ap-
proach leads to a minimax problem. In Section 5 we present the saddle point algorithm and discuss
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its application to the minimax problem. In Section 6 we prepare the ground for a comprehensive
computational study by introducing various prediction rules and related error metrics. The results
of the computational study are described in Section 7.

1.1 Notation

The space of symmetric positive semi-definite n× n matrices will be denoted as S n+. Let A ∗ B
denote the the Hadamard prodcuct of two matrices (A∗B)i j = Ai jBi j where A and B are two square
matrices. Frobenius norm of matrix A will be denoted as ‖A‖F =

√
∑i j A2

i j. Let 1A be the indicator
function for the event A. The uniform random variate will be represented as U(a,b) (a < b). We
denote diag(x1, . . . ,xn) to be a n×n diagonal matrix whose ith diagonal entry is xi.

2. Motivation: Uncertain Kernels and Automated Protein Structure Classification

Classification of protein structures into various classes like families, superfamilies etc remains an
important research challenge in computational biology (see Holm and Sander, 1996 for an introduc-
tion). Kernel based classifiers are becoming increasingly popular (Qiu et al., 2007; Bhattacharya
et al., 2007), for addressing this problem.

Usually a protein structure is specified by the positions of alpha carbon (Cα) atoms. A formal
description of Cα atoms and protein structures is beyond the scope of the paper and we refer the
reader to Branden and Tooze (1999) for an introduction. In the sequel we will denote protein
structure by a set

P= {ci ∈ R
3|i= 1, · · · ,s}, (3)

where eachCα atom is determined by spatial coordinates ci = {ci1,ci2,ci3} obtained by X-ray crys-
tallography. Automated classification of such structures is an extremely useful and challenging
problem in computational biology. In the recent past kernel based methods (Qiu et al., 2007; Bhat-
tacharya et al., 2007) have emerged as an interesting alternative to this problem.

Biologists often determine the similarity between a pair of structures by first computing an
alignment and then measuring the quality of the alignment by root mean square deviation(RMSD).
We do not formally define the notion of alignment and RMSD in this paper but the refer the in-
terested reader to Shindyalov and Bourne (1998) and Holm and Sander (1996) for an introduction.
Though computing structural alignment is an intractable problem there are several heuristic algo-
rithms like DALI (Holm and Sander, 1996), CE (Shindyalov and Bourne, 1998) etc, which works
well in practice. Existing literature (Qiu et al., 2007; Bhattacharya et al., 2007) on kernel design
rely on structural alignments computed by such programs.

All such procedures implicitly assume that the protein structures are specified exactly, that is,
the location of the atoms constituting the structure is known precisely. Unfortunately in reality,
the coordinates, ci, are difficult to determine with exact precision and is highly dependent on the
resolution of X-ray diffraction experiment.1 For a protein structure P, the resolution information
r, specifies the error in each coordinate. More formally the position of the ith atom in a protein
structure P (see (3)) could be anywhere in the uncertainty box {c|‖c−  ci‖∞ ≤ r}, around the value
 ci. For any r > 0 one can now define the uncertainty setU(P) for any P as follows

U(P) = {R|R= {z1, . . . ,zs} ‖zi−  ci‖∞ ≤ r, zi ∈ R
3, i= 1, . . . ,s}. (4)

1. See http://www.rcsb.org/pdb/ for examples.
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Figure 1: (a) Pictorial presentation of Cα atoms of protein d1vsra1(top) and d1gefa1(bottom). (b)
Structural alignment between them. (c) Possible perturbation within resolution limit. (d)
Alignment among perturbed structures

Furthermore we would refer to

 P= { ci ∈ R
3|i= 1, . . . ,n}

as the nominal structure andU(P) as the uncertainty set associated with it. The setU(P) character-
izes all alternative structures, including  P for a given value of r.

The structural alignment between P and P′ in presence of uncertainty sets U(P) and U(P′) is
not defined anymore. Even when r is small, the alignment scores between two nominal structures,
 P and  P′ can differ significantly from the alignment scores between an arbitrary R and R′ where
R ∈U(P),R′ ∈U(P′). This difference in alignment scores leads to uncertain kernel values.

For example, consider two proteins2 d1vsra1(denote it by P) and d1gefa1(denote it by P′)
belonging to protein superfamily Restriction endonuclease-like. The value of r for P is 1.8Å and
for P′ it is 2.0Å respectively. The program DALI computes a structural alignment with RMSD of 3.7
Å between these two structures. Figure 1(a) shows pictorial presentation of Cα atoms of these two
proteins while Figure 1(b) shows structural alignment between them. If one ignores the uncertainty
one obtains a kernel value of 1.3585, using the kernel function described in Bhattacharya et al.
(2007). On randomly sampled structures, from the corresponding uncertainty box (4) we observe
that the kernel value ranged from 1.1542(= Kmin)≤ K(P,P′)≤ 1.4964(= Kmax), see Figure 1(c,d).
This variability is indeed substantial. In superfamily Restriction endonuclease-like, more than
60% of the kernel values, computed between any pair of nominal protein structures, lie between
Kmin and Kmax.

2. One should refer to them as SCOP domains. But to lighten the discussion on the biology side we refer to them as
proteins.
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This demonstrates that accounting for resolution information leads to considerable uncertainty
in kernel values. There is clearly a need for designing classifiers which can withstand this variation
in kernel values. This is an extremely challenging problem which has not been well studied in the
literature. Recently (Bhadra et al., 2010) initiated a study of this problem in a probabilistic setting.
In the following section we review this work, to identify key shortcomings and subsequently propose
a robust optimization procedure to address them.

3. Related Work

In Bhadra et al. (2010), the uncertainty is modeled by independent noise in each of the entries of
the kernel matrix K. The uncertain event

(
α$Y (K)Yα≤ t

)
is then required to occur with high

probability. This results in the following chance constraint problem:

p∗ = max
t,α∈Sn

α$e−
1
2
t (5)

s.t. Prob
(
α$Y (K+Z)Yα≤ t

)
≥ 1− ε (6)

where ε< 0.5, and where Z is a random matrix variate.
Problem (5) is hard to solve since typically the feasible set is non-convex. The key result is the

derivation of a lower bound on p∗ under probabilistic assumptions on the entries of Z

Theorem 1 [Bhadra et al., 2010] Let Z be an n× n random symmetric matrix with independent
entries, Zi j, each having finite support, P(ai j ≤ Zi j ≤ bi j) = 1 and E(Zi j) = 0. Then the chance
constraint in (5) is satisfied at any pair (α, t) which is feasible for the constraint

α$YKYα+
√

2log(1/ε)‖β′ ∗ (Yαα$Y )‖F ≤ t

where β′
i j = li jγi j where li j =

bi j−ai j
2 , ci j =

bi j+ai j
2 , µ̂i j =− ci j

li j and

and γi j = min{σ≥ 0 | σ2

2 z
2 + µ̂i jz− log(cosh(z)+

µ̂i j sinh(z))≥ 0, ∀ z ∈ R}.

Proof See Bhadra et al. (2010).

Theorem 1 is used to replace (5) by the following problem, whose optimal value lower-bounds p∗.
Specifically p∗ > p̂, where

p̂= max
t,α∈Sn

1
2
t−∑

i
αi

s.t. ∑
i j
yiy jαiα jKi j+κ

√
∑
i j
βi jα2

i α
2
j ≤ t (7)

where, κ =
√

2log(1/ε) and βi j = β
′2
i j . Any solution of the above problem is guaranteed to satisfy

the chance constraint of problem (5).
This approach suffers from several drawbacks. First unless the matrix β is psd, problem (7) is

not necessarily convex. Indeed in Bhadra et al. (2010) a locally optimal Quasi newton procedure
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was suggested for solving this problem. In the sequel RSVM will denote the solution of (7) by the
Quasi newton procedure. The second most important drawback is that the constraint (6) does not
define a valid model of uncertainty.

To constitute a valid characterization of uncertainty set the constraint (6) needs to be modified
as follows

Prob
(
α$Y (K+Z)Yα≤ t

)
≥ 1− ε, K+Z ∈ S+

n

The formulation (5) solves a relaxed version of the above problem by ignoring the psd requirement.
As a consequence the resultant optimization problem becomes non-convex. Thirdly, the assumption
that entries of Z are independently distributed is extremely unrealistic; often the uncertainty in the
entries are due to uncertainty in the observations hence K(xi,x j) is seldom independent of K(xi,xl)
for distinct i, j, l.

In this work we pursue a RO methodology where the uncertainty is described by a geometric
set. This allows us to alleviate the drawbacks associated with the probabilistic model. In the next
section we describe a RO procedure for designing robust classifiers.

4. Affine Uncertainty Set Model for Uncertain Kernel Matrices

In this section we introduce an uncertainty set over psd matrices and study the resultant robust SVM
problem using an RO approach.

4.1 Robust Optimization

Consider an uncertain optimization problem (8) where f ,gi : S⊂ (Rn×Rk)⇒ R

min
x∈Rn

f (x,Ψ) (8)

gi(x,Ψ)≤ 0 i= 1, . . . ,m
where Ψ ∈Rk is a vector of uncertain parameters. The UOP is in fact a family of problems -one for
each realization of Ψ. In the RO framework the information related to Ψ is modelled as a geometric
uncertainty set E ⊂ Rk and the family of problems, (8) is replaced by its robust counterpart:

r∗ = min
x

max
Ψ∈E

f (x,Ψ) (9)

gi(x,Ψ)≤ 0 ∀Ψ ∈ E i= 1, . . . ,m.
A solution of (9) is feasible to (8) for any realization of Ψ ∈ E and the objective function is guaran-
teed to be no worse than r∗. The uncertainty set E is typically a polytope or ellipsoid or intersection
of such sets. These sets yield useful models of uncertainty, which lead to tractable optimization
problems (Ben-Tal et al., 2009). A general representation of E is as follows

E = {Ψ=  Ψ+
L

∑
i=1

ηiΨi|‖η‖ ≤ ρ}

where  Ψ is the nominal value of the uncertain vector Ψ, the vectors Ψi are possible scenarios of it,
and η is a perturbation vector. The norm is suitably defined to capture the geometry of the set. As
an example, Consider the ellipsoidal set

Eellipsoid = {Ψ|(Ψ−  Ψ)$Q(Ψ−  Ψ)≤ ρ}
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where Q ∈ S n+ and is positive definite. It is easily seen that the set can be represented by E with Ψi

being the columns of Q− 1
2 and where ‖ ·‖ is the L2 norm.

In general the RC of an UOP may have infinite number of constraints and is often NP hard.
However in several important cases it reduces to a polynomially solvable convex optimization prob-
lem. We refer the reader to Ben-Tal et al. (2009) for a comprehensive treatment of RO problems.

4.2 Affine Uncertainty Set Model

Recall the setup for the problem, there is a black box which when presented with a pair of obser-
vations z,z′ ∈ X computes the kernel value K(z,z′). We assume that if z and z′ are noisy obser-
vations with uncertainty sets U(z) and U(z′) with nominal values znom and z′nom respectively then
K(z,z′) = K(znom,z′nom), defines a kernel function and will be called the nominal kernel. The differ-
ence between actual and the nominal kernel is expressed by a linear combination of known L kernel
functions, Kl, l = 1, . . . ,L evaluated at points z,z′, as follows:

K(z,z′)−K(z,z′) =
L

∑
l=1

ηlKl(z,z′).

When there is no uncertainty K(z,z′) = K(z,z′) and η = 0. The value of K(z,z′) lies in the uncer-
tainty set

{K(z,z′)+
L

∑
l=1

ηlKl(z,z′)|‖η‖p ≤ κ, ηl ≥ 0 ∀l = 1, . . . ,L} (10)

where ‖η‖p, p ≥ 1 denotes the lp norm on η. The constraint ηl ≥ 0 is needed to ensure that each
element in the set represents a valid kernel evaluation. The quantity κ measures the quality of
approximation and hence the uncertainty. If κ= 0 then we have no uncertainty. As κ increases the
uncertainty set increases. In the sequel we will refer to  K,Kl as base kernels.

We impose the uncertainty set (10) to all examples of interest which immediately leads to the
following model of uncertainty on the kernel matrix corresponding to the training set,

E(κ) = {K=K+
L

∑
l=1

ηlKl, ‖η‖p ≤ κ ηl ≥ 0, l = 1, . . . ,L}. (11)

The matricesK,Kl ∈ S+
n are obtained by evaluating the known kernel functions K,Kl on the training

set. As any K ∈ E(κ) is always positive semi-definite, the set E(κ) defines a valid model for
describing uncertainty in psd matrices. In a later subsection we will discuss the relevance of this
setup to protein structure classification problem.

The Robust SVM problem (2) with uncertain K, as characterized in (11), can now be cast as
follows

max
α∈Sn

min
K∈E(κ)

−
1
2
α$YKYα+α$e

or more explicitly

max
α∈Sn

min‖η‖p≤κ −
1
2
α$YKYα− 1

2
α$Y

L

∑
l=1

(ηlKl)Yα+α$e . (12)

Note that in the latter problem the constraint η≥ 0 is dropped. Indeed if we define al = α$YKlYα
then al ≥ 0 asKl ∈ S+

n . The optimal η is the solution of maxη∈Bp a$ηwhere Bp(κ) = {η|‖η‖p≤ κ}.
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which occurs at ηl = κ aq−1
l

‖a‖q−1
q

≥ 0 where ‖ ·‖q is the dual norm of ‖ ·‖p, with q= p
p−1 for any p> 1.

For p = 1 one needs to observe that optimality is achieved at ηl ≥ 0. Indeed there exists some l
such that al = ‖a‖∞. The optimal η is given by the condition that ∑l:al=‖a‖∞ ηl = 1 and ηl ≥ 0. If
al < ‖a‖∞ then ηl is strictly 0. At optimality ηl ≥ 0, and hence the resulant optimal kernel lies in
E(κ).

Before proceeding further it might be useful to discuss the Computation of b. Recall that one
also needs to compute b in (1). The choice of b is governed by the following procedure. For a given
K,K1, . . . ,KL let the optimal solution of (12) be α∗ and η∗. This η∗ can be viewed as defining an
effective kernel K=K+∑L

l=1η
∗
lKl and hence b can be computed as

b=
1

# SV ∑
j∈SV

[y j−∑
i
yiα∗

i Ki j] SV = {i|αi > 0}.

For p= 2 the problem (12) can be solved as a Second Order Cone Program(SOCP)3

min
α∈Sn,a,t

1
2 t+

1
2α

$YKYα−α$e (13)

s.t ‖a‖2 ≤ t
α$YKlYα≤ al , ∀l = 1, . . . ,L.

SOCP problems such as (13) can be solved by Interior point(IP) algorithms (e.g., CPLEX, MOSEK,
Sedumi) and will be denoted by Uncertainty-Set SVM ( USSVMSOCP).

Generic IP solvers are inadequate for large scale classification problems. Instead, we demon-
strate here that the minimax reformulation, (12), admits algorithms which are better suited to large
scale problems. For simplicity of exposition we will consider the case p = 2. The results can be
easily extended for the general case, p > 1. Before we discuss the algorithmic aspects it maybe
useful to discuss the computation of the base kernels.

4.3 Evaluation of Base Kernels

Recall that in the protein structure classification problem each observation is specified by a (  P,U(P),y),
where P(see (3)) is the nominal structure,U(P)(see (4)) is the uncertainty set specified by the reso-
lution and y is the label. We discuss this problem in a formal setup and motivate the uncertainty set
described in (10).

To closely parallel the protein structure classification setting we consider the following setup.
Given a data set D= {(xi,Ui)|xi ∈Ui,Ui ∈ X , i= 1, . . . ,m} where an observation, xi, is not directly
specified, instead a nominal value, xi, and an uncertainty set Ui are given. When there is no uncer-
tainty the set Ui reduces to only xi. We are also given a kernel function K : X ×X → R. We make
no assumptions about the functional form of K(·, ·), and we assume that there is a black box which
when presented with any pair z,z′ ∈ X returns a value K(z,z′).

Let us now consider the computation of K(xi,x j). Since xi,x j are uncertain the precise value of
K(xi,x j) is not known but it for sure lies in the set

U(x,x′) = {K(z,z′)|z ∈U(x),z′ ∈U(x′)}.

3. This is also true for any (p> 1) because any p-norm can be represented by conic quadratic inequalities. For a more
detailed discussion on this issue see Ben-Tal and Nemirovski (2001).
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If there is no uncertainty then the set U(x,x′) is a singelton, K(x,x′). However as the functional
form of K is not known, it is not clear how to characterize the elements of U which is amenable
to the RO procedure. We propose to circumvent this problem by building an alternate description
of the set U using a sampling procedure. We make L independent draws from the uncertainty sets.
In the lth draw we obtain Ol = {zl1, . . . ,zlm} where zli is an independent and uniform draw from
Ui. For a given Ol we invoke the kernel function K to obtain an m×m kernel matrix Kl where
Kl(xi,x j) = K(zli,zlj). Once Kl are determined we propose to approximate U by uncertainty set
described in (10).

5. An Algorithm for a Special Class of Convex-Concave Saddle Point Problems

In this section we describe a novel algorithm, which is essentially a special case of an algorithm
presented in Juditski and Nemirovski (2011), for a class of convex-concave saddle point problems.
The algorithm is iterative in nature, requires only first order information, and has O(1/T 2) conver-
gence where T is the total number of iterations. The proposed algorithm applies generally, more
specifically we show that it can be used to solve (12) and the convex version of (7).

5.1 Assumptions

Let U be a closed convex set in Euclidean space E, ‖ · ‖ be a norm on E, and ω(u) :U → R be a
function. We say that ω(·) is a distance-generating function (d.-g.f.) for U compatible with ‖ ·‖, if
ω is convex and continuous onU , admits a continuous on the setUo = {u : ∂ω(·) /= /0} selection of
ω′(u) ∈ ∂ω(u) and is strongly convex, modulus 1 w.r.t. ‖ ·‖:

〈ω′(u)−ω′(u′),u−u′〉 ≥ ‖u−u′‖2 ∀u,u′ ∈Uo.

Assume that

• X is a closed and bounded convex subset in a Euclidean space X , and Y is a closed convex
subset in a Euclidean space Y

• X , Y are equipped with norms ‖ ·‖X , ‖ ·‖Y , the conjugate norms being ‖ ·‖X ,∗, ‖ ·‖Y ,∗;

• X is equipped with a d.-g.f. ωX(·) compatible with ‖ · ‖X , and Y is equipped with a d.-g.f.
ωY (·). We denote by xω the minimizer of ωX(·) on X (note that xω ∈ Xo) and set

ΩX = max
x∈X

ωX(x)−min
x∈X

ωX(x).

We assume that the minimizer of ωY (·) is the origin in Y , and set

ΩY = max
‖y‖Y ≤1

ωY (y)−min
y∈Y

ωY (y).

We are interested in solving a saddle point problem

SadVal = min
x∈X

max
y∈Y

φ(x,y), (14)

where φ(·, ·) satisfies the following assumptions:
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A.1. φ(x,y) : Z := X×Y →R is continuously differentiable function which is convex in x ∈ X and
is strongly concave, modulus θ> 0 w.r.t. ‖ ·‖Y , in y ∈ Y , that is,

〈φ′y(x,y′)−φ′y(x,y),y− y′〉 ≥ θ‖y− y′‖2
Y ∀(x ∈ X ,y,y′ ∈ Y ).

A.2. ∇φ(·, ·) is Lipschitz continuous on Z = X×Y

A.3. φ(x,y) is affine in x: φ(x,y) = 〈x,a(y)〉+g(y).

In the sequel, we set
φ(x) = max

y∈Y
φ(x,y), φ(y) = min

x∈X
φ(x,y),

so that φ is a continuous convex function on X , φ is a continuous strongly concave, modulus θ w.r.t.
‖ ·‖Y , function on Y , and

min
x∈X

φ(x) = SadVal = max
y∈Y

φ(y)

and the set of saddle points of φ on X×Y is X∗×{y∗}, where X∗ = ArgminX φ, and y∗ = ArgmaxY φ.
Finally, we denote by εsad(z), z ∈ Z, the natural saddle point proximity measure:

εsad(x,y) = φ(x)−φ(y) =
[
φ(x)−min

X
φ
]
+

[
max
Y

φ−φ(y)
]
.

5.2 Fixed Step-size per Stage(FSS) Algorithm for Convex-Concave Saddle Point Problem

The MPb algorithm presented in Juditski and Nemirovski (2011) is an extremely fast algorithm
for convex-concave saddle point problems. Computation proceeds in several stages, each stage
consisting of multiple updates involving varying stepsizes. Here we introduce a variation of the
MPb algorithm called FSS, which employs fixed stepsize at every stage of the algorithm. We prove
that this apparent limitation does not harm the theoretical convergence. The proof (see Appendix
A) needs milder assumptions and is much simpler than the original MPb algorithm.

We present a variation of the algorithm where the stepsizes are fixed at every stage without any
loss of convergence efficency. In the following we present the Fixed stepsize per stage(FSS) version
of the MPb algorithm along with convergence analysis.

5.2.1 FSS ALGORITHM

We begin by introducing some notation

G(x,y) =
[
Gx(x,y) :=

∂φ(x,y)
∂x

= a(y);Gy(x,y) :=−
∂φ(x,y)
∂y

]
: Z := X×Y → Z := X ×Y

be the monotone operator associated with the saddle point problem (14). By A.1, this operator is
Lipschitz continuous, and, as we see, its x-component depends solely on y. As a result, we can
specify the partial Lipschitz constants Lxy,Lyy such that

∀(x,x′ ∈ X ,y,y′ ∈ Y ) :
‖Gx(x,y)−Gx(x,y′)‖X ,∗ ≤ Lxy‖y− y′‖Y ; ‖Gy(x,y)−Gy(x′,y)‖Y ,∗ ≤ Lxy‖x− x′‖X ;
‖Gy(x,y)−Gy(x,y′)‖Y ,∗ ≤ Lyy‖y− y′‖Y .

(15)
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We are now ready to present FSS algorithm. Execution of the algorithm is split into stages. At the
beginning of stage s= 0,1, ... we have at our disposal positive Rs and a point  ys ∈ Y such that

‖  ys− y∗‖Y ≤ Rs/2. (Is)

These data define the quantities

(a) Zs = {(x;y) ∈ Z : ‖y−  ys‖Y ≤ Rs},
(b) Ls = 2Lxy

√
ΩXΩY Rs+LyyΩY R2

s , τs = 1/Ls
(c) αs = [Lxy

√
ΩXΩY Rs]/Ls,βs = [Lxy

√
ΩXΩY Rs+LyyΩY R2

s ]/Ls = 1−αs,

(d) ωs(x,y) =
[
αs
ΩX
ωX(x)+ βs

ΩY
ωY ([y−  ys]/Rs)

]
,

(e) Ns = Ceil
(

64Lxy
√
ΩXΩY R−1

s +32LyyΩY

θ

)
.

(16)

At stage s we carry out Ns steps of the following recurrence:

1. Initialization: We set z1,s = (xω,  ys) = argminZωs(·).

2. Step t = 1,2, ...,Ns: Given zt,s ∈ Zo, we compute

wt,s = argminu∈Z
{
〈τsG(zt,s)−ω′

s(zt,s),u〉+ωs(u)
}

zt+1,s = argminu∈Z
{
〈τsG(wt,s)−ω′

s(zt,s),u〉+ωs(u)
} (17)

and pass to step t+ 1, provided t < Ns. When t = Ns, we define the approximate solution to
(14) built in course of s stages as

(xs,ys) = N−1
s

Ns
∑
t=1

wt,s, (18)

set
 ys+1 = ys, Rs+1 = Rs/2

and pass to stage s+1.

5.2.2 PROOF OF CONVERGENCE

In this section we discuss the convergence properties of the FSS algorithm. To this end we present
the following proposition.

Proposition 2 Let assumptions A.1-3 hold and let  y0 ∈Y satisfying (I0) be given along with R> 0.
Then, for every s, (Is) takes place, and

εsad(xs,ys)≤ θR2
02−2s−5, (19)

while the total number Ms = ∑s
i=0Ni of steps of the algorithm needed to build (xs,ys) admits the

bound

Ms ≤ O(1)

[
Lxy
√
ΩXΩY

θR0
2s+

LyyΩY +θ
θ

(s+1)

]

.
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In particular, setting

s∗ = max

[

s :
Lxy
√
ΩXΩY

LyyΩY +θ
2s ≤ (s+1)R0

]

,

we have
s≤ s∗ ⇒ εsad(xs,ys)≤ θR2

02−2(s+2) & Ms ≤ O(1)LyyΩY +θ
θ (s+1)

s> s∗ ⇒ εsad(xs,ys)≤ O(1)L
2
xyΩXΩY

θM2
s

& Ms ≤ O(1)Lxy
√
ΩXΩY

θR0
2s.

(20)

Proof See Appendix A.

The above proposition points us to the convergence rate of O(1/M2
s ) when number of stages is

high. In the following, we explain how to apply the algorithm to the problem at hand.

5.3 Application of FSS Algorithm to (12)

In this section we discuss the application of FSS algorithm for solving formulation (12). It is strictly
concave in α, providedK is positive definite, and affine in η. The domain of α and η are non-empty
convex sets. Clearly the formulation obeys all the assumptions, A.1-3, of the FSS procedure. In
order to be consistent with the notation of FSS procedure we define the following map where LHS
denotes quantities involving formulation (12) and the right hand side corresponds to the saddle point
procedure detailed in the previous section. In particular we use η→ x, α→ y, y→ s, YKlY → Ql ,
El = RL, leading to the following definitions.

Y ={y ∈ R
n : C ≥ yi ≥ 0, ∑

i
siyi = 0}⊂ R

n

X ={x ∈ R
L : x≥ 0,‖x‖2 ≤ 1}⊂ R

L

φ(x,y) =−
L

∑
l=1

xl(
1
2
y$Qly)+ y$e

Gx(x,y) =−d , d= [d1, . . . ,dL]T dl =
1
2
y$Qly

Gy(x,y) =(
L

∑
l=1

xlQl)y− e1 , e1 = [1, . . . ,1]$

‖x‖X =‖x‖2, ωX(x) =
1
2
‖x‖2

2 xω = 0 , ΩX =
1
2

‖y‖Y =‖y‖2, ωY (y) =
1
2
‖y‖2

2, ΩY =
1
2

Lxy =2CLyy, Lyy =
√
Lmax

l
(λmax(Ql)) , R0 = 2C

√
n

Proposition 3 Computing the right-hand sides in every step in (17) is equivalent to solving prob-
lems of the form

(a) x+ = argminx∈X
[1

2(x−  x)T (x−  x)− pT x
]
,

(b) y+ = argminy∈Y
[1

2(y−  y)T (y−  y)−qT y
]
, (21)
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where  x∈X,  y∈Y are solution in previous iteration and p=−ΩXτs
αs

Gx(x̃, ỹ) and q=−ΩY τs
βs

R2
sGy(x̃, ỹ).

The point (x̃, ỹ) are intermediate points in (17).

Proof See that we have ωs(x,y) = µs
2 x

T x+ νs
2 y

T y with certain positive µs,νs (see (16)), hence a
computation of the type of (17), that is

{  z= (  x,  y) ∈ Zo,τ> 0,G(x̃, ỹ)}
⇒ z+ = (x+,y+) := argminu∈Z {〈τG(x̃, ỹ)−ω′

s(  z),u〉+ωs(u)}

reduces to
x+ = argminx∈X

{
xT [τGx(x̃, ỹ)−µs  x]+ µs

2 x
T x
}

= argminx∈X
{
−pT x+ 1

2(x−  x)$(x−  x)
}
,

and
y+ = argminy∈Y

{
yT [τGy(x̃, ỹ)−νs  y]+ νs

2 y
T y
}

= argminy∈Y
{
−yTq+ 1

2(y−  y)$(y−  y)
}
.

Assuming that we start with a feasible point, that is, x0 ≥ 0 and x0$x0 = 1, then xk+1 =
p+xk√

pT p+2pT xk+1
The computation steps involving y is solved by projecting a vector onto the con-

straint set of the Dual SVM problem. The problem can be solved by a Quadratic program. However
we propose a line search procedure described in Appendix B which results in considerable saving
of computation time. The solution of formulation (12) by FSS procedure will be referred to as
USSVMMN.

5.4 Application of FSS Algorithm to the Chance Constraint Setting

The FSS procedure is fairly general and also applies to formulation (7). If β is psd then the formu-
lation (7) can be posed as a SOCP. In particular the following is true,

Theorem 4 [Bhadra et al., 2010] If both K,β are symmetric psd matrices then formulation (7) is
equivalent to

mint,ν,t ′,α∈Sn 1
2 t−∑iαi

s.t. κ‖β 1
2ν‖ ≤ t− t ′,

‖Y (K) 1
2α‖2

2 ≤ t ′,
α2
i ≤ νi.

(22)

One could recast this problem as a mini-max problem and solve it using the FSS procedure.

Theorem 5 Formulation (22) is equivalent to

min
ζ≥0,

√
ζβ−1ζ≤ κ

2

max
α ∈ Sn

−
1
2
α$YKYα+

n

∑
i=1

αi−∑
i
ζiα

2
i . (23)

Proof At the optimum of (22) the constraint involving t and t ′ is active. Using this we eliminate
both t and t ′ and on further dualizing one obtains,

max
ζ≥0

min
α ∈ Sn

L(ζ,α)

(

=
1
2

(
α$YKYα+κ

√
ν$βν

)
−

n

∑
i=1

αi+
n

∑
i=1

ζi(α
2
i −νi)

)
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where ζi is the lagrange multiplier of the constraint α2
i ≤ νi. Using first order conditions for opti-

mality, ∂L
∂νi

= 0 one obtains

κ
2
(ν$βν)−

1
2βν+ζ= 0,

√
ζ$β−1ζ=

κ
2
.

Eliminating ν and noting that at optimality the constraint of (23) involving ζ is active, the proof is
complete.

Note that the objective, in the previous theorem, is Lipschitz continuous, linear in ζ and strongly
concave in α as long as K is positive definite. Both ζ and α lie in a convex and compact set. In
principle the FSS procedure applies and could be an interesting alternative to the SOCP procedure
discussed in Bhadra et al. (2010).

5.5 Remarks

In this section we make some remarks on FSS algorithm and its suitability to the problem at hand.
A minimax problem minx∈X maxy∈Y φ(x,y) can be approached as follows

min
x∈X

(
g(x) = max

y∈Y
φ(x,y)

)
. (24)

If ∇xg were Lipschitz continuous, (24) could be solved at the rate O(1/T 2) by the fast gradient
algorithm for smooth convex minimization due to Nesterov (1983). However for our problem, g
not necessarily possesses the desired smoothness. However, the situation still allows to achieve
O(1/T 2) convergence rate by applying the FSS algorithm to the saddle point reformulation of (24).
The FSS algorithm is essentially a modification of the Mirror Prox (MP) algorithm presented in
Nemirovski (2004). The prototype algorithm MP solves saddle point problem (24) with convex-
concave and smooth (with Lipschitz continuous gradient) φ at the rate O(1/T ), with the hidden
factor in O(·) depending on the distance from the starting point to the solution set of (5.1) (this
distance is taken w.r.t. a norm ‖ ·‖ assembling ‖ ·‖X , ‖ ·‖Y ) and the Lipschitz constant of the gradient
of φ (this constant is taken w.r.t. the conjugate norm ‖ ·‖∗). Now, when φ is strongly concave in y, the
above convergence implies qualified convergence of the y-components yt of approximate solutions
to the y-component y∗ of the saddle point of φ, so that eventually we know that ‖yt − y∗‖Y is, say,
twice smaller than (a priori upper bound R on) ‖y1 − y∗‖Y . When it happens, affinity of φ w.r.t.
x (Assumption A.3) allows to rescale the problem and to restart MP as if we were working with
a twice smaller domain than the original one, which results in O(1/T ) convergence with reduced
hidden factor. In FSS, we iterate the outlined rescalings and restarts (this is where the stages come
from), thus arriving at O(1/T 2) convergence.

6. Prediction Rules and Error Metrics

Recall that in the classical SVM formulation the label of each observation is predicted by (1) where
(α,b) is obtained by solving (2). As K(x,xi) is known the classifier predicts a unique label to each
test example, x. The quality of the classifier is measured by comparing the prediction with the
actual label. In the problem setup considered here the kernel values are only approximately known
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and hence the prediction process is not as straightforward as in the case of SVM. In this section we
introduce several prediction rules and evaluation measures.

6.1 Prediction Rules

For each observation, xt , the values, K(xt ,xi), are only approximately known and lies in an uncer-
tainty set (10). Given any (α,b), application of decision rule (1) in this setting is not clear. To this
end we propose two heuristics for modelling the prediction process.

The essence of robust classification is that for any choice of K(xt ,xi), governed by (10), the
classifer will give the same label. In other words the classifier is robust to uncertainty in the value
of K.

The simplest case would be to use K(xt ,xi) = K(xt ,xi), which when used in conjunction with
(1) gives the following labelling rule:

 yprt = sign

(

∑
i
yiαiK(xt ,xi)+b

)

, (25)

which, in the sequel, will be referred to as the nominal rule. A more comprehensive process of
labelling would involve evaluating all possible choices of K and see how robust the resultant pre-
diction is. Let {ηt1, . . . ,ηtR}, be R uniformly drawn instances of {ηt ∈RL|‖η‖p ≤ κ,ηl ≥ 0}. Each
choice of ηt generates a realization of kernel of the form

Kt(xt ,xi) = K(xt ,xi)+
L

∑
l=1

ηtlKl(xt ,xi).

One option for arriving at a label would be to take the majority vote with the above kernel function,

yprt = sign

(
R

∑
s=1

yst

)

, yst = sign

(

∑
i
αiyiKts(xt ,xi)+b

)

. (26)

Once we have defined these two prediction rule , namely majority vote and the nominal rule, it is
important to devise measures for evaluating the resultant classifiers.

6.2 Error Metrics

Consider a test data set D = {(xt ,yt) t = 1, . . . ,ntst}, where, yt is the true label for observation xt .
We wish to measure the performance of the classifier (26) or (25) on this test data set for a given
choice of (α,b).

For the nominal classifier (25) the usual 0/1 loss works well and we define

NominalErr(NE) =
∑ntstt=1 1(  yprt /=yt )

ntst
.

Similarly for the majority vote based classifier (26), we define

MajorityErr(ME) =
∑ntstt=1 1(yprt /=yt )

ntst
(27)

where, yt is the true label for xt . However as noted before a robust classifier is expected to ensure that
yst = y ,s= 1, . . . ,R is equal for all s. To capture this notion of robustness, we propose another error
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Formulation Required information
Nominal−SVM (2) K
RSVM (5) K and Support
USSVMSOCP(13) K and K = {K1, . . . ,KL} (set of valid kernels)
USSVMMN(21)

Table 1: Summary of Various formulations and associated Information required.

measure (RobustErr) which counts the fraction of data points in D for which there is atleast one
error among R observations. More precisely

RobustErr(RE) =
∑ntstt=1 1(∃s|yst /=yt )

ntst
(28)

is a more appropriate measure than (ME) to evaluate robustness.
In the following section, we report experimental results for the algorithms developed in this

paper and benchmark them against the state of the art with respect to the above mentioned metrics.

7. Experimental Evaluation

This section presents experimental evaluation of the formulations, namely Nominal−SVM,
USSVMSOCP, USSVMMN and RSVM. The Nominal−SVM formulation is the usual SVM for-
mulation (2) with the nominal kernel. The minimax problem (12) when solved by the FSS procedure
will be referred as USSVMMN. The solution of the SOCP (13) will be referred as USSVMSOCP.
Though as discussed before the setup of Bhadra et al. (2010) does not apply here but for sake of
completeness we have also included a comparison with RSVM. A brief summary of the formula-
tions is presented in Table 7.4

In particular it would be interesting to explore the following questions.

1. Comparison of USSVMSOCP and USSVMMN against the non-robust Nominal−SVM.

2. Convergence and scalability of USSVMMN algorithm

The section is organized as follows. We begin by a brief description of data sets in Section 7.1.
A comparative study of robustness is presented in Section 7.2. The first issue is discussed in Section
7.3. The experimental verification of the convergence rate of FSS procedure is discussed in Section
7.4. Next the scalability of USSVMMN over USSVMSOCP is discussed in Section 7.5.

7.1 Data Sets

We created synthetic data sets to test the generalization and robustness properties of the proposed
formulations. Additionally we also have empirically tested them on protein structure data. We
describe them below.

4. Relevant data and scripts are available at http://mllab.csa.iisc.ernet.in/˜sahely/uncertainkernel.html.
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7.1.1 SYNTHETIC DATA SETS AND KERNEL FUNCTIONS

It is important to evaluate the effect of robustness on wide variety of situations. To this end we use
the following data generation mechanism suited for binary classification problems.

Choose d ∼Uni f (2,100), whereUni f (n1,n2) is the uniform distribution over all integers from
n1 to n2. For such a choice of d create a mixture distribution consisting of 4 Gaussian distributions,
N(µ,Σ), with diagonal covariance matrix. The mean of each Gaussian distribution, µ ∈ Rd , is
determined by independently choosing µj ∼Uni f orm(−5,5) j = 1, . . . ,d. Each diagonal entry of
the diagonal matrix Σ is independently drawn fromUni f orm(0,5). We assigned labels to the centers
of each Gaussian distribution according to the sign(w$x) where w ∈ Rd is a random vector with
‖w‖= 1. A data set of 2N points was generated as follows. First a set of N points corresponding to
the positive class was generated by sampling N observations from the Gaussian mixture distribution
consisting of positively labeled mixture components. The set of N points were generated from
negatively labeled mixture components.

We study the problem of robust classification when the kernel values are not available but are
governed by (10). Next we describe the construction of base kernels needed in (10). A linear
kernel will be very effective for any data set D, created by the data generation process described.
Given D = {(xi,yi)|i = 1, . . . ,N} we define K = x$i x j. Furthermore, L kernels were simulated as
follows; Kl =K+ZlZl$, where Zli j were generated using: a) Gaussian (0,1) b) Uniform [-1,1] c)
centered Beta (0.5,0.5) distributions. After that, the generated values were multiplied by a random
li j ∼ Uniform(0,0.05|Kij|). This leads to L valid positive semidefinite kernels for each of the
distribution, namely Gaussian, Uniform, or Beta.

We will denote by DG(S,N,L), the set of S data sets, {D1, . . . ,DS}. Each data set was created
by the data-generation mechanism discussed earlier and has N examples per class with L kernels
generated by the Gaussian distribution. Similarly DU(S,N,L) and DB(S,N,L) will correspond to
the Uniform and Beta distribution.

7.1.2 RESOLUTION-AWARE PROTEIN STRUCTURE CLASSIFICATION

We have used a data set based on the SCOP (Murzin et al., 1995) 40% sequence non-redundant
data set taken from Bhadra et al. (2010). The data set has 15 classes (SCOP superfamilies), having
10 structures each. The names of these superfamilies are reported in Appendix D. To study the
effect of robustness we studied the classification problem on all possible pairs, which gave rise to
105 data sets in total. Each data set D can be thought of D = {Pi,yi,ri|i = 1, . . . ,n} where Pi is the
nominal structure described in (3) with label yi. Incorporation of resolution information ri leads to
uncertainty sets U(Pi) (see (4)). Using the kernel function described in Bhattacharya et al. (2007)
and assuming that the resultant uncertainty in kernel values obey (10) the kernel functionsK,Kl are
computed by the procedure outlined in Section 4.3.

As described in the Section 3, the uncertainty set imposed by RSVM maynot always be appro-
priate. However we still provide a comparison to the robust formulations described in this paper for
the sake of completion. In the setting of the paper a set of kernel matrices K = {K1,K2, . . . ,KL}
are specified. The formulation RSVM needs support information, (see Table 7), which could be
extracted as follows

K=
1
L

L

∑
l=1
Kl ai j = min

l
(Kli j) bi j = max

l
(Kli j).
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The algorithms USSVMSOCP and USSVMMN and RSVM have been implemented in Matlab
with the help of Sedumi5 (Sturm, 1999). We have used libSVM6 as an SVM solver. All the ex-
periments have been performed on a 64 bits Linux PC with 8 Intel Xeon 2.66 GHz processors and
16GB of RAM. The RSVM implementation uses a Quasi Newton procedure outlined in Bhadra
et al. (2010). As it often gets stuck in a local minima we have used multiple starting points. All
results on RSVM reported here corresponds to the results of the best starting point among 100
randomly selected starting points according to RSVM objective function.

7.2 Comparison of Robustness

We begin by studying the effect of robustness on synthetic data. In the proposed model of uncer-
tainty the parameter κ plays a very important role. When κ = 0, then there is no uncertainty and
as it increases the uncertainty becomes more pronounced. The utility of robust formulations would
become clear as κ is increased. One would like to experimentally verify the fact that indeed this is
the case. To this end we conducted the following experiment.

We created data sets DG(S,N,L),DU(S,N,L),DB(S,N,L) with S = 10,N = 250,L = 200, as
described in Section 7.1. We have performed 5-fold cross-validation on all the 10 data set. Here
we vary κ ∈ {0.1,0.2,0.3,0.5,1,1.5,2,2.5,3,3.5,4,5} with R= 100. In Figure 2, we have plotted
the RobustErr (28) averaged over all 10 data sets for various distributions and choices of κ. Though
we get similar result for few different values of C here we have reported the results for the value of
C = 100. Again DG will refer to the Gaussian distribution, DU refers to the uniform case, and DB
refers to the Beta distribution.

The results of the experiment were as follows. It can be seen from Figure 2 that at κ= 0, the RE
for bothUSSVMSOCP and USSVMMN are exactly same as that ofNominal−SVM. It confirms the
fact that at κ= 0,USSVMSOCP(USSVMMN) is equivalent toNominal−SVM, as there is no uncer-
tainty. Figure 2 shows that, with the increase of uncertainty in the test examples, the RobustErr(28)
for Nominal−SVM increases substantially when compared to USSVMSOCP and USSVMMN on
all the 3 data sets. This shows that, non-robust classifiers, for example, SVM, are unable to handle
uncertainty compared to the proposed robust classifiers. Also as expected both USSVMSOCP and
USSVMMN are equivalent and so on the test one they exhibit similar performance.

7.3 Comparison of Generalization Error

In this section we compare the error measures, RE (28) and ME (27).
We again use the same data sets described in the previous subsection. For all the metrics, we

have performed 5-fold cross-validation on all the 10 data sets corresponding to each distribution.
The hyper-parameters (C and ε) for each classifier, were chosen using a grid search mechanism
from the set C = {0.1, 1, 5, 10, 50, 100, 200, 500} and ε = {0.05+ 0.05step|step = 0, . . . ,9}.
For each metric, the cross-validation accuracy, 100(1−ErrorMeasure)%, averaged over 10 data
sets for various distributions, are reported in Figure 3. Note that DG refers to the Gaussian case, DU
refers to Uniform case and DB refers to the Beta case. The parameter κ was set to 1.

The results were as follows. All the formulations achieved an accuracy of 90% when NE was
used as a error measure. From Figure 3 we see that both USSVMSOCP and USSVMMN beats
RSVM in terms of RE indicating that RSVM is not well suited for the uncertainty sets considered

5. Sedumi can be found at http://sedumi.ie.lehigh.edu/.
6. LibSVM can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.

2940



UNCERTAIN KERNEL MATRICES

Figure 2: Plot of RE for distributions (clockwise starting from top left )DG,DU,DB with varying κ.
Formulations compared areUSSVMMN,USSVMSOCP andNominal−SVM. The legend
SVM refers to Nominal−SVM

here. When we use ME, which is not as conservative as RE the gap narrows. This experiment
demonstrates that in the presence of uncertainty the performance of extremely accurate classifiers
suffer drastically but the proposed robust formulations fare much better in handling uncertainty. In
addition, Figure 4 shows that the average training time of USSVMSOCP is same as that of RSVM
butUSSVMMN is 10 times faster than both of them, even for these small scale data sets (200 training
datapoints per class).

7.4 Verification of Convergence of FSS Algorithm

In this section, we have experimentally verified that the proposed saddle point based algorithm has
O( 1

M2
s
) convergence rate (see (20)). Recall that Ms is the actual number of steps, which one can

consider as iterations.
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Figure 3: Cross-validation accuracy (%) obtained with USSVMSOCP, USSVMMN, RSVM and
Nominal−SVM using RE (28)and ME (27). All values reported here are 100(1 −
Errormeasure)%

We report results on Data Set DU(1,N,5) where N ∈ {50,500}, and C was chosen to be 1 for
N = 50 and similarly for N = 500 it was fixed to be 10.

Figure 5 shows the convergence rate of the Saddle Point based algorithm for USSVM formula-
tion. The x-axis and the y-axis denote log10(Ms) and log10(εsad) respectively. All the points on the
graph indicate the “end” of the sth step and circled points indicate the “end” of the s∗ step. When
s > s∗, ideally the graph should be a straight-line with slope less than −2 and one can observe the
same in Figure 5. On the other hand, for s< s∗ rate of decrease in εsad is much slower than the case
in s> s∗.

7.5 Scalability of USSVMMN

In this section we study the relative performace of USSVMMN versus USSVMSOCP on large data
sets. We also verify the convergence criteria of proposed USSVMMN.

In the USSVMMN algorithm the number of stages and the number of iterations inside one stage
do not depend on the number of data points, see Section 5.2. In each iteration we need to solve two
gradient projection type problems. It appears that they are extremely cheap to compute; in one case
there is a closed form solution, while in the other case we could solve it by a line search algorithm.
Both USSVMSOCP and USSVMMN solves the same problem but the computation required may dif-
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Figure 4: Average Training Time in Seconds obtained withUSSVMSOCP,USSVMMN, andRSVM.
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Figure 5: Rate of convergence for Saddle point based algorithm

fer significantly. To this end we have compared the training times forUSSVMSOCP and USSVMMN
with increasing the number of training data points (N). For this experiment, we have used following
data set.
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Figure 6: Training time forUSSVMSOCP USSVMMN with N = [500,1000,2000,3000,4000,5000]
and L= [10,50]

We have used synthetic data set generated similar to DU (please see Section 7.1) with number
of data points in each class are {250,500,1000,1500,2000,2500}, where L= {10,50}. The values
of R= 100,C = 10 and κ= 1 were used.

Figure 6 shows training time (in sec) for varying N. One can observe that, with the increase
of N, the training time for USSVMSOCP increases very steeply compared to the training time for
USSVMMN. As expected, training time for USSVM in general increases with the increase of num-
ber of uncertain kernels (L). As an example, to build a robust classifier with only 3000 data points,
USSVMSOCP needs more than 5 hours while USSVMMN completes within 20 minutes. This con-
cludes that, to build a robust classifier with a medium scale of data (even more than 1000) the saddle
point based algorithm is much more effective then a Quadratic Conic Program based formulation.

7.6 Discussion of Experimental Results

The results on the synthetic experiments show that USSVMSOCP,USSVMMN performs better than
RSVM in terms of generalization as measured by various error measures. All the three formulations
are more robust than Nominal−SVM. It is also demonstrated that USSVMMN is much more
scalable than USSVMSOCP. Even to build a robust classifier with 3000 data points, USSVMSOCP
needs more than 5 hours while USSVMMN completes within 20 minutes.

7.7 Resolution-aware Protein Structure Classification

This section presents experimental results for comparing the robustness performance of the pro-
posed USSVM, with the existing RSVM formulation.
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Error Measure USSVMSOCP USSVMMN RSVM Nominal−SVM
Robust Error(RE) 25.14 24.95 20.95 10.38
Majority Error(ME) 85.70 83.36 81.12 71.01
Nominal Error(NE) 80.76 79.67 80.38 71.57

Table 2: Comparison of USSVMSOCP, USSVMMN RSVM and Nominal−SVM using accuracy
measures, 100(1−ErrorMeasure)%, where Error measures are defined in Section 6.2.
Table shows average accuracy for all 105 one-vs-one classification problems

The data set is described in Section 7.1. The experimental methodology follows “one-vs-one”
classification setting with all 15 classes of protein structures. Leave-One-Out (LOO) cross valida-
tion using SVM, RSVM and USSVM was performed on all 105 of such classification problem. In
all cases we report accuracy, computed as 100(1−ErrorMeasure)%.

Let D = {(Pi,ri,yi)} be a protein structure data sets where Pi is the set of coordinates of ith pro-
tein structure obtained from Astral7 database, where ri is the corresponding resolution information
obtained from the PDB, and yi is the class label. Using resolution information, we generated a set
of perturbed structures Qi = {P1

i , . . . ,PLi } for each Pi as follows. For each atom pia of Pi generated
structure Psi with coordinates of atoms as plia = pia + u and u ∼U(−ri2 , ri

2 ). One can create a set
of uncertain kernels, where K(p, p′) is a kernel function computed between two protein structures
p ∈ Qi and p′ ∈ Qj. For our experiments, we have generated a set of kernels consisting of L = 50
base kernels. Denoting the kernel matrices by {K1, . . . ,KL} the uncertainty set is defined as E(1)
(see (11)) with K = 1

L ∑
L
l=1Kl and κ = 1. Given the base kernels the prediction is implemented,

as reported in Section 6, with R = 100 and κ = 1. For the purpose of our comparison, we have
used weighted pair-wise distance substructure kernel (Bhattacharya et al., 2007). These kernels are
purely based on protein structure (specially position of cα). Please refer to Appendix C for details.
For RSVM, we compute the following,

Ki j =Ki j, ai j = min
p∈Qi,p′∈Qj

K(p, p′),bi j = max
p∈Qi,p′∈Qj

K(p, p′).

7.7.1 RESULTS ON PROTEIN STRUCTURE CLASSIFICATION

Table 2 and Table 3 report results for RSVM, USSVMMN and Nominal−SVM (SVM with kernels
based on nominal protein structure reported in PDB files) using both standard and robust error
measures defined in section 6.2 in the Leave-One-Out (LOO) procedure. Hyper-parameters (C
and/or ε) for RSVM and C for USSVMMN and Nominal−SVM were tuned separately using the
grid search mechanism. As this is a 15 class classification problem and we followed a “one-vs-one”
setting, we have reported average accuracy of all 105 classifiers (Table 2). We have also provided a
list of a few individual classes (Table 3) whereUSSVM performed significantly better than RSVM.
The results are presented in the form of a histogram of performance differences (%) of USSVM
against RSVM and SVM obtained by using RE (28) in Figure 7.

It is clear that RSVM, and USSVM perform significantly better than their non-robust coun-
terparts, both in terms of Accuracy (measured by MajorityErr) and Robustness (measured by Ro-
bustErr). This result indicates that, the use of resolution information improves the overall classifica-

7. Astral can be found at http://astral.berkeley.edu.
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Figure 7: Histogram of performance differences (%) between USSVMSOCP and RSVM is shown
in the top figure. The bottom figure corresponds USSVMSOCP and SVM

tion accuracy. In fact, USSVM even beats RSVM in terms of robustness. Note that, for more than
50% classification problem accuracy of USSVMSOCP is more than 5% of that of RSVM in terms
of Robustness. For few classes difference in accuracy was more than 10% (see Table 3). More-
over, this performance difference increases while comparing USSVM against Nominal−SVM.
For more than 60% classification problem accuracy of USSVMSOCP is more than 15% of that of
Nominal−SVM in terms of robustness and notably for almost all the cases the margin was more
than 10% in term of RobustErr.

8. Conclusion

We studied the problem of designing robust classifiers when the kernel matrices are uncertain. The
chance constraint model proposed in Bhadra et al. (2010) made important progress on this problem
but it had an important theoretical flaw. It did not constitute a valid model of uncertainty but instead
a relaxed version of the original problem. This led to non-convexity and local minima problems.
Instead of a chance constraint approach we follow the robust optimization community and advocate
a geometric approach. The approach proposed here not only defines a valid model of uncertainty,
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Error Measure USSVMSOCP USSVMMN RSVM Nominal−SVM

c.66.1 vs c.68.1
Robust Error 31.00 31.00 18.00 11.00
Majority Error 56.00 65.00 50.00 50.00
Nominal Error 50.00 55.00 40.00 50.00

c.37.1 vs c.55.3
Robust Error 23.00 23.00 12.00 6.00
Majority Error 60.00 60.00 55.00 51.00
Nominal Error 55.00 55.00 35.00 55.00

d.58.4 vs c.108.1
Robust Error 21.00 21.00 12.00 6.00
Majority Error 64.00 70.00 65.00 60.00
Nominal Error 60.00 65.00 60.00 55.00

c.66.1 vs c.108.1
Robust Error 27.00 27.00 18.00 12.00
Majority Error 58.00 55.00 60.00 50.00
Nominal Error 55.00 55.00 45.00 55.00

c.55.1 vs c.2.1
Robust Error 27.00 27.00 19.00 10.00
Majority Error 70.00 65.00 70.00 60.00
Nominal Error 70.00 55.00 60.00 55.00

c.66.1 vs d.58.4
Robust Error 33.00 33.00 25.00 18.00
Majority Error 72.00 65.00 70.00 55.00
Nominal Error 50.00 50.00 65.00 70.00

b.18.1 vs b.80.1
Robust Error 23.00 23.00 15.00 6.00
Majority Error 65.00 70.00 63.00 58.00
Nominal Error 60.00 60.00 60.00 50.00

c.55.3 vs c.55.1
Robust Error 28.00 25.00 20.00 10.00
Majority Error 88.00 70.00 80.00 65.00
Nominal Error 60.00 60.00 85.00 60.00

c.66.1 vs d.92.1
Robust Error 29.00 29.00 22.00 11.00
Majority Error 75.00 75.00 72.00 55.00
Nominal Error 65.00 60.00 70.00 65.00

Table 3: Comparison of USSVMSOCP, USSVMMN RSVM, and Nominal−SVM using accuracy
measures, 100(1−ErrorMeasure)%, where Error measures are defined in Section 6.2.
Table shows accuracy for one-vs-one classification problem among few classes. Descrip-
tion of superfamilies of SOCP are in Table 4
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but leads to a tractable optimization problem namely a SOCP formulation. However SOCP formula-
tions maynot be well suited for large scale problems. We show that the problem can be equivalently
posed as a minmax problem and can be solved by saddle-point algorithm. We adapt the general
purpose algorithm of Nemirovski (2004) for solving saddle point procedure to this problem. The
algorithm proceeds in stages. We propose a novel special case of this algorithm, FSS, where the
stepsize remains fixed per stage. The FSS algorithm has same order of O(1/T 2) convergence, T
being the number of iterates. This procedure is widely applicable which is a matter of indepen-
dent study. We demonstrate its applicability to RSVM and to the problem at hand. The proposed
algorithm, USSVMMN combines FSS with suitable projection steps and is more scalable than the
SOCP formulation, USSVMSOCP. Using a robust optimization based framework we pose the prob-
lem of classifier design as a minimax problem. The minimax procedure is solved by a novel FSS
procedure which has O(1/T 2) convergence. Empirical results show that USSVMSOCP is indeed a
robust alternative to uncertainty in the kernel matrices both on synthetic and real world data sets.
Furthermore experimental results demonstrate that USSVMMN indeed achieves the theoretical rate
of convergence and is a scalable alternative to USSVMSOCP.
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Appendix A. Proofs for the Saddle Point Algorithm

In this section we prove the convergence of FSS algorithm.

A.1 An Important Lemma

We start with the following Lemma.

Lemma 6 Consider stage s of Algorithm FSS, and let

‖(x,y)‖=
√

αs
ΩX

‖x‖2
X + βs

ΩY R2
s
‖y‖2

Y ⇒‖(ξ,η)‖∗ =
√

ΩX
αs
‖ξ‖2

X ,∗+
ΩY R2

s
βs

‖η‖2
Y ,∗.

Function ωs(·) is a d.-g.f. for Z compatible with the norm ‖ ·‖, and

(a) argminZωs(·) = (xω,  ys) ∈ Zs & maxZsωs(·)−minZsωs(·)≤ 1,
(b) ∀(z,z′ ∈ Z) : ‖G(z)−G(z′)‖∗ ≤ Ls‖z− z′‖. (29)

Proof Since ωY (·) is a d.-g.f. for Y , this function is convex and continuously differentiable on the
entire Y , It follows that ωs(x,y) is continuous convex function on Z, the set Zo := {(x,y) : ∂ωs(z) /=
/0} is equal to {x : ∂ωX(x) /= /0}×Y , and ωs(x,y) admits a continuous on Z0 selection of subgradient.
All we need in order to complete the verification of the fact that ωs is a d.-g.f. compatible with ‖ ·‖
is to verify that ωs is strongly convex with modulus 1 w.r.t. the latter norm, which is immediate:
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with (x,y),(x′,y′) ∈ Zo we have

〈ω′
s(x,y)−ω′

s(x′,y′),(x− x′,y− y′)〉
= αs

ΩX
〈ω′

X(x)−ω′
X(x′),x− x′〉+ βs

ΩY
R−1
s 〈ω′

Y ([y−  ys]/Rs)−ω′
Y ([y

′ −  ys]/Rs),y− y′〉
= αs

ΩX
〈ω′

X(x)−ω′
X(x′),x− x′〉

+ βs
ΩY

〈ω′
Y ([y−  ys])/Rs)−ω′

Y ([y
′ −  ys]/Rs), [y−  ys]/Rs− [y′ −  ys]/Rs〉

≥ αs
ΩX

‖x− x′‖2
X + βs

ΩY
(‖y− y′‖2

Y /R
2
s ) = ‖(x− x′,y− y′)‖2.

It remains to prove (29). Relation (29.a) is evident. To verify (29.b), let z= (x,y),z′ = (x′,y′) ∈ Zo,
let Δx = x′ − x, Δy = y′ − y, ξ = ‖Δx‖X

√
αs/ΩX , η = ‖Δy‖Y

√
βs/ΩY R−1

s , so that ‖z− z′‖ =
‖[ξ;η]‖2 by (16). We have

‖Gx(z)−Gx(z′)‖X ≤ Lxy‖y− y′‖Y , ‖Gy(z)−Gy(z′)‖Y ≤ Lxy‖x− x′‖X +Lyy‖y− y′‖Y
[see (15)]
⇒‖G(z)−G(z′)‖2

∗ ≤
ΩX
αs
L2
xy‖Δy‖2

Y +
ΩY R2

s
βs

[
Lxy‖Δx‖X +Lyy‖Δy‖Y

]2

=
ΩXΩY R2

s L2
xy

αsβs
η2 +

ΩY R2
s

βs

[
Lxy
√
ΩX/αsξ+LyyRs

√
ΩY /βsη

]2

= ‖M[ξ;η]‖2
2,

M =





√
ΩXΩY

αsβs
RsLxy√

ΩXΩY

αsβs
RsLxy

ΩY R2
s

βs
Lyy



= LsN, N =

[ √
(1−βs)/βs√

(1−βs)/βs (2βs−1)/βs

]
,

where the relations in the last line are readily given by (16). In view of this computation and the
fact that ‖z− z′‖ = ‖[ξ;η]‖2, in order to verify (29.b) it suffices to show that the spectral norm of
the symmetric matrix N is ≤ 1; since N is nonnegative due to βs ≥ 1/2, see (16), the latter task is
exactly the same as verifying positive semidefiniteness of the matrix I2 −N, which is immediate.

A.2 Proof of Proposition 2

Consider stage s, assuming that (Is) take place. For z ∈ Zo and ξ ∈ Z := X ×Y , let

Vs
z (u) = ωs(u)−ωs(z)−〈ω′

s(z),u− z〉 : Z→ R,
Proxz(ξ) = argmin

u∈Z
{〈ξ−ω′

s(z),u〉+ωs(u)} : Z → Z;

note that Proxz(ξ) is well defined due to strong convexity of ωs(·). Our basic observation is as
follows:

Lemma 7 Nemirovski, 2004, cf. Lemma 3.1 Given z ∈ Zo, ξ,η ∈ E, let w = Proxz(ξ) and z+ =
Proxz(η). Then for all u ∈ Z it holds

〈η,w−u〉 ≤Vs
z (u)−Vs

z+(u)+ 〈η,w− z+〉−Vs
z (z+) (a)

≤Vs
z (u)−Vs

z+(u)+ 〈η−ξ,w− z+〉−Vs
z (w)−Vs

w(z+) (b)
≤Vs

z (u)−Vs
z+(u)+

[1
2‖η−ξ‖∗‖w− z+‖− 1

2‖z−w‖2 − 1
2‖z+−w‖2] (c)

≤Vs
z (u)−Vs

z+(u)+
1
2 [‖η−ξ‖2

∗ −‖w− z‖2] (d).

(30)
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Proof. By definition of z+ = Proxz(η) we have 〈η−ω′
s(z)+ω′

s(z+),u− z+〉 ≥ 0; rearranging terms
and taking into account the definition of Vs

v (u), we get (a). By definition of w = Proxz(ξ) we have
〈ξ−ω′

s(z)+ω′
s(w),z+−w〉 ≥ 0, whence 〈η,w− z+〉 ≤ 〈η− ξ,w− z+〉+ 〈ω′

s(w)−ω′
s(z),z+−w〉;

replacing the third term in the right-hand side of (a) with this upper bound and rearranging terms,
we get (b). (c) follows from (b) due to the strong convexity of ωs implying that Vs

v (u)≥ 1
2‖u− v‖2,

and (d) is an immediate consequence of (c). !

Applying Lemma 7 to z = zt,s, ξ = τsG(zt,s) (which results in w = wt,s) and η = τsG(wt,s) (which

results in z+ = zt+1,s), we obtain due to (30) for all u ∈ Z:

τs〈G(wt,s),wt,s−u〉 ≤Vs
zt,s(u)−V

s
zt+1,s(u)+

1
2
[
τ2
s‖G(wt,s)−G(zt,s)‖2

∗ −‖wt,s− zt,s‖2]
︸ ︷︷ ︸

δt,s

.

Observe that δt,s ≤ 0 by (29.b) and by definition of τs (see (16)), we arrive at

τs〈G(wt,s),wt,s−u〉 ≤Vs
zt,s(u)−V

s
zt+1,s(u) ∀u ∈ Z. (31)

Let u ∈ Zs, and let
φs(x) = max

y∈Y :‖y−  ys‖Y ≤Rs
φ(x,y).

Summing up (31) over t = 1, ...,Ns, taking into account thatVs
z1,s(u)≤ 1 due to u ∈ Zs by (29.a), that

Vs
z (u)≥ 0, we get

∀u ∈ Zs :
1
Ns

Ns
∑
t=1

〈G(wt,s),wt,s−u〉 ≤ A :=
1

τsNs
.

On the other hand, setting wt,s = (xt,s,yt,s), u= (x,y) and noting that zs = (xs,ys) = 1
Ns ∑

Ns
t=1wt,s

(see (18)), we have

1
Ns ∑

Ns
t=1〈G(wt,s),wt,s−u〉

= 1
Ns ∑

Ns
t=1
[
〈φ′x(xt,s,yt,s),xt,s− x〉+ 〈φ′y(xt,s,yt,s),y− yt,s〉

]

≥ 1
Ns ∑

Ns
t=1 [[φ(xt,s,yt,s)−φ(x,yt,s)]+ [φ(xt,s,y)−φ(xt,s,yt,s)]] (a)

= 1
Ns ∑

Ns
t=1[φ(xt,s,y)−φ(x,yt,s)]

≥ φ( 1
Ns ∑

Ns
t=1 xt ,y)−φ(x, 1

Ns ∑
Ns
t=1 yt) = φ(xs,y)−φ(x,ys) (b)

(32)

(inequalities in (a),(b) are due to the convexity-concavity of φ), so that (32) results in φ(xs,y)−
φ(x,ys)≤ A for all (x,y) ∈ Zs. Taking supremum in (x,y) ∈ Zs, we arrive at

φs(x
s)−φ(ys)≤ A≤

Ls
Ns

, (33)

where the concluding inequality follows from the definition of A due to τs = 1/Ls. Observe that the
left-hand side in (33) is ≥ φs(xs)−SadVal (due to φ(ys)≤ SadVal), while the right-hand side in (33)
is ≤ θR2

s
32 due to (16.e). Thus, (33) implies that

φs(x
s)−SadVal ≤

θR2
s

32
. (34)
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We claim that in fact φs(xs) = φ(xs). Indeed, assuming the opposite, let Ys = {y ∈ Y : ‖y−  ys‖Y ≤
Rs}, and let  y= argmaxy∈Ys φ(x

s,y), so that φs(xs) = φ(xs,  y). Since φ(xs) := max
y∈Y

φ(xs,y)> φs(xs) :=

max
y∈Ys

φ(xs,y) and Ys is cut off Y by the inequality ‖y−  ys‖Y ≤ Rs, we have ‖  y−  ys‖Y = Rs, while by

(Is) we have ‖y∗ −  ys‖Y ≤ Rs/2, whence, in particular, y∗ ∈ Ys and ‖y∗ −  ys‖Y ≥ Rs/2. Since the
function φ(xs,y) is strongly concave, modulus θ w.r.t. ‖ ·‖Y , and attains its maximum in y ∈Ys at  y,
while y∗ ∈ Ys, we have φ(xs,y∗)≤ φ(xs,  y)− θ

2‖y∗ −  y‖2
Y ≤ φ(xs,  y)− θ

8R
2
s . It follows that SadVal =

min
x∈X

φ(x,y∗) ≤ φ(xs,y∗) ≤ φ(xs,  y)− θ
8R

2
s = φs(xs)− θ

8R
2
s . The resulting inequality contradicts (34),

and this contradiction shows that in fact φs(xs) = φ(xs). Thus, (33) reads

φ(xs)−φ(ys)≤
Ls
Ns

≤
θR2

s
32

, (35)

as required in (19) (recall that by construction Rs = 2−sR0). Finally, (35) implies that

φ(y∗)−φ(ys) = SadVal−φ(ys)≤ φ(xs)−φ(ys)≤
θR2

s
32

; (36)

since the function φ(·) is strongly concave, modulus θ w.r.t. ‖ · ‖Y , and attains its maximum over
y ∈ Y at y∗, we have φ(y∗)− φ(ys) ≥ θ

2‖y∗ − ys‖2
Y , which combines with (36) to imply that ‖y∗ −

ys‖Y ≤ Rs/4 = Rs+1/2; this is nothing but (Is+1). Thus, we have proved that if (Is) takes place, then
Algorithm FSS ensures (19) and (Is+1). Since (I0) holds true by assumption, we conclude that (19)
and (Is) take place for all s. All remaining claims in Proposition are now straightforward. !

Appendix B. Projection on the SVM Constraint Set

This appendix discusses the projection step encountered in Section 5.3. We consider the following
problem

y+ = argmin
y∈Y

{
−yTq+

1
2
(y−  y)T (y−  y)

}
,

where Y = {y ∈ Rn|0 ≤ yi ≤ C,∑n
i=1 yisi = 0} is the SVM constraint set and si ∈ {1,−1}. When

 y ∈ Y the optimality conditions yield

y+i =






0,  yi+qi+νsi ≤ 0
C,  yi+qi+νsi ≥C
 yi+qi+νsi otherwise





.

Furthermore y+ should satisfy ∑i y+isi = 0. It is easy to verify that min(−maxi+(  yi+qi),mini−(  yi+
qi)−C)≤ ν≤max(C−mini+(  yi+qi),maxi−(  yi+qi)). Since the problem is feasible there exists at
least one ν for which ∑i y+isi = 0 holds. We compute this by grid search. If there are more than one
solution satisfying the constraint ∑i y+isi = 0 we choose the solution which yields a lower objective.

Appendix C. Kernel Functions for Protein Structures

Experiments on protein structures have been conducted with Weighted Pairwise Distance Sub-
structure Kernel described in Bhattacharya et al. (2007). To make the paper self-contained we
describe the kernel function in brief, for more details please see Bhattacharya et al. (2007).
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Fix a positive integer l. A substructure Nia consists of l spatially nearest residues to the ath
residue of protein Pi. The substructure kernel between two substructures Nia and Njb is defined as

Kpds(Nia ,Njb) = ∑
π∈∏(l)

e
−‖dia−π(d jb )‖

2

σ2

where dia denotes set of pairwise distance betwen all possible pair of residues in Nia . Hence di =
{d1

i , . . . ,dmi } where m = l(l− 1)/2. The distance between any two residues a and b are computed
by ‖ca− cb‖, see (3), where ∏(l) denote all possible permutations of l residues in the substructure.
Finally the kernel function between two protein structures is defined as

K(Pi,Pj) =
ni
∑
a,b=1

n j

∑
c,d=1

Kpds(Nia ,Njc)Kpds(Nib ,Njd )Knorm(ia, ib, jc, jd)

where Knorm(ia, ib, jc, jd) = e−
(‖cia−cib ‖−‖c jc−c jd ‖)

2

σ2 .

Appendix D. List of Superfamilies

We list below the Superfamilies studied in Section 7.7.

Superfamily Description
b.18.1 Galactose-binding domain-like
b.29.1 Concanavalin A-like lectins/glucanases
b.30.5 Galactose mutarotase-like
b.40.4 Nucleic acid-binding proteins
b.80.1 Pectin lyase-like
c.2.1 NAD(P)-binding Rossmann-fold domains
c.37.1 P-loop containing nucleoside triphosphate hydrolases
c.55.1 Actin-like ATPase domain
c.55.3 Ribonuclease H-like
c.66.1 S-adenosyl-L-methionine-dependent methyltransferases
c.68.1 Nucleotide-diphospho-sugar transferases
c.69.1 alpha/beta-Hydrolases
c.108.1 HAD-like
d.58.4 Dimeric alpha+beta barrel
d.92.1 Metalloproteases (”zincins”), catalytic domain

Table 4: List of Superfamilies
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Abstract

Assessing treatment effects in observational studies is a multifaceted problem that not only involves
heterogeneous mechanisms of how the treatment or cause is exposed to subjects, known as propen-
sity, but also differential causal effects across sub-populations. We introduce a concept termed the
facilitating score to account for both the confounding and interacting impacts of covariates on the
treatment effect. Several approaches for estimating the facilitating score are discussed. In par-
ticular, we put forward a machine learning method, called causal inference tree (CIT), to provide
a piecewise constant approximation of the facilitating score. With interpretable rules, CIT splits
data in such a way that both the propensity and the treatment effect become more homogeneous
within each resultant partition. Causal inference at different levels can be made on the basis of
CIT. Together with an aggregated grouping procedure, CIT stratifies data into strata where causal
effects can be conveniently assessed within each. Besides, a feasible way of predicting individual
causal effects (ICE) is made available by aggregating ensemble CIT models. Both the stratified
results and the estimated ICE provide an assessment of heterogeneity of causal effects and can be
integrated for estimating the average causal effect (ACE). Mean square consistency of CIT is also
established. We evaluate the performance of proposed methods with simulations and illustrate their
use with the NSW data in Dehejia and Wahba (1999) where the objective is to assess the impact of
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a labor training program, the National Supported Work (NSW) demonstration, on post-intervention
earnings.
Keywords: CART, causal inference, confounding, interaction, observational study, personalized
medicine, recursive partitioning

1. Introduction

Comparative studies that involve evaluation of the effect of an investigational treatment or a putative
cause on an outcome variable are fundamental in many application fields. The data may come from
either a designed experiment or an observational study. Regardless of the data sources, two major
issues exist when assessing the treatment effect: confounding and interaction effects of covariates.

A confounding variable or confounder is an extraneous covariate that relates to both the treat-
ment and the response and hence influences the treatment effect estimation. Controlling or adjusting
for confounders can be done in either design or analysis. In designed experiments, randomization,
matching, cohort restriction, and stratification are commonly-used ways to effectively control for
confounding variables. However, observational studies are often the only available choice due to
ethical or practical considerations. Causal inference with observational data is particularly challeng-
ing. The main obstacle is the nonrandom treatment assignment mechanism, in which the subjects
select a treatment that they believe best serve their interests or are exposed to a treatment according
to individual traits. As a result, systematic imbalance or heterogeneity may exist between individu-
als in the treated group and those in the control group. Thus it is crucial to control for confounders
in the analysis stage of such data. Common approaches include analysis of covariance (ANCOVA),
propensity score methods (Rosenbaum and Rubin, 1983), and directed acyclic graphs (DAGs; Pearl
2000 and Spirtes, Glymour, and Scheines 2001). Even with randomized experimental data, covariate
imbalance can also be revealed when examining data in a multivariate manner. Consider a hypo-
thetical example where m older women and m younger men are assigned to the treated group while
m older men and m younger women are assigned to the control group. The data appear to be per-
fectly balanced in terms of either age or gender, despite the perfect imbalance at their combination
levels. When the dimension of covariates gets high, each experimental unit essentially represents
an unique individual that is not replicable, which makes randomization less relevant. This partially
explains why covariate adjustment is practiced even with randomized experimental data. Associ-
ated with variable selection issues, additional challenges present themselves in the form of over-
or under- adjustment when confounders are incorrectly identified. For example, under-adjustment
occurs when an important confounder is uncollected in the data or excluded from the model. On the
other hand, some intermediary outcome variables, often referred to effect-mediators, are important
in understanding the mechanism how and why the treatment becomes effective. As an example
of over-adjustment, the treatment effect would be under-estimated when a mediator is mistakenly
considered as a confounder and included in the model for adjustment. Over-adjustment also may
occur when controlling for a collider that correlates with both the treatment and the outcome via an
‘M-diagram’ (Greenland, 2003).

In terms of influence of covariates on treatment effect assessment, another equally important
issue is interaction, also known as effect modification or effect moderation (see, e.g., VanderWeele
and Robins 2007 and VanderWeele 2009), which is concerned with differential treatment effects
at different levels or values of covariates. An effect modifier is a covariate that interacts with the
treatment and changes the direction and/or degree of its causal effect on the outcome. Existence of

2956



FACILITATING SCORE AND CAUSAL INFERENCE TREES

interaction complicates model interpretation. Detection of interaction is challenging. While inter-
actions are mostly formulated via cross-product terms in a linear model and restricted to be of the
first- or second-order, complex nonlinear or higher-order interactions may exist in reality. It is also
important to distinguish between qualitative interactions and quantitative interactions. Qualitative
interaction (Gail and Simon, 1985) occurs when there is a directional change in terms of treatment
preference, a cause of greater concern to practitioners. Closely related to treatment-by-covariate in-
teractions, subgroup analysis (see, e.g., Lagakos 2006) is an integral part in the analysis of clinical
trials. Practitioners and regulatory agencies are keen to know if there are subgroups of trial partic-
ipants who are more or less likely to be helped or harmed by the intervention under investigation.
Subgroup analysis helps explore the heterogeneity of the treatment effect across sub-populations
and extract the maximum amount of information from the available data. On the other hand, sub-
group analysis is subject to malpractice owing to difficulties in subgroup determination, multiple
testings, and lack of power. The new stimulating concept of personalized medicine or personalized
treatments (see, e.g., Jain 2009) is intended to refine the traditional medical decisions by capitalizing
on results of subgroup analysis or the knowledge of individualized treatment effects. Nevertheless,
sorting out differential causal effects often entails large data that are collected at post-trial periods,
for example, the Medicare or Medicaid databases.

Assessments of confounding and interaction intervene with each other. First of all, confound-
ing emerges as one primary issue in the assessment of the main effect of treatment, also known as
the average causal effect (ACE). However, ACE implicitly assumes homogeneity or unimportant
heterogeneity of causal effects. When strong treatment-by-covariate interaction exists, ACE may
become less practically useful. This is the case especially when the interaction is qualitative. Sup-
pose, for example, that the treatment effect is δ for half of the data (say, males) and −δ for the
other half (say, females), both having important scientific implications. The ACE in this case is
null. When solely based on ACE, one would arrive at the misleading conclusion that the treatment
does not have an effect. On the other hand, when the estimation bias caused by inadequately han-
dled confounders gets overwhelming, it may be disguised as differential treatment effects. We shall
illustrate more on this point later with simulation in Section 4. Therefore, it is crucial to have both
confounding and interaction well addressed in comparative analysis.

Rubin’s causal model (Rubin, 1974, 1977, 1978, 2005) provides a general framework for making
these assessments, within which the treatment effect is finely calibrated at three different hierarchi-
cal levels (i.e., unit, subpopulation, and population) using a counterfactual model and the concept
of potential outcomes. In this article, causal inference is explicitly reformulated as a predictive
modeling problem within the framework of Rubin’s causal model. To approach, we introduce a
concept, termed facilitating score, to address both the confounding and interacting impact of ex-
traneous variables on causal inference. Conditional on the facilitating score, homogeneity can be
achieved in both the assignment mechanism and and the effect of the treatment. Then we put for-
ward a causal inference tree (CIT) procedure, to approximate the facilitating score with a piecewise
constant function. CIT recursively splits data into disjoint groups in such a way that both treatment
assignment mechanisms and the treatment effects become more homogeneous within each group.
On the basis of CIT, a group of recursive partitioning methods are devised to make causal inference
at different levels.

The remainder of this paper is arranged in the following manner. In Section 2, following an
outline of Rubin’s causal inference framework, the concept of facilitating score is introduced and
methods for estimating the facilitating score are discussed. Section 3 presents the CIT methodology
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in detail. Section 4 contains simulation studies that are designed to investigate the performance of
CIT. An illustration is provided via a real data example in Section 5. In Section 6, we extend the
results to situations where the treatment variable is ordinal or nominal. Section 7 ends the article
with a brief discussion.

2. Facilitating Scores

We first review Rubin’s causal models, then we introduce the facilitating score concept and discuss
methods for estimating the facilitating score.

2.1 Causal Inference

In Rubin’s causal model (Rubin, 1974, 1977, 1978, 2005), a fine calibration of treatment effect is
facilitated by a comparison between the observed outcome on an individual or unit and the potential
outcome if the individual had been assigned to the counterfactual treatment group. Adopting his
notations, let Ω = {ω} be a finite population with N units, endowed with a probability measure P
that places uniform mass 1/N on each unit. Let T = T (ω) be a binary treatment assignment variable
with value 1 if unit ω receives the putative treatment and 0 otherwise. While the term ‘treatment
assignment’ or ‘selection’ is best suitable for designed experiments, we shall use it throughout this
article. In addition, let X= X(ω) be a p-dimensional vector of measured covariates for unit ω.

Let Y0 = Y0(ω) be the response that would have been observed if unit ω were assigned to the
control group and let Y1 = Y1(ω) be the response that would have been observed if unit ω received
the treatment. These two variables are called potential outcomes (Neyman, 1923). In reality, either
Y0(ω) or Y1(ω), but not both, can actually be observed depending on the value of T (ω), an inher-
ent fact called the fundamental problem of causal inference (Holland, 1986). Thus the observed
outcome is

Y (ω) = {1−T (ω)}Y0(ω)+T (ω)Y1(ω).

Throughout this paper, we consider random sampling from Ω so that {ω1, ...,ωn} forms an indepen-
dent and identically distributed (iid) sample of size n. The available data {(yi, ti,xi) =
(y(ωi), t(ωi),x(ωi)) : i = 1, . . . ,n} consist of n realizations of Y , T , and X. For the sake of sim-
plicity, we sometimes omit unit ω from the notations.

Causal inference is concerned with the comparison of the two potential outcomes via the ob-
served data. Holland and Rubin (1988) distinguished three levels of causal inferences: unit level,
subpopulation level, and population level. The lowest level of causal inference is a comparison of
Y0(ω) and Y1(ω), typically the difference Y1(ω)−Y0(ω), for each unit ω. Subpopulations can be
formed by restricting the values of covariates to a partition of Ω. The causal effect in a subpopula-
tion {ω : X(ω) ∈ B} is E(Y1|X ∈ B)−E(Y0|X ∈ B) for some Borel set B in the predictor space X.
The average causal effect (ACE) over the entire population Ω is E(Y1)−E(Y0). These three levels
form a hierarchy of causal inference in decreasing order of strength, in the sense that knowledge of
upper-level causal inferences can be inferred from that of lowered-level causal inferences, but not
vice versa. A preponderance of the literature in causal inference is centered on schemes for making
the population-level inference or estimating ACE under various scenarios.

Rosenbaum and Rubin (1983) introduced the concept of balancing score to tackle the confound-
ing issue in causal inference. A balancing score b(x) accounts for the dependence between X and
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treatment assignment or selection T ; that is

X⊥⊥ T |b(X).

Treated and untreated subjects sharing the same balancing score tend to have the same distribution
of covariates. Various covariate adjustment techniques implicitly adjust for an estimated scalar
balancing score. They showed that the propensity score

e(x) = P(T = 1|X= x),

which is defined as the conditional probability of assignment to the treated group given the measured
covariates X, is the coarsest balancing score. Namely, b(x) is a balancing score if and only if b(x)
is finer than e(x), that is, e(x) is a function of b(x).

Propensity score based matching, stratification (or subclassification), and adjustment have been
extensively used to balance the discrepancy in covariates between the treatment groups in the as-
sessment of ACE. In propensity score analysis, the assumption of strong ignorability plays a pivotal
role. Similar to that of missing at random (MAR) in the missing data literature (Rubin, 1976), this
assumption states that P(T |X,Y0,Y1) = P(T |X) or,

T ⊥⊥ (Y0,Y1)|X.

It is possible that strong ignorability is violated even there are no unmeasured variables that are
direct causes of any pair of measured variables. See, for example, Greenland (2003) for more
discussions. It is worth noting that this assumption does not imply that T ⊥⊥ Y |X. To illustrate,
consider a simple example where the causal effect at the unit level is constant, namely, Y1(ω)−
Y0(ω) = δ for any ω. Suppose that Y0 = f (X)+ ε and Y1 = f (X)+δ+ ε, where ε⊥⊥ X is the error
term. It follows that Y = δT + f (X)+ε. The ignorability assumption amounts to ε⊥⊥ T |X, which,
by no means, implies Y ⊥⊥ T |X.

Under this assumption of strong ignorability, Rosenbaum and Rubin (1983) established that
(Y1,Y0)⊥⊥ T |b(X) when 0 < e(X)< 1.It follows that

E(Y1|b(X),T = 1)−E(Y0|b(X),T = 0) = E(Y1|b(X))−E(Y0|b(X)). (1)

Therefore, the population-level causal interpretation may be achieved by averaging over the distri-
bution of b(X),

E(Y1−Y0) = Eb(X){E(Y1|b(X))−E(Y0|b(X))}. (2)

Equations (1) and (2) provide the basis for propensity score based methods.

2.2 Facilitating Score

Parallel to confounding, interaction is concerned with differential causal effects among units or sub-
populations. It is important to note that both Equation (1) and (2) involve a reduction of hierarchy in
causal inference, where individual-level inferences are integrated to make subpopulation-level infer-
ences on Ωb = {ω : b(X(ω)) = b} or sub-population level inferences are reduced to the population-
level inference on Ω. Such a reduction may not be taken for granted, because it implicitly assumes
homogenous lower-level causal effects. Specifically, if substantial differences in causal effects are
present at a lower level of inference, then transition to an upper-level inference may not be plausible
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and conclusions based on upper-level causal effects can be misleading. This can be particularly
problematic when qualitative interactions exist.

To gain insight, note that with balancing score b(X),

X %⊥⊥ (Y0,Y1) |b(X).

As a result, δb(X) = E(Y1|b(X) = b)−E(Y0|b(X) = b) in (2) is not a constant, but a function of
X within the subpopulation Ωb. If δb(X) varies substantially with X, we say that a treatment-by-
covariate interaction exists. In this case, the overall causal effect δb in Ωb becomes less pertinent
as it implicitly assumes that δb(X) can be reduced to a constant δb. A fine delineation of treatment
effect δb(X) at the individual level is desirable in the efforts of advancing personalized medicines.
Even if estimating δb is of interest, it cannot be summarized by direct comparison of treatment
means. Instead, it should be obtained by integrating over the distribution of X in Ωb, that is, δb =∫
Ωb
δb(x)dµ(x). Direct comparison of treatment means in Ωb makes another implicit assumption

that, within Ωb, X follows a uniform distribution. The same problem remains when using (2) for
ACE estimation.

It is therefore critical to take both heterogeneous treatment assignment mechanisms and dif-
ferential treatment effects into consideration when assessing the treatment effects. We introduce a
concept termed facilitating score to address these two issues simultaneously.

Definition 1 A facilitating score a0(X) is a q0-dimensional (0 < q0 ≤ p) function of X such that
X⊥⊥ (Y0,Y1,T ) |a0(X).

In this definition, the joint independence between X and (Y0,Y1,T ) given a0(X) can be relaxed as
two marginal independence conditions: X⊥⊥ T |a0(X) and X⊥⊥ (Y0,Y1) |a0(X), which separately
address the confounding effect and the interacting effect of X. But, if strong ignorability, that is,
T ⊥⊥ (Y0,Y1) |X, is further assumed, it follows that T ⊥⊥ (Y0,Y1) |a0(X) and hence the marginal
independence implies the joint independence as well. Existence of a0(X) is guaranteed, since X
itself can be regarded as a facilitating score.

Nevertheless, Definition 1 places strong requirements on a0(X). Estimating the facilitating
score essentially involves jointly modeling {Y0,Y1,T} conditional on X, which is unworkable since
(Y0,Y1) can not be observed at the same time. To get around this difficulty, we next consider a
weaker definition of facilitating score that is more practically useful.

Definition 2 A weak facilitating score a(X) is a q-dimensional (0 < q≤ p) function of X such that
(i) X⊥⊥ T |a(X) and (ii) E(Y1−Y0|X) = E(Y1−Y0|a(X)).

By condition (i), a weak facilitating score a(X) must be a balancing score; by condition (ii), any
effect moderation owing toX can be fully represented by a(X). Condition (ii) is equivalent to saying
that E(Y1−Y0|a(X) = a) is independent of X. However, this does not necessarily imply that

E(Y1|X) = E(Y1|a(X)) and E(Y0|X) = E(Y0|a(X)). (3)

There could exist a common function g(X) that has been cancelled out in Condition (ii). Namely,

g(X) = E(Y1|X)−E(Y1|a(X)) = E(Y0|X)−E(Y0|a(X)).
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A facility score must also be a weak facilitating score, but not vice versa. We use the term ‘fa-
cilitating’ because conditioning on a(X) helps facilitate causal inference, in the sense that causal
inference within the sub-population Ωa = {ω : a(X(ω)) = a} can be conveniently obtained via di-
rect comparison of sample mean responses. This is because both propensity and the treatment effect
δa become constant within Ωa.

Since the propensity e(X) is the coarsest balancing score, it follows that e(X) = e in Ωa. In
some scenarios, e(X) is explicitly a separate component of a(X), as exemplified by the parametric
approach outlined in Section 2.3; but this is not necessarily true in general, as exemplified by the
semi-parametric approach outlined in the same section. In terms of stratification, Ωa provides ad-
ditional refinements of Ωe = {ω : e(X(ω)) = e} in order to achieve homogeneous within-stratum
treatment effects.

Theorem 3 Suppose that the conditional joint density of (Y,T ) given X, fY,T |X(Y,T |X), can be
written as fY,T |X(Y,T |X) = g(Y,T,h(X)) for some function g(·). In other words, (Y,T )⊥⊥X |h(X).
Assuming that treatment assignment is strongly ignorable, h(X) is a weak facilitating score when
0 < e(X)< 1.

We defer the proof of Theorem 3 to Appendix A, where it is established as a special case of a more
general result in Theorem 7. Theorem 3 basically states that both confounding and interacting effect
of X on causal inference with the potential outcomes (Y1,Y0) can be handled by working with the
observed data (Y,T,X). More specifically, if the joint density of (Y,T ) given X can be accounted
for by a vector-valued function h(X), that is, (Y,T ) ⊥⊥ X |h(X), then h(X) is a weak facilitating
score. Besides, it can be shown that Equation (3) holds for h(X), that is, E(Y1|X) = E(Y1|h(X)) and
E(Y0|X) = E(Y0|h(X)). This condition will be relaxed in Section 2.3.

Estimation of h(X) involves modeling the joint distribution of (Y,T ) given X. Searching for a
satisfactory h(X) is not an easy task; we have to look for approximate solutions. On the other hand,
it is no longer unattainable as the involved elements (Y,T,X) are all observed. Although h(X) is
generally set as vector-valued, its dimension should be small in order to be practically useful.

2.3 Estimating the Facilitating Score

We shall discuss three proposals for finding useful approximations of h(X), which are parametric,
semiparametric, and nonparametric in nature, respectively. While they are all methodologically
interesting, we deem the nonparametric approach most practically useful.

The first method is parametric. Consider

f (Y,T |X) = f (Y |T,X) · f (T |X)
= { f (Y |T = 1,X)}T · { f (Y |T = 0,X)}1−T · f (T |X) (4)

by Bayes’ rule. With a parametric approach, we assume a model for each of the terms in (4):
propensity score model for f (T |X) and outcome regression models for f (Y |T = 0,X) and f (Y |T =
1,X). It is convenient to model T |X with logistic regression and model Y |(T,X) with Gaussian
linear regression so that

f (Y,T |X) = 1
σ
φ

(
Y −µ
σ

)
· {π(h3(X))}T{1−π(h3(X))}1−T , (5)
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where σ is the constant error variance;

µ= E(Y |T,X) = γ0 + γ1T +h1(X)+T ·h2(X); (6)

φ(·) is the density function of the standard normal N (0,1) distribution; and π(x) = exp(x)/(1+
exp(x)) is the logistic or expit function.

Proposition 4 Suppose that the propensity model can be specified by e(X) = e(h3(X)) as in (5) and
the conditional mean response given (T,X) is formulated by (6). Under the assumption of strong
ignorability, h(X) = (h2(X),h3(X))t is a weak facilitating score.

The proof is provided in Appendix B. Proposition 4 says that h1(X) is not a necessary component
of a weak facilitating score. It holds as long as the conditional mean outcome is specified by (6); in
other words, normality is not needed either. Besides, note that Equation (3) is not required with this
definition of h(X).

To continue with the parametric approach, linearity is further enforced so that h j(X) = βtjX j for
j = 1,2,3, where X j contains selected components of X. The involved parameters θ= {β,γ,σ} can
be estimated via maximum likelihood in a straightforward manner. The likelihood function is

L(θ) =
n

∏
i=1

1
σ
φ

(
yi−µi
σ

)
·
n

∏
i=1

{
π(βt3xi)

}ti {1−π(βt3xi)
}1−ti = L1 ·L2. (7)

Clearly there is a variable selection issue involved. Note that (β1,β2) are involved only in L1 for
the outcome regression model while β3 is involved only in L2 for the propensity score model. This
property not only simplifies the likelihood optimization, but also allows for variable selection to be
performed separately for the propensity model and outcome regression models.

With an estimated ĥ(x) = (β̂
t
2x, β̂

t
3x)t , data can be stratified via combined use of the medians

or terciles of its components, similar to propensity score subclassification. While this parametric
method provides a feasible approach for stratification, there are several difficulties in practice. First
of all, it is a two-step approach. The final results rely on correct model specifications. Moreover,
the number of strata has to be rather arbitrarily determined. The fact that ĥ(x) is vector-valued
contributes added difficulties to execution. In particular, as the dimension of ĥ(x) increases, the
number of strata grows precipitously. Even with only two categories induced by each component,
there are 2q subclasses for a q-dimensional ĥ(x).

Another intuitive semi-parametric approach to estimate h(X) is via dimension reduction tech-
niques. In view of (Y,T ) ⊥⊥ X |h(X), if it is further assumed that h(X) is linear in X so that
h(X) = BX, then the subspace spanned by columns of B, S(B), is called the dimension-reduction
subspace that accounts for the conditional distribution of (Y,T ) given X. Let S(Y,T )|X denote the in-
tersection of all dimension-reduction subspaces. Under some regular assumptions, S(Y,T )|X is also a
subspace, termed the central dimension-reduction subspace or central space. Sliced inverse regres-
sion (SIR; Li 1991) and its variants can be used to estimate S(Y,T )|X. While further research efforts
are needed in handling the bivariate response (Y,T ), there is no additional conceptual complication
involved. For example, one convenient approach is to first introduce (2S) slice indicator variables

Zst = I{(y′k−1 < Y ≤ y′k)∩ (T = t)},

where s = 0,1, . . . ,S; t = 0,1; and {−∞ = y′0 < y′1 < · · · < y′S = +∞} are pre-specified grid points
that define S slices for Y . Then the sliced regression method (Wang and Xia, 2008) can be applied
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to estimate the central mean space of Z = (Zst), which approximates the central space S(Y,T )|X.
Nevertheless, the same above-mentioned difficulties as in the parametric approach remain when it
comes to stratification on the estimated linear facilitating scores.

In the next section, we consider yet another recursive partitioning based nonparametric alterna-
tive, which seems to provide a more satisfactory solution to the problem. Hereafter, we refer to this
method as CIT for causal inference tree. CIT combines estimation of h(x) and data stratification
into one step. On the basis of CIT, we devise methods for making causal inference at different
levels.

3. Causal Inference via Recursive Partitioning

Tree-based methods (Morgan and Sonquist 1963 and Breiman et al. 1984) approximate the under-
lying function of interest with piecewise constants by recursively partitioning the predictor space.
At the same time, a tree structure offers natural grouping of data with easily interpretable splitting
rules. With an automated algorithmic approach, CIT seeks disjoint groups that have homogeneous
joint density of (Y,T ) within each. The resultant grouping rules, which are induced by binary splits
on the covariates X, are meaningfully interpretable, implying a nonparametric estimation of the
facilitating score.

In this section, we first follow the CART (Breiman et al., 1984) convention to construct one
single CIT, which consists of three steps: growing a large tree and selecting the optimal subtree via
pruning and cross validation. On the basis of CIT, methods for causal inference at different levels
are then developed. CIT itself provides a natural stratification of data for subpopulation inference.
An aggregated grouping method is introduced in order to enhance its performance. Conditional
inference at the individual unit level can also be obtained by combining results from ensemble
CIT models. Both stratified and individualized causal effect estimates can help depict variations
in propensity and treatment effects and make available a natural evaluation of the plausibility of
treatment comparability and ACE assessment. These results can also be integrated for estimating
ACE estimates. Finally, we establish the mean square risk consistency of CIT under conditions
similar to those in CART (Breiman et al., 1984).

3.1 Causal Inference Trees (CIT)

A tree model can be expressed as a graph with connected nodes, each node corresponding to a subset
of the data. We use T as a generic notation for a tree structure and τ for a node. In tree modeling,
the effects of X are exclusively explained by the splitting rules. To start the tree construction,
we consider one single split of data. When restricted to a node τ, the distribution of (Y,T ) no
longer depends on X, implying a constant propensity and a constant treatment effect. Following
decomposition of the joint density fτ(Y,T ) = fτ(Y |T ) fτ(T ) within node τ, it is convenient to impose
that

T ∼ Bernoulli(πτ) and Y |T ∼N
{
µ= (1−T )µτ0 +Tµτ1, σ2

τ

}
.

We would like to comment that recursive partitioning can be viewed as a localized approach with
local optimality achieved at each split. In local areas, the model needs not to be complicated and
often employs a parametric form. The procedure starts with splits that are built upon something
that is relatively simple and then evolves into a comprehensive model by recursively bisecting.
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The resultant tree model is nonparametric in nature and relatively robust to local distributional
assumptions.

The associated log-likelihood function becomes

lτ =−
nτ
2

ln(2πσ2)−
∑i∈τ(yi−µi)2

2σ2 +nτ1 lnπτ+nτ0 ln(1−πτ)

where {nτ,nτ0,nτ1} are the total number of observations in node τ, the number of observations
in node τ that are assigned to the control group, and the number of observations in node τ that
are assigned to the treatment group, respectively. Maximum likelihood estimates of the involved
parameters are explicitly available: π̂τ = nτ1/nτ, µ̂τ0 =  yτ0, µ̂τ1 =  yτ1, and σ̂2 = SSEτ/nτ, where

SSEτ = ∑
{i∈τ: ti=1}

(yi−  yτ1)2 + ∑
{i∈τ: ti=0}

(yi−  yτ0)2,

and {  yτ0,  yτ1} are the sample average responses of the control and treatment groups in node τ,
respectively. Up to a constant, the maximized log-likelihood function in node τ is

l̂τ ∝−
nτ
2

ln(nτ ·SSEτ)+nτ1 lnnτ1 +nτ0 lnnτ0. (8)

Note that we have assumed a mean-shift Gaussian model with the same constant variance for the
causal effect. If different variances are considered, the final form of l̂τ would be slightly different.

Without loss of generality, we consider binary splits only. When a split s bisects node τ into the
left child node τL and the right child node τR, the associated likelihood ratio test statistic is

LRT (s) = 2 · (l̂τL + l̂τR− l̂τ), (9)

where the maximized log-likelihood score for nodes τL and τR, l̂τL and l̂τR , can be obtained in the
same manner as l̂τ in (8). The LRTs can be used as the splitting statistic to select the best split. After
removing irrelevant components, we have

LRT (s) ∝ −nτL/2 · ln(nτL SSEτL)−nτR/2 · ln(nτR SSEτR)+
nτL1 lnnτL1 +nτL0 lnnτL0 +nτR1 lnnτR1 +nτR0 lnnτR0.

The best split s! is the one that yields the maximum LRT (s) among all allowable splits. Accordingly
node τ is split into τL and τR using s!. Subsequently, a similar procedure is applied to split either of
τL and τR. We repeat the procedure until some mild stopping rules are satisfied. This process results
in a large initial tree, denoted as T0.

The final tree model is a subtree of T0. Nevertheless, it is practically infeasible to examine
every subtree because the number of subtrees increases rapidly as the number of terminal nodes
in T0 increases. The idea of pruning is to provide a subset of candidate subtrees by iteratively
truncating off the ‘weakest link’ of T0. There are several pruning algorithms available, including the
cost-complexity pruning of CART (Breiman et al., 1984) for trees that are built upon minimizing
within-node impurity, the split-complexity pruning of LeBlanc and Crowley (1993) for trees that
are built upon maximizing between-node differences, and the AIC pruning of Su, Wang, and Fan
(2004) for trees that are built within the maximum likelihood framework. Since CIT is essentially
likelihood based, the AIC pruning is adopted for direct use. We shall keep our descriptions concise
by referring the reader to appropriate references for greater details.
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In the AIC pruning algorithm, the performance of a given tree T is measured by the Akaike
(1974) information criterion:

AICT =−2 · l̂T +λ× (4 · |T̃ |)

where the associated maximized log-likelihood of T is

l̂T = ∑
τ∈ T̃

l̂τ; (10)

λ= 2 is the penalty parameter for tree complexity; and |T̃ | denotes the number of terminal nodes in
T , with T̃ being the set of all terminal nodes in T and | · | for cardinality when the argument is a set.
Note that each added terminal introduces four more new parameters {πτ,µτ0,µτ1,στ}. Thus the total
number of parameters in tree T is 4 · |T̃ |. A tree with a smaller AIC is preferable. Alternatively, the
Bayesian information criterion (BIC; Schwarz 1978) with λ = ln(n) is another choice in common
use. At each step, the algorithm examines all available internal nodes or links in the present tree and
truncates the link that results in the subtree with the smallest AIC. The pruning procedure yields a
nested sequence of subtrees T0 + T1 + · · ·TM , where TM is the null tree structure with root node
only and “+” is read as “has subtree”.

The final step of tree size selection entails identifying the optimal tree T! from the subtree
sequence. The same AIC or BIC measure can be used for this purpose. However, cross validation
is needed to validate l̂T in Equation (10), which can be done via either the test sample method or
resampling methods (V -fold cross-validation or bootstrapping), depending on the available sample
size. Again, we refer readers to Su, Wang, and Fan (2004) for details.
Remark Using the parametric approach in Section 2.3, an alternative splitting statistic can be
obtained by maximizing the between-node difference. To split node τ, let Is denote the indicator
function corresponding to a permissible split s of τ. Consider model

logPr(T = 1|x)
Pr(T = 0|x) = β0 +β1Is and

y= γ0 + γ1T + γ2 Is+ γ3T · Is+σε with ε∼N (0,1). (11)

In view of Proposition 4, the Wald test statistic for testingH0 : β1 = γ3 = 0 can be used as the splitting
statistic. Since the log-likelihood function is separable for β and γ as shown in (7), cov(β̂, γ̂) = 0.
After some algebraic simplification, the Wald test statistic is given by

(
1
nτL0

+
1
nτL1

+
1
nτR0

+
1
nτR1

)−1
[(

log
nτL0 nτR1
nτL1 nτR0

)2
+

{(  yτL1−  yτL0)− (  yτR1−  yτR0)}
2

σ̂2

]

,

where σ̂2 =
{
∑n
i=1 y2

i −
(
nτL0  y2

τL0 +nτL1  y2
τL1 +nτR0  y2

τR0 +nτR1  y2
τR1

)}
/n is the MLE of σ2 in model

(11).

3.2 Aggregated Grouping

Despite easy interpretability, one single tree model is notoriously unstable in the sense that a minor
perturbation of the data could result in substantial changes in the final tree structure. In order to
get around this problem, we propose an aggregated grouping method to integrate the stratification
results from a number of competitive tree models. The key idea of this method is to obtain an n×n
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distance or dissimilarity matrix D with entries that measure how likely each pair of observations is
assigned to different strata. Cluster analysis can then be applied for final grouping.

The procedure is described as follows. Let L denote the whole data set. At each iteration b for
b = 1, . . . ,B, generate bootstrap sample L (b) from L . Divide L (b) into two parts at random with a
ratio of 2:1, the learning sample L (b)

1 and the test sample L (b)
2 . Using L

(b)
1 , a large initial CIT T

(b)
0

is grown and pruned. With the aid of the test sample L (b)
2 , a best-sized tree T (b)

! is selected. Let
Kb = |T̃

(b)
! | be the number of terminal nodes in T

(b)
! . Then we apply T

(b)
! to the whole data L so

that each observation in L falls into one and only one terminal node of T (b)
! . Next, we define an

n×n pairwise distance matrix Db = {dii′} such that

dii′ =

{
0 if observations {i, i′} fall into the same terminal node of T (b)

! ;
1 otherwise,

for i, i′ = 1, . . .n. To compute Db, first obtain an n×Kb matrix Zb = (zik) such that

zik =
{

1 if observation i falls into the k-th terminal node,
0 otherwise, (12)

for i= 1, . . . ,n and k = 1, . . . ,Kb. It follows that

Db = ZbZtb. (13)

Next, the distance matrices are integrated by averaging over B iterations: D = ∑B
b=1Db/B. It can

be seen that the entries in D satisfy the triangle inequality and other properties that are required for
being a legitimate distance measures. Finally, we can apply a clustering algorithm on D in order
to obtain the final data stratification. The number of clusters K can be either determined by the
clustering algorithm itself or preset as the mode of Kb’s. Other techniques for exploring distance or
proximity matrices can also be applied, such as multidimensional scaling (MDS; Torgerson 1958).
The whole procedure is outlined in Algorithm 1.

Algorithm 1 Pseudo-Codes for Aggregated Grouping
Set B← number of repetitions.
for b= 1 to B do

— Generate bootstrap sample L (b).
— Randomly divide data L (b) into {L

(b)
1 ,L

(b)
2 } with a ratio of 2:1.

— Grow a large CIT T
(b)

0 using L (b)
1 and prune.

— Select the best tree T (b)
! using L (b)

2 . Let Kb = |T̃
(b)
! |.

— Apply T (b)
! to data L and compute distance matrix Db = (dii′) such that dii′ = 1

if observation pair {i, i′} falls into different nodes of T (b)
! and 0 otherwise.

end for
Obtain D← 1/B ·∑B

b=1Db;
Obtain K←mode{Kb : b= 1, . . . ,B}.
Apply a clustering algorithm on D with K clusters.

We also suggest an optional alternative for computing the distance matrix Db, which is moti-
vated by the amalgamation or node merging idea of Ciampi et al. (1988). It is common that non-
neighboring terminal nodes in a final tree structure do not show much differences from each other.
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This is because similar patterns in treatment assignment and effect may occur to sub-populations
with different characteristics. By taking this issue into consideration of the distance matrix Db in
Algorithm 1, a more effective way of grouping data may be achieved.

To do so, we first obtain a Kb×Kb pairwise distance matrix Kb = {κ} for all the terminal nodes
in T (b)

! , the best-sized tree obtained in the b-th iteration. Here, κ= κ(τ,τ′)≥ 0 denotes the distance
between two terminal nodes τ,τ′ ∈ T̃ (b)

! , which can be defined as the logworth (i.e., the negative
logarithm with base 10) of the p-value obtained from a likelihood ratio test in (9) that compares τ
with τ′. That is,

κ(τ,τ′) =− log10(p-value).

The likelihood ratio test can be conducted using all data in L . The smaller the p-value, the larger
the difference between τ and τ′ is, as reflected by a larger value of κ(τ,τ′). Elements in matrix Db
are then defined by

dii′ = κ(τ(i),τ(i′)),

where τ(i) denotes the terminal node into which the i-th observation falls. In matrix form, Db can
be computed as

Db = ZbKbZtb, (14)

where Zb is given by (12). The Db in (13) can be viewed as a special case of (14) with Kb = Ib.
With modified Db in (14), there are two immediate consequences: first, the distances dii′ in D

may not necessarily satisfy the triangle inequality; secondly, the number of final clusters K can no
longer be suggested by the best tree sizes. Instead, it has to be determined by the clustering algo-
rithm itself. Recent work on automatic determination of the optimal number of clusters is exempli-
fied by Tibshirani, Walther, and Hastie (2001) and Wang (2010). Both methods are computationally
demanding.

Compared to one single CIT, the aggregated grouping produces a more accurate and stable
grouping of data. Its results can help evaluate the instability of CIT. However, one drawback is loss
of interpretability of the stratification rules.

3.3 Summarizing Strata and ACE Estimation

To summarize the final K strata obtained from either one single CIT or the aggregated grouping
method, estimated propensity rate êk and the treatment effect Δ̂k can be obtained for each stratum.
Such information helps delineate the heterogeneity structures in both assignment mechanisms and
effects of the treatment. Strata with extremely low or high propensities may be excluded from
causal inference due to lack of comparison basis. One may take a liberal approach when inspecting
differential causal effects across K strata. The use of ACE to summarize treatment effects can be
tentatively justified unless strong evidence for qualitative interaction exists. This is similar to the
common practice in multi-center trials. While the quantitative treatment-by-center interaction is
commonly seen, the overall efficacy of an investigational drug can still be established as long as
there is no significant directional change in the comparison. An estimate of ACE, Δ̂ is given by

Δ̂=
K

∑
k=1

nk
n
· (  yk1−  yk0) (15)
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with sampling variance approximated by

K

∑
k=1

n2
k
n2 ·

(
s2
k1
nk1

+
s2
k0
nk0

)
, (16)

where (  yk1,s2
k1) are the sample mean and variance of observed Y ’s in the treated group of the k-th

stratum and similar definitions apply to other quantities. Additional covariate adjustment within
each terminal node can be made and alternative stratification estimates of ACE are available, as
summarized and discussed in Lunceford and Davidian (2004).

Propensity score stratification or subclassification seeks subpopulations of form Ωe = {ω :
e(X) = e}, in which homogeneity of treatment effects, however, can not be guaranteed. Direct
comparison of the mean responses could give a distorted estimate of the causal effect in Ωe. Com-
paratively, CIT and aggregating grouping offer refined stratification so that the causal effect within
each resultant stratum Ωa can be correctly captured, which consequently offers improved estima-
tion of ACE. Alternatively, one may try to correct the problem with propensity score stratification
by applying additional ANCOVA-typed adjustment within each stratum. It is important to note
that ANCOVA does no help with this correction, unless effect modification is incorporated into the
model by allowing for treatment-by-covariate interaction terms. This approach would consist of
two steps. In the first step, a number of strata are obtained by stratifying propensity scores. In the
second step, an extended ANCOVA model that allows for interactions is fit within each stratum. We
may adopt an approach explained by Aiken and West (1991) in order to make the overall causal
effect in Ωe appear as a regression coefficient. This approach fits a linear model of form

E(Yi|Ti,Xi) = β0 +δe Ti+βtx′i+Ti · γtx′i. (17)

where x′i = xi−E(X|Ωe) for i ∈ Ωe denotes the centered covariate vector. Then the parameter δe
in (17) coincides with the overall causal effect in Ωe. Finally, the ACE is estimated by combining
δ̂e’s via (15). The CIT stratification roughly resembles this two-step approach described above, yet
with additional advantages. First, the facilitating score offers a unified setting where these two steps
are naturally combined. Secondly, how to specify interaction terms in (17) remains a dazzling task,
which, however, can be efficiently handled with recursive partitioning in CIT.

3.4 Predicting Individual Causal Effects (ICE)

With the advent of research with biobanks, molecular profiling technologies have been greatly ad-
vanced to allow for collection of a patient’s proteomic, genetic, and metabolic information. Given
various information collected on a patient, how to customize treatments to the individual’s best
needs has posed great challenges to players in the field of personalized medicine, including statisti-
cians. A fine delineation of treatment effects plays a critical role in such endeavors.

For this purpose, we define “individual causal effect” (ICE) as a conditional expectation E(Y1−
Y0|x), given a subject with X = x. ICE is conceptually different from the unit level causal effect
Y1(ω)−Y0(w). Strictly speaking, ICE makes conditional causal inference at the subpopulation level
{ω :X(ω) = x}. On the other hand, ICE is the best that one could practically do with available infor-
mation in order to approximate the unit level causal effect. Especially when X is high-dimensional
and has many continuous components, it is likely that each value x corresponds uniquely to unit ω
with X(ω) = x. In what follows, we devise a powerful method via ensemble CITs to predict ICE by
borrowing ideas from random forests (Breiman, 2001).
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To proceed, we first randomly divide data L into V folds. To ensure similar proportions of
individuals in the treatment groups across all folds, stratified sampling with stratification on T can
be used. Let Lv denote the v-th fold and L(v) = L−Lv for the remaining data.

Algorithm 2 Pseudo-Codes for Predicting Personal Causal Effects (ICE)
Set V , B, and m.
Randomly split data L into V sets {L1, . . . ,LV}, with stratification on T.
for v= 1 to V do

Set L(v) = L−Lv.
for b= 1 to B do

— Generate bootstrap sample L (b)
(v) from L(v).

— Grow a CIT T
(b)
(v) using L

(b)
(v) without pruning. At each split, only m randomly selected

variables are used.
— Estimate causal effects Δ̂τ and propensity êτ for each τ ∈ T̃ (b)

(v) based on L(v).

— Apply T (b)
(v) to data Lv.

— Compute Δ̂(b)
i and ê(b)i for each i ∈ Lv∩ τ, via Δ̂τ and êτ.

end for
Obtain {Δ̂i, êi} as averages of {(Δ̂(b)

i , ê(b)i ) : b= 1, . . . ,B}, for each i ∈ Lv.
end for
Merge estimated {Δ̂i, êi} into data L using ID key.
return L .

We draw B bootstrap samples from L(v). With each bootstrap sample L (b)
(v) , grow a moderately-

sized CIT T
(b)
(v) without pruning. When constructing T (b)

(v) , we adapt the approach in random forests
(Breiman, 2001), where only m randomly selected variables and their associated cutoff points are
evaluated at each split. This tactic helps improve the predictive performance by de-correlating the
tree models in the random forests. For each terminal node τ ∈ T̃ (b)

(v) , estimates of the causal effect
and propensity,

Δ̂τ =  yτ1−  yτ0 and êτ = nτ1/nτ,

are computed using data in L(v). Then we apply T̃ (b)
(v) to L(v) and predict the ICE Δ̂(b)

i and propensity

score ê(b)i for each individual i ∈ Lv. Specifically,

Δ̂(b)
i = Δ̂τ and ê(b)i = êτ,

if the i-th individual falls into the terminal node τ. The final predicted ICE and propensity for the i
individual are

Δ̂i =
1
B

B

∑
b=1

Δ̂(b)
i and êi =

1
B

B

∑
b=1

ê(b)i .

Their standard errors can also be obtained from the bootstrap repetitions.
The same procedure is repeated for each fold to estimate ICE and propensity scores for all

individuals in L . The whole method is described in Algorithm 2. Further exploration can be done
with the estimated ICE and propensity scores and some illustrations are given in Section 5. While
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we have used aV -fold cross-validation approach in Algorithm 2, the method can be directly applied
to an independent future sample for predicting ICE. Other features in random forests such as variable
importance ranking and partial dependence plots could also be adopted for causal inference.

Some alternative ways of predicting ICE are discussed below. First of all, the standard method
for modeling treatment-by-covariates interaction in many application fields is to fit a linear model
with first-order cross-product terms, that is,

y = β0 +β1T +βt2x+T ·βt3x+ ε

= β0 +βt2x+(β1 +βt3x) ·T + ε. (18)

The ICE is formulated as (β1 +βt3x), which is also linear in x. While this parametric approach is
readily available, it relies heavily on linearity and is subject to a greater risk of model misspecifica-
tion.

Another convenient way for predicting ICE is to use the ‘regression estimation’ approach, as
described in Schafer and Kang (2008). In this approach, we separately fit a predictive model (pos-
sibly using machine learning techniques) for Y1 using data in the treated group only and a predic-
tive model for Y0 using data in the untreated group only. Then we apply these models to obtain
predicted values (ŷi1, ŷi0) for the potential outcomes for every subject in the data. ICE can be esti-
mated as Δ̂i = ŷi1− ŷi0. Alternatively, the observed response can be used in the calculation so that
Δ̂i = yi− ŷi0 for the treated group and Δ̂i = ŷi1−yi for the untreated group. Note that this regression
estimation method solely involves the outcome models. The underlying rationale is based on the
fact that E(Yt |X = x) = E(Y |X = x,T = t) for t = 0,1, given strong ignorability and other condi-
tions. However, the prediction across treatment groups heavily involves extrapolation, again due to
the imbalance in covariates. When used for ACE estimation, Schafer and Kang (2008) found that
it is not among the top performers, but may be possibly improved by incorporating the propensity
score into the model.

Estimating ICE also emerges as one intermediate step in some ACE inference procedures in-
cluding structural nested models introduced by Robins (1989), marginal structural models (see,
e.g., Robins 1999), and the targeted maximum likelihood method (see, e.g., van der Laan and Rubin
2006). These procedures are particularly advantageous in dealing with longitudinal observational
data where both treatment and covariates are time-varying, but they are also applicable to cross-
sectional or ‘point treatment’ data. Two estimation methods are commonly used in these proce-
dures: the g-computation and the inverse probability of treatment weighting (IPTW). Model (18)
is often embedded in either method, for handling effect moderators in IPTW or being used as the
Q-model in g-computation (see, e.g., Snowden, Rose, and Mortimer 2011) or targeted maximum
likelihood (see, e.g., Rosenblum and van der Laan 2011) to model and predict potential outcomes.
With g-computation, it is clear that other semiparametric or nonparametric data adaptive methods
(as in ‘the ‘regression estimation’ approach) can be flexibly used for predicting potential outcomes
for each observation under each possible treatment regimen. See van der Laan, Polley, and Hubbard
(2007) and Austin (2012) for examples.

Yet another method for estimate ICE E(Y1−Y0|X = x) directly is to relax X = x to a neigh-
borhood of x, N (x). Such a neighborhood of x can be facilitated using either K-nearest neighbor
(KNN) or, more generally, kernel smoothing. If KNN is used, let NK(x) denote the corresponding
neighborhood of x. A natural estimate of ICE is given by

∑i: xi∈NK(x) yiTi
∑i: xi∈NK(x)Ti

−
∑i: xi∈NK(x) yi(1−Ti)
∑i: xi∈NK(x)(1−Ti)

.
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This KNN approach assigns weight 1 to K observations within NK(x) and weight 0 to others. More
generally, we may use kernel smoothing to have weights depending on ‖ xi−x ‖ for all data points.
To make it more robust to non-random treatment assignment mechanism, it might be possible to
incorporate propensity score into the weights as well. While this implementation has not been seen
in the literature, it has some promising potentials for its nonparametric nature and deserves further
research. On the other hand, a neighborhood defined with high-dimensional data could have poor
performance and the computation could be demanding. In addition, interpretation with respect to
covariates becomes obscure with nearest neighbor approaches.

Comparatively, the essential ingredient in our ensemble CIT approach is stratified causal esti-
mates within subpopuations {x : a(x) = a}, which is intermediary in-between ACE and ICE. We
have the convenience to either move forward for ICE with ensemble models or move backward for
ACE by integrating stratified results. It is natural to use tree methods for extracting strata. Tree-
structured methods are nonparametric in nature and hence more robust to model misspecification.
Recursive partitioning excels in efficiently handling interactions and categorical variables and pro-
vides meaningful interpretations. Besides, ensemble models usually performs better in predictive
modeling. With that being said, a comprehensive comparison study of these alternative approaches
in predicting ICE would be interesting for future research.

3.5 Consistency

In terms of asymptotic properties of recursive partitioning based estimators, Breiman et al. (1984)
provided detailed developments of convergence in rth mean and uniform convergence on compacts.
Gordon and Olshen (1984) established the almost sure convergence under certain constraints. In
this section, consistency of the CIT based causal effect estimator is provided in the light of Breiman
et al. (1984).

Let the predictor space X ∈ Rp be Euclidean. A tree structure T partitions X into a number of
disjoint sets or terminal nodes {τ : τ ∈ T̃ }. Again, τ(x) denotes the terminal node where x falls into.
Let d(·) be the diameter of a set, that is, dn(τ) = supx,x′∈τ ‖ x− x′ ‖, where ‖ · ‖ is the Euclidean
norm. With the observed data of size n, let kn be nonnegative constants such that, with probability
one,

nτ ≥ kn logn for any τ ∈ T̃ ,

where, same as before, nτ1 is used to denote the number of subjects in node τ that are assigned
to the treated group, that is, nτ1 = ∑i∈τTi, and nτ0 for the control group. Suppose that a(·) is a
weak facilitating score and  aτ = ∑i∈τ a(xi) denotes its mean vector in node τ. Let (Y1,Y0,Y,T,x) ∈
τ represent a new observation that is independent of current data {(yi,Ti,xi) : i = 1, . . . ,n}. The
following theorem establishes the mean square risk consistency for (  yτ1−  yτ0), the causal effect
estimate based on direct comparison of sample means in the terminal node τ= τ(x).

Theorem 5 Suppose that

max
{
E|Y1|

2+ε, E|Y0|
2+ε}≤M < ∞ for some ε> 0 and M > 0, (19)

0 < e(x)< 1, and treatment assignment is strongly ignorable. Assume that E(Y1|a) and E(Y0|a) are
continuous in a and a(x) is continuous in x. Further assume that

lim
n→∞

kn = ∞. (20)
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and
lim
n→∞

dn(τ) = 0 (21)

in probability. Then
lim
n→∞

E |(  yτ1−  yτ0)−E{Y1−Y0 |a(x) =  aτ}|2 = 0. (22)

The results in Theorem 5 can be improved to Lr convergence for any r ≥ 1 if we change the as-
sumption (19) to

E|Y1|
r+ε ≤M < ∞ and E|Y0|

r+ε ≤M < ∞.

This can be immediately seen from the proof provided in Appendix C, where all the arguments
we have used hold in Lr spaces. Toth and Eltinge (2010) has recently proved asymptotic design
L2 consistency of tree-based estimator when applied to complex survey data, following similar
arguments in Gordon and Olshen (1978, 1980). It is worth noting that the Horvitz-Thompson ( 1952)
typed estimator via inverse probability weighting has fundamental use in both causal inference with
observational data and in estimation the superpopulation mean with stratified survey data.

These convergence results for recursive partitioning are obtained without dependence on the
specifics of the algorithm. Unfortunately, no theoretical justifications have been obtained so far
for the splitting rules and pruning algorithms (p. 327; Breiman et al. 1984). Moreover, one of key
assumptions for consistency requires that the mesh size of τ goes to 0 when the sample size gets
large, as implied by assumption (21). This is an unappealing constrain to practical applications.

4. Simulated Experiments

In this section, simulation experiments are performed to first understand and assess CIT and make
comparisons with other methods and then investigate how CIT performs under misspecification.

4.1 Performance of CIT

In terms of applications of tree methods relevant to treatment effect assessment, there have been two
major developments serving different purposes: 1) propensity trees (PT) that estimate the propen-
sity score e(X), as studied by McCaffrey, Ridgeway, and Morral (2004) and Lee, Lessler, and Stuart
(2010); and 2) interaction trees (IT) for subgroup analysis (Su et al., 2009). An interaction tree ex-
plicitly models the treatment-by-covariates interactions for detecting differential treatment effects.
However, this method was developed for experimental data and does not take the non-randomized
treatment assignment into account. As we shall demonstrate, failure or inadequacy to account for
propensity information may lead to misleading interaction results, in that the superficial difference
in treatment effects might have been caused merely by heterogenous treatment selection mecha-
nisms.

We generate data with the following steps.

1. Generate X1, . . .X5 independently from Unif(0,1) and create threshold variables Zj = 1{Xj≤0.5}
for j = 1, . . . ,5.

2. Set logit(π) = a0 +a1Z1 +a2Z2 with logit(π) = log{π/(1−π)}. Generate T ∼ Bernoulli(π).

3. Set µ= b0 +b1T +b2Z2 +b3Z3 +b4Z4 +b5T ·Z4 and generate Y ∼N (µ, σ2) with σ= 1.
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In addition to the response variable Y and treatment indicator T , each data set involves five covari-
ates. In the above simulation strategy, covariate X1 is an exposure or treatment predictor involved
in the propensity model only, X2 is a confounder that relates to both T and Y, X3 is a response pre-
dictor or prognostic factor, X4 is an effect-modifier, and X5 is a totally irrelevant covariate. All the
covariate values are rounded at the second decimal place.

By applying different values for the coefficients ai, i= 0,1,2, and b j, j= 0, . . .5, we can obtain
different model configurations, for example, containing either interaction or confounding terms,
both, or neither. We can also investigate how these tree methods handle covariates that play different
types of roles in the causal pathway between T and Y. Specifically we consider the following five
model configurations:

Model A. a= {a j}= (2,0,0)′, b= {b j}= (2,2,0,0,0,0)′;
Model B. a= {a j}= (2,2,−4)′, b= {b j}= (2,2,2,2,2,2)′;
Model C. a= {a j}= (2,0,−4)′, b= {b j}= (2,2,2,0,2,2)′;
Model D. a= {a j}= (2,2,−4)′, b= {b j}= (2,2,2,0,0,0)′;
Model E. a= {a j}= (2,2,−4)′, b= {b j}= (2,2,0,0,2,2)′.

Model A is a null model, where the covariates have no influence on the treatment effect. This model
helps investigate the size issue or the type I error rate. Model B is equipped with all structures.
Nevertheless, a massive tree with 16 terminal nodes is needed in order to fully represent the model
structure. Model C also contains both confounding effect of X2 and interacting effect of X4, while
neither X1 nor X3 is involved. In this case, a tree with four terminal nodes is expected. Model D
mainly involves the confounder X2, plus the exposure predictor X1. Lastly, the active components
in Model E are the effect modifier X4 and the prognostic factor X3.

For each simulated data set, all three tree methods, CIT, IT, and PT, are applied. Only one
sample size is reported and the test sample method is used to select the optimal tree size, with 600
observations for the training sample and 400 observations for the test sample. Both AIC and BIC
are used for the tree model selection. For each final tree selected, we record the optimal tree size and
the splitting variables involved in the final tree structure. Table 1 presents the summarized results
over 200 simulation runs.

We first examine the results from the null Model A. When BIC is used, all three tree methods
seem rather conservative in committing Type I errors, implying that unsolicited signals are unlikely
to be identified. With AIC, the empirical size, that is, the rate of giving false tree signals, is (100−
90.5)% = 9.5% for CIT, (100−88.5)% = 11.4% for IT, and (100−98.5)% = 1.5% for PT.

Next, Model B contains all the components that are related to the treatment and the response.
Experimenting with this model provides an overall picture of what patterns each tree method tends
to recognize. It can be seen that CIT yields the largest tree models by mostly catching the effects of
X2, X3, and X4. The treatment predictor X1 is completely missed out by BIC and occasionally (32%
of the time) selected by AIC. Note that X1 is neither a confounder nor a modifier to the treatment
effect. Due to the smaller penalty for mode complexity, AIC tends to select larger trees than BIC.
As expected, the final propensity trees are split by both X1 and X2. The average final tree size of IT
is 2.92, compared to its expected value 2. It is interesting to note that IT frequently gets confused
by the confounding effect of X2.

Model C contains only the components that actively influence the causal effects, namely, the
confounder X2 and the effect-modifier X4. Both are perfectly identified by CIT. PT performs well
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Selection Final Tree Size Splitting Variables
Model Method Criterion 1 2 3 4 5 6 ≥ 7 X1 X2 X3 X4 X5
A CIT AIC 90.5 5.5 1.5 1.5 1.0 0.0 0.0 4.5 2.0 2.5 2.0 2.0

BIC 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IT AIC 88.5 6.0 4.5 1.0 0.0 0.0 0.0 2.5 4.0 3.5 3.0 3.0

BIC 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PT AIC 98.5 0.5 1.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 1.0 0.0

BIC 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B CIT AIC 0.0 4.0 0.0 19.5 5.5 39.5 31.5 32.0 96.0 96.0 100.0 1.5

BIC 0.0 4.0 0.0 26.0 0.0 61.5 8.5 0.0 96.0 96.0 100.0 0.0
IT AIC 0.0 6.5 25.0 50.5 13.0 3.0 2.0 7.0 93.5 6.0 100.0 8.0

BIC 0.0 40.5 28.5 27.0 3.5 0.5 0.0 1.0 59.5 0.5 100.0 1.0
PT AIC 0.0 0.5 33.5 61.5 4.0 0.5 0.0 99.5 100.0 0.5 2.0 1.5

BIC 0.0 1.0 51.5 46.5 1.0 0.0 0.0 99.0 100.0 0.0 0.5 0.0
C CIT AIC 0.0 0.0 4.5 90.5 5.0 0.0 0.0 1.0 100.0 2.0 100.0 0.5

BIC 0.0 0.0 4.5 95.5 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0
IT AIC 0.0 47.0 35.5 14.0 1.5 1.5 0.5 0.5 52.5 0.5 100.0 2.5

BIC 0.0 55.5 33.0 100.0 1.0 0.5 0.0 0.0 44.5 0.0 100.0 0.0
PT AIC 0.0 97.5 1.0 1.5 0.0 0.0 0.0 1.0 100.0 1.0 0.5 0.5

BIC 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
D CIT AIC 0.0 1.0 83.5 11.0 2.0 1.5 1.0 99.0 100.0 2.0 2.5 4.5

BIC 0.0 10.5 89.5 0.0 0.0 0.0 0.0 89.5 100.0 0.0 0.0 0.0
IT AIC 1.5 43.0 31.5 18.0 4.5 1.0 0.5 5.5 98.5 3.0 4.5 2.0

BIC 0.2 54.5 28.0 14.0 1.5 0.0 0.0 1.0 98.0 0.5 1.5 0.0
PT AIC 0.0 0.0 33.5 62.0 2.5 1.5 0.5 100.0 100.0 2.0 2.5 1.0

BIC 0.0 1.0 49.5 49.0 0.5 0.0 0.0 99.0 100.0 0.0 0.0 0.0
E CIT AIC 0.0 0.0 2.5 89.0 8.5 0.0 0.0 1.5 3.0 100.0 100.0 2.0

BIC 0.0 0.0 2.5 97.5 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0
IT AIC 0.0 90.0 9.0 1.0 0.0 0.0 0.0 2.5 1.5 2.5 100.0 3.5

BIC 1.5 97.5 1.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 98.5 0.5
PT AIC 96.5 3.5 0.0 0.0 0.0 0.0 0.0 1.5 0.5 1.0 0.5 0.0

BIC 98.5 1.5 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.0 0.0

Table 1: Simulation Results Based on the Test Sample Method: Relative frequencies (in percent-
ages) of the final tree sizes in 200 runs identified by the causal inference tree (CIT), inter-
action tree (IT), and propensity tree (PT). Only one set of sample sizes is reported, with
600 observations forming the learning sample and 400 observations for the test sample.

in identifying the confounder X2 while IT succeeds in recognizing the effect-modifier X4. The same
interesting phenomenon as with Model B occurs again: IT wrongly selects X2 quite often. This will
further be elaborated in Model D.

Model D is basically a propensity model, involving both the exposure predictor X1 and the
confounder X2 only. In this case, CIT and PT provide equivalent results. Aiming at differential
treatment effects, IT is supposed to have a null tree structure. However, we can see that most of
time IT ends up with one or more splits on X2. To gain insight, Figure 1 plots the splitting statistic
used in both IT and CIT versus each cutoff point for X2 in a single split of the data. The splitting
statistic used in IT is a squared t test statistic for interaction; thus the best cutoff point corresponds
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Figure 1: Plot of splitting statistic versus cutoff point on the confounder X2: (a) t test statistic
(squared) for interaction used in IT; (b) likelihood ratio test statistic (up to some constant)
used in CIT. Data were generated from Model D in Section 4.

to the maximum of splitting statistics. It is interesting to note in Figure 1(a) that the splitting
statistic actually reaches its minimum at X2 = 0.5, the only place where the treatment comparison
is unbiased. At other cutoff points, the splitting statistic as a measure of interaction misleadingly
inflates due to lack of adjustment for propensity. On the contrary, this does not cause a problem for
CIT, which correctly selects the right cutoff point 0.5 as shown in Figure 1(b). Therefore, in order
to identify differential causal effects correctly, it is critical to take confounders into consideration;
otherwise, the estimation bias owing to imbalance of confounders between treatment groups may
become overwhelming and eventually lead to misleading conclusions about the differential causal
effects.

Finally, Model E is essentially an outcome regression model, in which both the prognostic
factor X3 and the effect-modifier X4 are involved. It can be seen that CIT functions similarly to IT in
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Effect Propensity Case I Case II Case III Case IV
Group Δk ek Δ̂k êk Δ̂k êk Δ̂k êk Δ̂k êk

1 −1.940 0.156 −2.077 0.189 −3.246 0.502 −2.005 0.171 −2.106 0.201
2 2.067 0.866 1.924 0.861 1.925 0.861 −0.098 0.857 1.916 0.860
3 −1.938 0.843 −1.987 0.829 −2.629 0.676 −1.016 0.840 −2.006 0.824

Table 2: Simulation Results for Assessing Sensitivity of CIT to Misspecification. Four scenarios
are considered. In Case I, variables {X1,X2,X3,X4} are used; In Case II, the confounder
X2 is omitted; In Case III, the effect-modifier X3 is omitted; In Case IV, the collider X5
is included. The estimated treatment effect and propensity for each group were averaged
over 100 runs.

detecting treatment-by-covariate interactions. CIT also identifies splits on the prognostic factor X3.
It comes as no surprise that PT, concerning propensity only, gives a null tree for most of the time.

4.2 Sensitivity under Misspecification

We next investigate how CIT performs under misspecified scenarios where an important confounder
or effect-modifier is omitted or when a collider is included. We design an experiment with the
following data generation scheme:

1. Generate X1, . . . ,X4 independently from Unif(0,1) and create threshold variables Zj= 1{Xj≤0.5}
for j = 1, . . . ,4.

2. Generate W1 and W2 independently from Bernoulli(0.5) and hence simulate X5 ∼ N (2W1 +
2W2, 1).

3. Set logit(π) = 0.5−Z1Z2 +W1. Generate T ∼ Bernoulli(π).

4. Set µ= 2+2Z1Z2−2T +4Z1Z3T +W2 and generate y∼N (µ,1).

The observed data consist of repetitions of {Y,X1, . . . ,X4}. With the above configuration, X1 is both
a confounder and an effect-moderator; X2 is a confounder; X3 is a moderator; X4 is irrelevant; and
X5 is a collider with the M diagram model (see, e.g., Figure 2(a) in Greenland 2003). The data
essentially involve three groups with either different propensities or treatment effects. Observations
in Group 1 satisfies Z1Z2 = 1; Group 2 is characterized by (1−Z1)Z3 = 1; and Group 3 contains the
others.

In order to assess sensitivity, an independent validation set with 5,000 observations is first gen-
erated. Based on true grouping, the causal effect and propensity for each group are computed and
presented in Table 2. Next, a total of 100 simulation runs are considered. For each simulation run, a
training set with 600 observations and a test set with 400 observations are generated, on which basis
CITs are constructed using different sets of variables. In Case I, variables {X1,X2,X3,X4} are used;
Case II uses {X1,X3,X4} with confounder X2 omitted; In Case III, {X1,X2,X4} are used by omitting
the moderator X3; In Case IV, {X1,X2,X3,X4,X5} are used by including the collider X5. Each final
CIT (based on BIC) is applied to the validation set to compute the individual causal effect Δ̂i and
propensity êi for each observation in the validation set. The predicted ICEs and propensities are
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aggregated for each group, based on the true grouping. The grouped causal effect and propensity
estimates are then averaged over 100 simulation runs. The results are also presented in Table 2. It
can be seen that, in Case I, CIT does very well in estimating treatment effects and propensities. In
both Case II and Case III, substantial bias is present in estimating the treatment effects. The results
for Case IV suggest that the collider X5 also introduces bias. However, compared to the bias from
omitting a confounder or moderator, the bias from including a collider is much smaller. This is
consistent with the conclusions in Greenland (2003).

5. Analysis of NSW Data

As an illustration, we revisit the NSW data set extensively analyzed by LaLonde (1986) and Dehejia
and Wahba (1999), where the objective is to assess the impact of the National Supported Work
(NSW) Demonstration on post-intervention income levels. The NSW demonstration was a labor
training program implemented in the mid-1970s to provide work experiences for a period of 6-
18 months to individuals facing economic and social difficulties. NSW itself was designed as a
randomized controlled study where subjects were randomly assigned to two treatment groups: the
NSW-exposed group and the unexposed group.

With a rather innovative approach that later on became influential, LaLonde (1986) compiled
a composite data set by taking subjects in the NSW-exposed group only and then obtaining the
nonexperimental control group from other sources, including the Panel Study of Income Dynamics
(PSID) and the Current Population Survey (CPS) databases. His aim was to examine the extent to
which nonexperimental estimators can replicate the unbiased experimental estimate of the treatment
impact. He concluded that nonexperimental estimators are either inaccurate relative to the experi-
mental benchmark or sensitive to model specification. Since then, the mixed NSW data have been
analyzed by various authors with alternative approaches. Among others, Dehejia and Wahba (1999)
obtained estimates of the treatment effect that are close to the experimental benchmark estimate or
the ‘gold’ standard using propensity score matching and stratification.

Most of these previous works are focused on estimating the ACE of NSW. Here we shall apply
the CIT methods to explore the variabilities of its effects, in addition to dealing with the nonrandom
treatment assignments. There are several versions of the data with varying sources for obtaining the
control or unexposed group, available from http://www.nber.org/˜rdehejia/nswdata.html.
The data set we use is the one available in the R package MatchIt contributed by Ho et al. (2007,
2011). This is a subset restricted to males who had 1974 earnings available, for the reasons explained
in Dehejia and Wahba (1999). There are 614 observations (185 treated and 429 control) and 10
variables in the data, which include the treatment assignment indicator. A brief description and
some summary statistics of these variables are provided in Table 3. The outcome variable is re78,
the 1978 earnings. All covariates but educ are severely unbalanced between the participants actively
exposed to NSW and those in the unexposed group selected from other survey databases.
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(a) Propensity Tree (b) Interaction Tree

I
20:75

II
9:267

re74 ≤ 0.0167

III
156:87

Not black

I
83:152

II
66:69

age ≤ 25

III
36:208

re74 ≤ 2.7214

(c) Causal Inference Tree

I
22:156

II
7:186

re74 ≤ 2.7214

Not black

III
121:55

age ≤ 24

IV
15:10

V
70:22

educ ≤ 8

Figure 2: Final Tree Models for the NSW Data: (a) Propensity Tree; (b) Interaction Tree; (c) Causal
Inference Tree.
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(a) Propensity Tree
NSW Group Unexposed Group Estimated

Node size mean sd size mean sd Propensity
I 20 8.1423 6.6646 75 5.2302 6.3981 21.05%
II 9 6.0534 4.9218 267 8.1712 7.6170 3.26%
III 156 6.1363 8.1435 87 4.8534 6.2017 64.20%

(b) Interaction Tree
NSW Group Unexposed Group Treatment Effect

Node size mean sd size mean sd estimate s.e.
I 83 5.0392 5.1160 152 5.2804 5.5401 −0.2412 0.7192
II 66 8.4894 10.3819 69 3.4528 5.8233 5.0366 1.4576
III 36 5.4455 7.0965 208 9.4007 8.0201 −3.9552 1.3070

(c) Causal Inference Tree
NSW Group Unexposed Group Estimated Treatment Effect

Node size mean sd size mean sd Propensity estimate s.e.
I 22 8.1431 6.3676 156 4.8438 5.6728 12.35% 3.2993 1.3118
II 7 5.4539 5.3997 186 9.7759 8.0259 3.62% −4.3221 3.0634
III 71 4.6987 4.8043 55 4.8545 5.9303 56.35% −0.1558 0.9564
IV 15 3.8662 3.9130 10 1.0999 2.8541 60.00% 2.7663 1.4438
V 70 8.0809 10.7408 22 6.5570 7.3371 76.09% 1.5239 2.4565

Table 4: Summary statistics for the terminal nodes: (a) the final propensity tree (PT); (b) the final
interaction tree (IT); and (c) the final causal inference tree (CIT). The means and standard
deviations are given in thousand dollars.

We applied three tree procedures to the data: PT, IT, and CIT. The final tree structures, all
selected by BIC, are plotted in Figure 2. Considering the moderate sample size, a bootstrap method
was used for final tree selection. In Figure 2, the internal nodes are denoted by circles. The splitting
rule is given under each internal node. Observations satisfying the rule go to the left child node
and observations not satisfying go to the right child node. The terminal nodes are denoted by
rectangles and renamed by Roman numerals inside. Underneath each terminal node is the number of
exposed subjects versus the number of unexposed subjects within the terminal node. Some summary
statistics for the terminal nodes in each final tree are provided in Table 4.

Figure 2(a) gives the final PT structure, which delineates a meaningful heterogeneity in propen-
sity. It is clear that African Americans were more likely to participate in this labor program. PT
also identifies a group, terminal node II, with extremely low propensity (3.26%). This group is
characterized by people who were not African Americans and had some income in 1974. However,
this PT model tells nothing about differential treatment effects.

Figure 2(b) displays the final IT structure. Variables re74 and age stand out as determinants
of differential causal effects. Apparently remarkable differential treatment effects seem to exist
across the three terminal nodes based on Table 4(b). However, since the method does not adjust
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Figure 3: Aggregated Grouping for the NSW Data: (a) Multidimensional scaling (MDS) plot; (b)
Dendrogram for hierarchical clustering with average linkage. The distance matrix was
computed by aggregating 100 bootstrap samples.
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for heterogeneous propensity, the results are not reliable. Hence we make no further attempt in
interpreting.

Figure 2(c) presents the final CIT model, which has a more comprehensive structure. It is
interesting to see that the left-half of the tree resembles the PT tree in Figure 2(a). In particular, the
CIT comes up with a similar terminal node II, which contains non-African Americans with income
higher than $2,721 in 1974. Since CIT accounts for both propensity and differential causal effects,
it is valid to estimate the NSW effect via direct comparison of sample means within each terminal
node. Table 4(c) provides the relevant quantities. CIT also identifies some interesting patterns
of differential treatment effects. The surprising comparison occurs to terminal node II, where the
NSW-exposed group had a lower average income than the unexposed group with a mean difference
of $4,322. However, this should not be a point of great concern due to its very low propensity
3.62%.
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Figure 4: Plot of the Estimated Personal Causal Effects vs. Propensity Scores for the NSW Data.
Referring to Algorithm 2, B = 1000 bootstrap samples were used in a three-fold cross
validation procedure and the parameter m was set as 3.

If it is agreed that terminal node II be excluded from consideration due to lack of comparison
basis and the minor negative effect of NSW in terminal node III be ignored, then one may tentatively
conclude the absence of qualitative interactions. Using Equations (15)-(16) and information in Table
4(c), the ACE is estimated as $1,845 ± $809, which is very close to the benchmark randomized
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experiment estimate of $1,794 ± $633. As a comparison, the unadjusted estimate is $635 ± $677
and the ANCOVA estimate is $1,548 ± $781 after adjusting for all covariates. It is worth mentioning
that the ANCOVA estimate varies dramatically when different sets of variables are included in
the model. Using nonparametric matching method (Ho et al., 2007) implemented in the MatchIt
package, the subclassification estimate (with 5 subclasses) is $1,237 ± $1,196 and the optimal
matching (Rosenbaum, 1989) based estimate is $1,366 ± $720.

Next, we applied the aggregated grouping method described in Algorithm 1. We obtained an
averaged distance matrix from 100 bootstrap samples. The modal number of optimal tree sizes
is 5. The classical MDS (Gower, 1966) was used to explore the the distance matrix. Figure 3(a)
provides the resultant plot when the data are represented in a two-dimensional space. Agglomerative
hierarchical clustering with average linkage was then used to determine the final clusters. See Figure
3(b) for the dendrogram. The cluster membership specification was also added to the MDS plot in
Figure 3(a). It can be seen that Cluster 2 and Cluster 5 are distant from other three clusters. Table
5(a) shows the correspondence between the five clusters and the five CIT terminal nodes. It can
be seen that overall they match well, except for minor inconsistency between clusters 4 & 5 and
terminal nodes IV & V. This indicates that the CIT structure is relatively stable. The summary
statistics for the five clusters are outlined in Table 5(b), showing a pattern similar to Table 4(c).
After removing Cluster 2, the estimate of ACE is $1,897 ± $807. We would like to emphasize that
the excluded Group II in CIT can be explained by the fact that people who were not black and had
some income in 1974 seemed unlikely (with estimated propensity 3.62%) to participate the NSW
intervention program. This easy interpretation is no longer available with Cluster 2 obtained from
the aggregated grouping procedure.

Finally, ensemble CITs were used to estimate the ICE and propensity score for each individual.
Referring to Algorithm 2, three-fold (V = 3) cross-validation with B = 1,000 bootstrap samples
(with stratification on treatment) was used in the analysis; and at each split, m = 3 variables were
randomly selected as candidate splitting variables. Figure 4 plots the estimated ICE vs. propensity
scores. The interpretation for ICE is the difference between what an individual would have earned
in 1978 if he had attended NSW, compared to the 1978 earnings if he had not attended. It can be
seen that the area with low propensity (below .10) is dominated by subjects in the control and their
associated personal effects of NSW are quite mixed. Other than that, the intervention program seem
to have an overall positive effect. Figure 5 summarizes the results for each treatment-by-stratum
combination, in which the five strata obtained from aggregated grouping are used. It can be seen
that both propensity and individual causal effects are reasonably homogeneous within each stratum,
even though the individuals were from different treatment groups.

6. Extension to Ordinal/Continuous Treatments

The concept and properties of the facilitating score can be extended to scenarios where the treatment
variable is nominal (Lechner, 1999) or ordinal (Imbens, 2000). Suppose that the treatment variable
T is allowed to range within ℑ, where ℑ is a discrete set with ordered or unordered values. Let
Yt = Yt(ω) denote the potential outcome if unit ω was assigned to the treatment level t. Let et(X) =
Pr{T = t|X} be the generalized propensity score (GPS). A generalized weak facilitating score can
be defined as below.

Definition 6 A generalized weak facilitating score a(X) is a q-dimensional (0 < q≤ p) function of
X such that (i) X⊥⊥ T |a(X) and (ii) E(Yt −Yt ′ |a(X)) = E(Yt −Yt ′ |X) for any t, t ′ ∈ ℑ.
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Figure 5: Parallel Box-Plots of (a) the Propensity Scores and (b) the Estimated ICE for Each of
the Treatment×Stratum Combinations. The ‘0.k’ combination corresponds to individuals
in Stratum k who did not attend the NSW program while ‘1.k’ corresponds to those in
Stratum k who did, for k = 1, . . . ,5. The width of each box has been made proportional
to the sample size in each combination.

Condition (ii) is equivalent to saying that E(Yt −Yt ′ |a(X) = a) is independent of X. The following
theorem provides a basis for its usage. It shows that, if the joint distribution of (Y,T ) can be modeled
through a vector-valued function h(X), then h(X) is a generalized weak facilitating score and direct
estimates of causal effects can be obtained by conditioning on h(X) = h.
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(a) Correspondence
Cluster

1 2 3 4 5
I 178 0 0 0 0
II 0 193 0 0 0
III 0 0 126 0 0
IV 0 0 0 22 3
V 0 0 0 11 81

(b) Summary of Five Groups
NSW Group Unexposed Group Estimated Treatment Effect

Node size mean sd size mean sd Propensity estimate s.e.
1 22 8.1431 6.3676 156 4.8438 5.6728 12.36% 3.2993 1.3118
2 7 5.4539 5.3997 186 9.7759 8.0259 3.63% −4.3221 3.0634
3 71 4.6987 4.8043 55 4.8545 5.9303 56.35% −0.1558 0.9564
4 21 4.1514 4.3182 12 2.4027 5.5116 63.64% 1.7487 1.7283
5 64 8.3825 11.0826 20 6.3210 7.1054 76.19% 2.0614 2.6383

Table 5: Results for the five groups obtained from aggregated grouping: (a) correspondence be-
tween the obtained groups and the five CIT terminal nodes; (b) summary statistics. The
distance matrix was computed from 100 bootstrap samples and hierarchical clustering with
average linkage was used for determining the final groups.

Theorem 7 Assume that the conditional joint density of (Y,T ) given X, fY,T |X(Y,T |X), can be
written as fY,T |X(Y,T |X) = g(Y,T,h(X)) for some function g(·). In other words, (Y,T )⊥⊥X |h(X).
Further assume that treatment assignment is strongly ignorable so that Yt ⊥⊥ 1{T=t} |X for any
t ∈ ℑ.When 0 < et(X)< 1, we have

(1). h(X) is a generalized weak facilitating score.

(2). Concerning the causal effect in subpopulation Ωh = {ω : h(X(ω)) = h},

E(Yt −Yt ′ |h(X) = h) = E{Yt |T = t,h(X) = h}−E{Yt ′ |T = t ′,h(X) = h}
= E{Y |T = t,h(X) = h}−E{Y |T = t ′,h(X) = h}

is independent of X.

The proof of Theorem 7 is deferred to Appendix A. As stressed by Lechner (1999) and Imbens
(2000), GPS et(X) does not have a causal interpretation. However, the reinforced assumption
fY,T |X(Y,T |X) = g(Y,T,h(X)) implies that et(X) can be fully characterized by h(X) or its com-
ponents. This is analogous to the assumption of uniquely parameterized propensity function in Imai
and van Dyk (2004), where a parametric form is prescribed for et(X). To estimate h(X), a multi-
nomial or cumulative logit model can be used for propensity and the outcome can be modeled with
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multiple linear regression. The above results also can be extended to continuous treatment variables
with arguments similar to Hirano and Imbens (2005).

7. Discussion

Embedded in Rubin’s causal model, we have introduced a new concept, the facilitating score, to
help tackle the heterogeneity in both propensity and causal effects. The facilitating score is a finer
balancing score of Rosenbaum and Rubin (1983), plus additional conditions for dealing with dif-
ferential causal effects. It supplies a framework that promotes joint modeling of (Y,T ) for a better
understanding of causal effects. Accordingly we have devised recursive partitioning methods to aid
in causal inference at different levels.

The facilitating score concept and the CIT methods can be useful in personalized medicine and
other similar applications. Medical treatment is traditionally centered on standards of care on the ba-
sis of large epidemiological cohort studies or randomized trials that are powered for assessing ACE.
These studies however do not account for variabilities of individuals in reacting to the treatments
and drug-to-drug interactions. The new medical model of personalized medicine or treatments
seeks flexible ways that allow for treatment decisions or practices being tailored to individual by
integrating post-trial clinical data and new developments in biotechnology to improve healthcare.
The collected covariates are often expanded to a more comprehensive consideration of the patient,
including medical measurements, family history, social circumstances, environment and behaviors,
and biological variables. As a result, the data are often observational and high-dimensional in na-
ture. As demonstrated in the NSW data example, causal inference in observational studies could be
very complex, owing to the confounding and interacting effects complicated by covariates. While
personalized medicine is the ultimate goal, stratified medicine has been the current approach. Strat-
ified medicine aims to select the best therapy for groups of patients who share common biological
characteristics. The proposed CIT method and aggregated grouping can be used seeking strategies
for deploying stratified medicines. Insight into a greater degree of personalized treatment can be
gained by studying the personal treatment effects with ensemble CITs.

Some limitations of the proposed methods are listed below. First, despite the usefulness of
ICE, assessing ICE entails larger data than assessment of ACE in order to have the same level of
precision (or variance). There are many trials in research practice that are only powered to detect
ACE. For this reason, the proposed methods are best suitable for moderately-sized or large follow-
up data collected in post trial periods or extracted from Medicare or Medicaid databases, in which
randomization is not available. Secondly, the recursive partitioning methods are highly adaptive or
data-driven in nature and often regarded as exploratory or hypothesis-generating. It is important to
interpret the results with caution. In addition, the validity of Theorem 7 relies on the assumption of
strong ignorability. Like other methods, CIT performance is vulnerable to violated assumptions and
model misspecification. Shpitser and Pearl (2008) examines possibly milder conditions to ensure
identifiability and facilitate estimation in causal inference. It would be interesting to investigate how
to extend the proposed methods under mild conditions.

In terms of future research, Theorem 7 is readily applied to data with binary outcomes. With
further research efforts, both the facilitating score and CIT may be extended to other types of out-
comes such as censored survival times or longitudinal measurements. It would also be interesting to
extend the proposed methods to scenarios when both treatment and confounders are time-varying, as
studied in marginal structural models and structural nested models (Robins, 1999), and when some
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confounders are unmeasured but there exist some instrumental variables (IV; Angrist, Imbens, and
Rubin 1996) that satisfy the strong ignorability and other conditions. In addition, Robins, Rotnitzky,
and Zhao (1994) proposed doubly robust (DB) estimation methods to deal with mis-specification in
either the response model or the propensity model. Along similar lines, the targeted maximum like-
lihood (TML; van der Laan and Rubin 2006) is another newly developed causal inference method
that enjoys a favorable theoretical property for being doubly robust and locally efficient, meaning
that if at least one of the propensity and outcome models is correctly specified, then the TML es-
timator is consistent and asymptotically normal; if both models are correctly specified it is also
efficient. Similar work with facilitating score modeling could be another avenue for future research.
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Appendix A. Proof of Theorem 7.

We sketch the proof when T is ordinal or nominal. Theorem 3 follows as a special case when
ℑ = {0,1}. Some steps are standard arguments in propensity score theories. We include them for
the sake of completeness.

First of all, the conditional probability density function of T |X is

fT |X(T |X) =
∫
Y
fY,T |X(Y,T |X)dY =

∫
Y
g(Y,T,h(X))dY.

Thus the GPS et(X) = P(T = t|X) = g1(h(X)) for some function g1(·). Namely, h(X) is a finer
function of et(X). For this reason, we denote et(X) = et(h(X)).

Next, since h(X) is measurable with respect to, σ(X), the σ-algebra generated by X,

Pr{T = t|X,h(X)}= Pr{T = t|X,}= et(X).

Let δt = I{T = t} be the indicator function of whether T = t. By iterated expectation,

Pr{T = t|h(X)} = E(δt |h(X)) = E{E(δt |X,h(X))|h(X)}
= E{E(δt |X)|h(X)}= E{et(X)|h(X)}= et(X).

Namely, Pr{T = t|X,h(X)}= et(X) = Pr{T = t|h(X)}, which implies T ⊥⊥ X|h(X).
Further assuming the treatment assignment is strongly ignorable given X, it follows that the

treatment assignment is ignorable given h(X), that is, T ⊥⊥ Yt |h(X), which can be established by
showing

Pr{T = t ′|Yt ,h(X)} = E{δt ′ |Yt ,h(X)}= E{E(δt ′ |X,Yt ,h(X))|Yt ,h(X)}
= E{E(δt ′ |X)|Yt ,h(X)} due to strong ignorability
= E{et ′(X)|Yt ,h(X)}= et ′(X) = Pr{T = t ′|h(X)}.
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To check condition (ii) in Definition 6, consider E{Yt |h(X)}. Since Y =∑t Ytδt and δtδt ′ = 0 for
t %= t ′, we have Yδt = Ytδt . Consider

E{Yt |h(X)} = E{Yt |h(X)} ·E{δt |h(X)}/E{δt |h(X)}
= E{Ytδt |h(X)}/E{δt |h(X)} by strong ignorability
= E{Yδt |h(X)}/et(X).

It can be seen that h(x) is a finer function of both the numerate and denominator in the above
expression. Thus E{Yt |h(X) = h} is fully determined by h and no longer relies on the value of X.

Finally, in order to have available causal inference, it is important to note that, for given t and
t ′, h(x) = h fully determines both et(h) and et ′(h). Therefore,

E{Yt −Yt ′ |h(X) = h} = E{Yt |h(X) = h,T = t,et(h)}−E{Yt ′ |h(X) = h,T = t ′,et ′(h)}
= E{Y |h(X) = h,T = t}−E{Y |h(X) = h,T = t ′}

is independent of X. This justifies the direct use of mean response comparison for causal inference
in subpopulation Ωh.

Appendix B. Proof of Proposition 4.

First of all, condition (i) in Definition 2 holds as X ⊥⊥ T |h3(X). Assuming (Y1,Y0) ⊥⊥ T |X, it
follows that (Y1,Y0)⊥⊥ T |h3(X) under strong ignorability.

Now it suffices to verify condition (ii). Consider

E{Y1 |h2(X),h3(X)} = E{Y1 |T = 1,h2(X),h3(X)}
= E{Y |T = 1,h2(X),h3(X)}
= E{E(Y |X,T = 1) |h2(X),h3(X)}
= E{γ0 + γ1 +h1(X)+h2(X) |h2(X),h3(X)}
= γ0 + γ1 +h2(X)+E{h1(X) |h2(X),h3(X)}

Similarly, it can be found that

E{Y0 |h2(X),h3(X)}= γ0 +E(h1(X)|h2(X),h3(X)}.

Thus,
E{Y1−Y0 |h2(X) = h2, h3(X) = h3}= γ1 +h2,

which is independent of X.

Appendix C. Proof of Theorem 5.

The following lemma (see, e.g., Chapter 9 of Lin and Bai 2011), derived directly fromCr inequality,
will be used in the proof.

Lemma 8 Given a sequence X1, . . . ,Xn of random variables,  Xn = ∑n
i=1Xi/n. Then

E|  Xn|r ≤
1
n
·
n

∑
i=1

E|Xi|r for r > 1.
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By condition (ii) in Definition 2 of a(x),

(  yτ1−  yτ0)−E(Y1−Y0 |  aτ) = (  yτ1−  yτ0)−E(Y1−Y0 |x)
+E(Y1−Y0|a(x))−E(Y1−Y0 |  aτ)

= {  yτ1−E(Y1|x)+E(Y1 |a(x))−E(Y1|  aτ)}−
{  yτ0−E(Y0|x)+E(Y0 |a(x))−E(Y0|  aτ)}

= ζ1−ζ0

For convenience, we have used  aτ as shorthand for the conditioning event {a(x) =  aτ}. To prove
(22), it suffices, by Minkowski’s inequality, to verify the mean square or L2 consistency for ζ1 and
ζ0 separately.

Consider
ζ1 = {  yτ1−E(Y1|x)}+{E(Y1 |a(x))−E(Y1|  aτ)},

which has two terms. We examine the second term {E(Y1 |a(x))−E(Y1|  aτ)} first. If assumptions
(19), (20), and (21) hold, then  aτ

p
→ a(x) by Theorem 12.7 of Breiman et al. (1984, p. 322). Since

E(Y1|a) is assumed continuous in a,

E(Y1|  aτ)
p
→ E(Y1|a(x))

by the continuous mapping theorem. Moreover, since |E(Y1|  aτ)| ≤ E(|Y1||  aτ) ≤ E(|Y1|) < ∞, it
follows that

lim
n
E |E(Y1|  aτ)−E(Y1|a(x))|2 = 0

by the dominated (or bounded) convergence theorem.
Next, consider the first term in ζ1, {  yτ1−E(Y1|x)}. Rewrite  yτ1 as

 yτ1 =
∑
i∈τ
YiTi

∑
i∈τ
Ti

=
∑
i∈τ
YiTi/nτ

∑
i∈τ
Ti/nτ

=
ξn
ρn

.

which is a ratio estimator. The convergence of ratio estimators in the general form was studied by
Cramér (1946). Using Theorem 12.7 of Breiman et al. (1984) again, we have ξn

p
→ E(YT |x) and

ρn
p
→ e(x) in probability. Thus

ξn
ρn

p
→

E(YT |x)
e(x) = E(Y1|x)

in probability as well if e(x) %= 0, under the assumption of strong ignorability. To establish its mean
square risk consistency, the necessary and sufficient condition is that the random sequence {  y2

τ1}n is
uniformly integrable, that is,

lim
c0→∞

sup
n
E{  y2

τ1 I(  yτ1 > c0)}= 0.

A sufficient condition for uniform integrability (?) is that

sup
n
E|  yτ1|2+ε < ∞
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for some ε> 0. This can be verified because

sup
n
E|  yτ1|2+ε ≤ sup

n

1
nτ1 ∑

{i∈τ: Ti=1}
E|Y |2+ε ≤M < ∞

following from (19) and Lemma 8.
Therefore, limn E|ζ1|2 = 0 using Minkowski’s inequality again. Similar arguments can be used

to show limn E|ζ0|2 = 0. This completes the proof of Theorem 5.
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Abstract
Oger (OrGanic Environment for Reservoir computing) is a Python toolbox for building, train-
ing and evaluating modular learning architectures on large data sets. It builds on MDP for its
modularity, and adds processing of sequential data sets, gradient descent training, several cross-
validation schemes and parallel parameter optimization methods. Additionally, several learning
algorithms are implemented, such as different reservoir implementations (both sigmoid and spik-
ing), ridge regression, conditional restricted Boltzmann machine (CRBM) and others, including
GPU accelerated versions. Oger is released under the GNU LGPL, and is available from http:
//organic.elis.ugent.be/oger.
Keywords: Python, modular architectures, sequential processing

1. Introduction

The Oger toolbox originated from the need to rapidly implement, investigate and compare complex
architectures built from state-of-the-art sequential processing algorithms, focused on but not limited
to reservoir computing, and to apply these architectures to large real-world tasks. Reservoir comput-
ing (RC) is a learning framework (Verstraeten et al., 2007) whereby a random non-linear dynamical
system (usually a recurrent neural network) is left untrained and used as input to a simple learn-
ing algorithm such as linear regression. A number of smaller toolboxes for reservoir computing
are available, written in C++, Java and Matlab.1 However, these are generally focused on specific
implementations of RC (echo state networks or liquid state machines) and offer less flexibility in
creating and evaluating complex architectures.

Rather than contribute yet another toolbox which reimplements many standard algorithms, one
of our design choices for Oger was to incorporate existing packages where possible. Because mod-

1. An overview can be found at http://organic.elis.ugent.be/software.

c©2012 David Verstraeten, Benjamin Schrauwen, Sander Dieleman, Philemon Brakel, Pieter Buteneers and Dejan Pecevski.
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Figure 1: A schematic overview of the structure of Oger. The basic processing blocks (nodes) are
combined with methods for constructing and training architectures. These architectures
can then be evaluated in a validation and optimization framework.

ularity was one of the key requirements for Oger, it has been based on the well known and widely
used Modular Data Processing toolkit (MDP), which provides this modularity in addition to a wide
variety of machine learning algorithms (Zito et al., 2008). Oger uses a Node as its basic building
block: a (optionally trainable) data processing algorithm. These nodes can then be combined into
an arbitrary feedforward graph structure called a Flow. Much of the error- and type-checking is
abstracted away through the object-oriented interface, such that the developer can focus on imple-
menting the actual algorithm.

Python was chosen as the development language because it is a high-level, cross-platform and
open-source interpreted language offering flexibility and rapid development, while interfaces to op-
timized numerical linear algebra packages such as BLAS are provided through the NumPy package
so that the speed sacrifice remains limited. Mature and feature-complete packages for plotting (mat-
plotlib) and general scientific computing (SciPy) that in many respects come close to commercial
alternatives are available, along with a plethora of smaller libraries providing specific functions.

2. Features

In this section we describe the main features of Oger and give a usage example.

2.1 Algorithms

MDP implements several standard supervised and unsupervised learning methods for operating on
stationary inputs, such as principal component analysis, independent component analysis and factor
analysis.2 Oger adds several new methods to this set:

– Several reservoir implementations : a basic reservoir with customizable nonlinear function
and weight topologies, a leaky integrator reservoir, and a GPU-optimized reservoir using CUDA.

– Wrappers for creating spiking reservoirs using PyNN-compatible neural network simulators
(Davison et al., 2008).

– A logistic regression node trainable with different optimizers such as IRLS, conjugate gradi-
ent, BFGS and others.

2. We refer to the MDP website http://mdp-toolkit.sourceforge.net/ for an exhaustive list.
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– A conditional restricted Boltzmann machine: a standard RBM with an additional context
vector.

– Several ‘utility’ signal processing methods: a resampling node, a timeshift node, a winner-
take-all node, and others.

Additionally, Oger supports backpropagation training using various methods of gradient de-
scent, such as stochastic gradient descent, RPROP and others. Finally, a FreerunFlow allows easy
training and execution of architectures with feedback, for instance for time-series generation tasks
(see the usage example below).

2.2 Validation, Optimization and Parallel Execution

Around the data processing algorithms described above, Oger offers functionality for large-scale
validation and optimization. The validation automates the process of constructing training and test
sets, and the actual training and evaluation. Several standard validation schemes are provided (n-
fold, leave-one-out (LOO) cross-validation and others), but this can be customized (for example, if
a fixed training and test set is defined).

Oger provides an Optimizer class. This class allows both exploration of a certain parame-
ter space and optimization of a vector of parameters according to a loss function (which can be
user-defined, or one of the several provided by Oger). The optimization itself can be done using
grid-searching, or using an interface to any of the algorithms in scipy.optimize or the Python
CMA-ES module (Hansen, 2006). Finally, a variety of error measures and utility classes such as a
ConfusionMatrix are included.

Oger allows two modes of parallel execution, both local (multi-threaded or multi-process) and
on a computing grid. The first mode is inherited from MDP, where the training and execution of
a flow on a data set consisting of different chunks can be done in parallel (if the nodes in the flow
support this). The second mode is the parallel evaluation of parameter points for grid-searching
and CMA-ES (the scipy.optimize functions as yet do not support this). Both modes use runtime
overloading of class methods by their parallel versions, which makes the transition from sequential
to parallel execution very user-friendly and possible using a couple of lines of code (see the usage
example below).

3. Usage Example
As an illustrative example, we construct and train a reservoir and readout setup with output feedback
for generating the Mackey-Glass time-series. We refer to the Oger website and the Oger installation
package for more usage examples.
1 from scipy import *
2 import Oger , mdp
3 signals = Oger.datasets.mackey_glass(n_samples=4, sample_len =3000)
4 res = Oger.nodes.LeakyReservoirNode(output_dim=400, reset_states=False)
5 readout = Oger.nodes.RidgeRegressionNode()
6 flow = Oger.nodes.FreerunFlow([res, readout], freerun_steps =300)
7 parameters = {res:{’input_scaling’:arange(.1, 1, .1), ’bias_scaling’:

arange(0, .5, .1), ’leak_rate’:arange(.1,.5,.1)}}
8 internal_params = {readout:{’ridge_param’: 10. ** arange(-4, 0, .5)}}
9 opt = Oger.evaluation.Optimizer(parameters , Oger.utils.nrmse)
10 opt.scheduler = mdp.parallel.ProcessScheduler(n_processes=None)
11 mdp.activate_extension(’parallel’)
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12 opt.grid_search([[], signals[:-1]], flow , Oger.evaluation.leave_one_out ,
internal_params)

13 opt_flow = opt.get_optimal_flow(verbose=True)
14 opt_flow.train([[], signals[:-1]])
15 y = opt_flow.execute(signals [-1][0])

On line 3, the data set is generated, which in this case consists of four Mackey-Glass time-
series generated from different initial states. In the next two lines, a reservoir node and a linear
readout node trained with ridge regression are created. Line 6 concatenates these nodes into a
FreerunFlow, which provides one-step ahead prediction during training and feeds the output back
to the input of the flow during execution. Lines 7 and 8 define a search space for the reservoir
parameters and the regularization constant of the readout node which is optimized separately for
each set of reservoir parameters. On line 9 an Optimizer object is instantiated which will optimize
these parameters using the provided error measure (normalized root mean squared error). Lines
10 and 11 ensure that the optimization is done in parallel, using separate processes. On line 12,
the actual optimization is performed using LOO cross-validation on the four time-series, while for
each fold the regularization constant for the ridge regression is optimized again using LOO cross-
validation. This can take a few minutes. On line 13 the Optimizer is queried to return the optimal
flow, which is subsequently trained using all the training signals and applied to an unseen test signal
in lines 14 and 15 respectively.
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Abstract
In the supervised learning setting termed Multiple-Instance Learning (MIL), the examples are bags
of instances, and the bag label is a function of the labels of its instances. Typically, this function
is the Boolean OR. The learner observes a sample of bags and the bag labels, but not the instance
labels that determine the bag labels. The learner is then required to emit a classification rule for
bags based on the sample. MIL has numerous applications, and many heuristic algorithms have
been used successfully on this problem, each adapted to specific settings or applications. In this
work we provide a unified theoretical analysis for MIL, which holds for any underlying hypothesis
class, regardless of a specific application or problem domain. We show that the sample complexity
of MIL is only poly-logarithmically dependent on the size of the bag, for any underlying hypothesis
class. In addition, we introduce a new PAC-learning algorithm for MIL, which uses a regular
supervised learning algorithm as an oracle. We prove that efficient PAC-learning for MIL can be
generated from any efficient non-MIL supervised learning algorithm that handles one-sided error.
The computational complexity of the resulting algorithm is only polynomially dependent on the
bag size.

Keywords: multiple-instance learning, learning theory, sample complexity, PAC learning, super-
vised classification

1. Introduction

We consider the learning problem termed Multiple-Instance Learning (MIL), first introduced in
Dietterich et al. (1997). MIL is a special type of a supervised classification problem. As in classical
supervised classification, in MIL the learner receives a sample of labeled examples drawn i.i.d from
an arbitrary and unknown distribution, and its objective is to discover a classification rule with a
small expected error over the same distribution. In MIL additional structure is assumed, whereby
the examples are received as bags of instances, such that each bag is composed of several instances.
It is assumed that each instance has a true label, however the learner only observes the labels of the
bags. In classical MIL the label of a bag is the Boolean OR of the labels of the instances the bag
contains. Various generalizations to MIL have been proposed (see, e.g., Raedt, 1998; Weidmann
et al., 2003). Here we consider both classical MIL and the more general setting, where a function
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other than Boolean OR determines bag labels based on instance labels. This function is known to
the learner a-priori. We term the more general setting generalized MIL.

It is possible, in principle, to view MIL as a regular supervised classification task, where a bag
is a single example, and the instances in a bag are merely part of its internal representation. Such a
view, however, means that one must analyze each specific MIL problem separately, and that results
and methods that apply to one MIL problem are not transferable to other MIL problems. We propose
instead a generic approach to the analysis of MIL, in which the properties of a MIL problem are
analyzed as a function of the properties of the matching non-MIL problem. As we show in this work,
the connections between the MIL and the non-MIL properties are strong and useful. The generic
approach has the advantage that it automatically extends all knowledge and methods that apply to
non-MIL problems into knowledge and methods that apply to MIL, without requiring specialized
analysis for each specific MIL problem. Our results are thus applicable for diverse hypothesis
classes, label relationships between bags and instances, and target losses. Moreover, the generic
approach allows a better theoretical understanding of the relationship, in general, between regular
learning and multi-instance learning with the same hypothesis class.

The generic approach can also be helpful for the design of algorithms, since it allows deriving
generic methods and approaches that hold across different settings. For instance, as we show below,
a generic PAC-learning algorithm can be derived for a large class of MIL problems with different
hypothesis classes. Other applications can be found in follow-up research of the results we report
here, such as a generic bag-construction mechanism (Sabato et al., 2010), and learning when bags
have a manifold structure (Babenko et al., 2011). As generic analysis goes, it might be possible to
improve upon it in some specific cases. Identifying these cases and providing tighter analysis for
them is an important topic for future work. We do show that in some important cases—most notably
that of learning separating hyperplanes with classical MIL—our analysis is tight up to constants.

MIL has been used in numerous applications. In Dietterich et al. (1997) the drug design appli-
cation motivates this setting. In this application, the goal is to predict which molecules would bind
to a specific binding site. Each molecule has several possible conformations (shapes) it can take.
If at least one of the conformations binds to the binding site, then the molecule is labeled positive.
However, it is not possible to experimentally identify which conformation was the successful one.
Thus, a molecule can be thought of as a bag of conformations, where each conformation is an in-
stance in the bag representing the molecule. This application employs the hypothesis class of Axis
Parallel Rectangles (APRs), and has made APRs the hypothesis class of choice in several theoret-
ical works that we mention below. There are many other applications for MIL, including image
classification (Maron and Ratan, 1998), web index page recommendation (Zhou et al., 2005) and
text categorization (Andrews, 2007).

Previous theoretical analysis of the computational aspects of MIL has been done in two main
settings. In the first setting, analyzed for instance in Auer et al. (1998), Blum and Kalai (1998) and
Long and Tan (1998), it is assumed that all the instances are drawn i.i.d from a single distribution
over instances, so that the instances in each bag are statistically independent. Under this indepen-
dence assumption, learning from an i.i.d. sample of bags is as easy as learning from an i.i.d. sample
of instances with one-sided label noise. This is stated in the following theorem.
Theorem 1 (Blum and Kalai, 1998) If a hypothesis class is PAC-learnable in polynomial time
from one-sided random classification noise, then the same hypothesis class is PAC-learnable in
polynomial time in MIL under the independence assumption. The computational complexity of
learning is polynomial in the bag size and in the sample size.
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The assumption of statistical independence of the instances in each bag is, however, very limiting,
as it is irrelevant to many applications.

In the second setting one assumes that bags are drawn from an arbitrary distribution over bags,
so that the instances within a bag may be statistically dependent. This is clearly much more useful in
practice, since bags usually describe a complex object with internal structure, thus it is implausible
to assume even approximate independence of instances in a bag. For the hypothesis class of APRs
and an arbitrary distribution over bags, it is shown in Auer et al. (1998) that if there exists a PAC-
learning algorithm for MIL with APRs, and this algorithm is polynomial in both the size of the
bag and the dimension of the Euclidean space, then it is possible to polynomially PAC-learn DNF
formulas, a problem which is solvable only if R P =N P (Pitt and Valiant, 1986). In addition, if
it is possible to improperly learn MIL with APRs (that is, to learn a classifier which is not itself an
APR), then it is possible to improperly learn DNF formulas, a problem which has not been solved
to this date for general distributions. This result implies that it is not possible to PAC-learn MIL on
APRs using an algorithm which is efficient in both the bag size and the problem’s dimensionality.
It does not, however, preclude the possibility of performing MIL efficiently in other cases.

In practice, numerous algorithms have been proposed for MIL, each focusing on a different
specialization of this problem. Almost none of these algorithms assume statistical independence
of instances in a bag. Moreover, some of the algorithms explicitly exploit presumed dependences
between instances in a bag. Dietterich et al. (1997) propose several heuristic algorithms for finding
an APR that predicts the label of an instance and of a bag. Diverse Density (Maron and Lozano-
Pérez, 1998) and EM-DD (Zhang and Goldman, 2001) employ assumptions on the structure of
the bags of instances. DPBoost (Andrews and Hofmann, 2003), mi-SVM and MI-SVM (Andrews
et al., 2002), and Multi-Instance Kernels (Gärtner et al., 2002) are approaches for learning MIL
using margin-based objectives. Some of these methods work quite well in practice. However, no
generalization guarantees have been provided for any of them.

In this work we analyze MIL and generalized MIL in a general framework, independent of a
specific application, and provide results that hold for any underlying hypothesis class. We assume a
fixed hypothesis class defined over instances. We then investigate the relationship between learning
with respect to this hypothesis class in the classical supervised learning setting with no bags, and
learning with respect to the same hypothesis class in MIL. We address both sample complexity and
computational feasibility.

Our sample complexity analysis shows that for binary hypothesis and thresholded real-valued
hypotheses, the distribution-free sample complexity for generalized MIL grows only logarithmically
with the maximal bag size. We also provide poly-logarithmic sample complexity bounds for the case
of margin learning. We further provide distribution-dependent sample complexity bounds for more
general loss functions. These bound are useful when only the average bag size is bounded. The
results imply generalization bounds for previously proposed algorithms for MIL. Addressing the
computational feasibility of MIL, we provide a new learning algorithm with provable guarantees for
a class of bag-labeling functions that includes the Boolean OR, used in classical MIL, as a special
case. Given a non-MIL learning algorithm for the desired hypothesis class, which can handle one-
sided errors, we improperly learn MIL with the same hypothesis class. The construction is simple to
implement, and provides a computationally efficient PAC-learning of MIL, with only a polynomial
dependence of the run time on the bag size.

In this work we consider the problem of learning to classify bags using a labeled sample of bags.
We do not attempt to learn to classify single instances using a labeled sample of bags. We point out
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that it is not generally possible to find a low-error classification rule for instances based on a bag
sample. As a simple counter example, assume that the label of a bag is the Boolean OR of the labels
of its instances, and that every bag includes both a positive instance and a negative instance. In this
case all bags are labeled as positive, and it is not possible to distinguish the two types of instances
by observing only bag labels.

The structure of the paper is as follows. In Section 2 the problem is formally defined and
notation is introduced. In Section 3 the sample complexity of generalized MIL for binary hypotheses
is analyzed. We provide a useful lemma bounding covering numbers for MIL in Section 4. In
Section 5 we analyze the sample complexity of generalized MIL with real-valued functions for
large-margin learning. Distribution-dependent results for binary learning and real-valued learning
based on the average bag size are presented in Section 6. In Section 7 we present a PAC-learner for
MIL and analyze its properties. We conclude in Section 8. The appendix includes technical proofs
that have been omitted from the text. A preliminary version of this work has been published as
Sabato and Tishby (2009).

2. Notations and Definitions

For a natural number k, we denote [k]! {1, . . . ,k}. For a real number x, we denote [x]+ =max{0,x}.
log denotes a base 2 logarithm. For two vectors x,y ∈ Rn, 〈x,y〉 denotes the inner product of x and
y. We use the function sign : R→ {−1,+1} where sign(x) = 1 if x≥ 0 and sign(x) =−1 otherwise.
For a function f : A→ B, we denote by f |C its restriction to a set C ⊆ A. For a univariate function
f , denote its first and second derivatives by f ′ and f ′′ respectively.

Let X be the input space, also called the domain of instances. A bag is a finite ordered set of
instances from X . Denote the set of allowed sizes for bags in a specific MIL problem by R⊆N. For
any set A we denote A(R) ! ∪n∈RAn. Thus the domain of bags with a size in R and instances from
X is X (R). A bag of size n is denoted by  x = (x[1], . . . ,x[n]) where each x[ j] ∈ X is an instance in
the bag. We denote the number of instances in  x by |  x|. For any univariate function f : A→ B, we
may also use its extension to a multivariate function from sequences of elements in A to sequences
of elements in B, defined by f (a[1], . . . ,a[k]) = ( f (a[1]), . . . , f (a[k])).

Let I ⊆ R an allowed range for hypotheses over instances or bags. For instance, I = {−1,+1}
for binary hypotheses and I = [−B,B] for real-valued hypotheses with a bounded range. H ⊆ IX
is a hypothesis class for instances. Every MIL problem is defined by a fixed bag-labeling function
ψ : I(R) → I that determines the bag labels given the instance labels. Formally, every instance
hypothesis h : X → I defines a bag hypothesis, denoted by h : X (R)→ I and defined by

∀  x ∈ X (R), h(  x)! ψ(h(x[1]), . . . ,h(x[r])).

The hypothesis class for bags given H and ψ is denoted H ! {h | h ∈H }. Importantly, the identity
of ψ is known to the learner a-priori, thus each ψ defines a different generalized MIL problem. For
instance, in classical MIL, I = {−1,+1} and ψ is the Boolean OR.

We assume the labeled bags are drawn from a fixed distribution D over X (R)×{−1,+1}, where
each pair drawn from D constitutes a bag and its binary label. Given a range I ⊆R of possible label
predictions, we define a loss function ! : {−1,+1}× I→ R, where !(y, ŷ) is the loss incurred if the
true label is y and the predicted label is ŷ. The true loss of a bag-classifier h : X (R)→ I is denoted by
!(h,D) ! E(  X,Y )∼D[!(Y,h(  X))]. We say that a sample or a distribution are realizable by H if there
is a hypothesis h ∈H that classifies them with zero loss.
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The MIL learner receives a labeled sample of bags {(  x1,y1), . . . ,(  xm,ym)} ⊆ X (R)× {−1,+1}
drawn from Dm, and returns a classifier ĥ : X (R) → I. The goal of the learner is to return ĥ that
has a low loss !(ĥ,D) compared to the minimal loss that can be achieved with the bag hypothesis
class, denoted by !∗(H ,D)! infh∈H !(h,D). The empirical loss of a classifier for bags on a labeled
sample S is !(h,S)! E(X ,Y )∼S[!(Y,h(  X))]. For an unlabeled set of bags S= {  xi}i∈[m], we denote the
multi-set of instances in the bags of S by S∪ ! {xi[ j] | i ∈ [m], j ∈ [|  xi|]}. Since this is a multi-set,
any instance which repeats in several bags in S is represented the same amount of time in S∪.

2.1 Classes of Real-Valued bag-functions

In classical MIL the bag function is the Boolean OR over binary labels, that is I = {−1,+1} and
ψ= OR : {−1,+1}(R)→ {−1,+1}. A natural extension of the Boolean OR to a function over reals
is the max function. We further consider two classes of bag functions over reals, each representing
a different generalization of the max function, which conserves a different subset of its properties.

The first class we consider is the class of bag-functions that extend monotone Boolean functions.
Monotone Boolean functions map Boolean vectors to {−1,+1}, such that the map is monotone-
increasing in each of the inputs. The set of monotone Boolean functions is exactly the set of func-
tions that can be represented by some composition of AND and OR functions, thus it includes the
Boolean OR. The natural extension of monotone Boolean functions to real functions over real vec-
tors is achieved by replacing OR with max and AND with min. Formally, we define extensions of
monotone Boolean functions as follows.

Definition 2 A function from Rn into R is an extension of an n-ary monotone Boolean function if it
belongs to the setMn defined inductively as follows, where the input to a function is z ∈ Rn:

(1)∀ j ∈ [n], z /−→ z[ j] ∈Mn;
(2)∀k ∈ N+, f1, . . . , fk ∈Mn =⇒ z /−→max j∈[k]{ f j(z)} ∈Mn;
(3)∀k ∈ N+, f1, . . . , fk ∈Mn =⇒ z /−→min j∈[k]{ f j(z)} ∈Mn.

We say that a bag-function ψ : R(R) → R extends monotone Boolean functions if for all n ∈ R,
ψ|Rn ∈Mn.

The class of extensions to Boolean functions thus generalizes the max function in a natural way.
The second class of bag functions we consider generalizes the max function by noting that for

bounded inputs, the max function can be seen as a variant of the infinity-norm ‖z‖∞ = max |z[i]|.
Another natural bag-function over reals is the average function, defined as ψ(z) = 1

n ∑i∈[n] zi, which
can be seen as a variant of the 1-norm ‖z‖1 = ∑i∈[n] |z[i]|. More generally, we treat the case where
the hypotheses map into I = [−1,1], and consider the class of bag functions inspired by a p-norm,
defined as follows.

Definition 3 For p ∈ [1,∞), the p-norm bag function ψp : [−1,+1](R)→ [−1,+1] is defined by:

∀z ∈ R
n, ψp(z)!

(

1
n

n

∑
i=1

(z[i]+1)p
)1/p

−1.

For p= ∞, Define ψ∞ ≡ limp→∞ψp.
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Since the inputs of ψp are in [−1,+1], we have ψp(z) ≡ n−1/p ·‖z+1‖p−1 where n is the length
of z. Note that the average function is simply ψ1, and ψ∞ ≡ ‖z+1‖∞−1≡max. Other values of p
fall between these two extremes: Due to the p-norm inequality, which states that for all p ∈ [1,∞)
and x ∈ Rn, 1

n‖x‖1 ≤ n−1/p‖x‖p ≤ ‖x‖∞, we have that for all z ∈ [−1,+1]n

average≡ ψ1(z)≤ ψp(z)≤ ψ∞(z)≡max .

Many of our results hold when the scale of the output of the bag-function is related to the scale
of its inputs. Formally, we consider cases where the output of the bag-function does not change by
much unless its inputs change by much. This is formalized in the following definition of a Lipschitz
bag function.

Definition 4 A bag function ψ : R(R)→ R is c-Lipschitz with respect to the infinity norm for c> 0
if

∀n ∈ R,∀a,b ∈ R
n, |ψ(a)−ψ(b)|≤ c‖a−b‖∞.

The average bag-function and the max bag functions are 1-Lipschitz. Moreover, all extensions
of monotone Boolean functions are 1-Lipschitz with respect to the infinity norm—this is easy to
verify by induction on Definition 2. All p-norm bag functions are also 1-Lipschitz, as the following
derivation shows:

|ψp(a)−ψp(b)|= n−1/p · |‖a+1‖p−‖b+1‖p|≤ n−1/p ·‖a−b‖p ≤ ‖a−b‖∞.

Thus, our results for Lipschitz bag-functions hold in particular for the two bag-function classes we
have defined here, and in specifically for the max function.

3. Binary MIL

In this section we consider binary MIL. In binary MIL we let I = {−1,+1}, thus we have a binary
instance hypothesis class H ⊆ {−1,+1}X . We further let our loss be the zero-one loss, defined
by !0/1(y, ŷ) = 1[y 4= ŷ]. The distribution-free sample complexity of learning relative to a binary
hypothesis class with the zero-one loss is governed by the VC-dimension of the hypothesis class
(Vapnik and Chervonenkis, 1971). Thus we bound the VC-dimension of H as a function of the
maximal possible bag size r = maxR, and of the VC-dimension of H . We show that the VC-
dimension of H is at most logarithmic in r, and at most linear in the VC-dimension of H , for
any bag-labeling function ψ : {−1,+1}(R)→ {−1,+1}. It follows that the sample complexity of
MIL grows only logarithmically with the size of the bag. Thus MIL is feasible even for quite large
bags. In fact, based on the results we show henceforth, Sabato et al. (2010) have shown that MIL
can sometimes be used to accelerate even single-instance learning. We further provide lower bounds
that show that the dependence of the upper bound on r and on the VC-dimension of H is imperative,
for a large class of Boolean bag-labeling functions. We also show a matching lower bound for the
VC-dimension of classical MIL with separating hyperplanes.

3.1 VC-Dimension Upper Bound

Our first theorem establishes a VC-Dimension upper bound for generalized MIL. To prove the
theorem we require the following useful lemma.
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Lemma 5 For any R⊆ N and any bag function ψ : {−1,+1}(R)→ {−1,+1}, and for any hypoth-
esis class H ⊆ {−1,+1}X and a finite set of bags S⊆ X (R),

∣

∣H |S
∣

∣≤
∣

∣H |S∪
∣

∣.

Proof Let h1,h2 ∈ H be bag hypotheses. There exist instance hypotheses g1,g2 ∈ H such that
gi = hi for i= 1,2. Assume that h1|S 4= h2|S. We show that g1|S∪ 4= g2|S∪ , thus proving the lemma.

From the assumption it follows that g1|S 4= g2|S. Thus there exists at least one bag x∈ S such that
g2(x) 4= g2(x). Denote its size by n. We have ψ(g1(x[1]), . . . ,g1(x[n])) 4= ψ(g2(x[1]), . . . ,g2(x[n])).
Hence there exists a j ∈ [n] such that g1(x[ j]) 4= g2(x[ j]). By the definition of S∪, x[ j] ∈ S∪. There-
fore g1|S∪ 4= g2|S∪ .

Theorem 6 Assume that H is a hypothesis class with a finite VC-dimension d. Let r ∈ N and
assume that R ⊆ [r]. Let the bag-labeling function ψ : {−1,+1}(R)→ {−1,+1} be some Boolean
function. Denote the VC-dimension of H by dr. We have

dr ≤max{16,2d log(2er)}.

Proof For a set of hypotheses J , denote by J |A the restriction of each of its members to A, so that
JA ! {h|A | h ∈ J }. Since dr is the VC-dimension of H , there exists a set of bags S ⊆ X (R) of size
dr that is shattered by H , so that |H |S|= 2dr . By Lemma 5 |H |S|≤ |H |S∪ |, therefore 2dr ≤ |H |S∪ |.
In addition, R ⊆ [r] implies |S∪| ≤ rdr. By applying Sauer’s lemma (Sauer, 1972; Vapnik and
Chervonenkis, 1971) to H we get

2dr ≤ |H |S∪ |≤
(

e|S∪|
d

)d
≤
(

erdr
d

)d
,

Where e is the base of the natural logarithm. It follows that dr ≤ d(log(er)− logd)+ d logdr. To
provide an explicit bound for dr, we bound d logdr by dividing to cases:

1. Either d logdr ≤ 1
2dr, thus dr ≤ 2d(log(er)− logd)≤ 2d log(er),

2. or 1
2dr < d logdr. In this case,

(a) either dr ≤ 16,

(b) or dr > 16. In this case
√
dr < dr/ logdr < 2d, thus d logdr = 2d log

√
dr ≤ 2d log2d.

Substituting in the implicit bound we get dr≤ d(log(er)− logd)+2d log2d≤ 2d log(2er).

Combining the cases we have dr ≤max{16,2d log(2er)}.
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3.2 VC-Dimension Lower Bounds

In this section we show lower bounds for the VC-dimension of binary MIL, indicating that the
dependence on d and r in Theorem 6 is tight in two important settings.

We say that a bag-function ψ : {−1,+1}(R) → {−1,+1} is r-sensitive if there exists a num-
ber n ∈ R and a vector c ∈ {−1,+1}n such that for at least r different numbers j1, . . . , jr ∈ [n],
ψ(c[1], . . . ,c[ ji], . . . ,c[n]) 4= ψ(c[1], . . . ,−c[ ji], . . . ,c[n]). Many commonly used Boolean functions,
such as OR, AND, Parity, and all their variants that stem from negating some of the inputs, are
r-sensitive for every r ∈ R. Our first lower bound shows if ψ is r-sensitive, the bound in Theorem 6
cannot be improved without restricting the set of considered instance hypothesis classes.

Theorem 7 Assume that the bag function ψ : {−1,+1}(R)→ {−1,+1} is r-sensitive for some r ∈
N. For any natural d and any instance domain X with |X | ≥ rd6log(r)7, there exists a hypothesis
class H with a VC-dimension at most d, such that the VC dimension of H is at least d6log(r)7.

Proof Since ψ is r-sensitive, there are a vector c ∈ {−1,+1}n and a set J ⊆ n such that |J| = r
and ∀ j ∈ J,ψ(c[1], . . . ,c[n]) 4= ψ(c[1], . . . ,−c[ j], . . . ,c[n]). Since ψ maps all inputs to {−1,+1}, it
follows that ∀ j ∈ J,ψ(c[1], . . . ,−c[ j], . . . ,c[n]) = −ψ(c[1], . . . ,c[n]). Denote a = ψ(c[1], . . . ,c[n]).
Then we have

∀ j ∈ J,y ∈ {−1,+1}, ψ(c[1], . . . ,c[ j] · y, . . . ,c[n]) = a · y. (1)

For simplicity of notation, we henceforth assume w.l.o.g. that n= r and J = [r].
Let S ⊆ X r be a set of d6log(r)7 bags of size r, such that all the instances in all the bags are

distinct elements of X . Divide S into d mutually exclusive subsets, each with 6log(r)7 bags. Denote
bag p in subset t by  x(p,t). We define the hypothesis class

H ! {h[k1, . . . ,kd] | ∀i ∈ [d],ki ∈ [26log(r)7]},

where h[k1, . . . ,kd] is defined as follows (see illustration in Table 1): For x ∈ X which is not an
instance of any bag in S, h[k1, . . . ,kd] = −1. For x = x(p,t)[ j], let b(p,n) be bit p in the binary
representation of the number n, and define

h[k1, . . . ,kd](x(p,t)[ j]) =

{

c[ j] ·a(2b(p, j−1)−1) j = kt ,
c[ j] j 4= kt .

We now show that S is shattered by H , indicating that the VC-dimension of H is at least
|S| = d6log(r)7. To complete the proof, we further show that the VC-dimension of H is no more
than d.

First, we show that S is shattered byH : Let {y(p,t)}p∈6log(r)7,t∈[d] be some labeling over {−1,+1}
for the bags in S. For each t ∈ [d] let

kt ! 1+
6log(r)7

∑
p=1

y(p,t) +1
2

·2p−1.

Then by Equation (1), for all p ∈ [6log(r)7] and t ∈ [d],

h[k1, . . . ,kd](  x(p,t)) = ψ(c[1], . . . ,c[kt ] ·a(2b(p,kt−1)−1), . . . ,c[r])
= a2(2b(p,kt−1)−1) = 2b(p,kt−1)−1 = y(p,t).
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t p Instance label h(x(p,t)[r]) Bag label h(  xi)
1 − − − + − − − − +

1 2 − − − + − − − − +
3 − − − − − − − − −
1 − − − − − − − + +

2 2 − − − − − − − + +
3 − − − − − − − + +
1 − − − − − − − − −

3 2 − + − − − − − − +
3 − − − − − − − − −

Table 1: An example of the hypotheses h= h[4,8,3], with ψ= OR (so that c is the all −1 vector),
r = 8, and d = 3. Each line represents a bag in S, each column represents an instance in
the bag.

Thus h[k1, . . . ,kd] labels S according to {y(p,t)}.
Second, we show that the VC-dimension of H is no more than d. Let A ⊆ X of size d+ 1. If

there is an element in A which is not an instance in S then this element is labeled −1 by all h ∈H ,
therefore A is not shattered. Otherwise, all elements in A are instances in bags in S. Since there
are d subsets of S, there exist two elements in A which are instances of bags in the same subset
t. Denote these instances by x(p1, t)[ j1] and x(p2, t)[ j2]. Consider all the possible labelings of the
two elements by hypotheses in H . If A is shattered, there must be four possible labelings for these
elements. However, by the definition of h[k1, . . . ,kd] it is easy to see that if j1 = j2 = j then there
are at most two possible labelings by hypotheses in H , and if j1 4= j2 then there are at most three
possible labelings. Thus A is not shattered byH , hence the VC-dimension ofH is no more than d.

Theorem 10 below provides a lower bound for the VC-dimension of MIL for the important
case where the bag-function is the Boolean OR and the hypothesis class is the class of separating
hyperplanes in Rn. Forw∈Rn, the function hw :Rn→ {−1,+1} is defined by hw(x)= sign(〈w,x〉).
The hypothesis class of linear classifiers is Wn ! {hw | w ∈ Rn}. Let r ∈ N. We denote the VC-
dimension of W n for R = {r} and ψ = OR by dr,n. We prove a lower bound for dr,n using two
lemmas: Lemma 8 provides a lower bound for dr,3, and Lemma 9 links dr,n for small n with dr,n for
large n. The resulting general lower bound, which holds for r=maxR, is then stated in Theorem 10.

Lemma 8 Let dr,n be the VC-dimension ofW n as defined above. Then dr,3 ≥ 6log(2r)7.

Proof Denote L ! 6log(2r)7. We will construct a set S of L bags of size r that is shattered by W3.
The construction is illustrated in Figure 1.

Let n=(n1, . . . ,nK) be a sequence of indices from [L], created by concatenating all the subsets of
[L] in some arbitrary order, so that K = L2L−1, and every index appears 2L−1 ≤ r times in n. Define
a set A= {ak | k ∈ [K]}⊆ R3 where ak ! (cos(2πk/K),sin(2πk/K),1) ∈ R3, so that a1, . . . ,aK are
equidistant on a unit circle on a plane embedded in R3. Define the set of bags S= {  x1, . . . ,  xL} such
that  xi = (xi[1], . . . ,xi[r]) where {xi[ j] | j ∈ [r]}= {ak | nk = i}.
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Figure 1: An illustration of the constructed shattered set, with r= 4 and L= log4+1 = 3. Each dot
corresponds to an instance. The numbers next to the instances denote the bag to which an
instance belongs, and match the sequence N defined in the proof. In this illustration bags
1 and 3 are labeled as positive by the bag-hypothesis represented by the solid line.

We now show that S is shattered by W3: Let (y1, . . . ,yL) be some binary labeling of L bags, and
let Y = {i | yi = +1}. By the definition of n, there exist j1, j2 such that Y = {nk | j1 ≤ k ≤ j2}.
Clearly, there exists a hyperplane w ∈ R3 that separates the vectors {ak | j1 ≤ k ≤ j2} from the rest
of the vectors in A. Thus sign(〈w,ak〉) = +1 if and only if j1 ≤ k ≤ j2. It follows that hw(  xi) = +1
if and only if there is a k ∈ { j1, . . . , j2} such that ak is an instance in  xi, that is such that nk = i. This
condition holds if and only if i ∈ Y , hence hw classifies S according to the given labeling. It follows
that S is shattered by W3, therefore dr,3 ≥ |S|= 6log(2r)7.

Lemma 9 Let k,n,r be natural number such that k ≤ n. Then dr,n ≥ 6n/k7dr,k.

Proof For a vector x ∈ Rk and a number t ∈ {0, . . . ,6n/k7} define the vector s(x, t) ! (0, . . . ,0,
x[1], . . . ,x[k],0, . . . ,0) ∈ Rn, where x[1] is at coordinate kt + 1. Similarly, for a bag  xi =
(xi[1], . . . ,xi[r]) ∈ (Rk)r, define the bag s(  xi, t)! (s(xi[1], t), . . . ,s(xi[r], t)) ∈ (Rn)r.

Let Sk = {  xi}i∈[dr,k] ⊆ (Rk)r be a set of bags with instances in Rk that is shattered by W k. Define
Sn, a set of bags with instances in Rn: Sn ! {s(  xi, t)]}i∈[dr,k],t∈[6n/k7] ⊆ (Rn)r. Then Sn is shattered
by Wn: Let {y(i,t)}i∈[dr,k],t∈[6n/k7] be some labeling for Sn. Sk is shattered by Wk, hence there are
separators w1, . . . ,w6n/k7 ∈ Rk such that ∀i ∈ [dr,k], t ∈ 6n/k7, hwt (  xi) = y(i,t).

Set w! ∑
6n/k7
t=0 s(wt , t). Then 〈w,s(x, t)〉= 〈wt ,x〉. Therefore

hw(s(  xi, t)) = OR(sign(〈w,s(xi[1], t)〉), . . . ,sign(〈w,s(xi[r], t)〉))
= OR(sign(〈wt ,xi[1]〉), . . . ,sign(〈wt ,xi[r]〉)) = hwt (  xi) = y(i,t).

Sn is thus shattered, hence dr,n ≥ |Sn|= 6n/k7dr,k.

The desired theorem is an immediate consequence of the two lemmas above, by noting that when-
ever r ∈ R, the VC-dimension of W n is at least dr,n.

Theorem 10 LetWn be the class of separating hyperplanes inRn as defined above. Assume that the
bag function is ψ=OR and the set of allowed bag sizes is R. Let r= maxR. Then the VC-dimension
ofW n is at least 6n/376log2r7.
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3.3 Pseudo-dimension for Thresholded Functions

In this section we consider binary hypothesis classes that are generated from real-valued functions
using thresholds. Let F ⊆ RX be a set of real valued functions. The binary hypothesis class of
thresholded functions generated by F is TF = {(x,z) /→ sign( f (x)−z) | f ∈F ,z∈R}, where x∈ X
and z ∈ R. The sample complexity of learning with TF and the zero-one loss is governed by the
pseudo-dimension of F , which is equal to the VC-dimension of TF (Pollard, 1984). In this section
we consider a bag-labeling function ψ : R(R) → R, and bound the pseudo-dimension of F , thus
providing an upper bound on the sample complexity of binary MIL with TF . The following bound
holds for bag-labeling functions that extend monotone Boolean functions, defined in Definition 2.

Theorem 11 Let F ⊆ RX be a function class with pseudo-dimension d . Let R ⊆ [r], and assume
that ψ : R(R)→R extends monotone Boolean functions. Let dr be the pseudo-dimension of F . Then

dr ≤max{16,2d log(2er)}.

Proof First, by Definition 2, we have that for any ψ which extends monotone Boolean functions,
any n ∈ R and any y ∈ Rn,

sign(ψ(y[1], . . . ,y[n])− z) = sign(ψ(y[1]− z, . . . ,y[n]− z))
= ψ(sign(y[1]− z, . . . ,y[n]− z)). (2)

This can be seen by noting that each of the equalities holds for each of the operations allowed by
Mn for each n, thus by induction they hold for all functions in Mn and all combinations of them.

For a real-valued function f let t f : X ×R→ {−1,+1} be defined by t f (y,z) = sign( f (y)− z).
We have TF = {t f | f ∈ F }, and TF = {t f | f ∈ F }. In addition, for all f ∈ F , z ∈ R, n ∈ R and
 x ∈ X n, we have

t f (  x,z) = sign( f (  x)− z) = sign(ψ( f (x[1]), . . . , f (x[n]))− z)
= ψ(sign( f (x[1])− z, . . . , f (x[n])− z)) (3)
= ψ(t f (x[1],z), . . . , t f (x[n],z)) = t f (  x,z),

where the equality on line (3) follows from Equation (2). Therefore

TF = {t f | f ∈ F }= {t f | f ∈ F }= {h | h ∈ TF }= TF .

The VC-dimension of TF is equal to the pseudo-dimension of F , which is d. Thus, by Theorem 6
and the equality above, the VC-dimension of TF is bounded by max{16,2d log(2er)}. The proof is
completed by noting that dr, the pseudo-dimension of F , is exactly the VC-dimension of TF .

This concludes our results for distribution-free sample complexity of Binary MIL. In Section 6
we provide sample complexity analysis for distribution-dependent binary MIL, as a function of the
average bag size.
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4. Covering Numbers Bounds for MIL

Covering numbers are a useful measure of the complexity of a function class, since they allow
bounding the sample complexity of a class in various settings, based on uniform convergence guar-
antees (see, e.g., Anthony and Bartlett, 1999). In this section we provide a lemma that relates the
covering numbers of bag hypothesis classes with those of the underlying instance hypothesis class.
We will use this lemma in subsequent sections to derive sample complexity upper bounds for addi-
tional settings of MIL. Let F ⊆RA be a set of real-valued functions over some domain A. A γ-cover
of F with respect to a norm ‖·‖◦ defined on functions is a set of functions C ⊆RA such that for any
f ∈ F there exists a g ∈ C such that ‖ f −g‖◦ ≤ γ. The covering number for given γ> 0, F and ◦,
denoted by N (γ,F ,◦), is the size of the smallest such γ-covering for F .

Let S ⊆ A be a finite set. We consider coverings with respect to the Lp(S) norm for p ≥ 1,
defined by

‖ f‖Lp(S) !

(

1
|S|∑s∈S

| f (s)|p
)1/p

.

For p= ∞, L∞(S) is defined by ‖ f‖L∞(S) ! maxs∈S | f (S)|. The covering number of F for a sample
size m with respect to the Lp norm is

Nm(γ,F , p)! sup
S⊆A:|S|=m

N (γ,F ,Lp(S)).

A small covering number for a function class implies faster uniform convergence rates, hence
smaller sample complexity for learning. The following lemma bounds the covering number of
bag hypothesis-classes whenever the bag function is Lipschitz with respect to the infinity norm (see
Definition 4). Recall that all extensions of monotone Boolean functions (Definition 2) and all p-
norm bag-functions (Definition 3) are 1-Lipschitz, thus the following lemma holds for them with
a= 1.

Lemma 12 Let R⊆N and suppose the bag function ψ : R(R)→R is a-Lipschitz with respect to the
infinity norm, for some a> 0. Let S⊆ X (R) be a finite set of bags, and let r be the average size of a
bag in S. For any γ> 0, p ∈ [1,∞], and hypothesis class H ⊆ RX ,

N (γ,H ,Lp(S))≤N (
γ

ar1/p ,H ,Lp(S∪)).

Proof First, note that by the Lipschitz condition on ψ, for any bag  x of size n and hypotheses
h,g ∈H ,

|h(  x)−g(  x)|= |ψ(h(x[1]), . . . ,h(x[n]))−ψ(g(x[1]), . . . ,g(x[n]))|≤ amax
x∈  x

|h(x)−g(x)|. (4)

Let C be a minimal γ-cover of H with respect to the norm defined by Lp(S∪), so that |C | =
N (γ,H ,Lp(S∪)). For every h ∈H there exists a g ∈ C such that ‖h−g‖Lp(S∪) ≤ γ. Assume p<∞.
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Then by Equation (4)

‖h−g‖Lp(S) =

(

1
|S| ∑ x∈S

|h(  x)−g(  x)|p
)1/p

≤

(

ap

|S| ∑ x∈S
max
x∈  x

|h(x)−g(x)|p
)1/p

≤

(

ap

|S| ∑ x∈S
∑
x∈  x

|h(x)−g(x)|p
)1/p

=
a

|S|1/p

(

∑
x∈S∪

|h(x)−g(x)|p
)1/p

= a
(

|S∪|
|S|

)1/p
(

1
|S∪| ∑x∈S∪

|h(x)−g(x)|p
)1/p

= ar1/p‖h−g‖Lp(S∪) ≤ ar
1/p · γ.

It follows that C is a (ar1/pγ)-covering for H . For p= ∞ we have

‖h−g‖L∞(S) = max
 x∈S

|h(  x)−g(  x)|≤ amax
 x∈S

max
x∈  x

|h(x)−g(x)|

= amax
x∈S∪

|h(x)−g(x)|= a‖h−g‖L∞(S∪) ≤ aγ= a · r1/p · γ.

Thus in both cases, C is a ar1/pγ-covering for H , and its size is N (γ,H ,Lp(S∪)). Thus

N (ar1/pγ,H ,Lp(S∪))≤N (γ,H ,Lp(S∪)).

We get the statement of the lemma by substituting γ with γ
ar1/p .

As an immediate corollary, we have the following bound for covering numbers of a given sample
size.

Corollary 13 Let r ∈N, and let R⊆ [r]. Suppose the bag function ψ : R(R)→R is a-Lipschitz with
respect to the infinity norm for some a> 0. Let γ> 0, p ∈ [1,∞], and H ∈ RX . For any m≥ 0,

Nm(γ,H , p)≤Nrm(
γ

a · r1/p ,H , p).

5. Margin Learning for MIL: Fat-Shattering Dimension

Large-margin classification is a popular supervised learning approach, which has received atten-
tion also as a method for MIL. For instance, MI-SVM (Andrews et al., 2002) attempts to optimize
an adaptation of the soft-margin SVM objective (Cortes and Vapnik, 1995) to MIL, in which the
margin of a bag is the maximal margin achieved by any of its instances. It has not been shown,
however, whether minimizing the objective function of MI-SVM, or other margin formulations for
MIL, allows learning with a reasonable sample size. We fill in this gap in Theorem 14 below, which
bounds the γ-fat-shattering dimension (see, e.g., Anthony and Bartlett 1999) of MIL. The objec-
tive of MI-SVM amounts to replacing the hypothesis class H of separating hyperplanes with the
class of bag-hypotheses H where the bag function is ψ= max. Since max is the real-valued exten-
sion of OR, this objective function is natural in our MIL formulation. The distribution-free sample
complexity of large-margin learning with the zero-one loss is proportional to the fat-shattering di-
mension (Alon et al., 1997). Thus, we provide an upper bound on the fat-shattering dimension
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of MIL as a function of the fat-shattering dimension of the underlying hypothesis class, and of the
maximal allowed bag size. The bound holds for any Lipschitz bag-function. Let γ> 0 be the desired
margin. For a hypothesis class H, denote its γ-fat-shattering dimension by Fat(γ,H)

Theorem 14 Let r ∈N and assume R⊆ [r]. Let B,a> 0. Let H ⊆ [0,B]X be a real-valued hypoth-
esis class and assume that the bag function ψ : [0,B](R)→ [0,aB] is a-lipschitz with respect to the
infinity norm. Then for all γ ∈ (0,aB]

Fat(γ,H )≤max
{

33, 24Fat(
γ

64a
,H ) log2

(

6 ·2048 ·B2a2

γ2 ·Fat(
γ

64a
,H ) · r

)}

. (5)

This theorem shows that for margin learning as well, the dependence of the bag size on the sample
complexity is poly-logarithmic. In the proof of the theorem we use the following two results, which
link the covering number of a function class with its fat-shattering dimension.

Theorem 15 (Bartlett et al., 1997) Let F be a set of real-valued functions and let γ > 0. For m ≥
Fat(16γ,F),

eFat(16γ,F)/8 ≤Nm(γ,F,∞).

The following theorem is due to Anthony and Bartlett (1999) (Theorem 12.8), following Alon
et al. (1993).

Theorem 16 Let F be a set of real-valued functions with range in [0,B]. Let γ> 0. For all m≥ 1,

Nm(γ,F,∞)< 2
(

4B2m
γ2

)Fat( γ4 ,F) log(4eBm/γ)

. (6)

Theorem 12.8 in Anthony and Bartlett (1999) deals with the case m ≥ Fat( γ4 ,F). Here we only
require m≥ 1, since if m≤ Fat( γ4) then the trivial upper bound Nm(γ,H ,∞)≤ (B/γ)m ≤ (B/γ)Fat( γ4 )

implies Equation (6).
Proof [of Theorem 14] From Theorem 15 and Lemma 12 it follows that for m≥ Fat(16γ,H ),

Fat(16γ,H )≤
8

loge
logNm(γ,H ,∞)≤ 6logNrm(γ/a,H ,∞). (7)

By Theorem 16, for all m≥ 1, if Fat(γ/4)≥ 1 then

∀γ≤
B
2e

, logNm(γ,H ,∞)≤ 1+Fat(
γ
4
,H ) log(

4eBm
γ

) log
(

4B2m
γ2

)

≤ Fat(
γ
4
,H ) log(

8eBm
γ

) log
(

4B2m
γ2

)

(8)

≤ Fat(
γ
4
,H ) log2(

4B2m
γ2 ). (9)

The inequality in line (8) holds since we have added 1 to the second factor, and the value of the other
factors is at least 1. The last inequality follows since if γ ≤ B

2e , we have 8eB/γ ≤ 4B2/γ2. Equa-
tion (9) also holds if Fat(γ/4)< 1, since this implies Fat(γ/4) = 0 and Nm(γ,H ,∞) = 1. Combining
Equation (7) and Equation (9), we get that if m≥ Fat(16γ,H ) then

∀γ≤
aB
2e

, Fat(16γ,H )≤ 6Fat(
γ

4a
,H ) log2(

4B2a2rm
γ2 ). (10)
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Set m = 9Fat(16γ,H ): ≤ Fat(16γ,H )+ 1. If Fat(16γ,H ) ≥ 1, we have that m ≥ Fat(16γ,H ) and
also m≤ 2Fat(16γ,H ). Thus Equation (10) holds, and

∀γ≤
aB
2e

, Fat(16γ,H )≤ 6Fat(
γ

4a
,H ) log2(

4B2a2

γ2 · r · (Fat(16γ,H )+1))

≤ 6Fat(
γ

4a
,H ) log2(

8B2a2

γ2 · r ·Fat(16γ,H )).

Now, it is easy to see that if Fat(16γ,H )< 1, this inequality also holds. Therefore it holds in general.
Substituting γ with γ/16, we have that

∀γ≤
8aB
e

, Fat(γ,H )≤ 6Fat(
γ

64a
,H ) log2(

2048B2a2

γ2 · r ·Fat(γ,H )). (11)

Note that the condition on γ holds, in particular, for all γ≤ aB.
To derive the desired Equation (5) from Equation (11), let β = 6Fat(γ/64a,H ) and η =

2048B2a2/γ2. Denote F = Fat(γ,H ). Then Equation (11) can be restated as F ≤ β log2(ηrF).
It follows that

√
F/ log(ηrF)≤

√

β, Thus
√
F

log(ηrF)
log
( √

ηrF
log(ηrF)

)

≤
√

β log(
√

βηr).

Therefore √
F

log(ηrF)
(log(ηrF)/2− log(log(ηrF)))≤

√

β log(βηr)/2,

hence
(1−

2log(log(ηrF))
log(ηrF)

)
√
F ≤

√

β log(βηr).

Now, it is easy to verify that log(log(x))/ log(x)≤ 1
4 for all x ≥ 33 ·2048. Assume F ≥ 33 and

γ≤ aB. Then
ηrF = 2048B2a2rF/γ2 ≥ 2048F ≥ 33 ·2048.

Therefore log(log(ηrF))/ log(ηrF) ≤ 1
4 , which implies 1

2
√
F ≤

√

β log(βηr). Thus F ≤
4β log2(βηr). Substituting the parameters with their values, we get the desired bound, stated in
Equation (5).

6. Sample Complexity by Average Bag Size: Rademacher Complexity

The upper bounds we have shown so far provide distribution-free sample complexity bounds, which
depend only on the maximal possible bag size. In this section we show that even if the bag size is
unbounded, we can still have a sample complexity guarantee, if the average bag size for the input
distribution is bounded. For this analysis we use the notion of Rademacher complexity (Bartlett
and Mendelson, 2002). Let A be some domain. The empirical Rademacher complexity of a class of
functions F ⊆ RA×{−1,+1} with respect to a sample S= {(xi,yi)}i∈[m] ⊆ A×{−1,+1} is

R (F ,S)!
1
m
Eσ[| sup

f∈F
∑
i∈[m]

σi f (xi,yi)|],
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where σ=(σ1, . . . ,σm) arem independent uniform {±1}-valued variables. The average Rademacher
complexity of F with respect to a distribution D over A×{−1,+1} and a sample size m is

Rm(F ,D)! ES∼Dm [R (F ,S)].

The worst-case Rademacher complexity over samples of size m is

R sup
m (F ) = sup

S⊆Am
R (F ,S).

This quantity can be tied to the fat-shattering dimension via the following result:

Theorem 17 (See, for example, Mendelson, 2002, Theorem 4.11) Let m ≥ 1 and γ ≥ 0.
If R sup

m (F )≤ γ then the γ-fat-shattering dimension of F is at most m.

Let I ⊆ R. Assume a hypothesis class H ⊆ IA and a loss function ! : {−1,+1}× I→ R. For a
hypothesis h ∈ H, we denote by h! the function defined by h!(x,y) = !(y,h(x)). Given H and !, we
define the function class H! ! {h! | h ∈ H}⊆ RA×{−1,+1}.

Rademacher complexities can be used to derive sample complexity bounds (Bartlett and Mendel-
son, 2002): Assume the range of the loss function is [0,1]. For any δ ∈ (0,1), with probability of
1−δ over the draw of samples S⊆ A×{−1,+1} of size m drawn from D, every h ∈ H satisfies

!(h,D)≤ !(h,S)+2Rm(H!,D)+
√

8ln(2/δ)
m

. (12)

Thus, an upper bound on the Rademacher complexity implies an upper bound on the average loss
of a classifier learned from a random sample.

6.1 Binary MIL

Our first result complements the distribution-free sample complexity bounds that were provided for
binary MIL in Section 3. The average (or expected) bag size under a distribution D over X (R)×
{−1,+1} is E(  X,Y )∼D[|  X|]. Our sample complexity bound for binary MIL depends on the average
bag size and the VC dimension of the instance hypothesis class. Recall that the zero-one loss is
defined by !0/1(y, ŷ) = 1[y 4= ŷ]. For a sample of labeled examples S = {(xi,yi)}i∈[m], we use SX to
denote the examples of S, that is SX = {xi}i∈[m].

Theorem 18 Let H ⊆ {−1,+1}X be a binary hypothesis class with VC-dimension d. Let R ⊆ N

and assume a bag function ψ : {−1,+1}(R) → {−1,+1}. Let r be the average bag size under
distribution D over labeled bags. Then

R (H !0/1 ,D)≤ 17
√

d ln(4er)
m

.

Proof Let S be a labeled bag-sample of size m. Dudley’s entropy integral (Dudley, 1967) states that

R (H !0/1 ,S)≤
12√
m

∫ ∞

0

√

lnN (γ,H !0/1 ,L2(S)) dγ (13)

=
12√
m

∫ 1

0

√

lnN (γ,H !0/1 ,L2(S)) dγ.
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The second equality holds since for any γ > 1, N (γ,H !0/1 ,L2(S)) = 1, thus the expression in the
integral is zero.

If C is a γ-cover for H with respect to the norm L2(SX), then C!0/1 is a γ/2-cover for H !0/1 with
respect to the norm L2(S). This can be seen as follows: Let h!0/1 ∈H !0/1 for some h ∈H . Let f ∈ C
such that ‖ f −h‖L2(SX ) ≤ γ. We have

‖ f!0/1−h!0/1‖L2(S) =

(

1
m ∑

(x,y)∈S
| f!0/1(x,y)−h!0/1(x,y)|

2

)1/2

=

(

1
m ∑

(x,y)∈S
|!0/1(y, f (x))− !0/1(y,h(x))|2

)1/2

=

(

1
m ∑

x∈SX
(
1
2
| f (x)−h(x)|)2

)1/2

=
1
2
‖ f −h‖L2(SX ) ≤ γ/2.

Therefore C!0/1 is a γ/2-cover for L2(S). It follows that we can bound the γ-covering number of
H !0/1 by:

N (γ,H !0/1 ,L2(S))≤N (2γ,H ,L2(SX)). (14)
Let r(S) be the average bag size in the sample S, that is r(S) = |S∪|/|S|. By Lemma 12,

N (γ,H ,L2(SX))≤N (γ/
√

r(S),H ,L2(S∪X)). (15)

From Equation (13), Equation (14) and Equation (15) we conclude that

R (H !0/1 ,S)≤
12√
m

∫ 1

0

√

lnN (2γ/
√

r(S),H ,L2(S∪X)) dγ.

By Dudley (1978), for any H with VC-dimension d, and any γ> 0,

lnN (γ,H ,L2(S∪X))≤ 2d ln
(

4e
γ2

)

.

Therefore

R (H !0/1 ,S)≤
12√
m

∫ 1

0

√

2d ln
(

er(S)
γ2

)

dγ

≤ 17
√

d
m

(∫ 1

0

√

ln(er(S)) dγ+
∫ 1

0

√

ln(1/γ2) dγ
)

= 17

√

d(ln(er(S))+
√

π/2)
m

≤ 17
√

d ln(4er(S))
m

.

The function
√

ln(x) is concave for x ≥ 1. Therefore we may take the expectation of both sides of
this inequality and apply Jensen’s inequality, to get

Rm(H !0/1 ,D) = ES∼Dm [R (H !0/1 ,S)]≤ ES∼Dm

[

17
√

d ln(4er(S))
m

]

≤ 17
√

d ln(4e ·ES∼Dm [r(S)])
m

= 17
√

d ln(4er)
m

.
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We conclude that even when the bag size is not bounded, the sample complexity of binary MIL with
a specific distribution depends only logarithmically on the average bag size in this distribution, and
linearly on the VC-dimension of the underlying instance hypothesis class.

6.2 Real-Valued Hypothesis Classes

In our second result we wish to bound the sample complexity of MIL when using other loss functions
that accept real valued predictions. This bound will depend on the average bag size, and on the
Rademacher complexity of the instance hypothesis class.

We consider the case where both the bag function and the loss function are Lipschitz. For the
bag function, recall that all extensions of monotone Boolean functions are Lipschitz with respect
to the infinity norm. For the loss function ! : {−1,+1}×R→ R, we require that it is Lipschitz
in its second argument, that is, that there is a constant a > 0 such that for all y ∈ {−1,+1} and
y1,y2 ∈ R, |!(y,y1)− !(y,y2)| ≤ a|y1− y2|. This property is satisfied by many popular losses. For
instance, consider the hinge-loss, which is the loss minimized by soft-margin SVM. It is defined as
!hl(y, ŷ) = [1− yŷ]+, and is 1-Lipschitz in its second argument.

The following lemma provides a bound on the empirical Rademacher complexity of MIL, as a
function of the average bag size in the sample and of the behavior of the worst-case Rademacher
complexity over instances. We will subsequently use this bound to bound the average Rademacher
complexity of MIL with respect to a distribution. We consider losses with the range [0,1]. To avoid
degenerate cases, we consider only losses such that there exists at least one labeled bag (  x,y) ⊆
X (R)×{−1,+1} and hypotheses h,g ∈H such that h!(  x,y) = 0 and g!(  x,y) = 1. We say that such
a loss has a full range.

Lemma 19 LetH ⊆ [0,B]X be a hypothesis class. Let R⊆N, and let the bag function ψ :R(R)→R

be a1-Lipschitz with respect to the infinity norm. Assume a loss function ! : {−1,+1}×R→ [0,1],
which is a2-Lipschitz in its second argument. Further assume that ! has a full range. Suppose there
is a continuous decreasing function f : (0,1]→ R such that

∀γ ∈ (0,1], f (γ) ∈ N =⇒ R
sup
f (γ)(H )≤ γ.

Let S be a labeled bag-sample of size m, with an average bag size r. Then for all ε ∈ (0,1],

R (H !,S)≤ 4ε+
10√
m

log
(

4ea2
1a2

2B2rm
ε2

)(

1+
∫ 1

ε

√

f (
γ

4a1a2
)dγ
)

.

Proof A refinement of Dudley’s entropy integral (Srebro et al., 2010, Lemma A.3) states that for
all ε ∈ (0,1], for all real function classes F with range [0,1] and for all sets S,

R (F ,S)≤ 4ε+
10√
m

∫ 1

ε

√

lnN (γ,F ,L2(S)) dγ. (16)

Since the range of ! is [0,1], this holds for F = H !. In addition, for any set S, the L2(S) norm is
bounded from above by the L∞(S) norm. Therefore N (γ,F ,L2(S)) ≤ N (γ,F ,L∞(S)). Thus, by
Equation (16) we have

R (H !,S)≤ 4ε+
10√
m

∫ 1

ε

√

lnN (γ,H !,L∞(S)) dγ. (17)
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Now, let h,g ∈H and consider h!,g! ∈H !. Since ! is a2-Lipschitz, we have

‖h!−g!‖L∞(S) = max
i∈[m]

|h!(  xi,yi)−g!(  xi,yi)|= max
i∈[m]

|!(yi,h(  xi))− !(yi,g(  xi))|

≤ a2 max
i∈[m]

|h(  xi)−g(  xi)|= a2‖h−g‖L∞(SX ).

It follows that if C ⊆ H is a γ/a2-cover for H then C! ⊆ H ! is a γ-cover for H !. Therefore
N (γ,H !,L∞(S))≤N (γ/a2,H ,L∞(SX)). By Lemma 12,

N (γ/a2,H ,L∞(SX))≤N (γ/a1a2,H ,L∞(S∪X))≤Nrm(γ/a1a2,H ,∞).

Combining this with Equation (17) it follows that

R (H !,S)≤ 4ε+
10√
m

∫ 1

ε

√

Nrm(γ/a1a2,H ,∞)dγ. (18)

Now, let γ ∈ (0,1], and let γ◦ = sup{γ◦ ≤ γ | f (γ◦) ∈ N}. Since R sup
f (γ◦)(H )≤ γ◦, by Theorem 17

the γ◦-fat-shattering dimension of H is at most f (γ◦). It follows that

Fat(γ,H )≤ Fat(γ◦,H )≤ f (γ◦)≤ 1+ f (γ).

The last inequality follows from the definition of γ◦, since f is continuous and decreasing. There-
fore, by Theorem 16,

∀γ≤ B, logNm(γ,H ,∞)≤ 1+( f (
γ
4
)+1) log(

4eBm
γ

) log
(

4B2m
γ2

)

≤ ( f (
γ
4
)+1) log(

4eBm
γ

) log
(

4eB2m
γ2

)

(19)

≤ ( f (
γ
4
)+1) log2(

4eB2m
γ2 ). (20)

The inequality in line (19) holds since we have added log(e)≥ 1 to the third factor, and the value of
the other factors is at least 1. The last inequality follows since γ≤ B.

We now show that the assumption γ ≤ B does not restrict us: By the assumptions on !, there
are h,g ∈ H and a labeled bag (  x,y) such that h!(  x,y) = 1 and g!(  x,y) = 0. Let n = |  x|. By the
Lipschitz assumptions we have

1 = |h!(  x,y)−g!(  x,y)|= |!(y,h(  x))− !(y,g(  x))|≤ a2|h(  x)−g(  x)|
= a2|ψ(h(x[1]), . . . ,h(x[n]))−ψ(g(x[1]), . . . ,g(x[n]))|≤ a2a1 max

j∈[n]
|h(x[ j])−g(x[ j])|≤ a1a2B.

Thus 1≤ a1a2B. It follows that for all γ ∈ (0,1], γ/a1a2 ≤ B. Thus Equation (20) can be combined
with Equation (18) to get that for all ε ∈ (0,1],

R (H !,S)≤ 4ε+
10√
m

∫ 1

ε

√

(

f (
γ

4a1a2
)+1

)

log2
(

4ea2
1a2

2B2rm
γ2

)

dγ

≤ 4ε+
10√
m

log
(

4ea2
1a2

2B2rm
ε2

)∫ 1

ε

√

f (
γ

4a1a2
)+1dγ

≤ 4ε+
10√
m

log
(

4ea2
1a2

2B2rm
ε2

)(

1+
∫ 1

ε

√

f (
γ

4a1a2
)dγ
)

.
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The last inequality follows from the fact that
√
a+b≤

√
a+
√
b for non-negative a and b, and from∫ 1

ε 1≤ 1.

Based on Lemma 19, we will now bound the average Rademacher complexity of MIL, as a
function of the worst-case Rademacher complexity over instances, and the expected bag size. Since
the number of instances in a bag sample of a certain size is not fixed, but depends on the bag sizes in
the specific sample, we will need to consider the behavior of R sup

m (H ) for different values of m. For
many learnable function classes, the Rademacher complexity is proportional to 1√

m , or to lnβ(m)√
m for

some non-negative β. The following theorem bounds the average Rademacher complexity of MIL
in all these cases. The resulting bound indicates that here too there is a poly-logarithmic dependence
of the sample complexity on the average bag size. Following the proof we show an application of
the bound to a specific function class.

Theorem 20 LetH ⊆ [0,B]X be a hypothesis class. Let R⊆N, and let the bag function ψ : R(R)→
R be a1-Lipschitz with respect to the infinity norm. Assume a loss function ! : {−1,+1}×R→ [0,1],
which is a2-Lipschitz in its second argument. Further assume that ! has a full range. Suppose that
there are C,β,K ≥ 0 such that for all m≥ K,

R sup
m (H )≤

C lnβ(m)√
m

.

Then there exists a number N ≥ 0 that depends only on C,β and K such that for any distribution D
with average bag size r, and for all m≥ 1,

Rm(H !,D)≤
4+10log(4ea2

1a2
2B2rm2)

(

N+ a1a2
β+1C lnβ+1(16a2

1a2
2m)
)

√
m

.

Proof Let S be a labeled bag sample of size m, and let r̃ be its average bag size. Denote T (x) =
C lnβ(x), and define f (γ)= 4T 2(1/γ2)

γ2 . We will show thatR sup
f (γ)≤ γ, thus allowing the use of Lemma 19.

We have Rm ≤ T (m)/
√
m, thus it suffices to show that T ( f (γ))/

√

f (γ)≤ γ.
Let z(γ)=

√

f (γ)/T ( f (γ)). We will now show that z(γ)T (z2(γ))≥ 1
γT (1/γ

2). Since the function
xT (x2) =Cx lnβ(x2) is monotonic increasing for x≥ 1, we will conclude that z(γ)≥ 1/γ for all γ≤ 1.

It is easy to see that for all values of β,C ≥ 0, there is a number n≥ 0 such that for all x≥ n,

C2 ln2β(x)≤ x1−2−1/β
.

For such x we have

T (x/T 2(x)) =C lnβ(
x

C2 ln2β(x)
) =C(ln(x)− ln(C2 ln2β(x)))β

≥C(ln(x)− (1−2−1/β) ln(x)))β =C lnβ(x)/2 = T (x)/2. (21)

Let γ◦ ∈ (0,1) such that f (γ◦) = k = max{n,K}. Since f (γ) is monotonic decreasing with γ, for all
γ≤ γ◦, f (γ)≥ k. Therefore, for γ≤ γ◦,

z(γ)T (z2(γ)) =

√

f (γ)
T ( f (γ))

T (
f (γ)

T 2( f (γ))
)≥

1
2

√

f (γ)
T ( f (γ))

T ( f (γ)) =
1
2
√

f (γ) = T (1/γ2)/γ.
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The middle inequality follows from Equation (21), and the last equality follows from the definition
of f (γ). We conclude that z(γ)≥ 1

γ . Therefore, for all γ≤ γ◦,

R
sup
f (γ)(H )≤

T ( f (γ))
√

f (γ)
= 1/z(γ)≤ γ.

Define f̃ as follows:

f̃ (γ) =

{

f (γ) γ≤ γ◦
k γ> γ◦.

For γ≤ γ◦, clearly R sup
f̃ (γ)(H )≤ γ, and for γ> γ◦,

R
sup
f̃ (γ)(H ) = R

sup
k (H ) = R

sup
f (γ◦)(H )≤ γ◦ ≤ γ.

Therefore for all γ ∈ (0,1], R sup
f̃ (γ)(H )≤ γ. By Lemma 19, for all ε ∈ (0,1],

R (H !,S)≤ 4ε+
10√
m

log
(

4ea2
1a2

2B2r̃m
ε2

)(

1+
∫ 1

ε

√

f̃ (
γ

4a1a2
)dγ
)

= 4ε+
10√
m

log
(

4ea2
1a2

2B2r̃m
ε2

)(

1+
∫ 1

4a1a2γ◦

√
kdγ+

∫ 4a1a2γ◦

ε

√

f (
γ

4a1a2
)dγ
)

≤ 4ε+
10√
m

log
(

4ea2
1a2

2B2r̃m
ε2

)(

1+
√
k+

∫ 4a1a2γ◦

ε

√

f (
γ

4a1a2
)dγ
)

. (22)

Denote N = 1+
√
k. Now, if β> 0 we have

∫ 4a1a2γ◦

ε

√

f (
γ

4a1a2
)dγ≤

∫ 4a1a2γ◦

ε

√

f (
γ

4a1a2
)dγ= 2a1a2

∫ 4a1a2γ◦

ε

T (16a2
1a2

2/γ
2)

γ
dγ

= 2a1a2C
∫ 4a1a2γ◦

ε

lnβ(16a2
1a2

2/γ
2)

γ
dγ= 2a1a2C

[

− lnβ+1(
16a2

1a2
2

γ2 )/(2(β+1))
]4a1a2γ◦

ε

=
a1a2C
β+1

lnβ+1(
16a2

1a2
2γ

2
◦

ε2 )≤
a1a2C
β+1

(

lnβ+1(
16a2

1a2
2

ε2 )

)

.

The same inequality holds also for β= 0, since in that case
∫ 4a1a2γ◦

ε

√

f (
γ

4a1a2
)dγ= 2a1a2

∫ 4a1a2γ◦

ε

T (16a2
1a2

2/γ
2)

γ
dγ

= 2a1a2C
∫ 4a1a2γ◦

ε

1
γ
dγ= 2a1a2C [ln(γ)]4a1a2γ◦

ε = 2a1a2C ln(
4a1a2γ◦

ε
)

≤ 2a1a2C ln(
4a1a2
ε

) =
a1a2C
β+1

(

lnβ+1(
16a2

1a2
2

ε2 )

)

.

Therefore we can further bound Equation (22) to get

R (H !,S)≤ 4ε+
10√
m

log
(

4ea2
1a2

2B2r̃m
ε2

)(

N+
a1a2C
β+1

lnβ+1(
16a2

1a2
2

ε2 )

)

.
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Setting ε= 1/
√
m we get

R (H !,S)≤
4+10log(4ea2

1a2
2B2r̃m2)

(

N+ a1a2C
β+1 lnβ+1(16a2

1a2
2m)
)

√
m

.

Now, for a given sample S denote its average bag size by r̃(S). We have

Rm(H !,D) = ES∼Dm [R (H !,S)]

≤ E





4+10log(4ea2
1a2

2B2r̃(S)m2)
(

N+ a1a2C
β+1 lnβ+1(16a2

1a2
2m)
)

√
m





≤
4+10log(4ea2

1a2
2B2rm2)

(

N+ a1a2C
β+1 lnβ+1(16a2

1a2
2m)
)

√
m

.

In the last inequality we used Jensen’s inequality and the fact that ES∼Dm [r̃(S)] = r. This is the
desired bound, hence the theorem is proven.

To demonstrate the implications of this theorem, consider the case of MIL with soft-margin
kernel SVM. Kernel SVM can operate in a general Hilbert space, which we denote by T . The
domain of instances is X = {x ∈ T | ‖x‖ ≤ 1}, and the function class is the class of linear separators
with a bounded norm W (C) = {hw |w∈ T ,‖w‖ ≤C}, for someC> 0, where hw = 〈x,w〉. The loss
is the hinge-loss !hl defined above, which is 1-Lipschitz in the second argument. We have (Bartlett
and Mendelson, 2002)

R sup
m (W (C)!hl )≤

C√
m

=
C ln0(m)√

m
.

Thus we can apply Theorem 20 with β = 0. Note that W (C) ⊆ [−C,C]X , thus we can apply the
theorem with B= 2C by simply shifting the output of each hw by C and adjusting the loss function
accordingly. By Theorem 20 there exists a number N such that for any 1-Lipschitz bag-function ψ
(such as max) and for any distribution D over labeled bags with an average bag size of r, we have

Rm(H !,D)≤
4+10log(16eC2rm2)(N+C ln(16m))√

m
.

We can use this result and apply Equation (12) to get an upper bound on the loss of MIL with
soft-margin SVM.

7. PAC-Learning for MIL

In the previous sections we addressed the sample complexity of generalized MIL, showing that it
grows only logarithmically with the bag size. We now turn to consider the computational aspect of
MIL, and specifically the relationship between computational feasibility of MIL and computational
feasibility of the learning problem for the underlying instance hypothesis.

We consider real-valued hypothesis classes H ∈ [−1,+1]X , and provide a MIL algorithm which
uses a learning algorithm that operates on single instances as an oracle. We show that if the oracle
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can minimize error with respect toH , and the bag-function satisfies certain boundedness conditions,
then the MIL algorithm is guaranteed to PAC-learn H . In particular, the guarantees hold if the bag-
function is Boolean OR or max, as in classical MIL and its extension to real-valued hypotheses.

Given an algorithm A that learns H from single instances, we provide an algorithm called
MILearn that uses A to implement a weak learner for bags with respect to H . That is, for any
weighted sample of bags, MILearn returns a hypothesis from H that has some success in labeling
the bag-sample correctly. This will allow the use of MILearn as the building block in a Boosting
algorithm (Freund and Schapire, 1997), which will find a linear combination of hypotheses from
H that classifies unseen bags with high accuracy. Furthermore, if A is efficient then the resulting
Boosting algorithm is also efficient, with a polynomial dependence on the maximal bag size.

We open with background on Boosting in Section 7.1. We then describe the weak learner in and
analyze its properties in Section 7.2. In Section 7.3 we provide guarantees on a Boosting algorithm
that uses our weak leaner, and conclude that the computational complexity of PAC-learning for MIL
can be bounded by the computational complexity of agnostic PAC-learning for single instances.

7.1 Background: Boosting with Margin Guarantees

In this section we give some background on Boosting algorithms, which we will use to derive an
efficient learning algorithm for MIL. Boosting methods (Freund and Schapire, 1997) are techniques
that allow enhancing the power of a weak learner—a learning algorithm that achieves error slightly
better than chance—to derive a classification rule that has low error on an input sample. The idea is
to iteratively execute the weak learner on weighted versions of the input sample, and then to return
a linear combination of the classifiers that were emitted by the weak learner in each round.

Let A be a domain of objects to classify, and let H : [−1,+1]A be the hypothesis class used
by the weak learner. A Boosting algorithm receives as input a labeled sample S = {(xi,yi)}mi=1 ⊆
A×{−1,+1}, and iteratively feeds to the weak learner a reweighed version of S. Denote the m−1-
dimensional simplex by Δm = {w ∈ Rm | ∑i∈[m]wi = 1,∀i ∈ [m],w[i] ≥ 0}. For a vector w ∈ Δm,
Sw = {(w[i],xi,yi)}mi=1 is the sample S reweighed by w. The Boosting algorithm runs in k rounds.
On round t it sets a weight vector wt ∈ Δm, calls the weak learner with input Swt , and receives a
hypothesis ht ∈ H as output from the weak learner. After k rounds, the Boosting algorithm returns
a classifier f◦ : A→ [−1,+1], which is a linear combination of the hypotheses received from the
weak learner: f◦ = ∑t∈[k]αtht , where α1, . . . ,αk ∈ R.

The literature offers plenty of Boosting algorithms with desirable properties. For concreteness,
we use the algorithm AdaBoost∗ (Rätsch and Warmuth, 2005), since it provides suitable guarantees
on the margin of its output classifier. For a labeled example (x,y), the quantity y f◦(x) is the margin
of f◦ when classifying x. If the margin is positive, then sign◦ f◦ classifies x correctly. The margin
of any function f on a labeled sample S= {(xi,yi)}mi=1 is defined as

M( f ,S) = min
i∈[m]

yi f (xi).

If M( f ,S) is positive, then the entire sample is classified correctly by sign◦ f .
If S is an i.i.d. sample drawn from a distribution on A×{−1,+1}, then classification error of f◦

on the distribution can be bounded based on M( f◦,S) and the pseudo-dimension d of the hypothesis
class H. The following bound (Schapire and Singer, 1999, Theorem 8) holds with probability 1−δ
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over the training samples, for any m≥ d:

P[Y · f◦(X)≤ 0]≤ O





√

d ln2(m/d)/M2( f◦,S)+ ln(1/δ)
m



 . (23)

In fact, inspection of the proof of this bound in Schapire and Singer (1999) reveals that the only
property of the hypothesis class H that is used to achieve this result is the following bound, due to
Haussler and Long (1995), on the covering number of a hypothesis class H with pseudo-dimension
d:

∀γ ∈ (0,1], Nm(γ,H ,∞)≤
(

em
γd

)d
. (24)

Thus, Equation (23) holds whenever this covering bound holds—a fact that will be useful to us.
For AdaBoost∗, a guarantee on the size of the margin of f◦ can be achieved if one can provide

a guarantee on the edge of the hypotheses returned by the weak learner. The edge of a hypoth-
esis measures of how successful it is in classifying labeled examples. Let h : A→ [−1,+1] be a
hypothesis and let D be a distribution over A×{−1,+1}. The edge of h with respect to D is

Γ(h,D)! E(X ,Y )∼D[Y ·h(X)].

For a weighted and labeled sample S= {(wi,xi,yi)}i∈[m] ⊆ R+×A×{−1,+1},

Γ(h,S)! ∑
i∈[m]

wiyih(xi).

Note that if h(x) is interpreted as the probability of h to emit 1 for input x, then 1−Γ(h,D)
2 is the

expected misclassification error of h on D. Thus, a positive edge implies a labeling success of more
than chance. For AdaBoost∗, a positive edge on each of the weighted samples fed to the weak
learner suffices to guarantee a positive margin of its output classifier f◦.

Theorem 21 (Rätsch and Warmuth 2005) Assume AdaBoost∗receives a labeled sample S of
size m as input. Suppose that AdaBoost∗ runs for k rounds and returns the classifier f◦. If
for every round t ∈ [k], Γ(ht ,Swt )≥ ρ, then M( f◦,S)≥ ρ−

√

2lnm/k.

We present a simple corollary, which we will use when analyzing Boosting for MIL. This
corollary shows that AdaBoost∗ can be used to transform a weak learner that approximates the
best edge of a weighted sample to a Boosting algorithm that approximates the best margin of a
labeled sample. The proof of the corollary employs the following well known result, originally
by von Neumann (1928) and later extended (see, e.g., Nash and Sofer, 1996). For a hypothe-
sis class H, denote by co(H) the set of all linear combinations of hypotheses in H. We say that
H ⊆ [−1,+1]A is compact with respect to a sample S = {(xi,yi)}i∈[m] ⊆ A×{−1,+1} if the set of
vectors {(h(x1), . . . ,h(xm)) | h ∈ H} is compact.

Theorem 22 (The Strong Min-Max theorem) If H is compact with respect to S, then

min
w∈Δm

sup
h∈H

Γ(h,Sw) = sup
f∈co(H)

M( f ,S).

3022



MULTI-INSTANCE LEARNING WITH ANY HYPOTHESIS CLASS

Corollary 23 Suppose that AdaBoost∗ is executed with an input sample S, and assume that H
is compact with respect to S. Assume the weak learner used by AdaBoost∗ has the following
guarantee: For any w ∈ Δm, if the weak learner receives Sw as input, then with probability at least
1−δ it returns a hypothesis h◦ such that

Γ(h◦,Sw)≥ g(sup
h∈H

Γ(h,Sw)),

where g : [−1,+1]→ [−1,+1] is some fixed non-decreasing function. Then for any input sample S,
if AdaBoost∗ runs k rounds, it returns a linear combination of hypotheses f◦ = ∑t∈[k]αtht , such
that with probability at least 1− kδ

M( f◦,S)≥ g( sup
f∈co(H)

M( f ,S))−
√

2lnm/k.

Proof By Theorem 22, minw∈Δm suph∈H Γ(h,Sw) = sup f∈co(H)M( f ,S). Thus, for any vector of
weights w in the simplex, suph∈H Γ(h,Sw) ≥ sup f∈co(H)M( f ,S). It follows that in each round, the
weak learner that receives Swt as input returns a hypothesis ht such that Γ(ht ,Swt ) ≥
g(suph∈H Γ(h,Swt )) ≥ g(sup f∈co(H)M( f ,S)). By Theorem 21, it follows that M( f◦,S) ≥
g(sup f∈co(H)M( f ,S))−

√

2lnm/k.

7.2 The Weak Learner

In this section we will present our weak learner for MIL and provide guarantees for the edge it
achieves. Our guarantees depend on boundedness properties of the bag-function ψ, which we de-
fine below. To motivate our definition of boundedness, consider the p-norm bag functions (see
Definition 3), defined by ψp(z) !

( 1
n ∑

n
i=1(z[i]+1)p

)1/p− 1. Recall that this class of functions in-
cludes the max function (ψ∞) and the average function (ψ1) as two extremes. Assume R ⊆ [r] for
some r ∈ N. It is easy to verify that for any natural n, any sequence z1, . . . ,zn ∈ [−1,+1], and all
p ∈ [1,∞],

1
n ∑i∈[n]

zi ≤ ψp(z1, . . . ,zn)≤ ∑
i∈[n]

zi+n−1.

Since R⊆ [r], it follows that for all (z1, . . . ,zn) ∈ [−1,+1](R),

1
r ∑i∈[n]

zi ≤ ψp(z1, . . . ,zn)≤ ∑
i∈[n]

zi+ r−1. (25)

We will show that in cases where the bag function is linearly bounded in the sum of its argu-
ments, as in Equation (25), a single-instance learning algorithm can be used to learn MIL. Our weak
learner will be parameterized by the boundedness parameters of the bag-function, defined formally
as follows.

Definition 24 A function ψ : [−1,+1](R)→ [−1,+1] is (a,b,c,d)-bounded if for all (z1, . . . ,zn) ∈
[−1,+1](R),

a ∑
i∈[n]

zi+b≤ ψ(z1, . . . ,zn)≤ c ∑
i∈[n]

zi+d.

3023



SABATO AND TISBHY

Thus, for all p ∈ [1,∞), ψp over bags of size at most r is ( 1
r ,0,1,r−1)-bounded.

Before listing the weak learner MILearn, we introduce some notations. hpos denotes a special
bag-hypothesis that labels all bags as +1: ∀x ∈ X (R), hpos(x) = 1. We denote H + !H ∪{hpos}.
Let A be an algorithm that receives a labeled and weighted instance sample as input, and returns a
hypothesis h ∈H . The result of running A with input S is denoted A(S) ∈H .

The algorithm MILearn, listed as Algorithm 1 below, accepts as input a bag sample S and a
bounded bag-function ψ. It also has access to the algorithm A . We sometimes emphasize that
MILearn uses a specific algorithm A as an oracle by writing MILearn

A . MILearn constructs a
sample of instances SI from the instances that make up the bags in S, labeling each instance in SI
with the label of the bag it came from. The weights of the instances depend on whether the bag they
came from was positive or negative, and on the boundedness properties of ψ. Having constructed SI ,
MILearn calls A with SI . It then decides whether to return the bag-hypothesis induced by applying
ψ to A(SI), or to simply return hpos.

It is easy to see that the time complexity of MILearn is bounded by O( f (N)+N), where N is
the total number of instances in the bags of S, and f (n) is an upper bound on the time complexity
of A when running on a sample of size n. As we presently show, the output of MILearn is a
bag-hypothesis in H + whose edge on S depends on the best achievable edge for S.

Algorithm 1: MILearnA
Assumptions:

• H ∈ [−1,+1]X

• Algorithm A receives a weighted instance sample and returns a hypothesis in H .

Input:

• S! {(wi,  xi,yi)}i∈[m]—a labeled and weighted sample of bags,

• ψ—an (a,b,c,d)-bounded bag-function.

Output: h◦ ∈H +.

α(+1)← a, α(−1)← c.1

SI ← {(αyi ·wi,xi[ j],yi)}i∈[m], j∈[r].2

hI ← A(SI).3

if Γ(hI,S)≥ Γ(hpos,S) then4

h◦ ← hI ,5

else6
h◦ ← hpos.7

Return h◦.8
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The guarantees for MILearnA depend on the properties of A . We define two properties that we
consider for A . The first property is that the edge of the hypothesis A returns is close to the best
possible one on the input sample.

Definition 25 (ε-optimal) An algorithm A that accepts a weighted and labeled sample of instances
in X and returns a hypothesis inH is ε-optimal if for all weighted samples S⊆R+×X ×{−1,+1}
with total weight W,

Γ(A(S),S)≥ sup
h∈H

Γ(h,S)− εW.

The second property is that the edge of the hypothesis that A returns is close to the best possible one
on the input sample, but only compared to the edges that can be achieved by hypotheses that label
all the negative instances of S with −1. For a hypothesis class H and a distribution D over labeled
examples, we denote the set of hypotheses in H that label all negative examples in D with −1, by

Ω(H ,D) = {h ∈H | P(X ,Y )∼D[h(X) =−1 | Y =−1] = 1}.

For a labeled sample S,Ω(H ,S)!Ω(H ,US) whereUS is the uniform distribution over the examples
in S.

Definition 26 (one-sided-ε-optimal) An algorithm A that accepts a weighted and labeled sample
of instances in X and returns a hypothesis in H is one-sided-ε-optimal if for all weighted samples
S⊆ R+×X ×{−1,+1} with total weight W,

Γ(A(S),S)≥ sup
h∈Ω(H ,S)

Γ(h,S)− εW.

Clearly, any algorithm which is ε-optimal is also one-sided-ε-optimal, thus the first requirement
from A is stronger. In our results below we compare the edge achieved using MILearn to the best
possible edge for the sample S. Denote the best edge achievable for S by a hypothesis in H by

γ∗ ! sup
h∈H

Γ(h,S).

We denote by γ∗+ the best edge that can be achieved by a hypothesis in Ω(H ,S). Formally,

γ∗+ ! sup
h∈Ω(H ,S)

Γ(h,S).

Denote the weight of the positive bags in the input sample S byW+ = ∑i:yi=+1wi and the weight of
the negative bags by W− = ∑i:yi=−1wi. We will henceforth assume without loss of generality that
the total weight of all bags in the input sample is 1, that isW++W− = 1.

Note that for any (a,b,c,d)-bounded ψ, if there exists any sequence z1, . . . ,zn such that
ψ(z1, . . . ,zn) =−1, then

a ∑
i∈[n]

zi+b≤−1≤ c ∑
i∈[n]

zi+d. (26)

This implies
−1−d
c
≤ ∑

i∈[n]
zi ≤
−1−b
a

.
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Rearranging, we get d− c
ab−

c
a + 1 ≥ 0, with equality if Equation (26) holds with equalities. The

next theorem provides a guarantee for MILearn that depends on the tightness of this inequality for
the given bag function. As evident from Theorem 21, to guarantee a positive margin for the output
of AdaBoost∗ when used with MILearn as the weak learner, we need to guarantee that the edge of
the hypothesis returned by MILearn is always positive. Since the best edge cannot be more than 1,
we emphasize in the theorem below that the edge achieved by MILearn is positive at least when the
best edge is 1 (and possibly also for smaller edges, depending on the parameters). We subsequently
show how these general guarantees translate to a specific result for the max function, and other bag
functions with the same boundedness properties.

Theorem 27 Let r ∈ N and R⊆ [r]. Let ψ : [−1,+1](R)→ [−1,+1] be an (a,b,c,d)-bounded bag-
function such that 0 < a ≤ c. Let ε ∈ [0, 1

rc), and assume that d−
c
ab−

c
a + 1 = η. Denote Z = c

a .
Consider running the algorithm MILearn

A with a weighted bag sample S of total weight 1, and let
h◦ be the hypothesis returned by MILearnA . Then

1. If A is ε-optimal then

Γ(h◦,S)≥
Zγ∗ −Z+ 1

Z −
η
2 (1+

1
Z )− rcε

1+(1− η
2 )(1−

1
Z )

.

Thus, Γ(h◦,S)> 0 whenever

γ∗ > 1−
1
Z2 +

η
2
(

1
Z
+

1
Z2 )+

rcε
Z

.

In particular, if η≤ 2(1− rcε)/(Z+1) and γ∗ = 1 then Γ(h◦,S)> 0.

2. If A is one-sided-ε-optimal, and ψ(z1, . . . ,zn) =−1 only if z1 = . . .= zn =−1, then

Γ(h◦,S)≥
γ∗+−

η
2 (Z+1)− rcεZ

2Z−1− η
2 (Z−1)

.

Thus, Γ(h◦,S)> 0 whenever
γ∗+ >

η
2
(Z+1)+ rcεZ.

In particular, if η≤ 2(1− rcεZ)/(Z+1) and γ∗+ = 1 then Γ(h◦,S)> 0.

The proof of the theorem is provided in Appendix A. This theorem is stated in general terms, as it
holds for any bounded ψ. In particular, if ψ is any function between an average and a max, including
any of the p-norm bag functions ψp defined in Definition 3, we can simplify the result, as captured
by the following corollary.

Corollary 28 Let H ⊆ [−1,+1]X . Let R ⊆ [r], and ε ∈ [0, 1
r ). Assume a bag function

ψ : [−1,+1](R)→ [−1,+1] such that for any z1, . . . ,zn ∈ [−1,+1],

1
n ∑i∈[n]

zi ≤ ψ(z1, . . . ,zn)≤max
i∈[n]

zi.

Let h◦ be the hypothesis returned by MILearnA . Then
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1. If A is ε-optimal for some ε ∈ [0,1/r], then

Γ(h◦,S)≥
r2γ∗+1− r2(1+ ε)

2r−1
.

Thus Γ(h◦,S)> 0 whenever γ∗ ≥ 1− 1
r2 +

ε
r . In particular, if γ

∗ = 1 then Γ(h◦,S)> 0.

2. If A is one-sided-ε-optimal some ε ∈ [0,1/r2], then

Γ(h◦,S)≥
γ∗+− r2ε
2r−1

.

Thus Γ(h◦,S)> 0 whenever γ∗+ > r2ε. In particular, if γ∗+ = 1 then Γ(h◦,S)> 0.

Proof Let z1, . . . ,zn ∈ [−1,+1]. We have

max
i∈[n]

zi ≤ ∑
i∈[n]

zi− (n−1)min(zi)≤ ∑
i∈[n]

zi+n−1.

Therefore, by the assumption on ψ, for any n ∈ R

ψ(z1, . . . ,zn)≤ ∑
i∈[n]

zi+n−1≤ ∑
i∈[n]

zi+ r−1.

In addition
1
r ∑i∈[n]

zi ≤
1
n ∑i∈[n]

zi ≤ ψ(z1, . . . ,zn).

Therefore ψ is ( 1
r ,0,1,r− 1)-bounded. It follows that Z = r in this case, and d−Zb−Z+ 1 = 0.

Claim (1) follows by applying case (1) of Theorem 27 with η= 0.
For claim (2) we apply case (2) of Theorem 27. Thus we need to show that if ψ(z1, . . . ,zn) =−1

and z1, . . . ,zn ∈ [−1,+1], then z1 = . . .= zn =−1. We have that

−1≤
1
n ∑i∈[n]

zi ≤ ψ(z1, . . . ,zn)≤−1.

Therefore 1
n ∑i∈[n] zi = −1. Since no zi can be smaller than −1, z1 = . . . = zn = −1. Thus case (2)

of Theorem 27 holds. We get our claim (2) directly by subsituting the boundedness parameters of
ψ in Theorem 27 case (2).

7.3 From Single-Instance Learning to Multi-Instance Learning

In this section we combine the guarantees on MILearn with the guarantees on AdaBoost∗, to show
that efficient agnostic PAC-learning of the underlying instance hypothesis H implies efficient PAC-
learning of MIL. For simplicity we formalize the results for the natural case where the bag function
is ψ= max. Results for other bounded bag functions can be derived in a similar fashion.

First, we formally define the notions of agnostic and one-sided PAC-learning algorithms. We
then show that given an algorithm on instances that satisfies one of these definitions, we can con-
struct an algorithm for MIL which approximately maximizes the margin on an input bag sample.
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Specifically, if the input bag sample is realizable by H , then the MIL algorithm we propose will find
a linear combination of bag hypotheses that classifies the sample with zero error, and with a positive
margin. Combining this with the margin-based generalization guarantees mentioned in Section 7.1,
we conclude that we have an efficient PAC-learner for MIL.

Definition 29 (Agnostic PAC-learner and one-sided PAC-learner) LetB(ε,δ,S) be an algorithm
that accepts as input δ,ε ∈ (0,1), and a labeled sample S ∈ (X ×{−1,+1})m, and emits as output
a hypothesis h ∈ H . B is an agnostic PAC-learner for H with complexity c(ε,δ) if B runs for no
more than c(ε,δ) steps, and for any probability distribution D over X × {−1,+1}, if S is an i.i.d.
sample from D of size c(ε,δ), then with probability at least 1− δ over S and the randomization of
B ,

Γ(B(ε,δ,S),D)≥ sup
h∈H

Γ(h,D)− ε.

B is a one-sided PAC-learner if under the same conditions, with probability at least 1−δ

Γ(B(ε,δ,S),D)≥ sup
h∈Ω(H ,D)

Γ(h,D)− ε.

Algorithm 2: OB
ε,δ

Assumptions:
• ε,δ ∈ (0,1).

• B receives a labeled instance sample as input and returns a hypothesis in H .

• Algorithm B is a one-sided (or agnostic) PAC-learning algorithm with complexity c(ε,δ).

Input: A labeled and weighted instance sample S= {(wi,xi,yi)}i∈[m] ⊆R+×X ×{−1,+1}.
Output: A hypothesis in H
For all i ∈ [m], pi← wi/∑i∈[m]wi.1

For each t ∈ [c(ε,δ)], independently draw a random jt such that jt = i with probability pi.2
S̃← {(x jt ,y jt )}t∈[c(ε,δ)].3

h← B(S̃)4
Return h.5

Given an agnostic PAC-learner B for H and parameters ε,δ ∈ (0,1), the algorithm OB
ε,δ, listed

above as Algorithm 2, is an ε-optimal algorithm with probability 1− δ. Similarly, if B is a one-
sided PAC-learner, then OB

ε,δ is a one-sided-ε-optimal algorithm with probability 1− δ. Our MIL

algorithm is then simply AdaBoost∗ with MILearn
OB
ε,δ as the (high probability) weak learner. It is

easy to see that this algorithm learns a linear combination of hypotheses from H +. We also show
below that under certain conditions this linear combination induces a positive margin on the input
bag sample with high probability. Given this guaranteed margin, we bound the generalization error
of the learning algorithm via Equation (23).

The computational complexity of OB
ε,δ is polynomial in c(ε,δ) and in the instance-sample size

m. Therefore, the computational complexity of MILearnO
B
ε,δ is polynomial in c(ε,δ) and in N, where

N is the total number of instances in the input bag sample S.
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For 1-Lipschitz bag functions which have desired boundedness properties, both the sample com-
plexity and the computational complexity of the proposed MIL algorithm are polynomial in the
maximal bag size and linear in the complexity of the underlying instance hypothesis class. This
is formally stated in the following theorem, for the case of a realizable distribution over labeled
bags. Note that in particular, the theorem holds for all the p-norm bag-functions, since they are
1-Lipschitz and satisfy the boundedness conditions.

Theorem 30 Let H ⊆ [−1,+1]X be a hypothesis class with pseudo-dimension d. Let B be a one-
sided PAC-learner for H with complexity c(ε,δ). Let r ∈ N, and let R ⊆ [r]. Assume that the bag
function ψ : [−1,+1](R)→ [−1,+1] is 1-Lipschitz with respect to the infinity norm, and that for any
(z1, . . . ,zn) ∈ [−1,+1](R)

1
n ∑i∈[n]

zi ≤ ψ(z1, . . . ,zn)≤max
i∈[n]

zi.

Assume that H is compact with respect to any sample of size m. Let D be a distribution over
X (R)×{−1,+1} which is realizable by H , that is there exists an h ∈H such that P(  X,Y )∼D[h(  X) =
Y ] = 1. Assume m≥ 10d ln(er), and let ε= 1

2r2 and k = 32(2r−1)2 ln(m).
For all δ ∈ (0,1), if AdaBoost∗ is executed for k rounds on a random sample S ∼ Dm,

with MILearn
OB
ε,δ/2k as the weak learner, then with probability 1− δ, the classifier f◦ returned by

AdaBoost∗ satisfies

PD[Y f (  X)≤ 0]≤ O





√

dr2 ln(r) ln2(m)+ ln(2/δ)
m



 . (27)

Proof Since B is a one-sided PAC-learning algorithm, OB
ε,δ/2k is one-sided-ε-optimal with proba-

bility at least 1−δ/2k. Therefore, by case (2) of Corollary 28, if MILearnO
B
ε,δ/k receives a weighted

bag sample Sw, with probability 1−δ/2k it returns a bag hypothesis h◦ ∈H + such that

Γ(h◦,Sw)≥
suph∈Ω(H ,S)Γ(h,Sw)− r

2ε

2r−1
.

Thus, by Corollary 23, if AdaBoost∗ runs for k rounds then with probability 1− δ/2 it returns a
linear combination of hypotheses from H + such that

M( f◦,S)≥
sup f∈co(Ω(H ,S))M( f ,S)− r2ε

2r−1
−
√

2lnm/k. (28)

Due to the realizability assumption for D, there is an h ∈ Ω(H ,S) that classifies correctly the bag
sample S. It follows that for any weighting w ∈ Δm of S, Γ(h,Sw) = 1. It is easy to verify that since
H is compact with respect to S, then so isΩ(H ,S). Thus, by Theorem 22, sup f∈co(Ω(H ,S))M( f ,S) =
minw suph∈Ω(H ,S)Γ(h,Sw)= 1. Substituting ε and kwith their values, setting sup f∈co(Ω(H ,S))M( f ,S)=
1 in Equation (28) and simplifying, we get that with probability 1−δ/2

M( f◦,S)≥
1

8r−4
. (29)
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We would now like to apply the generalization bound in Equation (23), but for this we need to
show that Equation (24) holds for H . We have the following bound on the covering numbers of H ,
for all γ ∈ (0,1]:

Nm(γ,H ,∞)≤Nrm(γ,H ,∞)≤
(

erm
γd

)d
.

The first inequality is due to Corollary 13 and the fact thatψ is 1-Lipschitz, and the second inequality
is due to Haussler and Long (1995) and the pseudo-dimension of H (see Equation (24) above). This
implies

Nm(γ,H ,∞)≤
(

erm
γd

)d
=

(

em
γd

)d
· ed ln(r) =

(

em
γ ·10d ln(er)

)d
· (10ln(er))ded ln(r)

=

(

em
γ ·10d ln(er)

)d
· ed(ln(10ln(er))+ln(r)).

Therefore, for m≥ 10d ln(er)

Nm(γ,H +,∞)≤ 1+Nm(γ,H ,∞)≤ 1+
(

em
γ ·10d ln(er)

)d
· ed(ln(10ln(er))+ln(r))

≤
(

em
γ ·10d ln(er)

)d
· ed(ln(10ln(er))+ln(er)).

Now, ln(10ln(er))+ ln(er)= ln(10)+ ln(ln(er))+ ln(er)≤ ln(10)+2ln(er)≤ 3+2ln(er)≤ 5ln(er).
Therefore,

Nm(γ,H +,∞)≤
(

em
γ ·10d ln(er)

)d
· e5d ln(er) ≤

(

e2m
γ ·10d ln(er)

)5d ln(er)

≤
(

em
γ ·10d ln(er)

)10d ln(er)
.

Thus, for m ≥ 10d ln(er), Equation (24) holds for H + when substituting d with dr = 10d ln(er).
This means the generalization bound in Equation (23) holds when substituting d with dr as well. It
follows that with probability 1−δ/2

P[Y f◦(X)≤ 0]≤ O





√

dr ln2(m/dr)/M2( f◦,S)+ ln(1/δ)
m



 .

Now, with probability 1− δ/2, by Equation (29) we have M( f◦,S) ≥ 1/(8r− 4). Combining the
two inequalities and applying the union bound, we have that with probability 1−δ

P[Y f◦(X)≤ 0]≤ O





√

dr(8r−4)2 ln2(m/dr)+ ln(2/δ)
m





≤ O





√

10d ln(er)(8r−4)2 ln2(m)+ ln(2/δ)
m



 .

Due to the O-notation we can simplify the right-hand side to get Equation (27).
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Similar generalization results for Boosting can be derived for margin-learning as well, using
covering-numbers arguments as discussed in Schapire et al. (1998). The theorem above leads to the
following conclusion.

Corollary 31 If there exists a one-sided PAC-learning algorithm forH with polynomial run-time in
1
ε and

1
δ , then there exists a PAC-learning algorithm for classical MIL on H , which has polynomial

run-time in r, 1ε and
1
δ .

Corollary 31 is similar in structure to Theorem 1: Both state that if the single-instance problem is
solvable with one-sided error, then the realizable MIL problem is solvable. Theorem 1 applies only
to bags with statistically independent instances, while Corollary 31 applies to bags drawn from an
arbitrary distribution. The assumption of Theorem 1 is similarly weaker, as it only requires that the
single-instance PAC-learning algorithm handle random one-sided noise, while Corollary 31 requires
that the single-instance algorithm handle arbitrary one-sided noise. Of course, Corollary 31 does
not contradict the hardness result provided for APRs in Auer et al. (1998). Indeed, this hardness
result states that if there exists a MIL algorithm for d-dimensional APRs which is polynomial in
both r and d, then R P =N P . Our result does not imply that such an algorithm exists, since there
is no known agnostic or one-sided PAC-learning algorithm for APRs which is polynomial in d.

7.3.1 EXAMPLE: HALF-SPACES

We have shown a simple and general way, independent of hypothesis class, to create a PAC-learning
algorithm for classical MIL from a learning algorithm that runs on single instances. Whenever
an appropriate polynomial algorithm exists for the non-MIL learning problem, the resulting MIL
algorithm will also be polynomial in r. To illustrate, consider for instance the algorithm proposed
in Shalev-Shwartz et al. (2010). This algorithm is an agnostic PAC-learner of fuzzy kernelized
half-spaces with an L-Lipschitz transfer function, for some constant L > 0. Its time complexity
and sample-complexity are at most poly((Lε )

L · ln( 1
δ)). Since this complexity bound is polynomial

in 1/ε and in 1/δ, this algorithm can serve as the algorithm B in Theorem 30, and Corollary 31
holds. Thus, we can generate an algorithm for PAC-learning MIL with complexity that depends
directly on the complexity of this learner, and is polynomial in r, 1

ε and 1
δ . The full MIL algorithm

for fuzzy kernelized half-spaces can thus be described as follows: Run AdaBoost∗ with the weak
learner MILearnO

B
ε,δ , where MILearn is listed in Algorithm 1, OB

ε,δ is listed in Algorithm 2, and B
is the agnostic PAC-learner from Shalev-Shwartz et al. (2010). The input to AdaBoost∗ is a labeled
sample of bags, and the output is a real-valued classifier for bags.

More generally, using the construction we proposed here, any advancement in the development
of algorithms for agnostic or one-sided learning of any hypothesis class translates immediately to an
algorithm for PAC-learning MIL with the same hypothesis class, and with corresponding complexity
guarantees.

8. Conclusions

In this work we have provided a new theoretical analysis for Multiple Instance Learning with any
underlying hypothesis class. We have shown that the dependence of the sample complexity of
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generalized MIL on the number of instances in a bag is only poly-logarithmic, thus implying that the
statistical performance of MIL is only mildly sensitive to the size of the bag. The analysis includes
binary hypotheses, real-valued hypotheses, and margin learning, all of which are used in practice in
MIL applications. Our sample complexity results can be summarized as follows, where d is the VC
dimension or pseudo-dimension of the underlying hypothesis class, and r is the maximal/average
bag size.

• The VC dimension of binary MIL is O(d log(r)).

• For non-trivial bag functions, there are hypothesis classes such that the VC dimension of
binary MIL is Ω(d log(r)).

• The VC dimension of binary MIL with separating hyperplanes in dimension d is Ω(d log(r)).

• The pseudo-dimension of binary MIL for bag functions that are extensions of monotone
Boolean functions is O(d log(r)).

• Covering numbers for MIL hypotheses with Lipschitz bag functions can be bounded by cov-
ering numbers for the single instance hypothesis class.

• The fat-shattering dimension of real-valued MIL with Lipschitz bag-functions is
poly-logarithmic in the bag size and quasilinear in the fat shattering dimension of the sin-
gle instance hypothesis class.

• The Rademacher complexity of binary MIL with a bounded average bag size is
O(
√

d log(r)/m) where m is the sample size.

• The Rademacher complexity of real-valued MIL with a Lipschitz loss function and a Lipschitz
bag function is upper bounded by a logarithmic dependence on the average bag size and a
quasilinear dependence on the Rademacher complexity of the instance hypothesis class.

For classical MIL, where the bag-labeling function is the Boolean OR, and for its natural ex-
tension to max, we have presented a new learning algorithm, that classifies bags by executing a
learning algorithm designed for single instances. This algorithm provably PAC-learns MIL. In both
the sample complexity analysis and the computational analysis, we have shown tight connections
between classical supervised learning and Multiple Instance Learning, which holds regardless of
the underlying hypothesis class.

Many interesting open problems remain for the generic analysis of MIL. In particular, our re-
sults hold under certain assumptions on the bag functions. An interesting open question is whether
these assumptions are necessary, or whether useful results can be achieved for other classes of bag
functions. Another interesting question is how additional structure within a bag, such as sparsity,
may affect the statistical and computational feasibility of MIL. These interesting problems are left
for future research.
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Appendix A. Proof of Theorem 27

The first step in providing a guarantee for the edge achieved by MILearn, is to prove a guarantee for
the edge achieved on the bag sample by the hypothesis returned by A in step (3) of the algorithm.
This is done in the following lemma.

Lemma 32 Assume ψ : [−1,+1](R)→ [−1,+1] is an (a,b,c,d)-bounded bag function with 0 < a≤
c, and denote Z = c

a . Consider running the algorithm MILearn with a weighted bag sample S of
total weight 1. Let hI be the hypothesis returned by the oracle A in step (3) of MILearn. Let W be
the total weight of the sample SI created in MILearn, step (2). Then

1. If A is ε-optimal,

Γ(hI,S)≥ Zγ∗+(
1
Z
−Z+(1−

1
Z
)(d−Zb))W++Zb−d− εW.

2. If A is one-sided-ε-optimal, and ψ(z1, . . . ,zn) =−1 only if z1 = . . .= zn =−1, then

Γ(hI,S)≥
1
Z
γ∗++(

1
Z
−Z+(1−

1
Z
)(d−Zb))W++Zb−d+Z−

1
Z
− εW.

Proof For all h ∈H , and for all  x= (x1, . . . ,xn) ∈ X (R) we have h(  x) = ψ(h(x1), . . . ,h(xn)). Since
ψ is (a,b,c,d)-bounded, it follows that

a∑
x∈  x

h(x)+b≤ h(  x)≤ c∑
x∈  x

h(x)+d. (30)

In addition, since a and c are positive we also have

(h(  x)−d)/c≤∑
x∈  x

h(x)≤ (h(  x)−b)/a. (31)

Assume the input bag sample is S = {(wi,  xi,yi)}i∈[m]. Denote I+ = {i ∈ [m] | yi = +1} and I− =
{i ∈ [m] | yi =−1}. Let h ∈H be a hypothesis. We have

Γ(h,S) = ∑
i∈I+

wih(  xi)− ∑
i∈I−

wih(  xi)

≥ ∑
i∈I+

wi(a∑
x∈  xi

h(x)+b)− ∑
i∈I−

wi(c∑
x∈  xi

h(x)+d) (32)

= ∑
i∈I+

wia∑
x∈  xi

h(x)− ∑
i∈I−

wic∑
x∈  xi

h(x)+ ∑
i∈I+

wib− ∑
i∈I−

wid. (33)

line (32) follows from Equation (30). As evident by steps (1,2) of MILearn, In the sample SI all
instances from positive bags have weight α(+1) = a, and all instances from negative bags have
weight α(−1) = c. Therefore

Γ(h,SI) = ∑
i∈[m]

∑
x∈  xi

wiyiα(yi)h(x) = ∑
i∈I+

wia∑
x∈  xi

h(x)− ∑
i∈I−

wic∑
x∈  xi

h(x).
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Combining this equality with Equation (33) we get

Γ(h,S)≥ Γ(h,SI)+ ∑
i∈I+

wib− ∑
i∈I−

wid.

Since ∑i∈I+ wi =W+ and ∑i∈I− wi =W− = 1−W+, it follows that

Γ(h,S)≥ Γ(h,SI)+bW+−dW− = Γ(h,SI)+(b+d)W+−d. (34)

Now, for any hypothesis h we can conclude from Equation (31) that

Γ(h,SI) = ∑
i∈I+

awi ∑
x∈  xi

h(x)− ∑
i∈I−

cwi ∑
x∈  xi

h(x)

≥ ∑
i∈I+

awi(h(  xi)−d)/c− ∑
i∈I−

cwi(h(  xi)−b)/a

= ∑
i∈I+

a
c
wih(  xi)− ∑

i∈I−

c
a
wih(  xi)− ∑

i∈I+
adwi/c+ ∑

i∈I−
cbwi/a

=
c
a
Γ(h,S)+(

a
c
−
c
a
)∑
i∈I+

wih(  xi)−
ad
c
W++

cb
a
W−

=
c
a
Γ(h,S)+(

a
c
−
c
a
)∑
i∈I+

wih(  xi)− (
ad
c
+
cb
a
)W++

cb
a
.

In the last equality we used the fact thatW− = 1−W+. Since Z = c
a , it follows that

Γ(h,SI)≥ ZΓ(h,S)+(
1
Z
−Z)∑

i∈I+
wih(  xi)− (

d
Z
+Zb)W++Zb. (35)

We will now lower-bound the right-hand-side of Equation (35). Note that 1
Z −Z ≤ 0 since c ≥ a.

Therefore we need an upper bound for ∑i∈I+ wih(  xi). We consider each of the two cases in the
statement of the lemma separately.

A.0.2 CASE 1: A IS ε-OPTIMAL

We have ∑i∈I+ wih(  xi)≤ ∑i∈I+ wi =W+. Therefore, by Equation (35) for any h ∈H

Γ(h,SI)≥ ZΓ(h,S)+(
1
Z
−Z−

d
Z
−Zb)W++Zb. (36)

For a natural n, set hn∗ such that Γ(hn∗,S)≥ γ∗ − 1
n . We have (see explanations below)

Γ(hI ,S)≥ Γ(hI,SI)+(b+d)W+−d (37)
≥ Γ(hn∗,SI)+(b+d)W+−d− εW (38)

≥ ZΓ(hn∗,S)+(
1
Z
−Z−

d
Z
−Zb)W++Zb+(b+d)W+−d− εW (39)

= ZΓ(hn∗,S)+(
1
Z
−Z+(1−

1
Z
)(d−Zb))W++Zb−d− εW

≥ Z(γ∗ −
1
n
)+(

1
Z
−Z+(1−

1
Z
)(d−Zb))W++Zb−d− εW.

Equation (37) is a restatement of Equation (34). Equation (38) follows from the ε-optimality of A .
Equation (39) follows from Equation (36). By taking n→ ∞, this inequality proves case (1) of the
lemma.
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A.0.3 CASE 2: A IS ONE-SIDED-ε-OPTIMAL

We have∑i∈I+ wih(  xi)≤∑i∈I+ wi=W+. Let h∈Ω(H ,S). Then for all i∈ I−, h(  xi) =−1. Therefore

Γ(h,S) = ∑
i∈I+

wih(  xi)− ∑
i∈I−

wih(  xi)

= ∑
i∈I+

wih(  xi)+ ∑
i∈I−

wi

= ∑
i∈I+

wih(  xi)+W−.

Therefore ∑i∈I+ wih(  xi) = Γ(h,S)−W− = Γ(h,S)+W+−1. Combining this with Equation (35) we
get

Γ(h,SI)≥ ZΓ(h,S)+(
1
Z
−Z)∑

i∈I+
wih(  xi)− (

d
Z
+Zb)W++Zb

= ZΓ(h,S)+(
1
Z
−Z)(Γ(h,S)+W+−1)− (

d
Z
+Zb)W++Zb.

=
1
Z
Γ(h,S)+(

1
Z
−Z−

d
Z
−Zb)W++Zb−

1
Z
+Z. (40)

For a natural n, set hn+ ∈Ω(H ,S) such that Γ(hn+,S)≥ γ∗+− 1
n . For all bags i ∈ I−, hn+(  xi) =−1.

Thus ψ(hn+(xi[1]), . . . ,hn+(xi[|  xi])) = −1. By the assumption on ψ in case (2) of the lemma, this
implies that for all i ∈ I−, j ∈ [|  xi|], hn+(xi[ j]) = −1. Therefore hn+ ∈ Ω(H ,SI). We have (see
explanations below)

Γ(hI ,S)≥ Γ(hI,SI)+(b+d)W+−d (41)
≥ Γ(hn+,SI)+(b+d)W+−d− εW (42)

≥
1
Z
Γ(hn+,S)+(

1
Z
−Z−

d
Z
−Zb)W++Zb−

1
Z
+Z+(b+d)W+−d− εW (43)

=
1
Z
Γ(hn+,S)+(

1
Z
−Z+(1−

1
Z
)(d−Zb))W++Zb−d+Z−

1
Z
− εW

≥
1
Z
(γ∗+−

1
n
)+(

1
Z
−Z+(1−

1
Z
)(d−Zb))W++Zb−d+Z−

1
Z
− εW.

Equation (41) is a restatement of Equation (34). Equation (42) follows from the one-sided-ε-
optimality of A and the fact that hn+ ∈ Ω(H ,SI). Equation (43) follows from Equation (40). By
considering n→ ∞, this proves the second part of the lemma.

Proof [of Theorem 27] MILearn selects the hypothesis with the best edge on S between hI and hpos.
Therefore

Γ(h◦,S) = max(Γ(hpos,S),Γ(hI ,S)).

We have
Γ(hpos,S) = ∑

i∈[m]
wiyihpos(  xi) = ∑

i∈[m]
wiyi =W+−W− = 2W+−1.
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Thus
Γ(h◦,S) = max(2W+−1,Γ(hI,S)). (44)

We now lower-bound Γ(h◦,S) by bounding Γ(hI ,S) separately for the two cases of the theorem. Let
W be the total weight of SI . Since R⊆ [r], a≤ c, and ∑i∈[m]wi = 1, we have

W = ∑
i:yi=+1

∑
x∈  xi

awi+ ∑
i:yi=−1

∑
x∈  xi

cwi ≤ rc ∑
i∈[m]

wi = rc (45)

A.0.4 CASE 1: A IS ε-OPTIMAL

From Lemma 32 and Equation (45) we have

Γ(hI,S)≥ Zγ∗+(
1
Z
−Z+(1−

1
Z
)(d−Zb))W++Zb−d− rcε

= Zγ∗+(
1
Z
−Z+(1−

1
Z
)(Z−1+η))W+− (Z−1+η)− rcε

= Zγ∗+(η−2)(1−
1
Z
)W++1−η−Z− rcε.

The second line follows from the assumption d−Zb−Z+ 1 = η. Combining this with Equa-
tion (44) we get

Γ(h◦,S)≥max{2W+−1, Zγ∗+(η−2)(1−
1
Z
)W++1−η−Z− rcε}.

The right-hand-side is minimal when the two expressions in the maximum are equal. This occurs
when

W+ =W◦ !
Zγ∗+2−η−Z− rcε

2+(2−η)(1− 1
Z )

.

Therefore, for any value ofW+

Γ(h◦,S)≥ 2W◦ −1 =
Zγ∗ −Z+ 1

Z −
η
2 (1+

1
Z )− rcε

1+(1− η
2 )(1−

1
Z )

.

Case 2: A is one-sided-ε-optimal From Lemma 32 and Equation (45) we have

Γ(hI,S)≥
1
Z
γ∗++(

1
Z
−Z+(1−

1
Z
)(d−Zb))W++Zb−d+Z−

1
Z
− rcε

=
1
Z
γ∗++(

1
Z
−Z+(1−

1
Z
)(Z−1+η))W+− (Z−1+η)+Z−

1
Z
− rcε

=
1
Z
γ∗++(η−2)(1−

1
Z
)W++1−η−

1
Z
− rcε.

The second line follows from the assumption d−Zb= Z−1+η. Combining this with Equation (44)
we get

Γ(h◦,S)≥max{2W+−1,
1
Z
γ∗++(η−2)(1−

1
Z
)W++1−η−

1
Z
− rcε}.

The right-hand-side is minimal when the two expressions in the maximum are equal. This occurs
when

W+ =W◦ !
γ∗+−1+(2−η− rcε)Z

2Z+(2−η)(Z−1)
.
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SubstitutingW+ forW◦ in the lower bound, we get

Γ(h◦,S)≥ 2W◦ −1 =
γ∗+−

η
2 (Z+1)− rcεZ

2Z−1− η
2 (Z−1)

.
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T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola. Multi-instance kernels. In Proceedings of
the Nineteenth International Conference on Machine Learning, pages 179–186, 2002.

D. Haussler and P. M. Long. A generalization of Sauer’s lemma. Journal of Combinatorial Theory,
Series A, 71(2):219–240, 1995.

P. M. Long and L. Tan. PAC learning axis-aligned rectangles with respect to product distributions
from multiple-instance examples. Machine Learning, 30(1):7–21, 1998. ISSN 0885-6125.
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Abstract
In this paper, we report a performance bound for the widely used least-squares policy iteration
(LSPI) algorithm. We first consider the problem of policy evaluation in reinforcement learning,
that is, learning the value function of a fixed policy, using the least-squares temporal-difference
(LSTD) learning method, and report finite-sample analysis for this algorithm. To do so, we first
derive a bound on the performance of the LSTD solution evaluated at the states generated by the
Markov chain and used by the algorithm to learn an estimate of the value function. This result is
general in the sense that no assumption is made on the existence of a stationary distribution for the
Markov chain. We then derive generalization bounds in the case when the Markov chain possesses a
stationary distribution and is β-mixing. Finally, we analyze how the error at each policy evaluation
step is propagated through the iterations of a policy iteration method, and derive a performance
bound for the LSPI algorithm.
Keywords: Markov decision processes, reinforcement learning, least-squares temporal-difference,
least-squares policy iteration, generalization bounds, finite-sample analysis

1. Introduction

Least-squares temporal-difference (LSTD) learning (Bradtke and Barto, 1996; Boyan, 1999) is a
widely used algorithm for prediction in general, and in the context of reinforcement learning (RL),
for learning the value function V π of a given policy π. LSTD has been successfully applied to a
number of problems especially after the development of the least-squares policy iteration (LSPI)
algorithm (Lagoudakis and Parr, 2003), which extends LSTD to control by using it in the policy
evaluation step of policy iteration. More precisely, LSTD computes the fixed point of the operator
ΠT , where T is the Bellman operator and Π is the projection operator in a linear function space
F . Although LSTD and LSPI have been widely used in the RL community, a finite-sample analysis
of LSTD, that is, performance bounds in terms of the number of samples, the space F , and the
characteristic parameters of the MDP at hand, is still missing.

Most of the theoretical work analyzing LSTD have been focused on the model-based case, where
explicit models of the reward function and the dynamics are available. In particular, Tsitsiklis and
Van Roy (1997) showed that the distance between the LSTD solution and the value function V π is
bounded by the distance between V π and its closest approximation in the linear space, multiplied
by a constant which increases as the discount factor approaches 1. In this bound, it is assumed that
the Markov chain possesses a stationary distribution ρπ and the distances are measured according
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to ρπ. Yu (2010) has extended this analysis and derived an asymptotic convergence analysis for off-
policy LSTD(λ), that is when the samples are collected following a behavior policy different from
the policy π under evaluation. Finally, on-policy empirical LSTD has been analyzed by Bertsekas
(2007). His analysis reveals a critical dependency on the inverse of the smallest eigenvalue of the
LSTD’s A matrix (note that the LSTD solution is obtained by solving a system of linear equations
Ax = b). Nonetheless, Bertsekas (2007) does not provide a finite-sample analysis of the algorithm.
Although these analyses already provide some insights on the behavior of LSTD, asymptotic results
do not give a full characterization of the performance of the algorithm when only a finite number of
samples is available (which is the most common situation in practice). On the other hand, a finite-
sample analysis has a number of important advantages: 1) unlike in Tsitsiklis and Van Roy (1997),
where they assume that model-based LSTD always returns a solution, in a finite-sample analysis we
study the characteristics of the actual empirical LSTD fixed point, including its existence, 2) a finite-
sample bound explicitly reveals how the prediction error of LSTD is related to the characteristic
parameters of the MDP at hand, such as the discount factor, the dimensionality of the function
space F , and the number of samples, 3) once this dependency is clear, the bound can be used to
determine the order of magnitude of the number of samples needed to achieve a desired accuracy.

Recently, several works have been focused on deriving a finite-sample analysis for different RL
algorithms. In the following, we review those that are more strictly related to LSTD and to the
results reported in this paper. Antos et al. (2008) analyzed the modified Bellman residual (MBR)
minimization algorithm for a finite number of samples, bounded function spaces, and a µ-norm
that might be different from the norm induced by ρπ. Although MBR minimization was shown to
reduce to LSTD in case of linear spaces, it is not straightforward to extend the finite-sample bounds
derived by Antos et al. (2008) to unbounded linear spaces considered by LSTD. Farahmand et al.
(2008) proposed a !2-regularized extension of LSPI and provided finite-sample analysis for the
algorithm when the function space is a reproducing kernel Hilbert space (RKHS). In this work,
the authors consider the optimization formulation of LSTD (instead of the better known fixed-
point formulation) and assume that a generative model of the environment is available. Moreover,
the analysis is for !2-regularized LSTD (LSPI) and also for the case that the function space F
is a RKHS. Pires and Szepesvári (2012) also analyzed a regularized version of LSTD reporting
performance bounds for both the on-policy and off-policy case. In this paper, we first report a finite-
sample analysis of LSTD. To the best of our knowledge, this is the first complete finite-sample
analysis of this widely used algorithm. Our analysis is for a specific implementation of LSTD
that we call pathwise LSTD. Pathwise LSTD has two specific characteristics: 1) it takes a single
trajectory generated by the Markov chain induced by policy π as input, and 2) it uses the pathwise
Bellman operator (precisely defined in Section 3), which is defined to be a contraction w.r.t. the
empirical norm. We first derive a bound on the performance of the pathwise LSTD solution for a
setting that we call Markov design. In this setting, the performance is evaluated at the points used
by the algorithm to learn an estimate of V π. This bound is general in the sense that no assumption
is made on the existence of a stationary distribution for the Markov chain. Then, in the case that the
Markov chain admits a stationary distribution ρπ and is β-mixing, we derive generalization bounds
w.r.t. the norm induced by ρπ. Finally, along the lines of Antos et al. (2008), we show how the
LSTD error is propagated through the iterations of LSPI, and under suitable assumptions, derive a
performance bound for the LSPI algorithm.

Besides providing a full finite-sample analysis of LSPI, the major insights gained by the analysis
in the paper may be summarized as follows. The first result is about the existence of the LSTD
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solution and its performance. In Theorem 1 we show that with a slight modification of the empirical
Bellman operator T̂ (leading to the definition of pathwise LSTD), the operator Π̂T̂ (where Π̂ is
an empirical projection operator) always has a fixed point v̂, even when the sample-based Gram
matrix is not invertible and the Markov chain does not admit a stationary distribution. In this very
general setting, it is still possible to derive a bound for the performance of the LSTD solution, v̂,
evaluated at the states of the trajectory used by the algorithm. Moreover, an analysis of the bound
reveals a critical dependency on the smallest strictly positive eigenvalue νn of the sample-based
Gram matrix. Then, in the case in which the Markov chain has a stationary distribution ρπ, it is
possible to relate the value of νn to the smallest eigenvalue of the Gram matrix defined according
to ρπ. Furthermore, it is possible to generalize the previous performance bound over the entire
state space under the measure ρπ, when the samples are drawn from a stationary β-mixing process
(Theorem 5). It is important to note that the asymptotic bound obtained by taking the number of
samples, n, to infinity is equal (up to constants) to the bound in Tsitsiklis and Van Roy (1997) for
model-based LSTD. Furthermore, a comparison with the bounds in Antos et al. (2008) shows that
we successfully leverage on the specific setting of LSTD: 1) the space of functions is linear, and 2)
the distribution used to evaluate the performance is the stationary distribution of the Markov chain
induced by the policy, and obtain a better bound both in terms of 1) estimation error, a rate of order
O(1/n) instead of O(1/

√
n) for the squared error, and 2) approximation error, the minimal distance

between the value function V π and the space F instead of the inherent Bellman errors of F . The
extension in Theorem 6 to the case in which the samples belong to a trajectory generated by a fast
mixing Markov chain shows that it is possible to achieve the same performance as in the case of
stationary β-mixing processes. Finally, the analysis of LSPI reveals the need for several critical
assumptions on the stationary distributions of the policies that are greedy w.r.t. to the functions in
the linear space F . These assumptions seem unavoidable when an on-policy method is used at each
iteration, and whether they can be removed or relaxed in other settings is still an open question.
This paper extends and improves over the conference paper by Lazaric et al. (2010) in the following
respects: 1) we report the full proofs and technical tools for all the theoretical results, thus making
the paper self-contained, 2) we extend the LSTD results to LSPI showing how the approximation
errors are propagated through iterations.

The rest of the paper is organized as follows. In Section 2, we set the notation used throughout
the paper. In Section 3, we introduce pathwise LSTD by a minor modification to the standard LSTD
formulation in order to guarantee the existence of at least one solution. In Section 4, we introduce
the Markov design setting for regression and report an empirical bound for LSTD. In Section 5, we
show how the Markov design bound of Section 4 may be extended when the Markov chain admits
a stationary distribution. In Section 6, we analyze how the LSTD error is propagated through the
iterations of LSPI and derive a performance bound for the LSPI algorithm. Finally in Section 7, we
draw conclusions and discuss some possible directions for future work.

2. Preliminaries

For a measurable space with domain X , we let S(X ) and B(X ;L) denote the set of probability
measures over X , and the space of bounded measurable functions with domain X and bound 0 <
L < ∞, respectively. For a measure ρ ∈ S(X ) and a measurable function f : X → R, we define the
!2(ρ)-norm of f , || f ||ρ, and for a set of n points X1, . . . ,Xn ∈ X , we define the empirical norm || f ||n
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as
|| f ||2ρ =

∫
f (x)2ρ(dx) and || f ||2n =

1
n

n

∑
t=1

f (Xt)2.

The supremum norm of f , || f ||∞, is defined as || f ||∞ = supx∈X | f (x)|.
We consider the standard RL framework (Bertsekas and Tsitsiklis, 1996; Sutton and Barto,

1998) in which a learning agent interacts with a stochastic environment and this interaction is mod-
eled as a discrete-time discounted Markov decision process (MDP). A discounted MDP is a tuple
M = 〈X ,A ,r,P,γ〉 where the state space X is a bounded closed subset of the s-dimensional Eu-
clidean space, A is a finite (|A |< ∞) action space, the reward function r : X ×A → R is uniformly
bounded by Rmax, the transition kernel P is such that for all x∈X and a∈A , P(·|x,a) is a distribution
over X , and γ∈ (0,1) is a discount factor. A deterministic policy π :X →A is a mapping from states
to actions. For a given policy π, the MDP M is reduced to a Markov chain M π = 〈X ,Rπ,Pπ,γ〉
with the reward function Rπ(x) = r

(
x,π(x)

)
, transition kernel Pπ(·|x) = P

(
· |x,π(x)

)
, and stationary

distribution ρπ (if it admits one). The value function of a policy π, V π, is the unique fixed-point of
the Bellman operator T π : B(X ;Vmax =

Rmax
1−γ )→ B(X ;Vmax) defined by

(T πV )(x) = Rπ(x)+ γ
∫
X
Pπ(dy|x)V (y).

We also define the optimal value function V ∗ as the unique fixed-point of the optimal Bellman
operator T ∗ : B(X ;Vmax)→ B(X ;Vmax) defined by

(T ∗V )(x) = max
a∈A

[
r(x,a)+ γ

∫
X
P(dy|x,a)V (y)

]
.

In the following sections, to simplify the notation, we remove the dependency to the policy π and
use R, P, V , ρ, and T instead of Rπ, Pπ, V π, ρπ, and T π whenever the policy π is fixed and clear
from the context.

To approximate the value function V , we use a linear approximation architecture with param-
eters α ∈ Rd and basis functions ϕi ∈ B(X ;L), i = 1, . . . ,d. We denote by φ : X → Rd , φ(·) =(
ϕ1(·), . . . ,ϕd(·)

)* the feature vector, and by F the linear function space spanned by the basis
functions ϕi. Thus F =

{
fα | α ∈ Rd and fα(·) = φ(·)*α

}
.

Let (X1, . . . ,Xn) be a sample path (trajectory) of size n generated by the Markov chain M π.
Let v ∈ Rn and r ∈ Rn be such that vt = V (Xt) and rt = R(Xt) be the value vector and the reward
vector, respectively. Also, let Φ = [φ(X1)*; . . . ;φ(Xn)*] be the feature matrix defined at the states,
and Fn = {Φα, α ∈ Rd} ⊂ Rn be the corresponding vector space. We denote by Π̂ : Rn → Fn
the orthogonal projection onto Fn, defined as Π̂y = argminz∈Fn ||y− z||n, where ||y||2n = 1

n ∑
n
t=1 y2

t .
Note that the orthogonal projection Π̂y for any y ∈ Rn exists and is unique. Moreover, Π̂ is a
non-expansive mapping w.r.t. the !2-norm: since the projection is orthogonal and using the Cauchy-
Schwarz inequality ||Π̂y− Π̂z||2n = 〈y− z,Π̂y− Π̂z〉n ≤ ||y− z||n||Π̂y− Π̂z||n, and thus, we obtain
||Π̂y− Π̂z||n ≤ ||y− z||n.

3. Pathwise LSTD

Pathwise LSTD (Algorithm 1) is a version of LSTD that takes as input a linear function space
F and a single trajectory X1, . . . ,Xn generated by following the policy, and returns the fixed-point
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Algorithm 1 A pseudo-code for the batch pathwise LSTD algorithm.
Input: Linear space F = span{ϕi,1 ≤ i≤ d}, sample trajectory {(xt ,rt)}nt=1 of the Markov chain

Build the feature matrix Φ= [φ(x1)*; . . . ;φ(xn)*]
Build the empirical transition matrix P̂ : P̂i j = I{ j = i+1, j -= n}
Build matrix A=Φ*(I− γP̂)Φ
Build vector b=Φ*r
Return the pathwise LSTD solution α̂= A+b

of the empirical operator Π̂T̂ , where T̂ : Rn → Rn is the pathwise Bellman operator defined as

(T̂ y)t =
{
rt + γyt+1 1 ≤ t < n,
rt t = n.

Note that by defining the operator P̂ : Rn →Rn as (P̂y)t = yt+1 for 1 ≤ t < n and (P̂y)n = 0, we have
T̂ y= r+ γP̂y. The motivation for using the pathwise Bellman operator is that it is γ-contraction in
!2-norm, that is, for any y,z ∈ Rn, we have

||T̂ y− T̂ z||2n = ||γP̂(y− z)||2n ≤ γ2||y− z||2n .

Since the orthogonal projection Π̂ is non-expansive w.r.t. !2-norm, from Banach fixed point theorem,
there exists a unique fixed-point v̂ of the mapping Π̂T̂ , that is, v̂= Π̂T̂ v̂. Since v̂ is the unique fixed
point of Π̂T̂ , the vector v̂− T̂ v̂ is perpendicular to the space Fn, and thus, Φ*(v̂− T̂ v̂) = 0. By
replacing v̂withΦα, we obtainΦ*Φα=Φ*(r+γP̂Φα) and thenΦ*(I−γP̂)Φα=Φ*r. Therefore,
by setting A= Φ*(I− γP̂)Φ and b= Φ*r, we recover a d×d system of equations Aα= b similar
to the one in the original LSTD algorithm. Note that since the fixed point v̂ exists, this system
always has at least one solution. We call the solution with minimal norm, α̂= A+b, where A+ is the
Moore-Penrose pseudo-inverse of A, the pathwise LSTD solution.1

Finally, notice that the algorithm reported in Figure 1 may be easily extended to the incremental
version of LSTD by incrementally building the inverse of the matrix A as the samples are collected.

4. Markov Design Bound

In Section 3, we defined the pathwise Bellman operator with a slight modification in the definition
of the empirical Bellman operator T̂ , and showed that the operator Π̂T̂ always has a unique fixed
point v̂. In this section, we derive a bound for the performance of v̂ evaluated at the states of the
trajectory used by the pathwise LSTD algorithm. We first state the main theorem and we discuss it
in a number of remarks. The proofs are postponed at the end of the section.

Theorem 1 Let X1, . . . ,Xn be a trajectory generated by the Markov chain, and v, v̂ ∈ Rn be the
vectors whose components are the value function and the pathwise LSTD solution at {Xt}nt=1, re-
spectively. Then with probability at least 1− δ (the probability is w.r.t. the random trajectory), we
have

||v− v̂||n ≤
1√

1− γ2
||v− Π̂v||n+

1
1− γ

[

γVmaxL
√

d
νn

(√8log(2d/δ)
n

+
1
n

)]

, (1)

1. Note that whenever the matrix A is invertible A+ = A−1.
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where the random variable νn is the smallest strictly-positive eigenvalue of the sample-based Gram
matrix 1

nΦ
*Φ.

Remark 1 Theorem 1 provides a bound on the prediction error of the LSTD solution v̂ w.r.t.
the true value function v on the trajectory X1, . . . ,Xn used as a training set for pathwise-LSTD.
The bound contains two main terms. The first term ||v− Π̂v||n is the approximation error and it
represents the smallest possible error in approximating v with functions in F . This error cannot
be avoided. The second term, of order O(

√
d/n), is the estimation error and it accounts for the

error due to the use of a finite number of noisy samples and it shows what is the influence of the
different elements of the problem (e.g., γ, d, n) on the prediction error and it provides insights about
how to tune some parameters. We first notice that the bound suggests that the number of samples n
should be significantly bigger than the number of features d in order to achieve a small estimation
error. Furthermore, the bound can be used to estimate the number of samples needed to guarantee
a desired prediction error ε. In fact, apart from the approximation error, which is unavoidable, we
have that n= O(d/((1− γ)2ε2)) samples are enough to achieve an ε-accurate approximation of the
true value function v. We also remark that one might be tempted to reduce the dimensionality d, so
as to reduce the sample cost of the algorithm. Nonetheless, this is likely to reduce the approximation
capability of F and thus increase the approximation error.

Remark 2 When the eigenvalues of the sample-based Gram matrix 1
nΦ

*Φ are all non-zero, Φ*Φ
is invertible, and thus, Π̂=Φ(Φ*Φ)−1Φ*. In this case, the uniqueness of v̂ implies the uniqueness
of α̂ since

v̂=Φα =⇒ Φ*v̂=Φ*Φα =⇒ α̂= (Φ*Φ)−1Φ*v̂.

On the other hand, when the sample-based Gram matrix 1
nΦ

*Φ is not invertible, the system Ax= b
may have many solutions. Among all the possible solutions, one may choose the one with minimal
norm: α̂= A+b.

Remark 3 Note that in case there exists a constant ν> 0, such that with probability 1−δ′ all the
eigenvalues of the sample-based Gram matrix are lower-bounded by ν, Equation 1 (with νn replaced
by ν) holds with probability at least 1− (δ+δ′) (see Section 5.1 for a case in which such constant
ν can be computed and it is related to the smallest eigenvalue of the model based Gram matrix).

Remark 4 Theorem 1 provides a bound without any reference to the stationary distribution of
the Markov chain. In fact, the bound of Equation 1 holds even when the chain does not admit a
stationary distribution. For example, consider a Markov chain on the real line where the transitions
always move the states to the right, that is, p(Xt+1 ∈ dy|Xt = x) = 0 for y≤ x. For simplicity assume
that the value functionV is bounded and belongs to F . This Markov chain is not recurrent, and thus,
does not have a stationary distribution. We also assume that the feature vectors φ(X1), . . . ,φ(Xn)
are sufficiently independent, so that all the eigenvalues of 1

nΦ
*Φ are greater than ν > 0. Then

according to Theorem 1, pathwise LSTD is able to estimate the value function at the samples at a
rate O(1/

√
n). This may seem surprising because at each state Xt the algorithm is only provided

with a noisy estimation of the expected value of the next state. However, the estimates are unbiased
conditioned on the current state, and we will see in the proof that using a concentration inequality
for martingale, pathwise LSTD is able to learn a good estimate of the value function at a state Xt
using noisy pieces of information at other states that may be far away from Xt . In other words,
learning the value function at a given state does not require making an average over many samples
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close to that state. This implies that LSTD does not require the Markov chain to possess a stationary
distribution.

Remark 5 The most critical part of the bound in Equation 1 is the inverse dependency on the
smallest positive eigenvalue νn. A similar dependency is shown in the LSTD analysis of Bertsekas
(2007). The main difference is that here we have a more complete finite-sample analysis with an
explicit dependency on the number of samples and the other characteristic parameters of the prob-
lem. Furthermore, if the Markov chain admits a stationary distribution ρ, we are able to relate the
existence of the LSTD solution to the smallest eigenvalue of the Gram matrix defined according to
ρ (see Section 5.1).

In order to prove Theorem 1, we first introduce the regression setting with Markov design and
then state and prove a lemma about this model. Delattre and Gaı̈ffas (2011) recently analyzed a
similar setting in the general case of martingale incremental errors.

Definition 2 The model of regression with Markov design is a regression problem where the data
(Xt ,Yt)1≤t≤n are generated according to the following model: X1, . . . ,Xn is a sample path generated
by a Markov chain, Yt = f (Xt)+ξt , where f is the target function, and the noise term ξt is a random
variable which is adapted to the filtration generated by X1, . . . ,Xt+1 and is such that

|ξt |≤C and E[ξt |X1, . . . ,Xt ] = 0. (2)

The next lemma reports a risk bound for the Markov design setting which is of independent
interest.

Lemma 3 (Regression bound for the Markov design setting) We consider the model of regres-
sion with Markov design in Definition 2. Let ŵ ∈ Fn be the least-squares estimate of the (noisy)
values Y = {Yt}nt=1, that is, ŵ = Π̂Y , and w ∈ Fn be the least-squares estimate of the (noiseless)
values Z = {Zt = f (Xt)}nt=1, that is, w= Π̂Z. Then for any δ> 0, with probability at least 1−δ (the
probability is w.r.t. the random sample path X1, . . . ,Xn), we have

||ŵ−w||n ≤CL

√
2d log(2d/δ)

nνn
, (3)

where νn is the smallest strictly-positive eigenvalue of the sample-based Gram matrix 1
nΦ

*Φ.

Proof [Lemma 3] We define ξ ∈Rn to be the vector with components ξt =Yt−Zt , and ξ̂= ŵ−w=
Π̂(Y −Z) = Π̂ξ. Since the projection is orthogonal we have 〈ξ̂,ξ〉n = ||ξ̂||2n (see Figure 1). Since
ξ̂∈Fn, there exists at least one α∈Rd such that ξ̂=Φα, so by Cauchy-Schwarz inequality we have

||ξ̂||2n = 〈ξ̂,ξ〉n =
1
n

d

∑
i=1

αi
n

∑
t=1

ξtϕi(Xt)≤
1
n
||α||2

[
d

∑
i=1

( n

∑
t=1

ξtϕi(Xt)
)2
]1/2

. (4)

Now among the vectors α such that ξ̂ = Φα, we define α̂ to be the one with minimal !2-norm,
that is, α̂=Φ+ξ̂. Let K denote the null-space of Φ, which is also the null-space of 1

nΦ
*Φ. Then α̂

may be decomposed as α̂= α̂K+α̂K⊥ , where α̂K ∈K and α̂K⊥ ∈K⊥, and because the decomposition
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ξ̂

Fn

Z

Y

ŵ

w

ξ

ξ̂

Figure 1: This figure shows the components used in Lemma 3 and its proof such as w, ŵ, ξ, and ξ̂,
and the fact that 〈ξ̂,ξ〉n = ||ξ̂||2n.

is orthogonal, we have ||α̂||22 = ||α̂K ||22+ ||α̂K⊥ ||22. Since α̂ is of minimal norm among all the vectors
α such that ξ̂=Φα, its component in K must be zero, thus α̂ ∈ K⊥.

The Gram matrix 1
nΦ

*Φ is positive-semidefinite, thus its eigenvectors corresponding to zero
eigenvalues generate K and the other eigenvectors generate its orthogonal complement K⊥. There-
fore, from the assumption that the smallest strictly-positive eigenvalue of 1

nΦ
*Φ is νn, we deduce

that since α̂ ∈ K⊥,
||ξ̂||2n =

1
n
α̂*Φ*Φα̂≥ νnα̂

*α̂= νn||α̂||22. (5)

By using the result of Equation 5 in Equation 4, we obtain

||ξ̂||n ≤
1

n
√
νn

[
d

∑
i=1

( n

∑
t=1

ξtϕi(Xt)
)2
]1/2

. (6)

Now, from the conditions on the noise in Equation 2, we have that for any i= 1, . . . ,d

E[ξtϕi(Xt)|X1, . . . ,Xt ] = ϕi(Xt)E[ξt |X1, . . . ,Xt ] = 0,

and since ξtϕi(Xt) is adapted to the filtration generated by X1, . . . ,Xt+1, it is a martingale differ-
ence sequence w.r.t. that filtration. Thus one may apply Azuma’s inequality to deduce that with
probability 1−δ, ∣∣∣

n

∑
t=1

ξtϕi(Xt)
∣∣∣≤CL

√
2n log(2/δ) ,

where we used that |ξtϕi(Xt)|≤CL for any i and t. By a union bound over all features, we have that
with probability 1−δ, for all 1 ≤ i≤ d

∣∣∣
n

∑
t=1

ξtϕi(Xt)
∣∣∣≤CL

√
2n log(2d/δ) . (7)

The result follows by combining Equations 7 and 6.
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T̂ v̂
v

Fn

Π̂v

T̂ v

Π̂T̂ v

v̂ = Π̂T̂ v̂

Figure 2: This figure represents the space Rn, the linear vector subspace Fn and some vectors used
in the proof of Theorem 1.

Remark about Lemma 3 Note that this lemma is an extension of the bound for regression with
deterministic design in which the states, {Xt}nt=1, are fixed and the noise terms, ξt’s, are indepen-
dent. In deterministic design, usual concentration results provide high probability bounds similar
to Equation 3 (see, e.g., Hsu et al., 2012), but without the dependence on νn. An open question is
whether it is possible to remove νn in the bound for the Markov design regression setting.

In the Markov design model considered in this lemma, states {Xt}nt=1 are random variables gen-
erated according to the Markov chain and the noise terms ξt may depend on the next state Xt+1 (but
should be centered conditioned on the past states X1, . . . ,Xt). This lemma will be used in order to
prove Theorem 1, where we replace the target function f with the value function V , and the noise
term ξt with the temporal difference r(Xt)+ γV (Xt+1)−V (Xt).

Proof [Theorem 1]

Step 1: Using the Pythagorean theorem and the triangle inequality, we have (see Figure 2)

||v− v̂||2n = ||v− Π̂v||2n+ ||v̂− Π̂v||2n ≤ ||v− Π̂v||2n+
(
||v̂− Π̂T̂ v||n+ ||Π̂T̂ v− Π̂v||n

)2
. (8)

From the γ-contraction of the operator Π̂T̂ and the fact that v̂ is its unique fixed point, we obtain

||v̂− Π̂T̂ v||n = ||Π̂T̂ v̂− Π̂T̂ v||n ≤ γ||v̂− v||n, (9)

Thus from Equation 8 and 9, we have

||v− v̂||2n ≤ ||v− Π̂v||2n+
(
γ||v− v̂||n+ ||Π̂T̂ v− Π̂v||n

)2
. (10)

Step 2: We now provide a high probability bound on ||Π̂T̂ v− Π̂v||n. This is a consequence of
Lemma 3 applied to the vectors Y = T̂ v and Z = v. Since v is the value function at the points
{Xt}nt=1, from the definition of the pathwise Bellman operator, we have that for 1 ≤ t ≤ n−1,

ξt = yt − vt = r(Xt)+ γV (Xt+1)−V (Xt) = γ
[
V (Xt+1)−

∫
P(dy|Xt)V (y)

]
,
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and ξn = yn− vn = −γ
∫
P(dy|Xn)V (y). Thus, Equation 2 holds for 1 ≤ t ≤ n− 1. Here we may

choose C = 2γVmax for a bound on ξt , 1 ≤ t ≤ n− 1, and C = γVmax for a bound on ξn. Azuma’s
inequality may be applied only to the sequence of n−1 terms (the n-th term adds a contribution to
the bound), thus instead of Equation 7, we obtain

∣∣∣
n

∑
t=1

ξtϕi(Xt)
∣∣∣≤ γVmaxL

(
2
√

2n log(2d/δ)+1
)
,

with probability 1−δ, for all 1≤ i≤ d. Combining with Equation 6, we deduce that with probability
1−δ, we have

||Π̂T̂ v− Π̂v||n ≤ γVmaxL
√

d
νn

(√8log(2d/δ)
n

+
1
n

)
, (11)

where νn is the smallest strictly-positive eigenvalue of 1
nΦ

*Φ. The claim follows by solving Equa-
tion 10 for ||v− v̂||n and replacing ||Π̂T̂ v− Π̂v||n from Equation 11.

5. Generalization Bounds

As we pointed out earlier, Theorem 1 makes no assumption on the existence of the stationary dis-
tribution of the Markov chain. This generality comes at the cost that the performance is evaluated
only at the states visited by the Markov chain and no generalization on other states is possible.
However in many problems of interest, the Markov chain has a stationary distribution ρ, and thus,
the performance may be generalized to the whole state space under the measure ρ. Moreover,
if ρ exists, it is possible to derive a condition for the existence of the pathwise LSTD solution
depending on the number of samples and the smallest eigenvalue of the Gram matrix defined ac-
cording to ρ ; G ∈ Rd×d , Gi j =

∫
ϕi(x)ϕ j(x)ρ(dx). In this section, we assume that the Markov

chain M π is exponentially fast β-mixing with parameters  β,b,κ, that is, its β-mixing coefficients
satisfy βi ≤  βexp(−biκ) (see Section A.2 in the appendix for a more detailed definition of β-mixing
processes).

Before stating the main results of this section, we introduce some notation. If ρ is the stationary
distribution of the Markov chain, we define the orthogonal projection operator Π : B(X ;Vmax)→ F
as

ΠV = argmin
f∈F

||V − f ||ρ .

Furthermore, in the rest of the paper with a little abuse of notation, we replace the empirical norm
||v||n defined on states X1, . . . ,Xn by ||V ||n, where V ∈ B(X ;Vmax) is such that V (Xt) = vt . Finally,
we should guarantee that the pathwise LSTD solution V̂ is uniformly bounded on X . For this reason,
we move from F to the truncated space F̃ in which for any function f ∈ F , a truncated function f̃
is defined as

f̃ (x) =
{

f (x) if | f (x)|≤Vmax ,
sgn
(
f (x)

)
Vmax otherwise. (12)

In the next sections, we present conditions on the existence of the pathwise LSTD solution and
derive generalization bounds under different assumptions on the way the samples X1, . . . ,Xn are
generated.
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5.1 Uniqueness of Pathwise LSTD Solution

In this section, we assume that all the eigenvalues of G are strictly positive; that is, we assume the
existence of the model-based solution of LSTD, and derive a condition to guarantee that the sample-
based Gram matrix 1

nΦ
*Φ is invertible. More specifically, we show that if a large enough number

of samples (depending on the smallest eigenvalue of G) is available, then the smallest eigenvalue of
1
nΦ

*Φ is strictly positive with high probability.

Lemma 4 Let G be the Gram matrix defined according to the distribution ρ and ω > 0 be its
smallest eigenvalue. Let X1, . . . ,Xn be a trajectory of length n of a stationary β-mixing process with
parameters  β,b,κ and stationary distribution ρ. If the number of samples n satisfies the following
condition

n>
288L2Λ(n,d,δ)

ω
max

{
Λ(n,d,δ)

b
,1
}1/κ

, (13)

where2 Λ(n,d,δ) = 2(d+1) logn+ log e
δ + log+

(
max{18(6e)2(d+1),  β}

)
, then with probability 1−

δ, the family of features (ϕ1, . . . ,ϕd) is linearly independent on the states X1, . . . ,Xn (i.e., || fα||n = 0
implies α= 0) and the smallest eigenvalue νn of the sample-based Gram matrix 1

nΦ
*Φ satisfies

√
νn ≥

√
ν=

√
ω

2
−6L

√
2Λ(n,d,δ)

n
max

{
Λ(n,d,δ)

b
,1
}1/κ

> 0 . (14)

Proof From the definition of the Gram matrix and the fact that ω> 0 is its smallest eigenvalue, for
any function fα ∈ F , we have

|| fα||2ρ = ||φ*α||2ρ = α*Gα≥ ωα*α= ω||α||2. (15)

Using the concentration inequality from Corollary 18 in the appendix and the fact that the basis
functions ϕi are bounded by L, thus fα is bounded by L||α||, we have || fα||ρ− 2|| fα||n ≤ ε with
probability 1−δ, where

ε= 12L‖α‖

√
2Λ(n,d,δ)

n
max

{
Λ(n,d,δ)

b
,1
}1/κ

.

Thus we obtain
2|| fα||n+ ε≥

√
ω||α||. (16)

Let α be such that || fα||n = 0, then if the number of samples n satisfies the condition of Equation 13,
we may deduce from Equation 16 and the definition of ε that α = 0. This indicates that given
Equation 13, with probability 1− δ, the family of features (ϕ1, . . . ,ϕd) is linearly independent on
the states X1, . . . ,Xn, and thus, νn > 0. The inequality in Equation 14 is obtained by choosing α to
be the eigenvector of 1

nΦ
*Φ corresponding to the smallest eigenvalue νn. For this value of α, we

have || fα||n =
√
νn||α||. By using the definition of ε in Equation 16 and reordering we obtain

2
√
νn||α||+12L||α||

√
2Λ(n,d,δ)

n
max

{
Λ(n,d,δ)

b
,1
}1/κ

≥
√
ω||α|| ,

and the claim follows.

2. We define log+ x= max{logx,0}.
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Remark 1 In order to make the condition on the number of samples and its dependency on the
critical parameters of the problem at hand more explicit, let us consider the case of a stationary
process with b = β = κ = 1. Then the condition in Equation 13 becomes (up to constant and
logarithmic factors)

n≥ Õ
(

288L2

ω

(
(d+1) log

n
δ

)2
)
.

As can be seen, the number of samples needed to have strictly positive eigenvalues in the sample-
based Gram matrix has an inverse dependency on the smallest eigenvalue of G. As a consequence,
the moreG is ill-conditioned the more samples are needed for the sample-based Gram matrix 1

nΦ
*Φ

to be invertible.

5.2 Generalization Bounds for Stationary β-mixing Processes

In this section, we show how Theorem 1 may be generalized to the entire state space X when the
Markov chain M π has a stationary distribution ρ. In particular, we consider the case in which the
samples X1, . . . ,Xn are obtained by following a single trajectory in the stationary regime of M π, that
is, when we consider that X1 is drawn from ρ.

Theorem 5 Let X1, . . . ,Xn be a path generated by a stationary β-mixing process with parameters
 β,b,κ and stationary distribution ρ. Let ω > 0 be the smallest eigenvalue of the Gram matrix
defined according to ρ and n satisfy the condition in Equation 13. Let Ṽ be the truncation (using
Equation 12) of the pathwise LSTD solution, then

||Ṽ −V ||ρ ≤
2√

1− γ2

(
2
√

2||V −ΠV ||ρ+ ε2

)
+

2
1− γ

[

γVmaxL
√
d
ν

(√8log(8d/δ)
n

+
1
n

)]

+ ε1

(17)
with probability 1− δ, where ν is a lower-bound on the eigenvalues of the sample-based Gram
matrix defined by Equation 14,

ε1 = 24Vmax

√
2Λ1(n,d,δ/4)

n
max

{
Λ1(n,d,δ/4)

b
,1
}1/κ

,

with Λ1(n,d,δ/4) = 2(d+1) logn+ log 4e
δ + log+

(
max{18(6e)2(d+1),  β}

)
, and

ε2 = 12
(
Vmax +L||α∗||

)
√

2Λ2(n,δ/4)
n

max
{
Λ2(n,δ/4)

b
,1
}1/κ

, (18)

with Λ2(n,δ/4) = log 4e
δ + log

(
max{6,n  β}

)
and α∗ is such that fα∗ =ΠV.

Proof This result is a consequence of applying generalization bounds to both sides of Equation 1
(Theorem 1). We first bound the left-hand side:

2||V̂ −V ||n ≥ 2||Ṽ −V ||n ≥ ||Ṽ −V ||ρ− ε1

with probability 1− δ′. The first step follows from the definition of the truncation operator, while
the second step is a straightforward application of Corollary 17 in the appendix.
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We now bound the term ||V − Π̂V ||n in Equation 1:

||V − Π̂V ||n ≤ ||V −ΠV ||n ≤ 2
√

2||V −ΠV ||ρ+ ε2

with probability 1−δ′. The first step follows from the definition of the operator Π̂. The second step
is an application of the inequality of Corollary 19 in the appendix for the function V −ΠV .

From Theorem 1, the two generalization bounds, and the lower-bound on ν, each one holding
with probability 1−δ′, the statement of the Theorem (Equation 17) holds with probability 1−δ by
setting δ= 4δ′.

Remark 1 Rewriting the bound in terms of the approximation and estimation error terms (up to
constants and logarithmic factors), we obtain

||Ṽ −V ||ρ ≤ Õ

(
1√

1− γ2
||V −ΠV ||ρ+

1
1− γ

1√
n

)

.

While the first term (approximation error) only depends on the target function V and the function
space F , the second term (estimation error) primarily depends on the number of samples. Thus,
when n goes to infinity, the estimation error goes to zero and we obtain the same performance bound
(up to a 4

√
2 constant) as for the model-based case reported by Tsitsiklis and Van Roy (1997). The

additional multiplicative constant 4
√

2 in front of the approximation error is the standard cost to
have the improved rate bounds for the squared loss and linear spaces (see, e.g., Györfi et al., 2002).
In fact, it is possible to derive a bounds with constant 1 but a worse rate n−1/4 instead of n−1/2. The
bound in Theorem 5 is more accurate whenever the approximation error is small and few samples
are available.

Remark 2 Antos et al. (2008) reported a sample-based analysis for the modified Bellman residual
(MBR) minimization algorithm. They consider a general setting in which the function space F
is bounded and the performance of the algorithm is evaluated according to an arbitrary measure
µ (possibly different than the stationary distribution of the Markov chain ρ). Since Antos et al.
(2008) showed that the MBR minimization algorithm is equivalent to LSTD when F is a linearly
parameterized space, it would be interesting to compare the bound in Theorem 5 to the one in
Lemma 11 of Antos et al. (2008). In Theorem 5, similar to Antos et al. (2008), samples are drawn
from a stationary β-mixing process, however, F is a linear space and ρ is the stationary distribution
of the Markov chain. It is interesting to note the impact of these two differences in the final bound.
The use of linear spaces has a direct effect on the estimation error and leads to a better convergence
rate due to the use of improved functional concentration inequalities (Lemma 16 in the appendix).
In fact, while in Antos et al. (2008) the estimation error for the squared error is of order O(1/

√
n),

here we achieve a faster convergence rate of order O(1/n). Moreover, although Antos et al. (2008)
showed that the solution of MBR minimization coincides with the LSTD solution, its sample-based
analysis cannot be directly applied to LSTD. In fact, in Antos et al. (2008) the function space F
is assumed to be bounded, while general linear spaces cannot be bounded. Whether the analysis
of Antos et al. (2008) may be extended to the truncated solution of LSTD is an open question that
requires further investigation.
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5.3 Generalization Bounds for Markov Chains

The main assumption in the previous section is that the trajectory X1, . . . ,Xn is generated by a sta-
tionary β-mixing process with stationary distribution ρ. This is possible if we consider samples of
a Markov chain during its stationary regime, that is, X1 ∼ ρ. However in practice, ρ is not known,
and the first sample X1 is usually drawn from a given initial distribution and the rest of the sequence
is obtained by following the Markov chain from X1 on. As a result, the sequence X1, . . . ,Xn is no
longer a realization of a stationary β-mixing process. Nonetheless, under suitable conditions, after
ñ< n steps, the distribution of Xñ approaches the stationary distribution ρ. In fact, according to the
convergence theorem for fast-mixing Markov chains (see, e.g., Proposition 20 in the appendix), for
any initial distribution λ ∈ S(X ), we have

∣∣∣∣

∣∣∣∣
∫
X
λ(dx)Pn(·|x)−ρ(·)

∣∣∣∣

∣∣∣∣
TV

≤  βexp(−bnκ).

where || · ||TV is the total variation.3
We now derive a bound for a modification of pathwise LSTD in which the first ñ samples (that

are used to burn the chain) are discarded and the remaining n− ñ samples are used as training
samples for the algorithm.

Theorem 6 Let X1, . . . ,Xn be a trajectory generated by a β-mixing Markov chain with parameters
 β,b,κ and stationary distribution ρ. Let ñ (1 ≤ ñ < n) be such that n− ñ satisfies the condition
of Equation 13, and Xñ+1, . . . ,Xn be the samples actually used by the algorithm. Let ω > 0 be the
smallest eigenvalue of the Gram matrix defined according to ρ and α∗ ∈Rd be such that fα∗ =ΠV.
Let Ṽ be the truncation of the pathwise LSTD solution (using Equation 12), then by setting ñ =(

1
b log 2e  βn

δ

)1/κ
, with probability 1−δ, we have

||Ṽ −V ||ρ ≤
2√

1− γ2

(
2
√

2||V −ΠV ||ρ+ ε2

)
+

2
1− γ

[

γVmaxL
√
d
ν

(√8log(8d/δ)
n− ñ

+
1
ñ

)]

+ ε1,

(19)
where ε1 and ε2 are defined as in Theorem 5 (with n− ñ as the number of training samples).

The proof of this result is a simple consequence of Lemma 24 in the appendix applied to Theo-
rem 5.

Remark 1 The bound in Equation 19 indicates that in the case of β-mixing Markov chains, a
similar performance to the one for stationary β-mixing processes is obtained by discarding the first
ñ= O(logn) samples.

6. Finite-Sample Analysis of LSPI

In the previous sections we studied the performance of pathwise-LSTD for policy evaluation. Now
we move to the analysis of the least-squares policy iteration (LSPI) algorithm (Lagoudakis and
Parr, 2003) in which at each iteration k samples are collected by following a single trajectory of the

3. We recall that for any two distributions µ1,µ2 ∈ S(X ), the total variation norm is defined as ||µ1 − µ2||TV =
supX⊆X |µ1(X)−µ2(X)|.
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policy under evaluation, πk, and LSTD is used to compute an approximation of V πk . In particular,
in the next section we report a performance bound by comparing the value of the policy returned by
the algorithm after K iterations, V πK , and the optimal value function, V ∗, w.r.t. an arbitrary target
distribution σ. In order to achieve this bound we introduce assumptions on the MDP and the linear
space F . In Section 6.2 we show that in some cases one of these assumptions does not hold and the
performance of LSPI can be arbitrarily bad.

6.1 Generalization Bound for LSPI

In this section, we provide a performance bound for the LSPI algorithm (Lagoudakis and Parr,
2003). We first introduce the greedy policy operator G that maps value functions to their corre-
sponding greedy policies:

(
G(V )

)
(x) = argmax

a∈A

[
r(x,a)+ γ

∫
X
P(dy|x,a)V (y)

]
.

We use G(F ) to refer to the set of all the greedy policies w.r.t. the functions in F . LSPI is a policy
iteration algorithm that uses LSTD for policy evaluation at each iteration. It starts with an arbitrary
initial value function V−1 ∈ F̃ and its corresponding greedy policy π0. At the first iteration, it
approximatesV π0 using LSTD and returns a functionV0 whose truncated version Ṽ0 is used to build
the policy π1 for the second iteration.4 More precisely, π1 is the greedy policy w.r.t. Ṽ0, that is,
π1 = G(Ṽ0). So, at each iteration k of LSPI, a function Vk−1 is computed as an approximation
to V πk−1 , and then truncated, Ṽk−1, and used to build the policy πk = G(Ṽk−1). Note that the MDP
model is needed in order to generate the greedy policy πk. To avoid the need for the model, we could
simply move from LSTD to LSTD-Q. The analysis of LSTD in the previous sections may be easily
extended to action-value function, and thus, to LSTD-Q.5 For simplicity we use value function in
the paper and report the LSPI bound in terms of the distance to the optimal value function.

It is important to note that in general the measure used to evaluate the final performance of
LSPI, σ ∈ S(X ), might be different than the distribution used to generate the samples at each itera-
tion. Moreover, the LSTD performance bounds of Section 5 require the samples to be collected by
following the policy under evaluation. Thus, we make the following assumption.

Assumption 1 (Lower-bounding distribution) There exists a distribution µ ∈ S(X ) such that for
any policy π that is greedy w.r.t. a function in the truncated space F̃ , µ≤ Cρπ, where C < ∞ is a
constant and ρπ is the stationary distribution of policy π.

Assumption 2 . (Discounted-average Concentrability of Future-State Distribution [Antos et al.,
2008]) Given the target distribution σ ∈ S(X ) and an arbitrary sequence of policies {πm}m≥1, let

cσ,µ= sup
π1,...,πm

∣∣∣∣∣

∣∣∣∣∣
d(µPπ1 . . .Pπm)

dσ

∣∣∣∣∣

∣∣∣∣∣.

4. Unlike in the original formulation of LSPI, here we need to explicitly truncate the function so as to prevent unbounded
functions.

5. We point out that moving to LSTD-Q requires the introduction of some exploration to the current policy. In fact, in
the on-policy setting, if the policy under evaluation is deterministic, it does not provide any information about the
value of actions a -= π(·) and the policy improvement step would always fail. Thus, we need to consider stochastic
policies where the current policy is perturbed by an ε > 0 randomization which guarantees that any action has a
non-zero probability to be selected in any state.
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We define the second-order discounted-average concentrability of future-state distributions as

Cσ,µ= (1− γ)2 ∑
m≥1

mγm−1cσ,µ(m)

and we assume that Cσ,µ< ∞.

We also need to guarantee that with high probability a unique LSTD solution exists at each
iteration of the LSPI algorithm, thus, we make the following assumption.

Assumption 3 (Linear independent features) Let µ∈ S(X ) be the lower-bounding distribution from
Assumption 1. We assume that the features φ(·) of the function space F are linearly independent
w.r.t. µ. In this case, the smallest eigenvalue ωµ of the Gram matrix Gµ ∈ Rd×d w.r.t. µ is strictly
positive.

Lemma 7 Under Assumption 3, at each iteration k of LSPI, the smallest eigenvalue ωk of the Gram
matrix Gk defined according to the stationary distribution ρk = ρπk is strictly positive and ωk ≥

ωµ
C .

Proof Similar to Lemma 4, for any function fα ∈ F , we have ||α||≤ || fα||µ√
ωµ

. Using Assumption 1,

|| fα||µ≤
√
C || fα||ρk , and thus, ||α|| ≤

√
C
ωµ

|| fα||ρk . For the α that is the eigenvector of Gk corre-

sponding to ρk, we have ||α||= || fα||ρk√
ωk

. For this value of α, we may write || fα||ρk√
ωk

≤
√

C
ωµ

|| fα||ρk , and
thus, ωk ≥

ωµ
C , which guarantees that ωk is strictly positive, because ωµ is strictly positive according

to Assumption 3.

Finally, we make the following assumption on the stationary β-mixing processes corresponding
to the stationary distributions of the policies encountered at the iterations of the LSPI algorithm.

Assumption 4 (Slower β-mixing process) We assume that there exists a stationary β-mixing pro-
cess with parameters  β,b,κ, such that for any policy π that is greedy w.r.t. a function in the truncated
space F̃ , it is slower than the stationary β-mixing process with stationary distribution ρπ (with pa-
rameters  βπ,bπ,κπ). This means that  β is larger and b and κ are smaller than their counterparts
 βπ, bπ, and κπ (see Definition 14).

Now we may state the main theorem of this section.

Theorem 8 Let us assume that at each iteration k of the LSPI algorithm, a path of size n is gen-
erated from the stationary β-mixing process with stationary distribution ρk−1 = ρπk−1 . Let n sat-
isfy the condition in Equation 13 for the slower β-mixing process defined in Assumption 4. Let
V−1 ∈ F̃ be an arbitrary initial value function, V0, . . . ,VK−1 (Ṽ0, . . . ,ṼK−1) be the sequence of value
functions (truncated value functions) generated by LSPI after K iterations, and πK be the greedy
policy w.r.t. the truncated value function ṼK−1. Then under Assumptions 1- 4, with probability 1−δ
(w.r.t. the random samples), we have

||V ∗ −V πK ||σ ≤
4γ

(1− γ)2

{

(1+ γ)
√
CCσ,µ

[
2√

1− γ2

(
2
√

2E0(F )+E2

)

+
2

1− γ

(
γVmaxL

√
d
νµ

(
√

8log(8dK/δ)
n

+
1
n
))

+E1

]
+ γ

K−1
2 Rmax

}

,
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where
1. E0(F ) = supπ∈G(F̃ ) inf f∈F || f −V π||ρπ ,

2. E1 is ε1 from Theorem 5 written for the slower β-mixing process defined in Assumption 4,

3. E2 is ε2 from Theorem 5 written for the slower β-mixing process defined in Assumption 4 and
||α∗|| replaced by

√
C
ωµ

Rmax
1−γ , and

4. νµ is ν from Equation 14 in whichω is replaced byωµ defined in Assumption 3, and the second
term is written for the slower β-mixing process defined in Assumption 4.

Remark 1 The previous theorem states a bound on the prediction error when LSPI is stopped after
a fixed number K of iterations. The structure of the bound resembles the one in Antos et al. (2008).
Unlike policy evaluation, the approximation error E0(F ) now depends on how well the space F can
approximate the target functions V π obtained in the policy improvement step. While the estimation
errors are mostly similar to those in policy evaluation, an additional term of order γK is introduced.
Finally, we notice that the concentrability terms may significantly amplify the prediction error (see
also next remark). Farahmand et al. (2010) recently performed a refined analysis of the propagation
of the error in approximate policy iteration and have interesting insights on the concentrability terms.

Remark 2 The most critical issue about Theorem 8 is the validity of Assumptions 1–4. The
analysis of LSTD explicitly requires that the samples are collected by following the policy under
evaluation, πk, and the performance is bounded according to its stationary distribution ρk. Since
the performance of LSPI is assessed w.r.t. a target distribution σ, we need each of the policies en-
countered through the LSPI process to have a stationary distribution which does not differ too much
from σ. Furthermore, since the policies are random (at each iteration k the new policy πk is greedy
w.r.t. the approximation Ṽk−1 which is random because of the sampled trajectory), we need to con-
sider the distance of σ and the stationary distribution of any possible policy generated as greedy
w.r.t. a function in the truncated space F̃ , that is, ρπ, π ∈ G(F̃ ). Thus in Assumption 1 we first
assume the existence of a distribution µ lower-bounding any possible stationary distribution ρk. The
existence of µ and the value of the constant C depend on the MDP at hand. In Section 6.2, we
provide an example in which the constant C is infinite. In this case, we show that the LSPI perfor-
mance, when the samples at each iteration are generated according to the stationary distribution of
the policy under evaluation, can be arbitrarily bad. A natural way to relax this assumption would
be the use of off-policy LSTD in which the samples are collected by following a behavior policy.
Nonetheless, we are not aware of any finite-sample analysis for such an algorithm. Another critical
term appearing in the bound of LSPI, inherited from Theorem 5, is the maximum of ||α∗

k || over
the iterations, where α∗

k is such that fα∗
k
= ΠρkV πk . Each term ||α∗

k || can be bounded whenever the
features of the space F are linearly independent according to the stationary distribution ρk. Since
α∗
k is a random variable, the features {ϕi}di=1 of the space F should be carefully chosen so as to be

linearly independent w.r.t. the lower-bounding distribution µ.

We now prove a lemma that is used in the proof of Theorem 8.

Lemma 9 Let πk be the greedy policy w.r.t. Ṽk−1, that is, πk = G(Ṽk−1) and ρπk be the stationary
distribution of the Markov chain induced by πk. We have

||Ṽk−T πkṼk||ρπk ≤ (1+ γ)||Ṽk−V πk ||ρπk .
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Proof [Lemma 9] We first show that Ṽk−T πkṼk = (I− γPπk)(Ṽk−V πk)

(I− γPπk)(Ṽk−V πk) = Ṽk−V πk − γPπkṼk+ γPπkV πk = Ṽk−V πk −T πkṼk+T πkV πk

= Ṽk−V πk −T πkṼk+V πk = Ṽk−T πkṼk .

For any distribution σ ∈ S(X ), we may write

||Ṽk−T πkṼk||σ = ||(I− γPπk)(Ṽk−V πk)||σ ≤ ||I− γPπk ||σ||Ṽk−V πk ||σ
≤
(
1+ γ||Pπk ||σ

)
||Ṽk−V πk ||σ

If σ is the stationary distribution of πk, that is, σ= ρπk , then ||Pπk ||σ = 1 and the claim follows. Note
that this theorem holds not only for !2-norm, but for any !p-norm, p≥ 1.

Proof [Theorem 8] Rewriting Lemma 12 in Antos et al. (2008) for V instead of Q, we obtain6

||V ∗ −V πK ||σ ≤
4γ

(1− γ)2

(√
Cσ,µ max

0≤k<K
||Ṽk−T πkṼk||µ+ γ

K−1
2 Rmax

)
. (20)

From Assumption 1, we know that || · ||µ≤
√
C|| · ||ρk for any 0 ≤ k < K and thus we may rewrite

Equation 20 as

||V ∗ −V πK ||σ ≤
4γ

(1− γ)2

(√
CCσ,µ max

0≤k<K
||Ṽk−T πkṼk||ρk + γ

K−1
2 Rmax

)
. (21)

Using the result of Lemma 9, Equation 21 may be rewritten as

||V ∗ −V πK ||σ ≤
4γ

(1− γ)2

(
(1+ γ)

√
CCσ,µ max

0≤k<K
||Ṽk−V πk ||ρk + γ

K−1
2 Rmax

)
. (22)

We can now use the result of Theorem 5 (which holds with probability δ/K) and replace ||Ṽk−
V πk ||ρk with its upper-bound. The next step would be to apply the maximum over k to this upper-
bound (the right hand side of Equation 17). There are four terms on the r.h.s. of Equation 17 that
depend on k and in following we find a bound for each of them.

1. ||V πk −ΠρkV πk ||ρk : This term can be upper-bounded by E0(F ). This quantity, E0(F ), mea-
sures the approximation power of the linear function space F .

2. ε1: This term only depends on the parameters  βk,bk,κk of the stationary β-mixing process
with stationary distribution ρk. Using Assumption 4, this term can be upper-bounded by E1,
which is basically ε1 written for the slower β-mixing process from Assumption 4.

3. ε2: This term depends on the following k-related terms.

6. The slight difference between Equation 20 and the bound in Lemma 12 of Antos et al. (2008) is due to a small error
in Equation 26 of Antos et al. (2008). It can be shown that the r.h.s. of Equation 26 in Antos et al. (2008) is not an
upper-bound for the r.h.s. of its previous equation. This can be easily fixed by redefining the coefficients αk while
we make sure that they remain positive and still sum to one. This modification causes two small changes in the final
bound: the constant 2 in front of the parenthesis becomes 4 and the power of the γ in front of Rmax changes from K/p
to (K−1)/p.
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• The term under the root-square in Equation 18: This term depends on the parameters
 βk,bk,κk of the stationary β-mixing process with stationary distribution ρk. Similar to
ε1, this term can be upper-bounded by rewriting it for the slower β-mixing process from
Assumption 4.

• α∗
k : The coefficient vector α∗

k is such that fα∗
k
=ΠρkV πk . This term can be upper-bounded

as follows:

||α∗
k ||

(a)
≤

|| fα∗ ||µ√
ωµ

(b)
≤

√
C
ωµ

|| fα∗ ||ρk =

√
C
ωµ

||ΠρkV
πk ||ρk

(c)
≤

√
C
ωµ

||V πk ||ρk

≤

√
C
ωµ

||V πk ||∞ =

√
C
ωµ

Vmax =

√
C
ωµ

Rmax
1− γ

.

(a) Similar to Equation 15, this is true for any function fα ∈ F .
(b) This is an immediate application of Assumption 1.
(c)We use the fact that the orthogonal projection Πρk is non-expansive for norm || · ||ρk .

4. νρk : This term depends on the following k-related terms.

• ωk: This is the smallest eigenvalue of the Gram matrix Gk defined according to the
distribution ρk. From Lemma 7, this term can be lower-bounded by ωµ.

• The second term on the r.h.s. of Equation 14: This term depends on the parameters
 βk,bk,κk of the stationary β-mixing process with stationary distribution ρk. Similar to
ε1 and ε2, this term can be upper-bounded by rewriting it for the slower β-mixing process
from Assumption 4.

By replacing the above lower and upper bounds in Equation 14, we obtain νµ which is a
lower-bound for any νρk .

The claim follows by replacing the bounds for the above four terms in Equation 22.

6.2 A Negative Result for LSPI

In the previous section we analyzed the performance of LSPI when at each iteration the samples are
obtained from a trajectory generated by following the policy under evaluation. In order to bound
the performance of LSPI in Theorem 8, we made a strong assumption on all possible stationary
distributions that can be obtained at the iterations of the algorithm. Assumption 1 states the existence
of a lower-bounding distribution µ for the stationary distribution ρπ of any policy π∈G(F̃ ). If such
a distribution does not exist (C is infinite), the LSPI performance can no longer be bounded. In
other words, this result states that in some MDPs, even if at each iteration the target function V πk is
perfectly approximated by V̂k under ρk-norm, that is, ||V πk −V̂k||ρk = 0, the LSPI performance could
be arbitrarily bad. In this section we show a very simple MDP in which this is actually the case.

Let consider a finite MDP with X = {x1,x2,x3}, A = {a,b}, and the reward function r and
transition model p as illustrated in Figure 3. As it can be noticed only two policies are available in
this MDP: πa which takes action a in state x1 and πb which takes action b in this state. It is easy
to verify that the stationary distribution ρπa assigns probabilities ε

1+ε , 1
1+ε , and 0 to x1, x2, and x3,
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1, 1

x1 x2

x3

a/b

b

a 0.5, 1

a/b

0, ε

0, 1 − ε

0, ε
0, 1 − ε

fα∗

X

V πa

x1 x2 x3

Figure 3: (left) The MDP used in the example of Section 6.2 and (right) the value function for
policy πa in this MDP.

while ρπb has probabilities ε
1+ε , 0, and 1

1+ε . Since ρπa and ρπb assign a probability 0 to two different
states, it is not possible to find a finite constant C such that a distribution µ is lower-bounding both
ρπa and ρπb , thus,C=∞ and according to Theorem 8 LSPI may have an arbitrary bad performance.

Let initialize LSPI with the suboptimal policy πa. The value function V πa is shown in Figure 3
(note that the specific values depend on the choice of ε and γ). Let F = { fα(x) = α1x+α2,α ∈R2}
be the space of lines in dimension 1. Let α∗ be the solution to the following minimization problem
α∗ = arg infα∈R ||V πa − fα||2ρπa (the projection of V πa onto space F ). Since ρπa assigns a probability
0 to state x3, the fα∗ in Figure 3 has a zero loss, that is, ||V πa − fα∗ ||ρπa = 0. Nonetheless, while the
greedy policy w.r.t. V πa is the optimal policy πb, the policy improvement step w.r.t. fα∗ returns the
policy πa. As a result, although at each iteration the function space F may accurately approximate
the value function of the current policy π w.r.t. its stationary distribution ρπ, LSPI never improves
its performance and returns πa instead of the optimal policy πb. By properly setting the rewards we
could make the performance of πa arbitrarily worse than πb.

7. Conclusions

In this paper we presented a finite-sample analysis of the least-squares policy iteration (LSPI) algo-
rithm (Lagoudakis and Parr, 2003). This paper substantially extends the analysis in Lazaric et al.
(2010) by reporting all the lemmas used to prove the performance bounds of LSTD in the case of β-
mixing and Markov chain processes and by analyzing how the performance of LSTD is propagated
through iterations in LSPI.

More in detail, we first studied a version of LSTD, called pathwise LSTD, for policy evalua-
tion. We considered a general setting where we do not make any assumption on the Markov chain.
We derived an empirical performance bound that indicates how close the LSTD solution is to the
value function at the states along a trajectory generated by following the policy and used by the
algorithm. The bound is expressed in terms of the best possible approximation of the value function
in the selected linear space (approximation error), and an estimation error which depends on the
number of samples and the smallest strictly-positive eigenvalue of the sample-based Gram matrix.
We then showed that when the Markov chain possesses a stationary distribution, one may deduce
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generalization performance bounds using the stationary distribution of the chain as the generaliza-
tion measure. In particular, we considered two cases, where the sample trajectory is generated by
stationary and non-stationary β-mixing Markov chains, and derived the corresponding bounds. Fi-
nally, we considered the whole policy iteration algorithm (LSPI) and showed that under suitable
conditions it is possible to bound the error cumulated through the iterations.

The techniques used for the analysis of LSTD have also been recently employed for the devel-
opment of the finite-sample analysis of a number of novel algorithms such as LSTD with random
projections (Ghavamzadeh et al., 2010), LassoTD (Ghavamzadeh et al., 2011), and Classification-
based Policy Iteration with a Critic (Gabillon et al., 2011).
Technical issues. From a technical point of view there are two main open issues.

1. Dependency on νn in the bound of Theorem 1. In Section 4 we introduced the Markov design
setting for regression in which the samples are obtained by following a Markov chain and
the noise is a zero-mean martingale. By comparing the bound in Lemma 3 with the bounds
for least-squares regression in deterministic design (see, e.g., Theorem 11.1 in Györfi et al.,
2002), the main difference is the inverse dependency on the eigenvalue νn of the empirical
Gram matrix. It is not clear whether this dependency is intrinsic in the process generating
the samples or whether it can be removed. Abbasi-Yadkori et al. (2011) recently developed
improved Azuma’s inequalities for self-normalizing process (see also, e.g., de la Peña et al.,
2007; de la Peña and Pang, 2009) which suggest that the bound can be improved by removing
the dependency from νn and, thus, also from the L∞-norm L of the features.

2. The logn dependency in the generalization bounds. Chaining techniques (Talagrand, 2005)
can be successfully applied to remove the logn dependency in Pollard’s inequalities for re-
gression in bounded spaces. An interesting question is whether similar techniques can be
applied to the refined analysis for squared losses and linear spaces (see, e.g., Lemma 10) used
in our theorems.

Extensions. Some extensions to the current work are possible.

1. LSTD(λ). A popular improvement to LSTD is the use of eligibility traces, thus obtaining
LSTD(λ). The extension of the results presented in this paper to this setting does not seem
to be straightforward since the regression problem solved in LSTD(λ) does not match the
Markov design setting introduced in Definition 2. Hence, it is an open question how a finite-
sample analysis of LSTD(λ) could be derived.

2. Off-policy LSTD. Yu and Bertsekas (2010) derived new bounds for projected linear equations
substituting the 1√

1−γ2
term in front of the approximation error with a much sharper term

depending on the spectral radius of some matrices defined by the problem. An open question
is whether these new bounds can be effectively reused in the finite-sample analysis derived in
this paper, thus obtaining much sharper bounds.

3. Joint analysis of BRM and LSTD. Scherrer (2010) recently proposed a unified view of Bell-
man residual minimization (BRM) (Schweitzer and Seidmann, 1985; Baird, 1995) and tempo-
ral difference methods through the notion of oblique projections. This suggests the possibility
that the finite-sample analysis of LSTD could be extended to BRM through this unified view
over the two methods.
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Appendix A.

In this appendix we report a series of lemmata which are used throughout the paper. In particular,
we derive concentration of measures inequalities for linear spaces and squared loss when samples
are generated from different stochastic processes. We start with the traditional setting of inde-
pendent and identically distributed samples in Section A.1, then move to samples generated from
mixing processes in Section A.2, and finally consider the more general case of samples obtained by
simulating a fast mixing Markov chain starting from an arbitrary distribution in Section A.3.

As a general rule, we use proposition to indicate results which are copied from other sources,
while lemma refers to completely or partially new results.

A.1 IID Samples

Although in the setting considered in the paper the samples are non-i.i.d., we first report functional
concentration inequalities for i.i.d. samples which will be later extended to stationary and non-
stationary β-mixing processes. We first recall the definition of expected and empirical !2-norms for
a function f : X → R

‖ f‖2
Xn1 =

1
n

n

∑
t=1

| f (Xt)|2 , ‖ f‖2 = E
[
| f (X1)|2

]
.

Lemma 10 Let F be a class of functions f : X → R bounded in absolute value by B. Let Xn1 =
{X1, . . . ,Xn} be a sequence of i.i.d. samples. For any ε> 0

P
[
∃ f ∈ F : ‖ f‖−2‖ f‖Xn1 > ε

]
≤ 3E

[

N2

(√
2

24
ε,F ,X2n

1

)]

exp
(
−

nε2

288B2

)
,

and

P
[
∃ f ∈ F : ‖ f‖Xn1 −2‖ f‖> ε

]
≤ 3E

[

N2

(√
2

24
ε,F ,X2n

1

)]

exp
(
−

nε2

288B2

)
,

where N2(ε,F ,Xn1 ) is the (L2,ε)-cover number of the function space F on the samples Xn1 (see
Györfi et al. 2002).

Proof The first statement is proved in Györfi et al. (2002) and the second one can be proved simi-
larly.
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Proposition 11 Let F be a class of linear functions f : X → R of dimension d and F̃ be the
class of functions obtained by truncating functions f ∈ F at a threshold B. Then for any sample
Xn1 = {X1, . . . ,Xn} and ε> 0

N2

(
ε, F̃ ,Xn1

)
≤ 3

(
3e(2B)2

ε2

)2(d+1)

.

Proof Using Theorem 9.4. in Györfi et al. (2002) and the fact that the pseudo-dimension of F̃ is
the same as F , we have

N2

(
ε, F̃ ,Xn1

)
≤ 3

(
2e(2B)2

ε2 log
3e(2B)2

ε2

)d+1

≤ 3
(

3e(2B)2

ε2

)2(d+1)

.

We now use Proposition 11 to invert the bound in Lemma 10 for truncated linear spaces.

Corollary 12 Let F be a class of linear functions f : X → R of dimension d, F̃ be the class of
functions obtained by truncating functions f ∈ F at a threshold B, and Xn1 = {X1, . . . ,Xn} be a
sequence of i.i.d. samples. By inverting the bound of Lemma 10, for any f̃ ∈ F̃ , we have

‖ f̃‖−2‖ f̃‖Xn1 ≤ ε(δ),

‖ f̃‖Xn1 −2‖ f̃‖ ≤ ε(δ),

with probability 1−δ, where

ε(δ) = 12B
√

2Λ(n,d,δ)
n

, (23)

and Λ(n,d,δ) = 2(d+1) logn+ log e
δ + log

(
9(12e)2(d+1)).

Proof In order to prove the corollary it is sufficient to verify that the following inequality holds for
the ε defined in Equation 23

3E

[

N2

(√
2

24
ε, F̃ ,X2n

1

)]

exp
(
−

nε2

288B2

)
≤ δ.

Using Proposition 11, we bound the first term as

E

[

N2

(√
2

24
ε, F̃ ,X2n

1

)]

≤ 3
(
C1
ε2

)2(d+1)
,

withC1 = 3456eB2. Next we notice thatΛ(n,d,δ)≥ 1 and thus ε≥
√

1/(nC2) withC2 =(288B2)−1.
Using these bounds in the original inequality and some algebra we obtain

3E

[

N2

(√
2

24
ε, F̃ ,X2n

1

)]

exp
(
−

nε2

288B2

)
≤ 9

(
C1
ε2

)2(d+1)
exp
(
−nC2ε2)

≤ 9(nC1C2)
2(d+1) exp

(
−C2n

Λ(n,d,δ)
nC2

)

= 9(nC1C2)
2(d+1) n−2(d+1) δ

e
1

9(C1C2)2(d+1)

=
δ
e
≤ δ.
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Non-functional versions of Corollary 12 can be simply obtained by removing the covering num-
ber from the statement of Lemma 10.

Corollary 13 Let f : X → R be a function bounded in absolute value by B and Xn1 = {X1, . . . ,Xn}
be a sequence of i.i.d. samples. Then

‖ f‖−2‖ f‖Xn1 ≤ ε(δ),

‖ f‖Xn1 −2‖ f‖ ≤ ε(δ),

with probability 1−δ, where

ε(δ) = 12B
√

2
n

log
3
δ
.

A.2 Stationary β-mixing Processes

We first introduce β-mixing stochastic processes and β-mixing coefficients.

Definition 14 Let {Xt}t≥1 be a stochastic process. Let X j
i = {Xi,Xi+1, . . . ,Xj} and σ(X j

i ) denote
the sigma-algebra generated by X j

i . The i-th β-mixing coefficient of the stochastic process is defined
by

βi = sup
t≥1

E

[

sup
B∈σ(X∞t+i)

|P(B|Xt1)−P(B)|

]

.

The process {Xt}t≥1 is said to be β-mixing if βi → 0 as i→ ∞. In particular, {Xt}t≥1 mixes at an
exponential rate with parameters  β,b,κ if βi ≤  βexp(−biκ). Finally, {Xt}t≥1 is strictly stationary if
Xt ∼ ν for any t > 0.

Let X1, . . . ,Xn be a sequence of samples drawn from a stationary β-mixing process with coef-
ficients {βi}. We first introduce the blocking technique of Yu (1994). Let us divide the sequence
of samples into blocks of size kn. For simplicity we assume n = 2mnkn with 2mn be the number of
blocks.7 For any 1 ≤ j ≤ mn we define the set of indexes in an odd and even block respectively as

Hj = {t : 2( j−1)kn+1 ≤ t ≤ (2 j−1)kn}, and
Ej = {t : (2 j−1)kn+1 ≤ t ≤ (2 j)kn}.

Let H = ∪mnj=1Hj and E = ∪mnj=1Ej be the set of all indexes in the odd and even blocks, respectively.
We use X(Hj) = {Xt : t ∈ Hj} and X(H) = {Xt : t ∈ H}. We now introduce a ghost sample X ′ (the
size of the ghost sample X ′ is equal to the number of samples in each block kn) in each of the odd
blocks such that the joint distribution of X ′(Hj) is the same as X(Hj) but independent from any
other block. In the following, we also use another ghost sample X ′′ independently generated from
the same distribution as X ′.

7. The extension to the general case is straightforward.
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Proposition 15 (Yu, 1994) Let X1, . . . ,Xn be a sequence of samples drawn from a stationary β-
mixing process with coefficients {βi}. Let Q, Q′ be the distributions of X(H) and X ′(H), respec-
tively. For any measurable function h : Xmnkn → R bounded by B

∣∣EQ [h(X(H))]−EQ′
[
h(X ′(H))

]∣∣≤ Bmnβkn .

Before moving to the extension of Propsition 10 to β mixing processes, we report this technical
lemma.

Lemma 16 Let F be a class of functions f : X →R bounded in absolute value by B and X1, . . . ,Xn
be a sequence of samples drawn from a stationary β-mixing process with coefficients {βi}. For any
ε> 0

P

[
∃ f ∈ F : ‖ f‖−2‖ f‖Xn1 > ε

]
≤ 2δ(

√
2ε)+2mnβkn , (24)

P

[
∃ f ∈ F : ‖ f‖Xn1 −2

√
2‖ f‖> ε

]
≤ 2δ(

√
2ε)+2mnβkn , (25)

where

δ(ε) = 3E

[

N2

(√
2

24
ε,F ,X ′(H)∪X ′′(H)

)]

exp
(
−
mnε2

288B2

)
.

Proof Similar to Meir (2000), we first introduce F as the class of block functions  f : X kn → R

defined as
 f
(
X(Hj)

)2
=

1
kn ∑t∈Hj

f (Xt)2.

It is interesting to notice that block functions have exactly the same norms as the functions in F . In
fact

‖  f‖2
X(H) =

1
mn

mn
∑
j=1

|  f (X(Hj))|2 =
1
mn

mn
∑
j=1

1
kn ∑t∈Hj

| f (Xt)|2 = ‖ f‖X(H), (26)

and
‖  f‖2 = E

[
|  f (X(H1))|2

]
=

1
kn ∑t∈H1

E
[
| f (Xt)|2

]
= E

[
| f (X1)|2

]
= ‖ f‖, (27)

where in Equation 27, we used the fact that the process is stationary. We now focus on Equation 24

P
[
∃ f ∈ F : ‖ f‖−2‖ f‖Xn1 > ε

]

(a)
≤ P

[
∃ f ∈ F : ‖ f‖−

(
‖ f‖X(H) +‖ f‖X(E)

)
> ε
]

(b)
= P

[
∃ f ∈ F :

1
2
(
‖ f‖−2‖ f‖X(H)

)
+

1
2
(
‖ f‖−2‖ f‖X(E)

)
> ε

]

(c)
≤ P

[
∃ f ∈ F : ‖ f‖−2‖ f‖X(H) > 2ε

]
+P

[
∃ f ∈ F : ‖ f‖−2‖ f‖X(E) > 2ε

]

(d)
= 2P

[
∃  f ∈ F : ‖  f‖−2‖  f‖X(H) > 2ε

]

(e)
≤ 2

(
P
[
∃  f ∈ F : ‖  f‖−2‖  f‖X ′(H) > 2ε

]
+mnβkn

)

(f)
≤ 2δ′(2ε)+2mnβkn .
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(a)We used the inequality
√
a+b≥ 1√

2(
√
a+

√
b) to split the norm ‖ f‖Xn1 ≥

1
2
(
‖ f‖X(H)+‖ f‖X(E)

)
.

(b) Algebra.
(c) Split the probability.
(d) (1) Since the process is stationary the distribution over the even blocks is the same as the distri-
bution over the odd blocks. (2) From Equations 26 and 27.
(e) Using Proposition 15 with h equals to the indicator function of the event inside the bracket, and
the fact that the indicator function is bounded by B= 1 and its expected value is equal to the proba-
bility of the event.
(f) Lemma 10 on space F where

δ′(ε) = 3E

[

N2

(√
2

24
ε,F ,{X ′(Hj),X ′′(Hj)}mnj=1

)]

exp
(
−
mnε2

288B2

)
,

where X ′′ is a ghost sample independently generated from the same distribution as X ′. Now we
relate the !2-covering number of F to the covering number of F . Using the definition of  f we have

||  f −  g||2X(H) =
1
mn

mn
∑
j=1

(
 f
(
X(Hj)

)
−  g
(
X(Hj)

))2

=
1

mnkn

mn
∑
j=1

[(
∑
t∈Hj

f (Xt)2
) 1

2 −
(
∑
t ′∈Hj

g(Xt ′)2
) 1

2

]2

.

Taking the square and using the Cauchy-Schwarz inequality, each element of the outer summation
may be written as

∑
t∈Hj

(
f (Xt)2 +g(Xt)2)−2

(
∑
t∈Hj

f (Xt)2
) 1

2
(
∑
t ′∈Hj

g(Xt ′)2
) 1

2

≤ ∑
t∈Hj

(
f (Xt)2 +g(Xt)2 −2 f (Xt)g(Xt)

)
= ∑

t∈Hj

(
f (Xt)−g(Xt)

)2
.

By taking the sum over all the odd blocks we obtain

||  f −  g||2X(H) ≤ || f −g||2X(H) ,

which indicates that N2
(
ε,F ,{X ′(Hj),X ′′(Hj)}mnj=1

)
≤ N2

(
ε,F ,X ′(H)∪X ′′(H)

)
. Therefore, we

have δ′(2ε)≤ δ(2ε)≤ δ(
√

2ε), which concludes the proof.
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With a similar approach, we can prove Equation 25

P

[
∃ f ∈ F : ‖ f‖Xn1 −2

√
2‖ f‖> ε

]

(a)
≤ P

[

∃ f ∈ F :
√

2
2
(
‖ f‖X(H) +‖ f‖X(E)

)
−2

√
2‖ f‖> ε

]

(b)
= P

[

∃ f ∈ F :

(√
2

2
‖ f‖X(H)−

√
2‖ f‖

)

+

(√
2

2
‖ f‖X(E)−

√
2‖ f‖

)

> ε

]

(c)
≤ P

[
∃ f ∈ F : ‖ f‖X(H)−2‖ f‖>

√
2ε
]
+P

[
∃ f ∈ F : ‖ f‖X(E)−2‖ f‖>

√
2ε
]

(d)
= 2P

[
∃  f ∈ F : ‖  f‖X(H)−2‖  f‖>

√
2ε
]

(e)
≤ 2

(
P

[
∃  f ∈ F : ‖  f‖X ′(H)−2‖  f‖>

√
2ε
]
+mnβkn

)

(f)
≤ 2δ′(

√
2ε)+2mnβkn ≤ 2δ(

√
2ε)+2mnβkn .

(a)We used the inequality
√
a+b≤ (

√
a+

√
b) to split the norm ‖ f‖Xn1 ≤

√
2

2
(
‖ f‖X(H) +‖ f‖X(E)

)
.

(b)-(f) use the same arguments as before.

Corollary 17 Let F be a class of linear functions f : X → R of dimension d, F̃ be the class of
functions obtained by truncating functions f ∈ F at a threshold B, and Xn1 = {X1, . . . ,Xn} be a
sequence of samples drawn from a stationary exponentially fast β-mixing process with coefficients
{βi}. By inverting the bound of Lemma 16, for any f̃ ∈ F̃ we have

‖ f̃‖−2‖ f̃‖Xn1 ≤ ε(δ),

‖ f̃‖Xn1 −2
√

2‖ f̃‖ ≤ ε(δ),

with probability 1−δ, where

ε(δ) = 12B

√
2Λ(n,d,δ)

n
max

{
Λ(n,d,δ)

b
,1
}1/κ

, (28)

and Λ(n,d,δ) = 2(d+1) logn+ log e
δ + log+

(
max{18(6e)2(d+1),  β}

)
.

Proof In order to prove the statement, we need to verify that ε in Equation 28 satisfies

δ′ = 6E
[
N2

(
1

12
ε, F̃ ,X ′(H)∪X ′′(H)

)]
exp
(
−
mnε2

144B2

)
+2mnβkn ≤ δ .

Using Proposition 11 the covering number can be bounded by

E

[
N2

(
1
12
ε, F̃ ,X ′(H)∪X ′′(H)

)]
≤ 3

(
1728eB2

ε2

)2(d+1)

.

3067



LAZARIC, GHAVAMZADEH AND MUNOS

By recalling the definition of the β-coefficients {βi} and kn ≥ 1 we have

2mnβkn ≤
n
kn

 βexp(−bkκn)≤ n  βexp(−bkκn) .

From the last two inequalities, mn = n/2kn, settingC1 = 1728eB2 and D= 2(d+1) we obtain

δ′ ≤ 18
(
C1
ε2

)D
exp
(
−

nε2

144B2
1

2kn

)
+n  βexp(−bkκn).

By equalizing the arguments of the two exponential we obtain the definition of kn as

kn =

⌈(
nC2ε2

b

) 1
κ+1
⌉

,

whereC2 = (576B2)−1, which implies

max

{(
nC2ε2

b

) 1
κ+1

,1

}

≤ kn ≤ max

{(
2nC2ε2

b

) 1
κ+1

,1

}

.

Thus we have the bound

1
2kn

≥
1
4

min

{(
b

nC2ε2

) 1
κ+1

,2

}

≥
1
4

min

{(
b

nC2ε2

) 1
κ+1

,1

}

.

Using the above inequalities, we may write δ′ as

δ′ ≤ 18
(
C1
ε2

)D
exp

(

−min
{

b
nC2ε2 ,1

} 1
κ+1

nC2ε2

)

+n  βexp

(

−bmax
{
nC2ε2

b
,1
} κ

κ+1
)

.

The objective now is to make the arguments of the two exponential equal. For the second argument
we have

bmax
{
nC2ε2

b
,1
} κ

κ+1

= bmax
{
nC2ε2

b
,1
}

min
{

b
nC2ε2 ,1

} 1
κ+1

≥ nC2ε
2 min

{
b

nC2ε2 ,1
} 1

κ+1
.

Thus

δ′ ≤

(

18
(
C1
ε2

)D
+n  β

)

exp

(

−min
{

b
nC2ε2 ,1

} 1
κ+1

nC2ε2

)

.

Now we plug in ε from Equation 28. Using the fact that Λ ≥ 1, we know that ε2 ≥ (nC2)−1, and
thus

δ′ ≤
(

18(nC1C2)
D+n  β

)
exp(−Λ) .

Using the definition of Λ, we obtain

δ′ ≤
(

18(nC1C2)
D+n  β

)
n−Dmax{18(C1C2)

D,  β}−1 δ
e
≤ (1+n1−D)

δ
e
≤ (1+1)

δ
e
≤ δ ,

3068



FINITE-SAMPLE ANALYSIS OF LEAST-SQUARES POLICY ITERATION

which concludes the proof.

In order to understand better the shape of the estimation error, we consider a simple β-mixing
process with parameters  β= b= κ= 1. Equation 28 reduces to

ε(δ) =

√
288B2Λ(n,d,δ)

n

2
,

with Λ(n,d,δ) = 2(d+1) logn+ log e
δ+ log

(
18(6e)2(d+1)). It is interesting to notice that the shape

of the bound in this case resembles the structure of the bound in Corollary 12 for i.i.d. samples.
Finally, we report the non-functional version of the previous corollary.

Corollary 18 Let F be a class of linear functions f : X → R of dimension d such that its features
ϕi : X → R are bounded in absolute value by L for any i = 1, . . . ,d and Xn1 = {X1, . . . ,Xn} be a
sequence of samples drawn from a stationary exponentially fast β-mixing process with coefficients
{βi}. For any f ∈ F we have

‖ f‖−2‖ f‖Xn1 ≤ ε(δ),

‖ f‖Xn1 −2
√

2‖ f‖ ≤ ε(δ),

with probability 1−δ, where

ε(δ) = 12||α||L

√
2Λ(n,d,δ)

n
max

{
Λ(n,d,δ)

b
,1
}1/κ

,

and Λ(n,d,δ) = 2(d+1) logn+ log e
δ + log+

(
max{18(6e)2(d+1),  β}

)
.

Proof Let G =
{
gα = fα

L||α||

}
so that

||gα||∞ =
1

L||α||
|| fα||∞ ≤

1
L||α||

||α||sup
i
||ϕi(x)||∞ ≤ 1.

We can thus apply Lemma 16 to the bounded space G with B = 1. By using a similar inversion as
in Corollary 17, we thus obtain that with probability 1−δ, for any function gα ∈ G

‖gα‖−2‖gα‖Xn1 ≤ ε(δ),

‖gα‖Xn1 −2
√

2‖gα‖ ≤ ε(δ),

with

ε(δ) = 12

√
2Λ(n,d,δ)

n
max

{
Λ(n,d,δ)

b
,1
}1/κ

.

Finally, we notice that ||gα||= 1
L||α|| || fα|| and ||gα||Xn1 = 1

L||α|| || fα||Xn1 and the statement follows.
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Corollary 19 Let f : X → R be a linear function, f̃ be its truncation at a threshold B, and Xn1 =
{X1, . . . ,Xn} be a sequence of samples drawn from a stationary exponentially fast β-mixing process
with coefficients {βi}. Then

‖ f̃‖−2‖ f̃‖Xn1 ≤ ε(δ),

‖ f̃‖Xn1 −2
√

2‖ f̃‖ ≤ ε(δ),

with probability 1−δ, where

ε(δ) = 12B

√
2Λ(n,δ)

n
max

{
Λ(n,δ)
b

,1
}1/κ

,

Λ(n,δ) = log e
δ + log

(
max{6,n  β}

)
.

Proof The proof follows the same steps as in Corollary 17. We have the following sequence of
inequalities

δ′ ≤ 6exp
(
−
nC2ε2

kn

)
+
n
kn

 βexp(−bkκn)≤ (6+n  β)exp(−Λ)

= (6+n  β)max{6,n  β}−1 δ
e
≤ (1+1)

δ
e
≤ δ ,

whereC2 = (576B2)−1.

A.3 Markov Chains

We first review the conditions for the convergence of Markov chains (Theorem 13.3.3. in Meyn and
Tweedie 1993).

Proposition 20 Let M be an ergodic and aperiodic Markov chain defined on X with stationary
distribution ρ. If P(A|x) is the transition kernel of M with A ⊆ X and x ∈ X , then for any initial
distribution λ

lim
i→∞

∣∣∣
∣∣∣
∫
X
λ(dx)Pi(·|x)−ρ(·)

∣∣∣
∣∣∣
TV

= 0,

where || · ||TV is the total variation norm.

Definition 21 LetM be an ergodic and aperiodic Markov chain with stationary distribution ρ. M
is mixing with an exponential rate with parameters  β,b,κ, if its β-mixing coefficients {βi} satisfy
βi ≤  βexp(−biκ). Then for any initial distribution λ

∣∣∣
∣∣∣
∫
X
λ(dx)Pi(·|x)−ρ(·)

∣∣∣
∣∣∣
TV

≤  βexp(−biκ).

Lemma 22 LetM be an ergodic and aperiodic Markov chain with a stationary distribution ρ. Let
X1, . . . ,Xn be a sequence of samples drawn from the stationary distribution of the Markov chain ρ
and X ′

1, . . . ,X ′
n be a sequence of samples such that X ′

1 ∼ ρ′ and X ′
1<t≤n are generated by simulating

M from X ′
1. Let η be an event defined on X n, then

∣∣P [η(X1, . . . ,Xn)]−P
[
η(X ′

1, . . . ,X ′
n)
]∣∣≤ ‖ρ′ −ρ‖TV
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Proof We prove one side of the inequality. LetQ be the conditional joint distribution of (X1<t≤n|X1 =
x) and Q′ be the conditional joint distribution of (X ′

1<t≤n|X ′
1 = x). We first notice that Q is exactly

the same as Q′. In fact, the first sequence (X1<t≤n) is generated by drawing X1 from the stationary
distribution ρ and then following the Markov chain. Similarly, the second sequence (X ′

1<t≤n) is
obtained following the Markov chain from X ′

1 ∼ ρ′. As a result, the conditional distributions of the
two sequences is exactly the same and just depend on the Markov chain. As a result, we obtain the
following sequence of inequalities

P

[
η(X1, . . . ,Xn)

]
= EX1,...,Xn [I{η(X1, . . . ,Xn)}]

= EX1∼ρ [EX2,...,Xn [I{η(X1,X2 . . . ,Xn)}|X1]]

= EX1∼ρ

[
EX ′

2,...,X ′
n

[
I
{
η(X1,X ′

2 . . . ,X ′
n)
}
|X1
]]

(a)
≤ EX1∼ρ′

[
EX ′

2,...,X ′
n

[
I
{
η(X1,X ′

2 . . . ,X ′
n)
}
|X1
]]

+‖ρ′ −ρ‖TV
(b)
= EX ′

1∼ρ′
[
EX ′

2,...,X ′
n

[
I
{
η(X ′

1,X ′
2 . . . ,X ′

n)
}
|X ′

1
]]

+‖ρ′ −ρ‖TV

= P

[
η(X ′

1, . . . ,X ′
n)
]
+‖ρ′ −ρ‖TV .

Note that I{·} is the indicator function.
(a) simply follows from

EX∼ρ [ f (X)]−EX∼ρ′ [ f (X)] =
∫
X
f (x)ρ(dx)−

∫
X
f (x)ρ′(dx)

≤ || f ||∞
∫
X

(
ρ(dx)−ρ′(dx)

)
≤ || f ||∞||ρ−ρ′||TV .

(b) From the fact that X1 = X ′
1 = x.

Lemma 23 Let F be a class of functions f : X → R bounded in absolute value by B, M be a an
ergodic and aperiodic Markov chain with a stationary distribution ρ. Let M be mixing with an
exponential rate with parameters  β,b,κ. Let λ be an initial distribution over X and X1, . . . ,Xn be a
sequence of samples such that X1 ∼ λ and X1<t≤n obtained by followingM from X1. For any ε> 0,

P

[
∃ f ∈ F : ‖ f‖−2‖ f‖Xn1 > ε

]
≤ ‖λ−ρ‖TV +2δ(

√
2ε)+2mnβkn ,

and
P

[
∃ f ∈ F : ‖ f‖Xn1 −2

√
2‖ f‖> ε

]
≤ ‖λ−ρ‖TV +2δ(

√
2ε)+2mnβkn ,

where

δ(ε) = 3E

[

N2

(√
2

24
ε,F ,X(H)∪X ′(H)

)]

exp
(
−
mnε2

288B2

)
.

Proof The proof is an immediate consequence of Lemma 16 and Lemma 22 by defining η(X1, . . . ,Xn)
as

η(X1, . . . ,Xn) = {∃ f ∈ F : ‖ f‖−2‖ f‖Xn1 > ε},
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and
η(X1, . . . ,Xn) = {∃ f ∈ F : ‖ f‖Xn1 −2

√
2‖ f‖> ε},

respectively.

Finally, we consider a special case in which out of the n total number of samples, ñ (1 ≤ ñ< n)
are used to “burn” the chain and n− ñ are actually used as training samples.

Lemma 24 Let F be a class of linear functions f : X → R of dimension d and F̃ be the class
of functions obtained by truncating functions f ∈ F at a threshold B. Let M be an ergodic and
aperiodic Markov chain with a stationary distribution ρ. LetM be mixing with an exponential rate
with parameters  β,b,κ. Let µ be the initial distribution and X1, . . . ,Xn be a sequence of samples
such that X1 ∼ µ and X1<t≤n obtained by following M from X1. If the first ñ (1 ≤ ñ < n) samples
are used to burn the chain and n− ñ are actually used as training samples, by inverting Lemma 23,
for any f̃ ∈ F̃ , we obtain

‖ f̃‖−2‖ f̃‖Xn1 ≤ ε(δ),

‖ f̃‖Xn1 −2
√

2‖ f̃‖ ≤ ε(δ),

with probability 1−δ, where

ε(δ) = 12B

√
2Λ(n− ñ,d,δ)

(n− ñ)
max

{
Λ(n− ñ,d,δ)

b
,1
}1/κ

,

and Λ(n,d,δ) = 2(d+1) logn+ log e
δ + log+

(
max{18(6e)2(d+1),  β}

)
, and ñ=

(
1
b log 2e  βn

δ

)1/κ
.

Proof After ñ steps, the first sample used in the training set (Xñ+1) is drawn from the distribution
λ= µPñ. Using Proposition 20 and Definition 21 we have

||λ−ρ||TV ≤  βexp(−bñκ). (29)

We first substitute the total variation in Lemma 23 with the bound in Equation 29, and then verify
that ε in Equation 24 satisfies the following inequality.

δ′ = ‖λ−ρ‖TV +2δ(
√

2ε)+2mn−ñβkn−ñ

≤  βexp(−bñκ)+18
(
C1
ε2

)D
exp
(
−
(n− ñ)C2ε2

kn−ñ

)
+(n− ñ)  βexp(−bkκn−ñ)

≤
( 1

2n
+1+(n− ñ)1−D)δ

e
≤ (

1
2
+1+1)

δ
e
≤ δ,

where C1 = 1728eB2 and C2 = (288B2)−1. The above inequality can be verified by following the
same steps as in Corollary 17 and by optimizing the bound for ñ.
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A. M. Farahmand, R. Munos, and Cs. Szepesvári. Error propagation for approximate policy and
value iteration. In Advances in Neural Information Processing Systems, 2010.

V. Gabillon, A. Lazaric, M. Ghavamzadeh, and B. Scherrer. Classification-based policy iteration
with a critic. In Proceedings of the Twenty-Eighth International Conference on Machine Learn-
ing, pages 1049–1056, 2011.

M. Ghavamzadeh, A. Lazaric, O. Maillard, and R. Munos. Lstd with random projections. In
Advances in Neural Information Processing Systems, pages 721–729, 2010.

M. Ghavamzadeh, A. Lazaric, R. Munos, and M. Hoffman. Finite-sample analysis of lasso-td. In
Proceedings of the 28th International Conference on Machine Learning, pages 1177–1184, 2011.
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Abstract
We consider the problem of parsing human poses and recognizing their actions in static images
with part-based models. Most previous work in part-based models only considers rigid parts (e.g.,
torso, head, half limbs) guided by human anatomy. We argue that this representation of parts is not
necessarily appropriate. In this paper, we introduce hierarchical poselets—a new representation for
modeling the pose configuration of human bodies. Hierarchical poselets can be rigid parts, but they
can also be parts that cover large portions of human bodies (e.g., torso + left arm). In the extreme
case, they can be the whole bodies. The hierarchical poselets are organized in a hierarchical way
via a structured model. Human parsing can be achieved by inferring the optimal labeling of this
hierarchical model. The pose information captured by this hierarchical model can also be used as a
intermediate representation for other high-level tasks. We demonstrate it in action recognition from
static images.
Keywords: human parsing, action recognition, part-based models, hierarchical poselets, max-
margin structured learning

1. Introduction

Modeling human bodies (or articulated objects in general) in images is a long-lasting problem in
computer vision. Compared with rigid objects (e.g., faces and cars) which can be reasonably mod-
eled using several prototypical templates, human bodies are much more difficult to model due to the
wide variety of possible pose configurations.

A promising solution for dealing with the pose variations is to use part-based models. Part-based
representations, such as cardboard people (Ju et al., 1996) or pictorial structure (Felzenszwalb and
Huttenlocher, 2005), provide an elegant framework for modeling articulated objects, such as human
bodies. A part-based model represents the human body as a constellation of a set of rigid parts (e.g.,
torso, head, half limbs) constrained in some fashion. The typical constraints used are tree-structured
kinematic constraints between adjacent body parts, for example, torso-upper half-limb connection,
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or upper-lower half-limb connection. Part-based models consist of two important components: (1)
part appearances specifying what each body part should look like in the image; (2) configuration
priors specifying how parts should be arranged relative to each other. Part-based models have been
used extensively in various computer vision applications involving humans, such as human parsing
(Felzenszwalb and Huttenlocher, 2005; Ramanan, 2006), kinematic tracking (Ramanan et al., 2005),
action recognition (Yang et al., 2010) and human-object interaction (Yao and Fei-Fei, 2010).

Considerable progress has been made to improve part-based models. For example, there has
been a line of work on using better appearance models in part-based models. A representative exam-
ple is the work by Ramanan (2006), who learns color histograms of parts from an initial edge-based
model. Ferrari et al. (2008) and Eichner and Ferrari (2009) further improve the part appearance
models by reducing the search space using various tricks, for example, the relative locations of part
locations with respect to a person detection and the relationship between different part appearances
(e.g., upper-arm and torso tend to have the same color), Andriluka et al. (2009) build better edge-
based appearance models using the HOG descriptors (Dalal and Triggs, 2005). Sapp et al. (2010b)
develop efficient inference algorithm to allow the use of more expensive features. There is also
work (Johnson and Everingham, 2009; Mori et al., 2004; Mori, 2005; Srinivasan and Shi, 2007)
on using segmentation as a pre-processing step to provide better spatial support for computing part
appearances.

Another line of work is on improving configuration priors in part-based models. Most of them
focus on developing representations and fast inference algorithms that by-pass the limitations of
kinematic tree-structured spatial priors in standard pictorial structure models. Examples include
common-factor models (Lan and Huttenlocher, 2005), loopy graphs (Jiang and Martin, 2008; Ren
et al., 2005; Tian and Sclaroff, 2010; Tran and Forsyth, 2010), mixtures of trees (Wang and Mori,
2008). There is also work on building spatial priors that adapt to testing examples (Sapp et al.,
2010a).

Most of the previous work on part-based models use rigid parts that are anatomically meaning-
ful, for example, torso, head, half limbs. Those rigid parts are usually represented as rectangles
(e.g., Andriluka et al. 2009; Felzenszwalb and Huttenlocher 2005; Ramanan 2006; Ren et al. 2005;
Sigal and Black 2006; Wang and Mori 2008) or parallel lines (e.g., Ren et al. 2005). However, as
pointed out by some recent work (Bourdev and Malik, 2009; Bourdev et al., 2010), rigid parts are
not necessarily the best representation since rectangles and parallel lines are inherently difficult to
detect in natural images.

In this paper, we introduce a presentation of parts inspired by the early work of Marr (1982).
The work in Marr (1982) recursively represents objects as generalized cylinders in a coarse-to-fine
hierarchical fashion. In this paper, we extend Marr’s idea for two problems in the general area of
“looking at people”. The first problem is human parsing, also known as human pose estimation. The
goal is to find the location of each body part (torso, head, limbs) of a person in a static image. We
use a part-based approach for human parsing. The novelty of our work is that our notion of “parts”
can range from basic rigid parts (e.g., torso, head, half-limb), to large pieces of bodies covering
more than one rigid part (e.g., torso + left arm). In the extreme case, we have “parts” corresponding
to the whole body. We propose a new representation called “hierarchical poselets” to capture this
hierarchy of parts. We infer the human pose using this hierarchical representation.

The hierarchical poselet also provides rich information about body poses that can be used in
other applications. To demonstrate this, we apply it to recognize human action in static images.
In this application, we use hierarchical poselets to capture various pose information of the human
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body, this information is further used as some intermediate representation to infer the action of the
person.

A preliminary version of this work appeared in Wang et al. (2011). We organize the rest of the
paper as follows. Section 2 reviews previous work in human parsing and action recognition. Section
3 introduces hierarchical poselet, a new representation for modeling human body configurations.
Section 4 describes how to use hierarchical poselets for human parsing. Section 5 develops variants
of hierarchical poselets for recognizing human action in static images. We present experimental
results on human parsing and action recognition in Section 6 and conclude in Section 7.

2. Previous Work

Finding and understanding people from images is a very active area in computer vision. In this
section, we briefly review previous work in human parsing and action recognition that is most
related to our work.

Human parsing: Early work related to finding people from images is in the setting of detecting
and tracking people with kinematic models in both 2D and 3D. Forsyth et al. (2006) provide an
extensive survey of this line of work.

Recent work has examined the problem in static images. Some of these approaches are exemplar-
based. For example, Toyama and Blake (2001) track people using 2D exemplars. Mori and Malik
(2002) and Sullivan and Carlsson (2002) estimate human poses by matching pre-stored 2D tem-
plates with marked ground-truth 2D joint locations. Shakhnarovich et al. (2003) use local sensitive
hashing to allow efficient matching when the number of exemplars is large.

Part-based models are becoming increasingly popular in human parsing. Early work includes
the cardboard people (Ju et al., 1996) and the pictorial structure (Felzenszwalb and Huttenlocher,
2005). Tree-structured models are commonly used due to its efficiency. But there are also methods
that try to alleviate the limitation of tree-structured models, include common-factor models (Lan
and Huttenlocher, 2005), loopy graphs (Jiang and Martin, 2008; Ren et al., 2005; Tian and Sclaroff,
2010; Tran and Forsyth, 2010), mixtures of trees (Wang and Mori, 2008).

Many part-based models use discriminative learning to train the model parameters. Examples
include the conditional random fields (Ramanan and Sminchisescu, 2006; Ramanan, 2006), max-
margin learning (Kumar et al., 2009; Wang et al., 2011; Yang and Ramanan, 2011) and boosting
(Andriluka et al., 2009; Sapp et al., 2010b; Singh et al., 2010). Previous approaches have also ex-
plored various features, including image segments (superpixels) (Johnson and Everingham, 2009;
Mori et al., 2004; Mori, 2005; Sapp et al., 2010a,b; Srinivasan and Shi, 2007), color features (Ra-
manan, 2006; Ferrari et al., 2008), gradient features (Andriluka et al., 2009; Johnson and Evering-
ham, 2010; Wang et al., 2011; Yang and Ramanan, 2011).

Human action recognition: Most of the previous work on human action recognition focuses on
videos. Some work (Efros et al., 2003) uses global template for action recognition. A lot of recent
work (Dollár et al., 2005; Laptev et al., 2008; Niebles et al., 2006) uses bag-of-words models. There
is also work (Ke et al., 2007; Niebles and Fei-Fei, 2007) using part-based models.

Compared with videos, human action recognition from static images is a relatively less-studied
area. Wang et al. (2006) provide one of the earliest examples of action recognition in static images.
Recently, template models (Ikizler-Cinbis et al., 2009), bag-of-words models (Delaitre et al., 2010),
part-based models (Delaitre et al., 2010; Yang et al., 2010) have all been proposed for static-image
action recognition. There is also a line of work on using contexts for action recognition in static
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images, including human-object context (Desai et al., 2010; Gupta et al., 2009; Yao and Fei-Fei,
2010) and group context (Lan et al., 2010; Maji et al., 2011).

3. Hierarchical Poselets

Our pose representation is based on the concept of “poselet” introduced in Bourdev and Malik
(2009). In a nutshell, poselets refer to pieces of human poses that are tightly clustered in both
appearance and configuration spaces. Poselets have been shown to be effective at person detection
(Bourdev and Malik, 2009; Bourdev et al., 2010).

In this paper, we propose a new representation called hierarchical poselets. Hierarchical pose-
lets extend the original poselets in several important directions to make them more appropriate for
human parsing. We start by highlighting the important properties of our representation.

Beyond rigid “parts”: Most of the previous work in part-based human modeling are based on
the notion that the human body can be modeled as a set of rigid parts connected in some way. Almost
all of them use a natural definition of parts (e.g., torso, head, upper/lower limbs) corresponding to
body segments, and model those parts as rectangles, parallel lines, or other primitive shapes.

As pointed out by Bourdev and Malik (2009), this natural definition of “parts” fails to acknowl-
edge the fact that rigid parts are not necessarily the most salient features for visual recognition. For
example, rectangles and parallel lines can be found as limbs, but they can also be easily confused
with windows, buildings, and other objects in the background. So it is inherently difficult to build
reliable detectors for those parts. On the other hand, certain visual patterns covering large portions
of human bodies, for example, “a torso with the left arm raising up” or “legs in lateral pose”, are
much more visually distinctive and easier to identify. This phenomenon was observed even prior to
the work of poselet and was exploited to detect stylized human poses and build appearance models
for kinematic tracking (Ramanan et al., 2005).

Multiscale hierarchy of “parts”: Another important property of our representation is that we
define “parts” at different levels of hierarchy to cover pieces of human poses at various granularity,
ranging from the configuration of the whole body, to small rigid parts. In particular, we define 20
parts to represent the human pose and organize them in a hierarchy shown in Figure 1. To avoid
terminological confusion, we will use “part” to denote one of the 20 parts in Figure 1 and use
“primitive part” to denote rigid body parts (i.e., torso, head, half limbs) from now on.

In this paper, we choose the 20 parts and the hierarchical structure in Figure 1 manually. Of
course, it is possible to define parts corresponding to other combinations of body segments, for
example, left part of the whole body. It may also be possible to learn the connectivity of parts au-
tomatically from data, for example, using structure learning methods (Koller and Friedman, 2009).
We would like to leave these issues as future work.

We use a procedure similar to Yang et al. (2010) to select poselets for each part. First, we cluster
the joints on each part into several clusters based on their relative x and y coordinates with respect
to some reference joint of that part. For example, for the part “torso”, we choose the middle-top
joint as the reference and compute the relative coordinates of all the other joints on the torso with
respect to this reference joint. The concatenation of all those coordinates will be the vector used for
clustering. We run K-means clustering on the vectors collected from all training images and remove
clusters that are too small. Similarly, we obtain the clusters for all the other parts. In the end, we
obtain 5 to 20 clusters for each part. Based on the clustering, we crop the corresponding patches
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Figure 1: An illustration of the hierarchical pose representation. The black edges indicate the con-
nectivity among different parts.

from the images and form a set of poselets for that part. Figure 2 shows examples of two different
poselets for the part “legs”.

Our focus is the new representation, so we use standard HOG descriptors (Dalal and Triggs,
2005) to keep the feature engineering to the minimum. For each poselet, we construct HOG fea-
tures from patches in the corresponding cluster and from random negative patches. Inspired by the
success of multiscale HOG features (Felzenszwalb et al., 2010), we use different cell sizes when
computing HOG features for different parts. For example, we use cells of 12×12 pixel regions for
poselets of the whole body, and cells of 2× 2 for poselets of the upper/lower arm. This is moti-
vated by the fact that large body parts (e.g., whole body) are typically well-represented by coarse
shape information, while small body parts (e.g., half limb) are better represented by more detailed
information. We then train a linear SVM classifier for detecting the presence of each poselet. The
learned SVM weights can be thought as a template for the poselet. Examples of several HOG tem-
plates for the “legs” poselets are shown as the last columns of Figure 2. Examples of poselets and
their corresponding HOG templates for other body parts are shown in Figure 3.

A poselet of a primitive part contains two endpoints. For example, for a poselet of upper-left leg,
one endpoint corresponds to the joint between torso and upper-left leg, the other one corresponds
to the joint between upper/lower left leg. We record the mean location (with respect to the center
of the poselet image patch) of each endpoint. This information will be used in human parsing when
we need to infer the endpoints of a primitive part for a test image.

4. Human Parsing

In this section, we describe how to use hierarchical poselets in human parsing. We first develop an
undirected graphical model to represent the configuration of the human pose (Section 4.1). We then
develop the inference algorithm for finding the best pose configuration in the model (Section 4.2)
and the algorithm for learning model parameters (Section 4.3) from training data.

4.1 Model Formulation

We denote the complete configuration of a human pose as L= {li}Ki=1, where K is the total number
of parts (i.e., K = 20 in our case). The configuration of each part li is parametrized by li = (xi,yi,zi).
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Figure 2: Examples of two poselets for the part “legs”. Each row corresponds to a poselet. We
show several patches from the poselet cluster. The last column shows the HOG template
of the poselet.

large partswhole body rigid parts

Figure 3: Visualization of some poselets learned from different body parts on the UIUC people data
set, including whole body, large parts (top to bottom: torso+left arm, legs, torso+head,
left arm), and rigid parts (top to bottom: upper/lower left arm, torso, upper/lower left leg,
head). For each poselet, we show two image patches from the corresponding cluster and
the learned SVM HOG template.

3080



DISCRIMINATIVE HIERARCHICAL PART-BASED MODELS

Here (xi,yi) defines the image location, and zi is the index of the corresponding poselet for this
part, that is, zi ∈ {1,2, ...,Pi}, where Pi is the number of poselets for the i-th part. In this paper, we
assume the scale of the person is fixed and do not search over multiple scales. It is straightforward
to augment li with other information, for example, scale and foreshortening.

The complete pose L can be represented by a graph G = {V ,E}, where a vertex i ∈ V denotes
a part and an edge (i, j) ∈ E captures the constraint between parts i and j. The structure of G is
shown in Figure 1. We define the score of labeling an image I with the pose L as:

F(L, I) = ∑
i∈V

φ(li; I)+ ∑
(i, j)∈E

ψ(li, l j). (1)

The details of the potential functions in Equation 1 are as follows.
Spatial prior ψ(li, l j): This potential function captures the compatibility of configurations of

part i and part j. It is parametrized as:

ψ(li, l j) = α$
i; j;zi;z jbin(xi− x j,yi− y j)

=
Pi

∑
a=1

P j

∑
b=1

1a(zi)1b(z j)α$
i; j;a;bbin(xi− x j,yi− y j).

Similar to Ramanan (2006), the function bin(·) is a vectorized count of spatial histogram bins. We
use 1a(·) to denote the function that takes 1 if its argument equals a, and 0 otherwise. Here αi; j;zi;z j
is a model parameter that favors certain relative spatial bins when poselets zi and z j are chosen for
parts i and j, respectively. Overall, this potential function models the (relative) spatial arrangement
and poselet assignment of a pair (i, j) of parts.

Local appearance φ(li; I): This potential function captures the compatibility of placing the pose-
let zi at the location (xi,yi) of an image I. It is parametrized as:

φ(li; I) = β$i;zi f (I(li)) =
Pi

∑
a=1

β$i;a f (I(li)) ·1a(zi),

where βi;zi is a vector of model parameters corresponding to the poselet zi and f (I(li)) is a feature
vector corresponding to the image patch defined by li. We define f (I(li)) as a length Pi+ 1 vector
as:

f (I(li)) = [ f1(I(li)), f2(I(li)), ..., fPi(I(li)),1].

Each element fr(I(li)) is the score of placing poselet zr at image location (xi,yi). The constant 1
appended at the end of vector allows us to learn the model with a bias term. In other words, the
score of placing the poselet zi at image location (xi,yi) is a linear combination (with bias term) of the
responses all the poselet templates at (xi,yi) for part i. We have found that this feature vector works
better than the one used in Yang et al. (2010), which defines f (I(li)) as a scalar of a single poselet
template response. This is because the poselet templates learned for a particular part are usually not
independent of each other. So it helps to combine their responses as the local appearance model.

We summarize and highlight the important properties of our model and contextualize our re-
search by comparing with related work.

Discriminative “parts”: Our model is based on a new concept of “parts” which goes beyond the
traditional rigid parts. Rigid parts are inherently difficult to detect. We instead consider parts cov-
ering a wide range of portions of human bodies. We use poselets to capture distinctive appearance
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patterns of various parts. These poselets have better discriminative powers than traditional rigid part
detectors. For example, look at the examples in Figure 2 and Figure 3, the poselets capture various
characteristic patterns for large parts, such as the “A”-shape for the legs in the first row of Figure 2.

Coarse-to-fine granularity: Different parts in our model are represented by features at varying
levels of details (i.e., cell sizes in HOG descriptors). Conceptually, this multi-level granularity can
be seen as providing an efficient coarse-to-fine search strategy. However, it is very different from
the coarse-to-fine cascade pruning in Sapp et al. (2010b). The method in Sapp et al. (2010b) prunes
the search space of small parts (e.g., right lower arm) at the coarse level using simple features and
apply more sophisticated features in the pruned search space. However, we would like to argue that
at the coarse level, one should not even consider small parts, since they are inherently difficult to
detect or prune at this level. Instead, we should focus on large body parts since they are easy to
find at the coarse level. The configurations of large pieces of human bodies will guide the search
of smaller parts. For example, an upright torso with arms raising up (coarse-level information) is a
very good indicator of where the arms (fine-level details) might be.

Structured hierarchical model: A final important property of our model is that we combine
information across different parts in a structured hierarchical way. The original work on poselets
(Bourdev and Malik, 2009; Bourdev et al., 2010) uses a simple Hough voting scheme for person
detection, that is, each poselet votes for the center of the person, and the votes are combined to-
gether. This Hough voting might be appropriate for person detection, but it is not enough for human
parsing which involves highly complex and structured outputs. Instead, we develop a structured
model that organize information about different parts in a hierarchical fashion. Another work that
uses hierarchical models for human parsing is the AND-OR graph in Zhu et al. (2008). But there are
two important differences. First, the appearance models used in Zhu et al. (2008) are only defined
on sub-parts of body segments. Their hierarchical model is only used to put all the small pieces to-
gether. As mentioned earlier, appearance models based on body segments are inherently unreliable.
In contrast, we use appearance models associated with parts of varying sizes. Second, the OR-nodes
in Zhu et al. (2008) are conceptually similar to poselets in our case. But the OR-nodes in Zhu et al.
(2008) are defined manually, while our poselets are learned.

Our work on human parsing can be seen as bridging the gap between two popular schools
of approaches for human parsing: part-based methods, and exemplar-based methods. Part-based
methods, as explained above, model the human body as a collection of rigid parts. They use local
part appearances to search for those parts in an image, and use configuration priors to put these
pieces together in some plausible way. But since the configuration priors in these methods are
typically defined as pairwise constraints between parts, these methods usually lack any notion that
captures what a person should look like as a whole. In contrast, exemplar-based methods (Mori
and Malik, 2002; Shakhnarovich et al., 2003; Sullivan and Carlsson, 2002) search for images with
similar whole body configurations, and transfer the poses of those well-matched training images
to a new image. The limitation of exemplar-based approaches is that they require good matching
of the entire body. They cannot handle test images of which the legs are similar to some training
images, while the arms are similar to other training images. Our work combines the benefits of both
schools. On one hand, we capture the large-scale information of human pose via large parts. On the
other hand, we have the flexibility to compose new poses from different parts.
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4.2 Inference

Given an image I, the inference problem is to find the optimal pose labeling L∗ that maximize the
score F(L, I), that is, L∗ = argmaxL F(L, I). We use the max-product version of belief propagation
to solve this problem. We pick the vertex corresponding to part “whole body” as the root and pass
messages upwards towards this root. The message from part i to its parent j is computed as:

mi(l j) =max
li

(u(l j)+ψ(li, l j)), (2)

u(l j) = φ(l j)+ ∑
k∈kids j

mk(l j).

Afterwards, we pass messages downward from the root to other vertices in a similar fashion. This
message passing scheme is repeated several times until it converges. If we temporarily ignore the
poselet indices zi and z j and think of li = (xi,yi), we can represent the messages as 2D images and
pass messages using techniques similar to those in Ramanan (2006). The image u(l j) is obtained
by summing together response images from its child parts mk(l j) and its local response image φ(l j).
φ(l j) can be computed in linear time by convolving the HOG feature map with the template of z j.
The maximization in Equation 2 can also be calculated in time linear to the size of u(l j). In practice,
we compute messages on each fixed (zi,z j) and enumerate all the possible assignments of (zi,z j)
to obtain the final message. Note that since the graph structure is not a tree, this message passing
scheme does not guarantee to find the globally optimal solution. But empirically, we have found
this approximate inference scheme to be sufficient for our application.

The inference gives us the image locations and poselet indices of all the 20 parts (both primitive
and non-primitive). To obtain the final parsing result, we need to compute the locations of the two
endpoints for each primitive part. These can be obtained from the mean endpoint locations recorded
for each primitive part poselet (see Sec. 3).

Figure 4 shows a graphical illustration of applying our model on a test image. For each part
in the hierarchy, we show two sample patches and the SVM HOG template corresponding to the
poselet chosen for that part.

4.3 Learning

In order to describe the learning algorithm, we first write Equation 1 as a linear function of a single
parameter vector w which is a concatenation of all the model parameters, that is:

F(L, I) = w$Φ(I,L), where
w= [αi; j;a;b;βi;a], ∀i, j,a,b,
Φ(I,L) = [1a(zi)1b(z j)bin(xi− x j,yi− y j); f (I(li))1a(zi)], ∀i, j,a,b.

The inference scheme in Section 4.2 solves L∗ = argmaxLw$Φ(I,L). Given a set of training
images in the form of {In,Ln}Nn=1, we learn the model parameters w using a form of structural SVM
(Tsochantaridis et al., 2005) as follows:

min
w,ξ

1
2
||w||2+C∑

n
ξn, s.t. ∀n, ∀L : (3)

w$Φ(In,Ln)−w$Φ(In,L)≥ Δ(L,Ln)−ξn. (4)

3083



WANG, TRAN, LIAO AND FORSYTH

Figure 4: A graphical illustration of applying our model on a test image. For each part (please refer
to Figure 1), we show the inferred poselet by visualizing two sample patches from the
corresponding poselet cluster and the SVM HOG template.

Consider a training image In, the constraint in Equation 4 enforces the score of the true label Ln to
be larger than the score of any other hypothesis label L by some margin. The loss function Δ(L,Ln)
measures how incorrect L is compared with Ln. Similar to regular SVMs, ξn are slack variables
used to handle soft margins. This formulation is often called margin-rescaling in the SVM-struct
literature (Tsochantaridis et al., 2005).

We use a loss function that decomposes into a sum of local losses defined on each part Δ(L,Ln)=
∑K
i=1Δi(Li,Lni ). If the i-th part is a primitive part, we define the local loss Δi(Li,Lni ) as:

Δi(Li,Lni ) = λ ·1(zi )= zni )+d((xi,yi),(xni ,y
n
i )), (5)

where 1(·) is an indicator function that takes 1 if its argument is true, and 0 otherwise. The intuition
of Equation 5 is as follows. If the hypothesized poselet zi is the same as the ground-truth poselet
zni for the i-th part, the first term of Equation 5 will be zero. Otherwise it will incur a loss λ (we
choose λ= 10 in our experiments). The second term in Equation 5, d((xi,yi),(xni ,yni )), measures the
distance (we use l1 distance) between two image locations (xi,yi) and (xni ,yni ). If the hypothesized
image location (xi,yi) is the same as the ground-truth image location (xni ,yni ) for the i-th part, no loss
is added. Otherwise a loss proportional to the l1 distance of these two locations will be incurred.

If the i-th part is not a primitive part, we simply set Δ(Li,Lni ) to be zero. This choice is based on
the following observation. In our framework, non-primitive parts only serve as some intermediate
representations that help us to search for and disambiguate small primitive parts. The final human
parsing results are still obtained from configurations li of primitive parts. Even if a particular hy-
pothesized L gets one of its non-primitive part labeling wrong, it should not be penalized as long as
the labelings of primitive parts are correct.

The optimization problem in Equations (3,4) is convex and can be solved using the cutting plane
method implemented in the SVM-struct package (Joachims et al., 2008). However we opt to use a
simpler stochastic subgradient descent method to allow greater flexibility in terms of implementa-
tion.
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dancing playing golf running sitting walking

athletics badminton baseball gymnastics parkour soccer tennis volleyball

Figure 5: Human actions in static images. We show some sample images and their annotations on
the two data sets used in our experiments (see Section 6). Each image is annotated with
the action category and joints on the human body. It is clear from these examples that
static images convey a lot of information about human actions.

First, it is easy to show that Equations (3,4) can be equivalently written as:

min
w

1
2
||w||2+C∑

n
R n(L),

where R n(L) =max
L

(

Δ(L,Ln)+w$Φ(In,L)−w$Φ(In,Ln)
)

.

In order to do gradient descent, we need to calculate the subgradient ∂wR n(L) at a particular w.
Let us define:

L! = argmax
L

(

Δ(L,Ln)+w$Φ(In,L)
)

. (6)

Equation 6 is called loss-augmented inference (Joachims et al., 2008). It can be shown that the
subgradient ∂wR n(L) can be computed as ∂wR (L) =Φ(In,L!)−Φ(In,Ln). Since the loss function
Δ(L,Ln) can be decomposed into a sum over local losses on each individual part, the loss-augmented
inference in Equation 6 can be solved in a similar way to the inference problem in Section 4.2. The
only difference is that the local appearance model φ(li; I) needs to be augmented with the local loss
function Δ(Li,Lni ). Interested readers are referred to Joachims et al. (2008) for more details.

5. Action Recognition

The hierarchical poselet is a representation general enough to be used in many applications. In this
section, we demonstrate it in human action recognition from static images.

Look at the images depicted in Figure 5. We can easily perceive the actions of people in those
images, even though only static images are given. So far most work in human action recognition
has been focusing on recognition from videos. While videos certainly provide useful cues (e.g.,
motion) for action recognition, the examples in Figure 5 clearly show that the information conveyed
by static images is also an important component of action recognition. In this paper, we consider the
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problem of inferring human actions from static images. In particular, we are interested in exploiting
the human pose as a source of information for action recognition.

Several approaches have been proposed to address the problem of static image action recog-
nition in the literature. The first is a standard pattern classification approach, that is, learning a
classifier based on certain image feature representations. For example, Ikizler-Cinbis et al. (2009)
learn SVM classifiers based on HOG descriptors. The limitation with this approach is that it com-
pletely ignores the pose of a person. Another limitation is that SVM classifiers implicitly assume
that images from the same action category can be represented by a canonical prototype (which are
captured by the weights of the SVM classifier). However, the examples in Figure 5 clearly show
that humans can have very varied appearances when performing the same action, which are hard to
characterize with a canonical prototype.

Another approach to static image action recognition is to explicitly recover the human pose, then
use the pose as a feature representation for action recognition. For example, Ferrari et al. (2009)
estimate the 2D human pose in TV shots. The estimated 2D poses can be used to extract features
which in turn can be used to retrieve TV shots containing people with similar poses to a query. As
point out in Yang et al. (2010), the problem with this approach is that 2D human pose estimation
is still a very challenging problem. The output of the state-of-the-art pose estimation system is
typically not reliable enough to be directly used for action recognition.

The work in Yang et al. (2010) is the closest to ours. It uses a representation based on human
pose for action recognition. But instead of explicitly recovering the precise pose configuration, it
represents the human pose as a set of latent variables in the model. Their method does not require
the predicted human pose to be exactly correct. Instead, it learns which components of the pose are
useful for differentiating various actions.

The pose representation in Yang et al. (2010) is limited to four parts: upper body, left/right arm,
and legs. Learning and inference in their model amounts to infer the best configurations of these
four parts for a particular action. A limitation of this representation is that it does not contain pose
information about larger (e.g., whole body) or smaller (e.g., half-limbs) parts. We believe that pose
information useful for discerning actions can vary depending on different action categories. Some
actions (e.g., running) have distinctive pose characteristics in terms of both the upper and lower
bodies, while other actions (e.g., pointing) are characterized by only one arm. The challenge is how
to represent the pose information at various levels of details for action recognition.

In this section, we use hierarchical poselets to capture richer pose information for action recog-
nition. While a richer pose representation may offer more pose information (less bias), it must also
be harder to estimate accurately (more variance). In this paper, we demonstrate that our rich pose
representation (even with higher variance) is useful for action recognition.

5.1 Action-Specific Hierarchical Poselets

Since our goal is action recognition, we choose to use an action-specific variant of the hierarchical
poselets. This is similar to the action-specific poselets used in Yang et al. (2010). The difference
is that the action-specific poselets in Yang et al. (2010) are only defined in terms of four parts—
left/right arms, upper-body, and legs. These four parts are organized in a star-like graphical model.
In contrast, our pose representation captures a much wider range of information across various
pieces of the human body. So ours is a much richer representation than Yang et al. (2010).
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Figure 6: Examples of poselets for “playing golf”. For each poselet, we visualize several patches
from the corresponding cluster and the SVMHOG template. Notice the multi-scale nature
of the poselets. These poselets cover various portions of the human bodies, including the
whole body (1st row), both legs (2nd row), one arm (3nd row), respectively.

The training images are labeled with ground-truth action categories and joints on the human
body (Figure 5). We use the following procedure to select poselets for a specific part (e.g., legs) of
a particular action category (e.g., running). We first collect training images of that action category
(running). Then we cluster the joints on the part (legs) into several clusters based on their relative
(x,y) coordinates with respect to some reference joint. Each cluster will correspond to a “running
legs” poselet. We repeat this process for the part in other action categories. In the end, we obtain
about 15 to 30 clusters for each part. Figures 6 and 7 show examples of poselets for “playing golf”
and “running” actions, respectively.

Similarly, we train a classifier based on HOG features (Dalal and Triggs, 2005) to detect the
presence of each poselet. Image patches in the corresponding poselet cluster are used as positive
examples and random patches as negative examples for training the classifier. Similar to the model
in Sec. 4, we use different cell sizes when constructing HOG features for different parts. Large cell
sizes are used for poselets of large body parts (e.g., whole body and torso), while small cell sizes
are used for small body parts (e.g., half limbs). Figure 6 and Figure 7 show some examples of the
learned SVM weights for some poselets.

5.2 Our Model

Let I be an image containing a person,Y ∈Y be its action label where Y is the action label alphabet,
L be the pose configuration of the person. The complete pose configuration is denoted as L= {li}Ki=1
(K = 20 in our case), where li = (xi,yi,zi) represents the 2D image location and the index of the
corresponding poselet cluster for the i-th part. The complete pose L can be represented by a graph
G = {V ,E} shown in Figure 1. A vertex i∈V denotes the i-th part and an edge (i, j)∈E represents
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Figure 7: Examples of poselets for “running”. For each poselet, we visualize several patches from
the corresponding cluster and the SVMHOG template. Similar to Figure 6, these poselets
cover various portions of the human bodies

the spatial constraint between the i-th and the j-th parts. We define the following scoring function
to measure the compatibility of the triple (I,L,Y ):

F(I,L,Y ) = ωY (I)+∑
i∈V

φY (I, li)+ ∑
i, j∈E

ψY (li, l j). (7)

Here we use the subscript to explicitly emphasize that these functions are specific for a particular
action label Y . The details of the potential functions in Equation 7 are as follows.

Root appearance ωY (I): This potential function models the compatibility of the action label Y
and the global appearance of an image I. It is parametrized as:

ωY (I) = α$
Y · f (I). (8)

Here f (I) is a feature vector extracted from the whole image I without considering the pose. In
this paper, we use the HOG descriptor (Dalal and Triggs, 2005) of I as the feature vector f (I). The
parameters αY can be interpreted as a HOG template for the action category Y . Note that if we
only consider this potential function, the parameters {αY}Y∈Y can be obtained from the weights
of a multi-class linear SVM trained with HOG descriptors f (I) alone without considering the pose
information.

Part appearance φY (I, li): This potential function models the compatibility of the configuration
li of the i-th part and the local image patch defined by li = (xi,yi,zi), under the assumption that the
action label is Y . Since our goal is action recognition, we also enforce that the poselet zi should
comes from the action Y . In other words, if we define ZY

i as the set of poselet indices for the i-th
part corresponding to the action category Y , this potential function is parametrized as:

φY (I, li) =

{

β$i,Y · f (I, li) if zi ∈ ZY
i ;

−∞ otherwise.
(9)
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Here f (I, li) is the score of placing the SVM HOG template zi at location (xi,yi) in the image I.
Pairwise part constraint ψ(li, l j): This potential function models the compatibility of the con-

figurations between the i-th and the j-th parts, under the assumption that the action label is Y . We
parametrize this potential function using a vectorized counts of spatial histogram bins, similar to
Ramanan (2006); Yang et al. (2010). Again, we enforce poselets zi and z j to come from action Y as
follows:

ψY (li, l j) =

{

γ$i,Y ·bin(li− l j) if zi ∈ ZY
i ,z j ∈ ZY

j ;
−∞ otherwise.

(10)

Here bin(·) is a vector all zeros with a single one for the occupied bin.
Note that if the potential functions and model parameters in Equations(7,8,9,10) do not depend

on the action label Y , the part appearance φ(·) and pairwise part constraint ψ(·) exactly recover the
human parsing model in Section 4.

5.3 Learning and Inference

We define the score of labeling an image I with the action label Y as follows:

H(I,Y ) =max
L
F(I,L,Y ). (11)

Given the model parameters Θ = {α,β,γ}, Equation 11 is a standard MAP inference problem in
undirected graphical models. We can approximately solve it using message passing scheme similar
to that in Section 4.2. The predicted action label Y ∗ is chosen as Y ∗ = argmaxY H(I,Y ).

We adopt the latent SVM (Felzenszwalb et al., 2010) framework for learning the model parame-
ters. First, it is easy to see that Equation 7 can be written as a linear function of model parameters as
F(I,L,Y ) = Θ$Φ(I,L,Y ), where Θ is the concatenation of all the model parameters (i.e., α, β and
γ) and Φ(I,L,Y ) is the concatenation of the corresponding feature vectors. Given a set of training
examples in the form of {In,Ln,Yn}Nn=1, the model parameters are learned by solving the following
optimization problem:

min
Θ,ξ

1
2
||Θ||2+C∑

n
ξn, s.t. ∀n, ∀Y : (12)

H(In,Yn)−H(In,Y )≥ Δ(Y,Yn)−ξn. (13)

It is easy to show that Equations (12,13) can be equivalently written as:

min
Θ

1
2
||Θ||2+C∑

n
R n, (14)

where R n =max
Y,L

(

Δ(Y,Yn)+Θ$ ·Φ(In,Y )
)

−max
L
Θ$ ·Φ(In,L,Yn).

The problem in Equation 14 is not convex, but we can use simple stochastic sub-gradient descent
to find a local optimum. Let us define:

(Y ∗,L∗) = argmax
Y,L

(Δ(Y,Yn)+Θ$ ·Φ(In,L,Y )),

L′ = argmax
L

(Θ$ ·Φ(In,L,Yn)).
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head + upper arm head + lower arm

Buffy UIUC people sport images Buffy UIUC people sport images

Figure 8: Scatter plots of heads (red) and upper/lower arms (blue and green) with respect to fixed
upper body position on three data sets.

Then the gradient of Equation 14 can be computed as:

Θ+C∑
n

(

Φ(In,L∗,Y ∗)−Φ(In,L′,Yn)
)

.

To initialize the parameter learning, we first learn a pose estimation model using the labeled
(In,Ln) collected from training examples with class labelY . The parameters of these pose estimation
models are used to initialize βY and γY . The parameters αY are initialized from a linear SVM model
based on HOG descriptors without considering the poses.

6. Experiments

In this section, we present our experimental results on human parsing (Section 6.1) and action
recognition (Section 6.2).

6.1 Experiments on Human Parsing

There are several data sets popular in the human parsing community, for example, Buffy data set
(Ferrari et al., 2008), PASCAL stickmen data set (Eichner and Ferrari, 2009). But these data sets
are not suitable for us for several reasons. First of all, they only contain upper-bodies, but we are
interested in full-body parsing. Second, as pointed out in Tran and Forsyth (2010), there are very
few pose variations in those data sets. In fact, previous work has exploited this property of these data
sets by pruning search spaces using upper-body detection and segmentation (Ferrari et al., 2008), or
by building appearance model using location priors (Eichner and Ferrari, 2009). Third, the contrast
of image frames of the Buffy data set is relatively low. This issue suggests that better performance
can be achieved by engineering detectors to overcome the contrast difficulties. Please refer to the
discussion in Tran and Forsyth (2010) for more details. In our work, we choose to use two data sets1
containing very aggressive pose variations. The first one is the UIUC people data set introduced in
Tran and Forsyth (2010). The second one is a new sport image data set we have collected from the
Internet which has been used in Wang et al. (2011). Figure 8 shows scatter plots of different body
parts of our data sets compared with the Buffy data set (Ferrari et al., 2008) using a visualization
style similar to Tran and Forsyth (2010) . It is clear that the two data sets used in this paper have
much more variations.

1. Both data sets can be downloaded from http://vision.cs.uiuc.edu/humanparse.
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Figure 9: Examples of human body parsing on the UIUC people data set. We compare our method
with the pictorial structure (PS) (Andriluka et al., 2009) and the iterative image pars-
ing (IIP) (Ramanan, 2006). Notice the large pose variations, cluttered background, self-
occlusions, and many other challenging aspects of the data set.

6.1.1 UIUC PEOPLE DATA SET

The UIUC people data set (Tran and Forsyth, 2010) contains 593 images (346 for training, 247 for
testing). Most of them are images of people playing badminton. Some are images of people playing
Frisbee, walking, jogging or standing. Sample images and their parsing results are shown in the first
three rows of Figure 9. We compare with two other state-of-the-art approaches that do full-body
parsing (with published codes): the improved pictorial structure by Andriluka et al. (2009), and the
iterative parsing method by Ramanan (2006). The results are also shown in Figure 9.

To quantitatively evaluate different methods, we measure the percentage of correctly localized
body parts. Following the convention proposed in Ferrari et al. (2008), a body part is considered
correctly localized if the endpoints of its segment lies within 50% of the ground-truth segment length
from their true locations. The comparative results are shown in Table 1(a). Our method outperforms
other approaches in localizing most of body parts. We also show the result (3rd row, Table 1(a)) of
using only the basic-level poselets corresponding to the rigid parts. It is clear that our full model
using hierarchical poselets outperforms using rigid parts alone.

Detection and parsing: An interesting aspect of our approach is that it produces not only the
configurations of primitive parts, but also the configurations of other larger body parts. These pieces
of information can potentially be used for applications (e.g., gesture-based HCI) that do not require
precise localizations of body segments. In Figure 10, we visualize the configurations of four larger
parts on some examples. Interestingly, the configuration of the whole body directly gives us a person
detector. So our model can be seen as a principled way of unifying human pose estimation, person
detection, and many other areas related to understanding humans. In the first row of Table 2, we
show the results of person detection on the UIUC people data set by running our human parsing
model, then picking the bounding box corresponding to the part “whole body” as the detection. We
compare with the state-of-the-art person detectors in Felzenszwalb et al. (2010) and Andriluka et al.
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Method Torso Upper leg Lower leg Upper arm Forearm Head
Ramanan (2006) 44.1 11.7 7.3 25.5 25.1 11.3 10.9 25.9 25 30.8

Andriluka et al. (2009) 70.9 37.3 35.6 23.1 22.7 22.3 30.0 9.7 10.5 59.1
Our method (basic-level) 79.4 53.8 53.4 47.8 39.7 17.8 21.1 11.7 16.6 65.2
Our method (full model) 86.6 58.3 54.3 53.8 46.6 28.3 33.2 23.1 17.4 68.8

(a) UIUC people data set
Method Torso Upper leg Lower leg Upper arm Forearm Head

Ramanan (2006) 28.7 7.4 7.2 17.6 20.8 8.3 6.6 20.2 21 12.9
Andriluka et al. (2009) 71.5 44.2 43.1 30.7 31 28 29.6 17.3 15.3 63.3
Our method (basic-level) 73.3 45.0 47.6 40.4 39.9 19.4 27.0 13.3 9.9 47.5
Our method (full model) 75.3 50.1 48.2 42.5 36.5 23.3 27.1 12.2 10.2 47.5

(b) Sport image data set

Table 1: Human parsing results by our method and two comparison methods (Ramanan, 2006; An-
driluka et al., 2009) on two data sets. The percentage of correctly localized parts is shown
for each primitive part. If two numbers are shown in one cell, they indicate the left/right
body parts. As a comparison, we also show the results of using only rigid parts (basic-
level).

Figure 10: Examples of other information produced by our model. On each image, we show bound-
ing boxes corresponding to the whole body, left arm, right arm and legs. The size of each
bounding box is estimated from its corresponding poselet cluster.

(2009). Since most images contain one person, we only consider the detection with the best score on
an image for all the methods. We use the metric defined in the PASCAL VOC challenge to measure
the performance. A detection is considered correct if the intersection over union with respect to the
ground truth bounding box is at least 50%. It is interesting to see that our method outperforms other
approaches, even though it is not designed for person detection.

Our method Felzenszwalb et al. (2010) Andriluka et al. (2009)
UIUC people 66.8 48.58 50.61
Sport image 63.94 45.61 59.94

Table 2: Comparison of accuracies of person detection on both data sets. In our method, the con-
figuration of the poselets corresponding to the whole body can be directly used for person
detection.
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Figure 11: Examples of human body parsing on the sport image data set. We compare our method
with the pictorial structure (PS) (Andriluka et al., 2009) and the iterative image parsing
(IIP) (Ramanan, 2006).

6.1.2 SPORT IMAGE DATA SET

The UIUC people data set is attractive because it has very aggressive pose and spatial variations.
But one limitation of that data set is that it mainly contains images of people playing badminton.
One might ask what happens if the images are more diverse. To answer this question, we have
collected a new sport image data set from more than 20 sport categories, including acrobatics,
American football, croquet, cycling, hockey, figure skating, soccer, golf and horseback riding. There
are in total 1299 images. We randomly choose 649 of them for training and the rest for testing.
The last three rows of Figure 9 show examples of human parsing results, together with results of
Andriluka et al. (2009) and Ramanan (2006) on this data set. The quantitative comparison is shown
in Table 1(b). We can see that our approach outperforms the other two on the majority of body parts.

Similarly, we perform person detection using the poselet corresponding to the whole body. The
results are shown in the second row of Table 2. Again, our method outperforms other approaches.

6.1.3 KINEMATIC TRACKING

To further illustrate our method, we apply the model learned from the UIUC people data set for
kinematic tracking by independently parsing the human figure in each frame. In Figure 12, we show
our results compared with applying the method in Ramanan (2006). It is clear from the results that
kinematic tracking is still a very challenging problem. Both methods make mistakes. Interestingly,
when our method makes mistakes (e.g., figures with blue arrows), the output still looks like a valid
body configuration. But when the method in Ramanan (2006) makes mistakes (e.g., figures with
red arrows), the errors can be very wild. We believe this can be explained by the very different
representations used in these two methods. In Ramanan (2006), a human body is represented by
the set of primitive parts. Kinematic constraints are used to enforce the connectivity of those parts.
But these kinematic constraints have no idea what a person looks like as a whole. In the incorrect
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Figure 12: Examples of kinematic tracking on the baseball and figure skating data sets. The 1st and
3rd rows are our results. The 2rd and 4th rows are results of Ramanan (2006). Notice
how mistakes of our method (blue arrows) still look like valid human poses, while those
of Ramanan (2006) (red arrows) can be wild.

results of Ramanan (2006), all the primitive parts are perfectly connected. The problem is their
connectivity does not form a reasonable human pose as a whole.

In contrast, our model uses representations that capture a spectrum of both large and small
body parts. Even in situations where the small primitive parts are hard to detect, our method can
still reason about the plausible pose configuration by pulling information from large pieces of the
human bodies.

6.2 Experiments on Action Recognition

We test our approach on two publicly available data sets: the still images data set (Ikizler et al.,
2008) and the Leeds sport data set (Johnson and Everingham, 2010). Both data sets contain images
of people with ground-truth pose annotations and action labels.

6.2.1 STILL IMAGE DATA SET

We first demonstrate our model on the still image data set collected in Ikizler et al. (2008). This
data set contains more than 2000 static images from five action categories: dancing, playing golf,
running, sitting, and walking. Sample images are shown in the first two rows of Figure 5. Yang et al.
(2010) have annotated the pose with 14 joints on the human body on all the images in the data set.
Following Yang et al. (2010), we choose 1/3 of the images from each category to form the training
data, and the remaining ones as the test data.2

2. A small number of images/annotations we obtained from the authors of Yang et al. (2010) are somehow corrupted
due to some file-system failure. We have removed those images from the data set.
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method overall avg per-class
Our approach 65.15 70.77

Yang et al. (2010)∗ 63.49 68.37
SVM mixtures 62.8 64.05
Linear SVM 60.32 61.5

Table 3: Performance on the still image data set. We report both overall and average per-class
accuracies. ∗The results are based on our own implementation.

dancing playing golf running

sitting walking

Figure 13: Visualization of some inferred poselets on the still image data set. These test images
have been correctly recognized by our model. For a test image, we show three poselets
that have high responses. Each poselet is visualized by showing several patches from its
cluster.

We compare our approach with two baseline method. The first baseline is a multi-class SVM
based on HOG features. For the second baseline, we use mixtures of SVM models similar to that
in Felzenszwalb et al. (2010). We set the number of mixtures for each class to be the number of
whole-body poselets. From Table 3, we can see that our approach outperforms the baseline by a
large margin. Our performance is also better than the reported results in Yang et al. (2010). However,
the accuracy numbers are not directly comparable since the training/testing data sets and features
are not completely identical. In order to do a fair comparison, we re-implemented the method in
Yang et al. (2010) by only keeping the parts used in Yang et al. (2010). Our full model performs
better.

In Figure 13, we visualize several inferred poselets on some examples whose action categories
are correctly classified. Each poselet is visualized by showing several patches from the correspond-
ing poselet cluster.
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athletics badminton baseball

soccer tennis volleyball

Figure 14: Visualization of some inferred poselets on the Leeds sport data set. These test images
have been correctly recognized by our model. For a test image, we show three poselets
that have high responses. Each poselet is visualized by showing several patches from its
cluster.

method overall avg per-class
Our approach 54.6 54.6
SVM mixtures 52.7 49.13
Linear SVM 52.7 52.93

Table 4: Performance on the Leeds sport data set. We report both overall and average per-class
accuracies.

6.2.2 LEEDS SPORT DATA SET

The Leeds sport data set (Johnson and Everingham, 2010) contains 2000 images from eight different
sports: athletics, badminton, baseball, gymnastics, parkour, soccer, tennis, volleyball. Each image
in the data set is labeled with 14 joints on the human body. Sample images and the labeled joints
are shown in the last four rows of Figure 5. This data set is very challenging due to very aggressive
pose variations.

We choose half of the images for training, and the other half for testing. The performance
is shown in Table 4. Again, we compare with the HOG-based SVM and SVM mixtures as the
baselines. We can see that our method still outperforms the baseline. Similarly, we visualize the
inferred poselets on some examples in Figure 14.
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American football→dancing croquet→playing golf field hockey→running

Figure 15: Visualization of inferred poses on unseen actions. Here the actions of the test im-
ages (American football, croquet and field hockey) are not available during training.
Our model recognizes these examples as dancing, playing golf, running, respectively.
Some of the results (e.g., croquet→ golfing) make intuitive sense. Others (e.g., foot-
ball→dancing) might not be intuitive at first. But if we examine the poselets carefully,
we can see that various pieces of the football player are very similar to those found in
the dancing action.

6.2.3 UNSEEN ACTIONS

An interesting aspect of our model is that it outputs not only the predicted action label, but also some
rich intermediate representation (i.e., action-specific hierarchical poselets) about the human pose.
This information can potentially be exploited in various contexts. As an example, we apply the
model learned from the still image data set to describe images from sports categories not available
during training. In Figure 15, we show examples of applying the model learned from the still image
data set to images with unseen action categories. The action categories (American football, croquet
and field hockey) for the examples in Figure 15 are disjoint from the action categories of the still
image data set. In this situation, our model obviously cannot correctly predict the action labels (since
they are not available during training). Instead, it classifies those images using the action labels it
has learned. For example, it classifies “American football” as “dancing”, “croquet” as “playing
golf”, “field hockey” as “running”. More importantly, our model outputs poselets for various parts
which support its prediction. From these information, we can say a lot about “American football”
even though the predicted action label is wrong. For example, we can say it is closer to “dancing”
than “playing golf” because the pose of the football player in the image is similar to certain type of
dancing legs, and certain type of dancing arms.

7. Conclusion and Future Work

We have presented hierarchical poselets, a new representation for modeling human poses. Different
poselets in our representation capture human poses at various levels of granularity. Some poselets
correspond to the rigid parts typically used in previous work. Others can correspond to large pieces
of the human bodies. Poselets corresponding to different parts are organized in a structured hier-
archical model. The advantage of this representation is that it infers the human pose by pulling
information across various levels of details, ranging from the coarse shape of the whole body, to
the fine-detailed information of small rigid parts. We have demonstrate the applications of this rep-
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resentation in human parsing and human action recognition from static images. Recently, similar
ideas (Sun and Savarese, 2011) have been applied in other applications, such as object detection.

As future work, we would like to explore how to automatically construct the parts and the
hierarchy using data-driven methods. This will be important in order to extend hierarchical poselets
to other objects (e.g., birds) that do not have obvious kinematic structures. We also like to apply the
hierarchical poselet representation to other vision tasks, such as segmentation.
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Abstract
Online algorithms that process one example at a time are advantageous when dealing with very large data
or with data streams. Stochastic Gradient Descent (SGD) is such an algorithm and it is an attractive choice
for online Support Vector Machine (SVM) training due to its simplicity and effectiveness. When equipped
with kernel functions, similarly to other SVM learning algorithms, SGD is susceptible to the curse of kernel-
ization that causes unbounded linear growth in model size and update time with data size. This may render
SGD inapplicable to large data sets. We address this issue by presenting a class of Budgeted SGD (BSGD)
algorithms for large-scale kernel SVM training which have constant space and constant time complexity per
update. Specifically, BSGD keeps the number of support vectors bounded during training through several
budget maintenance strategies. We treat the budget maintenance as a source of the gradient error, and show
that the gap between the BSGD and the optimal SVM solutions depends on the model degradation due to
budget maintenance. To minimize the gap, we study greedy budget maintenance methods based on removal,
projection, and merging of support vectors. We propose budgeted versions of several popular online SVM
algorithms that belong to the SGD family. We further derive BSGD algorithms for multi-class SVM training.
Comprehensive empirical results show that BSGD achieves higher accuracy than the state-of-the-art budgeted
online algorithms and comparable to non-budget algorithms, while achieving impressive computational effi-
ciency both in time and space during training and prediction.
Keywords: SVM, large-scale learning, online learning, stochastic gradient descent, kernel methods

1. Introduction
Computational complexity of machine learning algorithms becomes a limiting factor when one is faced with
very large amounts of data. In an environment where new large scale problems are emerging in various
disciplines and pervasive computing applications are becoming common, there is a real need for machine
learning algorithms that are able to process increasing amounts of data efficiently. Recent advances in large-

∗. Zhuang Wang was with the Department of Computer and Information Sciences at Temple University while most of the presented
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scale learning resulted in many algorithms for training SVMs (Cortes and Vapnik, 1995) using large data
(Vishwanathan et al., 2003; Zhang, 2004; Bordes et al., 2005; Tsang et al., 2005; Joachims, 2006; Hsieh
et al., 2008; Bordes et al., 2009; Zhu et al., 2009; Teo et al., 2010; Chang et al., 2010b; Sonnenburg and
Franc, 2010; Yu et al., 2010; Shalev-Shwartz et al., 2011). However, while most of these algorithms focus on
linear classification problems, the area of large-scale kernel SVM training remains less explored. SimpleSVM
(Vishwanathan et al., 2003), LASVM (Bordes et al., 2005), CVM (Tsang et al., 2005) and parallel SVMs
(Zhu et al., 2009) are among the few successful attempts to train kernel SVM from large data. However,
these algorithms do not bound the model size and, as a result, they typically have quadratic training time in
the number of training examples. This limits their practical use on large-scale data sets.

A promising avenue to SVM training from large data sets and from data streams is to use online algo-
rithms. Online algorithms operate by repetitively receiving a labeled example, adjusting the model parame-
ters, and discarding the example. This is opposed to offline algorithms where the whole collection of training
examples is at hand and training is accomplished by batch learning. SGD is a recently popularized approach
(Shalev-Shwartz et al., 2011) that can be used for online training of SVM, where the objective is cast as an
unconstrained optimization problem. Such algorithms proceed by iteratively receiving a labeled example and
updating the model weights through gradient decent over the corresponding instantaneous objective func-
tion. It was shown that SGD converges toward the optimal SVM solution as the number of examples grows
(Shalev-Shwartz et al., 2011). In its original non-kernelized form SGD has constant update time and constant
space.

To solve nonlinear classification problems, SGD and related algorithms, including the original perceptron
(Rosenblatt, 1958), can be easily kernelized combined with Mercer kernels, resulting in prediction models
that require storage of a subset of observed examples, called the Support Vectors (SVs).1 While kernelization
allows solving highly nonlinear problems, it also introduces heavy computational burden. The main reason
is that on noisy data the number of SVs tends to grow with the number of training examples. In addition
to the danger of exceeding the physical memory, this also implies a linear growth in both model update
and prediction time with data size. We refer to this property of kernel online algorithms as the curse of
kernelization. To solve the problem, budgeted online SVM algorithms (Crammer et al., 2004) that limit the
number of SVs were proposed to bound the number of SVs. In practice, the assigned budget depends on the
specific application requirements, such as memory limitations, processing speed, or data throughput.

In this paper we study a class of BSGD algorithms for online training of kernel SVM. The main con-
tributions of this paper are as follows. First, we propose a budgeted version of the kernelized SGD for
SVM that has constant update time and constant space. This is achieved by controlling the number of SVs
through one of the several budget maintenance strategies. We study the impact of budget maintenance on
SGD optimization and show that, in the limit, the gap between the loss of BSGD and the loss of the optimal
solution is upper-bounded by the average model degradation induced by budget maintenance. Second, we
develop a multi-class version of BSGD based on the multi-class SVM formulation by Crammer and Singer
(2001). The resulting multi-class BSGD has similar algorithmic structure as its binary relative and inherits
its theoretical properties. Having shown that the quality of BSGD directly depends on the quality of budget
maintenance, our final contribution is exploring computationally efficient methods to maintain an accurate
low-budget classifier. In this work we consider three major budget maintenance strategies: removal, projec-
tion, and merging. In case of removal, we show that it is optimal to remove the smallest SV. Then, we show
that optimal projection of one SV to the remaining ones is achieved by minimizing the accumulated loss
of multiple sub-problems for each class, which extends the results by Csató and Opper (2001), Engel et al.
(2002) and Orabona et al. (2009) to the multi-class setting. In case of merging, when Gaussian kernel is used,
we show that the new SV is always on the line connecting two merged SVs, which generalizes the result by
Nguyen and Ho (2005) to the multi-class setting. Both space and update time of BSGD scale quadratically
with the budget size when projection is used and linearly when merging or removal are used. We show exper-

1. In this paper, Support Vectors refer to the examples that contribute to the online classifier at a given stage of online learning, which
differs slightly from the standard terminology where Support Vector refers to the examples with non-zero coefficients in the dual
form of the final classifier.
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Figure 1: A hierarchy of large-scale SVMs

imentally that BSGD with merging is the most attractive because it is computationally efficient and results in
highly accurate classifiers.

The structure of the paper is as follows: related work is given in Section 2; a framework for the proposed
algorithms is presented in Section 3; the impact of budget maintenance on SGD optimization is studied in
Section 4, which motivates the budget maintenance strategies that are presented in Section 6; the extension to
the multi-class setting is described in Section 5; in Section 7, the proposed algorithms are comprehensively
evaluated; and, finally, the paper is concluded in Section 8.

2. Related Work

In this section we summarize related work to ours. Figure 1 provides a view at the hierarchy of large-scale
SVM training algorithms discussed below.

2.1 Algorithms for Large-Scale SVM Training

LIBSVM (Chang and Lin, 2001) is a widely used SVM solver which is scalable to hundreds of thousands of
examples. LIBSVM uses the SMO decomposition technique (Platt, 1998) to solve SVM Quadratic Program-
ming (QP). LASVM (Bordes et al., 2005) is another scalable SMO-based algorithm that approximates the
SVM solution by incrementally updating the model. In order to speed up training, LASVM performs only
several SMO iterations during each model update and it occasionally removes examples from the training set
that are deemed unlikely to become SVs. SimpleSVM (Vishwanathan et al., 2003) is a fast iterative training
algorithm that uses greedy working set selection to identify SVs to be incrementally updated. CVM (Tsang
et al., 2005) scales up kernel SVM by reformulating SVM’s QP as a minimum enclosing ball problem and
it applies an efficient approximation algorithm to obtain a near-optimal solution. BVM (Tsang et al., 2007)
is a simpler version of CVM that reduces the minimum enclosing ball problem to the enclosing ball problem
and thus solves a simpler problem. Experimentally, these approximate algorithms have been demonstrated to
have relatively fast training times, result in sparser models, and achieve a slightly reduced accuracy.
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Recent research in large-scale linear SVM resulted in many successful algorithms (Zhang, 2004; Joachims,
2006; Shalev-Shwartz et al., 2011; Hsieh et al., 2008; Bordes et al., 2009; Teo et al., 2010) with an impressive
scalability and able to train with millions of examples in a matter of minutes on standard PCs. Recently, linear
SVM algorithms have been employed for nonlinear classification by explicitly expressing the feature space as
a set of attributes and training a linear SVM on the transformed data set (Rahimi and Rahimi, 2007; Sonnen-
burg and Franc, 2010; Yu et al., 2010). However, this type of approaches is only applicable with special types
of kernels (e.g., the low degree polynomial kernels, string kernels or shift invariant kernels) or on very sparse
or low dimensional data sets. More recently, Zhang et al. (2012) proposed a low-rank linearization approach
that is general to any PSD kernel. The proposed algorithm LLSVM transforms a non-linear SVM to a linear
one via an approximate empirical kernel map computed from low-rank approximation of kernel matrices.
Taking an advantage of the fast training of linear classifiers, Wang et al. (2011) proposed to use multiple
linear classifiers to capture non-linear concepts. A common property of the above linear-classifier-based al-
gorithms is that they usually have low space footprint and are initially designed for offline learning but can
also be easily converted to online algorithms by accepting a slight decrease in accuracy. Recent research
in training large-scale SVM with the popular Gaussian kernel focuses on parallelizing training on multiple
cores or machines. Either optimal (e.g., Graf et al., 2005) or approximate (e.g., Zhu et al., 2009) solutions
can be obtained by this type of methods. Other attempts to large-scale kernel SVM learning include a method
that modifies the SVM loss function (Collobert et al., 2006), preprocessing methods such as pre-clustering
and training on the high-quality summarized data (Li et al., 2007), and a method (Chang et al., 2010a) that
decomposes data space and trains multiple SVMs on the decomposed regions.

2.2 Algorithms for SVMModel Reduction

SVM classifier can be thought of as composed of a subset of training examples known as SVs, whose number
typically grows linearly with the number of training examples on noisy data (Steinwart, 2003). Bounding
the space complexity of SVM classifiers has been an active research since the early days of SVM. SVM
reduced set methods (Burges, 1996; Schölkopf et al., 1999) start by training a standard SVM on the complete
data and then find a sparse approximation by minimizing Euclidean distance between the original and the
approximated SVM. A limitation of reduced set methods is that they require training a full-scale SVM,
which can be computationally infeasible on large data. Another line of work (Lee and Mangasarian, 2001;
Wu et al., 2005; Dekel and Singer, 2006) is to directly train a reduced classifier from scratch by reformulating
the optimization problem. The basic idea is to train SVM with minimal risk on the complete data under a
constraint that the model weights are spanned by a small number of examples. A similar method to build
reduced SVM classifier based on forward selection was proposed by Keerthi et al. (2006). This method
proceeds in an iterative fashion that greedily selects an example to be added to the model so that the risk on
the complete data is decreased the most. Although SVM reduction methods can generate a classifier with a
fixed size, they require multiple passes over training data. As such, they can be infeasible for online learning.

2.3 Online Algorithms for SVM

Online SVM algorithms were proposed to incrementally update the model weights upon receiving a single
example. IDSVM (Cauwenberghs and Poggio, 2000) maintains the optimal SVM solution on all previously
seen examples throughout the whole training process by using matrix manipulation to incrementally update
the KKT conditions. The high computational cost due to the desire to guarantee an optimum makes it less
practical for large-scale learning. As an alternative, LASVM (Bordes et al., 2005) was proposed to trade the
optimality with scalability by using an SMO like procedure to incrementally update the model. However,
LASVM still does not bound the number of SVs and a potential unlimited growth in their number limits its
use for truly large learning tasks. Both IDSVM and LASVM solve SVM optimization by casting it as a QP
problem and working on the KKT conditions.

Gradient-based methods are an appealing alternative to the QP based methods for SVM training. SGD
for SVM training was first studied by Kivinen et al. (2002), where SVM training is cast as an unconstrained
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problem and model weights are updated through gradient decent over an instantaneous objective function.
Pegasos (Shalev-Shwartz et al., 2011) is an improved stochastic gradient method, by employing a more
aggressively decreasing learning rate and projection. Iterative nature of stochastic gradient makes it suitable
for online SVM training. In practice, it is often run in epochs, by scanning the data several times to achieve a
convergence to the optimal solution. Recently, Bordes et al. (2009) explored the use of 2nd order information
to calculate the gradient in the SGD algorithms. Although the SGD-based methods show impressive training
speed for linear SVMs, when equipped with kernel functions, they suffer from the curse of kernelization.

TVM (Wang and Vucetic, 2010b) is a recently proposed budgeted online SVM algorithm which has
constant update time and constant space. The basic idea of TVM is to upper bound the number of SVs
during the whole learning process. Examples kept in memory (called prototypes) are used both as SVs and as
summaries of local data distribution. This has been achieved by positioning the prototypes near the decision
boundary, which is the most informative region of the input space. An optimal SVM solution is guaranteed
over the set of prototypes at any time. Upon removal or addition of a prototype, IDSVM is employed to
update its model.

2.4 Budgeted Quasi-additive Online Algorithms

The Perceptron (Rosenblatt, 1958) is a well-known online algorithm which is updated by simply adding
misclassified examples to the model weights. Perceptron belongs to a wider class of quasi-additive online
algorithms that updates a model in a greedy manner by using only the last observed example. Popular recent
members of this family of algorithms include ALMA (Gentile, 2001), ROMMA (Li and Long, 2002), MIRA
(Crammer and Singer, 2003), PA (Crammer et al., 2006), ILK (Cheng et al., 2007), the SGD based algorithms
(Kivinen et al., 2002; Zhang, 2004; Shalev-Shwartz et al., 2011), and the Greedy Projection algorithm (Zinke-
vich, 2003). These algorithms are straightforwardly kernelized. To prevent the curse of kernelization, several
budget maintenance strategies for the kernel perceptron have been proposed in recent work. The common
property of the methods summarized below is that the number of SVs (the budget) is fixed to a pre-specified
value.

Stoptron is a truncated version of kernel perceptron that terminates when number of SVs reaches budget
B. This simple algorithm is useful for benchmarking (Orabona et al., 2009).

Budget Perceptron (Crammer et al., 2004) removes the SV that would be predicted correctly and with
the largest confidence after its removal. While this algorithm performs well on relatively noise-free data it is
less successful on noisy data. This is because in the noisy case this algorithm tends to remove well-classified
points and accumulate noisy examples, resulting in a gradual degradation of accuracy.

Random Perceptron employs a simple removal procedure that removes a random SV. Despite its simplic-
ity, this algorithm often has satisfactory performance and its convergence has been proven under some mild
assumptions (Cesa-Bianchi and Gentile, 2006).

Forgetron removes the oldest SV. The intuition is that the oldest SV was created when the quality of
perceptron was the lowest and that its removal would be the least hurtful. Under some mild assumptions,
convergence of the algorithm has also been proven (Dekel et al., 2008). It is worth mentioning that a unified
analysis of the convergence of Random Perceptron and Forgetron under the framework of online convex
programming was studied by Sutskever (2009) after slightly modifying the two original algorithms.

Tighter Perceptron. The budget maintenance strategy proposed by Weston et al. (2005) is to evaluate
accuracy on validation data when deciding which SV to remove. Specifically, the SV whose removal would
have the least validation error is selected for removal. From the perspective of accuracy estimation, it is ideal
that the validation set consists of all observed examples. Since it can be too costly, a subset of examples can
be used for validation. In the extreme, only SVs from the model might be used, but the drawback is that the
SVs are not representative of the underlying distribution that could lead to misleading accuracy estimation.

Tightest Perceptron is a modification of Tighter Perceptron that improves how the SV set is used both
for model representation and for estimation (Wang and Vucetic, 2009). In particular, instead of using the
actual labels of SVs, the Tightest learns distribution of labels in the neighborhood of each SV and uses this
information for improved accuracy estimation.
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Algorithms Budget maintenance Update time Space
BPANN projection O(B) O(B)
BSGD+ removal removal O(B) O(B)
BSGD+ pro ject projection O(B2) O(B2)
BSGD+merge merging O(B) O(B)
Budget removal O(B) O(B)
Forgetron removal O(B) O(B)
Pro jectron++ projection O(B2) O(B2)
Random removal O(B) O(B)
SILK removal O(B) O(B)
Stoptron stop O(1) O(B)
Tighter removal O(B2) O(B)
Tightest removal O(B2) O(B)
TVM merging O(B2) O(B2)

Table 1: Comparison of different budgeted online algorithms (B is a pre-specified budget equal to the number
of SVs; Update time includes both model update time and budget maintenance time; Space corre-
sponds to space needed to store the model and perform model update and budget maintenance.)

Projectron maintains a sparse representation by occasionally projecting an SV onto remaining SVs
(Orabona et al., 2009). The projection is designed to minimize the model weight degradation caused by
removal of an SV, which requires updating the weights of the remaining SVs. Instead of enforcing a fixed
budget, the original algorithm adaptively increases it according to a pre-defined sparsity parameter. It can be
easily converted to the budgeted version by projecting when the budget is exceeded.

SILK discards the example with the lowest absolute coefficient value once the budget is exceeded (Cheng
et al., 2007).

BPA. Unlike the previously described algorithms that perform budget maintenance only after the model
is updated, Wang and Vucetic (2010a) proposed a Budgeted online Passive-Aggressive (BPA) algorithm
that does budget maintenance and model updating jointly by introducing an additional constraint into the
original Passive-Aggressive (PA) (Crammer et al., 2006) optimization problem. The constraint enforces that
the removed SV is projected onto the space spanned by the remaining SVs. The optimization leads to a
closed-form solution.

The properties of budgeted online algorithms described in this subsection as well as and the BSGD algo-
rithms presented in following sections are summarized in Table 1. It is worth noting that although (budgeted)
online algorithms are typically trained by a single pass through training data, they are also able to perform
multiple passes that can lead to improved accuracy.

3. Budgeted Stochastic Gradient Descent (BSGD) for SVMs

In this section, we describe an algorithmic framework of BSGD for SVM training.

3.1 Stochastic Gradient Descent (SGD) for SVMs

Consider a binary classification problem with a sequence of labeled examples S = {(xi,yi), i = 1, ...,N},
where instance xi ∈ Rd is a d-dimensional input vector and yi ∈ {+1,−1} is the label. Training an SVM
classifier2 f (x) = wTx using S, where w is a vector of weights associated with each input, is formulated as

2. We study the case where the bias term is set to zero.
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Algorithms λ ηt
Pegasos > 0 1/(λt)
Norma > 0 η/

√
t

Margin Perceptron 0 η

Table 2: A summary of three SGD algorithms (η is a constant.)

solving the following optimization problem

minP(w) = λ
2
||w||2 + 1

N∑
N
t=1 l(w;(xt ,yt)), (1)

where l(w;(xt ,yt)) = max(0,1− ytwTxt) is the hinge loss function and λ ≥ 0 is a regularization parameter
used to control model complexity.

SGD works iteratively. It starts with an initial guess of the model weight w1, and at t-th round it updates
the current weight wt as

wt+1← wt −ηt∇t , (2)

where ∇t =∇wt Pt(wt) is the (sub)gradient of the instantaneous loss function Pt(w) defined only on the latest
example,

Pt(w) =
λ
2
||w||2 + l(w;(xt ,yt)), (3)

at wt , and ηt > 0 is a learning rate. Thus, (2) can be rewritten as

wt+1← (1−ληt)wt +βtxt , (4)

where

βt ←
{

ηt yt , if ytwTt xt < 1
0, otherwise.

Several learning algorithms are based on (or can be viewed as) SGD for SVM. In Table 2, Pegasos3

(Shalev-Shwartz et al., 2011), Norma (Kivinen et al., 2002), and Margin Perceptron4 (Duda and Hart, 1973)
are viewed as the SGD algorithms. They share the same update rule (4), but have different scheduling of
learning rate. In addition, Margin Perceptron differs because it does not contain the regularization term in
(3).

3.2 Kernelization

SGD for SVM can be used to solve non-linear problems when combined with Mercer kernels. After intro-
ducing a nonlinear function Φ that maps x from the input to the feature space and replacing x with Φ(x), wt
can be described as

wt =∑
t
j=1α jΦ(x j),

where

α j = β j
t

∏
k= j+1

(1−ηkλ). (5)

3. In this paper we study the Pegasos algorithm without the optional projecting step (Shalev-Shwartz et al., 2011). It is worth to note
that we can both cases (with or without the optional projecting step) allow similar analysis. We focus on this version since it has
closer connection to the other two algorithms we study.

4. Margin Perceptron is a robust variant of the classical perceptron (Rosenblatt, 1958), by changing the update criterion from ywT x< 0
to ywT x< 1.
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Algorithm 1 BSGD
1: Input: data S, kernel k, regularization parameter λ, budget B;
2: Initialize: b= 0,w1 = 0;
3: for i= t,2, ... do
4: receive (xt ,yt);
5: wt+1← (1−ηtλ)wt
6: if l(wt ;(xt ,yt))> 0 then
7: wt+1← wt+1 +Φ(xt)βt ; // add an SV
8: b← b+1;
9: if b> B then

10: wt+1← wt+1−Δt ; // budget maintenance
11: b← b−1;
12: end if
13: end if
14: end for
15: Output: ft+1(x)

From (5), it can be seen that an example (xt ,yt) whose hinge loss was zero at time t has zero value of α and
can therefore be ignored. Examples with nonzero values α are called the Support Vectors (SVs). We can now
represent ft(x) as the kernel expansion

ft(x) = wTt Φ(x) =∑ j∈It
α jk(x j,x),

where k is the Mercer kernel induced by Φ and It is the set of indexes of all SVs in wt . Rather than explicitly
calculating w by using Φ(x), that might be infinite-dimensional, it is more efficient to save SVs to implicitly
represent w and to use kernel function k when calculating prediction wTΦ(x). This is known as the kernel
trick. Therefore, an SVM classifier is completely described by either a weight vector w or by an SV set
{(αi,xi), i ∈ It}. From now on, depending on the convenience of presentation, we will use either the w
notation or the α notation interchangeably.

3.3 Budgeted SGD (BSGD)

To maintain a fixed number of SVs, BSGD executes a budget maintenance step whenever the number of SVs
exceeds a pre-defined budget B (i.e., |It+1| > B ). It reduces the size of It+1 by one, such that wt+1 is only
spanned by B SVs. This results in degradation of the SVM classifier. We present a generic BSGD algorithm
for SVM in Algorithm 1. Here, we denote by Δt the weight degradation caused by budget maintenance at t-th
round, which is defined5 as the difference between model weights before and after budget maintenance (Line
10 of Algorithm 1). We note that all budget maintenance strategies mentioned in Section 2.4, except BPA,
can be represented as Line 10 of Algorithm 1.

Budget maintenance is a critical design issue. We describe several budget maintenance strategies for
BSGD in Section 6. In the next section, we motivate different strategies by studying in the next section how
budget maintenance influences the performance of SGD.

4. Impact of Budget Maintenance on SGD
This section provides an insight into the impact of budget maintenance on SGD. In the following, we quantify
the optimization error introduced by budget maintenance on three known SGD algorithms. Without loss of
generality, we assume ||Φ(x)||≤ 1.

5. The formal definition for different strategies is presented in Algorithm 2.
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First, we analyze Budgeted Pegasos (BPegasos), a BSGD algorithm using the Pegasos style learning rate
from Table 2.
Theorem 1 Let us consider BPegasos (Algorithm 1 using the Pegasos learning rate, see Table 2) running on a
sequence of examples S. Let w∗ be the optimal solution of Problem (1). Define the gradient error Et = Δt/ηt
and assume ||Et ||≤ 1. Define the average gradient error as  E = ∑Nt=1 ||Et ||/N. Let

U =

{

2/λ, i f λ≤ 4
1/
√
λ, otherwise. (6)

Then, the following inequality holds,

1
N

N

∑
t=1

Pt(wt)−
1
N

N

∑
t=1

Pt(w∗)≤
(λU+2)2(ln(N)+1)

2λN
+2U  E. (7)

The proof is in Appendix A. Remarks on Theorem 1:

• In Theorem 1 we quantify how budget maintenance impacts the quality of SGD optimization. Observe
that as N grows, the first term in the right side of inequalities (7) converges to zero. Therefore, the
averaged instantaneous loss of BSGD converges toward the averaged instantaneous loss of optimal
solution w∗, and the gap between these two is upper bounded by the averaged gradient error  E. The
results suggest that an optimal budget maintenance should attempt to minimize  E. To minimize  E in
the setting of online learning, we propose a greedy procedure that minimizes ||Et || at each round.

• The assumption ||Et || ≤ 1 is not restrictive. Let us assume the removal-based budget maintenance
method, where, at round t, SV with index t is removed. Then, the weight degradation is Δt = αt ′Φ(xt ′),
where t ′ is the index of any SV in the budget. By using (5) it can be seen that ||Et || is not larger than 1,

||Et ||≤
∥

∥

∥

αt′
ηt

∥

∥

∥
= λt

{

ηt ′
t
∏

j=t ′+1
(1−η jλ)

}

= λt
{

ηt ′ · t ′
t ′+1 ·

t ′+1
t ′+2 · ... ·

t−2
t−1 ·

t−1
t

}

= 1.

Since our proposed budget maintenance strategy is to minimize ||Et || at each round, ||Et ||≤ 1 holds.

Next, we show a similar theorem for Budgeted Norma (BNorma), a BSGD algorithm using the Norma
style update rule from Table 1.
Theorem 2 Let us consider BNorma (Algorithm 1 using the Norma learning rate from Table 2) running on a
sequence of examples S. Let w∗ be the optimal solution of Problem (1). Assume ||Et ||≤ 1. Let U be defined
as in (6). Then, the following inequality holds,

1
N

N

∑
t=1

Pt(wt)−
1
N

N

∑
t=1

Pt(w∗)≤
(2U2/η+η(λU+2)2)

√
N

N
+2U  E. (8)

The proof is in Appendix B. The remarks on Theorem 1 also hold6 for Theorem 2.
Next, we show the result for Budgeted Margin Perceptron (BMP). The update rule of Margin Perceptron

(MP) summarized in Table 2 does not bound growth of the weight vector. We add a projection step to MP after
the SGD update to guarantee an upper bound on the norm of the weight vector.7 More specifically, the new
update rule is wt+1←∏C(wt−∇t)≡ φt(wt−∇t) whereC is the closed convex set with radiusU and ∏C(u)

6. The assumption ||Et || ≤ 1 holds when budget maintenance is achieved by removing the smallest SV, that is, t ′ =
argmin j∈It′+1 ||α jΦ(x j)|| .

7. The projection step (Zinkevich, 2003; Shalev-Shwartz and Singer, 2007; Sutskever, 2009) is a widely used technical operation
needed for the convergence analysis.
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defines the closest point to u in C. We can replace the projection operator with φt = min{1,U/||wt−∇t ||}. It
is worth to note that, although the MP with the projection step solves an un-regularized SVM problem (i.e.,
λ= 0 in (1)), the projection to a ball with radiusU does introduce the regularization by enforcing the weight
with bounded norm U . The vector U should be treated as a hyper-parameter and smaller U values enforce
simpler models.

After this modification, the resulting BMP algorithm can be described with Algorithm 1, where an ad-
ditional projection step wt+1←∏C(wt+1) is added at the end of each iteration (after Line 12 of Algorithm
1).
Theorem 3 Let C be a closed convex set with a pre-specified radius U. Let BMP (Algorithm 1 using the
PMP learning rate from Table 2 and the projection step) run on a sequence of examples S. Let ||w∗|| be the
optimal solution to Problem (1) with λ= 0 and subject to the constraint ||w∗||≤U. Assume ||Et ||≤ 1 Then,
the following inequality holds,

1
N

N

∑
t=1

Pt(wt)−
1
N

N

∑
t=1

Pt(w∗)≤
2U2

Nη
+2η+2U  E. (9)

The proof is in Appendix C. The remarks on Theorem 1 also hold for Theorem 3.

5. BSGD for Multi-Class SVM
Algorithm 1 can be extended to the multi-class setting. In this section we show that the resulting multi-class
BSGD inherits the same algorithmic structure and theoretical properties of its binary counterpart.

Consider a sequence of examples S = {(xi,yi), i = 1, ...,N}, where instance xi ∈ Rd is a d-dimensional
input vector and the multi-class label yi belongs to the set Y = {1, ...,c}. We consider the multi-class SVM
formulation by Crammer and Singer (2001). Let us define the multi-class model f M(x) as

f M(x) = argmax
i∈Y

{ f (i)(x)}= argmax
i∈Y

{(w(i))Tx},

where f (i) is the i-th class-specific predictor and w(i) is its corresponding weight vector. By adding all class-
specific weight vectors, we construct W = [w(1)...w(c)] as the d× c weight matrix of f M(x). The predicted
label of x is the class of the weight vector that achieves the maximal value (w(i))Tx . Given this setup, training
a multi-class SVM on S consists of solving the optimization problem

min
W

PM(W) =
λ
2
||W||2 +

1
N∑

N
t=1 l

M(W;(xt ,yt)), (10)

where the binary hinge loss is replaced with the multi-class hinge loss defined as

lM(W;(xt ,yt)) = max(0,1+ f (rt )(xt)− f (yt )(xt)), (11)

where rt = argmaxi∈Y,i ,=yt f (i)(xt), and the norm of the weight matrixW is

||W||2 =∑i∈Y ||w
(i)||2.

The subgradient matrix ∇t of the multi-class instantaneous loss function,

PMt (W) =
λ
2
||W||2 + lM(W;(xt ,yt)),

at Wt is defined as ∇t = [∇(1)
t ...∇(c)

t ], where ∇(i)
t = ∇w(i)PMt (W) is a column vector. If loss (11) is equal to

zero then ∇(i)
t = λw(i)

t . If loss (11) is above zero, then

∇(i)
t =











λw(i)
t −xt , if i= yt

λw(i)
t +xt , if i= rt

λw(i)
t , otherwise.
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Thus, the update rule for the multi-class SVM becomes

Wt+1←Wt −ηt∇t = (1−ηtλ)Wt +xtβt ,

where βt is a row vector, βt = [β(1)t ...β(c)t ]. If loss (11) is equal to zero, then βt = 0; otherwise,

β(i)t =







ηt , if i= yt
−ηt , if i= rt
0, otherwise.

When used in conjunction with kernel, w(i)
t can be described as

w(i)
t =∑t

j=1α
(i)
j Φ(x j),

where
α(i)
j = β(i)j

t

∏
k= j+1

(1−ηkλ).

The budget maintenance step can be achieved as

Wt+1←Wt+1−Δt ⇒ w
(i)
t+1← w

(i)
t+1−Δ

(i)
t ,

where Δt = [Δ(1)t ... Δ(c)t ] and the column vectors Δ(i)t are the coefficients for the i-th class-specific weight,
such that w(i)

t+1 is spanned only by B SVs.
Algorithm 1 can be applied to the multi-class version after replacing scalar βt with vector βt , vector wt

with matrixWt and vector Δt with matrix Δt .
The analysis of the gap between BSGD and SGD optimization for the multi-class version is similar to

that provided for its binary version, presented in Section 4. If we assume ||Φ(x)||2 ≤ 0.5 , then the resulting
multi-class counterparts of Theorems 1, 2, and 3 become identical to their binary variants by simply replacing
the text Problem (1) with Problem (10).

6. Budget Maintenance Strategies
The analysis in Sections 4 and 5 indicates that budget maintenance should attempt to minimize the averaged
gradient error  E. To minimize  E in the setting of online learning, we propose a greedy procedure that
minimizes the gradient error ||Et || at each round. From the definition of ||Et || in Theorem 1, minimizing
||Et || is equivalent to minimizing the weight degradation ||Δt ||,

min ||Δt ||2. (12)

In the following, we address Problem (12) through three budget maintenance strategies: removing, pro-
jecting and merging of SV(s). We discuss our solutions under the multi-class setting, and consider the binary
setting as a special case. Three styles of budget maintenance update rules are summarized in Algorithm 2 and
discussed in more detail in the following three subsections.

6.1 Budget Maintenance through Removal

If budget maintenance removes the p-th SV, then

Δt =Φ(xp)αp,

where the row vector αp = [α(1)
p ...α(c)

p ] contains the c class-specific coefficients of j-th SV. The optimal
solution of (12) is removal of SV with the smallest norm,

p= arg min
j∈It+1

||α j||2k(x j,x j).
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Algorithm 2 Budget maintenance
Removal:

1. select some p;
2. Δt =Φ(xp)αp;

Projection:
1. select some p;
2. Δt=Φ(xp)αp− ∑

j∈It+1−p
Φ(x j)Δα j;

Merging
1. select some m and n;
2. Δt=Φ(xm)αm+Φ(xn)αn−Φ(z)αz;

Let us consider the class of translation invariant kernels where k(x,x′) = k̃(x− x′), which encompasses the
Gaussian kernel. Let us assume, without loss of generality, that k(x,x) = 1. In this case, the best SV to
remove is the one with the smallest ||αp||. Note:

• In BPegasos with SV removal with Gaussian kernel, ||Et ||= 1. Thus, from the perspective of (12), all
removal strategies are equivalent.

• In BNorma, the SV with the smallest norm depends on the specific choice of λ and η parameters.
Therefore, the decision of which SV to remove should be made during runtime. It is worth noting that
removal of the smallest SV was the strategy used by Kivinen et al. (2002) and Cheng et al. (2007) to
truncate model weight for Norma.

• In BMP, ||αp||2k(xp,xp) = (η∏t
i=p+1 φi)

2k(xp,xp), because of the projection operation. Knowing that
φi ≤ 1 the optimal removal will select the oldest SV. We note that removal of the oldest SV is the
strategy used in Forgetron (Dekel et al., 2008).

Let us now briefly discuss other kernels, where k(x,x) in general depends on x. In this case, the SV with
the smallest norm needs to be found at runtime. How much of computational overhead this would produce
depends on the particular algorithm. In case of BPegasos, this would entail finding SV with the smallest
k(xp,xp) , while in case of Norma and BMP, it would be SV with the smallest ||αp||2k(xp,xp) value.

6.2 Budget Maintenance through Projection

Let us consider budget maintenance through projection. In this case, before the p-th SV is removed from
the model, it is projected to the remaining SVs to minimize the weight degradation. By considering the
multi-class case, projection can be defined as the solution of the following optimization problem,

min
Δα
∑
i∈Y

∥

∥

∥

∥

∥

α(i)
p Φ(xp)− ∑

j∈It+1−p
Δα(i)

j Φ(x j)

∥

∥

∥

∥

∥

2

, (13)

where Δα(i)
j are coefficients of the projected SV to each of the remaining SVs. After setting the gradient of

(13) with respect to the class-specific column vector of coefficients Δα(i) to zero, one can obtain the optimal
solution as

∀i ∈ Y,Δα(i) = α(i)
p K−1

p kp, (14)

where Kp = [ki j],∀i, j ∈ It+1− p is the kernel matrix, ki j = k(xi,x j), and kp = [kp j]T ,∀ j ∈ It+1− p is the
column vector. It should be observed that inverting Kp can be accomplished in O(B2) time if Woodbury for-
mula (Cauwenberghs and Poggio, 2000) is applied to reuse the results of inversion from previous projections.
Finally, upon removal of the p-th SV, Δα is added to α of the remaining SVs.
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The remaining issue is finding the best among B+ 1 candidate SVs for projection. After plugging (14)
into (13) we can observe that the minimal weight degradation of projecting equals

min ||Δt ||2 = min
p∈It+1

||αp||2
(

kpp−kTp (K−1
p kp)

)

. (15)

Considering there are B+ 1 SVs, evaluation of (15) requires O(B3) time for each budget maintenance step.
As an efficient approximation, we propose a simplified solution that always projects the smallest SV, p =
argmin j∈It+1 ||α j||2k(x j,x j). Then, the computation is reduced to O(B2). We should also note that the space
requirement of projection is O(B2), which is needed to store the kernel matrix and its inverse. Unlike the
recently proposed projection method for multi-class perceptron (Orabona et al., 2009), that projects an SV
only onto the SVs assigned to the same class, our method solves a more general case by projecting an SV
onto all the remaining SVs, thus resulting in smaller weight degradation.

It should be observed that, by selecting the smallest SV to project, it can be guaranteed that weight
degradation of projection is upper bounded by weight degradation of removal for any t, for all three BSGD
variants from Table 1. Therefore, Theorems 1, 2, and 3 remain valid for projection. Since weight degradation
for projection is expected to be, on average, smaller than that for removal, it is expected that the average error
 E would be smaller too, thus resulting in smaller gap in the average instantaneous loss .

6.3 Budget Maintenance through Merging

Problem (12) can also be solved by merging two SVs to a newly created one. The justification is as follows.
For the i-th class weight, if Φ(xm) and Φ(xn) are replaced by

M(i) =
(

α(i)
m Φ(xm)+α(i)

n Φ(xn)
)

/(α(i)
m +α(i)

n ),

(assuming α(i)
m +α(i)

n ,= 0) and the coefficient of M(i) is set to α(i)
m +α(i)

n , then the weight remains unchanged.
The difficulty is that M(i) cannot be used directly because the pre-image of M(i) may not exist. Moreover,
even if the pre-images existed, since every class results in different M(i), it is not clear what M would be the
best overall choice. To resolve these issues, we define the merging problem as finding an input space vector
z whose image Φ(z) is at the minimum distance from the class-specific M(i)’s,

min
z ∑i∈Y ||M

(i)−Φ(z)||2. (16)

Let us assume a radial kernel,8 k(x,x′) = k̃(||x−x′||2), is used. Problem (16) can then be reduced to

max
z ∑i∈Y (M

(i))TΦ(z). (17)

Setting the gradient of (17) with respect to z to zero, leads to solution

z= hxm+(1−h)xn,where h= ∑i∈Y m(i)k̃′(||xm− z||2)
∑i∈Y

(

m(i)k̃′(||xm− z||2)+(1−m(i))k̃′(||xn− z||2)
) , (18)

where m(i) = α(i)
m /(α(i)

m +α(i)
n ), and k̃′(x) is the first derivative of k̃. (18) indicates that z lies on the line

connecting xm and xn. Plugging (18) into (17), the merging problem is simplified to finding

max
h ∑

i∈Y

(

m(i)k1−h(xm,xn)+(1−m(i))kh(xm,xn)
)

,

where we denoted kh(x,x′) = k(hx,hx′). We can use any efficient line search method (e.g., the golden search)
to find the optimal h, which takes O(log(1/ε))time, where ε is the accuracy of the solution. After that, the
optimal z can be calculated using (18).

8. Gaussian kernel k(x,x′) = exp(−σ||x − x′ ||2)is a radial kernel.
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After obtaining the optimal solution z, the optimal coefficient α(i)
z for approximating α(i)

m Φ(xm)+α(i)
n Φ(xn)

by α(i)
z Φ(z) is obtained by minimizing the following objective function

||Δt ||2 ≡min
α(i)z
∑
i∈Y

∥

∥

∥
α(i)
m Φ(xm)+α(i)

n Φ(xn)−α(i)
z Φ(z)

∥

∥

∥

2
. (19)

The optimal solution of (19) is
α(i)
z = α(i)

m k(xm,z)+α(i)
n k(xn,z).

The remaining question is what pair of SVs leads to the smallest weight degradation. The optimal solution
can be found by evaluating merging of all B(B− 1)/2 pairs of SVs, which would require O(B2) time. To
reduce the computational cost, we use the same simplification as in projection (Section 6.2), by fixing m as
the SV with the smallest value of ||αm||2. Thus, the computation is reduced to O(B). We should observe that
the space requirement is only O(B) because there is no need to store the kernel matrix.

It should be observed that, by selecting the smallest SV to merge, it can be guaranteed that weight degra-
dation of merging is upper bounded by weight degradation of removal for any t, for all three BSGD variants
from Table 1. Therefore, Theorems 1, 2, and 3 remain valid for merging. Using the same argument as for
projection,  E is expected to be smaller than that of removal.

6.4 Relationship between Budget and Weight Degradation

When budget maintenance is achieved by projection and merging, there is an additional impact of budget size
on  E. As budget size B grows, the density of SVs is expected to grow. As a result, the weight degradation of
projection and merging is expected to decrease, thus leading to decrease in  E. The specific amount depends
on the specific data set and specific kernel. We evaluate the impact of B on  E experimentally in Table 6 .

7. Experiments
In this section, we evaluate BSGD9 and compare it to related algorithms on 14 benchmark data sets.

7.1 Experimental Setting

We first describe the data sets and the evaluated algorithms.

7.2 Data Sets

The properties (training size, dimensionality, number of classes) of 14 benchmark data sets10 are summarized
in the first row of Tables 3, 4 and 5. Gauss data was generated as a mixture of 2 two-dimensional Gaussians:
one class is from N((0,0), I) and another is from N((2,0),4I). Checkerboard data was generated as a uni-
formly distributed two-dimensional 4× 4 checkerboard with alternating class assignments. Attributes in all
data sets were scaled to mean 0 and standard deviation 1.

7.3 Algorithms

We evaluated several budget maintenance strategies for BSGD algorithms BPegasos, BNorma, and BMP.
Specifically, we explored the following budgeted online algorithms:

• BPegasos+remove: multi-class BPegasos with arbitrary SV removal;11

9. Our implementation of BSDG algorithms is available at www.dabi.temple.edu/˜vucetic/BSGD.html.
10. Adult, Covertype, DNA, IJCNN, Letter, Satimage, Shuttle and USPS are available at www.csie.ntu.edu.tw/˜cjlin/

libsvmtools/datasets/, Banana is available at ida.first.fhg.de/projects/bench/benchmarks.htm, and Waveform data
generator and Pendigits are available at archive.ics.uci.edu/ml/datasets.html.

11. Arbitrary removal is equivalent to removing the smallest one, as discussed in Section 6.1.
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• BPegasos+project: multi-class BPegasos with projection of the smallest SV;

• BPegasos+merge: multi-class BPegasos with merging of the smallest SV;

• BNorma+merge: multi-class BNorma with merging of the smallest SV;

• BMP+merge: multi-class BPMP with merging of the smallest SV.

These algorithms were compared to the following offline, online, and budgeted online algorithms:
Offline algorithms:

• LIBSVM: state-of-art offline SVM solver (Chang and Lin, 2001); we used the 1 vs rest method as the
default setting for the multi-class tasks.

Online algorithms:

• IDSVM: online SVM algorithm which achieves the optimal solution (Cauwenberghs and Poggio,
2000);

• Pegasos: non-budgeted kernelized Pegasos (Shalev-Shwartz et al., 2011);

• Norma: non-budgeted stochastic gradient descent for kernel SVM (Kivinen et al., 2002);

• MP: non-budgeted margin perceptron algorithm (Duda and Hart, 1973) equipped with a kernel func-
tion.

Budgeted online algorithms:

• TVM: SVM-based budgeted online algorithm (Wang and Vucetic, 2010b);

• BPA: budgeted Passive-Aggressive algorithm that uses the projection of an SV to its nearest neighbor
to maintain the budget (the BPANN version in Wang and Vucetic, 2010a);

• MP+stop: margin perceptron algorithm that stops training when the budget is exceeded;

• MP+random: margin perceptron algorithm that removes a random SV when the budget is exceeded;

• Projectron++: margin perceptron that projects an SV only if the weight degradation is below the thresh-
old; otherwise, budget is increased by one SV (Orabona et al., 2009). In our experiments, we set the
Projectron++ threshold such that the number of SVs equals B of the budgeted algorithms at the end of
training.

Gaussian kernel was used in all experiments. For Norma and BNorma, the learning rate parameter η was
set either to 1 (as used by Kivinen et al., 2002) or to 0.5(2+0.5N−0.5)0.5 (as used by Shalev-Shwartz et al.,
2011), whichever resulted in higher cross-validation accuracy. The hyper-parameters (kernel width σ, λ for
Pegasos and Norma, U for BMP, C for LIBSVM, IDSVM, TVM) were selected by 10 fold cross-validation
for each combination of data, algorithm, and budget. We repeated all the experiments five times, where at
each run the training examples were shuffled differently. Mean and standard deviation of the accuracies of
each set of experiments are reported. For Adult, DNA, IJCNN, Letter, Pendigit, Satimage, Shuttle and USPS
data, we used the common training-test split. For other data sets, we randomly selected a fixed number of
examples as the test data in each repetition. We trained all online (budgeted and non-budgeted) algorithms
using a single pass over the training data. All experiments were run on a 3G RAM, 3.2 GHz Pentium Dual
Core. Our proposed algorithms were implemented in MATLAB.

7.4 Experimental Results

The accuracy of different algorithms on test data is reported in Table 3, 4 and 5.12

12. For IDSVM, TVM and BPA, only results on the binary data sets are reported since only binary classification versions of these
algorithms are available.
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Algorithms/Data Banana Gauss Adult IJCNN Checkerb
(4.3K, 2, 2) (10K, 2, 2) (21K,123,2) (50K, 21, 2) (10M, 2, 2)

Offline:
LIBSVM Acc: 90.70±0.06 81.62±0.40 84.29±0.0 98.72±0.10 99.87±0.02
(#SVs): (1.1K) (4.0K) (8.5K) (4.9K) (2.6K100K)
Online(one pass):
IDSVM 90.65±0.04 81.67±0.40 83.93±0.03 98.51±0.03 99.40±0.02

(1.1K) (4.0K) (4.0K8.3K) (3.6K33K) (7.5K51K)
Pegasos 90.48±0.78 81.54±0.25 84.02±0.14 98.76±0.09 99.35±0.04

(1.7K) (6.4K) (9K) (16K) (41K916K)
Norma 90.23±1.04 81.54±0.06 83.65±0.11 93.41±0.15 99.32±0.09

(2.1K) (5.2K) (10K) (33K) (128K730K)
MP 89.40±0.57 78.45±2.18 82.61±0.61 98.61±0.10 99.43±0.11

(1K) (3.4K) (8K) (11K) (22K1M)
Budgeted(one pass):
1-st line: B= 100:
2-nd line: B= 500:
TVM 90.03±0.96 81.56±0.16 82.77±0.00 97.20±0.19 98.90±0.09

91.13±0.68 81.39±0.50 83.82±0.04 98.32±0.14 99.94±0.03
BPA 90.35±0.37 80.75±0.24 83.38±0.56 93.01±0.53 99.01±0.04

91.30±1.18 81.67±0.42 83.58±0.30 96.20±0.35 99.70±0.01
Projection++ 88.36±1.52 76.06±2.25 77.86±3.45 92.36±1.15 96.92±0.45

86.76±1.27 75.17±4.02 79.80±2.11 94.73±1.95 98.24±0.34
MP+stop 88.07±1.38 74.10±3.00 80.00±1.61 91.13±0.18 86.39±1.12

89.77±0.25 79.68±1.19 81.68±0.90 94.60±0.96 95.43±0.43
MP+random 87.54±1.33 75.68±3.68 79.78±0.88 90.22±1.69 84.24±1.39

88.36±0.99 77.26±1.16 80.40±1.03 91.86±1.39 93.12±0.56

BPegasos+remove 85.63±1.25 79.13±1.40 78.84±0.76 90.73±0.31 83.02±2.12
89.92±0.66 80.70±0.61 81.67±0.44 93.30±0.57 91.82±0.22

BPegasos+project 90.21±1.61 81.25±0.34 83.88±0.33 96.48±0.44 97.27±0.72
90.40±0.47 81.33±0.40 83.84±0.07 97.52±0.62 98.08±0.27

BPegasos+merge 90.17±0.61 81.22±0.40 84.55±0.17 97.27±0.72 99.55±0.12
89.46±0.81 81.34±0.38 83.93±0.41 98.08±0.27 99.83±0.08

BNorma+merge 91.53±1.14 81.27±0.37 84.11±0.25 92.69±0.19 99.16±0.23
90.65±1.28 81.37±0.25 83.80±0.21 91.35±0.13 99.72±0.05

BMP+merge 89.37±1.31 79.57±0.90 83.34±0.36 96.67±0.35 98.24±0.13
89.46±0.50 79.38±0.82 82.97±0.26 98.10±0.41 98.79±0.08

Table 3: Comparison of offline, online, and budgeted online algorithms on 5 benchmark binary classification
data sets. Online algorithms (IDSVM, Pegasos, Norma and MP) were early stopped after 10,000
seconds and the number of examples being learned at the time of the early stopping was recorded
and shown in the subscript within the #SV parenthesis. LIBSVM was trained on a subset of 100K
examples on Checkerboard, Covertype and Waveform due to computational issues. Among the
budgeted online algorithms, for each combination of data set and budget, the best accuracy is in
bold, while the accuracies that were not significantly worse ( with p > 0.05 using the one-sided
t-test) are in bold and italic.

7.5 Comparison of Non-budgeted Algorithms

On the non-budgeted algorithm side, as expected, the exact SVM solvers LIBSVM and IDSVM have the
highest accuracy and are followed by Pegasos, MP and Norma, algorithms trained by a single pass of the
training data. The dual-form based LIBSVM and IDSVM have sparser models than the primal-form based
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Algorithms/Data DNA Satimage USPS Pen Letter
(4.3K,180, 3) (4.4K, 36, 6) (7.3K,256,10) (7.5K,16, 10) (16K, 16, 26)

Offline:
LIBSVM 95.32±0.00 91.55±0.00 95.27±0.00 98.23±0.00 97.62±0.00

(1.3K) (2.5K) (1.9K) (0.8K) (8.1K)
Online(one pass):
Pegasos 92.87±0.81 91.29±0.15 94.41±0.11 97.86±0.27 96.28±0.15

(0.7K) (2.9K) (4.9K) (1.4K) (8.2K)
Norma 86.15±0.67 90.28±0.35 93.40±0.33 95.86±0.27 95.21±0.09

(2.0K) (4.4K) (6.6K) (7.0K) (15K)
MP 93.36±0.93 91.23±0.54 94.37±0.04 98.02±0.11 96.41±0.24

(0.8K) (1.6K) (2.2K) (1.9K) (8.2K)
Budgeted(one pass):
1-st line: B= 100:
2-nd line: B= 500:
Projection++ 82.94±3.73 84.47±1.75 81.40±1.26 93.33±0.96 47.23±0.99

90.11±2.11 88.66±0.66 92.02±0.59 95.78±0.75 75.90±0.76
MP+stop 73.56±7.59 82.34±2.43 79.11±2.15 88.27±1.56 41.89±1.16

91.23±0.78 88.68±0.60 90.78±0.58 97.78±0.20 67.32±1.53
MP+random 73.87±4.93 82.51±1.34 78.06±2.01 87.77±2.96 40.93±2.31

87.84±4.84 87.25±1.07 90.10±0.97 97.20±0.68 68.23±1.14

BPegasos+remove 78.63±2.03 81.09±3.21 80.16±1.15 91.84±1.27 41.50±1.49
91.48±1.65 86.77±1.01 89.44±1.05 97.6±0.21 71.97±1.04

BPegasos+ project 86.53±2.03 87.69±0.62 89.67±0.42 96.19±0.85 74.49±1.89
92.26±1.20 88.86±0.2 92.61±0.32 97.58±0.49 87.85±0.49

BPegasos+merge 93.13±1.49 87.53±0.72 91.76±0.24 97.06±0.19 73.63±1.72
92.42±1.24 89.77±0.14 92.91±0.19 97.63±0.14 89.68±0.61

BNorma+merge 75.72±0.25 85.61±0.54 87.44±0.45 90.82±0.42 61.79±1.58
76.25±3.27 86.33±0.40 89.51±0.24 94.60±0.22 75.84±0.35

BMP+merge 93.76±0.31 88.33±0.90 92.31±0.57 97.35±0.16 74.99±1.08
93.84±0.64 90.41±0.22 93.10±0.36 97.86±0.33 88.22±0.36

Table 4: Comparison of offline, online, and budgeted online algorithms on 5 benchmark multi-class data sets

Pegasos, MP, and Norma. Pegasos and MP achieve similar accuracy on most data sets, while Pegasos signif-
icantly outperforms MP on the two noisy data sets Gauss and Waveform. Norma is generally less accurate
than Pegasos and MP, and the gap is larger on IJCNN, Checkerboard, DNA, and Covertype. Additionally,
Norma generates more SVs than its two siblings.

7.6 Comparison of Budgeted Algorithms

On the budgeted side, BPegasos+merge and BMP+merge are the two most accurate algorithms and their accu-
racies are comparable on most data sets. Considering that BPegasos+merge largely outperforms BMP+merge
on Phoneme and Covertype and also the additional computational cost of the projection step in BMP, BPega-
sos+merge is clearly the winner of this category. The accuracy of BPegasos+project is highly competitive to
the above two algorithms, but we should note that projection is costlier than merging. Accuracy of TVM and
BPA is comparable to BPegasos+merge on the binary data sets (with exception of the lower BPA accuracy on
IJCNN). Accuracies of Projectron++, MP+stop, and MP+random are significantly lower. In this subgroup,
Projectron++ is the most successful, showing the benefits of projecting as compared to removal. Consistent
with this result, BSGD algorithms using removal fared significantly worse than those using projection and
merging.
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Algorithms/Data Shuttle Phoneme Covertype Waveform
(43K, 9, 2) (84K,41,48) (0.5M, 54, 7) (2M, 21, 3)

Offline:
LIBSVM 99.90±0.00 78.24±0.05 89.69±0.15 85.83±0.06

(0.3K) (69K) (36K100K) (32K100K)
Online(one pass):
Pegasos 99.90±0.00 79.62±0.16 87.73±0.31 86.50±0.10

(1.2K) (80K80K) (47K136K) (74K192K)
Norma 99.79±0.01 79.86±0.09 82.80±0.33 86.29±0.15

(8K) (84K) (92K92K) (111K189K)
MP 99.89±0.02 79.80±0.12 88.84±0.06 84.36±0.36

(0.4K44K) (78K78K) (56K160K) (83K310K)
Budgeted(one pass):
1-st line: B= 100:
2-nd line: B= 500:
Projection++ 99.55±0.16 21.20±1.24 62.54±3.14 80.75±0.81

99.85±0.08 32.32±1.97 67.32±2.93 83.56±0.54
MP+stop 99.39±0.35 24.86±2.10 56.96±1.59 81.04±2.61

99.90±0.01 33.76±1.01 61.93±1.56 83.76±0.71
MP+random 98.67±0.07 23.29±1.39 55.56±1.37 79.94±1.12

99.90±0.01 31.37±1.91 60.47±1.70 81.61±1.51

BPegasos+remove 99.26±0.54 24.39±1.48 55.64±1.82 78.43±1.79
99.89±0.02 32.10±0.85 62.97±0.55 84.38±0.53

BPegasos+ project 99.81±0.05 43.60±0.10 70.84±0.59 85.63±0.07
99.89±0.02 48.87±0.07 74.94±0.22 86.18±0.06

BPegasos+merge 99.63±0.02 46.49±0.78 74.10±0.30 86.71±0.38
99.89±0.02 51.57±0.30 76.89±0.51 86.63±0.28

BNorma+merge 99.48±0.01 39.66±0.66 71.54±0.53 86.60±0.12
99.80±0.01 45.13±0.43 72.81±0.46 82.03±0.53

BMP+merge 98.99±0.55 42.18±1.94 67.28±3.86 86.02±0.22
99.91±0.01 47.02±0.98 72.31±0.75 86.03±0.17

Table 5: Comparison of offline, online, and budgeted online algorithms on 4 benchmark multi-class data sets

7.7 Best Budgeted Algorithm vs Non-budgeted Algorithms

Comparing the best budgeted algorithm BPegasos+merge with modest budgets of B= 100 and 500 with the
non-budgeted Pegasos and LIBSVM, we can see that it achieves very competitive accuracy. Interestingly,
its accuracy is even larger than the two non-budgeted algorithms on two largest data sets Checkerboard and
Waveform. This indicates noise reduction capability of SV merging. This result is even more significant
as BPegasos+merge has faster training time and learns a much smaller model. On Covertype, Phoneme and
Letter data, the accuracy gap between budget B= 500 and non-budgeted algorithms remained large and it can
be explained by the complexity of these problems; for example, 30% of Covertype examples, 50% of Letter
examples, and 100% of Phoneme examples became SVs in Pegasos. In addition, Letter had 26 class labels
and Phoneme 48. In all 3 data sets, the accuracy clearly improved from B = 100 to 500, which indicates
that extra budget is needed for comparable accuracy. To better illustrate the importance of budget size on
some data sets, Figure 2 shows that on Letter and Covertype, the accuracy of BPegasos+merge approaches
that of Pegasos as the larger budget is used. Interestingly, while 16K examples appear to be sufficient for
convergence on Letter data set, it is evident that Covertype could benefit from a much larger budget than the
available half million labeled examples.
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Figure 2: The accuracy of BPegasos as a function of the budget size
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Figure 3: BPegasos+merge (B = 500): difference in accuracy between a model trained with 5-passes and a
model trained with a single-pass of the data.

7.8 Multi-epoch vs Single-pass Training

For the most accurate budgeted online algorithm BPegasos+merge, we also report its accuracy after allowing
it to make 5 passes through training data. In this scenario, BPegasos should be treated as an offline algorithm.
The accuracy improvement as compared to the single-pass version is reported in Figure 3. We can observe
that multi-epoch training improves the accuracy of BPegasos on most data sets. This result suggests that, if
the training time is not of major concern, multiple accesses to the training data should be used.

7.9 Accuracy Evolution Curves

In Figure 4 we show evolution of accuracy as a function of the number of observed examples on the three
largest data sets. By comparing BPegasos+merge with non-budgeted SVMs and several other budgeted algo-
rithms from Tables 3, 4, and 5, we observe that the accuracy of BPegasos+merge consistently increases with
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Figure 4: Comparison of accuracy evolution curves

data stream size. On Checkerboard, its accuracy closely follows Pegasos and eventually surpasses it after
Pegasos had to be early stopped. IDSVM and its budgeted version TVM exhibit faster accuracy growth ini-
tially, but are surpassed by BPegasos+merge as more training examples become available. On waveform, the
accuracy of BPegasos grows faster than the original non-budgeted version. This behavior can be attributed
to the noise-reduction property of merging. Finally, on Covertype, BPegasos+merge significantly trails its
non-budgeted cousin, and this behavior is consistent with Figure 2.b.
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Figure 5: Accuracy evolution curves of BPegasos for different budget maintenance strategies

In Figure 5 we compare evolution of accuracy of BPegasos for 3 proposed budget maintenance strategies.
As could be seen, removal is inferior to projection and merging on all 3 data sets. On Checkerboard, removal
even causes a gradual drop in accuracy after an initial moderate increase, while on the other two sets the
accuracy fluctuates around a very small value close to that achieved by training on 100 initial examples. On
the other hand, projection and merging result in strong and consistent accuracy increase with data stream
size. Interestingly, on Waveform data, merging significantly outperforms projection, which may point to its
robustness to noise.

3123



WANG, CRAMMER AND VUCETIC

104 105 106 107
100

101

102

103

104

length of data stream

tra
in

in
g 

tim
e 

(s
ec

on
ds

)

 

 
Pegasos
BPegasos+project, B=100
BPegasos+project, B=500
BPegasos+merge, B=100
BPegasos+merge, B=500

Figure 6: Training time curves on Checkerboard data

Legends in both Figures 4 and 5 list total training time of budgeted algorithms at the end of the data stream
(non-budgeted algorithms were early stopped after 10K seconds). Considering that our implementation of all
algorithms except LIBSVM was in Matlab and on a 3GB RAM, 3.2GHz Pentium Dual Core 2 PC, Figure 4
indicates a rather impressive speed of the budgeted algorithms. From Figure 5, it can be seen that merging
and projection are very fast and are comparable to removal.

7.10 Training Time Scalability

Figure 6 presents log-log plot of the training time versus the data stream length on Checkerboard data set
with 10 million examples. Excluding the initial stage, Pegasos had the fastest increase in training time,
confirming the expected O(N2) runtime. On the budgeted side, the runtime time of BPegasos with merging
and projecting increases linearly with data size. However, it is evident that BPegasos with projecting grow
much faster with the budget size than costs of BPegasos with merging. This confirms the expected O(B)
scaling of the merging and O(B2) scaling of the projection version.

7.11 Weight Degradation

Theorems 1, 2, and 3 indicate that lower  E leads to lower gap between the optimal solution and the budgeted
solution. We also argued that  E decreases with budget size through three mechanisms. In Table 6, we show
how the value of  E on Checkerboard data is being influenced by the budget B and, in turn, how the change
in  E influences accuracy. From the comparison of three strategies for two B values (100 and 500), we see as
B gets larger,  E is getting smaller. The results also show that projection and merging achieve significantly
lower value than removal and that lower  E indeed results in higher accuracy.

7.12 Merged vs Projected SVs

In order to gain further insight into the projection and merging-based budget maintenance, in Figure 7 we
compare final SVs generated by these two strategies on the USPS data where classes are 10 digits. We used
budget B= 10 for BPegasos to explore how successful the algorithm was in revealing the 10 digits. Compar-
ing Figures 7.a-c and 7.d-e we can observe that SVs generated by 3 different runs of BPegasos+project did
not represent all 10 digits (e.g., in Run 1, digits 0 and 6 appear twice, while digits 3 and 4 are not represented).
It should be noted that the 10 SVs obtained using projection are identical to 10 actual training examples of
USPS. On the other hand, SVs obtained by merging in all 3 runs represent all 10 digits. The appearance of
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B= 100 B= 500
 E Acc  E Acc

BPegasos+remove 1.402±0.000 79.19±3.05 1.401±0.000 90.32±0.40
BPegasos+project 0.052±0.007 99.25±0.06 0.007±0.001 99.66±0.10
BPegasos+merge 0.037±0.006 99.55±0.14 0.002±0.001 99.74±0.08

Table 6: Comparison of accuracy and averaged weight degradation for three versions of BPegasos as a func-
tion of budget size B on 10M Checkerboard examples, using same parameters (λ = 10−4, kernel
width σ= 0.0625).

(a) BPegasos+project(run 1)

(b) BPegasos+project(run 2)

(c) BPegasos+project(run 3)

(d) BPegasos+merge(run 1)

(e) BPegasos+merge(run 2)

(f) BPegasos+merge(run 3)

Figure 7: The plot of SVs on USPS data. (Each row corresponds to a different run. 3 different runs using
BPegasos+project (B = 10) with average accuracy 74%; 3 different runs using BPegasos+merge
(B= 10) with average accuracy 86%.)

each SV in Figure 7.d-e is blurred and is a result of many mergings of the original labeled examples. This
example is a useful illustration of the main difference between projection and merging, and it can be helpful
in selecting the appropriate budget maintenance strategy for a particular learning task.

8. Conclusion
We proposed a framework for large-scale kernel SVM training using BSGD algorithms. We showed that bud-
geted versions of three popular online algorithms, Pegasos, Norma, and Margin Perceptron, can be studied
under this framework. We obtained theoretical bounds on their performance that indicate that decrease in
BSGD accuracy is closely related to the model degradation due to budget maintenance. Based on the analy-
sis, we studied budget maintenance strategies based on removal, projection, and merging. We experimentally
evaluated the proposed BSGD algorithms in terms of accuracy, and training time and compared them with a
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number of offline and online, as well as non-budgeted, and budgeted alternatives. The results indicate that
highly accurate and compact kernel SVM classifiers can be trained on high-throughput data streams. Partic-
ularly, the results show that merging is a highly attractive budget maintenance strategy for BSGD algorithms
as it results in relative accurate classifiers while achieving linear training time scaling with support vector
budget and data size.
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Appendix A. Proof of Theorem 1
We start by showing the following technical lemma.
Lemma 1

• Let Pt be as defined in (3).

• Let C be a closed convex set with radius U.

• Let w1, ...,wN be a sequence of vectors such that w1 ∈ C and for any t > 1 wt+1 ← ∏C(wt −ηt∇t −
Δt), ∇t is the (sub)gradient of Pt at wt , ηt is a learning rate function, Δt is a vector, and ∏C(w) =
argminw′∈C ||w′ −w||, is a projection operation that projects w to C.

• Assume ||Et ||≤ 1.

• Define Dt = ||wt −u||2− ||wt+1−u||2 as the relative progress toward u at t-th round.

Then, the following inequality holds for any u ∈C

1
N

N

∑
t=1

Pt(wt)−
1
N

N

∑
t=1

Pt(u)≤
1
N

(

N

∑
t=1

Dt
2ηt
−

N

∑
t=1

λ
2
||wt −u||2 +

(λU+2)2

2

N

∑
t=1

ηt

)

+2U  E. (20)

Proof of Lemma 1. First, we rewrite wt+1←∏C(wt −ηt∇t −Δt) by treating Δt as the source of error in the
gradient wt+1←∏C(wt −ηt∂t), where we defined ∂t = ∇t +Et . Then, we lower bound Dt as

Dt = ||wt −u||2− ||∏C(wt −ηt∂t)−u||2
≥1 ||wt −u||2− ||wt −ηt∂t −u||2
=−η2

t ||∂t ||2 +2ηt∇Tt (wt −u)+2ηtETt (wt −u)
≥2 −η2

t (λU+1+1)2 +2ηt
(

Pt(wt)−Pt(u)+ λ
2 ||wt −u||

2
)

−4ηt ||Et ||U.

(21)

In ≥1, we use the fact that since C is convex, ||∏C(a)−b||≤ ||a−b|| for all b ∈C and a. In ≥2, ||∂t || is
bounded as

||∂t ||≤ ||λwt + ytΦ(xt)||+ ||Et ||≤ λU+1+1,

and, by applying the property of strong convexity, it follows

∇Tt (wt −u)≥ Pt(wt)−Pt(u)+λ||wt −u||2/2,

since Pt is λ-strongly convex function w.r.t. ||w||2/2 and ∇t is the subgradient of Pt(w) at wt (according to
Lemma 1 by Shalev-Shwartz and Singer (2007). Bound ||wt − u|| ≤ 2U holds since both ||wt || and u are
upper bounded byU .
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Dividing both sides of inequality (21) by 2ηt and rearranging, we obtain

Pt(wt)−Pt(u)≤
Dt
2ηt
−
λ
2
||wt −u||2 +

ηt(λU+1+1)2

2
+2||Et ||U. (22)

Summing over all t in (22) and dividing two sides of inequality by N leads to the stated bound.
Proof of Theorem 1. wt+1 is bounded as

||wt+1||= ||(1−ηtλ)wt +ηt ytΦ(xt)−Δt ||
≤ ||(1−ηtλ)wt ||+ηt(1+ ||Et ||)≤3 2/λ.

In ≤3 we used the definition of ηt and recursively bounded ||wt ||.
Using the fact that ||w∗|| ≤ 1/

√
λ (Shalev-Shwartz et al., 2011), both ||wt || and ||w∗|| can be bounded

by constant U defined in (6). Thus the update rule wt+1 ← ∏C(wt −ηt∇t −Δt) in Lemma 1 is reduced to
wt+1← wt −ηt∇t −Δt .

Plugging ηt ≡ 1/(λt) into RHS of inequality (20) in Lemma 1 and replacing u with ||w∗||, the first and
second term in the parenthesis on the RHS are bounded as

N
∑
t=1

Dt
2ηt −

N
∑
t=1

λ
2 ||wt −w

∗||2

≤ 1
2

(

( 1
η1
−λ)||w1−w∗||2 +

N
∑
t=2

( 1
ηt
− 1

ηt−1
−λ)||wt −w∗||2− 1

ηN
||wN+1−w∗||2

)

=− 1
2ηN ||wN+1−w∗||2 ≤ 0.

(23)

According to the divergence rate of harmonic series, the third term on the RHS in (20) is bounded by,

(λU+2)2

2

N

∑
t=1

ηt =
(λU+2)2

2λ

N

∑
t=1

1
t
≤

(λU+2)2

2λ
(ln(N)+1). (24)

With boundedU value, combining (23), (24) with (20) leads to (7).

Appendix B. Proof of Theorem 2
wt+1 is bounded as

||wt+1||= ||(1−ηtλ)wt +ηt ytΦ(xt)−Δt ||
≤ ||(1−ηtλ)wt ||+ηt(1+ ||Et ||)
≤ ||(1−ηtλ)wt ||+2ηt .

Since ||w1|| = 0, the bound ||wt+1|| ≤ 2/λ holds for all t (Kivinen et al., 2002). Using the fact that ||w∗|| ≤
1/
√
λ (Shalev-Shwartz, Singer & Srebro, 2011), both ||wt || and ||w∗|| are bounded by constantU defined in

(6). Thus the update rule wt+1←∏C(wt −ηt∇t −Δt) in Lemma 1 is reduced to wt+1← wt −ηt∇t −Δt .
Replacing u by w∗ in (20), the first term at RHS in (20) can be bounded as

N
∑
t=1

Dt
2ηt =

N
∑
t=1

1
2ηt (||wt −w

∗||2− ||wt+1−w∗||2)

= 1
2η1

||w1−w∗||2 + 1
2

N
∑
t=2

( 1
ηt
− 1

ηt−1
)||wt −w∗||2− 1

2ηN ||wN+1−w∗||2

≤ 4U2
2

(

1
η1

+
N
∑
t=2

( 1
ηt
− 1

ηt−1
)

)

= 2U2
ηN

= 2U2√N
η .

(25)

The third term at RHS in (20) can be bounded according to the series divergence rate as

(λU+2)2

2 ∑N
t=1ηt ≤

η(λU+2)2

2
(2
√
N−1). (26)

With boundedU value, combing (25), (26) with (20) and bounding the negative terms by zero lead to (8).
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Appendix C. Proof of Theorem 3
Replacing u by w∗ in (20), the first term at RHS in (20) can be bounded as

N
∑
t=1

Dt
2ηN =

N
∑
t=1

1
2ηt

(

||wt −w∗||2− ||wt+1−w∗||2
)

= 1
2η1

||w1−w∗||2 + 1
2

N
∑
t=2

( 1
ηt
− 1

ηt−1
)||wt −w∗||2− 1

2ηN ||wN+1−w∗||2

= 1
2η ||w1−w∗||2− 1

2η ||wN+1−w∗||2 ≤ U2
2η ,

using the fact ηt = η and λ = 0. Bounding the second term in RHS of (20) by zero (since it is always
negative), Lemma 1 directly leads to (9).
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Abstract
Classification algorithms are frequently used on data with a natural hierarchical structure. For in-
stance, classifiers are often trained and tested on trial-wise measurements, separately for each sub-
ject within a group. One important question is how classification outcomes observed in individual
subjects can be generalized to the population from which the group was sampled. To address this
question, this paper introduces novel statistical models that are guided by three desiderata. First, all
models explicitly respect the hierarchical nature of the data, that is, they are mixed-effects models
that simultaneously account for within-subjects (fixed-effects) and across-subjects (random-effects)
variance components. Second, maximum-likelihood estimation is replaced by full Bayesian infer-
ence in order to enable natural regularization of the estimation problem and to afford conclusions
in terms of posterior probability statements. Third, inference on classification accuracy is com-
plemented by inference on the balanced accuracy, which avoids inflated accuracy estimates for
imbalanced data sets. We introduce hierarchical models that satisfy these criteria and demonstrate
their advantages over conventional methods using MCMC implementations for model inversion and
model selection on both synthetic and empirical data. We envisage that our approach will improve
the sensitivity and validity of statistical inference in future hierarchical classification studies.
Keywords: beta-binomial, normal-binomial, balanced accuracy, Bayesian inference, group stud-
ies

1. Introduction

Classification algorithms are frequently applied to data whose underlying structure is hierarchical.
One example is the domain of brain-machine interfaces, where classifiers are used to decode in-
tended actions from trial-wise measurements of neuronal activity in individual subjects (Sitaram
et al., 2008). Another example is spam detection, where a classifier is trained separately for each
user to predict content classes from high-dimensional document signatures (Cormack, 2008). A
third example is the field of neuroimaging, where classifiers are used to relate subject-specific mul-
tivariate measures of brain activity to a particular cognitive or perceptual state (Cox and Savoy,
2003). In all of these scenarios, the data have a two-level structure: they comprise n experimental
trials (or e-mails, or brain scans) collected from each member of a group of m subjects (or users, or
patients). For each subject, the classifier is trained and tested on separate partitions of the trial-wise
data. This gives rise to a set of true labels and a set of predicted labels, separately for each subject
within the group. The typical question of interest for studies as those described above is: What
is the accuracy of the classifier in the general population from which the subjects were sampled?
This paper is concerned with such group-level inference on classification accuracy for hierarchically
structured data.

In contrast to a large literature on evaluating classification performance in non-hierarchical con-
texts (see Langford, 2005, for a review), relatively little attention has been devoted to evaluating
classification algorithms in hierarchical (i.e., group) settings (Goldstein, 2010; Olivetti et al., 2012).
Rather than treating classification outcomes obtained in different subjects as samples from the same
distribution, a hierarchical setting requires us to account for the fact that each subject itself has been
sampled from a heterogeneous population (Beckmann et al., 2003; Friston et al., 2005). Thus, any
approach to evaluating classification performance should account for two independent sources of un-
certainty: fixed-effects variance (i.e., within-subjects variability) that results from uncertainty about
the true classification accuracy in any given subject; and random-effects variance (i.e., between-
subjects variability) that results from the distribution of true accuracies in the population from which
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subjects were drawn. Taking into account both types of uncertainty requiresmixed-effects inference.
This is a central theme of the models discussed in this paper.

There are several commonly used approaches to performance evaluation in hierarchical classifi-
cation studies.1 One approach rests on the pooled sample accuracy, that is, the number of correctly
predicted trials divided by the number of trials in total, across all subjects. Statistical significance
can then be assessed using a simple binomial test that is based on the likelihood of obtaining the
observed number of correct trials by chance (Langford, 2005). The second commonly used method
considers the sample accuracy obtained in each individual subject. The method then (explicitly or
implicitly) performs a one-tailed t-test across subjects to assess whether the true accuracy is greater
than expected by chance (e.g., Harrison and Tong, 2009; Krajbich et al., 2009; Knops et al., 2009;
Schurger et al., 2010).

Both of these commonly used methods suffer from limitations. First of all, they neglect the
hierarchical nature of the experiment. The first method represents a fixed-effects approach and
disregards variability across subjects. The second method considers random effects, but does not
explicitly model the uncertainty associated with subject-specific accuracies. Moreover, both meth-
ods use maximum-likelihood estimation which has a tendency to underestimate the variance of the
distribution and thus may show suboptimal predictive performance in relation to unseen data (i.e.,
overfitting; cf. Bishop, 2007, pp. 27–28, 147). Finally, both above methods assess performance
in terms of accuracy, which may lead to inflated estimates for imbalanced data sets and thus to
false conclusions about the significance with which the algorithm has performed better than chance
(Chawla et al., 2002; Japkowicz and Stephen, 2002; Akbani et al., 2004; Wood et al., 2007; Zhang
and Lee, 2008; Demirci et al., 2008; Brodersen et al., 2010a).

This paper introduces hierarchical models which implement full Bayesian mixed-effects analy-
ses of classification performance that can flexibly deal with different performance measures.2 These
models overcome the limitations of the ritualized approaches described above: First, the models in-
troduced here explicitly represent the hierarchical structure of the data, simultaneously accounting
for fixed-effects and random-effects variance components. Second, maximum-likelihood estima-
tion is replaced by a Bayesian framework which enables regularized estimation and model selection
with conclusions in terms of posterior probability statements (Gelman et al., 2003). Third, our ap-
proach permits inference on both the accuracy and the balanced accuracy, a performance measure
that avoids bias when working with imbalanced data sets (Brodersen et al., 2010a).

The paper is organized as follows. Section 2 describes both existing and novel models for infer-
ring the accuracy and balanced accuracy of classification algorithms in the context of hierarchical
data sets. Section 3 provides a set of illustrative applications of these models on both synthetic and
empirical data. Section 4 reviews the key characteristics of these models and discusses their role in
future classification studies.

2. Theory

In a hierarchical setting, a classifier predicts the class label of each of n trials, separately for each
subject from a group. Here, we deal with the most common situation, that is, binary classification,

1. This paper focuses on parametric models for performance evaluation. Nonparametric methods are not considered in
detail here.

2. All models discussed in this paper have been implemented in MATLAB and can be downloaded from: http://
mloss.org/software/view/407/.
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where class labels are taken from {−1,+1}, denoted as ‘positive’ and ‘negative’ trials. (The ex-
tension to a multiclass setting is described in the Discussion.) Typically, the algorithm is trained
and tested on separate partitions of the data, resulting in k ∈ {0 . . .n} correct and n− k incorrect
predictions. This procedure is repeated for each subject j within a group of size m.

This setting raises three principal questions. First, what is the classification accuracy at the
group level? This is addressed by inference on the mean classification accuracy in the population
from which subjects were drawn. Second, what is the classification accuracy in each individual
subject? Addressing this question by considering each subject in turn is possible but potentially
wasteful, since within-subject inference may benefit from across-subject inference (Efron and Mor-
ris, 1971). Third, which of several classification algorithms is best? This question can be answered
by estimating how well an algorithm’s classification performance generalizes to new data. In par-
ticular, we wish to predict how well a trial-wise classifier will perform ‘out of sample’, that is, on
trials from an unseen subject drawn from the same population as the one underlying the presently
studied group.

This section considers different models for answering these questions. To keep the paper self-
contained, we begin by briefly reviewing the well-known beta-binomial model (Pearson, 1925;
Skellam, 1948; Lee and Sabavala, 1987). This introduces most of the concepts we require for
subsequently introducing two new models designed to support hierarchical Bayesian inference: the
twofold beta-binomial model and the bivariate normal-binomial model.

2.1 Inference on the Accuracy Using the Beta-Binomial Model

A classification algorithm, applied to n trials from a single subject, produces a sequence of classifi-
cation outcomes y1, . . . ,yn which are either correct (1) or incorrect (0). Analyses of these outcomes
are typically based on the assumption that, on any given trial independently, the classifier makes a
correct prediction with probability 0 ≤ π ≤ 1, and an incorrect one with probability 1−π. Thus,
conditional on π, outcomes are given as a series of independent and identically distributed (i.i.d.)
Bernoulli trials,

p(yi | π) = Bern(yi | π) = πyi(1−π)1−yi ∀i= 1 . . .n.

The i.i.d. assumption derives from the assumption that the observations in the test set are i.i.d.
themselves. This assumption is not always made in the context of cross-validation, but is easily
justified when the data are only split once, without any cross-validation (cf. Discussion).

2.1.1 THE BETA-BINOMIAL MODEL

The i.i.d. assumption about individual classification outcomes allows us to summarize a sequence of
outcomes in terms of the number of correctly predicted trials, k, and the total number of test trials, n.
Thus, classification outcomes are converted into a random variable k=∑n

i=1 yi which represents the
number of successes over n trials. Since the sum of several Bernoulli variables follows a binomial
distribution, the number of successes is given by:

p(k | π,n) = Bin(k | π,n) =
(

n
k

)

πk(1−π)n−k (1)

In this setting, Bayesian inference differs from classical maximum-likelihood estimation in that it
assesses the plausibility of all possible values of π before and after observing actual data, rather than
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Figure 1: Models for inference on classification accuracies. This illustration shows graphical repre-
sentations of different models for classical and Bayesian inference on classification accu-
racies, as discussed in Sections 2.1 and 2.2. Blank circles correspond to latent variables,
filled circles represent observed data.

viewing π as a fixed parameter which is to be estimated. (Note that n depends on the experimental
design and is not subject to inference.) It is precisely this problem that formed the basis of the first
Bayesian analyses published by Bayes and Price (1763) and Laplace (1774). A natural choice for
the prior distribution p(π) is the Beta distribution,

p(π | α0,β0) = Beta(π | α0,β0) =
Γ(α0 +β0)

Γ(α0)Γ(β0)
πα0−1(1−π)β0−1, (2)

where α0,β0 > 0 are hyperparameters, and the Gamma function Γ(·) is required for normalization.
Multiplying (1) with (2) gives rise to an overdispersed form of the binomial distribution known as
the beta-binomial model (Figure 1; Pearson, 1925; Skellam, 1948; Lee and Sabavala, 1987).

In the absence of prior knowledge about π, we use a noninformative prior by setting α0 =
β0 = 1, which turns the Beta distribution into a uniform distribution over the [0,1] interval. The
hyperparameters α0 and β0 can be interpreted as virtual prior counts of α0 − 1 correct and β0 − 1
incorrect trials. Thus, a uniform prior corresponds to zero virtual prior observations of either kind.3

Because the Beta prior in (2) is a conjugate prior for the binomial likelihood in (1), the posterior
distribution p(π | k) has the same functional form as the prior,

p(π | k) = Beta(π | αn,βn), (3)

with updated observation counts αn = α0 + k and βn = β0 +n− k.
In our context, classification is carried out separately for each subject within a group, hence the

available data are k j out of n j correct predictions for each subject j= 1 . . .m. One might be tempted
to concatenate these data, form group summaries k = ∑m

j=1 k j and n = ∑m
j=1 n j, and proceed to

inference on π. However, this would treat π as a fixed effect in the population and disregard how the
data were generated. For example, when there are many heterogeneous subjects with few trials each
and a single subject with many trials, the data from this single subject would unduly dominate the

3. For a discussion of alternative priors, see Gustafsson et al. (2010).
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inference at the group level. Put differently, concatenation falsely assumes zero between-subjects
variability.

This limitation is resolved by explicitly modelling both within-subjects (fixed-effects) and
between-subjects (random-effects) variance components in a hierarchical model comprising two
levels. At the level of individual subjects, for each subject j, the number of correctly classified trials
k j can be modelled as

p(k j | π j,n j) = Bin(k j | π j,n j) =
(

n j
k j

)

π
k j
j (1−π j)n j−k j , (4)

where n j is the total number of trials in subject j, and π j represents the fixed but unknown accuracy
that the classification algorithm achieves on that subject. (Note that our notation will suppress
n j unless this introduces ambiguity.) At the group level, the model must account for variability
across subjects. This is achieved by modelling subject-wise accuracies as drawn from a population
distribution described by a Beta density,

p(π j | α,β) = Beta(π j | α,β) =
Γ(α+β)
Γ(α)Γ(β)

πα−1
j (1−π j)β−1, (5)

such that α and β characterize the population as a whole. This step is formally identical with the
Beta prior placed on the accuracy in (2) which represents uncertainty about π before observing the
outcome k. Equation (5) states that uncertainty about any particular subject is best quantified by our
knowledge about variability in the population, that is, the distribution of π j over subjects (which, as
described below, can be learnt from the data). Formally, a particular subject’s π j is drawn from a
population characterized by α and β: subject-specific accuracies are assumed to be i.i.d., conditional
on the population parameters α and β.

To describe our uncertainty about the population parameters, we use a diffuse prior on α and
β which ensures that the posterior will be dominated by the data. One option would be to assign
uniform densities to both the prior expected accuracy α/(α+β) and the prior virtual sample size
α+β, using logistic and logarithmic transformations to put each on a (−∞,∞) scale; but this prior
would lead to an improper posterior density (Gelman et al., 2003). An alternative is to put a uniform
density on the prior expected accuracy α/(α+ β) and the inverse root of the virtual sample size
(α+β)−1/2 (Gelman et al., 2003). This combination corresponds to the prior

p̃(α,β) ∝ (α+β)−5/2 (6)

on the natural scale. However, although this prior leads to a proper posterior density, it is improper
itself (as indicated by the tilde) and thus prevents computation of the model evidence, that is, the
marginal likelihood of the data given the model, which will later become important for model com-
parison. We resolve this limitation by using a proper (i.e., integrable and normalized) variant,

p(α,β) =
3
4
(α+β+1)−5/2 (7)

which represents a special case of the generalization of (6) proposed by Everson and Bradlow
(2002). This prior can be rewritten in an unnormalized, reparameterized form as

p̃
(

ln
(

α
β

)

, ln(α+β)

)

= αβ(α+β+1)−5/2,
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which will be useful in the context of model inversion (Gelman et al., 2003). Two equivalent graph-
ical representations of this model (using the formalism of Bayesian networks; Jensen and Nielsen,
2007) are shown in Figures 1a and 1b.

2.1.2 MODEL INVERSION

Inverting the beta-binomial model allows us to infer on (i) the posterior population mean accuracy,
(ii) the subject-specific posterior accuracies, and (iii) the posterior predictive accuracy. We propose
a numerical procedure for model inversion which is described in detail in Appendix A. Below, we
restrict ourselves to a brief conceptual summary.

First, to obtain the posterior density over the population parameters α and β we need to evaluate

p(α,β | k1:m) =
p(k1:m | α,β) p(α,β)∫∫

p(k1:m | α,β) p(α,β)dαdβ
(8)

with k1:m := (k1,k2, . . . ,km). Under i.i.d. assumptions about subject-specific accuracies π j we obtain
the likelihood function

p(k1:m | α,β) =
m

∏
j=1

∫
p(k j | π j) p(π j | α,β) dπ j (9)

=
m

∏
j=1

Bb(k j | α,β),

where Bb(·) denotes the beta-binomial distribution. Since the integral on the right-hand side of (8)
cannot be evaluated in closed form, we resort to a Markov chain Monte Carlo (MCMC) procedure.
Specifically, we use a Metropolis algorithm (Metropolis and Ulam, 1949; Metropolis et al., 1953) to
sample from the variables at the top level of the model and obtain a set {(α̂(τ), β̂(τ))} for τ= 1 . . .c.
This set allows us to obtain samples from the posterior population mean accuracy,

p
(

α
α+β

∣

∣

∣

∣

k1:m

)

.

We can use these samples in various ways, for example, to obtain a point estimate of the population
mean accuracy using the posterior mean,

1
c

c

∑
τ=1

α̂(τ)

α̂(τ) + β̂(τ)
.

We could also numerically evaluate the posterior probability that the mean classification accuracy
in the population does not exceed chance,

p= Pr
(

α
α+β

≤ 0.5
∣

∣

∣

∣

k1:m

)

which can be viewed as a Bayesian analogue of a classical p-value. We shall refer to this quantity as
the (posterior) infraliminal probability of the classifier. It lives on the same [0,1] scale as a classical
p-value, but has a much more intuitive (and less error-prone) interpretation: rather than denoting
the probability of observing the data (or more extreme data) under the ‘null hypothesis’ of a chance
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classifier (classical p-value), the infraliminal probability represents the (posterior) probability that
the classifier operates at or below chance. We will revisit this aspect in the Discussion.

Finally, we could compute the posterior probability that the mean accuracy in one population is
greater than in another,

p= Pr

(

α(1)

α(1) +β(1)
>

α(2)

(α(2) +β(2))

∣

∣

∣

∣

∣

k1:m(1) ,k1:m(2)

)

.

The second question of interest concerns the classification accuracies in individual subjects. Specif-
ically, we wish to infer on p(π j | k1:m) to characterize our posterior uncertainty about the true clas-
sification accuracy in subject j. Given a pair of samples (α(τ),β(τ)), we can obtain samples from
subject-specific posteriors simply by drawing from

Beta
(

π(τ)j

∣

∣

∣
α(τ) + k j, β(τ) +n j− k j

)

.

Because samples for α and β are influenced by data k1 . . .km from the entire group, so are the
samples for π j. In other words, each subject’s individual posterior accuracy is informed by what we
have learned about the group as a whole, an effect known as shrinking to the population. It ensures
that each subject’s posterior mean lies between its sample accuracy and the group mean. Subjects
with fewer trials will exert a smaller effect on the group and shrink more, while subjects with more
trials will have a larger influence on the group and shrink less.

The third question of interest is how one classifier compares to another. To address this, we must
assess how well the observed performance generalizes across subjects. In this case, we are typically
less interested in the average effect in the group but more in the effect that a new subject from the
same population would display, as this estimate takes into account both the population mean and
the population variance. The expected performance is expressed by the posterior predictive density,

p(π̃ | k1:m),

in which π̃ denotes the classification accuracy in a new subject drawn from the same population as
the existing group of subjects with latent accuracies π1, . . . ,πm (cf. Figure 1b).4 Samples for this
density can easily be obtained using the samples α(τ) and β(τ) from the posterior population mean.5

The computational complexity of a full Bayesian approach can be diminished by resorting to an
empirical Bayes approximation (Deely and Lindley, 1981). This approach, however, is not without
criticism (Robert, 2007). Here, we will keep our treatment fully Bayesian.

2.2 Inference on the Balanced Accuracy Using the Twofold Beta-Binomial Model

A well-known phenomenon in binary classification is that a training set consisting of different num-
bers of representatives from either class may result in a classifier that is biased towards the majority
class. When applied to a test set that is similarly imbalanced, this classifier yields an optimistic ac-
curacy estimate. In an extreme case, the classifier might assign every single test case to the majority

4. The term ‘posterior predictive density’ is sometimes exclusively used for densities over variables that are unobserved
but are observable in principle. Here, we use the term to refer to the posterior density of any unobserved variable,
whether observable in principle (such as k̃) or not (such as π̃).

5. If data were indeed obtained from a new subject (represented in terms of k̃ correct predictions in ñ trials), then
p(π̃ | k1:m,n1:m) would be used as a prior to compute the posterior p(π̃ | k̃, ñ,k1:m,n1:m).
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class, thereby achieving an accuracy equal to the proportion of test cases belonging to the majority
class.

In previous literature (Chawla et al., 2002; Japkowicz and Stephen, 2002; Akbani et al., 2004;
Wood et al., 2007; Zhang and Lee, 2008; Demirci et al., 2008; Brodersen et al., 2010a), this has moti-
vated, amongst other strategies, the use of a different performance measure: the balanced accuracy,
defined as the arithmetic mean of sensitivity and specificity, or the average accuracy obtained on
either class,

φ=
1
2
(

π++π−
)

. (10)

where π+ and π− denote classification accuracies on positive and negative trials, respectively. If
the classifier performs equally well on either class, this term reduces to the conventional accuracy
(i.e., the number of correct predictions divided by the total number of predictions). In contrast, if
the conventional accuracy is above chance only because the classifier takes advantage of an imbal-
anced test set, then the balanced accuracy, as appropriate, will drop to chance. We can evaluate the
balanced accuracy in a hierarchical setting by extending the beta-binomial model, as described next.

2.2.1 THE TWOFOLD BETA-BINOMIAL MODEL

One way of inferring on the balanced accuracy is to duplicate the beta-binomial model and apply
it separately to the two classes (Figure 2a). In other words, we consider the number of correctly
predicted positive trials k+ and the number of correctly predicted negative trials k−, and express our
uncertainty about φ (10) before and after observing k+ and k−. In a single-subject setting, as in (2),
we can place separate noninformative Beta priors on π+ and π−,

p(π+ | α+
0 ,β

+
0 ) = Beta(π+ | α+

0 ,β
+
0 ),

p(π− | α−
0 ,β

−
0 ) = Beta(π− | α−

0 ,β
−
0 ), (11)

where α+
0 = β+0 = α−

0 = β−0 = 1. Inference on class-specific accuracies π+ and π− could be done
in exactly the same way as discussed in the previous section. Here, however, we are primarily
interested in the posterior density of the balanced accuracy,

p(φ | k+,k−) = p
(

1
2
(π++π−)

∣

∣

∣

∣

k+,k−
)

.

The balanced accuracy is thus a new random variable defined via two existing random variables
from our model, π+ and π−. Even in a single-subject setting, a closed form for its posterior dis-
tribution is not available, and so we must resort to a numerical approximation (Brodersen et al.,
2010a). For this, we first note that the distribution of the sum of the two class-specific accuracies,
s := π++π−, is the convolution of the distributions for π+ and π−,

p
(

s | α+
n ,β

+
n ,α

−
n ,β

−
n
)

=
∫ s

0
pπ+(s− z | α+

n ,β
+
n ) pπ−(z | α−

n ,β
−
n ) dz,

where the subscripts of the posterior distributions pπ+(·) and pπ−(·) serve to remove ambiguity. We
can now obtain the posterior distribution of the balanced accuracy by replacing the sum of class-
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(a) Beta-binomial model 
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Figure 2: Models for inference on balanced classification accuracies. This figure shows two mod-
els for Bayesian mixed-effects inference on the balanced accuracy, as discussed in Sec-
tions 2.2 and 2.3. The models are based upon different assumptions and parameterizations
and can be compared by Bayesian model comparison.

specific accuracies by their arithmetic mean,

p(φ | α+
n ,β

+
n ,α

−
n ,β

−
n ) =

∫ 2φ

0
pπ+(2φ− z | α+

n ,β
+
n ) pπ−(z | α−

n ,β
−
n ) dz

=
∫ 2φ

0
Beta(2φ− z | α+

n ,β
+
n ) Beta(z | α−

n ,β
−
n ) dz.

This expression can be approximated by a simple one-dimensional grid integration over the [0,1]
interval. In the same way, we can obtain approximations to the posterior mean, the posterior mode,
or a posterior probability interval.

In a group setting, one can expand the above model in precisely the same way as for the simpler
case of the classification accuracy in Section 2.1. Specifically, we define diffuse priors on the class-
specific population parameters α+ and β+ as well as α− and β−, in analogy to (7). A graphical
representation of this model is shown in Figure 2a.

2.2.2 MODEL INVERSION

Given that the twofold beta-binomial model consists of two independent instances of the simple
beta-binomial model considered in Section 2.1 (Figure 1b), statistical inference follows the same
approach as described previously (see Section 3.3 for an application). For instance, we can obtain
the posterior population parameters, p(α+,β+ | k+1:m) and p(α−,β− | k−1:m) using the same sampling
procedure as summarized in Section 2.1, except that we are now applying the procedure twice. The
two sets of samples can then be averaged in a pairwise fashion to obtain samples from the posterior
mean balanced accuracy in the population,

p
(

φ | k+1:m,k
−
1:m
)

,
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where we have defined

φ :=
1
2

(

α+

α++β+
+

α−

α−+β−

)

.

Similarly, we can average pairs of posterior samples from π+j and π−j to obtain samples from the
posterior densities of subject-specific balanced accuracies,

p
(

φ j
∣

∣ k+1:m,k
−
1:m
)

.

Using the same idea, we can obtain samples from the posterior predictive density of the balanced
accuracy that can be expected in a new subject from the same population,

p
(

φ̃
∣

∣ k+1:m,k
−
1:m
)

.

2.3 Inference on the Balanced Accuracy Using the Bivariate Normal-Binomial Model

In the previous section, we saw that the twofold beta-binomial model enables mixed-effects in-
ference on the balanced accuracy. However, it may not always be optimal to treat accuracies on
positive and negative trials separately (cf. Leonard, 1972). That is, if π+ and π− were related in
some way, the model should reflect this. For example, one could imagine a group study in which
some subjects exhibit a more favourable signal-to-noise ratio than others, leading to well-separated
classes. In this case, an unbiased classifier yields high accuracies on either class in some subjects
and lower accuracies in others, inducing a positive correlation between class-specific accuracies.
On the other hand, within each subject, any classification algorithm faces a trade-off between per-
forming better on one class at the expense of the other class. Thus, any variability in setting this
threshold leads to negatively correlated class-specific accuracies, an argument that is formally re-
lated to receiver-operating characteristics. Moreover, if the degree of class imbalance in the data
varies between subjects, classifiers might be biased in different ways, again leading to negatively
correlated accuracies.

In summary, π+ and π− may not always be independent. We therefore turn to an alternative
model for mixed-effects inference on the balanced accuracy that embraces potential dependencies
between class-specific accuracies (Figure 2b).

2.3.1 THE BIVARIATE NORMAL-BINOMIAL MODEL

The bivariate normal-binomial model no longer assumes that π+ and π− are drawn from separate
populations. Instead, we use a bivariate population density whose covariance structure defines the
form and extent of the dependency between π+ and π−.

For this combined prior, we use a bivariate normal density. Because this density has infinite
support, we do not define it on the accuracies themselves but on their log odds. In this way, each
subject j is associated with a two-dimensional vector of class-specific accuracies,

ρ j =

(

ρ+j
ρ−j

)

=

(

σ−1(π+j )

σ−1(π−j )

)

∈ R
2,
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Figure 3: Distributions of class-specific accuracies in the bivariate normal-binomial model. In the
bivariate normal-binomial model (Section 2.3), class-specific accuracies are assumed to
follow a bivariate logit-normal distribution. This figure illustrates the flexibility of this
distribution. Specifically, (a) the standard parameterization is compared to a distribution
with (b) an increased accuracy on one class but not the other, (c) an increased population
heterogeneity, and (d) a correlation between class-specific accuracies. The x- and y-axis
represent the accuracies on positive and negative trials, respectively.

where σ−1(π) := lnπ− ln(1− π) represents the logit (or inverse-logistic) transform. Conversely,
class-specific accuracies can be recovered using

π j =

(

π+j
π−j

)

=

(

σ(ρ+j )

σ(ρ−j )

)

∈ [0,1]2,

where σ(ρ) := 1/(1+ exp(−ρ)) denotes the sigmoid (or logistic) transform. Thus, we can replace
the two independent Beta distributions for π+ and π− in (11) by a single bivariate Gaussian prior,

p(ρ j | µ,Σ) =N 2(ρ j | µ,Σ), (12)

in which µ ∈ R2 represents the population mean and Σ ∈ R2×2 encodes the covariance structure
between accuracies on positive and negative trials. The resulting density on π ∈ R2 is a bivariate
logit-normal distribution (Figure 3).

In analogy with the prior placed on α and β in Section 2.1, we now specify a prior for the pop-
ulation parameters µ and Σ. Specifically, we seek a diffuse prior that induces a weakly informative
bivariate distribution over [0,1]× [0,1]. We begin by considering the family of conjugate priors for
(µ,Σ), that is, the bivariate normal-inverse-Wishart distribution,

p(µ,Σ | µ0,κ0,Λ0,ν0)

∝ |Σ|−(
ν0
2 +2) exp

(

−
1
2

tr(Λ0Σ−1)−
κ0
2
(µ−µ0)

TΣ−1(µ−µ0)

)

.

In this distribution, the population hyperparameters Λ0 and ν0 specify the scale matrix and the
degrees of freedom, while the parameters µ0 and κ0 represent the prior mean and the number of prior
measurements on the Σ scale, respectively (Gelman et al., 2003). A more convenient representation
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can be obtained by factorizing the density into

p(Σ | Λ0,ν0) = Inv-Wishartν0(Σ | Λ−1
0 ) and

p(µ | Σ,µ0,κ0) =N 2(µ | µ0,Σ/κ0).

In order to illustrate the flexibility offered by the bivariate normal density on ρ, we derive p(π |
µ,Σ) in closed form (Appendix B) and then compute the bivariate density on a two-dimensional grid
(Figure 3).

For the purpose of specifying a prior, we seek hyperparameters µ0, κ0, Λ0, and ν0 that induce a
diffuse bivariate distribution over π. This can be achieved using

µ0 = (0,0)T, κ0 = 1, Λ0 =

(

1 0
0 1

)−1
, ν0 = 5.

2.3.2 MODEL INVERSION

In contrast to the twofold beta-binomial model discussed in the previous section, the bivariate
normal-binomial model makes it difficult to sample from the posterior densities over model pa-
rameters using a Metropolis implementation. In order to sample from p(µ,Σ | k+1:m,k

−
1:m), we would

have to evaluate the likelihood p(k+1:m,k
−
1:m | µ,Σ); this would require us to integrate out π+ and π−,

which is difficult.
A simpler strategy is to design a Gibbs sampler (Geman and Geman, 1984) to draw from the

joint posterior p(ρ1:m,µ,Σ | k+1:m,k
−
1:m), from which we can derive samples for the conditional poste-

riors p(ρ1:m | k+1:m,k
−
1:m) and p(µ,Σ | k+1:m,k

−
1:m). In contrast to a Metropolis scheme, Gibbs sampling

requires only full conditionals, that is, distributions of one latent variable conditioned on all other
variables in the model (Gelfand and Smith, 1990). Whenever a full conditional is not available,
we can sample from it using a Metropolis step. Thus, we combine a Gibbs skeleton with inter-
leaved Metropolis steps to sample from the posterior p(ρ1:m,µ,Σ | k+1:m,k

−
1:m). See Section 3.3 for an

application.
First, population parameter estimates can be obtained by sampling from the posterior density

p(µ,Σ | k+1:m,k
−
1:m) using a Metropolis-Hastings approach. Second, subject-specific accuracies are

estimated by first sampling from p(ρ j | k+1:m,k
−
1:m) and then applying a sigmoid transform to obtain

samples from the posterior density over subject-specific balanced accuracies, p(φ j | k+1:m,k
−
1:m). Fi-

nally, the predictive density p(φ̃ | k+1:m,k
−
1:m) can be obtained using an ancestral-sampling step on

the basis of µ(τ) and Σ(τ) followed by a sigmoid transform. As before, we use the obtained samples
in all three cases to compute approximate posterior probability intervals or Bayesian p-values. A
detailed description of this algorithm can be found in Appendix C.

2.4 Bayesian Model Selection

While the twofold beta-binomial model assumes independent class-specific accuracies, the bivariate
normal-binomial model relaxes this assumption and allows for correlations between accuracies.
This raises two questions. First, given a particular data set, which model is best at explaining
observed classification outcomes? And second, can we combine the two models to obtain posterior
inferences that integrate out uncertainty about which model is best? Both questions can be answered
using the marginal likelihood, or model evidence, that is, the probability of the data given the model,

3145



BRODERSEN, MATHYS, CHUMBLEY, DAUNIZEAU, ONG, BUHMANN AND STEPHAN

after integrating out the parameters:

p(k+1:m,k
−
1:m |M) =

∫
p(k+1:m,k

−
1:m | θ) p(θ |M) dθ

Here, θ serves as a placeholder for all model parameters and p(θ |M) represents its prior distribution
under a given model M. Under a flat prior over models, Bayes’ theorem indicates that the model
with the highest evidence has the highest posterior probability given the data:

p(M | k+1:m,k
−
1:m) ∝ p(k+1:m,k

−
1:m |M)

In practice, the model evidence is usually replaced by the log model evidence, which is monotoni-
cally related but numerically advantageous.

Concerning the first model described in this section, the twofold beta-binomial model Mbb, the
log model evidence is given by

ln p(k+1:m,k
−
1:m |Mbb)

= ln
∫
p(k+1:m | π+1:m) p(π

+
1:m) dπ+1:m+ ln

∫
p(k−1:m | π−1:m) p(π

−
1:m) dπ−1:m (13)

= ln

〈

m

∏
j=1

p(k+j | π+j )

〉

π+1:m

+ ln

〈

m

∏
j=1

p(k−j | π−j )

〉

π−1:m

(14)

where we have omitted the conditional dependence on Mbb in (13) and (14).6 The expression can
be approximated by

≈ ln
1
c

c

∑
τ=1

m

∏
j=1

Bin
(

k+j
∣

∣

∣
π+(τ)
j

)

+ ln
1
c

c

∑
τ=1

m

∏
j=1

Bin
(

k−j
∣

∣

∣
π−(τ)
j

)

,

where π+(τ)
j and π−(τ)

j represent independent samples from the prior distribution over subject-
specific accuracies. They can be obtained using ancestral sampling, starting from the prior over
α and β, as given in (7).

In the case of the bivariate normal-binomial model Mnb, the model evidence no longer sums
over model partitions as in (13), and so the approximation is derived differently,

ln p(k+1:m,k
−
1:m |Mnb)

= ln
∫
p
(

k+1:m,k
−
1:m
∣

∣ ρ1:m
)

p(ρ1:m |Mnb) dρ1:m (15)

≈ ln
1
c

c

∑
τ=1

m

∏
j=1

Bin
(

k+j
∣

∣

∣
σ
(

ρ(τ,1)j

))

Bin
(

k−j
∣

∣

∣
σ
(

ρ(τ,2)j

))

, (16)

for which we provide additional details in Appendix C (24). Having computed the model evidences,
one can proceed to Bayesian model selection (BMS) by evaluating the log Bayes factor,

lnBFbb,nb = ln p(k+1:m,k
−
1:m |Mbb)− ln p(k+1:m,k

−
1:m |Mnb), (17)

6. One could also express the model evidence in terms of an expectation with respect to p(α,β |Mbb).
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representing the evidence in favour of the beta-binomial over the normal-binomial model. By con-
vention, a log Bayes factor greater than 3 is considered strong evidence in favour of one model over
another, whereas a log Bayes factor greater than 5 is referred to as very strong evidence (Kass and
Raftery, 1995). The best model can then be used for posterior inferences on the mean accuracy in
the population or the predictive accuracy in a new subject from the new population.

The second option to make use of the model evidences of competing models is Bayesian model
averaging (Cooper and Herskovits, 1992; Madigan and Raftery, 1994; Madigan et al., 1996). Under
this view, we do not commit to a particular model but average the predictions made by all of them,
weighted by their respective posteriors. In this way, we obtain a mixture expression for the posterior
of the mean accuracy in the population,

p
(

φ
∣

∣ k+1:m,k
−
1:m
)

=∑
M
p
(

φ
∣

∣ k+1:m,k
−
1:m,M

)

p
(

M
∣

∣ k+1:m,k
−
1:m
)

.

Similarly, we can obtain the posterior predictive distribution of the balanced accuracy in a new
subject from the same population,

p
(

φ̃
∣

∣ k+1:m,k
−
1:m
)

=∑
M
p
(

φ̃
∣

∣ k+1:m,k
−
1:m,M

)

p
(

M
∣

∣ k+1:m,k
−
1:m
)

.

The computational complexity of the above stochastic approximations is considerable, and so
it can sometimes be useful to resort to a deterministic approximation instead, such as variational
Bayes (see Discussion). While we do not consider this approach in detail here, it does provide a
helpful perspective on interpreting the model evidence. Specifically, the model evidence can be
approximated by a variational lower bound, the negative free-energy F . In the case of the beta-
binomial model for instance, this quantity can be written as

F = 〈ln p(k1:m | α,β,π1:m)〉q−KL [q(α,β,π1:m) ‖ p(α,β,π1:m)] .

The first term is the log-likelihood of the data expected under the approximate posterior q(α,β,π1:m);
it represents the goodness of fit (or accuracy) of the model. The second term is the Kullback-Leibler
divergence between the approximate posterior and the prior; it represents the complexity of the
model. This complexity term increases with the number of parameters, their inverse prior covari-
ances, and with the deviation of the posterior from the prior that is necessary to fit the data. Thus, the
free-energy approximation shows that the model evidence incorporates a trade-off between explain-
ing the observed data (i.e., goodness of fit) and remaining consistent with our prior (i.e., simplicity
or negative complexity). In other words, the model evidence encodes how well a model strikes
the balance between explaining the data and remaining simple (Pitt and Myung, 2002; Beal, 2003;
Stephan et al., 2009).

Classical approaches differ from the Bayesian framework presented above in several ways. For
a comparison between classical and Bayesian inference, see Appendix D.

3. Applications

This section illustrates the practical utility of the Bayesian models discussed in the previous sec-
tion and compares them to inference obtained through classical (frequentist) statistics. We begin
by simulating classification outcomes to highlight the key features of Bayesian mixed-effects infer-
ence (Sections 3.1 and 3.2). We then contrast inference on accuracies with inference on balanced
accuracies (Section 3.3). Finally, we illustrate the application of our approach to synthetic data
(Section 3.4) as well as empirical data obtained from an imaging experiment (Section 3.5).
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3.1 Inference on the Population Mean and the Predictive Accuracy

In a first experiment, we simulated classification outcomes for a group of 20 subjects with 100 trials
each. Outcomes were generated using the beta-binomial model with a population mean of 0.75 and
a population variance of 0.02 (i.e., α ≈ 6.28 and β ≈ 2.09, corresponding to a population standard
deviation of 0.141; Figure 4).

Raw data, that is, the number of correct predictions within each subject, are shown in Figure 4a.
Their empirical sample accuracies are shown in Figure 4b, along with the ground-truth density of the
population accuracy. Inverting the beta-binomial model, using the MCMC procedure of Section 2.1
(Figure 4c), and examining the posterior distribution over the population mean accuracy showed
that more than 99.9% of its mass was above 50%, in agreement with the fact that the true population
mean was above chance (Figure 4d).

We also used this simulation to illustrate the differences between a Bayesian mixed-effects cen-
tral 95% posterior probability interval, a fixed-effects probability interval, and a random-effects
confidence interval (Figure 4e). All three schemes arrive at the same conclusion with respect to
the population mean being above chance. However, while the random-effects interval (red) is very
similar to the proposed mixed-effects interval (black), the fixed-effects interval (yellow) displays
too small a variance as it disregards the important between-subjects variability.

We finally considered the predictive posterior distribution over the accuracy that would be ob-
served if we were to acquire data from a new subject (Figure 4f). This posterior did not allow for the
conclusion that, with a probability larger than 0.95, the accuracy in a new subject would be above
chance. This result is driven by the large heterogeneity in the population, inducing a dispersed pre-
dictive density. Importantly, the dispersion of the predictive density would not vanish even in the
limit of an infinite number of subjects. This is in contrast to the dispersion of the posterior over the
population mean, which becomes more and more precise with an increasing amount of data.

Inference was based on 100 000 samples, generated using 8 parallel chains. We used several
standard approaches to convergence evaluation. In particular, we considered trace plots for visual
inspection of mixing behaviour and convergence to the target distributions. In addition, we moni-
tored the average ratio of within-chain variance to between-chain variance, which was bigger than
0.995. In other words, the variances of samples within and between chains were practically indistin-
guishable. The Metropolis rejection rate was 0.475, thus ensuring an appropriate balance between
exploration (of regions with a lower density) and exploitation (of regions with a higher density). Fi-
nally, we assessed the uncertainty inherent in MCMC-based quantities such as log Bayes factors by
computing standard deviations across repetitions, which led us to use 105 or 106 samples for each
computation (see Section 3.3). All subsequent applications were based on the same algorithmic
settings.

In frequentist inference, a common way of representing the statistical properties of a test is to es-
timate the probability of rejecting the null hypothesis at a fixed threshold (e.g., 0.05) under different
regimes of ground truth, which leads to the concept of power curves. Here, we adopted this fre-
quentist perspective to illustrate the properties of Bayesian mixed-effects inference on classification
performance (Figure 5).

Specifying a true population mean of 0.5 and variance of 0.001 (standard deviation 0.0316), we
generated classification outcomes, in the same way as above, for a synthetic group of 20 subjects
with 100 trials each. Inverting the beta-binomial model, we inferred whether the population mean
was above chance by requiring more than 95% of the posterior probability mass of the population
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Figure 4: Inference on the population mean and the predictive accuracy. (a) Classification outcomes
were generated for 20 subjects using the beta-binomial model. Each subject is fully char-
acterized by the number of correctly classified trials (black) out of a given set of 100
trials (grey). (b) Empirical sample accuracies (blue) and their underlying population dis-
tribution (green). (c) Inverting the beta-binomial model yields samples from the posterior
distribution over the population parameters, visualized using a nonparametric (bivariate
Gaussian kernel) density estimate (contour lines). (d) The posterior about the population
mean accuracy, plotted using a kernel density estimator (black), is sharply peaked around
the true population mean (green). The upper 95% of the probability mass are shaded
(grey). Because the lower bound of the shaded area is greater than 0.5, the population
mean can be concluded to be above chance. (e) While the central 95% posterior inter-
val (black) and the classical 95% confidence interval (red) look similar, the two intervals
are conceptually very different. The fixed-effects interval (orange) is overly optimistic as
it disregards between-subjects variability. (f) The posterior predictive distribution over
π̃ represents the posterior belief of the accuracy expected in a new subject (black). Its
dispersion reflects irreducible population heterogeneity.

mean to be greater than 0.5, that is, by requiring an infraliminal probability of less than 5%. We
repeated this process 1 000 times and counted how many times the population mean was deemed
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Figure 5: Inference on the population mean under varying population heterogeneity. The figure
shows Bayesian estimates of the frequentist probability of above-chance classification
performance, as a function of the true population mean, separately for three different level
of population heterogeneity (a,b,c). Each data point is based on 1 000 simulations, each of
which used 10 000 samples from every subject-specific posterior to make a decision. The
figure shows that, in this setting, frequentist inference based on t-tests (red) agrees with
Bayesian inference based on the beta-binomial model (black). By contrast, a fixed-effects
approach (orange) offers invalid population inference as it disregards between-subjects
variability; at a true population mean of 0.5, the hypothesis of chance-level performance
is rejected more frequently than prescribed by the test size. Each data point is plotted in
terms of the fraction of above-chance conclusions and a 95% central posterior interval,
based on a Beta model with a flat prior. Points are joined by a sigmoidal function that
was constrained to start at 0 and end at 1, with two remaining degrees of freedom. Where
the true population mean exceeds 0.5, the graphs reflect the empirical sensitivity of the
inference scheme. Its empirical specificity corresponds to the vertical distance between
the graphs and 1 at the point where the population mean is 0.5. Insets show the distribu-
tion of the true underlying population accuracy (green) for a population mean accuracy
of 0.75.

greater than chance. We then varied the true population mean and plotted the fraction of decisions
for an above-chance classifier as a function of population mean (Figure 5a). At a population mean
of 0.5, the vertical distance between the data points and 1 represents the empirical specificity of the
test (which was designed to be 1−α= 0.95). At population means above 0.5, the data points show
the empirical sensitivity of the test, which grows rapidly with increasing population mean. In this
setting, the inferences that one would obtain by a frequentist t-test (red) are in excellent agreement
with those afforded by the proposed beta-binomial model (black). Since the population variance was
chosen to be very low in this initial simulation, the inferences afforded by a fixed-effects analysis
(yellow) prove very similar as well; but this changes drastically when increasing the population
variance to more realistic levels, as described below.

One important issue in empirical studies is the heterogeneity of the population. We studied
the effects of population variance by repeating the above simulations with different variances (Fig-
ures 5b,c). As expected, an increase in population variance reduced statistical sensitivity. For
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Figure 6: Inadequate inferences provided by fixed-effects and random-effects models. (a) The sim-
ulation underlying this figure represents the case of a small heteroscedastic group with
varying numbers of trials across subjects. Classification outcomes were generated in the
same way as in the simulation underlying Figure 5a. (b) The (mixed-effects) posterior
density of the population mean (black) provides a good estimate of ground truth (green).
(c) A central 95% posterior probability interval, based on the density shown in (b), com-
fortably includes ground truth. By contrast, a fixed-effects interval (orange) is overop-
timistic as it disregards between-subjects variability. The corresponding random-effects
confidence interval (red) is similar to the mixed-effects interval but lacks asymmetry, thus
inappropriately including accuracies above 100% (red dashed line).

example, given a fairly homogeneous population with a true population mean accuracy of 60% and
a variance of 0.001 (standard deviation 0.0316; Figure 5a), we can expect to correctly infer above-
chance performance in more than 99.99% of all cases. By contrast, given a more heterogeneous
population with a variance of 0.05 (standard deviation ≈ 0.22), the fraction of correct conclusions
drops to 61%; in all other cases we would fail to recognize that the classifier was performing better
than chance.

The above simulations show that a fixed-effects analysis (yellow) becomes an invalid procedure
to infer on the population mean when the population variance is non-negligible. In more than the
prescribed 5% of simulations with a true population mean of 0.5, the procedure concluded that
the population mean was above chance. This is because a fixed-effects analysis yields too small
variances on the population mean and therefore too easily makes above-chance conclusions.

All above simulations were based on a group of 20 subjects with 100 trials each. This emulated
a setting as it frequently occurs in practice, for example, in neuroimaging data analyses. We re-
peated the same analysis as above on a sample data set from a second simulation setting (Figure 6).
This setting was designed to represent the example of a small heterogeneous group with varying
numbers of trials across subjects. Specifically, we generated data for 8 subjects, half of which had
20 trials, and half of which had only 5 trials. Classification outcomes were generated using the beta-
binomial model with a population mean of 0.85 and a population variance of 0.02 (corresponding
to a population standard deviation of 0.14; Figure 6a).

The example shows that the proposed beta-binomial model yields a posterior density with the
necessary asymmetry; it comfortably includes the true population mean (Figure 6b). By contrast,
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the fixed-effects probability interval (based on a Beta density) is overly optimistic. Finally, the
random-effects confidence interval is similar to the mixed-effects interval but lacks the necessary
asymmetry, including accuracies above 100% (Figure 6c).

3.2 Inference on Subject-Specific Accuracies

In the Bayesian models of this paper, classification accuracies of individual subjects are represented
by a set of latent variables π1, . . . ,πm. A consequence of hierarchical Bayesian inference is that
such subject-specific variables are informed by data from the entire group. Effectively, they are
shrunk to the group mean, where the amount of shrinkage depends on the subject-specific posterior
uncertainty.

To illustrate this, we generated synthetic classification outcomes and computed subject-specific
posterior inferences (Figure 7). This simulation was based on 45 subjects overall; 40 subjects were
characterized by a relatively moderate number of trials (n = 20) while 5 subjects had even fewer
trials (n= 5). The population accuracy had a mean of 0.8 and a variance of 0.01 (standard deviation
0.1). Using this data set, we computed subject-specific central 95% posterior probability intervals
and sorted them in ascending order by subject-specific sample accuracy (Figure 7a). The plot shows
that, in each subject, the posterior mode (black) represents a compromise between the observed
sample accuracy (blue) and the population mean (0.8). This compromise in turn provides a better
estimate of ground truth (green) than sample accuracies by themselves. This effect demonstrates a
key difference between the two quantities: subject-specific posteriors are informed by data from the
entire group, whereas sample accuracies are based on the data from an individual subject.

Another way of demonstrating the shrinkage effect is by illustrating the transition from ground
truth to sample accuracies (with its increase in dispersion) and from sample accuracies to posterior
means (with its decrease in dispersion). This shows how the high variability in sample accuracies
is reduced, informed by what has been learned about the population (Figure 7b). Notably, because
the amount of shrinking depends on each subject’s posterior uncertainty, the shrinking effect may
modify the order of subjects, as indicated by crossing lines. Here, subjects with only 5 trials were
shrunk more than subjects with 20 trials.

In a next step, we examined power curves, systematically changing the true population accu-
racy and repeating the above simulation 1 000 times (Figure 7c). Within a given simulation, we
concluded that a subject-specific accuracy was above chance if more than 95% of its posterior
probability mass was above 0.5. We binned subjects across all simulations into groups of similar
accuracies and plotted the fraction of above-chance decisions against these true accuracies, contrast-
ing the Bayesian model with a conventional t-test. As shown in Figure 7c, t-tests falsely detected
above-chance subject-specific accuracies in about 5% of the cases, in agreement with the intended
test size. By contrast, our Bayesian scheme was considerably more sensitive and detected above-
chance accuracy in subjects whose true accuracy was within a small bin around 0.5. This reflected
the fact that the Bayesian procedure incorporated what had been learned about the population when
deciding on individual subjects. That is, a population mean well above chance (here: 0.8) made it
more likely that individual subjects performed above chance as well, even in the presence of a low
sample accuracy.

In addition to enabling decisions that take into account information about the group, the poste-
rior distributions of subject-specific accuracies also yield more precise point estimates. To illustrate
this, we simulated 1 000 data sets in the same way as above. Within each simulation, we compared
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Figure 7: Inference on subject-specific accuracies. (a) Classification outcomes were generated for
a synthetic heterogeneous group of 45 subjects (40 subjects with 20 trials each, 5 subjects
with 5 trials each). All data were generated using the beta-binomial model (population
mean 0.8, standard deviation 0.1). The figure shows subject-specific posterior means
and central 95% posterior probability intervals (black), sample accuracies (blue if based
on 20 trials, red if based on 5 trials), and true subject-specific accuracies (green) as a
function of subject index, sorted in ascending order by sample accuracy. Whenever a
subject’s sample accuracy is very low or very high in relation to the remaining group, the
Bayesian posterior interval is shrunk to the population. (b) Another way of visualizing
the shrinking effect is to contrast the increase in dispersion (as we move from ground
truth to sample accuracies) with the decrease in dispersion (as we move from sample ac-
curacies to posterior means) enforced by the hierarchical model. Shrinking changes the
order of subjects (when sorted by posterior mean as opposed to by sample accuracy) as
the amount of shrinking depends on the subject-specific (first-level) posterior uncertainty.
Subjects with just 5 trials (red) are shrunk more than subjects with 20 trials (blue). (c)
Based on 1 000 simulations, the plot shows the fraction of simulations in which a sub-
ject’s accuracy was concluded to be above chance, based on a Bayesian posterior interval
(black) or a frequentist t-test (red). In contrast to classical inference, the Bayesian pro-
cedure incorporates a desirable shift towards the population in making decisions about
individual group members. (d) Across the same 1 000 simulations, a Bayes estimator,
based on the posterior means of subject-specific accuracies (black), was superior to both
a classical ML estimator (blue) and a James-Stein estimator (red).

three different ways of obtaining an estimator for each subject’s accuracy: (i) a Bayes estimator
(posterior mean of the subject-specific accuracy); (ii) a maximum-likelihood estimator (sample ac-
curacy); and (iii) a James-Stein estimator, with a similar shrinkage effect as the Bayes estimator
but less explicit distributional assumptions (Figure 7d). For each estimator, we computed the mean
squared error (or risk) across all subjects, averaged across all simulations. We then repeated this
process for different population means. We found that the James-Stein estimator outperformed the
ML estimator for low accuracies. However, both estimators were dominated by (i.e., inferior to) the
Bayes estimator which provided the lowest risk throughout.

It is important to keep in mind that the above simulations are based on synthetic classification
outcomes which fulfil the assumptions of the normal-binomial model by design, in particular the
assumption of logit-normally distributed subject-specific accuracies and the assumption of condi-
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tional independence given the population parameters. For empirical data, these assumptions may
not always hold and so posterior inferences, including the shrinkage effect, may be suboptimal.
This highlights the importance of model checking when using the models presented in this paper in
practical applications.

3.3 Inference on the Balanced Accuracy

The balanced accuracy is a more useful performance measure than the accuracy, especially when a
classifier was trained on an imbalanced test set and may thus exhibit bias. In order to illustrate the
relative utility of these two measures in our Bayesian models, we simulated an imbalanced data set,
composed of 20 subjects with 100 trials each, where each subject had between 70 and 90 positive
trials (drawn from a uniform distribution) and between 10 and 30 negative trials.

An initial simulation specified a high population accuracy on the positive class and a low accu-
racy on the negative class, with equal variance in both (Figure 8a,b). These accuracies were chosen
such that the classifier would perform at chance on a hypothetical balanced sample. This allowed
us to mimic the commonly observed situation in which a classifier takes advantage of the imbalance
in the data and preferably predicts the majority class. We independently inverted three competing
models: (i) the beta-binomial model to infer on the classification accuracy; and the (ii) twofold
beta-binomial and (iii) bivariate normal-binomial models to infer on the balanced accuracy. As ex-
pected, the beta-binomial model falsely suggested high evidence for above-chance classification. In
contrast, the twofold beta-binomial and normal-binomial models correctly indicated the absence of
a statistical relation between data and class labels (Figure 8c).

These characteristics were confirmed across a large set of simulations. As expected, inference on
the accuracy falsely concluded above-chance performance, especially in the presence of a significant
degree of class imbalance. By contrast, inference on the balanced accuracy did not incorrectly reject
the hypothesis of the classifier operating at the level of chance more often than prescribed by the
test size (Figure 8d).

We compared the two models for inference on the balanced accuracy by means of Bayesian
model comparison. Using 106 samples with Equation (17), we obtained a log Bayes factor of 33.2
in favour of the twofold beta-binomial model (i.e., under a flat prior over models, the posterior be-
lief in the beta-binomial model is greater than 99.99%). This result represents very strong evidence
(Kass and Raftery, 1995) that the beta-binomial model provided a better explanation of the synthetic
classification outcomes than the normal-binomial model. This finding is plausible since no correla-
tion structure among class-specific accuracies was imposed in the simulation; thus, in this case, the
beta-binomial model is a better model than the more complex normal-binomial model.

To assess the sampling-induced uncertainty about this result, we repeated the computation of the
log Bayes factor 100 times. We obtained a sample standard deviation of 8.0, that is, the uncertainty
was small in relation to the overall strength of evidence. By comparison, when using only 103

samples instead of 106, the standard deviation increased to 25.5. We used 106 samples for all
subsequent analyses.

We repeated the main analysis above 1 000 times and plotted the fraction of above-chance con-
clusions against the degree of class imbalance. Note that the resulting curve is not a power curve in
the traditional sense, as its independent variable is not the true (balanced) accuracy but the accuracy
on positive trials, that is, an indicator of the degree of class imbalance. Figure 8d shows that the
simple beta-binomial model provides progressively misleading conclusions with class imbalance at
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Figure 8: Inference on the balanced accuracy. (a) The simulation underlying this figure mimics an
imbalanced data set which has led the classification algorithm to acquire a bias in favour
of the majority class. The plot shows, for each subject, the number of correctly classified
positive (green) and negative (red) trials, as well as the respective total number of trials
(grey). (b) Visualizing sample accuracies separately for the two classes gives rise to a
two-dimensional plot, in which the true positive rate on the y-axis and the true negative
rate on the x-axis represent the accuracies on positive and negative trials, respectively.
The underlying true population distribution is represented by a bivariate Gaussian kernel
density estimate (contour lines). The plot shows that the population accuracy is high on
positive trials and low on negative trials. (c) Central 95% posterior probability intervals
based on three models: the simple beta-binomial model for inference on the population
accuracy; and the twofold beta-binomial model as well as the bivariate normal-binomial
model for inference on the balanced accuracy. The true mean balanced accuracy in the
population is at chance (green). It is accurately estimated by models inferring on the bal-
anced accuracy (red, blue). Bayesian model selection yielded very strong evidence (Kass
and Raftery, 1995) in favour of the normal-binomial model (posterior model probability
= 97.7%). (d) Probability of falsely detecting above-chance performance, using different
inference schemes. The true balanced accuracy is 0.5. The x-axis represents the degree
of class imbalance.

the group level (cf. Figure 5). In contrast, both schemes for inference on the balanced accuracy
made above-chance conclusions in less than 5% of the simulations, as intended by their test size.

All models considered in this paper are based on diffuse priors designed in such a way that
posterior inferences are clearly dominated by the data. However, one might ask to what extent such
inferences depend on the exact form of the prior. To examine this dependence, we carried out a
sensitivity analysis in which we considered the infraliminal probability of the posterior population
mean as a function of prior moments (Figure 9). We found that inferences were extremely robust, in
the sense that the influence of the prior moments on the resulting posterior densities was negligible in
relation to the variance resulting from the fact that we are using a (stochastic) approximate inference
method for model inversion. In particular, varying the constant (originally: 1) in Equation (7)
for the beta-binomial prior left the infraliminal probability of the posterior accuracy unaffected
(Figure 9a,b). Similarly, varying µ0, κ0, or ν0 in the normal-binomial model had practically no
influence on the infraliminal probability of the posterior balanced accuracy (Figure 9c,d,e).
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Figure 9: Sensitivity analysis. This figure illustrates the dependence of posterior inferences on the
exact form of the priors proposed in this paper. Each graph shows the infraliminal prob-
ability of the population mean accuracy (i.e., the posterior probability mass below 0.5)
as a function of a particular parameter of the prior distribution used for model inversion.
(a,b) Same data sets as shown those shown in Figures 4a and 6a, but with a slightly
lower population mean of 0.7. Inferences on the population accuracy are based on the
beta-binomial model. (c,d,e) Same data set as shown in Figure 8a. Inferences on the
population balanced accuracy are based on the bivariate normal-binomial model.

3.4 Application to Synthetic Data

All experiments described so far were based on classification outcomes sampled from the beta-
binomial or normal-binomial model. This ensured, by construction, that the distributional assump-
tions underlying the models were fulfilled. To illustrate the generic applicability of our approach
when its assumptions are not satisfied by construction, we applied models for mixed-effects infer-
ence to classification outcomes obtained on synthetic data features for a group of 20 subjects with
100 trials each (Figure 10). In addition to probing the models’ robustness with regard to distribu-
tional assumptions, this allows one to examine what correlations between class-specific accuracies
may be observed in practice.

Synthetic data were generated using a two-level sampling approach that reflected the hierar-
chical nature of group studies. We specified a population distribution, sampled subject-specific
means and variances from it, and then used these to generate trial-specific feature vectors. In a
first simulation (Figure 10, top row), we generated 50 positive trials and 50 negative trials for each
individual subject j by drawing one-dimensional feature vectors from two normal distributions,
N (xi j | µ+j ,σ j) and N (xi j | µ−j ,σ j), respectively. The moments of these subject-specific distribu-
tions, in turn, were drawn from a population distribution, using N (µ+j | 1

2 ,
1
2) and µ−j = −µ+j for

the means, and Ga−1(σ j | 10, 1
10) for the variance. The normal distribution and the inverse Gamma

distribution are conjugate priors for the mean and variance of a univariate normal distribution and,
thus, represent natural choices for the population distribution.

To obtain classification outcomes, separately for each subject, we trained and tested a linear
support vector machine (SVM), as implemented by Chang and Lin (2011), using 5-fold cross-
validation. Classification outcomes are shown in Figure 10a, in which the numbers of correctly
classified trials are illustrated separately for the two classes and for each subject. The same data are
represented in terms of sample accuracies in Figure 10b (blue dots). To illustrate ground truth, we
repeated the above procedure (of generating synthetic data and applying an SVM) 1 000 times and
added a contour plot of the resulting distribution of sample accuracies in the same figure. This dis-
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Figure 10: Application to synthetic data. (a) Classification outcomes obtained by applying a lin-
ear support vector machine to synthetic data, using 5-fold cross-validation. (b) Sample
accuracies on positive (TPR) and negative classes (TNR) show the positive correlation
between class-specific accuracies (blue). The underlying population distribution is rep-
resented by a bivariate Gaussian kernel density estimate (contour lines). (c) Central 95%
posterior probability intervals, resulting from inversion of the beta-binomial model for
inference on the population mean accuracy as well as the twofold beta-binomial model
(bb) and the bivariate normal-binomial model (nb) for inference on the population mean
balanced accuracy (all black). A frequentist 95% confidence interval (red) is shown for
comparison. Bayesian model selection yielded very strong evidence (Kass and Raftery,
1995) in favour of the normal-binomial model (posterior model probability = 99.99%).
(d) A second simulation was based on a synthetic heterogeneous group with varying
numbers of trials. (e) In this case, the classifier acquires a strong bias in favour of the
majority class. (f) As a result, inference on the accuracy is misleading; the balanced
accuracy is a much better performance indicator, whether based on the beta-binomial
(bb) or normal-binomial model (nb).

tribution was symmetric with regard to class-specific accuracies while these accuracies themselves
were strongly positively correlated, as one would expect from a linear classifier tested on perfectly
balanced data sets.

3157



BRODERSEN, MATHYS, CHUMBLEY, DAUNIZEAU, ONG, BUHMANN AND STEPHAN

We applied all three models discussed in this paper for inference: the beta-binomial model for
inference on the accuracy (Section 2.1), and the twofold beta-binomial and normal-binomial model
for inference on the balanced accuracy (Sections 2.2 and 2.3). Central 95% posterior probability
intervals about the population mean are shown in Figure 10c, along with a frequentist confidence
interval of the population mean accuracy. All four approaches provided precise intervals around
the true population mean. Comparing the two competing models for inference on the balanced
accuracy, we obtained a log Bayes factor of 22.1 in favour of the twofold beta-binomial model
(posterior model probability > 99.99%; standard deviation of log Bayes factor across computations
≈ 5.1), representing very strong evidence (Kass and Raftery, 1995) that this model provided a better
explanation of the data (i.e., a better balance between fit and complexity) than the bivariate normal-
binomial model. This finding makes sense in light of the posterior covariance matrix of the normal-
binomial model (cf. Figure 2b). Its off-diagonal elements (accounting for the potential dependency
between class-specific accuracies) did not only have a very small mean (Σ12 = Σ21 = 0.19); they
were also associated with considerable posterior uncertainty (95% credible interval [−0.01,0.44]).
In other words, the small additional fit provided by the off-diagonal elements was outweighed by
the additional model complexity incurred.

We repeated the above analysis with a subtle but important modification: instead of using per-
fectly balanced data (50 positive and 50 negative trials), we created imbalanced synthetic data using
70 positive and 30 negative trials per subject. All other details of the analysis remained unchanged
(Figure 10, bottom row). We observed that, as expected, the class imbalance caused the classifier to
acquire a bias in favour of the majority class. This can be seen from the raw classification outcomes
in which many more positive trials (green) than negative trials (red) were classified correctly, rela-
tive to their respective prevalence in the data (grey; Figure 10d). The bias is reflected accordingly by
the estimated bivariate density of class-specific classification accuracies, in which the majority class
consistently performs well whereas the accuracy on the minority class varies strongly (Figure 10e).
In this setting, we found that both the twofold beta-binomial model and the normal-binomial model
provided excellent estimates of the true balanced accuracy (Figure 10f; log Bayes factor in favour
of the beta-binomial model: 47.3; standard deviation 11.3). In stark contrast, using the single beta-
binomial model or a conventional mean of sample accuracies to infer on the population accuracy
(as opposed to balanced accuracy) resulted in estimates that were overly optimistic and therefore
misleading.

3.5 Application to Empirical Data

In order to illustrate the practical application of the approaches discussed in this paper, we analysed
a neuroimaging data set, obtained by functional magnetic resonance imaging (fMRI). In neuroimag-
ing, classifiers are often used as part of decoding models designed to infer a perceptual or cognitive
state from brain activity, typically on a trial-by-trial basis, but across a group of subjects. The inter-
pretation of the ensuing results critically relies on the validity of the models used for inference on
classification performance.

Here, we analysed data from an fMRI experiment involving 16 volunteers designed to study the
cognitive processes underlying decision making. During the experiment, subjects had to choose, on
each trial, between two alternative options. Choices were indicated by button press (left/right index
finger). Over the course of the experiment, subjects learned, by trial and error, the reward probabil-
ities of these two options. Details on experimental design, data acquisition, and preprocessing can
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Figure 11: Application to empirical data. (a) Classification outcomes obtained by applying a linear
SVM to trial-wise fMRI data from a decision-making task. (b) Replotting classification
outcomes in terms of sample accuracies on positive (TPR) and negative trials (TNR)
reveals the positive correlation between class-specific accuracies. (c) In this data set,
when inferring on the balanced accuracy, the bivariate normal-binomial model has a
higher evidence (marginal likelihood) than the twofold beta-binomial model. Inverting
the former model, which captures potential dependencies between class-specific accura-
cies, yields a posterior distribution over the population mean balanced accuracy (black)
which shows that the classifier is performing above chance. (d) The same model can be
used to obtain subject-specific posterior inferences. The plot contrasts sample accuracies
(blue) with central 95% posterior probability intervals (black), which avoid overfitting
by shrinking to the population mean.

be found elsewhere (Behrens et al., 2007). Here, we predicted from the fMRI data, on a trial-by-
trial basis, which option had been chosen. Because choices were indicated by button presses, we
expected highly discriminative activity in the primary motor cortex.

Separately for each subject, a general linear model (Friston et al., 1995) was used to create a set
of parameter images representing trial-specific estimates of evoked brain activity in each volume
element. These images were used for subsequent classification. We trained a linear support vector
machine (SVM) using 5-fold cross-validation. Comparing predicted to actual choices resulted in
120 classification outcomes for each of the 16 subjects. These data were used for inference on the
classification accuracy using the beta-binomial model (Figure 11).

As can be seen from raw classification outcomes, class-specific accuracies seemed to be posi-
tively correlated (Figures 11a,b), in a similar way as for the synthetic data considered above. Thus,
we used both the twofold beta-binomial model and the bivariate normal-binomial model for infer-
ence. Bayesian model comparison yielded a log Bayes factor of 12.5 in favour of the beta-binomial
model (standard deviation across computations ≈ 4.69), suggesting that the additional complexity
of the normal-binomial model may not have balanced its higher flexibility in explaining the correla-
tions between class-specific accuracies. Using the beta-binomial model for inference on the popula-
tion mean balanced accuracy, we obtained very strong evidence (infraliminal probability p< 0.001)
that the classifier was operating above chance (Figure 11c).

Inference on subject-specific accuracies yielded fairly precise posterior intervals (Figure 11d).
The shrinkage effect in these subject-specific accuracies was rather small: the average absolute
difference between sample accuracies and posterior means amounted to 1.39 percentage points.
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Even the biggest observed shift among all subjects was no more than 3.05 percentage points (from
a sample accuracy of 99.2% down to a posterior mean of 96.2%). This minor impact of shrinkage is
expected given the relatively small number of subjects (16) and the relatively large number of trials
per subject (120).

4. Discussion

Canonical classification algorithms are frequently used on multilevel or hierarchically structured
data sets, where a classifier is trained and tested for each subject within a group. This paper showed
how the evaluation of classification performance in this setting may benefit from mixed-effects
models that explicitly capture the hierarchical structure of the data. We organize the following
discussion around the three principal features of this approach.

4.1 Replacing Fixed-Effects by Mixed-Effects Models

The primary contribution of this paper is the introduction and analysis of several models for Bayesian
mixed-effects inference for group-level classification studies. To capture the two key sources of
variation in hierarchical data sets, we simultaneously account for fixed-effects (within-subjects)
and random-effects (across-subjects) variance components. This idea departs from previous mod-
els which are widely used for classification studies but ignore within- or between-subjects vari-
ability. Fixed-effects models make inappropriate assumptions and yield overconfident inference.
Conversely, random-effects models treat subject-specific sample accuracies as observed, rather than
inferred, and thus omit uncertainty associated with such sample accuracies.

The mixed-effects models considered in this paper ensure that known dependencies between
inferences on subject-specific accuracies are accommodated within an internally consistent repre-
sentation of the data. Specifically, the posterior distribution of the accuracy of one subject is par-
tially influenced by the data from all other subjects, correctly weighted by their respective posterior
precisions (see Section 3.2). Thus, the available group data are exploited to constrain individual
inference appropriately. Non-hierarchical models, by contrast, risk being under-parameterized or
over-parameterized. For example, pooling classification outcomes across subjects and modelling
them as being drawn from a single distribution corresponds to an under-parameterized model whose
single parameter (i.e., the latent accuracy) is insufficient to explain any population variability. Con-
versely, replicating the single-subject model in Equations (1)–(3) for each subject leads to an over-
parameterized model with 2n parameters that is likely to overfit the data and generalize poorly.
Hierarchical models overcome this problem in a natural way: they regularize the inversion problem
by incorporating the structural dependencies that are assumed to govern the observed data.

An important aspect to keep in mind is that shrinkage is a posterior inference, and as such is
conditional on the model. A corollary of this is that shrinkage is suboptimal when the hierarchical
model structure represents an unreasonable assumption. This highlights the importance of model
checking as an integral part of statistical inference. In particular, researchers applying the models
proposed in this paper are advised to check whether the hierarchical structure of the models can be
defended on substantive grounds. For example, in an experiment where each subject was either as-
signed to a treatment group or a control group, it may no longer be justified to treat their accuracies
as conditionally independent and identically distributed given a single vector of population parame-
ters; instead, it might be more appropriate to analyse the two subgroups separately (or augment the
present models by a third level).
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In those situations where a hierarchical structure is justified, we are not aware of alternatives
that are superior to shrinkage. One possibility is to use no pooling of information across sub-
jects, leading to a set of isolated subject-specific sample accuracies. Another possibility is complete
pooling, leading to a single group mean accuracy. Between these two extremes lie the weighted esti-
mates provided by a hierarchical model. Its shrinkage effect ensures that information from different
sources is weighted correctly and incorporated into the posterior density of each model parameter.

Shrinkage is not a consequence of the Bayesian perspective adopted in this paper. It is a funda-
mental aspect of statistical dependencies in hierarchical structures which has been known for more
than a century, dating back to work as early as Galton’s law of ‘regression towards mediocrity’
(Galton, 1886). It is perfectly possible to obtain shrinkage through classical inference where it has
undergone considerable scrutiny; one of the best-known examples is the James-Stein estimator (Ap-
pendix E) whose beneficial effect on estimation precision has long been recognized in frequentist
statistics. For early contributions to the extensive literature on shrinkage effects, see Stein (1956),
James and Stein (1961), and Efron and Morris (1971, 1972). For typical applications in other fields
of science, see the many examples described by Gelman et al. (2003).

The hierarchical models presented in this paper are motivated by two-level designs that distin-
guish between inference at the subject level and inference at the group level. However, it should be
noted that these models can easily be extended to accommodate multi-level studies. For example,
in order to model classification performance in different task conditions or in different sessions,
one could introduce separate latent accuracies πaj ,πbj , . . ., all of which are drawn from a common
subject-specific accuracy π j. In this way, one would explicitly model task- or session-specific accu-
racies to be conditionally independent from one another given an overall subject-specific effect π j,
and conditionally independent from other subjects given the population parameters. This example
shows that additional relationships between portions of the acquired data can be naturally expressed
in a hierarchical model to appropriately constrain inferences.

Mixed-effects models are not only useful when evaluating a classifier but also when designing
it. For instance, Schelldorfer et al. (2011) proposed a linear mixed-effects model for classification
that accounts for different sources of variation in the data. The model has been shown to improve
classification performance in the domain of brain-computing interfaces (Fazli et al., 2011).

4.2 Replacing Frequentist by Bayesian Inference

The second feature of our approach is to provide Bayesian alternatives to the frequentist procedures
that have been dominating classification group studies so far. Although these two schools share
commonalities, there are primarily deep conceptual differences. Frequentist approaches consider
the distribution of an estimator as a function of the unknown true parameter value and view proba-
bilities as long-term frequencies; estimation yields point estimates and confidence intervals, while
inference takes the form of statements on the probability of estimator values under a ‘null hypothe-
sis.’ Bayesian methods, by contrast, consider the subjective belief about the parameter, before and
after having observed actual data, drawing on probability theory to optimally quantify inferential
uncertainty.

An additional aspect of Bayesian approaches is that one can evaluate different models by com-
paring their respective model evidences. This corresponds to inference about model structure as
defined by the model’s priors. For example, in Section 2.4 we showed how alternative a priori as-
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sumptions about the population covariance of class-specific accuracies can be evaluated, relative to
the priors of the models, using Bayesian model selection.

Bayesian inference in hierarchical models is typically analytically intractable, which is why
we resort to approximate inference, for example by using stochastic approximation schemes based
on MCMC methods. While computationally less efficient than deterministic approximations (e.g.,
variational Bayes, VB), these are easy to implement, avoid additional distributional assumptions,
and are asymptotically exact. This paper exclusively relied on MCMC for model inversion. In
future work, we will also provide VB algorithms for inverting models of the sort presented in this
paper (see below).

It is worth noting that classical inference does not necessarily have to assume the form currently
prevalent in the evaluation of hierarchical classification studies. For example, as noted by one
of our reviewers, the t-test that is presently used by the large majority of classification analyses
could be replaced by a classical mixed-effects model. This would require two things. Firstly,
the definition of a decision statistic, for example, the fraction of correctly classified trials, pooled
across subjects, or more simply, a hierarchical model such as the beta-binomial model, but estimated
using maximum-likelihood estimation (for an example using logistic regression, see Dixon, 2008).
Secondly, an inference scheme: under the null hypothesis that the classifiers perform at chance, the
number of correctly/incorrectly classified trials can be swapped across subjects; this would provide
a permutation mechanism to test the significance of the decision statistic.

An advantage of the above frequentist scheme would be that it no longer requires an assumption
common to all other approaches considered in this paper: the assumption that trial-wise classifica-
tion outcomes yi are conditionally independent and identically distributed (i.i.d.) given a subject-
specific accuracy π. This is typically justified by assuming that, in a classification analysis, test
observations are i.i.d. themselves, conditional on the parameters of the latent process that generated
the data. The situation is less clear in a cross-validation setting, where, strictly speaking, classifi-
cation outcomes are no longer independent of one another (Kohavi, 1995; Wickenberg-Bolin et al.,
2006; Gustafsson et al., 2010). Because violations of i.i.d. assumptions lead to conservative in-
ference when controlling false positive rates, the i.i.d. assumption has generally not been a major
concern in the literature; however, it remains a relevant topic, and further research into the ensuing
statistical bias and its adequate correction is required. In the present paper, we used 5-fold cross-
validation. If trial-by-trial dependence is an issue, then one possibility is to resort to a single-split
(or hold-out) scheme, by training on one half of the data, and testing on the other (see Breiman and
Spector, 1992, for details).

4.3 Replacing the Accuracy by the Balanced Accuracy

The third feature of our approach is its flexibility with regard to performance measures. While
it is common to compare algorithms with regard to their accuracy, the limitations of this metric
are well-known. For example, when a classifier is tested on an imbalanced data set, the accuracy
may be inflated and lead to false conclusions about the classifier’s performance. There are different
potential solutions to this problem (Akbani et al., 2004; Chawla et al., 2002; Japkowicz and Stephen,
2002). One can, for example, restore balance by undersampling the large class or by oversampling
the small class, or modify the costs of misclassification (Zhang and Lee, 2008). A more generic
safeguard is to replace the accuracy with the balanced accuracy, defined as the arithmetic mean of
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the class-specific accuracies. Unlike the measure described by Velez et al. (2007), the balanced
accuracy is symmetric with respect to the type of class.7

Notably, the balanced accuracy is not confined to binary classification but can easily be gen-
eralized to K classes, by defining the balanced accuracy as the arithmetic mean of all K class-
specific accuracies. For the twofold beta-binomial model, one could then replace π+ and π− by
π(1),π(2), . . . ,π(K), whereas for the normal-binomial model, the bivariate normal distribution would
be replaced by a K-dimensional normal distribution.

Using the example of the balanced accuracy, we have described how hierarchical models en-
able Bayesian inference on performance measures other than the accuracy. Future examples might
include functional measures such as the receiver-operating characteristic (ROC) or the precision-
recall curve (cf. Brodersen et al., 2010b). We also demonstrated that there may be multiple plausible
models a priori. In this case, Bayesian model selection can be used to decide between competing
models. Alternatively, Bayesian model averaging produces predictions which account for posterior
model uncertainty. This approach can be adopted with any other performance measure of interest.8

The choice of a versatile yet convenient parameterization of the distributions for class-specific
accuracies π+ and π− has been a recurring theme in the literature. Whereas early treatments adopted
an empirical Bayes approach (e.g., Albert, 1984; Good, 1956; Griffin and Krutchkoff, 1971), the
more recent literature has discussed various fully hierarchical approaches (see Agresti and Hitch-
cock, 2005, for an overview). For instance, Leonard (1972) proposed to replace independent Beta
priors on each element of π, such as those in (2.2), by independent normal priors on each element
of logit(π). While this is analytically convenient, it requires independence assumptions in relation
to the elements of π. This limitation was addressed by Berry and Christensen (1979), who placed a
Dirichlet process prior on the elements of π. A related approach was proposed by Albert and Gupta
(1983), who placed Beta priors on the components of π such that their degree of correlation could be
controlled by a common hyperparameter. As mentioned above, a principled way of evaluating such
different propositions rests upon Bayesian model comparison (MacKay, 1992; Madigan and York,
1997; Penny et al., 2004), which we illustrate by deciding between alternative parameterizations for
inference on the balanced accuracy.

A similar approach to the one discussed in this article has been suggested by Olivetti et al.
(2012), who carry out inference on the population mean accuracy by comparing two beta-binomial
models: one with a population mean prior at 0.5 (i.e., chance), and one with a uniform prior on the
interval [0.5,1]. Inference then takes the form of model selection, resulting in a Bayes factor and
its conventional interpretation (Kass and Raftery, 1995). Our approach differs from the above work
in four ways: (i) in addition to classification accuracy, we consider the balanced accuracy, which
is a more useful performance measure whenever the data are not perfectly balanced, and for which
we offer different parameterizations that can be optimized using Bayesian model selection; (ii) we
explicitly frame our approach in terms of fixed-effects (FFX), random-effects (RFX), and mixed-
effects (MFX) inference, and we provide the respective graphical models; (iii) we emphasize the use
of uninformative priors on the interval [0,1] to obtain unbiased posterior estimates, which allows us
to use infraliminal probabilities for inference; (iv) finally, we provide extensive simulation results

7. If desired, this symmetry assumption can be dropped by introducing class-specific misclassification costs.
8. It should be noted that, in this context, model selection is carried out to ask which model best explains observed

classification outcomes. This is different from asking what sort of model (i.e., classification algorithm) might be best
at classifying the data in the first place.
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that demonstrate the differences between FFX, RFX, and MFX approaches, shrinkage effects, and
reduced estimation risks.

4.4 Summary of Present Results and Conclusions

To examine the properties of our approach and demonstrate its practical applicability, we reported
several applications of the different models to synthetic and empirical data. Our results illustrated
the characteristic features of our approach: (i) posterior densities as opposed to point estimates
of parameters; (ii) the ability to compare alternative (non-nested) models; (iii) the ‘shrinking-to-
the-population’ effect that regularizes estimates of classification performance in individual subjects
(Figure 7b); (iv) increased sensitivity (Figure 7c); (v) more precise parameter estimates (Figure 7d);
(vi) avoidance of classifier bias for imbalanced data sets using the balanced accuracy (Figure 8).

One practical limitation of our approach lies in the high computational complexity of our current
inversion methods. In particular, our MCMC algorithms lack guarantees about convergence rates.
Our algorithms also include heuristics regarding the number of burn-in samples, the precision of the
overdispersed initial distributions and the proposal densities, and regarding the number of chains
run in parallel. To address these issues, we are currently preparing a variational Bayesian approach
that may offer computationally highly efficient model inversion.

We hope that the models for Bayesian mixed-effects analyses introduced in this paper will find
widespread use, improving the sensitivity and validity of future classification studies at the group
level. To facilitate the use of our approach, an open-source MATLAB implementation of all models
discussed in this paper is available for download (http://mloss.org/software/view/407/).
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Appendix A. Inversion of the Beta-Binomial Model

The algorithm is initialized by drawing initial values for α(0) and β(0) from an overdispersed starting
distribution. We represent these as

ω(0) =

(

ln

(

α(0)

β(0)

)

, ln
(

α(0) +β(0)
)

)T

.

This coordinate transformation makes sampling more efficient (Gelman et al., 2003). Subsequently,
on each iteration τ, a new candidate ω∗ is drawn from a symmetric proposal distribution

qτ
(

ω∗
∣

∣

∣
ω(τ−1)

)

=N 2

(

ω∗
∣

∣

∣

∣

ω(τ−1),

(

1/8 0
0 1/8

))

.
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This candidate sample ω∗ is accepted with probability

min
{

1,
p(k1:m | α∗,β∗) p(α∗,β∗)

p(k1:m | α(τ−1),β(τ−1)) p(α(τ−1),β(τ−1))

}

= min

{

1, exp

(

m

∑
j=1

f (α∗,β∗,k j)− f (α(τ−1),β(τ−1),k j)

)}

where (7) and (9) (main text) were used in defining

f (α,β,k) := lnBb(k | α,β)+ ln p(α,β).

In order to assess whether the mean classification performance achieved in the population is above
chance, we must evaluate our posterior knowledge about the population parameters α and β. Specif-
ically, inference on α/(α+β) serves to assess the mean accuracy achieved in the population. For
example, its posterior expectation represents a point estimate that minimizes a squared-error loss
function,

E

[

α
α+β

∣

∣

∣

∣

k1:m

]

≈
1
c

c

∑
τ=1

α(τ)

α(τ) +β(τ)
.

Another informative measure is the posterior probability that the mean classification accuracy in the
population does not exceed chance,

p= Pr
(

α
α+β

≤ 0.5
∣

∣

∣

∣

k1:m

)

≈ #

{

α(τ)

(α(τ) +β(τ)
≤ 0.5

}

,

which we refer to as the (posterior) infraliminal probability of the classifier. The symbol #{·}
denotes a count of samples.

When we are interested in the classification accuracies of individual subjects, we wish to infer
on p(π j | k1:m). This expression fully characterizes our posterior uncertainty about the true classi-
fication accuracy in subject j. Given a pair of samples α(τ),β(τ), we can obtain samples from these
posterior distributions simply by drawing from

Beta
(

π(τ)j

∣

∣

∣
α(τ) + k j, β(τ) +n j− k j

)

.

This can be derived by relating the full conditional p(π j | α,β,π1: j−1, j+1:m,k1:m) to the closed-form
posterior in (3) (see main text; cf. Gelman et al., 2003).

In order to infer on the performance that may be expected in a new subject from the same
population, we are interested in the posterior predictive density,

p(π̃ | k1:m),

in which π̃ denotes the classification accuracy in a new subject drawn from the same population as
the existing group of subjects with latent accuracies π1, . . . ,πm.9 Unlike the posterior on α/(α+β),

9. As noted before, the term ‘posterior predictive density’ is sometimes exclusively used for densities over variables that
are unobserved but observable in principle. Here, we use the term to refer to the posterior density of any unobserved
variable, whether observable in principle (such as k̃) or not (such as π̃).
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the posterior predictive density on π̃ reflects both the mean and the variance of the performance
achieved in the population.10

In order to derive an expression for the posterior predictive distribution in closed form, one
would need to integrate out the population parameters α and β,

p(π̃ | k1:m) =
∫∫

p(π̃ | α,β) p(α,β | k1:m) dα dβ,

which is analytically intractable. However, the integral shows that values can be drawn from the
posterior predictive density on π̃ using a single ancestral-sampling step. Specifically, within each
iteration τ, the current samples α(τ) and β(τ) can be used to obtain a new sample π̃(τ) by drawing
from

Beta
(

π̃(τ)
∣

∣

∣
α(τ),β(τ)

)

.

Once a number of samples from p(π̃ | k1:m) have been obtained, summarizing posterior inferences
becomes straightforward, for example, by reporting

p(π̃≤ 0.5)≈ #{π(τ) ≤ 0.5},

which represents the probability that the classifier, when applied to a new subject from the same
population, will not perform better than chance.

Appendix B. Bivariate Normal Prior

In order to illustrate the flexibility offered by the bivariate Normal density on ρ, we derive p(π | µ,Σ)
in closed form and then compute the bivariate density on a two-dimensional grid. We begin by
noting that

pπ(π | µ,Σ) = pρ(σ−1(π) | µ,Σ)
∣

∣

∣

∣

dσ
dρ

∣

∣

∣

∣

−1
,

where we have added indices to pπ and pρ to disambiguate between the two densities, and where
σ−1 denotes the logit transform. The Jacobian is

dσ
dρ

=

(

σ′(ρ1) 0
0 σ′(ρ2)

)

,

in which σ′ represents the first derivative of the sigmoid transform. From this, we obtain the inverse
determinant of the Jacobian as

∣

∣

∣

∣

dσ
dρ

∣

∣

∣

∣

−1
=

1
σ′(ρ1)σ′(ρ2)

.

Thus, the conditional bivariate density pπ(π | µ,Σ) is given by

pπ(π | µ,Σ) =N 2
(

σ−1(π)
∣

∣ µ,Σ
) 1
σ′(σ−1(π1))σ′(σ−1(π2)))

10. If data were indeed obtained from a new subject (represented in terms of k̃ correct predictions in ñ trials), then
p(π̃ | k1:m,n1:m) would be used as a prior to compute the posterior p(π̃ | k̃, ñ,k1:m,n1:m).
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where σ−1(π) := (σ−1(π1),σ−1(π2))T. When evaluating this density on a [0,1]× [0,1] grid, the
normalization constant is no longer needed, so that we can use the simpler expression

pπ(π | µ,Σ) ∝
1

π1π2 (1−π1)(1−π2)
exp
{

−
1
2
(

σ−1(π)−µ
)T
Σ−1 (σ−1(π)−µ

)

}

,

where we have used the fact that σ′(x) = σ(x)(1−σ(x)). This derivation allows us to illustrate the
degrees of freedom of our family of prior distributions over µ and Σ.

Appendix C. Inversion of the Bivariate Normal-Binomial Model

The algorithm is initialized by drawing initial values for µ(0), Σ(0), and ρ(0)1 , . . . ,ρ(0)m from overdis-
persed starting distributions. On each iteration τ= 1 . . .c, we then update one variable after another,
by sampling from the full conditional distribution of one variable given the current values of all
others.11 We begin by finding a new sample (µ,Σ)(τ), which can be implemented in a two-step
procedure (Gelman et al., 2003). We first set

κm = κ0 +m
νm = ν0 +m

µm =
κ0
κm

µ0 +
m
κm

 ρ(τ−1)

S= Σmj=1

(

ρ(τ−1)
j −  ρ(τ−1)

)(

ρ(τ−1)
j −ρ(τ−1)

)T

Λm = Λ0 +S+
κ0m
κm

(

 ρ(τ−1)−µ0

)(

 ρ(τ−1)−µ0

)T
,

where  ρ(τ−1) = 1
m ∑

m
j=1ρ

(τ−1), to draw

Σ(τ) ∼ Inv-Wishartνm
(

Σ(τ)
∣

∣

∣
Λ−1
m

)

.

We then complete the first step by drawing

µ(τ) ∼N 2

(

µ(τ)
∣

∣

∣
µm, Σ(τ)/κm

)

,

which we can use to obtain samples from the posterior mean balanced accuracy using

φ(τ) :=
1
2

(

µ(τ)1 +µ(τ)2

)

.

Next, we update the bivariate variables ρ1, . . . ,ρm. For each subject j, we wish to draw from the full
conditional distribution

p
(

ρ(τ)j

∣

∣

∣
k+1:m,k

−
1:m,ρ

(τ)
1: j−1,ρ

(τ−1)
j+1:m,µ

(τ),Σ(τ)
)

(18)

= p
(

ρ(τ)j

∣

∣

∣
k+j ,k

−
j ,µ

(τ),Σ(τ)
)

,

11. Here, we define one iteration as an update of all latent variables. Alternatively, one might update only one variable (or
a subset of variables) per iteration, chosen randomly or systematically, as long as each variable is updated periodically.
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which we have simplified by omitting all variables that are not part of the Markov blanket of ρ j
(cf. Figure 2b). Because we cannot sample from this distribution directly, we generate a candidate
from a symmetric proxy distribution

q(ρ∗j) =N 2

(

ρ∗j

∣

∣

∣

∣

∣

ρ(τ−1)
j ,

(

1 0
0 1

)T
)

,

and then construct a Metropolis acceptance test. For this, we note that

p
(

ρ∗j
∣

∣

∣
k+j ,k

−
j ,µ

(τ),Σ(τ)
)

∝ p̃
(

ρ∗j
∣

∣

∣
k+j ,k

−
j ,µ

(τ),Σ(τ)
)

(19)

= p
(

k+j ,k
−
j

∣

∣

∣
ρ∗j ,µ(τ),Σ(τ)

)

p
(

ρ∗j
∣

∣

∣
µ(τ),Σ(τ)

)

(20)

= p
(

k+j ,k
−
j

∣

∣

∣
ρ∗j
)

p
(

ρ∗j
∣

∣

∣
µ(τ),Σ(τ)

)

(21)

= p
(

k+j
∣

∣

∣
ρ∗j,1
)

p
(

k−j
∣

∣

∣
ρ∗j,2
)

p
(

ρ∗j
∣

∣

∣
µ(τ),Σ(τ)

)

(22)

= Bin
(

k+j
∣

∣

∣
σ(ρ∗j,1)

)

Bin
(

k−j
∣

∣

∣
σ(ρ∗j,2)

)

N 2

(

ρ∗j
∣

∣

∣
µ(τ),Σ(τ)

)

, (23)

where (19) places our focus on the unnormalized density, (20) uses Bayes’ theorem, (21) is based
on the Markov blanket, (22) exploits the conditional independence of class-specific outcomes k+j
and k−j , and (23) relies on the model assumptions introduced in (4) and (12) (main text). We can
use this result to accept the candidate sample ρ∗j with probability

min{1,exp(r)},

where

r = ln
p̃
(

ρ∗j

∣

∣

∣
k+j ,k

−
j ,µ(τ),Σ(τ)

)

p̃
(

ρ(τ−1)
j

∣

∣

∣
k+j ,k

−
j ,µ(τ),Σ(τ)

)

= lnBin
(

k+j
∣

∣

∣
σ
(

ρ∗j,1
)

)

+ lnBin
(

k−j
∣

∣

∣
σ
(

ρ∗j,2
)

)

+ lnN 2

(

ρ∗j
∣

∣

∣
µ(τ),Σ(τ)

)

− lnBin
(

k+j
∣

∣

∣
σ
(

ρ(τ−1)
j,1

))

− lnBin
(

k−j
∣

∣

∣
σ
(

ρ(τ−1)
j,2

))

− lnN 2

(

ρ(τ−1)
j

∣

∣

∣
µ(τ),Σ(τ)

)

.

We can now obtain samples from the posterior densities p(π j | k+1:m,k
−
1:m) for each subject j simply

by sigmoid-transforming the current sample,

π(τ)j = σ
(

ρ(τ)j
)

.

Based on this, we can obtain samples from the subject-specific balanced accuracies by setting

φ(τ)j :=
1
2

(

π(τ)j,1 +π(τ)j,2

)

.
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Apart from using µ(τ) and Σ(τ) to obtain samples from the posterior distributions over ρ j, we can
further use the two vectors to draw samples from the posterior predictive distribution p(π̃+1:m,k

−
1:m).

For this we first draw

ρ̃(τ) ∼N 2

(

ρ̃(τ)
∣

∣

∣
µ(τ),Σ(τ)

)

,

and then obtain the desired sample using

π̃(τ) = σ
(

ρ̃(τ)
)

,

from which we can obtain samples from the posterior predictive balanced accuracy using

φ̃(τ) :=
1
2

(

π̃(τ)1 + π̃(τ)2

)

.

In all above cases, we can use the obtained samples to compute approximate posterior probability
intervals or Bayesian p-values.

The approximate expression for the model evidence in (16) can be obtained as follows:

ln p(k+1:m,k
−
1:m |Mnb) (24)

= ln
∫
p(k+1:m,k

−
1:m | ρ1:m) dρ1:m

= ln
〈

p(k+1:m,k
−
1:m | ρ1:m)

〉

ρ1:m

= ln

〈

m

∏
j
p(k+j ,k

−
j | ρ j)

〉

ρ1:m

= ln

〈

m

∏
j
p(k+j | ρ(1)j ) p(k−j | ρ(2)j )

〉

ρ1:m

≈ ln
1
c

c

∑
τ=1

m

∏
j
p
(

k+j | ρ(τ,1)j

)

p
(

k−j | ρ(τ,2)j

)

= ln
1
c

c

∑
τ=1

m

∏
j

Bin
(

k+j
∣

∣

∣
σ
(

ρ(τ,1)j

))

Bin
(

k−j
∣

∣

∣
σ
(

ρ(τ,2)j

))

Appendix D. Comparison to Classical Inference

In a maximum-likelihood (ML) setting, one typically aims to obtain a point estimate for π, the true
accuracy of the classifier under the binomial model.

D.1 Classical Inference for a Single Subject

In the case of a single-subject setting, the ML estimate for π is

π̂ML = argmaxπBin(k | π,n) =
k
n
,

which corresponds to the sample accuracy, that is, the number of correctly classified trials divided
by the total number of trials.
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Classical inference in the binomial model proceeds by asking how probable the observed value
(or greater values) of the estimator are, assuming that the true accuracy π is at chance. This tests the
null hypothesis H0 : π= 0.5, yielding a p-value,

p= 1−FBin(k | 0.5),

where FBin(k | 0.5) is the cumulative distribution function of the binomial distribution with π= 0.5.
The practical simplicity of maximum likelihood is offset by its conceptual limitations. Specifi-

cally, using the sample accuracy k/n to estimate the true accuracy π risks overfitting. Furthermore, a
point estimate for π ignores both (prior and posterior) uncertainty about classification performance.

D.2 Classical Inference in a Group Study

In a hierarchical setting, group-level inference frequently proceeds by applying a one-sample, one-
tailed t-test to subject-specific sample accuracies.12 This tests the null hypothesis that subject-
specific accuracies are drawn from a distribution with a mean at chance level, using the t-statistic

√
m

 π−π0
σ̂m−1

∼ tm−1, (25)

where  π and σ̂m−1 are the sample mean and sample standard deviation of subject-specific sample
accuracies, π0 is the accuracy at chance (e.g., 0.5 for binary classification), and tm−1 is Student’s
t-distribution on m−1 degrees of freedom.

Additionally, it is common practice to indicate the uncertainty about the population mean of the
classification accuracy by reporting the 95% confidence interval

[

 π± t0.025,m−1 ×
σ̂m−1√
m

]

, (26)

where t0.025,m−1 is a quantile from the t-distribution. It is worth emphasizing that this confidence
interval has a merely illustrative purpose. This is because a central interval corresponds to a two-
tailed test, whereas the t-test above is one-tailed. Since it is based on Gaussian assumptions, a
one-tailed confidence interval would include the entire real line up to +∞. Thus, a (two-sided)
confidence-interval test actually has a false positive rate of α/2 = 0.025. Similarly, under the null
distribution, the 95% confidence interval will lie entirely below 0.5 in 2.5% of the cases. In a
classical framework, one would have to call this ‘significant,’ in the sense of the classifier operating
below chance. However, this is not the hypothesis one would typically want to test. Rather, it is more
desirable to formulate a one-tailed test. In a Bayesian setting, this can be achieved by quantifying
the (posterior) probability that the true accuracy is above chance.

Fundamentally, the differences between the classical procedure and the full Bayesian approach
discussed earlier can best be understood by considering their respective assumptions. The distribu-
tional assumption underlying both the t-statistic in (25) and the confidence interval in (26) is that
the sample mean of the subject-wise accuracies, under the null hypothesis, is normally distributed,

 π∼N

(

µ,
σ√
m

)

, (27)

12. It should be noted that the present manuscript focuses on those classical procedures that are widely used in application
domains such as neuroimaging and brain-machine interfaces. However, it is worth noting that alternative maximum-
likelihood procedures exist that eschew the normality assumption implicit in a classical t-test (e.g., Dixon, 2008, see
also Discussion).
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where the population standard deviation σ has been estimated by the sample standard deviation
σ̂m−1. The corresponding graphical model is shown in Figure 1d.

This analysis is popular but suffers from two faults that are remedied by our Bayesian treatment.
(For a classical mixed-effects approach, see Discussion.) First, accuracies are confined to the [0,1]
interval, but are modelled by a normal distribution with infinite support. Consequently, error bars
based on confidence intervals (26) may well include values above 1 (see Figure 6c for an example).
By contrast, the Beta distribution used in the Bayesian approach has the desired [0,1] support and
thus represents a more natural candidate distribution.13

Second, the random-effects group analysis under (27) does not acknowledge within-subject es-
timation uncertainty and only provides a summary-statistics approximation to full mixed-effects
inference. More specifically, the model is based on subject-wise sample accuracies π j as the units
of observation, rather than using the number of correctly classified trials k to infer on the accuracy
in each subject. Put differently, the model assumes that subject-wise accuracies have all been es-
timated with infinite precision. But the precision is finite, and it varies both with the number of
observed trials n j and with the sample accuracy k j/n j. (This can be seen from the expression for the
variance of a Bernoulli variable, which is largest at the centre of its support.) In summary, classifier
performance cannot be observed directly; it must be inferred. While the classical model above does
allow for inference on random-effects (between-subjects) variability, it does not explicitly account
for fixed-effects (within-subject) uncertainty. This uncertainty is only taken into account indirectly
by its influence on the variance of the observed sample accuracies.

With regard to subject-specific accuracies, one might be tempted to use π̂ j = k j/n j as indi-
vidual estimates. However, in contrast to Bayesian inference on subject-specific accuracies (see
Section 2.1), individual sample accuracies do not take into account the moderating influence pro-
vided by knowledge about the group (i.e., ‘shrinkage’). An effectively similar outcome is found in
classical inference using the James-Stein estimator (James and Stein, 1961, see Appendix E). All of
these conceptual differences can be illustrated best using synthetic and empirical data, as described
in Section 3.

Appendix E. Classical Shrinkage Using the James-Stein Estimator

When inferring on subject-specific accuracies π j, the beta-binomial model uses data from the en-
tire group to inform inferences in individual subjects. Effectively, subject-specific posteriors are
‘shrunk’ to the population mean. This is in contrast to using sample accuracies π̂ = k j/n j as in-
dividual estimates. In classical inference, a similar shrinkage effect can be achieved using the
positive-part James-Stein estimator (James and Stein, 1961). It is given by

π̂JS
1:m = (1−ξ)  ̂π1:m+ξπ̂1:m

ξ=

(

1−
(m−2) σ̂2

m(π̂1:m)

‖π̂1:m−  ̂π1:m‖2
2

)+

where π̂1:m = (k j/n j)1:m is a vector of sample accuracies,  ̂π1:m is its sample average, and σ̂2
m denotes

the population standard deviation. The weighing factor ξ balances the influence of the data (π̂ j for
a given subject j) and the population (  ̂π1:m) on the estimate.

13. A classical approach to obtaining more reasonable confidence intervals would be to apply a logit transform or a
z-transform to sample accuracies and then compute confidence intervals in the space of log odds or z-scores.
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Abstract

We describe a quantum algorithm for computing the intersection of two sets and its application
to associative memory. The algorithm is based on a modification of Grover’s quantum search
algorithm (Grover, 1996). We present algorithms for pattern retrieval, pattern completion, and
pattern correction. We show that the quantum associative memory can store an exponential number
of memories and retrieve them in sub-exponential time. We prove that this model has advantages
over known classical associative memories as well as previously proposed quantum models.
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1. Introduction

The introduction of Shor’s algorithm for factoring numbers in polynomial time (Shor, 1994) has

demonstrated the ability of quantum computation to solve certain problems more efficiently than

classical computers. This perception was ratified two years later, when Grover (1996) introduced a

sub-exponential algorithm for quantum searching a database.

The field of quantum computation is based on the combination of computation theory and quan-

tum mechanics. Computation theory concerns the design of computational models and the study

of their time and space complexities. Quantum mechanics, on the other hand, concerns the study

of systems governed by the rules of quantum physics. The combination of the two fields addresses

the nature of computation in the physical world. However, there is still no efficient reduction of

quantum mechanical behavior to classical computation.

Quantum mechanics is a conceptual framework that mathematically describes physical sys-

tems. It is based on four postulates, known as the postulates of quantum mechanics (Nielsen and

Chuang, 2000), which provide a connection between the physical world and mathematical formal-

ism. Through these postulates, it is possible to better understand the nature of physical computation

and what can be physically computed.

The first postulate states that a physical system is completely described by a state in a Hilbert

space known as the state space. The second states that the evolution of a closed quantum system is

described by a unitary transformation. The third states that a quantum measurement is described by

a collection of measurement operators that satisfy the completeness equality, that is, the sum of all

possible measurements adds up to 1. The forth states that the state space of a composite physical

system is the tensor product of the state spaces of its components.

c©2012 Tamer Salman and Yoram Baram.
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Next, we introduce the basic building blocks of quantum computation. The reader is referred to

Nielsen and Chuang (2000) for a detailed introduction.

1.1 States and Qubits

The basic entity of classical computation is the classical bit. Each classical bit can have one of two

values, 0 and 1. The state of any finite physical system that can be found in a finite number of states

can be described by a string of bits. A string of n bits represents one of 2n possible states of a system

enumerated 0, ..., 2n −1.

In quantum computation, the basic entity is called a qubit (quantum bit). The qubit can have the

analogue values |0〉 and |1〉, known as the computational basis states, where |·〉 is the Dirac notation.

Yet, the qubit can also have any other value that is a linear combination of |0〉 and |1〉:

|Ψ〉= α |0〉+β |1〉

where α and β are any complex numbers (called the amplitudes of the basis states 0 and 1, respec-

tively), such that |α|2 + |β|2 = 1. Consequently, the qubit can be in any one of an infinite number of

states described by unit vectors in a 2-dimensional complex vector space. The unary representation

of a qubit can be given as a vector of two values

|Ψ〉=
(

α
β

)

.

Analogously to the classical bit string, qubit strings (or quregisters) describe the state of a sys-

tem. A two qubit system comprising two qubits |a〉=α |0〉+β |1〉 and |b〉= γ |0〉+δ |1〉 is described

by the tensor product of the two qubits |a,b〉 ≡ |a〉⊗ |b〉= αγ |00〉+αδ |01〉+βγ |10〉+βδ |11〉.

1.2 Measurement

The measurement of a qubit reveals only one of two possible outcomes. The value of α and β cannot

be extracted from the measurement of a qubit. Instead, when measuring the qubit α |0〉+β |1〉 in

the computational basis, the result can be either 0 or 1 with probabilities |α|2 and |β|2 respectively.

For example, the state
(

1√
2
|0〉+ 1√

2
|1〉
)

, when measured, yields any of the two results 0 or 1 with

probability 1/2. The measurement operation is not reversible and, once made, the qubit no longer

exists in its state before the measurement. Measurements can be performed in different bases. For

example, measuring the qubit α |0〉+ β |1〉 in the Hadamard basis defined by the two basis states

|+〉 ≡
(

1√
2
|0〉+ 1√

2
|1〉
)

and |−〉 ≡
(

1√
2
|0〉− 1√

2
|1〉
)

gives |+〉 with probability
(α+β)2

2 and |−〉

with probability
(α−β)2

2 , since α |0〉+β |1〉= α+β√
2
|+〉+ α−β√

2
|−〉.

An n-qubit system can be either measured completely or partially. When measured partially, the

unmeasured subsystem can retain quantum superposition and further quantum manipulations can

be performed upon it. However, any measurement can be delayed to the end of the computation

process.

1.3 Operators

In quantum computation, a system changes its state under a unitary quantum operator U from |Ψ〉
to U |Ψ〉. An operator U can be described as a 2n ×2n matrix operating on the unary representation
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Figure 1: The 2-qubit Controlled-Not (CNOT) quantum gate.

Figure 2: The 3-qubit Toffoli quantum gate.

of the system state. A unitary operator satisfies UU† = I, where U† is the conjugate transpose of U

(transpose the matrix U then substitute the conjugate complex of each element in the matrix).

Quantum operators can be implemented using quantum gates, which are the analogue of the

classical gates that compose classical electrical circuits. In this analogy, the wires of a circuit carry

the information on the system’s state, while the quantum gates manipulate their contents to different

states. For example, the Hadamard operator

H =
1√
2

(

1 1

1 −1

)

transforms a qubit in the state |0〉 into the state |+〉 and the state |1〉 into the state |−〉.
Operators can also be quantum gates operating on multiple qubits. An n-qubit quantum oper-

ator has n inputs and n outputs. For example, the 2-qubit controlled-not (CNOT) gate depicted in

Figure 1, flips the target (second) qubit if the control qubit (first) has value |1〉 and leaves it un-

changed if the control qubit has the value |0〉. Specifically, the CNOT gate performs the following

transformations on the four computational basis states: |00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, and

|11〉 → |10〉. It can be described as a unitary matrix operating on the unary representation of the

state as follows:

CNOT =









1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0









.

Another gate is the 3-qubit controlled-controlled-not gate also known as the Toffoli gate depicted

in Figure 2, which flips the target (third) qubit if the two control bits (first and second) both have

the values |1〉 and leaves it unchanged otherwise.

The Hadamard operator can also be seen as operating on n-qubits by the tensor product of n

single qubit Hadamard operators. Each qubit is then transformed according to the single qubit

Hadamard transform, that is,

H⊗n |xn−1, ...,x1,x0〉= H |xn1〉⊗ ...⊗H |x1〉⊗H |x0〉 .
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Figure 3: A classical reversible Oracle.

Figure 4: A quantum Oracle.

1.4 Quantum Parallelism and Interference

Consider an oracle of an n-dimensional function f implemented by a classical circuit, which, for

every input x, produces f (x) at the output. The oracle can be made reversible by adding an additional

bit to the input, initialized by 0, and letting the output be x,0⊕ f (x) as depicted in Figure 3, where

⊕ is the addition modulo 2. Initializing the additional bit with 1 produced f (x) at the output.

A quantum oracle is a reversible oracle that accepts a superposition of inputs and produces a

superposition of outputs as depicted in Figure 4. When the additional qubit is initialized by |0〉, the

oracle performs the following transformation: |x〉 |0〉 → |x〉 |0⊕ f (x)〉. When the additional qubit is

initialized by |−〉 the oracle is called a quantum phase oracle that gives f (x) in the phase of the state

|x〉 as follows: |x〉 |−〉→ (−1) f (x) |x〉 |−〉.
Suppose that we have constructed a quantum circuit Uf that implements a function f : {0,1}n →

{0,1}, such that when introduced with an input |x〉 |y〉, the output of the circuit would be |x〉 |y⊕ f (x)〉.
Quantum parallelism is the ability of the quantum circuit to process many inputs simultaneously and

receive all the outcomes at the output. Consider the case where |y〉= |0〉, and the |x〉= H⊗n |0〉⊗n.

Applying the n-qubit Hadamard operator to the |0〉 state yields a superposition of all basis states
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1√
2n ∑ i = 02n |i〉. The superposition will be maintained through the quantum circuit and the result-

ing output would be 1√
2n ∑2n

i=0 |i〉 | f (i)〉. This can be computed as follows:

U⊗n+1
f

((

H⊗n ⊗ I
)

|0〉⊗n |0〉
)

=U⊗n+1
f

1√
2n

2n

∑
i=0

|i〉 |0〉=
1√
2n

2n

∑
i=0

|i〉 | f (i)〉 .

Although this computes f for all values of i simultaneously there is no immediate way of seeing

them all together, because once the output state is measured, only one value of f (i) is revealed

and the rest vanish. However, further quantum computation allows the different values to interfere

together and reveal some information concerning the function f .

It has been shown (Deutsch, 1985; Deutsch and Jozsa, 1992; Simon, 1994) that the revealed

information can be considerably more than what classical computation would achieve after one

query of the circuit that implements the function f . Deutsch and Jozsa (1992) showed that if a

binary n-dimensional function is guaranteed to be either constant or balanced, then determination

can be done using only one query to a quantum oracle implementing it, while a classical solution

would require an exponential number of queries. Another example of the advantage of quantum

algorithms over classical ones was presented by Simon (1994), in which a function is known to have

the property that there exists some s ∈ {0,1}n for which for all x,y ∈ {0,1}n it hold that f (x) = f (y)
if and only if x = y or x⊕ y = s. Simon (1994) proved that using quantum computations, s can be

found exponentially faster than with any classical algorithm, including probabilistic algorithms.

1.5 Solving Problems using Quantum Computation

According to the above definitions of a system state, measurement, and operators, a quantum com-

puter drives the dynamics of the quantum system through operators that change its state and mea-

sures the final state to reveal classical information. In the general case, one might think of the

process of quantum computation as a multi-phase procedure, which performs some classical compu-

tation on the data at hand, creates a quantum state describing the system, drives it through quantum

operators, which might depend on the data, to the target state, measures the outcome, and performs

some more classical computation to receive a result.

Consequently, we can describe a schematic process for solving problems using quantum com-

putation as follows:

A general solution scheme using quantum computations

Given:

Classical input data

1. Preliminary classical computation of the input

2. Create initial quantum state

3. Apply quantum circuit to the initial quantum state

4. Measure the resulting state

5. Apply classical computation to the measured state

1.6 Grover’s Quantum Search Algorithm

Given a database of N ≡ 2n unsorted elements of n bits each, any classical search would require

O(N) queries to find a desired element. In 1996, Grover presented a quantum computational algo-

rithm that searches an unsorted database with O(
√

N) operations (Grover, 1996; Boyer et al., 1996).
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The algorithm performs a series of O(
√

N) unitary operations on the superposition of all basis states

that amplify the solution states causing the probability of measuring one of the solutions at the end

of the computation to be close to 1.

Suppose that the search problem has a set X of r solutions and that we own an oracle function

fX that identifies the solution x ∈ X according to the following:

fX(x) =

{

1, x ∈ X

0, x /∈ X
.

Any classical algorithm that attempts to find the solution clearly needs to query the oracle N times

in the worst case. Grover’s algorithm shows that we can find the solution with the help of the oracle

by querying it only O(
√

N) times.

The quantum phase oracle of the function fX flips (rotates by π) the amplitude of the states of

X , while leaving all other states unchanged. This is done by the operator IX = I −2∑x∈X |x〉〈x|. In

matrix formulation, IX is similar to the identity matrix I except it has −1 on the xth elements of the

diagonal.

Grover’s algorithm starts with the superposition of all basis states created by applying the

Hadamard operator on the zero state, H⊗n |0〉⊗n (shortened by H |0〉), and goes about perform-

ing multiple iterations, in which each iteration consists of applying the phase oracle followed by the

operator HI0H, where I0 flips the phase of the state |0〉⊗n. Grover’s iterator is thus defined as

Q =−HI0HIX (1)

where the sign ”−” stands for the global phase flip that has no physical meaning and is performed

only for analytical convenience.

The operator in Equation 1 can be viewed in the space defined by the two basis states

|l1〉=
1√
r ∑

i∈X

|i〉

and

|l2〉=
1√

N − r
∑
i/∈X

|i〉

as the rotation








1− 2r
N 2

√
r(N−r)

N

−2

√
r(N−r)

N 1− 2r
N









which is depicted in Figure 5, where the rotation angle is

w = arccos

(

1−
2r

N − r

)

.

The initial state has an angle

φ = arctan

(√

r

N − r

)
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Figure 5: The effect of Grover’s rotation on the state |Ψ〉.

with |l2〉, and after some analysis one can find that applying the operator T times starting from the

initial state yields a solution state with a maximal probability that is very close to 1 upon measure-

ment when

T =

⌊

π

4

√

N

r

⌋

= O

(

√

N

r

)

.

The algorithm performs O
(
√

N
r

)

iterations, where r = |X | is the number of marked states.

Additional improvements were made by Boyer et al. (1996) and Brassard et al. (1998) coping with

an unknown number of marked states in complexity O
(
√

N
r

)

. Biham et al. (1999) introduced a

third improvement that outputs a marked state when initiated with a state of an arbitrary amplitude

distribution.

In the next sections, we present our algorithm for set intersection and its use in a quantum model

of associative memory. We focus our analysis on the auto-associative memory model. However,

presenting the algorithm with the quantum superposition of pairs xi and yi created by the use of the

oracle B makes it a model for general associative memory with no additional cost, as a quantum

search can yield yi upon measurement of xi.

1.7 Associative Memory

Associative memory stores and retrieves patterns with error correction or pattern completion of the

input. The task can be defined as memorizing m pairs of data
(

xi,yi
)

, where xi is an n dimensional

vector and yi is a q dimensional vector, and outputting yi when presented with x̃, which is a faulty

or a partial version of xi. A specific case of associative memory is the auto-associative memory,

in which yi ≡ xi, ∀i ∈ {1, . . . ,m}. Associative memory can be defined over a continuum, where
(

xi,yi
)

∈ Rn × Rq, or over a binary space, where
(

xi,yi
)

∈ {0,1}n × {0,1}q. In this paper, we

concentrate on the binary model.
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Algorithms for implementation of associative memory (Hopfield, 1982; Kanerva, 1993) have

been extensively studied in the neural networks literature. The Hopfield model (Hopfield, 1982)

consisting of n threshold neurons stores n-dimensional patterns x ∈ {±1}n by the sum of outer

products and retrieves a stored pattern when presented with a partial or a noisy version of the pattern.

The maximal storage capacity for which the stored patterns will be retrieved correctly with high

probability (McEliece et al., 1987) is

Mmax =
n

2lnn
.

Sparse encoding has been shown to increase the storage capacity considerably (Baram, 1991).

A capacity exponential in the input dimension has been shown to result from a network size also

exponential in the input dimension (Baram and Sal’ee, 1992).

2. Quantum Intersection

Given a set of marked states K of size k, Grover’s quantum search algorithm for multiple marked

states yields any member of the set with probability O
(

k−1/2
)

when given a phase version IK of an

oracle fK of the form

fK(x) =

{

1, x ∈ K

0, x /∈ K
. (2)

Consequently, given a phase oracle IK , Grover’s algorithm chooses a member of the subset K.

Suppose that, in addition to the oracle fK , we have an oracle fM, such that

fM(x) =

{

1, x ∈ M

0, x /∈ M
(3)

where M is another set of size m of marked states.

We define the problem of quantum intersection as the choice of any member of the intersection

set K ∩M of size r with probability O
(

r−1/2
)

.

A straightforward algorithm for finding a member of the intersection between two sets of marked

states K and M, based on the oracles fK and fM involves the use of the intersection oracle, compris-

ing the oracles in Equation 2, Equation 3 in sequence, and a Toffoli gate as depicted in Figure 6.

When the input to the oracle is |x〉⊗ |0〉⊗ |0〉⊗ |0〉, then the output is |x〉⊗ | fK(x)〉⊗ | fM(x)〉⊗
| fK∩M(x)〉. The intersection phase oracle is realized when |b〉= |−〉, then, the input |x〉⊗ |0〉⊗ |0〉⊗
|−〉 will cause the output to be |x〉⊗ | fK(x)〉⊗ | fM(x)〉⊗

[

(−1) fK∩M(x) |−〉
]

.

Retrieving a state in the intersection between the two sets is accomplished by using Grover’s

quantum search algorithm with the phase version IK∩M of the oracle fM∩K .

However, under certain conditions, one might not have the two oracles at hand, and, thus, the

use of the intersection oracle might not be feasible. Another usage is when one constant oracle is

available and the second oracle needs to be changed with each activation. We present an algorithm

that applies a series of computations carried out by the two owners of the oracles in an alternating

fashion.

Algorithm 1 : Quantum Set Intersection

Given: Phase oracles IMand IK

Denote: QM ≡−HI0HIM, QK ≡−HI0HIK

1. Let |Ψ〉= H |0〉⊗n
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Figure 6: The intersection oracle FK∩M created using fM, fK , and To f f oli.

2. Repeat

|Ψ〉= QK |Ψ〉
|Ψ〉= QM |Ψ〉

T = O
(√

N
|K∩M|

)

times

3. Measure |Ψ〉

Algorithm 1 assumes that the size of the intersection set |K∩M| is known in order to determine

the number of iterations. In the more general case where |K ∩M| is unknown we apply the mod-

ification for an unknown number of marked states (Boyer et al., 1996). Alteratively, we can use

the quantum counting algorithm (Brassard et al., 1998) for the apriori estimation of the number of

marked states. In both cases the time complexity of the set intersection algorithm is sub-exponential.

Next, we present two theorems that prove that Algorithm 1 measures a member of the intersection

set with maximal probability and this probability is asymptotically close to 1.

Theorem 1 Let IK and IM be phase oracles that mark two sets of n-qubit states K and M with

|K|, |M|<< N. Let us denote |K|= k, |M|= m,|K ∩M|= r,

Q ≡ QMQK = (HI0HIMHI0HIK) (4)

and

|Ψ(t)〉= QT H |0〉 .

Then, the maximal probability of measuring a state in the intersection K ∩M is achieved at

T = argmax
t

∑
x∈K∩M

|〈x|Ψ(t)〉|2 =









π/2− arctan
(
√

r
N−r

)

arccos
(

4km
N2 − 4r

N +Γ
)







 (5)

where

Γ =

√

1−
8rN3 +8kmN2 −16rkN2 −16rmN2 +32rkmN −16k2m2

N4
.

3185



SALMAN AND BARAM

Proof The Hilbert space spanned by all computational basis states of the n-qubit register can be

divided into four different subspaces: the subspace spanned by the states in K ∩M, the subspace

spanned by the states in K\M, the subspace spanned by the states in M\K, and the subspace spanned

by the states in K ∪M. Accordingly, we select an orthonormal basis for representing the operator,

in which the first four basis states are:

|l1〉 ≡
1

√

|K ∩M| ∑
i∈K∩M

|i〉 , (6)

|l2〉 ≡
1

√

|K\M| ∑
i∈K\M

|i〉 , (7)

|l3〉 ≡
1

√

|M\K| ∑
i∈M\K

|i〉 , (8)

|l4〉 ≡
1

√

|K ∪M| ∑
i∈K∪M

|i〉 (9)

and the rest of the basis consists of orthonormal extensions of these states, then

H |0〉=
√

r

N
|l1〉+

√

k− r

N
|l2〉+

√

m− r

N
|l3〉+

√

N −m− k+ r

N
|l4〉 .

The operator QK affects only the four states (|l1〉 , |l2〉 , |l3〉 , |l4〉) as follows:

QK |l1〉= −HI0HIK |l1〉=−H (I −2 |0〉〈0|)H

(

I −2 ∑
i∈K

|i〉〈i|

)

|l1〉=

(

1−
2r

N

)

|l1〉+

(

−
2
√

r(k− r)

N

)

|l2〉

+

(

−
2
√

r(m− r)

N

)

|l3〉+

(

−
2
√

r(N −m− k+ r)

N

)

|l4〉 ,

QK |l2〉= −HI0HIK |l2〉=−H (I −2 |0〉〈0|)H

(

I −2 ∑
i∈K

|i〉〈i|

)

|l2〉=
(

−
2
√

r(k− r)

N

)

|l1〉+
(

1−
2(k− r)

N

)

|l2〉

+

(

−
2
√

(k− r)(m− r)

N

)

|l3〉+

(

−
2
√

(k− r)(N −m− k+ r)

N

)

|l4〉 ,
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QK |l3〉= −HI0HIK |l3〉=−H (I −2 |0〉〈0|)H

(

I −2 ∑
i∈K

|i〉〈i|

)

|l3〉=
(

2
√

r(m− r)

N

)

|l1〉+

(

2
√

(k− r)(m− r)

N

)

|l2〉

+

(

2(m− r)

N
−1

)

|l3〉+

(

2
√

(m− r)(N −m− k+ r)

N

)

|l4〉 ,

QK |l4〉= −HI0HIK |l4〉=−H (I −2 |0〉〈0|)H

(

I −2 ∑
i∈K

|i〉〈i|

)

|l4〉=
(

2
√

r(N −m− k+ r)

N

)

|l1〉+

(

2
√

(k− r)(N −m− k+ r)

N

)

|l2〉

+

(

2
√

(m− r)(N −m− k+ r)

N

)

|l3〉+
(

2(N −m− k−+r)

N
−1

)

|l4〉

yielding QK in matrix form

QK =













1− 2r
N

−2
√

r
√

k−r
N

2
√

r
√

m−r
N

2
√

r
√

N−k−m+r
N

−2
√

r
√

k−r
N 1− 2(k−r)

N
2
√

k−r
√

m−r
N

2
√

k−r
√

N−k−m+r
N

−2
√

r
√

m−r
N

−2
√

k−r
√

m−r
N

2(m−r)
N −1 2

√
m−r

√
N−k−m+r
N

−2
√

r
√

N−k−m+r
N

−2
√

k−r
√

N−k−m+r
N

2
√

m−r
√

N−k−m+r
N

2(N−k−m+r)
N −1













. (10)

Similarly, we obtain the matrix form of QM

QM =













1− 2r
N

2
√

r
√

k−r
N

−2
√

r
√

m−r
N

2
√

r
√

N−k−m+r
N

−2
√

r
√

k−r
N

2(k−r)
N −1 −2

√
k−r

√
m−r

N
2
√

k−r
√

N−k−m+r
N

−2
√

r
√

m−r
N

2
√

k−r
√

m−r
N

1−2(m−r)
N

2
√

m−r
√

N−k−m+r
N

−2
√

r
√

N−k−m+r
N

2
√

k−r
√

N−k−m+r
N

−2
√

m−r
√

N−k−m+r
N

2(N−k−m+r)
N −1













. (11)

Substituting Equation 10 and Equation 11 into Equation 4 yields

Q =













1− 8r(N−m)
N2

−4
√

r
√

k−r(N−2m)
N2 0 0

−4
√

r
√

k−r(N−2m)
N2

8m(k−r)
N2 −1 0 0

−8
√

r
√

m−r(N−m)
N2

−4
√

k−s
√

m−r(N−2m)
N2 0 0

−4
√

r
√

N−k−m+r(N−2m)
N2

8m
√

k−r
√

N−k−m+r
N2 0 0













+













0 0
8
√

r
√

m−r(N−m)
N2

4
√

r
√

N−k−m+r(N−2m)
N2

0 0
4
√

k−r
√

m−r(N−2m)
N2

−8m
√

k−r
√

N−k−m+r
N2

0 0
8(N−m)(m−r)

N2 −1
4
√

m−r
√

N−k−m+r(N−2m)
N2

0 0
4
√

m−r
√

N−k−m+r(N−2m)
N2 1− 8m(N−k−m+r)

N2













.
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The compound operator Q is a rotation in the 4-dimensional space spanned by Equations 6 -

Equation 9. Finding the rotation angles requires the diagonalized matrix of Q. Let V be the matrix

whose columns are the eigenvectors of Q, then QD = V−1QV is a diagonal matrix whose diagonal

components are the eigenvalues of Q as follows:

QD =









e−iw1 0 0 0

0 eiw1 0 0

0 0 e−iw2 0

0 0 0 eiw2









where

e−iw1 =
4km

N2
−

4r

N
+Γ−∆

eiw1 =
4km

N2
−

4r

N
+Γ+∆

e−iw2 =
4km

N2
−

4r

N
−Γ−∆

eiw2 =
4km

N2
−

4r

N
−Γ+∆

and Γ and ∆ are given by

Γ =

√

1−
8rN3 +8kmN2 −16rkN2 −16rmN2 +32rkmN −16k2m2

N4
,

∆ = 2

√

2N2r(r+ k+m)−N3r(1+Γ)+N2kmΓ−N2km−8Nkmr+4k2m2

N4

which implies

w1 = arccos

(

4km

N2
−

4r

N
+Γ

)

,

w2 = arccos

(

4km

N2
−

4r

N
−Γ

)

.

The amplitude of |l1〉 is given by

a(t) = Asin(w1t +φ) (12)

where A is the maximal amplitude, to be found, and φ is the angle between the initial state H |0〉⊗n

and |l1〉:

φ = arctan

√

r

N − r
.

The maximal probability A2 that a measurement of the system will produce a state in K∩M will

be obtained at time

T = argmax
t

A2sin2 (w1t +φ)
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yielding

T =









π/2− arctan
(
√

r
N−r

)

arccos
(

4km
N2 − 4r

N +Γ
)









as asserted (Equation 5).

Theorem 1 suggests a way for approximating the time complexity of the algorithm when m,k<<
N. Employing the Taylor series, the second order approximation of the rotation angle is

w1 = O

(
√

r

N

)

and the number of iterations can be approximated by

T ≈ O





π/2−
√

r
N−r

√

r
N



= O

(

√

N

r

)

. (13)

Theorem 2 The maximal probability, A2 from Equation 12, of measuring a marked state in K ∩M

from Theorem 1 is approximately 1 when |K| , |M|<< N and N is large.

Proof The amplitude a(t) of |l1〉 behaves as in Equation 12 and the maximal amplitude A can be

obtained from

Asin(w1 +φ) =

√

r

N

(

1−
8r(N −m)

N2

)

+

√

k− r

N

(

−4
√

r
√

k− r(N −2m)

N2

)

+

√

m− r

N

(

8
√

r
√

m− r(N −m)

N2

)

+

√

N −m− k+ r

N

(

4
√

r
√

N −m− k+ r(N −2m)

N2

)

. (14)

Substituting w1 and φ in the left hand side of Equation 14 yields
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A ≈

√

r
N

(

1− 8r(N−m)
N2

)

√

2−2Γ− 8km
N2 + 8r

N +
√

r
N−r

+

√

k−r
N

(

−4
√

r
√

k−r(N−2m)
N2

)

√

2−2Γ− 8km
N2 + 8r

N +
√

r
N−r

+

√

m−r
N

(

8
√

r
√

m−r(N−m)
N2

)

√

2−2Γ− 8km
N2 + 8r

N +
√

r
N−r

+

√

N−m−k+r
N

(

4
√

r
√

N−m−k+r(N−2m)
N2

)

√

2−2Γ− 8km
N2 + 8r

N +
√

r
N−r

which, under the assumption r,k,m << N, is close to 1.

3. Quantum Associative Memory

In this section we introduce our associative memory model and the retrieval procedure with pattern

completion and correction abilities. We present the concept of memory as a quantum operator that

flips the phase of the memory patterns. The operator is based on an oracle that identifies, or ”marks”,

memory patterns. This allows the initial state of our algorithm to be independent of the memory set.

The input of our algorithms is an n-qubit register that contains the superposition of all basis states.

This input is created by applying the Hadamard operation on an n-qubit register set to zeros, H |0〉.

3.1 Pattern Completion

Let IM be a phase oracle on a set M, called the memory set, of m n-qubit patterns and let x′

be a version of a memory pattern x ∈ M with d missing bits. We are required to output the

pattern x based on IM and x′. The partial pattern is given as a string of binary values 0 and

1 and some unknown bits marked ’?’. Denoting the set of possible completions of the partial

pattern K and its size k, the completion problem can be reduced to the problem of retrieving

a member x of the intersection between two sets K and M, x ∈ K ∩ M. For example, let M =
{0101010,0110100,1001001,1111000,1101100,1010101,0000111,0010010} be a 7-bit memory

set of size 8 and let ”0110?0?” be a partial pattern with 2 missing bits, so the completion set is

K = {0110000,0110001,0110100,0110101}. Pattern completion is the computation of the inter-

section between K and M, which is the memory pattern 0110100.

Pattern completion can use either the intersection oracle presented in Figure 6 or the quantum

intersection presented in Algorithm 1. In either case, we need to create the completion operator fK

or its phase version IK that marks the states of the set K, which can be implemented by checking

whether a state is a completion of the partial patterns x′ represented by the set K. Such an implemen-

tation is shown in Figure 7, where for each given bit in the pattern an appropriate control is added
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Figure 7: An implementation of a completion operator with an up to n+1 dimensional controlled-

not operator.

to the corresponding qubit. The dark circle means that the control is activated when the bit value is

1 and the empty circle means that the control is activated when the bit value is 0. For each missing

bit, no control is added for the corresponding qubit. A single n qubit operator can be implemented

by O(n) 2 and 3-qubit operators (Barenco et al., 1995).

The algorithm for pattern completion through the quantum intersection algorithm is

Algorithm 2 : Quantum Pattern Completion

Given: A memory operator IMand a pattern x′ ∈ {0,1}n, which is a partial version

of some memory pattern with up to d missing bits

1. Create the completion operator IK.

2. Apply Algorithm 1 with IM and IK

3.2 Pattern Correction

Let IM be a phase oracle of a memory set M of size m and let x′ be a version of a memory

pattern x ∈ M with up to d faulty bits. We are required to output the pattern x based on IM

and x′. The set K of possible corrections of the faulty pattern consists of all patterns in Ham-

ming distance up to d from x′. The correction problem can be reduced to the problem of re-

trieving a member x of the intersection between two sets K and M, x ∈ K ∩ M. For example,

let M = {0101010,0110100,1001001,1111000,1101100,1010101,0000111,0010010} be a 7-bit

memory set and let ”0110001” be the input pattern with 2 possible errors. The correction set K
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Figure 8: An implementation of a correction operator with a 1logn2 additional bits, n controlled

operators that add 1, and a threshold operator.

consists of all patterns that are in Hamming distance up to 2 from x′. Pattern correction should then

retrieve the memory pattern 0110100.

Pattern correction can be solved using the quantum intersection algorithm, which requires the

creation of the correction operator fK or its phase version IK . This can be implemented by checking

whether the number of different bits between any given state and the faulty pattern x′ is less or equal

to d. Such an implementation is shown in Figure 8. The operator applies a linear threshold on the

hamming distance between x′ and any input x. The operator consists of n input qubits, 1logn2 qubits

for the hamming distance of x from x′, and an additional qubit for the output. The operator adds 1

for each bit in x that is not equal to the corresponding bit in x′, then applies a controlled not operator

if the hamming distance does not exceed the threshold d. The operator can, thus, be implemented

using O(n logn) 2 and 3-qubit operators.

Algorithm 3 : Quantum Pattern Correction

Given: A memory operator IMand a pattern x′ ∈ {0,1}n, which is a faulty version

of some memory pattern with up to d faulty bits

1. Create the correction operator IK.

2. Apply Algorithm 1 with IM and IK

A generalization of both Algorithm 2 and Algorithm 3 for the case of unknown number of possi-

ble corrections is straight forward using quantum search for an unknown number of marked states

(Boyer et al., 1996) or quantum counting (Brassard et al., 1998).
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Algorithm 3 finds a memory pattern that is in Hamming distance up to d from x′. If the memory

is within the correction capacity bounds, Algorithm 3 finds the correct pattern x with high probabil-

ity, as will be proved in Section 4. However, if we are interested in ensuring that we find the closest

memory pattern to x′, with no dependence on the capacity bound, then we can apply Algorithm 3

for i = 0 bits and increase it up to i = d bits. In this case we ensure that we find a pattern x, such

that
{

x : (x ∈ M)∧
(

∀x′′ ∈ M : dist(x′′,x)≥ dist(x′,x)
)}

where dist(·, ·) is the Hamming distance.

4. Analysis of the Quantum Associative Memory

In this section we analyze the time complexity and memory capacity of the proposed quantum as-

sociative memory. We first show that the time complexity of retrieval operations is sub-exponential

in the number of bits. Then we show that the number of memory patterns that can be stored while

the model retains its correction and completion abilities is exponential in the number of bits.

4.1 Time Complexity Analysis

The time complexity of the retrieval procedure with either pattern completion or correction ability

is determined by the complexity of the quantum intersection algorithm and the complexity of the

completion and correction operators. The two operators can be implemented by a number of oper-

ations which is linear in n or in n logn. According to Equation 13, the completion and correction

operations are performed in

T ≈ n logn+O

(√

N

|K ∩M|

)

= O

(√

N

|K ∩M|

)

operations, which is sub-exponential in number of bits.

4.2 Capacity Analysis

We consider three different capacity measures. The first is the equilibrium capacity Meq, which is

the maximal memory size that ensures that all memory patterns are equilibrium points of the model.

An Equilibrium point is a pattern that, when presented to the model as an input, is also retrieved

as an output with high probability. The second is the pattern completion capacity Mcom, which is

the maximal memory size that allows the completion of any partial pattern with up to d missing

bits with high probability. The third is the pattern correction capacity Mcor, which is the maximal

memory size that allows the correction of any pattern with up to d faulty bits with high probability.

Equilibrium is a special case of completion and correction with neither missing nor faulty bits.

Therefore, the equilibrium capacity should be equal to the completion and correction capacities for

d = 0.

4.2.1 EQUILIBRIUM CAPACITY

The equilibrium capacity of the quantum associative memory is

Meq = N
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because every memory state of an n-bit associative memory M of any size m ≤ N is an equilibrium

state, that is, if Qx =−(HI0HIx), T =
⌊

π
4

√
N
⌋

, and |Ψ(T )〉= QT
x H |0〉, then

∀x ∈ M : |〈x|Ψ(T )〉|2 → 1 as n → ∞.

This is a direct consequence of Grover’s algorithm (Grover, 1996) and the results obtained by

Boyer et al. (1996) concerning the ability to find any member of the size N database with probability

close to 1.

4.2.2 COMPLETION CAPACITY

Given a pattern x′, which is a partial version of some memory pattern xc with d missing bits, we

seek the maximal memory size, for which the pattern can be completed with high probability from a

random uniformly distributed memory set (McEliece et al., 1987; Baram, 1991; Baram and Sal’ee,

1992).

The completion capacity is bounded from above by two different bounds. The first is a result

of Grover’s quantum search algorithm limitations and the second is a result of the probability of

correct completion.

A Bound on Memory Size due to Grover’s Quantum Search Limitations. Grover’s operator flips the

marked states around the zero amplitude (negating their amplitudes) then flips all amplitudes around

the average of all amplitudes (Biham et al., 1999). Amplification of the desired amplitudes occurs

only when the average of all amplitudes is closer to the amplitudes of the non-marked states than to

the marked states. This imposes the following upper bound on the memory size:

m < N/2.

This can be observed in the first iteration of the quantum search algorithm on a number of

marked states. The initial amplitude of all basis states in H |0〉 is 1/
√

N. Flipping the phase of m

marked states by IM to −1/
√

N yields an average amplitude of

(N −m)∗
(

1/
√

N
)

−m∗
(

1/
√

N
)

=
N −2m√

N
.

Then, flipping the phases of all basis states around this average by HI0H yields two values of

amplitudes. The amplitudes of marked and unmarked states become

2

(

N −2m√
N

)

±
1√
N

=

(

2N −4m±1√
N

)

(15)

where ± correspond to marked and unmarked states respectively.

A necessary condition for the amplification of marked states is that the absolute value of their

amplitudes after an iteration of the algorithm is higher than the absolute value of the amplitude of

unmarked states. The condition is satisfied if and only if the two equations given in Equation 15

satisfy

∣

∣

∣

∣

(

2N −4m+1√
N

)∣

∣

∣

∣

>

∣

∣

∣

∣

(

2N −4m−1√
N

)∣

∣

∣

∣
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which holds true if and only if m < N/2. Therefore, if m ≥ N/2 the amplitudes of the marked states

will not increase, which gives the following upper bound on the completion capacity:

Mcom < N/2. (16)

However, this is a very loose bound and the success probability of the completion will impose a

tighter bound.

A Bound on Memory Size due to Pattern Completion. The bound on memory size that ensures a high

probability of correct completion depends on the definition of the pattern completion procedure. If

one defines pattern completion as the process of outputting any of a number of possible memory

patterns when given a partial input, then the capacity bound of our memory is the amplification

bound given in Equation 16. However, this is not always the case. Pattern completion capacity is

usually defined as the maximal size of a random uniformly distributed memory set that, given a

partial version x′ of a memory xc ∈ M with d missing bits, outputs xc. The following theorem gives

an upper bound on the capacity for pattern completion with high probability:

Theorem 3 An n-bit associative memory with m random patterns can complete up to d missing bits

on average when

m ≤ 2n−d

with probability higher than
v

ev −1

m

∑
i=1

vi−1

ii
(17)

as n grows to infinity, where

v =
m

2n−d
.

Proof Let M be a random uniformly distributed memory set of size m = v2n−d , where 0 < v < 1.

Let x′ be a partial pattern of xc ∈ M with d missing bits. x′ induces the set

K =
{

x
∣

∣x is a completion o f x′
}

where |K|= 2d . Let Zi be random indicator variables representing the existence of the ith member

of M in K. Denoting p = Pr(Zi = 1) = 2d

2n = 1
2n−d , we have

m = v/p. (18)

Let us denote |Ψ(T )〉= QT H |0〉 and S = ∑m
i=1 Zi. If there is only one possible memory completion,

then it is xc, and if there are two, then xc is one of the two, and so on. Therefore, the probability of

successfully outputting xc from the partial pattern x′ is the sum of the conditional probabilities that

there are i memory completions divided by i:

|〈xc|Ψ(T )〉|2 =
m

∑
i=1

Pr (S = i | S ≥ 1)

i

=
m

∑
i=1

Pr (S = i)

iPr (S ≥ 1)

=
m

∑
i=1

(

m
i

)

pi (1− p)m−i

i(1− (1− p)m)
. (19)
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Now, this probability can be lower-bounded by

|〈xc|Ψ(T )〉|2 ≥
m

∑
i=1

(

m
i

)i
pi (1− p)m−i

i(1− (1− p)m)
. (20)

Substituting Equation 18 in Equation 20 we have

|〈xc|Ψ(T )〉|2 ≥
m

∑
i=1

(

vi

ii

)

(1− p)v/p−i

i
(

1− (1− p)v/p
)

≥
m

∑
i=1

(

vi

ii

)

e−v 1
(1−p)i

i(1− e−v)

≥
1

ev −1

m

∑
i=1

vi

(i(1− p))i

>
v

ev −1

m

∑
i=1

vi−1

ii
. (21)

Figure 9 shows that the lower bound with approximation by only three terms of the sum in

Equation 17 as a function of v is higher than 75% for all possible sizes of a non-empty memory

within the capacity limits.

Theorem 3 implies that Mcom(d) = 2n−d , which agrees with the result concerning the equilib-

rium capacity, since Mcom(0) = 2n−0 = 2n = N = Meq.

4.2.3 CORRECTION CAPACITY

A bound on the correction capacity of Algorithm 3 is given be the following theorem:

Theorem 4 An n-bit associative memory with m random patterns can correct up to d faulty bits on

average when

m ≤ 2n−d/

(

n

d

)

with probability higher than

v

ev −1

m

∑
i=1

vi−1

ii

as n grows to infinity, where

v =
m

2n−d
.

Proof Let M be a random uniformly distributed memory set of size

m = v2n−d/

(

n

d

)
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Figure 9: Success probability of pattern completion vs. memory size divided by the maximal com-

pletion capacity v for an associative memory with n = 30 qubits.

where 0 < v < 1. Let x′ be a pattern xc ∈ M with d faulty bits. x′ induces a set

D =
{

x
∣

∣dist(x,x′)≤ d
}

where |D|=
(

n
d

)

2d . Let Zi be random indicator variables representing the existence of the ith mem-

ber of M in D. Denoting p = Pr(Zi = 1) =
(

n
d

)

2d−n, we have

m = v/p.

Let us denote |Ψ(T )〉= QT H |0〉 and S = ∑m
i=1 Zi. The probability of successfully retrieving xc from

the pattern x′ is then

|〈xc|Ψ(T )〉|2 =
m

∑
i=1

Pr (S = i | S ≥ 1)

i

which, according to Equations 19 - 21, also satisfies

|〈xc|Ψ(T )〉|2 ≥
v

ev −1

m

∑
i=1

vi−1

ii
.

Theorem 4 yields Mcor(d) =
(

n
d

)

2n−d , which also agrees with the result concerning the equilib-

rium capacity, since Mcor(0) =
(

n
0

)

2n−0 = 2n = N = Meq.

For example, let M be a memory set over {0,1}100, then, as long as |M|< 280, we can complete

up to d = 100− log |M|= 20 bits and correct up to d = 13 bits.
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Figure 10: Pattern completion or correction probability vs. the memory size divided by the maximal

completion capacity v. For 0< v< 1, the probability is above 75% and for v< 2 is above

50%.

4.2.4 INCREASING MEMORY SIZE BEYOND THE CAPACITY BOUNDS

The various capacities presented above are exponential in n under the assumption d << n. However,

an increase of m beyond the capacity bound results in a decay of the correct completion probability

as depicted in Figure 10. It can be seen that it is more likely to find the correct completion than not

to find it as long as v < 2.

In addition, the model can also output a superposition of a number of possible outputs, by

skipping the measurement operation in Algorithm 1. This is not true for most classical memory

models where spurious memories arise and the output is usually not a memorized pattern, but, rather,

some spurious combination of multiple memory patterns (Hopfield, 1982; Bruck, 1990; Goles and

Martı́nez, 1990).

5. Comparison to Previous Works

Quantum computation was previously applied to associative memory by Ventura and Martinez

(2000), Ezhov et al. (2000), Howell et al. (2000), and, subsequently, by others. An algorithm based

on the model developed by Ventura and Martinez (2000) was proposed by Arima et al. (2008). It

was further developed by Arima et al. (2009) and analyzed by Miyajima et al. (2010). We analyze

the two main algorithms (Ventura and Martinez, 2000; Arima et al., 2009) and show their differences

with respect to our algorithm. These algorithms are given below.
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Figure 11: Memory size vs. success probability of Algorithm 4. Optimal results are achieved only

when the memory size is close to N
4 .

Algorithm 4 The algorithm proposed by Ventura and Martinez (2000)

Given: Phase oracles IMand IK

1. Denote QM =−HI0HIM and QK =−HI0HIK

2. Let |Ψ〉= 1
m ∑m

i=1 |i〉.
3. Apply QMQK on |Ψ〉
4. Apply QK on |Ψ〉 for T =

⌊

π/4
√

N/|K ∩M|
⌋

-2 times.

5. Measure |Ψ〉.

Algorithm 5 The algorithm proposed by Arima et al. (2009)

Given: Phase oracles IMand IK

1. Denote QM =−HI0HIM and QK =−HI0HIK

2. Let |Ψ〉= 1
m ∑m

i=1 |i〉.
3. Apply QMQK on |Ψ〉 for T times. (Twas not found by Arima et al., 2009)

4. Measure |Ψ〉.

Algorithm 4 can find only a single marked state with high probability when the memory size m

is close to N
4 − 2, as shown by the solid line in Figure 11. The probability of measuring this state

reduces by a half when there are two marked states and only one of them is a memory pattern, as

shown by the dashed line in Figure 11, and so on.
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Figure 12: Memory size vs. success probability in Algorithm 5. Satisfactory results are achieved

only when the memory size exceeds N
4 .

Algorithm 5 gives satisfying results only when the memory size exceeds N
4 , which is exponential

in the number of qubits, leaving the possibility of effective pattern completion only for 2 qubits or

less. It is therefore not helpful for associative memory with pattern completion and correction

abilities. The success probability of Algorithm 5 vs. the memory size is depicted in Figure 12.

Miyajima et al. (2010) added a control parameter to tune the algorithm, changing the memory size

for which the maximal amplitude is achieved. The algorithm is presented only for one marked state

with no completion and correction abilities. The time complexity and stopping criteria were not

stated by Arima et al. (2008) and were later found to be O
(√

N
)

(Arima et al., 2009; Miyajima

et al., 2010).

Our algorithm, on the other hand achieves high success probability up to memory size N
4 , as

depicted in Figure 13.

Furthermore, both Algorithm 4 and Algorithm 5 need to initialize the system at a superposition

of the memory states:

|Ψ〉=
1√
m

m

∑
i=1

|i〉

which is a shortcoming for two reasons: the time complexity of initialization when the memory size

is large and the need for repeated initialization upon every application of the memory. The latter is

important as it adds an exponential factor to the query time, for either completion or correction, and

an exponential addition to the single query time when amplitude amplification is needed. Amplitude

amplification ensures that we pick the correct pattern with probability 1 by performing the algorithm
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Figure 13: Memory size vs. success probability in Algorithms 2 and 3.

a multiple number of times. Our algorithm’s initialization, on the other hand, does not depend on

the memory patterns.

6. Numerical Examples and Simulations

Let us first consider an associative memory of 10 qubits. We have randomly chosen a set of 50

patterns M out of the possible 1024 to be stored in memory. We also chose two partial patterns, each

with 4 missing qubits, yielding two completion sets K1 and K2 of 16 possible completions each. We

chose K1 and K2 such that they have one and two completions in memory respectively. Figure 14(a)

shows the memory set, where each vertical line represents a memory pattern, and Figure 14(b)

shows the completion set K1 in the same manner. The amplitudes of the final state of the completion

algorithm are shown in Figure 14(c), where the only possible memory completion has amplitude

close to 1. Figure 15 shows the high amplitudes of the two possible memory completions when the

completion set is K2.

As can be seen, applying our algorithm to both completion sets amplified the states that are

possible completions in memory. The amplitudes of the desired states reached up to 96.76% in the

first case and 68.44% in the second case for each one of the two high amplitudes. Therefore, the

probability of measuring the correct completion in the first case is 93.62% and the probability of

measuring one of the two correct completions in the second case is 93.67%.

Another simulation was carried out on a 10 qubits associative memory with 27 memory patterns

and completion queries with 3 missing bits. The behavior of the different subgroups of the basis

states is schematically described in Figure 16 for a series of iterations with the completion operator

Q of Equation 4. Each amplitude value indicated represents the amplitudes of all the basis states

that belong to the corresponding subgroup. It shows the amplification of states in the intersection

3201



SALMAN AND BARAM

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000
0

1

K1

M ∩K1

M

(a)

(c)

(b)

Figure 14: (a) A set of memory patterns M (b) a set of possible completions K1 to a partial pattern,

and (c) the memory completion result in amplitudes.
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Figure 15: (a)A set of memory patterns M (b) a set of possible completions K2 to a partial pattern,

and the memory completion result in amplitudes.
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Figure 16: Simulation of a series of iterations of the completion algorithm. The graph shows the

different behavior of the different subgroups of basis states. K is the completion set and

M is the memory set. The memory completions and the non completions or memories

are amplified alternatingly, while the amplitudes of K\M and M\K subgroups stay close

to zero.

group K ∩M and in NOT (K ∪M) alternatingly, while the amplitudes of states in K\M and M\K

stay close to zero.

We have also tested our algorithms with a larger number of qubits in order to verify that the

success rate of retrieval grows asymptotically to 1 as the number of qubits grows. For instance,

we tested a 30 qubit system with 225 memory patterns and a completion query that has 8 missing

bits. We tested different completions of 8 missing bits so that the intersection set size varied from

1 to 10 patterns. Our algorithm found a member of the memory completion set with probability

96.8%. Increasing the memory size to 226 and 227, and thereby bringing the capacity close to its

limit resulted in completion probabilities of 93.5% and 86.7% respectively. Figure 17 depicts the

success rates of pattern completion in a 30 qubit system. An explanation of the different graphs can

be found in Table 1. The solid line in Figure 17 depicts the success probability vs. the logarithm

of the size of memory with completion queries set to 8 missing bits and the number of possible

memory completions set to 1. The dashed line depicts the success probability vs. the logarithm of

the completion query size when the memory size is set to 225 patterns and the number of possible

memory completions set to 1. The dotted line depicts the success probability vs. the logarithm of

the number of possible memory completions when both the memory size and the completion query

size are set to 225. The dash-dotted line depicts the success probability vs. the number of qubits in

the system (growing from 5 to 30 qubits) when the memory size, the completion query size, and the

number of possible memory completions are small constants.

Figure 17 shows that the deterioration of the success probability vs. the memory size or the

completion query size is very slow. For instance, deterioration starts at memory size 226. Further-
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Graph |N| |M| |K| |K ∩M||
Solid constant varying constant constant

—— 230 23 −227 23 1

Dashed constant constant varying constant

– – – 230 225 23 −225 1

Dotted constant constant constant varying

· · · 230 225 225 1−225

Dash-dotted varying constant constant constant

– · – · – 25 −230 23 23 1

Table 1: Properties of the four simulations depicted in Figure 17. The x axis in Figure 17 represents

the varying set size, while the other set sizes are constant in each simulation.
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Figure 17: Success probability of measuring a desired memory completion vs. the log of the mem-

ory size (solid), completion query size (dashed), possible memory completions (dotted),

and number of qubits (dash-dotted).
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more, the success probability increases when the number of possible memory completions (the size

of the intersection set) grows towards the sizes of the completion query and the memory, which

indicates that choosing a member of the intersection becomes easy (by randomly choosing a possi-

ble completion). Finally, the figure also shows that, as the number of qubits in the system grows,

the success probability becomes asymptotically 1, which indicates that, practically, our algorithm

produces the intersection when n >> 1.

7. Conclusion

We have presented a quantum computational algorithm that computes the intersection between two

subsets of n-bit strings. The algorithm is based on a modification of Grover’s quantum search. Us-

ing the intersection algorithm, we have presented a set of algorithms that implement a model of

associative memory via quantum computation. We introduced the notion of memory as a quantum

operator, thus avoiding the dependence of the initial state of the system on the memory set. We have

shown that our algorithms have both speed and capacity advantages with respect to classical asso-

ciative memory models, consuming sub-exponential time, and are able to store a number of memory

patterns which is exponential in the number of bits. Pattern retrieval algorithms with completion

and correction abilities were presented. Bounds relating memory capacity to the maximal allowed

signal to noise ratio were found.
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Abstract

In this paper, we propose a novel policy iteration method, called dynamic policy programming
(DPP), to estimate the optimal policy in the infinite-horizon Markov decision processes. DPP is
an incremental algorithm that forces a gradual change in policy update. This allows us to prove
finite-iteration and asymptotic !∞-norm performance-loss bounds in the presence of approxima-
tion/estimation error which depend on the average accumulated error as opposed to the standard
bounds which are expressed in terms of the supremum of the errors. The dependency on the av-
erage error is important in problems with limited number of samples per iteration, for which the
average of the errors can be significantly smaller in size than the supremum of the errors. Based on
these theoretical results, we prove that a sampling-based variant of DPP (DPP-RL) asymptotically
converges to the optimal policy. Finally, we illustrate numerically the applicability of these results
on some benchmark problems and compare the performance of the approximate variants of DPP
with some existing reinforcement learning (RL) methods.

Keywords: approximate dynamic programming, reinforcement learning, Markov decision pro-
cesses, Monte-Carlo methods, function approximation

1. Introduction

Many problems in robotics, operations research and process control can be represented as a control

problem that can be solved by finding the optimal policy using dynamic programming (DP). DP

is based on estimating some measures of the value of state-action Q∗(x,a), also known as action-

value function, through the Bellman equation. For high-dimensional discrete systems or for con-

tinuous systems, computing the value function by DP is intractable. The common approach to

make the computation tractable is to approximate the value function using function-approximation

and Monte-Carlo sampling (Szepesvári, 2010; Bertsekas and Tsitsiklis, 1996). Examples of such

approximate dynamic programming (ADP) methods are approximate policy iteration (API) and ap-

proximate value iteration (AVI) (Bertsekas, 2007; Lagoudakis and Parr, 2003; Perkins and Precup,

2003; de Farias and Van Roy, 2000). In addition to these approaches, there are methods which

do not rely exclusively on an approximate value function. These methods include, for instance,

actor-critic methods (Barto et al., 1983), which explicitly consider two interacting processes, policy

gradient methods (Baxter and Bartlett, 2001; Sutton et al., 2000), and dual dynamic programming

(Wang et al., 2007, 2008).

©2012 Mohammad Gheshlaghi Azar, Vicenç Gómez and Hilbert J. Kappen.
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ADP methods have been successfully applied to many real world problems, and theoretical

results have been derived in the form of finite iteration and asymptotic performance guarantee on

the induced policy. In particular, the formal analysis of these algorithms is usually characterized in

terms of bounds on the difference between the optimal and the estimated value function induced by

the algorithm (performance loss) (Farahmand et al., 2010; Thiery and Scherrer, 2010; Munos, 2005;

Bertsekas and Tsitsiklis, 1996). For instance, in the case of AVI and API, the asymptotic !∞-norm

performance-loss bounds in the presence of approximation error εk can be expressed as1

limsup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
limsup

k→∞
‖εk‖ , (1)

where γ denotes the discount factor, ‖ · ‖ is the !∞-norm w.r.t. the state-action pair (x,a) and πk is

the control policy at iteration k.

The bound of Equation 1 is expressed in terms of the supremum of the approximation errors.

Intuitively, the dependency on the supremum error means that to have a small overall performance

loss the approximation errors of all iterations should be small in size, that is, a large approximation

error in only one iteration can derail the whole learning process. This can cause a major problem

when the approximation error εk arises from sampling. In many problems of interest, the sampling

error can be large and hard to control, since only a limited number of samples can be used at each

iteration. Also, even in those cases where we have access to large number of samples, it may be

difficult, if not impossible, to control the size of errors for all iterations. This is due to the fact

that the sampling errors are random objects and, regardless of the number of samples used at each

iteration, there is always a fair chance that in some few outlier iterations the sampling errors take

large values in their interval of definition. In all those cases, a bound which depends on the average

accumulated error ε̄k = 1/(k+1)∑ k
j=0ε j instead of the supremum error is preferable. The rationale

behind this idea is that the average of the sum of random variables, under some mild assumptions,

can be significantly smaller in size than the supremum of the random variables. Also, the average

error ε̄k is less sensitive to the outliers than the supremum error. Therefore, a bound which depends

on the average error can be tighter than the one with dependency on the supremum error. To the

best of authors’ knowledge, there exists no previous work that provides such a bound.

In this paper, we propose a new incremental policy-iteration algorithm called dynamic policy

programming (DPP). DPP addresses the above problem by proving the first asymptotic and finite-

iteration performance loss bounds with dependency on ‖ε̄k‖. This implies the previously mentioned

advantages in terms of performance guarantees. The intuition is that DPP, by forcing an incremental

change between two consecutive policies, accumulates the approximation errors of all the previous

iterations, rather than just minimizing the approximation error of the current iteration. We also

introduce a new RL algorithm based on the DPP update rule, called DPP-RL, and prove that it

converges to the optimal policy with the convergence rate of order 1/
√

k. This rate of convergence

leads to a PAC (“probably approximately correct”) sample-complexity bound of order O(1/((1−
γ)6ε2)) to find an ε-optimal policy with high probability, which is superior to the best existing result

of standard Q-learning (Even-Dar and Mansour, 2003). See Section 6 for a detailed comparison

with incremental RL algorithms such as Q-learning and SARSA.

1. For AVI the approximation error εk is defined as the error associated with the approximation of the Bellman optimality

operator. In the case of API, εk is the policy evaluation error (see Farahmand et al., 2010; Bertsekas and Tsitsiklis,

1996, Chapter 6, for more details).
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DPP shares some similarities with the well-known actor-critic (AC) method of Barto et al.

(1983), since both methods make use of an approximation of the optimal policy by means of action

preferences and soft-max policy. However, DPP uses a different update rule which is only expressed

in terms of the action preferences and does not rely on the estimate of the value function to criticize

the control policy.

The contribution of this work is mainly theoretical, and focused on the problem of estimating

the optimal policy in an infinite-horizon MDP. Our setting differs from the standard RL setting in

the following: we rely on a generative model from which samples can be drawn. This means that

the agent has full control on the sample queries that can be made for any arbitrary state. Such an

assumption is commonly made in theoretical studies of RL algorithms (Farahmand et al., 2008;

Munos and Szepesvári, 2008; Kearns and Singh, 1999) because it simplifies the analysis of learning

and exploration to a great extent. We compare DPP empirically with other methods that make use

of this assumption. The reader should notice that this premise does not mean that the agent needs

explicit knowledge of the model dynamics to perform the required updates, nor does it need to learn

one.

This article is organized as follows. In Section 2, we present the notation which is used in this

paper. We introduce DPP and we investigate its convergence properties in Section 3. In Section 4,

we demonstrate the compatibility of our method with the approximation techniques by generalizing

DPP bounds to the case of function approximation and Monte-Carlo sampling. We also introduce a

new convergent RL algorithm, called DPP-RL, which relies on a sampling-based variant of DPP to

estimate the optimal policy. Section 5, presents numerical experiments on several problem domains

including the optimal replacement problem (Munos and Szepesvári, 2008) and a stochastic grid

world. In Section 6 we briefly review some related work. Finally, in Section 7, we summarize our

results and discuss some of the implications of our work.

2. Preliminaries

In this section, we introduce some concepts and definitions from the theory of Markov decision pro-

cesses (MDPs) and reinforcement learning (RL) as well as some standard notation (see Szepesvári,

2010, for further reading). We begin by the definition of the !2-norm (Euclidean norm) and the

!∞-norm (supremum norm). Assume that Y is a finite set. Given the probability measure µ over Y,

for a real-valued function g : Y→ R, we shall denote the !2-norm and the weighted !2,µ-norm of g

by ‖g‖2
2 ! ∑y∈Y g(y)2 and ‖g‖2

2,µ ! ∑y∈Y µ(y)g(y)2, respectively. Also, the !∞-norm of g is defined

by ‖g‖ ! maxy∈Y |g(y)| and log(·) denotes the natural logarithm.

2.1 Markov Decision Processes

A discounted MDP is a quintuple (X,A,P,R,γ), where X and A are, respectively, the state space

and the action space. P shall denote the state transition distribution and R denotes the reward kernel.

γ∈ [0,1) denotes the discount factor. The transition P is a probability kernel over the next state upon

taking action a from state x, which we shall denote by P(·|x,a). R is a set of real-valued numbers.

A reward r(x,a) ∈ R is associated with each state x and action a.

Assumption 1 (MDP Regularity) We assume that X and A are finite sets with the cardinalities

|X| and |A|, respectively. Also, the absolute value of the immediate reward r(x,a) is bounded from

above by Rmax > 0 for all (x,a) ∈ Z.
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Remark 1 To keep the representation succinct, we make use of the short-hand notation Z for the

joint state-action space X×A. We also denote Rmax

/
(1− γ) by Vmax.

A Markovian policy kernel determines the distribution of the control action given the current

state. The policy is called stationary if the distribution of the control action is independent of time.

Given the current state x, we shall denote the Markovian stationary policy, or in short only policy,

by π(·|x). A policy is called deterministic if for any state x ∈ X there exists some action a such that

π(a|x) = 1. Given the policy π, its corresponding value function V π : X→ R denotes the expected

total discounted reward in each state x, when the action is chosen by policy π, which we denote by

V π(x). Often it is convenient to associate value functions not with states but with state-action pairs.

Therefore, we introduce Qπ : Z→R as the expected total discounted reward upon choosing action a

from state x and then following policy π, which we shall denote by Qπ(x,a). We define the Bellman

operator Tπ on the action-value functions by2

TπQ(x,a)! r(x,a)+ γ ∑
(y,b)∈Z

P(y|x,a)π(b|y)Q(y,b), ∀(x,a) ∈ Z.

The goal is to find a policy π∗ that attains the optimal value function, V ∗(x)! supπV π(x), at all

states x ∈ X. The optimal value function satisfies the Bellman equation:

V ∗(x) = sup
π(·|x)

∑
y∈X
a∈A

π(a|x) [r(x,a)+P(y|x,a)V ∗(y)]

= max
a∈A

[

r(x,a)+ ∑
y∈X

P(y|x,a)V ∗(y)

]

,

∀x ∈ X. (2)

Likewise, the optimal action-value function Q∗ is defined by Q∗(x,a) = supπ Qπ(x,a) for all

(x,a) ∈ Z. We shall define the Bellman optimality operator T on the action-value functions as

TQ(x,a)! r(x,a)+ γ ∑
y∈X

P(y|x,a)max
b∈A

Q(y,b), ∀(x,a) ∈ Z.

Q∗ is the fixed point of T. Both T and Tπ are contraction mappings, w.r.t. the supremum norm,

with the factor γ (Bertsekas, 2007, Chapter 1). In other words, for any two real-valued action-value

functions Q and Q′ and every policy π, we have

∥∥TQ−TQ′∥∥ ≤ γ
∥∥Q−Q′∥∥ ,

∥∥TπQ−TπQ′∥∥ ≤ γ
∥∥Q−Q′∥∥ .

The policy distribution π defines a right-linear operator Pπ· as

(PπQ)(x,a)! ∑
(y,b)∈Z

π(b|y)P(y|x,a)Q(y,b), ∀(x,a) ∈ Z.

Further, we define two other right-linear operators π· and P· as

(πQ)(x)! ∑
a∈A

π(a|x)Q(x,a), ∀x ∈ X,

(PV )(x,a)! ∑
y∈X

P(y|x,a)V (y), ∀(x,a) ∈ Z.

2. We note that Qπ is the fixed point of Tπ.
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We note that for every Q : Z→ R, V : X→ R and policy π, we have

(π[Q+V ])(x) = (πQ)(x)+V (x), ∀x ∈ X,

(Pπ[Q+V ])(x,a) = (PπQ)(x,a)+(PV )(x,a), ∀(x,a) ∈ Z.
(3)

We define the max operator M on the action value functions as (MQ)(x)!
maxa∈A Q(x,a), for all x ∈ X. Based on the new definitions one can rephrase the Bellman operator

and the Bellman optimality operator as

TπQ(x,a) = r(x,a)+ γ(PπQ)(x,a), TQ(x,a) = r(x,a)+ γ(PMQ)(x,a).

In the sequel, we repress the state(-action) dependencies in our notation wherever these depen-

dencies are clear, for example, Ψ(x,a) becomes Ψ, Q(x,a) becomes Q. Also, for simplicity of the

notation, we remove some parenthesis, for example, writing MQ for (MQ) and PπQ for (PπQ),
when there is no possible confusion.

3. Dynamic Policy Programming

In this section, we introduce and analyze the DPP algorithm. We first present the dynamic policy

programming (DPP) algorithm in Section 3.1 (see Appendix A for some intuition on how DPP

can be related to the Bellman equation). We then investigate the finite-iteration and the asymptotic

behavior of DPP and prove its convergence in Section 3.2.

3.1 Algorithm

DPP is a policy iteration algorithm which represents the policy πk in terms of some action prefer-

ence numbers Ψk (Sutton and Barto, 1998, Chapter 2.8). Starting at Ψ0, DPP iterates the action

preferences of all state-action pairs (x,a) ∈ Z through the DPP operator O (the pseudo code of DPP

is presented in Algorithm 1):

Ψk+1(x,a) = OΨk(x,a)! Ψk(x,a)− (MηΨk)(x)+ r(x,a)+ γ(PMηΨk)(x,a),

where Mη denotes the softmax operator. The softmax operator Mη is defined on every f : Z→ R

as

(Mη f )(x)!
∑

a∈A
exp(η f (x,a)) f (x,a)

∑
b∈A

exp(η f (x,b))
,

where η > 0 is the inverse temperature.

The control policy πk is then computed as a function of Ψk at each iteration k:

πk(a|x) =
exp(ηΨk(x,a))

∑
b∈A

exp(ηΨk(x,b))
, ∀(x,a) ∈ Z. (4)

Based on Equation 4 one can re-express the DPP operator on the action preferences Ψk as
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Ψk+1(x,a) = Ψk(x,a)+Tπk Ψk(x,a)−πkΨk(x), ∀(x,a) ∈ Z. (5)

Algorithm 1: (DPP) Dynamic Policy Programming

Input: Action preferences Ψ0(·, ·), γ and η
1 for k = 0,1,2, . . . ,K −1 do // main loop

2 foreach (x,a) ∈ Z do // compute the control policy

3 πk(a|x) :=
exp(ηΨk(x,a))

∑
b∈A

exp(ηΨk(x,b))
;

4 end

5 foreach (x,a) ∈ Z do // compute the new action-preferences

6 Ψk+1(x,a) := Ψk(x,a)+Tπk Ψk(x,a)−πkΨk(x); // DPP update rule

7 end

8 end

9 foreach (x,a) ∈ Z do // compute the last policy

10 πK(a|x) :=
exp(ηΨK(x,a))

∑
b∈A

exp(ηΨK(x,b))
;

11 end

12 return πK ;

3.2 Performance Guarantee

In this subsection, we investigate the finite-iteration and asymptotic behavior of Algorithm 1. We

begin by proving a finite-iteration performance guarantee for DPP:

Theorem 2 ( The !∞-norm performance loss bound of DPP) Let Assumption 1 hold. Also, as-

sume that Ψ0 is uniformly bounded by Vmax for all (x,a) ∈ Z, then the following inequality holds for

the policy induced by DPP at iteration k ≥ 0:

‖Q∗ −Qπk‖ ≤
2γ
(

4Vmax +
log(|A|)

η

)

(1− γ)2(k+1)
.

Proof See Appendix B.1.

Note that the DPP algorithm converges to the optimal policy for every η > 0 and choosing

a different η only changes the rate of convergence. The best rate of convergence is achieved by

setting η = ∞, for which the softmax policy and the softmax operator Mη are replaced with the

greedy policy and the max-operator M, respectively. Therefore, for η = +∞ the DPP recursion is

re-expressed as

Ψk+1(x,a) = Ψk(x,a)− (MΨk)(x)+ r(x,a)+ γ(PMΨk)(x,a).

3212



DYNAMIC POLICY PROGRAMMING

We must point out that the choice of η < +∞ may be still useful in the presence of function

approximation, where the greedy update rule can be unstable due to the non-differentiability of the

max operator. In fact, our numerical results in Section 5.2 suggests that the performance of DPP in

the presence of function approximation is optimized for some finite value of η rather than η =+∞
(see Section 5.2 for more details).

As an immediate consequence of Theorem 2, we obtain the following result:

Corollary 3 The following relation holds in limit:

lim
k→+∞

Qπk(x,a) = Q∗(x,a), ∀(x,a) ∈ Z.

In words, the policy induced by DPP asymptotically converges to the optimal policy π∗. The

following corollary shows that there exists a unique limit for the action preferences in infinity if the

optimal policy π∗ is unique.

Corollary 4 Let Assumption 1 hold and k be a non-negative integer. Assume that the optimal policy

π∗ is unique and let Ψk(x,a), for all (x,a) ∈ Z, be the action preference after k iteration of DPP.

Then, we have:

lim
k→+∞

Ψk(x,a) =

{
V ∗(x) a = a∗(x)
−∞ otherwise

, ∀x ∈ X.

Proof See Appendix B.2.

Notice that the assumption on the uniqueness of the optimal policy π∗ is not required for the

main result of this section (Theorem 2). Also, the fact that in Corollary 4 the action preferences of

sub-optimal actions tend to −∞ is the natural consequence of the convergence of πk to the optimal

policy π∗, which forces the probability of the sub-optimal actions to be 0.

4. Dynamic Policy Programming with Approximation

Algorithm 1 (DPP) only applies to small problems with a few states and actions. Also, to compute

the optimal policy by DPP an explicit knowledge of the model is required. In many real world

problems, this information is not available. Instead it may be possible to simulate the state tran-

sition by Monte-Carlo sampling and then estimate the optimal policy using these samples. In this

section, we first prove some general bounds on the performance of DPP in the presence of approxi-

mation/estimation error and compare these bounds with those of AVI and API. We then present new

approximate algorithms for implementing DPP with Monte-Carlo sampling (DPP-RL) and linear

function approximation (SADPP). For both DPP-RL and SADPP we assume that we have access

to the generative model of MDP, that is, an oracle can generate the next sample y from P(·|x,a) for

every state-action pair (x,a) ∈ Z on the request of the learner.

4.1 The !∞-Norm Performance-Loss Bounds for Approximate DPP

Let us consider a sequence of action preferences {Ψ0,Ψ1,Ψ2, . . .} such that, at round k, the ac-

tion preferences function Ψk+1 is the result of approximately applying the DPP operator by the

means of function approximation or Monte-Carlo simulation, that is, for all (x,a)∈Z: Ψk+1(x,a)≈
OΨk(x,a). The error εk is defined as the difference of OΨk and its approximation:
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εk(x,a)! Ψk+1(x,a)−OΨk(x,a), ∀(x,a) ∈ Z. (6)

Note that this definition of εk is rather general and does not specify the approximation technique

used to compute Ψk+1. In the following subsections, we provide specific update rules to approx-

imate Ψk+1 for both DPP-RL and SADPP algorithms which also makes the definition of εk more

specific.

The approximate DPP update rule then takes the following forms:

Ψk+1(x,a) = OΨk(x,a)+ εk(x,a)

= Ψk(x,a)+ r(x,a)+ γPMηΨk(x,a)−MηΨk(x,a)+ εk(x,a)

= Ψk(x,a)+Tπk Ψk(x,a)−πkΨk(x,a)+ εk(x,a),

(7)

where πk is given by Equation 4.

We begin by the finite-iteration analysis of approximate DPP. The following theorem establishes

an upper-bound on the performance loss of DPP in the presence of approximation error. The proof

is based on generalization of the bound that we established for DPP by taking into account the error

εk:

Theorem 5 (Finite-iteration performance loss bound of approximate DPP) Let Assumption 1 hold.

Assume that k is a non-negative integer and Ψ0 is bounded by Vmax. Further, define εk for all k by

Equation 6 and the accumulated error Ek as

Ek(x,a)!
k

∑
j=0

ε j(x,a), ∀(x,a) ∈ Z.

Then the following inequality holds for the policy induced by approximate DPP at round k:

‖Q∗ −Qπk‖ ≤
1

(1− γ)(k+1)




2γ
(

4Vmax +
log(|A|)

η

)

(1− γ)
+

k

∑
j=0

γk− j‖E j‖



 .

Proof See Appendix C.

Taking the upper-limit yields corollary 6.

Corollary 6 (Asymptotic performance-loss bound of approximate DPP) Define

ε̄ ! limsupk→∞ ‖Ek‖
/
(k+1). Then, the following inequality holds:

limsup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
ε̄. (8)

The asymptotic bound is similar to the existing results of AVI and API (Thiery and Scherrer,

2010; Bertsekas and Tsitsiklis, 1996, Chapter 6):

limsup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
εmax,
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where εmax = limsupk→∞ ‖εk‖. The difference is that in Equation 8 the supremum norm of error

εmax is replaced by the supremum norm of the average error ε̄. In other words, unlike AVI and API,

the size of error at each iteration is not a critical factor for the performance of DPP and as long as the

size of average error remains close to 0, DPP is guaranteed to achieve a near-optimal performance

even when the individual errors εk are large

As an example: Consider a case in which, for both DPP and AVI/API, the sequence of errors

{ε0,ε1,ε2, . . .} are some i.i.d. zero-mean random variables bounded by 0 < U < ∞. Corollary 6

combined with the law of large numbers then leads to the following asymptotic bound for approxi-

mate DPP:

limsup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
ε̄ = 0, w.p. (with probability) 1,

whilst for API and AVI we have

limsup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
U.

In words, approximate DPP manages to cancel i.i.d. noise and asymptotically converges to the

optimal policy whereas there is no guarantee, in this case, for the convergence of API and AVI

to the optimal solution. This example suggests that DPP, in general, may average out some of the

simulation noise caused by Monte-Carlo sampling and eventually achieve a better performance than

AVI and API in the presence of sampling error.

Remark 7 The i.i.d. assumption may be replaced by some weaker and more realistic assumption

that only requires the error sequence {ε0,ε1, . . . ,εk} to be a sequence of martingale differences, that

is, the errors do not need to be independent as long as the expected value of εk, conditioned on the

past observations, is 0. We prove, in the next subsection, that DPP-RL satisfies this assumption and,

therefore, asymptotically converges to the optimal policy (see Theorem 9).

4.2 Reinforcement Learning with Dynamic Policy Programming

To compute the optimal policy by DPP one needs an explicit knowledge of the model. In many prob-

lems, we do not have access to this information but instead we can generate samples by simulating

the model. The optimal policy can then be learned using these samples. In this section, we introduce

a new RL algorithm, called DPP-RL, which relies on a sampling-based variant of DPP to update

the policy. The update rule of DPP-RL is very similar to Equation 5. The only difference is that we

replace the Bellman operator TπΨ(x,a) with its sample estimate Tπ
k Ψ(x,a) ! r(x,a)+ γ(πΨ)(yk),

where the next sample yk is drawn from P(·|x,a):

Ψk+1(x,a)! Ψk(x,a)+T
πk

k Ψk(x,a)−πkΨk(x), ∀(x,a) ∈ Z. (9)

Based on Equation 9, we estimate the optimal policy by iterating some initial Ψ0 through the

DPP-RL update rule, where at each iteration we draw yk for every (x,a) ∈ Z. From Equation 6, the

estimation error of the kth iterate of DPP-RL is then defined as the difference between the Bellman

operator Tπk Ψk(x,a) and its sample estimate:

εk(x,a) = T
πk

k Ψk(x,a)−Tπk Ψk(x,a), ∀(x,a) ∈ Z.
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The DPP-RL update rule can then be considered as a special case of the more general approxi-

mate DPP update rule of Equation 7.

Equation 9 is just an approximation of the DPP update rule of Equation 5. Therefore, the

convergence result of Corollary 3 does not hold for DPP-RL. However, the new algorithm still

converges to the optimal policy since one can show that the errors associated with approximating

Equation 5 are asymptotically averaged out by DPP-RL, as postulated by Corollary 6. To prove this

result we need the following lemma, which bounds the estimation error εk.

Lemma 8 (Boundedness of εk) Let Assumption 1 hold and assume that the initial action-preference

function Ψ0 is uniformly bounded by Vmax, then we have, for all k ≥ 0,

∥∥Tπk

k Ψk

∥∥ ≤
2γ log(|A|)

η(1− γ)
+Vmax, ‖εk‖ ≤

4γ log(|A|)
η(1− γ)

+2Vmax.

Proof See Appendix D.

Lemma 8 is an interesting result, which shows that, despite the fact that Ψk tends to −∞ for

the sub-optimal actions, the error εk is uniformly bounded by some finite constant. Note that

εk = Tπk Ψk −T
πk

k Ψk can be expressed in terms of the soft-max MηΨk, which unlike Ψk, is always

bounded by a finite constant, for every η > 0.

The following theorem establishes the asymptotic convergence of DPP-RL to the optimal policy.

Theorem 9 (Asymptotic convergence of DPP-RL) Let Assumption 1 hold. Assume that the initial

action-value function Ψ0 is uniformly bounded by Vmax and πk is the policy induced by Ψk after k

iteration of DPP-RL. Then, w.p. 1, the following holds:

lim
k→∞

Qπk(x,a) = Q∗(x,a), ∀(x,a) ∈ Z.

Proof See Appendix D.1.

We also prove the following result on the converge rate of DPP-RL to the optimal policy by

making use of the result of Theorem 5:

Theorem 10 (Finite-time high-probability loss-bound of DPP-RL) Let Assumption 1 hold and k

be a positive integer and 0 < δ < 1. Then, at iteration k of DPP-RL with probability at least 1−δ,

we have

‖Q∗ −Qπk‖ ≤
4(γ log(|A|)/η+2Rmax)

(1− γ)3



 1

k+1
+

√
2log

2|X||A|
δ

k+1



 .

Proof See Appendix D.2.

Theorem 5 implies that, regardless of the value of η and γ, DPP-RL always converges with the

rate of 1/
√

k.

We can optimize the bound of Theorem 10 w.r.t. η which leads to the following corollary:
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Corollary 11 Let Assumption 1 hold and k be a positive integer, also set the inverse temperature

η =+∞, Then, at iteration k of DPP-RL with probability at least 1−δ, we have

‖Q∗ −Qπk‖ ≤
8Rmax

(1− γ)3



 1

k+1
+

√
2log

2|X||A|
δ

k+1



 .

This result implies that, in order to achieve the best rate of convergence, one can set the value

of η to +∞, that is, to replace the soft-max Mη with the max operator M:

Ψk+1(x,a) := Ψk(x,a)+TkΨk(x,a)−MΨk(x), ∀(x,a) ∈ Z,

where TkΨ(x,a)! r(x,a)+ γ(MΨ)(yk) for all (x,a) ∈ Z. The pseudo-code of DPP-RL algorithm,

which sets η =+∞, is shown in Algorithm 2.

Algorithm 2: (DPP-RL) Reinforcement learning with DPP

Input: Initial action preferences Ψ0(·, ·), discount factor γ and number of steps T

1 for k = 1,2,3, . . . ,K −1 do // main loop

2 foreach (x,a) ∈ Z do // update Ψk(·, ·) for all state-action pairs

3 yk ∼ P(·|x,a); // generate the next sample

4 TkΨk(x,a) := r(x,a)+ γMΨk(yk); // empirical Bellman operator

5 Ψk+1(x,a) := Ψk(x,a)+TkΨk(x,a)−MΨk(x); // DPP update rule

6 end

7 foreach x ∈ X do // compute the control policy

8 amax := argmaxa∈A Ψk+1(x,a);
9 π(·|x) := 0;

10 πk+1(amax|x) := 1;

11 end

12 end

13 return πK

Furthermore, the following PAC bound which determines the number of steps k required to

achieve the error ε > 0 in estimating the optimal policy, w.p. 1−δ, is an immediate consequence of

Theorem 10.

Corollary 12 (Finite-time PAC bound of DPP-RL) Let Assumption 1 hold. Then, for any ε > 0,

after

k =
256R2

max log
2|X||A|

δ

(1− γ)6ε2
.

steps of Algorithm 2, the uniform approximation error ‖Q∗ −Qπk‖ ≤ ε, w. p. 1−δ.

4.3 Approximate Dynamic Policy Programming with Linear Function Approximation

In this subsection, we consider DPP with linear function approximation (LFA) and least-squares

regression. LFA is commonly used in many RL algorithms (Szepesvári, 2010, Section 3.2). Given
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a set of basis functions Fφ = {φ1, . . . ,φm}, where each φi : Z→R is a bounded real valued function,

the sequence of action preferences {Ψ0,Ψ1,Ψ2 . . .} are defined as a linear combination of these

basis functions: Ψk = θT
k Φ, where Φ is a m×1 column vector with the entries {φi}i=1:m and θk ∈Rm

is a m×1 vector of parameters.

The action preference function Ψk+1 is an approximation of the DPP operator OΨk. In the case

of LFA the common approach to approximate DPP operator is to find a vector θk+1 that projects

OΨk on the column space spanned by Φ by minimizing the loss function:

Jk(θ;Ψ)!
∥∥∥θTΦ−OΨk

∥∥∥
2

2,µ
,

where µ is a probability measure on Z. The best solution, which minimizes J, is called the least-

squares solution:

θk+1 = arg min
θ∈Rm

Jk(θ;Ψ) =
[
E
(
ΦΦT

)]−1
E(ΦOΨk),

where the expectation is taken w.r.t. (x,a) ∼ µ. In principle, to compute the least squares solution

equation one needs to compute OΨk for all states and actions. For large scale problems this becomes

infeasible. Instead, one can make a sample estimate of the least-squares solution by minimizing the

empirical loss J̃k(θ;Ψ) (Bertsekas, 2007, Chapter 6.3):

J̃k(θ;Ψ)!
1

N

N

∑
n=1

(θTΦ(Xn,An)−OnΨk)
2 +αθTθ,

where {(Xn,An)}n=1:N is a set of N i.i.d. samples drawn from the distribution µ. Also, OnΨk denotes

a single sample estimate of OΨk(Xn,An) defined by OnΨk ! Ψk(Xn,An)+r(Xn,An)+γMηΨk(Yn)−
MηΨk(Xn), where Yn ∼ P(·|Xn,An). Further, to avoid over-fitting due to the small number of sam-

ples, one adds a quadratic regularization term to the loss function. The empirical least-squares

solution which minimizes J̃k(θ;Ψ) is given by

θ̃k+1 =

[
N

∑
n=1

Φ(Xn,An)Φ(Xn,An)
T+αNI

]−1
N

∑
n=1

OnΨkΦ(Xn,An), (10)

and Ψk(x,a) = θ̃k+1Φ(x,a). This defines a sequence of action preferences {Ψ0,Ψ1,Ψ2, . . .} and the

sequence of approximation error through Equation 6.

Algorithm 3 presents the sampling-based approximate dynamic policy programming (SADPP)

in which we rely on Equation 10 to approximate DPP operator at each iteration.

5. Numerical Results

In this section, we illustrate empirically the theoretical performance guarantee introduced in the

previous sections for both variants of DPP: the exact case (DPP-RL) and the approximate case

(SADPP). In addition, we compare with existing algorithms for which similar theoretical results

have been derived.

We first examine the convergence properties of DPP-RL (Algorithm 2) on several discrete state-

action problems with large state spaces. We compare it with a synchronous variant of Q-learning
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Algorithm 3: (SADPP) Sampling-based approximate dynamic policy programming

Input: θ̃0, η, γ, α, K and N

1 for k = 0,1,2, . . . ,K −1 do // main loop

2 {(Xn,An)}n=1:N ∼ µ(·, ·); // generate n i.i.d. samples from µ(·, ·)
3 {Yn}n=1:N ∼ P(·|{(Xn,An)}n=1:N) ; // generate next states from P(·|·)
4 foreach n = 1,2,3, . . . ,N do

5 foreach a ∈A do // compute Ψk for every action of states Xn,Yn

6 Ψk(Xn,a) = θ̃T
k Φ(Xn,a);

7 Ψk(Yn,a) = θ̃T
k Φ(Yn,a);

8 end

9 MηΨk(Xn) = ∑
a∈A

exp(ηΨk(Xn,a))Ψk(Xn,a)
∑

b∈A
expηΨk(Xn,b)

;

10 MηΨk(Yn) = ∑
a∈A

exp(ηΨk(Yn,a))Ψk(Yn,a)
∑

b∈A
expηΨk(Yn,b)

; // soft-max MηΨk for Xn and Yn

// empirical DPP operator

11 OnΨk = Ψk(Xn,An)− r(Xn,An)− γ(MηΨk)(Yn)+(MηΨk)(Xn);

12 end

// SADPP update rule

13 θ̃k+1 =
[
∑N

n=1 Φ(Xn,An)Φ(Xn,An)T+αNI
]−1

∑N
n=1OnΨkΦ(Xn,An);

14 end

15 return θ̃K

(Even-Dar and Mansour, 2003) (QL) and a model-based Q-value iteration (VI) (Kearns and Singh,

1999). Next, we investigate the finite-time performance of SADPP (Algorithm 3) in the presence

of function approximation and a limited sampling budget per iteration. In this case, we compare

SADPP with regularized least-squares fitted Q-iteration (RFQI) (Farahmand et al., 2008) and reg-

ularized least-squares policy iteration (REG-LSPI) (Farahmand et al., 2009), two algorithms that,

like SADPP, control the complexity of the solution using regularization.3

5.1 DPP-RL

To illustrate the performance of DPP-RL, we consider the following MDPs:

Linear MDP: this problem consists of states xk ∈X,k= {1,2, . . . ,2500} arranged in a one-dimensional

chain (see Figure 1). There are two possible actions A = {−1,+1} (left/right) and ev-

ery state is accessible from any other state except for the two ends of the chain, which are

absorbing states. A state xk ∈ X is called absorbing if P(xk|xk,a) = 1 for all a ∈ A and

P(xl|xk,a) = 0,∀l .= k. The state space is of size |X| = 2500 and the joint action state space

is of size |Z|= 5000. Note that naive storing of the model requires O(107) memory.

The transition probability from an interior state xk to any other state xl is inversely propor-

tional to the distance in the direction of the selected action. Formally, consider the following

quantity n(xl,a,xk) assigned to all non-absorbing states xk and to every (xl,a) ∈ Z:

3. The source code of all tested algorithms is available in http://www.mbfys.ru.nl/˜mazar/Research_Top.html.
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x1 x2500xk xk+1xk−1

a = −1

a = +1

Figure 1: Linear MDP: Illustration of the linear MDP problem. Nodes indicate states. States x1 and

x2500 are the two absorbing states and state xk is an example of interior state. Arrows indi-

cate possible transitions of these three nodes only. From xk any other node is reachable

with transition probability (arrow thickness) proportional to the inverse of the distance to

xk (see the text for details).

n(xl,a,xk) =






1

|l − k|
for (l − k)a > 0

0 otherwise
.

We can write the transition probabilities as

P(xl|xk,a) =
n(xl ,a,xk)

∑
xm∈X

n(xm,a,xk)
.

Transitions to an absorbing state have associated reward 1 and transitions to any interior state

has associated reward −1.

The optimal policy corresponding to this problem is to reach the closest absorbing state as

soon as possible.

Combination lock: the combination lock problem considered here is a stochastic variant of the reset

state space models introduced in Koenig and Simmons (1993), where more than one reset

state is possible (see Figure 2).

In our case we consider, as before, a set of states xk ∈X,k ∈ {1,2, . . . ,2500} arranged in a one-

dimensional chain and two possible actions A = {−1,+1}. In this problem, however, there

is only one absorbing state (corresponding to the state lock-opened) with associated reward

of 1. This state is reached if the all-ones sequence {+1,+1, . . . ,+1} is entered correctly.

Otherwise, if at some state xk, k < 2500, action −1 is taken, the lock automatically resets to

some previous state xl , l < k randomly (in the original problem, the reset state is always the

initial state x1).

For every intermediate state, the rewards of actions −1 and +1 are set to 0 and −0.01, re-

spectively. The transition probability upon taking the wrong action −1 from state xk to state

xl is P(xl|xk,−1), as before, inversely proportional to the distance of the states. That is
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x1 x2500xk xk+1xk−1

a = −1

a = +1

Figure 2: Combination lock: illustration of the combination lock MDP problem. Nodes indicate

states. State x2500 is the goal (absorbing) state and state xk is an example of interior state.

Arrows indicate possible transitions of these two nodes only. From xk any previous state

is reachable with transition probability (arrow thickness) proportional to the inverse of

the distance to xk. Among the future states only xk+1 is reachable (arrow dashed).

n(xk,xl) =






1

k− l
for l < k

0 otherwise
, P(xl|xk,−1) =

n(xk,xl)

∑
xm∈X

n(xk,xm)
.

Note that this problem is more difficult than the linear MDP since the goal state is only

reachable from one state, x2499.

Grid world: this MDP consists of a grid of 50× 50 states. A set of four actions {RIGHT, UP,

DOWN, LEFT} is assigned to every state x ∈ X. Although the state space of the grid world

is of the same size as the previous two problems, |X| = 2500, the joint action state space is

larger, |Z|= 104.

The location of each state x of the grid is determined by the coordinates cx = (hx,vx), where hx

and vx are some integers between 1 and 50. There are 196 absorbing wall states surrounding

the grid and another one at the center of grid, for which a reward −1 is assigned. The reward

for the walls is

r(x,a) =−
1

‖cx‖2

, ∀a ∈A.

Also, we assign reward 0 to all of the remaining (non-absorbing) states.

This means that both the top-left absorbing state and the central state have the least possible

reward (−1), and that the remaining absorbing states have reward which increases propor-

tionally to the distance to the state in the bottom-right corner (but are always negative).

The transition probabilities are defined in the following way: taking action a from any non-

absorbing state x results in a one-step transition in the direction of action a with probability

0.6, and a random move to a state y .= x with probability inversely proportional to their Eu-

clidean distance 1/‖cx − cy‖2.

This problem is interesting because of the presence of the absorbing walls, which prevent the

agent to escape and because of the high level of noise: from a non-absorbing state, many

states are reachable with significant probability.
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The resulting optimal policy is to survive in the grid as long as possible by avoiding both the

absorbing walls and the center of the grid. Note that because of the difference between the

cost of walls, the optimal control prefers the states near the bottom-right corner of the grid,

thus avoiding absorbing states with higher cost.

5.1.1 EXPERIMENTAL SETUP AND RESULTS

For consistency with the theoretical results, we evaluate the performance of all algorithms in terms

of !∞-norm error of the action-value function ‖Q∗ −Qπk‖ obtained by policy πk induced at iteration

k. The discount factor γ is fixed to 0.995 and the optimal action-value function Q∗ is computed with

high accuracy through value iteration.

We compare DPP-RL with two other algorithms:

Q-learning (QL): we consider a synchronous variant of Q-learning for which convergence results

have been derived in Even-Dar and Mansour (2003). Since QL is sensitive to the learning step,

we consider QL with polynomial learning step αk = 1/(k+1)ω where ω ∈ {0.51,0.75,1.0}.

It is known that ω needs to be larger than 0.5, otherwise QL may not asymptotically converge

(see Even-Dar and Mansour, 2003, for the proof).

Model-based Q-value iteration (VI): The VI algorithm (Kearns and Singh, 1999) first estimates a

model using all the data samples and then performs value iteration on the learned model.

Therefore, unlike QL and DPP, VI is a model-based algorithm and requires the algorithm to

store the model.

Comparison between VI and both DPP-RL and QL is especially problematic: first, the number

of computations per iteration is different. Whereas DPP-RL and QL require |Z| computations per

iteration, VI requires |Z||X|. Second, VI requires to estimate the model initially (using a given

number of samples) and then iterates until convergence. This latter aspect is also different from

DPP-RL and QL, which use one sample per iteration. Therefore, the number of samples determines

the number of iterations for DPP-RL and QL, but not for VI.

For consistency with the theoretical results, we use as error measure, the distance between the

optimal action-value function and the value function of the policy induced by the algorithms. instead

of the more popular average accumulated reward, which is usually used when the RL algorithm

learns from a stream of samples.

Simulations are performed using the following procedure: at the beginning of each run (i) the

action-value function and the action preferences are randomly initialized in the interval [−Vmax,Vmax],
and (ii) a set of 105 samples is generated from P(·|x,a) for all (x,a) ∈ Z. As mentioned before, this

fixes the maximum number of iterations for DPP-RL and QL to 105, but not for VI. We run VI until

convergence. We repeat this procedure 50 times and compute the average error in the end. Using

significantly fewer samples leads to a dramatic decrease of the quality of the solutions using all

approaches and no qualitative differences in the comparison.

To compare the methods using equivalent logical units independently of the particular imple-

mentation, we rescale their number of iterations by the number of steps required in one iteration.

For the case of VI, the step units are the number of iterations times |Z||X| and for DPP-RL and QL,

the number of iterations times |Z|.
Figure 3 shows the error as a function of the number of steps. First, in agreement with the theo-

retical results, we observe that the DPP-error decays very fast in the beginning and keeps decreasing
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Figure 3: Comparison between DPP-RL, QL and VI in terms of number of steps, defined as the

number of iterations times the number of computations per iteration of the particular

algorithm. Each plot shows the averaged error of the induced policies over 50 different

runs (see the text for details).

at a smaller rate afterwards. We also observe that DPP-RL performs significantly better than QL.

The improvement is about two orders of magnitude in both the linear MDP and the combination

lock problems and more than four times better in the Grid world. QL shows the best performance

for ω = 0.51 and the quality degrades as a function of ω.

Although the performance of VI looks poor for the number of steps shown in Figure 3, we

observe that VI reaches an average error of 0.019 after convergence (≈ 2 ·1010 steps) for the linear

MDP and the combination lock and an error of 0.10 after ≈ 4 · 1010 steps for the grid problem.

This means for a fixed number of samples, the asymptotic solution of VI is better than the one of

DPP-RL, at the cost of much larger number of steps.

To illustrate the performance of the methods using a limited CPU time budget, we also compare

the average and standard deviations of the errors in terms of elapsed CPU time by running the

algorithms until a maximum allowed time is reached. We choose 30 seconds in the case of linear

MDP and combination lock and 60 seconds for the grid world, which has twice as many actions as

the other benchmarks. To minimize the implementation dependent variability, we coded all three

algorithms in C++ and ran them on the same processor. CPU time was acquired using the system

function times() which provides process-specific CPU time. Sampling time was identical for all

methods and not included in the analysis.

Table 1 shows the final average errors (standard deviations between parenthesis) in the CPU

time comparison. As before, we observe that DPP-RL converges very fast, achieving near optimal

performance after a few seconds. The small variance of estimation of DPP-RL suggests that, as

derived in Theorems 9 and 5, DPP-RL manages to average out the simulation noise caused by

sampling and converges to a near optimal solution, which is very robust.

Overall, these results complement the theory presented in previous sections. We can conclude

that for the chosen benchmarks DPP-RL converges significantly faster than VI and QL. However,
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Benchmark Linear MDP Combination lock Grid world

Run Time 30 sec. 30 sec. 60 sec.

DPP-RL 0.05 (0.02) 0.20 (0.09) 0.32 (0.03)
VI 16.60 (11.60) 69.33 (15.38) 5.67 (1.73)

QL

ω = 0.51 4.08 (3.21) 18.18 (4.36) 1.46 (0.12)
ω = 0.75 31.41 (12.77) 176.13 (25.68) 17.21 (7.31)
ω = 1.00 138.01 (146.28) 195.74 (5.73) 25.92 (20.13)

Table 1: Comparison between DPP-RL, QL and VI given a fixed computational and sampling bud-

get. Table 1 shows error means and standard deviations (between parenthesis) at the end

of the simulations for three different algorithms (columns) and three different benchmarks

(rows).

for a fixed number of samples, VI obtains a better solution than DPP-RL requiring significantly

more computation.

5.2 SADPP

In this subsection, we illustrate the performance of the SADPP algorithm in the presence of func-

tion approximation and limited sampling budget per iteration. The purpose of this subsection is to

analyze numerically the sample complexity, that is, the number of samples required to achieve a

near optimal performance with low variance.

We compare SADPP with !2-regularized versions of the following two algorithms:

Regularized fitted Q-iteration (RFQI) (Farahmand et al., 2008):

RFQI performs value iteration to approximate the optimal action value function. See also

Antos et al. (2008) and Ernst et al. (2005).

Regularized Least Squares Policy Iteration (REG-LSPI) (Farahmand et al., 2009):

It can be regarded as a Monte-Carlo sampling implementation of approximate policy iteration

(API) with action-state representation (see also Lagoudakis and Parr, 2003).

The benchmark we consider is a variant of the optimal replacement problem presented in Munos

and Szepesvári (2008).

5.2.1 OPTIMAL REPLACEMENT PROBLEM

This problem is an infinite-horizon, discounted MDP. The state measures the accumulated use of

a certain product and is represented as a continuous, one-dimensional variable. At each time-step

t, either the product is kept a(t) = 0 or replaced a(t) = 1. Whenever the product is replaced by a

new one, the state variable is reset to zero x(t) = 0, at an additional cost C. The new state is chosen

according to an exponential distribution, with possible values starting from zero or from the current

state value, depending on the latest action:

p(y|x,a = 0) =

{
βeβ(y−x) if y ≥ x

0 if y < 0
p(y|x,a = 1) =

{
βeβy if y ≥ 0

0 if y < 0
.
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The reward function is a monotonically decreasing function of the state x if the product is kept

r(x,0) =−c(x) and constant if the product is replaced r(x,1) =−C− c(0), where c(x) = 4x.

The optimal action is to keep as long as the accumulated use is below a threshold or to replace

otherwise:

a∗(x) =

{
0 if x ∈ [0, x̄]

1 if x > x̄
. (11)

Following Munos and Szepesvári (2008), x̄ can be obtained exactly via the Bellman equation

and is the unique solution to

C =
∫ x̄

0

c′(y)

1− γ

(
1− γe−β(1−γ)y

)
dy.

5.2.2 EXPERIMENTAL SETUP AND RESULTS

For all algorithms we map the state-action space using twenty radial basis functions (ten for the

continuous one-dimensional state variable x, spanning the state space X , and two for the two

possible actions). Other parameter values where chosen to be the same as in Munos and Szepesvári

(2008), that is, γ = 0.6,β = 0.5,C = 30, which results in x̄ / 4.8665. We also fix an upper bound for

the states, xmax = 10 and modify the problem definition such that if the next state y happens to be

outside of the domain [0,xmax] then the product is replaced immediately, and a new state is drawn

as if action a = 1 were chosen in the previous time step.

We measure the performance loss of the algorithms in terms of the difference between the

optimal action a∗ and the action selected by the algorithms. We use this performance measure

since it is easy to compute as we know the analytical solution of the optimal control in the optimal

replacement problem (see Equation 11). We discretize the state space in K = 100 and compute the

error as follows:

Error =
1

K

K

∑
k=1

|a∗(xk)− â(xk)|, (12)

where â is the action selected by the algorithm. Note that, unlike RFQI and REG-LSPI, SADPP

induces a stochastic policy, that is, a distribution over actions. We select â for SADPP by choosing

the most probable action from the induced soft-max policy, and then use this to compute Equation

12. RFQI and REG-LSPI select the action with highest action-value function.

Simulations are performed using the same following procedure for all three algorithms: at the

beginning of each run, the vector θ̃0 is initialized in the interval [−1,1]. We then let the algorithm

run for 103 iterations for 200 different runs. A new independent set of samples is generated at each

iteration.

For each of the algorithms and each N, we optimize their parameters for the best asymptotic

performance. Note that SADPP, in addition to the regularizer parameter α, has an extra degree of

freedom η. Empirically, we observe that the optimal performance of SADPP is attained for finite η.

This differs from DPP-RL, for which the convergence rate is optimized for η = ∞. This difference

may be related to the observation that replacing the non-differentiable max-operator (η =+∞) with

a differentiable soft-max operator (η<+∞) can improve the convergence behavior of the algorithm,

as shown in Perkins and Precup (2003); de Farias and Van Roy (2000).
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Figure 4: Numerical results for the optimal replacement problem. Each plot shows the error of

RFQI, REG-LSPI and SADPP for certain number of samples N. Error is defined as in

Equation 12 and averaged over 200 repetitions (see the text for details).

Num. samples 50 150 500

SADPP 0.07 (0.06) 0.02 (0.01) 0.01 (0.01)
RFQI 0.24 (0.19) 0.17 (0.12) 0.08 (0.07)
REG-LSPI 0.26 (0.16) 0.13 (0.10) 0.07 (0.06)

Table 2: Comparison between SADPP, RFQI and REG-LSPI for the optimal replacement problem.

Table shows error means and standard deviations (between parenthesis) at the end of the

simulations (after 103 iterations) for the three different algorithms (columns) and three

different number of samples (rows).

We are interested in the behavior of the error as a function of the iteration number for different

number of samples N per iteration. Figure 4 and Table 2 show the performance results of the three

different algorithms for N ∈ {50,150,500} for the first 50 iterations and the total 103 iterations

respectively. We observe that after an initial transient, all algorithms reach a nearly optimal solution

after 50 iterations.

First, we note that SADPP asymptotically outperforms RFQI and REG-LSPI on average in

all cases. Interestingly, there is no significant difference between the performance of RFQI and

REG-LSPI. The performance of all algorithms improve for larger N. We emphasize that SADPP

using only 50 samples shows comparable results to both RFQI and REG-LSPI using ten times more

samples.

A comparison of the variances after the transient (see Table 2) shows that the sample complexity

of SADPP is significantly smaller than RFQI and REG-LSPI. The variance of SADPP using again

only 50 samples is comparable to the one provided by the other two methods using N = 500 samples.
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Globally, we can conclude that SADPP has positive effects in reducing the effect of simulation

noise, as postulated in Section 4. We can also conclude that, for our choice of settings, SADPP

outperforms RFQI and REG-LSPI.

6. Related Work

In this section, we review some previous RL methods and compare them with DPP.

Policy-gradient actor-critic methods: As we explained earlier in Section 1, actor-critic method is a

popular incremental RL algorithm (Sutton and Barto, 1998; Barto et al., 1983, Chapter 6.6),

which makes use of a separate structure to store the value function (critic) and the control pol-

icy (actor). An important extension of AC, the policy-gradient actor critic (PGAC), extends

the idea of AC to problems of practical scale (Sutton et al., 2000; Peters and Schaal, 2008). In

PGAC, the actor updates the parameterized policy in the direction of the (natural) gradient of

performance, provided by the critic. The gradient update ensures that PGAC asymptotically

converges to a local maximum, given that an unbiased estimate of the gradient is provided

by the critic (Maei et al., 2010; Bhatnagar et al., 2009; Konda and Tsitsiklis, 2003; Kakade,

2002). The parameter η in DPP is reminiscent of the learning step β in PGAC methods, since

it influences the rate of change of the policy and in this sense may play a similar role as the

learning step β in PGAC (Konda and Tsitsiklis, 2003; Peters and Schaal, 2008). However, it

is known that in the presence of sampling error, asymptotic convergence to a local maximum

is only attained when β asymptotically decays to zero (Konda and Tsitsiklis, 2003; Baxter and

Bartlett, 2001), whereas the parameter η in DPP, and DPP-RL, can be an arbitrary constant.

Q-learning: DPP is not the only method which relies on an incremental update rule to control the

sampling error. There are other incremental RL methods which aim to address the same

problem (see, e.g., Maei et al., 2010; Singh et al., 2000; Watkins and Dayan, 1992).

One of the most well-known algorithms of this kind is Q-learning (QL) (Watkins and Dayan,

1992), which controls the sampling error by introducing a decaying learning step to the update

rule of value iteration. QL has been shown to converge to the optimal value function in tabular

case (Bertsekas and Tsitsiklis, 1996; Jaakkola et al., 1994). Also, there are some studies in

the literature concerning the asymptotic convergence of Q-learning in the presence of function

approximation (Melo et al., 2008; Szepesvári and Smart, 2004). However, the convergence

rate of QL is very sensitive to the choice of learning step, and a bad choice of the learning

step may lead to a slow rate of convergence (Even-Dar and Mansour, 2003). For instance,

the convergence rate of QL with a linearly decaying learning step is of order (1/k)1−γ, which

makes the Q-learning algorithm extremely slow for γ ≈ 1 (Szepesvári, 1998). This is in

contrast to our previously mentioned result on the convergence of DPP-RL in Theorem 10

which guarantees that, regardless of the value of η and γ, DPP-RL always converges to the

optimal policy with a rate of order 1/
√

k. The numerical results of Section 5.1 confirm the

superiority of DPP-RL to QL in terms of the rate of convergence.

One can also compare the finite-time behavior of DPP-RL and QL in terms of the PAC sample

complexity of these methods. We have proven a sample-complexity PAC bound of order

O(1/(1− γ)6) for DPP-RL in Section 4.2, whereas the best existing PAC bound for standard

QL, to find an ε-optimal policy, is of order O(1/(1− γ)7) (Even-Dar and Mansour, 2003;
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Azar et al., 2012, Section 3.3.1).4 This theoretical result suggests that DPP-RL is superior to

QL in terms of sample complexity of the estimating the optimal policy, especially, when γ is

close to 1.

There is an on-policy version of Q-learning algorithm called SARSA (see, e.g., Singh et al.,

2000) which also guarantees the asymptotic convergence to the optimal value function. How-

ever little is known about the rate of convergence and the finite-time behavior of this algo-

rithm.

Very recently, Azar et al. (2012) propose a new variant of Q-learning algorithm, called speedy

Q-learning (SQL), which makes use of a different update rule than standard Q-learning of

Watkins and Dayan (1992). Like DPP-RL, SQL converges to the optimal policy with the rate

of convergence of order 1/
√

k. However, DPP-RL is superior to SQL in terms of memory

space requirement, since SQL needs twice as much space as DPP-RL does.

Relative-entropy methods: The DPP algorithm is originally motivated (see Appendix A) by the

work of Kappen (2005) and Todorov (2007), who formulate a stochastic optimal control

problem to find a conditional probability distribution p(y|x) given an uncontrolled dynam-

ics p̄(y|x). The control cost is the relative entropy between p(y|x) and p̄(y|x)exp(r(x)). The

difference is that in their work a restricted class of control problems is considered for which

the optimal solution p can be computed directly in terms of p̄ without requiring Bellman-like

iterations. Instead, the present approach is more general, but does require Bellman-like iter-

ations. Likewise, our formalism is superficially similar to PoWER (Kober and Peters, 2009)

and SAEM (Vlassis and Toussaint, 2009), which rely on EM algorithm to maximize a lower

bound for the expected return in an iterative fashion. This lower-bound also can be writ-

ten as a KL-divergence between two distributions. Also, the natural policy gradient method

can be seen as a relative entropy method, in which the second-order Taylor expansion of the

relative-entropy between the distribution of the states is considered as the metric for policy

improvement (Bagnell and Schneider, 2003). Another relevant study is relative entropy policy

search (REPS) (Daniel et al., 2012; Peters et al., 2010) which relies on the idea of minimizing

the relative entropy to control the size of policy update. However there are some differences

between REPS and DPP. (i) In REPS the inverse temperature η needs to be optimized while

DPP converges to the optimal solution for any inverse temperature η, and (ii) unlike DPP, no

convergence analysis is presented REPS.

7. Discussion and Future Work

We have presented a new approach, dynamic policy programming (DPP), to compute the optimal

policy in infinite-horizon discounted-reward MDPs. We have theoretically proven the convergence

of DPP to the optimal policy for the tabular case. We have also provided performance-loss bounds

for DPP in the presence of approximation. The bounds have been expressed in terms of supremum

4. Note that Even-Dar and Mansour (2003) make use of a slightly different performance measure than the one we

use in this paper: The optimized result of Even-Dar and Mansour (2003), which is of order O(1/(1− γ)5), is a

bound on the sample complexity of estimating Q∗ with ε precision, whereas in this paper we consider the sample

complexity of finding an ε-optimal policy. However, the latter can be easily derived for QL from the inequality

‖Q∗ −Qπk‖ ≤ 1/(1− γ)‖Q∗ −Qk‖, where πk is the greedy policy w.r.t. Qk and Qk is the estimate of action-value

function at iteration k. This inequality combined with the result of Even-Dar and Mansour (2003) implies a sample

complexity bound of order O(1/(1− γ)7) for QL.
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norm of average accumulated error as opposed to the standard bounds which are expressed in terms

of supremum norm of the errors. We have then introduced a new incremental RL algorithm, called

DPP-RL, which relies on a sample estimate instance of the DPP update rule to estimate the optimal

policy. We have proven that DPP-RL converges to the optimal policy with the rate of 1/
√

k.

We have also compared numerically the finite-time behavior of DPP-RL with similar RL meth-

ods. Experimental results have shown a better performance of DPP-RL when compared to QL and

VI in terms of convergence rate. In these problems, for equal number of samples, VI converged to a

better solution than DPP-RL, at the cost of many more steps. When compared to VI, DPP-RL does

not need to store the model dynamics, resulting in significantly less memory requirements for large-

scale MDPs. This statement is general and holds when comparing DPP-RL to any model-based

method.

We have proposed SADPP as a variant of DPP which makes use of linear function approxi-

mation and regularization. SADPP has been shown to perform better than two other regularized

methods, RFQI and REG-LSPI. We think that this is mainly due to the reduction of the effect of

simulation noise (Section 4). At the same time, we admit that the existence of an additional param-

eter η favors SADPP since SADPP performs best for a finite-value of η. Therefore, it is interesting

to consider soft-max variants of RFQI and LSPI which also make use of the inverse temperature η.

In these cases, η should be initialized at a finite value and would gradually grow to +∞.

The empirical comparison with those methods that do not make use of generative model as-

sumption is outside of the scope of the current work and is left for future research. These methods

include, for instance, PGAC methods that use sequences of samples to learn the value function

of the current policy (Peters and Schaal, 2008; Konda and Tsitsiklis, 2003; Sutton et al., 2000),

or upper-confidence bounds methods which address the exploration-exploitation dilemma (Jaksch

et al., 2010; Szita and Szepesvári, 2010; Bartlett and Tewari, 2009; Strehl et al., 2009).

Another interesting line of future research is to devise finite-sample PAC bounds for SADPP

in the spirit of previous theoretical results available for fitted value iteration and fitted Q-iteration

(Munos and Szepesvári, 2008; Antos et al., 2008; Munos, 2005). This would require extending the

error propagation result of Theorem 5 to an !2-norm analysis and combining it with the standard

regression bounds.

Finally, an important extension of our results would be to apply DPP to large-scale action prob-

lems. This would require an efficient way to approximate MηΨk(x) in the update rule of Equation 5,

since computing the exact summations becomes expensive. One idea is to sample estimate MηΨk(x)
using Monte-Carlo simulation (MacKay, 2003, Chapter 29), since MηΨk(x) is the expected value

of Ψk(x,a) under the soft-max policy πk.
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Appendix A. From Bellman Equation to DPP Recursion

In this appendix, we give an informal derivation of the DPP equation. This is only for helping the

reader to understand the origin of the DPP equation and it is in no way meant as a justification of

DPP. The theoretical analysis and the proof of convergence of DPP is provided in Section 3.2.

Let π̄ be a stochastic policy, that is, π̄(a|x) > 0 for all (x,a) ∈ Z. Consider the relative entropy

between the policy π and some baseline policy π̄:

gπ
π̄(x)! KL(π(·|x)‖π̄(·|x)) = ∑

a∈A
π(a|x) log

[
π(a|x)
π̄(a|x)

]
, ∀x ∈ X.

Note that gπ
π̄(x) is a positive function of x which is also bounded from above due to the as-

sumption that π̄ is a stochastic policy. We define a new value function V π
π̄ , for all x ∈ X, which

incorporates g as a penalty term for deviating from the base policy π̄ and the reward under the

policy π:

V π
π̄ (x)! lim

n→∞
E

[
n

∑
k=0

γk

(
rt+k −

1

η
gπ

π̄(xt+k)

)∣∣∣∣∣
xt = x

]

,

where η is a positive constant and rt+k is the reward at time t + k. Also, the expected value is taken

w.r.t. the state transition probability distribution P and the policy π. The optimal value function

V ∗
π̄ (x) ! supπV π

π̄ (x) then exists and is bounded by some finite constant c > 0. Also, the value

function V ∗
π̄ (x) satisfies the following Bellman equation for all x ∈ X:

V ∗
π̄ (x) = sup

π(·|x)
∑

a∈A
π(a|x)

[
r(x,a)−

1

η
log

π(a|x)
π̄(a|x)

+ γ(PV ∗
π̄ )(x,a)

]
. (13)

Equation 13 is a modified version of Equation 2 where, in addition to maximizing the expected

reward, the optimal policy π̄∗ also minimizes the distance with the baseline policy π̄. The max-

imization in Equation 13 can be performed in closed form. Following Todorov (2007), we state

Proposition 1 (closely related results to Proposition 1 can be found in the recent works of Still and

Precup, 2012; Peters et al., 2010):

Proposition 1 Let η be a positive constant, then for all x ∈X the optimal value function V ∗
π̄ (x) and

for all (x,a) ∈ Z the optimal policy π̄∗(a|x), respectively, satisfy:

V ∗
π̄ (x) =

1

η
log ∑

a∈A
π̄(a|x)exp

[
η(r(x,a)+ γ(PV ∗

π̄ )(x,a))
]
,

π̄∗(a|x) =
π̄(a|x)exp

[
η(r(x,a)+ γ(PV ∗

π̄ )(x,a))
]

exp(ηV ∗
π̄ (x))

. (14)

Proof We must optimize π subject to the constraints ∑a∈A π(a|x) = 1 and 0< π(a|x)< 1. We define

the Lagrangian function L(x;λx) : X→ ℜ by adding the term λx

[
∑a∈A π(a|x)− 1

]
to the RHS of

Equation 13. Because π̄ is strictly positive, minimizing L ensures that the solution is positive and the

constraints 0 < π(a|x)≤ 1 are automatically satisfied. Note that the KL-divergence is well-defined

when both π̄ and π are positive.

3230



DYNAMIC POLICY PROGRAMMING

L(x;λx) = ∑
a∈A

π(a|x) [r(x,a)+ γ(PV ∗
π̄ )(x,a)]−

1

η
KL(π(·|x)‖π̄(·|x))−λx

[

∑
a∈A

π(a|x)−1

]

.

The maximization in Equation 13 can be expressed as maximizing the Lagrangian function

L(x,λx). The necessary condition for the extremum with respect to π(·|x) is:

0 =
∂L(x,λx)

∂π(a|x)
= r(x,a)+ γ(PV ∗

π̄ )(x,a)−
1

η
−

1

η
log

(
π(a|x)
π̄(a|x)

)
−λx,

which leads to

π̄∗(a|x) = π̄(a|x)exp(−ηλx −1)exp [η(r(x,a)+ γ(PV ∗
π̄ )(x,a))] , ∀x ∈ X. (15)

The Lagrange multipliers can then be solved from the constraints:

1 = ∑
a∈A

π̄∗(a|x) = exp(−ηλx −1) ∑
a∈A

π̄(a|x)exp [η(r(x,a)+ γ(PV ∗
π̄ )(x,a))] ,

λx =
1

η
log ∑

a∈A
π̄(a|x)exp [η(r(x,a)+ γ(PV ∗

π̄ )(x,a))]−
1

η
. (16)

By plugging Equation 16 into Equation 15 we deduce

π̄∗(a|x) =
π̄(a|x)exp [η(r(x,a)+ γ(PV ∗

π̄ )(x,a))]

∑
a∈A

π̄(a|x)exp [η(r(x,a)+ γ(PV ∗
π̄ )(x,a))]

, ∀(x,a) ∈ Z. (17)

The results then follows by substituting Equation 17 in Equation 13.

The optimal policy π̄∗ is a function of the base policy, the optimal value function V ∗
π̄ and the state

transition probability P. One can first obtain the optimal value function V ∗
π̄ through the following

fixed-point iteration:

V k+1
π̄ (x) =

1

η
log ∑

a∈A
π̄(a|x)exp

[
η(r(x,a)+ γ(PV k

π̄ )(x,a))
]
, (18)

and then compute π̄∗ using Equation 14. π̄∗ maximizes the value function V π
π̄ . However, we are not,

in principle, interested in quantifying π̄∗, but in solving the original MDP problem and computing

π∗. The idea to further improve the policy towards π∗ is to replace the base-line policy with the just

newly computed policy of Equation 14. The new policy can be regarded as a new base-line policy,

and the process can be repeated again. This leads to a double-loop algorithm to find the optimal

policy π∗, where the outer-loop and the inner-loop would consist of a policy update, Equation 14,

and a value function update, Equation 18, respectively.

We then follow the following steps to derive the final DPP algorithm: (i) We introduce some

extra smoothness to the policy update rule by replacing the double-loop algorithm by direct opti-

mization of both value function and policy simultaneously using the following fixed point iterations:
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V k+1
π̄ (x) =

1

η
log ∑

a∈A
π̄k(a|x)exp

[
η(r(x,a)+ γ(PV k

π̄ )(x,a))
]
, (19)

π̄k+1(a|x) =
π̄k(a|x)exp

[
η(r(x,a)+ γ(PV k

π̄ )(x,a))
]

exp
(
ηV k+1

π̄ (x)
) . (20)

Further, (ii) we define the action preference function Ψk (Sutton and Barto, 1998, Chapter 6.6),

for all (x,a) ∈ Z and k ≥ 0, as follows:

Ψk+1(x,a)!
1

η
log π̄k(a|x)+ r(x,a)+ γ(PV k

π̄ )(x,a). (21)

By comparing Equation 21 with Equation 20 and Equation 19, we deduce

π̄k(a|x) =
exp(ηΨk(x,a))

∑
a′∈A

exp(ηΨk(x,a′))
, (22)

V k
π̄ (x) =

1

η
log ∑

a∈A
exp(ηΨk(x,a))). (23)

Finally, (iii) by plugging Equation 22 and Equation 23 into Equation 21 we derive

Ψk+1(x,a) = Ψk(x,a)−LηΨk(x)+ r(x,a)+ γ(PLηΨk)(x,a), (24)

with Lη operator being defined by LηΨ(x)! 1
/

η log∑a∈A exp(ηΨ(x,a)). Equation 24 is one form

of the DPP equations. There is an analytically more tractable version of the DPP equation, where we

replace Lη by the Boltzmann soft-max Mη defined by MηΨ(x) !

∑a∈A
[
exp(ηΨ(x,a))Ψ(x,a)

/
∑a′∈A exp(ηΨ(x,a′))

]
.5 In principle, we can provide formal analy-

sis for both versions. However, the proof is somewhat simpler for the Mη case, which we make use

of it in the rest of this paper. By replacing Lη with Mη we deduce the DPP recursion:

Ψk+1(x,a) = OΨk(x,a)! Ψk(x,a)+ r(x,a)+ γPMηΨk(x,a)−MηΨk(x)

= Ψk(x,a)+Tπk Ψk(x,a)−πkΨk(x)
, ∀(x,a) ∈ Z,

where O is an operator defined on the action preferences Ψk and πk is the soft-max policy associated

with Ψk:

πk(a|x)!
exp(ηΨk(x,a))

∑
a′∈A

exp(ηΨk(x,a′))
.

5. Replacing Lη with Mη is motivated by the following relation between these two operators:

|LηΨ(x)−MηΨ(x)|= 1/ηHπ(x)≤
log(|A|)

η
, ∀x ∈ X, (25)

with Hπ(x) is the entropy of the policy distribution π obtained by plugging Ψ into Equation A. In words, MηΨ(x) is

close to LηΨ(x) up to the constant log(|A|)
/

η. Also, both LηΨ(x) and MηΨ(x) converge to MΨ(x) when η goes

to +∞. For the proof of Equation 25 and further readings see MacKay (2003, Chapter 31).
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Appendix B. The Proof of Convergence of DPP—Theorem 2 and Theorem 4

In this section, we provide a formal analysis of the convergence behavior of DPP.

B.1 Proof of Theorem 2

In this subsection we establish a rate of convergence for the value function of the policy induced

by DPP. The main result is in the form of following finite-iteration performance-loss bound, for all

k ≥ 0:

‖Q∗ −Qπk‖ ≤
2γ
(

4Vmax +
log(|A|)

η

)

(1− γ)2(k+1)
. (26)

Here, Qπk is the action-values under the policy πk and πk is the policy induced by DPP at step k.

To derive Equation 26 one needs to relate Qπk to the optimal Q∗. Unfortunately, finding a direct

relation between Qπk and Q∗ is not an easy task. Instead, we relate Qπk to Q∗ via an auxiliary action-

value function Qk, which we define below. In the remainder of this Section we take the following

steps: (i) we express Ψk in terms of Qk in Lemma 13. (ii) we obtain an upper bound on the normed

error ‖Q∗ −Qk‖ in Lemma 14. Finally, (iii) we use these two results to derive a bound on the

normed error ‖Q∗ −Qπk‖. For the sake of readability, we skip the formal proofs of the lemmas in

this section since we prove a more general case in Section C.

Now let us define the auxiliary action-value function Qk. The sequence of auxiliary action-value

functions {Q0,Q1,Q2, . . .} is obtained by iterating the initial Q0 = Ψ0 from the following recursion:

Qk =
k−1

k
Tπk−1Qk−1 +

1

k
Tπk−1Q0, (27)

where πk is the policy induced by the kth iterate of DPP.

Lemma 13 relates Ψk with Qk:6

Lemma 13 Let k be a positive integer. Then, we have

Ψk = kQk +Q0 −πk−1((k−1)Qk−1 +Q0). (28)

The following lemma relates Qk and Q∗:

Lemma 14 Let Assumption 1 hold and k be a positive integer. Also assume that ‖Ψ0‖ ≤Vmax. Then

the following inequality holds:

‖Q∗ −Qk‖ ≤
γ
(

4Vmax +
log(|A|)

η

)

(1− γ)k
.

Lemma 14 provides an upper bound on the normed-error
∥∥Qk −Q∗

∥∥. We make use of Lemma 14

to prove the main result of this Subsection:

6. We make use of this lemma in the proof of convergence of DPP in Section B.2.
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‖Q∗ −Qπk‖ = ‖Q∗ −Qk+1 +Qk+1 −Tπk Q∗+Tπk Q∗ −Qπk‖
≤ ‖Q∗ −Qk+1‖+‖Qk+1 −Tπk Q∗‖+‖Tπk Q∗ −Tπk Qπk‖
≤ ‖Q∗ −Qk+1‖+‖Qk+1 −Tπk Q∗‖+ γ‖Q∗ −Qπk‖ .

By collecting terms we obtain

‖Q∗ −Qπk‖ ≤
1

1− γ
(‖Q∗ −Qk+1‖+‖Qk+1 −Tπk Q∗‖)

=
1

1− γ

(
‖Q∗ −Qk+1‖+

∥∥∥∥
k

k+1
Tπk Qk +

1

k+1
Tπk Q0 −Tπk Q∗

∥∥∥∥

)

≤
1

1− γ

(
‖Q∗ −Qk+1‖+

k

k+1
‖Tπk Q∗ −Tπk Qk‖+

1

k+1
‖Tπk Q∗ −Tπk Q0‖

)

≤
1

1− γ

(
‖Q∗ −Qk+1‖+

γk

k+1
‖Q∗ −Qk‖+

γ

k+1
‖Q∗ −Q0‖

)

≤
1

1− γ

(
‖Q∗ −Qk+1‖+

γk

k+1
‖Q∗ −Qk‖+

2γVmax

k+1

)

≤
1

1− γ

(
‖Q∗ −Qk+1‖+

γk

k+1
‖Q∗ −Qk‖+

γ(4Vmax + log(|A|)/η)

k+1

)
.

This combined with Lemma 14 completes the proof.

B.2 Proof of Corollary 4

First, we note that Qk converges to Q∗ (Lemma 14) and πk converges to π∗ by Corollary 3. Therefore,

there exists a limit for Ψk since Ψk is expressed in terms of Qk, Q0 and πk−1 (Lemma 13).

Now, we compute the limit of Ψk. Qk converges to Q∗ with a linear rate from Lemma 14. Also,

we have V ∗ = π∗Q∗ by definition of V ∗ and Q∗. Then, by taking the limit of Equation 28 we deduce

lim
k→∞

Ψk(x,a) = lim
k→∞

[kQ∗(x,a)+Q0(x,a)− (k−1)V ∗(x)− (π∗Q0)(x)]

= lim
k→∞

k(Q∗(x,a)−V ∗(x))

+Q0(x,a)− (π∗Q0)(x)+V ∗(x).

We then deduce, for all (x,a) ∈ Z,

lim
k→∞

Ψk(x,a) =

{
Q0(x,a)− (π∗Q0)(x)+V ∗(x) a = a∗(x)

−∞ a .= a∗(x)
,

where a∗(x) = maxa∈A(Q∗(x,a)). This combined with the assumption that the optimal policy is

unique completes the proof.

Appendix C. Proof of Theorem 5

This section provides a formal theoretical analysis of the performance of dynamic policy program-

ming in the presence of approximation.
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Consider a sequence of the action preferences {Ψ0,Ψ1,Ψ2, . . .} as the iterates of Equation 7.

Our goal is to establish an !∞-norm performance loss bound of the policy induced by approximate

DPP. The main result is that at iteration k ≥ 0 of approximate DPP, we have

‖Q∗ −Qπk‖ ≤
1

(1− γ)(k+1)




2γ
(

4Vmax +
log(|A|)

η

)

(1− γ)
+

k+1

∑
j=1

γk− j+1‖E j−1‖



 , (29)

where Ek = ∑k
j=0 εk is the cumulative approximation error up to step k. Here, Qπk denotes the

action-value function of the policy πk and πk is the soft-max policy associated with Ψk.

As in the proof of Theorem 2, we relate Q∗ with Qπk via an auxiliary action-value function Qk.

In the rest of this section, we first express Ψk in terms of Qk in Lemma 15. Then, we obtain an

upper bound on the normed error ‖Q∗ −Qk‖ in Lemma 19. Finally, we use these two results to

derive Equation 29.

Now, let us define the auxiliary action-value function Qk. The sequence of auxiliary action-

value functions {Q0,Q1,Q2, . . .} is resulted by iterating the initial action-value function Q0 = Ψ0

from the following recursion:

Qk =
k−1

k
Tπk−1Qk−1 +

1

k
(Tπk−1Q0 +Ek−1), (30)

where Equation 30 may be considered as an approximate version of Equation 27. Lemma 15 relates

Ψk with Qk:

Lemma 15 Let k be a positive integer and πk denotes the policy induced by the approximate DPP

at iteration k. Then we have

Ψk = kQk +Q0 −πk−1

(
(k−1)Qk−1 +Q0

)
. (31)

Proof We rely on induction for the proof of this theorem. The result holds for k = 1 since one can

easily show that Equation 31 reduces to Equation 7. We then show that if Equation 31 holds for k

then it also holds for k+1. From Equation 7 we have

Ψk+1 = Ψk +Tπk Ψk −πkΨk + εk

= kQk +Q0 −πk−1((k−1)Qk−1 +Q0)+Tπk(kQk +Q0 −πk−1((k−1)Qk−1 +Q0))

−πk(kQk +Q0 −πk−1((k−1)Qk−1 +Q0))+ εk

= kQk +Q0 +Tπk(kQk +Q0 −πk−1((k−1)Qk−1 +Q0))−πk(kQk +Q0)

+Ek −Ek−1

= kQk +Q0 + r+ γPπk(kQk +Q0 −πk−1((k−1)Qk−1 +Q0))−πk(kQk +Q0)

+Ek −Ek−1,

in which we rely on Equation 3. We then deduce
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Ψk+1 = kQk +Q0 + k(r+ γPπk Qk)+ r+ γPπk Q0 − (k−1)(r+ γPπk−1Qk−1)

− (r+ γPπk−1Q0)+πk−1((k−1)Qk−1 +Q0))−πk(kQk +Q0)+Ek −Ek−1

= kQk − (k−1)Tπk−1Qk−1 −Tπk−1Q0 −Ek−1 + kTπk Qk +Tπk Q0 +Ek

+Q0 −πk(kQk +Q0)

= (k+1)Qk+1 +Q0 −πk(kQk +Q0),

where in the last line we make use of Equation 30.

Thus Equation 31 holds for k+1, and is thus true for all k ≥ 1.

Based on Lemma 15, one can express the policy induced by DPP, πk, in terms of Qk and Q0:

Lemma 16 For all (x,a) ∈ Z:

πk(a|x) =
exp(η(kQk(x,a)+Q0(x,a)))

∑b∈A exp(η(kQk(x,b)+Q0(x,b)))
.

Proof

πk(a|x) =
exp(η(kQk(x,a)+Q0(x,a)−πk−1((k−1)Qk−1 +Q0)(x)))

Z(x)

=
exp(η(kQk(x,a)+Q0(x,a)))

Z′(x)
,

where Z(x) and Z′(x) = Z(x)exp(ηπk−1((k−1)Qk−1 +Q0)(x)) are the normalization factors.

In an analogy to Lemma 14 we establish a bound on ‖Q∗ −Qk‖ for which we make use of the

following technical results:

Lemma 17 Let η > 0 and Y be a finite set with cardinality L. Also assume that F denotes the space

of real-valued functions on Y. Then the following inequality holds for all f ∈ F:

max
y∈Y

f (y)− ∑
y∈Y

exp(η f (y)) f (y)

∑
y′∈Y

exp(η f (y′))
≤

log(L)

η
.

Proof For any f ∈ F we have

max
y∈Y

f (y)− ∑
y∈Y

exp(η f (y)) f (y)

∑
y′∈Y

exp(η f (y′))
= ∑

y∈Y

exp(−ηg(y))g(y)

∑
y′∈Y

exp(−ηg(y′))
,

with g(y) = maxy∈Y f (y)− f (y). According to MacKay (2003, Chapter 31):

∑
y∈Y

exp(−ηg(y))g(y)

∑
y′∈Y

exp(−ηg(y′))
=−

1

η
log ∑

y∈Y
exp(−ηg(y))+

1

η
Hp,

where Hp is the entropy of probability distribution p defined by
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p(y) =
exp(−ηg(y))

∑
y′∈Y

exp(−ηg(y′))
.

Define Y
f
max ⊂ Y as the set of all entries of Y which maximizes f ∈ F. The following steps

complete the proof:

∑
y∈Y

exp(−ηg(y))g(y)

∑
y′∈Y

exp(−ηg(y′))
=−

1

η
log ∑

y∈Y
exp(−ηg(y))+

1

η
Hp

≤−
1

η
log



1+ ∑
y/∈Y f

max

exp(−ηg(y)))



+
1

η
Hp

≤
1

η
Hp ≤

log(L)

η
,

in which we make use of − 1
η log

[
1+∑y/∈Y f

max
exp(−ηg(y)))

]
≤ 0.

Lemma 18 Let η > 0 and k be a positive integer. Assume ‖Q0‖ ≤Vmax. Then, the following holds:

‖kTQk +TQ0 − kTπk Qk −Tπk Q0‖ ≤ γ

(
2Vmax +

log(|A|)
η

)
.

Proof We have, by definition of operator T,

‖kTQk +TQ0 − kTπk Qk −Tπk Q0‖ ≤ γ‖kPMQk +PMQ0 − kPπk Qk −Pπk Q0‖
= γ‖P(MkQk +MQ0 −πk(kQk +Q0))‖
≤ γ‖MkQk +MQ0 −πk(kQk +Q0)‖
≤ γ‖2MQ0 +M(kQk +Q0)−πk(kQk +Q0)‖
≤ γ(2‖Q0‖+‖M(kQk +Q0)−Mη(kQk +Q0)‖) ,

(32)

where in the last line we make use of Lemma 16. The result then follows by comparing Equation

32 with Lemma 17.

Now, we prove a bound on ‖Q∗ −Qk‖:

Lemma 19 Let Assumption 1 hold. Define Qk by Equation 30. Let k be a non-negative integer,

also, assume that ‖Ψ0‖ ≤Vmax, then the following inequality holds:

‖Q∗ −Qk‖ ≤
γ
(

4Vmax +
log(|A|)

η

)

(1− γ)k
+

1

k

k

∑
j=1

γk− j‖E j−1‖. (33)
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Proof We rely on induction for the proof of this lemma. Obviously the result holds for k = 0. Then

we need to show that if Equation 33 holds for k it also holds for k+1:

‖Q∗ −Qk+1‖=
∥∥∥∥TQ∗ −

(
k

k+1
Tπk Qk +

1

k+1
(Tπk Q0 +Ek)

)∥∥∥∥

=

∥∥∥∥
1

k+1
(TQ∗ −Tπk Q0)+

k

k+1
(TQ∗ −Tπk Qk)−

1

k+1
Ek

∥∥∥∥

=
1

k+1
‖TQ∗ −TQ0 +TQ0 −Tπk Q0 + k(TQ∗ −TQk +TQk −Tπk Qk)‖

+
1

k+1
‖Ek‖

≤
1

k+1
[‖TQ∗ −TQ0‖+‖kTQk +TQ0 − kTπk Qk −Tπk Q0‖]

+
k

k+1
‖TQ∗ −TQk‖+

1

k+1
‖Ek‖

≤
1

k+1
[γ‖Q∗ −Q0‖+‖kTQk +TQ0 − kTπk Qk −Tπk Q0‖]

+
γk

k+1
‖Q∗ −Qk‖+

1

k+1
‖Ek‖ .

(34)

Now based on Lemma 18 and by plugging Equation 33 into Equation 34 we have

‖Q∗ −Qk+1‖ ≤
γ

k+1

[
4Vmax +

log(|A|)
η

]

+
γk

k+1




γ
(

4Vmax +
log(|A|)

η

)

k(1− γ)
+

1

k

k

∑
j=1

γk− j‖E j−1‖



+
1

k+1
‖Ek‖

=
γ
(

4Vmax +
log(|A|)

η

)

(1− γ)(k+1)
+

1

k+1

k+1

∑
j=1

γk− j+1‖E j−1‖.

The result then follows, for all k ≥ 0, by induction.

Lemma 19 provides an upper-bound on the normed-error
∥∥Q∗ −Qk

∥∥. We make use of this result

to derive a bound on the performance loss ‖Q∗ −Qπk‖:

‖Q∗ −Qπk‖ = ‖Q∗ −Qk+1 +Qk+1 −Tπk Q∗+Tπk Q∗ −Qπk‖
≤ ‖Q∗ −Qk+1‖+‖Qk+1 −Tπk Q∗‖+‖Tπk Q∗ −Tπk Qπk‖
≤ ‖Q∗ −Qk+1‖+‖Qk+1 −Tπk Q∗‖+ γ‖Q∗ −Qπk‖ .
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By collecting terms we obtain

‖Q∗ −Qπk‖ ≤
1

1− γ
(‖Q∗ −Qk+1‖+‖Qk+1 −Tπk Q∗‖)

=
1

1− γ

[
‖Q∗ −Qk+1‖+

∥∥∥∥
k

k+1
Tπk Qk +

1

k+1
(Tπk Q0 +Ek)−Tπk Q∗

∥∥∥∥

]

≤
1

1− γ

[
‖Q∗ −Qk+1‖+

k

k+1
‖Tπk Q∗ −Tπk Qk‖+

1

k+1
‖Tπk Q∗ −Tπk Q0‖

]

+
1

(1− γ)(k+1)
‖Ek‖

≤
1

1− γ

[
‖Q∗ −Qk+1‖+

γk

k+1
‖Q∗ −Qk‖+

1

k+1
‖Ek‖+

γ

k+1
‖Q∗ −Q0‖

]

≤
1

1− γ

[
‖Q∗ −Qk+1‖+

γk

k+1
‖Q∗ −Qk‖+

1

k+1
‖Ek‖+

2γVmax

k+1

]

≤
1

1− γ



‖Q∗ −Qk+1‖+
γk

k+1
‖Q∗ −Qk‖+

1

k+1
‖Ek‖+

γ(4Vmax +
log |A|

η )

k+1





This combined with the result of Lemma 19 completes the proof.

Appendix D. The Proof of Convergence of DPP-RL—Theorem 9 and Theorem 10

We begin the analysis by introducing some new notation. Let us define Fk as the filtration generated

by the sequence of all random variables {y1,y2,y3, . . . ,yk} drawn from the distribution P(·|x,a) for

all (x,a) ∈ Z. We know, by the definition of εk, that E(εk(x,a)|Fk−1) = 0, which means that for all

(x,a)∈Z the sequence of estimation errors {ε1,ε2, . . . ,εk} is a martingale difference sequence w.r.t.

the filtration Fk. Now, we provide the proof of Lemma 8, on which we rely for the analysis of both

Theorem 9 and Theorem 10:
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Proof of Lemma 8 We first prove that ‖Tπk

k Ψk‖ ≤ 2γ log(|A|)
η(1−γ) +Vmax by induction. Let us assume

that the bound ‖Tπk

k Ψk‖ ≤ 2γ log(|A|)
η(1−γ) +Vmax holds. Thus

‖Tπk

k+1Ψk+1‖ ≤ ‖r‖+ γ‖Pπk Ψk+1‖ ≤ ‖r‖+ γ‖MηΨk+1‖
= ‖r‖+ γ

∥∥Mη

(
Ψk +T

πk

k Ψk −MηΨk

)∥∥

≤ ‖r‖+ γ
∥∥Mη

(
Ψk +T

πk

k Ψk −MηΨk

)
−M

(
Ψk +T

πk

k Ψk −MηΨk

)∥∥

+ γ
∥∥M

(
Ψk +T

πk

k Ψk −MηΨk

)∥∥

≤ ‖r‖+
γ log(|A|)

η
+ γ
∥∥M

(
Ψk +T

πk

k Ψk −MηΨk

)∥∥

= ‖r‖+
γ log(|A|)

η
+ γ
∥∥M

(
Ψk +T

πk

k Ψk −MηΨk +MΨk −MΨk

)∥∥

≤ ‖r‖+
γ log(|A|)

η
+ γ‖M(MΨk −MηΨk)‖+ γ‖M (Ψk −MΨk)‖

+ γ
∥∥MT

πk

k Ψk

∥∥

≤ ‖r‖+
2γ log(|A|)

η
+ γ
∥∥Tπk

k Ψk

∥∥ ≤ ‖r‖+
2γ log(|A|)

η
+

2γ2 log(|A|)
η(1− γ)

+ γVmax

≤
2γ log(|A|)

η(1− γ)
+Rmax + γVmax =

2γ log(|A|)
η(1− γ)

+Vmax,

where we make use of Lemma 17 to bound the difference between the max operator M(·) and the

soft-max operator Mη(·). Now, by induction, we deduce that for all k ≥ 0, ‖Tπk

k Ψk‖ ≤
2γ log(|A|)

/
(η(1− γ))+Vmax. The bound on εk is an immediate consequence of this result.

D.1 Proof of Theorem 9

In this subsection, we provide the proof of Theorem 9 which guarantees that DPP-RL asymptotically

converges to the optimal policy w.p. 1.

We make use of the result of Lemma 8 and Corollary 6 to prove the theorem. We begin by

recalling the result of Corollary 6:

limsup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
lim
k→∞

1

k+1
‖Ek‖ .

Therefore, to prove the convergence of DPP-RL, one only needs to prove that 1/(k+ 1)‖Ek‖
asymptotically converges to 0 w.p. 1. For this we rely on the strong law of large numbers for

martingale differences (Hoffmann-Jørgensen and Pisier, 1976), which states that the average of

a sequence of martingale differences asymptotically converges, almost surely, to 0 if the second

moments of all entries of the sequence are bounded by some 0 ≤ U ≤ ∞. This is the case for

the sequence of martingales {ε1,ε2, . . .} since we already have proven the boundedness of ‖εk‖ in

Lemma 8. Thus, we deduce

lim
k→∞

1

k+1
|Ek(x,a)|= 0, w.p. 1.
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Thus

lim
k→∞

1

k+1
‖Ek‖ = 0, w.p. 1. (35)

The result then follows by combining Equation 35 with Corollary 6.

D.2 Proof of Theorem 10

In this subsection, we prove Theorem 10, for which we rely on a maximal Azuma’s inequality (see,

e.g., Cesa-Bianchi and Lugosi, 2006, Appendix, pg. 359):

Lemma 20 (Azuma, 1967) Let Y = {Y1,Y2, . . . ,YK} be a martingale difference sequence w.r.t. a

sequence of random variables {X1,X2, . . . ,XK}, that is, E(Yk+1|X1, . . .Xk) = 0 for all 0 < k ≤ K.

Also, let Y be uniformly bounded by U > 0. Define Sk = ∑k
i=1Yi. Then, for any ε > 0, we have

Pr

(
max

1≤k≤K
Sk > ε

)
≤ exp

(
−ε2

2KU2

)
.

We recall the result of Theorem 5 at iteration k:

‖Q∗ −Qπk‖ ≤
γ
(

4Vmax +
log(|A|)

η

)

(1− γ)2(k+1)
+

1

(1− γ)(k+1)

k

∑
j=0

γk− j‖E j‖.

Note that the main difference between this bound and the result of Theorem 10 is just in the

second term. So, to prove Theorem 10 we need to show that the following inequality holds, with

probability at least 1−δ:

1

k+1

k

∑
j=0

γk− j
∥∥E j

∥∥ ≤
4(γ log(|A|)/η+2Rmax)

(1− γ)2

√
2log

2|X||A|
δ

k+1
. (36)

We first notice that

1

k+1

k

∑
j=0

γk− j
∥∥E j

∥∥ ≤
1

k+1

j

∑
k=0

γk− j max
0≤ j≤k

‖E j‖ ≤
max0≤ j≤k ‖E j‖
(1− γ)(k+1)

. (37)

Therefore, in order to prove Equation 36 it is sufficient to bound max0≤ j≤k ‖E j‖ =
max(x,a)∈Z max0≤ j≤k |Ek−1(x,a)| in high probability.

We begin by proving high probability bound on max0≤ j≤k |E j(x,a)| for a given (x,a). We first

notice that

Pr

(
max

0≤ j≤k
|E j(x,a)|> ε

)
= Pr

(
max

[
max

0≤ j≤k
(E j(x,a)), max

0≤ j≤k
(−E j(x,a))

]
> ε

)

= Pr

({
max

0≤ j≤k
(E j(x,a))> ε

}⋃{
max

0≤ j≤k
(−E j(x,a))> ε

})

≤ Pr

(
max

0≤ j≤k
(E j(x,a))> ε

)
+Pr

(
max

0≤ j≤k
(−E j(x,a))> ε

)
,

(38)
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The sequence of random variables {ε0(x,a),ε1(x,a), . . . ,εk(x,a)} is a martingale difference se-

quence w.r.t. the filtration Fk (generated by the random samples {y0,y1, . . . ,yk}(x,a) for all (x,a)),
that is, E[εk(x,a)|Fk−1] = 0. It follows from Lemma 20 and Lemma 8 that for any ε > 0 we have

Pr

(
max

0≤ j≤k
(E j(x,a))> ε

)
≤ exp



 −ε2

2(k+1)( 4γ log(|A|)
η(1−γ) +2Vmax)2





Pr

(
max

0≤ j≤k
(−E j(x,a))> ε

)
≤ exp



 −ε2

2(k+1)( 4γ log(|A|)
η(1−γ) +2Vmax)2



 .

(39)

By combining Equation 39 with Equation 38 we deduce that

Pr

(
max

0≤ j≤k
|E j(x,a)|> ε

)
≤ 2exp



 −ε2

2(k+1)( 4γ log(|A|)
η(1−γ) +2Vmax)2



 ,

and a union bound over the state-action space leads to

Pr

(
max

0≤ j≤k

∥∥E j

∥∥ > ε

)
≤ 2|X||A|exp



 −ε2

2(k+1)( 4γ log(|A|)
η(1−γ) +2Vmax)2



 .

For any 0 < δ < 1, this bound can be re-expressed as

Pr

(

max
0≤ j≤k

∥∥E j

∥∥ ≤
(

4γ log(|A|)
η(1− γ)

+2Vmax

)√

2(k+1) log
2|X||A|

δ

)

≥ 1−δ.

This combined with Equation 37 proves Equation 36 and Theorem 10.

References
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Abstract

Strings and sequences are ubiquitous in many areas of data analysis. However, only few learning
methods can be directly applied to this form of data. We present Sally, a tool for embedding strings
in vector spaces that allows for applying a wide range of learning methods to string data. Sally
implements a generalized form of the bag-of-words model, where strings are mapped to a vector
space that is spanned by a set of string features, such as words or n-grams of words. The implemen-
tation of Sally builds on efficient string algorithms and enables processing millions of strings and
features. The tool supports several data formats and is capable of interfacing with common learn-
ing environments, such as Weka, Shogun, Matlab, or Pylab. Sally has been successfully applied for
learning with natural language text, DNA sequences and monitored program behavior.

Keywords: string embedding, bag-of-words models, learning with sequential data

1. Introduction

Strings and sequences are a common representation of data and many applications of machine learn-

ing center on analyzing strings, for example, for discovering topics in natural language text, iden-

tifying genes in DNA, or filtering spam messages. However, the vast majority of learning methods

can not be directly applied to string data, as these methods usually operate in vector spaces and re-

quire numerical vectors as input for learning. While a large body of research has studied techniques

for learning with strings—most notably work on mapping strings to vectors (see Salton et al., 1975;

Damashek, 1995) and string kernels (see Sonnenburg et al., 2007; Shawe-Taylor and Cristianini,

2004)—only few software tools have been made available to the community so far.

In this article, we present Sally, a general-purpose tool for mapping a set of strings to a set of

vectors. This mapping is referred to as embedding of strings and allows for applying a wide range

of learning methods to string data. Sally implements a generalized form of the bag-of-words model,

where strings are mapped to a high-dimensional vector space that is spanned by a set of string

features. Different types of features are supported for this embedding, which range from words

c©2012 Konrad Rieck, Christian Wressnegger and Alexander Bikadorov.
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delimited by whitespace characters to positional and sorted n-grams. Sally proceeds by counting

the occurrences of these features in each string and generating a sparse vector of frequency values.

The implementation of Sally builds on string algorithms with linear run-time and space complexity,

which enables processing millions of strings and features.

Sally is not the only tool for learning with strings; some learning toolboxes also provide support

for extracting features from strings or computing string kernels. The respective implementations are

often tightly coupled with the toolboxes and restricted to specific applications. By contrast, Sally

can be thought of as a “Swiss Army Knife” for embedding strings: Instead of targeting a single

toolbox or application, Sally provides a generic link between string data and learning methods. The

tool supports several data formats and is capable of interfacing with common learning environments,

such as Weka, Shogun, Matlab, or Pylab. Sally has been successfully applied in diverse learning

settings, including text categorization, intrusion detection, clustering of malicious software, and

analysis of electricity consumption (cf. Rieck and Laskov, 2008; Wahl et al., 2009; Rieck et al.,

2011; Jawurek et al., 2011).

2. Embedding of Strings

Sally implements a generalized form of the classic bag-of-words model (Salton et al., 1975). A

string is represented by a set of string features (“the bag”) and mapped to a vector space whose

dimensions are associated with the occurrences of these features. This association is created using

a hash function, where the hash value of each feature defines its dimension. Moreover, the tool

extends the original bag-of-words model by supporting features derived from string kernels, such as

the spectrum kernel (Leslie et al., 2002), the weighted-degree kernel (Sonnenburg et al., 2007) and

the word kernel (Lodhi et al., 2002).

2.1 String Features

Sally supports three basic types of string features for constructing a bag-of-words model. These

types are defined implicitly by specifying delimiters (Configuration: ngram delim) and the number

of consecutive bytes/words to consider (Configuration: ngram len).

1. Words. The strings are partitioned into substrings using a set of delimiter characters D.

Such partitioning is typical for natural language processing, where the delimiters are usu-

ally defined as whitespace and punctuation characters (Configuration: ngram delim = D;

and ngram len = 1;).

2. Byte n-grams. The strings are characterized by overlapping byte sequences of length n. These

features are frequently used, if only little information about the structure of the strings is

known, such as in bioinformatics and computer security (Configuration: ngram delim =

""; and ngram len = n;).

3. Word n-grams. The strings are described by overlapping word sequences of length n. These

features require the definition of delimiters D and a length n. They are often used as a

coarse way for capturing structure in text and tokens (Configuration: ngram delim = D;

and ngram len = n;).

Additionally to these basic types, Sally supports extensions for refining the set of string features.

For instance, inspired by the weighted-degree kernel (Sonnenburg et al., 2007), Sally supports the
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extraction of positional features. Each string feature is extracted along with its position in the string

(Configuration: ngram pos = 1;). As an example, the string abab then contains the positional

2-grams ab1, ba2 and ab3.

Moreover, as with any data, strings can suffer from noise. Words may be swapped in text and

DNA bases flip positions due to mutations. Such noise can be compensated by the extension of

sorted n-grams (Configuration: ngram sort = 1;). After the extraction of an n-gram, its elements

are sorted, thereby removing the local ordering of the data. This removal may improve performance,

if the strings suffer from local perturbations.

Finally, Sally also supports the use of stop words (Configuration: stopword file) and the

thresholding of values (Configuration: thres low and thres high). When analyzing natural lan-

guage text, these extensions allow for filtering irrelevant and (in)frequent words from the resulting

feature vectors.

2.2 Embedding Function

After the extraction of string features, Sally proceeds to construct a feature vector for each string in

the defined output format. This construction can be formally defined as a mapping function Φ (see

Rieck and Laskov, 2008),

Φ : X −→ R
|S |
, Φ : x $−→ (φs(x))s∈S ,

where X corresponds to the domain of strings and S to the set of (hashed) string features. Depending

on the configuration, the inner function φ either returns the number of occurrences of the feature s in

the string x, a binary flag for the occurrence of s or an TFIDF weighting of s. Furthermore, different

normalizations can be applied to the resulting vectors (Configuration: vect embed = embed and

vect norm = norm).

The size of the vector space can be controlled using the number of bits for hashing the string fea-

tures (Configuration: hash bits), where for k bits the vector space may span up to 2k dimensions.

While such high dimensionality is favorable for constructing an expressive representation of strings,

it requires an efficient implementation to guarantee a tractable run-time. Fortunately, the number of

features extracted by Sally is linear in length of each string and the resulting vectors are extremely

sparse. This sparsity enables Sally to embed the strings in linear time and space, irrespective of the

dimensionality of the vector space (cf. Rieck and Laskov, 2008; Shi et al., 2009).

3. Run-time Evaluation

To illustrate the efficient implementation of Sally, we conduct a run-time evaluation with data

sets from four application domains: DNA sequences (ARTS; Sonnenburg et al., 2006), protein

sequences (SPROT; O’Donovan et al., 2002), email messages (ENRON; Klimt and Yang, 2004) and

text documents (RFC; www.ietf.org/rfc.html). Statistics of the data sets are shown in Table 1. As

a baseline, we consider a typical Matlab and Python script for embedding strings. Both scripts are

60–70 lines long and make use of hashing for efficiently mapping strings to vectors. For each data

set and implementation, we measure the run-time for embedding strings using byte/word 5-grams

as features. We set the size of the feature hashing to 24 bits (≈ 16.7 million dimensions). The

evaluation is conducted on an Intel Xeon CPU with 2.6GHz with 4 GB of memory.

Results for the evaluation are shown in Table 1. All implementations are able to embed the

strings in reasonable time (less than 10 minutes). However, Sally consistently outperforms the
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other implementations. In comparison with the Python script, Sally embeds the strings 2.5× faster

on average, where for Matlab a speedup of 9.5× is attained. This performance demonstrates the

efficiency of Sally on different types of data, rendering it the tool of choice in applications where

time matters, such as in large-scale and on-line learning.

Data sets ARTS SPROT ENRON RFC

Data set size 108 DNA bases 107 proteins 106 words 107 words
Number of strings 46,794 150,807 33,702 4,590
String features byte 5-grams byte 5-grams word 5-grams word 5-grams

Number of features 1,024 (= 45) 2,800,728 4,070,853 12,136,059

Run-time performance

Matlab script 528 s (9.6×) 381 s (7.3×) 158 s (11.4×) 530 s (9.6×)
Python script 140 s (2.5×) 183 s (3.5×) 30 s (2.1×) 113 s (2.1×)
Sally 55 s — 52 s — 14 s — 55 s —

Table 1: Run-time performance of Sally and typical scripts for embedding strings.

A fine-grained analysis of the run-time of Sally is shown in Figure 1. The embedding shows

a linear run-time complexity even for large strings. On average, Sally is able to map a string to a

vector within 0.3 ms including reading and writing of data, which amounts to an overall throughput

of 3,000 strings per second.

(a) Email messages (word 5-grams) (b) Protein sequences (byte 5-grams)

Figure 1: Detailed run-time analysis of Sally. The run-time per string is measured on the email

messages of ENRON and the protein sequences of SPROT.

4. Conclusions

Sally provides a generic link between the wealth of string data and the available machinery of learn-

ing methods. Instead of targeting a specific application domain, the tool implements a generalized

form of the bag-of-words model, which allows for learning with various types of string data, such

as natural language text (Rieck and Laskov, 2008), payloads of network packets (Wahl et al., 2009)

or even traces of electricity consumption (Jawurek et al., 2011). Moreover, by supporting different

input and output formats, the tool can easily interface with common learning environments. Sally is

open source software and available at the webpage http://mlsec.org/sally.
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S. Sonnenburg, A. Zien, and G. Rätsch. ARTS: accurate recognition of transcription starts in human.

Bioinformatics, 22(14):e472–e480, 2006.
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Abstract

We present a general and detailed development of an algorithm for finite-horizon fitted-Q iteration
with an arbitrary number of reward signals and linear value function approximation using an ar-
bitrary number of state features. This includes a detailed treatment of the 3-reward function case
using triangulation primitives from computational geometry and a method for identifying globally
dominated actions. We also present an example of how our methods can be used to construct a real-
world decision aid by considering symptom reduction, weight gain, and quality of life in sequential
treatments for schizophrenia. Finally, we discuss future directions in which to take this work that
will further enable our methods to make a positive impact on the field of evidence-based clinical
decision support.

Keywords: reinforcement learning, dynamic programming, decision making, linear regression,
preference elicitation

1. Introduction

Within the field of personalized medicine, there is increasing interest in investigating the role of

sequential decision making for managing chronic disease (Weisz et al., 2004; McKay, 2009; Kuk

et al., 2010). Reinforcement learning methods (Szepesvári, 2010; Sutton and Barto, 1998) are al-

ready being used (Pineau et al., 2007; Murphy et al., 2007; Zhao et al., 2009) to analyze Sequen-

tial Multiple Assignment Randomized Trials (SMART) (Murphy, 2005). A patient’s progression

through a SMART is divided into stages, each of which consists of a (typically uniform) random

assignment to a treatment, followed by monitoring and recording data on the patient’s condition.

The patient data collected during each stage are very rich and commonly include several continuous

variables related to symptoms, side-effects, treatment adherence, quality of life, and so on. For the

ith patient in the trial, we obtain a trajectory of observations and actions of the form

oi
1,a

i
1,o

i
2,a

i
2, ...,o

i
T ,a

i
T ,o

i
T+1.
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Here, ai
t represents the action (treatment) at time t, and oi

t represents measurements made of patient

i after action ai
t−1 and before action ai

t . The first observations oi
1 are baseline measurements made

before any actions are taken.

To analyze these data using reinforcement learning methods, we must define two functions

st(o1,a1, ...,ot) and rt(st ,at ,ot+1) which map the patient’s current history to a state representation

and a scalar reward signal, respectively. Applying these functions to the data from the ith patient

gives a trajectory

si
1,a

i
1,r

i
1,s

i
2,a

i
2,r

i
2, ...,s

i
T ,a

i
T ,r

i
T .

These redefined data are treated as sample trajectories from a known policy which is typically

uniformly random over possible actions. Once we have these, we will view ongoing patient care

as a Markov decision process (MDP) (Bertsekas and Tsitsiklis, 1996), and apply batch off-policy

reinforcement learning methods to learn an optimal policy that takes a patient state and indicates

which action appears to be best in view of the data available. In an MDP, both the state transition

dynamics and the reward distributions are assumed to have the Markov property. That is, given the

value st of the current state, the distribution of next state St+1 and current reward Rt is conditionally

independent of s j,a j,r j for all j < t. Clearly this can be achieved by including past history in st ,

but this may not be feasible. For this work, we will assume that practitioners can suggest state

features (which may be summaries of history) that are “as good as a complete history” in terms of

making predictions about future states and rewards: we want features that are rich enough to provide

good predictions about action values, but that are simple enough to allow us to learn from a limited

amount of data. In medical domains, we may additionally want the learned policy to be easily

interpreted and implemented. The interplay between predictiveness, learnability, and interpretability

makes the definition of st a challenging problem that requires a great deal of further investigation,

particularly into the consequences of a non-Markov definition of state. However, the question of

how st should be defined can be answered at least in part by the data themselves together with

expert knowledge and feature/model selection techniques analogous to those used in supervised

learning settings (Keller et al., 2006) if we have an adequate definition of rt .

A major difficulty with using trial data in this way is that there is often no obviously correct

way to define rt . Indeed, any definition of rt is an attempt to answer the question “What is the right

quantity to optimize?”—a question that is driven by the objectives of individual decision makers

and cannot be answered by the data alone. There are many reasonable reward functions one could

define, since each patient record includes a multi-dimensional measurement of that patient’s overall

well-being. For example, data often include a measure of the severity of the symptoms the patient is

experiencing, as well as a measure of the severity of the side-effects caused by the current treatment.

These different dimensions are typically better addressed by some treatments than by others, and

therefore the choice of which dimension to use as the reward will affect the resulting learned policy.

For example, a policy that minimizes expected symptom level will tend to choose more aggressive

drugs that are very effective but that have a more severe side-effect profile. On the other hand, a

policy that minimizes expected side-effect measurements will choose drugs that are less effective

but that have milder side-effects.

In clinical practice, doctors, patients, and families decide on a treatment by weighing different

measures of well-being, like symptoms and side-effects, according to subjective preferences that

are not known to us at the time of data analysis. Continuing our example, these preferences may

lean more toward symptom reduction or side-effect reduction, depending on the individual decision

makers involved, and an appropriate reward function definition should reflect these preferences. In
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principle, one could elicit these preferences, use them to define the reward function of each individ-

ual decision maker, and then learn a policy for that reward function; however accurate preference

elicitation can be difficult to achieve, and even when it is possible it can be a time-consuming pro-

cess for the decision maker. Moreover, this approach is problematic because it does not give a

complete picture of the quality of the available actions under different reward choices. Indeed, the

decision maker will not know when very small changes in preferences might lead to different ac-

tions, or when one action is optimal for a broad range of preferences, or when another action is not

optimal for any preference.

Rather than eliciting preference and producing a policy that recommends a single action per

state, our “inverse preference elicitation” approach is to first consider all of the actions available at

the current state. For each of the actions, we answer the question, “What range of preferences makes

this action a good choice?” This provides much richer information about the possible actions at

each stage. Furthermore, even if a preference is specified somehow, our methods allow the maker to

immediately see if his or her preferences are near a “boundary”—that is, whether a small change in

preference can lead to a different recommended action. In this case, according to the data analysis

two or more actions perform comparably well, and therefore the final decision could be based on

other less crucial considerations such as dosing schedule and difference in cost. We are interested

in efficient algorithms that can exactly compute the optimal policy for a range of reward functions

to investigate how our choice of reward function influences the optimal policy, and in turn how we

can offer more flexible choices among good actions.

2. Related Applications, Existing Methods, and Our Contributions

Our approach can help explore trade-offs in different application domains besides sequential med-

ical decision making as well. In e-commerce, one may wish to trade off short-term profits with

increased brand-visibility. In robotics, one may wish to trade-off rapid task completion against

wear-and-tear on equipment. Researchers are already considering trading off water reserves versus

flood risk in water reservoir control (Castelletti et al., 2010); our approach could provide further

insight here. Even within RL itself, our approach could provide a new perspective on trading off

achieving high expected reward with avoiding risk, an issue explored by Mannor and Tsitsiklis

(2011). Any problem for which it is difficult or undesirable to formulate a single scalar reward to

drive decision making could benefit from our approach.

There is wide interest in making use of multiple reward signals for sequential decision making.

Gábor et al. (1998) demonstrated that an MDP with multiple reward signals can be well-defined

and solved so long as we are given a fixed partial ordering on reward vectors. Mannor and Shimkin

(2004) offer a formalism where actions are chosen to ensure that the long-term average reward vec-

tor approaches a “target set”. The target set induces an ordering (closeness) on reward vectors which

drives the agent’s actions. Natarajan and Tadepalli (2005) assume that a scalar reward function is

constructed by taking a weighted sum of a reward vector, just as we will. They assume that the

weights are given, and that the weights will change over time. Their strategy is to learn a dictionary

of policies for different weight vectors that should eventually contain policies that work well for

many different preferences. They note that “An interesting direction for future research is to investi-

gate the number of different weight vectors needed to learn all the optimal policies within a desired

degree of accuracy,” which we will address as part of this work. Early work in this direction (Bar-

rett and Narayanan, 2008) explored the problem of simultaneously computing optimal policies for a
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class of reward functions over a small, finite state space in a framework where the model is known.

Subsequent developments were made that focussed on the infinite-horizon discounted setting and

black-box function approximation techniques (Castelletti et al., 2010; Vamplew et al., 2011). We

extended the approach of Barrett and Narayanan (2008) to the setting with real-valued state fea-

tures and linear function approximation, which is a more appropriate framework for analyzing trial

data (Lizotte et al., 2010). We also introduced an algorithm that is asymptotically more time- and

space-efficient than the Barrett & Narayanan approach, and described how it can be directly applied

to batch data. We also gave an algorithm for finding the set of all non-dominated actions in the

single-variable continuous state setting. This paper builds on our previous work by contributing:

• A general and detailed development of finite-horizon fitted-Q iteration with an arbitrary num-

ber of reward signals and linear approximation using an arbitrary number of state features

• A detailed treatment of 3-reward function case using triangulation algorithms from computa-

tional geometry that has the same asymptotic time complexity as the 2-reward function case

• A more concise solution for identifying globally dominated actions under linear function

approximation, and method for solving this problem in higher dimensions

• A real-world decision aid example that considers symptom reduction, weight gain, and quality

of life when choosing treatments for schizophrenia

3. Background

We begin by defining the mathematical framework for our problem and describing its relationship to

the usual MDP formulation. We then discuss how two existing formalisms, Inverse Reinforcement

learning and POMDP Planning, relate to our approach.

3.1 Problem Framework

For each patient, we assume we will choose a treatment action at each timepoint t = 1,2, ...,T ,

after which they are no longer under our care. In this finite-horizon sequential decision making

setting, the optimal policy in general depends on t (Bertsekas and Tsitsiklis, 1996), so we explicitly

maintain separate rt , Qt , and Vt functions for each timepoint, and we define QT ≡ rT . Furthermore,

it is convenient for our purposes to allow the set of possible states St and the set of possible actions

At to depend on time. We then designate the learned policy at a particular time point by πt : St→At .

We consider sets of MDPs that all have the same St , At , and state transition dynamics, but

whose expected reward functions rt(st ,at ,δ) have an additional parameter δ. One may think of δ as

a special part of state that: i) does not evolve with time, and ii) does not influence transition dynam-

ics. Each fixed δ identifies a single MDP by fixing a reward function, which has a corresponding

optimal1 state-action value function defined in the usual way via the Bellman equation:

Qt(st ,at ,δ) = rt(st ,at ,δ)+ESt+1|st ,at
[ max
a∈At+1

Qt+1(St+1,a,δ)].

1. In this work, most Q- and V-functions are either optimal or estimates of optimal. We omit the usual ∗ superscript in

most cases, and mark estimates with a hat .̂
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We will also refer to the optimal state value function Vt(st ,δ) = maxa∈At
Qt(st ,a,δ), and the2 op-

timal deterministic policy πt(st ,δ) ∈ argmaxa∈At
Qt(st ,a,δ). The purpose of δ is to represent the

preferences of a decision maker: we presume that a decision maker would like to follow an optimal

policy πt(st ,δ) for the MDP indexed by the value of δ that represents their preferences, that is, the

value of δ for which rt(st ,at ,δ) is a reflection of their reward function.

In order to mathematize the relationship between preference and δ, we define the structure of

rt(st ,at ,δ) to be

δ = (δ[0],δ[1], ...,δ[D−1]), (1)

rt(st ,at ,δ) = δ[0]rt[0](st ,at)+δ[1]rt[1](st ,at)+ ...+(1−
D−2

∑
d=0

δ[d])rt[D−1](st ,at). (2)

where ∑D−1
d=0 δ[d] = 1. Thus rt(st ,at ,δ) is a convex combination of the basis rewards rt[0], ...,rt[D−1],

identified by a vector δ of length D that identifies points on the (D− 1)-simplex. The vector δ
represents a preference that assigns weight to each of the basis rewards. For example, if δ[d] = 1

for some index d, then rt(st ,at ,δ) = rt[d](st ,at), and the optimal policy πt(st ,δ) will choose actions

that optimize the expected sum of rewards as determined by rt[d]. Intuitively, the magnitude of δ[d]
determines how much πt(st ,δ) “cares about” the dth basis reward. Preferences defined by non-linear

combinations of reward have been considered in non-sequential settings (e.g., Thall 2008), but such

approaches would be much more computationally challenging in the sequential decision making

setting in addition to being much more challenging to interpret; we discuss this in Section 7.1.

Throughout, we presume our data are trajectories where the ith one takes the form

si
1,a

i
1,r

i
1[0],r

i
1[1], ...,r

i
1[D−1],s

i
2,a

i
2,r

i
2[0],r

i
2[1], ...,r

i
2[D−1], ...,s

i
T ,a

i
T ,r

i
T [0],r

i
T [1], ...,r

i
T [D−1].

3.2 Related Approaches

Inverse Reinforcement Learning (IRL) (e.g., see Ng and Russell, 2000) comprises a collection of

methods that take as input trajectories acquired by observing an expert and then attempt to infer the

reward function of that expert. While IRL methods also operate in a setting with unknown rewards,

our goal is quite different since we explicitly assume that our data do not come from an expert—in

fact actions are often chosen uniformly randomly. Furthermore, we do not attempt to recover the

reward function of any particular agent; we will instead attempt to learn the optimal policy for a set

of reward functions. IRL methods could be useful if one wanted to attempt to explicitly learn the

preference (i.e., the δ) of a decision-maker under our proposed framework; we leave this as potential

future work.

Partially Observable Markov Decision Process (POMDP) planning (Kaelbling et al., 1998)

comprises a large collection of methods that are designed to learn policies in the face of partial

observability, that is, when the current “nominal state”3 of the system is not observed. In this

framework, the agent maintains a belief state (i.e., distribution) over the current nominal state and

defines a value function and policy over these belief states. In the simplest setting with k nominal

states, the space of possible belief states is the set of vectors on the (k−1)-simplex, and value-based

exact POMDP planners compute the optimal value function for all possible belief states. In effect,

2. The optimal policy may not be unique, but this does not concern us.

3. The term “nominal state” is used to denote the actual unobserved state of the system, so as to distinguish it from the

“belief state,” which comprises the agent’s current beliefs about the system.
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the POMDP planner defines and solves the belief MDP in which the belief states are considered to

be the observed (continuous) state.

Our goal in this work is to learn the optimal value function and policy for all possible preferences

δ, which also happen live on the simplex. The value functions we learn are similar in structure to

those of the POMDP planning problem, but there are at least two important differences.

First and foremost, the value functions and policies we learn are functions of preference and

of additional state (e.g., patient information) both of which are assumed to be observed. We will

see that in our formulation, for any fixed state the optimal value function is piecewise linear in

preference. The preference part of the value function has a structure similar to that of the value

function of a belief MDP, which is piecewise linear in the belief state.

Second, in POMDP planning, value is always a convex function of belief state, and this property

is crucial in the development of exact and approximate (e.g., Pineau et al. 2006, Wang et al. 2006)

methods. However, we will show in Section 4.2.4 that because our approach estimates value func-

tions using regression, the Q-functions in our problem are not convex in δ. Since we do not have

convexity, we will develop alternative methods for representing value functions in Section 4.

Despite these two differences, it is possible to interpret our definition of preference as a “belief”

that the agent/patient is in exactly one of D different hidden “preference states” each corresponding

to a single basis reward. We will not approach the problem from this point of view since we prefer

the interpretation that each agent (e.g., patient) has a true observable δ and a corresponding reward

function given by (2), but there may be applications where the hidden “preference state” interpreta-

tion is preferable. In any case, the two differences mentioned above mean that even if we interpret

δ as a belief over preference states, standard POMDP methods are not applicable.

4. Fitted-Q Iteration for Multiple Reward Functions

In order to illustrate the intuition behind our approach, we first describe an algorithm for learning

policies for all possible δ in the simplest case: a finite state space with D=2 basis rewards. We then

describe how to accomodate linear function approximation with an arbitrary number of features in

the D=2 setting. We then give a generalization to arbitrary D, and we provide an explicit algorithm

for the D=3 case based on methods from computational geometry.

4.1 Optimal Value Functions for All Tradeoffs: Finite State Space, D=2 Basis Rewards

To begin, we assume that the St are all finite, and that state transition probabilities P(st+1|st ,at)
and expected rewards rt[0](st ,at), ...,rt[0](st ,at) are estimated using empirical averages from the data

set and “plugged in” where appropriate. From an algorithmic standpoint, in this setting there is no

difference whether these quantities are known or estimated in this way. We therefore present our

algorithm as though all expectations can be computed exactly.

First, we consider two basis rewards rt[0] and rt[1] and corresponding preferences δ = (δ[0],δ[1]).
In this setting, the range of possible reward functions can be indexed by a single scalar δ = δ[1] by

defining

rt(st ,at ,δ) = (1−δ) · rt[0](st ,at)+δ · rt[1](st ,at).

We will show that the optimal state-action value function Vt(st ,δ) is piecewise-linear in the trade-

off parameter δ. Where appropriate, we will use the notation Vt(st , ·) to represent the function of
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Figure 1: Computing VT from QT for all δ by convex hull.

one argument (i.e., of δ) identified by fixing st . (We will use notation Qt(st ,at , ·) and rt(st ,at , ·)
similarly.) We use an exact piecewise-linear representation of the functions Vt(st , ·) for each state

and timepoint, which allows us to exactly compute value backups for all δ more efficiently than

the point-based representations of Barrett and Narayanan (2008). Our representation also allows

identification of the set of dominated actions, that is, the actions that are not optimal for any (st ,δ)
pair. Value backups for finite state spaces require two operations: maximization over actions, and

expectation over future states.

4.1.1 MAXIMIZATION

We begin at time t = T , the final time point,4 and describe how to take a collection of functions

QT (sT ,aT , ·) for all (sT ,aT ) and produce an explicit piecewise-linear representation of VT (sT , ·)
by maximizing over aT ∈ AT . In Section 4.1.3, we show how this can be accomplished at earlier

timepoints t < T using a divide-and-conquer approach.

The Q-function for the last timepoint is equal to the terminal expected reward function rT ,

which is linear in δ for each state-action pair as defined in (2), so we have QT (sT ,aT ,δ) = (1−δ) ·
rT [0](sT ,aT )+ δ · rT [1](sT ,aT ). To represent each QT (sT ,aT , ·), we maintain a list5 of linear func-

tions, one for each action, for each sT . Figure 1(a) shows an example Q-function at a fixed state

sT at time T for four different actions, three of which are optimal for some δ and one which is not

optimal for any δ. The linear function for each action can be represented by a list of tradeoff points

(i.e., [0 1]) together with a list of their corresponding values (i.e., [QT (sT ,aT ,0) QT (sT ,aT ,1)]) at

those tradeoff points. Each can also be represented by a point (QT (sT ,aT ,0),QT (sT ,aT ,1)) in the

plane, as shown in Figure 1(b). These two equivalent representations offer an important concep-

4. We will write QT rather than Qt=T in this section, and similarly write sT ,AT , etc.

5. We denote an ordered list with objects a,b,c by [a b c].
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tual and computational insight that is well-established in the multi-criterion optimization literature

(Ehrgott, 2005): the set of actions that are optimal for some δ∈ [0,1] are exactly those actions whose

line-representations lie on the upper convex envelope of the Q-functions, and equivalently, whose

point-based representations lie on the upper-right convex hull of the set of points in the plane. In

general, we can recover the actions that are optimal on any interval [δ,δ′] by finding the upper-right

convex hull of the points {(QT (sT ,a,δ),QT (sT ,a,δ′)) : a ∈ {1...|A|} }. This equivalence is impor-

tant because the time complexity of the convex hull operation on n points in two or three dimensions

is O(n logn) (de Berg et al., 2008)—as fast as sorting.

We make use of this equivalence to construct our piecewise-linear representation of VT (s, ·).
Commonly-used convex hull routines produce output that is ordered, so it is easy to recover the

list of actions that are optimal for some δ, along with the values of δ where the optimal action

changes. These values are the “knots” in the piecewise-linear representation. We denote the list

of knots of a piecewise-linear function f (·) by ∆( f (·)). The output of a convex hull algorithm is

an ordered list of points, each of the form (QT (sT ,aT ,0),QT (sT ,aT ,1)). In this case, the list is

[(0.8,0.2) (0.5,0.6) (0.2,0.7)]. We know from the order of this list that the second knot in VT (s, ·)
(after δ = 0) occurs where the lines represented by (0.8,0.2) and (0.5,0.6) intersect. Thus we can

compute that the line represented by (0.8,0.2) is maximal from δ = 0 to δ = 0.43, at which point

it intersects the line represented by (0.5,0.6). After finding the knots, we represent the piecewise-

linear value function in Figure 1(a) by the ordered knot-list ∆(VT (sT , ·)) = [0.00 0.43 0.75 1.00]
and value-list [0.80 0.54 0.58 0.70], rather than by the list of points. To recover the policy at

this point, we may also retain a list of lists containing the actions that are optimal at each knot:

[[1] [1 2] [2 4] [4]]. This allows us to determine the action or actions that are optimal for any segment

by taking the intersection of the action lists for the endpoints of the segment. Note that because

VT (sT , ·) is a point-wise maximum of convex6 functions, it is convex.

Our representation allows us to evaluate VT (sT ,δ) = maxa∈AT
QT (sT ,aT ,δ) efficiently. Because

our knot list and value list are ordered, we can use binary search to find the largest knot in VT (sT , ·)
that is less than δ. This tells us which linear piece is maximal for δ, so we only need to evaluate this

single linear function. Thus computing VT (sT ,δ) takes O(log |∆(VT (sT , ·))|) time, that is, the time

for the cost of the search, rather than the O(|∆(VT (sT , ·))|) time it would take to evaluate all of the

linear functions at δ and then take the maximum.

4.1.2 EXPECTATION

We now show how we use our piecewise-linear representation of VT (sT , ·) to efficiently compute a

piecewise-linear representation of

QT−1(sT−1,aT−1, ·) = rT−1(sT−1,aT−1, ·)+EST [VT (ST , ·)|sT−1,aT−1]

using the piecewise-linear representation of VT . To do so, we must evaluate conditional expectations

of VT over possible future states.

Consider an example with two terminal states sT = 1 and sT = 2. Suppose that the probability

of arriving in state j (conditioned on some (sT−1,aT−1)) is given by θ j. Since each VT ( j, ·) is

linear over the intervals between ∆(VT ( j, ·)), these two functions are simultaneously linear over

the intervals between ∆(VT (1, ·))∪∆(VT (2, ·)), and their weighted average is linear over the same

6. The QT (sT ,aT , ·) are each linear, and therefore convex.
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Figure 2: Computing expectations using unions of piecewise-linear representations. The graphs

of VT (1,δ) and VT (2,δ) show the time T value function at two different states, ST = 1

and ST = 2. The graph of QT−1(sT−1,aT−1,δ) = 0.5 ·VT (1,δ)+ 0.5VT (2,δ) shows the

expected action-value function if the two states are each reached with probability 0.5

when starting from state ST−1 = sT−1 and taking action AT−1 = aT−1, and there is no

immediate reward.

intervals. Therefore the expectation

EST [VT (ST , ·)|sT−1,aT−1] = θ1 ·VT (1, ·)+θ2 ·VT (2, ·)

is itself a piecewise-linear function of δ with knot-list ∆(VT (1, ·))∪∆(VT (2, ·)). Since the func-

tion rT−1(sT−1,aT−1, ·) is linear, it does not contribute additional knots, so we can compute the

piecewise-linear representation of QT−1(sT−1,aT−1, ·) by computing its value-list at the aforemen-

tioned knots. The value list of QT−1(sT−1,aT−1, ·) is
[(

rT−1(sT−1,aT−1,δ)+∑
j

θ jVT ( j,δ)

)

: δ ∈ ∆(VT (1, ·))∪∆(VT (2, ·))

]

.

Let k j = |∆(VT (s′j, ·))|. This construction uses O(k1 +k2) space and requires O(k1 +k2) evaluations

of VT . Note that because QT−1(sT−1,aT−1, ·) is a positive weighted sum of convex functions, it is

convex. Figure 2 illustrates this weighted sum operation.

We contrast the piecewise-linear representation approach with that of Barrett and Narayanan

(2008). The expectation can also be computed using the point-based representation in Figure 1(b):

let Ξi be the set of points in the point-based representation of VT (sT , ·). One can compute the point-

based representation of QT−1(sT−1,aT−1, ·) by constructing a set of points

{(r(T−1)[0],r(T−1)[1])+θ1 · (a1,b1)+θ2 · (a2,b2)},

where r(T−1)[δ] = rT−1(sT−1,aT−1,δ)

for all (a1,b1) ∈ Ξ1, (a2,b2) ∈ Ξ2.

(3)

and then taking the upper-right portion of the convex hull of this set. Barrett and Narayanan (2008)

advocate this procedure and prove its correctness; however, they note that the set given in (3) has
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|Ξ1||Ξ2| points that must be constructed and fed into the convex hull algorithm. Since ki = |Ξi|+1,

computing the expectation in this way will take O(k1k2) space and O(k1k2 logk1k2) time, which

is asymptotically much less efficient than our O(k1 + k2) piecewise-linear representation based ap-

proach.

4.1.3 VALUE BACKUPS FOR t < T −1

The maximization procedure described in Section 4.1.1 relies on the linearity of QT (sT ,aT , ·). How-

ever, for t < T , we have shown that Qt(st ,at , ·) is piecewise-linear. We now show how to compute

Vt and Qt from Qt+1 by first decomposing Qt+1(st+1,at+1, ·) into linear pieces and applying the

expectation and maximization operations to each piece. Recall that

Qt(st ,at ,δ) = rt(st ,at ,δ)+ESt+1 [Vt+1(St+1,δ)|st ,at ].

We have shown by construction that QT−1(sT−1,aT−1, ·) is convex and piecewise-linear. In general,

Vt(st , ·) is computed by taking a point-wise max over functions Qt(st ,at , ·), and Qt−1(st−1,at−1, ·) is

computed by taking a positive weighted sum of the convex functions rt−1(st−1,at−1, ·) and Vt(st , ·).
Since both of these operations preserve convexity and piecewise-linearity, it follows by induction

that Qt(st ,at , ·) is convex piecewise-linear for all t ∈ 1, ...,T . To compute Qt(st ,at , ·), we first iden-

tify the knots in ESt+1 [Vt+1(St+1, ·)|st ,at ] and store them; this is done in the same way as for t+1= T .

We then compute the value-list as described above. To compute Vt(st , ·) = maxa∈At
Qt(st ,a, ·), we

take the maximum over actions of these piecewise-linear Q-functions using Algorithm 2. First, we

decompose the problem of finding maxa∈At
Qt(st ,a, ·) for δ ∈ [0,1] into sub-problems of finding

maxa∈At
Qt(st ,a, ·) over intervals of δ where we know the Qt(st ,a, ·) are simultaneously linear. The

ends of these intervals are given by
⋃

a ∆(Qt(st ,a, ·)). We then apply the convex hull algorithm to

each of these intervals to recover any additional knots in maxa∈At
Qt(st ,at , ·).

The full backup procedure is described in Algorithm 1. In practice, we can avoid running

the convex hull algorithm over every interval by checking each interval’s end points: if for some

action a∗t we find that Qt(st ,a∗t , ·) is maximal at both ends of an interval in the current knot-list,

then maxa Qt(st ,a, ·) has no knots inside the interval. Note that though we present our algorithms

assuming the reward functions are linear, they will work for piecewise-linear reward functions as

well.

4.1.4 COMPLEXITY OF Qt(st ,at , ·) AND Vt(st , ·)

Suppose there are |S | states and |A | actions at each stage. For any fixed sT , each function QT (sT , i, ·),
i = 1..|A |, has 2 knots, δ = 0 and δ = 1. Applying Algorithm 2 to produce VT (sT , ·) from these

functions generates at most |A |− 1 new internal knots, and therefore each VT (sT , ·) has at most

(|A |− 1) + 2 knots. To compute QT−1(sT−1,aT−1, ·), we take the expectation of VT (sT , ·) over

states sT . Since VT (sT , ·) might have different internal knots for every sT , QT−1(sT−1,aT−1, ·) may

have as many as |S |(|A |− 1) + 2 knots. However, the knots in QT−1(sT−1,aT−1, ·) will be the

same for all sT−1 and aT−1. Computing VT−1(sT−1, ·) using Algorithm 2 adds at most |A |−1 new

knots between each pair of existing knots, for a total of (|A |−1|)(|S |(|A |−1)+1)+2. In general,

Qt(st ,at , ·) may have up to O(|S |T−t |A |T−t) knots, and Vt(st , ·) may have up to O(|S |T−t |A |(T−t)+1)
knots.

To compute Qt(st ,at , ·) from rt and Vt+1, our approach requires O(|S |T−t |A |(T−t)+1) time for

each state, for a total of O(|S |(T−t)+1|A |(T−t)+1) time. In contrast, the approach of Barrett &
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Algorithm 1 Value Backup - Finite State Space

/* A
∪
← B means A← A∪B */

∀(sT+1,δ), VT+1(sT+1,δ)! 0. ∀sT+1, ∆(VT+1(sT+1, ·))! {0,1}.

for t = T downto 1 do

for all st ∈ St do

for all at ∈ At do

∆(Qt(st ,at , ·))← {}
for all st+1 ∈ St+1 do

∆(Qt(st ,at , ·))
∪
← ∆(Vt+1(st+1, ·))

end for

for all δ ∈ ∆(Qt(st ,at , ·)) do

Qt(st ,at ,δ)← r(st ,at ,δ)+
∑st+1

P(st+1|st ,at) ·Vt+1(st+1,δ)
end for

end for

Compute ∆(Vt(st , ·)) by applying Algorithm 2

to Qt(st ,a, ·), a ∈ At

end for

end for

Algorithm 2 Max of Piecewise-Linear Functions

/* A
∪
← B means A← A∪B */

input piecewise-linear functions fi(·), i = 1..k defined on [δ0,δ1].
∆all =

⋃k
i=1 ∆( fi(·))

∆out = ∆all

for i = 2 to |∆all| do

if argmax j f j(∆all
i−1) += argmax j f j(∆all

i ) then

∆out ∪← ∆(max j f j(δ),δ ∈ (∆all
i−i,∆

all
i ))

end if

end for

Narayanan requires O(|S |2·(T−t)+1|A |2·(T−t)+1 log |S |2·(T−t)+1|A |2·(T−t)+1) time for each of log2 |S |
pairs of piecewise-linear functions.

4.2 Optimal Value Functions for All Tradeoffs: Linear Function Approximation, D=2 Basis

Rewards

Here, we demonstrate how our previously developed algorithms for value backups over all tradeoffs

can be extended to the case where we have arbitrary features of state variables and we use a linear

approximation of the Qt functions. Again, we first consider QT and VT , which have the simplest

form, and then describe how to compute Qt and Vt at earlier time points. This treatment allows for

linear function approximators based on an arbitrary number of state features rather than the single

continuous state feature described in Lizotte et al. (2010).
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Suppose the expected terminal rewards QT (sT ,aT ,0) and QT (sT ,aT ,1) are each linear functions

of the form QT (sT ,aT ,0) = φT
sT ,aT

βT [0] and QT (sT ,aT ,1) = φT
sT ,aT

βT [1]. Here, φsT ,aT
is a feature

vector7 that depends on state and action, and the weight vectors βT [0] and βT [1] define the linear

relationships between the feature vector and the expectation of the two basis rewards at time T .

From Equation (2), we have

QT (sT ,aT ,δ) = (1−δ) ·φTsT ,aT
βT [0] +δ ·φT

sT ,aT
βT [1], (4)

= φT
sT ,aT

[

(1−δ) ·βT [0] +δ ·βT [1]

]

.

A typical definition of φsT ,aT might include a constant component for the intercept, the measure-

ments contained in sT , the discrete action aT encoded as dummy variables, and the product of the

measurements in sT with the encoded aT (Cook and Weisberg, 1999). One could also include other

non-linear functions of sT and aT as features if desired. In particular, one could produce exactly the

same algorithm described in Section 4.1 by using feature vectors of length |S |× |A | that consist of a

separate indicator for each state-action pair. In this case the estimated parameters will be precisely

the sample averages from Section 4.1. Note from (4) that regardless of the definition of φaT ,sT
, the

function QT (sT ,aT ,δ) is linear in δ for any fixed sT ,aT .

Recall that we have a set of trajectories of the form

si
1,a

i
1,r

i
1[0],r

i
1[1],s

i
2,a

i
2,r

i
2[0],r

i
2[1], ...,s

i
T ,a

i
T ,r

i
T [0],r

i
T [1],

for i = 1...N with which to estimate the optimal Q functions. In order to estimate QT (sT ,aT ,0)
and QT (sT ,aT ,1), we compute parameter estimates β̂T [0] and β̂T [1] using ordinary least-squares

regression by first constructing a design matrix and regression targets

ΦT =













φT

s1
T ,a

1
T

φT

s2
T ,a

2
T

...

φT

sN
T ,a

N
T













, rT [0] =













r1
T [0]

r2
T [0]
...

rN
T [0]













, rT [1] =













r1
T [1]

r2
T [1]
...

rN
T [1]













.

We then compute parameter estimates

β̂T [0] = (ΦT
T ΦT )

−1ΦT
T rT [0],

β̂T [1] = (ΦT
T ΦT )

−1ΦT
T rT [1],

using ordinary least squares.8 These estimated parameters are then substituted into definition (4),

giving Q̂T (sT ,aT ,0) and Q̂T (sT ,aT ,1). To construct an estimate Q̂T (sT ,aT ,δ) for arbitrary δ∈ [0,1],
we could construct a scalar reward using rt[0], rt[1], and δ, and solve for the corresponding β̂T (δ),
giving

β̂T (δ) = (ΦT
T ΦT )

−1ΦT
T

[

(1−δ)rT [0] +δrT [1]

]

,

7. In statistical terms, φTsT ,aT
represents a row in the design matrix of the linear model.

8. We could also use ridge regression with a fixed ridge parameter. All of our techniques immediately apply in this case

as well since the parameter estimates remain piecewise linear in δ.
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Figure 3: Diagram of the regions in (ψsT ,δ) space where different actions are optimal at time T . In

this example, ψsT ∈ [−6,6].

but by linearity,

β̂T (δ) = (1−δ) · (ΦT
T ΦT )

−1ΦT
T rT [0] +δ · (ΦT

T ΦT )
−1ΦT

T rT [1],

= (1−δ) · β̂T [0] +δ · β̂T [1].

Thus we only need to solve for β̂T [0] and β̂T [1], after which we compute Q̂T (sT ,aT ,δ) = φT
sT ,aT

β̂T (δ)
for any δ by taking convex combinations of these coefficient vectors. Therefore, for t = T , it is

straightforward to exactly represent Q̂T (sT ,aT ,δ) for all δ.
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4.2.1 MAXIMIZATION

For any fixed values of sT and aT , Q̂T (sT ,aT , ·) is a linear function. Therefore, we can use the

convex hull method to identify the actions that maximize value at a given sT , and use it to recover

the knots in the piecewise-linear V̂T (sT , ·).
Figure 3 is an illustration of the pieces of a hypothetical V̂T (sT , ·) that is a maximization over 10

actions. In this example we define a scalar state feature ψsT and we construct feature vectors

φsT ,aT
= [[1 ψsT ]1aT=1 [1 ψsT ]1aT=2 ... [1 ψsT ]1aT=10]

T, (5)

where 1aT=k is the indicator function that takes the value 1 if aT = k and 0 otherwise. Note that

this choice of features is equivalent to defining Q̂ using a separate linear regression for each action.

Each number in Figure 3 marks the region where that action is optimal at time T . For example, a

vertical slice at ψsT = −4 of the value function has three linear pieces where actions 10, 1, and 7

are optimal.

In the finite state-space case, we explicitly represented VT (sT , ·) separately for each nominal

state sT in the MDP in order to allow computation of expectations over terminal states. In contrast,

in the linear regression setting, we represent V̂T (sT , ·) for each observed terminal state s1
T , ...,s

N
T in

our data set. That is, we explicitly represent a one-dimensional slice of the value function for each

of the si
T by applying Algorithm 2 to construct a piecewise-linear representation for V̂T (si

T , ·).

4.2.2 REGRESSION ON STATE FEATURES

At stage T −1, the regression parameters of our estimate Q̂T−1(sT−1,aT−1,δ) are given by

β̂T−1(δ) = (ΦT
T−1ΦT−1)

−1ΦT
T−1ŷT−1(δ),

where, for t ∈ {1, ...,T −1}, we define

ŷt(δ) = ((1−δ)rt[0] +δrt[1])+ v̂t+1(δ),

which are the one-step value estimates for time t, where

v̂t+1(δ) =











V̂t+1(s1
t+1,δ)

V̂t+1(s2
t+1,δ)
...

V̂t+1(sN
t+1,δ)











.

The components of the vector ŷT−1(δ) are not linear in δ, so for t < T , solving the regression

only for δ = 0 and δ = 1 does not completely determine Q̂t(st ,at ,δ). However, the components of

ŷT−1(δ) are each piecewise-linear in δ. We determine the intervals over which the components are

simultaneously linear and then explicitly represent the state-value function at the knots [δ1 δ2 ... δK ]
between these intervals. The output accompanying this list of knots is a list of estimated parameter

vectors [βT−1(δ1) βT−1(δ2) ... βT−1(δK)], each given by β̂T−1(δk) = (ΦT
T−1ΦT−1)−1ΦT

T−1ŷT−1(δk).
This collection of parameters is analogous to the value list in the finite state-space case, and com-

pletely defines Q̂T−1(sT−1,aT−1, ·) for all sT−1 and aT−1. As before, we can also retain a list of the

optimal actions at each of the knots in order to later recover the policy.
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Algorithm 3 Value Backup - Linear Function Approximation, D=2 Basis Rewards

∀(s,δ), V̂T+1(s,δ)! 0. ∀s, ∆(V̂T+1(s, ·))! {0,1}.

for t = T downto 1 do

∆Q̂t ← {}
for all (st ,at ,st+1) ∈D do

∆Q̂t ← ∆Q̂t ∪∆(V̂t+1(st+1, ·))
end for

for all δ ∈ ∆Q̂t do

y
(δ)
t = ((1−δ)rt[0] +δrt[1])+ v̂t+1(δ)

β̂
(δ)
t = (ΦT

t Φt)−1ΦT
t y

(δ)
t

end for

for all st ∈D do

Compute ∆(V̂t(st , ·)) by Algorithm 2

end for

end for

4.2.3 VALUE BACKUPS FOR t < T −1

The procedure for computing the V̂T (si
T , ·) relies on the linearity of Q̂T (si

T ,aT , ·), but for t < T ,

Q̂t(st ,at , ·) is piecewise-linear in general. Thus to compute V̂t(si
t , ·) = maxa Q̂t(si

t ,a, ·) for each si
t in

our data set, we apply Algorithm 2 for each si
t , using regression to compute Qt−1(st−1,at−1, ·) from

these functions then proceeds as we did for the t = T −1 case. The entire procedure is described in

Algorithm 3.

4.2.4 NON-CONVEXITY OF Q̂t(st ,at , ·)

For t < T , the resulting Q̂t(st ,at , ·) are not necessarily convex in the regression setting, as we alluded

to in Section 3.2. To see this, recall that each element of β̂T−1(δ) is a weighted sum of the piecewise-

linear ŷT−1(·):

β̂T−1(δk) = (ΦT
T−1ΦT−1)

−1ΦT
T−1ŷT−1(δk),

= wT
T−1 · ŷT−1(δ).

Here, wT−1 is an 1×N vector that depends on s and on the data, but does not depend on δ. Elements

of wT−1 can be positive or negative, depending on the feature representation used and the particular

data set on hand. Therefore, although each element of ŷT−1(·) is a convex, piecewise-linear function,

the β̂t(·), and therefore the Q̂t(st ,at , ·) may not be convex for t < T . One consequence of this

non-convexity is that both the algorithm by Barrett and Narayanan (2008), as well as important

algorithms from the POMDP literature (e.g., Pineau et al., 2003) that operate on convex piecewise-

linear value functions, cannot represent the function Q̂t(st ,at , ·) for t < T .

4.2.5 COMPLEXITY OF Q̂t(st ,at , ·) AND V̂t(st , ·)

Suppose there are N trajectories and |A | actions at each time point. For any fixed sT and aT , the final

learned Q-function Q̂T (sT ,aT , ·) has two knots, one at δ = 0 and one at δ = 1. The terminal value

function V̂T (si
T , ·) is constructed at each of N points in state space by applying Algorithm 2 to the
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Q̂T (si
T ,a, ·) for each observed terminal state s1

T ,s
2
T , ...,s

N
T in D . Each resulting V̂T (si

T , ·) has at most

|A |−1 new internal knots, and therefore each has at most (|A |−1)+2 knots in total. To compute

Q̂T−1(sT−1,a, ·), we use regression with targets constructed from the N value function estimates

V̂T (si
T , ·). In general, the knots for each V̂T (si

T , ·) will be unique. Thus each Q̂T−1(sT−1,a, ·), whose

knots are the union of the knots of the V̂T (si
T , ·), will have at most N ·(|A |−1)+2 knots. Computing

V̂T−1(si
T−1, ·) using Algorithm 2 adds at most |A |− 1 new knots between each pair of knots in the

union, for a total of (|A |− 1|)(N · (|A |− 1) + 1) + 2 knots. In general, Q̂t(s,a, ·) may have up

to O(NT−t |A |T−t) knots, and V̂t(s, ·) may have up to O(NT−t |A |(T−t)+1) knots. To compute the

expectation described in Section 4.2.2 at time t, our approach requires O(NT−t |A |(T−t)+1) for each

trajectory, for a total of O(N(T−t)+1|A |(T−t)+1) time.

4.3 Optimal Value Functions for All Tradeoffs: Linear Function Approximation, D > 2 Basis

Rewards

We have seen that, for D= 2 basis rewards, Q̂t(st ,at , ·) = φT
st ,at

β̂t(·) is continuous and piecewise-

linear, but not convex. This remains true for D reward functions and D tradeoffs δ = δ[0], ...,δ[D−1],

but as D increases, representing Q̂t(st ,at , ·) becomes more difficult. In the general case, Q̂t(st ,at , ·)
and β̂t(·) are linear over pieces that are convex polytopes within the space of possible preferences.

We prove this below and show how this insight can be used to develop representations of Q̂t and

V̂t . As in the D=2 case, we can construct Q̂t(st ,at , ·) and V̂t(st , ·) for all t ≤ T by taking pointwise

maximums and pointwise weighted sums of piecewise-linear functions. All proofs are deferred to

Appendix A.

Definition 1 (Linear functions over convex polytopes) A function f : RD → R is linear over a

convex polytope R ⊆ RD if

∃w ∈ R
D : f (δ) = δTw ∀δ ∈ R .

Since R is a convex polytope, it can be decomposed into a finite collection of simplices Ti, each

with D vertices, such that R = ∪iTi (Grünbaum, 1967). Each simplex is itself a convex polytope.

For a simplex T with vertices δ1,δ2, ...,δD, the weight vector w of a linear function f (δ) = δTw

defined over T can be computed from the values y1,y2, ...,yD−1 that f takes on the vertices, together

with the locations of the vertices themselves. This is accomplished by solving the system of linear

equations for w:












δ1
[0] δ1

[1] ... δ1
[D−1]

δ2
[0] δ2

[1] ... δ2
[D−1]

...
...

...

δD
[0] δD

[1] ... δD
[D−1]























w[0]

w[1]
...

w[D−1]











=











y1

y2

...

yD











. (6)

Thus, a linear function over a convex polytope can be represented as a piecewise-linear function

over simplices.9

Definition 2 (piecewise-linear functions over collections of convex polytopes)

A function f : RD→ R is piecewise-linear over a collection C of convex polytopes if

∀R ∈ C ∃wR ∈ R
D : f (δ) = δTwR ∀δ ∈ R .

9. Equation (6) has a unique solution only if the determinant of the matrix in the equation is non-zero, that is, only if

there are no collinearities in the vertices of T .
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Algorithm 4 Algorithm sketch for max

Identify the convex polytopes Ri where fi is maximal. Each Ri is the intersection of |At | half-

spaces.

Decompose each Ri into simplices

Evaluate fmax at each vertex in each resulting simplex

Recover the ws as needed using Equation (6)

Algorithm 5 Algorithm sketch for sum

Identify the convex polytopes of the form U∩V over which the sum is linear

Decompose each of these polytopes into simplices

Evaluate fsum at each vertex in each resulting simplex

Recover the ws as needed using Equation (6).

Thus we can completely represent a piecewise-linear function as a collection of (R ,wR ) pairs.

Lemma 3 (Max of linear functions) Given a set of functions { f1, f2, ..., fN} that are all linear over

the same convex polytope R , the function

fmax(δ) = max( f1(δ), f2(δ), ..., fN(δ))

is piecewise-linear over the collection of convex polytopes C = {R1,R2, ...,RN} given by

Ri = R ∩
N⋂

j=1

{

δ ∈ R
D : fi(δ)≥ f j(δ)

}

, i = 1..N.

Note further that
⋃N

i=1 Ri = R , and that the function fmax is convex (and therefore continuous)

on R , since each fi is convex. These properties immediately suggest a strategy for computing a

representation of fmax described in Algorithm 4. Figure 4 gives a pictorial representation of this

strategy, which allows us to perform the max-over-actions portion of a value iteration backup for

D > 2. We now address how to perform the weighted-sum-over-states portion of the backup.

Lemma 4 [Sum of piecewise-linear functions] Given two functions, g1 which is piecewise-linear

over a collection C1 of polytopes, and g2 which is piecewise-linear over a collection C2 of polytopes,

their linear combination

fsum(δ) = α1g1(δ)+α2g2(δ)

is piecewise-linear over the collection

C1+2 = {U∩V }, s.t. U ∈ C1, V ∈ C2.

This property suggests a strategy for representing fsum described in Algorithm 5. Figure 5 gives

a pictorial representation of this strategy, which allows us to perform the weighted-sum-over-states

portion of a value iteration backup for D > 2.

We can now use these strategies to construct a complete algorithm for the D > 2 case. At time

T , we have

Q̂T (sT ,aT ,δ) = φT
sT ,aT

(

δ[0] · β̂t[0] +δ[1] · β̂t[1] + ...+δ[D−1] · β̂T (D−1)

)

,

= δTwT ,
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f1

(0,0,1)(1,0,0)

(0,1,0)

f2

(0,0,1)(1,0,0)

(0,1,0)

f3

(0,0,1)(1,0,0)

(0,1,0)

(0,0,1)(1,0,0)

(0,1,0)

R1

R2R3

(0,0,1)(1,0,0)

(0,1,0)

T1

T2T3

T4

T5

T6

(0,0,1)(1,0,0)

(0,1,0)

w1

w2w3

w4

w5

w6

fmax

(0,0,1)(1,0,0)

(0,1,0)

Figure 4: Pictorial representation of taking max of linear functions for D=3 basis rewards. The first

row of triangles represents three linear functions f1, f2, and f3; darker shading indicates

higher function values. The second row shows the convex polytopes Ri over which fi

is maximal, the decomposition of each of these polytopes into simplices Ti, and their

corresponding weight vectors wi. The continuous piecewise-linear function fmax is shown

at the bottom.

where

β̂T [d] = (ΦT
T ΦT )

−1ΦT
T rT [d],

wT [d] = φT
sT ,aT

β̂T [d].
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(0,0,1)(1,0,0)

(0,1,0)
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(0,0,1)(1,0,0)

(0,1,0)

U1\V1

(0,0,1)(1,0,0)

(0,1,0)

U2\V3
U3\V3

U3\V2

U2\V2

(0,0,1)(1,0,0)

(0,1,0)

f1 f2

fsum

Figure 5: Pictorial representation of taking sum of piecewise-linear functions for D= 3 basis re-

wards. The top row shows the two functions to be added; darker shading indicates higher

function values. In the second row, the left diagram shows the pieces over which the sum

is linear. The right diagram of the second row shows the resulting continuous piecewise-

linear function.

Thus for any sT ,aT , the function Q̂T (sT ,aT , ·) = φT
sT ,aT

β̂T (·) is linear over the piece R = {δ : δ[d] >

0}∩{δ : ∑d δ[d] = 1}, which is the unit (D−1)-simplex. This is because each element of β̂T [d](·) is

linear in δ. It follows that V̂T (sT , ·) = maxa Q̂T (sT ,a, ·) is piecewise-linear over the sets described

in Lemma 3. To represent the stage T value functions V̂T (sT , ·), we apply Algorithm 4 to the Q-

functions Q̂T (sT ,a, ·) of each action a for each sT in our data set. Given this value function at time T ,

we can compute Q̂T−1(·, ·, β̂T−1(δ)) by computing each element of β̂T−1(δ) as the weighted sum of

V̂T (sT , ·) evaluated at the points sT in our data set by repeated application of Algorithm 5. As in the

D=2 case, these weights are given by the columns of the matrix (ΦT
T ΦT )−1ΦT

T . At this point, note

that for any sT−1,aT−1, the function Q̂T−1(sT−1,aT−1, ·) is piecewise-linear over the same pieces—

they are the pieces identified in Lemma 4. Thus to compute V̂T−1 we can simply apply Algorithm 4

to each of these pieces. Backups to earlier timepoints proceed analogously.

4.3.1 COMPLEXITY

Note that the primitive operations required for fitted-Q iteration—pointwise max and pointwise

weighted sum—are precisely the same as in the simpler settings discussed earlier, but the functions

we are operating on are (D−1)-dimensional.
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Suppose there are N trajectories and |A | actions at each time point. For any fixed sT and aT ,

the final learned Q-function Q̂T (sT ,aT , ·) has 1 piece R1 corresponding to the unit (D−1)-simplex.

The terminal value function V̂T (si
T , ·) is constructed at each of N points in state space by applying

Algorithm 4 to the Q̂T (si
T ,aT , ·) for each observed terminal state s1

T ,s
2
T , ...,s

N
T in D and each action

aT . Each resulting V̂T (si
T , ·) has at most |A | pieces R1, ...,R|A |, supposing each action has a piece

where it is optimal. To compute Q̂T−1(sT−1,a, ·), we use regression with targets constructed from

the N value function estimates V̂T (si
T , ·). In general, the pieces for each V̂T (si

T , ·) may be unique.

Thus each Q̂T−1(sT−1,a, ·) has pieces formed from all possible intersections between pieces of the

N different V̂T (si
T , ·), so there may be up to |A |N such pieces. Applying Algorithm 4 again within

each of these pieces means that each V̂T−1(si
T−1, ·) may have |A |N+1 pieces. In general, Q̂t(s,a, ·)

may have up to O(|A |∑
T−t
i=1 Ni

) pieces, and V̂t(s, ·) may have up to O(|A |∑
T−t
i=0 Ni

) pieces.

A more detailed complexity analysis would depend on how the pieces are represented, and

on how Algorithms 4 and 5 are implemented using computational geometry primitives—we have

already seen that for D= 2 basis rewards we can do much better than this worst-case bound. In-

tuitively this is because most of the intersections between pieces of the N different V̂T (si
T , ·) are in

fact empty. A general treatment of implementing Algorithms 4 and 5 is beyond the scope of this

paper; however, we now present a detailed algorithm designed for the D=3 case that is also much

less computationally intensive than the above double-exponential bound suggests.

4.4 Optimal Value Functions for All Tradeoffs: Linear Function Approximation, D=3 Basis

Rewards

We now consider the D=3 case specifically. The first “algorithmic trick” we will use is to represent

functions of δ using two rather than three dimensions, that is,

rt(st ,at ,δ[0],δ[1]) = δ[0]rt[0](st ,at)+δ[1]rt[1](st ,at)+(1−δ[0]−δ[1])rt[2](st ,at).

This follows from the constraint that ∑i δ[i] = 1. Note that the set of points (δ[0],δ[1]) : δ[0] + δ[1] ≤
1, δ[0] ≥ 0, δ[1] ≥ 0 is a convex polytope in R2. In fact it is a simplex, and therefore we can repre-

sent the linear function QT (sT ,aT , ·) by storing the corners of the simplex T = [(1,0) (0,1) (0,0)]
together with the parameter vectors

β̂T (1,0) = (ΦT
T ΦT )

−1ΦT
T rt[0],

β̂T (0,1) = (ΦT
T ΦT )

−1ΦT
T rt[1],

β̂T (0,0) = (ΦT
T ΦT )

−1ΦT
T rt[2].

We can compute a weight-vector representation of the function using Equation (6).

Consider two linear functions Q̂T (sT ,1, ·) and Q̂T (sT ,2, ·) over T . To take their pointwise max-

imum, we must identify the pieces over which the maximum is linear, as described in Lemma 3.

The boundary of these two pieces is a line in R2. If this line intersects T , it will divide T into the

two pieces. If it does not, then one function must be greater than the other over all of T . Iden-

tifying the pieces can be accomplished by finding where (if anywhere) the dividing line given by

Q̂T (sT ,1, ·) = Q̂T (sT ,2, ·) intersects T ; this is illustrated in Figure 6. We represent V̂T (sT , ·) by

recording the pieces R on either side of the dividing line. Each piece is identified by a set of ver-

tices, along with the value of the max at each vertex. (Note that certain vertices will belong to both

3272



LINEAR FITTED-Q ITERATION WITH MULTIPLE REWARD FUNCTIONS

(1,0)(0,0)

(0,1)

T

QT(sT,1,")#QT(sT,2,")

QT(sT,1,")$QT(sT,2,")

*

*
*

**

Figure 6: Identifying the pieces over which the max of two linear functions is linear.

pieces.) If there are more than 2 actions, we can take further maxes over each identified sub-piece,

partitioning as necessary. This completes the max-over-actions step at time T .

To compute Q̂T−1(sT−1,aT−1, ·), we compute each element of β̂T−1(·) at each vertex δ by taking

a weighted sum over next states of V̂T (sT , ·), again with weights given by columns of (ΦT
T ΦT )−1ΦT

T .

From Lemma 4 we know that we need to identify all of the pieces formed by intersecting the linear

pieces of the functions to be summed. Naïvely, one might compute the intersection of all pairs of

pieces, but for D=3 basis rewards we can instead use a constrained Delaunay triangulation (CDT),

which essentially gives us only the non-empty intersections and does so much more efficiently

than enumerating all pairs. Figure 7 gives a schematic diagram of this procedure. The input to

a standard Delaunay triangulation algorithm is a list of points in space. The output is a list of

simplices (in this case triangles) that partition space and whose vertices come from the input points.

The particular triangles chosen satisfy certain properties (de Berg et al., 2008), but the main appeal

for our purposes is the algorithm’s O(n logn) running time (Chew, 1987), where n is the number of

points to be triangulated. A constrained version of the algorithm allows us to additionally specify

edges between points that must be present in the output. The constrained version of the algorithm

will add points as needed to satisfy this requirement; again Figure 7 illustrates this. The simplices

(triangles) will form the pieces for the elements of β̂T−1(·), which will define our estimates Q̂T−1.

The output of the CDT algorithm is a set of pieces over which we know the sum of the piecewise-

linear functions will be linear. There are in fact more pieces than are strictly necessary, because

linear pieces that have more than three vertices (e.g., quadrilaterals) are divided up by the algorithm.

Nonetheless, the output is convenient because we can determine the weight vector w for any simplex

using Equation (6). Once we have determined these pieces and vertices, we evaluate V̂T (sT , ·) at each

terminal state and each vertex. Each element of β̂T−1(·) is a piecewise-linear function whose pieces

are given by the CDT algorithm, and whose values are given by the appropriate weighted sum of

V̂T (sT , ·) evaluated at the vertices. This gives Q̂T−1. The max operation to obtain V̂T−1 can again

be achieved by taking the max over each piece of Q̂T−1, and so on backward to t = 1. A complete

description is given in Algorithm 6

The problem of finding intersections between lines and computing triangulations is well-studied

in the field of computational geometry (de Berg et al., 2008). Though these problems may appear

trivial, it is very important to avoid situations where there is “ill-conditioning.” For example, if we

were to use floating point arithmetic to define three lines that should intersect at the same point,
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union triangulation
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Figure 7: Computing the sum of three piecewise-linear functions. The three example value func-

tions each have two linear pieces. The boundary between two pieces is shown by a dotted

line. We take all of the vertices, plus the boundaries, and give them as input to a con-

strained Delaunay triangulation procedure. The output is shown.

we may find that the “intersection point” is different depending on which pair of lines is used to

compute it. This can lead to many spurious points and edges being generated as we proceed with

value iteration. We take advantage of CGAL, the Computational Geometry Algorithms Library

(CGAL, 2011), which is designed specifically to avoid these problems.

Algorithm 6 Value Backup - Linear Function Approximation, D=3 Basis Rewards

∀(s,δ), V̂T+1(s,δ)! 0. ∀s, ∆(V̂T+1(s, ·))! {[(1,0),(0,1),(0,0)]}.

for t = T downto 1 do

∆Q̂t ← {}
for all (st ,at ,st+1) ∈D do

∆Q̂t ← ∆Q̂t ∪∆(V̂t+1(st+1, ·))
end for

∆Q̂t ← constrained_Delaunay_Triangulation(∆Q̂t )

for all δ ∈ vertices(∆Q̂t ) do

yt(δ) = δ[0]rt[0] +δ[1]rt[1] + (1−δ[0]−δ[1])rt[2] + v̂t+1(δ)

β̂t(δ) = (ΦT
t Φt)−1ΦT

t yt(δ)
end for

for all st ∈D do

Compute ∆(V̂t(st , ·)) by Algorithm 4

end for

end for

4.4.1 COMPLEXITY FOR D = 3

Any triangulation of n points in the plane contains O(n) triangles (Brass, 2005), so the operation

∆Q̂t ← constrained_Delaunay_Triangulation(∆Q̂t ) increases the size of ∆Q̂t only linearly. It follows
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that each Q̂T−1(sT−1,a, ·) has O(N · |A |) pieces rather than the |A |N given by the worst case analysis

in Section 4.3.1. Therefore Q̂t(s,a, ·) may have up to O(NT−t |A |T−t) pieces, and V̂t(st , ·) may have

up to O(NT−t |A |(T−t)+1) pieces. Note that these rates are the same as for the D = 2 special case

discussed in Section 4.2.5. Intuitively this is because the triangulation of n points in d-dimensional

space has O(n2d/23), triangles (Brass, 2005), that is, the same asymptotic growth rate for D = 2

(one-dimensional preference space) and D = 3 (two-dimensional preference space).

5. Dominated Actions

The ability to compute Q̂ and V̂ for all preferences achieves our goal of informing the decision maker

about the quality of available actions under different preferences, and of informing the decision

maker about how the recommended policy changes with preference. In addition to achieving these

primary goals, our representations of Q̂ and V̂ allow us to compute whether or not an action is

dominated (not optimal for a given state no matter what the preference) and whether it is globally

dominated (not optimal for any state-preference pair.) The notion of domination arises in POMDP

planning as well, where certain actions may not be optimal for any belief state, but the notion of

global domination has no direct analog in the POMDP setting since it is a property of additional

observed state s that is not part of a typical POMDP.

The concept of domination is central to the field of multi-criterion optimization (Ehrgott, 2005),

and is important in the medical decision making setting because it identifies treatment actions that

are not appropriate no matter what the decision maker’s preference is. One may also consider

actions that are dominated for all patient states in a population of interest, that is, the actions that

are globally dominated. Knowing this set of actions would be useful for developing a formulary—a

list of treatments that should generally be made available to a patient population.

The general problem of analytically identifying the set of globally dominated actions is diffi-

cult, as we will illustrate, but we first provide solutions for low-dimensional problems and discuss

the identification of globally dominated actions in higher dimensional settings. Our approach for

determining if actions are dominated is to look for certificates of non-domination for each action.

A point (st ,at ,δ) where Q̂t(st ,at ,δ) = V̂t(st ,δ) is a certificate that action at is not dominated at state

st , and that action at is therefore not globally dominated.10 All proofs are deferred to Appendix A.

5.1 Finite Case, D=2 Basis Rewards

We showed in Section 4.1 how to exactly represent the Qt(st ,at , ·) and Vt(st , ·) functions for all st and

at for D=2 when the state space is finite by representing them as lists of knots (vertices) and knot-

values (vertex-values). In addition to storing this information, we may also store the set of actions

that are optimal at each knot, that is, we may store A∗(δ) = {a∗t : Qt(st ,a∗t ,δ) =Vt(st ,δ)} for each δ
in the knot list of Vt(st , ·). Note that A∗(δ) may contain more than one action. Suppose δk and δk+1

are adjacent knots in ∆(Vt(st , ·)). For all δ s.t. δk < δ < δk+1, we have A∗(δ) = A∗(δk)∩A∗(δk+1).
Thus the set of actions that have a non-domination certificate at state st is given by

|∆(Vt(st ,·))|⋃

k=1

A∗(δk),

10. Note that in this work we determine which actions are estimated to be dominated, since we are using estimates Q̂t

and V̂t to make this determination. Assessing our confidence that an action is truly non-dominated based on available

data will require incorporation of appropriate statistical methods (Laber et al., 2009).
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and any actions not in the above union are dominated at st . Note that recording this additional

information does not increase the time complexity of the method. It also allows us to find every

globally dominated action by computing the above union at each finite state, taking the union of

those sets, and identifying actions not present in the union.

5.2 Regression Case, D=2 Basis Rewards, One State Feature

We now show how to identify all of the globally dominated actions in the linear function approx-

imation setting. We first discuss the case with a single state feature ψsT , D=2 basis rewards, and

the last timepoint T . We also construct feature vectors φsT ,aT
so that the Q̂t functions are built using

separate regressions for each action; for example see (5). We can then define β̂a
t (δ) to be the 2×1

sub-vector of β̂t(δ) that aligns with the sub-vector of φst ,at
that is non-zero for at = a. We also define

the matrix Ba
T =

[

β̂a
T (0) β̂a

T (1)
]

for each action, so that

Q̂T (sT ,aT ,δ) =
[

1 ψsT

]

Ba
T

[

δ
1−δ

]

. (7)

To find the globally dominated actions, we will search for certificates of non-domination in (ψsT ,δ)
space and identify the actions that do not have a certificate. Figure 3 shows an example of this

setting. In the example, actions 1, 4, 6, 7, 8, 9, and 10 have regions where they are optimal, and

hence certificates of non-domination. Actions 2, 3, and 5 have no certificates, that is, they are not

optimal for any combination of ψsT and δ.

Each Ba
T is a constant given the data and the regression algorithm. The form of (7) clearly shows

that Q̂T (·,a, ·) is a bilinear function of ψsT and δ. To analytically identify the set of dominated

actions, we analyze the boundaries between the regions where one action has higher value than

another. These boundaries occur where QT (·,a1, ·) = QT (·,a2, ·) for some actions a1 and a2, that is,

where
[

1 ψsT

]

Ba1
T

[

δ
1−δ

]

=
[

1 ψsT

]

Ba2
T

[

δ
1−δ

]

,

which describes the hyperbola in δ and ψsT given by

[

1 ψsT

]

(Ba1
T −Ba2

T )

[

δ
1−δ

]

= 0. (8)

Along these boundaries, “triple-points” occur at (ψsT ,δ) points where three or more actions have

exactly the same value. At these points, either all of the actions involved are optimal, or none of

them are. We now show that if there exists a certificate of non-domination for action a, but there

exists no certificate for a on the boundary of the domain of VT (sT ,δ), then there exists a certificate

for a at a triple-point.

Lemma 5 (Lizotte et al., 2010) If action a is optimal at time T for some point (ψsT ,δ) but is not

optimal for any (ψsT ,δ) on the boundary of the domain, then a is optimal for some (ψsT ,δ) that is a

triple-point.

From Lemma 5 we know that to find all actions that are optimal for some (ψsT ,δ) we need only

check the boundaries and the triple points. The boundaries can be checked using Algorithm 2.
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(Note that because Q̂T (·,a, ·) is bilinear in δ and in ψsT , we can also use Algorithm 2 to identify for

any fixed δ the actions that are optimal for some ψsT .) We can then enumerate the
(|A |

3

)

triple-points

and check them to detect any regions that do not intersect the boundary of the domain, like for

example the region where action 1 is optimal in Figure 3 where we have identified the triple-points

with white dots. This procedure reveals all actions that are optimal for some (ψsT ,δ), and thereby

identifies any actions that are not optimal for any (ψsT ,δ).
To compute the triple points, we must solve the following system of bilinear equations for ψsT

and δ:

[

1 ψsT

]

(Ba1
T −Ba2

T )

[

δ
1−δ

]

= 0,

[

1 ψsT

]

(Ba1
T −Ba3

T )

[

δ
1−δ

]

= 0.

There are many ways of interpreting this system of equations; it describes the intersection of two

hyperbolas, as pointed out in our earlier work (Lizotte et al., 2010). We describe a more concise

solution here. Note that any solution (ψsT ,δ) must have the property that the vector [1 ψsT ] is

orthogonal to the two vectors given by (Ba1
T − Ba2

T )

[

δ
1−δ

]

and (Ba1
T − Ba3

T )

[

δ
1−δ

]

. Since

[1 ψsT ] is two-dimensional, this implies that these two vectors are collinear. Therefore the vector
[

δ
1−δ

]

must satisfy

(Ba1
T −Ba2

T )

[

δ
1−δ

]

= λ(Ba1
T −Ba3

T )

[

δ
1−δ

]

. (9)

Equation (9) describes the generalized eigenvalue problem (Golub and Van Loan, 1996). Common

software packages can solve for λ and δ.11 We have described the process of identifying globally

dominated actions for bilinear functions; we can immediately extend this algorithm for piecewise

bilinear functions by applying it between pairs of knots.

5.3 Regression Case, p State Features, Arbitrary D

Lizotte et al. (2010) conjectured that an analogue of Lemma 5 holds in higher dimensions, and that

identifying all globally dominated actions for more state variables and/or reward functions would

require computing intersections of surfaces in higher dimensions. We refine this conjecture, and we

propose a solution method for finding globally dominated actions for

Q̂T (ψsT
,a,δ) =

[

1 ψT
sT

]

Ba
T δ.

where ψsT
is p-dimensional, and δ is the D-dimensional vector of preferences defined as usual. We

consider finding non-dominated actions over a “domain of interest,” of the form S ×D , where S is

a rectangle in Rp, and D is a convex subset of valid preferences. To prove our method is correct,

we require the following conjecture.

11. In practice one solves (Ba1
T −Ba2

T )x = λ(Ba1
T −Ba3

T )x and then projects x onto the subspace x[1] = 1− x[0] by dividing

it by x[0] + x[1].
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Conjecture 6 If the system of polynomial equations of the form

[

1 ψT
sT

]

(Ba1
T −Ba2

T )δ = 0 (10)
[

1 ψT
sT

]

(Ba1
T −Ba3

T )δ = 0

...
[

1 ψT
sT

]

(Ba1
T −B

ak
T )δ = 0

has a finite number of solution points, those points taken together are a continuous vector-valued

function of the coefficients of the system.

Conjecture 6 is true for a single polynomial of one variable over the complex plain (Uherka and

Sergott, 1977), and holds for the D=2 case. We believe the conjecture holds because it is known

that systems of multivariate polynomials can be reduced to solving a collection of independent

problems each involving a single polynomial of one variable. This reduction uses the methods of

elimination and extension (Cox et al., 1997).

Proposition 7 Assume Conjecture 6. If there exists a point (ψsT
,δ) in the interior of the domain

of interest where action a is optimal, but a is not optimal at any point (ψsT
,δ) where p+D+ 1

actions are simultaneously optimal, then there exists a point (ψsT
,δ) on the boundary of the domain

of interest where action a is optimal.

We refer to a point where k actions are simultaneously optimal as a “k-tuple point.” To find

the set of globally non-dominated actions, we first solve (10) and check to see if any of the (p+
D+ 1)-tuple points are optimal. If so, all of the point’s associated actions not globally dominated.

The system (10) of polynomial equations can be solved by computer algebra systems or using

numerical approximation techniques (Cox et al., 1997; Sturmfels, 2002). By recursively applying

the proposition to the boundaries of the original domain, we can ensure that we identify every action

that is not globally dominated: first, we find (D+ p+ 1)-tuple points inside the original (D+ p)-
dimensional domain of interest and check whether any of these are optimal. We then treat each

of the (D+ p− 1)-dimensional boundaries as our new domains of interest, and look for (D+ p)-
tuple points in each of these, and so on until we check each of the 2D+p zero-dimensional points at

the corners of our original domain. Again, we have described the process of identifying globally

dominated actions for functions linear in δ; we can immediately extend this algorithm to piecewise-

linear functions by applying it within linear regions.

6. Application to Medical Decision Making

An important application of this work is the improvement of the use of sequential medical data

for constructing clinical decision support systems. In this section, we briefly discuss how such

systems are currently constructed, how preferences are currently addressed in the medical decision

making community, and how the methods presented in this paper provide a novel and useful way of

incorporating preferences in clinical decision support systems. We then present an example using

real data that illustrates how our methods can be used to inform clinical decision making.
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6.1 Clinical Decision Support, Evidence-Based Medicine, and Preferences

Currently, most clinical decision support systems are constructed using expert opinion (e.g., Work-

ing Group for the Canadian Psychiatric Association and the Canadian Alliance for Research on

Schizophrenia, 1998; Miller et al., 1999). Although accumulated clinical experience is invaluable in

making good treatment decisions, data-derived scientific evidence is playing an increasingly promi-

nent role. Sackett (1996) state that “The practice of evidence based medicine means integrating

individual clinical expertise with the best available external clinical evidence from systematic re-

search.”

In order to be effective, any evidence-based decision support system must leave room for indi-

vidual clinical expertise to inform the final decision. The methods we have presented are able to

do this by presenting treatment recommendations in a way that incorporates decision maker prefer-

ences. There is extensive literature on “preference elicitation,” both within and outside the field of

medical decision making. In the medical decision making field, however, preference elicitation is

usually done at the population level and used to produce generic clinical guidelines, rather than to

make recommendations tailored to individual patients (e.g., Bonnichsen, 2011; Davis et al., 2011).

In other fields, preference elicitation is done before presenting any information about the available

treatments (Boutilier, 2002; Thall, 2008). It is assumed that preference elicitation is able to reliably

extract the preferences of the decision maker; in our setting, preference elicitation would attempt to

find the δ that represents the preference of a decision maker, run fitted-Q iteration using rt(st ,at ,δ),
and recommend a single treatment. This approach leaves no room for individual clinical expertise.

Our methods provide a novel alternative to preference elicitation. Rather than trying to deter-

mine which of the uncountable number of possible preferences a user might have, we present, for

each available action, the set of preferences for which that action is optimal. That is, we present the

policy as a function of preference. We call this approach “inverse preference elicitation” because

rather than eliciting a preference and recommending a treatment, we can easily and intuitively show

for each treatment the set of preferences that are consistent with its recommendation. By using

this approach, the time a user would have spent having his or her preference elicited is now spent

directly considering the evidence for how preferences influence recommended treatment.

6.2 Example: CATIE Study

We illustrate inverse preference elicitation using data from the Clinical Antipsychotic Trials of In-

tervention Effectiveness (CATIE) study. The CATIE study was designed to compare sequences

of antipsychotic drug treatments for the care of schizophrenia patients. The full study design is

quite complex (Stroup et al., 2003; Swartz et al., 2003); we have therefore chosen a simplified sub-

set of the CATIE data in order to more clearly illustrate the potential of the methods presented in

this paper. CATIE was an 18-month study that was divided into two main phases of treatment.

Upon entry into the study, most patients began “Phase 1,” in which they were randomized to one

of five possible treatments with equal probability: olanzapine, risperidone, quetiapine, ziprasidone,

or perphenazine. As they progressed through the study, patients were given the opportunity at each

monthly visit to discontinue their Phase 1 treatment and begin “Phase 2” on a new treatment. The set

of possible Phase 2 treatments depended on the reason for discontinuing Phase 1 treatment. If the

Phase 1 treatment was deemed to be ineffective at reducing symptoms, then their Phase 2 treatment

was chosen randomly as follows: clozapine with probability 1/2, or uniformly randomly from the

set {olanzapine, risperidone, quetiapine} with probability 1/2. If the Phase 1 treatment was deemed
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to produce unacceptable side-effects, their Phase 2 treatment was chosen uniformly randomly from

the set {olanzapine, risperidone, quetiapine, ziprasidone}.

In previous work, we used batch off-policy reinforcement learning to analyze data from this

study using a single reward function (Shortreed et al., 2010). We now give two new analyses using

the new methods we have presented to examine multiple rewards simultaneously. The basis rewards

we consider are measures of symptoms, side-effects, and quality of life.

Symptoms: PANSS For our symptom measurement, we use the Positive and Negative Syndrome

Scale (PANSS) which is a numerical representation of the level of psychotic symptoms experienced

by a patient (Kay et al., 1987). A higher value of PANSS reflects the presence of more severe

symptoms. PANSS is a well-established measure that we have used in previous work on the CATIE

study (Shortreed et al., 2010), and is measured for each CATIE patient both at the beginning of the

study and at several times over the course of the study. Since having larger PANSS is worse, for

our first basis reward r[0] we use 100 minus the percentile of a patient’s PANSS at the end of their

time in the study. We use the distribution of PANSS at the beginning of the study as the reference

distribution for the percentile.

Body Weight: BMI Weight gain is an important and problematic side-effect of many antipsy-

chotic drugs (Allison et al., 1999). Patients in the CATIE study had their Body Mass Index (BMI)

(National Institutes of Health., 1998) measured at study intake and several times over the course of

the study. Since in this population having a larger BMI is worse, for our second basis reward r[1]
we use 100 minus the percentile of a patient’s BMI at the end of their time in the study. We use the

distribution of BMI at the beginning of the study as the reference distribution for the percentile.

Quality of Life: HQLS Measures of quality of life are intended to assess to what degree a

patient’s disease is impacting his or her daily life, in terms of a patient’s relationships with others,

ability to work, emotional state, and ability to carry out daily activities (Cramer et al., 2000). Patients

in CATIE were administered the Heinrichs-Carpenter Quality of Life (HQLS) (Heinrichs et al.,

1984) scale at intake and repeatedly as they progressed through the study. Since having a higher

HQLS is better, for our third basis reward r[2] we use the percentile of a patient’s HQLS at the end

of their time in the study. We use the distribution of HQLS at the beginning of the study as the

reference distribution for the percentile.

6.3 Symptoms versus Weight Gain

We begin by presenting the output of our algorithm for D = 2, using PANSS as described above

for r[0], and BMI for r[1]. In Figures 8, 9 and 10 we will present plots of the piecewise linear value

function V̂t(st , ·) for t = 1,2 and for various representative values of st . When we plot V̂t(st ,δ) as

a function of δ, we simultaneously show the learned optimal action using the style and colour of

the plotted line. Thus from our plots one can see both the learned value and the learned policy as a

function of δ, which enables us to easily see for each action the range of preferences for which that

action looks best.

6.3.1 PHASE 2 ANALYSES

Following the approach of our previous work (Shortreed et al., 2010), we use PANSS at entry to

Phase 2 as a continuous state variable s2 so that we can allow symptom severity to influence optimal

action choice. We convert the PANSS scores at entry to Phase 2 into percentiles just as we did for the

PANSS reward signal. Furthermore, we learn value functions for the Phase 2 Efficacy patients and
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the Phase 2 Tolerability patients separately, since these two groups have different sets of possible

actions.

We have relatively little data for Phase 2 Efficacy subgroup of patients. Therefore for this

subgroup, we combine the actions of giving {olanzapine, risperidone, or quetiapine} into one “not-

clozapine” action: AEFF
2 = {CLOZ,not-CLOZ}. The other three drugs are much more similar to

each other than they are to clozapine, which is much more toxic and is currently considered a “last

resort” for use when symptoms are not effectively managed by other treatments (McDonagh et al.,

2010). The feature vectors we use for Stage 2 Efficacy patients are given by

φEFF
s2,a2

= [1, 1a2=CLOZ, s2, s2 ·1a2=CLOZ, 1TD, 1EX, 1ST1, 1ST2, 1ST3, 1ST4]
T.

Here, s2 is the PANSS percentile at entry to Phase 2. Feature 1a2=OLAN is an indicator that the action

at the second stage was clozapine, as opposed to one of the other treatments. We also have other

features that do not influence the optimal action choice but that are chosen by experts to improve

the value estimates.12 1TD is an indicator variable of whether the patient has had tardive dyskinesia

(a motor-control side-effect), 1EX indicates whether the patient has been recently hospitalized, and

1ST1 through 1ST4 indicate the type of facility at which the patient is being treated (e.g., hospital,

specialist clinic)

For Phase 2 Tolerability patients, the possible actions are ATOL
2 = {OLAN,QUET,RISP,ZIP},

and the feature vectors we use are given by

φTOL
s2,a2

= [1, 1a2=OLAN, 1a2=QUET, 1a2=RISP, s2, s21a2=OLAN, s21a2=QUET, s21a2=RISP, ...

1TD, 1EX, 1ST1, 1ST2, 1ST3, 1ST4]
T.

Here we have three indicator features for different treatments at Phase 2, 1a2=OLAN, 1a2=RISP,

1a2=QUET, with ziprasidone represented by turing all of these indicators off. Again we include

the product of each of these indicators with the PANSS percentile s2. The remainder of the features

are the same as for the Phase 2 Efficacy patients.

Figure 8 shows a plot of the piecewise linear value function V̂2(s2, ·) for patients who are in

Phase 2 of the study because of a lack of efficacy of the Phase 1 treatment. We plot V̂2(s2, ·) for

three fixed values of s2 corresponding to having low PANSS, moderate PANSS, or high PANSS at

entry to Phase 2. (These correspond to setting s2 = 25, s2 = 50 and s2 = 75, respectively.) For

all three states shown in the plot, the learned policy indicates that clozapine is the best action for

a reward based only on PANSS (i.e., for δ = 0), but not-clozapine (olanzapine or risperidone or

quetiapine) is best for a reward based only on BMI (i.e., for δ = 1.) We have indicated the values of

δ at which the decision changes from one action to the other by dropping down a dotted line. We see

that, except for those with a strong preference for controlling BMI, clozapine appears to be the best

choice among patients who found their Phase 1 treatment to be ineffective at controlling symptoms.

It is clear from the plot that neither action is globally dominated since neither is dominated at any

of our example states.

Figure 9 shows a plot of the piecewise linear value function V̂2(s2, ·) for patients who are in

phase 2 of the study because they could not tolerate the side-effects of their Phase 1 treatment.

Again we plot V̂2(s2, ·) for three different Phase 2 entry percentiles of PANSS: s2 = 25, s2 = 50 and

12. See Section 4.2 by Shortreed et al. (2010) for a more thorough discussion of these kinds of features. When we display

value functions and learned policies in our examples, we set all of these indicators to 0 since they are not needed by

the learned policy to select actions in the future.

3281



LIZOTTE, BOWLING AND MURPHY

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

V̂2(75,δ)

V̂2(50,δ)

V̂2(25,δ)

Reward:

PANSS

Reward:

BMI
δ

E
x
p
ec

te
d

R
ew

ar
d

Value Functions for Phase 2: Lack of Efficacy

Figure 8: Multiple rewards analysis showing learned value function and associated learned policy

for Phase 2 Efficacy patients. Three value functions are shown, with the associated action

chosen by the learned policy, for s2 = 25, s2 = 50, and s2 = 75.

s2 = 75. Possible treatments are olanzapine, quetiapine, risperidone and ziprasidone. If we use a

reward based only on PANSS (i.e., for δ = 0), the learned policy indicates that olanzapine is the

best action for those with high or moderate incoming PANSS, and that risperidone is best for those

with lower incoming PANSS. Ziprasidone is best for a reward based only on BMI (i.e., for δ = 1)

independent of PANSS level. This result agrees with existing research on weight gain associated

with these atypical antipsychotics (Allison et al., 1999). Again, we have indicated the values of δ
at which the decision changes from one action to another by dropping down a dotted line. In this

analysis, we found that quetiapine was globally dominated.

6.3.2 PHASE 1 ANALYSIS

For Phase 1 patients, the possible actions are A1 = {OLAN,PERP,QUET,RISP,ZIP}, and the

feature vectors we use are given by

φTOL
s1,a1

= [1, 1a1=OLAN, 1a1=PERP, 1a1=QUET, 1a1=RISP, ...

s1, s11a1=OLAN, s11a1=PERP, s11a1=QUET, s11a1=RISP, ...

1TD, 1EX, 1ST1, 1ST2, 1ST3, 1ST4]
T.

We have four indicator features for different treatments at Phase 2, 1a1=OLAN, 1a1=PERP, 1a1=QUET,

and 1a1=RISP, with ziprasidone represented by turing all of these indicators off. We include the
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Figure 9: Multiple rewards analysis showing learned value function and associated learned policy

for Phase 2 Tolerability patients. Three value functions are shown, with the associated

action chosen by the learned policy, for s2 = 25, s2 = 50, and s2 = 75.

product of each of these indicators with the PANSS percentile s1 at entry to the study, and the

remainder of the features are the same as for the Phase 2 feature vectors. (These are collected

before the study begins and are therefore available at Phase 1 as well.)

Figure 10 shows a plot of the piecewise linear value function V̂1(s1, ·) for patients entering Phase

1 (the beginning) of the study. Again we plot V̂1(s1, ·) for three fixed values of s1 = 25, s1 = 50 and

s1 = 75. Possible treatments are perphenazine, olanzapine, quetiapine, risperidone and ziprasidone.

For all three states shown in the plot, the learned policy indicates that olanzapine is the best action

for a reward based only on PANSS (i.e., for δ = 0). Ziprasidone is best for a reward based only on

BMI (i.e., for δ = 1), also independent of PANSS level. Again, the result agrees well with existing

research (Allison et al., 1999). In this analysis, we found perphenazine and quetiapine to be globally

dominated.

6.4 Symptoms vs. Weight Gain vs. Quality of Life

We now present the output of our algorithm for D = 3, using PANSS for r[0], BMI for r[1], and

HQLS for r[2]. We use the methods described in Section 4.4 to compute the value functions which

map a state st and a three-element preference vector δ to an estimated value. Rather than display

the shape of this value function using a surface or contour plot, we have elected to show only the

regions of preference space where each action is optimal (i.e., the learned policy) mapped onto an

equilateral triangle. This simplifies the presentation, but still allows us to easily see for each action
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Figure 10: Multiple rewards analysis showing learned value function and associated learned policy

for Phase 1 patients. Three value functions are shown, with the associated action chosen

by the learned policy, for s2 = 25, s2 = 50, and s2 = 75.

the set of preferences for which that action looks best.13 In all examples, we show the policy for

PANSS percentile st = 50.

6.4.1 PHASE 2 ANALYSES

We use the same state representation as for the D = 2 example. Because we are using the exact

same r[0] and r[1] as we did for the D = 2 example as well, we can exactly recover the learned policy

of our previous D = 2 analysis from our D = 3 analysis simply by considering all preferences of the

form δ = (δ,1−δ,0), that is, the preferences along the upper-left edge of the triangle.

Figure 11 shows the learned policy for patients with s2 = 50 whose Phase 1 treatment was

not efficacious. As in the D = 2 case, we combine the actions of giving {olanzapine, risperidone,

or quetiapine} into one “not-clozapine” action. We see that clozapine appears best if the reward

is based only on PANSS or on HQLS, and “not-clozapine” appears best only if the preference

assigns a relatively large weight to BMI. If we consider the upper-left edge of the triangle where

the preferences assign zero weight to HQLS, we get precisely the same policy shown in Figure 8.

We also see that clozapine appears best for all preferences that consider only PANSS and HQLS

(bottom edge) and for most preferences that consider only HQLS and BMI (upper-right edge.)

We hypothesize that this is because there is a strong association between control of schizophrenia

13. In addition to the policy, we have indicated the linear regions produced by the Delaunay triangulations using faint

lines in order to give a sense of their complexity.
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Figure 11: Multiple rewards analysis using PANSS, BMI, and HQLS, showing learned policy for

Phase 2 Efficacy patients with s2 = 50.

symptoms and quality of life; thus treatments that work well for PANSS should also work somewhat

well for HQLS. We note however that clozapine occupies a narrower range on the upper-right edge

than it does on the upper-left edge. In this analysis it is clear that neither action is globally dominated

because neither is dominated at state s2 = 50.

Figure 12 shows the learned policy for patients with s2 = 50 whose Phase 1 treatment was not

tolerable due to side-effects. Here, we see that olanzapine appears best if the reward is based only

on PANSS or on HQLS, and ziprasidone appears best if the preference assigns a relatively large

weight to BMI. For intermediate preferences, risperidone appears best. Again if we consider the

upper-left edge of the triangle where the preferences assign zero weight to HQLS, we get precisely

the same policy shown in Figure 9. We also see that olanzapine appears best for all preferences that

consider only PANSS and HQLS (bottom edge.) Note that horizontal lines in the triangle represent

sets of preferences where the weight on BMI is held constant. Over much of preference space, these

horizontal lines are completely contained within one treatment’s optimal region, meaning that given

a weight for BMI, the policy usually does not depend on the relative preference for PANSS versus

HQLI. We hypothesize again that this is because there is a strong association between symptom

control and quality of life. In this analysis, we found that quetiapine was globally dominated.
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Figure 12: Multiple rewards analysis using PANSS, BMI, and HQLS, showing learned policy for

Phase 2 Tolerability patients with s2 = 50.

6.4.2 PHASE 1 ANALYSIS

Figure 13 shows the learned policy for patients with s1 = 50. Again we see that ziprasidone appears

best for preferences that assign a large importance to BMI, and olanzapine appears best for other

preferences. Again if we consider the upper-left edge of the triangle where the preferences assign

zero weight to HQLS, we get precisely the same policy shown in Figure 10. Interestingly, the region

where ziprasidone appears best increases as we decrease the importance of PANSS, indicating it

may be preferable for patients who are more concerned with weight control and quality of life than

with very tight control of symptoms. In this analysis, we found that quetiapine, risperidone, and

perphenazine were dominated at our example state s1 = 50, but we found no action to be globally

dominated.

6.5 Limitations

We note that unlike our previous work using this data, this analysis does not attempt to remove

bias induced by missing data, nor does it provide measures of uncertainty for the learned policy

(Shortreed et al., 2010). Both of these limitations indicate important directions for future work, as

we discuss below.
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Figure 13: Multiple rewards analysis using PANSS, BMI, and HQLS, showing learned policy for

Phase 1 patients with s1 = 50.

7. Discussion and Future Work

The methods we have presented comprise a crucial first step towards a data analysis method that

can be deployed in clinical decision support systems. However, there are challenges that remain to

be addressed.

7.1 The Meaning of Rewards and the Effect of Scaling

Consider an analysis with D = 2 basis rewards at its final time point t = T . For a preference of δ =
0.5, two actions a1 and a2 for which 0.5r[0](sT ,a1)+0.5r[1](sT ,a1) = 0.5r[0](sT ,a2)+0.5r[1](sT ,a2)
are indistinguishable. One can think of the preference as setting an “exchange rate” for r[0] and r[1]:

in this case, the basis rewards can be exchanged at a one-to-one rate and our happiness with the

overall result of an action remains the same. For δ = 0.75, the two actions would be indistinguish-

able if 0.25r[0](sT ,a1)+0.75r[1](sT ,a1) = 0.25r[0](sT ,a2)+0.75r[1](sT ,a2), meaning that the loss of

one unit of r[1] would have to be compensated by a gain of three units of r[0] in order for the actions

to be considered equivalent. The stronger the preference for r[1], the more units of r[0] we need in

order to “make up” for the loss a unit of r[1]. Note that this interpretation would not be possible had

we chosen to define reward as a non-linear function of preference.

In our example analysis, we chose to convert all of the rewards to percentiles before using

them; thus we interpret a preference of δ = 0.5 to mean that the “exchange rate” is one-to-one
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Figure 14: Multiple rewards analysis showing learned value function and associated learned policy

for Phase 2 Tolerability patients, using 50·BMI as one basis reward. Note how scaling

the BMI reward affects the regions where different actions are optimal. (Compare with

Figure 9.)

for percentiles of PANSS and percentiles of BMI. The exchange rate at δ = 0.5 could be shifted

however by first multiplying one or both rewards by a constant factor before using them in our

algorithm. If we fed 2 ·BMI into our algorithm as r[1], the exchange rate at δ = 0.5 would be two

percentiles of PANSS equals one percentile of BMI, and the preference at which the policy changes

from one action to the other in Figure 9, for example, would shift to the left. The ordering of

recommended treatments (olanzapine for lowest δ, risperidone for moderate δ, ziprasidone for high

δ) would remain the same, however.

A more extreme version is illustrated in Figure 14, where we use 50 ·BMI as one basis reward.

In this analysis, the “exchange rate” for δ = 0.5 is one unit of BMI equals 50 units of PANSS. Note

that there are still three non-dominated actions, but the regions where two of them are optimal are

now very small and “compressed” into an area very near δ = 0. This illustrates a potential pitfall:

if the exchange rate represented by δ = 0.5 is not “moderate,” resulting decision aids will be at best

unhelpful and at worst misleading. However, it also supports the use of the exact algorithms we

have presented: even if the rewards are poorly scaled, the set of non-dominated actions remains the

same, and they retain their ordering according to delta.

Note that if the region where an action is optimal is very small, a naïve grid-search over δ may

not detect it. For example, if we ask try to determine in the Figure 14 example which treatments

are optimal near a preference of δ = 0 by checking nearby δ, we may miss risperidone. On the
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other hand, the exact methods we have presented will correctly recognize that the risperidone is

non-dominated. A practitioner using our methods might then wish to change the analysis by rescal-

ing one or more of the basis rewards. The nature of this rescaling will of course depend on the

application at hand; we intend to formalize this problem in future work.

7.2 Value Function and Policy Approximations

We have shown that the complexity of constructing the exact value function is potentially exponen-

tial in the time horizon of the problem. However, we have also shown in our example that although

the value function may be very complex, the learned policy may still be very simple. Figure 10 il-

lustrates this: each faint triangle in the figure represents a linear piece of the value function. Though

there are many pieces, by and large adjacent pieces recommend the same action. This reflects

a large-scale smoothness in the Q-functions, and suggests that a simple, smooth function might

approximate the piecewise-linear Q-functions very well while reducing computational cost. Some

existing algorithms for POMDPs that approximate the value function (e.g., Pineau et al. 2006, Wang

et al. 2006) may be useful, but novel modifications will be needed to use these approximations in

our setting. Another class of approximations introduced by Poupart and Boutilier (2002) focuses on

compressing the state space of the POMDP. As we discussed in Section 3.2, the number of states

in a POMDP roughly corresponds to the number of basis rewards considered by our method. Thus,

these methods may lead to a way of computing a simplified or “compressed” view of preferences

when the number of basis rewards is large, which could be used both to reduce computational cost

and to help users better understand their preferences.

7.3 Measures of Uncertainty and Similar Q-values

In our example, almost all preferences are associated with exactly one optimal action. In practice, it

may make more sense to recommend more than one action for a particular preference if the Q-values

of those actions are very similar. In the medical setting, one may prefer to allow the physician or

patient to break ties if outcomes under different treatments are deemed to be “close.” We note two

criteria for “closeness” that deserve further study.

Statistical Significance One reason for recommending a set of treatments arises when there is

insufficient evidence that one action is actually superior to another. Ideally, one would like to know

if an observed difference in Q-values for different actions is true for the population or if it is present

in the data we have simply by chance. The methods we have presented do not provide uncertainty

information about the learned value function or policy, and although the algorithm is based on linear

regression which itself has well-established methods for statistical inference, it is known that even

standard single-reward fitted-Q iteration requires specially tailored statistical methods in order to

obtain valid confidence measures (Laber et al., 2009; Shortreed et al., 2010). These methods, based

on the bootstrap data re-sampling procedure, can be very computationally intensive even for one

reward function; thus it will be crucial to combine them with new approximations to the problem in

order to produce analyses in a reasonable amount of time. Methods for mitigating the bias induced

by having partially missing data can be computationally intensive as well (Shortreed et al., 2010),

and should be investigated concurrently with methods for producing confidence information.

Practical Significance Even if we have strong statistical evidence that one action has a higher

Q-value than another, we may still wish to recommend a set of actions if that difference is too

small to be practically meaningful. Methods for mathematizing the idea of a “clinically meaningful
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difference” are under investigation (Laber et al., 2012); we see promise for integrating them with

our methods.

7.4 D > 3 Basis Rewards

To allow more than 3 basis rewards, we need methods that can represent and manipulate piecewise

linear functions in higher dimensions. One avenue would be to use extended algebraic decision

diagrams, which have been successfully applied to MDPs (Zamani et al., 2012). It is not obvious

whether XADD methods provide us with a computationally feasible solution for D > 3, but their

use is worthy of future study.

8. Conclusion

We have presented a general and explicit development of finite-horizon fitted-Q iteration with an ar-

bitrary number of reward signals and linear value function approximation using an arbitrary number

of state features. This included a detailed treatment of the 3-reward function case using triangulation

primitives from computational geometry and a method for identifying globally dominated actions

under linear function approximation. We also presented an example of how our methods can be

used to construct real-world decision aid by considering symptom reduction, weight gain, and qual-

ity of life in sequential treatments for schizophrenia. Finally, we have discussed future directions in

which to take this work that will further enable our methods to make a positive impact on the field

of evidence-based clinical decision support.
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Appendix A. Proofs

Note that Lemmas 3 and 4 are known (or deemed “obvious”) in the computational geometry litera-

ture, but are proved here for completeness.

A.1 Proof of Lemma 3

Over each Ri, fmax = fi which is linear. Each Ri is an intersection of the convex polytope R with an

intersection of half-spaces of the form {δ : fi(δ) ≥ f j(δ)}, which are also convex polytopes. Thus

each Ri is a convex polytope.
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A.2 Proof of Lemma 4

For any point δ in a set U∩V as above, we have g1(δ) = δTwU and g2(δ) = δTwV . Therefore, for

such δ, we have

α1 ·g1(δ)+α2 ·g2(δ) = α1 · (δ
TwU)+α2 · (δ

TwV ),

= δT(α1 ·wU +α2 ·wV ),

= δTwU∩V .

Therefore within each set given by the intersections above, both g1 and g2 are linear.

A.3 Proof of Lemma 5

Suppose a is optimal for some (ψsT ,δ) in the domain but is not optimal for any (ψsT ,δ) on the

boundary of the domain. Further suppose that a is not optimal at any triple-point. Then the region

where a is optimal must be completely enclosed by the region where a single other action a′ is

optimal. However, by Equation (8), the boundary between the regions where a is superior to a′ and

vice-versa is a hyperbola composed of two sets (sheets) that are each continuous and have infinite

extent in both ψsT and δ. The set must therefore intersect the boundary of the domain of (ψsT ,δ)
and thus there must exist a certificate for a on the boundary. Thus we have a contradiction.

A.4 Proof of Proposition 7

Assume there is a region inside the domain where a is optimal. Assume a is not optimal at any

(p+D+ 1)-tuple point. Since a is not optimal at a point where p+D+ 1 actions are optimal,

the region where a is optimal must have on its boundary points where k actions are simultaneously

optimal for some k < p+D+ 1. Choose the maximum k for which this is true. This boundary is

defined by a system of k− 1 polynomial equations on p+D variables of the form (10); call the

variables ζ1,ζ2, ...,ζp+D. Since we assume the region where a is optimal is in the interior of the

domain, there exists an interior point ζ∗ that is a solution to the system of equations. Create a

new system of k− 1 equations and k− 1 unknowns by fixing the last (p+D)− (k− 1) variables

to ζk = ζ∗k , ζk+1 = ζ∗k+1 ..., ζp+D = ζ∗p+D. The point (ζ∗1, ...,ζ
∗
k−1) is a solution to this reduced

system. Suppose the solution of the reduced system is a continuous function of ζ∗k , which holds

if Conjecture 6 is true. Then if we move ζ∗k toward a boundary from its original value, either we

will find a point satisfying the original system with ζ∗k on the boundary and the remaining variables

in the interior of the domain, or another variable or variables will reach its boundary first, and the

remainder of the variables will be in the interior of the domain. In either case, there exists a point

on the boundary of the domain of interest where action a is optimal.
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Abstract

Action videos are multidimensional data and can be naturally represented as data tensors. While
tensor computing is widely used in computer vision, the geometry of tensor space is often ignored.
The aim of this paper is to demonstrate the importance of the intrinsic geometry of tensor space
which yields a very discriminating structure for action recognition. We characterize data tensors as
points on a product manifold and model it statistically using least squares regression. To this aim,
we factorize a data tensor relating to each order of the tensor using Higher Order Singular Value
Decomposition (HOSVD) and then impose each factorized element on a Grassmann manifold. Fur-
thermore, we account for underlying geometry on manifolds and formulate least squares regression
as a composite function. This gives a natural extension from Euclidean space to manifolds. Con-
sequently, classification is performed using geodesic distance on a product manifold where each
factor manifold is Grassmannian. Our method exploits appearance and motion without explicitly
modeling the shapes and dynamics. We assess the proposed method using three gesture databases,
namely the Cambridge hand-gesture, the UMD Keck body-gesture, and the CHALEARN gesture
challenge data sets. Experimental results reveal that not only does the proposed method perform
well on the standard benchmark data sets, but also it generalizes well on the one-shot-learning ges-
ture challenge. Furthermore, it is based on a simple statistical model and the intrinsic geometry of
tensor space.

Keywords: gesture recognition, action recognition, Grassmann manifolds, product manifolds,
one-shot-learning, kinect data

1. Introduction

Human gestures/actions are the natural way for expressing intentions and can be instantly recog-

nized by people. We use gestures to depict sign language to deaf people, convey messages in noisy

environments, and interface with computer games. Having automated gesture-based communica-

tion would broaden the horizon of human-computer interaction and enrich our daily lives. In recent

years, many gesture recognition algorithms have been proposed (Mitra and Acharya, 2007; Wang

et al., 2009; Bilinski and Bremond, 2011). However, reliable gesture recognition remains a chal-

lenging area due in part to the complexity of human movements. To champion the recognition

performance, models are often complicated, causing difficulty for generalization. Consequently,

heavy-duty models may not have substantial gains in overall gesture recognition problems.

In this paper, we propose a new representation to gesture recognition based upon tensors and the

geometry of product manifolds. Since human actions are expressed as a sequence of video frames,

an action video may be characterized as a third order data tensor. The mathematical framework

c©2012 Yui Man Lui.
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for working with high order tensors is multilinear algebra which is a useful tool for characterizing

multiple factor interactions. Tensor computing has been successfully applied to many computer

vision applications such as face recognition (Vasilescu and Terzopoulos, 2002), visual tracking (Li

et al., 2007), and action classification (Vasilescu, 2002; Kim and Cipolla, 2009). However, the

geometrical aspect of data tensors remains unexamined. The goal of this paper is to demonstrate

the importance of the intrinsic geometry of tensor space where it provides a very discriminating

structure for action recognition.

Notably, several recent efforts (Lui, 2012a) have been inspired by the characteristics of space

and the associated construction of classifiers based upon the intrinsic geometry inherent in partic-

ular manifolds. Veeraraghavan et al. (2005) modeled human shapes from a shape manifold and

expressed the dynamics of human silhouettes using an autoregressive (AR) model on the tangent

space. Turaga and Chellappa (2009) extended this framework and represented the trajectories on

a Grassmann manifold for activity classification. The use of tangent bundles on special manifolds

was investigated by Lui (2012b) where a set of tangent spaces was exploited for action recognition.

Age estimation was also studied using Grassmann manifolds (Turaga et al., 2010). The geodesic

velocity from an average face to the given face was employed for age estimation where the space of

landmarks was interpreted as a Grassmann manifold. Lui and Beveridge (2008) characterized tan-

gent spaces of a registration manifold as elements on a Grassmann manifold for face recognition.

The importance of the ordering on Stiefel manifolds was demonstrated by Lui et al. (2009) and an

illumination model was applied to synthesize such elements for face recognition. These successes

motivate the exploration of the underlying geometry of tensor space.

The method proposed in this paper characterizes action videos as data tensors and demonstrates

their association with a product manifold. We focus attention on the intrinsic geometry of tensor

space, and draw upon the fact that the geodesic on a product manifold is equivalent to the Cartesian

product of geodesics from multiple factor manifolds. In other words, elements of a product manifold

are the set of all elements inherited from factor manifolds. Thus, in our approach, action videos are

factorized to three factor elements using Higher Order Singular Value Decomposition (HOSVD) in

which the factor elements give rise to three factor manifolds. We further extend the product manifold

representation to least squares regression. In doing so, we consider the underlying geometry and

formulate least squares regression as a composite function. As such, we ensure that both the domain

values and the range values reside on a manifold through the regression process. This yields a natural

extension from Euclidean space to manifolds. The least squares fitted elements from a training

set can then be exploited for gesture recognition where the similarity is expressed in terms of the

geodesic distance on a product manifold associated with fitted elements from factor manifolds.

We demonstrate the merits of our method on three gesture recognition problems including hand

gestures, body gestures, and gestures collected from the Microsoft KinectTM camera for the one-

shot-learning CHALEARN gesture challenge. Our experimental results reveal that our method is

competitive to the state-of-the-art methods and generalizes well to the one-shot-learning scheme, yet

is based on a simple statistical model. The key contributions of the proposed work are summarized

as follows:

• A new way of relating tensors on a product manifold to action recognition.

• A novel formulation for least squares regression on manifolds.

• The use of appearance and motion without explicitly modeling shapes or dynamics.
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• A simple pixel-based representation (no silhouette or skeleton extraction).

• No extensive training and parameter tuning.

• No explicit assumption on action data.

• Competitive performance on gesture recognition.

• Applicable to other visual applications.

The rest of this paper is organized as follows: Related work is summarized in Section 2. Tensor

algebra, orthogonal groups, and Grassmann manifolds are reviewed in Section 3. The formulation

of the proposed product manifold is presented in Section 4 and is further elaborated with examples

in Section 5. The statistical modeling on manifolds is introduced in Section 6. Section 7 reports

our experimental results. Section 8 discusses the effect of using raw pixels for action recognition.

Finally, we conclude this paper in Section 9.

2. Related Work

Many researchers have proposed a variety of techniques for action recognition in recent years. We

highlight some of this work here, including bag-of-features models, autoregressive models, 3D

Fourier transforms, tensor frameworks, and product spaces.

In the context of action recognition, bag-of-features models (Dollar et al., 2005; Wang et al.,

2009; Bilinski and Bremond, 2011) may be among the most popular methods wherein visual vocab-

ularies are learned from feature descriptors and spatiotemporal features are typically represented by

a normalized histogram. While encouraging results have been achieved, bag-of-features methods

have heavy training loads prior to classification. In particular, feature detection and codebook gener-

ation can consume tremendous amounts of time if the number of training samples is large. Recently,

Wang et al. (2009) have evaluated a number of feature descriptors and bag-of-features models for

action recognition. This study concluded that different sampling strategies and feature descriptors

were needed to achieve the best results on alternative action data sets. Similar conclusions were also

found by Bilinski and Bremond (2011) where various sizes of codebooks are needed for different

data sets in order to obtain peak performances.

Another school of thought for action classification is using an autoregressive (AR) model. Some

of the earliest works involved dynamic texture recognition (Saisan et al., 2001) and human gait

recognition (Bissacco et al., 2001). These works represented actions using AR models. The authors

found that the most effective way to compare dynamics was by computing the Martin distance

between AR models. Veeraraghavan et al. (2005) modeled human silhouettes based on Kendall’s

theory of shape (Kendall, 1984) where shapes were expressed on a shape manifold. This method

modeled the dynamics of human silhouettes using an AR model on the tangent space of the shape

manifold. The sequences of human shapes were compared by computing the distance between

the AR models. Turaga and Chellappa (2009) investigated statistical modeling with AR models

for human activity analysis. In their work, trajectories were considered a sequence of subspaces

represented by AR models on a Grassmann manifold. As such, the dynamics were learned and

kernel density functions with Procrustes representation were applied to density estimation.

Three-dimensional Fourier transform has been demonstrated as a valuable tool in action classi-

fication. Weinland et al. (2006) employed Fourier magnitudes and cylindrical coordinates to repre-

sent motion templates. Consequently, the action matching was invariant to translations and rotations
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around the z-axis. Although this method was view invariant, the training videos needed to be ac-

quired from multiple cameras. Rodriguez et al. (2008) synthesized a filter respond using the Clifford

Fourier transform for action recognition. The feature representation was computed using spatiotem-

poral regularity flow from the xy-parallel component. The advantage of using Clifford algebra is

the direct use of vector fields to Fourier transform.

Data tensors are the multidimensional generalizations to matrices. Vasilescu (2002) modeled

the joint angle trajectories on human motion as a set of factorized matrices from a data tensor.

Signatures corresponding to motion and identity were then extracted using PCA for person identifi-

cation. Kim and Cipolla (2009) extended canonical correlation analysis to the tensor framework by

developing a Tensor Canonical Correlation Algorithm (TCCA). This method factorized data tensors

to a set of matrices and learned a set of projection matrices maximizing the canonical correlations.

The inner product was employed to compute the similarity between two data tensors. The use of

SIFT features with CCA was also considered for gesture recognition by Kim and Cipolla (2007).

Recently, nonnegative tensor factorization has been exploited for action recognition by Krausz and

Bauckhage (2010) where action videos were factorized using a gradient descent method and repre-

sented as the sum of rank-1 tensors associated with a weighting factor. As a result, the appearance

was captured by the basis images and the dynamics was encoded with the weighting factor.

Product spaces have received attention in applications related to spatiotemporal interactions.

Datta et al. (2009) modeled the motion manifold as a collection of local linear models. This method

learned a selection of mappings to encode the motion manifold from a product space. Lin et al.

(2009) proposed a probabilistic framework for action recognition using prototype trees. Shape and

motion were explicitly learned and characterized via hierarchical K-means clustering. The joint

likelihood framework was employed to model the joint shape-motion space. Li and Chellappa

(2010) investigated the product space of spatial and temporal submanifolds for action alignment.

Sequential importance sampling was then used to find the optimal alignment. Despite these efforts,

the geometry of the product space has not been directly considered and the geodesic nature on the

product manifold remains unexamined.

3. Mathematical Background

In this section, we briefly review the background mathematics used in this paper. Particularly,

we focus on the elements of tensor algebra, orthogonal groups, Stiefel manifolds, and Grassmann

manifolds.

3.1 Tensor Representation

Tensors provide a natural representation for high dimensional data. We consider a video as a third

order data tensor ∈RX×Y×T where X , Y , and T are the image width, image height, and video length,

respectively. High order data tensors can be regarded as a multilinear mapping over a set of vector

spaces. Generally, useful information can be extracted using tensor decompositions. In particular,

a Higher Order Singular Value Decomposition (HOSVD) (De Lathauwer et al., 2000) is considered

in this paper because the data tensor can be factorized in a closed-form. A recent review paper on

tensor decompositions can be found in Kolda and Bader (2009). Before we describe HOSVD, we

illustrate a building block operation called matrix unfolding.
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Figure 1: An example of matrix unfolding for a third order tensor. The illustration is for a video

action sequence with two spatial dimensions X and Y and a temporal dimension T .

3.1.1 MATRIX UNFOLDING

Let A be an order N data tensor ∈ RI1×I2×···×IN . The data tensor A can be converted to a set of

matrices via a matrix unfolding operation. Matrix unfolding maps a tensor A to a set of matrices

A(1), A(2), . . . , A(N), where A(k) ∈ RIk×(I1×···×Ik−1×Ik+1···×IN) is a mode-k matrix of A . An example of

matrix unfolding of a third order, that is, N = 3, tensor is given in Figure 1. As Figure 1 shows, we

can slice a third order tensor in three different ways along each axis and concatenate these slices into

three different matrices A(1), A(2), and A(3) where the rows of an unfolded matrix are represented by

a single variation of the tensor and the columns are composed by two variations of the tensor.

3.1.2 HIGHER ORDER SINGULAR VALUE DECOMPOSITION

Just as a data matrix can be factorized using a Singular Value Decomposition (SVD), a data tensor

can also be factorized using Higher Order Singular Value Decomposition (HOSVD), also known as

multilinear SVD. HOSVD operates on the unfolded matrices A(k), and each unfolded matrix may
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be factored using SVD as follows:

A(k) =U (k)Σ(k)V (k)T

(1)

where Σ(k) is a diagonal matrix, U (k) is an orthogonal matrix spanning the column space of A(k)

associated with nonzero singular values, and V (k) is an orthogonal matrix spanning the row space

of A(k) associated with nonzero singular values. Then, an N order tensor can be decomposed using

HOSVD as follows:

A = S ×1 U (1)×2 U (2)
. . .×n U (N)

where S ∈ R(I1×I2×···×IN) is a core tensor, U (1), U (2), . . . , U (N) are orthogonal matrices spanning the

column space described in (1), and ×k denotes mode-k multiplication. The core tensor signifies the

interaction of mode matrices and is generally not diagonal when the tensor order is greater than two.

3.2 Orthogonal Groups

Matrix Lie groups arise in various kinds of non-Euclidean geometry (Belinfante and Kolman, 1972).

The General Linear Group1 GL(n) is a set of nonsingular n×n matrices defined as:

GL(n) = {Y ∈ R
n×n : det(Y ) %= 0}.

The GL(n) is closed under a group operation, that is, matrix multiplication. This is because the

product of two nonsingular matrices is a nonsingular matrix. Of practical importance here is the

fact that elements of GL(n) are full rank and thus their row and column spaces span Rn. A further

subgroup of GL(n) is the orthogonal group denoted as:

O(n) = {Y ∈ R
n×n : Y TY = I}.

It is known that the determinants of orthogonal matrices can be either +1 or −1 where the matrices

with the determinant of 1 are rotation matrices and the matrices with the determinant of −1 are

reflection matrices.

3.3 Stiefel Manifolds

The Stiefel manifold Vn,p is a set of n× p orthonormal matrices defined as:

Vn,p = {Y ∈ R
n×p : Y TY = I}.

The Stiefel manifold Vn,p can be considered a quotient space of O(n) so we can identify an isotropy

subgroup H of O(n) expressed as

{[

Ip 0
0 Qn−p

]

: Qn−p ∈ O(n− p)

}

where the isotropy subgroup

leaves the element unchanged. Thus, the Stiefel manifold can be expressed as Vn,p = O(n) / O(n−
p). From a group theory point of view, O(n) is a Lie group and O(n− p) is its subgroup so that

O(n) / O(n− p) represents the orbit space. In other words, Vn,p is the quotient group of O(n) by

O(n− p).

1. In this paper, we are only interested in the field of real number R. Unitary groups may be considered in other contexts.
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3.4 Grassmann Manifolds

When we impose a group action of O(n) onto the Stiefel manifold, this gives rise to the equivalence

relation between orthogonal matrices so that the elements of Stiefel manifolds are rotation and

reflection invariant. In other words, elements are considered being equivalent if there exists a p× p

orthogonal matrix Qp which maps one point into the other. This equivalence relation can be written

as:

&Y'= {Y Qp : Qp ∈ O(n)} (2)

where &Y' is an element on the Grassmann manifold. Therefore, the Grassmann manifold Gn,p is

a set of p-dimensional linear subspaces of Rn and its isotropy subgroup composes all elements of
{[

Qp 0
0 Qn−p

]

: Qp ∈ O(p) , Qn−p ∈ O(n− p)

}

. The quotient representation of Grassmann mani-

folds is expressed as Gn,p = O(n) / (O(p)×O(n− p)) = Vn,p / O(p). As such, the element of the

Grassmann manifold represents the orbit of a Stiefel manifold under the group action of orthogo-

nal groups. More details on the treatment of Grassmann manifolds can be found in Edelman et al.

(1998) and Absil et al. (2008).

4. Elements of Product Manifolds

This section discusses the elements of product manifolds in the context of gesture recognition. We il-

lustrate the essence of product manifolds and the factorization of action videos. Further, we describe

the realization of geodesic distance on the product manifold and its use for action classification.

4.1 Product Manifolds

A product manifold can be recognized as a complex compound object in a high dimensional space

composed by a set of lower dimensional objects. For example, the product of a line with elements

y in R1 and a solid circle with elements x in R2 becomes a cylinder with elements (x, y) in R3 as

shown in Figure 2. Formally, this product topology can be expressed as:

I = {y ∈ R : |y|< 1},

D2 = {x ∈ R
2 : |x|< 1},

D2 × I = {(x,y) ∈ R
2 ×R : |x|< 1 and |y|< 1}

where D2 and I are viewed as topological spaces.

The cylinder may be equally well interpreted as either a circle of intervals or an interval of

circles. In general, a product manifold may be viewed as the cross section of lower dimensional

objects. Formally, let M1, M2, . . . , Mq be a set of manifolds. The set M1 × M2 × . . . × Mq

is called the product of the manifolds where the manifold topology is equivalent to the product

topology. Hence, a product manifold is defined as:

M = M1 ×M2 × · · ·×Mq

= {(x1,x2, . . . ,xq) : x1 ∈ M1,x2 ∈ M2, . . . ,xq ∈ Mq}

where × denotes the Cartesian product, Mk represents a factor manifold (a topological space), and

xk is an element in Mk. Note that the dimension of a product manifold is the sum of all factor

manifolds (Lee, 2003).
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Figure 2: An example of a product manifold: A cylinder is a cross product of a circle and an

interval.

The product manifold naturally expresses a compound topological space associated with a num-

ber of factor manifolds. For action video classification, third order data tensors are manifested as

elements on three factor manifolds. As such, video data can be abstracted as points and classified

on a product manifold.

4.2 Factorization in Product Spaces

As discussed in Section 3, HOSVD operates on the unfolded matrices (modes) via matrix unfolding

in which the variation of each mode is captured by HOSVD. However, the traditional definition of

HOSVD does not lead to a well-defined product manifold in the context of action recognition.

We observe that the column of every unfolded matrix A(k) is composed by multiple orders from

the original data tensor A ∈ RI1×I2×···×IN . This fact can also be observed in Figure 1. Let m be the

dimension of the columns, I1× I2× · · ·× Ik−1× Ik+1 · · ·× IN , and p be the dimension of the rows, Ik,

for an unfolded matrix A(k). We can then assume that the dimension of the columns is greater than

the dimension of the rows due to the nature of matrix unfolding for action videos, that is, m > p.

This implies that the unfolded matrix A(k) only spans p dimensions.

Alternatively, one can factorize the data tensor using the right orthogonal matrices (Lui et al.,

2010). From the context of action videos, the HOSVD can be expressed as:

A = Ŝ ×1 V
(1)
horizontal-motion×2 V

(2)
vertical-motion×3 V

(3)
appearance

where Ŝ is a core tensor, V (k) are the orthogonal matrices spanning the row space with the first p

rows associated with non-zero singular values from the unfolded matrices, respectively. Because we

are performing action recognition on videos, the orthogonal matrices, V
(1)
horizontal-motion, V

(2)
vertical-motion,

and V
(3)
appearance, correspond to horizontal motion, vertical motion, and appearance. Figure 3 shows

some examples from the action decomposition.

From the factorization of HOSVD, each V (k) is a tall orthogonal matrix, thus it is an element

on a Stiefel manifold. When we impose a group action of the orthogonal group, elements on the

Stiefel manifold become rotation and reflection invariant. In other words, they are elements on

the Grassmann manifold described in (2). As such, the action data are represented as the orbit of
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elements on the Stiefel manifold under the rotation and reflection actions with respect to appearance

and dynamics. Section 5 will discuss how we benefit from imposing such a group action on the

Stiefel manifold.

4.3 Geodesic Distance on Product Manifolds

The geodesic in a product manifold M is the product of geodesics in M1, M2, . . . , Mq (Ma et al.,

1998; Begelfor and Werman, 2006). Hence, for any differentiable curve γ parametrized by t, we have

γ(t) = (γi(t),γ j(t)) where γ is the geodesic on the product manifold M , and γi and γ j are the geodesics

on the factor manifold Mi and M j respectively. From this observation, the geodesic distance on a

product manifold may be expressed as a Cartesian product of canonical angles computed by factor

manifolds.

Just as there are alternatives to induce a metric on a Grassmann manifold (Edelman et al., 1998)

using canonical angles, the geodesic distance on a product manifold could also be defined in differ-

ent ways. One possible choice is the chordal distance that approximates the geodesic via a projec-

tion embedding (Conway et al., 1996). Consequently, we define the geodesic distance on a product

manifold as:

dM (A ,B) = ‖ sinΘ ‖2 (3)

where A and B are the N order data tensors, Θ = (θ1, θ2, . . . , θN), and θk ∈ Gk is a set of canonical

angles (Björck and Golub, 1973) computed independently from each factor (Grassmann) manifold.

This development of geodesic distance on the product manifold can be related back to our

cylinder example where a circle in R2 and a line in R1 form a cylinder in R3 where R3 is the

product space. Recall that a Grassmann manifold is a set of p-dimensional linear subspaces. In

analogous fashion, the product of a set of p1, p2, . . . , pN linear subspaces forms a set of product

subspaces whose dimension is (p1 + p2 + . . . + pN). The product subspaces are the elements on a

product manifold. This observation is consistent with the Θ in (3) where the number of canonical

angles agrees with the dimension of product subspaces on the product manifold.

Note that canonical angles θk are measured between V
(k)
A and V

(k)
B where each is an orthogonal

matrix spanning the row space associated with nonzero singular values from a mode-k unfolded

matrix. As such, an N order tensor in RI1×I2×···×IN would span N row spaces in I1, I2, . . . , IN ,

respectively, and the dimension of a product manifold is the sum of each order of a data tensor, that

is, (∑N
i=1 = I1 + I2 + . . . + IN).

5. The Product Manifold Representation

The tensor representation on a product manifold models the variations in both space and time for

action videos. Specifically, the product manifold captures the individual characteristics of spatial

and temporal evolution through three factor manifolds. As such, one factor manifold is acquiring the

change in time, resulting in the appearance (XY) component, while the other two capture the vari-

ations in horizontal and vertical directions, demonstrating the horizontal motion (YT) and vertical

motion (XT). Putting all these representations together, geodesic distance on the product manifold

measures the changes in both appearance and dynamics.

The aim of this section is to illustrate how the product manifold characterizes appearance and

dynamics from action videos. To visualize the product manifold representation, let us consider
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Different Actions Same Actions
Action 1 Action 2 Action 1 Action 3

XY

YT

XT

∑i θi = (44.0,37.66,38.58) ∑i θi = (38.15,32.56,33.58)

Figure 3: Examples of appearance and motion changes where the first row is the overlay appear-

ances, the second and third rows are the overlay horizontal motion and vertical motion,

and the bottom row gives the sum of canonical angles computed from each factorization

of the pairs of canonical variates.

the example given in Figure 3 where the first row expresses the pairs of overlay appearance (XY)

canonical variates, the second and third rows reveal the pairs of overlay horizontal motion (YT)

and vertical motion (XT) canonical variates, and the bottom row gives the sum of canonical angles

computed from the pairs of canonical variates. Note that the canonical variates are elements on

Stiefel manifolds. In the first column, two distinct actions are factorized to canonical variates.

We can see that all canonical variates exhibit very different characteristics in both appearance and

motions. On the contrary, the second column shows the same action performed by different actors

and the canonical variates are much more similar than the first column, resulting in smaller canonical

angles overall.

One of the advantages of the product manifold representation is that actions do not need to

be aligned in temporal space. To demonstrate this merit, we permute the frame order from action

3 denoted as action 4 and match it to action 1. Figure 4 shows the pairs of canonical variates

between actions (1, 3) and actions (1, 4). We should first note that the appearance (XY) of action

3 and action 4 span the same space despite the visual differences resulting in the identical sum

of canonical angles 38.15. This is because elements on the Grassmann manifold are rotation and

reflection invariant from elements of the Stiefel manifold. This important concept is illustrated in

Figure 5 where the exchange matrix O(p) maps the appearance of action 4 to the appearance of

action 3.
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Same Actions Same Actions (Permuted)
Action 1 Action 3 Action 1 Action 4

XY

YT

XT

∑i θi = (38.15,32.56,33.58) ∑i θi = (38.15,32.88,38.16)

Figure 4: Examples of appearance and motion changes where Action 4 is a permuted version of

Action 3. The canonical angles for the appearance indicates that the action is not affected

by the frame order.

Figure 5: The characterization of the Grassmann manifold where a point is mapped to another point

on the Stiefel manifold via an exchanged matrix. The group action is (X ,Q) )−→ XQ

where X ∈ Vn,p and Q ∈ O(p) so that elements on the Grassmann manifold are closed

under the orthogonal matrix multiplication.

In the example given in Figure 4, the most prominent change is related to the motion in vertical

directions (XT) between action 3 and action 4. This arises from the fact that the change of motion

mostly occurs in the vertical direction when we permute the order of the video frames from action

3. Consequently, the sum of canonical angles in XT varies from 33.58 to 38.16 which is less similar

to action 1. When we identify a waving hand moving from top to bottom and from bottom to
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Action Category Appearances (XY) Horizontal Motion (YT)

Walk vs. Walk

Run vs. Run

Walk vs. Run

Figure 6: Illustration of capturing the rate of actions. The first column shows the change of appear-

ance while the second column reveals the change of horizontal motion where the slopes

exhibit the rate of motion.

top, the vertical motion is the key feature. Otherwise, a simple cyclical search can compensate

such variation. As a result, the product manifold representation is resilient to misregistration in the

temporal space for appearance while keeping the dynamics intact.

Another intriguing attribute of the product manifold representation is its ability to capture the

rate of motion, which is useful in identifying some particular actions. Figure 6 shows the pairs of

canonical variates of two similar actions - walking and running. First, we note that there is little

information from the vertical motion since the movements of walking and running occur horizon-

tally. The appearance differences between walking and running are not substantial, which is shown

in the first column of Figure 6. The key information between walking and running is embedded

in the horizontal motion (YT). While the structure of horizontal motion between walking and run-

ning is similar exhibiting a line-like pattern, they have very distinct slopes shown in the horizontal

motion column of Figure 6. These slopes characterize the rate of motion and are the key factors in

recognizing these types of actions. In particular, when walking and running are compared depicted

in the third row of Figure 6, the idiosyncratic aspect is captured by the rate of horizontal motion. In

general, it is possible to see the rate of motion through both motion representations depending on

the type of actions.

6. Statistical Modeling

Least squares regression is one of the fundamental techniques in statistical analysis. It is simple

and often outperforms complicated models when the number of training samples is small (Hastie
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et al., 2001). Since video data do not reside in Euclidean space, we pay attention to the manifold

structure. Here, we introduce a nonlinear regression framework in non-Euclidean space for gesture

recognition. We formulate least squares regression as a composite function; as such, both domain

and range values are constrained on a manifold through the regression process. The least squares

fitted elements from a training set can then be exploited for gesture recognition.

6.1 Linear Least Squares Regression

Before we discuss the geometric extension, we will first review the standard form of least squares fit-

ting. We consider a regression problem y=Aβ where y ∈Rn is the regression value, A([a1|a2| · · · |ak])
∈ Rn×k is the training set, and β ∈ Rk is the fitting parameter. The residual sum-of-squares can be

written as:

R(β) =‖ y−Aβ ‖2 (4)

and the fitting parameter β can be obtained by minimizing the residual sum-of-squares error from

(4). Then, we have

β̂ = (AT A)−1AT y.

The regressed pattern from the training set has the following form

ŷ = Aβ̂ = A(AT A)−1AT y. (5)

The key advantage of least squares fitting is its simplicity and it intuitively measures the best fit of

the data.

6.2 Least Squares Regression on Manifolds

Non-Euclidean geometry often arises in computer vision applications. We consider the nonlinear

nature of space and introduce a geometric framework for least squares regression. First, we extend

the linear least squares regression from (5) to a nonlinear form by incorporating a kernel function

shown in the following

A(A!A)−1(A! y)

where ! is a nonlinear similarity operator. Obviously, ! is equal to xT y in the linear case. In this

paper, we employ the RBF kernel given as:

x! y = exp(−
∑k θk

σ
) (6)

where x and y are the elements on a factor manifold, θk is the canonical angle computed from

the factor manifold, and σ is set to 2 in all our experiments. While other kernel functions can be

considered, our goal is to demonstrate our geometric framework and choose a commonly used RBF

kernel operator.

Considering the similarity measure given in (6), the regression model becomes three sub-regression

estimators given by

ψ(k)(y) = A(k)(A(k)
!A(k))−1(A(k)

! y(k)) (7)
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Algorithm 1 Weighted Karcher Mean Computation

1: Initialize a base point µ on a manifold

2: while not converged do

3: Apply the logarithmic map to the training samples Yi to the base point µ

4: Compute the weighted average on the tangent space at the base point µ

5: Update the base point µ by applying the exponential map on the weighted average

6: end while

where k denotes the mode of unfolding, A(k) is a set of orthogonal matrices factorized from HOSVD,

and y(k) is an orthogonal matrix from the unfolded matrix.

To gain a better insight on the regression model, we explore the geometrical interpretation from

(7). Given p training instances, the first element, A(k), is a set of factorized training samples residing

on a manifold. Furthermore, (A(k) ! A(k))−1 produces a p × p matrix from the training set and

(A(k) ! y(k)) would create a p× 1 vector. Therefore, the rest of the regression provides a weighting

vector characterizing the training data on a factor manifold as:

w = (A(k)
!A(k))−1(A(k)

! y(k))

where the weighting vector is in a vector space, that is, w ∈ V .

Now, we have a set of factorized training samples, A(k), on a manifold and a weighting vector,

w, in a vector space. To incorporate these two elements with the least squares fitting given in (7),

we make a simple modification and reformulate the regression as follows

Ψ(k)(y) = A(k) • (A(k)
!A(k))−1(A(k)

! y(k)) (8)

where • is an operator mapping points from a vector space back to a factor manifold. By introducing

an additional operator, we ensure that both the domain values y(k) and the range values Ψk(y) reside

on a manifold. From a function composition point of view, the proposed regression technique can

be viewed as a composition map G ◦H where H : M −→ V and G : V −→ M where M is a

manifold and V is a vector space.

One possible way to realize the composition map, G ◦H , is to employ the tangent space and

modify the Karcher mean (Karcher, 1977). The computation of Karcher mean considers the intrinsic

geometry and iteratively minimizes the distance between the updated mean and all data samples via

the tangent space. Since w is the weighting vector, it naturally produces the weight between training

samples. All we need is to apply the weighting vector to weight the training samples on a factor

manifold. This is equivalent to computing the weighted Karcher mean, which is an element of a

manifold.

So far, our geometric formulation on least squares regression is very general. To make it specific

for gesture recognition, we impose rotation and reflection invariance to the factorized element V (k)

such that they are elements on a Grassmann manifold and the computation of the weighted Karcher

mean can be realized. Here, we sketch the pseudo-code in Algorithm 1. As Algorithm 1 illustrates,

the first step is to initialize a base point on a manifold. To do so, we compute the weighted average

from the training samples in Euclidean space and project it back to the Grassmann manifold using

QR factorization. Then, we iteratively update the base point on the Grassmann manifold. The

update procedure involves the standard logarithmic map and the exponential map on Grassmann
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Figure 7: An illustration of logarithmic and exponential maps where Y and µ are points on a mani-

fold, ∆ is the tangent vector, and TµM is the tangent space at µ.

manifolds (Edelman et al., 1998) described as follows

logµ(Yi) = U1Θ1V T
1

where µ is the base point for the tangent space, Yi is a training instance factorized from the Grass-

mann manifold, µ⊥µT
⊥Yi(µTYi)−1 =U1Σ1V T

1 , Θ1 = arctan(Σ1), and µ⊥ is the orthogonal complement

to µ.

expµ(∆) = µV2 cos(Σ2)+U2 sin(Σ2)

where ∆ is the weighted tangent vector at µ and ∆ = U2Σ2V T
2 . From a geometric point of view,

the logarithmic operator maps a point on a manifold to a tangent space whereas the exponential

map projects a point in the tangent space back to the manifold. A pictorial illustration is given in

Figure 7. In addition, the Karcher mean calculation exhibits fast convergence (Absil et al., 2004).

Typically, convergence can be reached within 10 iterations in our experiments. A sample run is

depicted in Figure 8 where expeditious reduction of residuals occurs in the first few iterations.

To perform gesture recognition, a set of training videos is collected. All videos are normalized

to a standard size. During the test phase, the category of a query video is determined by

j∗ = argmin
j

D(Y,Ψ j(Y ))

where Y is a query video, Ψ j is the regression instance for the class j given in (8), and D is a

geodesic distance measure. Because the query gesture Y and the regression instance are realized as

elements on a product manifold, we employ the chordal distance given in (3) for gesture classifica-

tion.

In summary, the least squares regression model applies HOSVD on a query gesture Y and fac-

torizes it to three sub-regression models (Ψ
(1)
j , Ψ

(2)
j , Ψ

(3)
j ) on three Grassmann manifolds where

regressions are performed. The distance between the regression output and query is then character-

ized on a product manifold; gesture recognition is achieved using the chordal distance. We note that
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Figure 8: The residual values of tangent vectors.

our least squares framework is applicable to many matrix manifolds as long as the logarithmic and

exponential maps are well-defined. Furthermore, when the kernel operator is != xT y, logx(y) = y,

and expx(∆) = x+∆, the regression model in (8) becomes the canonical least squares regression in

Euclidean space.

When statistical models exhibit high variance, shrinkage techniques are often applied (Hastie

et al., 2001). We see that a simple regularization parameter turns least squares regression into

ridge regression. This observation can also be applied to our non-Euclidean least squares regression

framework.

7. Experimental Results

This section summarizes our empirical results and demonstrates the proficiency of our framework

on gesture recognition. To facilitate comparison, we first evaluate our method using two publicly

available gesture data sets namely Cambridge hand-gesture (Kim and Cipolla, 2009) and UMD

Keck body-gesture (Lin et al., 2009). We further extend our method to the one-shot-learning gesture

challenge (CHALEARN, 2011). Our experiments reveal that not only does our method perform well

on the standard benchmark data sets, but also it generalizes well on the one-shot-learning gesture

challenge.

7.1 Cambridge Hand-Gesture Data Set

Our first experiment is conducted using the Cambridge hand-gesture data set which has 900 video

sequences with nine different hand gestures (100 video sequences per gesture class). The gesture

data are collected from five different illumination sets labeled as Set1, Set2, Set3, Set4, and Set5.

Example gestures are shown in Figure 9.
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Figure 9: Hand gesture samples. Flat-Leftward, Flat-Rightward, Flat-Contract, Spread-Leftward,

Spread-Rightward, Spread-Contract, V-Shape-Leftward, V-Shape-Rightward, and V-

Shape-Contract.

Figure 10: Body gesture samples. First row: Turn Left, Turn Right, Attention Left, Attention Right,

Attention Both, Stop Left, and Stop Right. Second row: Stop Both, Flap, Start, Go Back,

Close Distance, Speed Up, and Come Near.

We follow the experimental protocol employed by Kim and Cipolla (2009) where Set5 is the

target set, and Set1, Set2, Set3, and Set4 are the test sets. The target Set5 is further partitioned into a

training set and validation set (90 video sequences in the training set and 90 video sequences in the

validation set). We employ five random trials in selecting the training and validation videos in Set5.

The recognition results are summarized in Table 1 where the classification rates are the average

accuracy obtained from five trial runs followed by the standard deviation. As Table 1 shows, our

method performs very well across all illumination sets obtaining 91.7% average classification rate.

7.2 UMD Keck Body-Gesture Data Set

The UMD Keck body-gesture data set consists of 14 naval body gestures acquired from both static

and dynamic backgrounds. In the static background, the subjects and the camera remain stationary

whereas the subjects and the camera are moving in the dynamic environment during the performance

of the gesture. There are 126 videos collected from the static scene and 168 videos taken from the

dynamic environment. Example gestures are given in Figure 10.

We follow the experimental protocol proposed by Lin et al. (2009) for both static and dynamic

settings. The region of interest is tracked by a simple correlation filter. In the static background,

the protocol is leave-one-subject-out (LOSO) cross-validation. As for the dynamic environment,

the gestures acquired from the static scene are used for training while the gestures collected from

the dynamic environment are the test videos. The recognition results for both static and dynamic

backgrounds are reported in Table 2. We can see that our method is competitive to the current state-

of-the-art methods in both protocols. One of the key advantages of our method is its direct use of

raw pixels while the prototype-tree (Lin et al., 2009), MMI-2+SIFT (Qiu et al., 2011), and CC K-
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Method Set1 Set2 Set3 Set4 Total

Graph Embedding (Yuan et al., 2010) - - - - 82%
TCCA (Kim and Cipolla, 2009) 81% 81% 78% 86% 82±3.5%

DCCA+SIFT (Kim and Cipolla, 2007) - - - - 85±2.8%
RLPP (Harandi et al., 2012) 86% 86% 85% 88% 86.3±1.3%

TB{Vn,p} (Lui, 2012b) 88% 84% 85% 87% 86±3.0%
PM 1-NN (Lui et al., 2010) 89% 86% 89% 87% 88±2.1%

Our Method 93% 89% 91% 94% 91.7±2.3%

Table 1: Recognition results on the Cambridge Hand-Gesture data set (Five trial runs).

Method Static Setting Dynamic Setting

HOG3D (Bilinski and Bremond, 2011) - 53.6%
Shape Manifold (Abdelkadera et al., 2011) 82% -

MMI-2+SIFT (Qiu et al., 2011) 95% -
CC K-Means (Jiang et al., 2012)) - 92.9%
Prototype-Tree (Lin et al., 2009) 95.2% 91.1%

TB{Vn,p} (Lui, 2012b) 92.1% 91.1%
PM 1-NN (Lui et al., 2010) 92.9% 92.3%

Our Method 94.4% 92.3%

Table 2: Recognition results on the UMD Keck Body-Gesture data set.

means (Jiang et al., 2012) methods operate on silhouette images which require image segmentation

prior to classification. This makes our representation more generic.

7.3 One-Shot-Learning Gesture Challenge

Microsoft KinectTM has recently revolutionized gesture recognition by providing both RGB and

depth images. To facilitate the adaptation to new gestures, CHALEARN (Guyon et al., 2012) has

organized a one-shot-learning challenge for gesture recognition.

The key aspect of one-shot-learning is to perform machine learning on a single training example.

As such, intra-class variability needs to be modeled from a single example or learned from different

domains. While traditional machine learning techniques require a large amount of training data to

model the statistical distribution, least squares regression appears to be more robust when the size of

training samples is limited (Hastie et al., 2001). We employ our least squares regression framework

and model the intra-class variability by synthesizing training examples from the original training

instance. Consequently, we apply the same regression framework on the product manifold to the

one-shot-learning gesture challenge.

One of the gesture variations is performing gesture positions. Our initial studies for frame

alignment did not yield positive results due in part to the incidental features of the upper body. Since

gesture positions are the key source of variations, we synthesize training examples for translational

instances on both RGB and depth images. The synthesized examples are generated by shifting the

entire action video horizontally and vertically. Specifically, we synthesize two vertically (up/down)

and four horizontally (left/right) translated instances along with the original training example. As

such, we have seven training instances for RGB and depth images, respectively. We stress that we
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Figure 11: An illustration of temporal segmentation where the dash lines indicate the peak locations

and the resting frames from the action sequence.

do not apply any spatial segmentation or intensity normalization to video data; alignment is the only

variation that we synthesize for one-shot-learning. Our experiments on the training batches indicate

that there is about 2% gain by introducing the translational variations.

We assess the effectiveness of the proposed framework on the development data set for the

one-shot-learning gesture challenge. The development data set consists of 20 batches of gestures.

Each batch is made of 47 gesture videos and split into a training set and a test set. The training set

includes a small set of vocabulary spanning from 8 to 15 gestures. Every test video contains 1 to 5

gestures. Detailed descriptions of the gesture data can be found in Guyon et al. (2012).

Since the number of gestures varies for test videos, we perform temporal segmentation to lo-

calize each gesture segment. It is supposed that the actor will return to the resting position before

performing a new gesture. Thus, we employ the first frame as a template and compute the correla-

tion coefficient with subsequent frames. We can then localize the gesture segments by identifying

the peak locations from the correlations; the number of gestures is the number of peaks + 1. An

illustration of temporal segmentation is given in Figure 11 where the peak locations provide a good

indication for the resting frames. Furthermore, we fix the spatial dimension to 32×32 and dynami-

cally determine the number of frames by selecting 90% of the PCA energy from each training batch.

Linear interpolation is then applied to normalize the video length.

The recognition performance is evaluated using the Levenshtein distance (Levenshtein, 1966),

also known as edit distance. Table 3 shows the average errors over 20 batches. As Table 3 reveals,

our method significantly outperforms the baseline algorithm (CHALEARN, 2011) and achieves

28.73% average Levenshtein distance per gesture on the development data set. Our method also

ranks among the top algorithms in the gesture challenge (Guyon et al., 2012). This illustrates that

our method can be effectively adopted for one-shot-learning from the traditional supervised learning

paradigm.
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Baseline Our Method

Batch TeLev% TeLen% TeLev% TeLen%

devel01 53.33 12.22 13.33 4.44
devel02 68.89 16.67 35.56 14.44
devel03 77.17 5.43 71.74 20.65
devel04 52.22 30.00 10.00 2.22
devel05 43.48 10.87 9.78 7.61
devel06 66.67 17.78 37.78 14.44
devel07 81.32 19.78 18.68 3.30
devel08 58.43 12.36 8.99 5.62
devel09 38.46 9.89 13.19 1.10
devel10 75.82 21.98 50.55 1.10
devel11 67.39 18.48 35.87 2.17
devel12 52.81 5.62 22.47 4.49
devel13 50.00 17.05 9.09 2.27
devel14 73.91 22.83 28.26 3.26
devel15 50.00 8.70 21.74 0.00
devel16 57.47 17.24 31.03 6.90
devel17 66.30 32.61 30.43 4.35
devel18 70.00 28.89 40.00 11.11
devel19 71.43 15.38 49.45 3.30
devel20 70.33 36.26 35.16 12.09

Average 62.32 18.01 28.73 6.24

Table 3: Recognition results on the development data for the one-shot-learning challenge where

TeLev is the sum of the Levenshtein distance divided by the true number of gestures and

TeLen is the average error made on the number of gestures.

While our method performs well on the one-shot-learning gesture challenge, it is not a complete

system yet. There are three particular batches that cause difficulties for our algorithm. These batches

are devel03, devel10, and devel19 where the example frames are shown in Figure 12. These three

batches share a common characteristic that the gesture is only distinguishable by identifying the

hand positions. Since we do not have a hand detector, the gross motion dominates the whole action

causing it to be confused with other similar gestures.

Another source of errors is made by the temporal segmentation. While the actor is supposed

to return to the resting position before performing a new gesture, this rule has not always been

observed. As a result, such variation introduces a mismatch between the template and subsequent

frames resulting errors in partitioning the video sequence. The large error in devel03 is caused by

the need for hand positions and temporal segmentation. Future work will focus on combining both

appearance and motion for temporal segmentation.

Nevertheless, the experimental results from the Cambridge hand-gesture and the UMD Keck

body-gesture data sets are encouraging. These findings illustrate that our method is effective in

both hand gestures and body gestures. Once we have a reliable hand detector, we expect to further

improve gesture recognition from a single training example. Currently, the processing time on 20

batches (2,000 gestures) including both training and testing is about 2 hours with a non-optimized

MATLAB implementation on a 2.5GHz Intel Core i5 iMac.
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Figure 12: Gesture samples on the one-shot-learning gesture challenge (devel03, devel10, and de-

vel19).

8. Discussion

The proposed method is geometrically motivated. It decomposes a video tensor to three Stiefel

manifolds via HOSVD where the orthogonal elements are imposed to Grassmannian spaces. As

mentioned before, one of the key advantages of our method is its direct use of raw pixels. This gives

rise to a practical and important question. How robust can the raw pixel representation be against

background clutter?

To address this concern, we synthesize an illustrative example given in Figure 13. The first,

second, and third columns depict the appearance, horizontal motion, and vertical motion of the

gesture, respectively. A V-shape rightward gesture and a flat leftward gesture are shown in the

first row and second row. We superpose a cluttered background on every frame of the flat leftward

gesture exhibited in the third row. While the appearances between the uniform flat gesture and the

cluttered flat gesture emerge differently, the deterioration on the dynamics is quite minimal. As a

result, the gesture performed with the background clutter can still be discriminated against other

gestures. Numerically, the sum of the canonical angles between the uniform (second row) and the

cluttered background (third row) gestures is (56.09, 7.99, 9.17) resulting in a geodesic distance of

5.91 on the product manifold. In contrast, the sum of the canonical angles between the V-shape (first

row) and the flat (second row) gestures is (76.35, 23.66, 18.42) yielding a geodesic distance of 8.29.

In addition, when the V-shape gesture (first row) matches against the cluttered flat gesture (third

row), the sum of the canonical angles is (76.09, 23.75, 18.84) and the geodesic distance is 8.31. This

finding reveals that the geodesic distance between the uniform and cluttered background gestures

are quite similar against inter-class gestures, while the geodesic distance is significantly smaller for

the intra-class gestures. Hence, raw pixels can be directly exploited in our representation.

As technology advances, we can now separate the foreground and background more easily us-

ing a KinectTM camera. We hypothesize that better recognition results may be obtained when the

foreground gestures are extracted. On the other hand, our method can still perform gracefully when

a cluttered background is present.

9. Conclusions

This paper promotes the importance of the underlying geometry of data tensors. We have presented

a geometric framework for least squares regression and applied it to gesture recognition. We view

action videos as third order tensors and impose them on a product manifold where each factor is
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(a) V-shape rightward gesture.

(b) Flat leftward gesture.

(c) Superposed cluttered background on the flat leftward gesture.

Figure 13: The effect of background clutter. Appearance, horizontal motion, and vertical motion

are depicted in the first, second, and third columns, respectively.

Grassmannian. The realization of points on these Grassmannians is achieved by applying HOSVD

to a tensor representation of the action video. A natural metric is inherited from the factor manifolds

since the geodesic on the product manifold is given by the product of the geodesic on the Grassmann

manifolds.

The proposed approach provides a useful metric and a regression model based on latent geom-

etry for action recognition. To account for the underlying geometry, we formulate least squares

regression as a composite function. This formulation provides a natural extension from Euclidean

space to manifolds. Experimental results demonstrate that our method is effective and generalizes

well to the one-shot-learning scheme.

For longer video sequences, micro-action detection is needed which may be modeled effec-

tively using HMM. Future work will focus on developing more sophisticated models for gesture

recognition and other regression techniques on matrix manifolds for visual applications.
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Abstract

Support vector regression (SVR) and support vector classification (SVC) are popular learning tech-
niques, but their use with kernels is often time consuming. Recently, linear SVC without kernels
has been shown to give competitive accuracy for some applications, but enjoys much faster train-
ing/testing. However, few studies have focused on linear SVR. In this paper, we extend state-of-the-
art training methods for linear SVC to linear SVR. We show that the extension is straightforward
for some methods, but is not trivial for some others. Our experiments demonstrate that for some
problems, the proposed linear-SVR training methods can very efficiently produce models that are
as good as kernel SVR.

Keywords: support vector regression, Newton methods, coordinate descent methods

1. Introduction

Support vector regression (SVR) is a widely used regression technique (Vapnik, 1995). It is ex-

tended from support vector classification (SVC) by Boser et al. (1992). Both SVR and SVC are

often used with the kernel trick (Cortes and Vapnik, 1995), which maps data to a higher dimen-

sional space and employs a kernel function. We refer to such settings as nonlinear SVR and SVC.

Although effective training methods have been proposed (e.g., Joachims, 1998; Platt, 1998; Chang

and Lin, 2011), it is well known that training/testing large-scale nonlinear SVC and SVR is time

consuming.

Recently, for some applications such as document classification, linear SVC without using ker-

nels has been shown to give competitive performances, but training and testing are much faster. A

series of studies (e.g., Keerthi and DeCoste, 2005; Joachims, 2006; Shalev-Shwartz et al., 2007;

Hsieh et al., 2008) have made linear classifiers (SVC and logistic regression) an effective and effi-

cient tool. On the basis of this success, we are interested in whether linear SVR can be useful for

some large-scale applications. Some available document data come with real-valued labels, so for

them SVR rather than SVC must be considered. In this paper, we develop efficient training methods

to demonstrate that, similar to SVC, linear SVR can sometimes achieve comparable performance to

nonlinear SVR, but enjoys much faster training/testing.

We focus on methods in the popular package LIBLINEAR (Fan et al., 2008), which currently pro-

vides two types of methods for large-scale linear SVC.1 The first is a Newton-type method to solve

1. We mean standard SVC using L2 regularization. For L1-regularized problems, the solvers are different.

c©2012 Chia-Hua Ho and Chih-Jen Lin.
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the primal-form of SVC (Lin et al., 2008), while the second is a coordinate descent approach for the

dual form (Hsieh et al., 2008). We show that it is straightforward to extend the Newton method for

linear SVR, but some careful redesign is essential for applying coordinate descent methods.

LIBLINEAR offers two types of training methods for linear SVC because they complement each

other. A coordinate descent method quickly gives an approximate solution, but may converge slowly

in the end. In contrast, Newton methods have the opposite behavior. We demonstrate that similar

properties still hold when these training methods are applied to linear SVR.

This paper is organized as follows. In Section 2, we introduce the formulation of linear SVR.

In Section 3, we investigate two types of optimization methods for training large-scale linear SVR.

In particular, we propose a condensed implementation of coordinate descent methods. We conduct

experiments in Section 4 on some large regression problems. A comparison between linear and

nonlinear SVR is given, followed by detailed experiments of optimization methods for linear SVR.

Section 5 concludes this work.

2. Linear Support Vector Regression

Given a set of training instance-target pairs {(xi,yi)}, xi ∈ Rn, yi ∈ R, i = 1, . . . , l, linear SVR

finds a model w such that wT xi is close to the target value yi. It solves the following regularized

optimization problem.

min
w

f (w), where f (w)≡
1

2
wT w+C

l

∑
i=1

ξε(w;xi,yi). (1)

In Equation (1), C > 0 is the regularization parameter, and

ξε(w;xi,yi) =

{

max(|wT xi− yi|− ε,0) or (2)

max(|wT xi− yi|− ε,0)2 (3)

is the ε-insensitive loss function associated with (xi,yi). The parameter ε is given so that the loss is

zero if |wT xi−yi|≤ ε. We refer to SVR using (2) and (3) as L1-loss and L2-loss SVR, respectively.

It is known that L1 loss is not differentiable, while L2 loss is differentiable but not twice differen-

tiable. An illustration of the two loss functions is in Figure 1. Once problem (1) is minimized, the

prediction function is wT x.

Standard SVC and SVR involve a bias term b so that the prediction function is wT x+b. Recent

works on large-scale linear classification often omit the bias term because it hardly affects the per-

formance on most data. We omit a bias term b in problem (1) as well, although in Section 4.5 we

briefly investigate the performance with/without it.

It is well known (Vapnik, 1995) that the dual problem of L1-/L2-loss SVR is

min
α+,α−

fA(α
+,α−) subject to 0≤ α+

i ,α
−
i ≤U,∀i = 1, . . . , l, (4)

where

fA(α
+,α−)

=
1

2
(α+−α−)T Q(α+−α−)+

l

∑
i=1

(

ε(α+
i +α−i )−yi(α

+
i −α−i )+

λ

2
((α+

i )
2+(α−i )

2)
)

. (5)
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wT xi− yi

0

loss

−ε ε

L2

L1

Figure 1: L1-loss and L2-loss functions.

In Equation (5), Q ∈ Rl×l is a matrix with Qi j ≡ xT
i x j, and

(λ,U) =

{

(0,C) if L1-loss SVR,

( 1
2C ,∞) if L2-loss SVR.

We can combine α+ and α− so that

α =

[

α+

α−

]

and fA(α) =
1

2
αT

[

Q̄ −Q

−Q Q̄

]

α+

[

εe−y

εe+y

]T

α,

where Q̄ = Q+λI , I is the identity matrix, and e is the vector of ones. In this paper, we refer to

(1) as the primal SVR problem, while (4) as the dual SVR problem. The primal-dual relationship

indicates that primal optimal solution w∗ and dual optimal solution (α+)∗ and (α−)∗ satisfy

w∗ =
l

∑
i=1

((α+
i )
∗ − (α−i )

∗)xi.

An important property of the dual problem (4) is that at optimum,

(α+
i )
∗(α−i )

∗ = 0,∀i.2

The dual problem of SVR has 2l variables, while SVC has only l. If a dual-based solver is

applied without a careful design, the cost may be significantly higher than that for SVC.

3. Optimization Methods for Training Linear SVR

In this section, we extend two linear-SVC methods in LIBLINEAR for linear SVR. The first is a

Newton method for L2-loss SVR, while the second is a coordinate descent method for L1-/L2-loss

SVR.

2. This result can be easily proved. From (5), if α+
i α−i )= 0, then for any 0 < η ≤ min(α+

i ,α
−
i ), replacing α+

i and

α−i with α+
i −η and α−i −η gives a smaller function value: fA(α

+,α−)− 2ηε−λ((α+
i +α−i )η−η2). Therefore,

(α+
i )
∗(α−i )

∗ must be zero.
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Algorithm 1 A trust region Newton method for L2-loss SVR

1. Given w0.

2. For k = 0,1,2, . . .
2.1. If (7) is satisfied,

return wk.

2.2. Solve subproblem (6).

2.3. Update wk and ∆k to wk+1 and ∆k+1.

3.1 A Trust Region Newton Method (TRON) for L2-loss SVR

TRON (Lin and Moré, 1999) is a general optimization method for differentiable unconstrained and

bound-constrained problems, where the primal problem of L2-loss SVR is a case. Lin et al. (2008)

investigate the use of TRON for L2-loss SVC and logistic regression. In this section, we discuss

how TRON can be applied to solve large linear L2-loss SVR.

The optimization procedure of TRON involves two layers of iterations. At the k-th outer-layer

iteration, given the current position wk, TRON sets a trust-region size ∆k and constructs a quadratic

model

qk(s)≡ ∇ f (wk)T s+
1

2
sT ∇2 f (wk)s

as the approximation to f (wk + s)− f (wk). Then, in the inner layer, TRON solves the following

problem to find a Newton direction under a step-size constraint.

min
s

qk(s) subject to ‖s‖ ≤ ∆k. (6)

TRON adjusts the trust region ∆k according to the approximate function reduction qk(s) and the real

function decrease; see details in Lin et al. (2008).

To compute a truncated Newton direction by solving (6), TRON needs the gradient ∇ f (w) and

Hessian ∇2 f (w). The gradient of L2-loss SVR is

∇ f (w) = w+2C(XI1,:)
T (XI1,:w−yI1− εeI1)−2C(XI2,:)

T (−XI2,:w+yI2− εeI2),

where

X ≡ [x1, . . . ,xl]
T , I1 ≡ {i | wT xi− yi > ε}, and I2 ≡ {i | wT xi− yi <−ε}.

However, ∇2 f (w) does not exist because L2-loss SVR is not twice differentiable. Following Man-

gasarian (2002) and Lin et al. (2008), we use the generalized Hessian matrix. Let

I ≡ I1∪ I2.

The generalized Hessian can be defined as

∇2 f (w) = I +2C(XI,:)
T DI,IXI,:,

where I is the identity matrix, and D is an l-by-l diagonal matrix with

Dii ≡

{

1 if i ∈ I,

0 if i /∈ I.
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From Theorem 2.1 of Lin and Moré (1999), the sequence {wk} globally converges to the unique

minimum of (1).3 However, because generalized Hessian is used, it is unclear if {wk} has local

quadratic convergence enjoyed by TRON for twice differentiable functions.

For large-scale problems, we cannot store an n-by-n Hessian matrix in the memory. The same

problem has occurred in classification, so Lin et al. (2008) applied an iterative method to solve (6).

In each inner iteration, only some Hessian-vector products are required and they can be performed

without storing Hessian. We consider the same setting so that for any vector v ∈ Rn,

∇2 f (w)v = v+2C(XI,:)
T (DI,I(XI,:v)).

For the stopping condition, we follow the setting of TRON in LIBLINEAR for classification. It

checks if the gradient is small enough compared with the initial gradient.

‖∇ f (wk)‖2 ≤ εs‖∇ f (w0)‖2, (7)

where w0 is the initial iterate and εs is stopping tolerance given by users. Algorithm 1 gives the

basic framework of TRON.

Similar to the situation in classification, the most expensive operation is the Hessian-vector

product. It costs O(|I|n) to evaluate ∇2 f (w)v.

3.2 Dual Coordinate Descent Methods (DCD)

In this section, we introduce DCD, a coordinate descent method for the dual form of SVC/SVR.

It is used in LIBLINEAR for both L1- and L2-loss SVC. We first extend the setting of Hsieh et al.

(2008) to SVR and then propose a better algorithm using properties of SVR. We also explain why

the preferred setting for linear SVR may be different from that for nonlinear SVR.

3.2.1 A DIRECT EXTENSION FROM CLASSIFICATION TO REGRESSION

A coordinate descent method sequentially updates one variable by solving the following subprob-

lem.

min
z

fA(α+ zei)− fA(α)

subject to 0≤ αi + z≤U.

where

fA(α+ zei)− fA(α) = ∇i fA(α)z+
1

2
∇2

ii fA(α)z
2

and ei ∈ R2l×1 is a vector with i-th element one and others zero. The optimal value z can be solved

in a closed form, so αi is updated by

αi←min

(

max

(

αi−
∇i fA(α)

∇2
ii fA(α)

,0

)

,U

)

, (8)

where

∇i fA(α) =

{

(Q(α+−α−))i + ε− yi +λα+
i , if 1≤ i≤ l,

−(Q(α+−α−))i−l + ε+ yi−l +λα−i−l, if l +1≤ i≤ 2l,
(9)

3. Note that the objective function of (1) is strictly convex, so (1) has a unique global minimum.
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Algorithm 2 A DCD method for linear L1-/L2-loss SVR

1. Given α+ and α−. Let α=

[

α+

α−

]

and the corresponding u=∑l
i=1(αi−αi+l)xi.

2. Compute the Hessian diagonal Q̄ii, ∀i = 1, . . . , l.
3. For k = 0,1,2, . . .

• For i ∈ {1, . . . ,2l} // select an index to update

3.1. If |∇P
i fA(α)| )= 0

3.1.1. Update αi by (8), where (Q(α+−α−))i or (Q(α+−α−))i−l is evaluated by

uT xi or uT xi−l . See Equation (9).

3.1.2. Update u by (10).

and

∇2
ii fA(α) =

{

Q̄ii if 1≤ i≤ l,

Q̄i−l,i−l if l +1≤ i≤ 2l.

To efficiently implement (8), techniques that have been employed for SVC can be applied.

First, we precalculate Q̄ii = xT
i xi +λ,∀i in the beginning. Second, (Q(α+−α−))i is obtained using

a vector u.

(Q(α+−α−))i = uT xi, where u≡
l

∑
i=1

(α+
i −α−i )xi.

If the current iterate αi is updated to ᾱi by (8), then vector u can be maintained by

u←

{

u+(ᾱi−αi)xi, if 1≤ i≤ l,

u− (ᾱi−l−αi−l)xi−l, if l +1≤ i≤ 2l.
(10)

Both (8) and (10) cost O(n), which is the same as the cost in classification.

Hsieh et al. (2008) check the projected gradient ∇P fA(α) for the stopping condition because α
is optimal if and only if ∇P fA(α) is zero. The projected gradient is defined as

∇P
i fA(α)≡











min(∇i fA(α), 0) if αi = 0,

max(∇i fA(α), 0) if αi =U,

∇i fA(α) if 0 < αi <U.

(11)

If ∇P
i fA(α) = 0, then (8) and (11) imply that αi needs not be updated. We show the overall procedure

in Algorithm 2.

Hsieh et al. (2008) apply two techniques to make a coordinate descent method faster. The first

one is to permute all variables at each iteration to decide the order for update. We find that this

setting is also useful for SVR. The second implementation technique is shrinking. By gradually

removing some variables, smaller optimization problems are solved to save the training time. In

Hsieh et al. (2008), they remove those which are likely to be bounded (i.e., 0 or U) at optimum.

Their shrinking strategy can be directly applied here, so we omit details.

While we have directly applied a coordinate descent method to solve (4), the procedure does not

take SVR’s special structure into account. Note that α+ and α− in (5) are very related. We can see

that in the following situations some operations in Algorithm 2 are redundant.
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1. We pointed out in Section 2 that an optimal α of (4) satisfies

α+
i α−i = 0,∀i. (12)

If one of α+ or α− is positive at optimum, it is very possible that the other is zero throughout

all final iterations. Because we sequentially select variables for update, these zero variables,

even if not updated in steps 3.1.1–3.1.2 of Algorithm 2, still need to be checked in the begin-

ning of step 3.1. Therefore, some operations are wasted. Shrinking can partially solve this

problem, but alternatively we may explicitly use the property (12) in designing the coordinate

descent algorithm.

2. We show that some operations in calculating the projected gradient in (11) are wasted if all

we need is the largest component of the projected gradient. Assume α+
i > 0 and α−i = 0. If

the optimality condition at α−i is not satisfied yet, then

∇P
i+l fA(α) = ∇i+l fA(α) =−(Q(α+−α−))i + ε+ yi +λα−i < 0.

We then have

0 <−∇i+l fA(α) = (Q(α+−α−))i− ε− yi−λα−i
< (Q(α+−α−))i + ε− yi +λα+

i = ∇i fA(α), (13)

so a larger violation of the optimality condition occurs at α+
i . Thus, when α+

i > 0 and α−i = 0,

checking ∇i+l fA(α) is not necessary if we aim to find the largest element of the projected

gradient.

In Section 3.2.2, we propose a method to address these issues. However, the straightforward co-

ordinate descent implementation discussed in this section still possesses some advantages. See the

discussion in Section 3.2.3.

3.2.2 A NEW COORDINATE DESCENT METHOD BY SOLVING α+ AND α− TOGETHER

Using the property (12), the following problem replaces (α+
i )

2 +(α−i )
2 in (5) with (α+

i −α−i )
2 and

gives the same optimal solutions as the dual problem (4).

min
α+,α−

1

2
(α+−α−)T Q(α+−α−)+

l

∑
i=1

(

ε(α+
i +α−i )− yi(α

+
i −α−i )+

1

2
(α+

i −α−i )
2
)

. (14)

Further, Equation (12) and α+
i ≥ 0,α−i ≥ 0 imply that at optimum,

α+
i +α−i = |α+

i −α−i |.

With Q̄ = Q+λI and defining

β = α+−α−,

problem (14) can be transformed as

min
β

fB(β) subject to −U ≤ βi ≤U,∀i, (15)
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where

fB(β)≡
1

2
βT Q̄β−yT β+ ε‖β‖1.

If β∗ is an optimum of (15), then

(α+
i )
∗ ≡max(β∗i ,0) and (α−i )

∗ ≡max(−β∗i ,0)

are optimal for (4).

We design a coordinate descent method to solve (15). Interestingly, (15) is in a form similar to

the primal optimization problem of L1-regularized regression and classification. In LIBLINEAR, a

coordinate descent solver is provided for L1-regularized L2-loss SVC (Yuan et al., 2010). We will

adapt some of its implementation techniques here. A difference between L1-regularized classifica-

tion and the problem (15) is that (15) has additional bounded constraints.

Assume β is the current iterate and its i-th component, denoted as a scalar variable s, is being

updated. Then the following one-variable subproblem is solved.

min
s

g(s) subject to −U ≤ s≤U, (16)

where β is considered as a constant vector and

g(s) = fB(β+(s−βi)ei)− fB(β)

= ε|s|+(Q̄β−y)i(s−βi)+
1

2
Q̄ii(s−βi)

2 + constant. (17)

It is well known that (17) can be reduced to “soft-thresholding” in signal processing and has a

closed-form minimum. However, here we decide to give detailed derivations of solving (16) because

of several reasons. First, s is now bounded in [−U,U ]. Second, the discussion will help to explain

our stopping condition and shrinking procedure.

To solve (16), we start with checking the derivative of g(s). Although g(s) is not differentiable

at s = 0, its derivatives at s≥ 0 and s≤ 0 are respectively

g′p(s) = ε+(Q̄β−y)i + Q̄ii(s−βi) if s≥ 0, and

g′n(s) =−ε+(Q̄β−y)i + Q̄ii(s−βi) if s≤ 0.

Both g′p(s) and g′n(s) are linear functions of s. Further,

g′n(s)≤ g′p(s),∀s ∈ R .

For any strictly convex quadratic function, the unique minimum occurs when the first derivative

is zero. Because g(s) is only piece-wise quadratic, we consider three cases in Figure 2 according

to the values of g′p(s) and g′n(s). In Figure 2(a), 0 < g′n(0) < g′p(0), so g(0) is the smallest on the

positive side:

g(0)≤ g(s),∀s≥ 0. (18)

For s≤ 0, g′n(s) = 0 has a root because the line of g′n(s) intersects the x-axis. With (18), this root is

the minimum for both s≤ 0 and s≥ 0. By solving g′n(s) = 0 and taking the condition 0 < g′n(0), the

solution of (16) is

βi−
−ε+(Q̄β−y)i

Q̄ii
if − ε+(Q̄β−y)i > Q̄iiβi. (19)
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s

0−U U

g′p(s)

g′n(s)

s∗

(a) 0 < g′n(0)< g′p(0).

s
s∗ = 0

g′p(s)

g′n(s)

−U U

(b) g′n(0)≤ 0≤ g′p(0).

s
0

g′p(s)

g′n(s)

s∗

−U U

(c) g′n(0)< g′p(0)< 0.

Figure 2: We discuss the minimization of (16) using three cases. The y-axis indicates the value of

g′p(s) and g′n(s). The point s∗ denotes the optimal solution.

We also need to take the constraint s ∈ [−U,U ] in Equation (16) into account. If the value obtained

in (19) is smaller than −U , then g′n(s)> 0,∀s≥−U . That is, g(s) is an increasing function and the

minimum is at s =−U .

The situation is similar in Figure 2(c), where the minimum occurs at g′p(s) = 0. For the remain-

ing case in Figure 2(b),

g′n(0)≤ 0≤ g′p(0). (20)

Inequalities in (20) imply that g(s) is a decreasing function at s ≤ 0, but is an increasing function

at s ≥ 0. Thus, an optimal solution occurs at s = 0. A summary of the three cases shows that the

subproblem (16) has the following closed form solution.

s←max(−U,min(U,βi +d)), (21)

where

d ≡















−
g′p(βi)

Q̄ii
if g′p(βi)< Q̄iiβi,

− g′n(βi)
Q̄ii

if g′n(βi)> Q̄iiβi,

−βi otherwise.

(22)

In (22), we simplify the solution form in (19) by using the property

g′p(βi) = ε+(Q̄β−y)i, and g′n(βi) =−ε+(Q̄β−y)i. (23)
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Algorithm 3 A new DCD method which solves (15) for linear L1-/L2-loss SVR

1. Given β and the corresponding u=∑l
i=1 βixi.

2. Compute the Hessian diagonal Q̄ii, ∀i = 1, . . . , l.
3. For k = 0,1,2, . . .

• For i ∈ {1, . . . , l} // select an index to update

3.1. Find s by (21), where (Qβ)i is evaluated by uT xi.

3.2. u← u+(s−βi)xi.

3.3. βi← s.

Following the same technique in Section 3.2.1, we maintain a vector u and calculate (Q̄β) by

(Q̄β)i = uT xi +λβi, where u =
l

∑
i=1

βixi.

The new DCD method to solve (15) is sketched in Algorithm 3.

For the convergence, we show in Appendix A that Algorithm 3 is a special case of the general

framework in Tseng and Yun (2009) for non-smooth separable minimization. Their Theorem 2(b)

implies that Algorithm 3 converges in an at least linear rate.

Theorem 1 For L1-loss and L2-loss SVR, if βk is the k-th iterate generated by Algorithm 3, then

{βk} globally converges to an optimal solution β∗. The convergence rate is at least linear: there

are 0 < µ < 1 and an iteration k0 such that

fB(β
k+1)− fB(β

∗)≤ µ( fB(β
k)− fB(β

∗)),∀k ≥ k0.

Besides Algorithm 3, other types of coordinate descent methods may be applicable here. For

example, at step 3 of Algorithm 3, we may randomly select a variable for update. Studies of such

random coordinate descent methods with run time analysis include, for example, Shalev-Shwartz

and Tewari (2011), Nesterov (2010), and Richtárik and Takáč (2011).

For the stopping condition and the shrinking procedure, we will mainly follow the setting in

LIBLINEAR for L1-regularized classification. To begin, we study how to measure the violation of

the optimality condition of (16) during the optimization procedure. From Figure 2(c), we see that

if 0 < β∗i <U is optimal for (16), then g′p(β
∗
i ) = 0.

Thus, if 0 < βi <U , |g′p(βi)| can be considered as the violation of the optimality. From Figure 2(b),

we have that

if β∗i = 0 is optimal for (16), then g′n(β
∗
i )≤ 0≤ g′p(β

∗
i ).

Thus,
{

g′n(βi) if βi = 0 and g′n(βi)> 0,

−g′p(βi) if βi = 0 and g′p(βi)< 0

gives the violation of the optimality. After considering all situations, we know that

βi is optimal for (16) if and only if vi = 0,
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where

vi ≡































|g′n(βi)| if βi ∈ (−U,0), or βi =−U and g′n(βi)≤ 0,

|g′p(βi)| if βi ∈ (0,U), or βi =U and g′p(βi)≥ 0,

g′n(βi) if βi = 0 and g′n(βi)≥ 0,

−g′p(βi) if βi = 0 and g′p(βi)≤ 0,

0 otherwise.

(24)

If β is unconstrained (i.e., U = ∞), then (24) reduces to the minimum-norm subgradient used

in L1-regularized problems. Based on it, Yuan et al. (2010) derive their stopping condition and

shrinking scheme. We follow them to use a similar stopping condition.

‖vk‖1 < εs‖v
0‖1, (25)

where v0 and vk are the initial violation and the violation in the k-th iteration, respectively. Note that

vk’s components are sequentially obtained via (24) in l coordinate descent steps of the k-th iteration.

For shrinking, we remove bounded variables (i.e., βi = 0, U , or−U) if they may not be changed

at the final iterations. Following Yuan et al. (2010), we use a “tighter” form of the optimality

condition to conjecture that a variable may have stuck at a bound. We shrink βi if it satisfies one of

the following conditions.

βi = 0 and g′n(βi)<−M < 0 < M < g′p(βi), (26)

βi =U and g′p(βi)<−M, or (27)

βi =−U and g′n(βi)> M, (28)

where

M ≡max
i

vk−1
i (29)

is the maximal violation of the previous iteration. The condition (26) is equivalent to

βi = 0 and − ε+M < (Q̄β)i− yi < ε−M. (30)

This is almost the same as the one used in Yuan et al. (2010); see Equation (32) in that paper. How-

ever, there are some differences. First, because they solve L1-regularized SVC, ε in (30) becomes

the constant one. Second, they scale M to a smaller value. Note that M used in conditions (26),

(27), and (28) controls how aggressive our shrinking scheme is. In Section 4.6, we will investigate

the effect of using different M values.

For L2-loss SVR, αi is not upper-bounded in the dual problem, so (26) becomes the only con-

dition to shrink variables. This makes L2-loss SVR have less opportunity to shrink variables than

L1-loss SVR. The same situation has been known for L2-loss SVC.

In Section 3.2.1, we pointed out some redundant operations in calculating the projected gradient

of fA(α+,α−). If 0< βi <U , we have α+
i = βi and α−i = 0. In this situation, Equation (13) indicates

that for finding the maximal violation of the optimality condition, we only need to check ∇P
i fA(α)

rather than ∇P
i+l fA(α). From (11) and (23),

∇P
i fA(α) = (Q̄β−y)i + ε = g′p(β).

This is what we checked in (24) when 0 < β <U . Therefore, no operations are wasted.
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Algorithm 4 Details of Algorithm 3 with a stopping condition and a shrinking implementation.

1. Given β and corresponding u = ∑l
i=1 βixi.

2. Set λ = 0 and U =C if L1-loss SVR; λ = 1/(2C) and U = ∞ if L2-loss SVR.

3. Compute the Hessian diagonal Q̄ii, ∀i = 1, . . . , l.
4. M← ∞, and compute ‖v0‖1 by (24).

5. T ← {1, . . . , l}.

6. For k = 0,1,2, . . .
6.1. Randomly permute T .

6.2. For i ∈ T // select an index to update

6.2.1. g′p←−yi +uT xi +λβi + ε, g′n←−yi +uT xi +λβi− ε.

6.2.2. Find vk
i by (24).

6.2.3. If any condition in (26), (27), and (28) is satisfied

T ← T\{i}.

continue

6.2.4. Find s by (21).

6.2.5. u← u+(s−βi)xi.

6.2.6. βi← s.

6.3. If ‖vk‖1/‖v0‖1 < εs

If T = {1, . . . , l}
break

else

T ← {1, . . . , l}, and M← ∞.

else

M←‖vk‖∞.

Algorithm 4 is the overall procedure to solve (15). In the beginning, we set M = ∞, so no

variables are shrunk at the first iteration. The set T in Algorithm 4 includes variables which have

not been shrunk. During the iterations, the stopping condition of a smaller problem of T is checked.

If it is satisfied but T is not the full set of variables, we reset T to be {1, . . . , l}; see the if-else

statement in step 6.3 of Algorithm 4. This setting ensures that the algorithm stops only after the

stopping condition for problem (15) is satisfied. Similar approaches have been used in LIBSVM

(Chang and Lin, 2011) and some solvers in LIBLINEAR.

3.2.3 DIFFERENCE BETWEEN DUAL COORDINATE DESCENT METHODS FOR LINEAR AND

NONLINEAR SVR

The discussion in Sections 3.2.1–3.2.2 concludes that α+
i and α−i should be solved together rather

than separately. Interestingly, for nonlinear (kernel) SVR, Liao et al. (2002) argue that the opposite

is better. They consider SVR with a bias term, so the dual problem contains an additional linear

constraint.

l

∑
i=1

(α+
i −α−i ) = 0.
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Because of this constraint, their coordinate descent implementation (called decomposition methods

in the SVM community) must select at least two variables at a time. They discuss the following two

settings.

1. Considering fA(α) and selecting i, j ∈ {1, . . . ,2l} at a time.

2. Selecting i, j ∈ {1, . . . , l} and then updating α+
i , α−i , α+

j , and α−j together. That is, a four-

variable subproblem is solved.

The first setting corresponds to ours in Section 3.2.1, while the second is related to that in Section

3.2.2. We think Liao et al. (2002) prefer the first because of the following reasons, from which we

can see some interesting differences between linear and nonlinear SVM.

1. For nonlinear SVM, we can afford to use gradient information for selecting the working

variables; see reasons explained in Section 4.1 of Hsieh et al. (2008). This is in contrast

to the sequential selection for linear SVM. Following the gradient-based variable selection,

Liao et al. (2002, Theorem 3.4) show that if an optimal (α+
i )
∗ > 0, then α−i remains zero in

the final iterations without being selected for update. The situation for (α−i )
∗ > 0 is similar.

Therefore, their coordinate descent algorithm implicitly has a shrinking implementation, so

the first concern discussed in Section 3.2.1 is alleviated.

2. Solving a four-variable subproblem is complicated. In contrast, for the two-variable subprob-

lem of α+
i and α−i , we demonstrate in Section 3.2.2 that a simple closed-form solution is

available.

3. The implementation of coordinate descent methods for nonlinear SVM is more complicated

than that for linear because of steps such as gradient-based variable selection and kernel-cache

maintenance, etc. Thus, the first setting of minimizing fA(α) possesses the advantage of being

able to reuse the code of SVC. This is the approach taken by the nonlinear SVM package

LIBSVM (Chang and Lin, 2011), in which SVC and SVR share the same optimization solver.

In contrast, for linear SVC/SVR, the implementation is simple, so we can have a dedicated

code for SVR. In this situation, minimizing fB(β) is more preferable than fA(α).

4. Experiments

In this section, we compare nonlinear/linear SVR and evaluate the methods described in Sections 3.

Two evaluation criteria are used. The first one is mean squared error (MSE).

mean squared error =
1

l

l

∑
i=1

(yi−wT xi)
2.

The other is squared correlation coefficient (R2). Given the target values y and the predicted values

y′, R2 is defined as

(

∑i(y
′
i−E[y′i])(yi−E[yi])

)2

σ2
yσ2

y′
=

(

l ∑i y′iyi− (∑i y′i)(∑i yi)
)2

(

l ∑i y2
i − (∑i yi)2

)(

l ∑i y′2i − (∑i y′i)
2
) .
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4.1 Experimental Settings

We consider the following data sets in our experiments. All except CTR are publicly available at

LIBSVM data set.4

• MSD: We consider this data because it is the largest regression set in the UCI Machine

Learning Repository (Frank and Asuncion, 2010). It is originally from Bertin-Mahieux et al.

(2011). Each instance contains the audio features of a song, and the target value is the year

the song was released. The original target value is between 1922 and 2011, but we follow

Bertin-Mahieux et al. (2011) to linearly scale it to [0,1].
• TFIDF-2006, LOG1P-2006: This data set comes from some context-based analysis and dis-

cussion of the financial condition of a corporation (Kogan et al., 2009).5 The target values are

the log transformed volatilities of the corporation. We use records in the last year (2006) as

the testing data, while the previous five years (2001–2005) for training.

There are two different feature representations. TFIDF-2006 contains TF-IDF (term frequency

and inverse document frequency) of unigrams, but LOG1P-2006 contains

log(1+TF),

where TF is the term frequency of unigrams and bigrams. Both representations also include

the volatility in the past 12 months as an additional feature.

• CTR: The data set is from an Internet company. Each feature vector is a binary representation

of a web page and an advertisement block. The target value is the click-through-rate (CTR)

defined as (#clicks)/(#page views).

• KDD2010b: This is a classification problem from KDD Cup 2010. The class label indicates

whether a student answered a problem correctly or not on a online tutoring system. We

consider this classification problem because of several reasons. First, we have not found

other large and sparse regression problems. Second, we are interested in the performance of

SVR algorithms when a classification problem is treated as a regression one.

The numbers of instances, features, nonzero elements in training data, and the range of target values

are listed in Table 1. Except MSD, all others are large sparse data.

We use the zero vector as the initial solution of all algorithms. All implementations are in

C++ and experiments are conducted on a 64-bit machine with Intel Xeon 2.0GHz CPU (E5504),

4MB cache, and 32GB main memory. Programs used for our experiment can be found at http:

//www.csie.ntu.edu.tw/˜cjlin/liblinear/exp.html.

4.2 A Comparison Between Two DCD Algorithms

Our first experiment is to compare two DCD implementations (Algorithms 2 and 4) so that only the

better one is used for subsequence analysis. For this comparison, we normalize each instance to a

unit vector and consider L1-loss SVR with C = 1 and ε = 0.1.

Because the results for all data sets are similar, we only present the results of MSD and CTR in

Figure 3. The x-axis is the training time, and the y-axis is the relative difference to the dual optimal

function value.
fA(α)− fA(α∗)

| fA(α∗)|
, (31)

4. Data sets can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.

5. The raw data are available at http://www.ark.cs.cmu.edu/10K/.
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Data
#instances

#features
#non-zeros

range of y
training testing in training

MSD 463,715 51,630 90 41,734,346 [0,1]
TFIDF-2006 16,087 3,308 150,360 19,971,015 [−7.90,−0.52]
LOG1P-2006 16,087 3,308 4,272,227 96,731,839 [−7.90,−0.52]
CTR 11,382,195 208,988 22,510,600 257,526,282 [0,1]
KDD2010b 19,264,097 748,401 29,890,095 566,345,888 {0,1}

Table 1: Data set statistics: #non-zeros means the number of non-zero elements in all training in-

stances. Note that data sets are sorted according to the number of features.

(a) MSD (b) CTR

Figure 3: A comparison between two DCD algorithms. We present training time and relative dif-

ference to the dual optimal function values. L1-loss SVR with C = 1 and ε = 0.1 is used.

Data instances are normalized to unit vectors. DCD-1-sh and DCD-2-sh are DCD-1 and

DCD-2 with shrinking, respectively. Both x-axis and y-axis are in log scale.

where α∗ is the optimum solution. We run optimization algorithms long enough to get an approx-

imate fA(α∗). In Figure 3, DCD-1 and DCD-1-sh are Algorithm 2 without/with shrinking, respec-

tively. DCD-2, and DCD-2-sh are the proposed Algorithm 4. If shrinking is not applied, we simply

plot the value (31) once every eight iterations. With shrinking, the setting is more complicated

because the stopping tolerance εs affects the shrinking implementation; see step 6.3 in Algorithm

4. Therefore, we run Algorithms 2 and 4 several times under various εs values to obtain pairs of

(training time, function value).

Results show that DCD-2 is significantly faster than DCD-1; note that the training time in Figure

3 is log-scaled. This observation is consistent with our discussion in Section 3.2.1 that Algorithm 2

suffers from some redundant operations. We mentioned that shrinking can reduce the overhead and

this is supported by the result that DCD-1-sh becomes closer to DCD-2-sh. Based on this experiment,

we only use Algorithm 4 in subsequent analysis.

This experiment also reveals how useful the shrinking technique is. For both Algorithms 2 and

4, shrinking very effectively reduces the training time.
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Data Linear (DCD) RBF (LIBSVM)

(percentage
ε C

test training
ε C γ

test training

for training) MSE time (s) MSE time (s)

MSD (1%) 2−4 25 0.0155 2.25 2−4 25 2−3 0.0129 4.66

TFIDF-2006 2−10 26 0.2031 32.06 2−6 26 20 0.1965 3921.61

LOG1P-2006 2−4 21 0.1422 16.95 2−10 21 20 0.1381 16385.7

CTR (0.1%) 2−6 2−3 0.0296 0.05 2−8 2−2 20 0.0294 15.36

KDD2010b (0.1%) 2−4 2−1 0.0979 0.07 2−6 20 20 0.0941 97.23

Table 2: Testing MSE and training time using DCD for linear SVR and LIBSVM for nonlinear SVR

with RBF kernel. L1-loss SVR is used. Parameter selection is conducted by five-fold CV.

Because LIBSVM’s running time is long, for some data, we use only subsets for training.

4.3 A Comparison Between Linear and Nonlinear SVR

We wrote in Section 1 that the motivation of this research work is to check if for some applications

linear SVR can give competitive MSE/R2 with nonlinear SVR, but enjoy faster training. In this

section, we compare DCD for linear SVR with the package LIBSVM (Chang and Lin, 2011) for

nonlinear SVR. We consider L1-loss SVR because LIBSVM does not support L2 loss.

For LIBSVM, we consider RBF kernel, so Qi j in Equation (5) becomes

Qi j ≡ e−γ‖xi−x j‖2

,

where γ is a user-specified parameter. Because LIBSVM’s training time is very long, we only use

1% training data for MSD, and 0.1% training data for CTR and KDD2010b. We conduct five-fold

cross validation (CV) to find the best C ∈ {2−4,2−3, . . . ,26}, ε ∈ {2−10,2−8, . . . ,2−2}, and γ ∈
{2−8,2−7, . . . ,20}. For LIBSVM, we assign 16GB memory space for storing recently used kernel

elements (called kernel cache). We use stopping tolerance 0.1 for both methods although their

stopping conditions are slightly different. Each instance is normalized to a unit vector.

In Table 2, we observe that for all data sets except MSD, nonlinear SVR gives only marginally

better MSE than linear SVR, but the training time is prohibitively long. Therefore, for these data

sets, linear SVR is more appealing than nonlinear SVR.

4.4 A Comparison Between TRON and DCD on Data with/without Normalization

In this section, we compare the two methods TRON and DCD discussed in Section 3 for training

linear SVR. We also check if their behavior is similar to when they are applied to linear SVC.

Because TRON is not applicable to L1-loss SVR, L2-loss SVR is considered.

A common practice in document classification is to normalize each feature vector to have unit

length. Because the resulting optimization problem may have a better numerical condition, this nor-

malization procedure often helps to shorten the training time. We will investigate its effectiveness

for regression data.

We begin with comparing TRON and DCD on the original data without normalization. Figure 4

shows the following three values along the training time.
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Relative function value MSE R2

(a) MSD (DCD has only one point because the running time is too long for smaller εs in (25).)

(b) TFIDF-2006

(c) LOG1P-2006

(d) CTR

(e) KDD2010b

Figure 4: A comparison between TRON and DCD-sh (DCD with shrinking) on function values,

MSE, and R2. L2-loss SVR with C = 1 and ε = 0.1 is applied to the original data without

normalization. The dotted and solid horizontal lines respectively indicate the function

values of TRON using stopping tolerance εs = 0.001 in (7) and DCD using εs = 0.1 in

(25).
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Relative function value MSE R2

(a) MSD

(b) TFIDF-2006

(c) LOG1P-2006

(d) CTR

(e) KDD2010b

Figure 5: A comparison between TRON and DCD-sh (DCD with shrinking) on function values,

MSE, and R2. All settings are the same as Figure 4 except that data instances are normal-

ized to unit vectors.
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1. the relative difference to the optimal primal function value

f (w)− f (w∗)

| f (w∗)|
, (32)

2. MSE,

3. R2.

Although DCD solves the dual problem, for calculating (32), we can obtain a corresponding primal

value using w = XT β. Primal values obtained in this way may not be decreasing, so DCD’s curves

in the first column of Figure 4 may fluctuate.6 Because practically users apply TRON or DCD under

a fixed stopping tolerance, we draw two horizontal lines in Figure 4 to indicate the result using a

typical tolerance value. We use εs = 0.001 in (7) and εs = 0.1 in (25).

We observe that DCD is worse than TRON for data with few features, but becomes better for

data with more features. For MSD, which has only 90 features, DCD’s primal function value is

so unstable that it does not reach the stopping condition for drawing the horizontal line. A primal

method like TRON is more suitable for this data set because of the smaller number of variables.

In contrast, KDD2010b has 29 million features, and DCD is much more efficient than TRON. This

result is consistent with the situation in classification (Hsieh et al., 2008).

Next, we compare TRON and DCD on data normalized to have unit length. Results of function

values, testing MSE, and testing R2 are shown in Figures 5. By comparing Figures 4 and 5, we

observe that both methods have shorter training time for normalized data. For example, for CTR,

DCD is 10 times faster, while TRON is 1.6 times faster. DCD becomes very fast for all problems

including MSD. Therefore, like the classification case, if data have been properly normalized, DCD

is generally faster than TRON.

To compare the testing performance without/with data normalization, we show MSE in Table 3.

We use DCD so we can not get MSD’s result. An issue of the comparison between Figures 4 and 5 is

that we use C = 1 and ε = 0.1 without parameter selection. We tried to conduct parameter selection

but can only report results of the normalized data. The running time is too long for the original data.

From Table 3, except TFIDF-2006, normalization does not cause inferior MSE values. Therefore,

for the practical use of linear SVR, data normalization is a useful preprocessing procedure.

4.5 With and Without the Bias Term in the SVR Prediction Function

We omit the bias term in the discussion so far because we suspect that it has little effect on the

performance. LIBLINEAR supports a common way to include a bias term by appending one more

feature to each data instance.

xT
i ← [xT

i ,1] wT ← [wT ,b].

We apply L1-loss SVR on normalized data sets to compare MSE values with and without the bias

term. With the stopping tolerance εs = 0.001, the results in Table 4 show that MSE values obtained

with/without the bias term are similar for almost all data sets. Results in Table 2 also support this

finding because LIBSVM solves SVR with a bias term. Therefore, in general the bias term may not

be needed for linear SVR if data are large and sparse.

6. This phenomenon has been known in earlier studies on primal- and dual-based methods. See, for example, the

discussion in Chapelle (2007) and the comparison in Hsieh et al. (2008).
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Original Normalized Normalized +

Data C = 1, ε = 0.1 C = 1, ε = 0.1 parameter selection

MSE MSE C ε MSE

MSD N/A 0.0151 21 2−4 0.0153

TFIDF-2006 0.1473 0.3828 26 2−10 0.2030

LOG1P-2006 0.1605 0.1418 21 2−4 0.1421

CTR 0.0299 0.0294 2−1 2−6 0.0287

KDD2010b 0.0904 0.0809 21 2−4 0.0826

Table 3: Test MSE without and with data normalization. L1-loss SVR is used. Parameter selection

is only applied to the normalized data because the running time is too long for the original

data. Notice that for some problems, test MSE obtained after parameter selection is slightly

worse than that of using C = 1 and ε = 0.1. This situation does not happen if MAE is used.

Therefore, the reason might be that L1 loss is more related to MAE than MSE. See the

discussion in Section 4.7.

Data without bias with bias

MSD 0.0151 0.0126

TFIDF-2006 0.3828 0.3264

LOG1P-2006 0.1418 0.1419

CTR 0.0294 0.0295

KDD2010b 0.0809 0.0807

Table 4: MSE of L1-loss SVR with and without the bias term.

4.6 Aggressiveness of DCD’s Shrinking Scheme

In Section 3.2.2, we introduced DCD’s shrinking scheme with a parameter M defined as the maximal

violation of the optimality condition. We pointed out that the smaller M is, the more aggressive the

shrinking method is. To check if choosing M by the way in (29) is appropriate, we compare the

following settings.

1. DCD-sh: The method in Section 3.2.2 using M defined in (29).

2. DCD-nnz: M is replaced by M/n̄, where n̄ is the average number of non-zero feature values

per instance.

3. DCD-n: M is replaced by M/n, where n is the number of features.

Because
M

n
<

M

n̄
< M,

DCD-n is the most aggressive setting, while DCD-sh is the most conservative.

Using L1-loss SVR, Figure 6(a) shows the relationship between the relative difference to the

optimal dual function value and the training time of MSD and TFIDF-2006. Results indicate that

these data sets need a more aggressive shrinking strategy. However, if L2-loss SVR is applied

instead, Figure 6(b) shows different results. Aggressive shrinking strategies make the results worse.
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MSD TFIDF-2006

(a) L1-loss SVR

(b) L2-loss SVR

Figure 6: A comparison of three shrinking settings. Linear SVR with C = 1 and ε = 0.1 is applied

on normalized data. We show the relative difference to the dual optimal function values

and training time (in seconds).

A possible reason is that less variables are shrunk for L2-loss SVR (see explanation in Sections

3.2.2), so an aggressive strategy may wrongly shrink some variables.

4.7 L1-/L2-loss SVR, Least-square Regression, and the Need of the Parameter ε

If ε = 0, L1- and L2-loss SVR are respectively reduced to

min
w

1

2
wT w+C‖y−Xw‖1 (33)

and

min
w

1

2
wT w+C‖y−Xw‖2

2. (34)

Problem (34) is the regularized least-square regression (also called ridge regression by Hoerl and

Kennard, 1970). We are interested in the need of using ε-insensitive loss function. Both our TRON
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Data

L1-loss SVR L2-loss SVR

with ε ε = 0 with ε ε = 0

ε C MSE time C MSE time ε C MSE time C MSE time

MSD 2−4 21 0.015 24 26 0.015 560 2−10 26 0.014 157 21 0.014 7

TFIDF-2006 2−10 26 0.203 32 26 0.334 37 2−10 26 0.225 36 26 0.225 41

LOG1P-2006 2−4 21 0.142 17 20 0.143 12 2−10 22 0.138 16 21 0.138 10

CTR 2−6 2−1 0.028 347 2−1 0.029 342 2−8 24 0.028 960 20 0.028 121

KDD2010b 2−4 21 0.082 291 23 0.086 795 2−10 2−1 0.077 122 2−1 0.077 122

ε C MAE time C MAE time ε C MAE time C MAE time

MSD 2−6 2−4 0.087 3 2−3 0.087 3 2−10 20 0.09 4 26 0.088 159

TFIDF-2006 2−10 26 0.307 36 26 0.441 32 2−10 26 0.33 36 26 0.33 36

LOG1P-2006 2−4 20 0.238 11 20 0.24 12 2−10 21 0.244 11 21 0.244 10

CTR 2−8 2−4 0.062 93 2−4 0.063 73 2−10 20 0.074 107 20 0.074 90

KDD2010b 2−10 2−2 0.117 94 2−2 0.117 106 2−10 2−1 0.171 124 2−1 0.17 129

Table 5: A comparison between L1-/L2-loss SVR with/without using ε. Note that L2-loss SVR

with ε = 0 is the same as regularized least-square regression. We present both test MSE

and MAE, and boldface the best setting. Training time is in second.

and DCD implementations can be applied to the situation of ε = 0, so we conduct a comparison in

Table 5 using DCD.

We also would like to compare L1 and L2 losses, so in Table 5, we present both MSE and MAE.

MAE (mean absolute error) is defined as

mean absolute error =
1

l

l

∑
i=1

|yi−wT xi|.

The reason of considering both is that L1 loss is directly related to MAE of training data, while L2

loss is related to MSE.

Results in Table 5 show that for both L1- and L2-loss SVR, MAE/MSE is similar with and

without using ε. The only exception is TFIDF-2006. Under the same C, L1-loss SVR gives 0.307

MAE with ε= 2−6, while 0.441 MAE with ε= 0. An investigation shows that the stopping condition

of DCD used to generate Table 5 is too loose for this problem. If a strict stopping condition is used,

the two MAE values become close to each other. Therefore, for these data sets, we may not need

to use ε-insensitive loss functions. Without ε, time for parameter selection can be reduced. We

suspect that ε-insensitive losses are still useful in some occasions, though more future experiments

are needed for drawing conclusions.

For the comparison between L1 and L2 losses, Table 5 indicates that regardless of ε = 0 or

not, L1-loss SVR gives better MAE while L2-loss SVR is better for MSE. This result is reasonable

because we have mentioned that L1 and L2 losses directly model training MAE and MSE, respec-

tively. Therefore, it is important to apply a suitable loss function according to the performance

measure used for the application.

Next, we briefly discuss approaches for training L1- and L2-loss SVR with ε = 0. For reg-

ularized least-square regression, the solution of problem (34) can be obtained by solving a linear
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system:

w∗ =

(

XT X +
I

C

)−1

XT y. (35)

Then approaches such as conjugate gradient methods can be applied instead of TRON or DCD. For

the situation of using L1 loss and ε = 0, problem (33) is not differentiable. Nor does it have a

simple solution like that in (35). However, the dual problem becomes simpler because the non-

differentiable ε‖β‖1 in (15) is removed. Then a simplified DCD can be used to minimize (15).

4.8 Summary of the Experiments

We summarize conclusions made by experiments in this section.

1. DCD is faster by solving (14) than solving (4). Further, the shrinking strategies make both

DCD methods faster.

2. Linear SVR can have as good MSE values as nonlinear SVR if the data set has many features.

3. TRON is less sensitive than DCD to data with/without normalization.

4. With data normalization, DCD is generally much faster than TRON.

5. The bias term does not affect the MSE of large and sparse data sets.

6. To achieve good MSE, L2 loss should be used. In contrast, for MAE, we should consider L1

loss.

5. Discussions and Conclusions

In this paper, we extend LIBLINEAR’s SVC solvers TRON and DCD to solve large-scale linear SVR

problems. The extension for TRON is straightforward, but is not trivial for DCD. We propose an

efficient DCD method to solve a reformulation of the dual problem. Experiments show that many

properties of TRON and DCD for SVC still hold for SVR.

An interesting future research direction is to apply coordinate descent methods for L1-regularized

least-square regression, which has been shown to be related to problem (15). However, we expect

some differences because the former is a primal problem, while the latter is a dual problem.

For this research work, we had difficulties to obtain large and sparse regression data. We hope

this work can motivate more studies and more public data in the near future.

In summary, we have successfully demonstrated that for some document data, the proposed

methods can efficiently train linear SVR, while achieve comparable testing errors to nonlinear SVR.

Based on this study, we have expanded the package LIBLINEAR (after version 1.9) to support large-

scale linear SVR.
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Appendix A. Linear Convergence of Algorithm 3

To apply results in Tseng and Yun (2009), we first check if problem (15) is covered in their study.

Tseng and Yun (2009) consider

min
β

F(β)+ εP(β), (36)

where F(β) is a smooth function and P(β) is proper, convex, and lower semicontinuous. We can

write (15) in the form of (36) by defining

F(β)≡
1

2
βT Q̄β−yT β, and P(β)≡

{

‖β‖1 if −U ≤ βi ≤U,∀i,

∞ otherwise.

Both F(β) and P(β) satisfy the required conditions. Tseng and Yun (2009) propose a general

coordinate descent method. At each step certain rules are applied to select a subset of variables for

update. Our rule of going through all l indices in one iteration is a special case of “Gauss-Seidel”

rules discussed in their paper. If each time only one variable is updated, the subproblem of their

coordinate descent method is

min
s

{

∇iF(β)(s−βi)+
1
2 H(s−βi)2 + ε|s| if −U ≤ s≤U,

∞ otherwise,
(37)

where H is any positive value. Because we use H = Q̄ii, if Q̄ii > 0, then (16) is a special case of

(37). We will explain later that Q̄ii = 0 is not a concern.

Next, we check conditions and assumptions required by Theorem 2(b) of Tseng and Yun (2009).

The first one is

‖∇F(β1)−∇F(β2)‖ ≤ L‖β1−β2‖,∀β1,β2 ∈ {β | F(β)< ∞}.

Because F(β) is a quadratic function, this condition easily holds by setting the largest eigenvalue of

Q̄ as L. We then check Assumption 1 of Tseng and Yun (2009), which requires that

λ≤ Q̄ii ≤ λ̄,∀i, (38)

where λ > 0. The only situation that (38) fails is when xi = 0 and L1-loss SVR is applied. In this

situation, βT Q̄β is not related to βi and the minimization of −yiβi + ε|βi| shows that the optimal β∗i
is

β∗i =











U if − yi + ε < 0,

−U if − yi− ε > 0,

0 otherwise.

(39)

We can remove these variables before applying DCD, so (38) is satisfied.7

For Assumption 2 in Tseng and Yun (2009), we need to show that the solution set of (36)

is not empty. For L1-loss SVR, following Weierstrass’ Theorem, the compact feasible domain

7. Actually, we do not remove these variables. Under the IEEE floating-point arithmetic, at the first iteration, the first

two cases in (22) are ∞ and −∞, respectively. Then, (21) projects the value back to U and −U , which are the optimal

value shown in (39). Therefore, variables corresponding to xi = 0 have reached their optimal solution at the first

iteration. Because they will never be updated, it is like that they have been removed.
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(β ∈ [−U,U ]l) implies the existence of optimal solutions. For L2-loss SVR, the strictly quadratic

convex F(β) implies that {β | F(β)+ εP(β)≤ F(β0)+ εP(β0)} is compact, where β0 is any vector.

Therefore, the solution set is also nonempty. Then Lemma 7 in Tseng and Yun (2009) implies that

a quadratic L(β) and a polyhedral P(β) make their Assumption 2 hold.

Finally, by Theorem 2(b) of Tseng and Yun (2009), {βk} generated by Algorithm 3 globally

converges and { fB(βk)} converges at least linearly.
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Abstract

Nonnegative matrix factorization (NMF) has become a very popular technique in machine learning
because it automatically extracts meaningful features through a sparse and part-based representa-
tion. However, NMF has the drawback of being highly ill-posed, that is, there typically exist many
different but equivalent factorizations. In this paper, we introduce a completely new way to ob-
taining more well-posed NMF problems whose solutions are sparser. Our technique is based on
the preprocessing of the nonnegative input data matrix, and relies on the theory of M-matrices and
the geometric interpretation of NMF. This approach provably leads to optimal and sparse solutions
under the separability assumption of Donoho and Stodden (2003), and, for rank-three matrices,
makes the number of exact factorizations finite. We illustrate the effectiveness of our technique on
several image data sets.

Keywords: nonnegative matrix factorization, data preprocessing, uniqueness, sparsity, inverse-
positive matrices

1. Introduction

Given an m-by-n nonnegative matrix M ≥ 0 and a factorization rank r, nonnegative matrix fac-

torization (NMF) looks for two nonnegative matrices U and V of dimension m-by-r and r-by-n

respectively such that M ≈ UV . To assess the quality of an approximation, a popular choice is

the Frobenius norm of the residual ||M −UV ||F and NMF can for example be formulated as the

following optimization problem

min
U∈Rm×r,V∈Rr×n

||M−UV ||2F such that U ≥ 0 and V ≥ 0. (1)

Assuming that M is a matrix where each column represents an element of a data set (for example,

a vectorized image of pixel intensities), NMF can be interpreted in the following way. Since M: j ≈
∑r

k=1U:kVk j ∀ j, each column M: j of M is reconstructed using an additive linear combination of

nonnegative basis elements (the columns of U). These basis elements can be interpreted in the same

way as the columns of M (for example, as images). Moreover, they can only be summed up (since

V is nonnegative) in order to approximate the original data matrix M which leads to a part-based

representation: NMF will automatically extract localized and meaningful features from the data set.

∗. The author is a postdoctoral researcher with the fonds de la recherche scientifique-FNRS (F.R.S.-FNRS). This text

presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State,
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c©2012 Nicolas Gillis.



GILLIS

The most famous illustration of such a decomposition is when the columns of M represent facial

images for which NMF is able to extract common features such as eyes, noses and lips (Lee and

Seung, 1999); see Figure 8 in Section 6.

NMF has become a very popular data analysis technique and has been successfully used in

many different areas such as hyperspectral imaging (Pauca et al., 2006), text mining (Xu et al.,

2003), clustering (Ding et al., 2005), air emission control (Paatero and Tapper, 1994), blind source

separation (Cichocki et al., 2009), and music analysis (Févotte et al., 2009).

1.1 Geometric Interpretation of NMF

A very useful tool for understanding NMF better is its geometric interpretation. In fact, NMF is

closely related to a problem in computational geometry consisting in finding a polytope nested

between two given polytopes. In this section, we briefly recall this connection, which will be exten-

sively used throughout the paper.

Let (U,V ) be an exact NMF of M (that is, M =UV , U ≥ 0 and V ≥ 0), and let us assume that

no column of U or M is all zeros; otherwise they can be removed without loss of generality.

Definition 1 (Pullback map) Given an m-by-n nonnegative matrix X without all-zero column, D(X)
is the n-by-n diagonal matrix whose diagonal elements are the inverse of the !1-norms of the columns

of X:

D(X)ii = ||X:i||−1
1 =

(
m

∑
k=1

|Xki|

)−1

∀i, D(X)i j = 0 ∀ i )= j, (2)

and θ(X) = XD(X) is the pullback map of X so that θ(X) is column stochastic, that is, θ(X) is

nonnegative and its columns sum to one.

We have that (see Chu and Lin, 2008)

M =UV ⇐⇒ θ(M) = MD(M) =UD(U)
︸ ︷︷ ︸

θ(U)

D(U)−1V D(M)
︸ ︷︷ ︸

V ′

⇐⇒ θ(M) = θ(U)V ′,

where V ′ must be column stochastic since θ(M) and θ(U) are both column stochastic and θ(M) =
θ(U)V ′. Therefore, the columns of θ(M) are convex combinations (linear combinations with non-

negative weights summing to one) of the columns of θ(U). This implies that

conv(θ(M)) ⊆ conv(θ(U)) ⊆ ∆m, (3)

where conv(X) denotes the convex hull of the columns of matrix X , and ∆m = {x ∈ Rm | ∑m
i xi =

1,xi ≥ 0 1≤ i≤m} is the unit simplex (of dimension m−1). An exact NMF M =UV can then be ge-

ometrically interpreted as a polytope T = conv(θ(U)) nested between an inner polytope conv(θ(M))
and an outer polytope ∆m.

Hence finding the minimal number of nonnegative rank-one factors to reconstruct M ex-

actly is equivalent to finding a polytope T with minimum number of vertices nested be-

tween two given polytopes: the inner polytope conv(θ(M)) and the outer polytope ∆m.

This problem is referred to as the nested polytopes problem (NPP), and is then equivalent to com-

puting an exact nonnegative matrix factorization (Hazewinkel, 1984); see also Gillis and Glineur

(2012a) and the references therein. In the remaining of the paper, we will denote NPP(M) the NPP

instance corresponding to M with inner polytope conv(θ(M)) and outer polytope ∆m.
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Remark 2 The geometric interpretation can also be equivalently characterized in terms of cones,

see Donoho and Stodden (2003), for which we have

cone(M) ⊆ cone(U) ⊆ R
m
+,

where cone(X) = {x|x = Xa,a ≥ 0}. The geometric interpretation based on convex hulls from

Equation (3) amounts to the intersection of the cones with the hyperplane {x|∑xi = 1} (this is the

reason why zero columns of M and U need to be discarded in that case).

1.2 Uniqueness of NMF

There are several difficulties in using NMF in practice. In particular, the optimization problem

(1) is NP-hard (Vavasis, 2009), and typically only convergence to stationary points is guaranteed

by standard algorithms. There does not seem to be an easy way to go around this (except if the

factorization rank is very small, see Arora et al., 2012) since NMF problems typically have many

local minima.

Another difficulty is the non-uniqueness: even if one is given an optimal (or good) NMF (U,V )
of M, there might exist many equivalent solutions (UQ,Q−1V ) for non-monomial1 matrices Q with

UQ ≥ 0 and Q−1V ≥ 0, see Laurberg et al. (2008). Such transformations lead to different interpre-

tations, especially when the supports of U and V change. For example, in document classification,

each entry Mi j of matrix M indicates the ‘importance’ of word i in document j (for example, the

number of appearances of word i in text j). The factors (U,V ) of NMF are interpreted as follows:

the columns of U represent the topics (that is, bags of words) while the columns of V link the doc-

uments to these topics. The sparsity patterns of U and V are then a crucial characteristic since they

indicate which words belong to which topics and which topics is discussed by which documents.

Different approaches exist to obtain (more) well-posed NMF problems and most of them are

based on the incorporation of additional constraints into the NMF model, for example,

• Sparsity. Require the factors in NMF to be sparse. Under some appropriate assumptions, this

leads to a unique solution (Theis et al., 2005). Geometrically, requiring the matrix U to be

sparse is equivalent to requiring the vertices of the nested polytope conv(θ(U)) to be located

on the low-dimensional faces of the outer polytope ∆m, hence making the problem more well

posed. In practice, the most popular technique to obtain sparser solutions is to add sparsity

inducing penalty terms, such as a !1-norm penalty (Kim and Park, 2007) (see also Section 6).

Another possibility is to use a projection onto the set of sparse matrices (Hoyer, 2004).

• Minimum Volume. Require the polytope conv(θ(U)) to have minimum volume (Miao and

Qi, 2007; Huck et al., 2010; Zhou et al., 2011) which has a long history in hyperspectral

imaging (Craig, 1994). Again, this constraint is typically enforced using a proper penalty

term in the objective function. Volume maximization of conv(θ(U)) is also possible, leading

to a sparser factor U (since the columns of U will be encouraged to be on the faces of ∆m),

see Wang et al. (2010), which is essentially equivalent to performing volume minimization

for the matrix transpose. In fact, taking the polar of the three polytopes in Equation (3)

interchanges the role of the inner and outer polytopes, while the polar of conv(θ(M)) is given

by conv(θ(MT )), see Gillis (2011, Section 3.6).

1. A monomial matrix is a permutation of a diagonal matrix with positive diagonal elements.
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• Orthogonality. Require the columns of matrix U to be orthogonal (Ding et al., 2006). Geo-

metrically, it amounts to position the vertices of conv(θ(U)) on the low-dimensional faces of

∆m so that if one of the columns of θ(U) is not on a facet of ∆m (that is, Uik > 0 for some i,k),

then all the other columns of U must be on that facet (that is, Uip = 0 ∀p )= k). This condition

is rather restrictive, but proved successful in some situations, for example in clustering; see

Ding et al. (2005) and Pompili et al. (2011).

1.3 Outline of the Paper

In this paper, we address the problem of uniqueness and introduce a completely new approach to

make NMF problems more well posed, and obtain sparser solutions. Our technique is based on a

preprocessing of the input matrix M to make it sparser while preserving its nonnegativity and its

column space. The motivation is based on the geometric interpretation of NMF which shows that

sparser matrices will correspond to more well-posed NMF problems whose solutions are sparser.

In Section 2, we recall how sparsity of M makes the corresponding NMF problem more well

posed. In particular, we give a new result linking the support of M and the uniqueness of the

corresponding NMF problem. In Section 3, we introduce a preprocessing P (M) = MQ of M where

Q is an inverse-positive matrix, that is, Q has full rank and its inverse Q−1 is nonnegative. Hence,

if (U,V ′) is an NMF of P (M) with P (M) ≈ UV ′, then (U,V ′Q−1) is an NMF of M since M =
P (M)Q−1 ≈ UV ′Q−1 and V ′Q−1 ≥ 0. In Section 4, we prove some important properties of the

preprocessing; in particular that it is well-defined, invariant to permutation and scaling, and optimal

under the separability assumption of Donoho and Stodden (2003). Moreover, in the exact case for

rank-three matrices (that is, M = UV and rank(M) = 3), we show how the preprocessing can be

used to obtain an equivalent NMF problem with a finite number of solutions. In Section 5, we

address some practical issues of using the preprocessing: the computational cost, the rescaling of

the columns P (M) and the ability to dealing with sparse and noisy matrices. In Section 6, we present

some very promising numerical experiments on facial and hyperspectral image data sets.

2. Non-Uniqueness, Geometry and Sparsity

Let M ∈ R
m×n
+ and (U,V ) ∈ R

m×r
+ ×R

r×n
+ be an exact nonnegative matrix factorization of M =

UV . The minimum r such that such a decomposition exists is the nonnegative rank of M and

will be denoted rank+(M). If U is not full rank (that is, rank(U) < r), then the decomposition

is typically not unique. In fact, the convex combinations (given by V ≥ 0) cannot in general be

uniquely determined: the polytope T = conv(θ(U)) has r vertices while its dimension is strictly

smaller than r− 1 implying that any point in the interior of T can be reconstructed with infinitely

many convex combinations of the r vertices of T . However, if all columns of conv(θ(M)) are located

on k-dimensional faces of T having exactly k+ 1 vertices, then the convex combinations given by

V are unique (Sun and Xin, 2011).

In practice, it is therefore often implicitly assumed that rank+(M) = rank(M) = r hence

rank(U) = r (since U has r columns and spans the column space of M of dimension r); see the

discussion by Arora et al. (2012) and the references therein. In this situation, the uniqueness can be

characterized as follows:

Theorem 3 (Laurberg et al., 2008) Let (U,V ) ∈ R
m×r
+ × R

r×n
+ and M = UV with rank(M) =

rank(U) = r. Then the following statments are equivalent:
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(i) The exact NMF (U,V ) of M is unique (up to permutation and scaling).

(ii) There does not exist a non-monomial invertible matrix Q such that U ′ = UQ ≥ 0 and V ′ =
Q−1V ≥ 0.

(iii) The polytope conv(θ(U)) is the unique solution of NPP(M) with r vertices.

It is interesting to notice that the columns of M containing zero entries are located on the bound-

ary of the outer polytope ∆m, and these points must be on the boundary of any solution T of NPP(M).

Therefore, if M contains many zero entries, it is more likely that the set of exact NMF of M will

be smaller, since there is less degree of freedom to fill in the space between the inner and outer

polytopes. In particular, Donoho and Stodden (2003) showed that “requiring that some of the data

are spread across the faces of the nonnegative orthant, there is unique simplicial cone”, that is, there

is a unique conv(θ(U)).

In the following, based on the assumption that rank(M) = rank+(M), we provide a new unique-

ness result using the geometric interpretation of NMF and the sparsity pattern of M.

Lemma 4 Let M ∈ Rm×n with r = rank(M) = rank+(M), and M have no all-zero columns. If r

columns of θ(M) coincide with r different vertices of ∆m ∩ col(θ(M)), then the exact NMF of M is

unique.

Proof Let (U,V ) ∈ R
m×r
+ ×R

r×n
+ be such that M =UV . Since r = rank(M) = rank+(M), we must

have rank(U) = r and col(U) = col(M) (where col(X) denotes the column space of matrix X), hence

conv(θ(M))⊆ conv(θ(U))⊆ ∆m ∩ col(θ(M)).

Since r columns of θ(M) coincide with r vertices of ∆m ∩ col(θ(M)), we have that conv(θ(U)) =
conv(θ(M)) is the unique solution of NPP(M), and Theorem 3 allows to conclude.

In order to identify such matrices, it would be nice to characterize the vertices of ∆m∩col(θ(M))
based solely on the sparsity pattern of M. By definition, the vertices of ∆m ∩ col(θ(M)) are the

intersection of r−1 of its facets, and the facets of ∆m ∩ col(θ(M)) are given by

Fi = {x ∈ ∆m ∩ col(θ(M)) | xi = 0}.

Therefore, a vertex of ∆m ∩ col(θ(M)) must contain at least r−1 zero entries. However, this is not

a sufficient condition because some facets might be redundant, for example, if the ith row of M is

identically equal to zero (for which Fi = ∆m ∩ col(θ(M))) or if the ith and jth row of M are equal to

each other (for which Fi = Fj).

Lemma 5 A column of M containing r−1 zeros whose corresponding rows have different sparsity

patterns corresponds to a vertex of conv(θ(M))∩∆m.

Proof Let c be one of the columns of M with at least r−1 zeros corresponding to rows with different

sparsity patterns, that is, there exists J ⊆ {i | ci = 0} with |J |= r−1 such that the rows of M(J , :)
have different sparsity patterns. Let also Fk = {x | xJ (k) = 0} for 1 ≤ k ≤ r−1 denote the r−1 facets

with θ(c) ∈ Fk ∀k. To show that θ(c) is a vertex of conv(θ(M))∩∆m, it suffices to show that the
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r− 1 facets are not redundant: for all 1 ≤ k < p ≤ r− 1, there exist xk and xp in conv(θ(M))∩∆m

such that xk ∈ Fk,xk /∈ Fp and xp ∈ Fp,xp /∈ Fk. Because the rows of M(J , :) have different sparsity

patterns, for all 1 ≤ k < p ≤ r−1, there must exist two indices h and l such that M(J (k),h) = 0 and

M(J (p),h)> 0 while M(J (k), l)> 0 and M(J (p), l) = 0. Therefore, θ(M:h) ∈ Fk,θ(M:h) /∈ Fp and

θ(M:l) ∈ Fp,θ(M:l) /∈ Fk and the proof is complete.

Theorem 6 Let M ∈Rm×n with r = rank(M)= rank+(M). If M has r non-zero columns each having

r−1 zero entries whose corresponding rows have different sparsity patterns, then the NMF of M is

unique.

Proof This follows directly from Lemma 4 and 5.

Here is an example,

M =







0 1 1

0 0 1

1 0 0

1 1 0






,

with rank(M) = rank+(M) = 3 whose unique NMF is M = MI, where I is the identity matrix of

appropriate dimension. Other examples include matrices containing an r-by-r monomial submatrix;

see also Kalofolias and Gallopoulos (2012) and the references therein. It is interesting to notice that

this result implies that the only 3-by-3 rank-three nonnegative matrices having a unique exact NMF

are the monomial matrices (permutation and scaling of the identity matrix) since all other matrices

have at least two distinct exact NMF: M = MI = IM.

Finally, although sparsity is neither a necessary (see Remark 7 below) nor a sufficient condition

for uniqueness (except in some cases, see for example Theorem 6 or Donoho and Stodden, 2003),

the geometric interpretation of NMF shows that sparser matrices M lead to more well-posed NMF

problems. In fact, many points of the inner polytope in NPP(M) are located on the boundary of the

outer polytope ∆m. Moreover, because the solution T must contain these points, it will have zero

entries as well. In particular, assuming M does not contain a zero column, it is easy to check that

for M =UV we have

Mi j = 0 ⇒ ∃k such that Uik = 0.

Remark 7 Having many zero entries in M is not a necessary condition for having an unique NMF.

In fact, Laurberg et al. (2008) showed that there exist positive matrices with unique NMF. However,

for an NMF (U,V ) to be unique, the support of each column of U (resp. row of V ) cannot be

contained in the support of any another column (resp. row) so that each column of U (resp. row of

V ) must have at least one zero entry. In fact, assume the support of the kth column of U is contained

in the support of lth column. Then noting p̄ = argmin{p|U(p,k) )=0}
U(p,l)
U(p,k) , ε = U( p̄,l)

U( p̄,k) , and

Dkl =−ε, Dii = 1 ∀i, Di j = 0 otherwise,

one can check that D−1 is as follows

D−1
kl = ε, D−1

ii = 1 ∀i, D−1
i j = 0 otherwise,

that is D−1 ≥ 0. Therefore (UD,D−1V ) is an equivalent NMF with a different sparsity pattern since

(UD):l =UD:l =U:l − εU:k ≥ 0, and Up̄l > 0 while (UD) p̄l = 0.
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3. Preprocessing for More Well-Posed and Sparser NMF

In this section, we introduce a completely new approach to obtain more well-posed NMF problems

whose solutions are sparser. As it was shown in the previous paragraph, this can be achieved by

working with sparser nonnegative matrices. Hence, we look for an n-by-n matrix Q such that MQ =
M′ is nonnegative, sparse and Q is inverse-positive. In other words, we would like to solve the

following problem:

min
Q∈Rn×n

||MQ||0 such that MQ ≥ 0 and Q−1 ≥ 0, (4)

where ||X ||0 is the !0-‘norm’ which counts the number of non-zero entries in X . Assuming we can

solve (4) and obtain a matrix M′ = MQ, then any NMF (U,V ′) of M′ with M′ ≈UV ′ gives a NMF

for M. In fact,

M = M′Q−1 ≈ UV ′Q−1 = UV, where V =V ′Q−1 ≥ 0,

for which we have

||M−UV ||F = ||M′Q−1 −UV ′Q−1||F = ||(M′ −UV ′)Q−1||F ≤ ||M′ −UV ′||F ||Q−1||2.

In particular, if the NMF of M′ is exact, then we also have an exact NMF for M = M′Q−1 =
UV ′Q−1 = UV . The converse direction, however, is not always true. We return to this point in

Section 4.3.

In the remaining of this section, we propose a way to finding approximate solutions to problem

(4). First, we briefly review some properties of inverse-positive matrices (Section 3.1) in order to

deal with the constraint Q−1 ≥ 0. Then, we replace the !0-‘norm’ with the !2-norm and solve the

corresponding optimization problem using constrained linear least squares (Section 3.2).

3.1 Inverse-Positive Matrices

In this section, we recall the definition of three types of matrices: Z-matrices, M-matrices and

inverse-positive matrices, briefly recall how they are related and provide some useful properties.

We refer the reader to the book of Berman and Plemmons (1994) and the references therein for

more details on the subject.

Definition 8 An n-by-n Z-matrix is a real matrix with non-positive off-diagonal entries.

Definition 9 An n-by-n M-matrix is a real matrix of the following form:

A = sI −B, s > 0, B ≥ 0,

where the spectral radius2 ρ(B) of B satisfies s ≥ ρ(B).

It is easy to see that an M-matrix is also a Z-matrix.

Definition 10 An n-by-n matrix Q is inverse positive if and only if Q−1 exists and Q−1 is nonnega-

tive. We will denote this set I P n:

I P n = {Q ∈ R
n×n | Q is full rank and Q−1 ≥ 0}.

2. The spectral radius ρ(B) of a n-by-n matrix B is the supremum among all the absolute values of the eigenvalues of B:

ρ(B) = maxi |λi(B)|.
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It can be shown that inverse-positive Z-matrices are M-matrices:

Theorem 11 (Berman and Plemmons 1994, Theorem 2.3) Let A be a Z-matrix. Then the follow-

ing conditions are equivalent :

• A is an invertible M-matrix.

• A = sI −B with B ≥ 0, s > ρ(B).

• A ∈ I P n.

Here is another well-known theorem in matrix theory which will be useful, see Taussky (1949)

and the references therein.

Definition 12 An n-by-n matrix A is irreducible if and only if there does not exist an n-by-n permu-

tation matrix P such that

PT AP =

(

B C

0 D

)

,

where B and D are square matrices.

Definition 13 An n-by-n matrix A is irreducibly diagonally dominant if A is irreducible,

|Aii|≥ ∑
k )=i

|Aki|, for i = 1,2, . . . ,n,

and the inequality is strict for at least one i.

Theorem 14 If A is irreducibly diagonally dominant, then A is nonsingular.

3.2 Constrained Linear Least Squares Formulation for (4)

The !0-‘norm’ is of combinatorial nature and typically leads to intractable optimization problems.

The standard approach is to use the !1-norm instead but we propose here to use the !2-norm. The

reason is twofold:

• When looking at the structure of problem (4), we observe that any (reasonable) norm will

induce solutions with zero entries. In fact, some of the constraints MQ ≥ 0 will always be

active at optimality because of the objective function ||MQ||.

• The !2-norm is smooth hence its optimization can be performed more efficiently.3

We then would like to solve

min
Q∈I P n

||MQ||2F such that MQ ≥ 0. (5)

Optimizing over the set of inverse-positive matrices I P n seems to be very difficult. At least, de-

scribing I P n explicitly as a semi-algebraic set requires about n2 polynomial inequalities of degree

3. Because of the constraint MQ ≥ 0, the !1-norm problem can actually be decoupled into n linear programs (LP) in

n variables and m+ n constraints, and can be solved effectively. However, in the noisy case (cf. Section 5.3), we

would need to introduce mn auxiliary variables (one for each term of the objective function) which turns out to be

impractical.
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up to n, each with up to n! terms. However, we are not aware of a rigorous analysis of the complexity

of this type of problems; this is a topic for further research.

For this reason, we will restrict the search space to the subset of Z-matrices, that is, inverse-

positive matrices of the form Q = sI −B, where s is a nonnegative scalar, I is the identity matrix

of appropriate dimension and B is a nonnegative matrix such that ρ(B) < s, see Section 3.1. It is

important to notice that

• The scalar s cannot be chosen arbitrarily. In fact, making s go to zero and B = 0, the objective

function value goes to zero, which is optimal for (5). The same degree of freedom is in fact

present in the original problem (4) since Q and αQ for any α > 0 are equivalent solutions.

Therefore, without loss of generality, we fix s to one .

• The diagonal entries of B cannot be chosen arbitrarily. In fact, taking B arbitrarily close (but

smaller) to the identity matrix, the infimum of (5) will be equal to zero. We then have to set an

upper bound (smaller than one) for the diagonal entries of B. It can be checked that this upper

bound will always be attained (because of the minimization), and that the optimal solutions

corresponding to different upper bounds will be multiples of each other. We therefore fix the

bound to zero implying Bii = 0 for all i so that Qii = 1 for all i.

Finally, we would like to solve

min
Q∈Q n

||MQ||2F such that MQ ≥ 0,

where

Q n = {Q ∈ R
n×n | Q = I −B,B ≥ 0,Bii = 0 ∀i,ρ(B)< 1}⊂ I P n.

Since MQ = M(I −B)≥ 0, this problem is equivalent to

min
B∈Rn×n

n

∑
i=1

∥
∥
∥M:i −∑

k )=i

M:kBki

∥
∥
∥

2

2

such that M ≥ MB, (6)

ρ(B)< 1,

Bii = 0 ∀i, B ≥ 0.

Without the constraint on the spectral radius of B, this is a constrained linear least squares problem

(CLLS) in O(n2) variables and O(n2 +mn) constraints. The ith column of M′ = MQ, which is the

preprocessed version of M, will then be given by the following linear combination

M′
:i = MQ:i = M:i −

n

∑
k=1

M:kBki ≥ 0, where Bki ≥ 0 ∀i,k and Bii = 0. (7)

This means that we will subtract from each column of M a nonnegative linear combination of the

other columns of M in order to maximize its sparsity while keeping its nonnegativity. Intuitively,

this amounts to keeping only the non-redundant information from each column of M (see Section 6

for some visual examples).
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3.2.1 RELAXING THE CONSTRAINT ON THE SPECTRAL RADIUS

In general, there is no easy way to deal with the non-convex constraint ρ(B) < 1. In particular,

this constraint may lead to difficult optimization problems, for example, finding the nearest stable

matrix to an unstable one:

min
X

||X −A|| such that ρ(X)≤ 1,

see Polyak and Shcherbakov (2005) and the references therein. This means that even the projection

on the feasible set is non-trivial.

However, we will prove in Section 4 that if the columns of M are not multiples of each other,

then any optimal solution of problem (6) without the constraint on the spectral radius of B, that is,

any optimal solution B∗ of

min
B∈Rn×n

+

n

∑
i=1

∥
∥
∥M:i −∑

k )=i

M:kBki

∥
∥
∥

2

2
such that M ≥ MB, Bii = 0 ∀i, (8)

automatically satisfies ρ(B∗) < 1 (Theorem 21). Hence, the approach may only fail when there

are repetitions in the data set. The reason is that when a column is multiple of another one, say

M:i = αM: j for i )= j and α > 0, then taking Bi j = α (0 otherwise for that column) gives MQ:i =
M:i−αM: j = 0 and similarly for M: j. Hence we have lost a component in our data set and potentially

produce a lower rank matrix MQ. In practice, it will be important to make sure that the columns of

M are not multiples of each other (even though it is usually not the case for well-constructed data

sets).

4. Properties of the Preprocessing

In the remainder of the paper, we denote B∗(M) the set of optimal solutions of problem (8) for the

data matrix M, and P the preprocessing operator defined as

P : Rm×n
+ → R

m×n
+ : M 3→ P (M) = M(I −B∗), where B∗ ∈ B∗(M).

In this section, we prove some important properties of P and B∗(M):

• The preprocessing operator P is well-defined (Theorem 15).

• The preprocessing operator P is invariant to permutation and scaling of the columns of M

(Lemma 16).

• If the columns of θ(M) are distinct, then ρ(B∗)< 1 for any B∗ ∈ B∗(M) (Theorem 21).

• If the vertices of conv(θ(M)) are distinct then

– There exists B∗ ∈ B∗(M) such that ρ(B∗)< 1 (Corollary 22).

– rank(P (M)) = rank(M) and rank+(P (M))≥ rank+(M) (Corollary 19).

• If the matrix M is separable, then the preprocessing allows to recover a sparse and optimal

solution of the corresponding NMF problem (Theorem 24). In particular, it is always optimal

for rank-two matrices (Corollary 25).

• If the matrix has rank-three, then the preprocessing yields an instance in which the number of

solutions of the exact NMF problem is finite (Theorem 29).
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4.1 General Properties

A crucial property of our preprocessing is that it is well-defined.

Theorem 15 The preprocessing P (M) is well-defined: for any B∗
1 ∈ B∗(M),B∗

2 ∈ B∗(M), we have

M(I −B∗
1) = M(I −B∗

2) = P (M).

Proof Problem (8) can be decoupled into n independent CLLS (one for each column of M) of the

form:

min
b∈Rn−1

+

‖d −Cb‖2 such that Cb ≤ d, (9)

which is equivalent to

min
b∈Rn−1

+ ,y∈Rm
‖d − y‖2 such that y ≤ d,y =Cb.

The result follows from the fact that the !2 projection onto a polyhedral set (actually any convex set)

yields a unique point.

Another important property of the preprocessing is its invariance to permutation and scaling of

the columns of M.

Lemma 16 Let M be a nonnegative matrix and P be a monomial matrix. Then, P (MP) = P (M)P.

Proof We are going to show something slightly stronger; namely that B∗ is an optimal solution of

(8) for matrix M if and only if P−1B∗P is an optimal solution of (8) for matrix MP:

B∗ ∈ B∗(M) ⇐⇒ P−1B∗P ∈ B∗(MP).

First, note that B is a feasible solution of (8) for M if and only if P−1BP is a feasible solution of

(8) for MP. In fact, nonnegativity of B and its diagonal zero entries are clearly preserved under

permutation and scaling while

M ≥ MB ⇐⇒ MP ≥ MBP ⇐⇒ MP ≥ (MP)(P−1BP).

Hence there is one-to-one correspondence between feasible solutions of (8) for M and (8) for MP.

Then, let B∗ be an optimal solution of (8). Because (8) can be decoupled into n independent

CLLS’s, one for each column of B (cf. Equation (9)), we have

||M:i −MB∗
:i||22 ≤ ||M:i −MB:i||22, ∀i,

for any feasible solution B of (8). Letting p ∈ Rn
+ be such that pi is equal to the non-zero entry of

the ith row of P, we have

∑
i

p2
i ||M:i −MB∗

:i||22 = ∑
i

||M:i pi −MPP−1B∗
:i pi||22

= ||MP−MPP−1B∗P||2F
≤ ∑

i

p2
i ||M:i −MB:i||22 = ||MP−MPP−1BP||2F ,
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for any feasible solution B′ = P−1BP of (8) for MP. This proves B∗ ∈B∗(M)⇒P−1B∗P∈B∗(MP).
The other direction follows directly by using the permutation P−1 on the matrix MP.

It is interesting to observe that if a column of M belongs to the convex cone generated by the

other columns, then the corresponding column of P (M) is equal to zero.

Lemma 17 Let J = {1,2, . . . ,n}\{i}. Then P (M):i = 0 if and only if M:i ∈ cone(M(:,J )).

Proof We have that

P (M):i = M:i −∑
k )=i

B∗
kiM:k = 0, B∗

ki ≥ 0 ⇐⇒ M:i = ∑
k )=i

B∗
kiM:k, B∗

ki ≥ 0.

The preprocessed matrix P (M) may contain all-zero columns, for which the function θ(.) is

not defined (cf. Definition 1). We extend the definition to matrices with zero columns as follows:

θ(X) is the matrix whose columns are the normalized non-zero columns of X , that is, letting Y

be the matrix X where the non-zero columns have been removed, we define θ(X) = θ(Y ). Hence

conv(θ(X)) denotes the convex hull of the normalized non-zero columns of X .

Another straightforward property is that the preprocessing can only inflate the convex hull de-

fined by the columns of θ(M).

Lemma 18 Let M ∈ R
m×n
+ . If the vertices of conv(θ(M)) are non-repeated, then

conv(θ(M)) ⊆ conv(θ(P (M))) ⊆ ∆m ∩ col(θ(M)).

Proof By construction, since P (M) = MQ, col(θ(P (M))) ⊆ col(θ(M)) and conv(θ(P (M))) ⊆
∆m ∩ col(θ(M)). Let i be the index corresponding to a vertex of θ(M) and J = {1,2, . . . ,n}\{i}.

Because vertices of θ(M) are non-repeated, we have M:i /∈ conv(θ(M(:,J ))), while

P (M):i = M:i −∑
k )=i

bkiM:k ⇐⇒ M:i = P (M):i +∑
k )=i

bkiM:k.

Hence M:i ∈ conv(θ([P (M):i M(:,J )])), which implies that

conv(θ(M))⊆ conv(θ([P (M):i M(:,J )])),

so that replacing M:i by P (M):i extends conv(θ(M)). Since this holds for all vertices, the proof is

complete.

Corollary 19 Let M ∈ R
m×n
+ . If no column of M is multiple of another column, then

rank(P (M)) = rank(M) and rank+(P (M))≥ rank+(M).
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Proof Without loss of generality, we can assume that M does not have a zero column. In fact,

a preprocessed zero column remains zero while it cannot influence the preprocessing of the other

columns (see Equation (7)). Then, by Lemma 18, we have

conv(θ(M)) ⊆ conv(θ(P (M))) ⊆ ∆m ∩ col(θ(M)),

implying rank+(P (M))≥ rank+(M) and rank(P (M)) = rank(M).
Another way to prove this result is to use Corollary 22 (see below) guaranteeing the existence

of an inverse-positive matrix Q such that P (M) = MQ which implies rank(P (M)) = rank(M).
Moreover, any exact NMF (U,V ) ∈ Rm×r ×Rr×n of P (M) gives M = UV Q−1 hence rank+(M) ≤
rank+(P (M)).

We now prove that if no column of M is multiple of another column (that is, the columns of

θ(M) are distinct) then ρ(B∗) < 1 for any B∗ ∈ B∗(M) whence Q = I −B∗ is an inverse positive

matrix.

Lemma 20 Let A be a column stochastic matrix and Q = I−B where B ≥ 0 and Bii = 0 for all i be

such that AQ ≥ 0. Then,

∑
k

Bki ≤ 1, ∀i,

so that Q is diagonally dominant. Moreover, if A:i /∈ conv(A(:,J )) where J = {1,2, . . . ,n}\{i}, then

∑
k

Bki < 1.

Proof By assumption, we have for all i

A:i ≥ AB:i = ∑
k

A:kBki,

which implies

1 = ||A:i||1 ≥ ||AB:i||1 = ||∑
k

A:kBki||1 = ||B:i||1 = ∑
k

Bki,

because A and B are nonnegative. Moreover, if A:i /∈ conv(A(:,J )), then there exists at least one

index j such that A ji > A j:B:i (Lemma 17) so that the above inequality is strict.

Theorem 21 If no column of M is multiple of another column, then any optimal solution B∗ of (8)

satisfies ρ(B∗)< 1 whence Q = I −B∗ is inverse positive.

Proof By Theorem 11, ρ(B∗) < 1 if and only if Q = I −B∗ is inverse positive if and only if Q is

a nonsingular M-matrix. Let us then show that Q is a nonsingular M-matrix. First, we can assume

without loss of generality that

• Matrix M does not contain a column equal to zero. In fact, if M does, say the first column

is equal to zero, then we must have B:1 = 0 (since M:1 ≥ MB:1 and there is not other zero

column in M). The matrix Q is then a nonsingular M-matrix if and only if Q(2:n,2:n) is.
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• The columns of M sum to one. In fact, letting P = D(M) be defined as in Equation (2), by

Lemma 16, B∗ is an optimal solution for M if and only if P−1B∗P is an optimal solution for

MP. Since B∗ and P−1B∗P share the same eigenvalues, ρ(B∗)< 1 ⇐⇒ ρ(P−1B∗P)< 1.

• Let B ∈ B∗(M), Q = I −B∗, and P be a permutation matrix such that

PT QP =










Q(1) Q(12) Q(13) . . . Q(1k)

0 Q(2) Q(23) . . . Q(2k)

0 0 Q(3) . . . Q(3k)

... . . .
. . .

. . .
...

0 . . . . . . 0 Q(k)










= I −










B(1) B(12) B(13) . . . B(1k)

0 B(2) B(23) . . . B(2k)

0 0 B(3) . . . B(3k)

... . . .
. . .

. . .
...

0 . . . . . . 0 B(k)










,

where Q(i) are irreducible for all i. Without loss of generality, by Lemma 16, we can then

assume that Q has this form.

In the following we show that Q(p) is nonsingular for each 1≤ p≤ k hence Q is. By Theorem 14,

if Q(p) is irreducibly diagonally dominant, then Q(p) is nonsingular and the proof is complete. We

already have that Q(p) is irreducible for 1 ≤ p ≤ k. Let Ip denote the index set such that Q(p) =
Q(Ip, Ip). We have M(Ip, :) is column stochastic, and

P (M)(Ip, :) = M(Ip, :)−
p−1

∑
l=1

M(Il, :)B
(l p)−M(Ip, :)B

(p) ≥ 0,

implying that M(Ip, :)≥ M(Ip, :)B(p). Moreover the columns of M(Ip, :) are distinct so that there is

at least one which does not belong to the convex hull of the others. Hence, by Lemma 20, Q(p) is

irreducibly diagonally dominant.

Corollary 22 Let M ∈ R
m×n
+ . If the vertices of conv(θ(M)) are non-repeated, then there exists an

optimal solution B∗ ∈ B∗(M) such that ρ(B∗)< 1, that is, such that Q= I−B∗ is an inverse-positive

matrix.

Proof Let us show that there exists an optimal solution such that Q is a nonsingular M-matrix.

First, by Lemma 20, Q is diagonally dominant implying ρ(B) ≤ 1 so that Q is an M-matrix (cf.

Theorem 21). We can assume without loss of generality that the r first columns of M correspond to

the vertices of conv(θ(M)). This implies that there exists an optimal solution B∗ ∈ B∗(M) such that

Q =

(

Q1 Q12

0 I

)

= I −
(

B∗
1 B∗

12

0 0

)

, where Q1,B
∗
1 ∈ R

r×r and Q12,B
∗
12 ∈ R

r×(n−r).
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In fact, by assumption, the last columns of M belong to the convex cone of the r first ones and can

then be set to zero (which is optimal) using only the first r columns (cf. Lemma 17). Lemma 20

applies on matrix Q1 and M(:,1:r) since

MQ(:,1:r) = M(:,1:r)−M(:,1:r)B∗
1 ≥ 0,

while by assumption no column of M(:,1:r) belong to the convex hull of the other columns, so that

Q1 is strictly diagonally dominant hence is a nonsingular M-matrix.

Finally, what really matters is that the vertices of conv(θ(M)) are non-repeated. In that case,

the preprocessing is unique and the preprocessed matrix has the same rank as the original one. The

fact that Q could be singular is not too dramatic. In fact, given an NMF (U,V ′) of the preprocessed

matrix P (M) = MQ ≈UV ′, we can obtain the optimal factor V for matrix M by solving the nonneg-

ative least squares problem V = argminX≥0 ||M−UX ||2F (instead of taking V = V ′Q−1) and obtain

M ≈UV .

4.2 Recovery Under Separability

A nonnegative matrix M is called separable if it can be written as M = UV where U ∈ R
m×r
+ ,

V ∈R
r×n
+ , and for each i= 1, . . . ,r there is some column f (i) of V that has a single nonzero entry and

this entry is in the ith row, that is, V contains a monomial submatrix. In other words, each column

of U appears (up to a scaling factor) as a column of M. Arora et al. (2012) showed that the NMF

problem corresponding to a separable nonnegative matrix can be solved in polynomial time (while

NMF is NP-hard in general; see Introduction). In this section, we show that the preprocessing is able

to solve this problem while generating a sparser solution than the one obtained with the algorithm

of Arora et al. (2012). We refer the reader to Gillis and Vavasis (2012) and the references therein

for more details about NMF algorithms for separable matrices.

It is worth noting that the separability assumption is equivalent to the pure-pixel assumption in

hyperspectral imaging (for each constitutive material present in the image, there is at least one pixel

containing only that material), see Craig (1994), or, in document classification, to the assumption

that, for each topic, there is at least one document corresponding only to that topic (or, considering

the matrix transpose, that there is at least one word corresponding only to that topic, see Arora et al.,

2012). Geometrically, separabilty means that the vertices of conv(θ(M)) are given by the columns

of θ(U). We have the following straightforward lemma:

Lemma 23 M =UV is separable (that is, U ≥ 0, V ≥ 0 and V contains a monomial submatrix) if

and only if conv(θ(M)) = conv(θ(U)).

Proof M =UV where U ≥ 0, V ≥ 0 and V contains a monomial submatrix if and only if the vertices

of θ(U) and θ(M) coincide if and only if conv(θ(M)) = conv(θ(U)).

Theorem 24 If M is separable and the r vertices of θ(M) are non-repeated, then P (M) has r non-

zero columns, say S:1,S:2, . . .S:r, such that conv(θ(M))⊆ conv(θ(S)), that is, there exists R ≥ 0 such

that M = SR.

3363



GILLIS

Proof This is a consequence of Lemmas 17, 18 and 23.

Theorem 24 shows that the preprocessing is able to identify the r columns of M =UV corresponding

to the vertices of θ(M). Moreover, it returns a sparser matrix S, namely P (U), whose cone contains

the columns of M. Remark also that Theorem 24 does not require M to be full rank: the dimension

of conv(θ(M)) can be smaller than r−1.

Corollary 25 For any rank-two nonnegative matrix M whose columns are not multiples of each

other, P (M) has only two non-zero columns, say S:1 and S:2 such that conv(θ(M)) ⊆ conv(θ(S)),
that is, there exists R ≥ 0 such that M = SR. In other words, the preprocessing technique is optimal

as it is able to identify an optimal nonnegative basis for the NMF problem corresponding to the

matrix M.

Proof A rank-two nonnegative matrix is always separable. In fact, a two-dimensional pointed cone

is always spanned by two extreme vectors. In particular, rank(M) = 2 ⇐⇒ rank+(M) = 2 (Thomas,

1974).

Example 1 Here is an example with a rank-three separable matrix

M =





5 5 5 5 9 1 4 1 7 7

10 6 5 3 7 8 4 1 5 8

8 9 9 4 7 8 3 9 6 7





T 



1 0 0 2 3 6 4 4

0 1 0 5 7 7 7 4

0 0 1 9 4 4 8 6



 . (10)

Its (rounded) preprocessed version is given by

P (M) =





3.6 3.9 3.9 4.3 7.6 0 3.3 0.5 5.9 5.7
6.3 2.5 1.6 0 1.5 6.5 1.5 0 0.7 3.4
0.8 2.4 2.7 0.7 0.7 1.8 0 4.2 0.9 0.6





T

(

I3 03×5

)

,

where I3 is the 3-by-3 identity matrix and 03×5 is the 3-by-5 all-zero matrix. Figure 1 shows the

geometric interpretation of the preprocessing.

4.3 Uniqueness and Robustness Through Preprocessing

A potential drawback of the preprocessing is that it might increase the nonnegative rank of M. In

this section, we show how to modulate the preprocessing to prevent this behavior.

Let us define

P α(M) = M(I −αB∗) = M−αMB∗,

where 0 ≤ α ≤ 1 and B∗ ∈ B∗(M). Notice that P α(M) is well-defined because for any B∗
1,B

∗
2 ∈

B∗(M) we have MB∗
1 = MB∗

2; see Theorem 15.

Lemma 26 Let M be a nonnegative matrix such that the vertices of conv(θ(M)) are non-repeated.

Then, for any 0 ≤ α ≤ β ≤ 1,

conv(θ(M))⊆ conv(θ(P α(M)))⊆ conv(θ(P β(M)))⊆ col(θ(M))∩∆m.

Therefore,

rank+(M)≤ rank+(P
α(M))≤ rank+(P

β(M)).
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Figure 1: Geometric interpretation of the preprocessing of matrix M from Equation (10).

Proof The proof can be obtained by following exactly the same steps as the proof of Lemma 18.

Lemma 27 Let M be a nonnegative matrix such that the vertices of conv(θ(M)) are non-repeated,

then the supremum

ᾱ = sup
0≤α≤1

α such that rank+(P
α(M)) = rank+(M) (11)

is attained.

Proof We can assume without loss of generality that M does not have all-zero columns. In fact, if

M:i = 0 for some i then P α(M):i = 0 for all α ∈ [0,1] so that the nonnegative rank of P α(M) is not

affected by the zero columns of M.

Then, if ᾱ = 1, the proof is complete. Otherwise, one can easily check that, for any 0 ≤ ᾱ < 1,

we have P ᾱ(M):i )= 0 ∀i (using a similar argument as in Lemma 17).

Finally, the result follows from the upper-semicontinuity of the nonnegative rank (Bocci et al.,

2011, Theorem 3.1): ‘If P is a nonnegative matrix, without zero columns and with rank+(P) = k,

then there exists a ball B(P,ε) centered at P and of radius ε > 0 such that rank+(N) ≥ k for all

N ∈ B(P,ε)’. Therefore, if the supremum of (11) was not attained, the matrix Pᾱ(M) would sat-

isfy rank+(Pᾱ(M)) > rank+(M) while for any α < ᾱ we would have rank+(Pα(M)) = rank+(M),
a contradiction.

Hence working with matrix P ᾱ(M) instead of M will reduce the number of solutions of the

NMF problem while preserving the nonnegative rank:

Theorem 28 Let M be a nonnegative matrix for which the vertices of conv(θ(M)) are non-repeated,

let also ᾱ be defined as in Equation (11). Then any exact NMF (U,V ) of P ᾱ(M) corresponds to an
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exact NMF (U,V Q−1) of M, while the converse is not true. In fact,

conv(θ(M))⊆ conv(θ(P ᾱ(M))).

Therefore, the NMF problem for P ᾱ(M) is more well posed.

Proof This follows directly from the definition of ᾱ, and Lemmas 26 and 27.

We now illustrate Corollary 28 on a simple example, which will lead to three other important

results.

Example 2 (Nested Squares) Let

M =







5 3 3 5

3 5 5 3

5 5 3 3

3 3 5 5






.

The problem NPP(M) restricted to the column space of M is made up of two nested squares,

conv(θ(M)) and col(θ(M))∩∆m, centered at (0,0) with side length 2 and 8 respectively, see Fig-

ure 2. The polygon corresponding to P α(M) is a square centered at (0,0) with side length depend-

ing on α, between 2 (for α = 0) and 8 (for α = 1). We can show that the largest such square still

included in a triangle corresponds to

P ᾱ(M) = P ᾱ







5 3 3 5

3 5 5 3

5 5 3 3

3 3 5 5







=
1

a







1+a 1−a 1−a 1+a

1−a 1+a 1+a 1−a

1+a 1+a 1−a 1−a

1−a 1−a 1+a 1+a






, (12)

where a =
√

2−1 and ᾱ = 4a−1
3a (this follows from the proof of Theorem 29; see below). Hence, the

polygon conv(θ(P ᾱ(M))) is a square centered at (0,0) with side length 8a in between conv(θ(M))
and col(θ(M))∩∆m, see Figure 2. Unfortunately, the exact NMF of P ᾱ(M) is non-unique. In fact,

we will see later that it has 8 solutions (the ones drawn on Figure 2 and their rotations).

Example 2 illustrates the following three important facts:

Fact 1. Defining a well-posed NMF problem is not always possible. In other words, there does

not exist any ‘reasonable’ NMF formulation having always a unique solution (up to permutation

and scaling). In fact, Example 2 shows that, because of the symmetry of the problem, any solution

of NPP(M) can be rotated by 90, 180 or 270 degrees to obtain a different solution with exactly

the same characteristics (the rotated solutions cannot be distinguished in any reasonable way). For

example, there are 4 solutions which are the sparsest, each containing one vertex of col(θ(M))∩∆m,

see conv(θ(U2)) on Figure 2, including

U2 =







1 a 0

0 1−a 1

a 1 0

1−a 0 1






, and U

(180)
2 =







0 1−a 1

1 a 0

1−a 1 1

a 0 0






,
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Figure 2: Geometric interpretation of the preprocessing of matrix M from Equation (12).

where U
(180)
2 is the rotation of 180 degrees of U2.

Fact 2. The preprocessing makes NMF more robust. For any m-by-n matrix E such that col(E) ⊆
col(M), M+E ≥ 0, and

conv(θ(M))⊆ conv(θ(M+E))⊆ conv(P ᾱ(M)),

the exact NMF (U,V ) of P ᾱ(M) will still provide an optimal factor U for the perturbed matrix

M +E. In particular, if the matrix M is positive, then one can show that4 conv(θ(M)) is strictly

contained in conv(P ᾱ(M)) (given that ᾱ > 0) so that any sufficiently small perturbation E with

col(E)⊆ col(M) will satisfy the conditions above.

In Example 2, the vertices of M can be perturbed and, as long as they remain inside the square

defined by conv(P ᾱ(M)) (see Figure 2), the exact NMF of conv(P ᾱ(M)) will provide an exact

NMF for the perturbed matrix M. (More precisely, any matrix E such that col(E) ⊆ col(M) and

maxi, j |Ei j|≤
√

2−1 will satisfy conv(θ(M+E))⊆ conv(P ᾱ(M)).)
Fact 3. The preprocessing makes the NMF problem more well-posed. In Example 2, even though

the NMF of P ᾱ(M) is non-unique, the set of solutions has been drastically reduced: from a two-

dimensional space to a zero-dimensional one containing eight points: conv(θ(U1)), conv(θ(U2))
and the corresponding rotated solutions, see Figure 2.

Theorem 29 Let M ∈ R
m×n
+ be such that rank(M) = rank+(M) = 3 and let ᾱ be defined as in

Equation (11). Assume also that conv(θ(P (M))) has at least four vertices. Then the number of

solutions of NPP(P ᾱ(M)) with three vertices is smaller than m+n.

Proof Let P and Q denote the outer and inner polygons of NPP(P ᾱ(M)), respectively. Let us also

parametrize the boundary of the outer polygon P with the parameter t ∈ [0,1] and the function

x : R+ → R
2 : t 3→ x(t) ∈ P,

4. Using the same ideas as in Lemma 18 and the fact that any preprocessed column must contain at least one zero entry.
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where x is a continuous function with x(0) = x(1) and {x(t) | t ∈ [0,1]} is equal to the boundary of

P. We also define the function x for values of t larger than one using x(t) = x(t −6t7) where 6t7 is

the largest integer not exceeding t. Using the construction of Aggarwal et al. (1989), we define the

function fk : R+ → R+ : t 3→ fk(t) as follows. Let t1 ∈ [0,1) and x(t1) be the corresponding point

on the boundary of P. From x(t1), we can trace the tangent to Q (that is, Q is on one side of the

tangent, and the tangent touches Q), say in the clock-wise direction, intersect it with P and hence

obtain a new point x(t2) on the boundary P (see Figure 3 for an illustration on the nested squares

problem). We assume without loss of generality that t2 ≥ t1 (if t2 happens to be larger than one, we

Figure 3: Mapping of the point x(t1) to x(t4) using the construction of Aggarwal et al. (1989).

do not round it down with the equivalent value t2 −6t27). Starting from x(t2), we can use the same

procedure to obtain x(t3) and we apply this procedure k times to obtain the point x(tk+1), where

tk+1 ≥ · · ·≥ t2 ≥ t1. Finally, we define fk(t1) = tk+1.

Aggarwal et al. (1989) showed that x(t1) can be taken as a vertex of a feasible solution of

NPP(P ᾱ(M)) with k vertices if and only if fk(t1) = tk+1 ≥ t1 + 1, that is, we were able to turn

around Q inside P in k + 1 steps (in fact, x(t1), x(t2), . . . , and x(tk) are the vertices of a feasible

solution).

Aggarwal et al. (1989) also showed that the function fk is continuous, non-decreasing, and

depends continuously on the vertices of Q (see also Appendix A). Figure 4 displays the function f4

for the nested squares (Example 2).

If col(θ(M))∩∆m has three vertices, then ᾱ = 1. In fact, we have that

θ(P α(M))⊆ col(θ(M))∩∆m for any 0 ≤ α ≤ 1,
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Figure 4: Function f4(t) for Example 2 using the construction of Aggarwal et al. (1989) (see also

Figure 4 and Appendix A). We only plot the function f4 in the interval [0, 1
8 ] because, by

symmetry, f4(x+
1
8) = f4(x)+

1
8 .

implying rank+(P α(M)) = 3 for all 0 ≤ α ≤ 1. Moreover, because θ(P α(M)) has at least four ver-

tices, col(θ(M))∩∆m is the unique solution of the corresponding NPP problem: the outer polygon

is a triangle while the inner polygon has at least four vertices which are located on the edges of the

outer triangle (since ᾱ = 1 and each column of P (M) contains at least one zero entry).

Let us then assume that col(θ(M))∩∆m has at least four vertices. We show that this implies

ᾱ < 1. Assume ᾱ = 1. The polygons P = col(θ(M))∩∆m and Q = θ(P (M)) have at least 4 vertices.

Moreover, the vertices of Q are located on the boundary of P (because ᾱ = 1) on at least two

different sides of P (three vertices cannot be on the same side). It can be shown by inspection that

the optimal solution of this NPP instance must have at least four vertices, hence rank+(P (M))> 3,

a contradiction.

Next, we show that f4(t) ≤ t + 1. Assume there exists t such that f4(t) > t + 1. By continuity

of f4 with respect to the vertices of Q = conv(θ(P ᾱ(M))), there exists ε > 0 sufficiently small

such that ᾱ+ ε < 1 and such that the function f ′4 for the NPP instance with inner polygon Q′ =
conv(θ(P ᾱ+ε(M))) and the same outer polygon P satisfies f4(t)> t+1 hence rank+(P ᾱ+ε(M))≤ 3,

a contradiction.

In Appendix A, we prove that fk is made up of pieces which are either constant or strictly

convex, with at most m+n break points corresponding to different solutions to the NPP. Therefore,

because f4 is continuous and smaller than t+1, it can intersect the line t+1 only at the break points.

Since there are at most m+ n such points corresponding to different NPP solutions, the number of

solutions of NPP(P ᾱ(M)) with three vertices is smaller than m+ n. (Notice that the bound is tight

for the nested squares example with 8 solutions.)
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Remark 30 If conv(θ(P (M))) has three vertices, they define a feasible solution for the correspond-

ing NPP problem (that is, P (M) is separable, see Theorem 23). However, the number of solutions

might be not be finite in that case. Here is an example

M =







0 0.5 0.25 0

1 0.5 0.75 1

1 0 0.1 0.5
0 1 0.9 0.5







and P (M) =







0 0.5 0 0

1 0.5 0.3 0.5
1 0 0 0

0 1 0.3 0.5






,

whose corresponding NPP problems are represented on Figure 5: the NPP of P (M) does not have

a finite number of solutions.

Figure 5: Counter-example for Theorem 29 when P (M) has three vertices.

The fact that the NPP of the matrix P ᾱ(M) can have several different solutions is untypical and,

we believe, could be due to the symmetry of the problem (as in Example 2). We conjecture that, in

general, the solution to NPP(P ᾱ(M)) is unique. In particular, we observed on randomly generated

matrices that it was, see Example 1. In fact, as the function fk(.) defined in Theorem 29 depends

continuously on the inner and outer polytopes Q and P, if these polytopes are generated randomly,

there is no reason for the values of the function fk(.) at the break points to be located on the same

line as on Figure 4.

We also conjecture that Theorem 29 holds true for any rank:

Conjecture 31 Let M be such that rank(M) = rank+(M) = k and conv(θ(P (M))) has at least

(k+1) vertices, and ᾱ be defined as in Equation (11), then the number of solutions of NPP(P ᾱ(M))
is finite.

Unfortunately, the geometric construction of Aggarwal et al. (1989) cannot be generalized to

three dimensions (or higher). To prove the conjecture, we would need to show that

• Any solution of NPP(P ᾱ(M)) is isolated. Intuitively, the preprocessing P ᾱ(M) of M grows

the inner polytope Q as long as the corresponding NPP instance has a solution with rank+(M)
vertices. If a solution was not isolated, it could be moved around while remaining feasible,

which indicates that we could grow the inner polytope Q hence increase ᾱ.
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• The number of isolated solutions is finite. We conjecture that the solutions can be character-

ized in terms of the faces of P and Q, which are finite (depending on m and n).

Remark 32 Of course computing ᾱ is non-trivial. However, for matrices of small rank, this could

be done effectively. In fact, checking whether the nonnegative rank of an m-by-n is equal to rank(M)
can be done in polynomial time in m and n provided that the rank is fixed (Arora et al., 2012). In

particular, the algorithm of Aggarwal et al. (1989) does it in O((m+n) log(min(m,n))) operations

for rank-three matrices (Gillis and Glineur, 2012a). Hence, one could for example use a bisection

method to find a good lower bound β ! ᾱ and use the corresponding matrix NPP(P β(M)) to have

a more well-posed NMF problem whose solutions will be solutions of the original one.

5. Preprocessing in Practice

In this section, we address three important practical considerations of the preprocessing.

5.1 Computational Complexity of Solving (8)

It is rather straightforward to check that problem (8) can be decoupled into n independent CLLS’s,

each corresponding to a different column of M; for example, for the ith column of M, we have

min
b∈Rn

+

||M:i −Mb||22 such that M:i ≥ Mb, bi = 0. (13)

We then have n CLLS’s with n variables (actually n−1 since variable bi = 0 can be removed) and

m+ n constraints. Using interior point methods, the computational complexity for solving (13) is

of the order of O(n3.5); hence the total computational cost is of the order O(n4.5).

Figure 6 shows the computational time needed for solving (8) with respect to m for n fixed and

vice versa, for randomly generated matrices (using the rand(.) function of MATLAB R©) on a laptop

3GHz Intel R© CORE i7-2630QM CPU @2GHz 8Go RAM running MATLAB R© R2011b using the

function lsqlin(.) of MATLAB R©. The computational time is linear in m while being of the order of

n3 in n, smaller than the expected O(n4.5). Therefore, in practice, the dimension m can be rather

large while, on a standard machine, n cannot be much larger than 1000. Using parallel architecture

would allow to solve larger scale problems (see also Section 7).

5.2 Normalization of the Columns of P (M)

Since the aim eventually is to provide a good approximate NMF to the original data matrix M, we

observed that normalizing the columns of the preprocessed matrix P (M) to match the norm of the

corresponding columns of M gives better results. That is, we replace P (M) with DP (M) where

Dii =
||M:i||2

||P (M):i||2
for all i, and Di j = 0 for all i )= j.

This scaling does not change the nice properties of the preprocessing since D is a monomial matrix,

hence QD still is an inverse-positive matrix. This scaling degree of freedom is related to the fact

that we fixed the diagonal entries of Q to one, see Section 3.2.
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Figure 6: Computational time for solving (8). On the left, m-by-100 randomly generated matri-

ces; on the right, 1000-by-n randomly generated matrices (plain) and the polynomial

2.6∗10−4n3 (dashed).

The reason for this choice is that NMF algorithms are sensitive to the norm of the columns of

M. In fact, when using the Frobenius norm, we have that the following two problems are equivalent

min
U≥0,V≥0

||M−UV ||2F ≡ min
X≥0,Y≥0

n

∑
i=1

||M:i||22

∥
∥
∥
∥

M:i

||M:i||2
−XY:i

∥
∥
∥
∥

2

2

.

Therefore, to give each column of P (M) the same importance in the objective function as in the

original NMF problem, it makes sense to use the scaling above. This is particularly critical if there

are outliers in the data set: the outliers do not look similar to the other columns of M hence their

preprocessing will not reduce much their !2-norm (because they are further away from the convex

cone generated by the other columns of M). Therefore, their relative importance in the objective

function will increase in the NMF problem corresponding to P (M), which is not desirable.

5.3 Dealing with Noisy Input Matrices and/or Obtaining Sparser Preprocessing

Our technique will typically be useless when the input matrix is noisy and sparse. For example, we

have

M =





0 0

1 0

1 1



 ,P (M) =





0 0

1 0

0 1



 while Mδ =





0 δ
1 0

1 1



= P (Mδ),

for any δ > 0. This shows that the preprocessing is very sensitive to small positive entries of M. In

order to deal with such noisy and sparse matrices, we propose to relax the nonnegativity constraint

MQ ≥ 0 in (8), and solve instead

min
B∈Rn×n

+

n

∑
i=1

∥
∥
∥M:i −∑

k )=i

M:kBki

∥
∥
∥

2

2
such that M:i + ε||M:i||∞e ≥ ∑

k )=i

M:kBki, ∀i, (14)
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where 0 < ε 9 1 and e is the vector of all ones of appropriate dimension. We will denote the

corresponding preprocessing Pε(M) = M(I −B∗
ε) where B∗

ε is an optimal solution of (14). For the

example above with δ = ε = 10−2, we obtain

Pε(Mδ) =





−10−2 10−2

1 −10−2

10−4 0.99



 .

In practice, this technique also allows to obtain preprocessed matrices with more entries equal or

smaller than zero. When choosing the parameter ε, it is very important to check whether ρ(B∗
ε)< 1

so that the rank of Pε(M) is equal to the rank of M and no information is lost (we can recover the

original matrix M = Pε(M)(I −B∗
ε)

−1 given Pε(M) and B∗
ε).

6. Application to Image Processing

In this section, we apply the preprocessing technique to several image data sets. By construction,

the preprocessing procedure will remove from each image a linear combination of the other images.

As we will see, this will highlight certain localized parts of these images, essentially because the

preprocessed matrices are sparser than the original ones. We will then show that combining the

preprocessing with standard NMF algorithms naturally leads to better part-based decompositions,

because sparser matrices lead to sparser NMF solutions, see Section 2.

A direct comparison between NMF applied on the original matrix and NMF applied on the

preprocessed matrix is not very informative in itself: while the former will feature a lower approx-

imation error, the latter will provide a sparser part-based representation. This does not really tell

us whether the improvements in the part-based representation and sparsity are worth the increase in

approximation error. For that reason, we choose to compare them with a standard sparse NMF tech-

nique, described below, in order to better assess whether the increase in sparsity achieved is worth

the loss in reconstruction accuracy. Hence, we compare the following three different approaches:

• Nonnegative matrix factorization (NMF). It solves the original NMF problem from Equa-

tion (1) using the accelerated HALS algorithm (A-HALS) of Gillis and Glineur (2012b) (with

parameters α = 0.5 and ε = 0.1 as suggested by the authors), which is a block coordinate de-

scent method.

• Preprocessed NMF for different values of ε. It first computes the preprocessed matrix

Pε(M) (cf. Section 5.3), then solves the NMF problem for the rescaled preprocessed ma-

trix Pε(M)D ≈ UV ′ (cf. Section 5.2) using A-HALS and finally returns (U,V ) where V =
argminX≥0 ||M −UX ||2F . This approach will be denoted Pre-NMF(ε). (We will also indicate

in brackets the error obtained when using V =V ′Q−1, which will be, by construction, always

higher.) Notice that the preprocessed matrix may contain negative entries (when ε > 0) which

is handled by A-HALS. We do not set these entries to zero for two important reasons: (i) we

want to preserve the column space of M, (ii) the negative entries of M lead to sparser NMF

solutions: Geometrically, a negative entry in M means that a vertex of conv(M) (the inner

polytope) is not contained in ∆m (the outer polytope) making NPP(M) infeasible (as a nega-

tive entry cannot be obtained with nonnegative ones). However, the approximate solution T

of NPP(M) will have to be close to the boundary of ∆m to approximate well that vertex. In

particular, Gillis and Glineur (2008) showed that if an entry of M, say at position (i, j), is
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smaller than −||max(0,M)||F then (UV )i j = 0 for any optimal solution of NMF (1). There-

fore, when indicating the sparsity of the preprocessed matrix, negative entries will be counted

as zeros as they lead to even sparser NMF decompositions.

• Sparse NMF. The most standard technique to obtain sparse solutions for NMF problems is to

use a sparsity-inducing penalty term in the objective function. In particular, it is well-known

that adding an l1-norm penalty term induces sparser solutions (Kim and Park, 2007), and we

therefore solve the following problem:

min
U,V≥0

||M−UV ||2F +
r

∑
i=1

µi||U:i||1, ||U:i||∞ = 1 ∀i,

where ||x||1 = ∑i |xi|, ||x||∞ = maxi |xi| and µi are positive parameters controlling the sparsity

of the columns of U . In order to solve sNMF, we also use A-HALS which can easily be

adapted to handle this situation. The !∞-norm constraints is not restrictive because of the

degree of freedom in the scaling of the columns of U and the corresponding rows of V , while

it prevents matrix U to converge to zero. The theoretical motivation is that the l1-norm is the

convex envelope of the l0-norm (that is, the largest convex function smaller than the l0-norm)

in the !∞-ball, see Recht et al. (2010) and the references therein.

In order to compare sparse NMF with Pre-NMF(ε), the parameters µi 1 ≤ i ≤ r are tuned in

order to match the sparsity obtained by Pre-NMF(ε). The corresponding approach will be

denoted sNMF(ε).

For each approach, we will keep the best solution obtained among the same ten random initial-

izations (using the rand(.) function of MATLAB R©) and each run was allowed 1000 (outer) iterations

of the A-HALS algorithm. We will use the relative error

100
||M−UV ||F

||M||F

to asses the quality of an approximation. We will also display the error obtain by the truncated

singular value decomposition (SVD) for the same factorization rank to serve as a comparison. For

the sparsity, we use the percentage of non-zero entries5

s(U) = 100
#zeros(U)

mr
∈ [0,100], for U ∈ R

m×r.

Because the solution computed with Pre-NMF does not directly aim at minimizing the error

||M −UV ||2F , it is not completely fair to use this measure for comparison. In fact, it would be

better to compare the quality of the sparsity patterns obtained by the different techniques. For this

reason, we use the same post-processing procedure as described by Gillis and Glineur (2010) which

benefits all algorithms: once a solution is computed by one of the algorithms, the zero entries of

U are fixed and we minimize minU≥0,V≥0 ||M −UV ||2F on the remaining (nonzero) entries (again,

A-HALS can easily be adapted to handle this situation and we perform 100 additional steps on

each solution), and report the new relative approximation error as “Improved”, while the original

relative error before this postprocessing will be reported as “Plain”. The code is available at https:

//sites.google.com/site/nicolasgillis/code.

5. The negative entries of the preprocessed matrix Pε(M) for ε > 0 will be counted as zeros.
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6.1 CBCL Data Set

The CBCL face data set6 is made of 2429 gray-level images of faces with 19× 19 pixels (black is

one and white is zero). We look for an approximation of rank r = 49 as in Lee and Seung (1999).

Because of the large number of images in the data set, the preprocessing is rather slow. In fact,

we have seen in Section 5.1 that it is in O(n4.5) where n is the number of images in the data set

(it would take about one week on a laptop). Therefore, we only keep every third image for a total

of 810 images, which takes less than three hours for the preprocessing; about 10-15 seconds per

image.7

Table 1 reports the sparsity and the value of ρ(B∗
ε) for the preprocessed matrices with different

values of the parameter ε. As explained in Section 5.3, the sparsity of Pε(M) increases with ε, and

ε was chosen to make sure that ρ(B∗
ε)< 1 implying rank(Pε(M)) = rank(M).

M P (M) P0.05(M) P0.1(M)
s(.) 0 0.001 20.92 38.03

ρ(B∗
ε) 0 0.71 0.83 0.90

Table 1: CBCL data set: sparsity of the preprocessed matrices Pε(M) = MQ and corresponding

spectral radius of B∗
ε = I −Q.

Figure 7 displays a sample of images of the CBCL data set along with the corresponding pre-

processed images for different values of ε.

Figure 7: From top to bottom: CBCL sample images, corresponding preprocessed images for ε= 0,

ε = 0.05, and ε = 0.1.

We observe that the preprocessing is able to highlight some parts of the images: the eyes (faces

5 and 9), the eyebrows (faces 3, 4, 8, 10, 11, 13 and 16), the mustache (faces 14 and 15), the glasses

(faces 6, 7 and 12), the nose (faces 1 to 4) or the mouth (faces 1 to 5). Recall that the preprocessing

removes from each image of the original data set a linear combination of other images. Therefore,

6. Available at http://cbcl.mit.edu/software-datasets/FaceData2.html.

7. The MATLAB R© function lsqlin for solving CLLS problems is much slower than quadprog with interior point (which

is much faster than quadprog with active set).
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the parts of the images which are significantly different from the other images are better preserved,

hence highlighted.

We now compare the three approaches described in the introduction of this section. Table 2

gives the numerical results and shows that Pre-NMF performs competitively with sNMF in all cases

(similar relative error for similar sparsity levels).

Plain Improved s(U) s(V )
SVD 7.28 7.28 0 0

NMF 7.97 7.96 53.27 11.36

Pre-NMF(0) 9.28 (9.76) 8.37 76.78 4.42

sNMF(0) 8.34 8.20 77.62 5.19

Pre-NMF(0.05) 11.12 (12.66) 9.15 90.14 2.16

sNMF(0.05) 9.24 8.90 91.12 2.22

Pre-NMF(0.1) 13.12 (23.47) 9.88 94.58 1.17

sNMF(0.1) 10.30 9.89 94.77 1.14

Table 2: Comparison of the relative approximation error and sparsity for the CBCL image data

set. (In brackets, it is the error obtained when using V = V ′Q−1, instead of V =
argminX≥0 ||M−UX ||2F .).

Figure 8 displays the basis elements obtained for NMF, Pre-NMF(0), Pre-NMF(0.1) and

sNMF(0.1). The decomposition by parts obtained by Pre-NMF(0.1) is comparable to sNMF(0.1),

reinforcing the observation above (cf. Table 2) that Pre-NMF performs competitively with sNMF.

Our technique has the advantage that only one parameter has to be chosen (namely ε) and that

sparse solutions are naturally obtained. In fact, the user does not need to know in advance the

desired sparsity level: one just has to try different values of ε ∈ [0,1] (making sure ρ(B∗
ε) < 1) and

a sparse factor U will automatically be generated (no parameters have to be tuned in the course

of the optimization process). Moreover, Pre-NMF proves to be less sensitive to initialization than

sNMF: we rerun both algorithms for ε = 0.1 with 100 different initializations (using exactly the

same settings as above) and observe the following:

• Among the hundred solutions generated by sNMF(0.01), three did not achieve the required

sparsity (being lower than 0.85, while all others were around 0.95 as imposed). In particular,

the variance of the sparsity of the factor U for PreNMF(0.01) is 8.6910−7 while it is much

higher 1.3110−3 for sNMF(0.01). (Note that after removing the three outliers, the variance

of sNMF(0.01) is still higher being 3.2310−6.)

• The average of the relative error of Pre-NMF(0.01) is 9.94, slightly lower than sNMF(0.01)

with 9.96.

• The variance of the relative error of Pre-NMF(0.01) is 5.9710−3, lower than sNMF(0.01)

with 2.3610−2.

Remark 33 We have also tested other sparse NMF techniques and they could not match the results

obtained by sNMF, especially for high sparsity requirement. In particular, we tested the following
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Figure 8: From left to right, top to bottom: basis elements for the CBCL data set obtained with

NMF, Pre-NMF(0), Pre-NMF(0.1) and sNMF(0.1).

standard formulation using only one penalty parameter (Kim and Park, 2007)

min
U,V≥0

||M−UV ||2F +µ∑
i

||U:i||1,

and the algorithm of Hoyer (2004).

6.2 Hubble Telescope Hyperspectral Image

The Hubble data set consists of 100 spectral images of the Hubble telescope, 128×128 pixels each

(Pauca et al., 2006). It is composed of eight materials;8 see the fourth row on Figure 10. The

preprocessing took about one minute (about 0.5 second per image).9 Figure 9 displays a sample of

images of the simulated Hubble database along with the corresponding preprocessed images. The

8. These are true Hubble satellite material spectral signatures provided by the NASA Johnson Space Center.

9. The MATLAB R© function lsqlin for solving CLLS problems was again much slower (about ten times) than quadprog

with active set or with interior point which were comparable in this case.
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Figure 9: From top to bottom: Sample of Hubble images, corresponding preprocessed images for

ε = 0 and ε = 0.01.

preprocessing for ε = 0.01 highlights extremely well the constitutive parts of the Hubble telescope:

it is in fact able to extract some materials individually. Table 3 gives the sparsity and the value of ρ
for the different preprocessed matrices.

M P (M) P0.01(M)
s(.) 57 57 80

ρ(B∗
ε) 0 0.9808 0.9979

Table 3: Hubble data set: sparsity of the preprocessed matrices Pε(M) = MD and corresponding

spectral radius of B∗
ε = I −D.

Table 4 reports the numerical results. Although sNMF(0.01) identifies a solution with slightly

lower reconstruction error than Pre-NMF(0.01) (2.90 vs. 2.93), it is not able to identify the constitu-

tive materials properly while Pre-NMF(0.01) perfectly separates all eight constitutive materials. It

is also important to point out that the solutions generated by Pre-NMF(0.01) with different initial-

izations correspond in most cases10 to this optimal decomposition while the solutions generated by

sNMF are typically very different (and with very different objective function values). This indicates

that the NMF problem corresponding to the preprocessed matrix is more well posed.11

The comparison between sNMF(0) and Pre-NMF(0) is also interesting: the basis elements gen-

erated by Pre-NMF(0) (see second row of Figure 10) identify the constitutive materials much more

effectively as six of them are almost perfectly extracted, while sNMF(0) only identifies one (while

another is extracted as two separate basis elements).

10. We used 100 random initializations and obtained 61 times the optimal decomposition (in the other cases, it is always

able to detect at least six of the eight materials).

11. Of course, in general, even if an NMF formulation has a unique global minimum (up to permutation and scaling),

it will still have many local minima. Therefore, even in that situation, solutions generated with standard nonlinear

optimization algorithms might still be rather different for different initializations.
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Plain Improved s(U) s(V )
SVD 0.01 0.01 58 0

NMF 0.06 0.05 58.02 2.25

Pre-NMF(0) 0.08 (0.08) 0.07 59.16 0.13

sNMF(0) 0.37 0.36 64.14 0.63

Pre-NMF(0.01) 14.08 (75.09) 2.93 93.71 0

sNMF(0.01) 3.39 2.90 93.94 0

Table 4: Comparison of the relative approximation error and sparsity for the Hubble data set. (No-

tice that for ε= 0.01, the solution obtained using V =V ′Q−1 has a very high reconstruction

error; the reason being that Q = (I −B∗
ε) is close to being singular since ρ(B∗

ε) = 0.9979.)

Figure 10: From top to bottom: basis elements for the Hubble data set obtained by NMF, Pre-

NMF(0), sNMF(0), Pre-NMF(0.01) and sNMF(0.01).

7. Conclusion and Further Research

In this paper, we introduced a completely new approach to make NMF problems more well posed

and have sparser solutions. It is based on the preprocessing of the nonnegative data matrix M:
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given M, we compute an inverse positive matrix Q such that the preprocessed matrix P (M) = MQ

remains nonnegative and is sparse. The computation of Q relies on the resolution of constrained

linear least squares problems (CLLS). We proved that the preprocessing is well-defined, invariant

to permutation and scaling of the columns of matrix M, and preserves the rank of M (as long as the

vertices of conv(θ(M)) are non repeated).

Because P (M) is sparser than M, the corresponding NMF problem will be more well posed and

have sparser solutions. In particular, we were able to show that

• Under the separability assumption of Donoho and Stodden (2003), the preprocessing is opti-

mal as it identifies the vertices of the convex hull of the columns of M.

• Since any rank-two matrix satisfies the separability assumption, the preprocessing is optimal

for any nonnegative rank-two matrix.

• In the exact rank-three case (that is, M =UV , rank(M) = rank+(M) = 3), the preprocessing

can be used to make the set of optimal solutions of the NMF problem finite. We conjecture

that, generically, it makes it unique and that this result holds for higher rank matrices.

We also proposed a more general preprocessing that relaxes the constraint that P (M) has to

be nonnegative, which is able to deal better with noisy and sparse matrices. Moreover, it gener-

ates sparser preprocessed matrices hence sparser NMF solutions. We experimentally showed the

effectiveness of this strategy on facial and hyperspectral image data sets. In particular, it performed

competitively with a state-of-the-art sparse NMF technique based on !1-norm penalty functions. It

is robust to high sparsity requirement and no parameters have to be tuned in the course of the opti-

mization process. Only one parameter has to be chosen which will allow the user to generate more

or less sparse preprocessed matrices.

The main drawback of the technique seems to be its computational cost: n CLLS problems in

n variables and m+n constraints have to be solved (where n in the number of columns of M) for a

total computational cost of the order of O(n4.5) (using MATLAB R© on a standard laptop, it limits n

to be smaller than 1000 for a few hours of computation). It would then be particularly interesting to

investigate strategies to speed up the preprocessing. Using faster solvers is one possible approach

(probably in detriment of the accuracy), for example, based on first-order methods.12 Another

possibility would be to use the following heuristic: since the preprocessing removes from each

column of M a linear combinations of the other columns, one could use only a subset of k columns

of M to be subtracted from the other columns of M. This amounts to fixing variables to zero

in the CLLS problems and would reduce the computational complexity to O(nk3.5). This subset

of columns could for example be selected such that its convex hull has a large volume, see, for

example, Klingenberg et al. (2009) for a possible heuristic; or such that they form the best possible

basis for the remaining columns (that is, use a column subset selection algorithm); see Boutsidis

et al. (2009) and the references therein.

Finally, a particularly challenging direction for research would be to design other data prepro-

cessing techniques for NMF. One approach would be to characterizing the set of inverse positive

matrices better: in this paper, we only worked with the subset of invertible M-matrices. For exam-

12. We have developed an alternating direction method (ADM), along with Ting Kei Pong, which allowed us to prepro-

cess the CBCL data set in about 10 hours with 10−3 relative accuracy; the code is available upon request.
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ple, the matrix13

M =





0 1 1

1 0 1

1 1 0





would not be modified by our preprocessing (because each column contains a zero entry corre-

sponding to positive ones in all other columns) although its NMF is not unique (cf. Section 2). In

fact, we have

MQ =





0 1 1

1 0 1

1 1 0









−1 1 1

1 −1 1

1 1 −1



= 2





1 0 0

0 1 0

0 0 1



 ,

where Q is inverse positive with Q−1 = 1
2 M, and the NMF of MQ is unique. This example shows that

working with a larger set of inverse positive matrices would allow to obtain sparser preprocessed

data matrices, hence more well-posed NMF problems with sparser solutions.
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Appendix A. Proof for Theorem 29

In this section, we prove that the function fk defined in Theorem 29 is continuous and made up of

pieces which are either constant or strictly convex (which we refer to as piecewise constant/strictly

convex). The construction described below is the same as the one proposed by Aggarwal et al.

(1989) and we refer the reader to that paper for more details. The novelty of our proof is to use

that construction to show that fk is piecewise constant/strictly convex (it was already shown to be

continuous and nondecreasing by Aggarwal et al., 1989).

Proof Let x(t1) be on the boundary of P and define the sequence x(t2), . . . , x(tk+1) as in Theorem 29

(clock-wise). As shown by Aggarwal et al. (1989), the function fk(t1) = tk+1 only depends on

1. The sides of P on which the points x(ti) 1 ≤ i ≤ k+1 lie ;

2. The intersections of the segments [x(ti),x(ti+1)] 1 ≤ i ≤ k with Q ;

and, given that these sides and intersections do not change, fk is continuously differentiable and can

be characterized in closed form (see below). These sides and intersections will change when either

• One of the points x(ti) switches from one side of the boundary of P to another. These points

correspond to the vertices of P (P has at most m vertices since it is a polygon defined with m

inequalities); or,

13. We thank Mariya Ishteva for providing us with this example.
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• One of the intersections of the segments [x(ti),x(ti+1)] 1 ≤ i ≤ k with Q changes. There is a

one-to-one correspondence between these points and the sides of Q (Q has at most n vertices

hence at most n sides).

These points where the description of fk changes (and where fk is not continuously differentiable)

are called the contact change points. Turning around the boundary of P, we might encounter more

than m+ n such points. However, two contact change points corresponding to the same change

are associated with the same sequence x(ti) 1 ≤ i ≤ k+ 1 hence the same solution to the NPP. In

fact, both sequences must share at least one point (either a vertex of P or the intersections of a

line containing a side of Q with the boundary of P) which implies, by construction, that they are the

same. Therefore, there are at most m+n contact change points corresponding to different sequences

x(ti) 1 ≤ i ≤ k+1 on the boundary of P (Aggarwal et al., 1989).

It remains to show that the pieces of fk between two contact change points are either constant

or strictly convex.

Let us then construct the function fk between two contact change points. Without loss of gener-

ality, we may assume that the perimeter of the outer polygon P is equal to one (otherwise scale the

polygons P and Q accordingly), and that the parametrization x of the boundary of P has the follow-

ing property: the distance traveled when following the boundary between x(s) and x(t) is equal to

|(s−6s7)−(t−6t7)|. In particular, if 0 ≤ s ≤ t ≤ 1, then the distance traveled between x(t) and x(s)
along the boundary of P is t − s. We may also assume without loss of generality that x(0) = (0,0)
is the vertex on P preceding x(t1) and that x(t1) = (0, t1): this amounts to translating and rotating P

and Q. We also define (see Figure 11 for an illustration)

• q = (q1,q2), the tangent point on Q between x(t1) and x(t2).

• θ, the angle between the sides of P on which x(t1) and x(t2) are.

• p, the intersection between the sides on which x(t1) and x(t2) are (note that p is on the bound-

ary of P if and only if there is one and only one vertex of P between x(t1) and x(t2)).

• d, the distance between x(0) and p.

• s, the distance between p and x(t2).

• a, the projection of q on the line [x(0), p].

• b, the projection of x(t2) on the line [x(0), p].

Case 1: The point q is on the same side as x(t1). This implies that x(t2) = p for any t1 < q1 and

no other points of the sequence is changed since x(t2) remains the same. Therefore, the function

tk+1 = fk(t1) is constant. (Notice that x(q1) is a contact change point since x(t2) will switch side

when t1 = q1.)

Case 2: The point q is on the same side as x(t2). This implies that x(t2) = q for any t1 < d.

Therefore, the function tk+1 = fk(t1) is constant. (Notice that the next contact change point will be

the first vertex of P that x(t1) crosses.)

Case 3: The point q is not on the same side as x(t1) or x(t2) (it is in the interior of P). Using the

similarity between the triangles ∆x(t1)aq and ∆x(t1)bx(t2), we have that (Aggarwal et al., 1989,

Equation (1))
q2

q1 − t1
=

ssin(θ)

d − t1 + scos(θ)
,
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Figure 11: Construction of the function f1 between two contact change points (see Aggarwal et al.

1989, Figure 3, for a similar illustration).

implying

s =
q2

sin(θ)

d − t1

q1 −q2 cot(θ)− t1
= g1(t1).

Let us show that g1(t1) is strictly convex, that is, g′′1(t1) > 0. Since q is not on the same side as

x(t1) or x(t2), we have q2 > 0 and 0 < θ < π implying q2

sin(θ) > 0. Hence it suffices to show that

h(t1) =
d−t1
l−t1

is strictly convex, where l = q1 − q2 cot(θ). Since s > 0 and d > t1, we must have

l − t1 > 0. (Notice that x(l) is a contact change point. In fact, for t1 = l, the segments [x(t1),q]
and [p,x(t2)] become parallel implying that the intersection of Q with the segment [x(t1),x(t2)] will

change.)

We then have

h′(t1) =
d − l

(l − t1)2
.

Since h is a strictly increasing function of t1 (Aggarwal et al., 1989), h′(t1)> 0 hence d > l and

h′′(t1) = 2
d − l

(l − t1)3
> 0,

so that g1(t) is strictly convex. Finally, we have

f1(t1) = t2 = c1 + s = c1 +g1(t1),

where either

• c1 = 0 and g1 is a constant (cases 1. and 2.).
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• c1 is an appropriate constant and g1 is an increasing and strictly convex function (case 3.).

By construction, the same relationship will apply between t2 and t3 with

f2(t1) = t3 = c2 +g2(s) = c2 +g2(g1(t1)),

where c2 is an appropriate constant and g2 is either constant, or strictly convex and increasing. After

k+1 steps, we have

fk(t1) = tk+1 = ck +gk(s) = ck +(gk ◦gk−1 ◦ · · ·◦g1)(t1),

where ck is an appropriate constant and the functions gi are either constant, or strictly convex and

increasing. If one of the functions gi 1 ≤ i ≤ k is constant, then fk is constant. Otherwise the func-

tion fk(t1) = ck +(gk−1 ◦ · · · ◦ g1)(t1) is strictly convex since it is a constant plus the composition

of strictly convex and increasing functions. (In fact, the composition of one-dimensional increasing

and strictly convex functions is increasing and strictly convex.)
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Abstract
Identifying cause-effect relationships between variables of interest is a central problem in science.
Given a set of experiments we describe a procedure that identifies linear models that may contain
cycles and latent variables. We provide a detailed description of the model family, full proofs of
the necessary and sufficient conditions for identifiability, a search algorithm that is complete, and a
discussion of what can be done when the identifiability conditions are not satisfied. The algorithm
is comprehensively tested in simulations, comparing it to competing algorithms in the literature.
Furthermore, we adapt the procedure to the problem of cellular network inference, applying it to
the biologically realistic data of the DREAM challenges. The paper provides a full theoretical foun-
dation for the causal discovery procedure first presented by Eberhardt et al. (2010) and Hyttinen
et al. (2010).

Keywords: causality, graphical models, randomized experiments, structural equation models,
latent variables, latent confounders, cycles

1. Introduction

Inferring causal relationships from data is of fundamental importance in many areas of science. One
cannot claim to have fully grasped a complex system unless one has a detailed understanding of how
the different components of the system affect each other, and one cannot predict how the system will
respond to some targeted intervention without such an understanding. It is well known that a statis-
tical dependence between two measured quantities leaves the causal relation underdetermined—in

c©2012 Antti Hyttinen, Frederick Eberhardt and Patrik O. Hoyer.
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addition to a causal effect from one variable to another (in either or both directions), the dependence
might be due to a common cause (a confounder) of the two.

In light of this underdetermination, randomized experiments have become the gold standard
of causal discovery. In a randomized experiment, the values of some variable xi are assigned at
random by the experimenter and, consequently, in such an experiment any correlation between xi
and another measured variable x j can uniquely be attributed to a causal effect of xi on x j, since any
incoming causal effect on xi (from x j, a common cause, or otherwise) would be ‘broken’ by the
randomization. Since their introduction by Fisher (1935), randomized experiments now constitute
an important cornerstone of experimental design.

Since the 1980s causal graphical models based on directed graphs have been developed to sys-
tematically represent causal systems (Glymour et al., 1987; Verma and Pearl, 1988). In this ap-
proach, causal relations among a set of variables V are represented by a set of directed edges
D ⊆ (V ×V ) connecting nodes in a directed graph G = (V ,D), where a directed edge from node
xi to node x j in the graph represents the direct causal effect of xi on x j (relative to the set of vari-
ables V ). The causal relationships in such a model are defined in terms of stochastic functional
relationships (or alternatively conditional probability distributions) that specify how the value of
each variable is influenced by the values of its direct causes in the graph. In such a model, random-
izing a variable xi is tantamount to removing all arrows pointing into that variable, and replacing
the functional relationship (or conditional probability distribution) with the distribution specified in
the experiment. The resulting truncated model captures the fact that the value of the variable in
question is no longer influenced by its normal causes but instead is determined explicitly by the
experimenter. Together, the graph structure and the parameters defining the stochastic functional
relationships thus determine the joint probability distribution over the full variable set under any
experimental conditions.

The question that interests us here is how, and under what conditions, we can learn (i.e., infer
from data) the structure and parameters of such causal models. The answer to this question depends
largely on what assumptions we are willing to make about the underlying models and what tools of
investigation we consider. For instance, some causal discovery methods require assuming that the
causal structure is acyclic (has no directed cycles), while others require causal sufficiency, that is,
that there are no unmeasured common causes affecting the measured variables. Many algorithms
provide provably consistent estimates only under the assumption of faithfulness, which requires
that the structure of the graph uniquely determines the set of (conditional) independencies that hold
between the variables. For some methods the functional form of the relationships has to take a
certain predetermined form (e.g., linearity). Under various combinations of the above assumptions,
it is possible to consistently infer (at least partial information concerning) the causal relationships
underlying the observed data from non-experimental (‘passive observational’) data (Richardson,
1996; Spirtes et al., 2000; Pearl, 2000; Chickering, 2002a,b; Shimizu et al., 2006).

In many cases, researchers may not be willing to make some of the assumptions mentioned
above, or they may want to guarantee that the full structure of the model is inferred (as opposed
to only inferring an equivalence class of possible models, a common result of many discovery
methods). A natural step is thus to use the power of randomized experiments. The question then
becomes: Under what assumptions on the model and for what sets of experiments can one guarantee
consistent learning of the underlying causal structure. Here, almost all of the existing literature
has focused on the acyclic case (Cooper and Yoo, 1999; Tong and Koller, 2001; Murphy, 2001;
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Figure 1: Classic supply-demand model.

Eberhardt et al., 2005; Meganck et al., 2005; Nyberg and Korb, 2006; Eberhardt and Scheines,
2007; Eaton and Murphy, 2007).

The acyclicity assumption, common to most discovery algorithms, permits a straightforward
interpretation of the causal model and is appropriate in some circumstances. But in many cases
the assumption is clearly ill-suited. For example, in the classic demand-supply model (Figure 1)
demand has an effect on supply and vice versa. Intuitively, the true causal structure is acyclic over
time since a cause always precedes its effect: Demand of the previous time step affects supply of the
next time step. However, while the causally relevant time steps occur at the order of days or weeks,
the measures of demand and supply are typically cumulative averages over much longer intervals,
obscuring the faster interactions. A similar situation occurs in many biological systems, where the
interactions occur on a much faster time-scale than the measurements. In these cases a cyclic model
provides the natural representation, and one needs to make use of causal discovery procedures that
do not rely on acyclicity (Richardson, 1996; Schmidt and Murphy, 2009; Itani et al., 2008).

In this contribution we consider the problem of learning the structure and parameters of linear
cyclic causal models from equilibrium data. We derive a necessary and sufficient condition for
identifiability based on second-order statistics, and present a consistent learning algorithm. Our
results and learning method do not rely on causal sufficiency (the absence of hidden confounding),
nor do they require faithfulness, that is, that the independencies in the data are fully determined
by the graph structure. To our knowledge these results are the first under assumptions that are this
weak. Given that the model space is very general (essentially only requiring linearity), randomized
experiments are needed to obtain identification. While for certain kinds of experimental data it is
easy to identify the full causal structure, we show that significant savings either in the number of
experiments or in the number of randomized variables per experiment can be achieved. All-in-all,
the present paper provides the full theoretical backbone and thorough empirical investigation of the
inference method that we presented in preliminary and abbreviated form in Eberhardt et al. (2010)
and Hyttinen et al. (2010). It establishes a concise theory for learning linear cyclic models with
latent variables.

We start in Section 2 by introducing the model and its assumptions, how the model is to be
interpreted, and how experimental interventions are represented. In Section 3 we derive condi-
tions (on the set of randomized experiments to be performed) that are necessary and sufficient for
model identification. These results provide the foundation for the correct and complete learning
method presented in Section 4. This section also discusses the underdetermination which results
if the identifiability conditions are not met. Section 5 presents empirical results based on thorough
simulations, comparing the performance of our procedure to existing methods. Finally, we adapt
the procedure to the problem of cellular network inference, and apply it to the biologically realistic
in silico data of the DREAM challenges in Section 6. Some extensions and conclusions are given
in Sections 7 and 8.
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Figure 2: An example of a linear cyclic model with latent variables. A non-zero coefficient b21 is
represented in the graph by the arc x1→ x2. Similarly, the non-zero covariance between
disturbances e1 and e2 is represented by the arc x1 ↔ x2. In the graph the disturbance
term for each individual variable has been omitted for clarity. Note that a pair of opposing
directed edges, such as x3 → x4 and x3 ← x4, represents reciprocal causation (feedback
relationship) between the variables, whereas a double-headed arrow, such as x3 ↔ x4,
represents confounding.

2. Model

We start by presenting the basic interpretation of the cyclic model in the passive observational
(Section 2.1) and experimental settings (Section 2.2). We establish canonical forms for both the
model and the experiments to simplify the presentation of the subsequent theory. We then discuss
different stability assumptions to ensure the presence of model equilibria, and show how they relate
to the model interpretation and model marginalization (Section 2.3).

2.1 Linear Cyclic Model with Latent Variables

Following the framework presented in Bollen (1989), we consider a general linear structural equa-
tion model (SEM) with correlated errors as our underlying data generating model. In such a model
the value of each observed variable x j ∈ V ( j = 1, ...,n) is determined by a linear combination of
the values of its causal parents xi ∈ pa(x j) and an additive disturbance (‘noise’) term e j:

x j := ∑
xi∈pa(x j)

b jixi+ e j.

Representing all the observed variables as a vector x and the corresponding disturbances as a vector
e, these structural equations can be represented by a single matrix equation

x := Bx+ e, (1)

where B is the (n×n)-matrix of coefficients b ji. A graphical representation of such a causal model
is given by representing any non-zero causal effect b ji by an edge xi → x j in the corresponding
graph. An example graph and matrix B are shown in Figure 2.

The set of equations is said to be recursive or acyclic if the graph describing the causal relations
has no directed cycles, or (equivalently) if there exists a causal order of the variables for which
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the corresponding matrix B is lower triangular. When the graph contains directed cycles (feedback
loops), such as for the model of Figure 2, then the model is said to be non-recursive or cyclic. In
this paper we do not assume a priori that the underlying model is acyclic. In other words, our model
family allows for both cyclic and acyclic cases.

While in a ‘fully observed’ SEM the disturbance terms ei would be assumed to be indepen-
dent of each other, we allow for unobserved confounding by modeling arbitrary correlations among
the disturbances e1, ...,en. Specifically, denote by µe and Σe the mean vector and the variance-
covariance matrix (respectively) of the disturbance vector e. The diagonal elements of Σe represent
the variances of the disturbances, while the off-diagonal entries represent the covariances. In the cor-
responding graph a non-zero covariance between ei and e j is represented by the double-headed arc
xi↔ x j. Notice that in this implicit representation, a latent variable that confounds three observed
variables is represented by three (pairwise) covariances. To keep the notation as simple as possible,
we will adopt the assumption standard in the literature that the disturbances have zero mean, that is,
µe = 0. In Appendix A we show that it is usually possible to transform the observed data to a form
consistent with this assumption. We are thus ready to define the underlying data-generating model:

Definition 1 (Linear Cyclic Model with Latent Variables) A linear cyclic model with latent vari-
ablesM = (B,Σe), is a structural equation model over a set of observed variables x1, · · · ,xn ∈ V
of the form of Equation 1, where the disturbance vector e has mean µe = 0 and an arbitrary sym-
metric positive-definite variance-covariance matrix Σe.

In order to give a fully generative explanation of the relationship between the model parameters
and the data, additional constraints on B are needed. Typically, a cyclic model is used to represent a
causal process that is collapsed over the time dimension and where it is assumed that the data sample
is taken after the causal process has ‘settled down’. The traditional interpretation of non-recursive
SEMs assumes that the disturbances represent background conditions that do not change until the
system has reached equilibrium and measurements are taken. So for a given set of initial values for
the variables x(0), a data vector is generated by drawing one vector of disturbances e from the error
distribution and iterating the system

x(t) := Bx(t−1)+ e (2)

by adding in the constant (with respect to time) e at every time step until convergence. At time t the
vector x thus has the value

x(t) := (B)tx(0)+
t−1

∑
i=0

(B)ie.

For x(t) to converge to an equilibrium, the geometric sequence (Bi)i=0...t and the geometric series
∑t−1
i=0Bi must converge as t → ∞. For arbitrary x(0) and arbitrary e, a necessary and sufficient

condition for this is that the eigenvalues λk of B satisfy ∀k : |λk| < 1 (Fisher, 1970). In that case
(B)t → 0 and ∑t−1

i=0Bi→ (I−B)−1 as t→ ∞, so x(t) converges to

x = (I−B)−1e,

where (I−B) is guaranteed to be invertible given the above restriction on the eigenvalues. Notice
that the observed value x at equilibrium is independent of the starting point x(0), and completely
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determined by B and e. Multiple samples of x are obtained by repeating this equilibrating process
for different samples of e. Hence, forM =(B,Σe) the variance-covariance matrix over the observed
variables is

Cx = E{xxT}= (I−B)−1E{eeT}(I−B)−T = (I−B)−1
Σe(I−B)−T . (3)

The equilibrium we describe here corresponds to what Lauritzen and Richardson (2002) called a
deterministic equilibrium, since the equilibrium value of x(t) is fully determined given a sample
of the disturbances e. Such an equilibrium stands in contrast to a stochastic equilibrium, resulting
from a model in which the disturbance term is sampled anew at each time step in the equilibrating
process. We briefly return to consider such models in Section 7. We note that if the model happens
to be acyclic (i.e., has no feedback loops), the interpretation in terms of a deterministic equilibrium
coincides with the standard recursive SEM interpretation, with no adjustments needed.

It is to be expected that in many systems the value of a given variable xi at time t has a non-zero
effect on the value of the same variable at time t + 1. (For instance, such systems are obtained
when approximating a linear differential equation with a difference equation.) In such a case the
coefficient bii (a diagonal element of B) is by definition non-zero, and the model is said to exhibit
a ‘self-loop’ (a directed edge from a node to itself in the graph corresponding to the model). As
will be discussed in Section 2.3, such self-loops are inherently unidentifiable from equilibrium data,
so there is a need to define a standardized model which abstracts away non-identifiable parameters.
For this purpose we introduce the following definition.

Definition 2 (Canonical Model) A linear cyclic model with latent variables (B,Σe) is said to be a
canonical model if it does not contain self-loops (i.e., the diagonal of B is zero).

We will show in Section 2.3 how one can obtain the canonical model that yields in all experiments
the same observations at equilibrium as an arbitrary (i.e., including self-loops) linear cyclic model
with latent variables.

2.2 Experiments

As noted in the introduction, one of the aims of inferring causal models is the ability to predict how
a system will react when it is subject to intervention. One key feature of linear cyclic models with
latent variables is that they naturally integrate the representation of experimental manipulations, as
discussed in this subsection.

We characterize an experiment Ek = (Jk,Uk) as a partition of the observed variables V (i.e.,
Jk∪Uk =V and Jk∩Uk = /0) into a set Jk of intervened variables and a setUk of passively observed
variables. Note that in this representation, a passive observational data set is a ‘null-experiment’ in
which Jk = /0 and Uk = V . Following the standard view (Spirtes et al., 2000; Pearl, 2000), we
consider in this paper randomized “surgical” interventions that break all incoming causal influences
to the intervened variables by setting the intervened variables to values determined by an exogenous
intervention distribution with mean µ

k
c and covariance cov(c) =Σk

c. In the graph of the underlying
model, this corresponds to cutting all edges into the intervened nodes; see Figure 3 for an example.

To simplify notation, we denote by Jk and Uk two (n×n) diagonal ‘indicator matrices’, where
(Jk)ii = 1 if and only if xi ∈ Jk, all other entries of Jk are zero, and Uk = I− Jk. The vector c
represents the values of the intervened variables determined by the intervention distribution, and
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Figure 3: Manipulated model corresponding to an intervention on variables x1 and x2 in the model
of Figure 2, that is, the result of an experiment Ek = (Jk,Uk) with Jk = {x1,x2} and
Uk = {x3,x4}.

is zero otherwise. The behavior of the model in an experiment Ek is then given by the structural
equations

x := UkBx+Uke+ c. (4)

For an intervened variable x j ∈ Jk, the manipulated model in Equation 4 replaces the original equa-
tion x j := ∑i∈pa( j) b jixi+ e j with the equation x j := c j, while the equations for passively observed
variables xu ∈Uk remain unchanged.

Here the intervention vector c is constant throughout the equilibrating process, holding the inter-
vened variables fixed at the values sampled from the intervention distribution. A different approach
could consider interventions that only “shock” the system initially, and then allow the intervened
variables to fluctuate. This would require a different representation and analysis from the one we
provide here.

As in the passive observational setting discussed in Section 2.1, we have to ensure that the time
series representation of the experimental setting

x(t) := UkBx(t−1)+Uke+ c

is guaranteed to converge to an equilibrium as t→ ∞, where both c and e are time-invariant. We do
so by extending the assumption that guarantees convergence in the passive observational setting to
all experimental settings.

Definition 3 (Asymptotic Stability) A linear cyclic model with latent variables (B,Σe) is asymp-
totically stable if and only if for every possible experiment Ek = (Jk,Uk), the eigenvalues λi of the
matrix UkB satisfy ∀i : |λi|< 1.

Asymptotic stability implies that in an experiment Ek = (Jk,Uk) the samples we obtain at equilib-
rium are given by x= (I−UkB)−1(Uke+c). Note that the passive observational case is included in
terms of the null-experiment where Jk is empty. In practice, the assumption of asymptotic stability
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implies that the system under investigation will not break down or explode under any intervention,
so the equilibrium distributions are well defined for all circumstances. Obviously, this will not be
true for many real feedback systems, and in fact the assumption can be weakened for our purposes.
However, as we discuss in more detail in Section 2.3, the assumption of an underlying generating
model that satisfies asymptotic stability simplifies the interpretation of our results. For an acyclic
model (B,Σe) all eigenvalues of all matrices UkB are zero, so the stability condition is in this case
trivially fulfilled.

In general, experiments can take many forms: Apart from varying several rather than just one
variable at the same time, the interventions on the variables can be independent from one another,
or correlated, with different means and variances for each intervened variable. To simplify notation
for the remainder of this paper, we will adopt a standardized notion of an experiment:

Definition 4 (Canonical Experiment) An experiment Ek = (Jk,Uk) is said to be a canonical ex-
periment if the intervened variables in Jk are randomized surgically and uncorrelated with the
disturbances and with each other, with zero mean and unit variance.

This notational simplification makes the partition into intervened and passively observed variables
the only parameter specifying an experiment, and allows us to derive the theory purely in terms of
the covariance matrices Ckx of an experiment. The following lemma shows that we can make the
assumption of uncorrelated components of c without loss of generality. First, however, we need
one additional piece of notation: For any (n×n)-matrix A, we denote by ASrSc the block of A that
remains after deleting the rows corresponding to variables in V \Sr and columns corresponding to
variables in V \Sc, keeping the order of the remaining rows and columns unchanged.

Lemma 5 (Correlated Experiment) If in an experiment Ek = (Jk,Uk), where intervention vari-
ables c are randomized1 independently of the disturbances e such that E(c) = µ

k
c and cov(c) =Σk

c,
a linear cyclic model with latent variables (B,Σe) produces mean µ̃

k
x and covariance matrix C̃kx,

then in a canonical experiment where intervention variables c are randomized independently of e
with E(c) = 0 and cov(c) = Jk, the model produces observations with mean and covariance given
by

µ
k
x = 0, (5)
Ckx = C̃kx− T̃kx(C̃kx)JkJk(T̃kx)T + T̃kx(T̃kx)T , (6)

where T̃kx = (C̃kx)V Jk((C̃
k
x)JkJk)

−1.

Proof To improve readability, proofs for all lemmas and theorems in this paper are deferred to the
appendix.

The lemma shows that whenever in an actual experiment the values given to the intervened
variables are not mutually uncorrelated, we can easily convert the estimated mean and covariance
matrix to a standardized form that would have been found, had the interventions been uncorrelated
with zero mean and unit variance.2 The substantive assumption is that the values of the intervened

1. Randomization implies here that the covariance matrix of the intervention variables cov(cJk ) = (Σk
c)JkJk is symmetric

positive-definite.
2. The lemma should come as no surprise to readers familiar with multiple linear regression: The [•, j]-entries of the

matrix Tkx are the regression coefficients when x j is regressed over the intervened variables. The regressors do not
have to be uncorrelated to obtain unbiased estimates of the coefficients.
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variables (the components of c) are uncorrelated with the disturbances (the components of e). This
excludes so-called ‘conditional interventions’ where the values of the intervened variables depend
on particular observations of other (passively observed) variables in the system. We take this to be
an acceptably weak restriction.

Mirroring the derivation in Section 2.1, in a canonical experiment Ek the mean and covariance
are given by:

µ
k
x = 0, (7)
Ckx = (I−UkB)−1(Jk+UkΣeUk)(I−UkB)−T . (8)

We can now focus on analyzing the covariance matrix obtained from a canonical experiment
Ek = (Jk,Uk) on a canonical model (B,Σe). For notational simplicity we assume without loss
of generality that variables x1, · · · ,x j ∈ Jk are intervened on and variables x j+1, · · · ,xn ∈ Uk are
passively observed. The covariance matrix for this experiment then has the block form

Ckx =

[

I (Tkx)T
Tkx (Ckx)UkUk

]

, (9)

where

Tkx = (I−BUkUk)
−1BUkJk ,

(Ckx)UkUk = (I−BUkUk)
−1(BUkJk(BUkJk)

T +(Σe)UkUk ) (I−BUkUk)
−T .

The upper left hand block is the identity matrix I, since in a canonical experiment the intervened
variables are randomized independently with unit variance. We will consider the more complicated
lower right hand block of covariances between the passively observed variables in Section 3.2. The
lower left hand block Tkx consists of covariances that represent the so-called experimental effects of
the intervened xi ∈ Jk on the passively observed xu ∈Uk. An experimental effect t(xi!xu||Jk) is the
overall causal effect of a variable xi on a variable xu in the experiment Ek = (Jk,Uk); it corresponds
to the coefficient of xi when xu is regressed on the set of intervened variables in this experiment. If
only variable xi is intervened on in the experiment, then the experimental effect t(xi!xu||{xi}) is
standardly called the total effect and denoted simply as t(xi!xu). If all observed variables except
for xu are intervened on, then an experimental effect is called a direct effect: t(xi!xu||V \{xu}) =
b(xi→ xu) = (B)ui = bui.

The covariance between two variables can be computed by so called ‘trek-rules’. Some form
of these rules dates back to the method of path analysis in Wright (1934). In our case, these trek-
rules imply that the experimental effect t(xi!xu||Jk) can be expressed as the sum of contributions
by all directed paths starting at xi and ending in xu in the manipulated graph, denoted by the set
P (xi!xu||Jk). The contribution of each path p ∈ P (xi!xu||Jk) is determined by the product of
the coefficients bml associated with the edges xl → xm on the path, as formalized by the following
formula

t(xi!xu||Jk) = ∑
p∈P (xi!xu||Jk)

∏
(xl→xm)∈p

bml ,

where the product is taken over all edges xl → xm on the path p. The full derivation of this formula
is presented in Appendix C (see also Equation 12a in Mason, 1956).
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Figure 4: Left: The original asymptotically stable model. Center: The marginalized model that is
only weakly stable. Right: A marginalized model with self cycles that is asymptotically
stable.

If the model includes cycles, there will be an infinite number of directed paths from one variable
to the other. In the example model of Figure 3, the experimental effects can be calculated using the
trek-rules as follows:

t(x1!x3||{x1,x2}) = (b31 +b41b34)(1+b43b34 +(b43b34)
2 + · · ·) =

b31 +b41b34
1−b43b34

, (10)

t(x1!x4||{x1,x2}) = (b41 +b31b43)(1+b43b34 +(b43b34)
2 + · · ·) =

b41 +b31b43
1−b43b34

. (11)

The convergence of the geometric series is guaranteed by the assumption of asymptotic stability for
the experiment Jk = {x1,x2}, which ensures that the (only) non-zero eigenvalue λ= b43b34 satisfies
|λ|< 1.

Note that the experimental effects are unaffected by the latent confounding. Since the inter-
ventions break any incoming arrows on the intervened variables, this independence also follows
directly from the graphical d-separation criterion extended to cyclic graphs (Spirtes, 1995): In Fig-
ure 3, variables x1 and x3 are not d-connected by any of the undirected paths through the double
headed arrows.

2.3 Marginalization

One of the key features of linear structural equation models with correlated errors is that the model
family is closed under marginalization. That is, if instead of the original variable set V we only have
access to a subset Ṽ ⊂ V of variables, then if the original model (B,Σe) is in the model family,
then the marginalized model (B̃,Σ̃e) over Ṽ is in the family, too. Any directed paths through
marginalized variables are transformed into directed edges in B̃, and any confounding effect of the
marginalized variables is integrated into the covariance matrix Σ̃e of the disturbances.

For example, in Figure 4 on the left we show the graph structure and the edge coefficients of
an asymptotically stable model (B,Σe) over the variables V = {x1,x2,x3}. For the purpose of ar-
gument, assume that variable x3 is not observed. We thus want to describe a marginalized model
(B̃,Σ̃e) over just the variables Ṽ = {x1,x2}. Critically, the two models should produce the same ob-
servations with respect to the variables x1 and x2 in both the passive observational setting and in any
experiment intervening on {x1}, {x2}, or {x1,x2}. In other words, the marginalized model should be
such that any observations on Ṽ coincides with those obtained from the original model in all exper-
iments that can be performed in both. Thus, in the experiment intervening on x1, the experimental
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effect t(x1!x2||{x1}) = −0.7− 0.8 · 0.8 = −1.34 of the original model should equal the corre-
sponding experimental effect of the marginalized model. If we do not want to add any additional
self-cycles, the only possibility is to set b̃21 =−1.34. Similarly, we set b̃12 = t(x2!x1||{x2}) = 0.9.
This gives the model of Figure 4 (center).

Note, however, that while the original model was asymptotically stable (as can easily be seen by
computing the eigenvalues of B), the marginalized canonical model is not asymptotically stable, as
B̃ has an eigenvalue that is larger than 1 in absolute value. We thus see that when relevant variables
are not included in the analysis, asymptotic stability may not hold under marginalization. Fortu-
nately, it turns out that for our purposes of identification a much weaker assumption is sufficient.
We term this assumption weak stability:

Definition 6 (Weak Stability) A linear cyclic causal model with latent variables (B,Σe) is weakly
stable if and only if for every experiment Ek = (Jk,Uk), the matrix I−UkB is invertible.

Note that the invertibility of matrix I−UkB is equivalent to matrix UkB not having any eigenvalues
equal to exactly 1. (Complex-valued eigenvalues with modulus 1 are allowed as long as the eigen-
value in question is not exactly 1+ 0i.) Any asymptotically stable model is therefore by definition
also weakly stable.

We noted earlier that asymptotic stability is an unnecessarily strong assumption for our context.
In fact, weak stability is all that is mathematically required for all the theory presented in this
article. However, while mathematically expedient, weak stability alone can lead to interpretational
ambiguities: Under the time series interpretation of a cyclic model that we presented in Equation 2,
a weakly stable model that is not asymptotically stable will fail to have an equilibrium distribution
for one or more experiments. While Figure 4 illustrates that asymptotic stability may be lost when
marginalizing hidden variables, one cannot in general know whether a learned model that is not
asymptotically stable for some experiments corresponds to such an unproblematic case, or whether
the underlying system truly is unstable under those experiments.

For the remainder of this article, to ensure a consistent interpretation of any learned model,
we assume that there is a true underlying asymptotically stable data generating model, possibly
including hidden variables—thereby guaranteeing well-defined equilibrium distributions for all ex-
periments. The interpretation of any learned weakly stable model (B,Σe) is then only that the
distribution over the observed variables produced at equilibrium by the true underlying asymptot-
ically stable model has mean and covariance as described by Equations 7 and 8.3 All equations
derived for asymptotically stable models carry over to weakly stable models.4 In the following two
Lemmas, we give the details of how the canonical model over the observed variables is related to
the original linear cyclic model in the case of hidden variables and self-cycles (respectively).

The marginalized model of any given linear structural equation model with latent variables can
be obtained with the help of the following Lemma.

Lemma 7 (Marginalization) Let (B,Σe) be a weakly stable linear cyclic model over the variables
V , with latent variables. LetM ⊂ V denote the set of marginalized variables. Then the marginal-

3. Alternatively, one could avoid making this assumption of asymptotic stability of the underlying model, but in that
case the predictions of the outcomes of experiments must be conditional on the experiments in question resulting in
equilibrium distributions.

4. The sums of divergent geometric series can be evaluated by essentially extending the summing formula∑∞i=0 bi =
1

1−b
to apply also when b> 1 (Hardy, 1949).
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ized model (B̃,Σ̃e) over variables Ṽ = V \M defined by

B̃ = BṼ Ṽ +BṼM (I−BMM )−1BM Ṽ ,

Σ̃e = (I− B̃)
[

(I−B)−1
Σe(I−B)−T

]

Ṽ Ṽ (I− B̃)T

is also a weakly stable linear cyclic causal model with latent variables. The marginalized covari-
ance matrix of the original model and the covariance matrix of the marginalized model are equal in
any experiments where any subset of the variables in Ṽ are intervened on.

The expressions for B̃ and Σ̃e have simple intuitive explanations. First, the coefficient matrix B̃
of the marginalized model is given by the existing coefficients between the variables in Ṽ in the
original model plus any paths in the original model from variables in Ṽ through variables in M
and back to variables in Ṽ . Second, the disturbance covariance matrix Σ̃e for the marginalized
model is obtained by taking the observed covariances over the variables in Ṽ and accounting for
the causal effects among the variables in Ṽ , so as to ensure that the resulting covariances in the
marginal model equal those of the original model in any experiment.

In addition to marginalizing unobserved variables, we may be interested in deriving the canon-
ical model (i.e., without self-loops) from an arbitrary linear cyclic model with self-loops. This is
possible with the following lemma.

Lemma 8 (Self Cycles) LetUi be an (n×n)-matrix that is all zero except for the element (Ui)ii= 1.
For a weakly stable model (B,Σe) containing a self-loop for variable xi with coefficient bii, we can
define a model without that self-loop given by

B̃ = B− bii
1−bii

Ui(I−B),

Σ̃e = (I+ bii
1−bii

Ui)Σe(I+
bii

1−bii
Ui)T .

The resulting model (B̃,Σ̃e) is also weakly stable and yields the same observations at equilibrium
in all experiments.

Figure 5 shows explicitly the relation of edge strengths in the two models of the lemma. Since we
are only rescaling some of the coefficients, the graph structure of the model stays intact, except for
the deleted self-loop. The structure of the covariance matrix Σe also remains unchanged, with only
the ith row and the ith column rescaled. For a model (B,Σe) with several self-loops we can apply
Lemma 8 repeatedly to obtain a model without any self-loops, which is equivalent to the original
model in the sense that it yields the same equilibrium data as the original model for all experiments.

Note that, as with marginalization, the standardization by removal of self-cycles may produce a
canonical model that is only weakly stable, and not asymptotically stable, even if the original model
was asymptotically stable.

Ultimately, self-loops affect the speed and path to convergence to the equilibrium, but not the
equilibrium itself. Our approach will not yield any insight on self-loops, because we do not address
the causal process in a time series. However, the indeterminacy regarding self-loops also means that
any predictions at equilibrium are not affected by the learned model being represented in canonical
form, that is, without the possibly existing self-loops. So, although self-loops are not strictly for-
bidden for the data generating model, we can present the theory in the following sections entirely in
terms of models without them.
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Figure 5: Perturbation of coefficients from a model with self-loops (on the left) to a model without
self-loops (on the right). The two models are indistinguishable from equilibrium data.

3. Identifiability

The full characterization of the model under passive observational and experimental circumstances
now allows us to specify conditions (on the set of experiments) that are sufficient (Section 3.1) and
necessary (Section 3.2) to identify the model parameters. Throughout, for purposes of full identi-
fication (uniqueness of the solution) and notational simplicity, we assume that in each experiment
we observe the covariance matrix in the infinite sample limit as described by Equation 8, and that
both the underlying model and all experiments are canonical. For reasons discussed in the previous
section we also assume that there is an underlying generating model that is asymptotically stable,
even though the marginalized parts of the model we observe may only be weakly stable. Readers
who are primarily interested in the learning algorithm we have developed can skip to Section 4 and
return to the identifiability conditions of this section when required.

3.1 Sufficiency

Going back to our four variable example in Figure 3, in which x1 and x2 are subject to interven-
tion, we already derived in Equations 10 and 11 the experimental effects t(x1!x3||{x1,x2}) and
t(x1!x4||{x1,x2}) using the trek-rules. Taken together, these equations imply the following

t(x1!x3||{x1,x2}) = b31 + t(x1!x4||{x1,x2})b34 (12)
= t(x1!x3||{x1,x2,x4})+ t(x1!x4||{x1,x2})t(x4!x3||{x1,x2,x4}).

Note that Equation 12 relates the experimental effects of intervening on {x1,x2} to the experimental
effects of intervening on {x1,x2,x4}. It shows that the experimental effect t(x1!x3||{x1,x2}) can
be calculated by separating the single path not going through x4 (with contribution b31) from the
remaining paths that all go through x4. The last edge on these paths is always x4 → x3. The total
contribution of the paths through x4 is therefore the product t(x1!x4||{x1,x2})b34.

Equation 12 illustrates two separate but related approaches to identifying the full model param-
eters from a set of measured experimental effects: On the one hand, it provides an example of how
experimental effects from one set of experiments can be used to identify experimental effects of a
novel experiment (not in the existing set). Thus, if we had a set of experiments that allowed us to
infer all the experimental effects of all the experiments that intervene on all but one variable, then
we would have determined all the direct effects and would thereby have identified the B-matrix. On
the other hand, Equation 12 shows how the measured experimental effects can be used to construct
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linear constraints on the (unknown) direct effects b ji. Thus, if we had a set of experiments that sup-
plies constraints that would be sufficient for us to solve for all the direct effects, then we would again
be able to identify the B-matrix. In either case, the question crucial for identifiability is: Which sets
of experiments produce experimental effects that are sufficient to identify the model? Unsurpris-
ingly, the answer is the same for both cases. For reasons of simplicity, we present the identifiability
proof in this section in terms of the first approach. We use the second approach, involving a system
of linear constraints, for the learning algorithm in Section 4.

The example in Equation 12 can be generalized in the following way: As stated earlier, for
an asymptotically stable model, the experimental effect t(xi!xu||Jk) of xi ∈ Jk on xu ∈ Uk in ex-
periment Ek = (Jk,Uk) is the sum-product of coefficients on all directed paths from xi to xu. We
can calculate the sum-product in two parts with respect to an observed variable x j ∈Uk. First we
consider all the paths that do not go through x j. The sum-product of all those paths is equal to
the experimental effect t(xi!xu||Jk ∪ {x j}), since all paths through x j are intercepted by addition-
ally intervening on x j. Second, the remaining paths are all of the form xi!x̃ j!xu, where x̃ j is the
last occurrence of x j on the path (recall that paths may contain cycles, so there may be multiple
occurrences of x j on the path). The sum-product of coefficients on all subpaths xi!x̃ j is given
by t(xi!x j||Jk) and the sum-product of coefficients on all subpaths x̃ j!xu is t(x j!xu||Jk ∪{x j}).
Taking all combinations of subpaths xi!x̃ j and x̃ j!xu, we obtain the contribution of all the paths
through x j as the product t(xi!x j||Jk)t(x j!xu||Jk∪{x j}). We thus obtain

t(xi!xu||Jk) = t(xi!xu||Jk∪{x j})+ t(xi!x j||Jk)t(x j!xu||Jk∪{x j}). (13)

This equation is derived formally in Appendix F, where it is also shown that it holds for all weakly
stable models (not only asymptotically stable models).

We now show that equations of the above type from two different experiments can be combined
to determine the experimental effects of a novel third experiment. Consider for example the model in
Figure 2 over variables V = {x1,x2,x3,x4}. Say, we have conducted two single-intervention exper-
iments E1 = (J1,U1) = ({x1},{x2,x3,x4}) and E2 = ({x2},{x1,x3,x4}). By making the following
substitutions in Equation 13 for each experiment, respectively,

Jk := J1 = {x1}
xi := x1
x j := x2
xu := x3

Jk := J2 = {x2}
xi := x2
x j := x1
xu := x3

we get two equations relating the experimental effects in the original two experiments to some
experimental effects of the union experiment E3 = ({x1,x2},{x3,x4}) (we denote it as the “union”
experiment because J3 = J1∪ J2):

[

1 t(x1!x2||{x1})
t(x2!x1)||{x2}) 1

][

t(x1!x3||{x1,x2})
t(x2!x3||{x1,x2})

]

=

[

t(x1!x3||{x1})
t(x2!x3||{x2})

]

.

In the above equation, the quantities in the matrix on the left, and the elements of the vector on
the right-hand-side, are experimental effects that are available from the experimental data. The un-
known quantities are in the vector on the left-hand-side. Now, if the matrix on the left is invertible,
we can directly solve for the experimental effects of the third experiment just from the experimen-
tal effects in the first two. (Similar equations hold for other experimental effects as well). The
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following lemma shows that the matrix is invertible when the weak stability condition holds, and
that in general, from experimental effects observed in two experiments, we can always estimate the
experimental effects in their union and in their intersection experiments.

Lemma 9 (Union/Intersection Experiment) For a weakly stable canonical model the experimen-
tal effects in two experiments Ek = (Jk,Uk) and El = (Jl,Ul) determine the experimental effects in

• the union experiment Ek∪l = (Jk∪ Jl, Uk∩ Ul), and

• the intersection experiment Ek∩l = (Jk∩ Jl, Uk∪ Ul).

Since there are no experimental effects in experiments intervening on /0 or V , the experimental
effects are considered to be determined trivially in those cases. In the case of union experiments, also
the full covariance matrix Ck∪lx of the experiment can be determined. For intersection experiments,
Ck∩lx can be fully determined if passive observational data is available (see Appendix J).

In a canonical model the coefficients b(•→ xu) on the arcs into variable xu (the direct effects
of the other variables on that variable) are equal to the experimental effects when intervening on
everything except xu, that is, b(•→ xu) = t(•!xu||V \ {xu}). So in order to determine particular
direct effects, it is sufficient to ensure that a given set of experiments provides the basis to apply
Lemma 9 repeatedly so as to obtain the experimental effects of the experiments that intervene on
all but one variable. In our example with four variables, we can first use Lemma 9 to calculate the
experimental effects when intervening on {x1}∪ {x2} = {x1,x2} (as suggested above), and given
a further experiment that intervenes only on x4, we can then determine the experimental effects
of an experiment intervening on {x1,x2}∪ {x4} = {x1,x2,x4}. The experimental effects we obtain
constitute the direct effects b(•→ x3). Hence, if single-intervention experiments are available for
each variable it is easy to see that all direct effects of the model are identified using the lemma.

What then is the general condition on the set of experiments such that we can derive all possible
direct effects by iteratively applying Lemma 9? It turns out that we can determine all direct effects
if the following pair condition is satisfied for all ordered pairs of variables.

Definition 10 (Pair Condition) A set of experiments {Ek}k=1,...,K satisfies the pair condition for
an ordered pair of variables (xi,xu) ∈ V ×V (with xi -= xu) whenever there is an experiment Ek =
(Jk,Uk) in {Ek}k=1,...,K such that xi ∈ Jk (xi is intervened on) and xu ∈Uk (xu is passively observed).

It is not difficult to see that the pair condition holding for all ordered pairs of variables is suffi-
cient to identify B. Consider one variable xu. From a set of experiments satisfying the pair condition
for all ordered pairs, we can find for all xi -= xu an experiment satisfying the pair condition for the
pair (xi,xu). We refer to such an experiment as Ẽi = (J̃i,Ũi) in the following. Now, by iteratively
using Lemma 9, we can determine the experimental effects in the union experiment Ẽ∪ = (J̃∪,Ũ∪)
of experiments {Ẽi}i-=u, where variables in set J̃∪ =

⋃
i-=u J̃i are intervened on. Each xi was inter-

vened on at least in one experiment, thus ∀i -= u : xi ∈ J̃∪. Variable xu was passively observed in
each experiment, thus xu /∈ J̃∪. The experimental effects of this union experiment intervening on
J̃∪ = V \{xu} are thus the direct effects b(•→ xu). Repeating the same procedure for each xu ∈ V
allows us to identify all direct effects.
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Thus, if the pair condition is satisfied for all ordered pairs, we can determine all elements of
B, and only the covariance matrix Σe of the disturbances remains to be determined. The passive
observational data covariance matrix C0

x can be estimated from a null-experiment E0 = ( /0,V ).
Given B and C0

x we can solve for Σe using Equation 3:

Σe = (I−B)C0
x(I−B)T . (14)

If there is no null-experiment, then the block (Σe)Uk,Uk of the covariance matrix can instead be
determined from the covariance matrix in any experiment Ek = (Jk,Uk) using Equation 8:

(Σe)UkUk = [(I−UkB)Ckx(I−UkB)T ]UkUk . (15)

Consequently, given B, we can determine (Σe)i j = σi j if the following covariance condition is met.

Definition 11 (Covariance Condition) A set of experiments {Ek}k=1,...,K satisfies the covariance
condition for an unordered pair of variables {xi,x j} ⊆ V whenever there is an experiment Ek =
(Jk,Uk) in (Ek)k=1,...,K such that xi ∈Uk and x j ∈Uk, that is, both variables are passively observed.

Similarly to the pair condition, if we know B, and if the covariance condition is satisfied for all
pairs of variables, we can identify all covariances in Σe. Notice that the variances (Σe)ii can be
determined since the assumption includes that each variable xi must be passively observed at least
in one experiment.

Putting the results together we get a sufficient identifiability condition for a canonical model:

Theorem 12 (Identifiability–Sufficiency) Given canonical experiments {Ek}k=1,...,K a weakly sta-
ble canonical model (B,Σe) over the variablesV is identifiable if the set of experiments satisfies the
pair condition for each ordered pair of variables (xi,x j) ∈V ×V (with xi -= x j) and the covariance
condition for each unordered pair of variables {xi,x j}⊆ V .

The identifiability condition is satisfied for our four-variable case in Figure 2 by, for exam-
ple, a set of experiments intervening on {x1,x2},{x2,x4},{x1,x4} and {x3}. Obviously, a full set
of single-intervention experiments or a full set of all-but-one experiments together with a passive
observational data set would also do. We return to this issue in Section 4.2.

3.2 Necessity

To show that the conditions of Theorem 12 are not only sufficient but in fact also necessary for
identifiability, we consider what happens when the pair condition or the covariance condition is not
satisfied for some variable pair. Since the covariance condition only ensures the identifiability of
Σe when B is already identified, we start with the more fundamental pair condition.

Consider the two models in Figure 6. The models differ in their parameters, and even in their
structure, yet produce the same observations in all experiments that do not satisfy the pair condition
for the (ordered) pair (x2,x4). That is, for any experiment (including a passive observation), for
which it is not the case that x2 ∈ Jk and x4 ∈Uk, the two models are indistinguishable, despite the
fact that for an experiment that satisfies the pair condition for (x2,x4), the two models will in general
have different experimental effects (due to the difference in the direct effect b42). Since the effect
due to b42 cannot be isolated in the left model without satisfying the pair condition for the pair
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Figure 6: Underdetermination of the model. On the left: the data generating model (B,Σe). On the
right: a model (B̃,Σ̃e) producing the same observations in all experiments not satisfying
the pair condition for the ordered pair (x2,x4).

(x2,x4), its effect can be accounted for elsewhere in the right model, for example, the effect of the
missing path x1→ x2→ x4 is accounted for in the model on the right by the perturbed coefficient
b41 +b42b21 on the arc x1→ x4.

The B̃-matrix for the model on the right was constructed from the one on the left by perturbing
the coefficient b42 corresponding to the pair (x2,x4), for which the pair condition is not satisfied.
The perturbation corresponds to setting δ :=−b42 in the following lemma.

Lemma 13 (Perturbation of B) Let B be the coefficient matrix of a weakly stable canonical model
over V and let {Ek}k=1,...,K be a set of experiments on B that does not satisfy the pair condition for
some pair (xi,x j). Denote the sets K =V \{xi,x j} and L = {xi,x j}. Then a model with coefficient
matrix B̃ defined by

B̃KV = BKV , B̃LL =

[

0 bi j
b ji+δ 0

]

, B̃LK = (I− B̃LL)(I−BLL)−1BLK

will produce the same experimental effects as B for any experiment that does not satisfy the pair
condition for the pair (xi,x j). The free parameter δ must be chosen such that B̃ is weakly stable.

Lemma 13 shows that if the pair condition is not satisfied for the pair (xi,x j), then b ji cannot be
identified on the basis of the measured experimental effects. As in our example, it is generally the
case that for δ -= 0 the models B and B̃will produce different experimental effects in any experiment
that satisfies the pair condition for the pair (xi,x j). The choice of δ is not crucial, since most choices
will produce a weakly stable perturbed model.

To see the effect of the perturbation more clearly, we can write it explicitly as follows:

∀l -= j, ∀k : b̃lk = blk, (no changes to any edges that do not end in x j)

b̃ ji = b ji+δ, (perturb the direct effect of xi on x j by δ)

b̃ j j = 0, (no self-loop at x j)

∀k /∈ {i, j} : b̃ jk = b jk−δ
bik+bi jb jk
1−bi jb ji

. (needed adjustments to incoming arcs to x j)

The above form makes it clear that if the pair condition is not satisfied for the pair (xi,x j), in
general all coefficients on the jth row of B may be unidentified as well. Hence, to guarantee the
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identifiability of coefficient b ji we must have the pair condition satisfied for all pairs (•,x j). In
Figure 6 the coefficient b42 is unidentified because the pair condition for the pair (x2,x4) is not
satisfied. But as a result, b41 is also unidentified. Nevertheless, in this particular example, the
coefficient b43 happens to be identified, because of the structure of the graph.

If the pair condition is not satisfied for several pairs, then Lemma 13 can be applied iteratively
for each missing pair to arrive at a model with different coefficients, that produces the same experi-
mental effects as the original for all experiments not satisfying the pairs in question. Each missing
pair adds an additional degree of freedom to the system.

We emphasize that Lemma 13 only ensures that the experimental effects of the original and
perturbed model are the same. However, the following lemma shows that the covariance matrix of
disturbances can always be perturbed such that the two models become completely indistinguishable
for any experiment that does not satisfy the pair condition for some pair (xi,x j), as was the case in
Figure 6.

Lemma 14 (Perturbation of Σe) Let the true model generating the data be (B,Σe). For each
of the experiments {Ek}k=1,...,K, let the obtained data covariance matrix be Ckx. If there exists a
coefficient matrix B̃ -= B such that for all {Ek}k=1,...,K and all xi ∈ Jk and x j ∈Uk it produces the
same experimental effects t(xi!x j ||Jk), then the model (B̃,Σ̃e) with Σ̃e = (I− B̃)(I−B)−1Σe(I−
B)−T (I− B̃)T produces data covariance matrices C̃kx = Ckx for all k = 1, ...,K.

Lemma 14, in combination with Lemma 13, shows that for identifiability the pair condition must
be satisfied for all pairs. If the pair condition is not satisfied for some pair, then an alternative
model (distinct from the true underlying model) can be constructed (using the two lemmas) which
produces the exact same covariance matrices Ckx for all the available experiments. In Figure 6, the
effect of the missing link x2→ x4 is imitated by the additional covariance b42σ2

2 between e2 and e4
and by the covariance b42σ12 between e1 and e4.

The result implies that identifying the coefficient matrix B exclusively on the basis of constraints
based on experimental effects already fully exploits the information summarized by the second order
statistics. The covariances between the passively observed variables (corresponding to the lower
right hand block in Equation 9) do not provide any further information. We thus obtain the result:

Theorem 15 (Completeness) Given the covariance matrices in a set of experiments {Ek}k=1,...,K
over the variables in V , all coefficients b(xi→ x j) of a weakly stable canonical model are identified
if and only if the pair condition is satisfied for all ordered pairs of variables with respect to these
experiments.

Intuitively, the covariances between the passively observed variables do not help in identifying the
coefficients B because they also depend on the unknowns Σe, and the additional unknowns swamp
the gains of the additional covariance measures.

If B is known or the pair condition is satisfied for all pairs, but the covariance condition is
not satisfied for a pair {xi,x j}, then in general the covariance σi j cannot be identified: In all the
manipulated graphs of the experiments the arc xi↔ x j is cut, and thus σi j does not affect the data in
any way. It follows that the covariance condition is necessary as well. However, unlike for the pair
condition, not satisfying the covariance condition for some pair does not affect the identifiability of
any of the other covariances.

We can now summarize the previous results in the form of a sufficient and necessary identifiabil-
ity condition for the full model. Theorem 12 states that satisfying the pair condition and covariance
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condition for all pairs is sufficient for model identifiability. Theorem 15 shows that the coefficients
cannot be identified if the pair condition is not satisfied for all pairs of variables, and in the previous
paragraph we showed that satisfying the covariance condition for all pairs is necessary to identify
all covariances and variances of the disturbances. This yields the following main result.

Corollary 16 (Model Identifiability) The parameters of a weakly stable canonical model (B,Σe)
over the variables in V can be identified if and only if the set of experiments {Ek}k=1,...,K satisfies
the pair condition for all ordered pairs (xi,x j) ∈ V ×V (such that xi -= x j) and the covariance
condition for all unordered pairs {xi,x j}⊆ V .

Finally, note that all of our identifiability results and our learning algorithm (Section 4) are solely
based on second-order statistics of the data and the stated model space assumptions. No additional
background knowledge is included. When the data are multivariate Gaussian, these statistics exhaust
the information available, and hence our identifiability conditions are (at least) in this case necessary.

4. Learning Method

In this section, we present an algorithm, termed LLC, for inferring a linear cyclic model with latent
variables, provided finite sample data from a set of experiments over the given variable set. Although
Lemma 9 (Union/Intersection Experiment) naturally suggests a procedure for model discovery given
a set of canonical experiments that satisfy the conditions of Corollary 16 (Model Identifiability), we
will pursue a slightly different route in this section. It allows us to not only identify the model
when possible, but can also provide a more intuitive representation of the (common) situation when
the true model is either over- or underdetermined by the given set of experiments. As before, we
will continue to assume that we are considering a set of canonical experiments on a weakly stable
canonical model (Definitions 2, 4 and 6). From the discussion in Section 2 it should now be clear
that this assumption can be made essentially without loss of generality: Any asymptotically stable
model can be converted into a weakly stable canonical model and any experiment can be redescribed
as a canonical experiment, as long as the interventions in the original experiment were independent
of the disturbances. As presented here, the basic LLC algorithm provides only estimates of the
values of all the edge coefficients in B, as well as estimates of the variances and covariances among
the disturbances in Σe. We later discuss how to obtain error estimates for the parameters and how
to adapt the basic algorithm to different learning tasks such as structure discovery.

4.1 LLC Algorithm

To illustrate the derivation of the algorithm, we again start with Equation 12, which was derived
from the experiment that intervenes on x1 and x2 in Figure 3,

t(x1!x3||{x1,x2}) = b31 + t(x1!x4||{x1,x2})b34.

This provides a linear constraint of the measured experimental effects t(x1!x j||{x1,x2}) on the
unknown direct effects b31 and b34 into x3. In general, the experimental effects observed in an
experiment Ek = (Jk,Uk) can be used to provide linear constraints on the unknown direct effects
that, like Equation 12, have the form

t(xi!xu||Jk) = bui+ ∑
x j∈Uk\{xu}

t(xi!x j||Jk)bu j, (16)
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where xi ∈ Jk and x j,xu ∈ Uk. Analogously to the equations in Section 3.1, for asymptotically
stable models Equation 16 is also naturally interpretable in terms of the sum of paths connecting the
variables: The experimental effect of xi on xu is a sum of the direct effect of xi on xu and the effect of
each path from xi to any other x j ∈U \{xu}, multiplied by the direct connection from that x j to xu.
(Alternatively, one can also see how Equation 16 is reached by iteratively applying Equation 13.)

Since the covariance matrix Ckx of an experiment Ek contains the experimental effects for all
pairs (xi,x j) with xi ∈ Jk and x j ∈Uk, each experiment generates mk = |Jk|× |Uk| constraints of the
form of Equation 16. For a set of experiments {Ek}k=1,...,K we can represent the constraints as a
system of equations linear in the (n2−n) unknown coefficients b ji in B. (Recall that bii = 0 for all
i in canonical models.) We thus have a matrix equation

Tb = t, (17)

where T is a ((∑K
k=1mk)× (n2− n))-matrix of (measured) experimental effects, b is the (n2− n)-

vector of unknown b ji and t is a (∑K
k=1mk)-ary vector corresponding to the (measured) experimental

effects on the left-hand side of Equation 16.
Provided that matrix T has full column rank, we can solve this system of equations for b and

rearrange b into B (including the diagonal of zeros). Since any one constraint (e.g., Equation 16)
only includes unknowns of the type bu•, corresponding to edge-coefficients for edges into some
node xu ∈Uk, we can rearrange the equations such that the system of equations can be presented in
the following form








T11
T22

. . .
Tnn















b1
b2
...
bn








=








t1
t2
...
tn







, (18)

where T is a block diagonal matrix with all entries outside the blocks equal to zero. Instead of
solving the equation system in Equation 17 with (n2 − n) unknowns, Equation 18 allows us to
separate the system into n blocks each constraining direct effects bu• into a different xu. We can
thus separately solve n equation systems Tuubu = tu with (n−1) unknowns in each. The matrix T
has full column rank if and only if all Tuu have full column rank as well.

For example, in the case of the experiment intervening on Jk = {x1,x2} of the 4-variable model
in Figure 3, we obtain the following experimental covariance matrix:

Ckx=







1 0 t(x1!x3||{x1,x2}) t(x1!x4||{x1,x2})
0 1 t(x2!x3||{x1,x2}) t(x2!x4||{x1,x2})

t(x1!x3||{x1,x2}) t(x2!x3||{x1,x2}) vark(x3) covk(x3,x4)
t(x1!x4||{x1,x2}) t(x2!x4||{x1,x2}) covk(x3,x4) vark(x4)






.

This covariance matrix allows us to construct the following four linear constraints on the unknown
b’s:

t(x1!x3||{x1,x2}) = b31 + t(x1!x4||{x1,x2})b34, (19)
t(x1!x4||{x1,x2}) = b41 + t(x1!x3||{x1,x2})b43, (20)
t(x2!x3||{x1,x2}) = b32 + t(x2!x4||{x1,x2})b34, (21)
t(x2!x4||{x1,x2}) = b42 + t(x2!x3||{x1,x2})b43. (22)
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If we have a further experiment El = (Jl,Ul) with Jl = {x4} then we obtain the following three
additional constraints:

t(x4!x1||{x4}) = b14 + t(x4!x2||{x4})b12 + t(x4!x3||{x4})b13, (23)
t(x4!x2||{x4}) = b24 + t(x4!x1||{x4})b21 + t(x4!x3||{x4})b23, (24)
t(x4!x3||{x4}) = b34 + t(x4!x1||{x4})b31 + t(x4!x2||{x4})b32. (25)

Converting the Equations 19-25 to the form of the Equation 18, we see that Equations 19, 21 and 25
become part of T33, while Equations 20 and 22 become part of T44, and the remaining Equations 23
and 24 become part of T11 and T22, respectively. We will focus on T33 consisting of Equations
19, 21 and 25:

T33b3 =





1 0 t(x1!x4||{x1,x2})
0 1 t(x2!x4||{x1,x2})

t(x4!x1||{x4}) t(x4!x2||{x4}) 1









b31
b32
b34





=





t(x1!x3||{x1,x2})
t(x2!x3||{x1,x2})
t(x4!x3||{x4})



= t3.

Given Lemma 9 (Union/Intersection Experiment) it should now be clear that the experimental
effects of experiments Ek and El are sufficient to determine the experimental effects of an exper-
iment intervening on J = V \ {x3}, which would directly specify the values for b31,b32 and b34.
Unsurprisingly, the matrix T33 is invertible and the coefficients b31,b32 and b34 can be solved also
from the above equation system. In Appendix K we show formally that when the pair condition is
satisfied for all ordered pairs, then T has full column rank.

Once we have obtained B using the above method, the covariance matrix Σe can be obtained
easily using Equation 14 if a null-experiment E0 = ( /0,V ) is available, or else using Equation 15 in
the more general case where only the covariance condition is satisfied for all pairs.

Until now, we have described the algorithm in terms of the covariances and the experimental
effects ‘observed’ in a given experiment. In practice, of course, we only have finite sample data,
and the above quantities must be estimated from the data, and the estimated covariances and ex-
perimental effects do not precisely equal their true underlying values. This naturally has practical
ramifications that we describe in the context of the algorithm below.

The LLC algorithm (Algorithm 1), for models that are linear, may have latent variables and
may contain cycles, gathers the ideas described so far in this section. It omits all but the most rudi-
mentary handling of the inevitable sampling variability in the estimates. The algorithm minimizes
the sum of squared errors in the available linear constraints by solving the equation system using the
Moore-Penrose pseudo-inverse. Thus, whenever the linear constraints derived from different exper-
iments are partly conflicting, the algorithm will find a compromise that comes as close as possible
to satisfying all the available constraints. Similarly, to improve the statistical estimation of Σe, we
average over all the instances when a particular pair of variables was passively observed. When the
covariance condition is not satisfied for a particular pair, then the covariance of the disturbances for
that pair remains undefined.

There are several standard modifications that can be made to this basic algorithm in light of
statistical variability of the finite sample data. Whenever the sample size differs substantially be-
tween experiments, a re-weighting of the constraint equations according to the sample size of the
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experiment they were obtained from, favors the more precise constraints. Simple bootstrapping of
the observed samples in each experiment separately, can be used to obtain rough estimates of er-
ror for the identified parameters. In Section 6.2 we calculate a Z-score from these error estimates,
which in turn is used for structure discovery. Finally, some form of regularization can help to avoid
overfitting (see Sections 6.2 and 6.3). Although we have presented the LLC algorithm here in its
stripped down form to illustrate its main contribution, the code implementation5 provides various
options for using these additional features.

When the pair condition is not satisfied for all ordered pairs, then T does not provide a sufficient
set of constraints and the model is underdetermined.6 Nevertheless, some inferences about the
model are still possible. We discuss the details in the following section on underdetermination. For
now, note that the algorithm also outputs a list of pairs that satisfy the pair condition, and a list of
pairs that satisfy the covariance condition. We will show that these can be used to characterize the
underdetermination.

We thus have an algorithm that fully exploits the set of available experiments: When the model
identifiability conditions are satisfied it returns an estimate of the true model, when the system is
overdetermined it finds a compromise to the available constraints, and when the model is underde-
termined we show in the next section what can and cannot be recovered, and how one may proceed
in such circumstances.

4.2 Underdetermination

Even when the set of experiments does not satisfy the pair condition for all ordered pairs of vari-
ables, the LLC algorithm will nevertheless return a model with estimates for all the coefficients. If
there were no sampling errors, one could then check the null-space of the T-matrix to identify which
entries of B are actually underdetermined: An element of B is determined if and only if it is orthog-
onal to the null-space of T. In some cases one may find that specific coefficients are determined
due to particular values of other coefficients even though that was not clear from the satisfied pair
conditions. The coefficient b43 in the example in Figure 6 (see the discussion following Lemma 13)
is a case in point.

In practice, however, using the null-space to identify the remaining underdetermination can be
misleading. The constraints in T are based on estimates and so its null-space may not correctly
identify which coefficients are determined. One can take a more conservative approach and treat
any b jk as undetermined for all k whenever there exists an i such that the pair condition is not
fulfilled for the ordered pair (xi,x j). This follows from the fact that perturbing the model accord-
ing to Lemma 13 (Perturbation of B) with respect to pair (xi,x j), may change all coefficients of
the form b j•, while leaving the observed experimental effects unchanged. Similarly, the fifth step
of the algorithm implements a conservative condition for the identifiability of the covariance ma-
trix: covariance σi j can be treated as determined if the covariance condition is satisfied for the pair
{xi,x j} and the direct effects B{xi,x j},V are determined. Depending on which parameters are iden-
tified, Lemma 9 (Union/Intersection Experiment) can be used to make consistent predictions of the

5. Code implementing the learning algorithm is available at http://www.cs.helsinki.fi/u/ajhyttin/exp/.
6. Because of statistical variability, T may well have full rank even in this case, but some of the dimensions it spans

only represent errors in the estimates rather than information about the coefficients. See Section 4.2 for details.
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Algorithm 1 LLC algorithm
1. Input data from a set of experiments {Ek}k=1,...,K . Initialize matrix T and vector t as empty.

2. Using {Ek}k=1,...,K , determine which ordered pairs of variables satisfy the pair condition and
which pairs of variables satisfy the covariance condition.

3. For each experiment Ek = (Jk,Uk):

(a) Estimate the covariance matrix Ckx.
(b) From the estimated covariance matrix, extract the experimental effects

t(xi!xu||Jk) for all (xi,xu) ∈ Jk×Uk.
(c) For each pair (xi,xu) ∈ Jk×Uk add an equation

bui+ ∑
x j∈Uk\{xu}

t(xi!x j||Jk)bu j = t(xi!xu||Jk)

into the system Tb= t.

4. Solve the equations by b = T†t, where T† is the Moore-Penrose pseudo-inverse of T, and
rearrange b to get B.

5. For any pair {xi,x j} ⊆ V calculate the covariance of the disturbances as a mean of the co-
variances estimated in those experiments Ek = (Jk,Uk) where {xi,x j}⊆Uk, by

(Σe)i j = mean({((I−UkB)Ckx(I−UkB)T )i j |{xi,x j}⊆Uk}),

including variances when xi = x j. (The mean is undefined for a particular pair if the covari-
ance condition is not satisfied for that pair.)

6. Output the estimated model (B,Σe), a list of ordered pairs of variables for which the pair
condition is not satisfied, and a list of pairs of variables for which the covariance condition is
not satisfied.

experimental effects or the entire covariance matrix for union- or intersection7 experiments of the
available experiments even if the set of experiments does not satisfy the identifiability conditions.

Instead of characterizing the underdetermination, one may consider how to satisfy the model
identifiability conditions. There are two general approaches one could pursue. One approach is to
strengthen the underlying assumptions, the other to perform additional experiments. Taking the first
approach, the additional assumptions may be domain specific or domain general. In econometrics
it is common to include background knowledge of the domain that excludes the presence of certain
edges, that is, certain edge coefficients are known to be zero. Faithfulness, on the other hand, is an
assumption we did not make, but that is widely used in causal discovery algorithms (Spirtes et al.,
2000). For the linear models we consider here, the assumption of faithfulness requires that a zero-

7. We note that to fully determine the covariance matrix Ck∩lx in an intersection experiment, one may require additional
passive observational data. See the discussion following Lemma 9.
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covariance between two variables entails the absence of a causal connection between the variables.
While reasonable for many circumstances, there are well-known cases where faithfulness is not sat-
isfied. For example, if two or more paths between two variables cancel each other out exactly, then
one would find a zero-covariance between the variables despite the fact that the variables are (multi-
ply!) causally connected. Moreover, if the data is noisy, a close to unfaithful causal relation may not
be distinguishable from an unfaithful one unless a large amount of data or particular experiments are
available. Nevertheless, if faithfulness is judged to be a reasonable assumption, then it can provide
additional constraints. We have discussed the integration of faithfulness and background knowledge
into the current framework in Hyttinen et al. (2010). It remains, however, an open task to develop a
procedure for linear cyclic models with latent variables that is completewith regard to the additional
inferences one can draw on the basis of faithfulness.

If one is able to perform additional experiments, an obvious strategy is to select the next exper-
iment such that it maximizes the number of additional pair conditions that are satisfied. If experi-
ments that intervene on multiple variables simultaneously are taken into consideration, a brute force
search for such a best experiment will be exponential in the number of variables. In that case one
may consider more efficient selection strategies or heuristics. In most cases any additional experi-
ment will also repeat tests for pairs for which the pair condition is already satisfied. When included
in Equation 18, constraints derived from such tests can make the inference more reliable, so one
may deliberately select experiments to include particular repeats.

A selection of experiments that is greedy with respect to the satisfaction of additional pair con-
ditions will not necessarily result in the minimum number of experiments overall. For example, if
one has six variables x1, . . . ,x6, and no pair condition has been satisfied so far, that is, no experiment
has been performed, then a greedy strategy may recommend a sequence of five intervention sets to
fulfill the pair condition for all pairs:

J1 = {x1,x2,x3},J2 = {x4,x5,x6},J3 = {x1,x4},J4 = {x2,x5},J5 = {x3,x6}.

However, the following four intervention sets are sufficient to satisfy the pair condition for all pairs,
but would not be selected by any procedure that is greedy in this respect:

J1 = {x1,x2,x3},J2 = {x3,x4,x5},J3 = {x5,x6,x1},J4 = {x2,x4,x6}.

The optimal selection of experiments (given possible background knowledge) is closely related
to the theory in combinatorics of finding so-called ‘minimal completely separating systems’ for
directed graphs (see Hyttinen et al., 2012 and Spencer, 1970 for some relevant results). A full
discussion here is beyond the scope of this paper.

From a statistical perspective we have found that intervening on more variables simultaneously
leads to a higher accuracy of the estimates even if the total sample size across all experiments is
maintained constant (Eberhardt et al., 2010). That is, for two sets of experiments that each satisfy
the pair condition for all pairs of variables (e.g., the set of four experiments on six variables above
versus a set of six experiments each intervening on a single variable), the sequence of experiments
intervening on multiple variables simultaneously will provide a better estimate of the underlying
model even if the total sample size is the same.

5. Simulations

We compared the performance of the LLC-algorithm against well-known learning algorithms able
to exploit experimental data. Since there is no competing procedure that applies directly to the
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search space including cyclic and latent variable models, we chose for our comparison two proce-
dures that could easily be adapted to the experimental setting and that would provide a good contrast
to illustrate the performance of LLC under different model space assumptions. As baseline we used
the learning procedure by Geiger and Heckerman (1994) for acyclic Bayesian networks with linear
Gaussian conditional probability distributions, referred to as GH. Experimental data is incorporated
into the calculation of the local scores in GH using the technique described by Cooper and Yoo
(1999). Given that GH assumes acyclicity and causal sufficiency (the absence of latent confound-
ing), it provides a useful basis to assess the increased difficulty of the task when these assumptions
are dropped. We also compare to an algorithm for learning Directed Cyclic Graphical models (DCG,
Schmidt and Murphy, 2009), designed for discrete cyclic causal models without latent confounding.
In this model, the passively observed distribution is represented as a globally normalized product of
potentials

P(x1, . . . ,xn) =
1
Z

n

∏
i=1

φ(xi;xpa(i)),

where Z is a global normalizing constant. By using unnormalized potentials instead of normalized
conditional probability distributions, cycles are allowed in the graph structure. Experimental data
is then modeled by simply dropping the potentials corresponding to manipulated variables from the
expression, resulting in a manipulated distribution, such as, for example,

P(x2, . . . ,xn||x1) =
1
Z′

n

∏
i=2

φ(xi;xpa(i)),

with a new normalizing constant Z′. Schmidt and Murphy (2009) use potentials of the form
φ(xi;xpa(i)) = exp(bi(xi)+∑ j∈pa(i)wi j(xi,x j)) to model discrete data and learn the model by max-
imizing the penalized likelihood function using numerical optimization techniques. To fit this ap-
proach we discretized the continuous data (at the very end of the data-generating process) to binary
data using 0 as threshold value. While the DCG model may be useful in analyzing cyclic systems
under intervention, one should note that the underlying causal generative process is not very clear.
Certainly, our data generating processes do not in general yield distributions that fit the model family
of DCG.

At first glance, it would appear natural to consider two further procedures for comparison: the
Cyclic Causal Discovery algorithm (CCD, Richardson, 1996) that allows for cycles but not latent
variables, and the Fast Causal Inference algorithm (FCI, Spirtes et al., 2000) that allows for latents
but not for cycles. Both are based on conditional independence tests and return equivalence classes
of causal models. However, while background knowledge can be integrated into both procedures
to learn from a single experimental data set, it is not clear how (possibly conflicting) results from
different experiments should be combined. Identifying the appropriate combining procedure for
these algorithms would thus require a separate analysis. The approach by Claassen and Heskes
(2010) provides some steps in this direction with regard to FCI, but their framework does not quite
fit our context since in their framework the interventions are not targeted at particular variables. We
considered a comparison with the recent proposal by Itani et al. (2008), but as of this writing no
fully automated procedure was available to the present authors.

To compare the LLC- with the GH- and DCG-algorithms we considered models under five
different conditions:

3411



HYTTINEN, EBERHARDT AND HOYER

1. linear acyclic models without latent variables,
2. linear cyclic models without latent variables,
3. linear acyclic models with latent variables,
4. linear cyclic models with latent variables, and
5. non-linear acyclic models without latent variables.

For each condition we randomly generated 20 causal models with 10 observed variables each. In
the underlying graphs each node had 0-3 parents. In models with latent variables, there were 5
additional latent variables, exogenous to the 10 observed variables. The structural equations were
of the form

x j := ∑
i∈pa( j)

(b jixi+a jix2
i )+ e j,

where8 e j ∼ N(0,σ2
j), b ji ∼ ±Unif(0.2,0.8) and a ji = 0 except for the fifth condition with non-

linear models where a ji ∼ Unif(−0.2,0.2). For the second and fourth condition we sampled until
we obtained models that contained at least one cycle. From each model we collected samples in the
passive observational setting (null experiment) and in ten additional experiments, each intervening
on a single (but different) variable. The intervened variables were always randomized to a normal
distribution with zero mean and unit variance. The total number of samples (1,000 to 100,000)
were divided evenly among the 11 different experiments, so that adjustments to account for the fact
that one experiment may provide more accurate estimates than another were unnecessary. Note
that the described set of experiments satisfies the identifiability condition for the LLC-method in
Theorem 12 (Identifiability–Sufficiency).

There are a variety of ways to assess the output of the algorithms. Given that every test condition
violates at least one of the assumptions of one of the algorithms being tested, we decided against a
direct comparison of the quantitative output of each procedure. Instead we used the same qualitative
measure that is applied in the cellular network inference challenge that we consider as a case study in
Section 6. Following Stolovitzky et al. (2009), the simulations were designed such that each method
was required to output a list of all possible edges among the observed variables, sorted in decreasing
order of confidence that an edge is in the true graph. To this end, we adapted the three algorithms in
the following way. For LLC, the edges were simply ranked from highest to lowest according to the
absolute value of their learned coefficients in B. Although the magnitude of a coefficient does not
directly represent the confidence in the presence of the edge, we found empirically that it worked
quite well in the simulations. (See Section 6 for an alternative approach based on resampling.)
For GH, we calculated the marginal edge probabilities over all DAG structures (with an in-degree
bound of 3) using the dynamic programming algorithm of Koivisto and Sood (2004), thus obtaining
a score for the confidence in each possible edge. Given that DCG uses binary variables, each edge
is associated with four weights: wi j(0,0), wi j(0,1), wi j(1,0) and wi j(1,1). Since the weights were
penalized (with regularization parameter λ), an edge x j→ xi is absent whenever the four associated
weights are zero. Following Schmidt and Murphy (2009), we used the L2-norm of the weights for
each edge to determine its strength and hence its rank. As with LLC, this seemed to work well to
generate the order.

8. Although the disturbances e j are uncorrelated in the data generating model, the disturbances of the learned model are
in fact correlated when some of the original variables are considered unobserved.
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Figure 7: Examples of ROC- (left) and PR-curves (right) of the output of LLC run on 1,000 samples
evenly divided over 11 experiments on a linear acyclic model without latents (condition
1).

Given the ordered lists of all possible edges, we can obtain a binary prediction for the presence or
absence of an individual edge by simply defining a threshold above which edges would be predicted
to be present. These binary predictions can then be compared with the ground truth of the underlying
model. However, since the selection of the threshold is to some extent arbitrary (and requires
domain specific knowledge of the general sparsity of the generating models), we follow the common
approach of reporting Receiver Operating Characteristic (ROC) curves and Precision Recall (PR)
curves, and areas under these curves, as explained below. This evaluation of the simulations is also
consistent with the evaluation of the case study in Section 6.

A ROC-curve (Figure 7, left) is drawn by plotting the true positive rate (TPR) against the false
positive rate (FPR) for different values of the threshold score, where

TPR =
# edges correctly predicted to be present

# edges in generating model
,

FPR =
# edges incorrectly predicted to be present

# edges not in generating model
.

The ROC-curve for a powerful classification method should reach close to the top left corner (perfect
classification) for some threshold value of the score, while classifying at random would result in the
dashed curve in Figure 7. The area under the ROC-curve (AUROC) is often used as a simple one-
figure score to assess the power of a classification algorithm. When discovering causal edges in our
setting, the AUROC-value specifies the probability that a random edge present in the true model
will obtain a higher score than a random absent edge. The AUROC-value usually ranges from 0.5
(random classification) to 1.0 (perfect classification).
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Another measure of the quality of search algorithms examines the trade-off between Precision
and Recall on a PR-curve (Figure 7, right), where

Precision =
# edges correctly predicted to be present

# edges predicted to be present
,

Recall =
# edges correctly predicted to be present

# edges in generating model
.

A perfect classification algorithm should have a precision of 1 for all recall values. The area under
the PR-curve (AUPR) specifies the average precision over different threshold values of the score,
and can range from 0.0 to 1.0 (perfect classification).

Figure 8 shows the results of our simulations. For DCG we ran the algorithm with several
regularization parameter values (λ = 28,27, . . . ,2−7,2−8), and always report the best AUROC- and
AUPR-score. LLC and GH are run without any further tuning. In the first condition (linear acyclic
models without latents), all methods seem to learn the correct causal structure as the sample size
increases. For small sample sizes the GH approach benefits from the use of Bayesian priors. Such
priors could also be added to the LLC-algorithm, if better performance is needed for very low
sample sizes. In the other conditions GH does not achieve good results even with large sample
sizes. The performance of GH actually tends to get worse with increasing sample size because the
method starts adding incorrect edges to account for measured correlations that cannot be fit other-
wise, since the generating model is not included in the restricted model class GH uses. In contrast,
LLC suffers at low sample sizes at least in part because of the larger model class it considers. In
the second (cyclic models without latents), third (acyclic models with latents) and fourth condition
(cyclic models with latent variables), both LLC and DCG find quite good estimates of the causal
structure, when sufficient samples are available. Some inaccuracies of the DCG-method are due
to the discretization of the data. The performance of DCG in the presence of latent confounding
is surprisingly good given that the DCG model does not represent latent variables explicitly. The
result may also suggest that the dependencies among the observed variables that were due to latent
confounding may have been weak compared to the dependencies due to the causal relationships
among the observed variables. For the non-linear data condition, the only discrete (and therefore
non-linear) method DCG achieves the best results.

Without further adjustments GH and DCG cannot be scaled to larger sample sizes or a large
number of variables (n). The super-exponential growth of the number of DAGs currently limits the
GH approach to not more than 30-50 variables. Additionally, the calculation of local scores can
be time consuming. On the other hand, DCG requires a numerical optimization over n+4n(n−1)
parameters, which is also infeasible for large n.

In its most basic form (i.e., Algorithm 1), the LLC algorithm only requires the straightforward
estimation of the covariance matrices and a calculation of a pseudo-inverse for n matrices with a
dimensionality of (n− 1)× (n− 1) each. Such a procedure, as used in our simulations, can thus
scale to a relatively high (e.g., n = 100) number of variables. However, as we see in the next
section, it may be useful to add regularization to the basic procedure, and one may have to resort
to resampling approaches to obtain estimates of the errors in the coefficients, needed to infer which
edges are present and which are absent. Such adaptations and extensions of the basic method can, of
course, add significantly to the complexity of the method, but may also pay off in terms of a higher
accuracy on small sample sizes.
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Figure 8: Simulation results: AUROC (top) and AUPR (bottom) values for the LLC-, GH- and
DCG-algorithms in the five model conditions (columns, see main text for details) for a
total sample size of 1,000-100,000 (x-axis) evenly divided over a passive observation and
10 single intervention experiments. Each point on the solid lines is an average over 20
models with 10 observed variables each, the dashed lines indicate the standard deviation
of this average. The light gray shading in this and subsequent figures is used solely for
visual distinction.

6. Case Study: DREAM Challenge Data

DREAM (Dialogue for Reverse Engineering Assessments and Methods) is a yearly held challenge
for the fair evaluation of strengths and weaknesses of cellular network inference procedures. In this
section, we describe how we applied an adapted version of the LLC-method to the in silico network
challenges of DREAM 3 and DREAM 4, conducted in 2008 and 2009, respectively. The network
sizes of the 25 individual models, divided into 5 sub-challenges, ranged from 10 to 100 nodes.

The participants were asked to learn the directed graph structure of a gene regulatory network
in different types of cells, from experimental data. Data was in silico, or simulated, in order to
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Figure 9: An example of the data provided for one of the 10 variable DREAM network inference
challenge. Each row shows the steady state expression levels for each of the 10 genes
when the gene indicated on the columns is knocked down (•) or knocked out ("). For
each gene, the dashed line indicates the passively observed value. The dark gray shading
highlights the diagonal elements, marking the measured levels when intervening on the
respective gene. From the 10th row we see that the expression level of the 10th gene
responds strongly only to the manipulation of the 9th gene or the 10th gene itself.

have access to the ground truth network structures. The data generating models were designed to be
biologically plausible (Marbach et al., 2009) in order to achieve a realistic performance assessment
of the network learning algorithms. The networks were based on modules extracted from known
biological interaction networks, preserving functional and structural properties of the original net-
works. Data was then generated simulating a biologically plausible dynamical process and adding
noise (Prill et al., 2010).

The data provided to the participants included two measures of the steady states of gene ex-
pression levels (the levels converge to these values over time) as mRNA concentrations, in several
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different conditions. One data set is visualized in Figure 9. Given that only two data vectors were
provided for each condition, GH and DCG, tested in Section 5, are not directly applicable. The
challenges also provided several time series of how the modeled cell recovers from a perturbation
back to its equilibrium state. We do not include the time series data in our analysis, since LLC
(or the other procedures we considered) cannot straightforwardly exploit this data. Each team was
supposed to output a confidence measure or a score for their belief in the existence of each possible
edge in the model. The performance of the learning algorithms was compared using AUROC and
AUPR scores for a single data set (Stolovitzky et al., 2009), in the same manner as explained in
Section 5. Finally, in each sub-challenge of 5 models, the competing teams were compared using a
total score averaging the individual network scores over all 5 networks.

Below, we discuss how we adapted LLC so that we could apply it to these challenges, and
compare the results we obtained with the scores achieved by the teams that participated in the
original challenge.

6.1 Estimating the Total Effects

When gene i is knocked down or knocked out, we can treat the result in our framework as an out-
come of an experiment where variable xi is intervened on. However, the DREAM data provides
only the steady state values of the expression levels, and not the full covariance matrices. We can
still find the total effects in the experiments by the following approach. First, we treat the steady
state values as the expected values of the variables under the different interventions (or passive ob-
servation), rather than as individual samples. Second, the passive observational steady state values
are deducted from all the interventional steady state values such that we can assume E(x) = 0 and
thus E(e) = 0. Recall that the total effect t(xi!x j) is just the regression coefficient of xi when x j
is regressed over the only manipulated variable xi. Thus, the expected or steady state value of x j
when xi is manipulated to a value xi,koi (knocked out) is simply t(xi!x j) · xi,koi . Similar reasoning
applies when xi is manipulated to a value xi,kdi , and so we can estimate t(xi!x j) by the least squares
solution of the equation system:

t(xi!x j) · xi,koi = xi,koj ,

t(xi!x j) · xi,kdi = xi,kdj .

Given that the data set satisfies the pair condition for all ordered pairs, the DREAM experiments
fulfill the requirements given in Section 3 for model identifiability and all total effects t(xi!x j) can
be estimated for all pairs (xi,x j).

6.2 Network Inference

Given the estimated total effects, we could directly apply the LLC algorithm to estimate the direct
effects matrix B. However, we found that to obtain strong results we had to adapt the algorithm in
the following way.

First, unlike in the simulations in Section 5, we found that here the absolute value of a coefficient
b ji does not provide a good confidence measure for the existence of the edge xi→ x j, since it does
not consider the possibly large variance of the estimate for b ji in any way. As direct re-sampling
approaches are not possible with the available data, we created K noisy data sets by adding noise
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from a normal distribution with variance σ2 = 0.1 to each raw data point. We then estimated the
total effects as explained above.

Second, to estimate the direct effects B we solved the LLC equation system in Equation 17
using an L1-norm penalization with weight λ= 0.1. An estimate of the direct effects B (vectorized
as b) from the noisy data set is thus calculated by

minb‖Tb− t‖2
L2 +λ‖b‖L1 .

As explained in Section 4 the estimation can be done by n separate minimization problems. Note
that the L1-norm penalization can be thought of as a prior for sparse structures, in a way somewhat
similar to the use of a faithfulness assumption.

Finally, we calculate the Z-scores for each link b ji by

Zji = mean({bkji}Kk=1)/std({bkji}Kk=1).

The higher the Z-score the more confident we are of the existence of the edge. Using Z-scores
allows for a high score for a small coefficient as long as its estimated variance is small as well.

Figure 10 summarizes the results. The first observation is that the DREAM 4 challenges were
more competitive than the DREAM 3 challenges as the variation of the results for the 10 best
teams is lower. Our overall ranks in the five challenges are 3rd, 9th, 3rd, 2nd and 10th among
the approximately 30 teams that participated in the actual challenges. There is no clear difference
in evaluation with either score metric. We take these results to be encouraging, especially since—
unlike many other candidates—we did not use the available time series data. How to exploit the time
series data remains an open question. The noise in the data, not having access to a sufficient number
of samples and the possible non-linearity of the causal relations constitute additional sources of
errors.

6.3 Prediction Accuracy

In addition to structure discovery, another important aspect of causal modeling is prediction under
previously unseen experimental conditions. Thus, DREAM 4 featured a bonus round for predicting
the steady state values of the gene expression levels in novel experimental settings. The data were
the same as for the structure discovery challenges. For the five 10-variable models, the teams were
asked to predict all steady state expression levels in 5 situations where always a pair of genes is
knocked out. For the five 100-variable models predictions were requested for 20 double knockout
settings each.

The knocked out values of variables xi and x j are defined by the data as xi,koi and x j,koj . We can
estimate the values of the variables xu such that u -= i, j using the interpretation of the experimental
effects as regression coefficients:

xi, j,kou = t(xi!xu||{xi,x j}) · xi,koi + t(x j!xu||{xi,x j}) · x j,koj .

Since we can estimate t(xi!xk||{xi}) and t(x j!xk||{x j}) as described in the previous section, we
can also estimate the quantities t(xi!xk||{xi,x j}) and t(x j!xk||{xi,x j}) using Lemma 9
(Union/Intersection). We solve the linear equation group (Equation 35 in Appendix G) for the
experimental effects using an L2 prior with regularization parameter λ. In other words, we assume
that the data generating model is a linear cyclic model with latent variables and we predict the steady
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Figure 10: Summary of the results for the DREAM in silico network inference challenges: The
AUROC- and AUPR-scores (first and third row) and the corresponding rank among the
competitors, for each of the DREAM 3 and DREAM 4 challenges. The top of the dark
gray area shows the best results among the competing teams for each individual data
set, while the bottom always shows the 10th best result. Overall there were about 30
competitors in each of the challenges.

state values of the specific combined (double) knockout experiment on the basis of the relevant sin-
gle knockout experimental data provided. (The double knockout effects are identified based on the
single knockout experimental data by Lemma 9.) In this way, in each individual prediction task we
disregard the data that is irrelevant to this specific prediction, and only use the data that is actually
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Figure 11: Predictive performance: Mean squared errors of predictions in double intervention ex-
periments on five 10-variable models (top) and 100-variable models (bottom) plotted
as a function of the regularization parameter. The red line shows the prediction errors
for our procedure. The bottom of the dark gray area shows the best result among the
competing teams for each individual data set, while the top always shows the third best
result.

relevant. In practice, this means that the predictions are more robust to any slight violations of the
modeling assumptions not crucial to the prediction task at hand.

Figure 11 assesses the quality of the predictions. The predictions are compared using the mean
squared error from the ground truth, that is, the average sum of squared errors over the variables and
over the different predictions requested. For the 10-variable models the results of our procedure are
competitive with those of the seven participating teams. For the 100-variable models our procedure
achieves in aggregate the best predictions among the five participating teams for a range of the
regularization parameter values.
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7. Extensions

We have presented and developed the theory in this paper in terms of the standard interpretation
of linear non-recursive structural equation models, in which the vector of disturbances e is held
constant throughout the equilibrating process. Following Lauritzen and Richardson (2002) we refer
to this most common interpretation of cyclic models as the deterministic equilibrium interpreta-
tion, since the value of the observed variables x at equilibrium is a deterministic function of the
disturbances e. In this model, as defined in Section 2.1, different observed vectors x arise solely
from different outside influences e, yielding a covariance matrix Ckx for each experiment Ek. In this
section we discuss some preliminary ideas for extending the theory to other related linear cyclic
models.

In Section 6 we have already seen an application of the method to data in which there is only a
single passive-observational data vector x0 and two experimental data vectors xkdk ,xkok (correspond-
ing to gene knockdown and knockout experiments, respectively) for each experiment intervening
on a single variable at a time. In this case, to make the LLC method applicable, one essentially
must assume that there is a single (constant) disturbance vector e that does not change between the
different experimental conditions, so that the experimental effects are given by the change in values
(from the passive observational to the experimental data) of the non-intervened variables divided
by the corresponding change in value of the intervened variable. Under this assumption, the theory
presented in this paper is directly applicable to estimate the direct effects among the variables from
the experimental effects.

If, however, one wants to apply the full machinery provided in this paper to data of the above
kind, but in which each experiment intervenes on multiple variables simultaneously, it is not suffi-
cient to obtain just one or two experimental data vectors xk. Rather, in general multiple data vectors
may be needed to be able to disentangle the effects of each of the intervened-upon variables on the
non-intervened ones. The details of the required experimental protocols, as well as sufficient and
necessary identifiability conditions, are however left for future work.

A different extension considers models in which the observed data vectors arise from an equi-
librium reached by a process with stochastic dynamics. Specifically, consider a time-series process

x(t) := Bx(t−1)+ e(t),

where e(t) is sampled anew at each time step t, always from the same distribution with mean µe = 0
and variance-covariance matrix Σe. All the variables in x are updated simultaneously given their
values of the previous time step and the new disturbance term e(t).9 Obviously, this system no
longer has a deterministic equilibrium, but for an asymptotically stable model (B,Σe) the process
converges to an equilibrium in which a sample vector x(t = ∞) is drawn from

µx = 0,

Cx = lim
t→∞

t

∑
i=1
Bt−iΣe(BT )t−i.

As in the deterministic model, the observed vector x drawn at equilibrium is independent of the
initial values at the start of the process. Different observed data vectors x would be obtained by run-
ning multiple parallel chains. Interventions could be modeled as setting a given variable to a value

9. We note that this model differs from Lauritzen and Richardson (2002)’s stochastic equilibrium model, discussed in
Sections 6 and 7 of their paper. They consider a sequential update of the variables in a particular order.
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drawn from some distribution, and then keeping that variable constant throughout the equilibrating
process.

In such a model the covariances between the intervened and non-intervened variables corre-
spond to experimental effects, mirroring the deterministic case. Hence the theory presented in this
paper could be used to estimate the direct effects matrix B. Given the direct effects, and given a
passive-observational covariance matrix Cx, one could estimate Σe using the relation

Σe = Cx−BCxBT .

Note, however, that the expression for the covariance among the non-intervened variables is not
directly parallel to the deterministic case, so some of the theory presented in this paper would need
to be adapted if this particular model were of primary interest.

In all the models discussed so far, we have been assuming that interventions take full control
of the intervened variable by making it independent of its normal causes. This representation of an
intervention is consistent with interventions in randomized controlled trials or in cases where a vari-
able is “clamped” to a particular value. However, interventions needn’t be “surgical” in this sense,
but could instead only add an additional influence to the intervened variable without breaking the
relations between the intervened variable and its causal parents. Such interventions are sometimes
referred to as “soft” interventions. In linear models they are formally equivalent to instrumental
variables, which are known to be useful for causal discovery. In our model a soft intervention
is simply represented by an added influence that does not affect the coefficient matrix B, nor the
disturbance term e. That is, the matrix Uk is deleted in both instances from Equation 4, but the
influence c is still added. Assuming that the influence of the soft interventions on the intervened
variables is known, that is, that c is measured, and that multiple simultaneous soft interventions are
performed independently, it can be shown that one can still determine the experimental effects of
the intervened variables. The entire machinery described here thus transfers with only some very
minor adjustments. Given that soft interventions can be combined independently of one another,
very efficient experimental protocols can be developed. In Eberhardt et al. (2010) we found that
even from a statistical perspective, soft interventions appear to require the overall least number of
samples for causal discovery.

Lastly, it is worth noting that the LLC-Algorithm presented here uses the measured experi-
mental effects t(xi!xu||J ) to linearly constrain the unknown direct effects b ji of B. There may
be circumstances in which it might be beneficial to instead use the experimental effects to linearly
constrain the total effects t(xi!xu).10 In fact, such a representation was originally developed in
Eberhardt et al. (2010). Given an experiment Ek = (Jk,Uk), the linear constraint of the measured
experimental effects on the unknown total effects t(xi!xu) is then given by

t(xi!xu) = t(xi!xu||Jk)+ ∑
x j∈Jk\{xi}

t(xi!x j)t(x j!xu||Jk).

The constraint has a similar form to the constraint on direct effects in Equation 16, but combines a
different set of experimental effects. Such a representation of the constraints in terms of total effects
forms the basis for an algorithm analogous to LLC to identify the total effects. Once all the total
effects are determined, one can, if needed, easily infer the direct effects (see Eberhardt et al., 2010).

10. Recall that the total effect corresponds to the experimental effect in the single-intervention experiment where only
the cause is subject to intervention, that is, t(xi!xu) = t(xi!xu||{xi}).
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8. Conclusion

We have described a procedure that uses data from a set of experiments to identify linear causal
models that may contain cycles and latent variables. While assuming linearity is a significant re-
striction, we are not aware of any other procedure that works with assumptions that are as weak in
all other regards. Given this model space, we have shown how important the satisfaction of the pair
condition and the covariance condition is for identifiability. Additionally, we have noted that when
the identifiability conditions are not satisfied, the underdetermination of the model is generally fairly
local.

Despite our analysis in terms of canonical models and sets of canonical experiments, we have
indicated that these are in fact only very weak conditions: Any data from a non-conditional surgi-
cal experiment can be turned into data from a corresponding canonical one (if the experiment was
not canonical to start with), and almost any linear cyclic model with latent variables can be rep-
resented by a canonical model that is completely equivalent with respect to the available data and
any novel predictions produced. Thus, our procedure can handle a quite general model family and
experimental setup.

We have shown that the LLC algorithm performs quite well in comparison with algorithms
designed for solving similar inference problems. Moreover, within the DREAM challenges, we have
a good comparison of how our algorithm (suitably adapted to the problem) performs for realistic
data. It is competitive across all challenges despite the linearity assumption.

In Section 7 we have suggested how our model and search procedure can be generalized to
models with stochastic dynamics; in Eberhardt et al. (2010) we also considered experiments with
so-called “soft” interventions. An open question remains: What are the minimal conditions a model
must satisfy such that a search procedure based on experiments that satisfy the pair condition for all
ordered pairs of variables is sufficient for model identifiability? In Hyttinen et al. (2011) we showed
that this condition is necessary and sufficient for identifiability in discrete acyclic models with a
noisy-or parametrization. It is not known to what extent the condition generalizes to other model
families.
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Appendix A. Centering the Data

Here we show how to center the data, so that it can be modeled with a linear cyclic model with
latent variables that assumes a zero mean for the disturbances. We also consider how to translate
the predictions of the model to predictions for the actual data generating process. Throughout, we
assume that in each experiment we observe the mean and covariance matrix in the infinite sample
limit.

Let the true data generating model be a linear cyclic model with latent variables (B,Σe,µe)
where µe -= 0. Say, we have observed passive observational data with mean µ

0
x. In an arbitrary
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experiment Ek = (Jk,Uk) the data generating model produces data with the following mean and
covariance matrix:

µ
k
x = (I−UkB)−1(Ukµe+Jkµk

c), (26)
Ckx = (I−UkB)−1(Σk

c+UkΣeUk)(I−UkB)−T .

If we first center all data vectors by

 x = x−µ
0
x, (27)

then the centered data has mean  µk
x = µ

k
x−µ

0
x and unaltered covariance matrix  Ckx = Ckx. The

centering of Equation 27 implies that instead of randomizing the intervened variables in Jk with
mean (µk

c)Jk and covariance (Σk
c)JkJk , the centered variables are considered to be randomized with

mean (  µk
c)Jk = (µk

c−µ
0
x)Jk and covariance (  Σk

c)JkJk = (Σk
c)JkJk . The subsequent equations show

that the corresponding model with zero mean disturbance (B̃,Σ̃e, µ̃e), where B̃ = B, Σ̃e =Σe and
µ̃e= 0n, generates the centered data when the intervened variables are randomized with mean (  µk

c)Jk
and covariance  Ckx:

C̃kx = (I−UkB̃)−1(  Σk
c+UkΣ̃eUk)(I−UkB̃)−T

= (I−UkB)−1(Σk
c+UkΣeUk)(I−UkB)−T = Ckx =  Ckx,

µ̃
k
x = (I−UkB̃)−1(Ukµ̃e+Jk  µk

c)

= (I−UkB)−1Jk(µk
c−µ

0
x) ||µ0

x = (I−B)−1
µe

= (I−UkB)−1Jkµk
c− (I−UkB)−1Jk(I−B)−1

µe+(I−B)−1
µe−µ

0
x

= (I−UkB)−1Jkµk
c+(I−UkB)−1(−Jk+ I−UkB)(I−B)−1

µe−µ
0
x

= (I−UkB)−1Jkµk
c+(I−UkB)−1(−(I−Uk)+ I−UkB)(I−B)−1

µe−µ
0
x

= (I−UkB)−1(Ukµe+Jkµk
c)−µ

0
x = µ

k
x−µ

0
x =  µk

x.

Thus, the centering is innocuous with regard to B and Σe. The identities show also how to translate
the predictions of the zero-mean disturbance model in some novel experiment Ek to the predictions
of the actual data generating model: µk

x = µ
0
x+ µ̃

k
x and Ckx = C̃kx.

In the unlikely case that passive observational data is not available, we can simply center the
data vectors x observed in experiment Ek:

 x := x−µ
k
x.

This essentially corresponds to just ignoring the observed mean in each experiment. The theory
in the paper can be used to estimate the direct effects matrix B and covariance matrix Σe, as the
data covariance matrices are independent of the mean of the disturbances. This is sufficient for
structure discovery, but if we want to achieve consistent predictions of the observed mean in novel
experimental setups, µe also needs to be estimated. In experiment Ek = (Jk,Uk), the data has mean
µ
k
x, so (µe)Uk can be estimated by ((I−UkB)µk

x)Uk , since

((I−UkB)µk
x)Uk = ((I−UkB)(I−UkB)−1(Ukµe+Jkµk

c))Uk

= (Ukµe+Jkµk
c)Uk = (µe)Uk .
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Thus, if each variable xi is observed unmanipulated in some experiment and B is identified, then the
whole vector µe can be estimated. The predicted mean µ

k
x for an arbitrary novel experiment Ek can

then be obtained using Equation 26. See Appendices B and J for additional discussion on predicting
means.

Appendix B. Proof of Lemma 5 (Correlated Experiment)

In a correlated experiment Ek, where c is randomized with mean µ
k
c and covariance matrix Σk

c such
that (Σk

c)JkJk is symmetric positive-definite, the model (B,Σe) produces the following observations:

µ̃
k
x = (I−UkB)−1

µ
k
c,

C̃kx = (I−UkB)−1(Σk
c+UkΣeUk)(I−UkB)−T

=

[

(Σk
c)JkJk (Σk

c)JkJkBTUkJk
(I−BUkUk)

−T

(I−BUkUk)
−1BUkJk(Σ

k
c)JkJk ∗

]

,

∗ = (I−BUkUk)
−1((Σe)Uk,Uk +BUkJk(Σ

k
c)JkJkBTUkJk)(I−BUkUk)

−T .

Then, matrix T̃kx, defined in the lemma in terms of the observed covariance matrix C̃kx, can be
expressed solely in terms of the model parameters B:

T̃kx = (C̃kx)V Jk((C̃
k
x)JkJk)

−1 =

[

(Σk
c)JkJk

(I−BUkUk)
−1BUkJk(Σ

k
c)JkJk

]
[

(Σk
c)JkJk

]−1

=

[

I
(I−BUkUk)

−1BUkJk

]

= ((I−UkB)−1)V Jk ,

where matrix (C̃kx)JkJk = (Σk
c)JkJk is invertible, since it is a positive-definite matrix. The following

identities apply:

T̃kx(T̃kx)T = ((I−UkB)−1)V Jk(((I−UkB)
−1)V Jk)

T

= (I−UkB)−1Jk(I−UkB)−T ,
T̃kx(C̃kx)JkJk(T̃kx)T = ((I−UkB)−1)V Jk(Σ

k
c)JkJk(((I−UkB)−1)V Jk)

T

= (I−UkB)−1
Σ
k
c(I−UkB)−T .

Now from Equations 5 and 6 we can calculate the statistics of the experiment if the intervened
variables had been randomized with zero mean and unit variance (appearing in Equations 7 and 8):

µ
k
x = 0,
Ckx = C̃kx− T̃kx(C̃kx)JkJk(T̃kx)T + T̃kx(T̃kx)T

= (I−UkB)−1(Σk
c+UkΣeUk−Σ

k
c+Jk)(I−UkB)−T

= (I−UkB)−1(UkΣeUk+Jk)(I−UkB)−T .

Notice that the formulas in the lemma can also be used to transform the predictions 0 and Ckx
in a canonical experiment to predictions µ̃

k
x and C̃kx in a non-canonical experiment, where c is

randomized with mean µ
k
c and covariance Σk

c:

µ̃
k
x = T̃kxµk

c,

C̃kx = Ckx+ T̃kx(Σk
c)JkJk(T̃kx)T − T̃kx(T̃kx)T ,

3425



HYTTINEN, EBERHARDT AND HOYER

where T̃kx = (Ckx)V Jk .

Appendix C. Derivation of the Trek Rule for Asymptotically Stable Models

From the definition of asymptotic stability it follows that the eigenvalues of UkB are all less than
one in absolute value. As the eigenvalues of matrix BUkUk are equal to those of UkB, matrix (I−
BUkUk)

−1 can be written as the following geometric series:

(I−BUkUk)
−1 = I+BUkUk +BUkUkBUkUk + · · · .

Now, the experimental effect t(xi!xu||Jk) can be expressed as the sum-product implied by the trek
rules:

t(xi!xu||Jk) = (Tkx){xu}{xi}
= ((I−BUkUk)

−1BUkJk){xu}{xi}
= ((I+BUkUk +BUkUkBUkUk + · · ·)BUkJk){xu}{xi}

= bui+ ∑
j∈Uk

bu jb ji+ ∑
j∈Uk

∑
l∈Uk

bu jb jlbli+ · · ·

= ∑
p∈P (xi!xu||Jk)

∏
(xl→xm)∈p

bml .

Appendix D. Proof of Lemma 7 (Marginalization)

In the following, note that the experiment of the marginalized model Ẽk = (J̃k,Ũk) and the corre-
sponding experiment of the full model Ek = (Jk,Uk) satisfy Jk = J̃k and Uk = Ũk∪M . Without loss
of generality the variables are labeled such that x1, . . . ,xi ∈ J̃k, xi+1, . . . ,x j ∈ Ũk and x j+1, . . . ,xn ∈M
to allow for easy block matrix manipulation.

D.1 Weak Stability

We show that if the full model (B,Σe) is weakly stable then the marginalized model (B̃,Σ̃e) is also
weakly stable. Make the counter-assumption that (B̃,Σ̃e) is weakly unstable, thus there exists an
experiment Ẽk such that (I− ŨkB̃) is singular, or equivalently matrix ŨkB̃ has a unit eigenvalue:
∃ṽ -= 0 such that ŨkB̃ṽ = ṽ. The following shows that then UkB also has a unit eigenvalue corre-
sponding to the eigenvector v defined below:11

11. Invertibility of (I−BMM ) follows from the weak stability of (B,Σe) in experiment (Ṽ ,M ).
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UkBv =

[

Ũk
I

][

BṼ Ṽ BṼM
BM Ṽ BMM

]

v ||v=
[

ṽ
(I−BMM )−1BM Ṽ ṽ

]

=

[

ŨkBṼ Ṽ ŨkBṼM
I ·BM Ṽ I ·BMM

][

ṽ
(I−BMM )−1BM Ṽ ṽ

]

=

[

ŨkBṼ Ṽ ṽ+ ŨkBṼM (I−BMM )−1BM Ṽ ṽ
BM Ṽ ṽ+BMM (I−BMM )−1BM Ṽ ṽ

]

=

[

Ũk(BṼ Ṽ +BṼM (I−BMM )−1BM Ṽ )ṽ
(I−BMM )(I−BMM )−1BM Ṽ ṽ+BMM (I−BMM )−1BM Ṽ ṽ

]

||Def. of B̃

=

[

ŨkB̃ṽ
(I−BMM +BMM )(I−BMM )−1BM Ṽ ṽ

]

=

[

ṽ
(I−BMM )−1BM Ṽ ṽ

]

= v.

Thus, (I−UkB) is singular and the full model (B,Σe) is not weakly stable. Because this is contra-
dictory to the assumptions, (B̃,Σ̃e) must be weakly stable.

D.2 Equal Covariance Matrices

We need to show that in experiment Ek the covariance matrix (Ckx)Ṽ Ṽ produced by (B,Σe) is equal
to the covariance matrix C̃kx produced by (B̃,Σ̃e). This requires us first to derive the following
identities:

(I− B̃ŨkŨk
)−1 = (I−BŨkŨk

−BŨkM (I−BMM )−1BMŨk
)−1, (28)

B̃Ũk J̃k = BŨk J̃k +BŨkM (I−BMM )−1BM J̃k , (29)
(I− B̃ŨkŨk

)−1B̃Ũk J̃k = ((I−BUkUk)
−1BUkJk)Ũk J̃k , (30)

((I− ŨkB̃)−1)Ṽ J̃k
= ((I−UkB)−1)Ṽ J̃k

. (31)

The goal is to derive Equation 31, which means that both models produce the same experimental
effects from xi ∈ J̃k to xu ∈ Ũk.

Equations 28 and 29 follow directly from the marginalized model definition in Lemma 7. To
show Equation 30, we invert the matrix (I−BUkUk) in blocks (the unneeded blocks on rows corre-
sponding to the marginalized variables are replaced with a ‘·’-symbol):

(I−BUkUk)
−1 =

[

I−BŨkŨk
−BŨkM

−BMŨk
I−BMM

]−1

||block matrix inversion & Eq. 28

=

[

(I− B̃ŨkŨk
)−1 (I− B̃ŨkŨk

)−1BŨkM (I−BMM )−1

· ·

]

.
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Then, we can verify Equation 30:

((I−BUkUk)
−1BUkJk)Ũk J̃k

=

([

(I− B̃ŨkŨk
)−1 (I− B̃ŨkŨk

)−1BŨkM (I−BMM )−1

· ·

][

BŨk J̃k
BM J̃k

])

Ũk J̃k

=

[

(I− B̃ŨkŨk
)−1(BŨk J̃k +BŨkM (I−BMM )−1BM J̃k)

·

]

Ũk J̃k

||Eq. 29

=

[

(I− B̃ŨkŨk
)−1B̃Ũk J̃k

·

]

Ũk J̃k

= (I− B̃ŨkŨk
)−1B̃Ũk J̃k .

Equation 31 follows quite directly from Equation 30:

((I−UkB)−1)Ṽ J̃k
= (((I−UkB)−1)V Jk)Ṽ J̃k

=

[

I
(I−BUkUk)

−1BUkJk

]

Ṽ J̃k

=

[

I
((I−BUkUk)

−1BUkJk)Ũk J̃k

]

||Eq. 30

=

[

I
(I− B̃ŨkŨk

)−1B̃Ũk J̃k

]

= ((I− ŨkB̃)−1)Ṽ J̃k
.

Next, we use matrix ṽ = [I j× j 0 j×(n− j)] to avoid the complicated block matrix notation. Mul-
tiplication from the left by ṽ just selects the rows corresponding to variables in Ṽ , multiplication
from the right by ṽT selects the columns corresponding to variables in Ṽ . We prove the following
identities.:

(I− ŨkB̃)−1J̃k = ṽ(I−UkB)−1JkṽT , (32)
(I− ŨkB̃)−1Ũk(I− B̃)ṽ = ṽ(I−UkB)−1Uk(I−B). (33)

Equation 32 just restates Equation 31 using matrix ṽ. Equation 33 is verified by the following
derivation:

(I− ŨkB̃)−1Ũk(I− B̃)ṽ− ṽ(I−UkB)−1Uk(I−B) ||Uk = I−Jk, Ũk = I− J̃k
= (I− ŨkB̃)−1(I− ŨkB̃− J̃k)ṽ− ṽ(I−UkB)−1(I−UkB−Jk)
= ṽ− (I− ŨkB̃)−1J̃kṽ− ṽ+ ṽ(I−UkB)−1Jk ||Eq. 32
= −ṽ(I−UkB)−1JkṽT ṽ+ ṽ(I−UkB)−1Jk ||JkṽT ṽ= Jk
= 0.
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Finally, we can show that the covariance matrix C̃kx of the marginalized model matches the
marginalized covariance matrix (Ckx)Ṽ Ṽ of the original model:

C̃kx = (I− ŨkB̃)−1(J̃k+ ŨkΣ̃eŨk)(I− ŨkB̃)−T ||definition of Σ̃e
= (I− ŨkB̃)−1(J̃k+ Ũk(I− B̃)ṽ(I−B)−1

Σe(I−B)−T ṽT (I− B̃)T Ũk)(I− ŨkB̃)−T

= (I− ŨkB̃)−1J̃k(I− ŨkB̃)−T +
(I− ŨkB̃)−1Ũk(I− B̃)ṽ(I−B)−1

Σe(I−B)−T ṽT (I− B̃)T Ũk(I− ŨkB̃)−T ||Eq. 33
= (I− ŨkB̃)−1J̃kJ̃k(I− ŨkB̃)−T +

ṽ(I−UkB)−1Uk(I−B)(I−B)−1
Σe(I−B)−T (I−B)TUk(I−UkB)−T ṽT ||Eq. 32

= ṽ(I−UkB)−1Jk(I−UkB)−T ṽT + ṽ(I−UkB)−1UkΣeUk(I−UkB)−T ṽT

= ṽ(I−UkB)−1(Jk+UkΣeUk)(I−UkB)−T ṽT = (Ckx)Ṽ Ṽ .

Appendix E. Proof of Lemma 8 (Self Cycles)

Again, we first show weak stability and then confirm that the covariance matrices are equal.

E.1 Weak Stability

First, we show that the model (B̃,Σ̃e) without the self-loop is weakly stable, if the model (B,Σe)
with the self-loop is weakly stable. Notice that the weak stability of (B,Σe) in experiment (V \
{xi},{xi}) implies that bii -= 1. So, assume that (B,Σe) is weakly stable. Make the counter-
assumption that (I−UkB̃) is not invertible in some experiment Ek, then ∃v -= 0 such that UkB̃v= v.
Matrix B can be written as a function of matrix B̃ by inverting the definition of B̃ in the lemma:

B = (I−biiUi)B̃+biiUi.

If xi ∈ Jk we have that UkUi = 0n×n, then

UkB = Uk(I−biiUi)B̃+biiUkUi = UkB̃

and UkBv= UkB̃v= v. Alternatively if xi ∈Uk, we have that UkUi = Ui, then

UkBv = Uk(I−biiUi)B̃v+biiUkUiv ||Multiplication of diagonal matrices commutes
= (I−biiUi)UkB̃v+biiUkUiv
= (I−biiUi)v+biiUiv= v.

In both cases matrix UkB has a unit eigenvalue, and thus I−UkB is singular. This is contradictory
to the assumption that the model (B,Σe) is weakly stable, and so the model (B̃,Σ̃e) must be weakly
stable.

E.2 Equal Covariance Matrices

Then we show that in an arbitrary experiment Ek the two models produce data with the same co-
variance matrices. First, if variable xi ∈ Jk, then UkUi = 0n×n, UkB= UkB̃ (as shown above) and

UkΣ̃eUk = Uk(I+
bii

1−bii
Ui)Σe(I+

bii
1−bii

Ui)TUk = UkΣeUk.
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The covariance matrices are trivially equal:

C̃kx = (I−UkB̃)−1(Jk+UkΣ̃eUk)(I−UkB̃)−T

= (I−UkB)−1(Jk+UkΣeUk)(I−UkB)−T = Ckx.

Alternatively, if variable xi ∈Uk, then UkUi = Ui, and because

(I−UkB̃)(I−UkB)−1 = (I−UkB+
bii

1−bii
UkUi(I−B))(I−UkB)−1

= I+ bii
1−bii

Ui(I−UkB−JkB)(I−UkB)−1 ||UiJk = 0n×n

= I+ bii
1−bii

Ui,

the covariance matrices are also equal:

C̃kx = (I−UkB̃)−1(Jk+UkΣ̃eUk)(I−UkB̃)−T ||definition of Σ̃e

= (I−UkB̃)−1(Jk+Uk(I+
bii

1−bii
Ui)Σe(I+

bii
1−bii

Ui)TUk)(I−UkB̃)−T

= (I−UkB̃)−1((I+ bii
1−bii

Ui)Jk(I+
bii

1−bii
Ui)T ||Multip. of diag. mat. commutes

+Uk(I+
bii

1−bii
Ui)Σe(I+

bii
1−bii

Ui)TUk)(I−UkB̃)−T

= (I−UkB̃)−1(I+ bii
1−bii

Ui)(Jk+UkΣeUk)(I+
bii

1−bii
Ui)T (I−UkB̃)−T ||id. above

= (I−UkB̃)−1(I−UkB̃)(I−UkB)−1(Jk+UkΣeUk)
·(I−UkB)−T (I−UkB̃)T (I−UkB̃)−T

= (I−UkB)−1(Jk+UkΣeUk)(I−UkB)−T = Ckx.

Appendix F. Derivation of Equation 13

Lemma 7 (Marginalization) showed that weak stability and experimental effects from an intervened
variable xi ∈ Jk to an observed variable xu ∈ Uk are preserved (as part of the covariance matrix)
when some variables in Uk are marginalized. Then, it is sufficient to show that Equation 13 applies
in a weakly stable model where variables Uk \ {x j,xu} are marginalized. Lemma 8 (Self cycles)
allows us to assume without loss of generality that there are no self-loops in this model.

Examine experiment Ek = (Jk,Uk) where Uk = {x j,xu} in the marginalized model (B,Σe).
The experimental effects in the experiment intervening on Jk ∪ {x j} are just the direct effects
t(xi!xu||Jk ∪ {x j}) = bui and t(x j!xu||Jk ∪ {x j}) = bu j. The remaining experimental effects
t(xi!xu||Jk) and t(xi!x j||Jk) appear in the matrix ((I−UkB)−1)UkJk :

((I−UkB)−1)UkJk = (I−BUkUk)
−1BUkJk =

[

1 −b ju
−bu j 1

]−1[
· · · b ji · · ·
· · · bui · · ·

]

=
1

1−bu jb ju

[

1 b ju
bu j 1

][

· · · b ji · · ·
· · · bui · · ·

]

=

[

· · ·
b ji+b jubui
1−bu jb ju · · ·

· · ·
bui+bu jb ji
1−bu jb ju · · ·

]

.
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Now Equation 13 can be verified:

t(xi!xu||Jk∪{x j})+ t(xi!x j||Jk)t(x j!xu||Jk∪{x j}) = bui+
b ji+b jubui
1−bu jb ju

bu j

=
bui−bu jb jubui+bu jb ji+bu jb jubui

1−bu jb ju
=
bui+bu jb ji
1−bu jb ju

= t(xi!xu||Jk).

Appendix G. Proof of Lemma 9 (Union/Intersection Experiment)

In this proof, we first derive a linear equation system on the unknown experimental effects and then
show that it has a unique solution under weak stability.

G.1 Generalizations of Equation 13

Equation 13 can be generalized to relate some experimental effects in Ek = (Jk,Uk) to some exper-
imental effects in Ek∪l = (Jk∪ Jl,Uk∩Ul) by applying Equation 13 iteratively:

t(xi!xu||Jk) = t(xi!xu||Jk∪ Jl)+ ∑
x j∈Jl\Jk

t(xi!x j||Jk)t(x j!xu||Jk∪ Jl). (34)

Here xi ∈ Jk, xu ∈ Uk ∩Ul . Another way of writing the generalization relates some experimental
effects in Ek = (Jk,Uk) to experimental effects in Ek∩l = (Jk∩ Jl,Uk∪Ul):

t(xi!xu||Jk∩ Jl) = t(xi!xu||Jk)+ ∑
x j∈Jk\Jl

t(xi!x j||Jk∩ Jl)t(x j!xu||Jk).

Here xi ∈ Jk∩ Jl , xu ∈Uk.

G.2 Equations for the Experimental Effects in the Union Experiment

First, partition V into the following disjoint sets: I = Jk ∩ Jl (intervened in both experiments),
K = Jk \ Jl (intervened only in Ek), L = Jl \ Jk (intervened only in El) and O =Uk∩Ul (passively
observed in both experiments). For each pair (xk,xu) with xk ∈ K and xu ∈ O we can form an
equation of the form of Equation 34 using experimental effects from experiment Ek:

t(xk!xu||Jk∪ Jl)+ ∑
x j∈L

t(xk!x j||Jk)t(x j!xu||Jk∪ Jl) = t(xk!xu||Jk).

Equations for all such pairs can be represented neatly by block matrices:

(Tk∪lx )OK +(Tk∪lx )OL(Tkx)LK = (Tkx)OK .

Similarly, equations can be formed for all pairs (xk,xu) with xk ∈ L and xu ∈ O using experimental
effects from experiment El . For pairs (xk,xu) with xk ∈ I and xu ∈ O, equations could be formed
using the experimental effects from either experiments, but it turns out that only equations using the
experimental effects of experiment Ek are needed. The equations form the following system:

[

(Tk∪lx )OI (Tk∪lx )OK (Tk∪lx )OL
]





I|I |
I|K | (Tlx)KL

(Tkx)LI (Tkx)LK I|L |





︸ ︷︷ ︸

Q

=
[

(Tkx)OI (Tkx)OK (Tlx)OL
]

. (35)
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G.3 Invertibility

Now, we know the matrix on the right and matrix Q, and we would like to solve for the matrix on
the left by multiplying from the right by Q−1. Thus, we need to show that Q is invertible. Since
the variables in O do not appear in matrix Q in any way, consider a marginalized model (B̃,Σ̃e)
over Ṽ =V \O, where variables O are marginalized. The marginalized experiments corresponding
to experiments Ek and El are Ẽk = (I ∪K ,L) and Ẽl = (I ∪L ,K ) respectively. If (B,Σe) is
weakly stable as we assume, also (B̃,Σ̃e) is weakly stable by Lemma 7 (Marginalization). All the
experimental effects in Q are preserved in the marginalization. The blocks can be now expressed
using Equation 9:

(Tkx)LI = (T̃kx)LI = ((I− B̃LL)−1B̃L ,I∪K )LI = (I− B̃LL)−1B̃LI ,
(Tkx)LK = (T̃kx)LK = ((I− B̃LL)−1B̃L ,I∪K )LK = (I− B̃LL)−1B̃LK ,

(Tlx)KL = (T̃lx)KL = ((I− B̃KK )−1B̃K ,I∪L)KL = (I− B̃KK )−1B̃KL .

The matrices inverted in the expressions are invertible, because the marginalized model is weakly
stable. Now Q can be written as a product of 3 simple square matrices:

Q=





I|I |
I|K | (I− B̃KK )−1B̃KL

(I− B̃LL)−1B̃LI (I− B̃LL)−1B̃LK I|L |



=





I|I |
−(I− B̃KK )−1

(I− B̃LL)−1










I|I |
I− B̃KK −B̃KL

B̃LI −B̃LK I− B̃LL










I|I |
−I|K |

I|L |



 .

The matrices on the left and on the right are invertible as block diagonal matrices with invertible
blocks. Consider the middle matrix in the blocks indicated by the lines. Because the upper right-
hand block is just zeros, the matrix is invertible if the two diagonal blocks are invertible. The
lower right-hand block is invertible since the marginalized model is weakly stable in the experiment
(I ,K ∪L). As a product of 3 invertible matrices matrix Q is invertible. Note that the factorization
is valid also in the case where I = /0.

G.4 Matrix Equations for the Experimental Effects

The derivation of the equations and proof of invertibility for the intersection experiment proceeds
very similarly. Here the formulas for solving the experimental effects in the union and intersection
experiment are presented for completeness:

[

(Tk∪lx )OI (Tk∪lx )OK (Tk∪lx )OL
]

=
[

(Tkx)OI (Tkx)OK (Tlx)OL
]





I
I (Tlx)KL

(Tkx)LI (Tkx)LK I





−1

,





(Tk∩lx )K I

(Tk∩lx )LI
(Tk∩lx )OI



 =





I −(Tlx)KL

−(Tkx)LK I
−(Tkx)OK I





−1



(Tlx)K I

(Tkx)LI
(Tkx)OI



 .

See Appendix J on how to determine the full covariance matrices in the union and intersection
experiments.
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Appendix H. Proof of Lemma 13 (Perturbation of B)

Experiments Ek = (Jk,Uk) with xi ∈ Jk, x j ∈Uk do not have to be considered as the pair condition
is not satisfied for the pair (xi,x j). Consider then experiments Ek = (Jk,Uk) with x j ∈ Jk. As
explained in the text after Lemma 13, B and B̃ differ only on the j:th row. Then, if x j ∈ Jk, we have
that UkB̃= UkB and the experimental effects must be equal.

That leaves us with experiments Ek = (Jk,Uk) with xi ∈ Uk and x j ∈ Uk. In the special case
of experiment Ek′ = (K ,L) = (V \ {xi,x j},{xi,x j}), the experimental effects are the same by the
definition of the alternative coefficient matrix B̃:

T̃k′x = (I− B̃LL)−1B̃LK = (I− B̃LL)−1(I− B̃LL)(I−BLL)−1BLK = (I−BLL)−1BLK = Tk′x .

Otherwise the intervention set Jk has a presentation Jk = K ∩ (Jk ∪L). We just noted that the
experimental effects are the same in experiment (K ,L). Earlier we showed that experimental effects
are equal when x j is intervened on, this holds in particular for experiment (Jk ∪L ,Uk \L). By
Lemma 9 (Union/Intersection Experiment) the effects of an intersection experiment Ek are defined
by the experimental effects of the two original experiments, so the experimental effects must be
equal in experiment Ek.

Appendix I. Proof of Lemma 14 (Perturbation of Σe)

Take any experiment Ek = (Jk,Uk). The two models (B,Σe) and (B̃,Σ̃e) produce the same experi-
mental effects. Then, we can prove the following identities:

Uk(I−UkB̃)−1Jk = Uk(I−UkB)−1Jk, (36)
(I−UkB̃)−1Jk = (I−UkB)−1Jk, (37)

(I−UkB̃)−1Jk(I−UkB̃)−T = (I−UkB)−1Jk(I−UkB)−T , (38)
(I−UkB̃)−1Uk(I− B̃) = (I−UkB)−1Uk(I−B). (39)

Equation 36 follows directly from the fact that the experimental effects of the two models are the
same in experiment Ek. Equation 37 is proven by the following:

(I−UkB̃)−1Jk ||Uk+Jk = I
= Uk(I−UkB̃)−1Jk+Jk(I−UkB̃)−1Jk ||Jk(I−UkB̃) = Jk
= Uk(I−UkB̃)−1Jk+Jk(I−UkB̃)(I−UkB̃)−1Jk
= Uk(I−UkB̃)−1Jk+Jk ||Eq. 36
= Uk(I−UkB)−1Jk+Jk = (I−UkB)−1Jk.

Equation 38 follows from Equation 37:

(I−UkB̃)−1Jk(I−UkB̃)−T ||JkJk = Jk,Jk = JTk
= (I−UkB̃)−1JkJTk (I−UkB̃)−T

= (I−UkB̃)−1Jk((I−UkB̃)−1Jk)T ||Eq. 37
= (I−UkB)−1Jk((I−UkB)−1Jk)T

= (I−UkB)−1Jk(I−UkB)−T .
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Equation 39 is proven by the following:

(I−UkB̃)−1Uk(I− B̃) = (I−UkB̃)−1(I−UkB̃−Jk)
= I− (I−UkB̃)−1Jk ||Eq. 37
= I− (I−UkB)−1Jk = (I−UkB)−1Uk(I−B).

Finally, the covariance matrices produced by the two models can be shown to be equal:

C̃kx = (I−UkB̃)−1(Jk+UkΣ̃eUk)(I−UkB̃)−T ||Definition of Σ̃e
= (I−UkB̃)−1Jk(I−UkB̃)−T + ||Eq. 38 and 39

(I−UkB̃)−1Uk(I− B̃)(I−B)−1
Σe(I−B)−T (I− B̃)TUk(I−UkB̃)−T

= (I−UkB)−1Jk(I−UkB)−T +
(I−UkB)−1Uk(I−B)(I−B)−1

Σe(I−B)−T (I−B)TUk(I−UkB)−T

= (I−UkB)−1(Jk+UkΣeUk)(I−UkB)−T = Ckx.

Appendix J. Covariance Matrices of Union and Intersection Experiments

Even if the set of experiments does not allow for the identification of the full model, consistent pre-
dictions are still possible in some unseen experimental settings assuming the data generating model
is a linear cyclic model with latent variables. Lemma 9 already showed that the experimental effects
can be predicted in the union and intersection experiments of any two already conducted experi-
ments. In the following we extend this result to the prediction of the entire covariance matrices.

Let the data generating model be (B,Σe). Say we have conducted experiment Ek observing
covariance matrix Ckx and experiment El observing covariance matrix Clx. By solving Equation 17
using the pseudoinverse we can find a matrix B̃ that produces the same experimental effects in the
two experiments. Now define

M̃1 := (I−Uk∪lB̃)−1Jk∪l(I−Uk∪lB̃)−T ,
M̃2 := (I−Uk∪lB̃)−1Uk∪l(I− B̃).

using the estimate B̃. Now, we can show that matrix M̃1 + M̃2CkxM̃T
2 is equal to the covariance

matrix Ck∪lx that the true data generating model would produce in experiment Ek∪l = (Jk∪l,Uk∪l) =
(Jk∪ Jl,Uk∩Ul):

M̃1 +M̃2CkxM̃T
2

= (I−Uk∪lB̃)−1Jk∪l(I−Uk∪lB̃)−T ||Eq. 38 and 39
+(I−Uk∪lB̃)−1Uk∪l(I− B̃)Ckx(I− B̃)TUk∪l(I−Uk∪lB̃)−T

= (I−Uk∪lB)−1Jk∪l(I−Uk∪lB)−T ||Eq. 8
+(I−Uk∪lB)−1Uk∪l(I−B)Ckx(I−B)TUk∪l(I−Uk∪lB)−T

= (I−Uk∪lB)−1Jk∪l(I−Uk∪lB)−T +(I−Uk∪lB)−1Uk∪l(I−B)(I−UkB)−1

·(Jk+UkΣeUk)(I−UkB)−T (I−B)TUk∪l(I−Uk∪lB)−T ||Uk∪l = UlUkUk
= (I−Uk∪lB)−1Jk∪l(I−Uk∪lB)−T +(I−Uk∪lB)−1UlUkUk(I−B)(I−UkB)−1

·(Jk+UkΣeUk)(I−UkB)−T (I−B)TUkUkUl(I−Uk∪lB)−T ||Uk = I−Jk
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= (I−Uk∪lB)−1Jk∪l(I−Uk∪lB)−T +(I−Uk∪lB)−1UlUk((I−UkB)−Jk)(I−UkB)−1

·(Jk+UkΣeUk)(I−UkB)−T ((I−UkB)−Jk)TUkUl(I−Uk∪lB)−T ||UkJk = 0n×n
= (I−Uk∪lB)−1Jk∪l(I−Uk∪lB)−T

+(I−Uk∪lB)−1UlUk(Jk+UkΣeUk)UkUl(I−Uk∪lB)−T ||UlUkUk = Uk∪l
= (I−Uk∪lB)−1(Jk∪l+Uk∪lΣeUk∪l)(I−Uk∪lB)−T = Ck∪lx .

To predict the whole covariance matrix in the intersection experiment, we need the passive
observational data covariance matrix C0

x in addition to the observations in experiments Ek and El .
Now, define matrices

M̃3 := (I−Uk∩lB̃)−1Jk∩l(I−Uk∩lB̃)−T ,
M̃4 := (I−Uk∩lB̃)−1Uk∩l(I− B̃).

Then, we can show that M̃3 + M̃4C0
xM̃T

4 is equal to the covariance matrix Ck∩lx that the data gener-
ating model would produce in experiment Ek∩l = (Jk∩l,Uk∩l) = (Jk∩ Jl,Uk∪Ul):

M̃3 +M̃4C0
xM̃T

4

= (I−Uk∩lB̃)−1Jk∩l(I−Uk∩lB̃)−T ||Eq. 38 and 39
+(I−Uk∩lB̃)−1Uk∩l(I− B̃)C0

x(I− B̃)TUk∩l(I−Uk∩lB̃)−T

= (I−Uk∩lB)−1Jk∩l(I−Uk∩lB)−T ||Eq. 3
+(I−Uk∩lB)−1Uk∩l(I−B)C0

x(I−B)TUk∩l(I−Uk∩lB)−T

= (I−Uk∩lB)−1Jk∩l(I−Uk∩lB)−T

+(I−Uk∩lB)−1Uk∩l(I−B)(I−B)−1
Σe(I−B)−T (I−B)TUk∩l(I−Uk∩lB)−T

= (I−Uk∩lB)−1(Jk∩l+Uk∩lΣeUk∩l)(I−Uk∩lB)−T = Ck∩lx .

The above formulas for the prediction of covariance matrices can be used iteratively to find
consistent estimates for the covariance matrices in different experiments, as long as the interven-
tion set of the experiment can be reached by taking successive unions and intersections from the
intervention sets of the actually conducted experiments.12

Appendix K. LLC Algorithm

We show here that matrix T of the LLC learning method is full column rank if the pair condition is
satisfied for all pairs. This implies that the coefficients or direct effects are fully identified.

First we show that the equations of the type of Equation 16 obtained in the union experiment
Ek∪l are merely linear combinations of equations obtained in experiment Ek and El . This is a
rather direct consequence of Lemma 9 and its proof in Appendix G. In an arbitrary experiment Ek,
equations for all pairs (xi,xu) with xi ∈ Jk and xu ∈Uk, can be represented neatly in matrix notation:

B{xu}Jk +B{xu}(Uk\{xu})(T
k
x)(Uk\{xu})Jk = (Tkx){xu}Jk ⇔

(B{xu}Jk)
T +((Tkx)(Uk\{xu})Jk)

T (B{xu}(Uk\{xu}))
T = ((Tkx){xu}Jk)

T .

12. Note that if µe -= 0, M̃2µ
k
x and M̃4µ

0
x provide estimates for the observed means in the union and intersection exper-

iments.
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Now, partition V similarly as in Appendix G. Consider an arbitrary xu ∈ O (observed in both
experiments). Define Õ = O \ {xu}. Equations corresponding to pairs (xi,xu) with xi ∈ I ∪K
obtained in experiment Ek and equations corresponding to pairs (x j,xu) with x j ∈ L obtained in
experiment El can be collected into a single system constraining coefficients bu•:





I ((Tkx)LI )T ((Tkx)ÕI )T
I ((Tkx)LK )T ((Tkx)ÕK )T

((Tlx)KL)T I ((Tlx)ÕL)T











(B{xu}I )
T

(B{xu}K )T

(B{xu}L)
T

(B{xu}Õ)
T







=





((Tkx){xu}I )T
((Tkx){xu}K )T

((Tlx){xu}L)T



 . (40)

Notice, that the left-hand block of the matrix on the left is just the transpose of the Q matrix in-
troduced in Appendix G. As Q was shown to be invertible under the assumption that the data
generating model is weakly stable, we can multiply the equation group by Q−T from the left. As
blocks of Equation 35 in Appendix G we get the following identities:

Q−T




((Tkx){xu}I )T
((Tkx){xu}K )T

((Tlx){xu}L)T



 =





((Tk∪lx ){xu}I )
T

((Tk∪lx ){xu}K )T

((Tk∪lx ){xu}L)
T



 ,

Q−T




((Tkx)ÕI )T
((Tkx)ÕK )T

((Tlx)ÕL)T



 =





((Tk∪lx )ÕI )
T

((Tk∪lx )ÕK )T

((Tk∪lx )ÕL)
T



 .

Thus, multiplying the Equation 40 from the left by Q−T produces the following equation system:





I ((Tk∪lx )ÕI )
T

I ((Tk∪lx )ÕK )T

I ((Tk∪lx )ÕL)
T











(B{xu}I )
T

(B{xu}K )T

(B{xu}L)
T

(B{xu}Õ)
T







=





((Tk∪lx ){xu}I )
T

((Tk∪lx ){xu}K )T

((Tk∪lx ){xu}L)
T





⇔






(B{xu}I )
T +((Tk∪lx )ÕI )

T (B{xu}Õ)
T

(B{xu}K )T +((Tk∪lx )ÕK )T (B{xu}Õ)
T

(B{xu}L)
T +((Tk∪lx )ÕL)

T (B{xu}Õ)
T




 =





((Tk∪lx ){xu}I )
T

((Tk∪lx ){xu}K )T

((Tk∪lx ){xu}L)
T



 .

For the union experiment Ek∪l = (Jk∪l,Uk∪l) we have that I ∪K ∪L = Jk∪l and Õ =Uk∪l \{xu}.
The equation system can be written in in the following simple form:

(B{xu}Jk∪l )
T +((Tk∪lx )(Uk∪l\{xu})Jk∪l )

T (B{xu}(Uk∪l\{xu}))
T = ((Tk∪lx ){xu}Jk∪l )

T .

These are all of the equations from experiment Ek∪l constraining coefficients bu•. As we considered
arbitrary xu ∈ O, the same procedure can be repeated for each xu ∈ O. This exhausts all equations
obtained in the union experiment. All of the equations obtained in experiment Ek∪l are thus linear
combinations of some of the equations obtained in the original two experiments Ek and El .

Finally, matrix T can be verified to have full column rank as follows. MatrixT being full column
rank is equivalent to system Tb= t having at most a unique solution. The original equation system
Tb= t consists of all the equations (like Equation 16) gathered in experiments {Ek}k=1,...,K . We can
always add equations that would be obtained in the union experiment Ek∪l of two experiments Ek
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and El whose equations are already in the system, without further restricting the possible solutions
of the system. This is because the added equations are merely linear combinations of some of the
equations already in the system. If the pair condition is satisfied for all pairs, by adding always
equations from the union experiments of two experiments, whose equations are already in the sys-
tem, we are eventually able to add equations for experiments intervening on sets V \ {xu}, for all
variables xu ∈ V (this follows the rationale discussed after Definition 10). These equations specify
the direct effects b directly and uniquely. Since the solution space was not restricted throughout the
procedure of adding new equations, we can deduce that the original system had at most a unique
solution, which implies that the original matrix T has full column rank.
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Abstract

The problem of minimizing the rank of a matrix subject to affine constraints has applications in

several areas including machine learning, and is known to be NP-hard. A tractable relaxation

for this problem is nuclear norm (or trace norm) minimization, which is guaranteed to find the

minimum rank matrix under suitable assumptions. In this paper, we propose a family of Iterative

Reweighted Least Squares algorithms IRLS-p (with 0 ≤ p ≤ 1), as a computationally efficient way

to improve over the performance of nuclear norm minimization. The algorithms can be viewed as

(locally) minimizing certain smooth approximations to the rank function. When p = 1, we give

theoretical guarantees similar to those for nuclear norm minimization, that is, recovery of low-rank

matrices under certain assumptions on the operator defining the constraints. For p < 1, IRLS-

p shows better empirical performance in terms of recovering low-rank matrices than nuclear norm

minimization. We provide an efficient implementation for IRLS-p, and also present a related family

of algorithms, sIRLS-p. These algorithms exhibit competitive run times and improved recovery

when compared to existing algorithms for random instances of the matrix completion problem, as

well as on the MovieLens movie recommendation data set.

Keywords: matrix rank minimization, matrix completion, iterative algorithms, null-space property

1. Introduction

The Affine Rank Minimization Problem (ARMP), or the problem of finding the minimum rank

matrix in an affine set, arises in many engineering applications such as collaborative filtering (e.g.,

Candes and Recht, 2009; Srebro et al., 2005), low-dimensional Euclidean embedding (e.g., Fazel

et al., 2003), low-order model fitting and system identification (e.g., Liu and Vandenberghe, 2008),

and quantum tomography (e.g., Gross et al., 2010). The problem is as follows,

minimize rank(X)

subject to A(X) = b,
(1)

where X ∈ Rm×n is the optimization variable, A : Rm×n → Rq is a linear map, and b ∈ Rq denotes

the measurements. When X is restricted to be a diagonal matrix, ARMP reduces to the cardinality
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minimization or sparse vector recovery problem,

minimize card(x)

subject to Ax = b,

where x ∈ Rn, A ∈ Rm×n and card(x) denotes the number of non-zeros entries of x. A commonly

used convex heuristic for this problem is !1 minimization. The field of compressed sensing has

shown that under certain conditions on the matrix A, this heuristic solves the original cardinality

minimization problem (Candes and Tao, 2004). There are also geometric arguments in favor of !1

norm as a good convex relaxation (see, e.g., Chandrasekaran et al., 2010b, for a unifying analysis

for general linear inverse problems). It has also been observed empirically (e.g., Candes et al., 2008;

Lobo et al., 2006) that by appropriately weighting the !1 norm and iteratively updating the weights,

the recovery performance of the algorithm is enhanced. It is shown theoretically that for sparse

recovery from noisy measurements, this algorithm has a better recovery error than !1 minimization

under suitable assumptions on the matrix A (Needell, 2009; Zhang, 2010). The Reweighted !1

algorithm has also been generalized to the recovery of low-rank matrices (Fazel et al., 2003; Mohan

and Fazel, 2010a).

Another simple and computationally efficient reweighted algorithm for sparse recovery that has

been proposed in the literature (Daubechies et al., 2010), is the Iterative Reweighted Least Squares

algorithm (IRLS-p, for any 0 < p ≤ 1). Its kth iteration is given by

xk+1 = argmin
x

{

∑
i

wk
i x2

i : Ax = b,

}
,

where wk ∈Rn is a weight vector with wk
i = (|xk

i |2+ γ)p/2−1 (γ > 0 being a regularization parameter

added to ensure that wk is well defined). For p = 1, a theoretical guarantee for sparse recovery has

been given for IRLS-p (Daubechies et al., 2010), similar to the guarantees for !1 minimization. The

starting point of the algorithm, x0 is set to zero. So the first iteration gives the least norm solution

to Ax = b. It was empirically observed (Chartrand and Staneva, 2008; Chartrand and Yin, 2008)

that IRLS-p shows a better recovery performance than !1 minimization for p < 1 and has a similar

performance as the reweighted !1 algorithm when p is set to zero. The computational benefits of

IRLS-1, as well as the above mentioned theoretical and empirical improvements of IRLS-p, p < 1,

over !1 minimization, motivate us to ask: Would an iterative reweighted algorithm bring similar

benefits for recovery of low rank matrices, and would an improved performance be at the price of

additional computational cost relative to the standard nuclear norm minimization?

1.1 Iterative Reweighted Least Squares for ARMP

Towards answering this question, we propose the iterative reweighted least squares algorithm for

rank minimization, outlined below.
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Data: A , b

Set k = 1. Initialize W 0
p = I,γ1 > 0 ;

while not converged do

Xk = argmin
X

{Tr(W k−1
p XT X) : A(X) = b} ;

W k
p = (XkT

Xk + γkI)
p
2 −1 ;

Choose 0 < γk+1 ≤ γk ;

k = k+1 ;

end

Algorithm 1: IRLS-p Algorithm for Matrix Rank Minimization with 0 ≤ p ≤ 1

Each iteration of Algorithm 1 minimizes a weighted Frobenius norm of the matrix X , since

Tr(W k−1
p XT X) = ‖(W k−1

p )1/2X‖2
F . While minimizing the Frobenius norm subject to affine con-

straints doesn’t lead to low-rank solutions in general, through a careful reweighting of this norm

we show that Algorithm 1 does indeed produce low-rank solutions under suitable assumptions.

Usually a reweighted algorithm trades off computational time for improved recovery performance

when compared to the unweighted convex heuristic. As an example, the reweighted !1 algorithm

for sparse recovery (Candes et al., 2008) and the reweighted nuclear norm algorithm (Mohan and

Fazel, 2010a) for matrix rank minimization solve the corresponding standard convex relaxations (!1

and nuclear norm minimization respectively) in their first iteration. Thus these algorithms take at

least as much time as the corresponding convex algorithms. However, the iterates of the IRLS-p

family of algorithms simply minimize a weighted Frobenius norm, and have run-times comparable

with the nuclear norm heuristic, while (for p < 1) also enjoy improved recovery performance. In

the p = 1 case, we show that the algorithm minimizes a certain smooth approximation to the nuclear

norm, allowing for efficient implementations while having theoretical guarantees similar to nuclear

norm minimization.

1.2 Contributions

Contributions of this paper are as follows.

• We give a convergence analysis for IRLS-p for all 0 ≤ p ≤ 1. We also propose a related

algorithm, sIRLS-p (or short IRLS), which can be seen as a first-order method for locally

minimizing a smooth approximation to the rank function, and give convergence results for

this algorithm as well. The results exploit the fact that these algorithms can be derived from

the KKT conditions for minimization problems whose objectives are suitable smooth approx-

imations to the rank function.

• We prove that the IRLS-1 algorithm is guaranteed to recover a low-rank matrix if the linear

map A satisfies the following Null space property (NSP). We show this property is both

necessary and sufficient for low-rank recovery. The specific NSP that we use first appeared

in the literateure recently (Oymak and Hassibi, 2010; Oymak et al., 2011), and is expressed

only in terms of the singular values of the matrices in the null space of A .
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Definition 1 Given τ > 0, the linear map A : Rm×n → Rp satisfies the τ-Null space Property

(τ-NSP) of order r if for every Z ∈ N (A)\{0}, we have

r

∑
i=1

σi(Z) < τ
n

∑
i=r+1

σi(Z) (2)

where N (A) denotes the null space of A and σi(Z) denotes the ith largest singular value of

Z.

It has been shown in the literature (Oymak and Hassibi, 2010) that certain random Gaussian

maps A satisfy this property with high probability.

• We give a gradient projection algorithm to implement IRLS-p. We extensively compare these

algorithms with other state of the art algorithms on both ‘easy’ and ‘hard’ randomly picked

instances of the matrix completion problem (these notions are made precise in the numerical

section). We also present comparisons on the MovieLens movie recommendation data set.

Numerical experiments demonstrate that IRLS-0 and sIRLS-0 applied to the matrix comple-

tion problem have a better recovery performance than the Singular Value Thresholding algo-

rithm, an implementation of Nuclear Norm Minimization (Cai et al., 2008), on both easy and

hard instances. Importantly, in the case where there is no apriori information on the rank of

the low rank solution (which is common in practice), our algorithm has a significantly better

recovery performance on hard problem instances as compared to other state of the art algo-

rithms for matrix completion including IHT, FPCA (Goldfarb and Ma, 2011), and Optspace

(Keshavan and Oh, 2009).

1.3 Related Work

We review related algorithms for recovering sparse vectors and low rank matrices. Many approaches

have been proposed for recovery of sparse vectors from linear measurements including !1 minimiza-

tion and greedy algorithms (see, e.g., Needell and Tropp, 2008; Goldfarb and Ma, 2011; Garg and

Khandekar, 2009, for CoSaMP, IHT, and GraDes respectively). As mentioned earlier, reweighted

algorithms including Iterative reweighted !1 (Candes et al., 2008) and Iterative Reweighted Least

Squares (Rao and Kreutz-Delgado, 1999; Wipf and Nagarajan, 2010; Daubechies et al., 2010) with

0 < p ≤ 1 have been proposed to improve on the recovery performance of !1 minimization.

For the ARMP, analogous algorithms have been proposed including nuclear norm minimization

(Fazel et al., 2001), reweighted nuclear norm minimization (Mohan and Fazel, 2010a; Fazel et al.,

2003), as well as greedy algorithms such as AdMiRA (Lee and Bresler, 2010) which generalizes

CoSaMP, SVP (Meka et al., 2010), a hard-thresholding algorithm that we also refer to as IHT, and

Optspace (Keshavan and Oh, 2009). Developing efficient implementations for nuclear norm min-

imization is an important research area since standard semidefinite programming solvers cannot

handle large problem sizes. Towards this end, algorithms including SVT (Cai et al., 2008), NNLS

(Toh and Yun, 2010), FPCA (Goldfarb and Ma, 2011) have been proposed. A spectral regulariza-

tion algorithm (Mazumder et al., 2010) has also been proposed for the specific problem of matrix

completion.

3444



ITERATIVE REWEIGHTED ALGORITHMS FOR MATRIX RANK MINIMIZATION

In a preliminary conference version of this paper (Mohan and Fazel, 2010b), we proposed the

IRLS-p family of algorithms for ARMP, analogous to IRLS for sparse vector recovery (Daubechies

et al., 2010). The present paper gives a new and improved theoretical analysis for IRLS-1 via a

simpler NSP condition, obtains complete convergence results for all 0 ≤ p ≤ 1, and gives more

extensive numerical experiments.

Independent of us and at around the same time as the publication of our conference paper, For-

nasier et al. (2010) proposed the IRLSM algorithm, which is similar to our IRLS-1 algorithm but

with a different weight update (a thresholding operation is used to ensure the weight matrix is invert-

ible). The authors employ the Woodbury matrix inversion lemma to speed up the implementation

of IRLSM and compare it to two other algorithms, Optspace and FPCA, showing that IRLSM has

a lower relative error and comparable computational times. However, their analysis of low-rank re-

covery uses a Strong Null Space Property (SRNSP) (which is equivalent to the condition in, Mohan

and Fazel, 2010b) and is less general than the condition we consider in this paper, as discussed in

Section 3.

Also, the authors have only considered recovery of matrices of size 500× 500 in their exper-

iments. We present extensive comparisons of our algorithms with algorithms including Optspace,

FPCA, and IHT for recovery of matrices of different sizes. We observe that our IRLS and sIRLS

implementations run faster than IRLSM in practice. IRLSM solves a quadratic program in each

iteration using a sequence of inversions, which can be expensive for large problems, even after ex-

ploiting the matrix inversion lemma. Finally the authors of the IRLSM paper only consider the

p = 1 case.

The rest of the paper is organized as follows. We introduce the IRLS-p algorithm for ARMP in

Section 2 and give convergence and performance guarantees in Section 3. In Section 4, we discuss

an implementation for IRLS-p, tailored for the matrix completion problem, and in Section 5 we

present the related algorithm sIRLS-p. Numerical experiments for IRLS-0 and sIRLS-0 for the

matrix completion problem, as well as comparisons with SVT, IHT, IRLSM, Optspace and FPCA

are given in Section 6. The last section summarizes the paper along with future research directions.

1.3.1 NOTATION

Let N (A) denote the null space of the operator A and Ran(A∗) denote the range space of the adjoint

of A . Let σ(X) denote the vector of decreasingly ordered singular values of X so that σi(X) denotes

the ith largest singular value of X . Also let ‖X‖,‖X‖F denote the spectral norm and Frobenius norm

of X respectively. The nuclear norm is defined as ‖X‖" = ∑i σi(X). Ik denotes the identity matrix

of size k× k.

2. Iterative Reweighted Least Squares (IRLS-p)

In this section, we describe the IRLS-p family of algorithms (Algorithm 1). Recall that replacing

the rank function in (1) by ‖X‖" yields the nuclear norm heuristic,

minimize ‖X‖"
subject to A(X) = b.
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We now consider other (convex and non-convex) smooth approximations to the rank function. De-

fine the smooth Schatten-p function as

fp(X) = Tr(XT X + γI)p/2

= ∑n
i=1(σ

2
i (X)+ γ)

p
2 .

Note that fp(X) is differentiable for p > 0 and convex for p ≥ 1. With γ = 0, f1(X) = ‖X‖", which

is also known as the Schatten-1 norm. With γ = 0 and p → 0, fp(X)→ rank(X). For p = 1, one can

also derive the smooth Schatten-1 function as follows.

f1(X) = max
Z:‖Z‖2≤1

〈Z,X〉−
√

γd(Z)+n
√

γ,

where d(Z) is a smoothing term given by d(Z) = ∑n
i=1(1−

√
1−σ2

i (Z)) = n− Tr(I − ZT Z)1/2.

Plugging in d(Z) = 0 in (3) gives ‖X‖"+ n
√

γ. Hence f1(X) is a smooth approximation of ‖X‖"
obtained by smoothing the conjugate of ‖X‖". By virtue of the smoothing, it is easy to see that

‖X‖" ≤ f1(X)≤ ‖X‖"+n
√

γ.

As γ approaches 0, f1(X) becomes tightly bounded around ‖X‖". Also let X∗ be the optimal solution

to minimizing ‖X‖" subject to A(X) = b and let Xs be the optimal solution to minimizing f1(X)

subject to the same constraints. Then it holds that

(‖X‖"−‖X∗‖")≤ ( f1(X)− f1(X
s))+n

√
γ ∀X : A(X) = b.

Thus, to minimize ‖X‖" to a precision of ε, we need to minimize the smooth approximation f1(X)

to a precision of ε−n
√

γ.

It is therefore of interest to consider the problem

minimize fp(X)

subject to A(X) = b,
(3)

the optimality conditions of which motivate the IRLS-p algorithms for 0 ≤ p ≤ 1. We show that

IRLS-1 solves the smooth Schatten-1 norm or nuclear norm minimization problem, that is, finds a

globally optimal solution to (3) with p = 1. For p < 1, we show that IRLS-p finds a stationary point

of (3).

We now give an intuitive way to derive the IRLS-p algorithm from the KKT conditions of (3).

The Lagrangian corresponding to (3) is

L(X ,λ) = fp(X)+ 〈̂λ, A(X)−b〉,

and the KKT conditions are ∇X L(X , λ̂) = 0, A(X) = b. Note that ∇ fp(X) = pX(XT X + γI)p/2−1

(see, e.g., Lewis, 1996). Letting λ = λ̂
p , we have that the KKT conditions for (3) are given by

2X(XT X + γI)p/2−1 +A∗(λ) = 0

A(X) = b.
(4)
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Let W k
p = (XkT

Xk + γI)p/2−1. The first condition in (4) can be written as

X =−
1

2
A∗(λ)(XT X + γI)1−p/2.

This is a fixed point equation, and a solution can be obtained by iteratively solving for X as Xk+1 =
1
2 A∗(λ)(W k

p )
−1

, along with the condition A(Xk+1) = b. Note that Xk+1 and the dual variable λ

satisfy the KKT conditions for the convex optimization problem,

minimize TrW k
p XT X

subject to A(X) = b.

This idea leads to the IRLS-p algorithm described in Algorithm 1. Note that we also let p = 0 in

Algorithm 1; to derive IRLS-0, we define another non-convex surrogate function by taking limits

over fp(X). For any positive scalar x, it holds that limp→0
1
p(x

p −1) = logx. Therefore,

lim
p→0

fp(X)−n

p
= 1

2 logdet(XT X + γI)

= ∑i
1
2 log(σ2

i (X)+ γ).

Thus IRLS-0 can be seen as iteratively solving (as outlined previously) the KKT conditions for the

non-convex problem,

minimize logdet(XT X + γI)

subject to A(X) = b.
(5)

Another way to derive the IRLS-p algorithm uses an alternative characterization of the Smooth

Schatten-p function; see appendix A.

3. IRLS-p: Theoretical Results

In this section, convergence properties for the IRLS-p family of algorithms are studied. We also

give a matrix recovery guarantee for IRLS-1, under suitable assumptions on the null space of the

linear operator A .

3.1 Convergence of IRLS-p

We show that the difference between successive iterates of the IRLS-p (0 ≤ p ≤ 1) algorithm con-

verges to zero and that every cluster point of the iterates is a stationary point of (3). These results

generalize the convergence results given for IRLS-1 in previous literature (Mohan and Fazel, 2010b;

Fornasier et al., 2010) to IRLS-p with 0 < p ≤ 1. In this section, we drop the subscript on W k
p for

ease of notation. Our convergence analysis relies on useful auxiliary functions defined as

J p(X ,W,γ) :=

{
p
2 (Tr(W (XT X + γI))+ 2−p

p Tr((W )
p

p−2 )) if 0 < p ≤ 1

Tr(W (XT X + γI))− logdetW −n if p = 0.
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These functions can be obtained from the alternative characterization of Smooth Schatten-p function

with details in Appendix A. We can express the iterates of IRLS-p as

Xk+1 = argmin
X :A(X)=b

J p(X ,W k,γk)

W k+1 = argmin
W.0

J p(Xk+1,W,γk+1),

and it follows that

J p(Xk+1,W k+1,γk+1) ≤ J p(Xk+1,W k,γk+1)

≤ J p(Xk+1,W k,γk)

≤ J p(Xk,W k,γk).

(6)

The following theorem shows that the difference between successive iterates converges to zero. The

proof is given in Appendix B.

Theorem 2 Given any b ∈ Rq, the iterates {Xk} of IRLS-p (0 < p ≤ 1) satisfy

∞

∑
k=1

‖Xk+1 −Xk‖2
F ≤ 2D

2
p ,

where D := J p(X1,W 0,γ0). In particular, we have that lim
k→∞

(
Xk −Xk+1

)
= 0.

Theorem 3 Let γmin := lim
k→∞

γk > 0. Then the sequence of iterates {Xk} of IRLS-p (0 ≤ p ≤ 1) is

bounded, and every cluster point of the sequence is a stationary point of (3) (when 0 < p ≤ 1), or a

stationary point of (5) (when p = 0).

Proof Let

g(X ,γ) =

{
Tr(XT X + γI)

p
2 if 0 < p ≤ 1

logdet(XT X + γI) if p = 0

Then g(Xk,γk) = J p(Xk,W k,γk) and it follows from (6) that g(Xk+1,γk+1) ≤ g(Xk,γk) for all k ≥
1. Hence the sequence {g(Xk,γk)} converges. This fact together with γmin > 0 implies that the

sequence {Xk} is bounded.

We now show that every cluster point of {Xk} is a stationary point of (3). Suppose to the

contrary and let X̃ be a cluster point of {Xk} that is not a stationary point. By the definition of

cluster point, there exists a subsequence {Xni} of {Xk} converging to X̃ . By passing to a further

subsequence if necessary, we can assume that {Xni+1} is also convergent and we denote its limit by

X̂ . By definition, Xni+1 is the minimizer of

minimize TrW niXT X

subject to A(X) = b.
(7)

Thus, Xni+1 satisfies the KKT conditions of (7), that is,

Xni+1W ni ∈ Ran(A∗) and A(Xni+1) = b,
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where Ran(A∗) denotes the range space of A∗. Passing to limits, we see that

X̂W̃ ∈ Ran(A∗) and A(X̂) = b, (8)

where W̃ = (X̃T X̃ + γminI)−1. From (8), we conclude that X̂ is a minimizer of the following convex

optimization problem,

minimize TrW̃XT X

subject to A(X) = b.
(9)

Next, by assumption, X̃ is not a stationary point of (3) (for 0 < p ≤ 1) nor (5) (for p = 0). This

implies that X̃ is not a minimizer of (9) and thus TrW̃ X̂T X̂ < TrW̃ X̃T X̃ . This is equivalent to

J p(X̂ ,W̃ ,γmin)< J p(X̃ ,W̃ ,γmin). From this last relation and (6) it follows that,

J p(X̂ ,Ŵ ,γmin) < J p(X̃ ,W̃ ,γmin),

g(X̂ ,γmin) < g(X̃ ,γmin).
(10)

On the other hand, since the sequence {g(Xk,γk)} converges, we have that

limg(Xi,γi) = limg(Xni ,γni) = g(X̃ ,γmin) = limg(Xni+1 ,γni+1) = g(X̂ ,γmin)

which contradicts (10). Hence, every cluster point of {Xk} is a stationary point of (3) (when

0 < p ≤ 1) and a stationary point of (5) (when p = 0).

3.2 Performance Guarantee for IRLS-1

In this section, we discuss necessary and sufficient conditions for low-rank recovery using IRLS-

1. We show that any low-rank matrix satisfying A(X) = b can be recovered via IRLS-1, if the

null space of A satisfies a certain property. If the desired matrix is not low-rank, we show IRLS-1

recovers it to within an error that is a constant times the best rank-r approximation error, for any r.

We first give a few definitions and lemmas.

Definition 4 Given x ∈Rn, let x[i] denote the ith largest element of x so that x[1] ≥ x[2] ≥ . . .x[n−1] ≥
x[n]. A vector x ∈ Rn is said to be majorized by y ∈ Rn (denoted as x ≺ y) if ∑k

i=1 x[i] ≤ ∑k
i=1 y[i] for

k = 1,2, . . . ,n− 1 and ∑n
i=1 x[i] = ∑n

i=1 y[i]. A vector x ∈ Rn is said to be weakly sub-majorized by

y ∈ Rn (denoted as x ≺w y ) if ∑k
i=1 x[i] ≤ ∑k

i=1 y[i] for k = 1,2, . . . ,n.

Lemma 5 (Horn and Johnson, 1990) For any two matrices, A,B ∈ Rm×n it holds that |σ(A)−
σ(B)|≺w σ(A−B).

Lemma 6 (Horn and Johnson, 1991; Marshall and Olkin, 1979) Let g : D → R be a convex and

increasing function where D ⊂R. Let x,y∈ Dn. Then if x ≺w y, we have (g(x1),g(x2), . . . ,g(xn))≺w

(g(y1),g(y2), . . . ,g(yn)).
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Since g(x) = (x2 + γ)
1
2 is a convex and increasing function on R+, applying Lemma 6 to the

majorizaiton inequality in Lemma 5 we have

n

∑
i=1

(|σi(A)−σi(B)|2 + γ)
1
2 ≤

n

∑
i=1

(σ2
i (A−B)+ γ)

1
2 . (11)

Let X0 be a matrix (that is not necessarily low-rank) and let the measurements be given by

b = A(X0). In this section, we give necessary and sufficient conditions for recovering X0 using

IRLS-1. Let X
γ
0 := (XT

0 X0 + γI)
1
2 be the γ-approximation of X0, and let X0,r, X

γ
0,r be the best rank-r

approximations of X0, X
γ
0 respectively.

Recall the Null space Property τ-NSP defined earlier in (2). This condition requires that every

nonzero matrix in the null space of A has a rank larger than 2r.

Theorem 7 Assume that A satisfies τ-NSP of order r for some 0 < τ < 1. For every X0 satisfying

A(X0) = b it holds that

f1(X0 +Z)> f1(X0), for all Z ∈ N (A)\{0} satisfying ‖Z‖" ≥C‖X
γ
0 −X

γ
0,r‖". (12)

Furthermore, we have the following bounds,

‖X̄ −X0‖" ≤ C‖X
γ
0 −X

γ
0,r‖"

‖X̄r −X0‖" ≤ (2C+1)‖X
γ
0 −X

γ
0,r‖",

where C = 2
(1+τ)
1−τ , and X̄ is the output of IRLS-1. Conversely, if (12) holds, then A satisfies δ-NSP

of order r, where δ > τ.

Proof

Let Z ∈ N (A)\{0} and ‖Z‖" ≥C‖X
γ
0 −X

γ
0,r‖". We see that

f1(X0 +Z) = Tr((X0 +Z)T (X0 +Z)+ γI)
1
2 =

n

∑
i=1

(σ2
i (X0 +Z)+ γ)

1
2

≥
r

∑
i=1

((σi(X0)−σi(Z))
2 + γ)

1
2 +

n

∑
i=r+1

((σi(Z)−σi(X0))
2 + γ)

1
2

=
r

∑
i=1

((σ2
i (X0)+ γ)+σ2

i (Z)−2σi(X0)σi(Z))
1
2

+
n

∑
i=r+1

((σ2
i (Z)+ γ)+σ2

i (X0)−2σi(Z)σi(X0))
1
2

≥
r

∑
i=1

|(σ2
i (X0)+ γ)

1
2 −σi(Z)|+

n

∑
i=r+1

|(σ2
i (Z)+ γ)

1
2 −σi(X0)|

≥
r

∑
i=1

(σ2
i (X0)+ γ)

1
2 −

r

∑
i=1

σi(Z)+
n

∑
i=r+1

(σ2
i (Z)+ γ)

1
2 −

n

∑
i=r+1

σi(X0)

≥ f1(X0)−
n

∑
i=r+1

(σ2
i (X0)+ γ)

1
2 −

r

∑
i=1

σi(Z)

+
n

∑
i=r+1

σi(Z)−
n

∑
i=r+1

σi(X0),

(13)
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where the first inequality follows from (11). Since τ-NSP holds, we have

r

∑
i=1

σi(Z)< τ
n

∑
i=r+1

σi(Z) =
n

∑
i=r+1

σi(Z)− (1− τ)
n

∑
i=r+1

σi(Z)

≤
n

∑
i=r+1

σi(Z)−C
1− τ

1+ τ
‖X

γ
0 −X

γ
0,r‖"

=
n

∑
i=r+1

σi(Z)−2‖X
γ
0 −X

γ
0,r‖", (14)

where the second inequality uses ‖Z‖" ≥ C‖X
γ
0 −X

γ
0,r‖" and τ-NSP. Combining (13) and (14), we

obtain

f1(X0 +Z) = f1(X0)+∑n
i=r+1 σi(Z)−∑r

i=1 σi(Z)−∑n
i=r+1(σ

2
i (X0)+ γ)

1
2

−
n

∑
i=r+1

σi(X0)

≥ f1(X0)+∑n
i=r+1 σi(Z)−∑r

i=1 σi(Z)−∑n
i=r+1(σ

2
i (X0)+ γ)

1
2

−∑n
i=r+1(σ

2
i (X0)+ γ)

1
2

= f1(X0)+∑n
i=r+1 σi(Z)−∑r

i=1 σi(Z)−2‖X
γ
0 −X

γ
0,r‖"

> f1(X0).

(15)

This proves (12).

Next, if X̂ is an optimal solution of (3) with p = 1, then Z = X̂ −X0 ∈ N (A) and it follows

immediately from (15) that

‖X̂ −X0‖" = ‖Z‖" ≤C‖X
γ
0 −X

γ
0,r‖".

Note that problem (3) is convex when p = 1, and every stationary point of (3) is a global minimum.

Hence, by Theorem 3, IRLS-1 converges to a global minimum of the problem (3). It follows that

X̄ = X̂ and

‖X̄ −X0‖" ≤C‖X
γ
0 −X

γ
0,r‖". (16)

Finally, since |σ(X̄)−σ(X0)|≺w σ(X̄ −X0),

n

∑
i=r+1

σi(X̄)−
n

∑
i=r+1

σi(X0)≤
n

∑
i=1

|σi(X̄)−σi(X0)|≤ ‖X̄ −X0‖". (17)

Thus,

‖X̄r −X0‖" ≤ ‖X̄ − X̄r‖"+‖X̄ −X0‖"
≤ ‖X0 −X0r‖"+‖X̄ −X0‖"+‖X̄ −X0‖"
≤ (2C+1)‖X

γ
0 −X

γ
0,r‖",

where the second inequality follows from (17) and the third inequality from (16).
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Conversely, suppose that (12) holds, that is, f1(X0 +Z)> f1(X0) for all ‖Z‖" ≥C‖X
γ
0 −X

γ
0,r‖",

Z ∈ N (A)\{0}. We would like to show that A satisfies δ-NSP of order r. Assume to the contrary

that there exists Z ∈ N (A) such that

r

∑
i=1

σi(Z)≥ δ
n

∑
i=r+1

σi(Z). (18)

Let α = 1−τδ
2(1+τ) and set X0 =−Zr −α(Z−Zr), where Zr denotes the best rank-r approximation to Z.

Note that α < (1+δ)/C. Assume that Z satisfies

(
1+δ

C
−α

) n

∑
i=r+1

σi(Z)≥ (n− r)
√

γ. (19)

If not, Z can be multiplied by a large enough positive constant so that it satisfies both (19) and (18).

Note that (18) can be rewritten as,

‖Z‖" ≥ (1+δ)
n

∑
i=r+1

σi(Z). (20)

Combining (19) and (20), we obtain that

‖X
γ
0 −X

γ
0,r‖" =

n

∑
i=r+1

(α2σ2
i (Z)+ γ)

1
2 ≤ (n− r)

√
γ+α

n

∑
i=r+1

σi(Z)

≤
‖Z‖"

C
(21)

Moreover, it follows from (18) and the choice of X0 that

f1(X0) = ∑n
i=1(σ

2
i (X0)+ γ)

1
2

≥ ∑r
i=1 σi(X0)+∑n

i=r+1 σi(X0)

= ∑r
i=1 σi(Z)+α∑n

i=r+1 σi(Z)

≥ (α+δ)∑n
i=r+1 σi(Z).

(22)

On the other hand, notice by the definition of α that α > 1−δ
2 . Also assume Z satisfies

(2α+δ−1)
n

∑
i=r+1

σi(Z)≥ n
√

r. (23)

If not, Z can be multiplied by a large enough positive constant to satisfy (23) and also (18). Com-

bining (23) and (22), we obtain further that

f1(X0 +Z) =
n

∑
i=1

(σ2
i (X0 +Z)+ γ)

1
2 = r

√
γ+

n

∑
i=r+1

((1−α)2σ2
i (Z)+ γ)

1
2

≤ n
√

γ+(1−α)
n

∑
i=r+1

σi(Z)≤ f1(X0). (24)

Now it is easy to see that (21) and (24) together contradicts (12), which completes the proof.
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Thus when the sufficient condition (τ-NSP of order r) holds, we have shown that the best rank-r

approximation of the IRLS-1 solution is not far away from X̃ , the solution we wish to recover, and

the distance between the two is bounded by a (γ-approximate) rank-r approximation error of X0.

It has been shown (Oymak and Hassibi, 2010) that 1-NSP of order r holds for a random Gaussian

map A with high probability when the number of measurements is large enough. The necessity

statement can be rephrased as follows. δ-NSP with δ > τ is a necessary condition for the following

to hold: whenever there is an X such that f1(X)≤ f1(X0), we have that ‖X −X0‖" ≤C‖X
γ
0 −X

γ
0,r‖".

Note that the necessary and sufficient conditions for recovery of approximately low-rank matrices

using IRLS-1 mirror the conditions for recovery of approximately low-rank matrices using nuclear

norm minimization which is that A satisfy 1-NSP. We never let the weight regularization parameter

γ go to 0, thus theoretically the solution of IRLS-1 may never exactly equal the solution of Nuclear

norm minimization. However, we note that γ can be made very small, for example in the numerical

experiments we let γ go to 10−10.

Also note that the null space property SRNSP of order r, considered in Fornasier et al. (2010)

and shown to be sufficient for low-rank recovery using IRLSM, is equivalent to 1-NSP of order

2r. In this paper, we show that τ-NSP of order r (as contrasted with the order 2r NSP) is both

necessary and sufficient for recovery of approximately low-rank matrices using IRLS-1. Thus,

our condition for the recovery of approximately low-rank matrices using IRLS-1 generalizes those

stated in previous literature (Mohan and Fazel, 2010b; Fornasier et al., 2010), since it places a

weaker requirement on the linear map A .

4. A Gradient Projection Based Implementation of IRLS

In this section, we describe IRLS-GP, a gradient projection based implementation of IRLS-p for the

Matrix Completion Problem.

4.1 The Matrix Completion Problem

The matrix completion problem is a special case of the affine rank minimization problem with

constraints that restrict some of the entries of the matrix variable X to equal given values. The

problem can be written as

minimize rank(X)

subject to Xi j = (X0)i j, (i, j) ∈ Ω,

where X0 is the matrix we would like to recover and Ω denotes the set of entries which are revealed.

We define the operator PΩ : Rn×n → Rn×n as

(PΩ(X))i j =

{
Xi j if (i, j) ∈ Ω

0 otherwise.
(25)

Also, Ωc denotes the complement of Ω, that is, all index pairs (i, j) except those in Ω.
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4.2 IRLS-GP

To apply Algorithm 1 to the matrix completion problem (25), we replace the constraint A(X) = b

by PΩ(X) = PΩ(X0). Each iteration of IRLS solves a quadratic program (QP). A gradient projection

algorithm could be used to solve the quadratic program (QP) in each iteration of IRLS. We call this

implementation IRLS-GP (Algorithm 2).

Data: Ω, PΩ(X0)

Result: X̂ : PΩ(X̂) = b

Set k = 0. Initialize X0 = 0,γ0 > 0, s0 = (γ0)(1−
p
2 ) ;

while IRLS iterates not converged do

W k = (XkT
Xk + γkI)

p
2 −1. Set Xtemp = Xk ;

while Gradient projection iterates not converged do

Xtemp = PΩc(Xtemp− skXtempW k)+PΩ(X0);

end

Set Xk+1 = Xtemp ;

Choose 0 < γk+1 ≤ γk, sk+1 = (γk+1)(1−
p
2 ) ;

k = k+1;

end

Algorithm 2: IRLS-GP for Matrix Completion

The step size used in the gradient descent step is sk = 1/Lk, where Lk = 2‖W k‖ is the Lipschitz

constant of the gradient of the quadratic objective Tr(W kXT X) at the kth iteration. We also warm-

start the gradient projection algorithm to solve for the (k+ 1)th iterate of IRLS with the solution

of the kth iterate and find that this speeds up the convergence of the gradient projection algorithm

in subsequent iterations. At each iteration of IRLS, computing the weighting matrix involves an

inversion operation which can be expensive for large n. To work around this, we observe that

the singular values of subsequent iterates of IRLS cluster into two distinct groups, so a low rank

approximation of the iterates (obtained by setting the smaller set of singular values to zero) can

be used to compute the weighting matrix efficiently. Computing the singular value decomposition

(SVD) can be expensive. Randomized algorithms (e.g., Halko et al., 2011) can be used to compute

the top r singular vectors and singular values of a matrix X efficiently, with small approximation

errors, if σr+1(X) is small. We describe our computations of the weighting matrix below.

Computing the weighting matrix efficiently. Let UΣV T be the truncated SVD of Xk (keeping top r

terms in the SVD with r being determined at each iteration), so that U ∈Rm×r,Σ ∈Rr×r,V ∈Rn×r.

Then for p= 0, W k−1
= 1

γk (UΣV T )T (UΣV T )+γkIn. It is easy to check that W k =V (γk(Σ2+γkI)−1−
Ir)V T + In. Thus the cost of computing the weighting matrix given the truncated SVD is O(nr2),

saving significant computational costs. At each iteration, we choose r to be min{rmax, r̂} where r̂

is the largest integer such that σr̂(X
k) > 10−2 ×σ1(Xk). Also, since the singular values of Xk tend

to separate into two clusters, we observe that this choice eliminates the cluster with smaller singular
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values and gives a good estimate of the rank r to which Xk can be well approximated. We find that

combining warm-starts for the gradient projection algorithm along with the use of randomized al-

gorithms for SVD computations speeds up the overall computational time of the gradient projection

implementation considerably.

5. sIRLS-p: A First-order Algorithm for Minimizing the Smooth Schatten-p

Function

In this section, we present the sIRLS-p family of algorithms that are related to the IRLS-GP imple-

mentation discussed in the previous section. We first describe the algorithm before discussing its

connection to IRLS-p.

Data: PΩ, b

Result: X̂ : PΩ(X̂) = b

Set k = 0. Initialize X0 = PΩ(X0),γ0 > 0, s0 = (γ0)(1−
p
2 ) ;

while not converged do

W k
p = (XkT

Xk + γkI)
p
2 −1

;

Xk+1 = PΩc(Xk − skXkW k
p )+PΩ(X0) ;

Choose 0 < γk+1 ≤ γk, sk+1 = (γk+1)(1−
p
2 ) ;

k = k+1
end

Algorithm 3: sIRLS-p for Matrix Completion Problem

We note that sIRLS-p (Algorithm 3) is a gradient projection algorithm applied to

minimize fp(X) = Tr(XT X + γI)
p
2

subject to PΩ(X) = PΩ(X0),
(26)

while sIRLS-0 is a gradient projection algorithm applied to

minimize logdet(XT X + γI)

subject to PΩ(X) = PΩ(X0).
(27)

Indeed ∇ fp(Xk) = XkW k
p and the gradient projection iterates,

Xk+1 = P{X :PΩ(X)=PΩ(X0)}(X
k − sk∇ fp(Xk))

= PΩc(Xk − sk∇ fp(Xk))+PΩ(X0)

are exactly the same as the sIRLS-p (Algorithm 3) iterates when γk is a constant. In other words,

for large enough k (i.e., k such that γk = γmin), the iterates of sIRLS-p and sIRLS-0 are nothing

but gradient projection applied to (26) and (27) respectively, with γ = γmin. We have the following

convergence results for sIRLS.

Theorem 8 Every cluster point of sIRLS-p (0 < p ≤ 1) is a stationary point of (26) with γ = γmin.
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Theorem 9 Every cluster point of sIRLS-0 is a stationary point of (27) with γ = γmin.

The proof of Theorem 8 can be found in appendix C, and Theorem 9 can be proved in a similar

way. With p = 1, Theorem 8 implies that sIRLS-1 has the same performance guarantee as IRLS-1

given in Theorem 7. Note that despite sIRLS-p with p < 1 being a gradient projection algorithm

applied to non-convex problems (26) and (27), a simple step-size suffices for convergence, and we

do not consider a potentially expensive line search at each iteration of the algorithm.

We now relate the sIRLS-p family to the IRLS-p family of algorithms. Each iteration of the

IRLS-p algorithm is a quadratic program, and IRLS-GP uses iterative gradient projection to solve

this quadratic program. We note that sIRLS-p is nothing but IRLS-GP, with each quadratic program

solved approximately by terminating at the first iteration in the gradient projection inner loop. Bar-

ring this connection, the IRLS-p and sIRLS-p algorithms can be seen as two different approaches to

solving the smooth Schatten-p minimization problem (26). We examine the trade off between these

two algorithms along with comparisons to other state of the art algorithms for matrix completion in

the next section.

6. Numerical Results

In this section, we give numerical comparisons of sIRLS-0,1 and IRLS-0,1 with other algorithms.

We begin by examining the behavior of IRLS-0 (through the IRLS-GP implementation) and its

sensitivity to γk (regularization parameter in the weighting matrix, W k).

6.1 Choice of Regularization γ

We find that IRLS-0 converges faster when the regularization parameter in the weighting matrix,

γk, is chosen appropriately. We consider an exponentially decreasing model γk = γ0/(η)k, where

γ0 is the initial value and η is a scaling parameter. We run sensitivity experiments to determine

good choices of γ0 and η for the matrix completion problem. For this and subsequent experiments,

the indices corresponding to the known entries Ω are generated using i.i.d Bernoulli {0,1} random

variables with a mean support size |Ω| = q, where q/n2 is the probability for an index (i, j) to

belong to the support set. The completed and unknown matrix X0 of rank r is generated as YY T ,

where Y ∈ Rn×r is generated using i.i.d gaussian entries. All experiments are conducted in Matlab

7.12.0 (R2011 a) on a Intel 3 Ghz core 2 duo processor with 4 GB RAM.

As will be seen from the results, the regularization parameter γk plays an important role in the

recovery. We let γ0 = γc‖X0‖2 where γc is a proportional parameter that needs to be estimated. For

the sensitivity analysis of IRLS-0 (with respect to γ0 and η), we consider matrices of size 500×500.

6.1.1 CHOICE OF γc

As can be seen from Figures 1 a) and b), choosing γc appropriately leads to a better convergence rate

for IRLS-0. Small values of γc (< 10−3) don’t give good recovery results (premature convergence

to a larger relative error). However larger values of γc (> 1) might lead to a delayed convergence.

As a heuristic, we observe that γc = 10−2 works well. We also note that this choice of γc works well
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even if the spectral norm of X0 varies from 1 to 1000. Thus for future experiments, we normalize

X0 to have a spectral norm of 1.

6.1.2 CHOICE OF η

Figures 2 a),b),c), and d) look at the sensitivity of the IRLS-0 algorithm to the scaling parameter,

η. We observe that for a good choice of γ0 (described earlier), η depends on the rank of X0 to be

recovered. More specifically, η seems to have an inverse relationship with the rank of X0. From

Figures 2 a) and d), it is clear that η = 1.3 works well if rank of X0 equals 2 and η = 1.05 works

well when rank of X0 equals 15. More generally, the choice of η seems to depend on the hardness

of the problem instance being considered. We formalize this notion in the next section.
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Figure 1: n = 500, r = 5, η = 1.15. γ0 = γc‖X0‖2. From left to right: Recovery error using IRLS-0

for ‖X0‖= 1,‖X0‖= 1000.

6.2 Numerical Experiments

We classify our numerical experiments into two categories based on the degrees of freedom ratio,

given by FR = r(2n− r)/q. Note that for a n× n matrix of rank r, r(2n− r) is the number of

degrees of freedom in the matrix. Thus if FR is large (close to 1), recovering X0 becomes harder

(as the number of measurements is close to the degrees of freedom) and conversely if FR is close to

zero, recovering X0 becomes easier.

We conduct subsequent numerical experiments over what we refer to in this paper as Easy

problems (FR < 0.4) and Hard problems(FR > 0.4). We define the recovery to be successful when

the relative error, ‖X −X0‖F/‖X0‖F ≤ 10−3 (with X being the output of the algorithm considered)

and unsuccessful recovery otherwise. For each problem (easy or hard), the results are reported over

10 random generations of the support set, Ω and X0. We use NS to denote the number of successful

recoveries for a given problem. Also, computation times are reported in seconds. For sIRLS and

IRLS-GP (implementation of IRLS), we fix η = 1.1 if FR < 0.4 and η = 1.03 if FR > 0.4 based
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Figure 2: n = 500, γc = 10−2. Clockwise from top left: Recovery error using IRLS-0 for ranks

2,5,10,15 respectively.

on our earlier observations. In the next few sections, we compare the IRLS implementations with

other state of the art algorithms on both exact and noisy matrix completion problems.

6.3 Comparison of (s)IRLS and Nuclear Norm Minimization

In this section, we compare the gradient projection implementation IRLS-GP (of IRLS-0,1) and the

algorithm sIRLS-0,1 with the Singular Value Thresholding (SVT) algorithm (an implementation for

nuclear norm minimization Cai et al., 2008) on both easy and hard problem sets. Note that SVT is

not the only implementation of nuclear norm minimization. Other implementations include NNLS

(Toh and Yun, 2010) and Spectral Regularization (Mazumder et al., 2010).

When we refer to IRLS-0,1 in the tables and in subsequent paragraphs, we mean their gradient

projection implementation, IRLS-GP. We compare (s)IRLS-0,1 and SVT in Tables 1 and 3. A few

aspects of these comparisons are highlighted below.
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Problem IRLS-1 sIRLS-1 IRLS-0

n r q
n2 FR # iter Time # iter Time # iter Time

100 10 0.57 0.34 133 4.49 132 1.63 54 0.79

200 10 0.39 0.25 140 4.49 140 2.41 60 1.34

500 10 0.2 0.2 160 24.46 163 8 77 9.63

500 10 0.12 0.33 271 37.47 336 13.86 220 22.74

1000 10 0.12 0.17 180 113.72 195 32.21 109 55.42

1000 50 0.39 0.25 140 134.30 140 102.64 51 59.74

1000 20 0.12 0.33 241 156.09 284 57.85 188 96.20

2000 20 0.12 0.17 180 485.24 190 166.28 100 235.94

2000 40 0.12 0.33 236 810.13 270 322.96 170 432.34

Table 1: Comparison of IRLS-0,1 and sIRLS-1. Performance on Easy Problems FR < 0.4.

Problem sIRLS-1 sIRLS-0 SVT

n r q
n2 FR # iter Time # iter Time # iter Time

100 10 0.57 0.34 132 1.63 59 0.84 170 5.69

200 10 0.39 0.25 140 2.41 63 1.31 109 3.74

500 10 0.2 0.2 163 8 98 4.97 95 5.9

500 10 0.12 0.33 336 13.86 280 11.03 - -

1000 10 0.12 0.17 195 32.21 140 20.80 85 10.71

1000 50 0.39 0.25 140 102.64 60 61.32 81 49.17

1000 20 0.12 0.33 284 57.85 241 43.11 - -

2000 20 0.12 0.17 190 166.28 130 98.55 73 42.31

2000 40 0.12 0.33 270 322.96 220 227.07 - -

Table 2: Comparison of sIRLS-0,1 with SVT. Performance on Easy Problems FR < 0.4.

Problem sIRLS-1 IRLS-0 sIRLS-0

n r q
n2 FR # iter NS Time # iter NS Time # iter NS Time

40 9 0.5 0.8 4705 4 163.2 1385 10 17.36 2364 9 30.22

100 14 0.3 0.87 10000 0 545.91 4811 10 89.51 5039 7 114.54

500 20 0.1 0.78 10000 0 723.58 4646 8 389.66 5140 10 315.57

1000 20 0.1 0.4 645 10 142.84 340 10 182.78 406 10 97.15

1000 20 0.06 0.66 10000 0 1830.98 2679 10 921.15 2925 10 484.84

1000 30 0.1 0.59 1152 10 295.56 781 10 401.98 915 10 244.23

1000 50 0.2 0.49 550 10 342 191 10 239.77 270 10 234.25

Table 3: Comparison of sIRLS-1, IRLS-0 and sIRLS-0. Performance on Hard Problems FR ≥ 0.4
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6.3.1 IRLS-0 VS IRLS-1

Between IRLS-0 and IRLS-1, IRLS-0 takes fewer iterations to converge successfully and has a

lower computational time (Table 1). The same holds true between sIRLS-0 and sIRLS-1. sIRLS-

0 is also successful on more hard problem instances than sIRLS-1 (Table 3). This indicates that

(s)IRLS-p with p = 0 has a better recovery performance and computational time as compared to

p = 1.

6.3.2 IRLS VS SIRLS

Between sIRLS and IRLS, sIRLS-1 takes more iterations to converge as compared to IRLS-1. How-

ever because it has a lower per iteration cost, sIRLS-1 takes significantly lower computational time

than IRLS-1 (Table 1). The same holds true for sIRLS-0. Thus sIRLS-0,1 are not only simpler

algorithms, they also have a lower overall run time as compared to IRLS-0,1.

6.3.3 COMPARISON ON EASY PROBLEMS

Table 2 shows that sIRLS-0 and sIRLS-1 have competitive computational times as compared to

SVT (implementation available at, Candes and Becker, 2010). There are also certain instances

where SVT fails to have successful recovery while sIRLS-1 succeeds. Thus sIRLS-1 is competitive

and in some instances better than SVT.

6.3.4 COMPARISON ON HARD PROBLEMS

For hard problems, Table 3 shows that sIRLS-0 and IRLS-0 are successful in almost all problems

considered, while sIRLS-1 is not successful in 4 problems. We also found that SVT was not suc-

cessful in recovery for any of the hard problems. (s)IRLS-0 also compares favorably with FPCA

(Goldfarb and Ma, 2011) and Optspace (Keshavan and Oh, 2009) in terms of recovery and compu-

tational time on the easy and hard problem sets. These results are given subsequently.

In summary, (s)IRLS-1,(s)IRLS-0 have a better recovery performance than a nuclear norm min-

imization implementation (SVT) as evidenced by successful recovery in both easy and hard problem

sets. We note that (s)IRLS-1 converges to the Nuclear Norm Minimizer (when the regularization,

γ → 0) and empirically has a better recovery performance than SVT. We also note that among the

family of (s)IRLS-p algorithms tested, sIRLS-0 and IRLS-0 are better in both recovery performance

and computational times.

6.4 Comparison of Algorithms for Exact Matrix Completion

As observed in the previous section, sIRLS has a lower total run time compared to IRLS-GP. Thus

in subsequent experiments we compare other algorithms only with sIRLS.

6.4.1 DESIGN OF EXPERIMENTS

In this section, we report results from two sets of experiments. In the first set, we compare sIRLS-

0 (henceforth referred to as sIRLS), Iterative Hard Thresholding algorithm (IHT) (Goldfarb and
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Problem sIRLS IRLSM IHT Optspace

n r q
n2 FR # iter Time #iter Time #iter Time #iter Time

100 10 0.57 0.34 56 0.8 68 0.58 44 0.51 27 0.6

200 10 0.39 0.25 61 0.96 78 1.53 53 0.95 19 1.28

500 10 0.2 0.2 99 4.5 106 15 105 3.63 18 8.08

500 10 0.12 0.33 285 13.24 240 160.62 344 12.50 29 12.45

1000 10 0.12 0.17 143 21.17 152 106.18 192 19.30 16 28.93

1000 50 0.39 0.25 60 27.39 60 429.25 46 19.58 17 1755.44

1000 20 0.12 0.33 244 45.33 264 396.49 289 40.39 38 241.94

2000 20 0.12 0.17 130 82.47 140 916.48 179 80.76 14 428.37

2000 40 0.12 0.33 230 229.53 220 4213.4 270 225.46 28 4513

Table 4: Comparison of sIRLS-0, IRLSM, IHT and Optspace on Easy Problems with rank of the

matrix to be recovered known apriori.

Ma, 2011; Meka et al., 2010), Optspace and IRLSM (Fornasier et al., 2010) over easy and hard

problems with the assumption that the rank of the matrix to be recovered (X0) is known. We use

the implementations of IRLSM, Optspace available on the authors webpage (Fornasier et al , 2012;

Keshavan et al., 2009a). When the rank of X0 (denoted as r) is known, the weighting matrix W k

for sIRLS is computed using a rank r approximation of Xk (also see Section 3.1). The second set

of experiments correspond to the case where the rank of X0 is unknown, which is a more practical

assumption.

6.4.2 RANK OF X0 KNOWN APRIORI

All the algorithms are fully successful (NS = 10) on the easy problem sets. As seen in Table 4,

Optspace takes fewer iterations to converge as compared to sIRLS, IRLSM and IHT. On the other

hand, sIRLS and IHT are significantly faster than Optspace and much faster than IRLSM (Fornasier

et al., 2010). Although IRLSM uses a sub-routine implemented in C to speed up inverse matrix

computations inside a Matlab code, it is still about 10 times slower than sIRLS on easy problems

and even slower on hard problems. We note that for the hard problems in Table 5, the rank of

the true solution is given by (9,14,20,20,20,30,50) respectively. IRLSM is also not successful on

any of the instances for two of the hard problems. Also while sIRLS, Optspace and IHT are fully

successful on most of the hard problems (see Table 5), Optspace takes considerably higher time as

compared to IHT and sIRLS. Thus, when the rank of X0 is known, sIRLS is competitive with IHT

in performance and computational time and much faster than Optspace and IRLSM.

6.4.3 RANK OF X0 UNKNOWN

A possible disadvantage of IHT and Optspace could be their sensitivity to the knowledge of the rank

of X0. Thus, our second set of experiments compare sIRLS, IHT, Optspace and FPCA (Goldfarb

and Ma, 2011) over easy and hard problems when the rank of X0 is unknown. We use a heuristic for
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Problem sIRLS-0 IRLSM IHT Optspace

n q
n2 # iter NS Time # iter NS Time # iter NS Time # iter NS Time

40 0.5 1718 10 12.67 - 0 - 1635 10 12.16 1543 7 6.82

100 0.3 4298 8 60.18 - 0 - 4868 10 68.56 4011 5 131.62

1000 0.1 417 10 78.26 428 10 642.53 466 10 65.84 69 10 409.66

1000 0.08 814 10 151.86 1120 10 1674.2 947 10 134.30 103 10 580.09

1000 0.07 1368 10 251.46 2180 8 3399.2 1564 10 225.13 147 10 806.32

1000 0.1 949 10 226.12 1536 10 4451.1 1006 10 189.33 134 10 1904.47

1000 0.2 270 10 123.84 244 10 1736 254 10 105.88 46 10 2968

Table 5: Comparison of sIRLS-0, IHT and Optspace on Hard Problems with rank of the matrix to

be recovered known apriori.

Problem sIRLS IHT FPCA Optspace

n r q
n2 FR # iter Time # iter Time Time # iter Time

100 10 0.57 0.34 59 1.61 38 1.15 0.13 25 0.62

200 10 0.39 0.25 62 2.55 44 1.96 0.37 17 1.4

500 10 0.2 0.2 98 9.39 71 8.65 2.52 17 8.46

500 10 0.12 0.33 283 16.07 225 23.23 71.26 30 11.63

1000 10 0.12 0.17 140 38.44 104 31.47 11.24 14 26.31

1000 50 0.39 0.25 60 217.79 35 132.36 15.10 17 1774.08

1000 20 0.12 0.33 241 77.52 177 70.13 18.51 30 199.98

2000 20 0.12 0.17 130 236.19 98 152.36 42.06 12 374.15

2000 40 0.12 0.33 220 234.44 167 323.67 76.26 26 3466

Table 6: Comparison of sIRLS-0, IHT, FPCA and Optspace on Easy Problems when no prior in-

formation is available on the rank of the matrix to be recovered.

determining the approximate rank of Xk at each iteration for sIRLS, IHT. Heuristics for determining

approximate rank are also used in the respective implementations for FPCA and Optspace. We note

that computing the approximate rank is important for speeding up the SVD computations in all of

these algorithms.

Choice of rank. We choose r (the rank at which the SVD of Xk is truncated) to be min{rmax, r̂}
where r̂ is the largest integer such that σr̂(X

k) > α×σ1(Xk). For IHT we find that α = 5× 10−2

works well while for sIRLS and FPCA, α = 10−2 works well. The SVD computations in IHT,

sIRLS are based on a randomized algorithm (Halko et al., 2011). We note that Linear-Time SVD

(Drineas et al., 2006) is used to compute the SVD in the FPCA implementation (Goldfarb and Ma,

2009), and although faster than the randomized SVD algorithm we use for sIRLS, it can be signifi-

cantly less accurate.
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Problem sIRLS IHT FPCA Optspace

n FR # iter NS Time # iter NS Time NS Time # iter NS Time

40 0.8 1498 10 12.91 - 0 - 5 1.69 - 0 -

100 0.87 4934 5 72.36 - 0 - 0 - - 0 -

500 0.78 4859 9 326.06 - 0 - 0 - - 0 -

1000 0.40 406 10 115.73 280 10 72.67 10 26.54 40 10 256.92

1000 0.57 1368 10 237.22 1059 10 244.49 0 - 133 5 769.29

1000 0.66 2961 10 554.25 - 0 - 0 - - 0 -

1000 0.59 897 10 276.08 660 10 213.95 10 62.43 89 5 1420.81

1000 0.49 270 10 263.45 203 10 186.15 10 25.21 45 10 2924.68

Table 7: Comparison of sIRLS-0, IHT, FPCA and Optspace on Hard Problems when no prior in-

formation is available on the rank of the matrix to be recovered.

Comparison of algorithms. All the algorithms compared are successful on the easy problems. How-

ever, Optspace takes much more time to converge on recovering matrices with high rank as can be

seen from from Table 6. sIRLS, FPCA and IHT have competitive run times on all the problems. For

hard problems, however, sIRLS has a clear advantage over IHT, Optspace and FPCA in successful

recovery (Table 7). sIRLS is fully successful on all problems except the second and third on which

it has a success rate of 5 and 9 respectively. On the other hand IHT, Optspace and FPCA have

partial or unsuccessful recovery in many problems. sIRLS is competitive with IHT and FPCA on

computational times while Optspace is much slower than all the other algorithms. Thus, when the

rank of X0 is not known apriori, sIRLS has a distinct advantage over IHT, Optspace and FPCA in

successfully recovering X0 for hard problems.

6.5 Comparison of Algorithms for Noisy Matrix Completion

In this subsection, we compare IHT, FPCA and sIRLS on randomly generated noisy matrix com-

pletion problems. We consider the following noisy matrix completion problem,

minimize rank(X)

subject to PΩ(X) = PΩ(B),

where PΩ(B)=PΩ(X0)+PΩ(Z), X0 is a low rank matrix of rank r that we wish to recover and PΩ(Z)

is the measurement noise. Note that this noise model has been used before for matrix completion

(see Cai et al., 2008). Let Zi j be i.i.d Gaussian random variables with distribution N (0,σ2). We

would like the noise to be such that ‖PΩ(Z)‖F ≤ ε‖PΩ(X0)‖F for a noise parameter ε. This would

be true if σ ∼ ε
√

r (Cai et al., 2008).

We adapt sIRLS for noisy matrix completion by replacing PΩ(X0) by PΩ(B) in Algorithm 3. For

all the algorithms tested in Table 8, we declare the recovery to be successful if ‖X −X0‖F/‖X0‖F ≤
ε= 10−3, where X is the output of the algorithms. Table 8 shows that sIRLS has successful recovery

for easy noisy matrix completion problems with apriori knowledge of rank. The same holds true for
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Problem sIRLS IHT Optspace

n r q
n2 FR # iter NS Time #iter NS Time #iter NS Time

100 10 0.57 0.34 51 10 0.55 41 10 0.44 28 10 0.29

200 10 0.39 0.25 56 10 0.78 48 10 0.60 19 10 0.56

500 10 0.2 0.2 96 10 4.11 88 10 2.76 18 10 6.82

500 10 0.12 0.33 298 10 12.60 298 10 9.56 29 10 12.45

1000 10 0.12 0.17 141 10 19.66 132 10 12.28 15 10 37.17

1000 10 0.39 0.25 50 10 20.94 40 10 15.53 18 10 1197.48

1000 20 0.12 0.33 254 10 44.35 247 10 32.03 25 10 220.60

2000 20 0.12 0.17 130 10 77.30 121 10 84.23 12 10 469.67

2000 40 0.12 0.33 236 10 221.31 227 10 170.88 28 10 4515.06

Table 8: Comparison of sIRLS, IHT and Optspace on the Noisy Matrix Completion problem.

hard problems with the true rank known apriori. Thus sIRLS has a competitive performance even

for noisy recovery.

6.6 Application to Movie Lens Data Set

In this section, we consider the movie lens data sets (Dahlen et al, 1998) with 100,000 ratings. In

particular, we consider four different splits of the 100k ratings into (training set, test set):

(u1.base,u1.test), (u2.base,u2.test), (u3.base,u3.test), (u4.base,u4.test) for our nu-

merical experiments. Any given set of ratings (e.g., from a data split) can be represented as a matrix.

This matrix has rows representing the users and columns representing the movies and an entry (i, j)

of the matrix is non-zero if we know the rating of user i for movie j. Thus estimating the remaining

ratings in the matrix corresponds to a matrix completion problem. For each data split, we train

sIRLS, IHT, and Optspace on the training set and compare their performance on the correspond-

ing test set. The performance metric here is Normalized Mean Absolute Error or NMAE given as

follows. Let M be the matrix representation corresponding to the actual test ratings and X be the

ratings matrix output by an algorithm when input the training set. Then

NMAE =

(

∑
i, j∈supp(M)

|Mi j −Xi j|
|supp(M)|

)
/(rtmax − rtmin),

where rtmin and rtmax are the minimum and maximum movie ratings possible. The choice of γ0,η

for sIRLS is the same as for the random experiments (described in previous sections). sIRLS is

terminated if the maximum number of iterations exceeds 700 or if the relative error between the

successive iterates is less than 10−3. We set the rank of the unknown ratings matrix to be equal to 5

while running all the three algorithms. Table 9 shows that the NMAE for sIRLS, IHT, and Optspace

are almost the same across different splits of the data. Keshavan et al. (2009b) reported the NMAE

results for different algorithms when tested on data split 1. These were reported to be 0.186,0.19

and 0.242 for Optspace (Keshavan and Oh, 2009), FPCA (Goldfarb and Ma, 2011), and AdMiRA
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sIRLS IHT Optspace

split 1 0.1919 0.1925 0.1887

split 2 0.1878 0.1883 0.1878

split 3 0.1870 0.1872 0.1881

split 4 0.1899 0.1896 0.1882

Table 9: NMAE for sIRLS-0 for different splits of the 100k movie-lens data set.

(Lee and Bresler, 2010) respectively. Thus sIRLS has a NMAE that is as good as Optspace, FPCA,

IHT and has a better NMAE than AdMiRA.

7. Conclusions and Future Directions

We proposed a family of Iterative Reweighted Least Squares algorithms (IRLS-p) for the affine rank

minimization problem. We showed that IRLS-1 converges to the global minimum of the smoothed

nuclear norm, and that IRLS-p with p < 1 converges to a stationary point of the corresponding

non-convex yet smooth approximation to the rank function. We gave a matrix recovery guarantee

for IRLS-1, showing that it approximately recovers the true low-rank solution (within a small error

depending on the algorithm parameter γ), if the null space of the affine measurement map satisfies

certain properties. This null space condition is both necessary and sufficient for low-rank recovery,

thus improving on and simplifying the previous analysis for IRLS-1 (Mohan and Fazel, 2010b).

We then focused on the matrix completion problem, a special case of affine rank minimization

arising in collaborative filtering among other applications, and presented efficient implementations

specialized to this problem. We gave an implementation for IRLP-p for this problem using gradient

projections. We also presented a related first-order algorithm, sIRLS-p, for minimizing the smooth

Schatten-p function, which serves as a smooth approximation of the rank. Our first set of numerical

experiments show that (s)IRLS-0 has a better recovery performance than nuclear norm minimization

via SVT. We show that sIRLS-0 has a good recovery performance even when noise is present. Our

second set of experiments demonstrate that sIRLS-0 compares favorably in terms of performance

and run time with IHT, Optspace, and IRLSM when the rank of the low rank matrix to be recovered

is known. When the rank information is absent, sIRLS-0 shows a distinct advantage in performance

over IHT, Optspace and FPCA.

7.1 Future Directions

Low-rank recovery problems have recently been pursued in machine learning motivated by appli-

cations including collaborative filtering. Iterative reweighted algorithms for low-rank matrix recov-

ery have empirically exhibited improved performance compared to unweighted convex relaxations.

However, there has been a relative lack of theoretical results, as well as efficient implementations

for these algorithms. This paper takes a step in addressing both of these issues, and opens up several

directions for future research.
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Low-rank plus sparse decomposition. The problem of decomposing a matrix into a low-rank com-

ponent and a sparse component has received much attention (Chandrasekaran et al., 2011; Tan et al.,

2011), and arises in graphical model identification (Chandrasekaran et al., 2010a) as well as a ver-

sion of robust PCA (Candes et al., 2011), where problem sizes of practical interest are often very

large. The convex relaxation proposed for this problem minimizes a combination of nuclear norm

and !1 norm. An interesting direction for future work is to extend the IRLS algorithms family to this

problem, by combining the vector and the matrix weighted updates. A potential feature of such an

algorithm can be that the value of p for the vector part and the matrix part (and hence the weights)

can be chosen separately, allowing control over how aggressively to promote the sparsity and the

low-rank features.

Distributed IRLS. In the IRLS family, the least squares problem that is solved in every iteration is

in fact separable in the columns of the matrix X (as also pointed out in Fornasier et al., 2010), so it

can be solved completely in parallel. This opens the door not just to a fast parallel implementation,

but also to the possibility of a partially distributed algorithm. Noting that the weight update step

does not appear easy to decompose, an interesting question is whether we can use approximate but

decomposable weights, so that the updates would require only local information.

Other applications for the NSP. The simple Null space Property used here, being based on only the

singular values of elements in the null space, makes the connection between associated vector and

matrix recovery proofs clear and transparent, and may be of independent interest (see Oymak et al.,

2011).
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Appendix A. IRLS-p from Characterization of Smooth Schatten-p Function

We can also derive the IRLS-p algorithm for 0 < p ≤ 1 by defining the following function,

F p(X ,W,γ) = TrW
p−2

p (XT X + γI)

The following lemma (Argyriou et al., 2007; Argyriou, 2010) proves useful for our analysis.

Lemma 10 Let γ > 0 and

W ∗ =
(XT X + γI)

p
2

Tr(XT X + γI)
p
2

.

Then

W ∗ = argmin
W

{F p(X ,W,γ) : W . 0,Tr(W )≤ 1} .
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Note that F p(X ,W ∗,γ) = ( fp(X))
2
p . Hence the problem of minimizing the Smooth Schatten-p

function fp(X) (3) is equivalent to the following

minimize F p(X ,W,γ)

subject to A(X) = b,W . 0,TrW ≤ 1,
(28)

where the variables are X and W . As a relaxation to minimizing (28) jointly in X ,W , one can

consider minimizing (28) alternately with respect to X and W as in Algorithm 4.

Data: A , b

Result: X̂ : A(X̂) = b

Set k = 0. Initialize W 0
p = I,γ1 > 0 ;

while not converged do

Xk+1 = argmin
X

F p(X ,W k)

s.t. A(X) = b
;

W k+1 = argmin
W

F p(Xk+1,W )

s.t. W . 0,Tr(W )≤ 1
;

Choose 0 < γk+2 ≤ γk+1 ;

k = k+1 ;

end

Algorithm 4: Alternative representation of the IRLS-p algorithm.

We note (and shall prove) that Algorithm 4 gives us the same X updates as the IRLS-p algorithm.

This gives an interpretation to the IRLS-p algorithm as alternately minimizing an equivalent Smooth

Schatten-p problem (28). Consider minimization with respect to W of F p(X ,W,γ) with X fixed.

This problem can be re-formulated as

minimize TrŴ (XT X + γI)

subject to TrŴ
p

p−2 ≤ 1

Ŵ . 0,

(29)

where Ŵ =W
p−2

p . The following lemma relates F p(X ,W,γ) with J p(X ,W,γ) (defined in (6)).

Lemma 11 Let

Ŵ ∗ =
(XT X + γI)

p
2 −1

(Tr(XT X + γI)
p
2 )

p−2
p

.

Then Ŵ ∗ is the optimal solution to (29) as well as the following problem:

minimize TrŴ (XT X + γI)+λ(TrŴ
p

p−2 −1),

subject to Ŵ . 0,

where λ = 2−p
p (Tr(XT X + γI)

p
2 )

2
p . Furthermore, let

W̃ = argmin
W.0

J p(X ,W,γ).
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Then J p(X ,W̃ ,γ) = fp(X) and

argmin
X

{
F p(X ,(Ŵ ∗)

p
p−2 ,γ) : A(X) = b

}
= argmin

Z

{
J p(Z,W̃ ,γ) : A(Z) = b

}
.

Thus Lemma (11) shows that alternately minimizing F p(X ,W,γ) with respect to W followed by X

(with constraints on W as in (29) and affine constraints on X) is equivalent to alternately minimizing

J p(X ,W,γ) with respect to W followed by X (with affine constraints on X and {W : W . 0}).

Proof The Lagrangian for (29) is given by

L(Ŵ ,λ) = TrŴ (XT X + γI)+λ(TrŴ
p

p−2 −1)

Note that λ∗ = 2−p
p (Tr(XT X + γI)

p
2 )

2
p ,Ŵ ∗ = (XT X+γI)

p
2 −1

(Tr(XT X+γI)
p
2 )

p−2
p

satisfy the KKT conditions to (29).

This is because Tr(Ŵ ∗)
p

p−2
= 1, Ŵ ∗ . 0 and λ∗ > 0. The complementary slackness is also true

since the primal inequality constraint is tight. Since (29) is a convex problem and Ŵ ∗ satisfies the

KKT conditions, it is the optimal solution to (29). It is also easy to see that W̃ = argmin
W.0

J p(X ,W,γ)

where W̃ = (XT X + γI)
p
2 −1. Also note that J p(X ,W̃ ,γ) = fp(X). Now,

argmin
Z:A(Z)=b

J p(Z,W̃ ,γ) = argmin
Z:A(Z)=b

TrW̃ (ZT Z + γI)

= argmin
Z:A(Z)=b

Tr(XT X + γI)
p
2 −1(ZT Z + γI)

= argmin
Z:A(Z)=b

TrŴ ∗(ZT Z + γI)

= argmin
Z:A(Z)=b

F p(Z,(Ŵ ∗)
p

p−2 ,γ).

Appendix B. Proof of Theorem 2

We first present two useful lemmas.

Lemma 12 For each k ≥ 1, we have

Tr(XkT
Xk)

p
2 ≤ J p(X1,W 0,γ0) := D (30)

where W 0 = I, γ0 = 1. Also, λ j(W k)≥ D(1− 2
p ), j = 1,2, . . . ,min{m,n}

Proof First, notice that

Tr(XkT
Xk)

p
2 ≤ Tr(XkT

Xk + γI)p/2 = J p(Xk,W k,γk)

≤ J p(X1,W 1,γ1)≤ J p(X1,W 0,γ0) = D,
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where the second and third inequalities follow from (6). This proves (30). Furthermore, from the

above chain of inequalities,

(‖XkT
Xk‖+ γ)

p
2 = ‖(XkT

Xk + γI)
p
2 ‖ ≤ D.

Using this and the definition of W k, we obtain

‖(W k)−1‖= ‖(XkT
Xk + γI)1− p

2 ‖= (‖XkT
Xk‖+ γ)1− p

2 ≤ D( 2
p−1).

This last relation shows that λ j(W k) = σ j(W k)≥ 1/‖(W k)
−1‖ ≥ D(1− 2

p ) for all j.

Lemma 13 A matrix X∗ is a minimizer of

minimize TrWXT X

subject to A(X) = b

if and only if Tr(WX∗T Z) = 0 for all Z ∈ N (A).

Proof [of Theorem (2)] For each k ≥ 1, we have that

2[J p(Xk,W k,γk)− J p(Xk+1,W k+1,γk+1)] ≥ 2[J 1(Xk,W k,γk)− J 1(Xk+1,W k,γk)]

= 〈Xk,Xk〉W k −〈Xk+1,Xk+1〉W k

= 〈Xk +Xk+1,Xk −Xk+1〉W k

= 〈Xk −Xk+1,Xk −Xk+1〉W k

= TrW k(Xk −Xk+1)
T
(Xk −Xk+1)

≥ D(1− 2
p )‖Xk −Xk+1‖2

F

where the above expressions use Lemma 13 and Lemma 12. Summing the above inequalities over

all k ≥ 1, we have that lim
n→∞

(
Xn −Xn+1

)
= 0.

Appendix C. Proof of Theorem 8

For any two matrices X ,Y we denote 〈X ,Y 〉W = TrWXTY . We first note that the iterates of sIRLS-p

satisfy

J p(Xk+1,W k+1,γk+1) ≤ J p(Xk+1,W k,γk+1)

≤ J p(Xk+1,W k,γk)

≤ J p(Xk,W k,γk).

The last inequality follows from the Lipschitz continuity (with Lk = 2(γk)
p
2 −1

) of the gradient of

Tr(W kXT X), that is,

TrW kXT X ≤ TrW kXkT
Xk + 〈2XkW k,X −Xk〉+

Lk

2
‖X −Xk‖2

F ∀X ,Xk
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and the fact that

Xk+1 = argmin
X

‖X − (Xk −XkW k)‖2
F

s.t. PΩ(X) = PΩ(X0).

The convergence of {J p(Xk,W k,γk)} follows from Monotone convergence theorem. This also im-

plies that the sequence {Xk} is bounded. Hence there exists a convergent subsequence, {Xni}→ X∗.

Also let {Xni+1}→ X̂ . If X∗ is a stationary point, we are done. Conversely, if X∗ is not a station-

ary point to (26) then it follows that, X̂ 2= X∗. But X̂ 2= X∗ implies (using strict convexity) that

Tr(W ∗X̂T X̂)< Tr(W ∗X∗T X∗) which also implies that J p(X̂ ,Ŵ ,γmin)< J p(X∗,W ∗,γmin). However

since

limJ p(Xi,W i,γi) = limJ p(Xni ,W ni ,γni)

= limJ p(Xni+1 ,W ni+1 ,γni+1),

we have a contradiction. Therefore, X∗ is a stationary point to (26) and the theorem follows.
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Abstract

The statistical leverage scores of a matrix A are the squared row-norms of the matrix containing
its (top) left singular vectors and the coherence is the largest leverage score. These quantities are
of interest in recently-popular problems such as matrix completion and Nyström-based low-rank
matrix approximation as well as in large-scale statistical data analysis applications more gener-
ally; moreover, they are of interest since they define the key structural nonuniformity that must
be dealt with in developing fast randomized matrix algorithms. Our main result is a randomized
algorithm that takes as input an arbitrary n× d matrix A, with n" d, and that returns as output
relative-error approximations to all n of the statistical leverage scores. The proposed algorithm
runs (under assumptions on the precise values of n and d) in O(nd logn) time, as opposed to the
O(nd2) time required by the naı̈ve algorithm that involves computing an orthogonal basis for the
range of A. Our analysis may be viewed in terms of computing a relative-error approximation to
an underconstrained least-squares approximation problem, or, relatedly, it may be viewed as an
application of Johnson-Lindenstrauss type ideas. Several practically-important extensions of our
basic result are also described, including the approximation of so-called cross-leverage scores, the
extension of these ideas to matrices with n≈ d, and the extension to streaming environments.

Keywords: matrix coherence, statistical leverage, randomized algorithm

1. Introduction

The concept of statistical leverage measures the extent to which the singular vectors of a matrix are

correlated with the standard basis and as such it has found usefulness recently in large-scale data

analysis and in the analysis of randomized matrix algorithms (Velleman and Welsch, 1981; Mahoney

and Drineas, 2009; Drineas et al., 2008). A related notion is that of matrix coherence, which has

been of interest in recently popular problems such as matrix completion and Nyström-based low-

rank matrix approximation (Candes and Recht, 2008; Talwalkar and Rostamizadeh, 2010). Defined

c©2012 Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney and David P. Woodruff.
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more precisely below, the statistical leverage scores may be computed as the squared Euclidean

norms of the rows of the matrix containing the top left singular vectors and the coherence of the

matrix is the largest statistical leverage score. Statistical leverage scores have a long history in

statistical data analysis, where they have been used for outlier detection in regression diagnostics

(Hoaglin and Welsch, 1978; Chatterjee and Hadi, 1986). Statistical leverage scores have also proved

crucial recently in the development of improved worst-case randomized matrix algorithms that are

also amenable to high-quality numerical implementation and that are useful to domain scientists

(Drineas et al., 2008; Mahoney and Drineas, 2009; Boutsidis et al., 2009; Drineas et al., 2006b;

Sarlós, 2006; Drineas et al., 2010b); see Mahoney (2011) for a detailed discussion. The naı̈ve and

best previously existing algorithm to compute these scores would compute an orthogonal basis for

the dominant part of the spectrum of A, for example, the basis provided by the Singular Value

Decomposition (SVD) or a basis provided by a QR decomposition (Golub and Loan, 1996), and

then use that basis to compute diagonal elements of the projection matrix onto the span of that

basis.

We present a randomized algorithm to compute relative-error approximations to every statistical

leverage score in time qualitatively faster than the time required to compute an orthogonal basis. For

the case of an arbitrary n× d matrix A, with n" d, our main algorithm runs (under assumptions

on the precise values of n and d, see Theorem 2 for an exact statement) in O(nd logn/ε2) time, as

opposed to the Θ(nd2) time required by the naı̈ve algorithm. As a corollary, our algorithm provides

a relative-error approximation to the coherence of an arbitrary matrix in the same time. In addition,

several practically-important extensions of the basic idea underlying our main algorithm are also

described in this paper.

1.1 Overview and Definitions

We start with the following definition of the statistical leverage scores of a matrix.

Definition 1 Given an arbitrary n×d matrix A, with n > d, let U denote the n×d matrix consisting

of the d left singular vectors of A, and let U(i) denote the i-th row of the matrix U as a row vector.

Then, the statistical leverage scores of the rows of A are given by

!i =
∥

∥U(i)

∥

∥

2

2
,

for i ∈ {1, . . . ,n}; the coherence γ of the rows of A is

γ = max
i∈{1,...,n}

!i,

that is, it is the largest statistical leverage score of A; and the (i, j)-cross-leverage scores ci j are

ci j =
〈

U(i),U( j)

〉

,

that is, they are the dot products between the ith row and the jth row of U.

Although we have defined these quantities in terms of a particular basis, they clearly do not depend

on that particular basis, but only on the space spanned by that basis. To see this, let PA denote the

projection matrix onto the span of the columns of A. Then,

!i =
∥

∥U(i)

∥

∥

2

2
=
(

UUT
)

ii
= (PA)ii . (1)
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That is, the statistical leverage scores of a matrix A are equal to the diagonal elements of the projec-

tion matrix onto the span of its columns.1 Similarly, the (i, j)-cross-leverage scores are equal to the

off-diagonal elements of this projection matrix, that is,

ci j = (PA)i j =
〈

U(i),U( j)

〉

. (2)

Clearly, O(nd2) time suffices to compute all the statistical leverage scores exactly: simply perform

the SVD or compute a QR decomposition of A in order to obtain any orthogonal basis for the range

of A and then compute the Euclidean norm of the rows of the resulting matrix. Thus, in this paper,

we are interested in algorithms that run in o(nd2) time.

Several additional comments are worth making regarding this definition. First, since ∑n
i=1 !i =

‖U‖2
F = d, we can define a probability distribution over the rows of A as pi = !i/d. As discussed

below, these probabilities have played an important role in recent work on randomized matrix al-

gorithms and an important algorithmic question is the degree to which they are uniform or nonuni-

form.2 Second, one could also define leverage scores for the columns of a “tall” matrix A, but

clearly those are all equal to one unless n < d or A is rank-deficient. Third, and more generally,

given a rank parameter k, one can define the statistical leverage scores relative to the best rank-k

approximation to A to be the n diagonal elements of the projection matrix onto the span of Ak, the

best rank-k approximation to A.

1.2 Our Main Result

Our main result is a randomized algorithm for computing relative-error approximations to every

statistical leverage score, as well as an additive-error approximation to all of the large cross-leverage

scores, of an arbitrary n× d matrix, with n" d, in time qualitatively faster than the time required

to compute an orthogonal basis for the range of that matrix. Our main algorithm for computing

approximations to the statistical leverage scores (see Algorithm 1 in Section 3) will amount to

constructing a “randomized sketch” of the input matrix and then computing the Euclidean norms

of the rows of that sketch. This sketch can also be used to compute approximations to the large

cross-leverage scores (see Algorithm 2 of Section 3).

The following theorem provides our main quality-of-approximation and running time result for

Algorithm 1.

Theorem 2 Let A be a full-rank n× d matrix, with n" d; let ε ∈ (0,1/2] be an error parameter;

and recall the definition of the statistical leverage scores !i from Definition 1. Then, there exists a

randomized algorithm (Algorithm 1 of Section 3 below) that returns values !̃i, for all i ∈ {1, . . . ,n},

such that with probability at least 0.8,

∣

∣!i− !̃i

∣

∣≤ ε!i

1. In this paper, for simplicity of exposition, we consider the case that the matrix A has rank equal to d, that is, has full

column rank. Theoretically, the extension to rank-deficient matrices A is straightforward—simply modify Definition 1

and thus Equations (1) and (2) to let U be any orthogonal matrix (clearly, with fewer than d columns) spanning the

column space of A. From a numerical perspective, things are substantially more subtle, and we leave this for future

work that considers numerical implementations of our algorithms.

2. Observe that if U consists of d columns from the identity, then the leverage scores are extremely nonuniform: d of

them are equal to one and the remainder are equal to zero. On the other hand, if U consists of d columns from a

normalized Hadamard transform (see Section 2.3 for a definition), then the leverage scores are very uniform: all n of

them are equal to d/n.
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holds for all i ∈ {1, . . . ,n}. Assuming d ≤ n≤ ed, the running time of the algorithm is

O
(

nd ln
(

dε−1
)

+ndε−2 lnn+d3ε−2 (lnn)
(

ln
(

dε−1
)))

.

Algorithm 1 provides a relative-error approximation to all of the statistical leverage scores !i of A

and, assuming d lnd = o
(

n
lnn

)

, lnn = o(d), and treating ε as a constant, its running time is o(nd2),
as desired. As a corollary, the largest leverage score (and thus the coherence) is approximated to

relative-error in o(nd2) time.

The following theorem provides our main quality-of-approximation and running time result for

Algorithm 2.

Theorem 3 Let A be a full-rank n× d matrix, with n" d; let ε ∈ (0,1/2] be an error parameter;

let κ be a parameter; and recall the definition of the cross-leverage scores ci j from Definition 1.

Then, there exists a randomized algorithm (Algorithm 2 of Section 3 below) that returns the pairs

{(i, j)} together with estimates {c̃i j} such that, with probability at least 0.8,

i. If c2
i j ≥

d

κ
+12ε!i! j, then (i, j) is returned; if (i, j) is returned, then c2

i j ≥
d

κ
−30ε!i! j.

ii. For all pairs (i, j) that are returned, c̃2
i j−30ε!i! j ≤ c2

i j ≤ c̃2
i j +12ε!i! j.

This algorithm runs in O(ε−2n lnn+ ε−3κd ln2 n) time.

Note that by setting κ = n lnn, we can compute all the “large” cross-leverage scores, that is, those

satisfying c2
i j ≥ d

n lnn , to within additive-error in O
(

nd ln3 n
)

time (treating ε as a constant). If ln3 n =

o(d) the overall running time is o(nd2), as desired.

1.3 Significance and Related Work

Our results are important for their applications to fast randomized matrix algorithms, as well as their

applications in numerical linear algebra and large-scale data analysis more generally.

Significance in theoretical computer science. The statistical leverage scores define the key struc-

tural nonuniformity that must be dealt with (i.e., either rapidly approximated or rapidly uniformized

at the preprocessing step) in developing fast randomized algorithms for matrix problems such as

least-squares regression (Sarlós, 2006; Drineas et al., 2010b) and low-rank matrix approximation

(Papadimitriou et al., 2000; Sarlós, 2006; Drineas et al., 2008; Mahoney and Drineas, 2009; Bout-

sidis et al., 2009). Roughly, the best random sampling algorithms use these scores (or the gener-

alized leverage scores relative to the best rank-k approximation to A) as an importance sampling

distribution to sample with respect to. On the other hand, the best random projection algorithms

rotate to a basis where these scores are approximately uniform and thus in which uniform sampling

is appropriate. See Mahoney (2011) for a detailed discussion.

As an example, the CUR decomposition of Drineas et al. (2008) and Mahoney and Drineas

(2009) essentially computes pi = !i/k, for all i ∈ {1, . . . ,n} and for a rank parameter k, and it

uses these as an importance sampling distribution. The computational bottleneck for these and

related random sampling algorithms is the computation of the importance sampling probabilities.

On the other hand, the computational bottleneck for random projection algorithms is the application

of the random projection, which is sped up by using variants of the Fast Johnson-Lindenstrauss

Transform (Ailon and Chazelle, 2006, 2009). By our main result, the leverage scores (and thus
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these probabilities) can be approximated in time that depends on an application of a Fast Johnson-

Lindenstrauss Transform. In particular, the random sampling algorithms of Drineas et al. (2006b),

Drineas et al. (2008) and Mahoney and Drineas (2009) for least-squares approximation and low-

rank matrix approximation now run in time that is essentially the same as the best corresponding

random projection algorithm for those problems (Sarlós, 2006).

Applications to numerical linear algebra. Recently, high-quality numerical implementations of

variants of the basic randomized matrix algorithms have proven superior to traditional determinis-

tic algorithms (Rokhlin and Tygert, 2008; Rokhlin et al., 2009; Avron et al., 2010). An important

question raised by our main results is how these will compare with an implementation of our main

algorithm. More generally, density functional theory (Bekas et al., 2007) and uncertainty quantifica-

tion (Bekas et al., 2009) are two scientific computing areas where computing the diagonal elements

of functions (such as a projection or inverse) of very large input matrices is common. For example,

in the former case, “heuristic” methods based on using Chebychev polynomials have been used in

numerical linear algebra to compute the diagonal elements of the projector (Bekas et al., 2007). Our

main algorithm should have implications in both of these areas.

Applications in large-scale data analysis. The statistical leverage scores and the scores rela-

tive to the best rank-k approximation to A are equal to the diagonal elements of the so-called “hat

matrix” (Hoaglin and Welsch, 1978; Chatterjee and Hadi, 1988). As such, they have a natural statis-

tical interpretation in terms of the “leverage” or “influence” associated with each of the data points

(Hoaglin and Welsch, 1978; Chatterjee and Hadi, 1986, 1988). In the context of regression prob-

lems, the ith leverage score quantifies the leverage or influence of the ith constraint/row of A on the

solution of the overconstrained least squares optimization problem minx ‖Ax−b‖2 and the (i, j)-th
cross leverage score quantifies how much influence or leverage the ith data point has on the jth least-

squares fit (see Hoaglin and Welsch, 1978; Chatterjee and Hadi, 1986, 1988, for details). When

applied to low-rank matrix approximation problems, the leverage score ! j quantifies the amount of

leverage or influence exerted by the jth column of A on its optimal low-rank approximation. His-

torically, these quantities have been widely-used for outlier identification in diagnostic regression

analysis (Velleman and Welsch, 1981; Chatterjee et al., 2000).

More recently, these scores (usually the largest scores) often have an interpretation in terms of

the data and processes generating the data that can be exploited. For example, depending on the

setting, they can have an interpretation in terms of high-degree nodes in data graphs, very small

clusters in noisy data, coherence of information, articulation points between clusters, the value of

a customer in a network, space localization in sensor networks, etc. (Bonacich, 1987; Richardson

and Domingos, 2002; Newman, 2005; Jonckheere et al., 2007; Mahoney, 2011). In genetics, dense

matrices of size thousands by hundreds of thousands (a size scale at which even traditional deter-

ministic QR algorithms fail to run) constructed from DNA Single Nucleotide Polymorphisms (SNP)

data are increasingly common, and the statistical leverage scores can correlate strongly with other

metrics of genetic interest (Paschou et al., 2007; Mahoney and Drineas, 2009; Drineas et al., 2010a;

Paschou et al., 2010). Our main result will permit the computation of these scores and related quan-

tities for significantly larger SNP data sets than has been possible previously (Paschou et al., 2007;

Drineas et al., 2010a; Paschou et al., 2010; Georgiev and Mukherjee, 2011).

Remark. Lest there be any confusion, we should emphasize our main contributions. First,

note that statistical leverage and matrix coherence are important concepts in statistics and machine

learning. Second, recall that several random sampling algorithms for ubiquitous matrix problems

such as least-squares approximation and low-rank matrix approximation use leverage scores in a
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crucial manner; but until now these algorithms were Ω(TSV D), where TSV D is the time required to

compute a QR decomposition or a partial SVD of the input matrix. Third, note that, in some cases,

o(TSV D) algorithms exist for these problems based on fast random projections. But recall that the

existence of those projection algorithms in no way implies that it is easy or obvious how to compute

the statistical leverage scores efficiently. Fourth, one implication of our main result is that those

random sampling algorithms can now be performed just as efficiently as those random projection

algorithms; thus, the solution for those matrix problems can now be obtained while preserving the

identity of the rows. That is, these problems can now be solved just as efficiently by using actual

rows, rather than the arbitrary linear combinations of rows that are returned by random projections.

Fifth, we provide a generalization to “fat” matrices and to obtaining the cross-leverage scores. Sixth,

we develop algorithms that can compute leverage scores and related statistics even in streaming

environments.

1.4 Empirical Discussion of Our Algorithms

Although the main contribution of our paper is to provide a rigorous theoretical understanding of

fast leverage score approximation, our paper does analyze the theoretical performance of what is

meant to be a practical algorithm. Thus, one might wonder about the empirical performance of

our algorithms—for example, whether hidden constants render the algorithms useless for data of

realistic size. Not surprisingly, this depends heavily on the quality of the numerical implementation,

whether one is interested in “tall” or more general matrices, etc. We will consider empirical and

numerical aspects of these algorithms in forthcoming papers, for example, Gittens and Mahoney

(2012). We will, however, provide here a brief summary of several numerical issues for the reader

interested in these issues.

Empirically, the running time bottleneck for our main algorithm (Algorithm 1 of Section 3)

applied to “tall” matrices is the application of the random projection Π1. Thus, empirically the

running time is similar to the running time of random projection based methods for computing

approximations to the least-squares problem, which is also dominated by the application of the

random projection. The state of the art here is the Blendenpik algorithm of Avron et al. (2010)

and the LSRN algorithm of Meng et al. (2011). In their Blendenpik paper, Avron, Maymounkov,

and Toledo showed that their high-quality numerical implementation of a Hadamard-based random

projection (and associated least-squares computation) “beats LAPACK’s3 direct dense least-squares

solver by a large margin on essentially any dense tall matrix,” and they concluded that their empir-

ical results “suggest that random projection algorithms should be incorporated into future versions

of LAPACK” (Avron et al., 2010). The LSRN algorithm of Meng, Saunders, and Mahoney im-

proves Blendenpik in several respects, for example, providing better handling of sparsity and rank

deficiency, but most notably the random projection underlying LSRN is particularly appropriate for

solving large problems on clusters with high communication cost, for example, it has been shown

to scale well on Amazon Elastic Cloud Compute clusters. Thus, our main algorithm should extend

easily to these environments with the use of the random projection underlying LSRN. Moreover, for

both Blendenpik and LSRN (when implemented with a Hadamard-based random projection), the

hidden constants in the Hadamard-based random projection are so small that the random projection

algorithm (and thus the empirical running time of our main algorithm for approximating leverage

3. LAPACK (short for Linear Algebra PACKage) is a high-quality and widely-used software library of numerical routines

for solving a wide range of numerical linear algebra problems.
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scores) beats the traditional O(nd2) time algorithm for dense matrices as small as thousands of rows

by hundreds of columns.

1.5 Outline

In Section 2, we will provide a brief review of relevant notation and concepts from linear algebra.

Then, in Sections 3 and 4, we will present our main results: Section 3 will contain our main al-

gorithm and Section 4 will contain the proof of our main theorem. Section 5 will then describe

extensions of our main result to general “fat” matrices, that is, those with n ≈ d. Section 6 will

conclude by describing the relationship of our main result with another related estimator for the sta-

tistical leverage scores, an application of our main algorithm to the under-constrained least-squares

approximation problem, and extensions of our main algorithm to streaming environments.

2. Preliminaries on Linear Algebra and Fast Random Projections

We will start with a review of basic linear algebra and notation, and then we will describe the Fast

Johnson-Lindenstrauss Transform and the related Subsampled Randomized Hadamard Transform.

2.1 Basic Linear Algebra and Notation

Let [n] denote the set of integers {1,2, . . . ,n}. For any matrix A ∈ Rn×d , let A(i), i ∈ [n], denote

the i-th row of A as a row vector, and let A( j), j ∈ [d] denote the j-th column of A as a column

vector. Let ‖A‖2
F = ∑n

i=1 ∑d
j=1 A2

i j denote the square of the Frobenius norm of A, and let ‖A‖2 =
sup ‖x‖2=1 ‖Ax‖2 denote the spectral norm of A. Relatedly, for any vector x∈Rn, its Euclidean norm

(or !2-norm) is the square root of the sum of the squares of its elements. The dot product between

two vectors x,y∈Rn will be denoted 〈x,y〉, or alternatively as xT y. Finally, let ei ∈Rn, for all i∈ [n],
denote the standard basis vectors for Rn and let In denote the n×n identity matrix.

Let the rank of A be ρ≤min{n,d}, in which case the “compact” or “thin” SVD of A is denoted

by A = UΣV T , where U ∈ Rn×ρ, Σ ∈ Rρ×ρ, and V ∈ Rd×ρ. (For a general matrix X , we will

write X = UX ΣXV T
X .) Let σi(A), i ∈ [ρ] denote the i-th singular value of A, and let σmax(A) and

σmin(A) denote the maximum and minimum singular values of A, respectively. The Moore-Penrose

pseudoinverse of A is the d× n matrix defined by A† = V Σ−1UT (Nashed, 1976). Finally, for any

orthogonal matrix U ∈Rn×!, let U⊥ ∈Rn×(n−!) denote an orthogonal matrix whose columns are an

orthonormal basis spanning the subspace of Rn that is orthogonal to the subspace spanned by the

columns of U (i.e., the range of U). It is always possible to extend an orthogonal matrix U to a full

orthonormal basis of Rn as [U U⊥].

The SVD is important for a number of reasons (Golub and Loan, 1996). For example, the

projection of the columns of A onto the k left singular vectors associated with the top k singular

values gives the best rank-k approximation to A in the spectral and Frobenius norms. Relatedly,

the solution to the least-squares (LS) approximation problem is provided by the SVD: given an

n× d matrix A and an n-vector b, the LS problem is to compute the minimum !2-norm vector x

such that ‖Ax−b‖2 is minimized over all vectors x ∈ Rd . This optimal vector is given by xopt =
A†b. We call a LS problem overconstrained (or overdetermined) if n > d and underconstrained (or

underdetermined) if n < d.
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2.2 The Fast Johnson-Lindenstrauss Transform (FJLT)

Given ε> 0 and a set of points x1, . . . ,xn with xi ∈Rd , a ε-Johnson-Lindenstrauss Transform (ε-JLT),

denoted Π ∈ Rr×d , is a projection of the points into Rr such that

(1− ε)‖xi‖2
2 ≤ ‖Πxi‖2

2 ≤ (1+ ε)‖xi‖2
2.

To construct an ε-JLT with high probability, simply choose every entry of Π independently, equal

to ±
√

3/r with probability 1/6 each and zero otherwise (with probability 2/3) (Achlioptas, 2003).

Let ΠJLT be a matrix drawn from such a distribution over r× d matrices.4 Then, the following

lemma holds.

Lemma 4 (Theorem 1.1 of Achlioptas (2003)) Let x1, . . . ,xn be an arbitrary (but fixed) set of points,

where xi ∈ Rd and let 0 < ε≤ 1/2 be an accuracy parameter. If

r ≥
1

ε2

(

12lnn+6ln
1

δ

)

then, with probability at least 1−δ, ΠJLT ∈ Rr×d is an ε-JLT .

For our main results, we will also need a stronger requirement than the simple ε-JLT and so we will

use a version of the Fast Johnson-Lindenstrauss Transform (FJLT), which was originally introduced

in Ailon and Chazelle (2006) and Ailon and Chazelle (2009). Consider an orthogonal matrix U ∈
Rn×d , viewed as d vectors in Rn. A FJLT projects the vectors from Rn to Rr, while preserving the

orthogonality of U ; moreover, it does so very quickly. Specifically, given ε > 0, Π ∈ Rr×n is an

ε-FJLT for U if

•
∥

∥Id−UT ΠT ΠU
∥

∥

2
≤ ε, and

• given any X ∈ Rn×d , the matrix product ΠX can be computed in O(nd lnr) time.

The next lemma follows from the definition of an ε-FJLT, and its proof can be found in Drineas

et al. (2006b) and Drineas et al. (2010b).

Lemma 5 Let A be any matrix in Rn×d with n" d and rank(A) = d. Let the SVD of A be A =
UΣV T , let Π be an ε-FJLT for U (with 0 < ε ≤ 1/2) and let Ψ = ΠU = UΨΣΨV T

Ψ . Then, all the

following hold:

rank(ΠA) = rank(ΠU) = rank(U) = rank(A) = d,
∥

∥I−Σ−2
Ψ

∥

∥

2
≤ ε/(1− ε), and (3)

(ΠA)† = V Σ−1(ΠU)†. (4)

4. When no confusion can arise, we will use ΠJLT to refer to this distribution over matrices as well as to a specific

matrix drawn from this distribution.
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2.3 The Subsampled Randomized Hadamard Transform (SRHT)

One can use a Randomized Hadamard Transform (RHT) to construct, with high probability, an

ε-FJLT. Our main algorithm will use this efficient construction in a crucial way.5 Recall that the

(unnormalized) n×n matrix of the Hadamard transform Ĥn is defined recursively by

Ĥ2n =

[

Ĥn Ĥn

Ĥn −Ĥn

]

,

with Ĥ1 = 1. The n×n normalized matrix of the Hadamard transform is equal to

Hn = Ĥn/
√

n.

From now on, for simplicity and without loss of generality, we assume that n is a power of 2 and

we will suppress n and just write H. (Variants of this basic construction that relax this assumption

and that are more appropriate for numerical implementation have been described and evaluated

in Avron et al. (2010).) Let D ∈ Rn×n be a random diagonal matrix with independent diagonal

entries Dii = +1 with probability 1/2 and Dii = −1 with probability 1/2. The product HD is a

RHT and it has three useful properties. First, when applied to a vector, it “spreads out” its energy.

Second, computing the product HDx for any vector x ∈ Rn takes O(n log2 n) time. Third, if we

only need to access r elements in the transformed vector, then those r elements can be computed

in O(n log2 r) time (Ailon and Liberty, 2008). The Subsampled Randomized Hadamard Transform

(SRHT) randomly samples (according to the uniform distribution) a set of r rows of a RHT.

Using the sampling matrix formalism described previously (Drineas et al., 2006a,b, 2008, 2010b),

we will represent the operation of randomly sampling r rows of an n×d matrix A using an r×n lin-

ear sampling operator ST . Let the matrix ΠFJLT = ST HD be generated using the SRHT.6 The most

important property about the distribution ΠFJLT is that if r is large enough, then, with high prob-

ability, ΠFJLT generates an ε-FJLT. We summarize this discussion in the following lemma (which

is essentially a combination of Lemmas 3 and 4 from Drineas et al. (2010b), restated to fit our

notation).

Lemma 6 Let ΠFJLT ∈ Rr×n be generated using the SRHT as described above and let U ∈ Rn×d

(n" d) be an (arbitrary but fixed) orthogonal matrix. If

r ≥
142d ln(40nd)

ε2
ln

(

302d ln(40nd)

ε2

)

,

then, with probability at least 0.9, ΠFJLT is an ε-FJLT for U.

3. Our Main Algorithmic Results

In this section, we will describe our main results for computing relative-error approximations to

every statistical leverage score (see Algorithm 1) as well as additive-error approximations to all of

the large cross-leverage scores (see Algorithm 2) of an arbitrary matrix A ∈Rn×d , with n" d. Both

algorithms make use of a “randomized sketch” of A of the form A(Π1A)†Π2, where Π1 is an ε-FJLT

and Π2 is an ε-JLT. We start with a high-level description of the basic ideas.

5. Note that the RHT has also been crucial in the development of o(nd2) randomized algorithms for the general over-

constrained LS problem (Drineas et al., 2010b) and its variants have been used to provide high-quality numerical

implementations of such randomized algorithms (Rokhlin and Tygert, 2008; Avron et al., 2010).

6. Again, when no confusion can arise, we will use ΠFJLT to denote a specific SRHT or the distribution on matrices

implied by the randomized process for constructing an SRHT.
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3.1 Outline of Our Basic Approach

Recall that our first goal is to approximate, for all i ∈ [n], the quantities

!i =
∥

∥U(i)

∥

∥

2

2
=
∥

∥eT
i U
∥

∥

2

2
, (5)

where ei is a standard basis vector. The hard part of computing the scores !i according to Equa-

tion (5) is computing an orthogonal matrix U spanning the range of A, which takes O(nd2) time.

Since UUT = AA†, it follows that

!i =
∥

∥eT
i UUT

∥

∥

2

2
=
∥

∥eT
i AA†

∥

∥

2

2
=
∥

∥(AA†)(i)
∥

∥

2

2
, (6)

where the first equality follows from the orthogonality of (the columns of) U . The hard part of

computing the scores !i according to Equation (6) is two-fold: first, computing the pseudoinverse;

and second, performing the matrix-matrix multiplication of A and A†. Both of these procedures

take O(nd2) time. As we will see, we can get around both of these bottlenecks by the judicious

application of random projections to Equation (6).

To get around the bottleneck of O(nd2) time due to computing A† in Equation (6), we will com-

pute the pseudoinverse of a “smaller” matrix that approximates A. A necessary condition for such

a smaller matrix is that it preserves rank. So, naı̈ve ideas such as uniformly sampling r1. n rows

from A and computing the pseudoinverse of this sampled matrix will not work well for an arbitrary

A. For example, this idea will fail (with high probability) to return a meaningful approximation

for matrices consisting of n− 1 identical rows and a single row with a nonzero component in the

direction perpendicular to that the identical rows; finding that “outlying” row is crucial to obtaining

a relative-error approximation. This is where the SRHT enters, since it preserves important struc-

tures of A, in particular its rank, by first rotating A to a random basis and then uniformly sampling

rows from the rotated matrix (see Drineas et al., 2010b for more details). More formally, recall that

the SVD of A is UΣV T and let Π1 ∈ Rr1×n be an ε-FJLT for U (using, for example, the SRHT of

Lemma 6 with the appropriate choice for r1). Then, one could approximate the !i’s of Equation (6)

by

!̂i =
∥

∥

∥
eT

i A(Π1A)†
∥

∥

∥

2

2
, (7)

where we approximated the n×d matrix A by the r1×d matrix Π1A. Computing A(Π1A)† in this

way takes O(ndr1) time, which is not efficient because r1 > d (from Lemma 6).

To get around this bottleneck, recall that we only need the Euclidean norms of the rows of the

matrix A(Π1A)† ∈Rn×r1 . Thus, we can further reduce the dimensionality of this matrix by using an

ε-JLT to reduce the dimension r1 = Ω(d) to r2 = O(lnn). Specifically, let ΠT
2 ∈ Rr2×r1 be an ε-JLT

for the rows of A(Π1A)† (viewed as n vectors in Rr1 ) and consider the matrix Ω = A(Π1A)† Π2.

This n× r2 matrix Ω may be viewed as our “randomized sketch” of the rows of AA†. Then, we can

compute and return

!̃i =
∥

∥

∥
eT

i A(Π1A)† Π2

∥

∥

∥

2

2
,

for each i∈ [n], which is essentially what Algorithm 1 does. Not surprisingly, the sketch A(Π1A)† Π2

can be used in other ways: for example, by considering the dot product between two different rows

of this randomized sketching matrix (and some additional manipulations) Algorithm 2 approximates

the large cross-leverage scores of A.
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Input: A ∈ Rn×d (with SVD A =UΣV T ), error parameter ε ∈ (0,1/2].

Output: !̃i, i ∈ [n].

1. Let Π1 ∈ Rr1×n be an ε-FJLT for U , using Lemma 6 with

r1 = Ω

(

d lnn

ε2
ln

(

d lnn

ε2

))

.

2. Compute Π1A ∈ Rr1×d and its SVD, Π1A =UΠ1AΣΠ1AV T
Π1A. Let

R−1 =VΠ1AΣ−1
Π1A ∈ Rd×d .

(Alternatively, R could be computed by a QR factorization of Π1A.)

3. View the normalized rows of AR−1 ∈ Rn×d as n vectors in Rd , and construct

Π2 ∈ Rd×r2 to be an ε-JLT for n2 vectors (the aforementioned n vectors and their

n2−n pairwise sums), using Lemma 4 with

r2 = O
(

ε−2 lnn
)

.

4. Construct the matrix product Ω = AR−1Π2.

5. For all i ∈ [n] compute and return !̃i =
∥

∥Ω(i)

∥

∥

2

2
.

Algorithm 1: Approximating the (diagonal) statistical leverage scores !i.

3.2 Approximating All the Statistical Leverage Scores

Our first main result is Algorithm 1, which takes as input an n×d matrix A and an error parameter

ε ∈ (0,1/2], and returns as output numbers !̃i, i ∈ [n]. Although the basic idea to approximate
∥

∥(AA†)(i)
∥

∥

2
was described in the previous section, we can improve the efficiency of our approach

by avoiding the full sketch of the pseudoinverse. In particular, let Â = Π1A and let its SVD be

Â = UÂΣÂV T
Â

. Let R−1 = VÂΣ−1
Â

and note that R−1 ∈ Rd×d is an orthogonalizer for Â since UÂ =

ÂR−1 is an orthogonal matrix.7 In addition, note that AR−1 is approximately orthogonal. Thus, we

can compute AR−1 and use it as an approximate orthogonal basis for A and then compute !̂i as the

squared row-norms of AR−1. The next lemma states that this is exactly what our main algorithm

does; even more, we could get the same estimates by using any “orthogonalizer” of Π1A.

Lemma 7 Let R−1 be such that Q = Π1AR−1 is an orthogonal matrix with rank(Q) = rank(Π1A).

Then,
∥

∥(AR−1)(i)
∥

∥

2

2
= !̂i.

7. This preprocessing is reminiscent of how Rokhlin and Tygert (2008) and Avron et al. (2010) preprocessed the input

to provide numerical implementations of the fast relative-error algorithm (Drineas et al., 2010b) for approximate

LS approximation. From this perspective, Algorithm 1 can be viewed as specifying a particular basis Q, that is, as

choosing Q to be the left singular vectors of Π1A.
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Proof Since Â=Π1A has rank d (by Lemma 5) and R−1 preserves this rank, R−1 is a d×d invertible

matrix. Using Â = QR and properties of the pseudoinverse, we get
(

Â
)†

= R−1QT . Thus,

!̂i =
∥

∥

∥
(A(Π1A)†)(i)

∥

∥

∥

2

2
=
∥

∥

∥

(

AR−1QT
)

(i)

∥

∥

∥

2

2
=
∥

∥

∥

(

AR−1
)

(i) QT
∥

∥

∥

2

2
=
∥

∥

∥

(

AR−1
)

(i)

∥

∥

∥

2

2
.

This lemma says that the !̂i of Equation (7) can be computed with any QR decomposition, rather

than with the SVD; but note that one would still have to post-multiply by Π2, as in Algorithm 1, in

order to compute “quickly” the approximations of the leverage scores.

3.3 Approximating the Large Cross-leverage Scores

By combining Lemmas 9 and 10 (in Section 4.2 below) with the triangle inequality, one immediately

obtains the following lemma.

Lemma 8 Let Ω be either the sketching matrix constructed by Algorithm 1, that is, Ω = AR−1Π2,

or Ω = A(Π1A)† Π2 as described in Section 3.1. Then, the pairwise dot-products of the rows of Ω
are additive-error approximations to the leverage scores and cross-leverage scores:

∣

∣〈U(i),U( j)〉−〈Ω(i),Ω( j)〉
∣

∣≤
3ε

1− ε

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2
.

That is, if one were interested in obtaining an approximation to all the cross-leverage scores to

within additive error (and thus the diagonal statistical leverage scores to relative-error), then the

algorithm which first computes Ω followed by all the pairwise inner products achieves this in time

T (Ω)+O
(

n2r2

)

, where T (Ω) is the time to compute Ω from Section 3.2 and r2 = O(ε−2 lnn).8 The

challenge is to avoid the n2 computational complexity and this can be done if one is interested only

in the large cross-leverage scores.

Our second main result is provided by Algorithms 2 and 3. Algorithm 2 takes as input an n×d

matrix A, a parameter κ > 1, and an error parameter ε ∈ (0,1/2], and returns as output a subset

of [n]× [n] and estimates c̃i j satisfying Theorem 3. The first step of the algorithm is to compute

the matrix Ω = AR−1Π2 constructed by Algorithm 1. Then, Algorithm 2 uses Algorithm 3 as a

subroutine to compute “heavy hitter” pairs of rows from a matrix.

4. Proofs of Our Main Theorems

We will start with a sketch of the proofs of Theorems 2 and 3, and then we will provide the details.

4.1 Sketch of the Proof of Theorems 2 and 3

We will start by providing a sketch of the proof of Theorems 2 and 3. A detailed proof is provided

in the next two subsections. In our analysis, we will condition on the events that Π1 ∈ Rr1×n is

an ε-FJLT for U and Π2 ∈ Rr1×r2 is an ε-JLT for n2 points in Rr1 . Note that by setting δ = 0.1 in

Lemma 4, both events hold with probability at least 0.8, which is equal to the success probability of

Theorems 2 and 3. The algorithm estimates !̃i = ‖ũi‖2
2, where ũi = eT

i A(Π1A)†Π2. First, observe

8. The exact algorithm which computes a basis first and then the pairwise inner products requires O(nd2 + n2d) time.

Thus, by using the sketch, we can already improve on this running time by a factor of d/ lnn.
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Input: A ∈ Rn×d and parameters κ > 1, ε ∈ (0,1/2].

Output: The set H consisting of pairs (i, j) together with estimates c̃i j satisfying

Theorem 3.

1. Compute the n× r2 matrix Ω = AR−1Π2 from Algorithm 1.

2. Use Algorithm 3 with inputs Ω and κ′ = κ(1+30dε) to obtain the set H
containing all the κ′-heavy pairs of Ω.

3. Return the pairs in H as the κ-heavy pairs of A.

Algorithm 2: Approximating the large (off-diagonal) cross-leverage scores ci j.

Input: X ∈ Rn×r with rows x1, . . . ,xn and a parameter κ > 1.

Output: H = {(i, j), c̃i j} containing all heavy (unordered) pairs. The pair (i, j), c̃i j ∈H

if and only if c̃2
i j = 〈xi,x j〉2 ≥

∥

∥XT X
∥

∥

2

F
/κ.

1: Compute the norms ‖xi‖2 and sort the rows according to norm, so that

‖x1‖2 ≤ · · ·≤ ‖xn‖2.

2: H ← {}; z1← n; z2← 1.

3: while z2 ≤ z1 do

4: while ‖xz1‖
2
2‖xz2‖

2
2 <

∥

∥XT X
∥

∥

2

F
/κ do

5: z2← z2 +1.

6: if z2 > z1 then

7: return H .

8: end if

9: end while

10: for each pair (i, j) where i = z1 and j ∈ {z2,z2 +1, . . . ,z1} do

11: c̃2
i j = 〈xi,x j〉2.

12: if c̃2
i j ≥

∥

∥XT X
∥

∥

2

F
/κ then

13: add (i, j) and c̃i j to H .

14: end if

15: z1← z1−1.

16: end for

17: end while

18: return H .

Algorithm 3: Computing heavy pairs of a matrix.

that the sole purpose of Π2 is to improve the running time while preserving pairwise inner products;
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this is achieved because Π2 is an ε-JLT for n2 points. So, the results will follow if

eT
i A(Π1A)†((Π1A)†)T AT e j ≈ eT

i UUT e j

and (Π1A)† can be computed efficiently. Since Π1 is an ε-FJLT for U , where A = UΣV T , (Π1A)†

can be computed in O(nd lnr1 + r1d2) time. By Lemma 5, (Π1A)† =V Σ−1(Π1U)†, and so

eT
i A(Π1A)†((Π1A)†)T AT e j = eT

i U(Π1U)†(Π1U)†T
UT e j.

Since Π1 is an ε-FJLT for U , it follows that (Π1U)†(Π1U)†T ≈ Id , that is, that Π1U is approximately

orthogonal. Theorem 2 follows from this basic idea. However, in order to prove Theorem 3, having

a sketch which preserves inner products alone is not sufficient. We also need a fast algorithm to

identify the large inner products and to relate these to the actual cross-leverage scores. Indeed, it is

possible to efficiently find pairs of rows in a general matrix with large inner products. Combining

this with the fact that the inner products are preserved, we obtain Theorem 3.

4.2 Proof of Theorem 2

We condition all our analysis on the events that Π1 ∈ Rr1×n is an ε-FJLT for U and Π2 ∈ Rr1×r2 is

an ε-JLT for n2 points in Rr1 . Define

ûi = eT
i A(Π1A)†, and

ũi = eT
i A(Π1A)†Π2.

Then, !̂i = ‖ûi‖2
2 and !̃i = ‖ũi‖2

2. The proof will follow from the following two lemmas.

Lemma 9 For i, j ∈ [n],

∣

∣〈U(i),U( j)〉−〈ûi, û j〉
∣

∣≤
ε

1− ε

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2
.

Lemma 10 For i, j ∈ [n],
∣

∣〈ûi, û j〉−〈ũi, ũ j〉
∣

∣≤ 2ε‖ûi‖2

∥

∥û j

∥

∥

2
.

Lemma 9 states that 〈ûi, û j〉 is an additive error approximation to all the cross-leverage scores

(i 1= j) and a relative error approximation for the diagonals (i = j). Similarly, Lemma 10 shows

that these cross-leverage scores are preserved by Π2. Indeed, with i = j, from Lemma 9 we have

|!̂i− !i| ≤ ε
1−ε!i, and from Lemma 10 we have |!̂i− !̃i| ≤ 2ε!̂i. Using the triangle inequality and

ε≤ 1/2:

∣

∣!i− !̃i

∣

∣=
∣

∣!i− !̂i + !̂i− !̃i

∣

∣≤
∣

∣!i− !̂i

∣

∣+
∣

∣!̂i− !̃i

∣

∣≤
(

ε

1− ε
+2ε

)

!i ≤ 4ε!i.

The theorem follows after rescaling ε.
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Proof of Lemma 9 Let A =UΣV T . Using this SVD of A and Equation (4) in Lemma 5,

〈ûi, û j〉 = eT
i UΣV TV Σ−1 (Π1U)† (Π1U)†T

Σ−1V TV ΣUT e j = eT
i U (Π1U)† (Π1U)†T

UT e j.

By performing standard manipulations, we can now bound
∣

∣〈U(i),U( j)〉−〈ûi, û j〉
∣

∣:

∣

∣〈U(i),U( j)〉−〈ûi, û j〉
∣

∣ = eT
i UUT e j− eT

i U (Π1U)† (Π1U)†T UT e j

= eT
i U
(

Id− (Π1U)† (Π1U)†T
)

UT e j

≤
∥

∥

∥
Id− (Π1U)† (Π1U)†T

∥

∥

∥

2

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2
.

Let the SVD of Ψ = Π1U be Ψ = UΨΣΨV T
Ψ , where VΨ is a full rotation in d dimensions (because

rank(A) = rank(Π1U)). Then, Ψ†Ψ†T
=VΨΣ−2

Ψ V T
Ψ . Thus,

∣

∣〈U(i),U( j)〉−〈ûi, û j〉
∣

∣ ≤
∥

∥Id−VΨΣ−2
Ψ V T

Ψ

∥

∥

2

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2

=
∥

∥VΨV T
Ψ −VΨΣ−2

Ψ V T
Ψ

∥

∥

2

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2

=
∥

∥Id−Σ−2
Ψ

∥

∥

2

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2
,

where we used the fact that VΨV T
Ψ = V T

ΨVΨ = Id and the unitary invariance of the spectral norm.

Finally, using Equation (3) of Lemma 5 the result follows.

Proof of Lemma 10. Since Π2 is an ε-JLT for n2 vectors, it preserves the norms of an arbitrary

(but fixed) collection of n2 vectors. Let xi = ûi/‖ûi‖2. Consider the following n2 vectors:

xi for i ∈ [n], and

xi + x j for i, j ∈ [n], i 1= j.

By the ε-JLT property of Π2 and the fact that ‖xi‖2 = 1,

1− ε≤ ‖xiΠ2‖2
2 ≤ 1+ ε for i ∈ [n], and (8)

(1− ε)
∥

∥xi + x j

∥

∥

2

2
≤
∥

∥xiΠ2 + x jΠ2

∥

∥

2

2
≤ (1+ ε)

∥

∥xi + x j

∥

∥

2

2
for i, j ∈ [n], i 1= j. (9)

Combining Equations (8) and (9) after expanding the squares using the identity ‖a+b‖2 = ‖a‖2 +
‖b‖2 +2〈a,b〉, substituting ‖xi‖= 1, and after some algebra, we obtain

〈xi,x j〉−2ε≤ 〈xiΠ2,x jΠ2〉 ≤ 〈xi,x j〉+2ε.

To conclude the proof, multiply throughout by ‖ûi‖
∥

∥û j

∥

∥ and use the homogeneity of the inner

product, together with the linearity of Π2, to obtain:

〈ûi, û j〉−2ε‖ûi‖
∥

∥û j

∥

∥≤ 〈ûiΠ2, û jΠ2〉 ≤ 〈ûi, û j〉+2ε‖ûi‖
∥

∥û j

∥

∥.

Running Times. By Lemma 7, we can use VΠ1AΣ−1
Π1A instead of (Π1A)† and obtain the same

estimates. Since Π1 is an ε-FJLT, the product Π1A can be computed in O(nd lnr1) while its

SVD takes an additional O(r1d2) time to return VΠ1AΣ−1
Π1A ∈ Rd×d . Since Π2 ∈ Rd×r2 , we obtain

VΠ1AΣ−1
Π1AΠ2 ∈ Rd×r2 in an additional O(r2d2) time. Finally, premultiplying by A takes O(ndr2)
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time, and computing and returning the squared row-norms of Ω = AVΠ1AΣ−1
Π1AΠ2 ∈ Rn×r2 takes

O(nr2) time. So, the total running time is the sum of all these operations, which is

O(nd lnr1 +ndr2 + r1d2 + r2d2).

Recall that for our implementations of the ε-JLTs and ε-FJLTs, we have δ = 0.1, and we have

r1 = O
(

ε−2d (lnn)
(

ln
(

ε−2d lnn
)))

and r2 = O(ε−2 lnn). It follows that the asymptotic running

time is

O
(

nd ln
(

dε−1
)

+ndε−2 lnn+d3ε−2 (lnn)
(

ln
(

dε−1
)))

.

To simplify, suppose that d ≤ n≤ ed and treat ε as a constant. Then, the asymptotic running time is

O
(

nd lnn+d3 (lnn)(lnd)
)

.

4.3 Proof of Theorem 3

We first construct an algorithm to estimate the large inner products among the rows of an arbitrary

matrix X ∈Rn×r with n> r. This general algorithm will be applied to the matrix Ω= AVΠ1AΣ−1
Π1AΠ2.

Let x1, . . . ,xn denote the rows of X ; for a given κ > 1, the pair (i, j) is heavy if

〈xi,x j〉2 ≥
1

κ

∥

∥XT X
∥

∥

2

F
.

By the Cauchy-Schwarz inequality, this implies that

‖xi‖2
2

∥

∥x j

∥

∥

2

2
≥

1

κ

∥

∥XT X
∥

∥

2

F
, (10)

so it suffices to find all the pairs (i, j) for which Equation (10) holds. We will call such pairs norm-

heavy. Let s be the number of norm-heavy pairs satisfying Equation (10). We first bound the number

of such pairs.

Lemma 11 Using the above notation, s≤ κr.

Proof Observe that

n

∑
i, j=1

‖xi‖2
2

∥

∥x j

∥

∥

2

2
=

(

n

∑
i=1

‖xi‖2
2

)2

= ‖X‖4
F =

(

r

∑
i=1

σ2
i

)2

,

where σ1, . . . ,σr are the singular values of X . To conclude, by the definition of a heavy pair,

∑
i, j

‖xi‖2
2

∥

∥x j

∥

∥

2

2
≥

s

κ

∥

∥XT X
∥

∥

2

F
=

s

κ

r

∑
i=1

σ4
i ≥

s

κr

(

r

∑
i=1

σ2
i

)2

,

where the last inequality follows by Cauchy-Schwarz.

Algorithm 3 starts by computing the norms ‖xi‖2
2 for all i ∈ [n] and sorting them (in O(nr+n lnn)

time) so that we can assume that ‖x1‖2≤ · · ·≤‖xn‖2. Then, we initialize the set of norm-heavy pairs

to H = {} and we also initialize two pointers z1 = n and z2 = 1. The basic loop in the algorithm

checks if z2 > z1 and stops if that is the case. Otherwise, we increment z2 to the first pair (z1,z2) that
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is norm-heavy. If none of pairs are norm heavy (i.e., z2 > z1 occurs), then we stop and output H ;

otherwise, we add (z1,z2),(z1,z2 + 1), . . . ,(z1,z1) to H . This basic loop computes all pairs (z1, i)
with i ≤ z1 that are norm-heavy. Next, we decrease z1 by one and if z1 < z2 we stop and output

H ; otherwise, we repeat the basic loop. Note that in the basic loop z2 is always incremented. This

occurs whenever the pair (z1,z2) is not norm-heavy. Since z2 can be incremented at most n times,

the number of times we check whether a pair is norm-heavy and fail is at most n. Every successful

check results in the addition of at least one norm-heavy pair into H and thus the number of times

we check if a pair is norm heavy (a constant-time operation) is at most n+ s. The number of pair

additions into H is exactly s and thus the total running time is O(nr+n lnn+ s). Finally, we must

check each norm-heavy pair to verify whether or not it is actually heavy by computing s inner

products vectors in Rr; this can be done in O(sr) time. Using s≤ κr we get the following lemma.

Lemma 12 Algorithm 3 returns H including all the heavy pairs of X in O(nr+κr2 +n lnn) time.

To complete the proof, we apply Algorithm 3 with Ω=AVΠ1AΣ−1
Π1AΠ2 ∈Rn×r2 , where r2 =O(ε−2 lnn).

Let ũ1, . . . , ũn denote the rows of Ω and recall that A =UΣV T . Let u1, . . . ,un denote the rows of U ;

then, from Lemma 8,

〈ui,u j〉−
3ε

1− ε
‖ui‖

∥

∥u j

∥

∥≤ 〈ũi, ũ j〉 ≤ 〈ui,u j〉+
3ε

1− ε
‖ui‖

∥

∥u j

∥

∥. (11)

Given ε,κ, assume that for the pair of vectors ui and u j

〈ui,u j〉2 ≥
1

κ

∥

∥UTU
∥

∥

2

F
+12ε‖ui‖2

∥

∥u j

∥

∥

2
=

d

κ
+12ε‖ui‖2

∥

∥u j

∥

∥

2
,

where the last equality follows from
∥

∥UTU
∥

∥

2

F
= ‖Id‖2

F = d. By Equation (11), after squaring and

using ε < 0.5,

〈ui,u j〉2−12ε‖ui‖2ε
∥

∥u j

∥

∥

2 ≤ 〈ũi, ũ j〉2 ≤ 〈ui,u j〉2 +30ε‖ui‖2
∥

∥u j

∥

∥

2
. (12)

Thus, 〈ũi, ũ j〉2 ≥ d/κ and summing Equation (12) over all i, j we get
∥

∥ΩT Ω
∥

∥

2

F
≤ d + 30εd2, or,

equivalently,

d ≥
∥

∥ΩT Ω
∥

∥

2

F

1+30dε
.

We conclude that

〈ui,u j〉2 ≥
d

κ
+12ε‖ui‖2

∥

∥u j

∥

∥

2
=⇒ 〈ũi, ũ j〉2 ≥

d

κ
≥

∥

∥ΩT Ω
∥

∥

2

F

κ(1+30dε)
. (13)

By construction, Algorithm 3 is invoked with κ′ = κ
∥

∥ΩT Ω
∥

∥

2

F
/d and thus it finds all pairs with

〈ũi, ũ j〉2 ≥
∥

∥ΩT Ω
∥

∥

2

F
/κ′ = d/κ. This set contains all pairs for which

〈ui,u j〉2 ≥
d

κ
+12ε‖ui‖2

∥

∥u j

∥

∥

2
.

Further, since every pair returned satisfies 〈ũi, ũ j〉2 ≥ d/κ, by Equation (12), ci j ≥ d/κ− 30ε!i! j.

This proves the first claim of the Theorem; the second claim follows analogously from Equa-

tion (12).

Using Lemma 12, the running time of our approach is O
(

nr2 +κ′r2
2 +n lnn

)

. Since r2 =

O
(

ε−2 lnn
)

, and, by Equation (13), κ′ = κ
∥

∥ΩT Ω
∥

∥

2

F
/d ≤ κ(1+ 30dε), the overall running time

is O
(

ε−2n lnn+ ε−3κd ln2 n
)

.
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5. Extending Our Algorithm to General Matrices

In this section, we will describe an important extension of our main result, namely the computation

of the statistical leverage scores relative to the best rank-k approximation to a general matrix A. More

specifically, we consider the estimation of leverage scores for the case of general “fat” matrices,

namely input matrices A∈Rn×d , where both n and d are large, for example, when d = n or d =Θ(n).
Clearly, the leverage scores of any full rank n×n matrix are exactly uniform. The problem becomes

interesting if one specifies a rank parameter k.min{n,d}. This may arise when the numerical rank

of A is small (e.g., in some scientific computing applications, more than 99% of the spectral norm of

A may be captured by some k.min{n,d} directions), or, more generally, when one is interested in

some low rank approximation to A (e.g., in some data analysis applications, a reasonable fraction or

even the majority of the Frobenius norm of A may be captured by some k. min{n,d} directions,

where k is determined by some exogenously-specified model selection criterion). Thus, assume that

in addition to a general n× d matrix A, a rank parameter k < min{n,d} is specified. In this case,

we wish to obtain the statistical leverage scores !i =
∥

∥(Uk)(i)
∥

∥

2

2
for Ak = UkΣkV

T
k , the best rank-k

approximation to A. Equivalently, we seek the normalized leverage scores

pi =
!i

k
. (14)

Note that ∑n
i=1 pi = 1 since ∑n

i=1 !i = ‖Uk‖2
F = k.

Unfortunately, as stated, this is an ill-posed problem. Indeed, consider the degenerate case when

A = In (i.e., the n×n identity matrix). In this case, Uk is not unique and the leverage scores are not

well-defined. Moreover, for the obvious
(

n
k

)

equivalent choices for Uk, the leverage scores defined

according to any one of these choices do not provide a relative error approximation to the leverage

scores defined according to any other choices. More generally, removing this trivial degeneracy

does not help. Consider the matrix

A =

(

Ik 0

0 (1− γ)In−k

)

∈ R
n×n.

In this example, the leverage scores for Ak are well defined. However, as γ→ 0, it is not possible

to distinguish between the top-k singular space and its complement. This example suggests that it

should be possible to obtain some result conditioning on the spectral gap at the kth singular value.

For example, one might assume that σ2
k −σ2

k+1 ≥ γ > 0, in which case the parameter γ would play

an important role in the ability to solve this problem. Any algorithm which cannot distinguish the

singular values with an error less than γ will confuse the k-th and (k+ 1)-th singular vectors and

consequently will fail to get an accurate approximation to the leverage scores for Ak.

In the following, we take a more natural approach which leads to a clean problem formulation.

To do so, recall that the leverage scores and the related normalized leverage scores of Equation (14)

are used to approximate the matrix in some way, for example, we might be seeking a low-rank ap-

proximation to the matrix with respect to the spectral (Drineas et al., 2008) or the Frobenius (Bout-

sidis et al., 2009) norm, or we might be seeking useful features or data points in downstream data

analysis applications (Paschou et al., 2007; Mahoney and Drineas, 2009), or we might be seeking

to develop high-quality numerical implementations of low-rank matrix approximation algorithms

(Halko et al., 2011), etc. In all these cases, we only care that the estimated leverage scores are

a good approximation to the leverage scores of some “good” low-rank approximation to A. The
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following definition captures the notion of a set of rank-k matrices that are good approximations to

A.

Definition 13 Given A ∈ Rn×d and a rank parameter k . min{n,d}, let Ak be the best rank-k

approximation to A. Define the set Sε of rank-k matrices that are good approximations to A as

follows (for ξ = 2,F):

Sε =
{

X ∈ R
n×d : rank(X) = k and ‖A−X‖ξ ≤ (1+ ε)‖A−Ak‖ξ

}

.

We are now ready to define our approximations to the normalized leverage scores of any matrix

A ∈Rn×d given a rank parameter k.min{n,d}. Instead of seeking to approximate the pi of Equa-

tion (14) (a problem that is ill-posed as discussed above), we will be satisfied if we can approximate

the normalized leverage scores of some matrix X ∈ Sε. This is an interesting relaxation of the task

at hand: all matrices X that are sufficiently close to Ak are essentially equivalent, since they can be

used instead of Ak in applications.

Definition 14 Given A∈Rn×d and a rank parameter k.min{n,d}, let Sε be the set of matrices of

Definition 13. We call the numbers p̂i (for all i ∈ [n]) β-approximations to the normalized leverage

scores of Ak (the best rank-k approximation to A) if, for some matrix X ∈ Sε,

p̂i ≥
β
∥

∥(UX)(i)
∥

∥

2

2

k
and

n

∑
i=1

p̂i = 1.

Here UX ∈ Rn×k is the matrix of the left singular vectors of X.

Thus, we will seek algorithms whose output is a set of numbers, with the requirement that those

numbers are good approximations to the normalized leverage scores of some matrix X ∈ Sε (instead

of Ak). This removes the ill-posedness of the original problem. Next, we will give two examples

of algorithms that compute such β-approximations to the normalized leverage scores of a general

matrix A with a rank parameter k for two popular norms, the spectral norm and the Frobenius norm.9

5.1 Leverage Scores for Spectral Norm Approximators

Algorithm 4 approximates the statistical leverage scores of a general matrix A with rank parameter

k in the spectral norm case. It takes as inputs a matrix A ∈Rn×d with rank(A) = ρ and a rank

parameter k. ρ, and outputs a set of numbers p̂i for all i ∈ [n], namely our approximations to the

normalized leverage scores of A with rank parameter k.
The next lemma argues that there exists a matrix X ∈Rn×d of rank k that is sufficiently close to A

(in particular, it is a member of Sε with constant probability) and, additionally, can be written as X =
BY, where Y ∈R2k×d is a matrix of rank k. A version of this lemma was essentially proven in Halko

et al. (2011), but see also Rokhlin et al. (2009) for computational details; we will use the version

of the lemma that appeared in Boutsidis et al. (2011b). (See also the conference version (Boutsidis

et al., 2011a), but in the remainder we refer to the technical report version (Boutsidis et al., 2011b)

for consistency of numbering.) Note that for our purposes in this section, the computation of Y is

not relevant and we defer the reader to Halko et al. (2011) and Boutsidis et al. (2011b) for details.

9. Note that we will not compute Sε, but our algorithms will compute a matrix in that set. Moreover, that matrix can be

used for high-quality low-rank matrix approximation. See the comments in Section 1.4 for more details.
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Input: A ∈ Rn×d with rank(A) = ρ and a rank parameter k. ρ

Output: p̂i, i ∈ [n]

1. Construct Π ∈ Rd×2k with entries drawn in i.i.d. trials from the normal distribution

N (0,1).

2. Compute B =
(

AAT
)q

AΠ ∈ Rn×2k, with q as in Equation (16).

3. Approximately compute the statistical leverage scores of the “tall” matrix B by

calling Algorithm 1 with inputs B and ε; let !̂i (for all i ∈ [n]) be the outputs of

Algorithm 1.

4. Return

p̂i =
!̂i

∑n
j=1 !̂ j

(15)

for all i ∈ [n].

Algorithm 4: Approximating the statistical leverage scores of a general matrix A (spectral

norm case).

Lemma 15 (Spectral Sketch) Given A ∈ Rn×d of rank ρ, a rank parameter k such that 2≤ k < ρ,

and an error parameter ε such that 0 < ε < 1, let Π ∈ Rd×2k be a standard Gaussian matrix (with

entries selected in i.i.d. trials from N (0,1)). If B =
(

AAT
)q

AΠ, where

q≥











ln
(

1+
√

k
k−1 + e

√

2
k

√

min{n,d}− k
)

2ln(1+ ε/10)−1/2











, (16)

then there exists a matrix X ∈ Rn×d of rank k satisfying X = BY (with Y ∈ R2k×d) such that

E [‖A−X‖2]≤
(

1+
ε

10

)

‖A−Ak‖2.

The matrix B can be computed in O(ndkq) time.

This version of the above lemma is proven in Boutsidis et al. (2011b).10 Now, since X has rank k,

it follows that ‖A−X‖2 ≥ ‖A−Ak‖2 and thus we can consider the non-negative random variable

‖A−X‖2−‖A−Ak‖2 and apply Markov’s inequality to get that

‖A−X‖2−‖A−Ak‖2 ≤ ε‖A−Ak‖2

holds with probability at least 0.9. Thus, X ∈ Sε with probability at least 0.9.

10. More specifically, the proof may be found in Lemma 32 and in particular in Equation (14) in Section A.2; note that

for our purposes here we replaced ε/
√

2 by ε/10 after adjusting q accordingly.
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The next step of the proposed algorithm is to approximately compute the leverage scores of

B ∈ Rn×2k via Algorithm 1. Under the assumptions of Theorem 2, this step runs in O
(

nkε−2 lnn
)

time. Let UX ∈Rn×k be the matrix containing the left singular vectors of the matrix X of Lemma 15.

Then, since X = BY by Lemma 15, it follows that

UB = [UX UR]

is a basis for the subspace spanned by the columns of B. Here UR ∈ Rn×k is an orthogonal matrix

whose columns are perpendicular to the columns of UX . Now consider the approximate leverage

scores !̂i computed by Algorithm 1 and note that (by Theorem 2),

∣

∣

∣

∣

!̂i−
∥

∥

∥
(UB)(i)

∥

∥

∥

2

2

∣

∣

∣

∣

≤ ε
∥

∥

∥
(UB)(i)

∥

∥

∥

2

2

holds with probability at least 0.8 for all i ∈ [n]. It follows that

n

∑
j=1

!̂ j ≤ (1+ ε)
n

∑
j=1

∥

∥

∥
(UB)( j)

∥

∥

∥

2

2
= (1+ ε)

n

∑
j=1

‖UB‖2
F = 2(1+ ε)k.

Finally,

p̂i =
!̂i

∑n
j=1 !̂ j

≥ (1− ε)

∥

∥

∥
(UB)(i)

∥

∥

∥

2

2

∑n
j=1 !̂ j

≥ (1− ε)

∥

∥

∥
(UX)(i)

∥

∥

∥

2

2
+
∥

∥

∥
(UR)(i)

∥

∥

∥

2

2

∑n
j=1 !̂ j

≥
1− ε

2

∥

∥

∥
(UX)(i)

∥

∥

∥

2

2

∑n
j=1 !̂ j

≥
1− ε

2(1+ ε)

∥

∥

∥
(UX)(i)

∥

∥

∥

2

2

k
.

Clearly,
∥

∥

∥
(UX)(i)

∥

∥

∥

2

2
/k are the normalized leverage scores of the matrix X . Recall that X ∈ Sε with

probability at least 0.9 and use Definition 14 to conclude that the scores p̂i of Equation (15) are
(

1−ε
2(1+ε)

)

-approximations to the normalized leverage scores of A with rank parameter k. The fol-

lowing Theorem summarizes the above discussion:

Theorem 16 Given A ∈ Rn×d, a rank parameter k, and an accuracy parameter ε, Algorithm 4

computes a set of normalized leverage scores p̂i that are
(

1−ε
2(1+ε)

)

-approximations to the normalized

leverage scores of A with rank parameter k with probability at least 0.7. The proposed algorithm

runs in

O

(

ndk
ln(min{n,d})

ln(1+ ε)
+nkε−2 lnn

)

time.
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Input: A ∈ Rn×d with rank(A) = ρ and a rank parameter k. ρ

Output: p̂i, i ∈ [n]

1. Let r be as in Equation (18) and construct Π ∈ Rd×r whose entries are drawn in

i.i.d. trials from the normal distribution N (0,1).

2. Compute B = AΠ ∈ Rn×r.

3. Compute a matrix Q ∈ Rn×r whose columns form an orthonormal basis for the

column space of B.

4. Compute the matrix QT A ∈ Rr×d and its left singular vectors UQT A ∈ Rr×d .

5. Let UQT A,k ∈ Rr×k denote the top k left singular vectors of the matrix QT A (the

first k columns of UQT A) and compute, for all i ∈ [n],

!̂i =
∥

∥

∥

(

QUQT A,k

)

(i)

∥

∥

∥

2

2
. (17)

6. Return p̂i = !̂i/k for all i ∈ [n].

Algorithm 5: Approximating the statistical leverage scores of a general matrix A (Frobenius

norm case).

5.2 Leverage Scores for Frobenius Norm Approximators

Algorithm 5 approximates the statistical leverage scores of a general matrix A with rank param-

eter k in the Frobenius norm case. It takes as inputs a matrix A ∈Rn×d with rank(A) = ρ and

a rank parameter k . ρ, and outputs a set of numbers p̂i for all i ∈ [n], namely our approxi-

mations to the normalized leverage scores of A with rank parameter k. It is worth noting that

∑n
i=1 !̂i =

∥

∥QUQT A,k

∥

∥

2

F
=
∥

∥UQT A,k

∥

∥

2

F
= k and thus the p̂i sum up to one. The next lemma argues that

there exists a matrix X ∈ Rn×d of rank k that is sufficiently close to A (in particular, it is a member

of Sε with constant probability). Unlike the previous section (the spectral norm case), we will now

be able to provide a closed-form formula for this matrix X and, more importantly, the normalized

leverage scores of X will be exactly equal to the p̂i returned by our algorithm. Thus, in the parlance

of Definition 14, we will get a 1-approximation to the normalized leverage scores of A with rank

parameter k.

Lemma 17 (Frobenius Sketch) Given A∈Rn×d of rank ρ, a rank parameter k such that 2≤ k < ρ,

and an error parameter ε such that 0 < ε < 1, let Π ∈ Rd×r be a standard Gaussian matrix (with

entries selected in i.i.d. trials from N (0,1)) with

r ≥ k+

⌈

10k

ε
+1

⌉

. (18)
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Let B = AΠ and let X be as in Equation (19). Then,

E
[

‖A−X‖2
F

]

≤
(

1+
ε

10

)

‖A−Ak‖2
F .

The matrix B can be computed in O
(

ndkε−1
)

time.

Let

X = Q
(

QT A
)

k
∈ R

n×d , (19)

where
(

QT A
)

k
is the best rank-k approximation to the matrix QT A; from standard linear algebra,

(

QT A
)

k
=UQT A,kU

T
QT A,kQT A. Then, the above lemma is proven in Boutsidis et al. (2011b).11 Now,

since X has rank k, it follows that ‖A−X‖2
F ≥‖A−Ak‖2

F and thus we can consider the non-negative

random variable ‖A−X‖2
F −‖A−Ak‖2

F and apply Markov’s inequality to get that

‖A−X‖2
F −‖A−Ak‖2

F ≤ ε‖A−Ak‖2
F

holds with probability at least 0.9. Rearranging terms and taking square roots of both sides implies

that

‖A−X‖F ≤
√

1+ ε‖A−Ak‖F ≤ (1+ ε)‖A−Ak‖F .

Thus, X ∈ Sε with probability at least 0.9. To conclude our proof, recall that Q is an orthonormal

basis for the columns of B. From Equation (19),

X = Q
(

QT A
)

k
= QUQT A,kU

T
QT A,kQT A = QUQT A,kΣQT A,kV

T
QT A,k.

In the above, ΣQT A,k ∈ Rk×k is the diagonal matrix containing the top k singular values of QT A and

V T
QT A,k ∈ Rk×d is the matrix whose rows are the top k right singular vectors of QT A. Thus, the left

singular vectors of the matrix X are exactly equal to the columns of the orthogonal matrix QUQT A,k;

it now follows that the !̂i of Equation (17) are the leverage scores of the matrix X and, finally, that

the p̂i returned by the proposed algorithm are the normalized leverage scores of the matrix X .

We briefly discuss the running time of the proposed algorithm. First, we can compute B in

O(ndr) time. Then, the computation of Q takes O(nr2) time. The computation of QT A takes

O(ndr) time and the computation of UQT A takes O(dr2) time. Thus, the total time is equal to

O
(

ndr+(n+d)r2
)

. The following Theorem summarizes the above discussion.

Theorem 18 Given A∈Rn×d, a rank parameter k, and an accuracy parameter ε, Algorithm 5 com-

putes a set of normalized leverage scores p̂i that are 1-approximations to the normalized leverage

scores of A with rank parameter k with probability at least 0.7. The proposed algorithm runs in

O
(

ndkε−1 +(n+d)k2ε−2
)

time.

6. Discussion

We will conclude with a discussion of our main results in a broader context: understanding the

relationship between our main algorithm and a related estimator for the statistical leverage scores;

applying our main algorithm to solve under-constrained least squares problems; and implementing

variants of the basic algorithm in streaming environments.

11. More specifically, the proof may be found in Lemma 33 in Section A.3; note that for our purposes here we set

p =
⌈

10k
ε +1

⌉

.
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6.1 A Related Estimator for the Leverage Scores

Magdon-Ismail (2010) presented the following algorithm to estimate the statistical leverage scores:

given as input an n×d matrix A, with n" d, the algorithm proceeds as follows.

• Compute ΠA, where the O
(

n lnd
ln2 n

)

×n matrix Π is a SRHT or another FJLT.

• Compute X = (ΠA)†Π.

• For t = 1, . . . ,n, compute the estimate w̃t = AT
(t)X

(t) and set wt = max
{

d ln2 n
4n , w̃t

}

.

• Return the quantities p̃i = wi/∑n
i′=1 wi′ , for i ∈ [n].

Magdon-Ismail (2010) argued that the output p̃i achieves an O(ln2 n) approximation to all of the

(normalized) statistical leverage scores of A in roughly O(nd2/ lnn) time. (To our knowledge, prior

to our work here, this is the only known estimator that obtains any nontrivial provable approximation

to the leverage scores of a matrix in o(nd2) time.) To see the relationship between this estimator

and our main result, recall that

!i = eT
i UUT ei = eT

i AA†ei = xT
i yi,

where the vector xT
i = eT

i A is cheap to compute and the vector yi =A†ei is expensive to compute. The

above algorithm effectively approximates yi =A†ei via a random projection as ỹi =(ΠA)†Πei, where

Π is a SRHT or another FJLT. Since the estimates xT
i ỹi are not necessarily positive, a truncation at

the negative tail, followed by a renormalization step, must be performed in order to arrive at the final

estimator returned by the algorithm. This truncation-renormalization step has the effect of inflating

the estimates of the small leverage scores by an O(ln2 n) factor. By way of comparison, Algorithm 1

essentially computes a sketch of AA† of the form A(ΠA)†ΠT that maintains positivity for each of

the row norm estimates.

Although both Algorithm 1 and the algorithm of this subsection estimate AA† by a matrix of the

form A(ΠA)†ΠT , there are notable differences. The algorithm of this subsection does not actually

compute or approximate AAT directly; instead, it separates the matrix into two parts and computes

the dot product between eT
i A and (ΠA)†Πei. Positivity is sacrificed and this leads to some compli-

cations in the estimator; however, the truncation step is interesting, since, despite the fact that the

estimates are “biased” (in a manner somewhat akin to what is obtained with “thresholding” or “reg-

ularization” procedures), we still obtain provable approximation guarantees. The algorithm of this

subsection is simpler (since it uses an application of only one random projection), albeit at the cost

of weaker theoretical guarantees and a worse running time than our main algorithm. A direction of

considerable practical interest is to evaluate empirically the performance of these two estimators, ei-

ther for estimating all the leverage scores or (more interestingly) for estimating the largest leverage

scores for data matrices for which the leverage scores are quite nonuniform.

6.2 An Application to Under-constrained Least-squares Problems

Consider the following under-constrained least-squares problem:

min
x∈Rd
‖Ax−b‖2 , (20)
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where A ∈ Rn×d has much fewer rows than columns, that is, n. d. It is well-known that we

can solve this problem exactly in O(n2d) time and that the minimal !2-norm solution is given by

xopt = A†b. For simplicity, let’s assume that the input matrix A has full rank (i.e., rank(A) = n) and

thus ‖Axopt −b‖2 = 0.

In this section, we will argue that Algorithm 6 computes a simple, accurate estimator x̃opt for

xopt . In words, Algorithm 6 samples a small number of columns from A (note that the columns

of A correspond to variables in our under-constrained problem) and uses the sampled columns to

compute x̃opt . However, in order to determine which columns will be included in the sample, the al-

gorithm will make use of the statistical leverage scores of the matrix AT ; more specifically, columns

(and thus variables) will be chosen with probability proportional to the corresponding statistical

leverage score. We will state Algorithm 6 assuming that these probabilities are parts of the input;

the following theorem is our main quality-of-approximation result for Algorithm 6.

Theorem 19 Let A ∈Rn×d be a full-rank matrix with n. d; let ε ∈ (0,0.5] be an accuracy param-

eter; let δ ∈ (0,1) be a failure probability; and let xopt = A†b be the minimal !2-norm solution to

the least-squares problem of Equation (20). Let pi ≥ 0, i ∈ [d], be a set of probabilities satisfying

∑d
i=1 pi = 1 and

pi ≥
β
∥

∥V(i)

∥

∥

2

2

n
(21)

for some constant β ∈ (0,1]. (Here V ∈Rd×n is the matrix of the right singular vectors of A.) If x̃opt

is computed via Algorithm 6 then, with probability at least 1−δ,

‖xopt − x̃opt‖2 ≤ 2ε‖xopt‖2 .

Algorithm 6 runs in O
(

n3ε−2β−1 ln(n/εβδ)+nd
)

time.

Proof Let the singular value decomposition of the full-rank matrix A be A =UΣV T , with U ∈Rn×n,

Σ ∈ Rn×n, and V ∈ Rd×n; note that all the diagonal entries of Σ are strictly positive since A has full

rank. We can now apply Theorem 4 of Section 6.1 of Drineas et al. (2010b) to get12 that

∥

∥In−V T SSTV
∥

∥

2
=
∥

∥V TV −V T SSTV
∥

∥

2
≤ ε

for our choice of r with probability at least 1−δ. Note that V T S∈Rn×r (with r≥ n) and let σi

(

V T S
)

denote the singular values of V T S for all i ∈ [n]; the above inequality implies that for all i ∈ [n]

∣

∣1−σ2
i

(

V T S
)
∣

∣≤
∥

∥In−V T SSTV
∥

∥

2
≤ ε≤ 0.5.

Thus, all the singular values of V T S are strictly positive and hence V T S has full rank equal to n.

Also, using ε≤ 0.5,
∣

∣1−σ−2
i

(

V T S
)
∣

∣≤
ε

1− ε
≤ 2ε. (22)

12. We apply Theorem 4 of Section 6.1 of Drineas et al. (2010b) with A =V T and note that
∥

∥V T
∥

∥

2

F
= n≥ 1,

∥

∥V T
∥

∥

2
= 1,

and
(

V T
)(i)

=V(i).
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We are now ready to prove our theorem:

‖xopt − x̃opt‖2 =
∥

∥

∥
AT (AS)†T (AS)† b−A†b

∥

∥

∥

2

=
∥

∥

∥
V ΣUT

(

UΣV T S
)†T (

UΣV T S
)†

b−V Σ−1UT b
∥

∥

∥

2

=
∥

∥

∥
ΣUTUΣ−1

(

V T S
)†T (

V T S
)†

Σ−1UT b−Σ−1UT b
∥

∥

∥

2

=
∥

∥

∥

(

V T S
)†T (

V T S
)†

Σ−1UT b−Σ−1UT b
∥

∥

∥

2
.

In the above derivations we substituted the SVD of A, dropped terms that do not change unitarily

invariant norms, and used the fact that V T S and Σ have full rank in order to simplify the pseudoin-

verse. Now let
(

V T S
)†T (

V T S
)†

= In +E and note that Equation (22) and the fact that V T S has full

rank imply

‖E‖2 =
∥

∥

∥
In−

(

V T S
)†T (

V T S
)†
∥

∥

∥

2
= max

i∈[n]

∣

∣1−σ−2
i

(

V T S
)
∣

∣≤ 2ε.

Thus, we conclude our proof by observing that

‖xopt − x̃opt‖2 =
∥

∥(In +E)Σ−1UT b−Σ−1UT b
∥

∥

2

=
∥

∥EΣ−1UT b
∥

∥

2

≤ ‖E‖2

∥

∥Σ−1UT b
∥

∥

2

≤ 2ε‖xopt‖2 .

In the above we used the fact that ‖xopt‖2 =
∥

∥A†b
∥

∥

2
=
∥

∥V Σ−1UT b
∥

∥

2
=
∥

∥Σ−1UT b
∥

∥

2
. The running

time of the algorithm follows by observing that AS is an n× r matrix and thus computing its pseu-

doinverse takes O(n2r) time; computing xopt takes an additional O(nr+dn) time.

We conclude the section with a few remarks. First, assuming that ε, β, and δ are constants

and n lnn = o(d), it immediately follows that Algorithm 6 runs in o(n2d) time. It should be clear

that we can use Theorem 2 and the related Algorithm 1 to approximate the statistical leverage

scores, thus bypassing the need to exactly compute them. Second, instead of approximating the

statistical leverage scores needed in Algorithm 6, we could use the randomized Hadamard transform

(essentially post-multiply A by a randomized Hadamard transform to make all statistical leverage

scores uniform). The resulting algorithm could be theoretically analyzed following the lines of

Drineas et al. (2010b). It would be interesting to evaluate experimentally the performance of the

two approaches in real data.

6.3 Extension to Streaming Environments

In this section, we consider the estimation of the leverage scores and of related statistics when the

input data set is so large that an appropriate way to view the data is as a data stream (Muthukrishnan,

2005). In this context, one is interested in computing statistics of the data stream while making one

pass (or occasionally a few additional passes) over the data from external storage and using only a

small amount of additional space. For an n×d matrix A, with n" d, small additional space means

that the space complexity only depends logarithmically on the high dimension n and polynomially

on the low dimension d. When we discuss bits of space, we assume that the entries of A can be
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Input: A ∈ Rn×d , b ∈ Rn, error parameter ε ∈ (0, .5], failure probability δ, and a set of

probabilities pi (for all i ∈ [d]) summing up to one and satisfying Equation (21).

Output: x̃opt ∈ Rd .

1. Let r = 96n
βε2 ln

(

96n

βε2
√

δ

)

.

2. Let S ∈ Rd×r be an all-zeros matrix.

3. For t = 1, . . . ,r do

• Pick it ∈ [d] such that Pr(it = i) = pi.

• Sitt = 1/
√

rpit .

4. Return x̃opt = AT (AS)†T (AS)† b.

Algorithm 6: Approximately solving under-constrained least squares problems.

discretized to O(logn) bit integers, though all of our results can be generalized to arbitrary word

sizes. The general strategy behind our algorithms is as follows.

• As the data streams by, compute TA, for an appropriate problem-dependent linear sketching

matrix T , and also compute ΠA, for a random projection matrix Π.13

• After the first pass over the data, compute the matrix R−1, as described in Algorithm 1, cor-

responding to ΠA (or compute the pseudoinverse of ΠA or the R matrix from any other QR

decomposition of A).

• Compute TAR−1Π2, for a random projection matrix Π2, such as the one used by Algorithm 1.

With the procedure outlined above, the matrix T is effectively applied to the rows of AR−1Π2, that

is, to the sketch of A that has rows with Euclidean norms approximately equal to the row norms of

U , and pairwise inner products approximately equal to those in U . Thus statistics related to U can

be extracted.

Large Leverage Scores. Given any n× d matrix A in a streaming setting, it is known how to

find the indices of all rows A(i) of A for which ‖A(i)‖2
2 ≥ τ‖A‖2

F , for a parameter τ, and in addition

it is known how to compute a (1+ ε)-approximation to ‖A(i)‖2
2 for these large rows. The basic

idea is to use the notion of !2-sampling on matrix A, namely, to sample random entries Ai j with

probability A2
i j/‖A‖2

F . A single entry can be sampled from this distribution in a single pass using

O(ε−2 log3(nd)) bits of space (Monemizadeh and Woodruff, 2010; Andoni et al., 2010). More pre-

cisely, these references demonstrate that there is a distribution over O(dε−2 log3(nd))×n matrices

13. In the offline setting, one would use an SRHT or another FJLT, while in the streaming setting one could use either of

the following. If the stream is such that one sees each entire column of A at once, then one could do an FJLT on the

column. Alternatively, if one see updates to the individual entries of A in an arbitrary order, then one could apply any

sketching matrix, such as those of Achlioptas (2003) or of Dasgupta et al. (2010).
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T for which for any fixed matrix A ∈ Rn×d , there is a procedure which given TA, outputs a sample

(i, j) ∈ [n]× [d] with probability (1± ε)
A2

i, j

‖A‖2
F
± n−O(1). Technically, these references concern sam-

pling from vectors rather than matrices, so T (A) is a linear operator which treats A as a length-nd

vector and applies the algorithm of Monemizadeh and Woodruff (2010) and Andoni et al. (2010).

However, by simply increasing the number of rows in T by a factor of the small dimension d, we

can assume T is left matrix multiplication. By considering the marginal along [n], the probability

that i = a, for any a ∈ [n], is

(1± ε)
‖U(a)‖2

2

‖U‖2
F

± (nd)−O(1).

By the coupon collector problem, running O(τ−1 logτ−1) independent copies is enough to find a set

containing all rows A(i) for which ‖A(i)‖2
2 ≥ τ‖A‖2

F , and no rows A(i) for which ‖A(i)‖2
2 < τ

2‖A‖
2
F

with probability at least 0.99.

When applied to our setting, we can apply a random projection matrix Π and a linear sketching

matrix T which has O(dτ−1ε−2 log3(n) logτ−1) rows in the following manner. First, TA and ΠA

are computed in the first pass over the data; then, at the end of the first pass, we compute R−1;

and finally, we compute TAR−1Π2, for a random projection matrix Π2. This procedure effectively

applies the matrix T to the rows of AR−1Π2, which have norms equal to the row norms of U , up to a

factor of 1+ ε. The multiplication at the end by Π2 serves only to speed up the time for processing

TAR−1. Thus, by the results of Monemizadeh and Woodruff (2010) and Andoni et al. (2010), we

can find all the leverage scores ‖U(i)‖2
2 that are of magnitude at least τ‖U‖2

F in small space and a

single pass over the data. By increasing the space by a factor of O(ε−2 logn), we can also use the

!2-samples to estimate the norms ‖U(i)‖2
2 for the row indices i that we find.

Entropy. Given a distribution ρ, a statistic of ρ of interest is the entropy of this distribution,

where the entropy is defined as H(ρ) = ∑i ρ(i) log2(1/ρ(i)). This statistic can be approximated in

a streaming setting. Indeed, it is known that estimating H(ρ) up to an additive ε can be reduced

to (1 + ε̃)-approximation of the !p-norm of the vector (ρ(1), . . . ,ρ(n)), for O(log1/ε) different

p ∈ (0,1) (Harvey et al., 2008). Here ε̃ = ε/(log3 1/ε · logn). When applied to our setting, the

distribution of interest is ρ(i) = 1
d‖U(i)‖2

2. To compute the entropy of this distribution, there exist

sketching matrices T for providing (1+ε)-approximations to the quantity Fp(F2) of an n×d matrix

A, where Fp(F2) is defined as ∑n
i=1 ‖A(i)‖

2p
2 , using O(ε−4 log2 n log1/ε) bits of space (see Theorem

1 of Ganguly et al. (2008)). Thus, to compute the entropy of the leverage score distribution, we

can do the following. First, maintain TA and ΠA in the first pass over the data, where T is a

sketching matrix for Fp(F2), p ∈ (0,1). At the end of the first pass, compute R−1; and finally,

compute TAR−1Π2, which effectively applies the Fp(F2)-estimation matrix T to the rows of the

matrix AR−1Π2. Therefore, by the results of Harvey et al. (2008) and Ganguly et al. (2008), we can

compute an estimate φ which is within an additive ε of H(ρ) using O(dε−4 log6 n log14 1/ε) bits of

space and a single pass. We note that it is also possible to estimate H(ρ) up to a multiplicative 1+ε
factor using small, but more, space; see, for example, Harvey et al. (2008).

Sampling Row Identities. Another natural problem is that of obtaining samples of rows of

A proportional to their leverage score importance sampling probabilities. To do so, we use !2-

sampling (Monemizadeh and Woodruff, 2010; Andoni et al., 2010) as used above for finding the

large leverage scores. First, compute TA and ΠA in the first pass over the data stream; then, compute

R−1; and finally, compute TAR−1. Thus, by applying the procedures of Andoni et al. (2010) a total

of s times independently, we obtain s samples i1, . . . , is, with replacement, of rows of A proportional
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to ‖U(i1)‖
2
2, . . . ,‖U(is)‖

2
2, that is, to their leverage score. The algorithm requires O(sdε−2 log4 n) bits

of space and runs in a single pass. To obtain more than just the row identities i1, . . . , is, for example,

to obtain the actual samples, one can read off these rows from A in a second pass over the matrix.
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Abstract

This paper presents the prior PAC-Bayes bound and explores its capabilities as a tool to provide
tight predictions of SVMs’ generalization. The computation of the bound involves estimating a
prior of the distribution of classifiers from the available data, and then manipulating this prior in
the usual PAC-Bayes generalization bound. We explore two alternatives: to learn the prior from
a separate data set, or to consider an expectation prior that does not need this separate data set.
The prior PAC-Bayes bound motivates two SVM-like classification algorithms, prior SVM and η-
prior SVM, whose regularization term pushes towards the minimization of the prior PAC-Bayes
bound. The experimental work illustrates that the new bounds can be significantly tighter than the
original PAC-Bayes bound when applied to SVMs, and among them the combination of the prior
PAC-Bayes bound and the prior SVM algorithm gives the tightest bound.

Keywords: PAC-Bayes bound, support vector machine, generalization capability prediction, clas-
sification

1. Introduction

Support vector machines (SVMs) (Boser et al., 1992; Vapnik, 1998; Cristianini and Shawe-Taylor,

2000; Schölkopf and Smola, 2002) are accepted among practitioners as one of the most accurate

automatic classification techniques. They implement linear classifiers in a high-dimensional feature

space using the kernel trick to enable a dual representation and efficient computation. The danger of

overfitting in such high-dimensional spaces is conquered by maximizing the margin of the classifier

c©2012 Emilio Parrado-Hernández, Amiran Ambroladze, John Shawe-Taylor and Shiliang Sun.
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on the training examples. For this reason there has been considerable interest in bounding the

generalization in terms of the margin.

In fact, a main drawback that restrains engineers from using these advanced machine learning

techniques is the lack of reliable predictions of generalization, especially in what concerns worst-

case performance. In this sense, the widely used cross-validation generalization measures indicate

little about the worst-case performance of the algorithms. The error of the classifier on a set of sam-

ples follows a binomial distribution whose mean is the true error of the classifier. Cross-validation

is a sample mean estimation of the true error, and worst-case performance estimations concern

the estimation of the tail of the error distribution. One could then employ statistical learning the-

ory (SLT) tools to bound the tail of the distribution of errors. Early bounds have relied on covering

number computations (Shawe-Taylor et al., 1998; Zhang, 2002), while later bounds have considered

Rademacher complexity (Bartlett and Mendelson, 2002). The tightest bounds for practical appli-

cations appear to be the PAC-Bayes bound (McAllester, 1999; Langford and Shawe-Taylor, 2002;

Catoni, 2007) and in particular the form given in Seeger (2002), Langford (2005) and Germain et al.

(2009). However, there still exist a remarkable gap between SLT predictions and practitioners’ ex-

periences: SLT predictions are too pessimistic when compared to the actual results data analysts get

when they apply machine learning algorithms to real-world problems.

Another issue affected by the ability to predict the generalization capability of a classifier is

the selection of the hyperparameters that define the training. In the SVM case, these parameters

are the trade-off between maximum margin and minimum training error, C, and the kernel param-

eters. Again, the more standard method of cross-validation has proved to be more reliable in most

experiments, despite the fact that it is statistically poorly justified and relatively expensive.

The aim of this paper is to investigate whether the PAC-Bayes bound can be tightened towards

less pessimistic predictions of generalization. Another objective is to study the implications of the

bound in the training of the classifiers. We specifically address the use of the bound in the model

selection stage and in the design of regularization terms other than the maximization of the margin.

The PAC-Bayes bound (retrospected in Section 2) uses a Gaussian prior centered at the origin

in the weight space. The key to the new bounds introduced here is to use part of the training set to

compute a more informative prior and then compute the bound on the remainder of the examples

relative to this prior. This generalisation of the bound, called prior PAC-Bayes bound, is derived

in Section 3. The prior PAC-Bayes bound was initially presented by Ambroladze et al. (2007). A

slight nuisance of the prior PAC-Bayes bound is that a separate data set should be available in order

to fix the prior. In Section 3.2, we further develop the expectation-prior PAC-Bayes bound as an

interesting new approach which does not require the existence of the separate data set. We also

derive a PAC-Bayes bound with a non-spherical Gaussian prior. To the best of our knowledge this

is the first such application for SVMs.

The encouraging results of Ambroladze et al. (2007), motivate a further use of the prior PAC-

Bayes bound. Section 4.1 introduces a new classification algorithm, the prior SVM, which replaces

the margin maximization in the optimization problem by a regularization term that pushes towards

the minimization of the PAC-Bayes bound. The optimization problem that produces the prior SVM

is divided into three stages. The first one involves the learning of a prior formed by an ensemble of

Gaussian distributions centered at different distances along the same direction. During the second

stage, each component of the prior is mapped with a posterior that improves its classification ac-

curacy while tightening the PAC-Bayes bound. In the last stage the prior component/posterior pair

that achieves the lowest value of the PAC-Bayes bound is selected as prior SVM classifier. Section
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4.2 presents a second algorithm, named η-prior SVM as a variant of prior SVMs where the position

of component of the prior that goes into the overall classifier is optimised in a continuous range (not

picked from a fixed set). Therefore, η-prior SVMs include a first optimization where the direction

of the prior is learnt from a separate set of training patterns, and a second optimization that deter-

mines (i) the exact position of the prior along the already learnt direction and (ii) the position of the

posterior. Furthermore we show that the performance of the algorithm can be bounded rigorously

using PAC-Bayes techniques.

In Section 5 the new bounds and algorithms are evaluated on multiple classification tasks after

a parameter selection. The experiments illustrate the capabilities of the prior PAC-Bayes bound

to provide tighter predictions of the generalisation of an SVM. Moreover, the combination of the

new bounds and the two prior SVM algorithms yields more dramatic tightenings of the bound.

Besides, these classifiers achieve good accuracies, comparable to those obtained by an SVM with

its parameters fixed with ten fold cross validation. We finish the experimental work showing that

the use of a different value of C for the prior and the posterior that form the (η)prior SVM lead to a

further tightening of the bound.

Finally, the main conclusions of this work and some related ongoing research are outlined in

Section 6.

2. PAC-Bayes Bound for SVMs

This section is devoted to a brief review of the PAC-Bayes bound theorem of Langford (2005). Let

us consider a distribution D of patterns x lying in a certain input space X and their corresponding

output labels y (y ∈ {−1,1}). Suppose Q is a posterior distribution over the classifiers c. For every

classifier c, the following two error measures are defined:

Definition 1 (True error) The true error cD of a classifier c is defined to be the probability of

misclassifying a pattern-label pair (x,y) selected at random from D

cD ≡ Pr(x,y)∼D(c(x) &= y).

Definition 2 (Empirical error) The empirical error ĉS of a classifier c on a sample S of size m is

defined to be the error rate on S

ĉS ≡ Pr(x,y)∼S(c(x) &= y) =
1

m

m

∑
i=1

I(c(xi) &= yi),

where I(·) is an indicator function equal to 1 if the argument is true and equal to 0 if the argument

is false.

Now we define two error measures on the distribution of classifiers: the average true error,

QD ≡ Ec∼QcD , as the probability of misclassifying an instance x chosen uniformly from D with a

classifier c chosen according to Q; and the average empirical error Q̂S ≡ Ec∼QĉS, as the probability

of classifier c chosen according to Q misclassifying an instance x chosen from a sample S.

For these two quantities we can derive the PAC-Bayes bound on the true error of the distribution

of classifiers:
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Theorem 3 (PAC-Bayes bound) For all prior distributions P(c) over the classifiers c, and for any

δ ∈ (0,1],

PrS∼Dm

(

∀Q(c) : KL+(Q̂S||QD)≤
KL(Q(c)||P(c))+ ln(m+1

δ )

m

)

≥ 1−δ,

where KL(Q(c)||P(c)) = Ec∼Q ln
Q(c)
P(c) is the Kullback-Leibler divergence, and KL+(q||p) = q ln q

p +

(1−q) ln 1−q
1−p for p > q and 0 otherwise.

The proof of the theorem can be found in Langford (2005).

This bound can be specialized to the case of linear threshold classifiers. Suppose the m training

examples define a linear classifier that can be represented by the following equation:

cu(x) = sign(uTφ(x)), (1)

where φ(x) is a nonlinear projection to a certain feature space1 where the linear classification actu-

ally takes place, and vector u in the feature space determines the separating hyperplane. Since we

are considering only classifiers with threshold set to zero all the classifiers in the paper can be rep-

resented with unit vectors (‖w‖= 1). However, as we will be considering distributions of classifiers

we use the notation u to indicate weight vectors that can also be non-unit.

For any unit vector w we can define a stochastic classifier in the following way: we choose

the distribution Q(cu) = Q(cu|w,µ), where u ∼ N (µw, I) is drawn from a spherical Gaussian with

identity covariance matrix centered along the direction pointed by w at a distance µ from the origin.

Moreover, we can choose the prior cu : u ∼ N (0, I) to be a spherical Gaussian with identity covari-

ance matrix centered at the origin. Then, for classifiers of the form in Equation (1) the generalization

performance can be bounded as

Corollary 4 (PAC-Bayes bound for SVMs (Langford, 2005)) For all distributions D , for all δ ∈
(0,1], we have

PrS∼Dm

(

∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤
µ2

2 + ln(m+1
δ )

m

)

≥ 1−δ.

It can be shown (see Langford, 2005) that

Q̂S(w,µ) = Em[F̃(µγ(x,y))], (2)

where Em is the average over the m training examples, γ(x,y) is the normalized margin of the

training examples

γ(x,y) =
ywTφ(x)

‖φ(x)‖
, (3)

and F̃ = 1−F where F is the cumulative normal distribution

F(x) =
∫ x

−∞

1√
2π

e−x2/2dx. (4)

1. This projection is induced by a kernel κ(·) satisfying κ(x,y) = 〈φ(x),φ(y)〉.
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Note that the SVM expressed as (1) is computed with a single unit vector w. The generalization

error of such a classifier can be bounded by at most twice the average true error QD(w,µ) of the

corresponding stochastic classifier involved in Corollary 4 (Langford and Shawe-Taylor, 2002).

That is, for all µ we have

Pr(x,y)∼D

(

sign(wTφ(x)) &= y
)

≤ 2QD(w,µ). (5)

3. Data Dependent Prior PAC-Bayes Bounds for SVMs

This section presents some versions of the PAC-Bayes bound that aim at yielding a tighter predic-

tion of the true generalization error of the classifier. These new bounds introduce more sophisticated

designs for the prior distribution over the classifiers in order to reduce its divergence with the pos-

terior distribution. The first set of bounds learns the prior distribution from a separate training data

set that will not be used in the computation of the bound, whilst the second set learns the prior from

mathematical expectations, avoiding to leave out a subset of patterns to calculate the bound.

3.1 Bounds Based on a Separate Set of Training Data

This section is a further extension of previous ideas presented by Ambroladze et al. (2007).

Our first contribution is motivated by the fact that the PAC-Bayes bound allows us to choose the

prior distribution, P(c). In the standard application of the bound P(c) is chosen to be a spherical

Gaussian centered at the origin. We now consider learning a different prior based on training an

SVM on a subset T of the training set comprising r training patterns and labels. In the experiments

this is taken as a random subset, but for simplicity of the presentation we will assume T comprises

the last r examples {xk,yk}m
k=m−r+1.

With these r examples we can learn an (unit and biased) SVM classifier, wr, and form a prior

P(wr,η)∼N (ηwr, I) consisting of a Gaussian distribution with identity covariance matrix centered

along wr at a distance η from the origin.

The introduction of this prior P(wr,η) in Theorem 3 results in the following new bound.

Corollary 5 (Single-prior PAC-Bayes bound for SVMs) Let us consider a prior on the distribution

of classifiers consisting of a spherical Gaussian with identity covariance centered along the direc-

tion given by wr at a distance η from the origin. Classifier wr has been learnt from a subset T of

r examples a priori separated from a training set S of m samples. Then, for all distributions D , for

all δ ∈ (0,1], we have

PrS∼Dm

(

∀wm,µ : KL+(Q̂S\T ||QD)≤
||ηwr−µwm||2

2 + ln(m−r+1
δ )

m− r

)

≥ 1−δ,

where Q̂S\T is a stochastic measure of the empirical error of the classifier on the m− r samples not

used to learn the prior. This stochastic error is computed as in Equation (2) but averaged over S\T .

Proof Since we separate r instances to learn the prior, the actual size of the training set to which we

apply the bound is m−r. In addition, the stochastic error Q̂ must be computed only on the instances

not used to learn the prior, that is, the subset S\T . Note also that the selection of T can not be

optimised.
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Using a standard expression for the KL divergence between two Gaussians in an N dimensional

space,

KL(N (µ0,Σ0)‖N (µ1,Σ1)) =

1

2

(

ln

(

detΣ1

detΣ0

)

+ tr(Σ−1
1 Σ0)+(µ1 −µ0)

T Σ−1
1 (µ1 −µ0)−N

)

, (6)

the KL divergence between prior and posterior is computed as follows:

KL(Q(w,µ)||P(wr,η)) = KL(N (µw, I)‖N (ηwr, I)) =
1

2
||µw−ηwr||2.

Intuitively, if the selection of the prior is appropriate, the bound can be tighter than the one

given in Corollary 4 when applied to the SVM weight vector on the whole training set. It is worth

stressing that the bound holds for all w and so can be applied to the SVM trained on the whole set.

This might at first appear to be ‘cheating’, but the critical point is that the bound is evaluated on

the set S\T not involved in generating the prior. The experimental work illustrates how in fact this

bound can be tighter than the standard PAC-Bayes bound.

Moreover, the structure of the prior may be further refined in exchange for a very small increase

in the penalty term. This can be achieved with the application of the following result.

Theorem 6 (Mixture prior PAC-Bayes bound) Let P (c) = ∑J
j=1 π jPj(c) be a prior distribution

over classifiers consisting of a mixture of J components {Pj(c)}J
j=1 combined with positive weights

{π j}J
j=1 so that ∑J

j=1 π j = 1. Then, for all δ ∈ (0,1],

PrS∼Dm

(

∀Q(c) : KL+(Q̂S||QD)≤ min
j

KL(Q(c)||Pj(c))+ ln m+1
δ + ln 1

π j

m

)

≥ 1−δ.

Proof

The bound in Theorem 3 can be instantiated for the ensemble prior P (c)

PrS∼Dm

(

∀Q(c) : KL+(Q̂S||QD)≤
KL(Q(c)||P (c))+ ln(m+1

δ )

m

)

≥ 1−δ.

We now bound the KL divergence between the posterior Q(c) and the ensemble prior P (c). For

any 1 ≤ i ≤ J:

KL(Q(c)‖P (c)) =
∫

c∈C
Q(c)

(

lnQ(c)− ln(
J

∑
j=1

π jPj(c))

)

dc

≤
∫

c∈C
Q(c)(lnQ(c)− ln(πiPi(c)))dc = KL(Q(c)‖Pi(c))− ln(πi),

where the inequality follows from the fact that we have reduced the value inside the ln(·) term for

all c. Finally, the particularisation for the term of minimal KL(Q(c)‖Pj(c))− ln(π j) completes the
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proof.

Note that the inequality in the proof upper bounds the KL divergence to give a bound equivalent

to performing a union bound. In particular applications it may be possible to obtain tighter bounds

by estimating this KL divergence more closely.

This result can be also specialized for the case of SVM classifiers. The mixture prior is con-

structed by allocating Gaussian distributions with identity covariance matrix along the direction

given by wr at distances {η j}J
j=1 from the origin where {η j}J

j=1 are positive real numbers. In such

a case, we obtain

Corollary 7 (Gaussian Mixture-prior PAC-Bayes bound for SVMs) Let us consider a prior dis-

tribution of classifiers formed by an ensemble of equiprobable spherical Gaussian distributions

{Pj(c|wr,η j)}J
j=1 with identity covariance and mean η jwr, where {η j}J

j=1 are positive real num-

bers and wr is a linear classifier trained using a subset T of r samples a priori separated from

a training set S of m samples. Then, for all distributions D , for all posteriors (w,µ) and for all

δ ∈ (0,1], we have that with probability greater than 1− δ over all the training sets S of size m

sampled from D

KL+(Q̂S\T (w,µ)||QD(w,µ))≤ min
j

||η jwr−µw||2
2 + ln(m−r+1

δ )+ lnJ

m− r
.

Proof The proof is straightforward and can be completed by substituting 1/J for all π j in Theorem

6 and computing the KL divergence between prior and posterior as in the proof of Corollary 5.

Note that the {η j}J
j=1 must be chosen before we actually compute the posterior. A linear search

can be implemented for the value of µ that leads to the tightest bound for each particular prior. In the

case of a mixture prior, the search is repeated for every member of the ensemble and the reported

value of the bound is the tightest one found during the searches.

Moreover, the data distribution can also shape the covariance matrix of the Gaussian prior.

Rather than take a spherically symmetric prior distribution we choose the variance in the direction

of the prior vector to be τ > 1. As with the prior PAC-Bayes bound the mean of the prior distribution

is also shifted from the original in the direction wr. Seeger (2002) has previously considered non-

spherical priors and (different) non-spherical posteriors in bounding Gaussian process classification.

Our application to SVMs is not restricted to using specific priors and posteriors so that we have the

flexibility to adapt our distributions in order to accommodate the prior derived from the last part of

the data.

We introduce notation for the norms of projections for unit vector u, P
‖
u(v)= 〈u,v〉 and P⊥

u (v)2 =

‖v‖2 −P
‖
u(v)2.

Theorem 8 (τ-prior PAC-Bayes bound for linear classifiers) Let us consider a prior P(c|wr,τ,η)
distribution of classifiers consisting of a Gaussian distribution centred on ηwr, with identity covari-

ance matrix in all directions except wr in which the variance is τ2. Then, for all distributions D ,

for all δ ∈ (0,1], we have that with probability at least 1−δ over all the training samples of size m

drawn from D , for all posterior parameters (w, µ),

KL(Q̂S\T (w,µ)‖QD(w,µ))≤

3513
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(ln(τ2)+ τ−2 −1+P
‖
wr(µw−ηwr)2/τ2 +P⊥

wr
(µw)2)+2ln(m−r+1

δ )

2(m− r)
.

Proof The application of the PAC-Bayes theorem follows that of Langford (2005) except that

we must recompute the KL divergence. Using the expression for the KL divergence between two

Gaussian distributions of (6) we obtain

KL(Q(w,µ)‖P(wr,τ,η)) =

1

2

(

ln(τ2)+

(

1

τ2
−1

)

+
P
‖
wr(µw−ηwr)2

τ2
+P⊥

wr
(µw)2

)

,

and the result follows.

Note that the quantity

Q̂S\T (w,µ) = Em−r[F̃(µγ(x,y))]

remains unchanged as the posterior distribution is still a spherical Gaussian centred at w.

3.2 Expectation-Prior PAC-Bayes Bound for SVMs

In this section, we attempt to start an interesting new approach on exploiting priors without the aid

of a separate data set. The basic idea is to adopt the mathematical expectation of some quantity and

then approximate this expectation by an empirical average computed on the available data.

An expectation that may result in reasonable priors is E(x,y)∼D [yφ(x)], which is used in the

derivation of the bound below. Define wp = E(x,y)∼D [yφ(x)] where y ∈ {+1,−1}. A special case

of wp is 1
2(w

+−w−) with w+ = E(x,y)∼D,y=+1[φ(x)], w− = E(x,y)∼D,y=−1[φ(x)] when each class

has the same prior probability. We use its general form in deriving bounds.

Given a sample set S including m examples, the empirical estimate of wp would be ŵp =
E(x,y)∼S[yφ(x)] =

1
m ∑m

i=1[yiφ(xi)]. We have the following bound.

Theorem 9 (Single-expectation-prior PAC-Bayes bound for SVMs) For all D , for all Gaussian

prior P ∼ N (ηwp, I) over margin classifiers, for all δ ∈ (0,1] :

PrS∼Dm (∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤
1
2(‖µw−ηŵp‖+η R√

m
(2+

√

2ln 2
δ))

2 + ln( 2(m+1)
δ )

m
)≥ 1−δ,

where the posterior is Q ∼ N (µw, I) with R = supx ‖φ(x)‖.

Proof First, we try to bound KL(Q||P). We have

KL(Q||P) =
1

2
‖µw−ηwp‖2

=
1

2
‖µw−ηŵp +ηŵp −ηwp‖2

=
1

2
‖µw−ηŵp‖2 +

1

2
‖ηŵp −ηwp‖2 +(µw−ηŵp)

/(ηŵp −ηwp)

≤
1

2
‖µw−ηŵp‖2 +

1

2
η2‖ŵp −wp‖2 +η‖µw−ηŵp‖‖ŵp −wp‖, (7)
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where the last inequality uses Cauchy-Schwarz inequality. Now it suffices to bound ‖ŵp −wp‖.

Define R = supx ‖φ(x)‖. It is simple to show that sup(x,y) ‖yφ(x)‖ = supx ‖φ(x)‖ = R. With

reference to a result on estimating the center of mass (Shawe-Taylor and Cristianini, 2004), we have

Pr

(

‖ŵp −wp‖ ≥
2R√

m
+ ε

)

≤ exp

(

−
2mε2

4R2

)

.

Setting the right hand side equal to δ/2, solving for ε shows that with probability at least 1− δ/2,

we have

‖ŵp −wp‖ ≤
R√
m

(

2+

√

2ln
2

δ

)

. (8)

Define b = R√
m

(

2+
√

2ln 2
δ

)

, we have

PrS∼Dm

(

KL(Q||P)≤
1

2
‖µw−ηŵp‖2 +

1

2
η2b2 +ηb‖µw−ηŵp‖

)

≥ 1−δ/2. (9)

Then, according to Theorem 3, we have

PrS∼Dm

(

∀Q(c) : KL+(Q̂S||QD)≤
KL(Q||P)+ ln( 2(m+1)

δ )

m

)

≥ 1−δ/2. (10)

Define a = ‖µw−ηŵp‖. Combining (9) and (10), we get

PrS∼Dm

(

∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤
1
2 a2 + 1

2 η2b2 +ηab+ ln( 2(m+1)
δ )

m

)

≥ 1−δ,

where we used (1−δ/2)2 > 1−δ. Rewriting the bound as

PrS∼Dm

(

∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤
1
2(a+ηb)2 + ln( 2(m+1)

δ )

m

)

≥ 1−δ

completes the proof.

Considering at the same time Theorem 9 and the mixture-prior PAC-Bayes bound, it is not

difficult to reach the following mixture-expectation-prior PAC-Bayes bound for SVMs.

Theorem 10 (Mixture-expectation-prior PAC-Bayes bound for SVMs) For all D , for all mixtures of

Gaussian prior P (c) = ∑J
j=1 π jPj(c) where Pj ∼ N (η jwp, I) ( j = 1, . . . ,J), π j ≥ 0 and ∑J

j=1 π j = 1

over margin classifiers, for all δ ∈ (0,1] :

PrS∼Dm

(

∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤

min
j

1
2(‖µw−η jŵp‖+η j

R√
m
(2+

√

2ln 2
δ))

2 + ln( 2(m+1)
δ )+ ln 1

π j

m



≥ 1−δ,

where the posterior is Q ∼ N (µw, I) with R = supx ‖φ(x)‖. If we consider equiprobable members

in the mixture, then ln 1
π j

= lnJ.
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Moreover, the expectation prior bound can also be extended to the case where the shape of the

covariance matrix of the prior is also determined from the training data:

Theorem 11 (τ-Expectation-prior PAC-Bayes bound) Consider a prior distribution

P ∼ N (ηwp, I,τ2) of classifiers consisting of a Gaussian distribution centred on ηwp, with identity

covariance in all directions except wp in which the variance is τ2. Then, for all distributions D , for

all δ ∈ (0,1], we have

PrS∼Dm (∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤

1
2(ln(τ

2)+
(‖µw−ηŵp‖+η R√

m
(2+

√
2ln 2

δ ))
2−µ2+1

τ2 +µ2 −1)+ ln( 2(m+1)
δ )

m
)≥ 1−δ,

where the posterior is Q ∼ N (µw, I) with R = supx ‖φ(x)‖. We can recover Theorem 9 by taking

τ = 1.

Proof According to Theorem 8,

KL(Q||P) =
1

2



ln(τ2)+
1

τ2
−1+

P
‖
w∗

p
(µw−ηwp)2

τ2
+P⊥

w∗
p
(µw)2



 ,

where w∗
p = wp/‖wp‖. The last two quantities can be rewritten as

P
‖
w∗

p
(µw−ηwp)2

τ2
+P⊥

w∗
p
(µw)2 =

1

τ2
(

w/
p

‖wp‖
(µw−ηwp))

2 +‖µw‖2 − (
w/

p

‖wp‖
µw)2

=
1

τ2
(

w/
p

‖wp‖
µw−η‖wp‖)2 +‖µw‖2 − (

w/
p

‖wp‖
µw)2

=
1

τ2
(η2‖wp‖2 −2ηw/

p µw)+‖µw‖2

=
1

τ2
(‖µw−ηwp‖2 −‖µw‖2)+‖µw‖2

=
1

τ2
(‖µw−ηwp‖2 −µ2)+µ2 .

By Equation (7), we have

‖µw−ηwp‖2 ≤ ‖µw−ηŵp‖2 +η2‖ŵp −wp‖2 +2η‖µw−ηŵp‖‖ŵp −wp‖ .

By Equation (8), we have with probability at least 1−δ/2

‖ŵp −wp‖ ≤
R√
m

(

2+

√

2ln
2

δ

)

.

With a = ‖µw−ηŵp‖ and b = R√
m

(

2+
√

2ln 2
δ

)

, we have

PrS∼Dm

(

KL(Q||P)≤
1

2
(ln(τ2)+

1

τ2
−1+

a2 +η2b2 +2ηab−µ2

τ2
+µ2)

)

≥ 1−δ/2. (11)
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Then, according to Theorem 3, we have

PrS∼Dm(∀Q(c) : KL+(Q̂S||QD)≤
KL(Q||P)+ ln( 2(m+1)

δ )

m
)≥ 1−δ/2. (12)

Combining (11) and (12) results in

PrS∼Dm (∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤
1
2(ln(τ

2)+ (a+ηb)2−µ2+1
τ2 +µ2 −1)+ ln( 2(m+1)

δ )

m
)≥ 1−δ,

which completes the proof.

4. Optimising the Prior PAC-Bayes Bound in the Design of the Classifier

Up to this point we have introduced the prior PAC-Bayes bounds as a means to tighten the origi-

nal PAC-Bayes bound (this fact is illustrated in the experiments included in Section 5). The next

contribution of this paper consists of the introduction of the optimisation of the prior PAC-Bayes

bound into the design of the classifier. The intuition behind this use of the bounds is that classifiers

reporting low values for the bound should yield a good generalization capability.

4.1 Prior SVM

The new philosophy is implemented in the prior SVM by replacing the maximization of the margin

in the optimization problem defining the original SVM with a term that pushes towards the tighten-

ing of the prior PAC-Bayes bound. This subsection introduces the formulation of the new algorithm,

a method to determine the classifier by means of off-the-shelf quadratic programming solvers, and

a procedure to compute the prior PAC-Bayes bound for these new classifiers.

4.1.1 FORMULATION OF THE PRIOR SVMS

As stated before, the design criterion for the prior SVMs involves the minimization of the prior

PAC-Bayes bound. Let us consider the simplest case of the bound, that is, a single prior centered on

ηwr, where wr is the unit vector weight of the SVM constructed with r training samples and η is a

scalar fixed a priori. For simplicity, we assume these r samples are the last ones in the training set

{(xl,yl)}m
l=m−r+1. Therefore, wr can be expressed in terms of these input patterns as:

wr =
∑m

l=m−r+1 ylαlφ(xl)
∥

∥∑m
l=m−r+1 ylαlφ(xl)

∥

∥

.

In such a case, a small bound on the error of the classifier is the result of a small value of ‖ηwr −
µw‖2, and a large value of the normalized margin of Equation (3) for the remaining training exam-

ples γ(xi,yi), i = 1, . . . ,m− r.

We start by addressing the separable case. Under perfect separability conditions, a good strategy

to obtain a classifier of minimal bound is to solve the following optimization problem:

min
w

[

1

2
‖w−ηwr‖2

]

(13)
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subject to

yiw
Tφ(xi)≥ 1 i = 1, . . . ,m− r. (14)

Clearly, the objective function of (13) attempts to reduce the value of the right hand side of the

bound, while the constraints in (14) that impose the separability of the classes lead to a small Q̂S.

Once w is found through the solution of (13) with constraints (14) the proper bound on the

average true error of the prior SVM can be obtained by means of a further tuning of µ (that is, using

µw instead of w as mean of the posterior distribution), where this last tuning will not change w.

The extension of the prior SVM to the non-separable case is easily carried out through the

introduction of positive slack variables {ξi}m−r
i=1 . Then the optimization problem becomes

min
w,ξi

[

1

2
‖w−wr‖2 +C

m−r

∑
i=1

ξi

]

(15)

subject to

yiw
Tφ(xi)≥ 1−ξi i = 1, . . . ,m− r, (16)

ξi ≥ 0 i = 1, . . . ,m− r. (17)

Note that the constraints in (16) also push towards the minimization of the stochastic error

Q̂S. In this sense, for a sample x on the wrong side of the margin we have ξ = 1− ywTφ(x) > 1,

which leads to a margin γ < 0 and thus an increase in Q̂S (see Equations (2) to (4)). Therefore, by

penalizing ξ we enforce a small Q̂S.

Furthermore, Corollary 7 allows us to use a mixture of J distributions instead of one at the cheap

cost of lnJ
m . This can be used to refine the selection of the weight vector of the prior SVMs through

the following procedure:

1. First we determine a unit wr with samples {(xl,yl)}m
l=m−r+1. Then we construct a mixture

prior with J Gaussian components with identity covariance matrices centered at η jwr, with

η j being J real positive constants.

2. For every element in the mixture we obtain a prior SVM classifier w j solving

min
w j,ξi

[

1

2
‖w j −η jwr‖2 +C

m−r

∑
i=1

ξi

]

subject to

yiφ(xi)
T w j ≥ 1−ξi i = 1, . . . ,m− r,

ξi ≥ 0 i = 1, . . . ,m− r.

Afterwards, we obtain the bounds Q
j
D corresponding to the average true error of each one of

the J prior SVMs by tuning µ (see Corollary 6).

3. We finally select as the prior SVM the w j that reports the lowest bound Q
j
D .

It should be pointed out that each prior scaling (η j) that is tried increases the computational

burden of the training of the prior SVMs by an amount corresponding to an SVM problem with

m− r data points.

Appendix A details a procedure to determine the solution w to the optimization problem given

by (15) and constraints (16) and (17) based on the usual derivation of the SVM.
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4.1.2 COMPUTING THE PAC-BAYES BOUND FOR THE PRIOR SVMS

The remainder of the section presents a method to compute the PAC-Bayes bound for a prior SVM

obtained through the procedure described above. To simplify notation we have introduced the

nonunit weight vector wm−r =w−ηwr, that includes the posterior part of the prior SVM. The bound

is based on the relationship between two distributions of classifiers: the prior P(wr,η)∼ N (ηwr, I)
and the posterior Q(w,µ)∼ N (µw, I).

The stochastic error Q̂S in the left hand side of the bound can be straightforwardly obtained by

using a unit w in (27) in Equations (2) to (4). For the right hand side of the bound, we need to

compute KL(Q(w,µ)||P(wr,η)) =
‖ηwr−µw‖2

2 which can be rewritten as

KL(Q(w,µ)||P(wr,η)) =
1

2

(

µ2 +η2 −2µη(η+wT
m−rwr)

)

.

4.2 η-Prior SVM

When the prior SVM is learnt within a mixture priors setting, the last stage of the optimization

is the selection of the best prior-component/posterior pair, among the J possibilities. These prior-

component/posterior pairs are denoted by (η j,w j), where η j is the jth scaling of the normalized

prior wr. From the point of view of the prior, this selection process can be regarded as a search

over the set of scalings using the mixture-prior PAC-Bayes bound as fitness function. Note that the

evaluation of such a fitness function involves learning the posterior and the tuning of µ.

The idea presented in this section actually consists of two turns of the screw. First, the search

in the discrete set of priors is cast as a linear search for the optimal scaling η in a continuous range

of scalings [η1,ηJ]. Second, this linear search is introduced into the optimization of the posterior.

Therefore, instead of optimizing a posterior for every scaling of the prior, the optimal scaling and

posterior given a normalized prior are the output of the same optimization problem.

The sequel is devoted to the derivation of the resulting algorithm, called the η-prior SVMs, and

to its analysis using the prior PAC-Bayes bound framework.

4.2.1 DERIVATION OF THE η-PRIOR SVMS

The η-prior SVM is designed to solve the following problem:

min
v,η,ξi

[

1

2
‖v‖2 +C

m−r

∑
i=1

ξi

]

subject to

yi(v+ηwr)
Tφ(xi)≥ 1−ξi i = 1, . . . ,m− r,

ξi ≥ 0 i = 1, . . . ,m− r.

The final (unit vector) classifier will be

w = (v+ηwr)/‖v+ηwr‖.

After a derivation analogous to that presented in Appendix A, we arrive at the following quadratic

program

max
αi

m−r

∑
i=1

αi −
1

2

m−r

∑
i, j=1

αiα jyiy jφ(xi)
Tφ(x j)
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subject to

m−r

∑
i=1

m

∑
k=m−r+1

αiyiα̃kykκ(xi,xk) =
m−r

∑
i=1

yiαigi = 0 i = 1, . . . ,m− r,

0 ≤ αi ≤C i = 1, . . . ,m− r,

where gi =∑m
k=m−r+1 α̃kykκ(xi,xk) and α̃k are the normalized dual variables for the prior learnt from

the last r samples, {xk}m
k=m−r+1. Once we have solved for αi, we can compute η by considering

some j such that 0 < α j <C and using the equation

y j

(

m−r

∑
i=1

αiyiκ(xi,x j)+ηg j

)

= 1.

4.2.2 BOUNDS FOR η-PRIOR SVMS

The statistical analysis of the η-prior SVMs can be performed using the τ-prior PAC-Bayes bound

of Theorem 8, and τ-expectation prior PAC-Bayes bound. Rather than take a spherically symmetric

prior distribution we choose the variance in the direction of the prior vector to be τ2 > 1. As with the

prior SVM analysis the mean of the prior distribution is also shifted from the origin in the direction

wr.

In order to apply the bound we need to consider the range of priors that are needed to cover the

data in our application. The experiments conducted in the next section require a range of scalings

of wr from 1 to 100. For this we can choose η = 50, τ = 50, and µ ≤ 100 in all but one of our

experiments, giving an increase in the bound over the factor P⊥
wr
(µw)2 directly optimized in the

algorithm of

ln(τ2)+ τ−2 −1+P
‖
wr(µw−ηwr)2/τ2

2(m− r)
≤

ln(τ)+0.5τ−2

m− r
≈

3.912

m− r
. (18)

We include Equation (18) to justify that our algorithm optimises a quantity that is very close to

the expression in the bound. Note that the evaluation of the bounds presented in the experimental

section are computed using the expression from Theorem 8 and not this approximate upper bound.

One could envisage making a sequence of applications of the PAC-Bayes bound with spherical

priors using the union bound and applying the result with the nearest prior. This strategy leads to

a slightly worse bound as it fails to take into account the correlations between the different priors.

This fact is illustrated in Section 5.

5. Experiments

This section is devoted to an experimental analysis of the bounds and algorithms introduced in the

paper. The comparison of the algorithms is carried out on classification preceded by model selection

tasks using some UCI (Blake and Merz, 1998) data sets (see their description in terms of number of

instances, input dimensions and numbers of positive/negative examples in Table 1).

5.1 Experimental Setup

For every data set, we prepared 50 different training/test set partitions where 80% of the samples

form the training set and the remaining 20% form the test set. From every training set we considered

3520



PAC-BAYES BOUNDS WITH DATA DEPENDENT PRIORS

Problem # Examples Input Dim. Pos/Neg

Handwritten-digits (han) 5620 64 2791 / 2829

Waveform (wav) 5000 21 1647 / 3353

Pima (pim) 768 8 268 / 500

Ringnorm (rin) 7400 20 3664 / 3736

Spam (spa) 4601 57 1813 / 2788

Table 1: Description of data sets in terms of number of examples, number of input variables and

number of positive/negative examples.

subsets with 20%, 30%, . . ., 100% of the training patterns, in order to analyse the dependence of

the bounds with the number of samples used to train the classifier. Note that all the training subsets

from the same partition share the same test set.

With each of the training sets we learned a classifier with Gaussian RBF kernels preceded by

a model selection. The model selection consists in the determination of an optimal pair of hy-

perparameters (C,σ). C is the SVM trade-off between the maximization of the margin and the

minimization of the number of misclassified training samples; σ is the width of the Gaussian ker-

nel, κ(x,y) = exp(−‖x− y‖2/(2σ2)). The best pair is sought in a 7× 5 grid of parameters where

C ∈ {0.01, 0.1, 1, 10, 100, 1000, 10000} and σ ∈ { 1
4

√
d, 1

2

√
d,

√
d, 2

√
d, 4

√
d}, d being the input

space dimension.

With respect to the parameters needed by the prior PAC-Bayes bounds, the number of priors J

and the amount of patterns separated to learn the prior, the experiments reported by Ambroladze

et al. (2007) suggest that J = 10 and r = 50% of the training set size lead to reasonable results.

The setup to calculate the bound values displayed in the next tables was as follows. We trained

an instance of the corresponding classifier for each position of the grid of hyperparameters and

compute the bound. We selected for that type of classifier the minimum value of the bound found

through the whole grid. Then we averaged the 50 values of the bound corresponding to each of

the training/testing partitions. We completed the average with the sample standard deviation. Note

that proceeding this way we select a (possibly) different pair of hyperparameters for each of the 50

partitions. That is the reason why we name this task model selection plus classification.

The test error rates are computed after the following procedure. For each one of the training/test

partitions we carried out the model selection described in the previous paragraph and selected the

classifier of minimum bound. We classified the test set with this classifier and obtain the test error

rate for those particular classifier and partition. Then we averaged the 50 test error rates to yield the

test error rate for those particular data set, model selection method and type of classifier. Note again

that the model selection has a significant impact on the reported test error rates.

Moreover, the reported values of the PAC-Bayes and the mixture-prior PAC-Bayes bounds cor-

respond to the mean of the true error over the distribution of classifiers QD. The real true error cD

could then be bounded by twice this value (see Equation (5)). In all the experiments the bounds are

obtained using a confidence of δ = 0.01.
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5.2 Results and Discussion

The section starts presenting an analysis of the performance of SVM with the prior PAC Bayes

bounds introduced in this paper. We show how in most cases the use of an informative prior leads

to a significant tightening of the bounds on the true error of the classifier. The analysis is then

extended towards the new algorithms prior SVM and η-prior SVM. We show how their true error

is predicted more accurately by the prior PAC Bayes bound. The observed test errors achieved

by these algorithms are comparable to those obtained by SVMs with their hyperparameters fixed

through ten fold cross validation. Finally, the prior SVM framework enables the use of a different

value of parameter C for prior and posterior, that can be tuned using the prior PAC Bayes bound.

The experiments show that the use of different values of C contributes to get even tighter lower

bounds.

5.2.1 ANALYSIS OF THE SVM WITH THE PRIOR PAC BAYES BOUNDS

The first set of experiments is devoted to illustrate how tight can be the predictions about the gen-

eralisation capabilities of a regular SVM based upon the prior PAC-Bayes bounds. Thus, we have

trained SVM using the hyperparameters that arrived at a minimum value of each of the following

bounds:

PAC Bayes: the model selection is driven by the PAC Bayes bound of Langford (2005).

Prior PB: model selection driven by the mixture-prior PAC-Bayes bound of Corollary 7 with J =
10.

τ-prior PB: τ-prior PAC-Bayes bound of Theorem 8 with J = 10 and τ = 50.

E prior PB: expectation-prior PAC-Bayes bound of Theorem 10.

τ-E prior PB: τ-expectation prior PAC-Bayes bound of Theorem 11.

Plots in Figure 1 show the performance of the different bounds as a function of the training set

size. All the bounds achieve non trivial results even for training set sizes as small as 16% of the

complete data set (20% of the training set). In most of the cases, the bounds with an informative

prior are tighter than the original PAC Bayes bound with an spherical prior centred on the origin.

The expectation prior is significantly better in data sets wav and pim, whilst the prior PAC Bayes

and the τ-prior PAC Bayes are the tighter in problems rin and spa. Table 2 shows the values of the

bounds when the SVM is determined using the 100% of the training set (80% of the data).

Moreover, an examination of the slopes of the plots corresponding to the bounds point out that

those that learn the prior from a separate training set do converge faster than the original PAC Bayes

and the expectation prior PAC Bayes bounds. Since the former present a m− r in the denominator

of the right hand side, one could a priori think that their convergence would be slower than that of

the latter, with an m in the denominator. However, the experimental results show that it is better

to devote those separate training patterns to acquire a more informative prior than to increase the

weight of the denominator in the penalty term.
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Figure 1: Analysis of SVM with data dependent prior PAC Bayes bounds.

Data Set

Bound han wav pim rin spa

PAC Bayes 0.148 ± 0.000 0.190 ± 0.000 0.390 ± 0.001 0.198 ± 0.000 0.230 ± 0.000

Prior PB 0.088 ± 0.004 0.151 ± 0.004 0.411 ± 0.015 0.110 ± 0.004 0.171 ± 0.005

τ Prior PB 0.088 ± 0.004 0.152 ± 0.004 0.406 ± 0.013 0.110 ± 0.004 0.172 ± 0.006

E Prior PB 0.107 ± 0.001 0.133 ± 0.001 0.352 ± 0.004 0.194 ± 0.000 0.221 ± 0.001

τE Prior PB 0.149 ± 0.000 0.191 ± 0.000 0.401 ± 0.001 0.199 ± 0.000 0.232 ± 0.000

Table 2: Values of the bounds for SVM.

5.2.2 ANALYSIS OF PRIOR SVM AND η-PRIOR SVM

We repeated the study on the new algorithms, prior SVM and η-prior SVM, which are designed to

actually optimise prior PAC-Bayes bounds. The configurations classifier-bound considered for this

study were the following:

prior SVM + Prior PB: prior SVM described in page 14 and mixture-prior PAC-Bayes bound of

Corollary 7 with J = 10 priors .
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Figure 2: Bounds learning a prior classifier.

η-PSVM + Prior PB: η-prior SVM of Section 4.2.1 and mixture-prior PAC-Bayes bound of Corol-

lary 7 considering η comes from a mixture prior setting of J = 50 components η jwr with the

η j equally spaced between η1 = 1 and η50 = 100. This setting minimizes the penalty term

in the prior PAC-Bayes bound as we are not actually using these components to learn the

posterior.

η-PSVM + τ-Prior PB: η-prior SVM and the bound in Theorem 8.

As baseline results we include the better bounds found in the analysis of the SVM:

τ-Prior PB: τ prior PAC-Bayes bound of Theorem 8 with J = 10 and τ = 50.

E Prior PB: expectation-prior PAC-Bayes bound of Theorem 10.

The plots in Figure 2 show the bounds on the true error, QD , for the studied configurations

bound/classifier as a function of the size of the training set. Table 3 shows these results for a training

set of 80% of the complete data. In general, the bounds achieved on prior SVM and η-prior SVM

are significantly tighter than the bounds on the SVM, being the mixture-prior PAC Bayes bound on

prior SVM the tightest result.
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Data Set

Bound han wav pim rin spa

Prior SVM

Prior PB 0.037 ± 0.004 0.128 ± 0.004 0.386 ± 0.016 0.046 ± 0.003 0.137 ± 0.005

η-Prior SVM

Prior PB 0.050 ± 0.006 0.154 ± 0.004 0.419 ± 0.014 0.053 ± 0.004 0.177 ± 0.006

τ Prior PB 0.047 ± 0.005 0.135 ± 0.004 0.397 ± 0.014 0.050 ± 0.004 0.147 ± 0.006

SVM

τ Prior PB 0.088 ± 0.004 0.152 ± 0.004 0.406 ± 0.013 0.110 ± 0.004 0.172 ± 0.006

E Prior PB 0.107 ± 0.001 0.133 ± 0.001 0.352 ± 0.004 0.194 ± 0.000 0.221 ± 0.001

Table 3: Values of the bounds on the prior SVM and η-prior SVM classifiers.
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Figure 3: Bounds when prior and posterior have a different value of C.

Notice that in most of the configurations where the prior is learnt from a separate set the new

bounds achieve a significant cut in the value of the PAC-Bayes bound, which indicates that learning

an informative prior distribution helps to tighten the PAC-Bayes bound.

Furthermore, the two stages training of prior SVM and η-prior SVM enable the use of a different

value of C for the prior and posterior classifiers. The intuition behind this proposal is that once the

prior is fixed, the posterior could possibly accept a higher value C without overfitting.
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Data Set

Bound han wav pim rin spa

Prior SVM

Prior PB 0.037 ± 0.004 0.128 ± 0.004 0.386 ± 0.016 0.046 ± 0.003 0.137 ± 0.005

Prior PB 2C 0.033 ± 0.002 0.126 ± 0.004 0.341 ± 0.019 0.041 ± 0.002 0.113 ± 0.004

η-Prior SVM

Prior PB 0.050 ± 0.006 0.154 ± 0.004 0.419 ± 0.014 0.053 ± 0.004 0.177 ± 0.006

Prior PB 2C 0.035 ± 0.003 0.154 ± 0.004 0.401 ± 0.018 0.049 ± 0.003 0.150 ± 0.005

τ Prior PB 0.047 ± 0.005 0.135 ± 0.004 0.397 ± 0.014 0.050 ± 0.004 0.147 ± 0.006

τ Prior PB 2C 0.031 ± 0.002 0.126 ± 0.004 0.345 ± 0.019 0.039 ± 0.002 0.111 ± 0.005

Table 4: Values of the bounds on the prior SVM and η-prior SVM classifiers when different values

of C are used for prior and posterior.

Data Set

Bound han wav pim rin spa

Prior SVM

Prior PB 0.010 ± 0.004 0.086 ± 0.007 0.246 ± 0.034 0.016 ± 0.003 0.082 ± 0.009

Prior PB 2C 0.011 ± 0.003 0.091 ± 0.009 0.251 ± 0.038 0.017 ± 0.003 0.069 ± 0.007

η-Prior SVM

Prior PB 0.010 ± 0.005 0.086 ± 0.006 0.236 ± 0.028 0.016 ± 0.003 0.080 ± 0.009

Prior PB 2C 0.011 ± 0.003 0.087 ± 0.009 0.242 ± 0.039 0.018 ± 0.003 0.068 ± 0.008

τ Prior PB 0.010 ± 0.005 0.085 ± 0.006 0.238 ± 0.028 0.016 ± 0.003 0.080 ± 0.009

τ Prior PB 2C 0.011 ± 0.003 0.092 ± 0.010 0.248 ± 0.042 0.018 ± 0.003 0.070 ± 0.007

SVM

10 FCV 0.008 ± 0.003 0.087 ± 0.007 0.251 ± 0.023 0.016 ± 0.003 0.067 ± 0.006

Table 5: Test error rates achieved by prior SVM and η-prior SVM classifiers when the hyperparam-

eters are those that minimise a PAC Bayes bound. Prior and posterior are allowed to use a

different value of the hyperparameter C.

To evaluate the goodness of this modification, we carried out again the experiments in this

subsection but now allowing the prior and posterior to take different values of C from within the

range proposed at the beginning of the section. The results displayed in Figure 3 and Table 4 show

that the introduction of a different C significantly reduces the value of the bound.

Finally, Table 5 gives some insight about the performance of the new algorithms in terms of

observed test error. The joint analysis of the bounds and the error rates on a separate test set shows

that the prior PAC Bayes bounds are achieving predictions on the true error very close to the empir-

ical estimations; as an example, for data set wav the bound on QD is around 13% and the empirical

estimation is around 9%. Moreover, the combination of the new classifiers and bounds perform

similarly to an SVM plus ten fold cross validation in terms of accuracy.

Figure 4 tries to illustrate qualitatively the discrepancies among the test error rate observed in

crossvalidated SVM and that observed in the prior SVM. The figure shows the observed test error

and the value of bounds on QD as functions of C for data sets wav and pim. The vertical pink

line shows the crossvalidated C. The value of σ was fixed in both cases to the square root of the

input data. In both cases, it is very noticeable the dramatic increase in the value of the bound as C

increases, compared with a slight increase in the observed test error. A broadly accepted intuition
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Figure 4: Values of bounds and observed test error rate as a function of C for data sets wav (top

plot) and pim (bottom).

says that high values of C are likely to result in overfit, since the SVM is keener in reducing the

training set error. However, our experiments seem to show that the bounds are overreacting to that

behavior.

6. Conclusions

In this paper we have presented some strategies to tighten the already tight PAC-Bayes bound for

binary classifiers by learning an informative prior distribution on classifiers. We have studied the

SVM case, considering multivariate Gaussian priors and using some training data to infer their
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mean and/or covariance matrix. The first strategy, named prior PAC Bayes bound, considers an

identity covariance matrix. Then, an SVM learn on a separated subset of training samples serves as

a direction along which to place the mean of the prior. This prior can be further refined in the τ-

prior PAC Bayes bound case, where this direction is also used to stretch the covariance matrix. The

second strategy, named expectation prior PAC-Bayes bound also considers identity covariances, but

expresses the direction to place the prior as an statistic of the training data distribution and uses all

the training samples to estimate such statistic. The expectation prior can also be refined stretching

the covariance along the direction of the mean, yielding the τ-expectation prior PAC-Bayes bound.

The experimental work shows that these prior PAC-Bayes bounds achieve estimations of the

expected true error of SVMs significantly tighter than those obtained with the original PAC-Bayes

bound. It is remarkable that the prior PAC Bayes bounds improve the tightness of the PAC-Bayes

bound even when the size of the training set experiences reductions of up to an 80% of its size.

The structure of the prior PAC-Bayes bound: learn a prior classifier using some data and then

consider the SVM to be a posterior classifier inspired the design of new algorithms to train SVM-like

classifiers. The prior SVM proposes a set of prior parts (fixed scalings along a prior direction learnt

with separate data) and then fits a posterior part to each prior. The overall prior SVM classifier

is the prior-posterior couple that yields a lower value of the bound. The η-prior SVM learns the

scaling of the prior part and the posterior in the same quadratic program, thus significantly reducing

the computational burden of the training. The analysis of these classifiers under the prior PAC-

Bayes framework shows that the achieved bounds are dramatically tighter than those obtained for

the original SVM under the same framework. Moreover, if the bound drives the selection of the

hyperparameters of the classifiers, the observed empirical test error rate is similar to that observed

in the SVM when the hyperparameters are tuned via ten fold cross validation.

Moreover, the prior SVM enables the use of different values of the regularisation constant C

for both prior and posterior parts, which further tightens the bounds. The prior SVM classifiers

with hyperparameters selected by minimising the τ-prior PAC Bayes bound achieve classification

accuracies comparable to those obtained by an SVM with its parameters fixed by ten fold cross

validation; with the great advantage that the theoretical bound on the expected true error provided

by the τ-prior PAC Bayes bound is tightly close to the empirically observed.

All in all, the final message from this work is that the use informative priors can significantly

improve the analysis and design of classifiers within the PAC-Bayes framework. We find the study

of ways of extracting relevant prior domain knowledge from the available data and incorporating

such knowledge in the form of the prior distribution to be a really promising line of research.
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Appendix A.

The first step is to construct a Lagrangian functional to be optimized by the introduction of the

constraints with multipliers αi and νi, i = 1, . . . ,m− r,

LP =
1

2
‖w−ηwr‖2 +C

m−r

∑
i=1

ξi −
m−r

∑
i=1

αi

(

yiw
Tφ(xi)−1+ξi

)

−
m−r

∑
i=1

νiξi , νi,αi ≥ 0. (19)

Taking the gradient of (19) with respect to w and derivatives with respect to ξi we obtain the opti-

mality conditions:

w−ηwr =
m−r

∑
j=1

α jy jφ(x j), (20)

C−αi −νi = 0 ⇒ 0 ≤ αi ≤C i = 1, . . . ,m− r. (21)

Plugging Equation (20) in functional (19) and applying the optimality condition (21) we arrive at

the dual problem

max
αi

1

2

∥

∥

∥

∥

∥

m−r

∑
j=1

α jy jφ(x j)

∥

∥

∥

∥

∥

2

−
m−r

∑
i=1

αi

(

yi

(

ηwT
r +

m−r

∑
j=1

α jy jφ
T (x j)

)

φ(xi)−1

)

subject to

0 ≤ αi ≤C i = 1, . . . ,m− r.

Now we can replace the prior wr by its corresponding combination of mapped input vectors, wr =
∑m

k=m−r+1 ykα̃kφ(xk) (with α̃k being the scaled version of the Lagrange multipliers that yield a unit

vector wr), and substitute kernel functions (κ(·, ·)) for the inner products to arrive at

max
αi

m−r

∑
i=1

αi −
m−r

∑
i=1

η
m

∑
k=m−r+1

αiyiα̃kykκ(xi,xk)−
1

2

m−r

∑
i, j=1

αiα jyiy jκ(xi,x j)

subject to

0 ≤ αi ≤C i = 1, . . . ,m− r.

Grouping terms we have

max
αi

m−r

∑
i=1

αi

(

1− yiη
m

∑
k=m−r+1

α̃kykκ(xi,xk)

)

−
1

2

m−r

∑
i, j=1

αiα jyiy jκ(xi,x j) (22)

subject to

0 ≤ αi ≤C i = 1, . . . ,m− r.

Now we can introduce the following matrix identifications to further compact Equation (22)

Y(m−r),(m−r) = diag({yi}m−r
i=1 ),

K(m−r),(m−r) = (K(m−r),(m−r))i j = κ(xi,x j) i, j = 1, . . . ,m− r,

H(m−r),(m−r) = Y(m−r),(m−r)K(m−r),(m−r)Y(m−r),(m−r), (23)
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v = (v)i =

(

1− yiη
m

∑
k=m−r+1

α̃kykκ(xi,xk)

)

i = 1, . . . ,m− r, (24)

α= [α1, . . . ,αm−r]
T . (25)

Plugging (23), (24) and (25) in (22), we arrive at its final form that can be solved by off-the-shelf

quadratic programming methods:

max
α

vTα−
1

2
αT H(m−r),(m−r)α (26)

with box constraints

0 ≤ αi ≤C i = 1, . . . ,m− r.

Once (26) is solved, the overall prior SVM classifier w can be retrieved from (20):

w =
m−r

∑
i=1

αiyiφ(xi)+η
m

∑
k=m−r+1

α̃kykφ(xk). (27)
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Abstract

We present an open-source platform-independent C++ framework for machine learning and com-
puter vision research. The framework includes a wide range of standard machine learning and
graphical models algorithms as well as reference implementations for many machine learning and
computer vision applications. The framework contains Matlab wrappers for core components of
the library and an experimental graphical user interface for developing and visualizing machine
learning data flows.

Keywords: machine learning, graphical models, computer vision, open-source software

1. Introduction

Machine learning and computer vision researchers have benefited over the last few years with the

increased availability of numerous high quality open-source toolkits, (e.g., Gashler, 2011; King,

2009; Sonnenburg et al., 2010). These toolkits focus on delivering efficient implementations of

mature algorithms but often omit infrastructure necessary for building end-to-end applications or

experimenting with new algorithms. Furthermore, domain specific applications, such as those in

computer vision, often require functionality from multiple packages complicating integration and

maintenance. We have developed the DARWIN framework for machine learning and computer vi-

sion that aims to alleviate these limitations.

The goal of the DARWIN framework is two-fold: First, to provide a stable, robust and efficient

library for machine learning practitioners, and second, to provide infrastructure for students and

researchers to experiment with and extend state-of-the-art methods. To this end, we provide infras-

tructure for data management, logging and configuration; a consistent interface to standard machine

learning and probabilistic graphical models algorithms; and well documented and easy to extend

source code. The DARWIN framework is distributed under the BSD license. Importantly, it is free

for both academic and commercial use.

2. Libraries

This section describes version 1.4 of the DARWIN framework. The code is divided into five main

libraries, which we describe below. Sample applications wrap these libraries to provide out-of-the-

box solutions, such classifier training and evaluation or probabilistic inference in graphical models.

More sophisticated user applications can easily make use of these libraries.

c©2012 Stephen Gould.
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The libraries have minimal dependence on external codebases, making DARWIN easy to install

and maintain. Specifically, we require RapidXML1 for XML parsing and Eigen2 for linear algebra.

OpenCV (Bradski and Kaehler, 2008) is required only for the (optional) computer vision component

of the framework. Applications may link to other libraries to provide additional functionality, for

example, GUI interfaces. An illustration of the library components and dependencies is shown in

Figure 1(a).

(a) (b)

Figure 1: (a) Illustration of the library components and dependencies of the DARWIN framework.

Dashed lines indicate optional components. (b) Screenshot of the experimental GUI for

developing machine learning data flows.

Base. The drwnBase library provides core infrastructure and utility routines for the rest of the

DARWIN framework, including (i) configuration management via command-line arguments and

XML file processing, (ii) message, warning and error logging, (iii) runtime code profiling, (iv)

basic multi-threading, and (v) miscellaneous routines for string manipulation, filesystem utilities,

statistical functions, and XML processing.

IO. Common input/output functionality is provided by the drwnIO library. The main component

of this library is a persistent data store for managing filesystem storage and in-memory caching of

multiple data records.

Machine Learning. The machine learning library, drwnML, contains implementations of various

algorithms for supervised and unsupervised machine learning. In particular, it includes algorithms

for classification, regression and probability distribution modeling.

The library also contains utilities for dimensionality reduction (such as PCA and Fisher’s LDA),

unconstrained optimization, linear programming, and maintaining sufficient statistics and collating

classification results. It also has a sparse vector implementation that is a drop-in replacement for the

STL vector container. The container can be used to efficiently store sparse vectors with minimal

changes to existing code. The concern here was memory usage rather than running time—a naive

dot-product implementation, for example, will iterate over all entries in the sparse vector (including

the zeros). More efficient dot-product member functions are provided by the sparse vector class.

1. RapidXML found at http://rapidxml.sourceforge.net.

2. Eigen found at http://eigen.tuxfamily.org.
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Probabilistic Graphical Models. The probabilistic graphical models library, drwnPGM, provides

functionality for (approximate) inference in structured probability spaces over discrete random vari-

ables. A factor graph data structure is used to specify the joint distribution in terms of functions, or

factors, on overlapping subsets of the variables. The library provides classes for specifying factors

and performing common factor operations, such as marginalization. This makes it easy to imple-

ment algorithms that manipulate factors. Reference implementations for many inference algorithms

are also provided. These include:

• exact inference via the junction tree algorithm (Koller and Friedman, 2009)

• message passing inference algorithms such as synchronous and asynchronous sum-product

and min-sum (max-product) (Koller and Friedman, 2009), and sequential tree-reweighted

message passing (TRW-S) (Kolmogorov, 2006)

• move-making algorithms such as iterated conditional modes (ICM) (Besag, 1986), and α-

expansion and αβ-swap (Boykov et al., 1999)

• linear programming relaxations, (e.g., Komodakis et al., 2007; Globerson and Jaakkola, 2007;

Sontag et al., 2008; Meshi and Globerson, 2011)

Our implementations perform favorably against other graphical models inference packages,

(e.g., Jaimovich et al., 2010; Mooij, 2010). For example, on the Rosetta Protein Design data set

(Yanover et al., 2006), our implementation of the method of Sontag et al. (2008) runs faster than

their code3 on 86.6% of the problems.

Computer Vision. The drwnVision library builds on the OpenCV computer vision library (Bradski

and Kaehler, 2008) to provide additional functionality for scene understanding. For example, the

library provides infrastructure for multi-class semantic segmentation. Many approaches have been

proposed to solve this problem. One approach is to construct a conditional Markov random field

(CRF) over pixels in the image with learned unary and pairwise terms (He et al., 2004; Shotton et al.,

2006). Another approach is to perform non-parametric label transfer by matching into a corpus of

annotated images, (e.g., Liu et al., 2009), and does not rely on discriminatively trained classifiers.

The vision library provides instances of both approaches and XML configurable applications make

it easy to train and evaluate on new data sets. Moreover, documentation and scripts for generating

results on standard data sets are distributed with the library.

Briefly, our CRF implementation is an enhanced variant of the baseline method described in

Gould et al. (2009). It includes learned boosted decision tree classifiers for the unary terms and

cross-validated contrast sensitive pairwise terms. On the standard 21-class MSRC data set (Crimin-

isi, 2004) we achieve 78.4% accuracy using only unary terms and 82.3% with the full CRF model;

on the Stanford Background data set (Gould et al., 2009) we achieve 77.1% (91.3%) accuracy and

79.9% (92.6%) accuracy on the semantic (geometric) labeling task for the unary and CRF model,

respectively.

Our label transfer implementation makes use of the PatchMatch algorithm (Barnes et al., 2009)

to construct a graph of dense patch correspondences between images. A full description of this

approach is provided in Gould and Zhang (2012). Here we achieve 64.9% and 69.6% for the MSRC

and Stanford Background data sets, respectively.

3. Code found at http://cs.nyu.edu/˜dsontag/code/mplp_ver1.tgz.
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3. Projects and Applications

The DARWIN framework is distributed with source code for a number of applications and projects

that expose the functionality of the library, for example, training and evaluating classifiers or per-

forming inference in probabilistic graphical models. Matlab mex wrappers are also provided for

accessing core algorithms within the framework from the Matlab environment.

For non-expect machine learning practitioners it is often helpful to provide a graphical environ-

ment for designing machine learning pipelines. To this end, we have developed an experimental

graphical user interface (GUI) for constructing machine learning data flows. A screenshot of the

GUI is shown in Figure 1(b). The GUI is built using wxWidgets,4 which must be installed sepa-

rately. We intend to continue developing the GUI in future releases.

4. Documentation

Comprehensive documentation, including download and installation instructions, API reference,

and short tutorial is available online at http://drwn.anu.edu.au. The documentation can also be

generated locally from the source code using Doxygen.5

Acknowledgments

Some components of DARWIN were derived from the STAIR VISION LIBRARY6 developed by the

same author while at Stanford University. We thank the many contributors to that library. We also

thank the early users of DARWIN for their suggestions and bug reports.

References

C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. PatchMatch: A randomized corre-

spondence algorithm for structural image editing. In SIGGRAPH, 2009.

J. E. Besag. On the statistical analysis of dirty pictures. Royal Stat. Soc. Series B, 48:259–302,

1986.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. In

ICCV, 1999.

G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly

Media, 2008.

A. Criminisi. Microsoft research cambridge (MSRC) object recognition pixel-wise labeled

image database (version 2), 2004. Available for download under license from MSR at

http://research.microsoft.com/en-us/projects/ObjectClassRecognition/.

M. S. Gashler. Waffles: A machine learning toolkit. JMLR, pages 2383–2387, July 2011.

4. wxWidgets found at http://www.wxwidgets.org.

5. Doxygen found at http://www.doxygen.org.

6. STAIR Vision Library found at http://ai.stanford.edu/˜sgould/svl.

3536



DARWIN

A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing algorithms for

MAP LP-relaxations. In NIPS, 2007.

S. Gould and Y. Zhang. PatchMatchGraph: Building a graph of dense patch correspondences for

label transfer. In ECCV, 2012.

S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric and semantically consistent

regions. In ICCV, 2009.

X. He, R. S. Zemel, and M. Carreira-Perpinan. Multiscale conditional random fields for image

labeling. In CVPR, 2004.

A. Jaimovich, O. Meshi, I. McGraw, and G. Elidan. FastInf: An efficient approximate inference

library. JMLR, 11:1733–1736, 2010.

D. E. King. Dlib-ml: A machine learning toolkit. JMLR, 10:1755–1758, 2009.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT

Press, 2009.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. PAMI,

2006.

N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via dual decomposition: Message-

passing revisited. In ICCV, 2007.

C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing: Label transfer via dense scene

alignment. In CVPR, 2009.

O. Meshi and A. Globerson. An alternating direction method for dual MAP LP relaxation. In

ECML, 2011.

J. M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in

graphical models. JMLR, 11:2169–2173, Aug 2010.

J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint appearance, shape and context

modeling for multi-class object recognition and segmentation. In ECCV, 2006.
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Abstract

Machine learning is most often cast as an optimization problem. Ideally, one expects a convex ob-
jective function to rely on efficient convex optimizers with nice guarantees such as no local optima.
Yet, non-convexity is very frequent in practice and it may sometimes be inappropriate to look for
convexity at any price. Alternatively one can decide not to limit a priori the modeling expressivity
to models whose learning may be solved by convex optimization and rely on non-convex optimiza-
tion algorithms. The main motivation of this work is to provide efficient and scalable algorithms
for non-convex optimization. We focus on regularized unconstrained optimization problems which
cover a large number of modern machine learning problems such as logistic regression, conditional
random fields, large margin estimation, etc. We propose a novel algorithm for minimizing a regu-
larized objective that is able to handle convex and non-convex, smooth and non-smooth risks. The
algorithm is based on the cutting plane technique and on the idea of exploiting the regularization
term in the objective function. It may be thought as a limited memory extension of convex regu-
larized bundle methods for dealing with convex and non convex risks. In case the risk is convex
the algorithm is proved to converge to a stationary solution with accuracy ε with a rate O(1/λε)
where λ is the regularization parameter of the objective function under the assumption of a Lips-
chitz empirical risk. In case the risk is not convex getting such a proof is more difficult and requires
a stronger and more disputable assumption. Yet we provide experimental results on artificial test
problems, and on five standard and difficult machine learning problems that are cast as convex and
non-convex optimization problems that show how our algorithm compares well in practice with
state of the art optimization algorithms.

Keywords: optimization, non-convex, non-smooth, cutting plane, bundle method, regularized risk

1. Introduction

Machine learning is most often cast as an optimization problem where one looks for the best model

among a parameterized family of models. The best model is defined as the one with the set of pa-

rameters that minimizes an objective function (i.e. criterion). For some years now machine learning

community aimed at designing new models in such a way that the resulting objective function is

convex. Doing so brings the fundamental advantage that one can rely on efficient convex optimiza-

∗. Part of this work was done when TMT Do was at LIP6.
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tion algorithms, with nice guarantees such as no local optima and easier theoretical analysis (e.g.

for the convergence rate). For instance logistic regression, support vector machine, maximum mar-

gin Markov network, and conditional random fields have found widespread use in basic machine

learning applications.

However, such a “simple convex modeling” may actually be outperformed by non-convex mod-

eling in some important applications. For example on MNIST database, convex Gaussian-SVM

reaches 1.4% error rate vs. 0.53% for non-convex convolutional nets (Jarrett et al., 2009).1 Also

non-convexity is much more frequent than convexity “in real life”. A number of problems that

machine learning researchers face today may not be easily cast as convex optimization problems

without limiting a priori the expressivity of the models used and the potential of the models to learn

(LeCun et al., 1998; Collobert et al., 2006; Bengio and Lecun, 2007). First, many real-world prob-

lems need complicated models whose learning requires solving non-convex optimization problems.

For instance, models with non-convex discriminant function such as neural networks and hidden

Markov models (HMMs) have become classical and reference models for many difficult tasks in vi-

sion and speech. Second, non-convexity of objective function naturally arises in learning paradigms

such as unsupervised and semi-supervised learning as well as in transductive SVM, etc (Chapelle

et al., 2006; Joachims, 1999).

Two strategies have been investigated to handle non-convexity in machine learning approaches.

Few works attempted to use convex relaxation technique in order to transform an original non-

convex problem into a convex one, this is a kind of “convexity at any price” strategy. Convex

relaxation mechanics strongly depend on the application, there is no principled method for turning

a non-convex problem to a convex one. It has been used in maximum margin clustering (Xu et al.,

2004), transductive SVM (Xu et al., 2008), discriminative unsupervised structured predictors (Xu

et al., 2006), large margin CDHMM (Sha and Saul, 2007). However, the robustness of this ap-

proach for complex problems is questionable since the use of strong assumptions may lead to poor

approximation quality, thus provide poor performance in practice.

Since convex modeling does not cover all real-world problems and convex relaxation techniques

are not always easy and robust, few researchers proposed to give up convexity and to focus on

non-convex optimization techniques, for instance concave-convex procedure (CCCP) (Yuille and

Rangarajan, 2003) and difference of convex (DC) programming (Horst and Thoai, 1999). These

non-convex optimization techniques have been successfully applied for some tasks such as ramp

loss SVM, non-convex TSVM (Collobert et al., 2006), kernel selection (Argyriou et al., 2006) or

non-convex maximum margin clustering (Zhao et al., 2008). Note that these techniques cover only

a limited class of problems and require an ad-hoc design for every machine learning problem. For

instance, the CCCP can theoretically be applied to any continuous objective function since any

such function can be decomposed into the difference of two convex functions, yet reformulating the

original function to a concave-convex form may call for mathematical efforts. Furthermore not all

decomposition are interesting.

We are concerned here with the development of generic optimization techniques able to deal

with the general unconstrained optimization problem

minw f (w)
with f (w) = λ

2‖w‖
2 +R(w)

(1)

1. A collection of evaluation results on MNIST data is available at: http://yann.lecun.com/exdb/mnist.
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where w ∈ RD are the model parameters and R(w) (the main objective) is a data-fitting measure-

ment to be minimized which we consider to be not necessarily smooth everywhere nor convex. This

unconstrained formulation covers many mentioned machine learning problems such as SVM, CRF,

M3N, transductive SVM, ramp loss SVM, neural network (Do and Artières, 2010), Gaussian HMM

(Do and Artières, 2009). Note that the formulation in Equation 1 does not apply easily to kernel

methods which are based on an implicit data transformation (e.g. RBF kernel) and are preferably

solved in the dual space. However, there are several methods that can enrich the model flexibility

without considering an implicit data transformation. As an example, for low dimensional or sparse

data, one could have an explicit and efficient transformation for polynomial kernel. Furthermore,

instead of using a predefined implicit transformation one could also learn the explicit data transfor-

mation directly such as latent feature discovery based on Boltzmann machine (Hinton et al., 2006).

At the end, while not covering kernel tricks, our general optimization problem can be used for

learning many powerful non-linear models.

As the problem in Equation 1 is at the heart of many machine learning application, it is important

to have an efficient non-convex optimization method for this class of minimization problem. Among

candidate families of optimization algorithms, cutting plane methods and bundle based methods

are very appealing for optimization problems such as the one in Equation 1 since, as opposed to

many gradient descent based methods, it can naturally deal with its non-smooth everywhere fea-

ture (Kiwiel, 1985; Gaudioso and Monaco, 1992; Makela, 2002; Makela and Neittaanmaki, 1992;

Schramm and Zowe, 1992). However the convergence of bundle methods for non-convex optimiza-

tion is rather slow in practice. And theoretical results on convergence rate are indeed missing for

non-convex objective functions. This explains in our opinion why the use of general non-convex

bundle methods is still limited in machine learning. Another reason is the lack of easy-to-use im-

plementation of non-convex bundle methods.

The recent success of convex regularized bundle methods (CRBMs) in machine learning (Smola

et al., 2008; Weimer et al.; Joachims et al., 2009) motivated us to investigate extensions of bundle

methods for proposing efficient algorithms able to deal with machine learning non-convex optimiza-

tion problems, which is the core idea of this work. To design such an algorithm, we investigated

new optimization algorithms that combines ideas from non-convex bundle methods (NBM) (Ki-

wiel, 1985) and from CRBMs (Smola et al., 2008). Our algorithm relies on two main contributions,

a limited memory variant of bundle methods and the extension of CRBM to non-convex risks.

The limited memory variant may be used in CRBM as well as in our non-convex extension of

CRBM. It allows limiting the algorithmic complexity of a single iteration in bundle methods while

it is usually increasing (at least quadratically) with the number of iteration, which makes bundle

methods not practical for difficult and large scale problems requiring thousands of iterations. We

show that our limited memory variant, when included to CRBM, inherits its fast convergence rate

in O(1/λε) iteration to reach a gap below ε.

Our extension of CRBM to non-convex risks includes the limited memory variant and is de-

signed to make bundle methods scalable for real life non-convex learning problems.2 This is

achieved by making the algorithm focus on the current best solution and by using a specific lo-

cality measure for regularized risks. Such a strategy allows fast convergence in practice on difficult

and large scale machine learning problems that we investigated. Unfortunately this comes with

only weak proof of convergence towards a stationary solution, relying on a moot assumption. In our

2. The MATLAB implementation of the proposed method is available at https://forge.lip6.fr/projects/nrbm.
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opinion it is a kind of trade-off, a price to pay to achieve algorithmic efficiency in practice. As a

consequence though we provide main theoretical results we do not include our convergence proofs

here since these are weak, but these are available in an internal report (Do and Artieres, 2012).

First, in Section 2 we provide background on the cutting plane technique and on bundle meth-

ods, and we describe two main existing extensions, the convex regularized bundle method (CRBM)

and the non-convex bundle method (NBM). Then, we present in Section 3 our two contributions

yielding our algorithm, NRBM, which is a regularized bundle method for non-convex optimization.

We propose few variants of our method in Section 3.3 and we discuss in Section 4 the convergence

behavior of our method both for convex risks and for non-convex risks. Finally we provide in

Section 5 a number of experimental results. We investigate first artificial test problems that show

that our algorithm compares well to standard non-convex bundle methods while converging much

faster, suggesting our algorithm may make large scale problems practical. Second we compare our

algorithms to dedicated state of the arts optimization algorithms for a number of machine learning

problems, including standard problems such as learning of transductive support vector machines

learning, learning of maximum margin Markov networks, learning conditional random fields, as

well as less standard but difficult optimization problems related to discriminative training of com-

plex graphical models for handwriting and speech recognition.

2. Background on Cutting Plane and Bundle Methods

We provide now some background on the cutting plane principle and on optimization methods that

have been built on this idea for convex and non-convex objective functions.

2.1 Cutting Plane Principle

Surely the most powerful method for non-smooth optimization is based on polyhedral approxima-

tions, whose basic element is the cutting plane (CP). For a given function f (w), a cutting plane

cw′(w) is a first-order Taylor approximation computed at a particular point w′:

f (w)≈ cw′(w) = f (w′)+ 〈aw′ ,w−w′〉

where aw′ ∈ ∂ f (w′) is a subgradient of f at w′. For convex function, the subdifferential ∂ f (w′)
is the set of vectors a that satisfies: f (w) ≥ f (w′)+ 〈aw′ ,w−w′〉. The concept of subdifferential

is also generalized for non-convex functions, which is defined as the set of vectors a that satisfies:

f ◦(w′;h) ≥ 〈a,h〉 ∀h, where f ◦(w′,h) denotes the generalized directional derivative of f at w′ in

the direction h.

Go back to the definition of the cutting plane approximation based on Taylor approximation, it

may be rewritten as:
cw′(w) = 〈aw′ ,w〉+bw′

with aw′ ∈ ∂ f (w′)
bw′ = f (w′)−〈aw′ ,w′〉.

(2)

A cutting plane cw′ is an approximation of f which is accurate for w lying in the vicinity of w′ where

the CP is defined, i.e. where the subgradient is computed. The quality of such an approximation and

the area where it is accurate depend on higher order information on f such as the Hessian matrix.

Figure 1 illustrates the linear approximation implemented by a cutting plane for a one-dimensional

function. Importantly, a cutting plane of a convex function f is an underestimator of f .
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Figure 1: Basic approximation of a function f by a (underestimator) cutting plane at a point w′

(left), and a more accurate approximation by taking the maximum over many cutting

planes of f (right).

2.2 Cutting Plane Method for a Convex Objective

The cutting plane method has been proposed for the minimization of convex functions. In the case

of a convex objective, any cutting plane of the objective f is an underestimator of f . The idea of the

cutting plane method is that one can build an accurate approximation function (named gt hereafter)

of f , which is also an underestimator of f , as the maximum over many cutting plane approximation

built at different points {w1, ...,wt} as follows:

f (w)≈ gt(w) = max
j=1..t
〈aw j ,w〉+bw j . (3)

Of course gt(w) is an underestimator of f (w). It is called the approximation function of f at iteration

t.

The cutting plane method aims at iteratively building an increasingly accurate piecewise linear

underestimator of the objective function by successively adding new cutting planes to the approx-

imation g of f . If the approximation is good enough, one may hope that the minimum of f and

of its approximation g will be very close or even equal. Every iteration, one adds a new cutting

plane underestimator built at current solution, yielding a new piece-wise linear underestimator of

f as in Equation 3. The minimization of this underestimator approximation is usually called the

approximated problem (it is a linear program) and gives a new current solution, etc.

Note that the approximation function may not have a minimum, then artificial bounds may be

placed on the points of w, so that the minimization will be carried out over a compact set and

consequently a exists.

The cutting plane method is described in Algorithm 1, it is proved to converge in a finite number

of iterations to an ε-solution (Bertsekas et al., 2003).

2.3 Bundle Methods for a Convex Risk

Convex bundle method. One of the drawbacks of the cutting plane method is its instability. It may

make large steps away from the optimum even when the current solution is close to it. Standard con-

vex bundle method (CBM), also called proximal cutting plane method or proximal bundle method,

tries to overcome this problem by adding to the polyhedral approximation function a regularization
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Algorithm 1 Cutting Plane Method (for convex objective function)

1: Input: w1, f , ε
2: Output: w∗

3: for t = 1 to ∞ do

4: Compute awt and bwt according to Equation 2

5: Minimize gt(w) (defined as in Equation 3) to get wt+1← argminw gt(w)
6: gap = [min j=1..t f (w j)]−gt(wt+1)
7: if gap < ε then return wt

8: end for

Algorithm 2 Convex Regularized Bundle Method (CRBM)

1: Input: w1, R, ε
2: Output: w∗

3: for t = 1 to ∞ do

4: Compute awt and bwt of R at wt

5: w∗t = argminw∈{w1,...wt} f (w)
6: w̃t ← argminw gt(w) where gt(w) is defined as in Equation 6

7: gapt = f (w∗t )−gt(w̃t)
8: wt+1 = w̃t

9: if gapt < ε then return w∗t
10: end for

term. The approximation function becomes:

f (w)≈ gt(w) = (w−wt)
.Ht(w−wt)+ max

j=1..t
〈aw j ,w〉+bw j (4)

where Ht is a positive definite symmetric matrix. The regularization term forces the new solution not

to be too far from the current solution. In addition it makes the approximation function have a unique

minimum (as long as the Hessian matrix of the regularization term is positive-definite as in our

example) without adding artificial constraints. While the approximation function in Equation 4 can

be used to generate new points, the standard bundle method also includes a line-search procedure

which returns either a serious step (the objective at current solution has significantly decreased) or

a null step (the decrease of f is too low and the approximation function should be improved).

Convex regularized bundle method. The convex regularized bundle method (CRBM) (Smola et al.,

2008) is an instance of CBM algorithms for dealing with regularized (and convex) risks as in Equa-

tion 1. It relies on cutting planes that are built on the risk R(w) only and does not use a line search

procedure. Such a linear approximation of the risk R(w) yields a quadratic approximation of the

objective f (w):

f (w)≈
λ

2
‖w‖2 + 〈aw′ ,w〉+bw′ . (5)

These two approximation functions on R(w) and on f (w) are illustrated in Figure 2. Note

that this quadratic approximation of f (w) is more accurate than a cutting plane approximation on

f (w). Furthermore, this trick avoids adding an artificial regularization term into the approximation

problem as in standard bundle methods.
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Figure 2: Cutting plane approximations in CRBM : A linear underestimator of R(w) (a), and a

quadratic underestimator of f (w) = λ
2‖w‖

2 +R(w) derived from this linear underestima-

tor (b) (Cf. Equation 5)

CRBM is very similar to the cutting plane technique described before, where every iteration a

new cutting plane approximation is built (at the current solution) and added to the current approxi-

mation function. The approximation of f (w) at iteration t is then:

f (w)≈ gt(w) =
λ

2
‖w‖2 + max

j=1..t
〈aw j ,w〉+bw j (6)

and the approximation problem is

w̃t = argmin
w

gt(w) = argmin
w

λ

2
‖w‖2 + max

j=1..t
〈aw j ,w〉+bw j (7)

where 〈aw j ,w〉+ bw j is the approximation cutting plane of R built at w j, the solution at iteration

j. Importantly, if R(w) is convex then any cutting plane 〈aw j ,w〉+ bw j is an underestimator of

R(w), and its maximum, max j=1..t〈aw j ,w〉+ bw j , is also an underestimator approximation of R.

Hence, gt(w) are monotonically increasing quadratic underestimators of f (w) which converge to-

wards f (w) as cutting planes are added.

Minimizing the approximation problem in CRBM. The approximation problem (Equation 7) at iter-

ation t is an SVM-like optimization problem:

w̃t = argminw minξ
λ
2‖w‖

2 +ξ
s.t. 〈a j,w〉+b j ≤ ξ j = 1..t

with c j(w) = 〈a j,w〉+ b j. We can get its dual form easily through Lagrangian mechanics. The

Lagrangian of the above optimization problem is:

L(w,ξ,α) =
λ

2
‖w‖2 +ξ+ ∑

j=1..t

α j(〈a j,w〉+b j−ξ)

where α = (α1, ...,αt) are Lagrange multipliers. The solution is given by a saddle point of the

Lagrangian, that must be minimized wrt. primal variables (w,ξ) and maximized wrt. Lagrange

multipliers. At a saddle point, the derivative of the Lagrangian wrt. (w,ξ) must satisfy:

∂L
∂ξ = 0 ⇐⇒ ∑ j=1..t α j = 1,
∂L
∂w = 0 ⇐⇒ λw =−(∑ j=1..t α ja j).
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By substituting these results back into the Lagrangian, primal variables w and ξ disappear and

we get the dual problem:

αt = argmax
α∈Rt − 1

2λ‖αAt‖2 +αBt

s.t α j ≥ 0 ∀ j = 1..t
∑ j=1..t α j = 1

(8)

where At = [a1; ...;at ] is a matrix (with a j being row vectors), Bt = [b1; ...;bt ] is the vector of scalars

and α stands for the (row) vector of Lagrange multipliers (of length t at iteration t). Let αt be the

solution of the above dual problem at iteration t, the solution of the primal problem is given by:

w̃t =−αt At

λ ,
gt(w̃t) =− 1

2λ‖αtAt‖2 +αtBt .

Convergence rate of CRBM. The convergence of CRBM is proved based on the fact that the gap

between the best observed value f (w∗t ) and the minimum of the approximation function gt(w̃t)
decreases every iteration. Since gt(w) is an underestimator of f (w), the gap is greater than or equal

to the difference between the best observed value f (w∗t ) and the minimum of f (w). Therefore, if

gapt ≤ ε then w∗t is an ε-solution of f (w). By characterizing the decrease of the gap after each

iteration, the authors of CRBM proved that the method require O(1/λε) iterations to reach a gap

below ε (Smola et al., 2008).

2.4 Non-Convex Bundle Methods (NBM)

Bundle methods have also been extended to deal with non-convex functions and have become a

standard for minimizing non-smooth and non-convex function.

2.4.1 PRINCIPLE

There are many variants of non-convex bundle algorithm (NBM), with many parameters to tune. We

present here a simple description of the method to better stress its main features. Basically NBM

works similarly as standard bundle methods by building iteratively an approximation function via

the cutting plane technique. However since the objective is no more convex, such an approximation

function is not an underestimator of the objective anymore which makes things harder and requires

a more complicated algorithm.

Every iteration the algorithm updates a number of quantities, whose set is usually called the state

of the algorithm, based on the state in previous iteration. The state of the algorithm at iteration t,

named Bt , is a set of points, subgradients and locality measures to the current solution. At iteration

t, the algorithm performs the following steps:

• Determine the search direction. This is done through minimizing the approximated problem

defined by Bt . The approximation problem is an instance of quadratic programming similar

to the one in Equation 4, except that the raw cutting planes are adjusted to make sure that the

approximation is a local underestimator of the objective function. The minimization of the

approximation problem yields a new point w̃t .
• Perform a line search. The algorithm performs a special line search from the best current

solution w∗t to the minimum of the approximation problem w̃t .
3 The line search outputs a

3. Under some semi-smoothness assumptions it is proved that this line search algorithm terminates in a finite number

of iterations (Luksan and Vlcek, 2000).
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new solution wt+1. Two cases may arise. In a first case, this new solution does not lead to a

significant improvement (i.e. decrease) in the objective function, we say the current iteration

is a null step. In such a case, the best solution does not change (i.e. w∗t+1 ≡w∗t ). Alternatively

the new solution may bring a significant improvement in the objective (iteration is called a

serious step). Then one defines the new best solution as w∗t+1 ≡wt+1. Note that in both cases,

the approximation function is improved by adding a new cutting plane at wt+1. We do not

present in details the line search procedure since it is both rather complicated and standard.

Interested readers may find detailed description in the literature, e.g., (Luksan and Vlcek,

2000).

• Update the bundle and build a new approximation function. The set of cutting planes is

expanded with the new cutting plane built at wt+1. Due to the non-convex feature of the ob-

jective function, the definition of approximation is not trivial, involving additional concepts

such as locality measure, the strategy of NBM to deal with non-convexity will be detailed in

the next subsection. Importantly, note that one gets more cutting planes in the bundle as the

algorithm iterates, and such a ever increasing number of cutting planes may represent a poten-

tial problem wrt. computational and memory cost if many iterations are required. Usually to

overcome such a problem, one uses an aggregated cutting plane in order to accumulate infor-

mation of all cutting planes in previous iterations (Kiwiel, 1985). It allows discarding older

cutting planes and helps limiting the algorithmic complexity. For instance, one may keep a

fixed number of cutting planes in the bundle Bt by removing the oldest cutting plane. Then,

the aggregated cutting plane allows preserving part of the information brought by removed

cutting planes.

2.4.2 HANDLING NON-CONVEX OBJECTIVE FUNCTION

Bundle methods must be adapted to work for non-convex optimization since the core idea of using

a first order Taylor approximation as an underestimator of the objective function does not hold

anymore. Then, the standard approximation function, which is defined as the maximum over a

set of cutting plane approximations, is not an underestimator of the non-convex objective function

anymore. In addition although one may reasonably assume that a cutting plane built at a point w′

is an accurate approximation of f in a small region around w′, such an approximation may become

very poor for w far from w′. At the end, the maximum over cutting plane “approximations” may be

a very poor approximation of the objective.

An example of poor approximation is shown in Figure 3(a). The linearization error ( f (w)−
cw′(w)) of a cutting plane cw′ at a point w′′ may be negative, meaning that the function is overes-

timated at that point. In the following we will say in such a case that there is a conflict between

cutting plane cw′ and w′′. As can be seen, overestimation of a cutting plane at a local minimum will

probably “remove” this minimum from the set of reachable solutions. Figure 3(b) shows that all

three visible local minimums are “removed” by overestimation of the two cutting planes built at w′

and w′′.

Non-convex bundle method strategy. In non-convex bundle methods (Kiwiel, 1985; Gaudioso and

Monaco, 1992; Makela, 2002; Makela and Neittaanmaki, 1992; Schramm and Zowe, 1992) the

solution to overcome conflicts between a cutting plane cw′ and a point w′′ is to lower the cutting

plane cw′ by changing its offset while preserving the normal vector aw′ (see Figure 3(c)). This leads

to an adjusted cutting plane:

c
ad just
w′ (w) = 〈aw′ ,w〉+b

ad just
w′ .
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(a) Conflict (b) Bad approximation (c) Adjusting cutting plane

Figure 3: Cutting planes and linearization errors.

The offset bw′ is changed in b
ad just
w′ so that that the linearization error of c

ad just
w′ at w′′ is greater than

or equal to both, the absolute value of the linearization error between cw′ and f at w′′, and a locality

measure between w′ and w′′:

f (w′′)− c
ad just
w′ (w′′) ≥ | f (w′′)− cw′(w

′′)|, (9)

f (w′′)− c
ad just
w′ (w′′) ≥ γ‖w′′ −w′‖ω (10)

where γ≥ 0,ω≥ 1 are locality measure parameters. The condition (9) ensures that if the lineariza-

tion error, f (w′′)− cw′(w′′), is negative then the cutting plane has to be lowered at least twice the

amount that is required to have linearization error zero. In other words, in the case of negative

linearization error at w′′, the cutting plane is adjusted so that the new linearization error is posi-

tive, with at least the same magnitude as the “old” negative linearization error. The condition (10)

defines another underestimator on the linearization error (of the adjusted cutting plane) which is

based on the distance between two points w′ and w′′. The further the two points are the greater the

linearization error should be. The two conditions lead to the following offset change definition:

b
ad just
w′ = f (w′′)−〈aw′ ,w

′′〉−max
[

| f (w′′)− cw′(w
′′)|,γ‖w′′ −w′‖ω

]

.

This is the greatest offset (closest to bw′) that satisfies the two above conditions. Besides, one can

easily check that if cw′ already satisfies both conditions (9) and (10) then b
ad just
w′ = bw′ and c

ad just
w′ (w)

and cw′(w) coincide.

2.5 Conclusion

CRBM are a fast adaptation of bundle methods to convex and regularized risks. Every iteration a

new cutting plane is added to the bundle so that the size of the bundle at iteration t is t. This makes

tackling complex tasks, eventually requiring many iterations, difficult since the cost of solving the

minimization of the approximated function is quadratic in the size of the bundle. To make CRBM

more scalable we will provide a limited memory variant where the size of the bundle is limited to a

given size (theoretically three CP are sufficient) whatever the iteration.

General non-convex bundle methods have been proved to have global convergence to cluster

points which are stationary solutions. Note that a stationary solution is not necessarily a local

minimum but may be a saddle point or even a local maximum. In practice, however, there are

many hyper-parameters to tune (γ,ω, regularization term, and several hyper-parameters for the line

search procedure) and convergence rate is not guaranteed, both drawbacks preventing using such

algorithms for large scale applications. We will propose a variant of regularized bundle method that

is adapted to non-convex risks and which is scalable in practice.
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3. Non-Convex Regularized Bundle Method (NRBM)

The success of convex regularized bundle methods with improved convergence rate over bundle

methods, both in theory and practice, motivated us to investigate their extension to non-convex

optimization, leading to bundle methods for regularized non-convex risks (NRBM). To design such

an algorithm, we propose two main contributions, the extension of CRBM to non-convex risks and

a limited memory variant of bundle methods that allows limiting the algorithmic cost of a single

iteration.

The extension of CRBM for non-convex function is not straightforward since, as we already ob-

served when presenting NBM, the cutting plane approximation does not yield an underestimator of

the objective function. Our proposal is to exploit some techniques of NBM for handling non-convex

function while considering a special design of the algorithm in order to keep the fast convergence

rate of CRBM. On one hand, we use standard techniques such as the introduction of locality mea-

sure and the adjustment of cutting planes in order to build local underestimator of the function at a

given point. On the other hand, we propose novel techniques such as a particular definition of the

locality measure for regularized risk and the introduction of constraints on CPs adjustment when

dealing with conflicts, which guarantee a minimal improvement on the approximation gap within

an iteration. At the end, we come up with a non-convex variant which inherits, in practice, the

convergence rate of CRBM. Note however that we may only provide weak theoretical results on

the convergence to a local minimum for the non-convex case. Convergence analysis is discussed in

Section 4.

The ability of our method, NRBM, to deal with non-convex risk allows tackling a wide range

of application and especially a number of everyday machine learning problems. Yet the algorithmic

cost of a single iteration grows with the number of the iteration. Actually, the dual program of the

approximation problem minimization in Equation 8 has a memory cost of O(tD+ t2) for storing all

the cutting planes and the dot product matrix between cutting planes’ normal vectors (i.e. 〈ai,a j〉),
where t is the number of cutting planes (it is equal to the iteration number in CRBM) and D is the

dimensionality of w. In addition, the computational cost for solving the dual program is usually

quadratic or cubic in t. These costs may be prohibitive especially in situations where the objective

is hard to optimize and the algorithm requires a large number of iterations to converge (e.g. weak

regularization), where t may become very large. For instance, in experiments of training a linear

SVM for adult data set (Teo et al., 2007), CRBM requires thousands of iterations for small values

of λ. To overcome such an issue and to make our NRBM practical for large scale and difficult

optimization problems we propose a limited memory mechanism. It is based on the use of a cutting

plane aggregation method which allows drastically limiting the number of CPs in the working set at

the price of a less accurate underestimator approximation. Note that such a limited memory variant

may be used with convex and non-convex risks. Also, this limited memory variant applied to convex

risks may be shown to inherit the convergence rate (w.r.t. the number of iterations) of CRBM, while

the cost of every iteration does not depend on the iteration number anymore.

To ease the presentation, we will present in Section 3.1 the limited memory variant of bundle

methods for the special case of convex risks. Then, we will consider in Section 3.2 our non-convex

extension of CRBM for dealing with non-convex risks, named Non-convex Regularized Bundle

Method, with includes as a particular feature the limited memory strategy.
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Algorithm 3 Limited memory CRBM

1: Input: w1, R, λ, ε, M

2: Output: w∗

3: Compute aw1 and bw1 of R at w1

4: w̃1 =−a1/λ, ã1 = aw1 ; b̃1 = bw1 ; J1 = {1}
5: for t = 2 to ∞ do

6: Compute new CP (awt ,bwt ) of R at wt

7: w∗t = argminw∈{w1,...wt} f (w)
8: Jt ← UpdateWorkingSet(Jt−1, t,M)

9: [w̃t , c̃t ]←Minimize gt(w) in Equation 11

10: gapt = f (w∗t )−gt(w̃t)
11: if gapt < ε then return w∗t
12: end for

3.1 Limited Memory for Convex Case

Our goal here is to limit the number of cutting planes used in the approximation function, which can

be done by removing some of the previous cutting planes if the number of cutting planes reaches a

given limit. However, the approximation gap is no more guaranteed to decrease after each iteration

if one removes some of the CPs without care. The subgradient aggregation technique (Kiwiel,

1983) appears then to be an appealing solution since it can be used to accumulate information from

multiple subgradients. Our proposal is to apply a similar technique to the set of cutting planes

approximation of the risk function R, yielding an aggregated cutting plane.4 Interestingly, we can

show that if such an aggregated cutting plane is included in the approximation function, then one

can remove any (or even all) previous cutting plane(s) while preserving the theoretical convergence

rate O(1/λε) iterations of CRBM.

Recall that the approximation function at iteration t is :

gt(w) =
λ

2
‖w‖2 +max

((

max
j∈Jt

c j(w)

)

, c̃t−1(w)

)

(11)

where Jt ⊂ {1, .., t} stands for a working set of active cutting plane indexes that we keep at iteration t

and c̃t−1(w) = 〈ãt−1,w〉+ b̃t−1 is the aggregated cutting plane which accumulates information from

previous cutting planes, c1, ...,ct−1.

The limited memory CRBM is described in Algorithm 3. It takes as input an initial solution

w1, the convex risk function R, the regularization parameter λ, the tolerance ε, and the maximum

number of active CPs M ≥ 1. It produces as output a solution of the optimization problem, w∗. The

principle of the algorithm is similar to CRBM except that one has to decide how to define Jt via the

function UpdateWorkingSet(Jt−1, t,M) and how to define the aggregated cutting plane.

UpdateWorkingSet. At iteration t, a new cutting plane is added to the current set of cutting planes

Jt−1, but if Jt−1 is full (i.e., |Jt−1|= M) then we need to select a cutting plane in Jt−1 to remove. A

simple strategy is to replace the oldest cutting plane in Jt−1 by the new one: Jt = Jt−1∪ {t} \ {t−
M−1}. Alternately, one may rely on a more sophisticated way for selecting which cutting plane to

4. We prefer this terminology to standard aggregate subgradients to stress that some cutting planes might be fully

artificial and would not correspond to real subgradient of the risk in the non-convex case.
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Figure 4: Quadratic underestimator of gt(w) (solid line) and corresponding aggregated cutting

plane c̃t(w) (dash line)).

remove from Jt−1. In our implementation, we maintain a count for each CP which is the number of

iterations in which the CP does not contribute to the aggregation CP (see below for details about the

definition of the aggregation CP). Then the CP with highest count is selected to be removed.

Cutting plane aggregation. The use of an aggregated cutting plane is a key issue to limit storage

requirements and computational effort per iteration. The technique is inspired by the subgradient

aggregation idea of Kiwiel (1983), which can be viewed as building a low cost approximation of

the piece-wise quadratic function in Equation 4. Basically, by considering a linear combination

of subgradient of f computed in previous iterations, we can discard previous subgradients without

losing all information. In our method, we also use aggregation technique for building a low cost

approximation of the approximation function gt(w). Note that we use a slightly different terminol-

ogy (CP aggregation instead of subgradient aggregation) since our goal is to build an approximation

of f using cutting planes, rather than building an approximation of subdifferential as in standard

bundle methods which aims at finding a solution with small sub-gradient. There are two key differ-

ences between our CP aggregation technique and the subgradient aggregation proposed originally

by Kiwiel (1983). First, our method is specifically designed for quadratically regularized objective

which makes possible to show that our limited memory variant using CP aggregation inherits the

theoretical convergence rate of CRBM (as least for convex risks). Instead the standard subgradient

aggregation technique can be applied to any objective function by using an additional regularization

term in the search direction optimization problem. Second, while the original method focuses on

aggregating subgradients, our algorithm applies the aggregation idea to both the direction, ã, and to

the offset, b̃ (and also to the locality measure in the non convex case, see later in Section 3.2.4).

At iteration t of Algorithm 3, the cutting plane aggregation c̃t(w) is derived from the mini-

mization of gt(w). We use the cutting plane technique to build an underestimator of gt(w) at its

minimum w̃t = argminw gt(w). Although any linear combination of previous cutting planes could

yield an under estimator of gt(w), only one of them, that we note c̃t(w) hereafter, corresponds to a

tight quadratic approximation λ
2‖w‖

2 + c̃t(w) that reaches the same minimum as gt(w):

w̃t = argmin
w

gt(w) = argmin
w

λ

2
‖w‖2 + c̃t(w).

The particular property of c̃t(w) is important since it allows to guarantee that for the limited

memory version of the algorithm, the gap between the best observed objective value and the min-

imum of the approximated function is unchanged even if one discards all previous cutting planes.
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Figure 4 illustrates the quadratic function (in red dash line) derived from the aggregated cutting

plane at iteration t = 2. The cutting plane c̃t(w) can be defined based on the dual solution of the

approximation problem which may be characterized in primal and dual forms as follows:

Primal Dual

minw
λ
2‖w‖

2 +ξ
s.t 〈a j,w〉+b j ≤ ξ ∀ j ∈ Jt

〈ãt−1,w〉+ b̃t−1 ≤ ξ

maxα − 1
2λ‖αAt‖2 +αBt

s.t α j ≥ 0 ∀ j ∈ Jt ; α̃≥ 0

(∑ j∈Jt
α j)+ α̃ = 1

where At = [...;a j; ..., ãt−1] is a matrix (with a j and ãt−1 being row vectors), Bt = [...;b j; ...; b̃t−1] is

the vector of scalars and α stands for the (row) vector of Lagrange multipliers (of length |Jt |+1 at

iteration t). We denote α j as the Lagrange multiplier associated with the CP c j and we denote α̃ as

the Lagrange multiplier associated with the aggregated CP c̃ j−1. Let αt be the solution of the above

dual program then the minimizer of the primal can be expressed as:

w̃t =−
αtAt

λ
=−

∑ j∈Jt
α ja j + α̃ãt−1

λ
.

The following proposition show how to use αt for defining a tight underestimator of gt(w).

Proposition 1 Let c̃t(w) = 〈ãt ,w〉+ b̃t be the aggregated CP defined by:

ãt =αtAt = ∑ j∈Jt
α ja j + α̃ãt−1,

b̃t =αtBt = ∑ j∈Jt
α jb j + α̃b̃t−1

then the quadratic function λ
2‖w‖

2 + c̃t(w) is an underestimator of gt(w), which reaches the same

minimum value as gt(w) at the same point, w̃t .

Proof First, by construction we have w̃t =−
ãt

λ which implies that the derivative of λ
2‖w‖

2 + c̃t(w)

is null at w̃t . Second, we can show that λ
2‖w̃t‖2 + c̃t(w̃t) = gt(w̃t). Actually:

gt(w̃t) =− 1
2λ‖αtAt‖2 +αtBt =−λ

2‖
ãt

λ ‖
2 + b̃t

= λ
2‖

ãt

λ ‖
2−λ‖ ãt

λ ‖
2 + b̃t = λ

2‖w̃t‖2−〈ãt ,
ãt

λ 〉+ b̃t

= λ
2‖w̃t‖2 + 〈ãt , w̃t〉+ b̃t .

(12)

In other words, the quadratic function λ
2‖w‖

2 + c̃t(w) and the approximation function gt(w) reach

the same minimum value gt(w̃) at the same point w̃t .

Finally, we show that λ
2‖w‖

2 + c̃t(w) is an underestimator of gt(w). Let

ht(w) = max

[

max
j=∈Jt

〈a j,w〉+b j,〈ãt−1,w〉+ b̃t−1

]

be the piecewise linear approximation of R(w) at iteration t, we have:

0 ∈ ∂gt(w̃t)≡ λw̃t +∂ht(w̃t)

since w̃t is the optimum solution of minimizing gt(w). Note that ãt = −λw̃t , the above equation

implies that ãt ∈ ∂ht(w̃t). In other words, ãt is a subgradient of ht(w) at w̃t . Furthermore, since

gt(w̃t) =
λ
2‖w̃t‖2 +ht(w̃t), Equation 12 gives:

〈ãt , w̃t〉+ b̃t = ht(w̃t).
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The cutting plane c̃t(w) is then an underestimator of ht(w) built at w̃t (recall that ht(w) is convex),

and thus λ
2‖w‖

2 + c̃t(w) is a quadratic underestimator of gt(w) = λ
2‖w‖

2 + ht(w). Note that since
λ
2‖w‖

2 + c̃t(w) is an underestimator of gt(w) and gt(w) is an underestimator of f (w) at w∗t , the

quadratic function λ
2‖w‖

2 + c̃t(w) is also an underestimator of f (w) at w∗t .

3.2 Regularized Bundle Method for Non-Convex Risks

To handle non-convex objective function, we introduce some new notations in addition to the nota-

tion used in Algorithm 3. In the following, we recall useful notations from previous section, and we

introduce additional notations that will be useful hereafter.

Notations from limited memory CRBM. At iteration t, wt is the current solution and w∗t is the best

observed solution. Jt corresponds to the working set of cutting plane, which is involved in the

definition of the approximation gt(w). w̃t is the solution of the minimization of gt(w), it is also

considered as the solution in the next iteration.

Raw and modified cutting planes. We have to distinguish between a raw linear cutting plane of the

risk cw j (with cw j(w) = 〈aw j ,w〉+bw j ) that is built at a particular iteration j of the algorithm and the

eventually modified versions of this cutting plane that might be used in posterior iterations. Indeed

a cutting plane may be modified multiple times for solving conflicts as in standard NBM method.

At iteration t we note ct
j (with ct

j(w) = 〈a j,w〉+ bt
j) the cutting plane which is derived from cw j ,

the raw CP originally built at iteration j. Unlike NBM, the normal vector a j in our algorithm might

be different than the subgradient aw j computed at w j, due to our particular solving conflict method.

However, once defined at iteration j, the normal vector a j remains fixed over iterations. On the

contrary, the offset might be modified multiple times for solving conflicts occurring after iteration

j, and we use a superscript t indicating the iteration number for the cutting plane’s offset bt
j.

Bundle. The bundle Bt denotes the state of the algorithm at iteration t. It consists in a set of

cutting planes which were built at previous solutions, ct
j for j ∈ Jt . Similarly to non-convex bundle

methods, we define a locality measure which is associated to any active cutting plane. It is related

to the locality measure between the cutting plane (actually the point where the cutting plane was

built) and the best current observed solution. We note st
j the locality measure between cutting plane

ct
j and the best observed solution up to iteration t, w∗t . The full bundle information is:

Bt = {ct
j,s

t
j} j∈Jt ∪{c̃t

t−1, s̃
t
t−1}

where c̃t
t−1 is an aggregated cutting plane and s̃t

t−1 is its locality measure to the best observed

solution w∗t . Similar to the aggregation technique presented in Section 3.1, the aggregated CP c̃t
t−1

can be viewed as a convex combination of CPs in previous iterations. For non-convex objective

function, each CP in the bundle is associated with a locality measure, including the aggregated CPs

whose locality measure is a convex combinations of locality measures of other CPs.

3.2.1 SKETCH OF ALGORITHM

The main algorithm is described in Algorithm 4, for which the input is similar to the case of

Algorithm 3 except the fact that the risk R can be non-convex. To deal with non-convexity, the key

idea to use CPs in the bundle to build a local underestimator of f around the best observed solution.
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Algorithm 4 NRBM

1: Input: w1,R, λ, ε,M

2: Output: w∗

3: Initialization:

4: Compute cutting plane cw1 of R

5: [c1
1,s

1
1] = [c̃1

1, s̃
1
1] = [cw1 ,0]

6: w̃1 =−a1/λ
7: B1 = {c1

1,s
1
1, c̃

1
1, s̃

1
1}

8: for t = 2 to ∞ do

9: wt ← w̃t−1

10: Compute cutting plane cwt of R

11: w∗t = argminw∈{w1,...wt} f (w)
12: Bt = UpdateBundle(Bt−1,w∗t−1,w

∗
t ,cwt ,wt ,M)

13: (w̃t , c̃t
t , s̃

t
t) = MinimizeApproximationProblem(Bt ,λ)

14: gapt = f (w∗t )−gt(w̃t)
15: if gapt < ε then return w∗t
16: end for

Similar to CRBM and limited memory CRBM, the approximation problem is designed in such a

way that one can use the minimum of the approximation problem as the new current solution. In

other words, NRBM does not require a dedicated line search procedure to ensure convergence as in

the standard NBM (Kiwiel, 1985). Such a line search is not required for convergence matters in our

method but it may be still used for improving convergence rate in practice (see Section 3.3.2).

Initialization

Initialization consists in providing a first bundle B1. Starting with an initial solution w1, we

build the first cutting plane c1
1 = cw1 = 〈aw1 ,w〉+bw1 . Note that at iteration t = 1, there is only one

cutting plane c1
1 and the aggregated cutting plane is also c1

1: [c̃1
1, s̃

1
1] = [c1

1,s
1
1]. The approximation

function is then:

g1(w) =
λ

2
‖w‖2 + 〈a1,w〉+b1

1

which reaches its minimum at w̃1 = −a1/λ. The state of algorithm B1 is set to c1
1 and c̃1

1 (which

coincide) with their corresponding locality mesures to the best solution w1 (s̃1
1 = s1

1 = 0).

Iteration t

Every iteration the algorithm determine a new bundle Bt , the best observed solution up to it-

eration t, w∗t , and the new current (and temporary) solution wt . At iteration t > 1, few steps are

successively performed:

• Build a new cutting plane at w̃t−1 the minimizer of approximation function in previous itera-

tion (gt−1(w)).

• Update the best observed solution w∗t .

• Solve any conflict between the best observed solution,w∗t , and all cutting planes in the bundle.

This is done through a call to UpdateBundle function which we detail later. This yields a

piece-wise quadratic function gt which is a local underestimator approximation of f . As said

before, in addition to cutting planes built at previous solutions (e.g. at w1, ...,wt−1), we use a
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special aggregated cutting plane, c̃t
t−1 for gathering information of previous cutting planes up

to iteration t−1. The approximation function at iteration t is then:

gt(w) =
λ

2
‖w‖2 +max

[

max
j∈Jt

ct
j(w), c̃t

t−1(w)

]

(13)

where, as in Section 3.1, Jt stands for a subset of cutting planes defined in previous iterations

if one wishes to use a limited memory variant.

• Minimize gt . This gives a solution named w̃t which will be used in next iteration. Note that

a side effect of this minimization is the definition of a new aggregated cutting plane and its

locality measure to the best observed solutions.

This procedure is repeated until the gap (i.e. the difference between the best observed value of

objective function and the minimum of the approximation function) is less than a desired accuracy

ε. We say that an ε-solution has been reached.

We detail in the following sections how the approximation is built and procedure for solving

conflict in the update of the bundle. Then we provide details on our definition of the aggregated

cutting plane.

3.2.2 LOCALITY MEASURE AND CONDITIONS ON CPS

Given a set of cutting plane approximation of R, one could build a local underestimator of f in the

vicinity of w by descending CPs that yields non positive linearization error of f at w. Our algorithm

focus on solving conflicts between CPs in the bundle and the best observed solution w∗t . While

sharing some concepts with NBM such as locality measure, null step and descent step our method

is based on a new greedy strategy for solving conflicts which guarantee a minimum improvement

of the approximation gap after each iteration which is similar to CRBM.5

Locality measure definition. We propose to define the locality measure between a cutting plane

previously built at iteration j and the current best solution w∗t based on the trajectory from w j to w∗t .

We exploit the same shape of our regularization term (L2 norm) to define our locality measure.6 At

iteration t, we define the locality measure between CP ct
j built at w j and w∗t as:

st
j = s(w j,w

∗
t ) =

λ

2

(

‖w j−w∗j‖
2 +

t

∑
k= j+1

‖w∗k−w∗k−1‖
2

)

which yields a natural recursive formulate:

st
j = st−1

j +
λ

2
‖w∗t −w∗t−1‖

2,∀ j < t.

Lower bound and upper bound on offset adjustment. As in NBM, raw CP cannot always be used to

build an underestimator of f (w), which is non-convex so that CP need adjustments. We discuss two

conditions that define an upper and an underestimator on a CP’s offset modification when solving a

conflict with respect to w∗t .

5. Note that we use the terminology descent step instead of serious steps since descent step here is not fully similar to

serious step in standard non convex bundle methods.

6. Standard bundle methods use γdω where d is the Euclidean distance and γ > 0 and ω are hyper parameters (Cf.

Equation 10).
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Figure 5: Conflict between w∗t and a cutting plane cw′ .

First, as in standard NBM (recall Equation 10), we consider the following first condition requir-

ing that a CP built at w′, cw′ , gives a positive linearization error at w∗t , which must grow with the

locality measure of the CP to w∗t :

R(w∗t )− c(w∗t )≥ s(w′,w∗t ) (14)

where s(., .) is our non-negative locality measure between the two points. The positive value of

s(w′,w∗t ) ensures that the linear approximation cw′(w) is an underestimator of R(w) at least within

a small region around w∗t . Figure 5 illustrates this case. The cutting plane cw′ which was built at w′

does not satisfy condition 14. This conflict between cutting plane cw′ and w∗t is solved in NBM by

lowering cw′ (by tuning its offset b′) so that the linearization error at w∗t , R(w∗t )−cw′(w∗t ), becomes

at least s(w′,w∗t ). This yield an upper bound on the new offset b′:

b′ ≤ R(w∗t )−〈a
′,w∗t 〉− s(w′,w∗t ). (15)

Unfortunately if a cutting plane is lowered too much, the minimum of the approximation func-

tion is not guaranteed to improve every iteration anymore. For instance it may happen that the

minimum of the approximated function is not changed once the new cutting plane has been low-

ered, yielding a infinite loop without any improvement on the solution. Standard non-convex bundle

methods handle this problem with a special line search procedure (between the current best observed

solution and the minimum of the approximation problem) with stopping conditions that ensure some

minimal changes of the approximation problem.

We found instead that there is a simple sufficient condition that guarantees an improvement of

the minimum of the approximation function every iteration (required by Lemma 4). It concerns the

new added cutting plane only and writes: λ
2‖wt‖2 + 〈at ,wt〉+bt

t ≥ f (w∗t ). In other words, we need

to ensure that the approximation at wt using the new added cutting plane is greater or equal to the

best observed function value. Note that wt is the minimizer of the approximation in the previous

iteration, gt−1(w), this condition influences directly the gap between the best observed function

value and the minimum of the approximation. The condition can be seen as a lower bound on the

modified offset:

bt
t ≥ f (w∗t )−

λ

2
‖wt‖

2−〈at ,wt〉. (16)
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Algorithm 5 UpdateBundle

1: Input: Bt−1 = {ct−1
j ,st−1

j } j∈Jt−1 ∪{c̃t−1
t−1, s̃

t−1
t−1},w

∗
t−1,w

∗
t ,wt ,cwt ,M

2: Output: Bt = {ct
j,s

t
j} j∈Jt ∪{c̃t

t−1, s̃
t
t−1}

3: if w∗t 5= w∗t−1 then Descent Step

4: for j ∈ Jt−1

5: st
j = st−1

j + λ
2‖w

∗
t −w∗t−1‖

2

6: bt
j = min[bt−1

j ,R(w∗t )−〈a j,w∗t 〉− st
j]

7: end

8: s̃t
t−1 = s̃t−1

t−1 +
λ
2‖w

∗
t −w∗t−1‖

2

9: b̃t
t−1 = min[b̃t−1

t−1,R(w
∗
t )−〈ãt−1,w∗t 〉− s̃t

t−1]
10: c̃t

t−1(w) := 〈ãt−1,w〉+ b̃t
t−1

11: [ct
t ,s

t
t ] = [cwt ,0]

12: else Null Step

13: for j ∈ Jt−1

14: ct
j = ct−1

j ; st
j = st−1

j ;

15: end

16: c̃t
t−1 = c̃t−1

t−1 ; s̃t
t−1 = s̃t−1

t−1 ;

17: if condition (15) is not satisfied for cwt then

18: [ct
t ,s

t
t ] = SolveConflictNullStep(w∗t ,wt ,cwt )

19: else [ct
t ,s

t
t ] = [cwt ,

λ
2‖wt −w∗t ‖

2]
20: end

21: Jt =UpdateWorkingSet(Jt−1, t,M)
22: return Bt = {ct

j,s
t
j} j∈Jt}∪{c̃t

t−1, s̃
t
t−1}

3.2.3 BUNDLE UPDATE

The approximation function, gt , is refined every iteration, Algorithm 5 describes the U pdateBundle

process. It takes as input:
• The bundle at previous iteration
• The best observed solutions at previous iteration w∗t−1

• The best observed solutions at current iteration w∗t
• The current solution wt and its corresponding raw cutting plane, cwt .
The algorithm is designed so that at the end of iteration t, all (|Jt |+ 1) cutting planes in the

bundle (i.e. the |Jt | “normal” cutting planes and the aggregated cutting plane) satisfy condition in

Equation 15 while the new added cutting plane ct
t also satisfies condition in Equation 16. Note that

cwt always satisfies (16) by definition of w∗t , so that ct
t also satisfies (16) in case there is no conflict

(ct
t ≡ cwt ).

As the two conditions (15) and (16) involve the best observed solution, we distinguish two cases

when solving conflict. Either the current solution is the best solution up to now (hence w∗t 5= w∗t−1),

in which case we call the iteration a descent step. Or the current solution is not the best solution

(i.e. w∗t ≡ w∗t−1), then the iteration is said to be a null step. We detail these two cases now.

Descent Step. In the case of a descent step, condition (16) is trivially satisfied for the new added

cutting plane since ct
t ≡ cwt . Hence solving an eventual conflict is rather simple in this case. It is

done by setting:

bt
j = min[bt−1

j ,R(w∗t )−〈a j,w
∗
t 〉− st

j]
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Algorithm 6 SolveConflictNullStep

1: Input: w∗t ,wt ,cwt with parameters (awt ,bwt )
2: Output: ct

t with parameters (at ,bt
t) and st

t

3: st
t =

λ
2‖w

∗
t −wt‖2

4: Compute L,U according to Equation 17

5: if L≤U then [at ,bt
t ] = [awt ,L] else

6: at =−λw∗t NullStep2 case

7: bt
t = f (w∗t )−

λ
2‖wt‖2−〈at ,wt〉

for all j in the working set. A similar modification may be applied to the aggregated cutting plane:

b̃t
t−1 = min[b̃t−1

t−1,R(w
∗
t )−〈ãt−1,w

∗
t 〉− s̃t

t−1]

where s̃t
t−1 = s̃t−1 +

λ
2‖w

∗
t −w∗t−1‖

2. At the end, the adjusted aggregated CP (in the working set of

iteration t) is:

c̃t
t−1(w) = 〈ãt−1,w〉+ b̃t

t−1.

Null Step. In the case of a null step, the best observed solution did not change, so that st
j = st−1

j ,∀ j =

1, ...,(t−1) and s̃t
t−1 = s̃t−1

t−1. Since all cutting planes in Bt−1 were already adjusted to satisfy positive

linearization error condition wrt. the best solution at previous iteration, a conflict (if any) may only

arise between the new cutting plane cwt and the best observed solution w∗t . So that all CPs (including

aggregated CP) remain unchanged (see Algorithm 5 line 13) except the new added CP which must

be checked for conflict.

In the null step case, solving conflict is not as simple as in a descent step case since as we said

before, for convergence proof matters, we need the new cutting plane to satisfy both conditions (15)

and (16). Algorithm 6 modifies ct
t in such a way that it guarantees that the new cutting plane ct

t with

parameters at and bt
t satisfies conditions (15) and (16). In a first attempt it tries to solve the conflict

by tuning bt
t alone while fixing at = awt . Indeed conditions (15) and (16) may be rewritten as:

bt
t ≤ R(w∗t )−〈awt ,w

∗
t 〉− st

t =U,
bt

t ≥ f (w∗t )−
λ
2‖wt‖2−〈awt ,wt〉= L

(17)

which define an upper bound U and a lower bound L for bt
t . If L≤U any value in (L,U) works (in

our implementation we set bt
t = L).

However it may happen that L>U , then tuning bt
t is not enough (this is what we call a NullStep2

case in Algorithm 6). Both bt
t and the normal vector at need to be adjusted to make sure that the

conflict is solved (see Line 6 in Algorithm 6).

Figure 6(top-left) illustrates an example of NullStep2 where the gradient information given at wt

is not helpful for building a local underestimator approximation at w∗t . The quadratic approximation

corresponding to cutting plane cwt is plotted in orange, which is not a local underestimator of f (w)
at w∗t . The conflict is so severe that it cannot be solved by just lowering the cutting plane. It should

be lowered too much with respect to condition in Equation 15 (Figure 6 (top-right)), meaning that

the approximation function would be unchanged and the algorithm would loop without finding a

good solution.

In a NullStep2 case, we propose to ignore the gradient information at wt and to rather focus on

the region around the best observed solution w∗t by adding a particular CP (leading to a quadratic
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Figure 6: Illustration of NullStep2. Top-left: conflict arise at iteration t. Top-right: can not solve

conflict by descend the cutting plane. Bottom-left: Nullstep2, modifying the cutting plane

to solve the conflict at iteration t. Bottom-right: There is no conflict at iteration t +1.

local underestimator, λ
2‖w‖

2 + 〈at ,w〉+bt
t) satisfying both conditions in Equation 15 and 16). This

quadratic function is defined so that it reaches its minimum at w∗t and the linearization error of the

cutting plane 〈at ,w〉+bt
t at w∗t is λ

2‖wt−w∗t ‖
2 (see the orange quadratic curve in Figure 6 (bottom-

left)). The new cutting plane is defined as:

ct
t(w) = 〈at ,w〉+bt

t ,
at =−λw∗t ,
bt

t = f (w∗t )−
λ
2‖wt‖2−〈at ,wt〉,

st
t = λ

2‖wt −w∗t ‖
2.

This CP satisfies condition (16) by construction. It also satisfies condition (15) as we show now:

〈at ,w∗t 〉+bt
t = 〈at ,w∗t 〉+ f (w∗t )−

λ
2‖wt‖2−〈at ,wt〉

= R(w∗t )+ 〈at ,w∗t −wt〉+
λ
2 (‖w

∗
t ‖

2−‖wt‖2)
= R(w∗t )+ 〈at +

λ
2 (w

∗
t +wt),w∗t −wt〉

where we used the definition of the objective function f (w∗t ) =
λ
2‖w

∗
t ‖

2+R(w∗t ). Then, substituting

−λw∗t for at (Cf. Line 6) we obtain:

〈at ,w∗t 〉+bt
t = R(w∗t )−

λ
2‖w

∗
t −wt‖2

⇐⇒ 〈at ,w∗t 〉+bt
t = R(w∗t )− st

t

⇐⇒ bt
t = R(w∗t )−〈at ,w∗t 〉−

λ
2‖w

∗
t −wt‖2

and condition in Equation 15 is satisfied.
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Figure 7: Quadratic underestimator of gt(w) derived from the aggregated cutting plane c̃t
t(w).

3.2.4 APPROXIMATED PROBLEM AND AGGREGATED CUTTING PLANE

In the non-convex case the aggregated CP is still an underestimator of approximation problem.

Figure 7 illustrates the quadratic function (in orange) derived from the aggregated cutting plane at

iteration t = 2.

Solving the approximated problem and definition of the aggregated cutting plane are completely

similar to the case of limited memory CRBM, with the only difference that we use here at iteration

t the bundle at iteration t that may include cutting planes that have been modified during previous

iterations.The minimization of the approximation function (gt(w) in Equation 13) can be solved in

the dual space as:

Primal Dual

minw
λ
2‖w‖

2 +ξ
s.t 〈at

j,w〉+bt
j ≤ ξ ∀ j ∈ Jt

〈ãt
t−1,w〉+ b̃t

t−1 ≤ ξ

maxα − 1
2λ‖αAt‖2 +αBt

s.t α j ≥ 0 ∀ j ∈ Jt ; α̃≥ 0

(∑ j∈tJt
α j)+ α̃ = 1

where At = [...;at
j; ...; ãt

t−1] is a matrix (with at
j and ãt

t−1 being row vectors), Bt = [...;bt
j; ...; b̃t

t−1] is

the vector of scalars and α stands for the (row) vector of Lagrange multipliers (of length |Jt |+1 at

iteration t). We denote α j as the Lagrange multiplier associated with the CP ct
j and we denote α̃ as

the Lagrange multiplier associated with the aggregated CP c̃t
j−1. Let αt be the solution of the above

dual program then the minimizer of the primal can be expressed as:

w̃t =−
αtAt

λ
.

Hence the definition of the aggregated cutting plane follows:

ãt =αtAt ,
b̃t =αtBt .

Locality measure associated to the aggregated cutting plane.The aggregated CP c̃t
t accumulates in-

formation from many cutting planes built at different points so that one cannot immediately define a

locality measure s̃t
t between c̃t

t and the current best observed solution w∗t . However, c̃t
t being a con-

vex combination of cutting planes, we chose to define s̃t
t as the corresponding convex combination

of locality measures associated to cutting planes:

s̃t
t = ∑

j∈Jt

α js
t
j + α̃s̃t

t−1.
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Interestingly using this aggregated locality measure, one can show that there is no conflict between

c̃t
t and w∗t since R(w∗t )− c̃t

t(w
∗
t )≥ s̃t

t . Indeed, we have:

R(w∗t )− ct
j(w
∗
t ) ≥ st

j ∀ j ∈ Jt ,
R(w∗t )− c̃t

t−1(w
∗
t ) ≥ s̃t

t−1.

Multiplying these equations by α j’s and α̃ then taking the sum gives the result:

R(w∗t )− c̃t
t(w
∗
t )≥ s̃t

t .

3.3 Variants

In this section we discuss two variants (and their implementations issues) that allow speeding up

convergence in practice.

3.3.1 REGULARIZATION

In previous section we presented our method with a standard L2 regularization term λ
2‖w‖

2. Yet

this choice is not always a good one for non-convex optimization problems where convergence to

a poor local optima is a severe problem. Alternatively one may prefer to regularize around a first

reasonable solution wreg and use a regularization term such as ‖(w−wreg)‖2. For instance to learn

Hidden Markov Models with a large margin criterion using a variant of NRBM, we used a model

learned with Maximum Likelihood as wreg (Do and Artières, 2009). Furthermore, if all parameters

in w do not have the same nature (magnitude) then using only one weight-cost (λ) for all parameters

is not wise. So one may prefer the following regularization term:

λ

2
‖(w−wreg)⊗θ‖2

where θ is a positive vector of regularization weights and ⊗ stands for element-wise product. The

use of different θ values depending on the parameters allows introducing some prior information.

Again, taking our example of learning Hidden Markov Models, we used different θ values for

regularizing transition probabilities and emission probabilities parameters.

3.3.2 FAST VARIANT WITH LINE SEARCH

In Algorithm 4, the minimum point of the approximation function is not guaranteed to be a better

solution than the current best observed solution, which may result in null steps. Few works showed

that one can speed up cutting plane based methods with a linesearch procedure (Franc and Sonnen-

burg, 2008; Do and Artières, 2008), which may be efficient to compute in some cases (e.g. primal

objective of linear SVM).

The idea is that a line search ensures that we get a better solution every iteration, assuming that

the search direction is a descent direction. If the search direction is not a descent direction then

the line search returns the best solution along the search direction (should be close to the current

solution), which will be used to build a new cutting plane in the next iteration. In our case, without

specific knowledge of f (w) we use a general line search technique.

Since the line search may require considerable more function/subgradient evaluations, one can

initialize the step size based on the step size reached in previous iteration. In our implementation (a

line search with Wolfe conditions), initial step size is computed so that the step length is the same as
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the final stepsize in previous iteration. This simple implementation works well and most of the time

we need only one function/subgradient evaluation (when initial step size satisfies Wolfe conditions).

We investigated two strategies. In the full line search strategy , every iteration we add two cut-

ting planes to the approximation problem, one at the minimum point of the current approximated

problem and one at the solution of the line search. In this case, the role of the line search is to im-

prove the quality of the approximated problem every iteration. In the greedy line search strategy we

consider adding only one cutting plane at the solution of the line search in order to limit the number

of function/subgradient evaluation at each iteration. This strategy also works well in practice as we

will see in experiment section.

4. Convergence Analysis

In this section, we provide theoretical results for our algorithm. For a convex objective function,

when disabling locality measure (putting these to 0), our algorithm can be viewed as a limited

memory variant of CRBM, and we provide a proof on the convergence rate of the algorithm under

a standard assumption. For non-convex objective function, the convergence analysis is much more

complicated and requires a disputable assumption. For these reasons, we only present main results

for the non-convex case in this paper, while the corresponding proofs can be found in an internal

report (Do and Artieres, 2012).

4.1 Convergence Analysis for NRBM: Convex Case

We provide in this section theoretical results on the convergence behavior of our algorithm applied

to convex risks. First we present a theorem in Section 4.1.2 which characterizes its convergence rate

and shows that our algorithm inherits the fast convergence rate of CRBM from which it is inspired

(note that we consider here the particular case of quadratic regularization with non-smooth objective

function).

In the case of a convex risk one can either use the convex version of our algorithm which remains

to using Algorithm 3 or the non-convex version (Algorithm 4) while disabling all locality measure

(i.e. putting these to 0, Algorithm 4 will become Algorithm 3 since conflicts will not occur for

convex risk). We prove in the following the main results for the convex version.

4.1.1 ASSUMPTIONS

The necessary assumption for proving our main results are the following:

• H1 : The empirical risk is Lipschitz continuous with a constant G.

H1 is a rather standard assumption, which was used for proving convergence results in previous

works (Smola et al., 2008; Shalev-Shwartz et al., 2007; Joachims, 2006). It is in particular a reason-

able assumption in case of smooth almost everywhere risks such as those one gets using hinge loss

and maximum margin criterion (SVM, structured output prediction, etc).

4.1.2 MAIN RESULTS

We provide here an upper bound on the convergence rate of our variant of limited memory CRBM,

by studying the decrease of the gap, defined as the difference between the minimum observed value
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of the objective and the minimum of the current approximated problem, with iteration number.

Indeed, this gap can be used for bounding from above the accuracy of the current solution (in terms

of the objective value).

We begin with some preliminary results. Lemmas 1 and 2 are general results that are needed for

Lemma 3 which establishes a lower bound on the improvement of the approximation gap at each

iteration.

Lemma 1 Teo et al., 2007 The minimum of 1
2 qx2− lx with l,q > 0 and x ∈ [0,1] is bounded from

above by − l
2 min(1, l/q)

Lemma 2 Function h(x) = x− x
2 min(1,x/q) is monotonically increasing for all q > 0.

Proof We have :

h(x) =

{

x− x2/2q i f x < q

x/2 i f x≥ q

where x/2 is always monotonically increasing, then h is for monotonically increasing for x≥ q. For

x ∈ (−∞,q), h′(x) = 1− x/q > 0 because x < q and q > 0. Moreover, h is continuous (at x = q),

thus h is monotonically increasing whatever x.

Lemma 3 The approximation gap decreases according to:

gapt−1−gapt ≥min(
gapt−1

2
,
(gapt−1)2λ

8G2
) (18)

where the approximation gap is defined as gapt = f (w∗t )−gt(w̃t).

Proof We focus on deriving an underestimator on the minimum value of gt(w) based solely on

this aggregated cutting plane and on the new added cutting plane at iteration t. This is simpler

than exploiting the complete approximation function. Note that this is possible since the aggregated

cutting plane accumulates information about the approximation problem at previous iterations. We

have:

gt(w)≥
λ

2
‖w‖2 +max

[

〈ãt−1,w〉+ b̃t−1,〈at ,w〉+bt

]

. (19)

Let find the minimum of the right side. The dual program of this minimization problem is:

maxα̃t−1,αt −
λ
2‖

α̃t−1ãt−1+αt at

λ ‖2 + α̃t−1b̃t−1 +αtbt

s.t 0≤ α̃t−1,αt ≤ 1

α̃t−1 +αt = 1

where α̃t−1,αt ∈ R are Lagrange multipliers. This quadratic program has 2 variables and can be

further simplified as:

max
αt∈[0,1]

− 1
2λ‖ãt−1 +αt(at − ãt−1)‖2 +αt(bt − b̃t−1)+ b̃t−1

= max
αt∈[0,1]

− 1
2λ‖at − ãt−1‖2(αt)2 +( ‖ãt−1‖2

λ − 〈at ,ãt−1〉
λ +bt − b̃t−1)αt −

‖ãt−1‖2

2λ + b̃t−1

= − min
αt∈[0,1]

1
2 q(αt)2− lαt −gt−1(wt)

(20)
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where q = ‖at−ãt−1‖2

λ and l = ‖ãt−1‖2

λ − 〈at ,ãt−1〉
λ +bt − b̃t−1.

Note that wt = w̃t−1 =−
ãt−1

λ . Hence the linear factor may be rewritten as:

l = ‖ãt−1‖2

λ − 〈at ,ãt−1〉
λ +bt − b̃t−1

= 〈at ,wt〉+bt−〈ãt−1,wt〉− b̃t−1

= λ
2‖wt‖2 + 〈at ,wt〉+bt −

λ
2‖wt‖2−〈ãt−1,wt〉− b̃t−1

= f (wt)−gt−1(wt).

Using Lemma 1 the maximum value in Equation 20 is greater or equal than l
2 min(1, l/q)+

gt−1(wt) =
f (wt)−gt−1(wt)

2 min
(

1, f (wt)−gt−1(wt)
q

)

+ gt−1(wt). This latter quantity is then a lower

bound of the minimum of the right side in Equation 19, thus:

gt(wt+1) ≥min
(

f (wt)−gt−1(wt)
2 , ( f (wt)−gt−1(wt))2

2q

)

+gt−1(wt)

⇒ gt(wt+1) ≥min
(

f (w∗t )−gt−1(wt)
2 , ( f (w∗t )−gt−1(wt))2

2q

)

+gt−1(wt)

⇒ f (w∗t )−gt(wt+1) ≤ f (w∗t )−gt−1(wt)−min
(

f (w∗t )−gt−1(wt)
2 , ( f (w∗t )−gt−1(wt))2

2q

)

.

Note that f (w∗t )≤ f (w∗t−1). Replacing f (w∗t ) by f (w∗t−1) in the right side of previous equation and

using Lemma 2 one gets:

gapt ≤ f (w∗t−1)−gt−1(wt)−min
(

f (w∗t−1)−gt−1(wt)
2 ,

( f (w∗t−1)−gt−1(wt))2

2q

)

⇔ gapt ≤ gapt−1−min
(

gapt−1

2 ,
gap2

t−1

2q

)

.

Finally since q = 1
λ‖at − ãt−1‖2 ≤ 4G2/λ, and substituting this back in previous formula gives the

result.

Theorem 1 Algorithm 3 produces an approximation gap below ε in O(1/λε) iterations. More

precisely it reaches a approximation gap below ε after T steps with:

T ≤ T0 +8G2/λε−2

with T0 = 2log2
λ‖w1+a1/λ‖

G −2.

Proof Let consider the two quantities occurring in Equation 18, gapt−1/2 and λgap2
t−1/8G2.

We first show that the situation where gapt−1/2 > λgap2
t−1/8G2 (i.e. gapt−1 > 4G2/λ) may

only happen a finite number of iterations, T0. Actually if gapt−1 > 4G2/λ Lemma 3 shows that

gapt ≤ gapt−1/2 and the gap is at least divided by two every iteration. Then gapt−1 > 4G2/λ may

arise for at most T0 = log2(λgap1/4G2)+1. Since gap1 =
λ
2‖w1+a1/λ‖2 (it may be obtained ana-

lytically since the approximation function in the first iteration is quadratic), T0 = 2log2
λ‖w1+a1/λ‖

G −
2.

Hence after at most T0 iterations the decrease of the gap obeys gapt−gapt−1≤−gap2
t−1/8G2≤

0. To estimate the number of iterations required to reach gapt ≤ ε we introduce a function u(t) which

is an upper bound of gapt (Teo et al., 2007). Solving differential equation u′(t) = − λ
8G2 u2(t) with
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boundary condition u(T0) = 4G2/λ gives u(t) = 8G2

λ(t+2−T0)
≥ gapt/∀t ≥ T0. Solving u(t) ≤ ε ⇐⇒

t ≥ 8G2/λε+T0−2, the solution is reached with accuracy ε within
[

T0 +8G2/λε−2
]

iterations.

Next we show that if the algorithm reaches a null gap then it has found the global minimum.

Theorem 2 If gapt = 0 at iteration t of Algorithm 3, then w∗t = w̃t and w∗t is the global minimum

of f .

Proof

We have gt(w∗t ) = f (w∗t ) since the approximation errors are zero at points where cutting plane

were built. Hence, the null gap between f (w∗t ) and the minimum of gt , gt(w̃t), indicates that

gt(w∗t )= gt(w̃t), i.e., w∗t ≡ w̃t . Since gt(w) is an underestimator of f (w), it’s minimum value,gt(w̃t),is
less than or equal to the minimum of f (w). Therefore, w∗t is the minimum of f (w).

Note that in the case the algorithm can not reach null gap after a finite iterations, both f (w∗t ) and

gt(w̃t) converge to the minimum of f , f (w∗), since f (w∗t ) ≥ f (w∗), gt(w̃t) ≤ f (w∗) and f (w∗t )−
gt(w̃t)→ 0.

4.1.3 EXTENSION OF RESULTS TO VARIANTS WITH LINE SEARCH

As our proof is based on the cutting plane built at the minimum of approximated problem 〈at ,w〉+
bt , and the aggregated cutting plane, 〈ãt ,w〉+ b̃t , all theoretical results hold for the full line search

variant for which the two CPs are present in the approximation problem.

However, the things are more complicated for the greedy line search strategy and the proofs do

not hold anymore in their actual shape. Yet, such a strategy is less expensive than the full one and

it is efficient in practice. All results of the line search variant in the experiment section have been

gained using this implementation.

4.2 Convergence Analysis for NRBM : Non-Convex Case

We provide in this section theoretical results on the convergence behavior of our algorithm. First

we present a theorem in Section 4.2.2 which characterizes its convergence rate and shows that our

algorithm inherits fast convergence rate of CRBM from which it is inspired (note that we consider

here the particular case of quadratic regularization with non-smooth objective function). Next we

provide theorem that characterizes the solution the algorithm converges to. First of all we detail and

discuss the necessary assumptions used for proving these results, then we present our main results.

See Do and Artieres (2012) for detailed proofs.

4.2.1 ASSUMPTIONS

The necessary assumptions for proving our main results are the following:

• H1 : The empirical risk is Lipschitz continuous with a constant G.

• H2 : The number of iterations where a conflict is solved by modifying the normal vector at

(NullStep2 case in Algorithm 4) is finite.
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Under the H1 assumption, we could get the same theoretical results on convergence rate as

previous section for non-convex objective function. In other words, we can prove (with a more

complicated proofs) that the approximation gapt decrease towards zeros with a rate O(1/λε) and

that the algorithm has found a stationary solution if a null gap is reached. However, these results do

not imply the convergence to a global minimum for the non-convex case, and we need to provide

additional results for proving that the algorithm generates stationary solutions.

Our proof on the convergence towards stationary solution require an additional assumption H2,

which states that the number of NullStep2 in Algorithm 4 is finite. Recall that there is a NullStep2

at iteration t if and only if the raw cutting plane built at current solution wt is not compatible with

the best observed solution w∗t . Hence, since the current solution and the best observed solution

get closer as the iteration number increases we may hope that NullStep2 do not arise after a finite

number of iterations. Furthermore, it is very likely that if the algorithm gets close enough to a

stationary solution w∗ lying within a smooth area then it should converge towards this stationary

solution without conflicts anymore, as it would do in case of a convex and smooth objective. This

is particularly expected for our algorithm (compared to standard non-convex bundle methods) since

it focuses on maintaining a good approximation function around the best current solution. Another

important point is that we did not observe any case of infinite number of conflicts in our experiments

(on both academic optimization problems and machine learning problems) where NullStep2 mainly

occurred in a few early iterations.

At the end these claims are still not proved so that the convergence of NRBM to a stationary

solution is not fully proved here, but we believe that our convergence analysis establishes some

important elements towards a fast and fully proved bundle method for minimizing non-convex reg-

ularized function.

4.2.2 MAIN RESULTS

Similar to the case of convex risk, we can prove that the approximation decreases as the algorithm

iterates, under the hypothesis H1 only.

Lemma 4 The approximation gap of Algorithm 4 decreases according to:

gapt−1−gapt ≥min(
gapt−1

2
,
(gapt−1)2λ

8G2
)

where the approximation gap is defined as gapt = f (w∗t )−gt(w̃t).

Proof The proof is provided in supplementary material.

This lemma implies a first theorem that provides a theoretical lower bound on convergence

speed.

Theorem 3 Algorithm 4 reaches a gap below ε with a number of iterations O(1/λε).

Next we show that if the algorithm reaches a null gap then it has found a stationary solution.

Theorem 4 If gapt = 0 at iteration t of Algorithm 4, then w∗t = w̃t and w∗t is a stationary point of

objective function f , i.e. 0 ∈ ∂ f (w∗t ).
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Optimizer Non-Convex Non-Smooth line-search

Non-convex Bunlde Method (NBM) yes yes yes

LBFGS no no yes

Stochastic Gradient Descend (SGD) yes yes no

Subgradient Descend (SG) yes yes no

Concave-Convex Procedure (CCCP) dedicated solver for difference of convex functions

SVMstruct dedicated solver for a particular convex problem

UniverSVM dedicated solver for a particular non-convex problem

Table 1: List of solvers that are considered in the experimental comparison.

The two following theorems say that, under Hypothesis H1 and H2, if the sequence (wt) and

(w∗t ) generated by NRBM Algorithm are infinite they have cluster points, and these cluster points

are stationary solutions.7

Theorem 5 If Algorithm 4 does not reach a stationary solution in a limited number of iterations,

the two infinite sequences (wt) and (w∗t ) generated by Algorithm 4 have cluster points.

Theorem 6 Let w∗ be a cluster point of the sequence (w∗t ). Then under assumptions H1 and H2,

w∗ is a stationary solution of f (w).

4.2.3 EXTENSION OF RESULTS TO VARIANTS

Similarly to the convex case, our results on convergence rate and vonvergence to a stationary solu-

tion hold for the full line search strategy but not for the greedy line search strategy, the latter being

less expensive and equally accurate in practice.

5. Experiments

In this section, we compare our optimization method NRBM to standard and non-standard (i.e.,

methods designed for solving a particular machine learning problem) optimizers listed in Table 1.

We also implemented the sped-up version of NRBM with soft line search procedure, this latter is

called NRBMLS. The implementation of our two algorithms NRBM and NRBMLS are in Matlab

(available at https://forge.lip6.fr/projects/nrbm), and the implementation of NBM is in

Fortran (available at http://napsu.karmitsa.fi/lmbm/).

First a series of experiments has been performed on artificial problems where we tested opti-

mization algorithms for optimizing a manually defined non-convex and/or non smooth objective

function. This allows deep understanding of the behavior of our approach. Then we consider ma-

chine learning problems of increasing optimization difficulty. We first consider a convex and smooth

optimization problem (learning a CRF). Next we consider a convex and non smooth optimization

problem (learning a M3N). Next we consider a non-convex and non smooth optimization problem,

learning a transductive SVM. Finally we study two larger scale non-convex optimization problems

for learning graphical models for speech and handwriting recognition: learning Hidden Markov

Models with a large margin criterion (non smooth) (Do and Artières, 2009); and learning a model

7. Let {xn} be a sequence of real vectors, then x is a cluster point of {xn} if for every ε > 0, there are infinitely many

points xn such that ‖x− xn‖< ε.
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mixing a deep neural network feature extractor and conditional random fields (smooth) (Do and

Artières, 2010). For each of these optimization problems we compare our methods with state of the

art dedicated optimization methods. Note that although many optimizer are implemented in Matlab,

dynamic programming for structured problems (CRF, M3N, CDHMM, NeuroCRF) are written in C

mex-files.

5.1 Artificial Test Problems

Experiments were carried out on two academic non-convex test problem problem (Haarala et al.,

December 2004). We followed here experimental settings with a few modifications. Actually, we

add a regularization term to the initial solution of each problem. We did not use the origin as

regularization point, which may lead to trivial optimum solution 0 and optimum value 0, since this

may cause numeric problems when using relative tolerance on objective value. In the following, we

note wi the ith coordinate of vector w ∈ RD in the search space. We note w(0) the initial solution.

The two objective functions that we seek to optimize are named and defined as follows. Note

that both problems may be instantiated with a varying number of dimensions (i.e. parameters), D,

this allows investigating small to larger scale problems.

Chained Mifflin 2

f (w) =
λ

2
‖w−w(0)‖2 +

D−1

∑
i=1

(

−wi +2(w2
i +w2

i+1−1)+1.75|w2
i +w2

i+1−1|
)

with w
(0)
i =−1 for all i = 1, ...,D.

Chained Cessent 2

f (w) = λ
2‖w−w(0)‖2 +∑D−1

i=1 max
[

w2
i +(wi+1−1)2 +wi+1−1 ,
−w2

i − (wi+1−1)2 +wi+1 +1
]

with

w
(0)
i =

{

−1.5 when mod(i,2) = 1

2.0 when mod(i,2) = 0
.

We compare our algorithms, NRBM and NRBMLS (NRBM with linesearch), and standard Non-

Convex Bundle Method (NBM). In order to do so we conducted extensive experiments to investigate

the respective convergence behaviour of the methods (convergence rate and quality of the solution

found). Tables 2 and 3 report results gained for both data sets Chained Mifflin 2 and Chained 2

Cessent for NBM, NRBM and NRBMLS for various experimental settings: Data dimensionality D

ranges from 102 up to 105, and regularization parameter λ ranges from 0.1 to 1.0. We compare the

three algorithms with respect to:

• The value of the objective at the solution found.

• The number of objective evaluations needed.

• The cpu time of the optimization (indicative).

For NRBM and NRBMLS, optimization is performed until the approximation gap becomes less

than 0.1% of the absolute value of objective function (relative tolerance 10−3), and we also set the

relative tolerance of NBM to 10−3. Note however that the two stopping criteria do not coincide,

which may lead to different final accuracy (we will come back on this point later in sections 5.5 and
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(a) Chained Mifflin 2 D=10000

(b) Chained Cessent 2 D=10000

Figure 8: Comparison of convergence behavior for NRBM, NRBMLS, and NBM. Figures show

the value of the objective function as a function of the number of objective function

evaluations. There is one row of plots per data set, with a plot for every value of λ.

5.6). Note also that the CPU time of the optimization is not indicative and should be taken carefully

since implementations are not equally optimized.

We may draw some comments from these tables (note that we observed similar results, not

included here, on few other artificial data sets than the two studied here). First we focus on the

linesearch efficiency by comparing NRBM and NRBMLS in terms of convergence rate (measured

by the number of evaluations of the objective) and of accuracy of the solution reached. One can

easily observe that in some cases NRBMLS performs similarly as NRBM but in most cases it

significantly improves convergence rate and leads to a better solution, whatever the dimensionality

D, and whatever the amount of regularization λ.

From the point of view of convergence accuracy NBM often outperforms both of our methods,

NRBM and NRBMLS, and converges to a better solution with a very slightly lower objective value.

This is reasonable since NBM uses an additional stopping condition which is similar to the one used

in proximal bundle method. However, the results in Figure 8 suggest that NRBM and NRBMLS are

faster than NBM to reach a reasonable solution.

From the convergence rate point of view, NBM is faster than NRBM for low dimensionality and

low λ only, but NRBM is faster than NBM when λ increases for low dimensionality and whatever

λ for high dimensional problems. NRBMLS is always faster than NRBM and NBM, whatever λ
and whatever the problem dimensionality. Depending on the settings, NRBM and NRBMLS may

be up to 50 times faster than NBM, and this is particularly true for high dimensional optimization

problems. Finally, as λ gets bigger, both NRBM and NRBMLS converge faster, as expected by the

theoretical proven convergence rate O( 1
λε). On the contrary, NBM cannot always benefit from the

large value of λ (see Table 3).
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At the end, our algorithms are shown to converge towards solutions that compare well to the

ones found by standard non-convex bundle methods but they do converge much faster and the benefit

seems to increase with the dimensionality of the problem. This suggests that our methods are better

candidates for large scale machine learning problems involving non-convex optimization.

D = 102 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

obj. eval time obj. eval time obj. eval time obj. eval time

NBM -55.68 254 0.03s -41.32 29 0.00s -8.167 12 0.00s 24.92 10 0.00s
NRBM -54.19 501 1.52s -41.31 280 0.44s -8.163 20 0.02s 24.93 8 0.01s

NRBMLS -55.66 45 0.03s -41.32 18 0.01s -8.165 7 0.01s 24.93 5 0.01s

D = 103 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM -560.9 157 0.16s -416.3 48 0.04s -83.17 30 0.03s 249.9 23 0.02s
NRBM -556.2 501 1.96s -416.3 163 0.39s -83.16 19 0.04s 250.0 7 0.02s

NRBMLS -560.7 43 0.08s -416.3 19 0.04s -83.16 7 0.02s 250.0 4 0.01s

D = 104 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM -5613 431 4.77s -4166 123 2.20s -833.2 91 1.44s 2500 73 0.99s
NRBM -5609 501 13.77s -4166 67 2.13s -832.8 34 1.06s 2500 6 0.19s

NRBMLS -5611 24 0.54s -4166 13 0.36s -833.2 7 0.18s 2500 3 0.09s

D = 105 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM -56138 407 96.64s -41666 363 94.75s -8333 284 71.54s 25000 214 50.87s
NRBM -56119 172 57.57s -41661 33 12.84s -8332 32 9.2s 25000 6 1.73s

NRBMLS -56097 30 7.19s -41664 17 6.14s -8333 7 1.74s 25000 3 0.85s

Table 2: Chained Mifflin 2 data set. Comparative results of convergence quality (objective value,

column obj) and convergence rate (number of evaluations of the objective function, col-

umn eval and cputime, column time) for the three optimization methods NBM, NRBM

and NRBMLS, for various values of regularization level (λ) and for various data dimen-

sionality (D).

5.2 CRF Training: Smooth and Convex Objective Function

To begin with, we perform experiments with a smooth and convex objective function for learning

a conditional random field (CRF), and compare NRBMLS (convex setting) with NBM, Stochas-

tic Gradient Descent (SGD), and LBFGS, a popular choice of optimizer for CRF.8 Note that both

NRBM and LBFGS use an approximation of the objective function (non-smooth piece-wise quadratic

function in NRBM and a second order approximation in LBFGS). While the smooth approximation

in LBFGS is suitable for smooth objective function, we would like to know how the non-smooth

approximation works for smooth objective function. For LBFGS, the algorithm stop once the ratio

between the norm of the gradient and the norm of the solution is smaller than a small tolerance.

In our experiment, we find a tolerance parameter which yields comparative accuracies between

LBFGS and NRBMLS for several values of λ, but we could not guarantee fair stopping criterion in

all cases. The SGD setting is based on Leon Bottou implementation (Bottou, 2008).

We use a fixed tolerance on the norm of gradient for LBFGS which yields comparable accuracies

to NRBMLS for several values of λ.

8. We used a Matlab implementation of LBFGS provided by Fei Sha.
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D = 102 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

obj. eval time obj. eval time obj. eval time obj. eval time

NBM 15.75 58 0.00s 31.23 105 0.01s 77.84 124 0.02s 152.2 145 0.02s
NRBM 15.64 334 81.71s 31.23 132 1.91s 77.93 66 1.14s 152.3 21 0.02s

NRBMLS 15.63 111 8.12s 31.21 103 4.66s 79.15 49 0.38s 152.2 29 0.02s

D = 103 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM 156.3 180 0.21s 312.5 194 0.35s 780.9 146 0.17s 1531 163 0.18s
NRBM 157.1 501 11.44s 312.8 104 4.34s 781.6 41 0.32s 1532 15 0.03s

NRBMLS 156.3 105 11.75s 313.0 82 1.27s 781.5 36 0.18s 1531 17 0.03s

D = 104 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM 1563 276 5.76s 3125 311 6.49s 7812 194 3.06s 15316 289 4.02s
NRBM 1564 218 25.31s 3128 72 2.74s 7818 29 0.78s 15319 14 0.32s

NRBMLS 1564 75 6.9s 3127 42 2.64s 7829 22 0.40s 15327 16 0.21s

D = 105 λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

NBM 15625 628 154.32s 31251 660 178.43s 78126 636 143.97s 1.562e+5 628 151s
NRBM 15635 106 49.97s 31272 48 20.38s 78146 21 8.38s 1.532e+5 14 3.86s

NRBMLS 15638 62 30.12s 31269 48 16.29s 78247 21 6.24s 1.532e+5 16 2.51s

Table 3: Chained Cessent 2. Comparative results of convergence quality (objective value, column

eval) and convergence rate (number of evaluations of the objective function, eval and

cputime, column time) for the three optimization methods NBM, NRBM and NRBMLS,

for various values of regularization level (λ) and for various data dimensionality (D).

When working with convex function, we can simply disable the use of the locality measure

and the conflict handling procedure so that the method, NRBMLS-convex, becomes much simi-

lar to CRBM. Note that in NRBMLS-convex, we use the soft linesearch in order to speed up the

convergence rate.

We conducted experiments on an OCR data set used by Taskar et al. (2004) for evaluating

Maximum Margin Markov Networks. This OCR data set consists of 6877 words which correspond

to roughly 52,000 characters (Kassel, 1995). OCR data are sequences of isolated characters (each

represented as a binary vector of dimension 128) belonging to 26 classes. The data set was divided

in 10 folds for cross validation. We use here the 8 first folds for training and the two last fold for

testing.

Table 4 shows results of the four optimization algorithms for training CRFs with various reg-

ularization values (λ). As can be seen, the three batch optimization methods (NRBMLS, NBM,

and LBFGS) significantly outperform SGD for this task, which is in contradiction to Bottou’s result

where SGD clearly outperformed LBFGS for the CONLL2000 data (Bottou, 2008). We believe

that the difference between these two contradictory results may come from the fact that the OCR

problem is maybe more complex, meaning that the OCR problem would require more training data

(the predictive error rates on the two data sets are 14% for OCR and 6% for CONLL2000). This

suggests that the OCR data is less redundant than the CONLL2000 data, which would explain why

SGD, whose efficiency depends on data redundancy, is less effective for OCR data.

Now looking at batch optimization methods, NRBMLS requires less iterations than NBM to

reach similar objective value, it also slightly outperforms LBFGS. While these results might be

biased by unequal stopping criteria, they suggest that the non-smooth approximation technique also
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NRBMLS NBM LBFGS

λ time eval obj. err. time eval obj. err. time eval obj. err.

1e-04 306s 192 2.71 0.145 370s 244 2.71 0.145 340s 225 2.71 0.146

5e-05 405s 258 2.53 0.145 520s 353 2.53 0.144 458s 309 2.53 0.144

2e-05 408s 266 2.37 0.143 671s 471 2.37 0.142 583s 406 2.37 0.144

1e-05 419s 279 2.29 0.143 881s 636 2.29 0.142 583s 414 2.29 0.142

5e-06 556s 376 2.24 0.143 1199s 881 2.24 0.144 815s 593 2.24 0.143

2e-06 700s 483 2.21 0.145 1136s 834 2.21 0.145 956s 710 2.21 0.145

1e-06 753s 515 2.20 0.145 1026s 757 2.20 0.145 741s 554 2.20 0.146

SGD

100 epochs 500 epochs 1000 epochs 2000 epochs

λ time obj. err. time obj. err. time obj. err. time obj. err.

1e-04 161s 2.83 0.156 805s 2.75 0.146 1610s 2.72 0.145 3221s 2.71 0.146

5e-05 157s 2.71 0.156 784s 2.59 0.148 1567s 2.56 0.147 3134s 2.54 0.144

2e-05 151s 2.63 0.161 755s 2.48 0.153 1509s 2.44 0.151 3019s 2.41 0.147

1e-05 147s 2.60 0.165 733s 2.47 0.158 1466s 2.41 0.154 2933s 2.36 0.150

5e-06 143s 2.59 0.166 714s 2.48 0.161 1429s 2.42 0.158 2857s 2.36 0.154

2e-06 139s 2.58 0.168 696s 2.51 0.163 1392s 2.47 0.163 2784s 2.41 0.159

1e-06 137s 2.58 0.167 687s 2.52 0.167 1374s 2.50 0.164 2747s 2.45 0.163

Table 4: Comparative results of learning a CRF on OCR data set (Kassel, 1995). The maximum

number of gradient stored is set to 200 for NRBMLS, NBM and LBFGS. Each row corre-

sponds to a particular value of λ and provides for both methods the total cputime (time),

the number of objective evaluation (eval), the value of the objective at convergence (obj),

the classification error rate on the test set (err).

works well for smooth functions. Moreover, NRBM can exploit efficiently the regularization term

in order to outperform NBM.

5.3 M3N Training: Non-Smooth and Convex Optimization Problem

In a second series of experiments we compare the efficiency of different optimization methods on

learning a M3N, which yields a convex and non-smooth optimization problem. In addition to NBM

and SGD, we also report the results of SVMstruct, the state of the art solver for M3N. We used the

latest version SVMstruct 3.0 with 1-slack formulation, which is several orders of magnitude faster

than previous methods.9

Here again we use NRBM-convex and a soft linesearch for speeding up convergence rate (noted

NRBMLS). Note that SVMstruct 1-slack can also be viewed as a special case of CRBM, and the

implementation of SVMstruct includes also some speed up techniques in the dual space.

Table 5 reports experimental results on the OCR data set (with the same setting as before).

Similar to CRF experiments, we observe that SGD is not very effective. Looking at the results

9. The implementation of SVMstruct was downloaded from: http://svmlight.joachims.org/svm_struct.html.
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NRBMLS NBM SVMstruct

λ time eval obj. err. time eval obj. err. time eval obj. err.

1e-03 53s 158 2.92 0.143 61s 196 2.92 0.143 104s 1359 2.93 0.152

5e-04 69s 208 2.73 0.142 83s 269 2.73 0.141 137s 1849 2.74 0.148

2e-04 105s 314 2.52 0.135 151s 490 2.52 0.140 204s 2633 2.54 0.140

1e-04 161s 476 2.41 0.139 285s 926 2.41 0.138 311s 3644 2.43 0.140

5e-05 225s 644 2.33 0.137 383s 1241 2.33 0.138 468s 4975 2.35 0.138

2e-05 484s 1224 2.26 0.137 605s 1963 2.26 0.137 1432s 9292 2.28 0.139

1e-05 763s 1636 2.23 0.136 749s 2435 2.23 0.139 4834s 18369 2.25 0.143

SGD

100 epochs 500 epochs 1000 epochs 2000 epochs

λ time obj. err. time obj. err. time obj. err. time obj. err.

1e-03 41s 3.05 0.150 206s 2.96 0.146 411s 2.93 0.145 823s 2.92 0.144

5e-04 41s 2.91 0.150 207s 2.79 0.145 414s 2.76 0.144 827s 2.74 0.142

2e-04 41s 2.78 0.151 207s 2.66 0.145 415s 2.60 0.142 829s 2.56 0.140

1e-04 41s 2.71 0.149 206s 2.58 0.146 413s 2.53 0.144 825s 2.49 0.140

5e-05 41s 2.65 0.148 206s 2.52 0.145 412s 2.48 0.144 824s 2.43 0.142

2e-05 41s 2.63 0.147 205s 2.51 0.146 410s 2.47 0.145 821s 2.42 0.144

1e-05 41s 2.65 0.152 205s 2.49 0.147 409s 2.46 0.144 819s 2.42 0.144

Table 5: Comparative results of NRBM, NBM, SVMstruct and SGD for learning a M3N on OCR

data set (Kassel, 1995). Each row corresponds to a particular value of λ and provides for

both methods the total cputime (time), the number of objective evaluation (eval), the value

of the objective at convergence (obj), the classification error rate on the test set (err).

of NRBMLS and SGD-2000 epochs, we see that NRBMLS outputs better objective values and

test error rates, while requiring significantly less number of iteration. Furthermore, NRBMLS is

constantly faster than NBM of the same family, and significantly outperforms SVMstruct too.

5.4 Transductive SVM Training: Non-Smooth and Non-Convex Optimization Problem

Finally, we consider the problem of binary classification in a semi supervised setting with a training

set of n labeled examples {(x1,y1), ..,(xn,yn)} and m unlabeled examples {xn+1, ..,xn+m}. The

unconstrained primal formulation of TSVM is then:

min
w

λ

2
‖w‖2 +

1

n

n

∑
i=1

max(0,1− yi〈xi,w〉)+ γ
1

m

n+m

∑
i=n+1

max(0,1− |〈xi,w〉|)

where γ is a trade-off parameter between the labeled loss term and the unlabeled loss term. This

objective function belongs to the regularized function family that can be solved by NRBM. Further-

more it is also an instance of difference of convex functions and can be solved by CCCP.

We trained TSVM on a subset of the MNIST data set consisting of samples of digit 3 and 8,

the data was preprocessed with Principal Components Analysis (PCA) as is usually done. We split
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NRBMLS NBM CCCP Primal

γ time eval obj. err. time eval obj. err. time eval obj. err.

1 0.2s 24 0.26 0.057 0.8s 113 0.26 0.058 1.4s 181 0.26 0.057

2 0.1s 21 0.35 0.055 0.4s 59 0.35 0.054 1.6s 206 0.36 0.054

5 0.2s 25 0.55 0.051 1.1s 197 0.55 0.051 2.7s 375 0.57 0.057

10 0.3s 39 0.81 0.049 0.3s 57 0.81 0.051 4.8s 680 0.86 0.056

20 0.7s 90 1.20 0.048 0.5s 104 1.20 0.051 7.5s 1083 1.72 0.122

50 0.3s 41 2.19 0.084 1.0s 193 2.00 0.054 1.1s 151 9.38 0.548

UniverSVM SG 100 epochs SG 500 epochs SG 5000 epochs

γ time obj. err. time obj. err. time obj. err. time obj. err.

1 64s n.a. 0.057 1s 0.28 0.058 3s 0.26 0.057 33s 0.26 0.058

2 65s n.a. 0.057 1s 0.37 0.055 3s 0.35 0.054 32s 0.35 0.053

5 53s n.a. 0.049 1s 1.18 0.329 3s 0.61 0.051 32s 0.55 0.048

10 59s n.a. 0.075 1s 1.81 0.455 3s 1.62 0.401 30s 1.60 0.390

20 63s n.a. 0.055 1s 2.49 0.489 3s 2.37 0.476 27s 2.35 0.475

50 69s n.a. 0.143 1s 4.09 0.501 3s 3.60 0.505 26s 3.48 0.503

Table 6: Comparative results of transductive SVM training. Each row corresponds to a particular

value of γ. For each optimization method, we report the total cputime (time), the number

of objective evaluation (eval), the value of the objective (obj), the classification error rate

on the test set (err). The error rate of the initial solution (a SVM trained on labeled samples

only, with λ = 0.01) is 0.0776.

the training data into 200 labeled samples and 11782 unlabeled samples, the test set contains 1984

samples. We set λ = 0.01 since it gives best results on the test data.

We initialized the TSVM with the SVM solution on the labeled set. Then we optimized the

non-convex objective with NRBMLS, CCCP in primal (Yuille and Rangarajan, 2003), CCCP in

dual with UniverSVM, and Gradient Descent.10 For CCCP-Primal, we used our NRBM-convex

solver (disabling the use of locality measures) for every iteration, then we stopped CCCP once

the improvement of the objective function was not better than 1% of its current value. Note that

UniverSVM solve the TSVM problem in dual space and there is no equivalent concept of the number

of primal objective evaluations. We also perform experiments with Gradient Descend method since

the implementation of SGD for TSVM is not trivial.

The comparative results of the 5 optimization methods are shown in Table 6. We observe that

all methods achieve similar best error rates (0.048 − 0.049) but primal optimization methods out-

perform the only one dual optimization method (UniverSVM) in term of speed. Looking at each

row (for the same γ value), we see that NRBMLS always reach a good solution which make it the

most robust optimizer in this experiment.

The behavior of Subgradient Method (SG) is quite complex. On one hand, one observe that

it seems to converge to the same solution of NRBMLS for small values of γ. On other hand, for

10. The implementation of UniverSVM was downloaded from: http://www.kyb.tuebingen.mpg.de/bs/people/

fabee/universvm.html.
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large γ (i.e. the non-convex term is more important), the solution found by SG is not good in term

of objective value and test error rate. Although SG and NRBMLS reach the same best error rate

(0.048), SG requires a larger number of iterations to converge. This suggests the potential of using

SG for the TSVM problem, but we need a very careful design (learning rate, update rule, etc.) to

overcome the slow convergence rate.

Comparing NRBMLS and CCCP-Primal, we see that NRBMLS clearly outperforms CCCP, it

is faster and converges to a better solution. This can be explained by the fact that CCCP spends too

much effort to minimize the convex approximation function (whose evaluation requires the same

computing cost as the original non-convex function) every CCCP iteration. While convex approx-

imation of non-convex function is often accurate only on a neighborhood of the coordinate where

its was constructed, CCCP may perform useless computations to reach the minimum of the convex

approximation. Instead, NRBMLS optimizes more directly the non-convex objective by updating

iteratively the approximation. At the end, it converges faster to a good solution. Furthermore,

CCCP may fail to get a good solution when the value of γ is too big (i.e. when the non-convex term

becomes more important) while NRBM seems to be more robust in this hard setting.

At last it must be noticed that using CCCP may require a lot of effort to mathematically re-

formulate the objective function into a concave and a convex term. The extension of TSVM for

multiclass classification and for structured prediction is for instance not straightforward with CCCP

while it is with NRBM.

5.5 Large Margin Training for Continuous Density Hidden Markov Models

Hidden Markov Models (HMMs) have been widely used for automatic speech recognition (Rabiner,

1990) and handwriting recognition (Hu et al., 2000). Continuous Density HMMs (CDHMMs)

are particularly suited for dealing with sequences of real-valued feature vectors that one gets af-

ter typical front-end processing in signal processing tasks. CDHMMs usually exploit Gaussian

mixture models to describe the variability of observations in a state. HMM parameters are learnt

on a partially labeled data set (since state sequences of training sequences are unknown) with

the Expectation-Maximization algorithm (EM) to maximize the joint likelihood of observation se-

quences and of hidden state sequences.

Recently, few approaches have been proposed for large margin learning of HMMs, especially

in the speech recognition community (Sha and Saul, 2007; Jiang and Li, 2007) (see Yu and Deng,

2007 for a review). However none of these works actually handle the whole problem of max-

margin learning for HMM parameters in the standard partially labeled setting. For instance Sha and

Saul (2007) and Jiang and Li (2007) tackle a simplified convex optimization problem. Indeed, the

main difficulty one encounters when formulating the maximum margin learning of CDHMM lies

in the non-convexity of the optimization problem which comes from the presence of hidden state

variables (the sequence of states and of Gaussian components) and from the discriminative function

which is quadratic with respect to some parameter (e.g., covariance matrix). Instead of relying on a

convex relaxation technique, we proposed to directly optimize the non-smooth non-convex objective

function (Do and Artières, 2009):

minw
λ
2‖w−w0‖2 +∑i maxy

(

F(xi,y,w)+∆(yi,y)−F(xi,yi,w)
)

(21)

where (xi,yi) are input and output sequences, w are model parameters, and discriminative functions

F(xi,y,w) = maxs∈S(y),m log p(xi,y,s,m|w) are Viterbi-approximation of log likelihood (s and m
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NRBMLS SGD+ SGD

λ eval obj. err. eval obj. err. eval obj. err.

0.010 72 0.583 0.281 72 0.598 0.286 439 0.594 0.285

0.005 104 0.542 0.276 104 0.612 0.281 502 0.552 0.280

0.003 132 0.507 0.274 132 0.653 0.278 594 0.517 0.274

0.002 396 0.474 0.277 396 0.765 0.277 667 0.487 0.275

NBM+ NBM∗ NBM

0.010 72 0.584 0.282 83 0.583 0.282 416 0.580 0.283

0.005 104 0.545 0.278 139 0.542 0.279 629 0.539 0.277

0.003 132 0.512 0.276 242 0.507 0.275 916 0.504 0.275

0.002 396 0.475 0.278 541 0.474 0.277 1181 0.472 0.278

Table 7: Large margin training for Continuous Density Hidden Markov Model. SGD and NBM

results were reported with different various criteria. The + superscript corresponds to

setting the maximum number of function evaluation to the one of NRBM. The ∗ superscript

corresponds to running optimization until the same objective function as NRBM solution

was found.

are hidden state segmentation and mixture component assignments respectively). Note that the

objective function is regularized with an initial solution w0 (MLE solution in practice) which yields

better results than considering the standard regularization term λ
2‖w‖

2 .

Experiments were conducted on the TIMIT data set, which is a well-known benchmark data set

for speech recognition. The training set consists of 3696 utterances, corresponding to 1,100,000

frames. We consider here the best CDHMM topology with 3 states per phoneme and 4 Gaussians

per state, it corresponds to about 925,000 model parameters (Do and Artières, 2009).

We compare the optimization results of NRBMLS with SGD and NBM. Note that CCCP is not

applicable since there is no concave-convex reformulation of the objective function in Equation 21

in the literature. Table 7 reports the number of function evaluation, the objective function value, and

the phone recognition error rate for the three optimization methods (execution time is not reported

since the experiments were launch on different machines). Here again, NRBM is stopped once

the gap is below 1% of the objective value. For comparison, we reported SGD and NBM results

with various stoping criteria: same number as NRBMLS (SGD+ and NBM+), reach NRBMLS’s

objective value (NBM∗) and the native stop criteria of the optimizers (SGD stops once the (online

estimated) objective value is not improved after 5 iterations or the maximum number of function

evaluations (2000) is reached, NBM stops once the norm of the search direction is smaller than

10−4).

Looking at final results of the 3 optimizers with their native stoping criteria, we found that

NRBMLS and NBM seems to converge to the same local minima in all cases while SGD converges

to different solutions. For example, in the case of λ = 0.003 (the optimum value), NRBMLS and

NBM reach objective values 0.507 and 0.504 respectively, i.e, the relative difference is 0.6% (which

is less than the stoping condition of NRBMLS). Also, while NBM reaches a more accurate solution

it does not outperform NRBM form the recognition rate point of view (0.275 vs. 0.274). Based

on the final objective values of SGD results, one could say that SGD is not a good optimizer, yet it

also allows achieving good recognition rate. This observation confirms again that stochastic learning
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Figure 9: A chain-structured NeuroCRF.

may not always be good as an optimization tool but it may lead to solutions with good generalization

properties.

At the end, NRBMLS converges significantly faster than the two other optimizers as it reaches

a better solution (in term of objective value and error rate) when using a fixed number of iterations

(columns SGD+ and NBM+), and it requires less iterations to reach a given value of the objective

function (column NBM∗, there is no column SGD∗ since SGD does not reach a similar objective

value as NRBMLS).

5.6 Learning a Non Linear CRF

Finally, we consider the discriminative training of a NeuroCRF, this may be viewed as an extension

of deep neural networks for structured output prediction (Do and Artières, 2010). Alternatively it

may be thought as a hybrid model for labeling sequences that consists in a conditional random field

exploiting features extracted with a deep neural network. Figure 9 illustrates such a linear chain

NeuroCRF which combines a standard CRF with a deep neural network for feature extraction. Such

a model implements a posterior distribution following

p(y|x) ∝ ∏
c∈C

e〈wc,Φ(x,yc,wNN)〉 (22)

where C denote the set of cliques of the CRF, wc the weights associated to clique c, wNN the weights

of the deep NN, and Φ a function that extract features from x.

Learning involves optimizing jointly the NN weights wNN and the CRF parameters wc. As it

has been suggested in previous works (Hinton et al., 2006), the deep neural network needs to be

pretrained through unsupervised learning (we used Restricted Boltzmann Machine (RBM) in our

experiments). This initial solution is then fine-tuned by optimizing a regularized version of the

conditional likelihood in Equation 22. Our experiments compare optimization algorithms for the

fine tuning step. Indeed, the pretraining of RBMs cannot be done by greedy optimizer such as

NRBM or LBFGS since the computation of the gradient is intractable. Hence in our experiments,

we pretrained the deep NNs by cascading RBMs trained with the original Contrastive Divergence

algorithm (Hinton et al., 2006). The pretrained deep neural network is used to build the initial

NeuroCRF model, called w0 where the initial CRF weights are drawn at random. Then, the Neuro-

CRF is fine tuned on a labeled data set of n input-output sequence {xi,yi}i=1..n using the following

criteria:

minw
λ
2‖w−w0‖2 + 1

m ∑i=1..n log(p(yi|xi;w)) (23)
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NRBMLS SGD+ SGD

λ eval obj. err. eval obj. err. eval obj. err.

0.0010 64 1.847 0.050 64 1.604 0.059 2000 1.528 0.058

0.0005 81 1.203 0.047 81 1.190 0.056 2000 1.076 0.054

0.0003 116 0.842 0.046 116 0.941 0.053 2000 0.840 0.055

0.0002 116 0.616 0.045 116 0.775 0.054 2000 0.691 0.056

0.0001 130 0.365 0.050 130 0.557 0.055 2000 0.514 0.056

NBM+ NBM∗ NBM

0.0010 64 1.853 0.052 66 1.844 0.052 318 1.645 0.050

0.0005 81 1.233 0.046 94 1.202 0.048 305 1.075 0.048

0.0003 116 0.854 0.048 128 0.842 0.046 323 0.764 0.046

0.0002 116 0.660 0.047 175 0.616 0.046 238 0.594 0.045

0.0001 130 0.405 0.046 - - - 203 0.371 0.047

LBFGS+ LBFGS∗ LBFGS

0.0010 64 1.802 0.051 54 1.845 0.052 2095 1.591 0.048

0.0005 81 1.196 0.047 79 1.201 0.047 2104 1.010 0.047

0.0003 116 0.805 0.045 88 0.841 0.046 2119 0.696 0.049

0.0002 116 0.617 0.045 118 0.616 0.045 2131 0.511 0.052

0.0001 130 0.375 0.047 152 0.365 0.049 2135 0.300 0.053

Table 8: Optimization results for the discriminative training of NeuroCRFs. SGD, NBM and

LBFGS results were reported with different various criteria. The + superscript corresponds

to setting the maximum number of function evaluation to the one of NRBM. The ∗ super-

script corresponds to running optimization until the same objective function as NRBM

solution was found.

where m is total the number of tokens in the data set and p(yi|xi;w) is the conditional likelihood of

the correct labeling, whose gradient can be computed by back propagation. Since we use sigmoid

activation in hidden units of the deep neural network, the final objective function is non-convex with

many local minima and plateaus. This is the reason why neural network optimization is difficult and

the final solution is sensitive to initialization.

We evaluated the discriminative training of NeuroCRF on OCR data. Table 8 reports opti-

mization results of NRBMLS and the other applicable state-of-the-art optimizers: SGD, NBM, and

LBFGS. We use similar stopping condition setting as in previous sections. Looking at final error

rates, we found that the final solutions of NRBMLS and NBM are better than the solutions obtained

by other optimizers. The final objective values of these two algorithms are also quite close, sug-

gesting that the two methods converge to similar local optimum. Note that NRBMLS is faster than

NBM in all cases as NBM requires more iterations to reach the final objective value of NRBMLS

(see column NBM∗). Note also that the result of NBM∗ for λ = 0.0001 is not available, since NBM

converged to a local minima with higher objective value than that of NRBMLS. Importantly, while

NRBMLS can exploit the regularization term to converge quickly, a strong regularization term does

not help NBM reducing the number of iterations. NRBMLS was also faster and reached better

solution than SGD for small values of λ (including the best one λ = 0.0002). Unlike reported in
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previous section on training CDHMMs, SGD solutions have relative high error rates, indicating that

the problem of local minima is maybe more severe in the case of deep neural networks.

Finally, the results of LBFGS+ and LBFGS∗ show that NRBM and LBFGS have comparable

convergence speed until the stoping criteria of NRBM were reached (at least for the studied range

of λ). Actually, LBFGS is slightly faster than NRBMLS for large values of λ but it is slower

than NRBMLS for small values of λ. While NRBM stopped with acceptable solutions (in term of

recognition rate) after about one hundred iterations, LBFGS continued looking for better solution

and did not converge after 2000 iterations (corresponding to more than 2000 function evaluation).

The long run of LBFGS also leads to a significantly better objective function than that of NRBMLS.

This reflects the fact that the final solutions of NRBMLS are local minima or belong to plateaus in

which gradients is very close to zero. Interestingly as already reported in previous sections, a better

objective value does not always mean a better recognition rate: the long run of LBFGS does not

improve the recognition performance but leads to over fitting problems. At the end, LBFGS can

be viewed as a good/greedy optimizer for NeuroCRF (in term of objective value) but it lacks of

early stopping condition. While having comparable convergence speed as LBFGS, NRBMLS has

an intuitive built-in stoping criteria (based on the gap) that appears to be relatively robust for many

applications.

5.7 Summary of Results and Discussion

We conducted extensive objective evaluation of NRBM and NRBMLS on few artificial problems

and on five standard machine learning problems. Our preliminary results on artificial optimization

problems show the potential of our approach and highlight the benefit of the line-search procedure

to the proposed method, which improves both the convergence speed and the quality of the solution.

We then evaluated our method on machine learning problems with real data sets, showing that

it can be applied to a large variety of machine learning frameworks including convex and non-

convex problems, smooth and non-smooth objectives, to learn linear and non-linear model (e.g.

artificial neural network). While being generic to regularized machine learning problem, NRBMLS

also showed great performance compared to dedicated solvers such as SVMStruct (for M3N) or

UniverSVM (for transductive SVM).

Comparison with competitive solvers. Since NRBMLS may be viewed as a variant of NBM (both

use a linesearch), their differences in performance is much interesting. We found that NRBMLS and

NBM often converge to the same solution (i.e., having similar objective value) but NBM generally

requires more objective function evaluations than NRBMLS to reach a solution with similar objec-

tive value (e.g. NRBMLS 132 vs. NBM∗ 242 in Table 7). We also compared NRBMLS to LBFGS,

a popular solver for smooth functions, and we showed that NRBMLS is slightly faster than LBFGS.

While NRBMLS and LBFGS have competitive performances the main advantage of NRBMLS is

its generic feature, it can be applied to non-smooth function as well. Finally, the experimental com-

parison with SGD shows that the implemented version (which has been used for training CRFs) is

not efficient for the five considered problems. While SGD may be very fast for large data sets, its

main weakness remains the need of carefully tuning of parameters (e.g., step size) for every prob-

lem. Note that all these generic optimizers have gradient-based stopping criterion which work well

if one needs an accurate solution (when subgradient is close to null vector). However, in the case

where one does not need a too accurate solution (for example, to avoid over fitting), the subgradi-

ent information is not a strong measure of the quality of the solution. Alternatively NRBM uses
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a gap-based stopping criterion which measures directly the quality of the solution in terms of the

objective value. This criterion of NRBMs seems to be efficient for machine learning problems since

NRBMLS systematically reaches the best error rates in all five machine learning experiments (using

only one threshold of 0.1% of the objective value).

6. Conclusion

We proposed a new bundle optimization method called Non-convex Regularized Bundle Method

(NRBM) able to deal with the minimization of regularized non-convex functions. We built on

ideas from Convex Regularized Bundle Methods and on ideas from Non-Convex Bundle Methods,

exploiting the regularization term of the objective and using a particular design of the aggregated

cutting plane to build limited memory variants. We also discussed variants of the method and

showed that integrating a line search may increase convergence rate in practice.

Experimental results on artificial problems show that our method is significantly faster than

standard Non-convex Bundle Method, which is a state of the art method for non-smooth and non-

convex optimization. We also presented experimental results on various convex and non-convex

difficult machine learning problems, which demonstrate the potential and the wide application range

of our algorithms. On one hand, our variant of bundle method got positive results on five different

machine learning problems compared to state-of-the-art optimizers. On the other hand, our method

is rather easy to use as the stopping condition is intuitive and efficient for various machine learning

applications.

At the end, though the limited memory variant can be proved to inherit the fast convergence

rate of CRBM in case of convex risks, we did not provide an analog satisfactory proof for the non-

convex extension which is then more an algorithmic proposition that we validate experimentally on

various machine learning optimization problems. Theoretical convergence analysis could be one

direction for future work. We are also interested in considering more sophisticated approximation

techniques such as second order approximation (similar to LBFGS) or non-convex approximation.

While the approximation function could be more complex, one could expect that a more accurate

approximation technique could improve the convergence speed.
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Abstract

A hybrid dynamical system is a mathematical model suitable for describing an extensive spec-
trum of multi-modal, time-series behaviors, ranging from bouncing balls to air traffic controllers.
This paper describes multi-modal symbolic regression (MMSR): a learning algorithm to construct
non-linear symbolic representations of discrete dynamical systems with continuous mappings from
unlabeled, time-series data. MMSR consists of two subalgorithms—clustered symbolic regression,
a method to simultaneously identify distinct behaviors while formulating their mathematical ex-
pressions, and transition modeling, an algorithm to infer symbolic inequalities that describe binary
classification boundaries. These subalgorithms are combined to infer hybrid dynamical systems as
a collection of apt, mathematical expressions. MMSR is evaluated on a collection of four synthetic
data sets and outperforms other multi-modal machine learning approaches in both accuracy and in-
terpretability, even in the presence of noise. Furthermore, the versatility of MMSR is demonstrated
by identifying and inferring classical expressions of transistor modes from recorded measurements.

Keywords: hybrid dynamical systems, evolutionary computation, symbolic piecewise functions,
symbolic binary classification

1. Introduction

The problem of creating meaningful models of dynamical systems is a fundamental challenge in

all branches of science and engineering. This rudimentary process of formalizing empirical data

into parsimonious theorems and principles is essential to knowledge discovery as it provides two

integral features: first, the abstraction of knowledge into insightful concepts, and second, the nu-

merical prediction of behavior. While many parametric machine learning techniques, such as neural

networks and support vector machines, are numerically accurate, they shed little light on the inter-

nal structure of a system or its governing principles. In contrast, symbolic and analytical models,

such as those derived from first principles, provide such insight in addition to producing accurate

predictions. Therefore, the automated the search for symbolic models is an important challenge for

machine learning research.

Traditionally, dynamical systems are modeled exclusively as either a continuous evolution, such

as differential equations, or as a series of discrete events, such as finite state machines. However,

systems of interest are becoming increasingly complex and exhibit a non-trivial interaction of both

continuous and discrete elements, which cannot be modeled exclusively in either domain (Lunze,

∗. Also in the Faculty of Computing and Information Science.
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2002). As a result, hybrid automata, mathematical models which incorporate both continuous and

discrete components, have become a popular method of describing a comprehensive range of real-

world systems as this modeling technique is perfectly suited for systems that transition between dis-

tinct qualitative behaviors. Hybrid dynamical models have been successfully applied to succinctly

describe systems in a variety of fields, ranging from the growth of cancerous tumors (Anderson,

2005) to air traffic control systems (Tomlin et al., 1998).

Although it is plausible to construct hybrid models from inspection and first principles, this

process is laborious and requires significant intelligence and insight since each subcomponent is

itself a traditional modeling problem. Furthermore, the relationships between every permutation of

the subcomponents must be captured, further adding to the challenge. Thus, the ability to automate

the modeling of hybrid dynamical systems from time-series data will have a profound affect on the

growth and automation of science and engineering.

Despite the variety of approaches for inferring models of time-series data, none are particularly

well-suited for building apt descriptions of hybrid dynamical systems. Traditional approaches as-

sume an underlying form and regress model parameters; some approaches conform the data using

prior knowledge (Ferrari-Trecate et al., 2003; Vidal et al., 2003; Paoletti et al., 2007), while others

are composed of generalized, parametric, numerical models (Chen et al., 1992; Bengio and Fras-

coni, 1994; Kosmatopouous et al., 1995; Le et al., 2011). Although numeric approaches may be

capable of predicting behavior with sufficient accuracy, models of arbitrary systems often require

vast numbers of parameters, which obfuscates the interpretability of the inferred model (Breiman,

2001). This trade-off between accuracy and complexity for parametric models is in direct opposition

to a fundamental aspect of scientific modeling—abstracting relationships that promote the formu-

lation of new theorems and principles. Thus, constructing symbolic models of hybrid dynamical

systems which can be easily and naturally interpreted by scientists and engineers is a key challenge.

The primary contribution of this paper is a novel algorithm, called multi-modal symbolic regres-

sion (MMSR), to learn symbolic models of discrete dynamical systems with continuous mappings,

as an initial step towards learning hybrid automata. It is a data-driven algorithm that formulates

symbolic expressions to describe both the continuous behavior and discrete dynamics of an arbi-

trary system. Two general learning processes are presented: the first algorithm, clustered symbolic

regression (CSR), generates symbolic models of piecewise functions and the second algorithm,

transition Modeling (TM), searches for symbolic inequalities to model transition conditions. These

processes are then applied to a hybrid dynamical systems framework and are used to reliably model

a variety of classical problems. MMSR is also applied to infer the modes of operation of a field-

effect transistor, similar to those derived from first principles, from measured observations.

The remainder of this paper is organized as follows: Section 2 provides a brief introduction to

hybrid dynamical systems, as well as a description of the relevant work in related fields. Section 3

introduces the theoretical background and implementation details of MMSR, with CSR and SR

described in Section 3.2 and 3.3, respectively. Section 4 compares MMSR to traditional machine

learning algorithms on four synthetic data sets and presents the inferred transistor model. The paper

is concluded in Section 5.

2. Background

This section begins with a brief introduction to the mathematical background of hybrid automata,

an inclusive model that describes a variety of hybrid systems. A subset of this general model is
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described and formulated as the inference target. This is followed by a discussion of the related

work in learning hybrid dynamical systems.

2.1 Hybrid Automata

Due to the its inherent complexity, hybrid dynamical systems have only recently emerged as an area

of formal research. Consequently, there is a lack of a common framework, terminology and defini-

tion that is universally adopted (Henzinger, 1996; van der Schaft and Schumacher, 2000; Branicky,

2005). Our work uses a popular model called the hybrid automata, which extends the finite au-

tomata model to include continuous dynamics. The evolution of the system is deterministic. Each

automata, H , is defined as a 5-tuple, H = (W ,X ,M ,F ,T ), with the following definitions:

(a) (b)

Figure 1: An example of a hybrid automata model for a simple, 1D driverless car. A schematic

of the system is shown in a) and the system diagram represented as a directed graph is

shown in b). W consists of two inputs, u1 and u3, which corresponds to the distance

to the nearest sign and vehicle, respectively; while X consists of the state variables x

and ẋ, which describe the vehicle’s position and velocity. M consists of three modes,

{m1,m2,m3}, which represent distinct behaviors corresponding to whether the vehicle is

approaching a traffic sign, cruising or driving in traffic; and the behaviors for each mode is

described by { f1, f2, f3}. There are five transitions events, each represented by a Boolean

condition.

• W defines a communication space for which external variables, w, can take their values. The

external variables can be further subdivided into input variables, u∈Ra, and output variables,

y ∈ Rb, where W = {u,y}.

• X defines a continuous space for which continuous state variables, x ∈ Rc, can take their

values.

• M defines a countable, discrete set of modes in which only a single mode, m ∈ {1,2, . . . ,K},

is occupied at a given time. Each mode is represented as a vertex in the system diagram and

may have an associated label for ease of reference.
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• F defines a countable, discrete set of first-order, coupled, differential-algebraic equations

(DAE). Each equation defines relationship between the state variables, their first-order time

derivatives and the inputs:

fk(x, ẋ,w) = 0

and the solution to these DAE are called the activities or behaviors of the mode. Each mode,

mk, is defined by its corresponding behavior, fk, and the solution to the DAE defines the

continuous evolution of the system when it is in that mode.

• T defines a countable, discrete set of transitions or events, where tk→k′ denotes a Boolean

expression that represents the condition to transfer from mode k to mode k′. If none of the

transition conditions are satisfied, then the hybrid automata remains in the current mode and

the state variables evolves according to the specified behavior. These are represented as di-

rected edges in the system diagram. For K modes, there are must be at least K −1 transitions

and at most K2 transitions. The transitions defines the discrete evolution of the system by

describing how the mode is updated over time.

The challenge in modeling hybrid automata arises from the property that the latent “state” of a

hybrid automata depends on both the discrete mode, mk, as well as the continuous state space vector,

x. As with all dynamical systems, the evolution of the system depends on the initial condition of the

latent modes as well as the input variables. An example of a hybrid automata model for a simple,

1D driverless car is illustrated in Figure 1.

2.2 Discrete Dynamical System with Continuous Mappings

Hybrid automata are complex models which are capable of describing multi-modal behavior and

latent continuous and discrete variables. To restrict the scope of the general problem, a number of

assumptions are applied:

1. Each behavior is unique—No two behaviors are the same for any combination of modes:

fi(·) '= f j(·),∀mi '= m j.

2. There are no continuous state space variables—All continuous states are directly observable

and, thus, the behaviors are defined as strictly input-output relationships, y= f (u), as opposed

to DAEs, y = f (x, ẋ,u).

3. The number of discrete modes is known—The cardinality of the modes, |M |=K, is provided.

These assumptions describe a continuous-discrete hybrid system that evolves with discrete dy-

namics but contains continuous input-output relationships. This formulation makes the symbolic

inference tractable while also providing a first step to the general solution of inferring hybrid au-

tomata. With the exception of assumption 3, each assumption defines a subset of models. If assump-

tion 1 is relaxed, then the model becomes a continuous input-output hidden Markov model (Bengio

and Frasconi, 1994). If assumption 2 is further relaxed, then the model becomes the standard hybrid

automata described in Section 2.1.

The resulting discrete dynamical system with continuous mappings are defined as a 4-tuple,

H = (W ,M ,F ,T ), which are time-series models in which the output is dependent on both the

3588



LEARNING SYMBOLIC REPRESENTATIONS OF HYBRID DYNAMICAL SYSTEMS

observed input as well as the latent mode variable. Furthermore, the evolution of the latent mode

variable is dependent on the input via the transition conditions. To continue with the driverless

car example, a hybrid automata is transformed into the desired model by converting the mode and

differentiated inputs as explicit inputs and outputs (Figure 2).

Figure 2: A conversion of the 1D driverless car hybrid automata as a discrete dynamical model with

continuous mappings. The system diagram and variable conversion are shown.

2.3 Related Work

Although there is little work in the automated, data-driven construction of models of hybrid dynam-

ical systems whose components are expressed in symbolic mathematics, there are many machine

learning approaches that are capable of describing and predicting the behavior of multi-modal, time-

series data via alternate approaches.

Interest in hybrid dynamical systems is primarily spurred by the control systems community

and consequently, they have proposed a variety of approaches to infer dynamical systems. One

approach addresses the problem of modeling discrete-time hybrid dynamical systems by reducing

the problem to switched, piecewise affine models (Ferrari-Trecate et al., 2003; Vidal et al., 2003),

and procedures using algebraic, clustering-based, Bayesian, and bounded-error methods have been

proposed (Paoletti et al., 2007). This modeling technique imposes a linear form to the system’s

dynamics, which substantially simplifies the modeling but limits the explanatory range of such

models by enforcing linear approximations to non-linear systems.

Another approach uses non-linear, generalized, parametric models to represent hybrid dynami-

cal systems. Chen et al. (1992) modeled hybrid systems using radial basis function networks, while

Le et al. (2011) used support vector machines to approximate non-linear systems. The primary

limitation with this approach is its reliance on parametric modelling in the form of neural networks

or support vector machines. While parametric models can produce arbitrarily accurate predictions,

they often require a vast quantity of weight parameters to achieve such accuracies in non-trivial sys-

tems. This tradeoff between accuracy and complexity often results in uninterpretable models which

makes it difficult to extract meaningful relationships from the data (Breiman, 2001).
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Recurrent neural networks (RNNs) have been a popular approach for modeling time-series data.

The input-output relationship of a general, continuous dynamical system has been modeled with

RNNs (Kosmatopouous et al., 1995) and it has also been shown that recurrent neural networks

are capable of modeling finite state machines (Horne and Hush, 1996). However, there has been

no reported work on specifically modeling discrete dynamical systems with continuous inputs and

outputs. RNNs are also restricted by their parametric nature, often resulting in dense and uninter-

pretable models.

Consequently, there has been significant interest in extracting rules from parametric, recurrent

neural networks to build a formal, symbolic model and providing an important layer of knowledge

abstraction (Omlin and Giles, 1993, 1996a,b; Vahed and Omlin, 2004). However, a recent review

of this work suggests that there is limited progress in handling RNNs with non-trivial complexity

(Jacobsson, 2006).

The learning of input-output hidden Markov machines has been previously studied by Bengio

and Frasconi (1994), which uses architecture based on neural networks to predict both the output of

each mode as well as the transition conditions. The generalized expectation-maximization algorithm

is used to optimize the parameters of in each of neural networks. Although the original work was

implemented on grammatical inference with discrete inputs and outputs, the framework has since

been adapted to several applications in the continuous domain (Marcel et al., 2000; Gonzalez et al.,

2005). However, these approaches also rely on complex parametric neural network models.

Our technique attempts to resolve these various challenges by building models of hybrid dy-

namical systems that uses non-linear symbolic expressions for both the behaviors as well as the

transitions. Rather than imposing a linear structure or using parametric models, symbolic expres-

sions are inferred to provide a description that is in the natural, mathematical representation used

by scientists and engineers.

3. Multi-Modal Symbolic Regression Learning Algorithm

This section begins with a formalization of the learning problem. This is followed by the description

of two, general algorithms: clustered symbolic regression and transition modelling. The section

is concluded by combining both subalgorithms within a hybrid dynamics framework to form the

multi-modal symbolic regression algorithm.

3.1 Problem Formalization

The goal of the algorithm is to infer a symbolic discrete dynamics model with continuous mappings

from time-series data, where symbolic mathematical expressions are learned for both the behaviors

as well as the transition events. Consider a dynamical system that is described by:

mn = T (mn−1,un),

yn = F(mn,un) =















F1(un) , if mn = 1

... ,
...

FK(un) , if mn = K

where un ∈Rp is the input vector at time n, yn ∈Rr is the output vector, and mn ∈ M = {1,2, . . . ,K}
is the mode state.
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The goal is to infer a multi-modal, input-output model that minimizes the normalized, negative

log probability of generating the desired output vector under a mixture of Laplacians model, E, over

the time series:

E =
1

N

N

∑
n=1

− ln

(

K

∑
k=1

γk,ne
−

||yn−ŷk,n ||

σy

)

(1)

where γk,n = p(mn = k) or the probability that the system is in mode k, ŷk,n is the output of function

Fk(un), and σy is the standard deviation of the output data.

This error metric is adapted from related work by Jacobs et al. (1991) on mixtures of local

experts, but with the assumption of Laplacian, as opposed to Gaussian, distributions. The Lapla-

cian distribution was chosen due to its relationship to absolute error, rather than squared error for

Gaussian distributions. Note that for true mode probabilities or uni-modal models, this error metric

indeed reduces to normalized, mean absolute error. Mean absolute error was preferred over squared

error as is it more robust to outlier errors that occur due to misclassification.

To learn symbolic models of discrete dynamical systems with continuous mappings, the multi-

modal symbolic regression (MMSR) algorithm is composed of two general algorithms: clustered

symbolic regression (CSR) and transition modelling (TM). CSR is used to cluster the data into

symbolic subfunctions, providing a method to determine the modal data membership while also in-

ferring meaningful expressions for each subfunction. After CSR determines the modal membership,

TM is then applied to find symbolic expressions for the transition conditions.

This algorithm varies from traditional learning approaches for hidden Markov model; conven-

tional Baum-Welch or forward-backward algorithms are insufficient for dealing with the input-

output relationships and transition conditions. Bengio and Frasconi (1994) approached the learning

challenge by introducing the generalized expectation-maximization (GEM) to find the optimum

parameters for the input-output functions and transition conditions simultaneously. However, for

non-trivial, continuous systems, the GEM approach is likely to settle on local optima due to the

inability of transition modelling to discriminate distinct modes. By dividing the problem into the

CSR and TM subdomains, our approach leverages the property that each behavior is unique to infer

accurate and consistent hybrid dynamical systems.

3.2 Clustered Symbolic Regression

The first algorithm is clustered symbolic regression (CSR), which involves using unsupervised

learning techniques to solve the challenging issue of distinguishing individual functions while si-

multaneously infers a symbolic model for each of them. This novel algorithm is presented as a

generalized solution to learning piecewise functions, distinct from the hybrid dynamics framework.

This subsection begins with a formal definition of the problem, followed by a brief overview

of two learning approaches: symbolic regression (SR) and expectation-maximization (EM), respec-

tively. These approaches are then unified as clustered symbolic regression.
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3.2.1 PROBLEM DEFINITION

Consider the following, generalized piecewise function:

yn = f (un) =















f1(un) , if dn ∈ D1

... ,
...

fK(un) , if dn ∈ DK

where un ∈ Rp is the observable input vector at index n, yn ∈ Rr is the output vector, dn ∈ Rq is the

domain input vector and D is a set of mutually exclusive membership subdomains. The domain input

vector can be composed of both the observable variables, un, as well as latent variables, allowing for

latent subdomains definitions. Given the number of subdomains, K, infer a model that minimizes

the within-domain, absolute error, E:

ECSR =
N

∑
n=1

K

∑
k=1

γk,n||yn − ŷn|| (2)

where γk,n is the probability that the input-output pair belongs to the subdomain Dk and ŷn are model

predictions of the output at time n.

In essence, this formulation is an unsupervised clustering problem. However, unlike traditional

clustering problems, each cluster is represented by a symbolic expression and there is no prior

knowledge regarding the structure of these submodels. There has been no reported work on mixture

models where each component model is dependent on an arbitrary functional of the input; con-

ventional mixture models assume that each cluster belongs to the same fixed-structure, parametric

family of distributions (Bishop, 2006).

3.2.2 SYMBOLIC REGRESSION

The first component of CSR is symbolic regression (SR): an genetic programming algorithm that

is capable of reliably inferring symbolic expressions that models a given data set (Cramer, 1985;

Dickmanns et al., 1987; Koza, 1992; Olsson, 1995). Provided with a collection of building blocks

and a fitness metric, SR attempts to find the combination of primitives that best maximizes the stated

fitness function.

SR is a population-based, heuristic search algorithm which uses biologically-inspired evolution-

ary techniques to efficiently explore a boundless search space. The process begins with a random

population of candidate expressions. A fitness metric, such as squared or absolute error, is used to

rank each candidate based on its ability to model the data set. The best candidates are selected to

produce the next generation of expressions, through evolution-inspired techniques such as stochastic

recombination and mutation. This process is summarized in Figure 3.

In particular, SR uses a microprogram or tree structure to represent symbolic expressions. In

a tree hierarchy, branches are mathematical operations while leaves are constants and input vari-

ables. This tree structure provides a terse representation of symbolic functions that is capable of

representing a wide range of plausible expressions—for example, complex expressions, including

non-linear and rational equations, can be easily represented. Generating random trees for initial-

ization generally involves randomly filling the tree with nodes, sampling random variables and

constants where necessary, allowing for arbitrarily sized expressions. Evaluating an expression re-

quires simply substituting values from the data set, traversing the tree and computing well-defined
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Figure 3: Flowchart describing the symbolic regression algorithm.

Figure 4: Symbolic expressions represented as tree structures, with examples of recombination and

mutation operations.

operations. Furthermore, the tree structure is extremely amenable to the evolutionary processes of

recombination and mutation through tree manipulations (Figure 4).

SR was chosen as the modeling algorithm because it provides three unique advantages. First, SR

includes form and structure as part of the inference problem. Free form expressions are generated by

rearranging primitives in a boundless tree structure, resulting in a rich range of possible expressions.

In contrast, parametric models constrict their solution space to sums of basis and transfer functions.

Next, SR produces solutions that are easily interpreted. Unlike other machine learning algo-

rithms which tweak a vast collection of intangible numerical parameters, symbolic expressions are

the foundation of mathematical notation and often provide key insight into the fundamental rela-

tionships of such models.

Finally, an important quality of SR is its natural method to deal with overfitting, where the

inferred model captures the peculiarities of the data set rather than the underlying truth. Overfitting

is a major issue in machine learning and, to an even greater extent, multi-modal systems where

one overfit behavior can cripple the progress in the remaining behavior. In symbolic expressions,
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Figure 5: An example of the set of solutions provided by symbolic regression. a) The Pareto optimal

solutions (in black) are expressions that have the best accuracy for all models of equal or

lower complexity. Suboptimal solutions generated by SR are in grey. b) A plot of the

non-dominated solutions with the corresponding the data set. The true model is in bold

text, while the remaining solutions are either under- or overfit.

overfitting occurs by inferring a model with greater complexity than the ground truth—for example,

a cubic model is used to fit a quadratic function. Thus, there is a fundamental trade-off between

the accuracy and complexity of a candidate model, where overfitting incurs additional complexity

to accurately model the noise contributions in the data.

Instead of simply reporting the most accurate model found by SR, which is susceptible to over-

fitting, the inherent population dynamics is leveraged to provide a multi-objective approach to deal-

ing with overfitting. By design, SR generates numerous candidate models with varying degrees of

complexity and accuracy. Rather than considering every considering every generated expression

as a candidate model, individual expressions are compared against a continuously updated, multi-

objective record. This approach, called Pareto optimization, forms a set of non-dominated solutions

which provide the best fitness for a given complexity (Figure 5). This method reformulates the prob-

lem of overfitting as model selection along the accuracy and complexity trade-off, a property later

exploited by CSR to reliably find solutions. As Pareto optimization is a post-processing technique

that analyzes expressions only after they have been generated by SR, it does not interfere with the

underlying search process.

Recent advances in SR implementations have made it a powerful search tool—even for difficult

search spaces, it can often find good, if not globally optimal, solutions. It capable of non-linear

regression and has even been shown to find differential equations (Iba, 2008), implicit equations

(Schmidt and Lipson, 2009a) and even conservation laws (Schmidt and Lipson, 2009b). Despite

the range of successful applications, SR is limited to individual functions. Currently, there are no

algorithms that are capable of symbolically regressing unlabeled data generated by multi-modal

systems, such as data from a hybrid dynamical system or piecewise function.
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Algorithm 1 Generalized EM

input → observed data - X

output → model parameters - θ

initialize model parameters - θold

while convergence is not achieved :

# expectation step

compute probability of observing latent variables - p(Z|X ,θold)
# maximization step

compute new model parameters - θnew = argmaxθ ∑Z p(Z|X ,θold) ln p(X |Z,θ)
update model parameters - θold = θnew

return model parameters θold

3.2.3 EXPECTATION-MAXIMIZATION

The second component of CSR is the expectation-maximization (EM) algorithm: a machine learn-

ing algorithm that searches for the maximum likelihood estimates of model parameters and latent

variables. Formally, the EM solves the following problem: given a joint distribution p(X ,Z|θ) over

observed variables X and latent variables Z, governed by the model parameters θ, determine the

parameter values that maximize the likelihood function p(X |θ) (Dempster et al., 1977).

The EM algorithm is an iterative two-step process, which begins with initially random model

parameters. In the expectation step, the expected value of the latent variables is determined by

calculating the log-likelihood function given the current model parameters. This is followed by the

maximization step, where the model parameters are chosen in order to maximize the expected value

given the latent variables. Each cycle of EM increases the incomplete-data log-likelihood, unless it

is already at a local optimum. The implementation details of EM are summarized in Algorithm 1.

The EM algorithm is a popular framework for a variety of mixture models, including mixture of

Gaussians, mixture of Bernoulli distributions and even Bayesian linear regression (Bishop, 2006).

Although evolutionary computation has been applied to the EM framework (Martinez and Virtia,

2000; Pernkopf and Bouchaffra, 2005) , the focus has been on exploring different optimization

approaches in the maximization step for mixture of Gaussians, as opposed to investigating different

types of models found through evolutionary computation.

3.2.4 CLUSTERED SYMBOLIC REGRESSION

The clustered symbolic regression (CSR) is a novel algorithm that is capable of finding symbolic

expressions for piecewise functions. By applying an EM framework to SR, this algorithm deter-

mines both the model parameters, mathematical expressions and the corresponding variances for

each subfunction, as well as the latent variables, the membership of each data point, for a piecewise

function.

To aid in the formulation of the algorithm, the SR optimization is interpreted in a statistical

framework where the output of each subfunction defines the expected value conditional on the input

and state, fk(un) = E[yn|mk,un], where mk is 1 if dk ∈ Dk and 0 otherwise. Assuming that the noise

follows a Gaussian distribution, then the following definition is obtained:

pk(yn|un) = N
(

yn| fk(un),σ
2
k

)

(3)
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where N
(

x|µ,σ2
)

defines a Gaussian distribution over x with a mean µ and variance σ2.

The expectation step consists of evaluating the expected membership values using the current

model. Using the probabilistic framework for defining functions (Equation 3), the probability of

membership, γk,n, of an input-output pair to a function fk is:

γk,n =
N
(

yn| fk(un),σ2
k

)

∑K
k=1 N

(

yn| fk(un),σ2
k

) . (4)

Note that the membership probability reinforces exclusivity—given two subfunctions with the

same expression, the model with lower variance has stronger membership values over the same data.

This property is advantageous given the assumption that each behavior is unique; as one subfunction

becomes increasingly certain as a result of a decreased variance, the other subfunctions are forced

to model the remaining data.

Next, the Maximization Step consists of finding the expressions for each behavior and vari-

ances that best explain the data points given the current membership distribution. The variance of

each behavior is updated by computing the unbiased, weighted sample variance using the functions

obtained by SR (Equation 5)

σ2
k =

∑N
n=1 γk,n

(∑N
n=1 γk,n)2 −∑N

n=1 γ2
k,n

N

∑
n=1

γk,n||yn − fk(un)||
2. (5)

To find the behavior for each mode, SR is used to efficiently find the most suitable expression

for the subfunction relationship:

yn = fk(un). (6)

Although the CSR is designed to optimize the weighted absolute error (Equation 2), that fitness

metric is not ideal for each local SR search. The individual data sets, described by membership

probabilities, contain both measurement noise as well as classification error. Data from erroneous

classifications often produces heavy-tail outliers. Thus, each local search requires a robust metric

that does not assume exponentially bound likelihoods—the weighted, mean logarithmic error was

selected as the fitness metric:

Flocal,k =−
∑N

n=1 γk,n log(1+ ||yn − fk(un)||)

∑N
n=1 γk,n

. (7)

However, applying the logarithmic fitness naively tended to bias the SR search to find the same

expression for every behavior in the initial iteration, resulting in a symmetrical, local optimum

for the EM algorithm. A greedy implementation of the EM algorithm that updates each behavior

sequentially was used to resolve this issue. This approach enforces a natural priority to the learning

algorithm allowing each behavior to model the data of its choice, forcing the remaining functions to

the model the remaining data.

A primary issue with the EM algorithm is that it is sensitive to initial conditions and likely

to settle on local optima. Local optima occurs when some solutions are overfit, which results in

underfit solutions for the remaining behaviors. By exploiting the set of solutions provided by Pareto

optimization, CSR is significantly more robust to initial conditions and able to find the global optima

with greater consistency. Assuming the Pareto optimal set is exhaustive, if an overfit solution exists
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in the Pareto optimal set, then the true and less complex solution also exists in the set. Thus, the

challenge of avoiding local optima due to overfitting is reduced to selecting the most appropriate

solution from this set.

Each solution in the Pareto optimal set is selected, temporary membership, γ′k,n, and variances,

σ′2
k , are calculated and the global error is determined (Equation 2). The global error is used to

compute the Akaike Information Criterion (Akaike, 1974) score, a metric that rewards models that

best explain the data with the least number of parameters:

AIC = 2c+N log |ECSR| (8)

where c is the number of nodes in the tree expression and N is the number of data points. The

solution with the lowest global AIC score is deemed to have the most information content, and

thus, is the most appropriate solution. Although other information based methods are available

(Solomonoff, 1964; Wallace and Dowe, 1999), AIC was used because of its ease of application.

Note that while the AIC score is used for model selection, using this metric directly in the SR

as a fitness function often leads to inferior results as it biases the search space to look for simple

solutions which can lead to underfit models. Instead, this approach of focusing solely on model

accuracy, populating a set of candidate solutions ranging in complexity and and then using the AIC

to select from this list proved to produce the most consistent and reliable models.

The complete CSR algorithm is summarized in Algorithm 2.

3.3 Transition Modeling

The second algorithm is transition Modeling (TM), which is a supervised learning technique that

determines symbolic, discriminant inequalities for transition events by restating a classification

problem as a regression problem using function composition. This algorithm is presented as a

generalized solution to classification with symbolic expressions, separate from the hybrid dynamics

framework. This subsection begins with a formal definition of the problem, followed by a discussion

of related work and description of the algorithm.

3.3.1 PROBLEM DEFINITION

Consider the general, binary classification problem:

ζn =

{

1 , if un ∈ Z

0 , if un /∈ Z
(9)

where un ∈ Rp is the input vector at index n, ζn ∈ B is the corresponding label and Z is the char-

acteristic domain. Infer the discriminant function which describes the characteristic domain that

minimizes the classification error:

ET M =
N

∑
n=1

||ζn − ζ̂n||. (10)

Despite the variety of approaches to binary classification, the explicit requirements for a non-

linear, symbolic model of the discriminant function makes this problem challenging. While multi-

class classification may be more appropriate, it results in a significantly more challenging problem

for symbolic models and is left for future work.
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Algorithm 2 Clustered Symbolic Regression

input → unclustered input-output data - un,yn

→ the number of subfunctions - K

output → behavior for each mode - fk(un)
→ variance for each mode - σ2

k

function symbolic_regression(search_relationship, fitness_function) :

initialize population with random expressions defined by search_relationship

for predefined computational effort :

generate new expressions from existing population (Figure 4)

calculate fitness of all expressions according to fitness_function

remove unsuitable expressions from the population

for each pop_expr in the population :

for each pareto_expr in the pareto_set :

if ((pop_expr.fitness > pareto_expr.fitness) and

(pop_expr.complexity <= pareto_expr.complexity)) :

add pop_expression to pareto_set

remove pareto_expression from pareto set

return pareto_set

initialize random membership values

for each behavior in K modes :

sr_solutions = symbolic_regression(Equation 6, Equation 7)

set behavior fk to solution with lowest local AIC score in sr_solutions

set variance for each behavior - σ2
k (Equation 5)

while convergence is not achieved :

for each behavior in K modes :

# expectation step

for all the N data points :

compute membership values - γk,n (Equation 4)

# maximization step

sr_solutions = symbolic_regression(Equation 6, Equation 7)

for each solution in sr_solutions :

compute temporary membership values - γ̌k,n (Equation 4)

compute temporary variance - σ̌2
k (Equation 5)

compute global fitness using temporary values - ECSR (Equation 2)

compute AIC score using global fitness (Equation 8)

set behavior fk to solution with lowest AIC score in sr_solutions

set variance to corresponding value - σ2
k (Equation 5)

return behaviors fk and variances σ2
k

3.3.2 RELATED WORK

Although using evolutionary computation for classification has been previously investigated, this

algorithm is novel due to its reformulation of the classification problem as symbolic regression,

providing an assortment of benefits.

The majority of classifying evolutionary algorithms impose a fuzzy logic structure with trian-

gular or trapezoidal membership domains (Jagielska et al., 1999; Arslan and Kaya, 2001; Mendes

et al., 2001). A genetic algorithm is then used to optimize the parameters of these fixed-structure

discriminant functions. This technique is difficult to scale to non-linear, multi-inputs domains as it
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only searches for the model parameters using a fixed model structure. Furthermore, the solutions

may be difficult to interpret or express succinctly as the number of domains increases.

Muni et al. (2004) designed an evolutionary program that is capable of generating symbolic

expressions for discriminant functions. This program was limited to a classification framework,

resulting in application-specific algorithms, fitness metrics and implementations. Our approach is

novel as it adapts the well-developed framework of SR, allowing for a unified approach to both

domains.

3.3.3 TRANSITION MODELING ALGORITHM

The Transition Modeling (TM) algorithm builds on the infrastructure of SR. The discriminant func-

tions are expressed symbolically as an inequality, where the data has membership if the inequality

evaluates to true. For example, the inequality Z(u) : u ≥ 0 denotes the membership for positive

values of u, while Z(u1,u2) : u2
1 +u2

2 ≤ r2 describes membership for an inclusive circle of radius r.

The key insight in reforming the classification problem into a regression problem is that function

composition with a Heavyside step function is equivalent to searching for inequalities:

ζ = step(x) =

{

1 , x ≥ 0

0 , x < 0
.

Using the step function and function composition, the classification problem (Equation 9) is

reformatted as a standard symbolic regression problem using the search relationship:

ζn = step(Z(un)).

This reformulation allows a symbolic regression framework to find for symbolic, classification

expressions, Z(·), that define membership domains. The expression is readily transformed into an

inequality, Z(·)≥ 0, allowing for natural interpretation.

Although the step function illustrates the relationship between TM and SR, it is actually diffi-

cult to use in practice due to the lack of gradient in the fitness landscape. Small perturbations in the

expression are likely to have no effect on the fitness, which removes any meaningful incremental

contributions from gradient dependent techniques, such as hill climbing. Thus, searching with step

functions requires that the exact expression is found through the stochastic processes of recombi-

nation and mutation, which may lead to inconsistent results and inefficient computational effort.

Instead, a function composition with the sigmoid (Equation 11) was found to be more practical as a

‘soft’ version of the step function, leading to the search expression in Equation 12 while still using

the fitness metric (Equation 10).

sig(x) =
1

1+ e−x
, (11)

ζn = sig(Z(un)). (12)

The sigmoid function provides three important benefits. First, it provides a quantified measure

of degree of belief. In the limit of |x|→ ∞, the sigmoid function approaches the step function. Thus,

the magnitude of the scaling factor in Z(·) provides a numerical measure of the certainty of the

classifier; confident classifiers have expressions with large scaling factors. Furthermore, for ease

of interpretability, the scaling factor is easily removed via by algebraic simplifications. The second
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Figure 6: An example of the time-series data of membership signals. Transitions are highlighted in

grey.

benefit is that sigmoid TM provides an elegant method to deal with uncertain or fuzzy memberships.

Since the sigmoid is a continuous function ranging from 0 to 1, it is able to represent all degrees

of membership as opposed to purely Boolean classification. The final benefit is inherited from

SR: a range of solutions is provided via Pareto optimality, balancing model complexity and model

accuracy, and model selection is used to prevent overfit solutions.

3.4 Modeling Hybrid Dynamical Systems

To infer symbolic models of hybrid dynamical systems, two general CSR and TM algorithms are

applied to form the multi-modal symbolic regression algorithm (MMSR). CSR is first used to cluster

the data into distinct modes while simultaneously inferring symbolic expressions for each subfunc-

tion. Using the modal membership from CSR, TM is subsequently applied to find symbolic expres-

sions for the transition conditions. Of the 4-tuple description of in Section 2.2, H = (W ,M ,F ,T ),
the communication space, W , is provided by the time-series data and it is the goal of MMSR to

determine the modes, M , behaviors, F , and transitions, T .

Using the unlabeled time-series data, the first step is to apply CSR. CSR determines the modes

of the hybrid system, M , by calculating the membership of an input-output pair (expectation step

of Algorithm 2). Simultaneously, CSR also infers a non-linear, symbolic expression for each of the

behaviors, F , through weighted symbolic regression (maximization step of Algorithm 2).

Using the modal memberships from CSR, TM searches for symbolic expressions of the tran-

sition events, T . To find the transitions, the data must be appropriately pre-processed within the

hybrid system framework. Transition events are defined as the conditions for which the system

moves from one mode to another. Using the membership values from CSR to determine the mode

at every data point, searching for transition events is rephrased as a classification problem: a transi-

tion from mode k to mode k′ occurs at index n if and only if γk,n = 1 and γk′,n+1 = 1 (Figure 6). Thus,

the classification problem is applied to membership levels of the origin and destination modes. For

finding all transition events from mode k to mode k′, the search relationship and fitness metric are

respectively:

γk′,n+1 = sig(tk→k′(un)),

Ftransition =−
N−1

∑
n=1

γk,n||γk′,n+1 − sig(tk→k′(un))||
2.
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Figure 7: An example of PTP-NTP weight balance. a) Original weight data (γk,n). b) Weight data

decomposed into pk,n and nk,n signals. c) Scaled ñk,n signal. d) pk,n and ñk,n recombined

to form balanced (γ̃k,n).

It is important to realize that most data sets are heavily biased against observing transitions—the

frequency at which a transition event occurs, or a positive transition point (PTP), is relatively rare

compared to the frequency of staying in the same node, or negative transition point (NTP). A PTP

is defined mathematically for mode k at index n if γk,n = 1 and γk,n+1 = 0; all other binary combi-

nations of values are considered NTPs. This definition is advantageous since PTPs are identified

by only using the membership information of only the current mode, γk,n, and no other membership

information from the other modes are required.

The relative frequencies of PTP and NTP affects the TM algorithm since the data set is imbal-

anced: the sum of the weights associated with NTPs is significantly larger than the respective sum

for PTPs. As a consequence, expressions which predict that no transitions ever occur result in a

high fitness. Instead, equal emphasis on PTPs and NTPs via a simple pre-processor heuristic was

found to provide much better learning for TM.

The first step in this weight rebalance pre-processing is to generate two new time-series signals,

pk,n and nk,n, which decomposes the membership data into PTP and NTP components, respectively

(Equation 13-14). The nk,n signal is then scaled down by the ratio of the sum of the two components

(Equation 15), which ensures that the ñk,n signal has equal influence on TM as the pk,n signal.

Finally, the components are recombined to produced the new weights, γ̃k,n (Equation 16). This

process is illustrated in Figure 7.

pk,n = γk,n(1− γk,n+1), (13)

nk,n = γk,n − pk,n, (14)

ñk,n = nk,n
∑N−1

n=1 pk,n

∑N−1
n=1 nk,n

, (15)

γ̃k,n = pk,n + ñk,n. (16)

A benefit of this formulation is that it can be applied for uncertain or fuzzy membership values.

To summarize, after the pre-processing for PTP-NTP weight rebalance described in Equation 13-16,

the search relationship in Equation 17 and fitness metric in Equation 18 is applied to TM for finding
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all transition events from mode k to mode k′. The best expression is selected using the AIC ranking

based on the transition fitness.

γk′,n+1 = sig(tk→k′(un)), (17)

Ftransition =−
∑N−1

n=1 γ̃k,n||γk′,n+1 − sig(tk→k′(un))||2

∑N−1
n=1 γ̃k,n

. (18)

The complete MMSR algorithm to learn analytic models of hybrid dynamical systems is sum-

marized in Algorithm 3.

4. Results

This section begins with a description of the experimental setup for both the synthetic and real

data experiments. Next is a discussion of the synthetic experiments, starting with an overview of

alternative approaches, a list of the performance metrics, a summary of four data sets and finally, a

discussion of MMSR performance in comparison to the baseline approaches. MMSR is then used to

identify and characterize field-effect transistor modes, similar to those derived from first principles,

based on real data. This section concludes with a brief discussion of the scalability of MMSR.

4.1 Experimental Details

In these experiments, the publicly available Eureqa API (Schmidt and Lipson, 2012) was used

as a backend for the symbolic regression computation in both the CSR and TM. To illustrate the

robustness of MMSR, the same learning parameters were applied across all the data sets, indicating

that task-specific tuning of these parameters was not required:

• The SR for CSR was initially executed for 10000 generations and this upper limit was in-

creased by 200 generations every iteration, until the global error produced less than 2%

change for five EM iterations. Once CSR was complete, the SR for TM was a single 20000

generation search for each transition.

• The CSR algorithm was provided all the continuous inputs, while the TM algorithm was also

provided with the one-hot encoding of binary signals, according to the data.

• The default settings in Eureqa, the SR backend, were used:

– Population size = 64

– Mutation probability = 3%

– Crossover probability = 70%

• The basic algebraic building blocks were used for both algorithms: {constants,+,−,×,/}.

These building blocks were chosen as they form a fundamental set of basis operations that

are capable of constructing more complex expressions. Additional building blocks such as

trigonometric or transcendental functions could be included, but in their absence, numerical

approximations, such as Taylor expansions, are inferred.

3602



LEARNING SYMBOLIC REPRESENTATIONS OF HYBRID DYNAMICAL SYSTEMS

Algorithm 3 Multi-modal Symbolic Regression

input → unclustered input-output data - un,yn

→ the number of subfunctions - K

output → behavior for each mode - fk(un)
→ variance for each mode - σ2

k
→ transitions between each mode - tk→k′(un)

function symbolic_regression(search_relationship, fitness_function) :

initialize population with random expressions defined by search_relationship

for predefined computational effort :

generate new expressions from existing population (Figure 4)

calculate fitness of all expressions according to fitness_function

remove unsuitable expressions from the population

for each pop_expr in the population :

for each pareto_expr in the pareto_set :

if ((pop_expr.fitness > pareto_expr.fitness) and

(pop_expr.complexity <= pareto_expr.complexity)) :

add pop_expression to pareto_set

remove pareto_expression from pareto set

return pareto_set

# Clustered symbolic regression

initialize random membership values

for each behavior in K modes :

sr_solutions = symbolic_regression(Equation 6, Equation 7)

set behavior fk to solution with lowest local AIC score in sr_solutions

set variance for each behavior - σ2
k (Equation 5)

while convergence is not achieved :

for each behavior in K modes :

# expectation step

for all the N data points :

compute membership values - γk,n (Equation 4)

# maximization step

sr_solutions = symbolic_regression(Equation 6, Equation 7)

for each solution in sr_solutions :

compute temporary membership values - γ̌k,n (Equation 4)

compute temporary variance - σ̌2
k (Equation 5)

compute global fitness using temporary values - ECSR (Equation 2)

compute AIC score using global fitness (Equation 8)

set behavior fk to solution with lowest AIC score in sr_solutions

set variance to corresponding value - σ2
k (Equation 5)

# Transition modelling

for each mode k in K modes :

for each different mode k′ in K −1 modes :

rebalance the PTP and NTP weights (Equation 13-16)

tm_solutions = symbolic_regression(Equation 17, Equation 18)

for each solution in tm_solutions :

compute AIC score using transition fitness (Equation 8)

set transition tk→k′(un) to solution with lowest AIC score in tm_solutions

return behaviors fk, variances σ2
k and transitions tk→k′(un)
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Figure 8: Schematic diagram of the fully recurrent neural network.

4.2 Synthetic Data Experiments

This section discusses a collection of experiments on hybrid systems generated by computer simula-

tion. It begins with an introduction of alternative multi-modal model inference approaches, followed

by an outline of the metrics used to measure their performance and a description of the data sets used

for model comparison. This section concludes with a summary and discussion of the experimental

results.

4.2.1 ALTERNATIVE MODELS

This subsection describes two traditional machine learning approaches to modeling multi-modal

time-series data: fully recurrent neural networks and neural network based, input-output hidden

Markov machines.

Fully Recurrent Neural Network—A fully recurrent neural network (RNN) is a neural network

where connections form a directed cycle (Figure 8). This baseline recurrent network was composed

of an input layer of nodes with linear transfer functions, a single hidden layer of nodes with sig-

moidal transfer functions and a linear transfer function as the output node. The output of the hidden

layer was consequently fed back as an input with a one cycle delay, allowing the network to store

memory and making it capable of modelling multi-modal behavior.

The network was implemented using the open source, machine learning library PyBrain (Schaul

et al., 2010) and was trained via backpropagation through time (Rumelhart et al., 1986). The training

data was split into a training and validation subset, where the training subset consists of the initial

contiguous 75% portion of the data. The training was terminated either via early stopping or when

the training error decreased by less than 0.01% for 10 iterations. The size of the hidden layers,

h, ranged from 10, 25, 50 to 100 nodes based on complexity of the data set. The weights were

initialized by sampling a zero mean Gaussian random variable with a standard deviation of 1. The

learning rate was ε = 0.0005/h and used a momentum of 0.1. The learning rate was sufficiently

small that the gradients never grew exponentially.

Neural Network Based IOHMM—The neural network based IOHMM (NNHMM) architecture

by Bengio and Frasconi (1994) is a Markov model that also captures input-output relationships.

Provided with the number of modes, NNHMM uses two collections of neural networks: one to

predict the input-output mapping of each mode and another to predict the distribution of states.

As no prior information was provided, the networks are designed to be as general as possible: a

multilayer perception and one layer of hidden nodes with sigmoidal transfer functions. The input-
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Figure 9: Schematic diagram of the neural network based IOHMM architecture (Bengio and Fras-

coni, 1994). Fk are regression networks with a single sigmoidal hidden layer and Tk are

softmax networks with a single sigmoidal hidden layer.

output networks used linear input and output layers while the state prediction network used a linear

input layer and a softmax output layer.

The generalized EM algorithm (GEM) was applied for training was terminated either via early

stopping or when the validation error produced less than a 0.01% decrease for 50 EM iterations. The

size of the hidden layers, h, are identical for every network in the architecture and ranged from 5, 10,

and 20 nodes. The weights were initialized by sampling a zero mean Gaussian random variable with

a standard deviation of 1. The learning rate was ε = 0.0002/h with no momentum. The learning

rate was sufficiently small that the gradients never grew exponentially.

4.2.2 PERFORMANCE METRICS

There are three performance metrics of interest: model accuracy, complexity and fidelity.

Model accuracy is a measure of ability of a learning algorithm to predict outputs given inputs.

The trained model is used to predict the evolution of the time series data and the error is the negative

log probability of a mixture of Laplacians (Equation 1).

For time series prediction, the accumulation of the state error over time, also known as drift,

becomes a significant factor. Repeated iterations of accurate but not-perfect transitions over a

prolonged period of time will result in a significant accumulated error. Drift is managed with a

closed-loop system (Figure 10), where the output of the previous time step is also provided. With

the MMSR algorithm, a closed-loop model is trivially constructed by setting the previous state

probabilities according to the clustering component in CSR. However, the neural network based

algorithms cannot be reformed into a closed-loop model without retraining the network or adapting

the framework to execute some form of clustering.

Model complexity is a measure of the total number of free parameters required for the model.

For MMSR, the complexity is dynamic and is measured as the sum of nodes in the expression trees.
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Figure 10: Schematic diagram of an open-loop and closed-loop system in a) and b), respectively.

Data Set Mode Behavior No. of Destination Transition No. of
(mk) ( fk) Points Mode (mk′ ) (tk→k′ ) Transitions

Hysteresis Relay
1 y = 1 2037 2 u > 0.5 65
2 y =−1 2059 1 u <−0.5 65

Continuous Hysteresis
1 y = 0.5u2 +u−0.5 2051 2 u > 0.98 40

2 y =−0.5u2 +u+0.5 2045 1 u <−0.98 40

Phototaxic Robot

1 y = u2 −u1 1568
2 u4 = 1 36
3 u5 = 1 34

2 y = 1/(u1 −u2) 1257
1 u3 = 1 31
3 u5 = 1 40

3 y = 0 1271
1 u3 = 1 38
2 u4 = 1 35

Non-linear System
1 y = u1u2 1302 3 u2

1 +u2
2 < 9 331

2 y = 6u1/(6+u2) 1535 1 u2
1 +u2

2 > 25 332
3 y = (u1 +u2)/(u1 −u2) 1259 2 u1u2 > 0 332

Table 1: Summary of test data sets

The neural network based algorithms have a static complexity, which is the number of hidden nodes

in all of subnetworks. Although the node count does not account for the complexity of operations

and more comprehensive measures exist (Vladislavleva et al., 2009), it does provide a simple and

coarse measure of complexity and acts as a first approximation to human interpretability.

Model fidelity is a measure of the MMSR’s ability to reproduce the form or mathematical struc-

ture of original system. This metric is important as it integral to the primary goal of knowledge

extraction—predictive accuracy is insufficient as the models must reproduce the expressions and

not an approximation.

In symbolic representations, expressions are considered equivalent if and only if each subtree

differs by at most scalar multiplicatives. For example, the expression y = u2/(1+u) is considered

to be equivalent to y = 1.1u2/(0.9+ u), but the Taylor series approximation about u = 1 → y =
−0.125+ 0.5u+ 0.125u2 is considered dissimilar regardless of its numeric accuracy. The fidelity

is measured as the percentage of correctly inferred expression forms. In comparison, all neural

network based systems are function approximations by design and thus, are immeasurable with

respect to model fidelity.

4.2.3 DATA SETS

Since there are no standardized data sets for the inference of hybrid dynamical systems, the MMSR

algorithm was evaluated on a collection of four data sets based on classical hybrid systems (Hen-

zinger, 1996; van der Schaft and Schumacher, 2000) and intelligent robotics (Reger et al., 2000).
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Data Set Name System Diagram Data Plot

Hysteresis Relay

−2 −1 0 1 2−1.5

−1

−0.5

0

0.5

1

1.5

u

y

Continuous Hysteresis Loop

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

u

y

Phototaxic Robot

−6 −4 −2 0 2 4 6−6

−3

0

3

6

u1 − u2

y
Non-linear System

−5
0

5−5 0 5
−30

−15

0

15

30

u1u2

y

Figure 11: The system diagram and plots of the noiseless test data sets.

These data sets range in complexity in both the discrete and continuous domains. Furthermore,

these data sets contain non-trivial transitions and behaviors, and thus, present more challenging in-

ference problems than the simple switching systems often used to evaluate parametric models of

hybrid systems (Le et al., 2011). Simple switching systems have trivial discrete dynamics where the

transition to any mode does not depend on the current mode.

Training and test sets were generated; the training sets were corrupted with varying levels of

additive Gaussian noise, while the test sets remained noiseless. The level of noise was defined as

the ratio of the Gaussian standard deviation to the standard deviation of the data set (Equation 19).

The noise was varied from 0% to 10% in 2% increments.

Np =
σnoise

σy
. (19)

The statistics of all four data sets are summarized in Table 1, while the system diagrams and test

data set are shown in Figure 11.

Hysteresis Relay—The first data set is a hysteresis relay: a classical hybrid system (Visintin,

1995; van der Schaft and Schumacher, 2000). It is the fundamental component of hysteresis models

and consists of two modes: ‘switched-on’ and ‘switched-off’. Each mode has a constant output and

transitions occur at a threshold of the input. Although it is a simple hybrid dynamical system with
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linear behaviors, it does not exhibit simple switching as the transitions depend on the mode since

both behaviors are defined for u ∈ [−0.5,0.5].

Continuous Hysteresis Loop—The second data set is a continuous hysteresis loop: a non-linear

extension of the classical hybrid system (Visintin, 1995). The Preisach model of hysteresis is used,

where numerous hysteresis relays are connected in parallel and summed. As the number of hystere-

sis relays approaches infinity, a continuous loop is achieved. The data set is generated by repeatedly

completing a single pass in the loop. Although there are still two modes, this data set is significantly

more complex due to the symmetry of error functions about the line y = u, as well as the fact that

transition depend on the mode and occur at a continuity in the output domain.

Phototaxic Robot—The third data set is a light-interacting robot (Reger et al., 2000). The robot

has phototaxic movement: it either approaches, avoids, or remains stationary depending on the

color of light. The output y is velocity of the robot. There are five inputs: u1 and u2 are the absolute

positions of robot and light, respectively, while {u3,u4,u5} is a binary, one-hot encoding of the

light color, where 0 indicates the light is off and 1 indicates the light is on. This modeling problem

is challenging due to the variety of inputs and non-uniform distribution of data. However, it does

exhibit simple modal switching behavior that only depends on the light input.

Non-linear System—The fourth and final data set is a system without any physical counterpart,

but the motivation for this system was to evaluate the capabilities of the learning algorithms for

finding non-linear, symbolic expressions. The system consists of three modes, where all of the

behaviors and transition conditions consist of non-linear equations which cannot be modeled via

parametric regression without incorporating prior knowledge. All the expressions are a function of

the variables u1 and u2, the discriminant functions are not linearly separable and the transitions are

modally dependent.

4.2.4 EXPERIMENTAL RESULTS

MMSR, along with the two parametric baselines, was evaluated on all four data sets and the perfor-

mance metrics are summarized in Figure 12. This section begins with overview of the algorithms’

general performance, followed by case study analysis of each data set in the following subsections.

First, MMSR was able to reliably reconstruct the original model from the unlabeled, time-series

data. The process of converting the program output into a hybrid automata model is summarized in

Figure 13, from a run obtained on the light-interacting robot training data with 10% noise. Provided

with the number of modes, the algorithm searched for distinct behaviors and their subsequent transi-

tions, returning a single symbolic expression for each of the inferred components. The expressions

were algebraically simplified as necessary, and a hybrid dynamical model was constructed.

Comparing the algorithms on predictive accuracy, the closed-loop MMSR model outperformed

the neural network baselines on every data set across all the noise conditions. The open-loop MMSR

model was able to achieve similar performance to its closed-loop counterpart for most systems, with

the exception of the noisy continuous hysteresis loop. For low noise conditions, MMSR achieves

almost perfect predictions, even in open-loop configurations.

In comparison, the RNN approach had difficulty modeling the time-series data sets while NNHMM

performed marginally better. As the model accuracy is normalized by the standard deviation of the

data set, these neural network baselines was able to capture some characteristics of the data set and

performed much better than predicting the mean of the data, which would achieve an error of 1.
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Figure 12: The performance metrics on four systems. Error bars indicate standard error (n = 10).

However, other than the simplest data set, none of the parametric approaches were able to converge

on an accurate representation, even with noiseless training data.

There is an inverse relationship between the generality of the algorithm and its performance at

inferring hybrid dynamical systems. Although RNNs are capable of representing a wide variety of

phenomena, the learning algorithm often settles on a poor local optimum while NNHMM leverages

a structural composition to achieve marginally better performance. MMSR, however, is tailored

to inferring hybrid dynamical systems from unlabeled, time-series data and consequently infers a

superior model for numerical predictions.
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//Behaviors

f1(u)=0.0017

f2(u)=0.996/(u1-u2)

f3(u)=u2-u1

//Transitions

f1->f2=sig(11.87*u4-7.60)

f1->f3=sig(128.0*u1ˆ2*u3-30.72*u1ˆ2)

f2->f1=sig(16.11*u2ˆ2*u5-12.35*u2ˆ2)

f2->f3=sig(45.09*u2ˆ2*u3-9.47*u2ˆ2)

f3->f1=sig(174.9*u4-73.49)

f3->f2=sig(9.28*u1ˆ2*u5-5.38*u1ˆ2)

(a) Program Output (b) Inferred System Diagram

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

u1−u2

y

(c) Behaviors with Training Data

Figure 13: Conversion from program output to hybrid dynamical model for the phototaxic robot

with 10% noise. Algebraic simplifications were required to convert program output (a)

to inequalities in canonical form (c).

Furthermore, not only was MMSR a superior predictor, the numerical accuracy was achieved

with less free parameters than the neural network baselines. Even though the measure of counting

nodes provides only a coarse measure of complexity, the neural network approaches have signifi-

cantly more error despite having up to five times the number of free parameters on noiseless training

data. This suggests that the symbolic approach is better suited for the primary goal of knowledge

extraction, by providing accurate as well as parsimonious models.

In addition, for the neural network approaches, increasing the model complexity does not nec-

essarily result in greater accuracy. In fact, for most data sets, once the number of hidden nodes

reached a threshold, the trained models generally become less accurate despite having additional

modelling capabilities. For multi-model problems, the parameter space is non-convex and contains

local optima—as the number of hidden nodes increases, the probability of finding a local optima

increases as well. Thus, for parametric models, the number of hidden nodes must be tuned to ac-

count for the complexity of the data set, presenting another challenge to the arbitrary application of

parametric models.

Finally, MMSR was able to achieve reliable model fidelity. In the noiseless training sets, the

correct expressions for both the behaviors and events were inferred with perfect reliability. As the

signal to noise ratio was increased, the probability of convergence varied significantly depending on

the characteristics of the data set. Generally, the algorithm was able to repeatedly find the correct

form for the behaviors for the majority of the data sets. In contrast, the transition expressions

were more difficult to infer since the model fidelity deteriorates at lower noise levels. This is a

result of TM’s dependence on accurate membership values from CSR—noisy data leads to larger

classification errors, amplifying the challenge of modeling transitions.

Despite the model fidelity’s sensitivity to noise, the algorithm was nonetheless able to accurately

predict outputs for a wide range of noise conditions. The inferred expressions, regardless of the

expression fidelity, were still accurate numerical approximations for both open- and closed-loop

models.

Hysteresis Relay—This simple data set was modeled by accurately by both MMSR and NNHMM,

while RNN had relative difficulties. This was the only data set that NNHMM was able to achieve
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Figure 14: The input-output relationship of the regression networks of NNHMM and symbolic ex-

pressions of MMSR (black) overlaid on the Continuous Hysteresis Loop data (grey).

near perfect accuracy with ten or more hidden nodes per network, but failed when provided with

only five hidden nodes per network. In terms of model fidelity, MMSR was able to achieve perfect

expressions with respect to all the noise conditions.

Continuous Hysteresis Loop—This data set was ideal as it was sufficiently difficult to model, but

simple enough to analyze and provide insight into how the algorithms perform on hybrid dynamical

systems. The closed-loop MMSR was able to significantly outperform NNHMM and RNN under

all noise conditions, but the open-loop MMSR fared worse than the parametric baselines in the

presence of noise. This result was particularly interesting, since perfect model fidelity was achieved

for all noise conditions. The predictive error in the open-loop MMSR occurred as a result of the

continuous transition condition—under noisy conditions, the model can fail to predict a transition

even with a correct model. As a result, a missed transition accumulates significant error for open-

loop models. A closed-loop model is able to account for missed transitions, resulting in consistently

accurate models.

Next, NNHMM outputs were analyzed to understand the discrepancy in predictive accuracy.

Figure 14 shows the input-output relationships of NNHMM’s best performing model, NNHMM’s

model that obtains the greatest separation and MMSR’s best performing model, respectively.

NNHMM had significant difficulties breaking the symmetry in the data set as the best model cap-

tured only the symmetry, while the locally-optimal asymmetrical model was both inferior in predic-

tive accuracy and was significantly far from the ground truth. In comparison, MMSR was able to

deal with the symmetrical data and infer unique representations. Such analysis could not be applied

to RNNs as it is impossible to decouple the input-output relationships from the model transition

components.

Phototaxic Robot—The phototaxic robot provided a challenging problem with an increased

number of modes and asymptotic behaviors. Also, the distribution of the data was non-uniform and

deceptive as it was sparse around the non-linear features. However, MMSR was able to achieve

perfect model fidelity for low noise systems, which slowly degraded with respect to noise. Com-

pared to the neural network approaches, both the open-loop and closed-loop produced significantly

more accurate predictions under every noise condition. Note the simple switching behavior resulted

in open-loop model accuracy that is comparable to the closed-loop counterpart, suggesting that

closed-loop models are not necessary for simple switching systems.
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(a) Circuit Diagram
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(b) Measured Data

Figure 15: A circuit diagram indicating the two input voltages, vGS and vDS, and the output current

iD, and the measured 3D data plot from the ZVNL4206AV nMOSFET.

This data set provides an example of how symbolic expressions aid in knowledge abstraction

as it is easy to infer that the relative distance between the robot and the light position, u1 − u2, is

an integral component of the system as it is a repeated motif in the each of the behaviors. It is

significantly more difficult to extract the same information from parametric approaches like neural

networks.

Non-linear System—The final data set provided a difficult modelling challenge that included

non-linear behaviors which cannot be modeled by by parametric regression. Yet, MMSR reliably

inferred the correct model for low noise systems and produced accurate predictions in all noise levels

despite the noise sensitivity of model fidelity. The neural network approaches were significantly less

accurate while using more free parameters.

4.3 Real Data Experiment

This section provides a case study of MMSR on real-world data while also exemplifying the benefits

of symbolic model inference. This case study involves the inference of an n-channel metal-oxide

semiconductor field-effect transistor (nMOSFET), a popular type of transistor ubiquitous in digital

and analog circuits. nMOSFETs exhibit three distinct characteristics, which are governed by the

physical layout and the underlying physics (Sedra and Smith, 2004), making them an ideal candidate

for hybrid system analysis.

The transistor was placed in a standard configuration to measure the current-voltage character-

istics, where the drain current is set as a function of the gate and drain voltages (Figure 15a). The

transistor was a Diodes Inc. ZVNL4206AV nMOSFET and the data was recorded with a Keithley

2400 general purpose sourcemeter. The data was collected via random voltage sweeps from 0-5V,

and the subsequent current was measured (Figure 15b).

The three discrete modes as well as the two-dimensional, non-linear input-output mapping

makes this a non-trivial modelling problem. Furthermore, the regions are non-overlapping and con-

tinuous, which add another challenge in discerning the discrete modes. After applying MMSR with

the setup described in Section 4.1, a hybrid dynamical system was inferred (Figure 16a). MMSR
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(a) Inferred system diagram

iD =

{

4.29e-8 , if vGS ≤ 2.02

0.46
(

(vGS −2.59)vDS −0.71v2
DS

)

, if vGS > 2.68 and (vGS −1.01vDS)> 2.39

0.17(vGS −2.76)(VGS −2.40) , if vGS > 2.11 and (vGS −0.98vDS)≤ 2.43

(b) Inferred mode expressions

iD =







0 , if vGS ≤ k1

k2

(

(vGS − k1)vDS −
1
2 v2

DS

)

, if vGS > k1 and (vGS − vDS)> k1

1
2 k2(vGS − k1)2 , if vGS > k1 and (vGS − vDS)≤ k1

(c) Classically derived mode expressions

Figure 16: The inferred hybrid model compared to the derived expressions.

was applied for ten independent runs and the median performing model was reported. As the tran-

sitions events were consistent between modes, which is indicative of the simple switching behavior

exhibited by transistors, the system diagram was simplified to a piecewise representation with addi-

tional symbolic manipulations (Figure 16b).

When the inferred expressions are compared to classical equations (Sedra and Smith, 2004),

the results are remarkably similar (Figure 16c). This suggests that MMSR is capable of inferring

the ground truth of non-trivial systems from real-world data. While the model is sufficiently nu-

merically accurate, the more impressive and relevant consequence is that MMSR was able to find

the same expressions as engineer would derive from first principles, but inferred the results from

unlabeled data. For an engineer or scientist presented with an unknown device with multi-modal

behavior, beginning with apt, mathematical descriptions of a system might provide essential insight

and understanding to determining the governing principles of that system. This capability provides

an important advantage over traditional parametric machine learning models.

4.4 Scalability

Given that extracting dynamical equations from experimental data is an NP hard problem (Cubitt

et al., 2012), determining the optimal model for hybrid dynamical systems is intractable. While

evolutionary computational approaches are heuristic, exploratory methods that unable to guarantee

optimality of a candidate model, in practice, they often find good and meaningful solutions. Rather
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than a traditional lower-bound analysis, analyzing the computational complexity is used to provide

insight to the scope of problems that are well suited for MMSR inference.

To assess the performance scalability of MMSR, the computational complexity of SR must first

be analyzed as it is the primary computational kernel. As convergence on the global solution is

not guaranteed, in the worst-case analysis, the complete search space is exhausted in a stochastic

manner. For b building blocks and a tree depth size of c nodes, the search space grows exponentially

with a complexity of O(bc). However, on average, SR performs significantly better than the worst

case, although the performance is highly case dependent. Furthermore, evolutionary algorithms are

naturally parallel, providing scalability with respect to the number of processors.

For the MMSR learning algorithm, two components are analyzed independently. With the

worst-case SR complexity O(bc) and k modes, CSR has a compounded linear complexity with

respect to the number of modes, O(kbc), while TM has a quadratic complexity of O(k2bc), since

transitions for every combination of modes must be considered. In terms of worst-case computa-

tional effort, this suggests that this algorithm would scale better for systems with numerous simple

modes than it would for systems with fewer modes of higher complexity. For the data sets described

in this section, the algorithm required an average of 10 and 45 minutes for the bi- and tri-modal sys-

tems, respectively, on a single core of a 2.8GHz Intel processor.

5. Discussion and Future Work

A novel algorithm, multi-modal symbolic regression (MMSR), was presented to infer non-linear,

symbolic models of hybrid dynamical systems. MMSR is composed of two general subalgorithms.

The first subalgorithm is clustered symbolic regression (CSR), designed to construct expressions for

piecewise functions of unlabeled data. By combining symbolic regression (SR) with expectation-

maximization (EM), CSR is able to separate the data into distinct clusters, and then subsequently

find mathematical expressions for each subfunction. CSR exploits the Pareto front of SR to con-

sistently avoid locally optimal solutions, a common challenge in EM mixture models. The second

subalgorithm is transition modeling (TM), which searches for binary classification boundaries and

expresses them as a symbolic inequality. TM uniquely capitalizes on the pre-existing SR infras-

tructure through function composition. These two subalgorithms are combined and used to infer

symbolic models of hybrid dynamical systems.

MMSR is applied to four synthetic data sets, which span a range of classical hybrid automata

and intelligent robotics. The training data was also corrupted with various levels of noise. The

inferred models were compared via three performance metrics: model accuracy, complexity, and

fidelity. MMSR inferred reliable models for noiseless data sets and outperformed its neural network

counterparts in both model accuracy as well as model complexity. Furthermore, MMSR was used to

identify and characterize field-effect transistor modes, similar to those derived from first principles,

demonstrating a possible real-world application unique to this algorithm.

Symbolic modelling provides numerous benefits over parametric numerical models with the

primary advantage of operating in symbolic expressions, the standard language of mathematics and

science. Symbolic modelling provides the potential for knowledge abstraction and deeper under-

standing, as compared to the alternative of numeric,parametric approaches. In addition, there is a

wealth of theory in symbolic mathematics, including approximation and equivalence theories such

as Taylor expansions, which may aid understanding inferred models. Even having symbolic expres-
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sions to identify reoccurring motifs and subexpressions may provide insight in the inner workings

of the system.

A primary concern for symbolic modeling is how well it extends as the complexity increases

and whether an easily interpretable model exists. However, the alternatives struggle equally in

such cases. Deriving models from first principles is often similarly challenging while parametric

approaches, such as RNN and NNHMM, are likely to settle on local optima and have difficulty

achieve even numerically accurate models, even for relatively simple hybrid dynamical systems.

This work is the first step towards the generalized problem of modeling complex, multi-modal

dynamical systems. While symbolic expressions may not exist for complex systems, it does present

a viable alternative approach that may have the additional benefit of insight and interpretability.

Future work includes extending the model to infer differential equations and investigating higher

dimensional systems.
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Abstract

In this paper we introduce SVDFeature, a machine learning toolkit for feature-based collaborative
filtering. SVDFeature is designed to efficiently solve the feature-based matrix factorization. The
feature-based setting allows us to build factorization models incorporating side information such as
temporal dynamics, neighborhood relationship, and hierarchical information. The toolkit is capable
of both rate prediction and collaborative ranking, and is carefully designed for efficient training on
large-scale data set. Using this toolkit, we built solutions to win KDD Cup for two consecutive
years.

Keywords: large-scale collaborative filtering, context-aware recommendation, ranking

1. Introduction

Recommender system, which recommends items based on users’ interests, has become more and

more popular in many real-world situations. Collaborative filtering (CF) techniques, as the main

thrust behind recommender systems, have been developed for many years and keep to be a hot area

in both academia and industry. In this paper, we focus on building collaborative filtering based

recommendation toolkit which can effectively leverage the rich information of data collected and

naturally scale up to very large data set.

Matrix factorization (MF) is one of the most popular CF methods, and variants of it have been

proposed in specific settings. However, traditional approaches design specific models for each prob-

lem, demanding great efforts in engineering. Fortunately the majority of factorization models share

many common patterns, which enables us to summarize them into a single model and implement

a unified toolkit, called SVDFeature.1 SVDFeature enables incorporating auxiliary information via

feature engineering. This helps save the efforts of engineering for specific models and allows users

to focus on model design. Meanwhile, SVDFeature is specifically designed to handle large data

sets. With SVDFeature, we have won the two most recent KDD Cups. Moreover, it costs less than

1. Project page can be found at http://svdfeature.apexlab.org.

c©2012 Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng and Yong Yu.
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2GB memory to get an excellent performance of 22.16 on RMSE on Yahoo! Music data set with

200 million ratings records. This has manifested SVDFeature great modeling power and scalability.

2. Model of SVDFeature

There are three important factors in most CF problems: users’ interests, items’ properties and other

factors that directly affect users’ preferences over items. Various kinds of information can be used

to model these factors. For example, users’ browsing history over movie reviews may correlate with

users’ taste over movies; the information of the director and actors of a movie can be used to predict

its properties; the rating history over similar movies directly affect whether a user will favor the

current one. Our model summarizes the three factors as feature vectors (denoted by α ∈ Rm
,β ∈

Rn
,γ ∈ Rs) and predicts the preference score ŷ as

ŷ(α,β,γ) =

(

s

∑
j=1

γ jb
(g)
j +

n

∑
j=1

α jb
(u)
j +

m

∑
j=1

β jb
(i)
j

)

+

(

n

∑
j=1

α jp j

)T (
m

∑
j=1

β jq j

)

.

Here the model parameter set is defined as Θ = {b(g),b(u),b(i),p,q}. p j ∈ Rd and q j ∈ Rd are d

dimensional latent factors associated with each feature. b
(u)
j , b

(i)
j and b

(g)
j are bias parameters that

directly influence the prediction. We call α user feature, β item feature, and γ global feature. This

model is described as part of solution to KDD Cup (Chen et al., 2011, 2012). We call it feature-

based matrix factorization. Intuitively, we use a linear model to construct user and item latent factors

from features. The parameters are trained efficiently by minimizing a loss function using stochastic

gradient descent. The supported loss functions include square-loss, negative logistic log-likelihood

loss and smoothed hinge loss.

Many state-of-the-art collaborative filtering algorithms can be implemented using SVDFeature.

Let us suppose we want to recommend music tracks for users using the rating history, and we have

known the albums of tracks and the timestamps of the ratings as auxiliary information. As we

know, the album information can be used to better represent the content of tracks, and the temporal

information can be used to detect the changes of item popularity. All these auxiliary information

can help improve the performance of a recommender system. Taking them into consideration, we

can represent a user u’s preference towards track i at time t as follows

ŷ(u, i, t) = bi,bin(t) +bi +bp(i) +bu +pT
u (qi +qal(i))

where al(i) is the album of a track i. We segment time into consecutive bins and define bin(t) to map

timestamp to corresponding bin index. We use time localized bias bi,bin(t) to model items’ popularity

change over time. To incorporate the taxonomical information, we introduce qal(i) to make the

prediction towards track i depend on the latent factor of corresponding album. To implement this

model using SVDFeature, we can simply define the features as follows

αh =

{

1 h = u

0 h #= u
, βh =

{

1 h = i or h = al(i)
0 otherwise

, γh =

{

1 h = #bins× i+bin(t)
0 otherwise

.

The item feature β is defined to be indicator of whether the record is related to the track and its

corresponding album. We also define a global feature γh to encode the temporally varying item bias

bi,bin(t). We can further incorporate more information by defining more features.
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r biid,day biid baid= + buid++ puid q q0.60.6 iid aid
T+ +( )

Figure 1: Usage flow example of SVDFeature

3. Using SVDFeature

Figure 1 gives a usage example of SVDFeature to implement the model introduced in previous

section. We encode the album information as item features and item day biases as global features.

The number 0.6 associated with album id is an empirical parameter chosen by the user to control

the influence of album information in prediction. Assuming there are only two days’ records in the

data, the global feature index is defined as gid = 2× iid+day,where the number of item day biases

is twice the number of items. SVDFeature will learn a feature-based matrix factorization model with

the given training data and make predictions on supplied test feature files. We provide a manual to

give more details about the usage of SVDFeature.

4. Handling Big Data

Recommendation algorithms often have to deal with problems with large scale data set in real world,

which has been taken into consideration in designing SVDFeature. In our approach, we store the

data into a buffer file in hard disk. The data is shuffled before storing, and then the training program

linearly iterates over the buffer and updates the model with each training sample. This approach

allows us to do training as long as the model fits into memory. To reduce the additional cost of I/O

introduced by data loading, we use a pre-fetch strategy. An independent thread is created to fetch

the data from hard disk into a memory queue. At the same time, the training thread reads the data

from memory queue and updates the model. This pipeline style of execution releases the burden of

I/O from training thread. As long as I/O speed is similar to (or faster than) training speed, the cost

of I/O is negligible. Figure 2 shows the procedure of pipeline execution.
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Figure 2: Pipeline training

5. Extra Features

SVDFeature also provides several other extra features for better modeling capability. We list notable

features here: (1) Efficient speedup training for user feedback information; (2) Supporting collab-

orative ranking training; (3) Different kinds of regularization options; (4) Separated feature table

extension for user and item features. The details are described in the project page and manual.

6. Availability and Documentation

The source code of SVDFeature is implemented in C++ and can be compiled under both Linux

and Windows. The project is self-contained and only depends on standard libraries. SVDFeature

is released under Apache License, Version 2.0. We provide a technical document introducing the

algorithm and a user manual describing the usage details of the toolkit. To help users get started,

we also provide a demo folder with example shell scripts that show the procedures from feature

generation to training and prediction.
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Abstract

Optimizing multivariate performance measure is an important task in Machine Learning. Joachims
(2005) introduced a Support Vector Method whose underlying optimization problem is commonly
solved by cutting plane methods (CPMs) such as SVM-Perf and BMRM. It can be shown that CPMs
converge to an ε accurate solution in O

(
1
λε

)

iterations, where λ is the trade-off parameter between
the regularizer and the loss function. Motivated by the impressive convergence rate of CPM on
a number of practical problems, it was conjectured that these rates can be further improved. We
disprove this conjecture in this paper by constructing counter examples. However, surprisingly, we
further discover that these problems are not inherently hard, and we develop a novel smoothing
strategy, which in conjunction with Nesterov’s accelerated gradient method, can find an ε accu-

rate solution in O∗
(

min
{

1
ε ,

1√
λε

})

iterations. Computationally, our smoothing technique is also

particularly advantageous for optimizing multivariate performance scores such as precision/recall
break-even point and ROCArea; the cost per iteration remains the same as that of CPMs. Empiri-
cal evaluation on some of the largest publicly available data sets shows that our method converges
significantly faster than CPMs without sacrificing generalization ability.

Keywords: non-smooth optimization, max-margin methods, multivariate performance measures,
Support Vector Machines, smoothing

1. Introduction

Recently there has been an explosion of interest in applying machine learning techniques to a num-

ber of application domains, much of which has been fueled by the phenomenal success of binary

Support Vector Machines (SVMs). At the heart of SVMs is the following regularized risk mini-

∗. Xinhua Zhang is now working at the Machine Learning Group of NICTA, Canberra, Australia.

c©2012 Xinhua Zhang, Ankan Saha and S.V.N. Vishwanathan.
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mization problem:

min
w

J(w) =
λ

2
‖w‖2 +Remp(w). (1)

Here Remp is the so-called empirical risk (see below), 1
2 ‖w‖2 is the regularizer, λ > 0 is a scalar

which trades off the importance of the empirical risk and the regularizer. Given a training set with

n examples X := {(xi,yi)}n
i=1 where xi ∈ Rp and yi ∈ {±1}, the empirical risk Remp minimized by

SVMs is the average of the hinge loss:

Remp(w) :=
1

n

n

∑
i=1

max(0,1− yi 〈w,xi〉), (2)

where 〈·, ·〉 denotes the Euclidean dot product.

Binary SVMs optimize classification accuracy, while many application areas such as Natural

Language Processing (NLP) frequently use more involved multivariate performance measures such

as precision/recall break-even point (PRBEP) and area under the Receiver Operating Characteristic

curve (ROCArea). Joachims (2005) proposed an elegant SVM based formulation for directly op-

timizing these performance metrics. In his formulation, the empirical risk Remp in (1) is replaced

by

Remp(w) := max
z∈{−1,1}n

[

∆(z,y)+
1

n

n

∑
i=1

〈w,xi〉(zi − yi)

]

. (3)

Here, ∆(z,y) is the multivariate discrepancy between the correct labels y := (y1, . . . ,yn)) and a

candidate labeling z := (z1, . . . ,zn)) ∈ {±1}n. In order to compute the multivariate discrepancy for

PRBEP we need the false negative and false positive rates, which are defined as

b = ∑
i∈P

δ(zi =−1) and c = ∑
j∈N

δ(z j = 1), respectively.

Here δ(x) = 1 if x is true and 0 otherwise, while P and N denote the set of indices with positive

(yi = +1) and negative (yi = −1) labels respectively. Furthermore, let n+ = |P |, n− =
∣
∣N
∣
∣. With

this notation in place, ∆(zzz,yyy) for PRBEP is defined as

∆(zzz,yyy) =

{

b/n+ if b = c

−∞ otherwise
. (4)

ROCArea, on the other hand, measures how many pairs of examples are mis-ordered. Denote

m = n+n−. Joachims (2005) proposed using the following empirical risk, Remp, to directly optimize

the ROCArea:1

Remp(w) =
1

m
max

z∈{0,1}m

[

∑
i∈P

∑
j∈N

zi j

[

1−w)(xi −x j)
]
]

. (5)

We will call the regularized risk minimization problem with the PRBEP loss (3) as the PRBEP-

problem and with the ROCArea loss (5) as the ROCArea-problem respectively. As is obvious,

1. The original formulation uses 1−2w)(xi −x j), and we rescaled it to simplify our presentation in the sequel.
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both these problems entail minimizing a non-smooth objective function which is not additive over

the data points. Fortunately, cutting plane methods (CPMs) such as SVM-Perf (Joachims, 2006)

and BMRM (Teo et al., 2010) can be used for this task. At each iteration these algorithms only

require a sub-gradient of Remp, which can be efficiently computed by a separation algorithm with

O(n logn) effort for both (3) and (5) (Joachims, 2005). In this paper, we will work with BMRM as

our prototypical CPM, which, as Teo et al. (2010) point out, includes SVM-Perf as a special case.

CPMs are popular in Machine Learning because they come with strong convergence guarantees.

The tightest upper bound on the convergence speed of BMRM, which we are aware of, is due to Teo

et al. (2010). Theorem 5 of Teo et al. (2010) asserts that BMRM can find an ε-accurate solution of

the regularized risk minimization problem (1) with non-smooth empirical risk functions such as (3)

and (5) after computing O( 1
λε) subgradients. This upper bound is built upon the following standard

assumption:

Assumption 1 (A1) The subgradient of Remp is bounded, that is, at any point w, there exists a

subgradient ggg ∈ ∂Remp(w) such that ‖ggg‖ ≤ G < ∞.

In practice the observed rate of convergence of BMRM is significantly faster than predicted by the-

ory. Therefore, it was conjectured that perhaps a more refined analysis might yield a tighter upper

bound (Teo et al., 2010). Our first contribution in this paper is to disprove this conjecture under

assumption A1. We carefully construct PRBEP and ROCArea problems on which BMRM requires

at least Ω(1/ε) iterations to converge for a fixed λ. It is worthwhile emphasizing here that due

to the specialized form of the objective function in (1), lower bounds for general convex function

classes such as those studied by Nesterov (2003) and Nemirovski and Yudin (1983) do not apply. In

addition, our examples stick to binary classification and are substantially different from the one in

Joachims et al. (2009) which requires an increasing number of classes.

This result leads to the following natural question: do the lower bounds hold because the PRBEP

and ROCArea problems are fundamentally hard, or is it an inherent limitation of CPM? In other

words, does there exist a solver which solves the PRBEP and ROCArea problems by invoking the

separation algorithm for fewer than O( 1
λε) times?2 We provide partial answers. To understand

our results one needs to understand another standard assumption that is often made when proving

convergence rates:

Assumption 2 (A2) Each xi lies inside an L2 (Euclidean) ball of radius R, that is, ‖xi‖ ≤ R.

Clearly assumption A2 is more restrictive than A1, because ‖xxxi‖ ≤ R implies that for all www, any

subgradient of Remp has L2 norm at most 2R in both (3) and (5). Our second contribution in this

paper is to show that the O( 1
λε) barrier can be broken under assumption A2, while making a similar

claim just under assumption A1 remains an open problem. In a nutshell, our algorithm approximates

(1) by a smooth function, which in turn can be efficiently minimized by using either accelerated

gradient descent (Nesterov, 1983, 2005, 2007) or a quasi-Newton method (Nocedal and Wright,

2006). This technique for non-smooth optimization was pioneered by Nesterov (2005). However,

applying it to multivariate performance measures requires special care. We now describe some

relevant details and point out technical difficulties that one encounters along the way.

2. We want the rates to be better in both λ and in ε.
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1.1 Nesterov’s Formulation

Let A be a linear transform and assume that we can find a smooth function g!µ(A
)w) with a Lipschitz

continuous gradient such that
∣
∣Remp(w)−g!µ(A

)w)
∣
∣≤ µ for all w. It is easy to see that

Jµ(w) :=
λ

2
‖w‖2 +g!µ(A

)w) (6)

satisfies
∣
∣Jµ(w)− J(w)

∣
∣ ≤ µ for all w. In particular, if we set µ = ε/2 and find a w′ such that

Jµ(w′) ≤ minw Jµ(w)+ ε/2, then it follows that J(w′) ≤ minw J(w)+ ε. In other words, w′ is an ε
accurate solution for (1).

By applying Nesterov’s accelerated gradient method to Jµ(w) one can find an ε-accurate solution

of the original nonsmooth problem (1) after querying the gradient of g!µ(A
)w) at most

O∗
(√

D‖A‖min

{
1

ε
,

1√
λε

})

(7)

number of times (Nesterov, 1983, 2005).3 Here ‖A‖ is the matrix norm of A, which is defined

as ‖A‖ = maxuuu,vvv:‖uuu‖=‖vvv‖=1 uuu)Avvv =
√

λmax(A)A), with λmax denoting the maximum eigenvalue of

A, when the norm considered is the Euclidean norm. Furthermore, D is a geometric constant that

depends solely on gµ and is independent of ε, λ, or A. Compared with the O( 1
λε) rates of CPMs, the

1√
λε

part in (7) is already superior. Furthermore, many applications require λ , ε and in this case

the 1
ε part of the rate is even better. Note that CPMs rely on λ

2 ‖w‖2 to stabilize each update, and it

has been empirically observed that they converge slowly when λ is small (see, e.g., Do et al., 2009).

Although the above scheme is conceptually simple, the smoothing of the objective function in

(1) has to be performed very carefully in order to avoid dependence on n, the size of the training set.

The main difficulties are two-fold. First, one needs to obtain a smooth approximation g!µ(A
)w) to

Remp(w) such that
√

D‖A‖ is small (ideally a constant). Second, we need to show that computing

the gradient of g!µ(A
)w) is no harder than computing a subgradient of Remp(w). In the sequel we

will demonstrate how both the above difficulties can be overcome. Before describing our scheme in

detail we would like to place our work in context by discussing some relevant related work.

1.2 Related Work

Training large SV models by using variants of stochastic gradient descent has recently become

increasingly popular (Bottou, 2008; Shalev-Shwartz et al., 2007). While the dependence on ε and λ
is still Ω( 1

λε) or worse (Agarwal et al., 2009), one gets bounds on the computational cost independent

of n. However, stochastic gradient descent can only be applied when the empirical risk is additively

decomposable, that is, it can be written as the average loss over individual data points like in (2).

Since the non-linear multivariate scores such as the ones that we consider in this paper are not

additively decomposable, this rules out the application of online algorithms to these problems.

Traditionally, batch optimizers such as the popular Sequential Minimal Optimization (SMO)

worked in the dual (Platt, 1998). However, as List and Simon (2009) show, for the empirical risk

(2) based on hinge loss, if the matrix which contains the dot products of all training instances

3. For completeness we reproduce relevant technical details from Nesterov (1983) and Nesterov (2005) in Appendix A.
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(also known as the kernel matrix) is not strictly positive definite, then SMO requires O(n/ε) iter-

ations with each iteration costing O(np) effort. However, when the kernel matrix is strictly posi-

tive definite, then one can obtain an O(n2 log(1/ε)) bound on the number of iterations, which has

better dependence on ε, but is prohibitively expensive for large n. Even better dependence on ε
can be achieved by using interior point methods (Ferris and Munson, 2002) which require only

O(log(log(1/ε)) iterations, but the time complexity per iteration is O(min{n2 p, p2n}).

Recently, there has been significant research interest in optimizers which directly optimize (1)

because there are some distinct advantages (Teo et al., 2010). Chapelle (2007) observed that to

find a w which generalizes well, one only needs to solve the primal problem to very low accuracy

(e.g., ε ≈ 0.001). In fact, to the best of our knowledge, Chapelle (2007) introduced the idea of

smoothing the objective function to the Machine Learning community. Specifically, he proposed

to approximate the binary hinge loss by a smooth Huber’s loss and used the Newton’s method

to solve this smoothed problem. This approach yielded the best overall performance in the Wild

Competition Track of Sonnenburg et al. (2008) for training binary linear SVMs on large data sets.

A similar smoothing approach is proposed by Zhou et al. (2010), but it is also only for hinge loss.

However, the smoothing proposed by Chapelle (2007) for the binary hinge loss is rather ad-

hoc, and does not easily generalize to (3) and (5). Moreover, a function can be smoothed in many

different ways and Chapelle (2007) did not explicitly relate the influence of smoothing on the rates

of convergence of the solver. In contrast, we propose principled approaches to overcome these

problems.

Of course, other smoothing techniques have also been explored in the literature. A popular

approach is to replace the nonsmooth max term by a smooth log-sum-exp approximation (Boyd

and Vandenberghe, 2004). In the case of binary classification this approximation is closely related

to logistic regression (Bartlett et al., 2006; Zhang, 2004), and is equivalent to using an entropy

regularizer in the dual. However, as we discuss in Section 3.1.2 this technique yields exorbitantly

large
√

D‖A‖ in the bound (7) when applied to optimize multivariate performance measures.

1.3 Notation And Paper Outline

We assume a standard setup as in Nesterov (2005). Lower bold case letters (e.g., w, µµµ) denote

vectors, wi denotes the i-th component of w, 0 refers to the vector with all zero components, eeei is

the i-th coordinate vector (all 0’s except 1 at the i-th coordinate) and ∆k refers to the k dimensional

simplex. Unless specified otherwise, ‖·‖ refers to the Euclidean norm ‖w‖ :=
√

〈www,www〉. We denote

R := R∪{∞}, and [t] := {1, . . . , t}. g! stands for the Fenchel dual of a function g, and ∂g(www) is the

subdifferential of g at www (the set of all subgradients of g at www).

In Section 2, we first establish the lower bounds on the rates of convergence of CPMs when

used to optimize the regularized risk of PRBEP and ROCArea. To break this lower bound, our

proposed strategy constructs a smoothed surrogate function g!µ(A
)w), and the details are given in

Section 3. We will focus on efficiently computing the gradient of the smooth objective function in

Section 4. Empirical evaluation is presented in Section 5, and the paper concludes with a discussion

in Section 6.

3627



ZHANG, SAHA AND VISHWANATHAN

1.4 Improvement On Earlier Versions Of This Paper

This paper is based on two prior publications of the same authors: Zhang et al. (2011a) at NIPS

2010 and Zhang et al. (2011b) at UAI 2011, together with a technical report (Zhang et al., 2010).

Major improvements have been made on them, which include:

• New lower bounds for PRBEP and ROCArea losses (see Sections 2.2 and 2.3 respectively).

• Significantly simplified algorithms for computing the gradient of smoothed objectives for

both PRBEP and ROCArea losses (See Sections 4.1 and 4.2 respectively).

• Empirical evaluation on some of the largest publicly available data sets including those from

the Pascal Large Scale Learning Workshop in Section 5 (Sonnenburg et al., 2008)

• Open source code based on PETSc (Balay et al., 2011) and TAO (Benson et al., 2010) pack-

ages made available for download from Zhang et al. (2012).

2. Lower Bounds For Cutting Plane Methods

BMRM (Teo et al., 2010) is a state-of-the-art cutting plane method for optimizing multivariate per-

formance scores which directly minimizes the non-smooth objective function J(www). At every itera-

tion, BMRM replaces Remp by a piecewise linear lower bound R
cp
k and obtains the next iterate wk by

optimizing

wk := argmin
www

Jk(w) :=
λ

2
‖w‖2 +R

cp
k (w), where R

cp
k (w) := max

i∈[k]
〈w,ai〉+bi. (8)

Here ai ∈ ∂Remp(wi−1) denotes an arbitrary subgradient of Remp at wi−1 and bi = Remp(wi−1)−
〈wi−1,ai〉. The piecewise linear lower bound is successively tightened until the gap

εk := min
0≤t≤k

J(wt)− Jk(wk) (9)

falls below a predefined tolerance ε.

Since Jk in (8) is a convex objective function, the optimal wwwk can be obtained by solving its dual

problem, which is a quadratic programming problem with simplex constraints. We refer the reader

to Teo et al. (2010) for more details. The overall procedure of BMRM is summarized in Algorithm

1. Under Assumption A1, Teo et al. (2010) showed that BMRM converges at O( 1
λε) rates:

Theorem 3 Suppose Assumption 1 holds. Then for any ε < 4G2/λ, BMRM converges to an ε accu-

rate solution of (1) as measured by (9) after at most the following number of steps:

log2

λJ(0)

G2
+

8G2

λε
−1.

2.1 Lower Bound Preliminaries

Since most rates of convergence found in the literature are upper bounds, it is important to rigorously

define the meaning of a lower bound with respect to ε, and to study its relationship with the upper

bounds. At this juncture it is also important to clarify an important technical point. Instead of
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Algorithm 1: BMRM.

Input: A tolerance level of function value ε.

1 Initialize: www0 to arbitrary value, for example, 0. Let k = 1.

2 while TRUE do

3 Pick arbitrary subgradient of Remp at wk−1: ak ∈ ∂Remp(wk−1).
4 Let bk = Remp(wk−1)−〈wk−1,ak〉.
5 Solve wk = argminw Jk(w) = argminw

{
λ
2‖w‖2 +maxi∈[k] {〈w,ai〉+bi}

}

.

6 if min0≤t≤k J(wt)− Jk(wk)< ε then return wwwk. else k = k+1.

minimizing the objective function J(w) defined in (1), if we minimize a scaled version cJ(w) this

scales the approximation gap (9) by c. Assumption A1 fixes this degree of freedom by bounding

the scale of the objective function.

Given a function f ∈F and an optimization algorithm A, suppose {wk} are the iterates produced

by some algorithm A when minimizing some function f . Define T (ε; f ,A) as the first step index k

when wk becomes an ε accurate solution:4

T (ε; f ,A) = min{k : f (wk)−minwww f (www)≤ ε} .

Upper and lower bounds are both properties for a pair of F and A. A function κ(ε) is called an

upper bound of (F ,A) if for all functions f ∈ F and all ε > 0, it takes at most order κ(ε) steps for

A to reduce the gap to less than ε, that is,

(UB) ∀ ε > 0,∀ f ∈ F , T (ε; f ,A)≤ κ(ε).

On the other hand, we define lower bounds as follows. κ(ε) is called a lower bound of (F ,A) if for

any ε > 0, there exists a function fε ∈ F depending on ε, such that it takes at least κ(ε) steps for A

to find an ε accurate solution of fε:

(LB) ∀ ε > 0,∃ fε ∈ F , s.t. T (ε; fε,A)≥ κ(ε).

Clearly, this lower bound is sufficient to refute upper bounds or to establish their tightness. The size

of the function class F affects the upper and lower bounds in opposite ways. Suppose F ′ ⊂ F .

Proving upper (resp. lower) bounds on (F ′,A) is usually easier (resp. harder) than proving upper

(resp. lower) bounds for (F ,A). Since the lower bounds studied by Nesterov (2003) and Nemirovski

and Yudin (1983) are constructed by using general convex functions, they do not apply here to our

specialized regularized risk objectives.

We are interested in bounding the primal gap of the iterates wk: J(wk)−minwww J(www). Data sets

will be constructed explicitly whose resulting objective J(w) will be shown to satisfy Assumption

A1 and attain the lower bound of BMRM. We will focus on the Remp for both the PRBEP loss in (3)

and the ROCArea loss in (5).

4. The initial point also matters, as in the best case one can just start from the optimal solution. Thus the quantity of

interest is actually T (ε; f ,A) := maxw0 min{k : f (wk)−minwww f (www)≤ ε, starting point being w0}. However, without

loss of generality we assume some pre-specified way of initialization.
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2.2 Construction Of Lower Bound For PRBEP Problem

Given ε > 0, let n = 31/ε4+ 1 and construct a data set {(xxxi,yi)}n
i=1 as follows. Set c =

√
2

4 , and

let eeei denote the i-th coordinate vector in Rn+2 (p = n + 2). Let the first example be the only

positive example: y1 = +1 and xxx1 = cneee2. The rest n− 1 examples are all negative: yi = −1 and

xxxi =−cneee3 − cneeei+2 for i ∈ [2,n]. This data set concretizes the Remp in (3) as follows:

Remp(www) = max
zzz∈{−1,1}n

[

∆(zzz,yyy)+
1

n
〈www,xxx1〉(z1 −1)+

1

n

n

∑
i=2

〈www,xxxi〉(zi +1)

︸ ︷︷ ︸

:=ϒ(zzz)

]

.

Setting λ = 1, we obtain the overall objective J(www) in (1). Now we have the following lower

bound on the rates of convergence of BMRM.

Theorem 4 Let www0 = eee1+2ceee2+2ceee3. Suppose running BMRM on the above constructed objective

J(www) produces iterates w1, . . . ,wk, . . .. Then it takes BMRM at least
⌊

1
5ε

⌋

steps to find an ε accurate

solution. Formally,

min
i∈[k]

J(wi)−min
www

J(www)≥
1

4

(
1

k
−

1

n−1

)

for all k ∈ [n−1],

hence min
i∈[k]

J(wi)−min
www

J(www)> ε for all k <
1

5ε
.

Proof The crux of our proof is to show

wwwk = 2ceee2 +2ceee3 +
2c

k

k+3

∑
i=4

eeei, for all k ∈ [n−1]. (10)

We prove it by induction. Initially at k = 1, we note

1

n
〈www0,xxx1〉= 2c2 =

1

4
, and

1

n
〈www0,xxxi〉=−2c2 =−

1

4
, ∀ i ∈ [2,n]. (11)

Since there is only one positive example, zzz can only have two cases. If zzz = yyy (i.e., correct labeling

with b = 0), then ϒ(zzz) = ϒ(yyy) = 0. If zzz misclassifies the only positive example into negative (i.e.,

b = 1), then ∆(zzz,yyy) = b
n+

= 1. Since PRBEP forces c = b = 1, there must be one negative example

misclassified into positive by zzz. By (11), all i ∈ [2,n] play the same role in ϒ(zzz). Without loss

of generality, assume the misclassified negative example is i = 2, that is, zzz = (−1,1,−1,−1, . . .).
It is easy to check that ϒ(zzz) = 1+ 2

n [−〈www0,xxx1〉+ 〈www0,xxx2〉] = 0 = ϒ(yyy), which means such zzz is a

maximizer of ϒ(zzz). Using this zzz, we can derive a subgradient of Remp(www0):

aaa1 =
2

n
(−xxx1 + xxx2) =−2ceee2 −2ceee3 −2ceee4 and b1 = 0−〈aaa1,www0〉= 4c2 +4c2 = 1,

www1 = argmin
www

{
1

2
‖www‖2 + 〈aaa1,www〉+b1

}

= 2ceee2 +2ceee3 +2ceee4.

Next assume (10) holds for steps 1, . . . ,k (k ∈ [n−2]). Then at step k+1 we have

1

n
〈wwwk,xxx1〉= 2c2 =

1

4
, and

1

n
〈wwwk,xxxi〉=

{

−2c2 − 2c2

k =− 1
4 −

1
4k ∀ i ∈ [2,k+1]

−2c2 =− 1
4 , ∀ i ≥ k+2

.

3630



SMOOTHING MULTIVARIATE PERFORMANCE MEASURES

Again consider two cases of zzz. If zzz = yyy then ϒ(zzz) = ϒ(yyy) = 0. If zzz misclassifies the only positive

example into negative, then ∆(zzz,yyy) = 1. If zzz misclassifies any of i ∈ [2,k+ 1] into positive, then

ϒ(zzz) = 1+ 2
n [−〈wwwk,xxx1〉+ 〈wwwk,xxxi〉] = − 1

2k < ϒ(yyy). So such zzz cannot be a maximizer of ϒ(zzz). But

if zzz misclassifies any of i ≥ k+2 into positive, then ϒ(zzz) = 1+ 2
n [−〈wwwk,xxx1〉+ 〈wwwk,xxxi〉] = 0 = ϒ(yyy).

So such zzz is a maximizer. Pick i = k+2 and we can derive from this zzz a subgradient of Remp(wwwk):

aaak+1 =
2

n
(−xxx1 + xxxk+2) =−2ceee2 −2ceee3 −2ceeek+4, bk+1 = 0−〈aaak+1,wwwk〉= 4c2 +4c2 = 1,

wwwk+1 = argmin
www

Jk+1(www)=argmin
www

{
1

2
‖www‖2+ max

i∈[k+1]
{〈aaai,www〉+bi}

}

=2ceee2+2ceee3+
2c

k+1

k+4

∑
i=4

eeei.

To verify the last step, note 〈aaai,wwwk+1〉+bi =
−1

2(k+1) for all i∈ [k+1], and so ∂Jk+1(wwwk+1) = {wwwk+1+

∑k+1
i=1 αiaaai : ααα ∈ ∆k+1} 5 0 (just set all αi =

1
k+1 ). So (10) holds for step k+1. (End of induction.)

All that remains is to observe J(wwwk) =
1
4(2+

1
k ) while minwww J(www)≤ J(wwwn−1) =

1
4(2+

1
n−1), from

which it follows that J(wwwk)−minwww J(www)≥ 1
4(

1
k −

1
n−1).

Note in the above run of BMRM, all subgradients aaak have norm
√

3
2 which satisfies Assumption 1.

2.3 Construction Of Lower Bound For ROCArea Problem

Next we consider the case of ROCArea. Given ε > 0, define n = 61/ε7 and construct a data set

{(xxxi,yi)}n+1
i=1 with n+1 examples as follows. Let eeei be the i-th coordinate vector in Rn+2 (p= n+2).

The first example is the only positive example with y1 = +1 and xxx1 =
√

neee2. The rest n examples

are all negative, with yi =−1 and xxxi =−neeei+1 for i ∈ [2,n+1]. Then the corresponding empirical

risk for ROCArea loss is

Remp(www) =
1

n

n+1

∑
i=2

max{0,1−〈www,xxx1 − xxxi〉}=
1

n

n+1

∑
i=2

max{0,1−〈www,
√

neee2 +neeei+1
︸ ︷︷ ︸

:=uuui

〉}.

By further setting λ = 1, we obtain the overall objective J(www) in (1). It is easy to see that

the minimizer of J(www) is w∗ = 1
2

(
1√
n
eee2 +

1
n ∑n+2

i=3 eeei

)

and J(w∗) = 1
4n . In fact, simply check that

〈w∗,uuui〉= 1 for all i, so ∂J(w∗)=
{

w∗ −∑n
i=1 αi

(
1√
n
eee2 + eeei+2

)

: αi ∈ [0,1]
}

, and setting all αi =
1
2n

yields the subgradient 0. Then we have the following lower bound on the rates of convergence for

BMRM.

Theorem 5 Let w0 = eee1 +
1√
n
eee2. Suppose running BMRM on the above constructed objective J(www)

produces iterates w1, . . . ,wk, . . .. Then it takes BMRM at least
⌊

2
3ε

⌋

steps to find an ε accurate

solution. Formally,

min
i∈[k]

J(wi)− J(w∗) =
1

2k
+

1

4n
for all k ∈ [n],hence min

i∈[k]
J(wi)− J(w∗)> ε for all k <

2

3ε
.

Proof The crux of the proof is to show that

wwwk =
1√
n

eee2 +
1

k

k+2

∑
i=3

eeei, ∀ k ∈ [n]. (12)
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We prove (12) by induction. Initially at k = 1, we note that 〈www0,uuui〉= 1 for all i ∈ [2,n+1]. Hence

we can derive a subgradient and www1:

aaa1 =−
1

n
uuu2 =−

1√
n

eee2 − eee3, b1 =−〈aaa1,www0〉=
1

n
,

www1 = argmin
www

{
1

2
‖www‖2 + 〈aaa1,www〉+b1

}

=−aaa1 =
1√
n

eee2 + eee3.

So (12) holds for k = 1. Now suppose it hold for steps 1, . . . ,k (k ∈ [n−1]). Then for step k+1 we

note

〈wwwk,uuui〉=

{

1+ n
k if i ≤ k

1 if i ≥ k+1
.

Therefore we can derive a subgradient and compute wwwk+1:

aaak+1 =−
1

n
uuuk+2 =−

1√
n

eee2 − eeek+3, bk+1 =−〈aaak+1,wwwk〉=
1

n
,

wwwk+1 = argmin
www

{ 1

2
‖www‖2 + max

i∈[k+1]
{〈aaai,www〉+bi}

︸ ︷︷ ︸

:=Jk+1(www)

}

=−
1

k+1

k+1

∑
i=1

aaai =
1√
n

eee2 +
1

k+1

k+3

∑
i=3

eeei.

This minimizer can be verified by noting that 〈wwwk+1,aaai〉+ bi = − 1
k+1 for all i ∈ [k + 1], and so

∂Jk+1(wwwk+1) = {wwwk+1 +∑k+1
i=1 αiaaai : ααα ∈ ∆k+1} 5 0 (just set all αi =

1
k+1 ). So (12) holds for step

k+1. (End of induction.)

All that remains is to observe J(wwwk) =
1
2(

1
n +

1
k ).

As before, in the above run of BMRM, all subgradients aaak have norm (1+ 1
n)

1/2 which satisfies

Assumption 1.

3. Reformulating The Empirical Risk

In order to bypass the lower bound of CPMs and show that the multivariate score problems can

be optimized at faster rates, we propose a smoothing strategy as described in Section 1.1. In this

section, we will focus on the design of smooth surrogate functions, with emphasis on the consequent

rates of convergence when optimized by Nesterov’s accelerated gradient methods (Nesterov, 2005).

The computational issues will be tackled in Section 4.

In order to approximate Remp by g!µ we will start by writing Remp(w) as g∗(A)w) for an ap-

propriate linear transform A and convex function g. Let the domain of g be Q and d be a strongly

convex function with modulus 1 defined on Q. Furthermore, assume minααα∈Q d(ααα) = 0 and denote

D = maxααα∈Q d(ααα). In optimization parlance d is called a prox-function. Set

g!µ = (g+µd)!.

Then by the analysis in Appendix A, we can conclude that g!µ(A
)w) has a Lipschitz continuous

gradient with constant at most 1
µ ‖A‖2. In addition,

∣
∣
∣g!µ(A

)w)−Remp(w)
∣
∣
∣≤ µD. (13)
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Choosing µ = ε/D, we can guarantee the approximation is uniformly upper bounded by ε.

There are indeed many different ways of expressing Remp(w) as g!(A)w), but the next two

sections will demonstrate the advantage of our design.

3.1 Contingency Table Based Loss

Letting S k denote the k dimensional probability simplex, we can rewrite (3) as:

Remp(w) = max
zzz∈{−1,1}n

[

∆(zzz,yyy)+
1

n

n

∑
i=1

〈w,xxxi〉(zi − yi)

]

(14)

= max
ααα∈S 2n ∑

zzz∈{−1,1}n

αzzz

(

∆(zzz,yyy)+
1

n

n

∑
i=1

〈w,xxxi〉(zi − yi)

)

(15)

= max
ααα∈S 2n ∑

zzz∈{−1,1}n

αzzz∆(zzz,yyy)−
2

n

n

∑
i=1

yi 〈w,xxxi〉

(

∑
zzz:zi=−yi

αzzz

)

.

Note from (14) to (15), we defined 0 · (−∞) = 0 since ∆(zzz,yyy) can be −∞ as in (4). Introduce

βi = ∑zzz:zi=−yi
αzzz. Then βi ∈ [0,1] and one can rewrite the above equation in terms of βββ:

Remp(w) = max
βββ∈[0,1]n

{

−2

n

n

∑
i=1

yi 〈w,xxxi〉βi −g(βββ)

}

(16)

where g(βββ) :=− max
ααα∈A(βββ)

∑
zzz∈{−1,1}n

αzzz∆(zzz,yyy). (17)

Here A(βββ) is a subset of S 2n
defined via A(βββ) =

{

ααα s.t. ∑zzz:zi=−yi
αzzz = βi for all i

}

. Indeed, this

rewriting only requires that the mapping from ααα ∈ S 2n
to βββ ∈ Q := [0,1]n is surjective. This is clear

because for any βββ ∈ [0,1]n, a pre-image ααα can be constructed by setting:

αzzz =
n

∏
i=1

γi, where γi =

{

βi if zi =−yi

1−βi if zi = yi

.

Proposition 6 g(βββ) defined by (17) is convex on βββ ∈ [0,1]n.

Proof Clearly A(βββ) is closed for any βββ ∈ Q. So without loss of generality assume that for any βββ
and βββ′

in [0,1]n, the maximum in (17) is attained at ααα and ααα′ respectively. So ∑zzz:zi=−yi
αzzz=βi and

∑zzz:zi=−yi
α′

zzz =β′
i. For any ρ ∈ [0,1], consider βββρ

:= ρβββ+(1−ρ)βββ′
. Define αααρ := ρααα+(1−ρ)ααα′.

Then clearly αααρ satisfies

∑
zzz:zi=−yi

α
ρ
zzz = ρβi +(1−ρ)β′

i = β
ρ
i .

Therefore αααρ is admissible in the definition of g(βββρ) (17), and

g(βββρ)≤−∑
zzz

α
ρ
zzz ∆(zzz,yyy) =−ρ∑

zzz

αzzz∆(zzz,yyy)− (1−ρ)∑
zzz

α′
zzz∆(zzz,yyy)

= ρg(βββ)+(1−ρ)g(βββ′).

which establishes the convexity of g.

Using (16) it immediately follows that Remp(w) = g!(A)w) where A is a p-by-n matrix whose i-th

column is −2
n yixxxi,.
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3.1.1
√

D‖A‖ FOR OUR DESIGN

Let us choose the prox-function d(βββ) as 1
2 ‖βββ‖2

. Then D = maxβββ∈[0,1]n d(βββ) = n
2 . Define A =

−2
n (y1xxx1, . . . ,ynxxxn) and M be a n-by-n matrix with Mi j = yiy j

〈

xxxi,xxx j

〉

. Clearly, A)A= 4
n2 M. Because

we assumed that ‖xxxi‖ ≤ R, it follows that |Mi j| ≤ R2. The norm of A can be upper bounded as

follows:

‖A‖2=λmax(A
)A)=

4

n2
λmax(M)≤

4

n2
tr(M)≤

4

n2
·nR2=

4R2

n
. (18)

Hence

√
D‖A‖ ≤

√

n

2

2R√
n
=
√

2R.

This constant upper bound is highly desirable because it implies that the rate of convergence in (7)

is independent of the size of the data set (n or p). However, the cost per iteration still depends on n

and p.

3.1.2 ALTERNATIVES

It is illuminating to see how naive choices for smoothing Remp can lead to excessively large values

of
√

D‖A‖. For instance, using (14), Remp(w) can be rewritten as

Remp(w) = max
zzz∈{−1,1}n

1

n

[

n∆(zzz,yyy)+
n

∑
i=1

〈w,xxxi〉(zi − yi)

]

= max
ααα∈Q

∑
zzz∈{−1,1}n

αzzz

(

n∆(zzz,yyy)+
n

∑
i=1

〈w,xxxi〉(zi − yi)

)

.

where Q refers to the 2n dimensional simplex scaled by 1
n : Q =

{

ααα : αz ∈ [0,n−1] and ∑zzz αzzz =
1
n

}

.

Defining A as a p-by-2n matrix whose zzz-th column is given by ∑n
i=1 xxxi(zi − yi) and writing

h(ααα) =

{

−n∑zzz∈{−1,1}n ∆(zzz,yyy)αzzz if ααα ∈ Q

+∞ otherwise
,

we can express Remp as

Remp(w) = max
ααα∈Q

[〈

A)w,ααα
〉

−h(ααα)
]

= h!(A)w). (19)

Now let us investigate the value of
√

D‖A‖. As Q is a scaled simplex, a natural choice of prox-

function is

d(ααα) = ∑
zzz

αzzz logαzzz +
1

n
logn+ log2.

Clearly, d(ααα) is a strongly convex function in Q with modulus of strong convexity 1 under the L1

norm (see, e.g., Beck and Teboulle, 2003, Proposition 5.1). In addition, d(ααα) is minimized when ααα
is uniform, that is, αzzz =

1
n2n for all zzz, and so

min
ααα∈Q

d(ααα) = 2n 1

n2n
log

1

n2n
+

1

n
logn+ log2 = 0.
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Therefore d(ααα) satisfies all the prerequisites of being a prox-function. Furthermore, d(ααα) is

maximized on the corner of the scaled simplex, for example, αyyy =
1
n and αzzz = 0 for all zzz 8= yyy. So

D = max
ααα∈Q

d(ααα) =
1

n
log

1

n
+

1

n
logn+ log2 = log2. (20)

Finally, denoting the z-th column of A as A:zzz, we can compute ‖A‖ as

‖A‖= max
u:‖u‖=1,v:∑zzz|vzzz|=1

u)Av = max
v:∑zzz|vzzz|=1

‖Av‖= max
z

‖A:z‖

= max
z

∥
∥
∥
∥
∥

n

∑
i=1

xxxi(zi − yi)

∥
∥
∥
∥
∥
≤ 2

n

∑
i=1

‖xxxi‖ ≤ 2nR. (21)

Note this bound is tight because ‖A‖ = 2nR can be attained by setting xxxi = Reee1 for all i, in which

case the maximizing zzz is simply −yyy. Eventually combining (20) and (21), we arrive at
√

D‖A‖ ≤ 2nR
√

log2.

Thus if we re-express Remp by using this alternative form as in (19),
√

D‖A‖ will scale as Θ(nR)
which grows linearly with n, the number of training examples.

3.2 ROCArea Loss

We rewrite Remp(w) from (5) as:

1

m
max

zi j∈{0,1}
∑
i∈P

∑
j∈N

zi j[1−w)(xi−x j)] =
1

m
max

βββ∈[0,1]m
∑
i∈P

∑
j∈N

βi j

[

1−www)(xxxi − xxx j)
]

. (22)

The above empirical risk can be identified with g!(A)w) by setting

g(βββ) =

{

− 1
m ∑i, j βi j if βββ ∈ [0,1]m

+∞ elsewhere
,

and letting A be a p-by-m matrix whose (i j)-th column is − 1
m(xxxi − xxx j). This g is a linear function

defined over a convex domain, and hence clearly convex.

3.2.1
√

D‖A‖ FOR OUR DESIGN

Choose prox-function d(βββ) = 1
2 ∑i, j β2

i j. By a simple calculation, D = maxβββ d(βββ) = m
2 . As before,

define A to be a matrix such that its (i j)-th column Ai j = − 1
m (xxxi − xxx j) and M be a m-by- m matrix

with M(i j)(i′ j′) =
〈

xxxi − xxx j,xxxi′ − xxx j′
〉

. Clearly, A)A = 1
m2 M. Because we assumed that ‖xxxi‖ ≤ R, it

follows that |Mi j|≤ 4R2. The norm of A can be upper bounded as follows:

‖A‖2=λmax(A
)A)=

1

m2
λmax(M)≤

1

m2
tr(M)≤

1

m2
·4mR2=

4R2

m
.

Therefore

√
D‖A‖ ≤

√

m

2
·

2R√
m

=
√

2R. (23)

This upper bound is independent of n and guarantees that the rate of convergence is not affected by

the size of the data set.
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3.2.2 ALTERNATIVES

The advantage of our above design of g!(A)www) can be seen by comparing it with an alternative

design. In (22), let us introduce

γi = ∑
j∈N

βi j, i ∈ P , and γ j = ∑
i∈P

βi j, j ∈ N .

Then clearly γγγ ∈ B := {γi ∈ [0,n−],γ j ∈ [0,n+]}. However this map from βββ ∈ [0,1]m to γγγ ∈ B is

obviously not surjective, because the image γγγ should at least satisfy ∑i∈P γi = ∑ j∈N γ j.
5 So let us

denote the real range of the mapping as A and A ⊆ B . Now rewrite (22) in terms of γγγ:

Remp(www) =
1

m
max
γγγ∈A

{

∑
i∈P

γiwww
)(−xxxi)+ ∑

j∈N

γ jwww
)xxx j + ∑

i∈P

γi + ∑
j∈N

γ j

}

= g!(A)www), where g(γγγ) =

{

− 1
m ∑i∈P γi +

1
m ∑ j∈N γ j if γγγ ∈ A

+∞ elsewhere
,

and A is a p-by-n matrix whose i-th column is − 1
m xxxi (i ∈ P ) and j-th column is 1

m xxx j ( j ∈ N ).

Choose a prox-function d(γγγ) = 1
2 ‖γγγ‖2. Then we can bound ‖A‖ by R

m

√
n similar to (18) and

bound D by

D = max
γγγ∈A

d(γγγ)≤ max
γγγ∈B

d(γγγ) =
1

2

(

n2
+n−+n+n2

−
)

.

Note that the ≤ here is actually an equality because they have a common maximizer: γi = n−
for all i ∈ P and γ j = n+ for all j ∈ N (which is mapped from all βi j = 1). Now we have

√
D‖A‖ ≤

1√
2

√

n2
+n−+n+n2

−
R

m

√
n =

R√
2

√

(n++n−)2

n+n−
.

This bound depends on the ratio between positive and negative examples. If the class is balanced

and there exist constants c+,c− ∈ (0,1) such that n+ ≥ c+n and n− ≥ c−n, then we easily derive√
D‖A‖ ≤ R√

2c+c−
which is a constant. However, if we fix n− = 1 and n+ = n−1, then

√
D‖A‖ will

scale as Θ(
√

n). In contrast, the bound in (23) is always a constant.

4. Efficient Evaluation Of The Smoothed Objective And Its Gradient

The last building block required to make our smoothing scheme work is an efficient algorithm to

compute the smoothed empirical risk g!µ(A
)w) and its gradient. By the chain rule and Corollary

X.1.4.4 of Hiriart-Urruty and Lemaréchal (1996), we have

∂

∂w
g!µ(A

)w) = Aβ̂ββ where β̂ββ = argmax
βββ∈Q

〈

βββ,A)w
〉

−g(βββ)−µd(βββ). (24)

Since g is convex and d is strongly convex, the optimal β̂ββ must be unique. Two major difficulties

arise in computing the above gradient: the optimal β̂ββ can be hard to solve (e.g., in the case of

contingency table based loss), and the matrix vector product in (24) can be costly (e.g., O(n2 p)
for ROCArea). Below we show how these difficulties can be overcome to compute the gradient in

O(n logn) time.

5. Note that even adding this equality constraint to the definition of B will still not make the map surjective.
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4.1 Contingency Table Based Loss

Since A is a p×n dimensional matrix and β̂ββ is a n dimensional vector, the matrix vector product in

(24) can be computed in O(np) time. Below we focus on solving β̂ββ in (24).

To take into account the constraints in the definition of g(βββ), we introduce Lagrangian multipli-

ers θi and the optimization in (24) becomes

g!µ(A
)w) = max

βββ∈[0,1]n

{

−2

n

n

∑
i=1

yi 〈w,xxxi〉βi −
µ

2

n

∑
i=1

β2
i (25)

+ max
ααα∈S 2n

[

∑
zzz

αzzz∆(zzz,yyy)+ min
θθθ∈Rn

n

∑
i=1

θi

(

∑
zzz:zi=−yi

αzzz −βi

)]}

⇔ min
θθθ∈Rn

{

max
ααα∈S 2n ∑

zzz

αzzz

[

∆(zzz,yyy)+∑
i

θiδ(zi =−yi)

]

+ max
βββ∈[0,1]n

n

∑
i=1

(
−µ

2
β2

i −
(

2

n
yi 〈w,xxxi〉+θi

)

βi

)
}

⇔ min
θθθ∈Rn

{

max
zzz

[

∆(zzz,yyy)+∑
i

θiδ(zi =−yi)

]

︸ ︷︷ ︸

:=q(zzz,θθθ)

+
n

∑
i=1

max
βi∈[0,1]

[
−µ

2
β2

i −
(

2

n
yi 〈w,xxxi〉+θi

)

βi

]

︸ ︷︷ ︸

:=hi(θi)

}

. (26)

The last step is because all βi are decoupled and can be optimized independently. Let

D(θθθ) := max
zzz

q(zzz,θθθ)+
n

∑
i=1

hi(θi),

and θ̂θθ be a minimizer of D(θθθ): θ̂θθ ∈ argminθθθ D(θθθ). Given θ̂θθ and denoting

ai =
−2

n
yi 〈w,xxxi〉 , (27)

we can recover the optimal β(θ̂i) from the definition of hi(θ̂i) as follows:

β̂i = βi(θ̂i) =









0 if θ̂i ≥ ai

1 if θ̂i ≤ ai −µ
1
µ(ai − θ̂i) if θ̂i ∈ [ai −µ,ai]

.

So, the main challenge that remains is to compute θ̂θθ. Towards this end, first note that:

∇θi
hi(θi) =−βi(θi) and ∂θθθq(zzz,θθθ) = co

{

δzzz : zzz ∈ argmax
zzz

q(zzz,θθθ)

}

.

Here δzzz := (δ(z1 =−y1), . . . ,δ(zn =−yn))) and co(·) denotes the convex hull of a set. By the first

order optimality conditions 0 ∈ ∂D(θ̂θθ), which implies that

β̂ββ ∈ co

{

δzzz : zzz ∈ argmax
zzz

q(zzz,θθθ)

}

. (28)
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We will henceforth restrict our attention to PRBEP as a special case of contingency table based

loss ∆. A major contribution of this paper is a characterization of the optimal solution of (26), based

on which we propose an O(n logn) complexity algorithm for finding θ̂θθ exactly. To state the result,

our notation needs to be refined. We will always use i to index positive examples (i ∈ P ) and j to

index negative examples ( j ∈ N ). Let the positive examples be associated with xxx+i , y+i (= 1), a+i ,

θ̂+
i , β̂+

i , and h+i (·), and the negative examples be associated with xxx−j , y−j (= −1), a−j , θ̂−
j , β̂−

j , and

h−j (·). Given two arbitrary scalars θ+ and θ−, let us define θθθ = θθθ(θ+,θ−) by setting θ+
i = θ+ for all

i ∈ P and θ−
j = θ− for all j ∈ N . Finally define f : R <→ R as follows

f (θ) = ∑
i∈P

h+i (θ)+ ∑
j∈N

h−j

(
−1

n+
−θ

)

.

Then f is differentiable and convex in θ. Now our result can be stated as

Theorem 7 The problem (26) must have an optimal solution which takes the form θθθ(θ+,θ−) with

θ+ + θ− = −1
n+

. Conversely, suppose θ+ + θ− = −1
n+

, then θθθ(θ+,θ−) is an optimal solution if, and

only if, ∇ f (θ+) = 0.

Remark 8 Although the optimal θθθ to the problem (26) may be not unique, the optimal βββ to the

problem (25) must be unique as we commented below (24).

4.1.1 PROOF OF THEOREM 7

We start with the first sentence of Theorem 7. Our idea is as follows: given any optimal solution θ̂θθ,

we will construct θ+ and θ− which satisfy θ++θ− = −1
n+

and D(θθθ(θ+,θ−))≤ D(θ̂θθ).

First θ̂θθ must be in Rn because D(θθθ) tends to ∞ when any component of θθθ approaches ∞ or −∞.

Without loss of generality, assume n+ ≤ n−, θ̂+
1 ≥ θ̂+

2 ≥ . . ., and θ̂−
1 ≥ θ̂−

2 ≥ . . .. Define θ̂+
0 = θ̂−

0 = 0,

and consider the phase transition point

k := max

{

0 ≤ i ≤ n+ : θ̂+
i + θ̂−

i +
1

n+
> 0

}

,

based on which we have three cases: k = 0, 1 ≤ k ≤ n+−1, and k = n+.

Case 1: 1 ≤ k ≤ n+− 1. Then there must exist θ+ ∈ [θ̂+
k+1, θ̂

+
k ] and θ− ∈ [θ̂−

k+1, θ̂
−
k ] such that

θ++θ− = −1
n+

. Denote θθθ′ := θθθ(θ+,θ−) and it suffices to show D(θθθ′)≤ D(θ̂θθ). Since θ++θ− = −1
n+

,

it is easy to see maxzzz q(zzz,θθθ′) = 0, and so

D(θθθ′) = ∑
i∈P

h+i (θ
+)+ ∑

j∈N

h−j (θ
−).

To get a lower bound of D(θ̂θθ), consider a specific zzz where z+i =−1 for 1 ≤ i ≤ k, z+i = 1 for i > k,

z−j = 1 for 1 ≤ j ≤ k, and z−j =−1 for j > k. Then we have

D(θ̂θθ)≥
k

n+
+

k

∑
i=1

θ+
i +

k

∑
j=1

θ−
j + ∑

i∈P

h+i (θ
+
i )+ ∑

j∈N

h−j (θ
−
j ).
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Using θ++θ− = −1
n+

, we can compare:

D(θ̂θθ)−D(θθθ′)≥
k

∑
i=1

[

h+i (θ
+
i )−h+i (θ

+)+θ+
i −θ+

]

+
k

∑
j=1

[

h−j (θ
−
j )−h−j (θ

−)+θ−
j −θ−

]

+
n+

∑
i=k+1

[

h+i (θ
+
i )−h+i (θ

+)
]

+
n−

∑
j=k+1

[

h−j (θ
−
j )−h−j (θ

−)
]

. (29)

It is not hard to show all terms in the square bracket are non-negative. For i ≤ k and j ≤ k, by

definition of θ+ and θ−, we have θ+
i ≥ θ+ and θ−

j ≥ θ−. Since the gradient of h+i and h−j lies in

[−1,0], so by Rolle’s mean value theorem we have

h+i (θ
+
i )−h+i (θ

+)+θ+
i −θ+ ≥ (−1)(θ+

i −θ+)+θ+
i −θ+ = 0,

h−j (θ
−
j )−h−j (θ

−)+θ−
j −θ− ≥ (−1)(θ−

j −θ−)+θ−
j −θ− = 0.

For i ≥ k and j ≥ k, by definition we have θ+
i ≤ θ+ and θ−

j ≤ θ−, and so h+i (θ
+
i ) ≥ h+i (θ

+) and

h−j (θ
−
j )≥ h−j (θ

−). By (29) we conclude D(θ̂θθ)≥ D(θθθ′).

Case 2: k = n+. Then define θ− = θ−
n+

and θ+ = −1
n+

−θ−. Since k = n+ so θ+ < θ+
n+

. The rest

of the proof for D(θ̂θθ)≥ D(θθθ(θ+,θ−)) is exactly the same as Case 1.

Case 3: k = 0. This means θ+
i + θ−

i + 1
n+

≤ 0 for all 1 ≤ i ≤ n+. Then define θ+ = θ+
1 and

θ− = −1
n+

− θ+. Clearly, θ− ≥ θ−
1 . The rest of the proof for D(θ̂θθ) ≥ D(θθθ(θ+,θ−)) is exactly the

same as Case 1 with k set to 0.

Next we prove the second sentence of Theorem 7. We first show necessity. Denote θθθ′ :=
θθθ(θ+,θ−), and Y := argmaxzzz q(zzz,θθθ′). By the definition of PRBEP, any zzz ∈ Y must satisfy

∑
i∈P

δ(z+i =−1) = ∑
j∈N

δ(z−j = 1). (30)

Since θθθ′ is an optimizer of D(θθθ), so 0 ∈ ∂D(θθθ′). Hence by (28), there must exist a distribution

α(zzz) over zzz ∈ Y such that

∇h+i (θ
+) =− ∑

zzz∈Y :z+i =−1

α(zzz), ∀i ∈ P and ∇h−j (θ
−) =− ∑

zzz∈Y :z−j =1

α(zzz), ∀ j ∈ N .

Therefore

∑
i∈P

∇h+i (θ
+) =−∑

i∈P
∑

zzz∈Y :z+i =−1

α(zzz) =− ∑
zzz∈Y

α(zzz)∑
i∈P

δ(z+i =−1)

by (30)
= − ∑

zzz∈Y

α(zzz) ∑
j∈N

δ(z−j = 1) =− ∑
j∈N

∑
zzz∈Y :z−j =1

α(zzz) = ∑
j∈N

∇h−j (θ
−).

Finally, we prove sufficiency. By the necessity, we know there is an optimal solution θ̂θθ =
θθθ(θ+,θ−) which satisfies θ+ + θ− = −1

n+
and ∇ f (θ+) = 0. Now suppose there is another pair η+

and η− which also satisfy η+ +η− = −1
n+

and ∇ f (η+) = 0. Letting θθθ′ = θθθ(η+,η−), it suffices to

show that D(θθθ′) = D(θ̂θθ). Since θ++θ− = η++η− = −1
n+

, so

max
zzz

q(zzz, θ̂θθ) = max
zzz

q(zzz,θθθ′) = 0. (31)

Since f is convex and ∇ f (θ+) = ∇ f (η+) = 0, so both θ+ and η+ minimize f (θ) and so f (θ+) =
f (η+). In conjunction with (31), we conclude D(θθθ′) = D(θ̂θθ). !
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4.1.2 AN O(n logn) COMPLEXITY ALGORITHM FOR SOLVING (26) UNDER PRBEP

We now design an O(n logn) complexity algorithm which, given {ai} from (27), finds an optimal

solution θ̂θθ exactly. By Theorem 7, it suffices to find a root of the gradient of f :

∇ f (θ) = g+(θ)−g−
(
−1

n+
−θ

)

where g+(θ) := ∑
i∈P

∇h+i (θ) and g−(θ) := ∑
j∈N

∇h−j (θ).

Clearly, g+ and g− are piecewise linear. g+ only has 2n+ kink points: {a+i ,a
+
i −µ : i ∈ P} and

we assume they are sorted decreasingly as τ+1 ≥ . . .≥ τ+2n−
. Similarly, g− only has 2n− kink points:

{a−j ,a
−
j −µ : j ∈ N } and we assume they are sorted decreasingly as τ−1 ≥ . . .≥ τ−2n−

. Further define

τ+0 = τ−0 = ∞ and τ+2n++1 = τ−2n−+1 =−∞.

Our main idea is to find a+,b+,a−,b− which satisfy i) g+ is linear in [a+,b+] and g− is linear in

[a−,b−]; and ii) there exists θ+ ∈ [a+,b+] and θ− ∈ [a−,b−] such that θ++θ− = −1
n+

and g+(θ+) =

g−(θ−). Once this is done, we can find θ+ and θ− by solving a linear system

θ++θ− =
−1

n+
,

g+(a+)+
g+(a+)−g+(b+)

a+−b+
(θ+−a+) = g−(a−)+

g−(a−)−g−(b−)

a−−b−
(θ−−a−). (32)

The idea of finding a+,b+,a−,b− is to detect the sign switch of “some” function. Our frame-

work can be divided into two stages:

• First, we find a sign switching interval [τ+i ,τ
+
i−1] such that ∇ f (τ+i ) ≤ 0 and ∇ f (τ+i−1) ≥ 0.

Formally, since f (τ+2n++1) = limθ→−∞ ∇ f (θ) =−n+ and f (τ+0 ) = limθ→∞ ∇ f (θ) = n−, there

must be a cross point i ∈ {1, . . . ,1+ 2n+} such that ∇ f (τ+i ) ≤ 0 and ∇ f (τ+i−1) ≥ 0. We set

a+ = τ+i and b+ = τ+i−1.

• Second, within [a+,b+] where c := −1
n+

− τ+i−1 and d := −1
n+

− τ+i , we find a sign switching

interval [τ−j ,τ
−
j−1] such that ∇ f (−1

n+
− τ−j ) ≥ 0 and ∇ f (−1

n+
− τ−j−1) ≤ 0. Formally, suppose

τ−p ≥ . . . ≥ τ−q are in [c,d]. Define a decreasing array by χ−
0 = d, χ−

1 = τ−q , . . . , χ−
m = τ−r ,

χ−
m+1 = c. Since ∇ f (−1

n+
− χ−

0 ) = ∇ f (τ+i ) ≤ 0 and ∇ f (−1
n+

− χ−
m+1) = ∇ f (τ+i−1) ≥ 0, there

must be a cross point j ∈ {1, . . . ,m+1} such that ∇ f (−1
n+

−χ−
j )≥ 0 and ∇ f (−1

n+
−χ−

j−1)≤ 0.

We set a− = χ−
j and b− = χ−

j−1.

Then a+,b+,a−,b− are guaranteed to have the desired property. We formalize the idea in Algorithm

2. Since ∇ f (τ+0 ) = n−, it simply finds the smallest i ≥ 1 such that ∇ f (τ+i ) ≤ 0. Similarly, since

∇ f (−1
n+

−χ−
0 )≤ 0, it just finds the smallest j ≥ 1 such that ∇ f (−1

n+
−χ−

j )≥ 0.

Algorithm 2 requires an efficient way to evaluate g+ and g−. To this end, we design Algorithm

3 for computing g+, while the case for g− can be handled in sheer analogy. One key observation

made from Algorithm 2 is that the location where g+ is evaluated grows monotonically in the first

and second stage. Therefore, our algorithm only needs to ensure that the total cost of evaluating g+

in both stages is O(n+).
Our idea to achieve this is to maintain an anchor point i ∈ {1, . . . ,2n+}, together with the slope

s and intercept/bias b of g+ in the interval [τ+i+1,τ
+
i ]. Whenever a query point θ is given, we move i
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Algorithm 2: Find a+,b+,a−,b− to facilitate finding θ+ and θ− via solving (32).

Input: Arrays {τ+i : 0 ≤ i ≤ 2n++1} and {τ−j : 0 ≤ j ≤ 2n−+1}.

Output: a+,b+,a−,b− which satisfy the desired conditions.

1 for i = 1, . . . ,1+2n+ do

2 g+i = g+(τ+i ), g−i = g−
(
−1
n+

− τ+i

)

;

3 if g+i −g−i ≤ 0 then break;

4 Let c = −1
n+

− τ+i−1, d = −1
n+

− τ+i . Suppose τ−q ≥ . . .≥ τ−r are in [c,d];

5 Define a decreasing array χ−
0 = d, χ−

1 = τ−q , . . . , χ−
m = τ−r , χ−

m+1 = c (m = r−q+1).

6 for j = 1, . . . ,m+1 do

7 g+j = g+
(
−1
n+

−χ−
j

)

, g−j = g−(χ−
j );

8 if g+j −g−j ≥ 0 then break;

9 return a+ = τ+i , b+ = τ+i−1, a− = χ−
j , b− = χ−

j−1;

Figure 1: Example of evaluating g+. At τ+i , s = 3 and b = −2. g+(θ) can be computed by −2+
3(θ− τ+i ). At τ+i+1, s = 2 and b =−3.

to the largest possible value such that θ ∈ (τ+i+1,τ
+
i ] and compute g+(θ) by b+ s(θ− τ+i ). In other

words, when θ > τ+i , we need to decrement i; and when θ ≤ τ+i+1 we increment i. An example is

given in Figure 1.

The key operation here is how to update s and b when sliding i. We say i is a head if τ+i
corresponds to some a+k (rather than a+k − µ). Otherwise we say i is a tail. We initialize by setting

i = 1, s = 1 and b = 0. Then the update rule falls in four cases:

• Increment i and i′ = i+1 is a head: update by s′ = s+1, and b′ = b+ s · 1
µ(τ

+
i′ − τ+i ).

• Increment i and i′ = i+1 is a tail: update by s′ = s−1 and b′ = b+ s · 1
µ(τ

+
i′ − τ+i ).

• Decrement i to i′ = i−1, and i is a head: update by s′ = s−1 and b′ = b− s′ · 1
µ(τ

+
i − τ+i′ ).

• Decrement i to i′ = i−1, and i is a tail: update by s′ = s+1 and b′ = b− s′ · 1
µ(τ

+
i − τ+i′ ).

Since the query point grows monotonically, the anchor point i only needs to slide monotonically

too. Hence the total computational cost in each stage is O(n+). It is also not hard to see that i can be

initialized to i = 2n+, with s = 0 and b =−n+. Finally, suppose we store {a+i ,a
+
i −µ} by an array

A with A[2k−1] = a+k and A[2k] = a+k −µ, and the sorting is performed only in terms of the index

of A. Then an index i of A is a head (corresponds to some a+k ) if an only if i is odd.
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Algorithm 3: Compute g+(θ).

Input: A query point θ.

Output: g+(θ).
1 Initialize: i = 1, s = 1, b = 0. Given {ai}, do this only once at the first call of this function.

Other initializations are also fine, for example, i = 2n+, with s = 0 and b =−n+.

2 while TRUE do

3 if τ+i ≥ θ then

4 if τ+i+1 < θ then return b+ s · 1
µ(θ− τ+i );

5 else

6 b = b+ s · 1
µ(τ

+
i+1 − τ+i ), i = i+1;

7 if i is a head then s = s+1; else s = s−1;

8 else

9 if i == 1 then return 0;

10 if i is a head then s = s−1; else s = s+1;

11 i = i−1, b = b− s · 1
µ(τ

+
i+1 − τ+i );

4.2 ROCArea Loss

For the ROCArea loss, given the optimal β̂ββ in (24) one can compute

∂

∂w
g!µ(A

)w) =
1

m ∑
i, j

β̂i j(xxx j − xxxi) =−
1

m

[

∑
i∈P

xxxi

(

∑
j∈N

β̂i j

)

︸ ︷︷ ︸

:=γi

− ∑
j∈N

xxx j

(

∑
i∈P

β̂i j

)

︸ ︷︷ ︸

:=γ j

]

.

If we can efficiently compute all γi and γ j, then the gradient can be computed in O(np) time.

Given β̂i j, a brute-force approach to compute γi and γ j takes O(m) time. We exploit the structure

of the problem to reduce this cost to O(n logn), thus matching the complexity of the separation

algorithm in Joachims (2005). Towards this end, we specialize (24) to ROCArea and write

g!µ(A
)w) = max

βββ

(

1

m ∑
i, j

βi jw
)(xxx j − xxxi)+

1

m ∑
i, j

βi j −
µ

2 ∑
i, j

β2
i j

)

. (33)

Since all βi j are decoupled, their optimal value can be easily found:

β̂i j = median(1,a j −ai,0)

where ai =
1

µm

(

w)xxxi −
1

2

)

, and a j =
1

µm

(

w)xxx j +
1

2

)

. (34)

Below we give a high level description of how γi for i ∈ P can be computed; the scheme for

computing γ j for j ∈ N is identical. We omit the details for brevity.

For a given i, suppose we can divide N into three sets M +
i , Mi, and M −

i such that

• j ∈ M +
i =⇒ 1 < a j −ai, hence β̂i j = 1.
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Algorithm 4: Compute γi, si, ti for all i ∈ P .

Input: Two arrays {ai : i ∈ P} and
{

a j : j ∈ N
}

sorted increasingly: ai ≤ ai+1 and

a j ≤ a j+1.

Output: {γi,si, ti : i ∈ P}.

1 Initialize: s = t = 0, k = j = 0

2 for i in 1 to n+ do

3 while j < n− AND a j+1 < ai do

4 j = j+1; s = s−a j; t = t −a2
j

5 while k < n− AND ak+1 ≤ ai +1 do

6 k = k+1; s = s+ak; t = t +a2
k

7 si = s, ti = t, γi = (n−−1− k)− (k− j)ai + s

• j ∈ Mi =⇒ a j −ai ∈ [0,1], hence β̂i j = a j −ai.

• j ∈ M −
i =⇒ a j −ai < 0, hence β̂i j = 0.

Let si = ∑ j∈Mi
a j. Then, clearly

γi = ∑
j∈N

β̂i j = |M +
i |+ ∑

j∈Mi

a j − |Mi| ai = |M +
i |+ si − |Mi| ai.

Plugging the optimal β̂i j into (33) and using (34), we can compute g!µ(A
)w) as

g!µ(A
)w) = µ∑

i j

β̂i j(a j −ai)−
µ

2 ∑
i j

β̂2
i j = µ

(

∑
j∈N

a jγ j − ∑
i∈P

aiγi

)

−
µ

2 ∑
i j

β̂2
i j.

If we define ti := ∑ j∈Mi
a2

j , then ∑i j β̂2
i j can be efficiently computed via

∑
j

β̂2
i j =

∣
∣M +

i

∣
∣+ ∑

j∈Mi

(a j −ai)
2 =

∣
∣M +

i

∣
∣+
∣
∣Mi

∣
∣a2

i −2aisi + ti, ∀ i ∈ P .

In order to identify the sets M +
i , Mi, M −

i , and compute si and ti, we first sort both {ai : i ∈ P}
and

{

a j : j ∈ N
}

. We then walk down the sorted lists to identify for each i the first and last indices

j such that a j − ai ∈ [0,1]. This is very similar to the algorithm used to merge two sorted lists,

and takes O(n−+ n+) = O(n) time and space. The rest of the operations for computing γi can be

performed in O(1) time with some straightforward book-keeping. The whole algorithm is presented

in Algorithm 4 and its overall complexity is dominated by the complexity of sorting the two lists,

which is O(n logn).

5. Empirical Evaluation

We used 24 publicly available data sets and focused our study on two aspects: the reduction in

objective value as a function of CPU time, and generalization performance. Since the objec-

tive functions we are minimizing are strongly convex, all optimizers will converge the same so-

lution (within numerical precision) and produce the same generalization performance eventually.
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Therefore, what we are specifically interested in is the rate at which the objective function and

generalization performance decreases. We will refer to our algorithm as SMS, for Smoothing

for Multivariate Scores. As our comparator we use BMRM. We downloaded BMRM from http:

//users.rsise.anu.edu.au/˜chteo/BMRM.html, and used the default settings in all our experi-

ments.

5.1 Data Sets

Table 1 summarizes the data sets used in our experiments. adult9, astro-ph, news20, real-sim,

reuters-c11, reuters-ccat are from the same source as in Hsieh et al. (2008). aut-avn is from

Andrew McCallum’s home page,6 covertype is from the UCI repository (Frank and Asuncion,

2010), worm is from Franc and Sonnenburg (2008), kdd99 is from KDD Cup 1999,7 while web8,

webspam-u, webspam-t,8 as well as the kdda and kddb9 are from the LibSVM binary data col-

lection.10 The alpha, beta, delta, dna, epsilon, fd, gamma, ocr, and zeta data sets were all

obtained from the Pascal Large Scale Learning Workshop website (Sonnenburg et al., 2008). Since

the features of dna are suboptimal compared with the string kernels used by Sonnenburg and Franc

(2010), we downloaded their original DNA sequence (dna string).11 In particular, we used a

weighted degree kernel and two weighted spectrum kernels (one at position 1-59 and one at 62-141,

corresponding to the left and right of the splice site respectively), all with degree 8. Following Son-

nenburg and Franc (2010), we used the dense explicit feature representations of the kernels, which

amounted to 12,670,100 features.

For dna string and the data sets which were also used by Teo et al. (2010) (indicated by an

asterisk in Table 1), we used the training test split provided by them. For the remaining data sets we

used 80% of the labeled data for training and the remaining 20% for testing. In all cases, we added

a constant feature as a bias.

5.2 Optimization Algorithms

Optimizing the smooth objective function Jµ(w) using the optimization scheme described in Nes-

terov (2005) requires estimating the Lipschitz constant of the gradient of the g!µ(A
)w). Although

it can be automatically tuned by, for example, Beck and Teboulle (2009), extra cost is incurred

which slows down the optimization empirically. Therefore, we chose to optimize our smooth ob-

jective function using L-BFGS, a widely used quasi-Newton solver (Nocedal and Wright, 1999).

We implemented our smoothed loss using PETSc12 and TAO,13 which allow the efficient use of

large-scale parallel linear algebra. We used the Limited Memory Variable Metric (lmvm) variant of

6. The data set can be found at http://www.cs.umass.edu/˜mccallum/data/sraa.tar.gz.

7. The data set can be found at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

8. webspam-u is the webspam-unigram and webspam-t is the webspam-trigram data set. Original data set can be found

at http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html.

9. These data sets were derived from KDD CUP 2010. kdda is the first problem algebra 2008 2009 and kddb is the

second problem bridge to algebra 2008 2009.

10. The data set can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html.

11. The data set can be found at http://sonnenburgs.de/soeren/projects/coffin/splice_data.tar.xz.

12. The software can be found at http://www.mcs.anl.gov/petsc/petsc-2/index.html. We compiled an opti-

mized version of PETSc (--with-debugging=0) and enabled 64-bit index to run for large data sets such as dna and

ocr.

13. TAO can be found at http://www.mcs.anl.gov/research/projects/tao.
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data set n p s(%) n+ :n− data set n p s(%) n+ :n−
adult9* 48,842 123 11.3 0.32 alpha 500,000 500 100 1.00
astro-ph* 94,856 99,757 0.08 0.31 aut-avn* 71,066 20,707 0.25 1.84

beta 500,000 500 100 1.00 covertype* 581,012 6.27 M 22.22 0.57
delta 500,000 500 100 1.00 dna 50.00 M 800 25 3e−3

dna string 50.00 M 12.7 M n.a. 3e−3 epsilon 500,000 2000 100 1.00
fd 625,880 900 100 0.09 gamma 500,000 500 100 1.00

kdd99* 5.21 M 127 12.86 4.04 kdda 8.92 M 20.22 M 2e−4 5.80
kddb 20.01 M 29.89 M 1e−4 6.18 news20* 19,954 7.26 M 0.033 1.00
ocr 3.50 M 1156 100 0.96 real-sim* 72,201 2.97 M 0.25 0.44

reuters-c11* 804,414 1.76 M 0.16 0.03 reuters-ccat* 804,414 1.76 M 0.16 0.90
web8* 59,245 300 4.24 0.03 webspam-t 350,000 16.61 M 0.022 1.54

webspam-u 350,000 254 33.8 1.54 worm* 1.03 M 804 25 0.06
zeta 500,000 800.4 M 100 1.00

Table 1: Summary of the data sets used in our experiments. n is the total number of examples, p

is the number of features, s is the feature density (% of features that are non-zero), and

n+ :n− is the ratio of the number of positive vs negative examples. M denotes a million. A

data set is marked with an asterisk if it is also used by Teo et al. (2010).

L-BFGS which is implemented in TAO. Open-source code, as well as all the scripts used to run our

experiments are available for download from Zhang et al. (2012).

5.3 Implementation And Hardware

Both BMRM and SMS are implemented in C++. Since dna and ocr require more memory than was

available on a single machine, we ran both BMRM and SMS with 16 cores spread across 16 machines

for these two data sets. As dna string employs a large number of dense features, it would cost a

prohibitively large amount of memory. So following Sonnenburg and Franc (2010), we (repeatedly)

computed the explicit features whenever it is multiplied with the weight vector www. This entails

demanding cost in computation, and therefore we used 32 cores. The other data sets were trained

with a single core. All experiments were conducted on the Rossmann computing cluster at Purdue

University,14 where each node has two 2.1 GHz 12-core AMD 6172 processors with 48 GB physical

memory per node.

5.4 Experimental Setup

We used λ ∈
{

10−2,10−4,10−6
}

to test the performance of BMRM and SMS under a reasonably

wide range of λ. In line with Chapelle (2007), we observed that solutions with higher accuracy do

not improve the generalization performance, and setting ε = 0.001 was often sufficient. Accord-

ingly, we could set µ = ε/D as suggested by the uniform deviation bound (13). However, this esti-

mate is very conservative because in (13) we used D as an upper bound on the prox-function, while

in practice the quality of the approximation depends on the value of the prox-function around the

optimum. On the other hand, a larger value of µ proffers more strong convexity in gµ, which makes

14. The cluster information is at http://www.rcac.purdue.edu/userinfo/resources/rossmann.
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data set
PRBEP ROCArea

data set
PRBEP ROCArea

BMRM SMS BMRM SMS BMRM SMS BMRM SMS

adult9 43.32 0.40 1.13 0.19 alpha 3595 183.6 802.3 135.4
astro-ph 119.0 48.8 11.8 4.02 aut-avn 2.22 1.77 0.92 0.61
beta 1710 24.4 644.0 46.5 covertype 36.24 7.33 42.73 5.71
delta n.a. 36.03 n.a. 44.20 dna n.a. n.a. 12140 561.5

dna string n.a. n.a. >30000 27514 epsilon 1716.1 804.5 1182.4 718.4
fd 943.2 154.0 1329.8 327.5 gamma 14612 26.5 8902.0 47.5

kdd99 63.5 152.1 204.9 31.0 kdda n.a. 19204 n.a. 6108
kddb n.a. 19363 n.a. 10592 news20 6921.2 429.5 1.51 8.8
ocr 893.1 105.9 921.6 98.0 real-sim 1.19 3.52 8.50 2.16

reuters-c11 45.5 46.1 28.7 10.4 reuters-ccat 328.2 162.8 145.0 31.9
web8 4.35 1.26 10.4 0.59 webspam-t 17271 5681.2 5751.9 1805.4

webspam-u 57.8 29.5 58.8 8.47 worm 2058.6 30.4 1901.4 20.2
zeta 679.1 293.4 579.8 386.7

Table 2: Summary of the wall-clock time taken by BMRM and SMS to find a solution which is

within 1% of the minimal regularized risk. All numbers are in seconds, and are obtained

from the λ which yields the optimal test performance. There are a few n.a. which are

explained in Section 5.5.

g∗µ smoother and hence Jµ easier to optimize. Empirically, we observed that setting µ = 10 · ε/D

allows SMS to find an ε accurate solution in all cases.

5.5 Results

In Figures 2 to Figure 26 we plot the evolution of the non-smooth objective J(w) (1) as a function of

CPU time as well as the generalization performance on the test set for both BMRM and SMS. For a

fair comparison the time taken to load the data is excluded for both algorithms. Note that the x-axis

on the plots scales logarithmically. The figures also indicate the generalization performance upon

convergence, and the best performance among all values of λ is highlighted in boldface.

Across a variety of data sets, for both PRBEP and ROCArea problems, SMS reduces the non-

smooth objective J(w) significantly faster than BMRM for all values of λ. For large values of λ
(e.g., λ = 10−2) the difference in performance is not dramatic, but the test performance of both

methods is always inferior. This is because most of the data sets we use in our experiments contain

a large number of training examples, and hence require very mild regularization. For instance,

the optimal generalization performance is obtained by λ = 10−6 in 40 out of the 48 experiments,

by λ = 10−4 in 14 experiments, and λ = 10−2 in only 2 experiments (there are 8 ties). For low

values of λ we find that BMRM which sports a O
(

1
λε

)

rate of convergence slows down significantly.

In contrast, SMS is not only able to gracefully handle small values of λ but actually converges

significantly faster. To summarize the results, we present in Table 2 the wall-clock time that BMRM

and SMS take to minimize the regularized risk to 1% relative accuracy, that is, find www∗ such that

J(www∗) ≤ 1.01 ·minwww J(www). In many cases, SMS is 10 to 100 times faster than BMRM in achieving

the same relative accuracy. Also see the detailed discussion of the results below.
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We also studied the evolution of the PRBEP and ROCArea performance on the test data. It

is clear that in general a lower value in J(www) results in better test performance, which confirms

the effectiveness of the SVM model. This correlation also translates the faster reduction of the

objective value into the faster improvement of the generalization performance. On most data sets,

the intermediate models output by SMS achieve comparable (or better) PRBEP and ROCArea scores

in time orders of magnitude faster than those generated by BMRM. These results can be explained

as follows: Since BMRM is a CPM, only the duality gap is guaranteed to decrease monotonically.

This does not translate to reduction in the primal objective value. Consequently, we observe that

sometimes the primal objective and generalization performance of BMRM seemingly gets “stuck”

for many iterations. In contrast, our smoothing scheme uses L-BFGS which enforces a descent

condition, and hence we observe a monotonic decrease in objective value at every iteration.15

5.5.1 DETAILED DISCUSSION OF THE RESULTS

On the adult9 data set (Figure 2), the value of λ that yields the optimal test PRBEP is 10−6 (panels

(c) and (f)). 100 seconds are needed by BMRM to complete training (i.e., minimize the regularized

risk J(www) to the desired accuracy and achieve stably optimal test PRBEP), while SMS needs only

0.5 seconds. For ROCArea, the optimal λ is 10−4 (panels (h) and (k)), in which case it takes SMS

just 0.3 seconds for training, compared with the 2 seconds required by BMRM.

On the covertype data set (Figure 7), the optimal λ is 10−6 for both PRBEP and ROCArea. In

PRBEP-problem (panels (c) and (f)), SMS is able to find the optimal regularized risk in 15 seconds,

while BMRM takes about 55 seconds. The optimal test PRBEP is stably achieved by SMS in 10

seconds, while that costs BMRM about 7 times longer (80 seconds). The superiority on ROCArea is

even more evident (panels (i) and (l)). SMS takes only 10 seconds to complete training for ROCArea,

while BMRM requires 60 seconds. In addition, between 1 second and 10 seconds, BMRM seems to

be stuck by a plateau where it is collecting cutting planes to construct a refined model before being

able to reduce the regularized risk further.

On the delta data set (Figure 8), the optimal λ is again 10−6 for both PRBEP and ROCArea. In

both cases, BMRM fails to converge to the optimal solution within 9 hours’ runtime and is terminated

(panels (c), (f), (i), (l), and the “n.a.” for delta in Table 2). In contrast, SMS optimizes the objective

and attains the optimal test PRBEP and ROCArea in only 40 seconds. If we also pay attention to the

sub-optimal values of λ, that is, 10−2 and 10−4, it is clear that SMS again optimizes the regularized

risk and test performance much faster. In fact, the time required by SMS to output the optimal test

performance is about only 1% of that of BMRM (panels (d), (e), (j), (k)). Similar phenomena are

observed on the gamma data set (Figure 13).

ocr is another data set where SMS demonstrates a clear edge over BMRM (Figure 18). The

optimal test PRBEP and ROCArea are both attained at λ = 10−6. Training for PRBEP costs BMRM

1000 seconds, while SMS takes only 10% as much time (panels (c) and (f)). As for ROCArea, the

training time required by BMRM is 10 times of that of SMS. Similar striking advantage of SMS is

also manifested on the fd data set (Figure 12). As one can clearly read from panels (c), (f), (i), and

(l), SMS completes training for PRBEP in only 150 seconds, 15% of the time needed by BMRM. On

ROCArea, training costs SMS 200 seconds, as opposed to 800 seconds for BMRM.

15. L-BFGS enforces monotonic decrease only on the smoothed objective Jµ(www), while what we are plotting is J(www).
However, empirically we observe that J(www) is always monotonically decreasing.
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On the two reuters data sets, the advantage of SMS is also manifested. On reuters-c11

(Figure 20), the model achieves about 50% test PRBEP (panel (f)). Since the data set is imbalanced

with the ratio of the number of positive versus negative examples being 0.03, this performance is

probably not vacuous. SMS and BMRM perform similarly in minimizing the regularized risk (panel

(c)), while the test PRBEP fluctuates too much making it hard to tell which method is better (panel

(f)). Regarding ROCArea, SMS is clearly faster in reducing the regularized risk (panel (i)), but in

terms of test ROCArea it is only slightly faster than BMRM (panel (l)). The advantage of SMS is

much clearer on the reuters-ccat data set (Figure 21), whose class ratio is 0.9. With λ = 10−6

which yields the optimal PRBEP, SMS completes training in about 110 seconds, while BMRM takes

400 seconds (panel (c) and (f)). For ROCArea, the optimal λ is again 10−6 and 30 seconds are

needed by SMS to complete training, compared with the 100 seconds required by BMRM (panels (i)

and (l)).

Let us look at another pair of similar data sets: webspam-u and webspam-t. On webspam-u

(Figure 24), SMS demonstrates clear superiority over BMRM. The optimal test PRBEP and RO-

CArea are both achieved at λ = 10−6, which outperforms the result of λ = 10−4 by 0.72% and

0.73% respectively (panels (f) and (l)). As far as ROCArea is concerned, SMS completed training in

9 seconds, while BMRM takes 30 seconds (panels (i) and (l)). In the PRBEP-problem (panels (c) and

(f)), training takes 250 seconds for SMS, while the time cost for BMRM is doubled (500 seconds).

Very similar results are observed on webspam-t (Figure 23) which differs from webspam-u by using

a trigram class of features. On PRBEP, the regularized risk is minimized by SMS in 6,500 seconds

(panels (c)), while BMRM requires approximately three times more CPU time (20,000 seconds). The

optimal test PRBEP is achieved by SMS in 2,000 seconds (panel (f)), while BMRM takes double as

much time (4,000 seconds). Similarly on ROCArea (panels (i) and (l)), SMS is three times more

efficient than BMRM, taking 2,000 seconds to minimize the regularized risk (versus 7,000 seconds

by BMRM), and 7,000 seconds to optimize the test ROCArea (versus 25,000 seconds by BMRM).

In the PRBEP-problem for kdda and kddb, BMRM is stuck half way because its inner solver for

quadratic programming does not converge even after a large number of iterations, and is terminated

after running for 9 hours. Hence we mark “n.a.” in Table 2. We tried both the QR-LOQO and

the Dai Fletcher solvers provided by BMRM, but they both got stuck. However, SMS had no

trouble solving the PRBEP-problem efficiently. Turning our attention to the ROCArea-problems,

the optimal λ is 10−6 for both kdda and kddb. Here BMRM optimizes the objective very slowly and

cannot get close to the optimal solution within 9 hours, hence terminated. SMS again solves the

ROCArea-problems efficiently. Note when λ is large (10−4 and 10−2), BMRM does manage to find

the optimal solution for the ROCArea-problems within 9 hours, but SMS completes training in less

than a quarter of the time taken by BMRM.

As is to be expected in such extensive empirical evaluation, there are some anomalies. On the

dna data set (Figure 9), the ROCArea is learned very well (panels (j) to (l)), whereas the test PRBEP

is pretty poor (panels (d) to (f)). We have enforced the accuracy of regularized risk minimization

to very high: 10−5, but in panels (a) to (c), the objective value at convergence is still just slightly

below 1, a value which is trivially attained by www = 0. Hence we mark “n.a.” in Table 2. We tried

with smaller λ (e.g., 10−8 and 10−10) and got similar test PRBEP. It is noteworthy that dna is the

most skewed data set used in our experiment, with 333 times more negatives examples than positive

examples. BMRM also struggles on this data set, which leads us to believe that some other learning

models may be needed. Similar behavior is also observed on the dna string data set, which attains
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significantly higher test PRBEP and ROCArea than dna does, confirming the superiority of string

kernels.

On the beta data set (Figure 6), the optimal PRBEP and ROCArea are around 50% (panels (f)

and (l)). Since this data set contains the same number of positive and negative examples, a random

labeling of the test data will produce 50% PRBEP and ROCArea in expectation. So for this data set,

other modeling methods may be needed as well.

On kdd99 (Figure 14), the objective value is not well correlated with the test performance. For

example, although SMS is clearly faster than BMRM in reducing the regularized risk for ROCArea

(panels (g) to (i)), the test ROCArea is improved at similar rates by the two algorithms. In fact, the

test ROCArea of SMS in panel (l) is even worse. Likewise, SMS and BMRM perform similarly in

reducing the regularized risk for PRBEP as shown in panels (a) to (c), but irregular bumps in the

test PRBEP are observed on BMRM (panels (d) to (f)). Notice that at convergence, both algorithms

still match closely in the test performance.

5.5.2 THE INFLUENCE OF µ

Figures 27 to 29 show the performance of SMS under different values of µ with λ fixed to 10−6.

The complete results on all the 24 data sets are available at Zhang et al. (2012).

We tried µ = cµ · ε/D where cµ ∈ {1000,100,10}. It is clear that cµ = 10 can always find an ε
accurate solution in practice. This guarantee fails to hold when cµ is too large (e.g., 1000), although

in this case SMS sometimes converges faster and may also generalize well on test data. cµ = 100

often performs very similarly to cµ = 10.

5.5.3 COMPARISON WITH ACCELERATED GRADIENT METHOD

Motivated by the theoretical derivation of the rates of convergence, we tested the performance of

Nesterov’s accelerated gradient method (AGM) on our smooth objective. In particular, we used the

scheme in Nesterov (2007) which adaptively estimates the Lipschitz constant of the gradient. From

the results in Figure 30 to 32 where λ = 10−6 and cµ = 10, it is clear that AGM converges much

slower than L-BFGS. This is not surprising because L-BFGS, which is a second order method, can

estimate and use the curvature of the unconstrained and smooth objective. The full set of results on

all data sets are available at Zhang et al. (2012).

6. Conclusion And Discussion

The non-smoothness of the loss function is an important consideration for algorithms which employ

the kernel trick (Schölkopf and Smola, 2002). This is because such algorithms typically operate in

the dual, and the non-smooth losses lead to sparse dual solutions. In many applications such as

natural language processing, the kernel trick is not needed because the input data is sufficiently high

dimensional. However, now we need to tackle a non-smooth optimization problem in the primal.

In this paper we proposed efficient smoothing techniques to approximate the non-smooth function.

When combined with a smooth optimization algorithm, our technique outperforms state-of-the-art

non-smooth optimization algorithms for multivariate performance scores not only in terms of CPU

time but also in terms of generalization performance.

It is also worthwhile emphasizing here that optimization is a means to an end in Machine Learn-

ing, and smoothing is not the right approach for every non-smooth problem. For example, although
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(d) Test PRBEP, λ = 10−2, 66.64
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(e) Test PRBEP, λ = 10−4, 67.05
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(f) Test PRBEP, λ = 10−6, 67.13
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(j) Test ROCArea, λ = 10−2, 90.21
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(k) Test ROCArea, λ = 10−4, 90.23
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(l) Test ROCArea, λ = 10−6, 90.17

Figure 2: Results for adult9. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 66.55
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(e) Test PRBEP, λ = 10−4, 78.00
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(f) Test PRBEP, λ = 10−6, 78.27
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(g) Obj value for ROCArea, λ = 10−2
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(j) Test ROCArea, λ = 10−2, 61.84
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(k) Test ROCArea, λ = 10−4, 85.57
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(l) Test ROCArea, λ = 10−6, 86.12

Figure 3: Results for alpha. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 90.30
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(e) Test PRBEP, λ = 10−4, 95.24
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(f) Test PRBEP, λ = 10−6, 99.95
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(j) Test ROCArea, λ = 10−2, 98.25
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(k) Test ROCArea, λ = 10−4, 99.60
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(l) Test ROCArea, λ = 10−6, 100.00

Figure 4: Results for astro-ph. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 97.20
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(e) Test PRBEP, λ = 10−4, 98.56
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(f) Test PRBEP, λ = 10−6, 97.93
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1 0− 1 1 00
4 .3 8

5 .5 9

6 .8 0

8 .0 0

9 .2 1

W all− c lo c k  tim e (s ec o n d s )

Va
lu

e 
o

f R
eg

u
lar

iz
ed

 R
is

k

 

 

BMRM
SMS

x  1 0− 2

(h) Obj value for ROCArea, λ = 10−4

1 0− 1 1 00 1 01
1 .7 6

2 .2 4

2 .7 3

3 .2 1

3 .7 0

W all− c lo c k  tim e (s ec o n d s )

Va
lu

e 
o

f R
eg

u
lar

iz
ed

 R
is

k

 

 

BMRM
SMS

x  1 0− 3

(i) Obj value for ROCArea, λ = 10−6

1 0− 19 4 .0 4

9 5 .4 0

9 6 .7 6

9 8 .1 2

9 9 .4 9

W all− c lo c k  tim e (s ec o n d s )

T
es

t R
O

CA
re

a 
(%

)

 

 

BMRM
SMS

(j) Test ROCArea, λ = 10−2, 98.80
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(k) Test ROCArea, λ = 10−4, 99.79

1 0− 1 1 00 1 01
9 4 .8 3

9 6 .2 0

9 7 .5 7

9 8 .9 4

1 0 0 .3 2

W all− c lo c k  tim e (s ec o n d s )

T
es

t R
O

CA
re

a 
(%

)

 

 

BMRM
SMS

(l) Test ROCArea, λ = 10−6, 99.73

Figure 5: Results for aut-avn. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(b) Obj value for PRBEP, λ = 10−4

1 01 1 02 1 03
0 .9 9

0 .9 9

0 .9 9

1 .0 0

1 .0 0

W all− c lo c k  tim e (s ec o n d s )

Va
lu

e 
o

f R
eg

u
lar

iz
ed

 R
is

k

 

 

BMRM
SMS

(c) Obj value for PRBEP, λ = 10−6

1 01
4 9 .8 7

4 9 .8 8

4 9 .8 9

4 9 .9 0

4 9 .9 1

W all− c lo c k  tim e (s ec o n d s )

T
es

t P
RB

EP
 (%

)

 

 

BMRM
SMS

(d) Test PRBEP, λ = 10−2, 49.88
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(e) Test PRBEP, λ = 10−4, 49.94
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(f) Test PRBEP, λ = 10−6, 50.04
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(i) Obj value for ROCArea, λ = 10−6
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(j) Test ROCArea, λ = 10−2, 49.81
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(k) Test ROCArea, λ = 10−4, 50.07
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(l) Test ROCArea, λ = 10−6, 50.13

Figure 6: Results for beta. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 67.51
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(e) Test PRBEP, λ = 10−4, 68.78
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(f) Test PRBEP, λ = 10−6, 69.27
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(j) Test ROCArea, λ = 10−2, 82.64
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(k) Test ROCArea, λ = 10−4, 83.87
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(l) Test ROCArea, λ = 10−6, 84.17

Figure 7: Results for covertype. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(b) Obj value for PRBEP, λ = 10−4

1 01 1 02 1 03 1 04
0 .4 8

0 .6 1

0 .7 4

0 .8 7

1 .0 0

W all− c lo c k  tim e (s ec o n d s )

Va
lu

e 
o

f R
eg

u
lar

iz
ed

 R
is

k

 

 

BMRM
SMS

(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 78.54
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(e) Test PRBEP, λ = 10−4, 78.55
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(f) Test PRBEP, λ = 10−6, 78.56
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(j) Test ROCArea, λ = 10−2, 86.71
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(k) Test ROCArea, λ = 10−4, 86.72
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(l) Test ROCArea, λ = 10−6, 86.72

Figure 8: Results for delta. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 29.14
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(e) Test PRBEP, λ = 10−4, 29.14
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(f) Test PRBEP, λ = 10−6, 29.14
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 95.99
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(k) Test ROCArea, λ = 10−4, 96.01
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(l) Test ROCArea, λ = 10−6, 96.01

Figure 9: Results for dna. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions. Both BMRM and our smoothing algorithm are run

with 16 processors.
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 45.01

1 02 1 03 1 04
0 .3 3

1 3 .7 2

2 7 .1 2

4 0 .5 1

5 3 .9 1

W all− c lo c k  tim e (s ec o n d s )

T
es

t P
RB

EP
 (%

)

 

 

BMRM
SMS

(e) Test PRBEP, λ = 10−4, 53.91
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(f) Test PRBEP, λ = 10−6, 54.25
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 92.57
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(k) Test ROCArea, λ = 10−4, 97.37
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(l) Test ROCArea, λ = 10−6, 97.66

Figure 10: Results for dna string. The optimal test performance among all values of λ is high-

lighted in boldface in the sub-figure captions. Both BMRM and our smoothing algorithm

are run with 32 processors.
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(d) Test PRBEP, λ = 10−2, 77.16
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(e) Test PRBEP, λ = 10−4, 89.39
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(f) Test PRBEP, λ = 10−6, 89.80
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 81.30
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(k) Test ROCArea, λ = 10−4, 95.47
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(l) Test ROCArea, λ = 10−6, 95.97

Figure 11: Results for epsilon. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 73.84
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(e) Test PRBEP, λ = 10−4, 77.62
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(f) Test PRBEP, λ = 10−6, 82.06
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 91.79
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(k) Test ROCArea, λ = 10−4, 97.32
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(l) Test ROCArea, λ = 10−6, 97.71

Figure 12: Results for fd. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 80.07
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(e) Test PRBEP, λ = 10−4, 80.09
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(f) Test PRBEP, λ = 10−6, 80.09
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(j) Test ROCArea, λ = 10−2, 88.25
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(k) Test ROCArea, λ = 10−4, 88.25
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(l) Test ROCArea, λ = 10−6, 88.25

Figure 13: Results for gamma. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 95.07
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(e) Test PRBEP, λ = 10−4, 94.80
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(f) Test PRBEP, λ = 10−6, 94.98

1 01 1 02
0 .6 9

0 .8 8

1 .0 6

1 .2 5

1 .4 4

W all− c lo c k  tim e (s ec o n d s )

Va
lu

e 
o

f R
eg

u
lar

iz
ed

 R
is

k

 

 

BMRM
SMS

x  1 0− 2

(g) Obj value for ROCArea, λ = 10−2

1 01 1 02
0 .9 6

1 .2 3

1 .4 9

1 .7 6

2 .0 2

W all− c lo c k  tim e (s ec o n d s )

Va
lu

e 
o

f R
eg

u
lar

iz
ed

 R
is

k

 

 

BMRM
SMS

x  1 0− 3
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(j) Test ROCArea, λ = 10−2, 97.78

1 01 1 02
9 3 .3 6

9 4 .7 1

9 6 .0 6

9 7 .4 2

9 8 .7 7

W all− c lo c k  tim e (s ec o n d s )

T
es

t R
O

CA
re

a 
(%

)

 

 

BMRM
SMS

(k) Test ROCArea, λ = 10−4, 97.80
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(l) Test ROCArea, λ = 10−6, 95.28

Figure 14: Results for kdd99. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 91.90
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(e) Test PRBEP, λ = 10−4, 93.02
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(f) Test PRBEP, λ = 10−6, 93.30
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(g) Obj value for ROCArea, λ = 10−2
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(j) Test ROCArea, λ = 10−2, 76.41
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(k) Test ROCArea, λ = 10−4, 84.41
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(l) Test ROCArea, λ = 10−6, 84.55

Figure 15: Results for kdda. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions. In the PRBEP-problem, BMRM fails because the the

inner QP solver does not converge even after a large number of iterations.
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(d) Test PRBEP, λ = 10−2, 92.63
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(e) Test PRBEP, λ = 10−4, 93.02
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(f) Test PRBEP, λ = 10−6, 93.30
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 76.58
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(k) Test ROCArea, λ = 10−4, 82.95
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(l) Test ROCArea, λ = 10−6, 85.29

Figure 16: Results for kddb. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions. In the PRBEP-problem, BMRM fails because the

inner QP solver does not converge even after a large number of iterations.
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(d) Test PRBEP, λ = 10−2, 84.21
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(e) Test PRBEP, λ = 10−4, 97.24
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(f) Test PRBEP, λ = 10−6, 97.24
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4

1 00 1 01 1 02
1 .3 3

1 .7 0

2 .0 7

2 .4 4

2 .8 1

W all− c lo c k  tim e (s ec o n d s )

Va
lu

e 
o

f R
eg

u
lar

iz
ed

 R
is

k

 

 

BMRM
SMS

x  1 0− 3

(i) Obj value for ROCArea, λ = 10−6

1 00
8 7 .2 7

8 8 .5 3

8 9 .8 0

9 1 .0 6

9 2 .3 2

W all− c lo c k  tim e (s ec o n d s )

T
es

t R
O

CA
re

a 
(%

)

 

 

BMRM
SMS

(j) Test ROCArea, λ = 10−2, 91.51
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(k) Test ROCArea, λ = 10−4, 99.51
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(l) Test ROCArea, λ = 10−6, 99.39

Figure 17: Results for news20. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 72.40
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(f) Test PRBEP, λ = 10−6, 75.93
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(i) Obj value for ROCArea, λ = 10−6
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(j) Test ROCArea, λ = 10−2, 80.38

1 01 1 02
8 0 .6 7

8 1 .3 6

8 2 .0 4

8 2 .7 3

8 3 .4 1

W all− c lo c k  tim e (s ec o n d s )

T
es

t R
O

CA
re

a 
(%

)

 

 

BMRM
SMS

(k) Test ROCArea, λ = 10−4, 83.10

1 01 1 02 1 03
7 9 .7 5

8 0 .9 0

8 2 .0 6

8 3 .2 1

8 4 .3 7

W all− c lo c k  tim e (s ec o n d s )

T
es

t R
O

CA
re

a 
(%

)

 

 

BMRM
SMS

(l) Test ROCArea, λ = 10−6, 83.94

Figure 18: Results for ocr. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions. Both BMRM and our smoothing algorithm are run

with 16 processors.
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(d) Test PRBEP, λ = 10−2, 87.51
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(e) Test PRBEP, λ = 10−4, 95.70
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(f) Test PRBEP, λ = 10−6, 94.14
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 97.97
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(k) Test ROCArea, λ = 10−4, 99.51
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(l) Test ROCArea, λ = 10−6, 99.58

Figure 19: Results for real-sim. The optimal test performance among all values of λ is highlighted

in boldface in the sub-figure captions.
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 49.26
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(e) Test PRBEP, λ = 10−4, 49.55
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(f) Test PRBEP, λ = 10−6, 50.30
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 95.02
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(k) Test ROCArea, λ = 10−4, 96.49
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(l) Test ROCArea, λ = 10−6, 95.86

Figure 20: Results for reuters-c11. The optimal test performance among all values of λ is high-

lighted in boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 89.94
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(e) Test PRBEP, λ = 10−4, 94.11
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(f) Test PRBEP, λ = 10−6, 94.44
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 96.49
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(k) Test ROCArea, λ = 10−4, 98.28
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(l) Test ROCArea, λ = 10−6, 98.69

Figure 21: Results for reuters-ccat. The optimal test performance among all values of λ is

highlighted in boldface in the sub-figure captions.

3669



ZHANG, SAHA AND VISHWANATHAN

1 0− 1 1 00
0 .9 9

0 .9 9

0 .9 9

1 .0 0

1 .0 0

W all− c lo c k  tim e (s ec o n d s )

Va
lu

e 
o

f R
eg

u
lar

iz
ed

 R
is

k

 

 

BMRM
SMS

(a) Obj value for PRBEP, λ = 10−2

1 0− 1 1 00
0 .6 1

0 .7 1

0 .8 1

0 .9 0

1 .0 0

W all− c lo c k  tim e (s ec o n d s )

Va
lu

e 
o

f R
eg

u
lar

iz
ed

 R
is

k

 

 

BMRM
SMS
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(d) Test PRBEP, λ = 10−2, 67.64

1 0− 1 1 00
7 3 .9 7

7 5 .0 4

7 6 .1 1

7 7 .1 8

7 8 .2 5

W all− c lo c k  tim e (s ec o n d s )

T
es

t P
RB

EP
 (%

)

 

 

BMRM
SMS

(e) Test PRBEP, λ = 10−4, 76.64
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(f) Test PRBEP, λ = 10−6, 79.56

1 0− 11 .2 3

1 .5 8

1 .9 2

2 .2 6

2 .6 0

W all− c lo c k  tim e (s ec o n d s )

Va
lu

e 
o

f R
eg

u
lar

iz
ed

 R
is

k

 

 

BMRM
SMS

x  1 0− 1
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 97.88
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(k) Test ROCArea, λ = 10−4, 98.86
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(l) Test ROCArea, λ = 10−6, 98.99

Figure 22: Results for web8. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 94.26
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(e) Test PRBEP, λ = 10−4, 98.62
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(f) Test PRBEP, λ = 10−6, 99.62
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(j) Test ROCArea, λ = 10−2, 97.21
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(k) Test ROCArea, λ = 10−4, 99.71

1 02 1 03
9 4 .9 5

9 6 .3 2

9 7 .6 9

9 9 .0 7

1 0 0 .4 4

W all− c lo c k  tim e (s ec o n d s )

T
es

t R
O

CA
re

a 
(%

)

 

 

BMRM
SMS

(l) Test ROCArea, λ = 10−6, 99.94

Figure 23: Results for webspam-t. The optimal test performance among all values of λ is high-

lighted in boldface in the sub-figure captions.
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(d) Test PRBEP, λ = 10−2, 89.13
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(e) Test PRBEP, λ = 10−4, 93.73
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(f) Test PRBEP, λ = 10−6, 94.45
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(h) Obj value for ROCArea, λ = 10−4
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(j) Test ROCArea, λ = 10−2, 92.61
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(k) Test ROCArea, λ = 10−4, 96.56
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(l) Test ROCArea, λ = 10−6, 97.29

Figure 24: Results for webspam-u. The optimal test performance among all values of λ is high-

lighted in boldface in the sub-figure captions.
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 85.45
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(e) Test PRBEP, λ = 10−4, 86.88
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(f) Test PRBEP, λ = 10−6, 86.94
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(i) Obj value for ROCArea, λ = 10−6
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(j) Test ROCArea, λ = 10−2, 99.34
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(k) Test ROCArea, λ = 10−4, 99.37

1 01 1 02 1 03
9 4 .4 0

9 5 .7 7

9 7 .1 3

9 8 .5 0

9 9 .8 7

W all− c lo c k  tim e (s ec o n d s )

T
es

t R
O

CA
re

a 
(%

)

 

 

BMRM
SMS

(l) Test ROCArea, λ = 10−6, 99.37

Figure 25: Results for worm. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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(b) Obj value for PRBEP, λ = 10−4
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(c) Obj value for PRBEP, λ = 10−6
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(d) Test PRBEP, λ = 10−2, 55.59
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(e) Test PRBEP, λ = 10−4, 53.47
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(f) Test PRBEP, λ = 10−6, 86.98
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(g) Obj value for ROCArea, λ = 10−2
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(h) Obj value for ROCArea, λ = 10−4
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(i) Obj value for ROCArea, λ = 10−6
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(j) Test ROCArea, λ = 10−2, 50.28
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(k) Test ROCArea, λ = 10−4, 51.41
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(l) Test ROCArea, λ = 10−6, 90.58

Figure 26: Results for zeta. The optimal test performance among all values of λ is highlighted in

boldface in the sub-figure captions.
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Figure 27: cµ test: webspam-u
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(b) Test PRBEP

Figure 28: cµ test: covertype
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Figure 29: cµ test: adult9

it is easy to smooth the L1 norm regularizer, it is not recommended; the sparsity of the solution is an

important statistical property of these algorithms and smoothing destroys this property.

In future work we would like to extend our techniques to handle more complicated contin-

gency based multivariate performance measures such as the F1-score. We would also like to extend

smoothing to matching loss functions commonly used in ranking, where we believe our techniques

will solve a smoothed version of the Hungarian marriage problem.
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Figure 30: SMS vs AGM: webspam-u
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Figure 31: SMS vs AGM: covertype
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Figure 32: SMS vs AGM: adult9
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Appendix A. The Smoothing Procedure

The idea of the smoothing technique in Nesterov (2005) can be motivated by using the Theorem

4.2.1 and 4.2.2 in Hiriart-Urruty and Lemaréchal (1996).

Lemma 9 If f : Rn →R is convex and differentiable, and ∇ f is Lipschitz continuous with constant

L (called L-l.c.g), then f ! is strongly convex with modulus 1
L (called 1

L -sc). Conversely, if f : Rn →
R∪{∞} is σ-sc, then f ! is finite on Rn and is 1

σ -l.c.g.

Since g+µd is µ-sc, Lemma 9 implies g!µ is 1
µ -l.c.g. By chain rule, one can show that g!µ(A

)w)

is Lµ-l.c.g where Lµ ≤ 1
µ ‖A‖2. Further, the definition of Fenchel dual implies the following uniform

deviation bound:

g!µ(uuu) = max
ααα∈Q

{〈ααα,uuu〉−g(ααα)−µd(ααα)}







≤ max
ααα∈Q

{〈ααα,uuu〉−g(ααα)}= g!(uuu)

≥ max
ααα∈Q

{〈ααα,uuu〉−g(ααα)−µD}= g!(uuu)−µD

=⇒ g!(u)−µD ≤ g!µ(u)≤ g!(u), ∀ uuu ∈ R
n. (35)

Note that the derivation of (35) does not require g be convex, but the strong convexity of g+ µd

(required by Lemma 9) relies on the convexity of g. By (35), to find an ε accurate solution to J(w),
it suffices to set the maximum deviation µD < ε

2 (i.e., µ < ε
2D ), and then find a ε

2 accurate solution

to Jµ in (6). Initialize w to 0 and apply Nesterov’s accelerated gradient method in Nesterov (2007)

to Jµ, this takes at most

k = min

{√

4Lµ∆0

ε
, log

Lµ∆0

ε

/

log

(

1−
√

λ/Lµ

)
}

number of steps where ∆0 = 1
2 ‖w∗‖2 and w∗ is the minimizer of J(w). Each step involves one

gradient query of g!µ(A
)w) and some cheap updates. Plugging in Lµ ≤ 2D

ε ‖A‖2 and using log(1+
δ)≈ δ when δ ≈ 0, we get the iteration bound in (7).
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Vojtěch Franc and Sören Sonnenburg. Optimized cutting plane algorithm for support vector ma-

chines. In Andrew McCallum and Sam Roweis, editors, ICML, pages 320–327. Omnipress,

2008.

Andrew Frank and Arthur Asuncion. UCI machine learning repository, 2010. URL http:

//archive.ics.uci.edu/ml.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization Algo-
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Abstract

Security issues are crucial in a number of machine learning applications, especially in scenar-
ios dealing with human activity rather than natural phenomena (e.g., information ranking, spam
detection, malware detection, etc.). In such cases, learning algorithms may have to cope with ma-
nipulated data aimed at hampering decision making. Although some previous work addressed the
issue of handling malicious data in the context of supervised learning, very little is known about
the behavior of anomaly detection methods in such scenarios. In this contribution,1 we analyze
the performance of a particular method—online centroid anomaly detection—in the presence of
adversarial noise. Our analysis addresses the following security-related issues: formalization of
learning and attack processes, derivation of an optimal attack, and analysis of attack efficiency and
limitations. We derive bounds on the effectiveness of a poisoning attack against centroid anomaly
detection under different conditions: attacker’s full or limited control over the traffic and bounded
false positive rate. Our bounds show that whereas a poisoning attack can be effectively staged in the
unconstrained case, it can be made arbitrarily difficult (a strict upper bound on the attacker’s gain)
if external constraints are properly used. Our experimental evaluation, carried out on real traces of
HTTP and exploit traffic, confirms the tightness of our theoretical bounds and the practicality of
our protection mechanisms.

Keywords: anomaly detection, adversarial, security analysis, support vector data description,
computer security, network intrusion detection

1. Introduction

Machine learning methods have been instrumental in enabling novel data analysis applications. Nu-

merous currently indispensable technologies—object recognition, user preference analysis, spam

filtering, to name only a few—rely on accurate analysis of massive amounts of data. Unfortunately,

the increasing use of machine learning methods gives rise to a threat of their abuse. A convinc-
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ing example of this phenomenon are emails that bypass spam protection tools. Abuse of machine

learning can take on various forms. A malicious party may affect the training data, for example,

when it is gathered from the real operation of a system and cannot be manually verified. Another

possibility is to manipulate objects observed by a deployed learning system (test data) so as to bias

its decisions in favor of an attacker. Yet another way to defeat a learning system is to send a large

amount of nonsense data in order to produce an unacceptable number of false alarms and hence

force the system’s operator to turn it off. Manipulation of a learning system may thus range from

simple cheating to complete disruption of its operation.

A potential insecurity of machine learning methods stems from the fact that they are usually

not designed with adversarial input in mind. Starting from the mainstream computational learning

theory (Vapnik, 1998; Schölkopf and Smola, 2002), a prevalent assumption is that training and test

data are generated from the same fixed, but unknown, probability distribution. This assumption

obviously does not hold for adversarial scenarios. Furthermore, even the recent work on learning

with non-i.i.d. data (Steinwart et al., 2009; Mohri and Rostamizadeh, 2010) or differing training and

test distributions (Sugiyama et al., 2007) is not necessarily appropriate for adversarial input, because

in the latter case one must account for a specific worst-case difference while all the aforementioned

papers assume that the data is generated stochastically.

Computer security is the most important application field in which robustness of learning algo-

rithms against adversarial input is crucial. Modern security infrastructures are facing an increasing

professionalization of attacks motivated by monetary profit. A widespread deployment of evasion

techniques, such as encryption, obfuscation and polymorphism, is manifested in a rapidly increas-

ing diversity of malicious software observed by security experts. Machine learning methods offer a

powerful tool to counter a rapid evolution of security threats. For example, anomaly detection can

identify unusual events that potentially contain novel, previously unseen exploits (Wang and Stolfo,

2004; Rieck and Laskov, 2006; Wang et al., 2006; Rieck and Laskov, 2007). Another typical ap-

plication of learning methods is automatic signature generation which drastically reduces the time

needed for development and deployment of attack signatures (Newsome et al., 2006; Li et al., 2006).

Machine learning methods can also help researchers better understand the design of malicious soft-

ware by using classification or clustering techniques together with special malware acquisition and

monitoring tools (Bailey et al., 2007; Rieck et al., 2008).

In order for machine learning methods to be successful in security applications—and in gen-

eral in any application where adversarial input may be encountered—they should be equipped with

countermeasures against potential attacks. The current understanding of security properties of learn-

ing algorithms is rather incomplete. Earlier work in the PAC-framework addressed some scenarios

in which training data is deliberately corrupted (Angluin and Laird, 1988; Littlestone, 1988; Kearns

and Li, 1993; Auer, 1997; Bschouty et al., 1999). These results, however, are not connected to mod-

ern learning algorithms used in classification, regression and anomaly detection problems. Several

examples of effective attacks were demonstrated in the context of specific security and spam detec-

tion applications (Lowd and Meek, 2005a; Fogla et al., 2006; Fogla and Lee, 2006; Perdisci et al.,

2006; Newsome et al., 2006; Nelson et al., 2008), which motivated a recent work on taxonomiza-

tion of such attacks (Barreno et al., 2006, 2008, 2010). However, it remains largely unclear whether

machine learning methods can be protected against adversarial impact.

We believe that an unequivocal answer to the problem of the “security of machine learning” does

not exist. Security guarantees cannot be established experimentally, because the notion of security

addresses events that do not just happen on average but rather only potentially may happen. Hence,
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a theoretical analysis of machine learning algorithms for adversarial scenarios is indispensable. It

is hard to imagine, however, that such an analysis can offer meaningful results for any attack in

every circumstance. Hence, to be a useful guide for practical applications of machine learning in

adversarial environments, such an analysis must address specific attacks against specific learning

algorithms. This is precisely the approach followed in this contribution.

The main focus of our work is the security analysis of online centroid anomaly detection against

the so-called “poisoning” attacks. Centroid anomaly detection is a very simple method which has

been widely used in computer security applications (e.g., Forrest et al., 1996; Warrender et al., 1999;

Wang and Stolfo, 2004; Rieck and Laskov, 2006; Wang et al., 2006; Rieck and Laskov, 2007). In

the learning phase, centroid anomaly detection computes the mean of all training data points:

c =
1

n

n

∑
j=1

x j .

Detection is carried out by computing the distance of a new example x from the centroid c and

comparing it with an appropriate threshold:

f (x) =

{

1, if ||x− c||> θ

0, otherwise .

Notice that all operations can be carried out using kernel functions—a standard trick known since the

development of support vector machines and kernel PCA (Boser et al., 1992; Schölkopf et al., 1998;

Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004), which substantially increases the

discriminative power of this method.

More often than not, anomaly detection algorithms are deployed in non-stationary environments

and need to be regularly re-trained. Since the data is fed into the learning phase without any verifica-

tion, an adversary has an opportunity to force a learning algorithm to learn a representation suitable

for him. One particular kind of attack is the so-called “poisoning” in which specially crafted data

points are injected to cause the decision function to misclassify a given malicious point as benign.

This attack makes sense when an attacker does not have “write” permission to the training data,

hence cannot manipulate it directly. Therefore, his goal is to trick an algorithm by merely using

an “append” permission, by sending new data that looks innocuous to the learning algorithm but

changes the algorithm’s state in a way that favors the attacker; for example, forcing the algorithm to

accept a specific attack point later during the testing stage.

The poisoning attack against online centroid anomaly detection has been considered by Nelson

and Joseph (2006) for the case of an infinite window, that is, when a learning algorithm memorizes

all data seen so far. Their main result was surprisingly optimistic: it was shown that the number

of attack data points that must be injected grows exponentially as a function of the impact over a

learned hypothesis. However, the assumption of an infinite window also hinders the ability of a

learning algorithm to adjust to legitimate changes in the data distribution.

1.1 Contributions of This Work

As a main contribution, we present the security analysis of online centroid anomaly detection for the

finite window case; that is, when only a fixed number of data points can be used at any time to form

a hypothesis. We show that, in this case, an attacker can easily compromise a learning algorithm by
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using only a linear amount of injected data unless additional constraints are imposed. As a further

contribution, we analyze the algorithm under two additional constraints: (a) the fraction of the

traffic controlled by an attacker is bounded by ν, and (b) the false positive rate induced by an attack

is bounded by α. Both constraints can be motivated by an operational practice of anomaly detection

systems. Overall, we significantly extend the analysis of Nelson and Joseph (2006) by considering

a more realistic learning scenario, explicitly treating potential constraints on the attacker’s part and

providing tighter bounds.

Our analysis methodology follows the following framework, which can be used for any kind of

quantitative security analysis of learning algorithms (Laskov and Kloft, 2009):

1. Axiomatic formalization of the learning and the attack processes. Such a formalization in-

cludes definitions of data sources and objective (risk) functions used by each party, as well

as the attacker’s goal. It specifies the knowledge available to an attacker, that is, whether

he knows an algorithm, its parameters and internal state, and which data he can potentially

manipulate.

2. Specification of an attacker’s constraints. Potential constraints on the attacker’s part may in-

clude: percentage of traffic under his control, amount of additional data that must be injected,

an upper bound on the norm of a manipulated part, a maximal allowable false-positive rate (in

case an attack must be stealthy), etc. Such constraints must be incorporated into the axiomatic

formalization.

3. Investigation of the optimal attack policy. Such a policy may be long-term; that is, over

multiple attack iterations, as well as short-term, for a single iteration. The investigation can

be carried out either as a formal proof or numerically, by casting the search for an attack

policy as an optimization problem.

4. Bounding the attacker’s gain under the optimal policy. The ultimate goal of our analysis is

to quantify the attacker’s gain or effort under his optimal policy. Such an analysis may take

different forms, for example calculation of the probability for an attack to succeed, estimation

of the required number of attack iterations, calculation of the geometric impact of an attack

(a shift towards an insecure state), etc.

Organization of this paper reflects the main steps of the proposed methodology. In the prelimi-

nary Section 2, the models of the learning and attack processes are introduced. The analytical part is

arranged in two sections. In Sections 3 and 4, we address the steps (1), (3) and (4) under the assump-

tion that the attacker has full control of the network traffic, first assuming that a learning algorithm

can memorize all previously seen examples, followed by the finite memory case. Section 5 intro-

duces the assumption that the attacker’s control is limited to a fixed fraction of network traffic, as

required in step (2). Another constraint (bounded false positive rate) is considered in Section 6. This

section also removes the somewhat unrealistic assumption of Section 5 that all innocuous points are

accepted by the algorithm. Analytic results are experimentally verified in Section 8 on real HTTP

data and attacks used in intrusion detection systems. Some proofs and auxiliary technical material

are presented in the Appendix. The notation used in the paper is summarized in Table 1.
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r centroid’s radius

i attack iteration index, i ∈ N0

ci center of centroid in i-th attack iteration

A attack point

a attack direction vector

Di i-th relative displacement of a centroid in radii

into direction of a

n number of patterns used for initial training of

the centroid

f attack strategy function

ν fraction of adversarial training points

Bi Bernoulli random variable

xi training data

α false alarm rate

IS indicator function of a set S

Table 1: Notation summary.

1.2 Poisoning and Related Attacks Against Learning Algorithms

For two-class learning problems, attacks against learning algorithms can be generally classified

according to the following two criteria (the terminology in the taxonomy of Barreno et al. (2006) is

given in brackets):

• whether an attack is staged during the training (causative) or the deployment of an algorithm

(exploratory), or

• whether an attack attempts to increase the false negative or the false positive rate at the de-

ployment stage (integrity/availability).

The poisoning attack addressed in our work can be classified as a causative integrity attack. This

scenario is quite natural, for example, in web application scenarios in which the data on a server can

be assumed to be secure but the subsequent injection of adversarial data cannot be easily prevented.

Other common attack types are the mimicry attack—alteration of malicious data to resemble in-

nocuous data (an exploratory integrity attack) and the “red herring” attack—sending junk data that

causes false alarms (an exploratory availability attack). Attacks of the latter two kinds are beyond

the scope of our investigation.

As a final remark, we must consider the extent to which the attacker is familiar with the learning

algorithm and trained model. One of the key principles of computer security, known as Kerckhoff’s

principle, is that the robustness of any security instrument must not depend on keeping its oper-

ational functionality secret. Similar to modern cryptographic methods, we must assume that the

attacker knows which machine learning algorithm is deployed and how it operates (he can even use

machine learning to reverse engineer deployed classifiers, as shown by Lowd and Meek, 2005b).

However, it may be more difficult for an attacker to obtain the training data or the particular learned

model. In the case of anomaly detection, it is relatively easy for an attacker to retrieve the learned

model: it suffices to sniff on the same application that is protected by an algorithm to get approxi-
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mately the same innocuous data the algorithm is trained on. Hence, we will assume that the attacker

has precise knowledge of the trained model throughout the attack.

2. Learning and Attack Models

Before proceeding with the analysis, we first present the precise models of the learning and the

attack processes.

2.1 Centroid Anomaly Detection

Given a data set X0 = {x
(1)
0 , . . . ,x

(n)
0 } ⊂ Rd , the goal of anomaly detection (also often referred to

as “novelty detection”) is to determine whether an example x is unlikely to have been generated

by the same distribution as the set X0. A natural way to perform anomaly detection is to estimate

the probability density function of the distribution from which the set X0 was drawn and mark x

as anomalous if it comes from a region with low density. In general, however, density estimation

is a difficult problem, especially in high dimensions. A large amount of data is usually needed to

reliably estimate the density in all regions of the space. For anomaly detection, knowing the density

in the entire space is superfluous, as we are only interested in deciding whether a specific point lies

within a “sparsely populated” area. Hence several direct methods have been proposed for anomaly

detection, for example, one-class SVM (Schölkopf et al., 2001), support vector data description

(SVDD) (Tax and Duin, 1999a,b), and density level set estimation (Polonik, 1995; Tsybakov, 1997;

Steinwart et al., 2005). A comprehensive survey of anomaly detection techniques can be found in

Markou and Singh (2003a,b).

In the centroid anomaly detection, an Euclidean distance from the empirical mean of the data is

used as a measure of abnormality:

f (x) = ||x−
1

n

n

∑
j=1

x
( j)
0 || .

If a hard decision is desired instead of a soft abnormality score, the data point is considered anoma-

lous if its score exceeds a fixed threshold r.

Despite its straightforwardness, a centroid model can represent complex density level sets us-

ing a kernel mapping (Müller et al., 2001; Schölkopf and Smola, 2002) (see Figure 1). Centroid

anomaly detection can be seen as a special case of the SVDD with outlier fraction η = 1 and

of the Parzen window density estimator (Parzen, 1962) with Gaussian kernel function k(x,y) =
1

(
√

2πσ)d
exp(− 1

2σ2 ‖x−y‖2).

Centroid anomaly detection has been successfully used in a variety of anomaly detection ap-

plications such as intrusion detection (Hofmeyr et al., 1998; Yeung and Chow, 2002; Laskov et al.,

2004a; Wang and Stolfo, 2004; Rieck and Laskov, 2006; Wang et al., 2006; Rieck and Laskov,

2007), wireless sensor networks (Rajasegarar et al., 2007) and jet engine vibration data analysis

(Nairac et al., 1999). It has been shown (see, for example, Section 4.1 in Shawe-Taylor and Cris-

tianini, 2004; Vert and Vert, 2006) that even in high-dimensional spaces induced by nonlinear feature

maps, the empirical estimator of the center of mass of the data is stable and the radius of the sphere

anchored at the center of mass is related to the level set of the corresponding probability density.
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Figure 1: Illustration of the density level estimation using a centroid model with a non-linear kernel.

2.2 Online Anomaly Detection

The majority of anomaly detection applications have to deal with non-stationary data. This is espe-

cially typical for computer security, as the processes being monitored usually change over time. For

example, network traffic characteristics are strongly influenced by the time of the day; system call

sequences depend on the applications running on a computer. The model of normality constructed

by anomaly detection algorithms hence needs to be regularly updated, in the extreme case—after

the arrival of each data point. Obviously, retraining the model from scratch every time is computa-

tionally inefficient; however, the incorporation of new data points and the removal of irrelevant ones

can be done with acceptable effort (e.g., Laskov et al., 2006).

For centroid anomaly detection, we assume that the initial state of the learner comprises a center

c0 and a given radius r. We further assume that this state has been obtained from purely innocuous

data. Whenever a new data point xi arrives at iteration i ∈ N, the learner’s center of mass ci is

updated if and only if the new data point is considered non-anomalous; otherwise, it is rejected and

not used for re-training. The radius r stays fixed over time.2 Recalculation of the center of mass is

straightforward and requires O(1) work. If all examples are “memorized”, that is, Xi = Xi−1∪{xi},3

the update is computed as

ci+1 =

(

1−
1

n+ i

)

ci +
1

n+ i
xi . (1)

For a finite horizon, that is, ∀i : |Xi|= n, in each iteration i, some previous example xold ∈ Xi is

replaced by the newly arriving xi, and the update is thus performed as

ci+1 = ci +
1

n
(xi −xold) . (2)

The update formula can be generalized to ci+1 = ci +
κ
i (xi − xold), with fixed κ ≥ 0. This changes

the bounds in the upcoming analysis only by a constant factor in this case, which is negligible.

2. From the operational standpoint, this assumption is reasonable as the radius serves as a threshold and is usually set

and manually tuned after inspection of (false) alarms. Treating the radius as a model parameter would necessitate

complex rules for its update and would open the system to poisoning attacks against the radius.

3. Note that the data need not be physically stored, as the contributions from individual data points are accumulated in

a current location of the center.
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Figure 2: Illustration of a poisoning attack. By iteratively inserting malicious training points an

attacker can gradually “drag” the centroid into a direction of an attack. The radius is

assumed to stay fixed over time. Figure taken from Nelson and Joseph (2006).

Various strategies can be used to determine the “least relevant” point xold to be removed from

the working set:

(a) oldest-out: the point with the oldest timestamp is removed.

(b) random-out: a randomly chosen point is removed.

(c) nearest-out: the nearest-neighbor of the new point x is removed.

(d) average-out: the center of mass is removed. The new center of mass is recalculated as ci+1 =
ci +

1
n(xi − ci), which is equivalent to Equation (1) with constant n.

The strategies (a)–(c) require the storage of all points in the working set, whereas the strategy (d)

can be implemented by holding only the center of mass in memory.

2.3 Poisoning Attack

The goal of a poisoning attack is to force an algorithm, at some learning iteration i, to accept the

attack point A that lies outside of the normality ball, that is, ||A− ci|| > r. It is assumed that the

attacker knows the anomaly detection algorithm and the training data. Furthermore, the attacker

cannot modify any existing data except for adding new points. Although the attacker can send any

data point, it obviously only makes sense for him to send points lying within the current sphere as

they are otherwise discarded by the learning algorithm. As illustrated in Figure 2, the poisoning

attack amounts to injecting specially crafted points that are accepted as innocuous but shift the

center of mass in the direction of the attack point until the latter appears innocuous as well.

What points should be used by an attacker in order to subvert online anomaly detection? Intu-

itively, one can expect that the optimal one-step displacement of the center of mass is achieved by

placing attack point xi along the line connecting c and A such that ||xi − c|| = r. A formal proof

of the optimality of such a strategy and the estimation of its efficiency constitutes the first step of

security analysis of online anomaly detection and is provided in the following sections for various

scenarios. In our analysis, we will use the following measure of attack effectiveness.
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Definition 1 (Relative displacement) Let A be an attack point and a = A−c0

||A−c0|| be the attack di-

rection unit vector. The i-th relative displacement Di of an online centroid learner is defined as

Di =
(ci − c0) ·a

r
.

The relative displacement measures the length of the projection of accrued change to ci onto the

attack direction a in terms of the radius of the normality ball. Note that the displacement is a relative

quantity, that is, we may without loss of generality translate the coordinate system so that the center

of mass lies at the origin (i.e., c0 = 0) and subsequently isotropically normalize the space so that the

centroid has unit radius r = 1. After this transformation, the formula for the displacement can be

simplified to

Di = ci ·a .

Definition 2 An attack strategy that maximizes the displacement Di in each iteration i is referred to

as greedy-optimal.

3. Attack Effectiveness for Infinite Horizon Centroid Learner

The effectiveness of a poisoning attack for the infinite horizon learner has been analyzed in Nelson

and Joseph (2006). We provide an alternative proof that follows the main steps of the framework

proposed in Section 1.1.

Theorem 3 The i-th relative displacement Di of the online centroid learner with an infinite horizon

under a poisoning attack is bounded by

Di ≤ ln

(

1+
i

n

)

, (3)

where i is the number of attack points and n is the number of initial training points.

Proof We first determine the greedy-optimal attack strategy and then bound the attack progress.

(a) Let A be an attack point and denote by a the corresponding attack direction vector. Let

{xi|i ∈ N} be adversarial training points. The center of mass at the ith iteration is given in the

following recursion:

ci+1 =

(

1−
1

n+ i

)

ci +
1

n+ i
xi+1 , (4)

with initial value c0 = 0. By the construction of the poisoning attack, ||xi − ci|| ≤ r, which is

equivalent to xi = ci +bi with ||bi||≤ r. Equation (4) can thus be transformed into

ci+1 = ci +
1

n+ i
bi .

Taking the scalar product with a and using the definition of a relative displacement, we obtain:

Di+1 = Di +
1

n+ i
·

bi ·a
r

, (5)
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with D0 = 0. The right-hand side of the Equation (5) is clearly maximized under ||bi||≤ 1 by setting

bi = ra. Thus the greedy-optimal attack is given by

xi = ci + ra . (6)

(b) Plugging the optimal strategy bi = ra into Equation (5), we obtain:

Di+1 = Di +
1

n+ i
.

This recursion can be explicitly solved, taking into account that D0 = 0, resulting in:

Di =
i

∑
k=1

1

n+ k
=

n+i

∑
k=1

1

k
−

n

∑
k=1

1

k
.

Inserting the upper bound on the harmonic series, ∑m
k=1

1
k = ln(m)+εm, with εm ≥ 0, into the above

formula and noting that εm is monotonically decreasing, we obtain:

Di ≤ ln(n+ i)− ln(n) = ln

(

n+ i

n

)

= ln

(

1+
i

n

)

,

which completes the proof.

Since the bound in Equation (3) is monotonically increasing, we can invert it to obtain a bound

on the effort needed by an attacker to achieve his goal:

i ≥ n · (exp(Di)−1) .

It can be seen that the effort needed to poison an online centroid learner is exponential in terms of the

relative displacement of the center of mass.4 In other words, an attacker’s effort grows prohibitively

fast with respect to the separability of the attack from innocuous data. For a kernelized centroid

learner, the greedy-optimal attack may not be valid, as there may not exist a point in the input space

corresponding to the optimal attack image in the feature space. However, an attacker can construct

points in the input space that are close enough to the greedy-optimal point for the attack to succeed,

with a moderate constant cost factor; cf., Section 8.5.

4. Poisoning Attack against Finite Horizon Centroid Learner

The optimistic result presented in Section 3 is unfortunately not quite useful. In practice, memo-

rization of all training points essentially defeats the main purpose of an online algorithm, that is,

its ability to adjust to non-stationarity. Hence it is important to understand how the removal of data

points from the working set affects the security of online anomaly detection. To this end, the spe-

cific removal strategies presented in Section 2.2 must be considered. The analysis can be carried

out theoretically for the average-out and random-out update rules; for the nearest-out rule, an op-

timal attack can be stated as an optimization problem and the attack effectiveness can be analyzed

empirically.

4. Even constraining a maximum number of online update steps does not remove this bound’s exponential growth

(Nelson and Joseph, 2006).
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4.1 Poisoning Attack for Average-out, Random-out and Oldest-out Rules

We begin our analysis with the average-out learner which follows exactly the same update rule as

the infinite-horizon online centroid learner with the exception that the window size n remains fixed

instead of growing indefinitely (cf. Section 2.2). Despite the similarity to the infinite-horizon case,

the result presented in the following theorem is surprisingly pessimistic.

Theorem 4 The i-th relative displacement Di of the online centroid learner with the average-out

update rule under a worst-case optimal poisoning attack is

Di =
i

n
,

where i is the number of attack points and n is the training window size.

Proof The proof is similar to the proof of Theorem 3. By explicitly writing out the recurrence

between subsequent displacements, we conclude that the greedy-optimal attack is also attained by

placing an attack point along the line connecting ci and A at the edge of the sphere (cf. Equation (6)):

xi = ci + ra .

It follows that the relative displacement under the greedy-optimal attack is

Di+1 = Di +
1

n
.

Since this recurrence is independent of the running index i, the displacement is simply accumulated

over each iteration, which yields the bound of the theorem.

One can see that, unlike the logarithmic bound in Theorem 3, the average-out learner is charac-

terized by a linear bound on the displacement. As a result, an attacker only needs a linear number

of injected points—instead of an exponential one—in order to subvert an average-out learner. This

cannot be considered secure.

A similar result, in terms of the expectation of the relative displacement, can be obtained for the

random-out removal strategy. The proof is based on the observation that in expectation, the average-

out rule is equivalent to the random-out rule. The oldest-out rule can also be handled similarly to

the average-out rule by observing that in both cases some fixed point known in advance is removed

from a working set, which allows an attacker to easily find an optimal attack point.

4.2 Poisoning Attack for Nearest-out Rule

One might expect that the nearest-out strategy poses a stronger challenge to an attacker as it tries to

retain working set diversity by eliminating the most similar data to the new point. However, even

this strategy can be broken with a feasible amount of work if the attacker follows a greedy-optimal

strategy. The latter is the subject of our investigation in this section.
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4.2.1 GREEDY-OPTIMAL ATTACK

The greedy-optimal attack should provide a maximal gain for an attacker in a single iteration. For

the infinite-horizon learner (and hence also for the average-out learner, as it uses the same recurrence

in a proof), it is possible to show that the greedy-optimal attack yields the maximum gain for the

entire sequence of attack iterations; that is, it is (globally) optimal. For the nearest-out learner, it is

hard to analyze the full sequence of attack iterations, hence we limit our analysis to a single-iteration

gain. Empirically, even a greedy-optimal attack turns out to be effective.

To construct a greedy-optimal attack, we partition the sphere spanned by the centroid into

Voronoi cells Vj centered at the training data points x j, j = 1, . . . ,n. Each Voronoi cell comprises

points for which x j is the nearest neighbor. Whenever a new training point “falls into” the sphere,

the center of the corresponding Voronoi cell is removed according to the nearest-out rule.

The optimal attack strategy is now straightforward. First, we determine the optimal attack loca-

tion within each cell. This can be done by solving the following optimization problem for a fixed

x j:

Optimization Problem 5 (greedy-optimal attack)

x∗j = argmax
x

y j(x) := (x−x j) ·a (7)

s.t. ‖x−x j‖ ≤ ‖x−xk‖, ∀k = 1, ...,n (8)

‖x− 1
n ∑n

k=1 xk‖ ≤ r . (9)

The objective of the optimization problem (7) reflects the goal of maximizing the projection of x−x j

onto the attack direction a. The constraint (8) stipulates that the point x j is the nearest neighbor of

x. The constraint (9), when active, enforces that no solution lies outside of the sphere.

The geometry of the greedy-optimal attack is illustrated in Figure 3. An optimal attack point

is placed at the “corner” of a Voronoi cell (including possibly a round boundary of the centroid) to

cause the largest displacement of the centroid along the attack direction.

Once the candidate attack locations are found for each of the n Voronoi cells, the one that has

the highest value of the objective function y j(x∗j) is injected and the respective center x j∗ of the

Voronoi cell is expunged from the training set:

j∗ = argmax j∈1,...,n y j(x
∗
j) . (10)

The optimization problem (7) can be simplified by plugging in the definition of the Euclidean

norm. In the resulting optimization problem, all but one of the norm constraints are reduced to

simpler linear constraints:

x∗j = argmax
x

(x−x j) ·a

s.t. 2(xk −x j) ·x ≤ xk ·xk −x j ·x j, ∀k = 1, ...,n (11)

x ·x− 2
n ∑n

k=1 x ·xk ≤ r2 − 1
n2 ∑n

k,l=1 xk ·xl .

Due to the quadratic constraint, the inner optimization task is not as simple as a linear or a quadratic

program. However, several standard optimization packages; for example, CPLEX or MOSEK,
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Figure 3: The geometry of a poisoning attack for the nearest-out rule. A greedy-optimal attack is

injected at the boundary of the respective Voronoi cell.

can optimize such quadratically constrained linear programs (QCLP) with high efficiency, espe-

cially when there is only a single quadratic constraint. Alternatively, one can use specialized algo-

rithms for linear programming with a single quadratic constraint (van de Panne, 1966; Martein and

Schaible, 2005) or convert the quadratic constraint to a second-order cone (SOC) constraint and use

general-purpose conic optimization methods.

4.2.2 IMPLEMENTATION OF A GREEDY-OPTIMAL ATTACK

For the practical implementation of the attack specified by problem (11), some additional processing

steps must be carried out.

A point can become “immune” to a poisoning attack, if starting from some iteration i′ its Voronoi

cell does not overlap with the hypersphere of radius r centered at ci′ . The quadratic constraint (9)

is never satisfied in this case, and the inner optimization problem (7) becomes infeasible. These

immune points remain in the working set forever and slow down the attack’s progress. To avoid this

situation, an attacker must keep track of all optimal solutions x∗j of the inner optimization problems.

If an online update would cause some Voronoi cell Vj to completely slip out of the hypersphere an

attacker should ignore the outer loop decision (10) and expunge x j instead of x j∗ .

A significant speedup can be attained by avoiding the solution of unnecessary QCLP problems.

Let S = {1, . . . , j− 1} and αS be the current best solution of the outer loop problem (10) over the

set S. Let yαS
be the corresponding objective value of an inner optimization problem (11). Consider

the following auxiliary quadratic program (QP):

maxx ‖x− 1
n ∑n

k=1 xk‖ (12)

s.t. 2(xk −x j) ·x ≤ xk ·xk −x j ·x j, ∀k = 1, ...,n (13)

(x−x j) ·a ≥ yαS
. (14)
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Its feasible set comprises the Voronoi cell of x j, defined by constraint (13), further reduced by

constraint (14) to the points that improve the current value yαS
of the global objective function. If

the objective function value provided by the solution of the auxiliary QP (12) exceeds r then the

solution of the local QCLP (11) does not improve the global objective function yαS
. Hence the

expensive QCLP optimization can be skipped.

4.2.3 ATTACK EFFECTIVENESS

To evaluate the effectiveness of the greedy-optimal attack, we perform a simulation on artificial

geometric data. The goal of this simulation is to investigate the behavior of the relative displacement

Di during the progress of the greedy-optimal attack.

An initial working set of size n = 100 is sampled from a d-dimensional Gaussian distribution

with unit covariance (experiments are repeated for various values of d ∈ {2, ...,100}). The radius

r of the online centroid learner is chosen such that the expected false positive rate is bounded by

α = 0.001. An attack direction a, ‖a‖= 1, is chosen randomly, and 500 attack iterations (5∗n) are

generated using the procedure presented in Sections 4.2.1–4.2.2. The relative displacement of the

center in the direction of the attack is measured at each iteration. For statistical significance, the

results are averaged over 10 runs.

Figure 4(a) shows the observed progress of the greedy-optimal attack against the nearest-out

learner and compares it to the behavior of the theoretical bounds for the infinite-horizon learner (the

bound of Nelson and Joseph, 2006) and the average-out learner. The attack effectiveness is measured

for all three cases by the relative displacement as a function of the number of iterations. Plots for

the nearest-out learner are presented for various dimensions d of the artificial problems tested in

simulations. The following observations can be made from the plot provided in Figure 4(a).

First, the attack progress, that is, the functional dependence of the relative displacement of the

greedy-optimal attack against the nearest-out learner with respect to the number of iterations, is

linear. Hence, contrary to our initial intuition, the removal of nearest neighbors of incoming points

does not lead to better security against poisoning attacks.

Second, the slope of the linear attack progress increases with the dimensionality of the problem.

For low dimensionality, the relative displacement of the nearest-out learner is comparable, in abso-

lute terms, with that of the infinite-horizon learner. For high dimensionality, the nearest-out learner

becomes even less secure than the simple average-out learner. By increasing the dimensionality

beyond d > n the attack effectiveness cannot be increased. Mathematical reasons for this behavior

are investigated in Section A.1.

A further illustration of the behavior of the greedy-optimal attack is given in Figure 4(b), show-

ing the dependence of the average attack slope on the dimensionality. One can see that the attack

slope increases logarithmically with the dimensionality and wanes out to a constant factor after the

dimensionality exceeds the number of training data points. A theoretical explanation of the observed

experimental results is given in Appendix A.1.2.

4.3 Concluding Remarks

To summarize our analysis for the case of the attacker’s full control over the training data, we

conclude that an optimal poisoning attack successfully subverts a finite-horizon online centroid

learner for all outgoing point selection rules. This conclusion contrasts with the analysis of the

infinite-horizon learner carried out in Barreno et al. (2006) that yields a logarithmic attack progress.
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Figure 4: Effectiveness of the poisoning attack for the nearest-out rule as a function of input space

dimensionality. (a) The displacement of the centroid along the attack direction grows

linearly with the number of injected points. Upper bounds on the displacement of the

average-out rule are plotted for comparison. (b) The slope of the linear growth increases

with the input space dimensionality.

As a compromise, one can in practice choose a large working set size n, which reduces the slope of

a linear attack progress.

Among the different outgoing point selection rules, the nearest-out rule presents the most chal-

lenges for the implementation of an optimal attack. Some approximations make such an attack

feasible while still maintaining a reasonable progress rate. The key factor for the success of a poi-

soning attack in the nearest-out case lies in high dimensionality of the feature space. The progress

of an optimal poisoning attack depends on the size of the Voronoi cells induced by the training data

points. The size of the Voronoi cells is related linearly to the volume of the sphere corresponding

to the attack’s feasible region (see Appendix A.1.2 for a theoretical discussion of this effect). With

the increasing dimensionality of the feature space, the volume of the sphere increases exponentially,

which leads to a higher attack progress rate.

In the following sections, we analyze two additional factors that affect the progress of a poi-

soning attack. First, we consider the case when the attacker controls only a fixed fraction ν of the

training data. Subsequently we analyze a scenario in which an attacker is not allowed to exceed

a certain false positive rate α; for example, by stopping online learning when a high false positive

rate is observed. It will be shown that both of these possible constraints significantly reduce the

effectiveness of poisoning attacks.

5. Poisoning Attack with Limited Bandwidth Constraint

Until now we assumed that an attacker has unlimited control over the training data; that is, in the

worst case, all the data seen by the learner may be adversarial. This assumption is too pessimistic,

as typically a deployed learning algorithm would also receive normal data during its operation. We

would now analyze centroid anomaly detection under the assumption that only a fraction ν of the

training data is adversarial. Our goal is to analyze the impact of this fraction of control on the
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difficulty of an attack. The choice of realistic values of ν is application-specific. For simplicity, we

restrict ourselves to the average-out learner as we have seen that it only differs by a constant from

the nearest-out one and is equivalent in expectation to the random-out one.

5.1 Learning and Attack Models

As discussed in Section 2, we assume that the initial online centroid learner is centered at the

position c0 and has a fixed radius r (without loss of generality c0 = 0 and r = 1; cf. discussion

after Definition 1 in Section 2). At each iteration a new training point arrives—which is either

inserted by an adversary or drawn independently from the distribution of innocuous points—and a

new center of mass ci is calculated. The mixing of innocuous and attack points is modeled by a

Bernoulli random variable with the parameter ν which denotes the probability that an adversarial

point is presented to the learner. Adversarial points Ai are chosen according to the attack function

f depending on the actual state of the learner ci. The innocuous pool is modeled by a probability

distribution from which the innocuous points xi are independently drawn. We assume that the

expectation of innocuous points xi coincides with the initial center of mass: E(xi) = c0.

For simplicity, we make one additional assumption in this chapter: all innocuous points are

accepted by the learner at any time of the attack independent of their actual distance to the center

of mass. In the absence of this assumption, we would need special treatment for the case that a truly

innocuous point is disregarded by the learner as the center of mass is getting displaced by the attack.

In the next section we drop this assumption so that the learner only accepts points which fall within

the actual radius.

The described probabilistic model is formalized by the following axiom.

Axiom 6 {Bi|i ∈ N} are independent Bernoulli random variables with parameter ν > 0. xi are

i.i.d. random variables in a Euclidean space Rd, drawn from a fixed but unknown distribution

Px, satisfying E(x) = 0 and ‖x‖ ≤ r
w.l.o.g.
= 1. Bi and x j are mutually independent for each i, j.

f : Rd → Rd is a function ‖ f (x)−x‖ ≤ r that we call attack strategy. {ci|i ∈ N} is a collection of

random vectors such that w.l.o.g. c0 = 0 and

ci+1 = ci +
1

n
(Bi f (ci)+(1−Bi)xi − ci) . (15)

Moreover, we denote xi := xi ·a.

For simplicity of notation, in this section we refer to a collection of random vectors {ci|i ∈ N}
satisfying Axiom 6 as an online centroid learner. Any function f satisfying Axiom 6 is called an

attack strategy. The attack strategy is a function that maps a vector (the center) to an attack location.

According to the above axiom, the adversary’s attack strategy is formalized by an arbitrary

function f . This raises the question of which attack strategies are optimal in the sense that an

attacker reaches his goal of concealing a predefined attack direction vector in a minimal number of

iterations. As in the previous sections, an attack’s progress is measured by projecting the current

center of mass onto the attack direction vector:

Di = ci ·a .

Attack strategies maximizing the displacement Di in each iteration i are referred to as greedy-

optimal attack strategies.
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5.2 Greedy-Optimal Attack

The following result characterizes the greedy-optimal attack strategy for the model specified in

Axiom 6.

Proposition 7 Let a be an attack direction vector. Then the greedy-optimal attack strategy f against

the online centroid learner is given by

f (ci) := ci +a . (16)

Proof Since by Axiom 6 we have ‖ f (x)− x‖ ≤ r, any valid attack strategy can be written as

f (x) = x+g(x), such that ‖g‖ ≤ r = 1. It follows that

Di+1 = ci+1 ·a

=

(

ci +
1

n
(Bi f (ci)+(1−Bi)xi − ci)

)

·a

= Di +
1

n
(BiDi +Big(ci)·a+(1−Bi)x ·a−Di) .

Since Bi ≥ 0, the greedy-optimal attack strategy should maximize g(ci) · a subject to ||g(ci)|| ≤ 1.

The maximum is clearly attained by setting g(ci) = a.

Note that the displacement measures the projection of the change of the centroid onto the

attack direction vector. Hence it is not surprising that the optimal attack strategy is independent of

the actual position of the learner.

5.3 Attack Effectiveness

The effectiveness of the greedy-optimal attack in the limited control case is characterized in the

following theorem.

Theorem 8 For the displacement Di of the centroid learner under an optimal poisoning attack,

(a) E(Di) = (1−ai)
ν

1−ν

(b) Var(Di) ≤ γi

(

ν

1−ν

)2

+δn ,

where ai :=
(

1− 1−ν
n

)i
, bi =

(

1− 1−ν
n

(

2− 1
n

))i
, γi = ai −bi, and δn := ν2+(1−bi)

(2n−1)(1−ν)2 .

Proof (a) Inserting the greedy-optimal attack strategy of Equation (16) into Equation (15) of Ax-

iom 6, we have:

ci+1 = ci +
1

n
(Bi (ci +a)+(1−Bi)xi − ci) ,

which can be rewritten as:

ci+1 =

(

1−
1−Bi

n

)

ci +
Bi

n
a+

(1−Bi)

n
xi . (17)
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Figure 5: Theoretical behavior of the displacement of a centroid under a poisoning attack for a

bounded fraction of traffic under attacker’s control. The infinite horizon bound of Nelson

et al. is shown for comparison (solid line).

Taking the expectation on the latter equation and noting that by Axiom 6, E(xi) = 0 and E(Bi) = ν,

we have

E (ci+1) =

(

1−
1−ν

n

)

E(ci)+
ν

n
a ,

which by the definition of the displacement translates to

E(Di+1) =

(

1−
1−ν

n

)

E(Di)+
ν

n
.

The statement (a) follows from the latter recursive equation by Proposition 17 (formula of the geo-

metric series). For the more demanding proof of (b), see Appendix A.2.

The following corollary shows the asymptotic behavior of the above theorem.

Corollary 9 For the displacement Di of the centroid learner under an optimal poisoning attack,

(a) E(Di) ≤
ν

1−ν
for all i

(b) Var(Di) → 0 for i,n → ∞ .

Proof The corollary follows from the fact that γi,δn → 0 for i,n → ∞.

The behavior of the above bounds as a function of the number of attack iterations is illustrated

in Figure 5. One can see that the attack’s progress depends on the fraction of the training data

controlled by the attacker. For any ν < 1, the attack progress is bounded by a constant. Hence

the attack’s success critically depends on the value of this constant: if ||A− c0|| < ν/(1− ν), the

attack fails even with infinite effort. This result provides a much stronger security guarantee than

the exponential bound for the infinite horizon case.
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Figure 6: Comparison of the empirical displacement of the centroid under a poisoning attack with

attacker’s limited control (ν = 0.05) with the theoretical bound for the same setup. The

empirical results are averaged over 10 runs.

To empirically investigate the tightness of the derived bound we compute a Monte Carlo simula-

tion of the scenario defined in Axiom 6 with the parameters ν = 0.05, n = 100000, H =R2, and Px

being a uniform distribution over the unit circle. Figure 6 shows a typical displacement curve over

the first 500,000 attack iterations. One can clearly see that the theoretical bound is closely followed

by the empirical simulation.

6. Poisoning Attack under False Positive Constraints

In the last section we have assumed, that innocuous training points xi are always accepted by the

online centroid learner. It may, however, happen that some innocuous points fall outside of the

hypersphere boundary while an attacker displaces the hypersphere. We have seen that the attacker’s

impact highly depends on the fraction of points he controls. If an attacker succeeds in pushing the

hypersphere far enough for innocuous points to start dropping out, the speed of the hypersphere

displacement increases. Hence additional protection mechanisms are needed to prevent the success

of an attack.

6.1 Learning and Attack Models

Motivated by the above considerations we modify the probabilistic model of the last section as

follows. Again we consider the online centroid learner initially anchored at a position c0 having

a radius r. For the sake of simplicity and without loss of generality we can again assume c0 = 0

and r = 1. Innocuous and adversarial points are mixed into the training data according to a fixed

fraction controlled by a binary random variable Bi. In contrast to Section 5, innocuous points xi are

accepted if and only if they fall within the radius r from the hypersphere’s center ci. In addition, to

avoid the learner being quickly displaced, we require that the false alarm rate, that is, the number of
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innocuous points rejected by the learner, is bounded by α. If the latter is exceeded, we assume the

adversary’s attack to have failed and a safe state of the learner to be loaded.

We formalize this probabilistic model as follows:

Axiom 10 {Bi|i ∈ N} are independent Bernoulli random variables with parameter ν > 0. xi are

i.i.d. random variables in a reproducing kernel Hilbert space H drawn from a fixed but unknown

distribution Px, satisfying E(x) = 0, ‖x‖ ≤ r = 1, and Px·a = P−x·a (symmetry w.r.t. the attack

direction). Bi and x j are mutually independent for each i, j. f : Rd → Rd is an attack strategy

satisfying ‖ f (x)−x‖ ≤ r. {ci|i ∈ N} is a collection of random vectors such that c0 = 0 and

ci+1 = ci +
1

n

(

Bi ( f (ci)− ci)+(1−Bi)I{‖xi−ci‖≤r} (xi − ci)
)

,

if Ex

(

I{‖x−ci‖≤r}
)

≤ 1−α and by ci+1 = 0 otherwise. Moreover, we denote xi := xi ·a.

For simplicity of notation, we refer to a collection of random vectors {ci|i ∈ N} satisfying Ax-

iom 10 as an online centroid learner with maximal false positive rate α in this section. Any function

f satisfying Axiom 10 is called an attack strategy. Optimal attack strategies are characterized in

terms of the displacement as in the previous sections. Note that Ex(·) denotes the conditional ex-

pectation given all remaining random quantities except for x.

The intuition behind the symmetry assumption in Axiom 10 is that it ensures that resetting the

centroid’s center to zero (initiated by the false positive protection) does not lead to a positive shift

of the centroid toward the attack direction.

6.2 Greedy-Optimal Attack and Attack Effectiveness

The following result characterizes the greedy-optimal attack strategy for the model specified in

Axiom 10. We restrict our analysis to greedy-optimal strategies, that is, the ones that maximize the

displacement in each successive iteration.

Proposition 11 Let a be an attack direction vector and consider the centroid learner with maximal

false positive rate α as defined in Axiom 10. Then the greedy-optimal attack strategy f is given by

f (ci) := ci +a .

Proof Since by Axiom 10 we have ‖ f (x)− x‖ ≤ r, any valid attack strategy can be written as

f (x) = x+g(x), such that ‖g‖ ≤ r = 1. It follows that either Di+1 = 0, in which case the optimal f

is arbitrary, or we have

Di+1 = ci+1 ·a

=

(

ci +
1

n
(Bi f (ci)+(1−Bi)xi − ci)

)

·a

= Di +
1

n
(Bi (Di +g(ci))+(1−Bi)xi −Di) .

Since Bi ≥ 0, the greedy-optimal attack strategy should maximize g(ci) · a subject to ||g(ci)|| ≤ 1.

The maximum is clearly attained by setting g(ci) = a.

The estimate of effectiveness of the greedy-optimal attack in the limited control case is given in

the following theorem.
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Theorem 12 For the displacement Di of a centroid learner with maximal false positive rate α under

a poisoning attack,

(a) E(Di) ≤ (1−ai)
ν+α(1−ν)

(1−ν)(1−α)

(b) Var(Di) ≤ γi
ν2

(1−α)2(1−ν)2
+ρ(α)+δn ,

where ai :=
(

1− (1−ν)(1−α)
n

)i
, bi =

(

1− 1−ν
n (2− 1

n)(1−α)
)i

, γi = (ai − bi),

ρ(α) = α (1−ai)(1−bi)(2ν(1−α)+α)
(1− 1

2n )(1−ν)2(1−α)2 , and δn =
(1−bi)(ν+(1−ν)E(xi

2))
(2n−1)(1−ν)(1−α) , xi := xi ·a.

The proof is technically demanding and is given in Appendix A.3. Despite the more general

proof reasoning, we recover the tightness of the bounds of the previous section for the special case

of α = 0, as shown by the following corollary.

Corollary 13 Suppose a maximal false positive rate of α = 0. Then, the bounds on the expected

displacement Di, as given by Theorem 8 and Theorem 12, coincide. Furthermore, the variance

bound of Theorem 12 upper bounds the one of Theorem 8.

Proof We start by setting α = 0 in Theorem 12(a). Clearly the latter bound coincides with its coun-

terpart in Theorem 8. For the proof of the second part of the corollary, we observe that ρ(0) = 0 and

that the quantities ai,bi, and γi coincide with their counterparts in Theorem 8. Moreover, removing

the distribution dependence by upper bounding E(xi) ≤ 1 reveals that δi is upper bounded by its

counterpart of Theorem 8. Hence, the whole expression on the right hand side of Theorem 12(b) is

upper bounded by its counterpart in Theorem 8(b).

The following corollary shows the asymptotic behavior of the above theorem. It follows from

γi,δn,ρ(α)→ 0 for i,n → ∞, and α → 0, respectively.

Corollary 14 For the displacement Di of the centroid learner with maximal false positive rate α
under an optimal poisoning attack,

(a) E(Di) ≤
ν+α(1−ν)

(1−ν)(1−α)
for all i

(b) Var(Di) → 0 for i,n → ∞,α → 0 .

From the previous theorem, we can see that for small false positive rates α ≈ 0, which are

common in many applications, for example, intrusion detection (see Section 8 for an extensive

empirical analysis), the bound approximately equals the one of the previous section; that is, we

have E(Di) ≤ ν
1−ν + δ where δ > 0 is a small constant with δ → 0. Inverting the bound we obtain

the useful formula

ν ≥
E(Di)

1+E(Di)
, (18)

which gives a lower bound on the minimal ν an adversary has to employ for an attack to succeed.

The illustration of the bound in Theorem 12 is given in Figure 7 for different levels of the false

positive protection α ∈ [0,0.025]. We are especially interested in low false positive rates. One can

see that tightness of the bounds of the previous section is almost entirely preserved. In the extreme

case α = 0, the bounds coincide, as it was shown in Corollary 13.
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Figure 7: Theoretical behavior of the displacement of a centroid under a poisoning attack for dif-

ferent levels of false positive protection α. The predicted displacement curve for α = 0

coincides with the one shown in Figure 6.

7. Generalization to Kernels

For simplicity, we have assumed in the previous sections that the data xi ∈ Rd lies in an Euclidean

space. This assumption does not add any limitations, as all our results can be generalized to the

so-called kernel functions (Schölkopf and Smola, 2002). This is remarkable, as nonlinear kernels

allow one to obtain complex decision functions from the simple centroid model (cf. Figure 1).

Definition 15 (Def. 2.8 in Shawe-Taylor and Cristianini, 2004) A function k : Rd ×Rd → R is

called a kernel if and only if there exists a Hilbert space (H ,〈·〉) and a map φ : Rd → H such

that for all x,y ∈ Rd it holds k(x,y) = 〈φ(x),φ(y)〉. Given a sample x1, . . . ,xn, the matrix K with

i j-th entry k(xi,x j) is called kernel matrix.

Examination of the theoretical results and proofs of the proceeding sections reveals that they, at no

point, require special properties of Euclidean spaces. Instead, all calculations can be carried out in

terms of arbitrary kernels. To this end, we only need to substitute all occurrences of x ∈ Rd in the

proofs by feature vectors φ(x) ∈ H . Likewise, all occurrences of inner products 〈x,y〉 generalize

to scalar products 〈φ(x),φ(y)〉 in the kernel Hilbert space. The scalar product also induces a norm,

defined by ‖w‖ :=
√

〈w,w〉 for all w ∈ H . The expectation operator E : H 2→ H is well-defined

as long as E‖x‖ is finite, which will always be assumed (as a matter of fact, we assume that ‖x‖ is

bounded almost surely; cf. Axiom 6 and Axiom 10).

It is interesting to discuss whether the assumptions on the distribution generating the innocuous

data as imposed by Axiom 6 and Axiom 10 can be fulfilled in Hilbert spaces. For Axiom 6, there is

no restriction at all, but in Axiom 10 we use the assertion P(x−c0)·a = P−(x−c0)·a, which means that

the distribution of the data projection onto the attack direction is required to be point symmetric

w.r.t. c0 ·a, where c0 is the center of the hypersphere before the attack takes place. For example, this
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is fulfilled by distributions that are symmetric with respect to c0 in feature space, and thus naturally

fulfilled by Gaussian distributions with mean c0 (using φ = id) or truncated Gaussians. When using

kernels the symmetry assumption can be invalid, for example, for RBF kernels. However, our

empirical analysis (see next section) shows that our bounds are, nevertheless, sharp in practice.

It is also worth noting that the use of kernels can impose geometric constraints on the optimal

attack. Note that, in practice, the attacker can only construct attack points in the input space and

not directly in the feature space. The attack is then embedded into the feature space. Thus, strictly

speaking, we would need to restrict the search space to feature vectors that have a valid pre-image

when using kernels. However, this can be a hard problem to solve in general (Fogla and Lee,

2006). In Proposition 11, we do not take this additional complication into account. Therefore, we

overestimate the attacker. This is admissible for security analysis; it is the underestimation of the

attack capability that would have been problematic.

8. Case Study: Application to Intrusion Detection

In this section we present an experimental evaluation of the developed analytical instruments in the

context of a particular computer security application: intrusion detection. After a short presentation

of the application, data collection, preprocessing and model selection, we report on experiments

aimed at the verification of the theoretically obtained growth rates for the attack progress as well as

the computation of constant factors for specific real-life exploits.5

8.1 Anomaly-Based Intrusion Detection

Computer systems linked to the Internet are exposed to a plethora of network attacks and mali-

cious code. Numerous threats, which range from simple “drive-by-downloads” of malicious code

to sophisticated self-proliferating worms, target network hosts every day; networked systems are

generally at risk to be remotely compromised and abused for illegal purposes. Sometimes it suffices

for malware to send a single HTTP-request to a vulnerable webserver to infect a vast majority of

computers within minutes (e.g., the Nimda worm). While early attacks were developed rather for

fun than for profit, proliferation of current network attacks is now driven by a criminal underground

economy. Compromised systems are often abused for monetary gains including the distribution

of spam messages and theft of confidential data. The success of these illegal businesses poses a

severe threat to the security of network infrastructures. Alarming reports on an expanding dissem-

ination of advanced attacks render sophisticated security systems indispensable (e.g., Microsoft,

2008; Symantec, 2008).

Conventional defenses against such malicious software rest on abuse detection; that is, iden-

tifying attacks using known patterns of abuse, so-called attack signatures. While abuse detection

effectively protects from known threats, it increasingly fails to be able to cope with the amount and

diversity of attacks. The time span required for crafting a signature from a newly discovered attack

is insufficient for protecting against rapidly propagating malicious code (e.g., Moore et al., 2002;

Shannon and Moore, 2004). Moreover, recent attacks frequently use polymorphic modifications,

which strongly impedes the creation of accurate signatures (Song et al., 2007). Consequently, there

5. The term exploit denotes a sequence of bytes which, given as an input to a vulnerable program, causes execution of

arbitrary, potentially harmful code.
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is currently a strong demand for alternative techniques for detection of attacks during the course of

their propagation.

Anomaly detection methods provide a means for identifying unknown and novel attacks in

network traffic and thereby complement regular security defenses. The centroid anomaly detection

is especially appealing because of its low computational complexity.6 It has been successfully used

in several well-known intrusion detection systems (e.g., Hofmeyr et al., 1998; Lazarevic et al., 2003;

Wang and Stolfo, 2004; Laskov et al., 2004b; Wang et al., 2005, 2006; Rieck and Laskov, 2007).

8.2 Data Corpus and Preprocessing

The data to be used in our case study was collected by recording real HTTP traffic for 10 days

at Fraunhofer Institute FIRST. We consider the data at the level of HTTP requests which are the

basic syntactic elements of the HTTP protocol. To transform the raw data into HTTP requests, we

remove packet headers from the Ethernet, IP and TCP layers, and merge requests spread across

multiple packets. After this point, we consider only request bodies (viewed as a byte string) to be

our data point. The resulting data set comprises 145,069 requests of the average length of 489 bytes,

from which we randomly drew a representative subset of 2950 data points. This data is referred to

as the normal data pool.

The malicious data pool is obtained by a similar procedure applied to the network traffic gen-

erated by examples of real attacks used for penetration testing.7 It contains 69 attack instances

from 20 real exploits obtained from the Metasploit penetration testing framework.8 Attacks were

launched in a virtual network and normalized to match the characteristics of the innocuous HTTP

requests (e.g., URLs were changed to that of a real web server).

As byte sequences are not directly suitable for the application of machine learning algorithms,

we deploy a k-gram spectrum kernel (Leslie et al., 2002; Shawe-Taylor and Cristianini, 2004) for

the computation of inner products. This kernel represents a linear product in a feature space in

which dimensions correspond to subsequences of length k contained in input sequences. To enable

fast comparison of large byte sequences (a typical sequence length is 500–1000 bytes), efficient

algorithms using sorted arrays (Rieck and Laskov, 2008) were implemented. Furthermore, kernel

values are normalized according to

k(x, x̄) 2−→
k(x, x̄)

√

k(x,x)k(x̄, x̄)
(19)

to avoid a dependence on the length of a request payload. The resulting inner products were sub-

sequently used by an RBF kernel. Notice that if k is a kernel (in our case it is; see Leslie et al.,

2002), then the kernel normalized by Equation (19) is a kernel, too. For example, this can be seen

by noting that, for any kernel matrix, this normalization preserves its positive definiteness as it is a

columnwise operation and thus can only change the principal minors by a constant factor.

8.3 Learning Model

The feature space selected for our experiments depends on two parameters: the k-gram length and

the RBF kernel width σ. Prior to the main experiments aimed at the validation of the proposed

6. With suitable parallelization for multicore architectures, processing speeds of over 3 Gbps can be attained.

7. Penetration testing refers to launching real exploits against computer systems to identify potential vulnerabilities.

8. Metasploit can be found at http://www.metasploit.com/.
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security analysis techniques, we investigate optimal model parameters in our feature space. The

parameter range considered is k = 1,2,3 and σ = 2−5,2−4.5, ...,25. Each of the 69 attack instances

is represented by a feature vector. We refer to these embedded attacks as the attack points; that is,

the points in the feature space that the adversary would like to have declared as non-anomalous.

To carry out model selection, we randomly partitioned the innocuous corpus into disjoint train-

ing, validation and test sets (of sizes 1000, 500 and 500). The training set is used for computing the

centroid, the validation set is used for model selection, and the test set is used to evaluate the detec-

tion performance of the centroid. The training set is comprised of the innocuous data only, as the

online centroid learner assumes clean training data. The validation and test sets are mixed with 10

randomly chosen attack instances. We thereby ensure that none of the attack instances mixed into

the validation set has a class label that also occurs in the test data set. When sampling, we realize

this requirement by simply skipping instances that would violate this condition.9 For each partition,

an online centroid learner model is trained on a training set and evaluated on a validation and a test

set, using the normalized AUC[0,0.01] (area under the ROC-curve for false positive rates less that

0.01) as a performance measure.10 For statistical significance, model selection is repeated 1000

times with different randomly drawn partitions. The average values of the normalized AUC[0,0.01]

for the different k values on test partitions are given in Table 2.

It can be seen that the 3-gram model consistently shows better AUC values for both the linear

and the best RBF kernels. We have chosen the linear kernel for the remaining experiments since

it allows one to carry out computations directly in the input space with only a marginal penalty in

detection accuracy.

linear best RBF kernel optimal σ

1-grams 0.913±0.051 0.985±0.021 2−2.5

2-grams 0.979±0.026 0.985±0.025 2−1.5

3-grams 0.987±0.018 0.989±0.017 2−0.5

Table 2: AUC for the linear kernel, the best RBF kernel and the optimal bandwidth σ.

8.4 Intrinsic HTTP Data Dimensionality

As it was shown in Sec. 4.2.3, the dimensionality of the training data plays a crucial role in the

(in)security of the online centroid learner when using the nearest-out update rule. In contrast, the

displacement under the average-out rule is independent of the input dimensionality; we therefore

focus on the nearest-out rule in this section. For the intrusion detection application at hand, the

dimensionality of the chosen feature space (k-grams with k = 3) is 2563, that is, it is rather high.

One would thus expect a dramatic impact of the dimensionality on the displacement (an thus the

insecurity) of the learner. However, the real progress rate depends on the intrinsic dimensionality

of the data. When the latter is smaller than the size of the training data, an attacker can compute

a PCA of the data matrix (Schölkopf et al., 1998) and project the original data into the subspace

spanned by a smaller number of informative components. The following theorem shows that the

dimensionality of the relevant subspace in which attack takes place is bounded by the size of the

9. The latter requirement reflects the goal of anomaly detection to recognize previously unknown attacks.

10. The normalization is such that AUC = 1 holds for a perfect detector.
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training data n, which can be much smaller than the input dimensionality, typically in the range of

100–1000 for realistic applications.

Theorem 16 There exists an optimal solution of problem (11) satisfying

x∗i ∈ span(a,x1, ...,xn) .

The above theorem, which also can be used as a representer theorem for “kernelization” of the

optimal greedy attack, shows that the attack’s efficiency cannot be increased beyond dimensions

with d ≥ n+1. The proof is given in Appendix A.1.

To determine the intrinsic dimensionality of possible training sets drawn from HTTP traffic, we

randomly draw 1000 elements from the innocuous pool, calculate a linear kernel matrix in the space

of 3-grams and compute its eigenvalue decomposition. We then determine the number of leading

eigen-components as a function of the percentage of variance preserved. The results averaged over

100 repetitions are shown in Figure 8.
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Figure 8: Intrinsic dimensionality of the embedded HTTP data. The preserved variance is plotted

as a function of the number of eigencomponents, k, employed for calculation of variance

(solid blue line). The tube indicates standard deviations.

It can be seen that 250 kernel PCA components are needed to preserve 99% of the variance.

This implies that, although the effective dimensionality of the HTTP traffic is significantly smaller

than the number of training data points, it still remains sufficiently high so that the attack progress

rate approaches 1, which is similar to the simple average-out learner.

8.5 Geometrical Constraints of HTTP Data

Several technical difficulties arising from data geometry have to be overcome in launching a poi-

soning attack in practice. However, consideration of the training data geometry provides an attacker

with efficient tools for finding reasonable approximations for the above mentioned tasks.
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(1) Even for the linear kernel, it is hard to craft a poisoning point in the 3-gram input space due

to the high dimensionality of the 3-gram space. An approximately equivalent explicit feature space

can be constructed by applying kernel PCA to the kernel matrix K. By pruning the eigenvalues

“responsible” for dimensions with low variance one can reduce the size of the feature space to the

implicit dimensionality of the problem if the kernel matches the data (Braun et al., 2008). In all

subsequent experiments we used d = 256 as suggested by the experiments in Section 8.4.

(2) The normalization condition (19) requires that a solution lies on a unit sphere.11 Unfor-

tunately, this renders the calculation of the greedy-optimal attack point non-convex. Therefore,

we pursue the following heuristic procedure to enforce normalization: we explicitly project local

solutions (for each Voronoi cell) to a unit sphere, verify their feasibility (the radius and the cell

constraints) and remove infeasible points from the outer loop (10).

(3) In general one cannot expect each feature space vector to correspond to a valid byte se-

quence since not all combinations of k-grams can be “glued” to a valid byte sequence. In fact,

finding a sequence with the best approximation to a given k-gram feature vector is NP-hard (Fogla

and Lee, 2006). Since the optimal attack lies in the span of the training data (cf. Theorem 16) we

can construct an attack byte sequence by concatenating original training sequences with rational

coefficients that approximately match the coefficients of a linear combination. A potential disad-

vantage of this method is the increase of sequence lengths. Large requests are conspicuous and may

consume significant resources on the attacker’s part.

(4) An attack byte sequence must be embedded in a valid HTML protocol frame so that a request

does not cause an error on a server. An HTTP request consists of fixed format headers and a variable

format body. A straightforward way to stealthily introduce arbitrary content is to provide a body in

a request whose method (e.g., GET) does not require one (it is ignored by the server). Alternatively

one can introduce custom headers that are not expected by the server and will be ignored as well.

8.6 Poisoning Attack for Finite Horizon Centroid Learner

The analysis carried out in Section 4 shows that an online centroid learner, in general, does not

provide sufficient security if an attacker fully controls the data. Practical efficiency of a poisoning

attack, however, depends on the dimensionality and geometry of the training data analyzed in the

previous section. Theoretical results were validated in simulations on artificial data presented in

Section 4.2.3. The experiments in this section are intended to verify the results presented in Sec-

tion 4.2.3 in the context of real attacks against HTTP applications. Our experiments focus on the

nearest-out learner as other update rules can be easily attacked with trivial methods.

The experimental protocol is as follows. We randomly draw n = 250 training points from the

innocuous corpus, calculate the center of mass and fix the radius such that the false positive rate on

the training data is α = 0.001. Then we draw a random instance from each of the 20 attack classes

and for each of these 20 attack instances generate a poisoning attack as described in Section 8.5. An

attack succeeds when the attack point is accepted as innocuous by the learning algorithm.

For each attack instance, the number of iterations needed for an attack to succeed and the re-

spective displacement of the center of mass is recorded. Figure 9 shows, for each attack instance,

the behavior of the relative displacement at the point of success as a function of the number of iter-

ations. We interpolate a “displacement curve” from these pointwise values by linear least-squares

11. In the absence of normalization, the high variability of the byte sequence lengths leads to poor accuracy of centroid

anomaly detection.
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Figure 9: Empirical displacement of the nearest-out centroid for 20 different exploits (crosses, lin-

ear fit shown by a red dotted line). Displacement values are shown at the point of success

for each attack. Theoretical bounds are shown for comparison (blue and black lines).

regression. For comparison, the theoretical upper bounds for the average-out and all-in cases are

shown (“all-in” hereby refers to the update strategy given by Equation (1), where points are added

to the training set without removing old ones). Notice that the bound for the all-in strategy is also

almost linear for the small i/n ratios observed in this experiment.

The observed results confirm that the linear progress rate in the full control scenario can be

attained for real data. Compared to the simulations of Section 8.5, the progress rate of an attack is

approximately half the one for the average-out case. This can be attributed to multiple approxima-

tions performed in the attack implementation for real byte sequences. For example, we use a k-gram

spectrum kernel, so each poisoning attack point is restricted to have unit norm in feature space. The

practicality of the poisoning attack is further emphasized by the small number of iterations needed

for an attack to succeed: it suffices to overwrite between 2 and 35 percent of the initial number of

points in the training data to subvert the nearest-out learner.

8.7 Critical Traffic Ratios of HTTP Attacks

For the case of the attacker’s limited control over the data, the success of a poisoning attack largely

depends on attacker’s constraints, as shown in the analysis in Sections 5 and 6. The main goal of the

experiments in this section is therefore to investigate the impact of potential constraints in practice.

In particular, we are interested in the impact of the traffic ratio ν and the false positive rate α.

The analysis in Section 5 (cf. Theorem 8 and Figure 5) shows that the displacement of a poi-

soning attack is bounded from above by a constant depending on the traffic ratio ν controlled by

an attacker. Hence the susceptibility of the learner to a particular attack depends on the value of

this constant. If an attacker does not control a sufficiently large traffic portion and the potential

displacement is bounded by a constant smaller than the distance from the initial center of mass to
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the attack point, then the attack fails. To illustrate this observation, we compute critical traffic rates

needed for the success of attacks from each of the 20 attack classes in our malicious pool.

We randomly draw a 1000-element training set from the innocuous pool and calculate its center

of mass (in the space of 3-grams). The radius is fixed such that the false positive rate α = 0.001

on innocuous data is attained. For each of the 20 attack classes we compute the class-wise median

distance to the centroid’s boundary. Using these distance values we calculate the “critical value”

νcrit by solving Theorem 8(c) for ν (cf. Equation (18)). The experiments were repeated 10 times,

with results shown in Table 3.

Attacks Rel. dist. νcrit

ALT-N WebAdmin Overflow 0.058±0.002 0.055±0.002

ApacheChunkedEncoding 0.176±0.002 0.150±0.001

AWStats ConfigDir Execution 0.067±0.002 0.063±0.002

Badblue Ext Overflow 0.168±0.002 0.144±0.001

Barracuda Image Execution 0.073±0.002 0.068±0.002

Edirectory Host 0.153±0.002 0.132±0.001

IAWebmail 0.178±0.002 0.151±0.001

IIS 5.0 IDQ exploit 0.162±0.002 0.140±0.001

Pajax Execute 0.107±0.002 0.097±0.002

PEERCAST URL 0.163±0.002 0.140±0.001

PHP Include 0.097±0.002 0.088±0.002

PHP vBulletin 0.176±0.002 0.150±0.001

PHP XML RPC 0.172±0.002 0.147±0.001

HTTP tunnel 0.160±0.002 0.138±0.001

IIS 4.0 HTR exploit 0.176±0.002 0.149±0.002

IIS 5.0 printer exploit 0.161±0.002 0.138±0.001

IIS unicode attack 0.153±0.002 0.133±0.001

IIS w3who exploit 0.168±0.002 0.144±0.001

IIS 5.0 WebDAV exploit 0.179±0.002 0.152±0.001

rproxy exploit 0.155±0.002 0.134±0.001

Table 3: Relative distances (in radii) of exploits to the boundary of a centroid enclosing all training

points and critical values of parameter ν.

The results indicate that in order to subvert an online centroid learner an attacker needs to control

on average from 5 to 20 percent of traffic (with small variance). This could be a significant limitation

on highly visible sites. Generating sufficiently high bandwidths in this case is likely to make the

attacker’s cost exorbitantly high.

On the other hand, one can see that the traffic rate limiting alone cannot be seen as a sufficient

protection instrument due to its passive nature. In the following section we investigate a different

protection scheme using both the traffic ratio and the false positive rate control.
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Figure 10: Maximal false positive rate within 10000 attack iterations as a function of ν (maximum

taken over 10 runs).

8.8 Poisoning Attack Against Learner with False Positive Protection

The analysis in Section 5 (cf. Theorem 8 and Figure 5) shows that the displacement of a poisoning

attack is bounded from above by a number, depending on the traffic ratio ν and the maximal false

positive rate α. The dependence of this number on α can be used for constructive protection of a

learner against a poisoning attack. The idea is to use the observed false positive rate as a measure

of the attack’s progress, and to turn online updates off if some critical false alarm rate is attained.

8.8.1 EXPERIMENT 1: PRACTICABILITY OF FALSE POSITIVE PROTECTION

The first issue to be decided is what values of α are reasonable from the operational perspective. A

false positive threshold that is too low would lead to a quasi-permanent shutdown of online updates;

a high tolerance to false positives would allow an attack to slip in unnoticed. Hence, we need

to investigate the dependence of the observed false positive rate on the traffic ratio ν under the

attacker’s control.

To this end, we randomly draw 100 samples from the innocuous pool (each sample containing

1000 points), and compute the mean and the radius that encompasses 99.9% of the points. We

may hence view the average radius r (averaged over the 100 samples) as the empirical estimate

of the α = 0.001-quantile of the innocuous pool. Then, we randomly draw another 1000-element

training set from the innocuous pool and use it to calculate the center c. We thus may expect the

resulting initial centroid (c,r) to have a false positive rate of α = 0.001 on the innocuous pool.

Next, the learner is switched online. We randomly draw a 500-element online training set and a

500-element hold-out set from the innocuous pool. The hold-out set is used for the estimation of

the false positive rate for each location of the center. We then proceed by presenting normal data

(drawn with replacement from the online training set) mixed with poisoning attack points (using the

IIS 5.0 WebDAV exploit as target) and measuring the false positive rate for each attack iteration.

Notice that normal data points may also get rejected if they do not fall within the radius r from the

(poisoned) center.
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Figure 11: Simulation of a poisoning attack against IIS 5.0 WebDAV exploit under limited control.

In Figure 10 the maximal observed false positive rate is shown for various values of ν, where the

maximum is taken over all attack iterations and 10 runs. One can see from the plot that α = 0.005

is a reasonable threshold in our setting to ensure that the system’s normal operation is not disrupted

by the false positive protection.

8.8.2 EXPERIMENT 2: ATTACK SIMULATION FOR FALSE POSITIVE PROTECTION

In the previous experiment we have seen that α = 0.005 is a reasonable threshold for the false

positive protection. In this section we illustrate that the critical values from Section 8.7 computed on

the basis of Theorem 8 for the maximal false positive rate of α = 0.005 give a good approximation

of the true impact of a poisoning attack.

To this end, we fix a particular attack in our malicious corpus (IIS WebDAV 5.0 exploit) and run

a poisoning attack against the average-out centroid learner for various values of ν ∈
[0.05,0.10,0.14,0.16] recording the actual displacement curves. One can see from Figure 11 that

the attack succeeds for ν = 0.16 but fails to reach the required relative displacement of Dcrit = 0.18

for ν = 0.14. The theoretical critical traffic ratio for this attack (with false positive rate bounded by

α ≤ 0.005) according to Table 3 is νcrit = 0.152. The experiment shows that the derived bounds are

surprisingly tight in practice.

The IIS WebDAV 5.0 exploit is, in a sense, an extreme case as it constitutes the most pessimistic

scenario for an attacker (farthest away from the normality centroid). In another experiment, we

therefore consider the ALT-N WebAdmin Overflow; that is, the most optimistic scenario for the

attacker and the closest attack to the centroid. The result is shown in Figure 12. We observe from

the figure that the experiment again supports our theory: the predicted critical fraction is ν = 0.055

and indeed this quickly leads to a successful attack. For a slightly smaller ν = 0.45, the attack fails

and the IDS can be considered safe.

8.8.3 IMPLEMENTATION OF A POISONING PROTECTION IN PRACTICE

In Section 5, we have seen that an attacker’s impact on corrupting the training data crucially depends

on the fraction of adversarial points in the training data stream. This implies that a large amount of

innocuous training points must be processed in order for the system to be secure. In Section 6, we

have seen that we can secure the learner by setting a threshold on the false positive rate α. When

a false positive rate exceeds the threshold, further countermeasures such as disabling the online
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Figure 12: Simulation of a poisoning attack against ALT-N WebAdmin Overflow under limited con-

trol.

training process can be triggered. This raises an issue of a reliable estimation of the allowable false

positive rate.

In practice, this can be done; for example, by caching the training data. When the cache exceeds

a certain value at which we have a confident estimation of α (e.g., after 24 hours), the cached training

data can be applied to the learner. Since in applications including intrusion detection we usually deal

with a very large amount of training data, a confident estimation is already possible after a short time

period.

9. Discussion and Conclusions

Understanding of security properties of learning algorithms is essential for their protection against

abuse. In order to prove the immunity of a learning algorithm against manipulated data attacks,

certain security properties must be proved. To this end, we have developed a methodology for

security analysis of learning algorithms and applied it for a specific scenario of online centroid

anomaly detection. Our analysis highlights conditions under which an attacker’s effort to subvert

this algorithm is prohibitively high. We further propose some constructive countermeasures for

protecting online anomaly detection against poisoning attacks.

Our work is related to other research in machine learning for adversarial environments that has

gained significant attention in recent years. A comprehensive survey of a large body of work in

this field can be found in Barreno et al. (2010). The majority of related work targets classification

problems (e.g., Kearns and Li, 1993; Dalvi et al., 2004; Globerson and Roweis, 2006; Dekel and

Shamir, 2008; Dekel et al., 2009). In contrast, our work is focused on anomaly detection methods

that have received much less previous attention. Compared to the closest related work of Nelson

and Joseph (2006), our methods address more realistic attack and learning scenarios. In particular,

we dispense with the assumption of an infinite amount of training data accumulated in the course of

training and analyze more advanced scenarios in which the attacker’s impact is limited by certain

constraints.

Other related work for anomaly detection methods is concerned with the PAYL (Wang and

Stolfo, 2004) and Anagram (Wang et al., 2006) algorithms. Both can be seen as a special case of

centroid anomaly detection with appropriate distance functions. The blending attack considered by
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Fogla et al. (2006); Fogla and Lee (2006) is aimed at evading a trained model at the detection stage

by modifying malicious data to resemble the normal one. It differs from the scenario considered

in our work in that the attack takes place after the model has been trained, whereas the poisoning

attack affects the model in the course of training. Although the exact blending was shown to be

NP-hard for k-gram feature spaces, approximations have been proposed that are good enough in

practice, at least for low values of k. Another related technique is sanitization proposed by Cretu

et al. (2008). It deals with the general problem of cleaning the training data from potential attacks. It

was shown that small amounts of unintentional attacks can be filtered out by building micro-models

based on parts of the training data and rejecting data deemed as anomalous by some micro-models.

This work differs from ours in that it considers offline learning; that is, the sanitization takes place

before before the training data is presented to the learning algorithm. An extension of sanitization to

online learning scenarios has been proposed in Cretu-Ciocarlie et al. (2009). The extended method

uses previously constructed micro-models to sanitize data from which the most recent model is

learned. However, once the attacker has knowledge about individual micro-models, a poisoning

attack similar the one considered in our work can be constructed. If suffices for an attacker to craft

points that are accepted by all micro-models and inject them into the training data to poison a new

micro-model.

Some of the previously developed methods can also be seen to contain parts of the general anal-

ysis methodology proposed in Section 1.1. Dalvi et al. (2004) analyzed the robustness of Bayesian

classification against adversarial impact. The choice of their classifier is motivated by widespread

application of the naive Bayes classification in the domain of spam detection where real examples of

adversarial impact have long been observed. The adversarial classification is considered as a game

between an attacker and a learner. Due to the complexity of analysis, only one move by each party

can be analyzed. Similar to our approach, Dalvi et al. (2004) formalize the problem by defining cost

functions of an attacker and a learner (Step 1) and determine an optimal adversarial strategy (Step

3). Although the attacker’s constraints are not explicitly treated theoretically, several scenarios us-

ing specific constraints have been tested experimentally. No analysis of the attacker’s gain is carried

out; instead, the learner’s direct response to adversarial impact is considered.

A somewhat related approach has been developed for handling worst-case random noise; for

example, random feature deletion (Globerson and Roweis, 2006; Dekel and Shamir, 2008). Similar

to Dalvi et al. (2004), both of these methods construct a classifier that automatically reacts to the

worst-case noise or, equivalently, the optimal adversarial strategy. In both methods, the learning

problem is formulated as large-margin classification using a specially constructed risk function. An

important role in this approach is played by the consideration of constraints (Step 2); for example,

in the form of the maximal number of corruptible features. Although these approaches do not

quantitatively analyze the attacker’s gain, Dekel and Shamir (2008) contains an interesting learning-

theoretic argument that relates classification accuracy and sparseness with the robustness against

adversarial noise.

To summarize, we believe that despite recent evidence of possible attacks against machine learn-

ing and the currently lacking theoretical foundations for learning under adversarial impact, machine

learning algorithms can be protected against such an impact. The key to such a protection lies in

quantitative analysis of the security of machine learning. We have shown that such an analysis

can be rigorously carried out for specific algorithms and attacks. Further work should extend this

analysis to more complex learning algorithms and a wider attack spectrum.
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Appendix A. Auxiliary Material and Proofs

In this appendix we present some helpful Lemmas as well as detailed proofs of the theorems.

A.1 Auxiliary Material for Section 4

This appendix start with a characterization of the greedy-optimal optimization problem in terms of

dual variables.

A.1.1 PROOF OF THEOREM 16

Proof The Lagrangian of optimization problem (11) is given by:

L(x,α,β) = −(x−xi) ·a+
n

∑
j=1

α j (2(x j −xi) ·x−x j ·x j +xi ·xi)

+β

(

x ·x−
2

n

n

∑
j=1

x ·x j +
1

n2

n

∑
j,k=1

x j ·xk − r2

)

.

Since the feasible set of problem (11) is bounded by the spherical constraint and is not empty (xi

trivially is contained in the feasible set), there exists at least one optimal solution x∗i to the primal.

For optimal x∗i , α∗ and β∗, we have the following first order optimality conditions

δL

δx
= 0 : −a−

1

n

n

∑
j=1

x j +2
n

∑
j=1

α∗
j(x j −xi)+β∗

(

2x∗i −
2

n

n

∑
j=1

x j

)

= 0 . (20)

If β∗ 3= 0, the latter equation can be resolved for x∗i leading to:

x∗i =
1

2β∗ a+
n

∑
j=1

(

1

2β∗n
−

α∗
j

β∗ +
1

n

)

x j +
1

β∗

n

∑
j=1

α∗
jxi .

From the latter equation, we see that x is contained in S := span(x1, ...,xn and a).
Now assume β∗ = 0 and x∗i /∈ S. At first, since β∗ = 0, we see from Equation (20) that a is con-

tained in the subspace S := span(x1, ...,xn). Hence the objective, (x− xi) · a, only depends on the
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optimal x via inner products with the data xi. The same naturally holds for the constraints. Hence,

both the objective value and the constraints are invariant under the projection of x∗i onto S, denoted

by P. Hence P(x∗i ) also is an optimal point. Moreover, by construction, P(x∗i )∈ S = span(x∗1, ...,x
∗
n).

A.1.2 THEORETICAL ANALYSIS FOR THE OPTIMAL GREEDY ATTACK

The dependence of an attack’s effectiveness on data dimensionality results from the geometry of

Voronoi cells. Intuitively, the displacement at a single iteration depends on the size of the largest

Voronoi cell in a current working set. Although it is hard to derive a precise estimate on the latter,

the following “average-case” argument sheds some light on the attack’s behavior, especially since

it is the average-case geometry of the working set that determines the overall attack progress.

Consider a simplified case where each of the Voronoi cells Cj constitutes a ball of radius r

centered at a data point x j, j = 1, . . . ,n. Clearly, the greedy attack will result in a progress of r/n

(we will move one of the points by r but the center’s displacement will be discounted by 1/n). We

will now use the relationship between the volumes of balls in Rd to relate r, R and d.

The volume of each Voronoi cell Cj is given by

Vol(Cj) =
π

d
2 rd

Γ
(

d
2 +1

) .

Likewise, the volume of the hypersphere S of radius R is

Vol(S) =
π

d
2 Rd

Γ
(

d
2 +1

) .

Assuming that the Voronoi cells are “tightly packed” in S, we obtain

Vol(S)≈ nVol(Cj) .

Hence we conclude that

r ≈ d

√

1

n
R .

One can see that the attacker’s gain approximately represented by the cell radius r is a constant

fraction of the threshold R, which explains the linear progress of the poisoning attack. The slope of

this linear dependence is controlled by two opposing factors: the size of the training data decreases

the attack speed whereas the intrinsic dimensionality of the feature space increases it. Both factors

depend on fixed parameters of the learning problem and cannot be controlled by the algorithm. In

the limit, when d approaches n (the effective dimension is limited by the training data set according

to Theorem 16) the attack progress rate is approximately described by the function n

√

1
n which

approaches 1 with increasing n.

A.2 Proofs of Section 5

This following proposition is a well-known fact from algebra.
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Proposition 17 (Geometric series) Let (s)i∈N0 be a sequence of real numbers satisfying s0 = 0

and si+1 = qsi + p (or si+1 ≤ qsi + p or si+1 ≥ qsi + p ) for some p,q > 0 . Then

si = p
1−qi

1−q
,
(

and si ≤ p
1−qi

1−q
or si ≥ p

1−qi

1−q

)

, (21)

respectively.

Proof We prove part (a) of the theorem by induction over i ∈ N0, the case of i = 0 being obvious.

In the inductive step we show that if Equation (21) holds for an arbitrary fixed i it also holds for

i+1:

si+1 = qsi + p = q

(

p
1−qi

1−q

)

+ p = p

(

q
1−qi

1−q
+1

)

= p

(

q−qi+1 +1−q

1−q

)

= p

(

1−qi+1

1−q

)

.

The proof of part (b) is analogous.

Proof of Theorem 8(b) Multiplying both sides of Equation (17) with a and substituting Di = ci ·a
results in

Di+1 =

(

1−
1−Bi

n

)

Di +
Bi

n
+

(1−Bi)

n
xi ·a .

Inserting B2
i = Bi and Bi(1−Bi) = 0, which holds because Bi is Bernoulli, into the latter equation,

we have:

D2
i+1 =

(

1−2
1−Bi

n
+

1−Bi

n2

)

D2
i +

Bi

n2
+

(1−Bi)

n2
‖xi‖2 +2

Bi

n
Di +2

(

1−
1

n

)

(1−Bi)

n
Dixi ,

where xi := xi ·a. Taking the expectation on the latter equation, and noting that, by Axiom 6, xi and

Di are independent, we have:

E
(

D2
i+1

)

=

(

1−
1−ν

n

(

2−
1

n

))

E
(

D2
i

)

+2
ν

n
E(Di)+

ν

n2
+

1−ν

n2
E(‖xi ·a‖2)

(1)
≤

(

1−
1−ν

n

(

2−
1

n

))

E
(

D2
i

)

+2
ν

n
E(Di)+

1

n2
, (22)

where (1) holds because, by Axiom 6, we have ‖xi‖2 ≤ r and moreover ‖a‖ = r, r = 1. Inserting

the result of Theorem 8(a) in the latter equation results in the following recursive formula:

E
(

D2
i+1

)

≤
(

1−
1−ν

n

(

2−
1

n

))

E
(

D2
i

)

+2(1−ai)
ν

n

ν

1−ν
+

1

n2
.

By the formula of the geometric series, that is, by Proposition 17, we have:

E
(

D2
i

)

≤
(

2(1−ai)
ν

n

ν

1−ν
+

1

n2

)

1−bi

1−ν
n

(

2− 1
n

) ,
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where bi :=
(

1− 1−ν
n

(

2− 1
n

))i
. Furthermore, by some algebra

E
(

D2
i

)

≤
(1−ai)(1−bi)

1− 1
2n

ν2

(1−ν)2
+

1−bi

(2n−1)(1−ν)
. (23)

We will need the auxiliary formula

(1−ai)(1−bi)

1− 1
2n

− (1−ai)
2 ≤

1

2n−1
+ai −bi , (24)

which can be verified by some more algebra and employing bi < ai and that ai ranges in the real

interval [0,1]. We finally conclude

Var(Di) = E(D2
i )− (E(Di))

2

Th.12(a); Equation(23)

≤

(

(1−ai)(1−bi)

1− 1
2n

− (1−ai)
2

)

(

ν

1−ν

)2

+
1−bi

(2n−1)(1−ν)2

Equation(24)

≤ γi

(

ν

1−ν

)2

+δn

where we denote γi := ai−bi and δn := ν2+(1−bi)
(2n−1)(1−ν)2 , and use (1−ν)2 ≤ 1−ν ≤ 1 in the inequalities.

This completes the proof.

A.3 Proofs of Section 6

In this appendix we prove one of our main results.

Lemma 18 Let C be a online centroid learner with maximal false positive rate α satisfying the

optimal attack strategy. Denote xi := xi ·a. Then we have:

(a) 0 ≤ E
(

I{‖xi−ci‖>r}D
q
i

)

≤ αE(Dq
i ) , q = 1,2

(b) 0 ≤ E
(

I{‖xi−ci‖≤r}xi

)

≤ α

(c) E
(

I{‖xi−ci‖≤r}xiDi

)

≤ αE(Di) .

Proof

(a) Let q = 1 or q = 2. Since Di is independent of xi (hence constant under the operator Exi), we

have

Exi

(

I{‖xi−ci‖>r}D
q
i

)

= (Di)
qExi

(

I{‖xi−ci‖>r}
)

.

Hence by Axiom 10

Exi

(

I{‖xi−ci‖>r}D
q
i

)

= 0 ,

if Exi

(

I{‖xi−ci‖>r}
)

> α and 0 ≤ Exi

(

I{‖xi−ci‖>r}
)

≤ α otherwise. Moreover, E(Di)≥ 0 by the sym-

metry assumption in Axiom 10. Taking the full expectation E = EciExi yields the assertion (a).
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(b) We denote I≤ := I{‖xi−ci‖≤r} and I> := I{‖xi−ci‖>r}. Since

E(I≤xi)+E(I>xi) = E ((I≤+ I>)xi) = E(xi) = 0 ,

we conclude

E(I≤xi) =−E(I>xi) = E(I>(−xi))
(1)
≤ α ,

where (1) holds because ||xi||≤ 1 and by Axiom 10 we have E(I>)≤ α.

Furthermore E(I≤xi)≥ 0 is clear.

(c) The proof of (c) is analogous to that of (a) and (b).

Proof of Theorem 12

(a) By Axiom 10, we have

Di+1 ≤ max

(

0,Di +
1

n

(

Bi ( f (ci)− ci)+(1−Bi)I{‖xi−ci‖≤r} (xi − ci)
)

·a
)

. (25)

By Proposition 11 an greedy-optimal attack strategy can be defined by

f (x) = x+a .

Inserting the latter into Equation (25), using Di
Def.
= ci ·a, and taking the expectation, we have

E(Di+1)≤ E

[

I{
Ex(I{‖x−ci‖≤r})≤1−α

}

(

Di +
1

n

(

Bi +(1−Bi)I{‖xi−ci‖≤r} (xi −Di)
)

)]

, (26)

where xi = xi ·a. By the symmetry assumption in Axiom 10, the first term can be omitted, hence the

above equation can be rewritten as

E(Di+1) ≤
(

1−
1−ν

n

)

E(Di)+
ν

n

+
1−ν

n

(

E
(

I{‖xi−ci‖>r}Di

)

+E
(

I{‖xi−ci‖≤r}xi

))

.

Inserting the inequalities (a) and (b) of Lemma 18 into the above equation results in:

E(Di+1) ≤
(

1−
1−ν

n

)

E(Di)+
ν

n
+

1−ν

n
(αE(Di)+α)

=

(

1−
(1−ν)(1−α)

n

)

E(Di)+
ν+α(1−ν)

n
.

By the formula of the geometric series, that is, Proposition 17, we have

E(Di+1)≤ (1−ai)
ν+α(1−ν)

(1−ν)(1−α)
,

where ai =
(

1− (1−ν)(1−α)
n

)i
. Moreover we have

E(Di+1)≥ (1−bi)
ν

1−ν
, (27)
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where bi =
(

1− 1−ν
n

)i
, by analogous reasoning. We schematically show this by starting from Equa-

tion (26) and subsequently applying Jensen’s inequality and using the lower bounds of Lemma 18

and the formula for the geometric series. Since bi ≤ ai, we conclude that

E(Di+1)≥ (1−ai)
ν

1−ν
.

(b) Rearranging the terms in Equation (25), we have

Di+1 ≤ max

(

0,

(

1−
1−Bi

n

)

Di +
Bi

n
+

1−Bi

n
I{‖xi−ci‖≤r}xi

+
1−Bi

n
I{‖xi−ci‖>r}Di

)

.

Squaring the latter equation on both sides and using the fact that Bi, I{‖xi−ci‖≤r} and I{‖xi−ci‖>r} are

binary-valued yields

D2
i+1 ≤

(

1−
1−Bi

n

(

2−
1

n

))

D2
i +2

Bi

n
Di +

(

1−Bi

n

(

2−
1

n

))

I{‖xi−ci‖>r}Di

+2
1−Bi

n

(

1−
1

n

)

I{‖xi−ci‖≤r}xiDi +
1−Bi

n2
I{‖xi−ci‖≤r}xi

2 +
Bi

n2
.

Taking expectation of the above equation, by Lemma 18, we have

E(D2
i+1) ≤

(

1−
1−ν

n

(

2−
1

n
)(1−α)

))

E(D2
i )

+2

(

ν

n
+α

1−ν

n

(

1−
1

n

))

E(Di)+
ν+(1−ν)E(xi

2)

n2
.

We are now in an equivalent situation as in the proof of Theorem 7, right after Equation (22).

Similary, we insert the result of (a) into the above equation, obtaining

E(D2
i+1)≤

(

1−
1−ν

n

(

2−
1

n
)(1−α)

))

E(D2
i )

+2

(

ν

n
+α

1−ν

n

(

1−
1

n

))

(1−ai)
ν+α(1−ν)

(1−ν)(1−α)
+

ν+(1−ν)E(xi
2)

n2

≤
(

1−
1−ν

n

(

2−
1

n

)

(1−α)

)

E(D2
i )+2(1−ai)

(ν+α(1−ν))2

n(1−ν)(1−α)

+
ν+(1−ν)E(xi

2)

n2
.

By the formula of the geometric series we obtain

E(D2
i ) ≤

(

2(1−ai)
(ν+α(1−ν))2

n(1−ν)(1−α)
+

ν+(1−ν)E(xi
2)

n2

)

1−bi

1−ν
n (2− 1

n)(1−α)

≤
(1−ai)(1−bi)(ν+α(1−ν))2

(1− 1
2n)(1−ν)2(1−α)2

+
(1−bi)(ν+(1−ν)E(xi

2))

(2n−1)(1−ν)(1−α)
, (28)
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where bi =
(

1− 1−ν
n (2− 1

n)(1−α)
)i

. We finally conclude

Var(Di) = E(D2
i )− (E(Di))

2

(27),(28)

≤
(1−ai)(1−bi)(ν+α(1−ν))2

(1− 1
2n)(1−ν)2(1−α)2

+
(1−bi)(ν+(1−ν)E(xi

2))

(2n−1)(1−ν)(1−α)
− (1−ai)

2 ν2

(1−ν)2

(1)
≤ γi

ν2

(1−α)2(1−ν)2
+ρ(α)+δn ,

defining γi = ai −bi, ρ(α) = α (1−ai)(1−bi)(2ν(1−α)+α)
(1− 1

2n )(1−ν)2(1−α)2 , and δn =
(1−bi)(ν+(1−ν)E(xi

2))
(2n−1)(1−ν)(1−α) , where (1) can

be verified employing some algebra and using the auxiliary formula Equation (24), which holds for

all 0 < bi < ai < 1. This completes the proof of (b).

Statements (c) and (d) are easily derived from (a) and (b) by noting hat 0 ≤ ai < 1, ai → 1 for

i → ∞ and δ(n)→ 0 for n → ∞. This completes the proof of the theorem.
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Abstract

A fundamental problem in reinforcement learning is balancing exploration and exploitation. We
address this problem in the context of model-based reinforcement learning in large stochastic re-
lational domains by developing relational extensions of the concepts of the E3 and R-MAX algo-
rithms. Efficient exploration in exponentially large state spaces needs to exploit the generalization
of the learned model: what in a propositional setting would be considered a novel situation and
worth exploration may in the relational setting be a well-known context in which exploitation is
promising. To address this we introduce relational count functions which generalize the classical
notion of state and action visitation counts. We provide guarantees on the exploration efficiency of
our framework using count functions under the assumption that we had a relational KWIK learner
and a near-optimal planner. We propose a concrete exploration algorithm which integrates a practi-
cally efficient probabilistic rule learner and a relational planner (for which there are no guarantees,
however) and employs the contexts of learned relational rules as features to model the novelty of
states and actions. Our results in noisy 3D simulated robot manipulation problems and in domains
of the international planning competition demonstrate that our approach is more effective than ex-
isting propositional and factored exploration techniques.

Keywords: reinforcement learning, statistical relational learning, exploration, relational transition
models, robotics

1. Introduction

Acting optimally under uncertainty is a central problem of artificial intelligence. In reinforcement

learning (RL), an agent’s learning task is to find a policy for action selection that maximizes its re-

ward over the long run. Model-based approaches learn models of the underlying transition process,

usually formalized as Markov decision processes, from the agent’s interactions with the environ-

ment. These models are then analyzed to compute optimal plans.

Generally, an agent has limited data from its interaction with an environment and its model only

approximates the true dynamics therein. One of the key challenges in reinforcement learning is thus

the exploration-exploitation tradeoff, which strives to balance two competing types of behavior of an

c©2012 Tobias Lang, Marc Toussaint and Kristian Kersting.



LANG, TOUSSAINT AND KERSTING

autonomous agent in an unknown environment: the agent can either make use of its current model

of the environment to maximize its cumulative reward (that is, to exploit), or sacrifice short-term

rewards to gather information about the environment (that is, to explore) in the hope of increasing

future long-term return by improving its model. This exploration-exploitation tradeoff has received

considerable attention in unstructured, non-relational domains. There exist algorithms which define

unique optimal solutions (such as Bayesian reinforcement learning, Poupart et al., 2006) or provably

polynomial time solutions (E3, Kearns and Singh, 2002, and R-MAX, Brafman and Tennenholtz,

2002; Strehl et al., 2009) to the exploration-exploitation trade-off problem. However, while they

give a clear idea of how in principle exploration and exploitation can be organized, the basic algo-

rithms in their original formulation only work on discrete enumerated state spaces. Therefore, we

believe that the core scientific problem is not to find new exploration-exploitation theories, but how

these principles can be realized on non-trivial representations (representations other than enumer-

ated state spaces), and how the generalization and abstraction implicit in non-trivial representations

interferes with these exploration-exploitation principles.

The environment of the agent typically contains varying numbers of objects with relations

among them. Learning and acting in such large relational domains is a second key challenge in re-

inforcement learning. Relational approaches (Getoor and Taskar, 2007) can generalize information

about one object to reach conclusions about other objects and thereby exploit the relational structure

of natural environments. Such domains are hard—or even impossible—to represent meaningfully

using an enumerated or a propositional state space. As an example, consider a hypothetical house-

hold robot which, after taken out of the shipping box and turned on, explores autonomously the

environment in order to learn how to perform its cleaning chores. Without a compact knowledge

representation that supports abstraction and generalization of previous experiences to the current

state and potential future states, it seems to be hopeless for such a “robot-out-of-the-box” to ex-

plore one’s home in reasonable time. For instance, after having opened one or two water-taps in

bathrooms, the priority for exploring further water-taps in bathrooms, and also in other rooms such

as the kitchen, should be reduced. Generalization over object types is crucial for any autonomous

agent in realistic environments, but cannot be expressed in a propositional setting where every new

object implies a new and therefore non-modeled situation.

The problem of exploration in stochastic relational worlds has so far received little attention.

State-of-the-art relational reinforcement learning approaches (Džeroski et al., 2001; Driessens et al.,

2006) are mostly model-free and use ε-greedy exploration which does not make use of relational

knowledge. Exploiting the relational knowledge for exploration is the problem we address in the

current paper. Applying existing, propositional exploration techniques is likely to fail: what in a

propositional setting would be considered a novel situation and worth exploration may in the rela-

tional setting be an instance of a well-known abstract context in which exploitation is promising. In

other terms, the key idea underlying our approach is: The inherent generalization of learned knowl-

edge in the relational representation has profound implications also on the exploration strategy.

1.1 Our Approach

We first outline our approach so that we can better discuss related work afterwards. We present

a general framework for model-based RL in relational domains. As is typical in model-based RL

approaches like E3 and R-MAX, our system will be composed of a model learner, a planner and

a relational exploration-exploitation strategy that integrates both. We introduce a concrete instan-
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tiation in this setting where the learner and planner components are based on previous work: The

learner is a relational learning algorithm of noisy indeterministic deictic (NID) rules (Pasula et al.,

2007) which extracts a compact stochastic relational rule-based model from experience. As a plan-

ner we employ PRADA (Lang and Toussaint, 2010) which translates the learned relational model to

a grounded dynamic Bayesian network (DBN) and uses approximate inference (a factored frontier)

to estimate the expected return of sampled action sequences. Given a learner and a planner, the re-

lational exploration-exploitation strategy needs to realize an estimation of novelty in the relational

setting. The classical way to estimate state novelty is based on state (and action) visitation counts

which, in an enumerated representation, directly reflect model certainty. We generalize the notion of

state counts to relational count functions such that visitation of a single state increases this measure

of knownness also for “related” states. What is considered related depends on the choice of features

used to model these count functions: similar to density estimation with mixtures we assume count

functions to be a mixture of basic (relational) features. The inherent generalization in these count

functions thus depends on the choice of features. We propose several possible choices of such fea-

tures in a relational setting, including one that exploits the specific relational context features that

are implicitly learned by the relational rule learner.

Ideally, we would like the learner to fulfill guarantees in the KWIK (knows what it knows)

framework (Li et al., 2011) and the planner to guarantee near-optimality (in our case, exact in-

ference in the corresponding DBN). Clearly, our specific choices for the learner and planner do

not fulfill these guarantees but target at being efficient in challenging applications as we demon-

strate in the experimental section. Nevertheless, we will establish theoretical guarantees of our

relational exploration-exploitation strategy under the assumption that we had a KWIK learner and

near-optimal planning. This will allow us to draw clear connections (i) to the basic R-MAX and

E3 framework for exploration in reinforcement learning and (ii) to the pioneering work of Walsh

(2010) on KWIK learning in a relational reinforcement learning setting.

Walsh’s work proved the existence of a KWIK learning algorithm in a relational RL setting

by nesting several KWIK algorithms for learning different parts of relational transition models.

As Walsh points out himself, however, such an integrated KWIK learner, allowing provably effi-

cient exploration, has never been realized or tested and would be “clearly approaching the edge of

tractability” (Walsh, 2010). Further, his conceptual algorithm makes limiting assumptions on the

model representation which are violated by the more general relational rule framework of Pasula

et al. (2007). This is the reason why we choose a practically efficient but heuristic learner which

has not been proven to be a KWIK learner. Similarly, it is clear that the computational complexity

of optimal planning or exact inference in our corresponding DBN is exponential in the number of

objects. Therefore, we choose a practically efficient approximate inference technique for planning

in relational domains, as given by PRADA.

1.2 Related Work

The first studies on effective exploration in multi-state control problems developed a number of

concepts for describing explorative behavior, including curiosity (Schmidhuber, 1991), seeking to

minimize the variance of action value estimates (Kaelbling et al., 1996) and counters on the oc-

currences of states and actions (Thrun, 1992). Thereafter, efficient exploration solutions have been

developed for propositional and continuous domains where the environment is represented as an

enumerated or vector space. Bayesian reinforcement learning (Poupart et al., 2006) provides an
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optimal solution in a Bayesian framework by taking all potential models weighted by their poste-

riors into account at once. This solution is intractable in all but small problem settings, although

there have been advances recently such as the near-Bayesian approach by Kolter and Ng (2009).

An alternative approach to optimal exploration are algorithms studied in the probabilistically ap-

proximately correct (PAC) framework applied to Markov decision processes (MDPs) (so called

PAC-MDP approaches). The seminal algorithms E3 (Kearns and Singh, 2002) and R-MAX (Braf-

man and Tennenholtz, 2002; Strehl et al., 2009) execute near-optimal actions in all but a polynomial

number of steps (or, in alternative problem formulations, only require a polynomial number of steps

before they return a near-optimal policy for the current state). Despite the theoretical guarantees

of these algorithms, in practice the required exploration steps are often unrealistically large. More

importantly, these approaches are designed for enumerated representations of finite domains and

thus difficult to apply in domains of everyday life involving many objects.

E3 has been extended to parameter learning in factored propositional MDPs with a known struc-

ture (Kearns and Koller, 1999) and to Metric E3 (Kakade et al., 2003) for state spaces where a metric

allows to construct accurate local models. Both approaches assume the existence of efficient near-

optimal planning algorithms. However, general algorithms with the required guarantees are not

known. Supposedly, this is among the reasons why both approaches have not been empirically

demonstrated: “it is thus unlikely that the Factored E3 [for parameter learning] can ever be feasibly

implemented” (Guestrin et al., 2002); similar statements can be made for Metric E3. Therefore,

Guestrin et al. (2002) propose an exploration strategy for factored propositional MDPs which is

tailored towards a specific planning algorithm based on linear programming. The idea of character-

izing relevant subspaces for exploration has been pursued in continuous domains using dimension-

ality reduction methods (Nouri and Littman, 2010). R-MAX has been extended to continuous MDPs

with linearly parameterized dynamics (Strehl and Littman, 2007). All approaches discussed so far

as well as other function approximation methods are propositional, that is, they do not generalize

over object types. This can only be achieved by incorporating relational features (which subsume

attributes of individual objects), which has not been pursued in the mentioned methods.

In recent years, there has been a growing interest in using expressive representations such as re-

lational languages for reinforcement learning (RL) (Džeroski et al., 2001). While typical traditional

RL approaches require explicit state and action enumeration, symbolic approaches seek to avoid

explicit state and action enumeration through a symbolic representation of states and actions. Most

work in this context has focused on model-free approaches (estimating a value function) and has

not developed relational exploration strategies. Essentially, a number of relational regression algo-

rithms have been developed for use in these relational RL systems such as relational regression trees

(Džeroski et al., 2001) and Gaussian processes with graph kernels (Driessens et al., 2006). Kersting

and Driessens (2008) introduce relational policy gradients. All of these approaches use some form

of ε-greedy strategy to handle exploration; no special attention has been paid to the exploration-

exploitation problem as done in the current paper. Driessens and Džeroski (2004) propose the use

of “reasonable policies” in model-free relational RL to provide guidance, that is, to increase the

chance to discover sparse rewards in large relational state spaces, also known as reward shaping.

Sanner (2005, 2006) combines feature discovery with model-free relational reinforcement learn-

ing but does not discuss count function estimation for known states in the exploration-exploitation

problem in general terms. Ramon et al. (2007) present an incremental relational regression tree al-

gorithm that is capable of dealing with concept drift and showed that it enables a relational Q-learner

to transfer knowledge from one task to another. They do not learn a model of the domain and again,
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relational exploration strategies were not developed. Generally, model-free RL approaches are not

suited to realize the type of planned exploration as exemplified in R-MAX, E3 or Bayesian RL.

Croonenborghs et al. (2007) learn a relational world model online and additionally use lookahead

trees to give the agent more informed Q-values by looking some steps into the future when select-

ing an action. Exploration is based on sampling random actions instead of informed exploration.

Diuk (Diuk, 2010; Diuk et al., 2008) presents an algorithm for efficient exploration under certain

assumptions in an alternative object-oriented representation of MDPs focused on object attributes.

This representation does not account for noisy dynamics in realistic domains where actions may

have a large number of low-probability effects. Efficient planning algorithms for this representation

still need to be developed.

The pioneering work of Walsh (Walsh, 2010; Walsh et al., 2009; Walsh and Littman, 2008)

provides the first principled investigation into the exploration-exploitation tradeoff in relational do-

mains. His work lifts ideas from R-MAX and efficient RL algorithms for feature selection (such as

the algorithms by Diuk et al., 2009) to relational domains. Walsh establishes sample complexity

bounds for specific relational MDP learning problems which scale polynomially in the relational

action operator descriptions and the number of objects—in contrast to the original R-MAX and E3

which scale exponentially in the number of objects in relational domains due to the corresponding

exponential state and action spaces. Walsh provides an evaluation for some of his algorithms in

settings with 2-3 objects; however, his approaches for learning the effects of actions and, more im-

portantly, for learning full action operators have not been demonstrated in practice. Despite their

theoretical significance, it is uncertain whether an implementation of these algorithms is feasible;

this might show an “inherent limitation of the KWIK-learning paradigm [Walsh’s learning frame-

work, discussed below] and likely of online learning itself” (Walsh, 2010). Furthermore, to derive

theoretical guarantees Walsh assumes a limited language to represent the learned model. Our ap-

proach will use the more expressive language of relational NID rules (Pasula et al., 2007), which

are necessary to capture the dynamics in realistic domains, for which Walsh’s algorithms would not

be applicable. We will detail the differences in representations in Section 3.4.

There is also an increasing number of (approximate) dynamic programming approaches for

solving relational MDPs, see for example Boutilier et al. (2001), Kersting et al. (2004), Hölldobler

et al. (2006), Wang et al. (2008) and Sanner and Boutilier (2009). In contrast to the current paper,

however, their work assumes a given model of the world. Recently, Lang and Toussaint (2009)

and Joshi et al. (2010) have shown that successful planning typically involves only a small subset

of relevant objects or states. This can speed up symbolic dynamic programming significantly. A

principled approach to exploration, however, has not been developed. Guestrin et al. (2003) calcu-

late approximate value functions for relational MDPs from sampled (grounded) environments and

provide guarantees for accurate planning in terms of the number of samples; they do not consider

an agent which explores its environment step by step to learn a transition model.

The question of optimal exploration in model-based RL where we learn a transition model has

similarities to the problem of active learning (Cohn et al., 1996). Epshteyn et al. (2008) investigate

active RL in enumerated domains to focus the exploration on the regions of the state space to which

the optimal policy is most sensitive. In statistical relational learning (Getoor and Taskar, 2007; de

Raedt et al., 2008), which combines expressive knowledge representation formalisms with statistical

approaches to perform probabilistic inference and learning in relational domains, active learning has

only recently started to attract attention (Bilgic et al., 2010; Xu et al., 2010).
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1.3 Contributions

The previous section outlined previous work on (mostly model-free) relational RL, which neglected

explicit exploration, and the fundamental work by Walsh et al., which proved existence of KWIK

learning in a model-based relational RL setting but falls short of practical applicability. The goal

of this work is to propose a practically feasible online relational RL system that integrates efficient

exploration in relational domains with fully unknown transition dynamics and learning complete

action operators (including contexts, effects, and effect distributions).

Our approach extends Kearns and Singh’s theoretically justified exploration technique E3 and its

successor R-MAX and outperforms existing non-relational techniques in a large number of relevant

and challenging problems. More precisely, our contributions are the following:

• We introduce the problem of learning relational count functions which generalize the classical

notion of state (action) visitation counts.

• We develop a general relational model-based reinforcement learning framework called REX

(short for relational explorer), which lifts the concepts of E3 and R-MAX to relational repre-

sentations and uses learned relational count functions to estimate empirical model confidence

in the relational RL setting.

• We provide guarantees on the exploration efficiency of the general REX framework under the

assumption that we had a relational KWIK learner and were capable of near-optimal planning

in our domain.

• As a concrete instance of our REX framework, we integrate the state-of-the-art relational

planner PRADA (Lang and Toussaint, 2010) and a learner for probabilistic relational rules

(Pasula et al., 2007) into our framework. The resulting system is the first practically feasible

efficient solution for relational domains with fully unknown transition dynamics.

Our extensive experimental evaluation in a 3D simulated complex robot manipulation environment

with an articulated manipulator and realistic physics and in domains of the international planning

competition (IPPC) shows that our methods can solve tasks in complex worlds where existing

propositional methods fail. With these evaluations we also show that relational representations

are a promising technique to formalize the idea of curriculum learning (Bengio et al., 2009). Our

work has interesting parallels in cognitive science: Windridge and Kittler (2010) employ ideas of

relational exploration for cognitive bootstrapping, that is, to progressively learn more abstract rep-

resentations of an agent’s environment on the basis of its action capabilities.

1.4 Outline

In the following section, we introduce previous work and background on which our methods build.

In Section 3, we develop our general REX framework, including our model of relational count

functions, and derive theoretical guarantees of this framework under the assumption that we had an

ideal KWIK learner and near-exact inference. We then assume relational rule learning and PRADA

as concrete learner and planner components for REX. In Section 4, we present the experimental

evaluation of this overall system. Finally, we conclude in Section 5.
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(a)

State Enumerated Factored Relational

1 s1
on o1 o2, on o2 t,
on o3 t, inhand o4

on(o1,o2), on(o2, t), on(o3, t), inhand(o4),
ball(o1), cube(o2), cube(o3), cube(o4), table(t)

2 s2
on o3 t, on o4 t,
on o5 o4, inhand o2

on(o3, t), on(o4, t), on(o5,o4), inhand(o2), cube(o2),
cube(o3), cube(o4), ball(o5), table(t)

3 s3
on o1 t, on o2 t,
on o3 o2, on o6 o3

on(o1, t), on(o2, t), on(o3,o2), on(o6,o3),
cube(o2), cube(o3), cube(o6), ball(o1), table(t)

(b)

Table 1: Illustration of three world representation types in a robot manipulation domain

2. Background on MDPs, Representations, Exploration and Transition Models

In this section, we set up the theoretical background for the relational exploration framework and

algorithms presented later. First, we review briefly Markov decision processes (MDPs). Then,

we describe different methods to represent states and actions in MDPs. Thereafter, we discuss

exploration in MDPs including the algorithms E3 and R-MAX. Finally, we discuss in detail compact

relational transition models.

2.1 Markov Decision Processes

A Markov decision process (MDP) is a discrete-time stochastic control process used to model the

interaction of an agent with its environment. At each time-step, the process is in one of a fixed set of

discrete states S and the agent can choose an action from a set A. The transition model T specifies

the conditional transition distribution P(s′ |s,a) over successor states s′ when executing an action

a in a given state s. The agent receives rewards in states according to a function R : S→ R≥0 (we

assume non-negative rewards in this paper without loss of generality). The goal of planning in an

MDP is to find a policy π : S→ A, specifying for each state the action to take, which maximizes

the expected future rewards. For a discount factor 0 < γ < 1, the value of a policy π for a state

s is defined as the expected sum of discounted rewards V π(s) = E[∑t γtR(st) |s0 = s,π]. In our

context, we face the problem of reinforcement learning (RL): we do not know the transition model

T . Without loss of generality, we assume in this paper that the reward function R is given. We

pursue a model-based approach and estimate T from our experiences. Based on our estimate T̂ we

compute (approximately) optimal policies.

2.2 State and Action Representations

The choice of representation for states S and actions A has important consequences for reinforce-

ment learning techniques on the conceptual and the algorithmic level. Three different representation
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types dominate AI research on discrete representations: (i) unstructured enumerated representations,

(ii) factored propositional representations, and (iii) relational representations. Table 1 presents three

states in a robot manipulation domain together with their translations to the respective representa-

tions.

The simplest representation of states and actions is the enumerated (or flat) representation.

States and actions are represented by single distinct symbols. Hence, the state and action spaces

S and A are simply enumerated lists. In Table 1, the three states are represented by s1, s2 and s3.

This representation cannot capture the structure of states and does not provide a concept of objects.

Therefore, it is impossible to express commonalities among states and actions. In the example, all

three states appear equally different in this representation.

A factored propositional representation represents a state as a list of attributes. These attributes

capture the state structure and hence commonalities among states. MDPs based on factored repre-

sentations, called factored MDPs, have been investigated extensively in RL and planning research.

The disadvantage of factored representations is their lack of a notion of objects. This makes it im-

possible to express commonalities among attributes. For instance, in Table 1 the attributes on o1 o2

and on o5 o4 are treated as completely different and therefore State 1 is perceived as equally differ-

ent from State 2 as from State 3. Similar arguments hold for actions which are also represented by

individual symbols.

Relational representations account for state structure and objects explicitly. The state space S

is described by means of a relational vocabulary consisting of predicates P and functions F , which

yield the set of ground atoms with arguments taken from the set of domain objects O. A state is

defined by a list of true ground literals. The action space A is defined by atoms A with arguments

from O. In MDPs based on relational representations, called relational MDPs, the commonalities

of state structures, actions and objects can be expressed. They enable compact representations since

atoms containing logical variables allow for abstraction from concrete objects and situations. We

will speak of grounding an abstract formula ψ if we apply a substitution σ that maps all of the

variables appearing in ψ to objects in O. In Table 1, abstract atoms capture the greater similarity of

State 1 and State 2 in contrast to the one of State 1 and State 3: we can generalize State 1 and State

2 to the (semi-) abstract state on(A,B),on(B, table),on(o3, table), inhand(C), which is impossible

for State 3.

The choice of representation determines the expressivity of models and functions in reinforce-

ment learning. In particular, it influences the compactness and generalization of models and the

efficiency of learning and exploration as we discuss next.

2.3 Exploration

A central challenge in reinforcement learning is the exploration-exploitation tradeoff. We need to

ensure that we learn enough about the environment to accurately understand the domain and to

be able to plan for high-value states (explore). At the same time, we have to ensure not to spend

too much time in low-value parts of the state space (exploit). The discount factor γ of the MDP

influences this tradeoff: if states are too far from the agent, the agent does not need to explore them

as their potential rewards are strongly discounted; large values for γ necessitate more exploration.

The exploration efficiency of a RL algorithm can be measured in terms of its sample com-

plexity: this is the number of time-steps it acts non-optimally, that is, without achieving near-

optimal rewards. More formally, let Rmax > 0 denote the maximal reward and m the number of
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unknown parameters of the MDP. m captures the complexity of the learning problem and cor-

responds to the number of parameters of the transition model T in our context. Let Vt(st) =
E[∑∞

k=0 γkrt+k |s0,a0,r0 . . . ,st ] be the value function of the algorithm’s policy (which is non-stationary

and depends on its history), and V ∗ of the optimal policy. We define the sample complexity along

the lines of Kakade (2003):

Definition 1 Let ε > 0 be a prescribed accuracy and δ > 0 be an allowed probability of failure. The

expression η(ε,δ,m,γ,Rmax) is a sample complexity bound for the algorithm if independently of the

choice of s0, with probability at least 1−δ, the number of timesteps such that Vt(st)<V ∗(st)− ε is

at most η(ε,δ,m,γ,Rmax).

An algorithm with a sample complexity polynomial in 1/ε, log(1/δ), m, 1/(1−γ) and Rmax is called

probably approximately correct in MDPs, PAC-MDP (Strehl et al., 2009).

The seminal approach R-MAX (Brafman and Tennenholtz, 2002) provides a PAC-MDP solution

to the exploration-exploitation problem in unstructured enumerated state spaces: its sample com-

plexity is polynomial in the number of states and actions (Strehl et al., 2009). R-MAX generalizes

the fundamental approach E3 (Explicit Explore or Exploit) (Kearns and Singh, 2002) for which a

similar result has been established in a slightly different formulation: E3 finds a near-optimal policy

after a number of steps which is polynomial in the number of states and actions. Both E3 and R-

MAX focus on the concept of known states where all actions have been observed sufficiently often,

defined in terms of a threshold ζ. For this purpose, they maintain state-action counts κ(s,a) for all

state-action pairs. E3 (Algorithm 1) distinguishes explicitly between exploitation and exploration

phases. If E3 enters an unknown state, it takes the action it has tried the fewest times there (direct ex-

ploration). If it enters a known state, it tries to calculate a high-value policy within a model Mexploit

including all known states with their sufficiently accurate model estimates and a special self-looping

state s̃ with zero reward which absorbs unknown state-action pairs (assuming non-negative rewards

in the MDP). If it finds a near-optimal policy in Mexploit this policy is executed (exploitation). Oth-

erwise, E3 plans in a different model Mexplore which is equal to Mexploit except that all known states

achieve zero reward and s̃ achieves maximal reward. This “optimism in the face of uncertainty”

ensures that the agent explores unknown states efficiently (planned exploration). The value of the

known-state threshold ζ depends on several factors: the discount factor γ, the maximum reward

Rmax and the complexity m of the MDP defined by the number of states and actions as well as the

desired accuracy ε and confidence δ for the RL algorithm. The original formulation of E3 assumes

knowledge of the optimal value function V ∗ to decide for exploitation. Kearns and Singh discuss,

however, how this decision can be made without that knowledge. In contrast to E3, R-MAX decides

implicitly for exploration or exploitation and maintains only one model MR-MAX: it uses its model

estimates for the known states, while unknown state-action transitions lead to the absorbing state s̃

with maximum reward Rmax.

The theoretical guarantees of E3 and R-MAX are strong. In practice, however, the number of

exploratory actions becomes huge so that in case of the large state spaces of relational worlds, it

is unrealistic to meet the theoretical thresholds of state visits. To address this drawback, variants

of E3 for factored but propositional MDP representations have been explored (Kearns and Koller,

1999; Guestrin et al., 2002). Our evaluations will include variants of factored exploration strategies

where the factorization is based on grounded relational formulas. However, factored MDPs still do

not enable generalization over objects. In this paper, we are investigating exploration strategies for

relational representations and lift E3 and R-MAX to relational domains. This may strongly improve
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Algorithm 1 Sketch of E3

Input: State s

Output: Action a

1: if ∀a : κ(s,a)≥ ζ then ! State is known
2: Plan in Mexploit with zero-reward for s̃

3: if resulting plan has value above some threshold then

4: return first action of plan ! Exploitation
5: else
6: Plan in Mexplore with maximum reward for s̃ and zero-reward for known states
7: return first action of plan ! Planned exploration
8: end if
9: else ! State is unknown

10: return action a = argmina κ(s,a) ! Direct exploration
11: end if

the exploration efficiency and the performance of a reinforcement learning agent. The key idea is

to generalize the state-action counts κ(s,a) of the original E3 algorithm over states, actions and

objects.

Sample complexity guarantees for more general MDPs can be developed within the KWIK

(knows what it knows) framework (Li et al., 2011). In a model-based RL context, a KWIK learning

algorithm can be used to estimate the unknown parts of the MDP. This learner accounts for its

uncertainty explicitly: instead of being forced to make a prediction (for instance, of the probability

of a successor state for a given state-action pair), it can instead signal its uncertainty about the

prediction and return a unique symbol ⊥. In this case, the (potentially noisy) outcome is provided

to the learner which it can use for further learning to increase its certainty. For required model

accuracy ε and confidence δ, a model class is called KWIK-learnable if there is a learner satisfying

the following conditions: (1) if the learner does not predict⊥, its prediction is ε-accurate, and (2) the

number of⊥-predictions is bounded by a polynomial function of the problem description (here, this

is m in addition to ε and δ). The KWIK-R-MAX algorithm (Li, 2009) uses a KWIK learner L to learn

the transition model T . The predictions of L define the known states in the sense of E3 and R-MAX:

a state is known if for all actions L makes ε-accurate predictions (with some failure probability) and

unknown otherwise (where L predicts ⊥). Where the learner is uncertain and predicts ⊥, KWIK-

R-MAX assumes a transition to s̃ with reward Rmax. Li (2009) shows that if T can be efficiently

KWIK-learned by L , then KWIK-R-MAX using L is PAC-MDP. The overall accuracy ε for the

sample complexity determines the required individual accuracies εT for the KWIK model learner

and εP for the planner. Hence, one can derive an efficient RL exploration algorithm by developing

an efficient KWIK learner L for the associated model learning problem.

2.4 Learning Generalizing Transition Models

The central learning task in model-based reinforcement learning is to estimate a transition model

T̂ from a set of experiences E = {(st ,at ,st+1)}
T−1
t=0 which can be used for decision-making and

planning. (We assume the reward function is provided to the agent.) An example of E is given in

Table 2. The learned model T̂ defines a conditional distribution P(s′ |s,a). Generally, our view is

that T̂ does not have to be a precise map of the truth—the point of a model is to abstract and partition

the space in such a way that this model is a good basis for accurate and efficient decision making.
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E = {
grab(d): cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t),on(c,a), on(d,b) . . .

→ cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t),on(c,a), inhand(d) . . .

puton(t): cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t),on(c,a), inhand(d) . . .
→ cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t),on(c,a),on(d, t) . . .

grab(c): cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t), on(c,a), on(d, t) . . .
→ cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t), on(d, t), inhand(c) . . .

...
...

}

Table 2: The reinforcement learning agent collects a series E of relational state transitions consist-

ing of an action (on the left), a predecessor state (first line) and a successor state (second

line after the arrow). The changing state features are underlined. The agent uses such

experiences to learn a transition model resulting in a compression of the state transitions.

This can be achieved by compressing the experiences E in a compact model T̂ . Before describing

a specific learning algorithm, we discuss conceptual points of learning generalizing models from

experience. Compression of the experiences can exploit three opportunities:

• The frame assumption states that all state features which are not explicitly changed by an

action persist over time. This simplifies the learning problem by deliberately ignoring large

parts of the world.

• Abstraction allows to exploit the set of experiences efficiently by means of generalization. It

can be achieved with relational representations.

• Assuming uncertainty in the observations is essential to fit a generalizing and regularized

function. It allows to tradeoff the exact modeling of every observation (model likelihood)

with generalization capabilities and to find low-complexity explanations of our experience:

singleton events can be “explained away” as noise. In our point of view, the assumption of

uncertainty is crucial to get relational representations working; it “unleashes” the model and

opens the door for simplification, abstraction and compactification. Note that even in deter-

ministic domains, it may be advantageous to learn a probabilistic model because it can be

more abstract, more compact and neglect irrelevant details. In this sense, modeling uncer-

tainty can also be understood as regularization.

The generalization capability of T̂ and in turn the efficiency to learn it depend on the chosen

representation. In an enumerated representation, we need to collect experiences for each relevant

state-action pair (s,a) separately. In a factored propositional representation, one can—to some

degree—generalize over states and actions by means of the structure imposed by the state attributes,

but not over objects. For instance in Table 2, in a factored representation we need to learn the effects

for grab(d) and grab(c) independently. In contrast, a relational representation enables compact

transition models P(s′ |s,a) by using abstract formulas to generalize from concrete situations and

object identities. From a statistical learning point of view, the purpose of such relational logic
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grab(X) : on(X ,Y ), ball(X), cube(Y ), table(Z)

→







0.7 : inhand(X), ¬on(X ,Y )
0.2 : on(X ,Z), ¬on(X ,Y )
0.1 : noise

Table 3: Example NID rule for a robot manipulation scenario, which models to try to grab a ball X .

The cube Y is implicitly defined as the one below X (deictic referencing). X ends up in the

robot’s hand with high probability, but might also fall on the table. With a small probability

something unpredictable happens. Refer to Figure 1 for an example application.

Figure 1: The NID rule defined in Table 3 can be used to predict the effects of action

grab(speci f ic ball) in the situation on the left side. The right side shows the possible

successor states as predicted by the rule. The noise outcome is indicated by a question

mark and does not define a unique successor state.

descriptions is simply to provide complex feature descriptors. For instance in Table 2, both grab(d)
and grab(c) are used to learn one general model for the abstract action grab(X). In turn, the learned

model also models situations with previously unseen objects (which is impossible in enumerated

and factored propositional representations). In this sense, we view a relational transition model T̂

as a (noisy) compressor of the experiences E whose compactness enables generalization.

Transition models which generalize over objects and states play a crucial role in our relational

exploration algorithms. While our ideas work with any type of relational model that can be learned

from experience, for illustration and to empirically evaluate our ideas we employ noisy indetermin-

istic deictic (NID) rules which we present next.

2.4.1 NOISY INDETERMINISTIC DEICTIC RULES

An example of noisy indeterministic deictic (NID) rules (Pasula et al., 2007) is shown in Table 3

for our robot manipulation domain. Figure 1 depicts a situation where this rule can be used for
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prediction. Formally, a NID rule r is given as

ar(X ) : φr(X ) →



















pr,1 : Ωr,1(X )
...

pr,mr : Ωr,mr(X )
pr,0 : Ωr,0

,

where X is a set of logic variables in the rule (which represents a (sub-)set of abstract objects). The

rule r consists of preconditions, namely that action ar is applied on X and that the abstract state

context φr is fulfilled, and mr+1 different abstract outcomes with associated probabilities pr,i > 0,

∑i=0 pr,i = 1. Each outcome Ωr,i(X ) describes which literals are predicted to change when the

rule is applied. The context φr(X ) and outcomes Ωr,i(X ) are conjunctions of literals constructed

from the predicates in P as well as equality statements comparing functions from F to constant

values. The so-called noise outcome Ωr,0 subsumes all possible action outcomes which are not

explicitly specified by one of the other Ωr,i. This includes rare and overly complex outcomes which

are typical for noisy domains and which we do not want to cover explicitly for compactness and

generalization reasons. For instance, in the context of the rule depicted in Figure 1 a potential, but

highly improbable outcome is to grab the blue cube while pushing all other objects off the table:

the noise outcome accounts for this without the burden of explicitly stating it. The arguments of the

action a(Xa) may be a proper subset Xa⊂X of the variables X of the rule. The remaining variables

are called deictic references DR = X \Xa and denote objects relative to the agent or action being

performed.

So, how do we apply NID rules? Let σ denote a substitution that maps variables to constant

objects, σ : X → O. Applying σ to an abstract rule r(X ) yields a grounded rule r(σ(X )). We say

a grounded rule r covers a state s and a ground action a if s |= φr and a = ar. Let Γ be our set

of ground rules and Γ(s,a) ⊂ Γ the set of rules covering (s,a). If there is a unique covering rule

rs,a ∈ Γ(s,a) with |Γ(s,a)| = 1, we use it to model the effects of action a in state s. We calculate

P(s′ |s,a) by taking all outcomes of rs,a (omitting subscripts in the following) into account weighted

by their respective probabilities,

P(s′ |s,a) = P(s′ |s,r) =
mr

∑
i=1

pr,i P(s′|Ωr,i,s)+ pr,0 P(s′ |Ωr,0,s),

where, for i > 0, P(s′ |Ωr,i,s) = I(s∧Ωr,i |= s′) is a deterministic distribution that is one for the

unique state constructed from s taking the changes of Ωr,i into account. (The function I(·) maps

logical truth values to 0 or 1.) The distribution given the noise outcome, P(s′ |Ωr,0,s), is unknown

and needs to be estimated. Pasula et al. use a worst-case constant bound pmin ≤ P(s′|Ωr,0,s) to lower

bound P(s′|s,a). If a state-action pair (s,a) does not have a unique covering rule r (including the

case that more than one rule covers the state-action pair, resulting in potentially conflicting predic-

tions), we use a noisy default rule rν which predicts all effects as noise: P(s′|s,rν) = P(s′ |Ωrν,0,s).
The ability to learn models of the environment from experience is a crucial requirement for au-

tonomous agents. The problem of learning rule-sets is in general NP-hard, but with suitable assump-

tions and restrictions efficiency guarantees on the sample complexity can be given for many learning

subtasks (Walsh, 2010). Pasula et al. (2007) have proposed a supervised batch learning algorithm

for complete NID rules based on ideas developed in inductive logic programming (Nienhuys-Cheng

and de Wolf, 1997). This algorithm learns the structure of rules (contexts and outcomes) as well as
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their parameters from experience triples E = {(st ,at ,st+1)
T−1
t=0 }, relying on the frame assumption.

Efficient exploration strategies to collect useful data E for learning, however, were not investigated

by Pasula et al.—this will be achieved with our proposed methods. The learning algorithm performs

a greedy search through the space of rule-sets, maintaining the thus far best performing rule-set. It

optimizes the tradeoff between maximizing the likelihood of the experience triples and minimizing

the complexity of the current hypothesis rule-set Γ by optimizing the scoring metric (Pasula et al.,

2007)

S(Γ) = ∑
(s,a,s′)

logP(s′ |s,rs,a)−α ∑
r∈Γ

PEN(r) , (1)

where rs,a is either the unique covering rule for (s,a) or the noisy default rule rν. α is a scaling

parameter that controls the influence of regularization. PEN(r) penalizes the complexity of a rule

and is defined as the total number of literals in r. The larger α is set, the more compact are the

learned rule-sets—and thus, the more general, but potentially also more uncertain and inaccurate.

For instance, if we set α = ∞, the resulting model will consist of only the default rule, explaining all

state transitions as noise. In contrast, if we set α = 0, the resulting model explains each experience

as accurately as possible, potentially overfitting and not generalizing the data. The learning algo-

rithm is initialized with a rule-set comprising only the noisy default rule rν and then iteratively adds

new rules or modifies existing ones using a set of search operators. More precisely, these search

operators take the current rule-set and the set of experiences as input, repeatedly select individual

rules, modify them with respect to the experiences, and thereby produce new rule-sets. If the best

new rule-set scores better than the current rule-set according to Equation (1), it becomes the new

rule-set maintained by the algorithm. For instance, the most complex search operator, called Ex-

plainExamples, creates new rules from experiences which are modeled by the default rule thus far.

First, it builds a complex specific rule for an experience; then, it tries to trim this rule to generalize

it to other experiences. Other search operators work directly on existing rules: they add new literals

to rule contexts or delete them from contexts, add new deictic references to rules in form of literal

sets or delete them, delete complete rules from rule-sets, or generalize comparison literals involving

function values in rule contexts.

The noise outcome of NID rules is crucial for learning: it permits the iterative formulation

of the learning algorithm as the corresponding noisy default rule covers all experiences without

unique covering rule so far; and more importantly, it avoids overfitting by refusing to model rare

and overly complex experiences. This advantage has been demonstrated empirically by Pasula et al.

(2007). Its drawback is that the successor state distribution P(s′ |Ωr,0,s) is unknown. To deal with

this problem, the learning algorithm uses a lower bound pmin to approximate this distribution, as

described above. In our experience, while the resulting rule-sets are robust to minor changes in the

two parameters pmin and α, the concrete choice for their values is important for learning expressive

rule-sets, and their mutual influence needs to be taken into account. These parameters, however,

cannot be optimized by the rule-learning algorithm itself: the required degree of rule compactness

is not only determined by the complexity of the modeled domain (in terms of the vocabulary size,

stochasticity and context sensitivity of actions), but also by the purpose the rules have to serve (for

example, the required accuracy for planning). Nonetheless, in our experiments no significant efforts

were necessary to find appropriate values for pmin and α: preliminary testings of a small number

of typical value-combinations were sufficient to set the parameters effectively for each domain. All
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other choices in the learning algorithm (in particular, the choice of search operators and their order)

were the same across all reported experiments.

The rule learning algorithm of Pasula et al. uses greedy heuristics in its attempt to learn complete

rules. Hence, one cannot give guarantees on its efficiency, correctness or convergence. It has been

shown empirically, however, that learned NID rules provide accurate transition models in noisy

robot manipulation domains (Pasula et al., 2007; Lang and Toussaint, 2010). In this paper, we show

further that the transition dynamics of many domains of the international planning competition can

be learned reliably with NID rules. In all our investigated domains, independent learning runs

converged to the same or very similar rule-sets; in particular, the learned rule contexts are usually

the same.

2.5 Planning with Probabilistic Relational Rules

Model-based RL requires efficient planning for exploitation and planned (directed) exploration. The

semantics of NID rules allow one to find a “satisficing” action sequence in relational domains that

will lead with high probability to states with large rewards. In this paper, we use the PRADA al-

gorithm (Lang and Toussaint, 2010) for planning in grounded relational domains. Empirical results

have shown that PRADA finds effective and reliable plans in difficult scenarios. PRADA grounds a

given set of abstract NID rules with respect to the objects in the domain and converts the grounded

rules to factored dynamic Bayesian networks (DBNs). The random variables (nodes) of the DBNs

represent the state literals, actions, rules, rule contexts and outcomes and rewards at different time-

steps; factors on these variables define the stochastic transition dynamics according to the NID

rules. For planning, PRADA samples sequences of actions in an informed way taking into account

the effects of previous actions. To evaluate an action sequence, it uses fast approximate inference

to calculate posterior beliefs over states and rewards. If exact instead of approximate inference is

used, PRADA is guaranteed to find the optimal plan with high probability given a sufficient number

of samples (Lang, 2011). PRADA can plan for different types of rewards, including conjunctions

of abstract and grounded literals. Thus, it can be used in model-based RL for both exploiting the

learned model to plan for high-reward states as well as for exploring unknown states and actions

using the Rmax reward. The number of sampled action sequences trades off computation time and

plan quality: the more samples are taken, the higher are the chances to find a good plan. In our

experiments, we set this number sufficiently high to ensure that good plans are found with high

probability. If we know the maximum reward, we can determine PRADA’s planning horizon for

a desired level of accuracy from the discount factor γ of the MDP: we can calculate after which

time-step the remaining maximally possible rewards can be ignored.

3. Exploration in Relational Domains

Relational representations enable generalization of experiences over states, actions and objects. Our

contribution in this paper are strategies to exploit this for exploration in model-based reinforcement

learning. First, we discuss the implications of a relational knowledge representation for exploration

on a conceptual level (Section 3.1). We show how to quantify the knowledge of states and actions by

means of a generalized, relational notion of state-action counts, namely a relational count function.

This opens the door to a large variety of possible exploration strategies. Thereafter, we propose

a relational model-based reinforcement learning framework lifting the ideas of the algorithms E3

and R-MAX to symbolic representations (Section 3.2). Then, we discuss theoretical guarantees
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concerning the exploration efficiency in our framework (Section 3.3). Finally, we present a concrete

algorithm in this framework which uses some of the previously introduced exploration strategies

(Section 3.4), including an illustrative example (Section 3.5).

3.1 Relational Count Functions for Known States and Actions

The theoretical derivations of the efficient non-relational exploration algorithms E3 and R-MAX

show that the concept of known states is crucial. On the one hand, the confidence in estimates in

known states drives exploitation. On the other hand, exploration is guided by seeking for novel (yet

unknown) states and actions. For instance, the direct exploration phase in E3 chooses novel actions,

which have been tried the fewest; the planned exploration phase seeks to visit novel states, which

are labeled as yet unknown.

In the original E3 and R-MAX algorithms operating in an enumerated state space, states and

actions are considered known based directly on their counts: the number of times they have been

visited. In relational domains, we should go beyond simply counting state-action visits to estimate

the novelty of states and actions:

• The size of the state space is exponential in the number of objects. If we base our notion of

known states directly on visitation counts, then the overwhelming majority of all states will be

labeled yet-unknown and the exploration time required to meet the criteria for known states

of E3 and R-MAX even for a small relevant fraction of the state space becomes exponential

in the number of objects.

• The key benefit of relational learning is the ability to generalize over yet unobserved in-

stances of the world based on relational abstractions. This implies a fundamentally different

perspective on what is novel and what is known and permits qualitatively different exploration

strategies compared to the propositional view.

We propose to generalize the notion of counts to a relational count function that quantifies

the degree to which states and actions are known. Similar to using mixtures (e.g., of Gaussians) for

density modeling, we model a count function over the state space as a linear superposition of features

fk (“mixture components”) such that visitation of a single state generalizes to “neighboring” states—

where “neighboring” is defined by the structure of the features fk. The only technical difference

between count functions and mixture density models is that our count functions are not normalized.

Theoretical guarantees on the convergence and accuracy for this model are discussed in Sec-

tion 3.3. Given sets of features fk and mixture weights wk, a count function over states s can be

written as

κ(s) = ∑
k

wk fk(s) .

The state features fk can be arbitrary. An example for a relational feature are binary tests that

have value 1 if some relational query is true for s; otherwise they have value 0. Estimating such

mixture models is a type of unsupervised learning or clustering and involves two problems: finding

the features fk themselves (structure learning) and estimating the feature weights wk (parameter

learning).

While the use of relational features offers a great compactness and generalization it complicates

the feature selection (structure learning) problem: there are no prior restrictions on the length and
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complexity of features and hence, we have essentially infinitely many features to choose from. The

longer a relational feature is (e.g., a long conjunction of abstract literals) and the more variables it

contains, the larger is the number of possible ways to bind the variables and the larger is the set

of refined features that we potentially have to consider when evaluating a feature. In addition, the

space of the instances s is very large in our case. Recall that even very small relational models

can have hundreds of ground atoms and it would be impossible to represent all possible states. For

instance, for just a single binary relation and 10 objects there would be 100 ground atoms and hence

2100 distinct states, which is clearly intractable. Thus, we need to focus on a compact, structured

representation of the count functions. Furthermore, we only have a finite set of positive (that is,

experienced) states from which we have to generalize to other states, while taking care not to over-

generalize wrongly. Note that in contrast the original E3 and R-MAX algorithms for unstructured

domains do not face this problem as they do not generalize experiences to other states. Thus, we

essentially face the problem of structure learning from positive examples only (Muggleton, 1997).

This is more difficult than the traditional setting considered in relational learning that additionally

assumes that negative (impossible) examples are given.

If the features are given, however, the estimation of the count function becomes simpler: only

the weights need to be learned. For instance, in 1-class SVMs for density estimation assumptions

about the feature structure are embedded in the kernel function; in the mixture of Gaussians model,

the functional form of Gaussians is given a-priori and provides the structure. We propose a “patch

up” approach in this paper. We examine different choices of features in the relational setting whose

weights can be estimated based on empirical counts. While they are only approximations, we then

show that we can “patch up” and improve some of these approximations, namely the context-based

features (see below) through learning NID rules. In our relational model-based RL algorithms as

well as in our evaluation, we focus on context-based features. In other words, our methods implicitly

solve both structure and parameter learning from positive examples only.

Let us now introduce different choices of features for the estimation of relational count func-

tions. These imply different approaches to quantify known states and actions in a relational RL

setting. We focus on a specific type of features, namely queries q∈Q. Queries are simply relational

formulas, for instance conjunctions of ground or abstract literals, which evaluate to 0 or 1 for a given

state s. We discuss different choices of Q in detail below including examples. Our count functions

use queries q in combination with the set of experiences E of the agent and the estimated transition

model T̂ . Given a set Q of queries we model the state count function as

κQ(s) = ∑q∈Q cE (q) I(∃σ : s |= σ(q)) (2)

with cE (q) = ∑(se,ae,s′e)∈E I(∃σ : se |= σ(q)) . (3)

This function combines the confidences of all queries q∈Q which are fulfilled in state s. The second

term in Equation (2) examines whether query q is fulfilled in s: the substitution σ is used to ground

potentially abstract queries; the function I(·) maps logical statements to 1 if they are satisfied and

to 0 otherwise. cE (q), the first term in Equation (2), is an experience-count of query q: it quantifies

the number of times query q held in previously experienced predecessor states in the agent’s set

of observed state transitions E = {(st ,at ,st+1)}
T−1
t=1 . Overall, a state s has a high count κQ(s) if

it satisfies queries q ∈ Q with large experience-counts cE (q). This implies that all states with low

κQ(s) are considered novel and should be explored, as in E3 and R-MAX. The model for state-action

count functions is analogous. In the following, we discuss different choices for queries q and the

accompanying count estimates which emphasize different aspects of relational data. We use the
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three states shown in Table 1 as our running example: we assume that our experiences consist of

exactly State 1, that is E = {(s1,a1,s′1)} (the action a1 and the successor state s′1 are ignored by

κQ(s)), while State 2 and State 3 have not been experienced.

Enumerated: Let us first consider briefly the propositional enumerated setting. We have a

finite enumerated state space S and action space A. The set of queries,

Qenum = {s |∃(se,ae,s
′
e) ∈ E : se = s} ,

corresponds to predecessor states s∈ S which have been visited in E . Thus, queries are conjunctions

of positive and negated ground atoms which fully describe a state. This translates directly to the

count function

κenum(s) = cE (s) , with cE (s) = ∑(se,ae,s′e)∈E
I(se = s) .

The experience-count cE (q) in the previous equation counts the number of occasions state s has been

visited in E (in the spirit of Thrun, 1992). There is no generalization in this notion of known states.

Similar arguments can be applied on the level of state-action counts κ(s,a). As an illustration, in

our running example of Table 1 both State 2 and State 3 are equally unknown and novel: both are

not the experienced State 1.

Literal-based: Given a relational structure with the set of logical predicates P , an alternative

approach to describe what are known states is based on counting how often a (ground) literal (a po-

tentially negated atom) has been observed true or false in the experiences E (all statements equally

apply to functions F , but we neglect this case here). A literal l for a predicate P ∈ P containing

variables is abstract in that it represents the set of all corresponding ground, that is variable-free,

literals for P. Ground literals then play the role of the traditional factors used in mixture models.

First, we consider ground literals l ∈ LG with arguments taken from the domain objects O. This

leads to the set of queries Qlit = LG and in turn to the count function

κlit(s) = ∑l∈LG cE (l) I(s |= l)

with cE (l) := ∑(se,ae,s′e)∈E I(se |= l).

Each query l ∈ LG examines whether l has the same truth values in s as in experienced states. This

implies that a state is considered familiar (with κlit(s) > 0) if a ground literal that is true (false)

in this state has been observed true (false) before. Thus abstraction over states can be achieved by

means of ground literals. We can follow the same approach for abstract literals LA and set Qlit =LA.

For l ∈ LA and a state s, we examine whether there are groundings of the logical variables in l such

that s covers l. More formally, we replace s |= l by ∃σ : s |= σ(l). For instance, we may count how

often a specific blue ball was on top of some other object. If this was rarely the case this implies

a notion of novelty which guides exploration. For example, in Table 1 State 1 and State 3 share

the ground literal on(o2, t) while this literal does not hold in State 2. Thus, if Qlit = {on(o2, t)}
and State 1 is the sole experienced state, then State 3 is perceived as better known than State 2. In

contrast, if we use the abstract query inhand(X) (expressing there was something held inhand) and

set Qlit = {inhand(X)}, then State 3 is perceived as more novel, since in both State 1 and State 2

some object was held inhand. Note that this second query abstracts from the identities of the inhand

held objects.

Context-based: Assume that we are given a finite set Φ of contexts, which are queries con-

sisting of formulas over predicates and functions. While many relational knowledge representations
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have some notion of context or rule precondition, in our running example of NID rules these may

correspond to the set of NID rule contexts {φr}. These are learned from the experiences E and have

specifically been optimized to be a compact context representation (cf. Section 2). Given a set Φ of

such queries, setting QΦ = Φ results in the count function

κΦ(s) = ∑φ∈Φ cE (φ) I(∃σ : s |= σ(φ))

with cE (φ) = ∑(se,ae,s′e)∈E I(∃σ : se |= σ(φ)).

cE (φ) counts in how many experiences E the context respectively query φ was covered with ar-

bitrary groundings. Intuitively, contexts may be understood as describing situation classes based

on whether the same abstract prediction models can be applied. Taking this approach, states are

considered novel if they are not covered by any existing context (κΦ(s) = 0) or covered by a context

that has rarely occurred in E (κΦ(s) is low). That is, the description of novelty which drives explo-

ration is lifted to the level of abstraction of these relational contexts. Similarly, we estimate a count

function for known state-action pairs based on state-action contexts. For instance, in the case of a

set Γ of NID rules, each rule defines a state-action context, resulting in the count

κΦ(s,a) = ∑r∈Γ cE (r) I(r = rs,a), with cE (r) := |E(r)|,

which is based on counting how many experiences are covered by the unique covering rule rs,a for

a in s. E(r) are the experiences in E covered by r, E(r) = {(s,a,s′) ∈ E |r = rs,a}. Thus, the

number of experiences covered by the rule rs,a modeling (s,a) can be understood as a measure of

confidence in rs,a and determines κΦ(s,a). We will use κΦ(s,a) in our proposed algorithm below.

In the example of Table 1, assume in State 1 we perform puton(o3) successfully, that is, we put

the inhand cube o4 on o3. From this experience, we learn a rule for the action puton(X) with the

context φ = clear(X)∧ inhand(Y ). Thereafter, State 3 is perceived as more novel than State 2: the

effects of puton(o3) can be predicted in State 2, but not in State 3.

Similarity-based: Different methods to estimate the similarity of relational states exist. For

instance, Driessens et al. (2006) and Halbritter and Geibel (2007) present relational reinforcement

learning approaches which use relational graph kernels to estimate the similarity of relational states.

These can be used to estimate relational counts which, when applied in our context, would readily

lead to alternative notions of novelty and thereby exploration strategies. This count estimation

technique bears similarities to Metric E3 (Kakade et al., 2003). Applying such a method to model

κ(s) from E implies that states are considered novel (with low κ(s)) if they have a low kernel value

(high “distance”) to previous explored states. Let k(·, ·) ∈ [0,1] denote an appropriate kernel for the

queries q∈Q, for instance based on relational graph kernels. We replace the hard indicator function

I(∃σ : s |= σ(q)) in Equation (2) by the kernel function, resulting in the more general kernel-based

count function

κk,Q(s) = ∑q∈Q cE (q) k(s,q) .

If one sets Q = {s |s ∈ S} to the set of all states, the previous count function measures the distance

to all observed predecessor states multiplied by experience-counts. In the example of Table 1 with

E = {(s1,a1,s′1)}, if we use relational graph kernels, the isomorphism of the graph representations

of State 1 and State 2 leads to a large kernel estimate k(s1,s2), while the different graph structure of

State 3 causes k(s1,s3) to be small, therefore κk,Q(s2)> κk,Q(s3).
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The above approaches are based on counts over the set of experiences E . As a simple extension,

we propose using the variability within E . Consider two different series of experiences E1 and E2

both of size n. Imagine that E1 consists of n times the same experience, while the experiences in E2

differ. For instance, E1 might list repeatedly grabbing the same object in the same context, while

E2 might list grabbing different objects in varying conditions. E2 has a higher variability. Although

the experience-counts cE1
(q) and cE2

(q) as defined in Equation (3) are the same, one might be

tempted to say that E2 confirms q better as the query q succeeded in more heterogeneous situations,

supporting the claim of generalization. We formalize this by redefining the experience-counts in

Equation (3) using a distance estimate d(s,s′) ∈ [0,1] for two states s and s′ as

cV
E (q) = ∑

(st ,at ,s′t)∈E

I(∃σ : st |= σ(q)) ·δ(st ,E
(q,t)) ,

with E (q,t) = {(se,ae,s
′
e) ∈ E |∃σ : se |= σ(q)∧ e < t}

and δ(s,E) = min
(se,ae,s′e)∈E

d(s,se) .

The experience-count cV
E (q) weights each experience based on its distance δ(st ,E (q,t)) to prior ex-

periences (while the original cE (q) assigns all experiences the same weight irrespective of other

experiences). Here, the measure d(s,s′) computes the distance between two ground states, but

calculations on partial or (partially) lifted states are likewise conceivable. To compute d(s,s′),
a kernel k(s,s′) ∈ [0,1] as above might be employed, d(s,s′) ∝ 1− k(s,s′), for instance using a

simple distance estimate based on least general unifiers (Ramon, 2002). For illustration, consider

again the states in Table 1. Assume two series of experiences E1 = {(s1,a1,s′1),(s2,a2,s′2)} and

E2 = {(s1,a1,s′1),(s3,a3,s′3)} and the query q = on(X ,Y )∧ ball(X) (that there is a ball on-top of

some other object). All State 1, State 2 and State 3 cover this query, therefore the standard counts

for E1 and E2 according to Equation (3) are the same, cE1
(q) = cE2

(q). As State 1 and State 2 share

the same structure, however, the variability within E1 is smaller than within E2. Thus, E2 provides

more heterogeneous evidence for q and therefore cV
E2
(q)> cV

E1
(q).

3.2 Relational Exploration Framework

The approaches to estimate relational state and action counts which have been discussed above open

a large variety of possibilities for concrete exploration strategies. In the following, we derive a re-

lational model-based reinforcement learning framework we call REX (short for relational explorer)

in which these strategies can be applied. This framework is presented in Algorithm 2. REX lifts E3

and R-MAX to relational exploration.

At each time-step, the relational explorer performs the following general steps:

1. It adapts its estimated relational transition model T̂ with the set of experiences E .

2. Based on E and T̂ , it estimates the count function for known states and actions, κ(s) and

κ(s,a). For instance, T̂ might be used to provide formulas and contexts to estimate a specific

relational count function.

3. The estimated count function is used to decide for the next action at based on the strategy of

either E3 or R-MAX.

In the case of relational E3, the phase-ordering is exactly the same as in the original E3: if the

current state st is known, exploitation is tried and if exploitation fails (the planner does not find
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Algorithm 2 Relational Exploration (REX)

Input: Start state s0, reward function R, confidence threshold ζ
1: Set of experiences E = /0
2: for t=0,1,2 . . . do

3: Update transition model T̂ according to E

4: Estimate κ(s) and κ(s,a) from E and T̂ ! Relational representation enables generalization

5: if E3-exploration then ! E3-exploration

6: if ∀a ∈ A : κ(st ,a)≥ ζ then ! State is known→ uses relational generalization

7: Plan in Mexploit with zero reward for s̃ ! uses relational generalization

8: if resulting plan has value above some threshold then

9: at = first action of plan ! Exploitation

10: else

11: Plan in Mexplore with maximum reward for s̃ and zero-reward for known states

12: ! uses relational generalization

13: at = first action of plan ! Planned exploration

14: end if

15: else ! State is unknown

16: at = argmina κ(st ,a) ! Direct exploration→ uses relational generalization

17: end if

18: else ! R-MAX-exploration

19: Plan in MR-MAX with maximum reward for s̃ and given reward R for all known states

20: ! uses relational generalization

21: at = first action of plan

22: end if

23: Execute at

24: Observe new state st+1

25: Update set of experiences E ← E ∪{(st ,at ,st+1)}
26: end for

a policy with a sufficiently high value), planned exploration to unknown states is undertaken;

otherwise (if the current state st is not known), direct exploration is performed. Like in the

original non-relational E3, the decision for exploitation in relational E3 assumes knowledge

of the optimal values. To remove this assumption, the relational explorer can instead attempt

planned exploration first along the lines described by Kearns and Singh for the original E3.

In the case of relational R-MAX, a single model is built in which all unknown states according

to the estimated counts lead to the absorbing special state s̃ with reward Rmax.

4. Finally, the action at is executed, the resulting state st+1 observed and added to the experiences

E , and the process repeated.

The estimation of relational count functions for known states and actions, κ(s) and κ(s,a), and the

resulting generalization over states, actions and objects play a crucial role at several places in the

algorithm; for instance, in the case of relational E3,

• to decide whether the current state is considered known or novel;

• to determine the set of known states where to try to exploit;

• to determine the set of both novel and known states in planned exploration to decide for target

states and plan-through states;

3745



LANG, TOUSSAINT AND KERSTING

• and to determine which action to execute in direct exploration where the least known action

with the lowest κ(s,a) is chosen; this combines the original E3 (choosing the action with the

fewest “visits”) with relational generalization (defining “visits” by means of state abstraction).

The parameter ζ in our relational exploration framework REX defines the threshold to decide whether

states and actions are known or unknown. For the original E3 and R-MAX algorithms for enumer-

ated state and action spaces, a value for ζ can be derived such that efficient exploration in polynomial

time can be guaranteed. This derivation is closely tied to the enumerated representation of state and

action spaces, not straightforward to apply in practice and will lead to overly large thresholds (see

Section 2.3). In the next subsection, we discuss how to develop theoretical guarantees on the sample

complexity for relational domains within our REX framework.

3.3 Theoretical Guarantees on the Sample Complexity

The original R-MAX algorithm operating in enumerated state and action spaces is PAC-MDP: its

sample complexity is polynomial in the number of states and actions (Strehl et al., 2009). A similar

result for E3 has been established in a slightly different formulation: E3 finds a near-optimal policy

after a number of steps which is polynomial in the number of states and actions. In the following, we

briefly establish conditions for which similar guarantees can be made in our relational exploration

framework REX using count functions: we state simple conditions for a KWIK learner to “match”

with the used count function such that REX using this learner is PAC-MDP. This clarifies also a

relation to Walsh’s assumptions about mutually exclusive contexts in his KWIK learning setup.

Let Eκ(s,a)⊆E be the subset of experiences such that any experience (st ,at ,st+1)∈Eκ(s,a) would

lead to κ(s,a) > 0 given κ(s,a) = 0 before. Recall that m is the number of unknown parameters

of the (relational) transition model T . As described in Section 2.3, we distinguish two different

accuracy levels εP and εT which both influence the overall accuracy ε in the sample complexity of

a PAC-MDP reinforcement learning algorithm (Definition 1). An εP -accurate planner finds plans

a whose value differs by at most εP from the value of the optimal plan a∗: Q(s,a) > Q(s,a∗)− εP.

An εT -accurate model learner L makes predictions ŷ = L(x) for input x which differ by at most εT

from the true value y: | ŷ− y | < εT . We get the following lemma on the exploration efficiency of

REX:

Lemma 2 Assume REX uses an εP-accurate planner and a KWIK learner L to learn the transition

model T̂ . If for a given probability of failure δ ∈ (0,1) REX employs a count function κ(s,a) such

that it holds with confidence at least 1−δ that

∀s,a : κ(s,a)≥ ζ ⇒ L(s,a) is εT -accurate and L(s,a) 2=⊥ and (4)

|Eκ(s,a)|≥ polynomial(m) ⇒ κ(s,a)≥ ζ , (5)

then REX in the R-MAX variant is PAC-MDP.

Proof First assume we had equivalence ⇐⇒ in Equation (4). Then, for the R-MAX option in

Algorithm 2, this corollary is a direct implication of the original results for KWIK-R-MAX (Li,

2009): in line 19 of Algorithm 2 the condition κ(s,a) ≥ ζ, using the count function to decide

knownness of states and actions, is identical to using the KWIK learner condition L(s,a) 2= ⊥. To

show the lemma with one-sided implication in Equation (4), we define a second learner L ′ with

κ(s,a)< ζ⇒ L ′(s,a) =⊥ and L ′(s,a) 2=⊥⇒ L ′(s,a) = L(s,a) for all s,a. L ′ is a KWIK learner
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due to the condition in Equation (5) and for L ′ equivalence in Equation (4) holds.

The condition κ(s,a) ≥ ζ ⇒ L(s,a) 2= ⊥ describes a “matching” between the KWIK learner

and the definition of the count function. Motivated by Walsh’s concrete relational KWIK learner

and our concrete REX instance described below, we mention another, more special case condition

for a KWIK learner to match with a count function.

Corollary 3 Assume REX uses an εP-accurate planner and a KWIK learner L to learn the tran-

sition model T̂ . If it employs a count function κQ(s,a) defined as in Equation (2) indirectly via a

set Q = {q1, ..,qn} of queries where the queries are mutually exclusive (qi(s,a) = true→ ∀k 2= i :

qk(s,a) = false) and with confidence at least 1−δ

∀q ∈ Q : cE (q)≥ ζ ⇒ ∀s,a with q(s,a) = true :

L(s,a) is εT -accurate and L(s,a) 2=⊥

and cE (q)≥ polynomial(m) ⇒ cE (q)≥ ζ ,

then REX in the R-MAX variant is PAC-MDP.

The corollary follows directly from the previous lemma since if κQ(s,a)≥ ζ, then there is a q ∈ Q

with ∃σ : s∧a |= σ(q) and cE (q)≥ ζ.

This special case is interesting since Walsh assumes such mutually exclusive contexts in his

learning algorithms. Similarly, the learning algorithm of Pasula et al. tries to ensure that experienced

states map to unique contexts (thus, heuristic disjoint queries). Therefore, in those special cases of

mutually exclusive queries, a KWIK learner that matches a count function has to ensure to respond

only a polynomial number of times with ⊥ for each abstract context.

The above results are limited to REX in the R-MAX variant. Analogous to KWIK-R-MAX, one

may conceive KWIK-E3 which uses a KWIK learner L to estimate a transition model T̂ , relating

to REX in the E3 variant. This generalizes the original E3 by replacing the counts on states and

actions with the certainty estimate of L : if L(s,a) = ⊥, then this state-action pair is considered

unknown with a transition to the special state s̃ (which has reward 0 in Mexploit and reward Rmax

in Mexplore). While in our experiments we investigate both REX in the R-MAX and E3 variant, a

proof that KWIK-E3 is PAC-MDP is beyond the scope of this paper. To our knowledge, plain E3

has not been shown to be strictly PAC-MDP in the sense of Definition 1, either. It is informative

to see why we cannot make a proof analogous to the one of Li (2009) for KWIK-R-MAX. Li’s

proof is based on a theorem of Strehl et al. (2009) tailored to R-MAX-style exploration. For a

given exploration algorithm, this theorem defines sufficient conditions on the value function of the

algorithm’s policy which ensure that the algorithm is PAC-MDP: the “optimism” condition states

that this value function is lower bounded by the optimal value function in the true MDP—hence, the

algorithm never misses the opportunity to harvest large rewards; the “accuracy” condition states that

the value function is upper bounded by the value in a model with the true transitions for the known

states—hence, the transitions need to be well estimated by the algorithm. These sufficient conditions

cannot be transferred directly to E3 since in E3 there is not a single value function consistent with

the policy that would fulfill these upper and lower bounds. In the exploration mode, E3 plans more

aggressively than R-MAX for unknown states from a known state and ignores rewards in the known

states, thus potentially underestimating the expected value instead of overestimating it as R-MAX
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does. Nonetheless, it appears likely that KWIK-E3 is PAC-MDP, but a proof has to be made along

different lines than for KWIK-R-MAX.

In this subsection, we have established general conditions under which REX is a PAC-MDP

reinforcement learning algorithm. In the next subsection, we use these conditions to take a closer

look at the exploration efficiency of the concrete REX instance we investigate in our experiments.

3.4 A Model-Based Reinforcement Learner for Relational Domains with Fully Unknown

Transition Dynamics

Our relational exploration framework REX is independent of the concrete choices for the transition

model representation and learner, the planning algorithm and the relational count function. Here,

we propose a concrete instance which we will use in our evaluation. To our knowledge, this instance

of REX is the first empirically evaluated relational model-based reinforcement learning algorithm

which learns and exploits full-fledged models of transition dynamics. It uses NID rules to learn a

transition model T̂ , plans with the PRADA algorithm and uses the contexts of learned NID rules to

estimate the count functions κΦ(s) and κΦ(s,a). The rule contexts are learned from experience and

provide compact descriptions of situation classes. Thus, a state is known if all actions in this state

are known. An action is known if there is sufficient confidence in its covering rule. The confidence

of a rule depends on the number of experiences in E it explains, as described above. Our context-

based approach to estimate the count function is simple, but empirically effective. We are certain

that more elaborate and efficient exploration strategies can be derived from the above principles in

the future.

Given these concrete instantiations of the learner, planner and count function components we re-

consider briefly the theoretical guarantees. The following corollary shows under which assumptions

this REX instance is PAC-MDP.

Corollary 4 If PRADA uses exact inference and the unknown true transition model T can be mod-

eled by means of NID rules with mutually exclusive contexts, without deictic references and without

the special noise outcomes, then there exists a learner L for such NID rules such that REX in the

R-MAX variant with PRADA, L and a context-based count function κΦ(s,a) is PAC-MDP.

Proof To learn such NID rules, REX can use a KWIK learner built from a combination of the

KWIK learners for the individual rule components proposed by Walsh (2010). If we assume exact

inference, PRADA can be adapted to produce εP-accurate plans. Then, the corollary follows di-

rectly from Corollary 3.

Corollary 4 assures us that the exploration strategy of our REX instance is theoretically justified.

However, the practicability of our REX instance relies on properties of the planner and learner com-

ponents which violate the assumptions of the corollary. In relational domains, we easily have to

deal with thousands if not millions of random variables. Unfortunately, exact propositional infer-

ence has exponential cost in the treewidth of the ground model, making it infeasible for most real-

world applications. Even recent advances in lifted exact inference approaches—handling whole

sets of indistinguishable variables and factors together—are still extremely complex, generally do

not scale to realistic domains, and have only been applied to very small artificial problems. Thus,

using approximate inference in PRADA is crucial for the efficiency of planning. While this makes

it difficult to provide optimality guarantees, in practice PRADA produces reliably effective plans

in difficult noisy settings if its number of action-sequence samples is sufficiently high (Lang and
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Toussaint, 2010). Using approximate inference also implies that our REX instance plans through

partially unknown states. In general, it is unclear how to efficiently build and exclusively use an

MDP of known relational states. However, in each state PRADA, and thus REX, only takes known

actions for planning into account: PRADA only considers those actions in a state for which it has a

confident unique covering rule.

Furthermore, concerning the learning component of REX, deictic references and noise outcomes

are expressive language constructs which are essential for learning and modeling the dynamics in

practical applications (Pasula et al., 2007). There are, however, no KWIK-learners or other algo-

rithms with theoretical guarantees for learning full NID rules. As noted by Walsh (2010) (p. 64),

aside from not covering deictic references, his learning algorithms “would be inappropriate in a

schema that allowed for ‘noise’ or ‘miscellaneous’ outcomes. [...] In such a situation, a heuristic

scoring function that tries to minimize the weights on the noise term is likely a better solution.” The

heuristic learning algorithm for NID rules by Pasula et al. (2007) which we use in our evaluation

cannot guarantee that the learned rules, and thus our learned count functions of known states and ac-

tions, converge to near-optimal models. As only contexts of rules with sufficient empirical evidence

are used to estimate the count functions, however, the decisions for knowing states and actions are

stable in practice. In our investigated domains, independent learning runs always converged to the

same or very similar rule-sets and hence to the same learned count functions.

3.5 Illustrative Example

In Table 4, we present an example of an agent using the instance of our REX framework de-

scribed in Section 3.4 with the E3 strategy in a robot manipulation domain. In the beginning, the

robot is given a relational vocabulary to describe the world on a symbolic level. It has the ability to

convert its perceptions into the corresponding symbolic representation. Furthermore, it can execute

two different types of motor primitives for grabbing objects and putting them on other objects. It

can trigger these motor primitives by the symbolic actions grab(X) and puton(X). These actions

are always executed and their effects depend on the context. Thus, in the example scenario with

objects O = {o1,o2,o3,o4,o5, t} the action space of the robot consists of the actions A = { puton(t),
puton(o1), puton(o2), puton(o3), puton(o4), puton(o5), grab(o1), grab(o2), grab(o3), grab(o4),
grab(o5) }. See Toussaint et al. (2010) for a corresponding real-world robotic setup.

The robot is told to build a tower from the objects on the table. The robot does not know,

however, how its actions change the state of the world. It has to learn this from experience and use

its insights to achieve its goal—a prototypical model-based reinforcement learning situation. The

robot will apply relational exploration to learn as much as possible about the dynamics of its world

in as little time as possible. It uses NID rules to learn and represent the transition dynamics. Based

on the contexts of these NID rules Q= {Φi}i and its experiences E , it estimates the counts of known

states and actions as described above. Here, we assume the robot is confident about a rule if this

rule explains at least two of its experiences and hence set ζ = 2.

At t=0, the robot starts with zero knowledge about the transition dynamics. As s0 is unknown,

it performs a direct exploration action. All actions are equally unknown so it chooses randomly

to grab cube o1 and learns rule r1 from the experience (s0,a0,s1). At t = 1, although all actions

in s1 and thus s1 itself are unknown, the robot is less uncertain about the grab(·) actions for the

objects lying on the table: these are covered by the rule r1 which explains its single experience. It
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t=0

No rule learned yet.

Direct exploration
Next action: a0 = grab(o1)

t=1

Learned rule r1

grab(X) : on(X ,Y )

→

{

1.0 : inhand(X), ¬on(X ,Y )
0.0 : noise

Direct exploration
Next action: a1 = puton(o4)

t=2

Learned rule r2

puton(X) : inhand(Y ), table(Z)

→

{

1.0 : on(Y,Z), ¬inhand(Y )
0.0 : noise

Direct exploration
Next action: a2 = puton(o3)

t=3

Learned rule r3

puton(X) : inhandNil()

→

{

1.0 : −
0.0 : noise

Direct exploration
Next action: a3 = grab(o3)

t=4

Confirmed rule r1

grab(X) : on(X ,Y )

→

{

1.0 : inhand(X), ¬on(X ,Y )
0.0 : noise

Direct exploration
Next action: a4 = grab(o3)

t=5

Learned rule r4

grab(X) : inhand(X)

→

{

1.0 : −
0.0 : noise

Direct exploration
Next action: a5 = puton(o1)

t=6

Learned rules r5 and r6

puton(X) : ¬ball(X), inhand(Y )

→

{

1.0 : on(Y,X), ¬inhand(Y )
0.0 : noise

puton(X) : ball(X), inhand(Y ),
platzal table(Z)

→

{

1.0 : on(Y,Z), ¬inhand(Y )
0.0 : noise

Direct exploration
Next action: a6 = puton(o2)

t=7

Confirmed rule r3

puton(X) : inhandNil()

→

{

1.0 : −
0.0 : noise

Planned exploration
Next action: a7 = grab(o5)

t=8

Confirmed rule r1

grab(X) : on(X ,Y )

→

{

1.0 : inhand(X), ¬on(X ,Y )
0.0 : noise

Planned exploration
Next action: a8 = puton(o2)

t=9

Confirmed rule r6

puton(X) : ball(X), inhand(Y ), table(Z)

→

{

1.0 : on(Y,Z), ¬inhand(Y )
0.0 : noise

Planned exploration
Next action: a9 = grab(o4)

t=10

Confirmed rule r1

grab(X) : on(X ,Y )

→

{

1.0 : inhand(X), ¬on(X ,Y )
0.0 : noise

Planned exploration
Next action: a10 = grab(o4)

t=11

Confirmed rule r4

grab(X) : inhand(X)

→

{

1.0 : −
0.0 : noise

Planned exploration
Next action: a10 = puton(o3)

t=12

Confirmed rule r5

puton(X) : ¬ball(X), inhand(Y )

→

{

1.0 : on(Y,X), ¬inhand(Y )
0.0 : noise

Done.

Table 4: Example of Relational E3. A robot manipulates objects scattered on a table by means of

motor primitives triggered by symbolic actions puton(·) and grab(·). The robot is told

to build a tower. It starts with zero knowledge (E = /0) and learns from experience how

its actions change the state of the world. The arrows at t = 2 and t = 9 indicate that the

manipulated objects have fallen off balls.
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is most uncertain about grabbing the inhand object (which is not covered by r1) and all puton(·)
actions which are not covered by any rule. The robot chooses puton(o4) randomly among these

most unknown actions. As o4 is a ball, the inhand-held cube o1 falls from o4 on the table t, resulting

in state s2. The robot generalizes this experience in form of the rule r2 that puton(X) will lead to

putting the inhand-object on the table. This false generalization is uncertain, however, as it is only

covered by one experience.

At t= 2, the robot is most uncertain about the puton(·) actions which are not covered by any

of its learned rules (the previously learned rule r2 requires inhand(Y ) in its context which is not

fulfilled in s2). Therefore, the robot chooses randomly among them and performs puton(o3). It

observes no effects and learns the rule r3, predicting puton actions in contexts where nothing is held

inhand. At t= 3, the robot is equally uncertain about all actions (all actions are covered by rules

which explain exactly one experience). It chooses randomly grab(o3). The experience (s3,a3,s4)
confirms the rule r1 about which it is certain by now as r1 explains two experiences. At t = 4,

grab(o3) is the only action which is not covered by any rule and therefore performed. The resulting

state s5 is not different from s4, resulting in the learned rule r4.

At t= 5, the most uncertain actions, grab(o3) and all puton-actions, are covered by rules with

confidence one (that is, explaining one experience). The robot chooses randomly puton(o1). This

provides an insightful experience: by comparing the experiences (s1,a1,s2) and (s5,a5,s6), the robot

“understands” that rule r2 is a false generalization and instead learns r5 for putting on cubes and the

table and r6 putting on balls. At t= 6, all grab-actions are known due to the confidence in rule r1:

the robot can predict their effects with confidence. In contrast, it is uncertain about all puton-actions

as rule r3 explains only one experience, so it randomly chooses puton(o2). The resulting experience

confirms r3 about which it is certain then.

At t = 7, the robot can predict the effects of all actions with certainty. Therefore, it tries to

exploit its knowledge about known states to plan for its goal to build a tower. The rule r5 (mod-

eling puton-actions for cubes) required for tower building, however, is still uncertain and thus the

corresponding actions and states are unknown and cannot be considered in planning. Therefore,

exploitation fails and the robot performs planned exploration instead: it plans for unknown states

in which its rules r4, r5 and r6 can be tested. Such states are reached by grab-actions and the robot

chooses randomly to perform grab(o5). At t = 8, the planned exploration of the last time-step

allows to confirm several rules by performing one of the unknown puton actions or the likewise un-

known grab(o5). The robot chooses randomly puton(o2). The resulting state s9 confirms r6 about

which it is certain by now. At t= 9, like in s7 the robot performs planned exploration and grabs a

random object, namely grab(o4).

At t= 10, the unknown actions are grab(o4), puton(o1), puton(o3) and puton(t) whose cov-

ering rules explain only one experience. The robot chooses randomly grab(o4) whose outcome in

s11 confirms the rule r4. At t=11, from the remaining three unknown actions, it chooses randomly

puton(o3), confirming the rule r5. At t= 12, the highest possible tower has been built. Hence, the

robot cannot exploit its knowledge to build an even higher tower. Similarly, planned exploration for

unknown states fails and the robot concludes that it is done.

In this example, there have been no exploitation steps as in the last time-step achieved by direct

and planned exploration, the highest possible reward has already been achieved. If there were more

cubes, however, the robot could successfully exploit its knowledge to achieve even more rewarding

states from s12.
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To keep this illustrative example short, we simplified in some respects: First, the robot makes

most often the correct generalizations, even if competing false generalizations have the same statisti-

cal evidence. For instance, from experience (s2,a2,s3) the robot could also generalize that puton(X)
does not have effects if X is a cube (instead of if its hand is empty). A second simplification in our

example is our neglect of noise in the actions of the robot. Note however that our algorithms account

for stochastic actions and our experimental evaluation is performed in intrinsically noisy domains.

The third simplification is that we determined the “random” choices of the robot to be informative

actions. For instance, if the robot had chosen puton(o1) in s11, it might have had to revise its rule

r5 to incorporate clear(X) and to come up with a rule for putting on objects which are not clear,

leading to a more accurate model requiring more exploration steps.

4. Evaluation

We demonstrate that integrating our approach REX with NID rules and the planner PRADA as

described in Section 3.4 leads to a practical exploration system for relational RL which outperforms

established non-relational techniques on a large number of relevant problems. Our results show

that REX explores efficiently worlds with many objects and transfers learned knowledge to new

situations, objects and, in contrast to model-free relational RL techniques, even to new tasks. To our

knowledge, this is the first evaluation of a model-based reinforcement learning agent which learns

both the complete structure as well as the parameters of relational transition models.

We compare five methods inspired by E3 and R-MAX based on different state and action repre-

sentations:

• flat E3: learning and exploration on an enumerated representation;

• factored E3: learning and exploration on a factored propositional representation;

• relational ε-greedy: learning on a relational representation, ε-greedy exploration;

• relational E3: learning and exploration on a relational representation; and

• relational R-MAX: learning and exploration on a relational representation.

It is not our goal to explicitly compare E3 and R-MAX. We present results for both, relational E3 and

relational R-MAX, to demonstrate that REX is a practical, effective approach with either strategy.

For the non-relational baselines, we have arbitrarily chosen E3, but we might have likewise used

R-MAX with similar results to expect.

We use NID rules to learn and represent transition models T in all investigated methods for

two reasons: (i) there is an effective learning algorithm for NID rules, and (ii) we can express and

learn transition models on all representation levels with NID rules which allows for a consistent

comparison. Relational E3, R-MAX and ε-greedy learn full-fledged abstract NID rules as described

in Section 2.4.1. Our factored E3 learns propositional (that is, grounded) NID rules using a slightly

modified learning algorithm; ground literals imitate the propositional state attributes. (The factored

E3 algorithm of Kearns and Koller (1999) cannot learn the model structure and thus cannot be used

as an alternative baseline.) Flat E3 uses pseudo propositional NID rules where the rule context

describes a complete ground relational state; hence, a rule is only applicable in a specific state and

this approach corresponds to the original E3. Exemplary rules for all representations are shown in
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grab(X) : on(X ,Y ), ball(X), cube(Y ), table(Z)

→







0.7 : inhand(X), ¬on(X ,Y )
0.2 : on(X ,Z), ¬on(X ,Y )
0.1 : noise

(a) Abstract NID rule

grab(d) : on(d,b)

→







0.7 : inhand(d), ¬on(d,b)
0.2 : on(d, t), ¬on(d,b)
0.1 : noise

(b) Factored propositional NID rule

grab(d) : on(a, t),on(b, t),on(c,a),on(d,b),¬on(a,b),¬on(a,c) . . . ,¬inhand(a), . . .

→







0.7 : inhand(d), ¬on(d,b)
0.2 : on(d, t), ¬on(d,b)
0.1 : noise

(c) Flat “NID rule”

Table 5: Illustration of NID rules on different representation levels. (a) The abstract rule uses vari-

ables to generalize over objects (same as in Table 3). (b) The factored propositional rule

imitates propositional state attributes by using only ground literals. (c) The flat rule spec-

ifies a complete state in its context. Note that the propositional rules (b) and (c) can re-

nounce on typing predicates such as cube(·) as they do not abstract from object identities.

The presented rules might have been learned from the grab experiences shown in Table 2.

Table 5. In each domain, the parameters for the rule learning algorithm, α and pmin, were chosen

by a preliminary coarse heuristic search; the rule mutation operators and their order were the same

across all experiments and exploration algorithms.

We use our novel exploration approach REX introduced in Section 3.2 and Section 3.4 as a con-

crete instance of relational E3 and R-MAX and a factored propositional variant of REX as factored

propositional E3. Thus, we learn (abstract or propositional) NID rules for the last action after each

new observation from scratch using the algorithm of Pasula et al. (2007) (appropriately modified for

the propositional representations) and employ PRADA (Lang and Toussaint, 2010) for exploitation

or planned exploration. The reward function is not learned, but provided to the agent. PRADA plans

in the grounded relational representation and therefore can deal with rules on all abstraction levels.

PRADA’s planning horizon and its number of plan samples were both set to large values across

all experiments to ensure that the planning performance of PRADA is reliable and has negligible

influence on the reported results. To estimate a count function for known states and actions, REX

and similarly its propositional counterparts use the contexts of rules Q = {φr}. Similarly as done

in the evaluation of KWIK-R-MAX (Li, 2009), we set the threshold ζ for known states and actions
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(Section 2.3) heuristically as we cannot derive it from theory due to the heuristic nature of the learn-

ing algorithm for NID rules. For all investigated E3 and R-MAX algorithms, we set ζ = 2; hence,

an action is considered known in a state if its covering rule explains two experiences in E . Since

our investigated domains have mostly comparable levels of stochasticity, we did not optimize ζ for

the individual domains. Although ζ = 2 may not be optimal in each scenario, it allows the agent

to explore the environments of our experiments within a reasonable number of actions (< 100),

while providing some confidence in the estimate. We have implemented REX and its propositional

counterparts, the learning algorithm for NID rules and the planning algorithm PRADA in C++.1

We compare our approach REX to relational ε-greedy which is the established exploration tech-

nique in relational RL approaches (see the discussion in Section 1.2). Relational ε-greedy is not a

simple baseline, but an effective technique which learns abstract relational transition models (in our

case NID rules) and uses them for exploitation—thereby employing the same set of known states as

REX (relational E3 and R-MAX). In contrast to REX, it performs a random action for exploration.

Relational ε-greedy often profits from its optimism to try to exploit: in contrast to REX, it does

not require to fully know a state before it can start exploitation there. In our experiments, we used

decaying schemes to set ε dynamically, enabling a high exploration rate in the beginning and more

exploitation with an increasing number of time-steps.

We emphasize that we are not aware of any other relational exploration approach for learning

full transition models apart from ε-greedy which we could use as a baseline in our evaluation. As

discussed in detail in Section 1.2, the conceptual approach of Walsh (2010) based on a relational

R-MAX framework has not been demonstrated in practice and is supposedly intractable in large

domains like ours. More importantly, it is limited to a relational language which is less expressive

than the one required for a large fraction of our investigated scenarios.

Our first test domain, called Robot manipulation domain, is a simulated complex 3D desktop

environment where a robot manipulates cubes, balls and boxes scattered on a table (Table 6). (In

the following, we refer to this simulated robot when speaking of “the robot”.) This is a relevant

scenario in robotics: “competent pick and place operations may provide a sufficient functional basis

for the manipulation requirements of a many of the targeted applications [of modern robotics]”

(Christensen, 2009, p. 56). Any autonomous system which wants to deliberately manipulate objects

has to master some sort of abstract reasoning at a symbolic level. In current state-of-the-art robotics,

however, this problem is largely unresolved and perceived as a bottleneck. Likewise, the ability to

generalize from experiences is viewed as a key desired capability of robots: “It is largely perception

and machine learning that distinguish a robot from an ordinary machine” (Christensen, 2009, p. 78).

We will see that our approach REX provides a practical solution to these problems. We use a 3D

rigid-body dynamics simulator (ODE) that enables a realistic behavior of the manipulated objects.

For instance, piles of objects may topple over or objects may even fall off the table (in which

case they become out of reach for the robot). Depending on their type, objects show different

characteristics. For example, it is almost impossible to successfully put an object on top of a ball,

and building piles with small objects is more difficult. The robot can grab objects, try to put them

on top of other objects, in a box or on the table. Boxes have a lid; special actions may open or close

the lid; taking an object out of a box or putting it into it is possible only when the box is opened. The

actions of the robot are affected by noise so that resulting object piles are not straight-aligned. We

1. The website http://userpage.fu-berlin.de/tlang/explore/ provides our code of PRADA, the learning al-

gorithm of NID rules and the robot manipulation simulator as well as videos of exemplary rounds in the robot

manipulation domain.
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Given to the robot:

• Symbolic vocabulary to describe states

(on(X ,Y ), inhand(X), clear(X), . . . )

• Ability to convert continuous perceptions into a

symbolic representation

• Symbolic actions triggering noisy motor primi-

tives (always executed, effects depend on con-

texts) (grab(X), puton(X) . . . )

• Reward function

Not given to the robot:

• Transition model for symbolic actions

“In which contexts do the motor primitives have

which effects?”

Table 6: In our robot manipulation domain, a simulated robot has to explore a 3D desktop environ-

ment with cubes, balls and boxes of different sizes and colors to master various tasks.

assume full observability of triples (s,a,s′) that specify how the world changed when an action was

executed in a certain state. We represent states with predicates cube(X), ball(X), box(X), table(X),
on(X ,Y ), contains(X ,Y ), out(X), inhand(X), upright(X), closed(X), clear(X) ≡ ∀Y.¬on(Y,X),
inhandNil() ≡ ¬∃X .inhand(X) and functions size(X), color(X). These symbols are obtained by

querying the state of the simulator and translating it according to simple hand-made guidelines,

thereby sidestepping the difficult problem of converting the agent’s observations into an internal

representation. For instance, on(a,b) holds if a and b exert friction forces on each other and a’s

z-coordinate is greater than the one of b, while their x- and y-coordinates are similar. If there are

o objects and f different object sizes and colors in a world, the state space is huge with f 2o22o2+8o

different states (not excluding states one would classify as “impossible” given some intuition about

real world physics); in our scenarios, we usually have much more than 1050 states. This points at

the potential of using abstract relational knowledge for exploration. We define five different types

of actions, denoted by different predicate symbols. These actions correspond to motor primitives

whose effects and contexts we want to explore, learn and exploit. The grab(X) action triggers the

robot to open its hand, move its hand next to X , let it grab X and raise the robot arm again. The

execution of this action is not influenced by any further factors. For example, if a different object Y

has been held in the hand before, it will fall down on either the table or a third object just below Y ;

if there are objects on top of X , these are very likely to fall down. The puton(X) action centers the

robot’s hand at a certain distance above X , opens it and raises the hand again. For instance, if there

is an object Z on X , the object Y that was potentially inhand may end up on Z or Z might fall off

X . The openBox(X) and closeBox(X) actions only apply to boxes. openBox(X) triggers the robot

to move its arm next to a box X and try to open its lid; this is only successful if there is no object

on top of this box. If the box is already open, the position of the lid does not change. Similarly,

closeBox(X) triggers the robot to move its arm next to the lid of the box X and close it; if the box is

already closed, the lid is not moved. The doNothing() action triggers no movement of the robot’s

arm. The robot might choose this action if it thinks that any other action could be harmful with
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respect to its expected reward. We emphasize again that actions always execute, regardless of the

state of the world. Also, actions which are rather unintuitive for humans such as trying to grab the

table or to put an object on top of itself are carried out. The robot has to learn by itself the effects

and contexts of such motor primitives.

Our second set of test domains, called IPPC in the following, are domains taken from the in-

ternational planning competition in 2008 (IPPC, 2008). While these domains are defined in the

probabilistic planning domain definition language (PPDDL), the transition dynamics of many do-

mains can be represented by NID rules (Lang and Toussaint, 2010). In our experiments, we show

that these representations can be explored and learned efficiently. These experiments also demon-

strate that our exploration approaches perform equally well when using a restricted representation

language, namely without deictic references and noise outcomes which are not allowed by PPDDL.

We perform multiple experiments in our test domains where we pursue the same, similar or

different tasks over several rounds:

• Series 1 – Robot Manipulation Domain:

– Experiment 1: Simple task in unchanging worlds (Figure 2, p. 3757)

– Experiment 2: Generalization to new worlds (Figure 3, p. 3758)

– Experiment 3: Advanced task in unchanging worlds (Figure 4, p. 3759)

– Experiment 4: Generalization to new tasks (Figure 5, p. 3760)

• Series 2 – IPPC Domains:

– Experiment 5: Exploding Blocksworld (Figure 6, p. 3761)

– Experiment 6: Triangle-tireworld (Figure 7, p. 3762)

– Experiment 7: Search-and-rescue (Figure 8, p. 3763)

In all experiments the robot starts from zero knowledge (E = /0) in the first round and carries over

experiences to the next rounds. Each round is limited by a maximum number of actions (100 in

the robot manipulation domain, varying numbers in the IPPC domains). If the task is not solved by

then, the round fails.

We report the success rates and the action numbers (failed trials contribute to the action num-

ber with the maximum number of actions). Both are direct measures of the goal-directedness and

acting performance of an autonomous agent. Likewise these measures also evaluate the learning

performance of the agent: the goal-directed performance depends on the learned rules and the ac-

tive exploration on the learned count functions. Thus, high success rates and low action numbers

indicate a good performance in learning rules and count functions—“good” in the sense of enabling

goal-directed behavior.

4.1 Series 1 – Robot Manipulation Domain

In this first series of experiments, we compare our relational exploration approach REX in both vari-

ants (E3 and R-MAX) to relational ε-greedy and to flat and factored E3 approaches in successively

more complex problem settings.
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Figure 2: Experiment 1 (Robot manipulation domain): Simple task in unchanging worlds. A run

consists of 5 subsequent rounds with the same start situations and goal objects. The robot

starts with no knowledge in the first round. The success rate and the mean number of

actions with standard deviations over 50 runs are shown (5 start situations, 10 seeds).

4.1.1 EXPERIMENT 1: SIMPLE TASK IN UNCHANGING WORLDS

The goal in each round is to stack two specific objects, on(o1,o2). To collect statistics we investigate

worlds of varying numbers of objects (cubes, balls, boxes and table): for each object number, we

create five worlds with different objects. For each such world, we perform 10 independent runs with

different random seeds. Each run consists of 5 rounds with the same goal instance and the same start

situation. In some worlds, goal objects are put inside boxes in the beginning, necessitating more

intense exploration to learn how to deal with boxes. Figure 2 shows that the relational explorers

have superior success rates, require significantly fewer actions and reuse their learned knowledge

effectively in subsequent rounds. The propositional explorers are overburdened with large numbers

of objects—their learned count functions of known states and actions fail to recognize similar sit-

uations. In contrast, the relational explorers scale well with increasing numbers of objects. In the

larger worlds, our REX approaches, that is relational E3 and R-MAX, require less rounds than ε-

greedy to solve the tasks with few actions: the learned count functions permit effective exploration.

4.1.2 EXPERIMENT 2: GENERALIZATION TO NEW WORLDS

In this series of experiments, the objects, their total numbers and the specific goal instances are

different in each round (worlds of 7, 9 and 11 objects). We create 10 problem sequences (each with

5 rounds) and perform 10 trials for each sequence with different random seeds. As Figure 3 shows

3757



LANG, TOUSSAINT AND KERSTING

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5
Round

Su
cc

es
s

 0

 50

 100

 1  2  3  4  5
Round

Ac
tio

ns

Figure 3: Experiment 2 (Robot manipulation domain): Generalization to new worlds. A run con-

sists of a sequence of 5 subsequent problems (corresponding to rounds) with different

objects, numbers of objects (6 - 10 cubes/balls/boxes + table) and start situations in each

problem. The robot starts with no knowledge in the first round. The success rate and the

mean number of actions with standard deviations over 100 runs are shown (10 sequences,

10 seeds).

the performance of the relational explorers is good from the beginning. Their learned rules and

count functions for known states and actions enable a stable performance of relational E3 and R-

MAX at a near-optimal level after already 2 rounds, while relational ε-greedy requires 3-4 rounds.

This experiment shows that the relational explorers can transfer their learned knowledge to new

situations and objects. In contrast, the propositional explorers cannot transfer their knowledge to

different worlds due to the limits of their learned rules and count functions and thus neither their

success rates nor their action numbers improve in subsequent rounds.

4.1.3 EXPERIMENT 3: ADVANCED TASK IN UNCHANGING WORLDS

The goal in each round is to “clear” the table. 5 movable objects (balls and cubes) of different

colors are distributed over the table. To clear up such a movable object, it needs to be put into a

box of the same color. We perform 10 independent runs with different random seeds in 5 different

start situations. Each run consists of 5 rounds with the same start situation. In start situations, balls

and cubes may form piles, lie on top of closed boxes or be contained in boxes of a different color.

Figure 4 presents our results. The non-relational exploration approaches fail to solve this task and

are omitted in the figure. Relational E3 and R-MAX outperform relational ε-greedy .

4.1.4 EXPERIMENT 4: GENERALIZATION TO NEW TASKS

Finally, we perform three tasks of increasing difficulty in succession: (i) piling two specific objects

in simple worlds with cubes and balls, (ii) in worlds extended by boxes (as in Exp. 1 and 2), and

(iii) clearing up the desktop by putting all movable objects into boxes of the same color where

the required objects may be partially contained in wrong boxes in the beginning (as in Exp. 3).

Each task is performed for three rounds in changing worlds with different goal objects. The results

are presented in Figure 5. Non-relational explorers cannot generalize over objects and fail in such
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Figure 4: Experiment 3 (Robot manipulation domain): Advanced task in unchanging worlds. The

goal is to put colored balls and cubes into boxes of the same color. A run consists of 5

subsequent rounds with the same start situation. The robot starts with zero knowledge in

the first round. The success rate and the mean estimators of action numbers with standard

deviations over 50 runs are shown (5 start situations, 10 seeds).

tasks (see Exp. 2 and 3) so we omit their results here. The results demonstrate that the relational

explorers are not only able to generalize over different situations and objects, but transfer the learned

knowledge from simple to difficult tasks in the sense of curriculum learning (Bengio et al., 2009).

This is shown in the bottom row of Figure 5 where the results of relational E3 are compared to

restarting the learning procedure at the beginning of each new task (that is, in rounds 4 and 7)

(the corresponding graphs for relational R-MAX and relational ε-greedy are similar). Furthermore,

both relational E3 and R-MAX benefit from their learned count functions for active exploration and

outperform relational ε-greedy clearly.

4.1.5 SUMMARY

The experiments in the robot manipulation domain show that our relational exploration approach

REX is a practical and effective full-system approach for exploration in challenging realistic problem

settings. Our results confirm the intuitive expectation that relational knowledge improves learning

transition models and learning count functions for known states and actions and thus exploration.

Experiment 1 shows that relational explorers scale better with the number of objects than propo-

sitional explorers. The more challenging Experiments 2 and 3 demonstrate that the principled re-

lational E3 and R-MAX exploration of REX outperforms the established ε-greedy exploration: the

learned count functions permit effective active exploration. Furthermore, these experiments show

that REX transfers its knowledge efficiently to new situations and objects—while propositional ex-

plorers fail to do so. Finally, Experiment 4 demonstrates that REX is able to transfer its learned

knowledge even to new tasks—in contrast to model-free relational approaches.

4.2 Series 2 – IPPC

In the second series of experiments, we demonstrate the effectiveness of REX in domains of the

international planning competition. We choose three domains whose transition dynamics can be
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Figure 5: Experiment 4 (Robot manipulation domain): Generalization to new tasks. A run consists

of a sequence of 9 problems (corresponding to rounds) with different objects, numbers of

objects (6 - 10 cubes/balls/boxes + table) and start situations in each problem. The tasks

are changed between rounds 3 and 4 and rounds 6 and 7 to more difficult tasks. The robot

starts with no knowledge in the first round. The success rate and the mean number of

actions with standard deviations over 50 runs are shown (10 sequences, 5 seeds). The top

row presents the results of different relational exploration approaches. The bottom row

compares the full curriculum relational E3 which transfers learned knowledge to new

tasks (same as in the top row) with restarting relational E3 with each new task.

modeled by NID rules. We convert the PPDDL definitions of these domains manually into sets of

NID rules and use these as the model of the true world dynamics. The agent tries to estimate the

rules from its experiences. As PPDDL does not allow for deictic references and noise outcomes, this

series of experiments demonstrates that REX performs also well with restricted relational languages.

For each domain, we present results on representative problem instances. To collect statistics,

we perform 50 trials on the same problem instance with different random seeds. Each trial consists

of 5 or 10 subsequent rounds (worlds do not change). In the IPPC domains, most actions do not

have effects in a given state: in addition to specifying contexts to distinguish different effect sets,

the PPDDL action operators define also restrictive action preconditions in the IPPC domains. This

is in contrast to the intrinsically noisy robot manipulation domain where actions almost always have

an effect. For instance, in the latter domain it is always possible to try to grab an object, be it clear,

at the bottom of a pile or in a box. NID rules don’t distinguish between contexts and preconditions.

To focus on the context learning part, we introduce a restriction for exploration in all (relational and
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Figure 6: Experiment 5 (IPPC): Exploding Blocksworld (problem instance 5). A run consists of 10

subsequent rounds with the same start situation and goal objects. The agent starts with

no knowledge in the first round. The success rate and the mean number of actions with

standard deviations over 50 runs based on different random seeds are shown. The top

row presents the results for learning the full transition models. The bottom row compares

learning the full transition models (same as in the top row) with learning the outcomes

and their distributions only when rule contexts are provided a-priori.

non-relational) investigated approaches: actions which have been executed without effects (so that

supposedly their preconditions were violated) are forbidden until the next state change.

4.2.1 EXPERIMENT 5: EXPLODING BLOCKSWORLD

The results for problem instance 5 of this domain are displayed in the top row of Figure 6. They

show that the propositional explorers almost always fail. Their performance is hampered in particu-

lar by the fact that most actions do not have effects in a given state. This is hazardous if one cannot

generalize one’s experiences over objects, resulting in barely useful estimated count functions for

known states and actions: the propositional explorers spend too much time in each state exploring

actions without effects. In contrast, the relational explorers learn quickly to solve the task. Both

relational E3 and R-MAX clearly outperform relational ε-greedy in both the success rate as well as

the number of required actions, indicating the usefulness of the learned count functions for active

exploration.

In the bottom row of Figure 6, the results of the relational approaches are compared to the

scenario where the contexts of rules are known a-priori and only the outcomes of rules and their
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Figure 7: Experiment 6 (IPPC): Triangle Tireworld (problem instance 1). A run consists of 10

subsequent rounds with the same start situation and goal specification. The agent starts

with no knowledge in the first round. The success rate and the mean estimators of the

action numbers with standard deviations over 50 runs based on different random seeds

are shown.

probabilities need to be learned. As expected, all relational approaches learn to solve the tasks

much faster in this simpler scenario. Relational ε-greedy is still clearly inferior to the principled

REX approaches.

4.2.2 EXPERIMENT 6: TRIANGLE TIREWORLD

The results presented in Figure 7 for problem instance 1 show that the success rates of all methods

fluctuate in similar value ranges with factored E3 performing best. In contrast, the smaller action

numbers of relational E3 and R-MAX indicate the advantage of learning and using expressive count

functions for active exploration. The difficulty of this domain lies in dead-lock situations (where

the agent has a flat tire, but no spare tire is available). The specific contexts for landing in such

dead-locks are hard to learn given the limited number of available relevant experiences. Here, our

general choice of the threshold for knowing states and actions, ζ = 2, (which we did not optimize

for individual domains) is too small: the explorers are too early confident about their learned model.

This hurts the relational explorers in particular as their models generalize the most and hence their

potentially still inaccurate predictions get applied wrongly more often.

4.2.3 EXPERIMENT 7: SEARCH AND RESCUE

In this domain, the agent can collect intermediate and final rewards in addition to solving the task.

We present the total rewards with the success rates and the action numbers for problem instance 8

in Figure 8. Overall, relational R-MAX performs best with respect to all measures; relational E3 has

similar success rates and action numbers, but collects less rewards. While flat E3 performs worst,

here factored E3 most often outperforms relational ε-greedy. This shows the benefit of a principled

exploration strategy based on learned count functions of known states and actions.
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Figure 8: Experiment 7 (IPPC): Search and Rescue (problem instance 8). A run consists of 5

subsequent rounds with the same start situation and goal specification. The agent starts

with no knowledge in the first round. The success rate and the mean estimators of the

action numbers and the rewards with standard deviations over 50 runs based on different

random seeds are shown.

4.2.4 SUMMARY

The results in the IPPC domains confirm our experimental findings in the robot manipulation do-

main: using either E3 or R-MAX action selection strategies, our exploration approach REX is able

to efficiently explore relational domains with fully unknown transition dynamics and different char-

acteristics. All our experiments show that learning relational count functions of known states and

actions and exploiting them in a principled exploration strategy outperforms both principled propo-

sitional exploration methods as well as the established technique for relational domains, relational

ε-greedy.

5. Conclusion

Efficient exploration in relational worlds is an interesting problem that is fundamental to many

real-life decision-theoretic planning problems, but has received little attention so far. We have ap-

proached this problem by proposing relational exploration strategies that borrow ideas from efficient

techniques for propositional representations. The key step in going from propositional to relational

representations is a new definition of the concept of the novelty of states and actions. We have

introduced a framework of relational count functions to estimate empirical counts of relational data.

In general this is a difficult problem since it requires learning from positive data only: the agent

wants to generalize the experienced state transitions to other states, but has no negative examples

and thus runs the risk of overgeneralization. We have introduced a relational exploration framework

called REX where such count functions are learned from experience and drive exploration in rela-

tional domains. We have provided guarantees on the exploration efficiency of REX under certain

assumptions on the model learner and planner.

We have proposed an instantiation of the REX framework by integrating the relational planner

PRADA and a NID rule learner. This combination results in the first relational model-based rein-

forcement learner with a principled exploration strategy for domains with fully unknown transition
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dynamics whose effectiveness has been empirically demonstrated on a large number of difficult

tasks in complex environments with many objects. Our experimental results show a significant

improvement over established non-relational techniques for solving relevant, difficult and highly

stochastic planning tasks in a 3D simulated robot environment and in domains of the international

planning competition. Our results demonstrate that relational exploration, driven by estimated re-

lational count functions, does not only improve the exploration performance, but also enables the

transfer of learned knowledge to new situations and objects and even in a curriculum learning setting

where different tasks have to be solved one after the other.

On a more general level, our work shows that it is promising to investigate the combination

of statistical machine learning methods with expressive symbolic representations for developing

intelligent agents. On the one hand, the symbolic representation provides abstract relational features

which are key for generalization. On the other hand, an autonomous agent needs to adapt to its

environment from experience and thus statistical techniques are required to actively learn compact

symbolic representations.

5.1 Future Work

There are several interesting avenues for future work. One should start to explore statistical rela-

tional reasoning and learning techniques for the relational count function estimation problem im-

plicit in exploring relational worlds. Interesting candidates include relational variants of kernel-

based methods (Driessens et al., 2006), regression and cluster trees (Blockeel and de Raedt, 1998)

as well as boosted relational dependency networks (Neville and Jensen, 2007; Natarajan et al., 2010)

and their extension to the online learning setting. We believe our framework opens the door to a large

variety of possible exploration strategies—our specific choices have only served as a first proof of

concept. Another avenue of future work is to investigate incremental learning of transition models.

For instance, how can a set of probabilistic relational rules be modified efficiently with additional

experiences? The resulting algorithms might in turn provide new relational exploration strategies.

Future work should also explore the connection between relational exploration and transfer learn-

ing. As it is hopeless to explore the whole state of a non-trivial world, investigating the relevance of

objects or object classes for the task at hand is a further challenge for future research. Finally, exam-

ining our approach in other problem scenarios is appealing, for instance, applying it to large-scale

applications such as the web or to geometrical reasoning of robots.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In

Proc. of the Int. Conf. on Machine Learning (ICML), pages 41–48, 2009.

3764



EXPLORATION IN RELATIONAL DOMAINS

Mustafa Bilgic, Lilyana Mihalkova, and Lise Getoor. Active learning for networked data. In Proc. of

the Int. Conf. on Machine Learning (ICML), 2010.

Hendrik Blockeel and Luc de Raedt. Top-down induction of first order local decision trees. Artificial

Intelligence Journal, 101:185–297, 1998.

Craig Boutilier, Ray Reiter, and Bob Price. Symbolic dynamic programming for first-order MDPs.

In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), pages 690–700, 2001.

Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm for near-

optimal reinforcement learning. Journal of Machine Learning Research (JMLR), 3:213–231,

2002.

Henrik Christensen. From internet to robotics – a roadmap for US robotics, May 2009. http:

//www.us-robotics.us/reports/CCC\%20Report.pdf.

David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with statistical models.

Journal of Artificial Intelligence Research (JAIR), 4(1):129–145, 1996.

Tom Croonenborghs, Jan Ramon, Hendrik Blockeel, and Maurice Bruynooghe. Online learning

and exploiting relational models in reinforcement learning. In Proc. of the Int. Conf. on Artificial

Intelligence (IJCAI), pages 726–731, 2007.

Luc de Raedt, P. Frasconi, Kristian Kersting, and S.H. Muggleton, editors. Probabilistic Inductive

Logic Programming, volume 4911 of Lecture Notes in Computer Science. Springer, 2008.

Carlos Diuk. An Object-Oriented Representation for Efficient Reinforcement Learning. PhD thesis,

Rutgers, The State University of New Jersey, New Brunswick, NJ, 2010.

Carlos Diuk, Andre Cohen, and Michael Littman. An object-oriented representation for efficient

reinforcement learning. In Proc. of the Int. Conf. on Machine Learning (ICML), 2008.

Carlos Diuk, Lihong Li, and Bethany R. Leffler. The adaptive k-meteorologists problem and its

application to structure learning and feature selection in reinforcement learning. In Proc. of the

Int. Conf. on Machine Learning (ICML), 2009.
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